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ABSTRACT 

Malaria, the disease caused by Plasmodium sp., claims the lives of over 1 million people 

every year, with Plasmodium falciparum causing the highest morbidity.  Rapidly acquiring drug 

resistance is threatening to exhaust our antimalarial drug arsenal and already requires the 

utilization of combination drug therapy in most cases.  The global need for novel antimalarial 

chemical scaffolds has never been greater. 

Screening of natural product libraries is known to have higher hit rates than synthetic 

chemical libraries.  This elevated hit rate is somewhat attributed to the greater biodiversity 

available in natural products.  Marine life is the most biodiverse system on the planet, containing 

34 of the 36 known phyla of life, and is expected to be a rich source of novel chemotypes.   In 

collaboration with the Harbor Branch Oceanographic Institute in Ft. Pierce we have screened a 

library of over 2,800 marine macroorganism peak fractions against Plasmodium falciparum 

using the SYBR green I fluorescence-based assay.  In this screening process we have identified 

six compounds from five novel chemical scaffolds all of which have low micromolar to 

submicromolar IC50 values and excellent selectivity indices.  Additionally, one of these chemical 

scaffolds, the bis(indolyl)imidazole, was selected for further in vitro pharmacological and 

structure-activity relationship (SAR) profiling, key steps in the challenging process of identifying 

a new antimalarial drug lead compound.  
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CHAPTER ONE: INTRODUCTION 

Malaria Background 

Malaria, a term from the Latin words ‘mal’ ‘aria’ meaning ‘bad air’, is caused by the 

parasite genus Plasmodium of the apicomplexan family. Once infected the most common 

symptoms include fever, headache, malaise, myalgias, arthralgia, low back pain, nausea, 

vomiting, diarrhea and cough [1]. The most prevalent human parasites are Plasmodium 

falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malaria, and Plasmodium 

knowlesi, with Plasmodium falciparum causing the highest global mortality [2].  Despite the fact 

that Malaria has been a major cause of mortality and morbidity for thousands of years [3], recent 

estimates conclude that around 3.3 billion people are still at risk of contracting malaria, and over 

1,000,000 people die annually from the disease [2].  Over 85% of the mortality occurs in 

children under 5 years old. 

Plasmodium falciparum Life Cycle 

The Plasmodium falciparum life cycle involves two separate hosts, the female Anopheles 

mosquito and the human.  The parasite enters the mosquito during a blood meal as exflagellated 

motile microgametes and macrogametes [4].  These quickly form male and female gametocytes 

which undergo gametogenesis to form ookinetes.  The ookinetes then migrate to the mid-gut 

epithelium basal lamina [5], where the ookinetes develop into oocytes and mature into 

sporozoites that rupture through the basal lamina and migrate to the mosquito salivary gland [6].  

Upon the mosquito’s next blood meal, sporozoites travel from the mosquito salivary gland and 

into the human blood stream.  Within 30 seconds to two minutes the sporozoites must travel 

along the human blood stream and terminally lodge within hepatocyte cells where they will 
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replicate to over 10,000 merozoites in a process called schizogony [7, 8].  Eventually, a 

merosome, full of hundreds of merozoites, will bud and release the merozoites inside the blood 

stream, each of which will infect a red blood cell [9]. Over the next 48 hours the intra-

erythrocytic merozoite will develop into a ring, then a trophozoite, followed by schizont.  Within 

the schizont stage the parasite undergoes many consecutive cycles of replication forming a 10-20 

nucleated merozoites in what is called a segmenter stage.  After entering segmenter stage the 

parasites will egress from the red blood cell as many new merozoites, which struggle to find and 

invade nearby red blood cells and begin the intra-erythrocytic process again.  Upon release of the 

merozoites from the red blood cell, tumor necrosis factor and other cytokines are also released 

which explain the cyclical symptomology [9]. 

This asexual life cycle is broken approximately 1% of the time when a ring will form a 

microgametes or a macrogametes [9].  These sexual stages can be brought into the mosquito 

during a blood meal and will develop as mentioned above.  The complete Plasmodium spp. life 

cycle is depicted in figure 1. 
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Figure 1 Plasmodium spp. Life Cycle [8] 
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Current Treatment and Prevention Strategies 

Per the World Health Organization (WHO) “Malaria is an entirely preventable and treatable 

disease, provided that currently recommended interventions are properly implemented” [2] 

Prevention 

 “The goals of malaria vector control are two-fold: 

1) To protect individual people against infective malaria mosquito bites 

2) To reduce the intensity of local malaria transmission at community level by reducing 

the longevity, density and human-vector contact of the local vector mosquito 

population” [2] 

Insecticide Treated Bed Nets- 

The best preventative measure for malaria is utilizing insecticide treated bed nets (ITN’s).  

These nets, originally tested in the 1990’s, showed a remarkable reduction in child mortality of 

over 20% [10]! As early as 1898, the recognition that mosquito nets could reduce the parasite 

load was being taught by Sir Ronald Ross [11].   The practice of saturating the bed nets in 

pyrethroids shows similar decreases in child mortality and also shows some proximity protection 

as well [12].  These long-lasting insecticide treated nets (LLIN) significantly decreased the 

parasite load and the WHO recommended ceasing distributing a set number per household and 

start distributing these nets universally as the protection is far greater under a net than it is by 

proximity only [13]. Also, historically 96% of those who have a bed net will use it, suggesting 

that this could be a great preventative measure [2]. 
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Indoor Residual Spraying- 

 A second line of defense is indoor residual spraying (IRS) of insecticides, preferably 

long-lasting insecticides.  This method requires multiple rounds of spraying each year and can be 

somewhat costly, especially for very-low income countries [14].  Remarkably, 2010 showed an 

increase in IRS usage with over 70% of countries using long-lasting pyrethroids.  Although 

many countries in Africa reported decreased usage of IRS, the western world (specifically China) 

more than compensated to bring the increased total above what was done previously.  The 

dominating use of pyrethroids for both ITN’s and in IRS promotes concern for possible vector 

resistance [2].  IRS can be from any of the other three insecticide classes: organochlorine (DDT), 

organophosphate, or carbamate; whereas pyrethroids are the only ITN approved chemical class 

at this time.  Understandably, cost could be an issue, DDT is roughly the same price as the 

relatively inexpensive pyrethroids, but organophosphates and carbamates can be as much as 4 

times the price of pyrethroids [2].  Overall, of the reporting countries, 11% of at risk populations 

are currently protected by IRS which, although increasing each year, still needs great 

improvement, and it is clear that for a global increase in IRS use and availability, funding will 

need to be increased. 

 

Vaccination- 

A third preventative option, an ideal one, could include vaccination against malaria.  

Since 1910 development of a malaria vaccine has escaped the reach of the scientific community, 

although many great strides have been taken.  Most recently GlaxoSmithKline developed the 
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RTS,S vaccine which combines circumsporozoite protein antibodies with a hepatitis B vector 

and the AS01 immune response boosting adjuvant.  This vaccine, also known as Mosquirix, is 

currently undergoing phase III clinical trials.   Preliminary findings suggest a decrease in 

mortality by 50% in infants and children.  These findings however, are yet to be verified [15].  If 

successful, this could be the first malaria vaccine, although improvement is still needed to 

increase efficacy beyond 50%.   

Garcia-Basterio et al.[15] recommend that in order for a vaccine to be effective in 

preventing malaria it is desirable that it has the following qualities: 

-“Be effective preventing clinical disease, severe malaria and transmission in the  

community 

-Be completely safe for young infants and risk populations (pregnant women, people with 

immune deficiencies or other co-morbidities), with a similar safety profile as other EPI 

vaccines 

-Provide protection against the 5 species of malaria plasmodia 

-Provide long-lasting immunity 

-Be administrable in the first months of life 

-Single oral - dose regime compatible with vaccines of the expanded program on  

immunization (EPI) 

-Easily manufactured, deployed, stored and handled 

-Affordable for governments of low income countries 

-Stable at room temperature 

-Available for travelers of non-endemic areas” 
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Treatment 

 Currently there are over seven chemical classes used in the treatment of Plasmodium spp. 

infections including: antifolates, endoperoxides, 4- and 8- aminoquinolines, sulfonamides, amino 

alcohols, and antibiotics.  Of these, the most common currently used chemical classes 

(aminoquinolines, endoperoxides, and antifolates- including sulfonamides) will be discussed in 

more detail. 

 It is important to note that the WHO recommends any treatment of malaria should 

include combination therapy.  As each chemical class has a different mode of action it is 

believed that the growing trend of drug resistant parasites can be curtailed if combinations of 

chemicals which inhibit different targets, as well as different stages of life cycle development are 

used in conjunction.  A brief structural representation of the different antimalarial drug classes 

can be found in figure 2. 
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Figure 2 Current Antimalarial Treatment Classes [16] 
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4- and 8- Aminoquinolines 

 

Figure 3- 4- and 8- Aminoquinolines 

 

For almost 400 years aminoquinolines, like those in figure 3, have been used to treat 

malaria.  Isolated from Cinchona tree bark in the Andes mountain range, quinine use was taught 

by the native South and Central American people to Spanish Jesuits in the early 1600’s [17].  

Because of the limited cultivation and expense of quinine, it became apparent that direct 

chemical synthesis was needed.  Quinine derivatives were successfully synthesized as early as 

the 1920’s and one particular derivative of note, Resochin, was synthesized in 1934 by Hans 

Andersag.  Unfortunately, Resochin was determined to be slightly more toxic than the previous 

quinine derivative in use: Plasmochin, and the clinical study of Resochin ended prematurely 

[18]. Nearly a decade later, under the US Board for the Coordination of Malarial Studies, 

Resochin was rediscovered as the substance SN-7619, and was named Chloroquine though it was 

structurally the identical of Resochin [18]. 

By the 1960’s, Chloroquine became one of the most widely sold of all medications and 

its ability to serve as both a prophylactic and a preventative treatment only increased its 

antimalarial value [7].  Chloroquine destroys the parasite by entering into the parasite digestive 

vacuole and binding hematin (a toxic by-product of hemoglobin digestion by the parasite.).  
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Normally, the hematin is polymerized into an inert hemozoin crystal.  This detoxification is 

disrupted by chloroquine and the build-up of toxic hematin destroys the parasite [19]. 

In 1955 the WHO began the Malaria Eradication Program utilizing chloroquine as the 

sole treatment for infected humans, and the insecticide DDT to tackle the vector control [8]. 

Using these resources, the WHO successfully eradicated malaria from 24 countries by 1982.  

Unfortunately, the nations where malaria was not eradicated soon were dominated by a rapid 

wave of chloroquine resistant Plasmodium falciparum [20].  

These resistant strains of P. falciparum were shown to have mutations in key transport 

proteins which allowed the parasite to decrease chloroquine concentrations in the digestive 

vacuole.  This transport protein is called Plasmodium falciparum chloroquine resistant 

transporter protein (pfcrt).  Because of the decreased efficacy of chloroquine, many nations 

discontinued its use and switched to antifolate combination therapy.  Interestingly, after 8 years 

of discontinued chloroquine use to treat malaria in Malawi, a test group of 210 patients treated 

with chloroquine showed that chloroquine sensitivity was restored and that the use of 

chloroquine was much more effective at reducing host parasitemia than the antifolate 

combination therapy [21].  Similar studies in other nations also showed increased chloroquine 

efficacy after discontinued use for some period of time.  This lends credibility to the idea that if a 

chemical treatment is shown to have resistance, it must be temporarily discontinued for some 

time and then it may be brought back into use.  The principle concept behind this is the belief 

that the mechanism of resistance will be lost from the parasite over time. Jensen et al. describe 

this practice as “drug cycling”.  How effective this method will be over time, and whether or not 

this method can be applied to other antimalarial drugs remains to be seen [7]. 
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Antifolates and Sulfonamides 

 Because of a rise in chloroquine resistant parasites, another chemical class of 

antimalarials needed to be developed.  This new chemical class was antifolates.  Antifolates 

inhibit the production of tetrahydrofolate, a necessary step in DNA, RNA, and protein 

metabolism.  Two signature targets of antifolates in Plasmodium spp. include inhibition of 

dihydropteroate synthase (DHPS) by sulfonamides and inhibition of dihydrofolate reducatase 

(DHFR) by pyrimethamine or cycloguanil. (Figure 4).   

DHPS catalyzes the production of 7,8 dihydropteroate from 6-hydroxymethyl-7,8-

dihydropterin pyrophosphate and p-Aminobenzoic acid (pABA)[22].  It is clear that 

sulfonamides, like sulfadoxine, bind to DHPS and, due to structural similarities, inhibit pABA 

from interacting [23].  This is antagonistically reversible inhibition, as increasing pABA 

concentrations in the media has been shown to decreases sulfadoxine activity [24].   

In addition to sulfonamide mediated DHPS inhibition, another class of antifolates, 

pyrimethamine, cycloguanil, etc., inhibit dihydrofolate reductase (DHFR).  These chemicals 

have a strong structural resemblance to dihydrofolic acid (the natural substrate of DHFR) and are 

able to bind to DHFR and inhibit tetrahydrofolate production [25]. One of the major reasons that 

antifolates, like pyrimethamine, are so advantageous in the treatment of malaria is the fact that 

protozoan DHFR has a much greater affinity for these inhibitors than human DHFR [26].   

Unfortunately, within a short number of years of acceptance as an antimalarial treatment, 

cases of antifolate drug resistant Plasmodium strains surfaced [27].  Most methods of resistance 

include DHFR or DHPS gene point mutations [28, 29]. which significantly decrease the binding 

affinity for the drug(s).  These mutations could have arisen from the many years of sulfadoxine 
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and pyrimethamine combination therapy that replaced chloroquine treatment throughout Africa.  

Although inexpensive and valued for its single dose treatment, the slow excretion of these drugs 

from the body could also have facilitated resistance development [3].    

 

 

Figure 4- Folate Biosynthesis (http://priweb.cc.huji.ac.il/malaria//maps/folatebiopath.html) 

 

Endoperoxides 

 Endoperoxides are derived from the parent compound artemisinin (Figure 5).  

Artemisinin, or qinghaosu, is a natural compound from the plant Artemisia annua.  Lacking the 
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typical nitrogen-substituted rings, the sesquiterpene lactone artemisinin has a peroxide bridge 

making it very unique among antimalarial drug classes [30].  Although the mechanism of action 

is still unknown, it is believed that within the digestive vacuole the peroxide reacts with the heme 

to produce free radicals [31] which can lead to the disruption of lipid membranes [32] and the 

alkylation of specific intracellular targets (heme or other proteins like metalloporphyrins [33]).   

One of the great benefits of Artemisinin is a rapid treatment response backed with a short 

half-life [34].  Most cases of infection can be eliminated completely after the first 48 hours of 

artemisinin treatment [35].  This swift action also provides successful treatment of potentially 

fatal cerebral malaria [36].  Unfortunately, the speed of action, like a two edged sword, has been 

cited in studies as a potential for developing drug resistance, as many patients after the first dose 

would begin to feel better and would stop treatment before total parasite elimination was 

completed [37, 38].  In fact, artemisinin treatment failures have already been announced in a few 

isolated instances.  Most of these cases are from regions known to cultivate multi-drug resistant 

strains and many question if the failure was truly from growing resistance or from the patient’s 

medication non-compliance.  In any case, this unusual delay in the parasite development of drug 

resistance could arise in part from artemisinin’s very short half-life as discussed above which 

could prevent adaptive resistance typically formed in lingering sub-therapeutic drug level 

environments.  Another cause for delayed artemisinin resistance could be the early decision to 

use artemisinin drugs in combination therapies (ACT’s) with longer acting drugs [3].  Numerous 

studies show that ACT treatment results in decreased rates of recrudescence and cases of latent 

infection.  Some examples of artemisinin deriviates and ACT use are shown in Figure 5. 
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Figure 5- Artemisinin Derivatives and ACT's [39] 
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Malaria Therapeutics Development 

 The ever increasing rate of drug resistance has awakened a renewed effort in drug 

discovery over the past decade.  In fact most current treatment options show some degree of 

resistance or exhibit the classical signs of the emergence of resistance (Table 1) 

Table 1- Existing Antimalarial Drugs and Their Use [40] 

Common name Chemical class Clinical use Resistance 

Artemisinins (artemether, 

artesunate, 

dihydroartemisinin) 

Sesquiterpene lactone 

endoperoxide 

In artemisinin-based 

combination therapies (ACTs) 
Possibly emerging 

Lumefantrine Arylamino alcohol 

Most common first-line 

antimalarial therapy in Africa, 

in combination with artemether 

No evidence of 

high-level 

resistance 

Amodiaquine 4-Aminoquinoline 
In combination with artesunate 

in parts of Africa 

Limited cross-

resistance with 

chloroquine 

Piperaquine Bisquinoline 

In combination with 

dihydroartemisinin in parts of 

southeast Asia 

Observed in China 

following single-

drug therapy 

Mefloquine 4-Methanolquinoline 
In combination with artesunate 

in parts of southeast Asia 

Prevalent in 

southeast Asia 

Pyronaridine 
Acridine-type 

Mannich base 

Being registered for combined 

use with artesunate 

No cross-

resistance with 

other drugs 

reported 

Quinine/quinidine 4-Methanolquinoline 
Mainly for treating severe 

malaria, often with antibiotics 

Exists at a low 

level 

Atovaquone Naphthoquinone 

In combination with proguanil 

(a biguanide) for treatment or 

prevention 

Has been observed 

clinically 

Chloroquine 4-Aminoquinoline 
Former first-line treatment for 

uncomplicated malaria 
Widespread 

Pyrimethamine Diaminopyrimidine 

For intermittent preventive 

treatment, combined with 

sulphadoxine (a sulphonamide) 

Widespread 

Primaquine 8-Aminoquinoline 

For eliminating liver-stage 

parasites, including dormant 

forms of Plasmodium vivax 

Unknown 
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The ability to find new antimalarial drugs requires collaborations between pharmaceutical 

companies, academia and government agencies for any hope of a speedy resolution.  Two such 

collaborations, Guiguemde et al. and Gamo et al., submitted their work in 2010 and showed how 

partnerships can be used to resupply our antimalarial pipeline [41, 42].  Both studies used high-

throughput screening of vast chemical libraries to find new chemical classes that demonstrate 

antimalarial activity.  Medicines for Malaria Venture (MMV) is a drug discovery hub where 

pharmaceuticals, academia and government funding compile data and collaborate to find the cure 

for malaria.  Unfortunately, even with this collaborative support effort, finding novel antimalarial 

candidates is proving to be very difficult.  The current antimalarial pipeline is shown in Table 2.  

In order for the pipeline to maintain continuous flow, new leads must frequently be identified.  

One of the most common methods of lead generation is through screening of synthetic 

compound or natural product libraries. Once leads are identified, medicinal chemistry can begin 

with lead optimization.  The lead will cycle multiple times between screening and optimizing 

until the best possible pre-clinical candidate is generated. 
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Table 2- MMV Antimalarial Pipeline  

(http://www.mmv.org/research-development/rd-portfolio.) [43] 

 

Compounds from synthetic libraries have known chemical synthetic schemes and 

possibly some understanding of mechanism of action from previous screening in other systems.  

In contrast, natural product libraries are typically extracts containing up to hundreds of 

compounds which can be screened for activity against various targets/organisms.  If the extract 

shows some activity it will be sent for dereplication, a process that isolates the compounds from 

http://www.mmv.org/research-development/rd-portfolio
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one another within an extract.  In either case, synthetic or natural, once a compound is identified 

as the source of activity, cytotoxic analysis is done to rule out any early cytotoxic concerns and 

to develop a therapeutic window called the selectivity index.  It is also common to run an ADME 

(Absorption, Distribution, Metabolism, and Excretion) profile on the early lead compound to 

determine any preliminary pharmacodynamics or pharmacokinetic pitfalls. Following this front-

end intensive pattern for drug lead discovery will save millions of dollars and significantly speed 

up drug approval processing once the drug candidate is found. 

 

Marine Natural Products 

 With the oceans covering over 70% of the world and 34 of the 36 known phyla of life 

contained therein, marine life presents itself as a relatively untapped reservoir for novel 

chemotherapeutics.  In the 1950's the first bioactive marine chemicals spongothymidine and 

spongouridine were purified from the Tethya crypta sponge [44].  Since those initial discoveries, 

over 15,000 novel and bioactive marine natural products have been isolated [45] and many have 

shown to have excellent anti-inflammatory, antifungal, anti-infective, antimicrobial, anticancer, 

antituberculosis, and antiprotozoal activity.  A few examples of bioactive marine natural 

products and their targets are listed in table 3.  Many of these marine natural products (MNPs) 

have gone on to clinical trials and many others are still in early development. 

In 1992, the sesquiterpenes chemical class was isolated from the Australian sponge 

Acanthella klethra and was shown to have antimalarial activity [46].  Over the following 20 

years many different chemical classes showing potent antimalarial activity have been identified 

from marine life; Including sponges, marine bacteria, and colonial ascidians [47]. 



19 

 

Table 3- Selection of marine compounds with potent and varied activities.[48] 

Drug Class Compound Organism Chemistry IC50 

Antibacterial Ascochytatin Fungus Polyketide 0.3µg 

Antibacterial 
L-Amino acid oxidase 

SSAP 
Rockfish Protein 

0.078-0.63 

µg/mL 

Antibacterial Arenicin-1 Polychaete Peptide 2µg/mL 

Antibacterial Isoaaptamine Sponge Alkaloid 3.7µg/mL 

Antibacterial Sesterterpenes Sponge Terpenoid 
1.56-

12.5µg/mL 

Anticoagulant Anticoagulant pepetide Bivalve Protein 77.9nM 

Antifungal Holothurin B sea cucumber 
Triterpenoid 

glycoside 
1.56µg/mL 

Antifungal Neopeltolide Sponge Polyketide 0.62µg/mL 

Antiprotozoal Plakortide Sponge Polyketide 
0.5-

2.3µg/mL 

Antiprotozoal Viridamides A & B Bacterium Peptide 1.1-1.5µM 

Antiprotozoal Chaetoxanthone B Fungus Polyketide 1.5µg/mL 

Antituberculosis Bipinnapterolide B Coral Terpenoid 128 µg/mL 

Antituberculosis 
8'-O-

demethylisonigerone 
Fungus Polyketide 

21.5 & 43.0 

µM 

Antituberculosis Parguesterols A and B Sponge 
Triterpenoid 

glycoside 

7.8 & 

11.2µg/mL 

Antiviral Esculetin ethyl ester Sponge Polyketide 46 µM 

Antiviral 
Cryptonemia crenulata 

galactan 
Alga Polysaccharide 0.8-16µg/mL 

Antiviral 6,6'-Bieckol Alga Skikimate 1.07-1.72 µM 

Antiviral Mirabamides A, C and D Sponge Peptide 0.041-3.9 µM 
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CHAPTER TWO: MATERIALS AND METHODS 

Culturing P. falciparum  

 P. falciparum Dd2 and 3D7 strains were cultured using a modified Trager and Jensen 

method [49] in RPMI media with L-glutamine (Invitrogen) and supplemented with 25mM 

HEPES, 26 mM NaHCO3, 2% dextrose, 15mg/L hypoxanthine, 25mg/L gentamycin,  and 0.5% 

Albumax I.  Culture media was changed daily and incubated at 37°C in 5% CO2 and 95% air. 

The 3D7 strain is a chloroquine sensitive strain characterized as chloroquine sensitive, 

pyrimethamine sensitive, mefloquine sensitive, and artemisisin sensitive.  The Dd2 strain was 

used as a chloroquine resistant strain with resistance to chloroquine, pyrimethamine, and 

mefloquine but sensitivitity to artemisinin. A blood smear was done daily and a Giemsa stain 

was used to determine parasitemia.  When parasitemia reached 10-15%, the culture was split 

down and resupplied with washed and 50% diluted A+ blood received from the Central Florida 

Blood Bank. 

 

SYBR Green-I Fluorescence Assay   

 In comparing antimalarial screening assays it is clear that SYBR Green I is both less 

expensive than PICOGREEN and [H
3
]-hypoxanthine incorporation assays and also produces the 

lowest signal to noise ratio of the three assays in screening of natural product extracts [50] Given 

these two advantages, SYBR Green I was selected as our means of determining antimalarial 

activity.  Because the Plasmodium falciparum host is the RBC which has no DNA, and since 

SYBR Green is a known DNA intercalating agent which will emit excitation induced light only 
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after binding to DNA, this assay can be used to quantify DNA levels and therefore, to quantify 

inhibition levels. 

Different dilutions of the compound/fraction in 1 µl of the culture medium were added to 

99 µl of P. falciparum culture at a 1% parasitemia and 2% hematocrit in 96-well plates. 

Maximum DMSO concentration in the culture never exceeded 0.125%. Chloroquine at 1 µM 

was used as a positive control to determine the baseline value. Following 72 hours incubation at 

37ºC, the plates were frozen at -80ºC. After thawing the plates at room temperature 100 µl of 

lysis buffer (with 20mM Tris-HCL, 0.08% Saponin, 5mM EDTA, 0.8%Triton X-100, and 0.01% 

SYBR Green I) was added to each well. Plates were incubated in the dark for 30 minutes at 37ºC 

followed by fluorescence emission reading using a Synergy H4 hybrid multimode plate reader 

(Biotek) set at 485nm excitation and 530nm emission.   

 

Fibroblast Cytotoxicity Assay  

 Compounds were evaluated for cytotoxicity using NIH/3T3 fibroblast cells. A 384 well 

plate was seeded with 2,500 cells/well (total volume 50µL) and incubated for 24 hours.  Serial 

dilutions of the compound were added to the plate and plates were incubated for an additional 48 

hours. Fifty µL MTS  [(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium), CellTiter 96® Aqueous non-radioactive cell proliferation assay, 

Promega] reagent was added to each well and the plates were incubated for an additional 3 

hours.  Cell viability was obtained by measuring the absorbance at 490nm using Synergy H4 

hybrid multimode plate reader (Biotek).  
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Sensitivity and Reliability Statistical Analysis 

 In order to validate active hits and recognize and quantify sensitivity and accuracy of 

each assay we utilized a Z-factor analysis.  This assay was originally developed by Zhang et al 

[51], for HTS validation. The equation is shown below. The Z-factor is a range from 0 to 1.  The 

closer the score is to the value of 1, the more ideal are the assay conditions and the more valid 

are the hit results.  A value below 0.5 is considered unreliable and perhaps requires some 

modifications before the assay can be re-run.  A value between 0.5 and 1 is considered 

acceptable for hit validation  

            (
(     )

(      )
) 

 

 Where σp represents the standard deviation of the positive controls and σn is the standard 

deviation of negative controls.  Also, µp represents the mean of the positive controls and µn 

represents the mean of the negative controls. 
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CHAPTER THREE: IDENTIFICATION OF NOVEL ANTIMALARIALS FROM 

MARINE NATURAL PRODUCTS 

Primary Screening of HBOI Peak Fractions 

 The Harbor Branch Oceanographic Institute in Fort Pierce, Florida began marine natural 

product drug discovery in 1984.  The HBOI collection program has two specific aims: to 

maximize taxonomic diversity; and to evaluate how ecological factors relate to secondary 

metabolite expression.  Dedication to these two primary aims has already resulted in the 

publication of over 100 bioactive marine natural products and over 96 patents to protect these 

discoveries.  Their vast library includes many uncommon marine organisms, primarily collected 

by the Johnson Sea-Link submersible, which is capable of collecting samples at depths of almost 

1000m, an order of magnitude deeper than typical scuba-access derived collection (<100m).   

Given the proximity of HBOI and their unique collection of marine life fractions we 

began a collaborative effort to screen over 2,600 marine natural product peak fractions in search 

of novel antimalarial chemical scaffolds.  This joint UCF-HBOI drug development scheme is 

depicted in figure 6 below 
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.  

Figure 6-UCF-HBOI Drug Development Scheme 

 

 In the screening process we quickly identified two-hundred fifty-three active fractions 

against the chloroquine sensitive Plasmodium 3D7 strain.  Any fraction which demonstrated 

greater than 70% inhibition of parasite at a concentration of 5µg/ml was defined as an active 

fraction.  A list of macroorganims sources for these fractions can be found in table 4. 

 

Table 4 Macroorganism Sources of Active Peak Fractions 

 
 

 The active fractions were next prioritized by selecting the top 2 active fractions per 

species.  This resulted in 31 active fractions which were then screened against the 3d7 parasite 

Coral Sponge Mollusk Other

Number of Different 

Species with Active 

Fractions

3 13 1 3

                                                                        Active Peak Fraction Origins                                                                           

(active = >70% inhibition @ 5μ/ml)
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strain at different concentrations to determine the IC50.  Table 5 represents the result of this 

screening process.  These results were sent back to HBOI where the fractions were further 

purified and dereplicated. 

Table 5 Antimalarial Activity of HBOI Peak Fractions 

 

All data are the mean of at least three independent experiments. 

 

Primary Screening of HBOI Purified Fractions 

 As the prioritized active fractions were purified and dereplicated, they were fractionated 

out and sent back to UCF for additional screening.  Over 200 purified fractions were received 

from HBOI in two separate shipments. The purified fractions from the first shipment were 

screened against the chloroquine resistant Dd2 strain and the results are shown in table 6. 

Fraction
3D7 IC50 

(ug/ml)
Fraction

3D7 IC50 

(ug/ml)
Fraction

3D7 IC50 

(ug/ml)

12.A09 0.73 18.F01 0.98 30.A01 0.99

13.H07 1.1 18.G07 0.44 31.C08 1.1

16.A01 0.67 22.A01 0.82 32.C02 0.08

18.A01 0.62 23.F01 1.1 33.A03 1.2

18.A10 0.52 24.C05 0.21 39.A05 0.75

18.C05 0.23 27.B10 0.51 39.A06 0.6

18.D08 0.73 27.C10 0.47 39.A10 0.85

18.EO3 0.96 29.A07 0.52
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Table 6- Purified fractions antiplasmodial IC50 

Fraction Field ID Dd2 

IC
50
 Fraction Field ID Dd2 

IC
50
 

4.B07 Aplysina sp. 1.20 18.D08 Paramuriceidae 0.73 
7.G05 Peysonellia 1.30 18.EO3 Paragorgai 0.96 
7.G11 Peysonellia 1.00 18.F01 Spongosorites 0.34 
9.G07 Axinellida? 0.80 18.G03 Paramuriceidae Unid. sp. 0.83 
10.C11 Spirastrella sp. 0.90 18.G07 Paramuricea sp. 0.44 
10.D08 Gastropoda, Aplysia? sp. 0.10 22.A01 Dendroceratida 0.82 
10.D09 Gastropoda, Aplysia? sp. 0.50 23.F01 Erylus sp. 1.12 
11.A08 Gorgonacea 1.20 24.C05 Pachastrellidae 0.46 
11.H01 Axinellida 1.20 27.C10 Amphibleptula 0.47 

11.H02 Axinellida 1.20 29.A07 Axinellidae 1.24 
12.A09 Axinellida 0.74 30.A01 Spongiidae 0.99 
12.A10 Axinellida 0.26 30.B11 Spongiidae 1.43 
13.H07 Leiodermatium? sp. 1.13 31.B11 Choristida 1.40 
15.D04 Xestospongia? sp. 1.58 31.C08 Choristida 1.17 
15.D07 Xestospongia? sp. 1.30 32.C02 Halichondriidae 1.20 
15.H06 Halichondrida? 1.25 33.A03 Spongiidae 1.20 
18.A01 Poecillastra 1.93 39.A05 Aplysina 0.75 
18.A10 Plexauridae 1.44 39.A06 Aplysina 0.60 
18.C04 Myrmekioderma styx 0.65 39.A10 Aplysina 0.85 

All data are the mean of at least three independent experiments. 

 

All fractions with an IC50 at or below 1µg/mL were further screened for cytotoxicity.  

Unfortunately, several of these fractions were depleted prior to cytotoxicity screening and were 

hence removed from further analysis at this time.  The resulting selectivity indices are shown in 

table 7 and further dereplication of a few of these fractions was included in the second shipment 

from HBOI.  The dereplication of the remainder of these active fractions will be occurring in the 

near future. 
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Table 7- Selectivity indices of all fractions with <1µg/mL IC50 in Dd2 

Fraction Field ID 
Dd2 

IC
50

 

NIH 3T3   

IC
50

 
Selectivity 

Index 

7.G11 Peysonellia 1.00 47 47 

9.G07 Axinellida? 0.80 33 41 

10.C11 Spirastrella sp. 0.90 48 53 

10.D08 Gastropoda, aplysia? sp. 0.10 31 310 

10.D09 Gastropoda, aplysia? sp. 0.50 29 59 

18.D08 Paramuriceidae 0.73 >50 >68 

18.EO3 Paragorgai 0.96 >50 >52 

18.G07 Paramuricea sp. 0.44 >50 >113 

27.C10 Amphibleptula 0.47 >50 >105 

39.A05 Aplysina 0.75 >50 >67 

39.A06 Aplysina 0.60 >50 >83 

39.A10 Aplysina 0.85 >50 >59 

All data are the mean of at least three independent experiments. 

 

The second shipment of purified fractions also contained several active purified fractions 

from 7 distinct species which all showed to have antiplasmodial activity in the initial screening 

tests.   Among this shipment were the purified fractions from species which had multiple active 

fractions in the initial screening, including: Choristida sp., Bebryce sp., Amphibleptula sp., 

Aplysina sp., and Auletta sp. derive fractions.  The top fraction from each organism is listed in 

table 8.  These results have been sent back to HBOI and further dereplication and purified 

compound isolation from all active purified fractions is underway. 
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Table 8- Potent antimalarial HBOI purified fractions 

Organism ID Genus IC50 (µg/mL) 

10-V-00-1-004 Bebryce sp. 0.47 

31-III-89-2-003 Amphibleptula sp. 0.73 

10-V-00-3-009 Aplysina sp. 0.77 

11-V-00-3-009 Auletta sp. 0.83 

23-XI-96-1-006 Choristida sp. 1.2 

All data are the mean of at least three independent experiments. 
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CHAPTER FOUR: STRUCTURE ACTIVITY RELATIONSHIP PROFILE FOR 

PREVIOUSLY IDENTIFIED HIT- NORTOPSENTIN A 

Primary Screening of Nortopsentin A Analogs 

Early screening of the first 336 HBOI purified fractions resulted in a potential hit from 

the genus Spongosorites spp known as Nortopsentin A.  The bis(indoyl)imidazole Nortopsentin 

A (Figure 8). 

 

Figure 7 Nortopsentin A Structure 

 

The antimalarial activity of nortopsentin A had never been shown before.  Nortopsentin 

A was purified and sent to UCF for additional screening.  Nortopsentin A demonstrated effective 

antimalarial activity in both the 3D7 (choloroquine sensitive) and the Dd2 (chloroquine resistant) 

strains.   

The mechanism of action for nortopsentin A was previously studied in our laboratory by 

culturing parasites in nortopsentin A drug treated culture.  In that study nortopsentin A was 

shown to inhibit development beyond the early trophozoite stage which supported the claim of 

previous studies which showed that topsentin compounds can intercalate with DNA and inhibit 

DNA synthesis [52].   
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With this potentially novel mechanism of action among antimalarials, nortopsentin A was 

escalated in lead development.  Recent screening for antiplasmodial and cytotoxicity IC50 show 

an IC50 for Nortopsentin A against Dd2 at 580nM and a cytotoxicity IC50 value of 6µM as shown 

in Figure 9. 

 

A                                                                                B 

 

Figure 8- In-Vitro Antimalarial and Cytotoxic Analysis of Nortopsentin A. 

(A) Determination of the antimalarial activity of nortopsentin A in Dd2 strains of P. falciparum. 

Asynchronous cultures were exposed to different concentrations of inhibitor for 72 hrs. 

(B) Cytotoxicity of nortopsentin A. Varying concentrations of nortopsentin A was incubated 

with NIH 3T3 fibroblast cells for 48 hours to determine the cytotoxicity IC50 value. All data 

shown are the result of at least 3 independent experiments. 
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Structure Activity Relationship Profiling 

 In order to assist medicinal chemistry in lead optimization, it is important to develop a 

structure activity relationship for any potential lead.  For the compound nortopsentin A, six 

chemical analogs were selected.  These six analogs, along with nortopsentin A, were screened 

against the chloroquine resistant Plasmodium strain Dd2.  Following an IC50 determination, all 

compounds were also screened for cytotoxicity against the NIH 3T3 fibroblast cell line using the 

MTS cell viability assay described in the methods section.  This data was collected and used to 

determine a selectivity index for each compound and is shown in Table 8. 
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Table 9 Bis(indolyl)imidazole Structural Analogs 

 

All data are the mean of at least three independent experiments.  

Compound 

Name
Structure

DD2 

EC50 

(µM)

Cytotoxicity 

NIH 3T3 

(µM)

Selectivity 

Index

Nortopsentin A 0.58 6 10

Hamacanthin-A 3.2 30 9.4

Dragmacidin-D 5.2 27 5.2

Dragmacidin 6.4 7 1.1

Bis(2,2)-6-Br-

indol-3yl-Ethyl-

amine

6.5 11 1.7

Deoxytopsentin 8.4 20 2.4

Hamacanthin-B >20 38 <1.9
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CHAPTER FIVE: DISCUSSION 

HBOI Marine Peak Fraction Library 

  Culture screening of over 2,600 marine peak fractions from the Harbor Branch 

Oceanographic Institute against the 3d7 strain of Plasmodium falciparum resulted in 253 

fractions which inhibit at least 70% of parasite growth at 5µg/mL.  This nearly 10% hit rate is 

consistent with typical natural product library screening showing significantly higher hit rate 

percentages as compared to synthetic library screening, as mentioned previously.  From these 

253 compounds we identified 20 species of marine organisms which inhibit Plasmodium 

falciparum growth from which the 35 fractions were selected for further study.  83% of the 35 

fractions were also active in the chloroquine resistant Plasmodium falciparum Dd2 strain. 

Further dereplication led to purified fractions from 6 different species, one of which, 

Spongosorites sp, is the source of the antimalarial near-early lead compound nortopsentin A as 

discussed previously.  Five additional compounds from four chemical classes have also been 

identified from these species and they are shown along with their genus source in table 10.  

Additional structure activity relationship profiling, pharmacodynamics/pharmacokinetic studies 

and medicinal chemistry for these five compounds may reveal additional novel antimalarial early 

drug leads. 
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Table 10-UCF-HBOI novel antimalarial compounds 

Compound Structure Source of compound (Genus) 

 

Aplysina sp. 

 

Bebryce sp. 

 

Bebryce sp. 

 

Amphibleptula sp. 

 

Choristida sp. 
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Nortopsentin A Structure Activity Relationship 

 The preliminary screening of nortopsentin A showed antimalarial activity in both 

chloroquine sensitive and chloroquine resistant strains.  A novel mechanism of action among 

antimalarial drugs was also demonstrated.  To further escalate nortopsentin A towards lead 

development, a collection of six structural analogs, along with nortopsentin A, was sent from the 

HBOI library for development of a structure activity relationship.   

Of all the compounds tested, nortopsentin A was the most potent and had the greatest 

selectivity.  Addition of a keto group both decreased antiplasmodial activity and selectivity as 

seen in deoxytopsentin.  With respect to all the nitrogenated six member heterocycle rings tested, 

low µM antiplasmodial activity was maintained and selectivity decreased steadily with respect to 

the level of saturation which could be due to subsequent molecular loss of planarity.  The only 

exception to this trend was hamacanthin A.  Interestingly, when the pyrazinone linker attachment 

in hamacanthin A changes to the 5 position the antiplasmodial activity is lost, as seen with 

hamacanthin B.  It seems from this structure activity relationship profile that molecular planarity 

and a maintained distance between the two indole rings is essential for optimal antimalarial 

activity.   

Although nortopsentin A had the best activity and selectivity, further medicinal chemistry 

is needed to widen the selectivity index before the compound can be escalated to early drug lead 

status. 

  



36 

 

Future Directions 

There is a critical need to find new antimalarial chemical scaffolds.  This screening of 

2,835 marine peak fractions has identified 5 new chemical classes which inhibit Plasmodium 

falciparum at submicromolar levels.  One of these classes, the topsentin class from the 

Sporosorites sp., appears to intercalate parasite DNA and prevent DNA synthesis.  This is a 

novel mechanism of action amongst current antimalarial drugs.  From the structure activity 

relationship profile it is clear that the antimalarial potency of topsentin compounds is dependent 

upon the distance between the two indole rings and the molecular planarity of the compound.   

Future studies will include medicinal chemistry optimization of nortopsentin A to enlarge 

the selectivity index before the compound can be escalated in pre-clinical drug development.  

The mechanism of action and structure activity relationships for each of the four additionally 

identified scaffolds is also necessary.  Furthermore, it is anticipated that dereplication of the 

purified peak fractions from the nine newly identified species with submicrogram/mL IC50, will 

likewise reveal additional novel antimalarial scaffolds which can then be escalated along the 

established UCF-HBOI drug development scheme. 
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