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ABSTRACT 

Doxorubicin (DOX) is the antineoplastic drug of preference used to treat a wide 

variety of malignancies, with high survival rates among treated patients. However, the 

benefits of this drug have become less appealing due to the side effects that occur such 

as DOX-induced cardiomyopathy (DIC) and an increased risk of myocardial infarction 

(MI). Therefore, there is an urgent need to explore the therapeutic options to treat DIC. 

In this context, adult stem cells have been used as a source to reduce cardiomyocyte 

apoptosis in DIC; however, the effects of transplanted embryonic stem (ES) cells and 

induced pluripotent stem (iPS) cells in DIC post MI are unknown. As a result, we wanted 

to understand how transplanted ES and iPS cells and the factors released by them 

inhibit apoptosis and improve cardiac function in DIC post MI. C57BL/6 mice were 

divided into five groups: Sham, DOX-MI, DOX-MI+cell culture (CC) media, DOX-MI+ES 

cells, and DOX-MI+iPS cells. Mice were treated with DOX (12 mg/kg, cumulative dose) 

followed by left coronary artery ligation to induce MI. ES or iPS cells (5 x 104) were 

delivered into the peri-infarct region. At day 14 post-MI, echocardiography was 

performed, mice sacrificed, and hearts harvested for further analyses. To investigate if 

protective effects are provided by factors released from ES and iPS cells in DIC, we 

performed in vitro studies using condition media (CM) obtained from ES or iPS cells to 

treat DOX-induced cardiotoxicity in H9c2 cells. Our data reveal that apoptosis was 

significantly inhibited in the ES and iPS cell transplanted hearts as well as ESCM and 

iPSCM treated cells compared with the untreated controls. Furthermore, a significant 

increase in levels of Notch-1, Hes1, and pAkt survival protein were observed. 

Decreased levels of PTEN, a negative regulator of Akt pathway, along with improved 
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heart function were also observed in the stem cell transplanted groups. In conclusion, 

our data show that transplantation of ES and iPS cells blunt DOX-induced apoptosis in 

vivo, which is associated with improved cardiac function. Moreover, decreased 

apoptosis in both in vitro and in vivo models is mediated by the Notch pathway. 
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CHAPTER 1: INTRODUCTION 

Doxorubicin  

Doxorubicin (DOX) is the antineoplastic drug of preference used to treat a wide 

variety of malignancies such as acute leukemia, lymphoma, and breast cancer, 

producing high survival rates among treated patients (Hershman et al., 2008; De et al., 

2010). The five-year survival rate of children with leukemia has increased from 30% to 

80% due to use of DOX as a chemotherapeutic treatment (Geisberg and Sawyer, 

2010). However, DOX’s induced cardiotoxicity as a side effect make this drug less 

appealing (Singal and Iliskovic, 1998; Miranda et al., 2003). This cardiac dysfunction is 

dose- and time-dependent (Deng et al., 2009; Huang et al., 2010). In fact, DOX-induced 

cardiomyopathy (DIC) can develop as early as one year after its use or may take up to 

20 years (Minotti et al., 2004; Geisberg and Sawyer, 2010; Psaltis et al., 2011). Patients 

having received DOX had an increased risk of myocardial infarction (MI) that persisted 

up to 25 years after treatment. Five percent of Hodgkin’s lymphoma patients who 

received DOX as part of their chemotherapy treatment developed MI at about 11.5 

years after complete remission (Swerdlow et al., 2007). 

 DOX-induced cardiomyopathy mechanism 

Studies have proposed that DOX induces oxidative stress in the heart leading to 

heart dysfunction (Horenstein et al., 2000; Kumar et al., 2002; Ludke et al., 2009; 

Menna et al., 2010). The chemical structure of DOX produces one electron reduction to 

the drug molecule resulting in formation of a semiquinone, which under aerobic 

conditions, forms reactive oxygen species (ROS) such as superoxide radicals, hydroxy 
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radicals, and hydrogen peroxide (Ludke et al., 2009). In addition to the induction of high 

levels of ROS, DOX decreases the levels of endogenous antioxidants that scavenge the 

free radicals. The resulting increase in free radicals and the decrease of antioxidants 

results in heart failure (Singal et al., 1997; Minotti et al., 2004; Geisberg and Sawyer, 

2010; Psaltis et al., 2011). Furthermore, DOX ROS induction has also been associated 

with lipid peroxidation. ROS harms the cell membrane and the proteins that are 

integrated to its phospholipid bilayer such as enzymes, receptors, and transporters, 

impairing their function to maintain metabolic equilibrium in the cell (Singal et al. 1998). 

Stem cells as adjuvant therapy for DIC  

Adjuvant therapies have been proposed to decrease cardiotoxic effects induced 

by DOX. For instance, the use of antioxidants such as probucol, taurine, and fenofibrate 

have been shown to suppress DOX-induced oxidative stress and decrease 

cardiomyocyte apoptosis (Li and Singal, 2000; Ichihara et al., 2007; Das et al., 2011). 

However, these approaches have been used to inhibit cell death, so a new approach is 

needed to replace cell loss. Since cardiomyocytes have limited self-renewal, stem cells 

have gained significant consideration as an alternative method to repair and regenerate 

cardiac cells in DIC (Gopinath et al., 2010). Adult stem cells, such as bone marrow-

derived and human umbilical cord blood-derived stem cells have been used as a source 

for cell replacement after cardiomyocyte apoptosis in DIC. Previous studies have shown 

that transplantation of bone marrow mesenchymal stem cells (BMSCs) improved left 

ventricular cardiac dysfunction in a DIC animal model. However, BMSCs were not able 

to differentiate to cardiomyocytes and did not express all muscle markers required to be 
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considered cardiac cells (Chen et al., 2010). Furthermore, bone marrow-derived stem 

cells (BMCs) similarly attenuate the impaired cardiac function in DIC and increase 

capillary density in remote areas of the heart. However, differentiation of BMCs to 

cardiomyocytes was not demonstrated and the benefits seen after transplantation were 

attributed to paracrine secretion of transplanted stem cells (Garbade et al., 2009). 

Finally, human umbilical cord blood (hUCB)-derived stem cells when transplanted in 

DIC differentiated towards cardiomyocytes, decreased the expression of hypertrophic 

markers, and decreased fibrosis, resulting in improved cardiac function (Gopinath et al., 

2010).  

Embryonic and induced pluripotent stem cells as valuable sources to restore DIC 
post-MI 

 Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells can 

differentiate into any tissue in the human body (pluripotency), including cardiomyocytes, 

and are able to self-renew, converting them in a noble option to treat ischemic or toxic 

cardiomyopathies (Singla and Sobel, 2005; Singla et al., 2007; Singla et al., 2011). For 

instance, ES cells and their condition media (CM) have been shown to inhibit apoptosis 

and improve cardiac function when transplanted in a DIC animal model (Singla et al., 

2012). Studies have shown that delivery of ES and iPS cells and the factors they 

secrete improve cardiac function and decrease apoptosis after an MI (Singla et al., 

2007; Nelson et al., 2009; Singla et al., 2011). Evidence has suggested that 

transplanted ES cells inhibit cardiac remodeling and apoptosis, thus decreasing  

oxidative stress generated during MI (Singla et al., 2007). Rat cardiomyoblasts (H9c2) 

exposed to H2O2 and treated with ES CM resulted in decreased apoptosis and activated 
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Akt pro-survival protein. This suggests that ES cell-secreted factors are involved in the 

IP3/Akt survival pathway, resulting in regeneration of cardiomyocytes after an MI (Singla 

et al., 2007; Singla et al., 2008). Induced pluripotent stem (iPS) cells generated from 

H9c2 cells, when transplanted after MI, where shown to differentiate into 

cardiomyocytes and inhibited apoptosis, cardiac fibrosis, and improved cardiac function 

(Singla et al., 2011).  All these characteristics make ES and iPS cells valuable sources 

to restore the cardiomyocyte population lost in DIC. However, the mechanisms by which 

stem cells are recruited to the heart and exert their benefits are not well understood.  

Stem cells and Notch-1 

 Notch-1 receptors are regulators of embryonic development through cell-cell 

interactions, and these receptors mediate self-renewal, survival, and differentiation of 

stem cells (Li et al., 2011). In the heart, Notch-1 regulates the fate of cardiac progenitor 

cells (CPCs) and stimulates proliferation of cardiomyocytes mediated by c-Met and Akt 

survival proteins. Studies have shown that Notch-1 plays a protective role of the adult 

heart in MI. Levels of Notch-1and its downstream target, Hes1, increase as a response 

to ischemic injury. Additionally, the overexpression of Notch-1 has been shown to 

improve cardiac function in murine models of MI (Gude et al., 2008; Li et al., 2011). 

Notch-1 has also been implicated in repair of the infarcted heart through transplantation 

of bone marrow (BM)-derived stem cells (Li et al., 2011). The protective role of Notch-1, 

however, may not be present after DOX treatment.  A previous study showed that 

Notch-1 receptor expression levels in CPCs were down-regulated compared to Notch-1 

ligands, delta-like 3 and jagged, after DOX treatment (De et al., 2010). Since Notch-1 
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receptor regulates transition of CPCs into myocytes after ischemic damage, it is 

important to maintain integrity of the receptor after DOX treatment to decrease the 

cardiotoxic effects while preserving antineoplastic functions of the drug. Evidence 

shows that there is a high necessity and priority to find an effective adjuvant treatment 

that can be used in conjunction with DOX to reduce its cardiotoxic effects without 

reducing its efficacy as a cancer treatment. 

Hypothesis  

In the present study, we hypothesize that: 

I. Transplanted ES and iPS cells inhibit cardiomyocyte apoptosis and improve 

cardiac function in DIC following MI  

II. Decrease in cardiomyocyte apoptosis is mediated by the activation of the Notch-

1 pathway  

Aims 

 Aim 1. Determine the effects of transplanted ES and iPS cells on apoptosis and 

cardiac function in DIC post-MI. 

 Aim 2. Determine that activation of Notch-1 pathway is the mechanism by which 

transplanted ES and iPS cells decrease apoptosis in DIC-post MI. Furthermore, confirm 

this mechanism in an in-vitro model of DOX-induced cardiotoxicity. 
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CHAPTER 2: MATERIALS AND METHODS 

Cell culture and drug treatment  

H9c2 cell line: H9c2 cells were grown on 100mm non-coated tissue culture plates 

for 48-72 hours, or until about 80 to 90% confluent, and were maintained in Dulbecco’s 

modified eagle’s medium (DMEM, Invitrogen, USA) supplemented with 10% fetal bovine 

serum, penicillin/streptomycin, glutamine, sodium pyruvate, and non-essential amino 

acids.  Plates were divided into six groups: CONTROL, DOX, DOX+ESCM, 

DOX+iPSCM, DOX+DAPT+ESCM, and DOX+DAPT+iPSCM. DOX at a concentration of 

2µM (Fisher, BP2516) was added to all plates except the control group for 24 hours. 

The next day, the DAPT groups were pre-exposed to 30µM of DAPT (Sigma, D5942) for 

another four hours. Following DAPT pre-exposure, medium was replaced with fresh 

medium, conditioned medium was derived from ES and iPS cells, and ES and IPS CM 

was supplemented with or without DAPT for another 24 hours. Finally, cells were 

washed and detached from the plates using trypsin/EDTA and collected in RIPA buffer-

containing protease inhibitors for 30 minutes on ice. The supernatant containing the 

proteins was collected after centrifugation.  

ES cells: Were maintained in DMEM as previously reported (Singla et al., 2007). 

Cells were trypsinized and used the same day to be transplanted during MI surgery at a 

concentration of 2.5 million cells/mL.  

iPS cells: Maintained in Dulbecco’s DMEM (Invitrogen, USA) on a 60mm gelatin-

coated tissue culture plate as reported previously (Singla et al., 2011). Cells were 

trypsinized and given in a concentration of 2.5 million cells/mL. ES and iPS cells were 
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previously tagged with red fluorescent protein (RFP) for identification once transplanted 

in the heart.  

ESCM and iPSCM: Were obtained and prepared as previously published (Singla 

et al., 2012).   

In vivo study groups and induction of DIC 

All animal protocols were approved by the University of Central Florida animal 

care committee. C57BL/6 mice male and females of 8-10 weeks of age were divided 

into five groups: Sham-operated control, DOX-MI, DOX-MI+cell culture (CC) media, 

DOX-MI+ES cells, and DOX-MI+iPS cells with an n=6-8 in each group. Mice were 

treated with DOX as previously reported (Singla et al., 2012). In brief, mice were 

injected one time every other day (Monday, Wednesday, and Friday) for three days with 

DOX to obtain a cumulative dose of 12 mg/kg via intraperitoneal injection (IP). Two 

weeks after the last dose of DOX, MI was induced by coronary artery ligation. 

Coronary artery ligation and stem cell transplantation 

A coronary artery ligation procedure was performed as reported previously 

(Kumar et al., 2005; Singla et al., 2006) under isoflurane inhalatory anesthesia 

administered via an endo-tracheal tube. In brief, a left thoracotomy was performed; the 

left anterior descending (LAD) coronary artery was visualized using a dissecting 

microscope and subsequently ligated using a 7.0 polypropylene suture. Sham-operated 

mice were subject to the same procedure, however, the suture was not tied off. 

Following ligation, 5 x 104 ES or iPS cells were delivered into two different sites in the 
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peri-infarct region, identified as the white area around the tight LAD region where the 

suture was placed, using a 29-gauge floating needle.  

Echocardiographic analysis 

At day (D) 14 post-MI, two-dimensional (2D) echocardiography was performed 

under 2% isoflurane via nose cone to analyze cardiac function as previously described 

(Singla et al., 2012). In brief, M-mode images of the left ventricle were documented. Left 

ventricular (LV) dimensions such as LV fractional shortening (FS), left ventricular end-

diastolic internal diameter (LVIDd), left ventricular internal diameter in systole (LVIDs), 

as well as end diastolic volume (EDV), end systolic volume (ESV), and LV ejection 

fraction (EF) were measured. After echocardiography analysis was performed, animals 

were sacrificed using pentobarbital (80mg/Kg) and cervical dislocation. The hearts were 

harvested, rinsed with PBS and sectioned transversally with the top portion kept in RNA 

later and the bottom portion in 10% paraformaldehyde (PFA).  

Notch-1 and α-sarcomeric actin double staining 

The bottom part of the heart was embedded in different ethanol dilutions (75%, 

80%, 90%, and 100%), and paraffin blocks were formed containing the heart tissue. 

Five micron sections were obtained and placed on microscope slides. A double 

immunofluorescent staining protocol was applied as reported previously (Boni et al., 

2008). Sections from five to six different hearts in each group were deparaffinized, 

rehydrated, and then blocked with a mouse antigen blocking reagent (MOM kit, Vector 

Laboratories, Cat. #FMK-2201) for one hour and then incubated with mouse Notch-1 

antibody (1:20 dilution, abcam Cat. #44986) and a monoclonal anti-α-sarcomeric actin 
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antibody (1:30 dilution; Sigma-Aldrich Cat. #A2172). Biotinylated Anti-Mouse IgG 

reagent (MOM kit, Vector Laboratories, Cat. #FMK-2201) was used as a secondary 

antibody. Finally, sections were incubated for five minutes with fluorescein Avidin DCS 

(16ul/ml) and Texas Red Avidin DCS (15ug/ml), respectively, then washed and covered 

with mounting media containing 4’,6-diamino-2-phenylindole (DAPI). Sections were 

analyzed and representative photomicrographs were taken under fluorescent (Olympus 

1X70 and Nikon TE 2000-E) and confocal (LEICA laser scanning) microscopes. Proper 

control slides were also performed.  

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay  

 In-vitro: H9c2 cells were fixed with 0.4% formalin for 10 minutes and then 

washed with 1xPBS.  Apoptotic positive nuclei was determined by TUNEL staining 

using an in situ cell death detection kit (Roche, Cat# 12156792910) according to  

manufacturer’s instructions. In brief, cells were incubated with a TUNEL reaction 

mixture (enzyme and label solutions 1:9) for one hour, and then washed with 1x PBS 

three times. Finally, mounting media with DAPI was used to cover the slides. Each slide 

was analyzed under a fluorescent microscope. Photomicrographs were taken under 

20X and apoptotic nuclei (red) were counted as well as the total number of nuclei (blue). 

The percentage of TUNEL-positive nuclei was obtained dividing the total number of 

merged TUNEL-positive nuclei to the total number of nuclei multiplied by 100. The in 

vitro experiment was repeated three times. 

 In-vivo: Heart sections were deparafinized, rehydrated, and then incubated with 

proteinase K (Sigma, Cat. #P6556-5mg) at a dose of 25 ug/ml in 100 mM Tris-HCL for 
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15 minutes. Apoptotic positive nuclei was determined by TUNEL staining using the 

same method described in the in-vitro experiment according to manufacturer’s 

instructions. In brief, sections were incubated with a TUNEL reaction mixture for one 

hour, and then washed with 1xPBS three times. Finally, mounting media with DAPI was 

used to cover the slides. Each slide was analyzed under an Olympus fluorescent 

microscope. Photomicrographs were taken under 20X and the percentage of apoptotic 

nuclei (red) was determined by counting the total number of red positive cells and the 

total number of nuclei (blue). Red cells that merge with DAPI in blue were considered 

positive. The following formula was applied to get the percentage: (red+nuclei/total blue 

nuclei)*100. One to two sections of 6-8 animals per group were analyzed.  

Caspase-3 activity assay 

 In vitro: H9c2 cells were washed with 1xPBS, dissociated using trypsin/EDTA, 

and collected in modified RIPA buffer. Cell lysates were then used for protein 

quantification using a Bradford assay (Bio-Rad, Cat. #500-0006). Caspase-3 

colorimetric activity assay (Bio Vision, Cat. #K106-25) was performed according to  

manufacturer’s instructions. In brief, 70ul of 2X reaction buffer having 10 mM of DTT 

was added to 30ul of protein lysates. Additionally, 5 ul of 4mM DEVD-pNA was added to 

each sample and incubated for 1-2 hours at 37°C. The colorimetric reaction was then 

measured at 405 nm in a 96 well micro plate reader (Biorad Model 680). Readings were 

plot and expressed in arbitrary Units (A.U.).  

 In vivo: The top part of the heart was homogenized in modified RIPA buffer and 

the supernatant was collected and then used for protein quantification using a Bradford 
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assay. Caspase-3 colorimetric activity assay (Bio Vision, Cat. #K106-25) was performed 

according to manufacturer’s instructions. In brief, 70ul of 2X reaction buffer having 10 

mM of DTT was added to 30ul of heart homogenates. Additionally, 5 ul of 4mM DEVD-

pNA was added to each sample and incubated for 1-2 hours at 37°C. The colorimetric 

reaction was then measured at 405 nm in a 96 well micro plate reader (Biorad Model 

680).  Readings were plot and expressed in arbitrary Units (A.U.). 

Western blot 

 Protein lysates from H9c2 cells and tissue homogenates were obtained as stated 

before and used for protein quantification with Bradford assay and using a microplate 

reader (Biorad, Model 680) and measured at 590nm. 100 to 150ug of protein were 

loaded in an 8% or 10% polyacrylamide gel and run at 150V for one hour. Next, proteins 

were transferred to a PVDF membrane (BioRad, #162-0177) using a Trans-Blot Semi-

dry transfer Cell for 35 to 60 minutes. Membranes were blocked with 5% skim milk in 

TBST for one hour and then incubated with Notch-1 (Cell signaling, Cat. #3268S), c-

Notch-1 (Cell signaling, Cat. #4147S), pPTEN (Cell Signaling Cat. #95595), pAKT (Cell 

Signaling, Cat. #4058S), Hes1 (Abcam, Cat. #ab49170) and β-actin (Cell signaling, Cat. 

#4967L) primary antibodies at appropriate dilutions for one hour at room temperature or 

overnight at 4°C. Following the incubation of primary antibodies, the proper secondary 

antibody was used and membranes were incubated for one hour. Finally, membranes 

were treated with an enhanced chemiluminescent substrate (ECL, Thermo Scientific, 

and Cat # 32106) for 1-2 minutes and then exposed at different exposure times.    
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pAkt activity assay 

 Cell treatment, heart homogenization, and protein quantification were performed 

as stated before. Phosphorylated Akt (pAkt) activity assay (Exalpha Biological, Cat. 

#X1844K) was performed following manufacturer’s instructions. In brief, 50ul of each 

sample was pipetted into microtiter wells that have capture antibodies, provided by the 

manufacturer, and incubated for two hours. Next any unbound material was washed 

and a biotin conjugated anti-pAkt1 antibody was added to each well and incubated for 

two hours. Excess antibody was washed and a HRP-conjugated streptavidin was added 

to each well for 30 minutes, producing a colorimetric reaction that was measured at 

450nm in a microplate reader. Values were recorder and expressed in arbitrary units 

(A.U.).     

Statistical analysis 

One-way analysis of variance (ANOVA) was performed followed by Tukey test 

for all samples. All values were presented as a mean ± SEM. P<0.05 was considered to 

be statistically significant between the values.  
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CHAPTER 3: RESULTS 

Effects of transplanted ES and iPS cells on apoptosis in DIC post-MI  

Previous studies have shown that DOX induces apoptosis in cardiomyocytes 

(Minotti et al., 2004; Geisberg and Sawyer, 2010; Psaltis et al., 2011; Singla et al., 

2012). To determine if ES and iPS cell transplantation has an effect on cardiomyocyte 

apoptosis in DIC post-MI, TUNEL staining was performed. At D14 post-MI, a significant 

number of apoptotic nuclei were observed in heart sections of DOX and DOX-MI+CC 

groups when compared with Sham (Figure 1, D-I). However, quantitative analysis of 

TUNEL staining was significantly reduced in DOX-MI+ES and DOX-MI+iPS cell 

transplanted hearts (Figure 1, J-O and P). The number of apoptotic nuclei was not 

significant between the ES and iPS cell treated groups. Moreover, a caspase 3 activity 

assay was performed. Quantitative analysis of caspase 3 activity was significantly 

reduced (P<0.05) in DOX-MI+ES and DOX-MI+iPS cell transplanted hearts compared 

with the stem cell non-treated hearts, DOX-MI, and DOX-MI+CC (Figure 1, Q). Caspase 

3 activity was not significant between ES and iPS cell groups.  

Transplantation of ES and iPS cells contributes to cardiac repair in DIC post-MI 
through Notch-1  

Notch-1 regulates the fate of cardiac progenitor cells (CPCs) and stimulates 

proliferation of cardiomyocytes (Gude et al., 2008; Li et al., 2011). Previous studies 

have shown that after treatment with DOX, Notch-1 receptor expression levels in CPCs 

are low compared with its ligands, delta-like 3 and jagged (De et al., 2010). Therefore, 

one to two heart sections from each group were stained for the presence of Notch-1+ve 

cells and co-labeled with α-sarcomeric actin (Figure 2 A-T). 
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Figure 1: Effects of transplanted ES and iPS cells on cardiomyocyte apoptosis using TUNEL staining. To 
determine if ES and iPS cell transplantation has an anti-apoptotic effect, TUNEL staining was performed. 
Representative photomicrographs are shown on the left with DAPI in blue (A, D, G, J, and M), TUNEL in 
red (B, E, H, K, and N) and merged images (C, F, I, L, and O). Top right histogram (P) shows the 
percentage of total apoptotic nuclei at two weeks post-MI in ES and iPS cell treated groups (*P<0.05) vs. 
DOX-MI and DOX-MI+CC groups with an n=7-9 in each of the study groups. Bottom right histogram (Q) 
shows quantitative analysis of caspase 3 activity assay in arbitrary units (*P<0.05 vs. DOX-MI and DOX-
MI+CC).  

 

Quantitative analysis of Notch-1+ve cardiomyocytes show a significant decrease 

in DOX-MI and DOX-MI+CC groups compared with Sham. However, the number of 

Notch-1+ve cardiomyocytes significantly increased (P<0.05) in DOX-MI+ES and DOX-

MI+iPS cell transplanted groups when compared with the stem cell untreated groups 

(Figure 2, U). Furthermore, western blot (WB) analyses were performed to confirm the 
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results obtained during inmunohistochemistry. Densitometric analysis confirms that 

levels of Notch-1 in hearts treated with ES and iPS cells significantly increased 

compared with the untreated groups, DOX-MI and DOX-MI+CC (Figure 2, V); however, 

the levels of Notch-1 between DOX-MI+ES and DOX-MI+iPS were not significant. 

 

Figure 2: Effects of transplanted ES and iPS cells on Notch-1 expression. To study the expression of 
Notch-1 in DIC post-MI, a double staining with α-sarcomeric actin was performed. Representative 
photomicrographs are shown on the left with Notch-1 in red (A-E), α-sarcomeric actin in green (F-J), 
DAPI in blue (K-O), and merged images (P-T). The box in T demonstrates colocalization of Notch-1 with 
α sarcomeric actin. Scale bar=20µm. Top right histogram (U) shows a significant decrease of the 
percentage of Notch-1

+ve
 cells at two weeks post-MI in DOX-MI and DOX-MI+CC groups (*P<0.05). 

However, the percentage of Notch-1
+ve

 cells was significantly higher in the stem cell treated groups DOX-
MI+ES and DOX-MI+iPS with an n=5-6 in each study group. Bottom right panel and histogram (V) show 
representative WB bands of Notch-1 receptor and control loading β-actin with densitometric analysis that 
show a significant decrease in expression of Notch-1 in DOX-MI and DOX-MI+CC groups and a 
significant increase in levels of Notch-1 in ES and iPS cell treated groups (*P<0.05) with an n=6 in each 
study group.  
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Transplanted ES and iPS cells regulate activation of PTEN in DIC post MI through 
Hes1 

Phosphatase and tensin homolog (PTEN) is a cell cycle regulator and a tumor 

suppressor gene. Previous studies have shown that during MI, levels of PTEN protein 

increase (Keyes et al., 2010; Glass and Singla, 2011). In addition, overexpression of 

PTEN in Ishikawa cells has shown to enhance their chemosensitivity to DOX inducing 

apoptosis (Wan et al., 2007). Notch-1 has an inhibitory effect on PTEN through Hes1 in 

T-cell lymphoblastic leukemia (T-ALL) cells (Gutierrez and Look, 2007; Gutierrez et al., 

2009). Therefore, to further characterize the effects of Notch-1 in cardiac repair in DIC 

post-MI treated with ES and iPS cells, Notch-1 downstream effector, Hes1, was studied.  

 

 

Figure 3: Hes1 regulates expression of PTEN in DIC post MI. (A) Top left panel displays representative 
photomicrographs of WB bands for Hes1. (B) Bottom left histogram shows densitometric analysis of WB 
bands with a significant increase in levels of Hes1 in groups treated with ES and iPS cells (*P<0.05) vs. 
DOX-MI and DOX-MI+CC groups (n=4-5). Top right upper panel (C) shows representative WB bands of 
pPTEN and β-actin. Right bottom histogram (D) shows densitometry analysis of WB bands with a 
significant decrease in levels of pPTEN in hearts transplanted with ES and iPS cells. *P<0.05 vs. DOX-MI 
and DOX-MI+CC (n=4-6). 
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As observed in Figure 3 A-B, densitometric analysis of Hes1 WB bands showed a 

significant increase in expression of Hes1 in the ES and iPS cell transplanted hearts 

(P<0.05) compared with a reduced expression of Hes1 in DOX-MI and DOX-MI+CC 

groups. However, Hes1 protein levels between ES and iPS cell transplanted groups 

were not significant. WB analyses were performed to study protein levels of PTEN. The 

densitometric analysis of WB bands of activated PTEN revealed a significant decrease 

(P<0.05) in levels of PTEN in hearts transplanted with ES and iPS cells compared with 

DOX-MI and DOX-MI+CC groups (Figure 3, C-D). 

Akt protein levels are regulated by ES and iPS cells transplanted in DIC post-MI 

Notch-1 crosstalk occurs with Akt in the border zone of an MI working together as 

a protective mechanism in the ischemic heart (Li et al., 2011). However, it has been 

shown that after treatment with DOX, levels of pAkt decrease in the heart. Therefore, 

we analyzed the pAkt activity in DIC post-MI. pAkt activity was significantly decreased in 

DOX-MI and DOX-MI+CC, but the decrease in pAkt was reverted in hearts transplanted 

with ES and iPS cells, showing a significant increase (P<0.05) in the activity of this 

survival protein (Figure 4, A). Moreover, WB densitometric analysis of pAkt bands 

confirm a significant increase (P<0.05) of activated Akt in the ES and iPS cell treated 

groups when compared with DOX-MI and DOX-MI+CC groups (Figure 4, A-B). There 

was not a significant difference between DOX-MI+ES and DOX-MI+iPS groups in pAkt 

activity. 
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Figure 4: Effects of transplanted ES and iPS cells on Akt pathway in DIC post MI. Left histogram (A), 
reveals a significant increase in pAkt activity in hearts transplanted with ES and iPS cells. *P<0.05 vs. 
DOX-MI and DOX-MI+CC with an n=4-5. WB analysis was performed using heart homogenates from 
each group and an antibody specific to pAkt. (B) Top right panel displays representative 
photomicrographs of WB bands for pAkt with its appropriate loading control. Bottom right histogram (C) 
shows densitometric analysis of WB bands with a significant increase in levels of pAkt levels in DOX-
MI+ES and DOX-MI+iPS cell treated hearts (*P<0.05, n=4-5).  

 

ES and iPS cell delivery in DIC post-MI improves cardiac function 

Two weeks following MI surgery, cardiac function was analyzed in each of the 

study groups. A significant deficiency in the contraction function of the left ventricle (LV) 

in DOX-MI and DOX-MI+CC hearts was observed when compared with Sham group 

(P<0.001) (Figure 5, A-G). However, a significant (P<0.05) improvement in cardiac 

function expressed in the average percentage of fractional shortening (FS %) and 

ejection fraction (EF%) at two weeks post MI in DOX-MI+ES and DOX-MI+iPS cell 

treated hearts was observed (Figure 5, C and F). There was also a significant (P<0.05) 

improvement in the internal diameter of the LV during systole (LVIDs) and in the end-

systolic volume (ESV) values in the ES and iPS cell treated hearts (Figure 5, B and E).  
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Figure 5: Effects of transplanted ES and iPS cells on cardiac function. To determine the effect of 
transplanted ES and iPS cells on cardiac function, echocardiography analysis was performed at D 14 
post-MI in the DIC animal model. Left panels A and B show LVIDd and LVIDs values in each of the study 
groups. Panels D and E show the end-diastolic volume (EDV) and end-systolic volume (ESV) values of 
the left ventricle. Right histograms C and F show that average left ventricular fractional shortening 
percentage (FS) and average ejection fraction percentage (EF) significantly improved two weeks post-MI 
in the ES and iPS cell treated groups (*P<0.05) compared with Sham, DOX-MI and DOX-MI+CC groups 
(n=5-8). Upper panel (G) shows the mean values and SEM of each of the study groups of LVIDd, LIVIDs, 
EDV, and ESV. 

 

The internal diameter of the LV during diastole (LVIDd) and end-diastolic volume (EDV) 

was improved in the iPS cell transplanted hearts compared with DOX-MI and DOX-

MI+CC. We did not observe a significant improvement of LVIDd and EDV in the DOX-

MI+ES group compared with DOX and DOX-MI+CC.   
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ESCM and iPSCM decrease apoptosis in H9c2 cells treated with DOX 

To further investigate if protective effects seen in vivo are due to factors released 

from ES and iPS cells, in vitro studies were performed using condition media (CM) 

obtained from ES or iPS cells to treat DOX-induced cardiotoxicity in H9c2 cells. H9c2 

cells were treated with DOX, DAPT (Notch-1 inhibitor), ESCM, and/or iPSCM. TUNEL 

staining was significantly reduced (P<0.05) in the ESCM and iPSCM treated groups 

compared with DOX and DOX+DAPT treated groups (Figure 6A). In addition to TUNEL 

staining, a caspase 3 activity assay was performed. As shown in Figure 6B, a significant 

increase (P<0.01) in caspase 3 activity was observed in DOX, DOX+DAPT+ESCM, and 

DOX+DAPT+iPSCM, compared with the CONTROL group. However caspase 3 activity 

was significantly attenuated (P<0.05) in the ESCM and iPSCM treated groups when 

compared with DOX and DOX+DAPT+ESCM but not with DOX+DAPT+iPSCM.  

 

Figure 6: Effects of ESCM and iPSCM on DOX-induced apoptosis in H9c2 cells. To further investigate 
the effect of ES and iPS cells on DOX-induced apoptosis, H9c2 cells were treated with DOX, DAPT, 
and/or ESCM and iPSCM. Left histogram (A) shows quantitative analysis of the percentage of apoptotic 
H9c2 cells with a significant decrease in levels of apoptosis in ESCM and iPSCM treated groups 
(*P<0.05) compared with the DOX, DOX+DAPT+ESCM, and DOX+DAPT+iPSCM groups (#P<0.001) 
(n=5-8). (B) Right histogram shows quantitative analysis of caspase 3 activity in arbitrary units with a 
significant decrease (*P<0.05) in ESCM and iPSCM treated groups compared with DOX and 
DOX+DAPT+ESCM groups (n= 5-10). 
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ESCM and iPSCM regulate Notch-1 expression in H9c2 cells treated with DOX 

As observed in the previous in-vivo results, transplantation of ES and iPS cells in DIC 

post-MI regulates expression of Notch-1. Therefore, to investigate if the effects on 

Notch-1 are also affected by factors released from ES and iPS cells, H9c2 cells were 

treated with DOX, DAPT, and/or ESCM and iPSCM. Western blot analysis of Notch-1 

and cleaved Notch-1 showed a significant increase (P<0.05) in the group treated with 

ES CM compared with DOX and DAPT treated groups respectively (Figure 7, A-D). The 

same tendency was observed in the iPSCM group (Figure 7, E-G).  
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Figure 7: Effects of ESCM and iPSCM on Notch-1 in DOX induced cardiotoxicity in H9c2 cells. To study 
the effects of ESCM and iPSCM on Notch-1 in DIC, a gamma secretase inhibitor was used (DAPT) to 
inhibit the Notch-1 intracellular domain (c-Notch-1). (A) Upper left panel shows representative WB bands 
of c-Notch-1. (B) Upper left histogram shows densitometric analysis of c-Notch-1 WB bands with a 
significant increase in levels of c-Notch-1 (*P<0.05) in the group treated with ESCM compared with DOX 
and ($P<0.001) DOX+DAPT+ESCM with an n= 7-10 in each group. (C) Bottom left panel shows 
representative WB bands of Notch-1 with its respective loading control. (D) Bottom left histogram shows 
densitometric analysis of Notch-1 WB bands with a significant increase in levels of Notch-1 (*P<0.05) in 
the group treated with ES CM compared with DOX and DOX+DAPT+ESCM with an n=6-7 in each group. 
(E) Right upper panel shows representative WB bands of c-Notch-1 and β-actin. (F) Upper right 
histogram shows densitometric analysis of c-Notch-1 WB bands with a significant increase in levels of c-
Notch-1 (*P<0.05) in the group treated with iPSCM compared with DOX and DOX+DAPT+iPSCM with an 
n=6-9 in each group. (G) Bottom right panel shows representative WB bands of Notch-1 receptor. (H) 
Bottom right histogram shows densitometric analysis of Notch-1 WB bands with a significant increase in 
levels of Notch-1 (*P<0.05) in the group treated with iPSCM compared with DOX and 
DOX+DAPT+iPSCM with an n= 8-6 in each group. 
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Hes1 regulates expression of Akt in H9c2 cells treated with DOX  

Densitometric analysis of WB bands of Hes1 showed a significant increase 

(P<0.05) in levels of Hes1 in the ESCM and iPSCM treated groups compared with DOX 

and DOX+DAPT treated groups (Figure 8, A-B). To assess the effect of Hes1 on Akt 

activity in H9c2 cells treated with DOX, a pAkt activity assay was performed. Figure 8C 

shows a significant increase (P<0.05) in pAkt activity in DOX+ESCM and DOX+iPSCM 

treated cells compared with DOX and DOX+DAPT+iPSCM but not when compared with 

DOX+DAPT+ESCM. Akt activity was not significant between ESCM and iPSCM treated 

groups. 
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Figure 8: Hes1 regulates expression of Akt in H9c2 cells exposed to DOX. (A) Upper panel shows 
representative pictures of WB bands for Hes1 and its β-actin control. (B) Bottom panel shows 
densitometric analysis of WB for Hes1 that shows a significant increase (*P<0.05) in Hes1 levels 
compared with DOX, DOX+DAPT+ESCM, and DOX+DAPT+iPSCM groups (n=5-9). (C) Right histogram 
reveals a significant increase in pAkt activity in H9c2 cells exposed to DOX and treated with ESCM and 
iPSCM. *P<0.05 vs. DOX and DOX+DAPT+iPSCM with an n=4-6. (D) Diagram shows that transplantation 
of ES and iPS cells in DIC increase expression of Notch-1 and its downstream effector Hes1, therefore 
decreasing the levels of PTEN protein and increasing the levels of pro-survival Akt protein. 
 

 

 

 



25 
 

CHAPTER 4: DISCUSSION  

The benefits of DOX as an antineoplastic drug have become less appealing due 

to the cardiotoxicity that this drug induces. In a study of 115 leukemia survivors who 

received DOX during their childhood, 57% developed cardiac dysfunction (Lipshultz et 

al., 2005). Furthermore, patients that received DOX as a cancer treatment at a young 

age were at high risk of experiencing an MI in their adulthood (Swerdlow et al., 2007; 

Ng and Mauch, 2009). The cardiac dysfunction induced by DOX is dose dependent and 

can develop months or years after its use (Steinherz et al., 1991; Horenstein et al., 

2000;Huang et al., 2010). The cardiotoxic effects of DOX occur through modification of 

the function and architecture of the heart. DOX treatment results in cardiomyocyte 

apoptosis and inevitably leads to dilated cardiomyopathy and impaired ejection fraction 

(Minotti et al., 2004; Geisberg and Sawyer, 2010; Psaltis et al., 2011). 

The limited self-renewal of cardiomyocytes makes stem cells an attractive option 

for replenishing cardiac cell loss resulting from toxic or ischemic injury (Gopinath et al., 

2010). Previous studies have used stem cells in DIC and have attributed the benefits to 

the paracrine secretion of stem cells (Agbulut et al., 2003; Garbade et al., 2009; 

Gopinath et al., 2010). Studies suggest that treatment of DIC with ES cells or ES CM 

leads to inhibited cardiomyocyte apoptosis, attenuated cardiac fibrosis, and improved 

cardiac function (Singla et al., 2012). Furthermore, evidence has indicated that factors 

secreted from ES and iPS cells improve cardiac function and decreased apoptosis after 

MI (Singla et al., 2007; Singla et al., 2011). However, to the best of our knowledge this 

is the first study in which ES and iPS cells were transplanted in a mouse model of DIC 

with myocardial infarction. The mechanisms by which stem cells decrease 
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cardiomyocyte apoptosis and improve cardiac function in DIC are not well understood. 

In the present study, ES and iPS cells decreased cardiomyocyte apoptosis and 

improved cardiac function in vivo and in-vitro in DOX-induced heart failure. Moreover, 

data presented in this study reveal that after treatment with ES and iPS cells or ESCM 

and iPSCM, there is an up-regulation of Akt activity. A decrease in the levels of PTEN 

protein, a negative inhibitor of Akt in hearts treated with ES and iPS cells, was also 

observed. Furthermore, the expression of Notch-1 and Hes1 were shown to decrease 

significantly in DIC post-MI and in DOX-induced cardiotoxicity in H9c2; however, ES 

and iPS cells and their CM significantly increased the levels of these proteins. This 

strongly implicates Notch-1 as having an important role in DOX-induced heart failure. 

Previous studies have shown that DOX induces cardiac dysfunction and that 

cardiomyocyte apoptosis is one of the primary elements that leads to heart failure 

(Singal et al., 1997; Singal et al., 2000). During an MI, cardiomyocyte apoptosis also 

occurs (Singla and Sobel, 2005; Singla et al., 2007; Singla et al., 2011). In this study, 

TUNEL staining and a caspase-3 activity assay show significantly reduced 

cardiomyocyte apoptosis in the ES and iPS cell-treated hearts as compared to the 

DOX-MI and DOX-MI+CC groups. To further examine the effects of ES and iPS cells 

and the factors secreted by these cells on DOX-induced cardiotoxicity, H9c2 cells were 

treated with DOX. The present data demonstrate that DOX-exposed H9c2 cells treated 

with ESCM and iPSCM had significantly decreased the levels of apoptosis and 

caspase-3 activity. This data is similar to that of previous studies suggesting that 

transplanted ES and iPS cells decrease cardiomyocyte apoptosis in DIC and in MI 
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respectively (Singla and Sobel, 2005; Singla et al., 2007; Singla et al., 2011; Singla et 

al., 2012). 

The mechanisms by which ES and iPS cells decrease apoptosis when 

transplanted in the heart are not well understood. Previous studies have shown that 

levels of the pro-survival protein, Akt, decreases in the heart after DOX treatment and 

MI (Singla et al., 2012; Glass and Singla, 2011), while PTEN protein, a negative 

regulator of Akt, is up-regulated after MI (Keyes et al., 2010; Glass and Singla, 2011). In 

the present study, our data suggest that after experiencing an MI, DIC hearts had 

significant down-regulation of Akt and significantly increased levels of PTEN as 

compared to the Sham group. However, hearts treated with ES and iPS cells had 

increased levels of Akt and significantly decreased levels of PTEN as compared to the 

DOX-MI and DOX-MI+CC groups. In the in vitro experiments, the same trend in levels 

of Akt was observed in the groups treated with ESCM and iPSCM. These data suggest 

that transplanted ES and iPS cells regulate Akt and PTEN and that these proteins may 

play a role in DIC post-MI. 

Previous studies have shown that Notch-1 mediates cardiac repair after MI (Li et 

al., 2011); however, DOX treatment decreases the levels of Notch-1 expression in 

cardiac progenitor cells (CPCs) (De et al., 2010). Therefore, the expression of Notch-1 

was analyzed in DIC post MI. Our immunohistochemistry and WB analyses show that 

the expression of Notch-1 decreases significantly in DIC post-MI as compared to the 

Sham group. Moreover, levels of Notch-1 significantly increase in the ES and iPS cell-

treated hearts. In addition to our in-vivo studies, in-vitro studies were conducted to 

analyze the effects of factors released from ES and iPS cells. H9c2 cells were treated 
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with DOX and also exposed to a gamma secretase inhibitor (DAPT). DAPT inhibits the 

activation of Notch-1 by preventing its cleavage and the release of its intracellular 

domain (NICD). Following DOX and DAPT exposure, cells were treated with ESCM or 

iPSCM. H9c2 cells treated with DOX showed a significant decrease in the expression of 

Notch-1 and c-Notch-1; however, when treated with ESCM or iPSCM, the levels of 

Notch-1 significantly increased. These results are in accordance with previous studies, 

which show a decrease in the levels of Notch-1 in CPCs after DOX treatment (De et al., 

2010). Nevertheless, to the best of our knowledge this is the first study to show that 

expression of Notch-1 increases following transplantation of ES and iPS cells in DIC 

post-MI. 

To further characterize the role of Notch-1 on cardiac repair in DOX-induced 

heart failure, a Notch-1 downstream effector, Hes1, was also studied. It has been 

shown that Notch-1 crosstalk occurs with the PI3K/Akt pathway along the border of an 

MI, thus protecting the heart from an acute pathological injury (Li et al., 2011). Recent 

studies have shown that in certain types of cells, such as T-cell lymphoblastic leukemia 

(T-ALL) cells, Notch-1 has an inhibitory effect on PTEN and that its negative regulation 

signals through Hes1 (Gutierrez and Look, 2007; Gutierrez et al., 2009). The western 

blot data presented in this study shows that after MI was induced in a DIC animal 

model, the levels of Hes1 significantly attenuated. However, following the 

transplantation of ES and iPS cells, the levels of Hes1 increased significantly as 

compared to the non-transplanted DOX-MI and DOX-MI+CC hearts. The same 

tendency in Hes1 levels was observed in DOX-induced cardiotoxicity in H9C2 cells 

treated with ESCM and iPSCM.  
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Lastly, we studied the effects of transplanted ES and iPS cells on cardiac 

function in DIC post-MI. Our data show that 14 days post-MI, animals treated with ES 

and iPS cells had significantly improved EF and FS percentages as compared to the 

untreated DOX and DOX-MI+CC groups.  

In conclusion, the data obtained during this study suggest that transplantation of 

ES and iPS cells in DOX-induced heart failure decrease apoptosis and improved heart 

function. Furthermore, the decrease in apoptosis observed in the in vitro and in vivo 

data is mediated by the activation of the Notch-1 pathway  
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