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Abstract

Effects of inflammatory conditions on the structure of fibrin clots:
modeling a flexible protein dimer with molecular dynamics simulations

Eric Pederson

Chair of the Supervisory Committee:
Research Assistant Professor Gianluca Interlandi

Department of Bioengineering

Upon vascular injury, fibrin is converted from fibrinogen and polymerizes to form long

protofibrils. Protofibrils laterally aggregate via the αC domain to form fibrin fibers, which

bind to platelets and form a clot. Inflammation recruits pro-inflammatory neutrophils to

the site of injury, which produce HOCl via myeloperoxidase. Inflammation is associated

with abnormal clot morphologies, which can lead to thrombosis and bleeding. Fibrin Met476,

located in the αC domain, oxidizes upon exposure to myeloperoxidase-derived HOCl, which

subsequently disrupts lateral aggregation and produces abnormal clots. The mechanism by

which oxidation affects αC domain structure, dynamics and self-association was investigated

by enhanced-sampling molecular dynamics techniques and free energy calculations. Replica

exchange molecular dynamics simulations with an implicit solvent were used to efficiently

sample αC-domain dimer conformations. Low-energy conformers were identified from the

free energy landscape minima and were used for free energy calculations after equilibra-

tion in explicit solvent. Using this method, I propose the hydrophobic core model of αC

polymerization, which states that Met476 is a docking spot for αC polymerization.
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1

Chapter 1

Introduction.

Normally, fibrin meshes stabilize platelets to form a clot in case of vascular injury. Such

an injury triggers local inflammation, which involves the recruitment and activation of neu-

trophils. Activated neutrophils can lead to fibrin oxidation, which prevents proper clot

formation and can lead to thrombosis and bleeding [1]. However, the mechanism by which

fibrin oxidation leads to poor health outcomes is not fully understood. In this chapter, I

will discuss the complex relationships between fibrinogen, the αC domain, coagulation, in-

flammation and neutrophil activity from Section 1.1 to Section 1.3.2.3 in order to exemplify

the complexity of pathways involving fibrinogen and its oxidation. Current protein-protein

docking algorithms are not designed to dock flexible peptides or intrinsically disordered pro-

teins and have failed to identify low-energy dimer candidates of the αC domain. To meet

this demand for a flexible-peptide docking algorithm, I explore a method to model the dimer

of a flexible protein by using T-REMD with an implicit solvation model and then refining

identified minima of the FEL with explicit-solvent simulations. Free energy calculations

were performed on the low-energy dimer candidates to to estimate free energy changes of

polymerization upon oxidation. The theoretical basis for these simulations is described later

in this chapter. Based upon MD simulations presented in this dissertation, I propose the
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hydrophobic core (HC) model that Met476 mediates αC polymerization by nucleating the HC

of the αC polymer. Oxidation of Met476 disrupts the HC that forms between αC domains,

which prevents lateral aggregation of protofibrils and leads to thrombosis and coagulopathy.

1.1 Fibrinogen structure and function.

Fibrinogen is a soluble, 340 kDa clotting factor (Factor I) that is secreted by hepatocytes

and consists of (Aα,Bβ,γ)2, chains in a symmetric fashion that are linked by disulfides at the

central E domain. The E domain, which contains the N-termini of Aα, Bβ and γ chains, is

flanked by two coiled-coil regions and globular D domains (Figure 1.1). The C-terminal Bβ

and γ regions form the D domains, while each C-terminal Aα chain forms the disordered αC

region (Figure 1.1). Upon activation by thrombin into fibrin, fibrinopeptides, FpA and FpB,

are released from the E domain, which expose the knobs on the E domain. Holes ‘a’ and ‘b’

are located on the D domains and facilitate ‘knob-hole’ interactions with knob ‘A’ and ‘B’ on

the E domain. ‘A:a’ knob-hole interactions are considered the primary driver of protofibril

formation. The resulting protofibril is half-staggered with a periodicity of 22.5 nm [2]. Prior

to activation, the αC domains occlude the holes and prevent protofibril formation. Upon

activation, the αC domains transition from intramolecular to intermolecular contacts to

maximize entropy. Activated fibrin rapidly forms protofibrils, which laterally aggregate via

the αC domains [2,3]. Fibrin polymers form a mesh of thick fibers that stabilize platelets at

the site of injury and prevent bleeding.

The human Aα chain is expressed in two isoforms in vivo. Isoform 2 (Fibrin-340) is the

most common variant of the Aα chain and has a largely intrinsically disordered C-terminus

with the exception of the folded, compact αC domain [4,5]. Isoform 1 (Fibrin-420) is formed

by alternative splicing and includes an extended C-terminal globular (αEC) domain that

shares approximately 40% homology to the C-terminal Bβ and γ chains [6]. Although being

considered the canonical isoform in the UniProt database [7], isoform 1 accounts for less than

3% of all fibrinogen molecules in the blood. Therefore, “αC domain” in this dissertation will



3

from now on refer to the Aα N-terminal sub-domain of isoform 2 [8]. Circulating fibrin(ogen)

is fairly heterogeneous due to Bβ and γ splice variants as well as proteolytic degradation

that removes portions of the αC region [9].

1.1.1 The αC domain.

More than 120 years after the discovery of fibrinogen in 1859, the compact αC domain was

identified by differential scanning calorimetry (DSC) [10,11]. Due to the high flexibility of the

human αC region, structural analysis by X-ray crystallography or NMR have been limited

(Figure 1.1). Hydrogen-deuterium exchange (HDX) experiments on the human Aα chain

indicate that the αC region fully exchanges (>90%) with solvent after 10 seconds [12]. Due

to these limitations, there has been debate if the αC region is a fully intrinsically disordered

region or if compact conformations are sampled at relevant frequency [13]. DSC and NMR

experiments indicate a compact, folded domain between residues 425-503 that interacts with

copies of itself in a cooperative manner [4,11,14]. The αC domain consists of a true β-hairpin

and a pseudohairpin, which adopts a hairpin-like conformation, but lacks the backbone

hydrogen bonding patterns for a β-hairpin. This is due to the strand orientation which

features 2↑ 1↓ 3↓ 4↑ strand pattern, where strands 1 and 4 contain the N- and C-terminus of

the αC domain, respectively. The parallel strand orientation between strands 1 and 3 is not

conducive to hydrogen bonding compared to the antiparallel interactions between strands

2 and 1 [15]. This limits the stability of the monomer species, however, the αC polymer

forms cooperatively with a free energy change of -6.7 kcal/mol per additional monomer [4].

Although the human αC domain aggregates at low concentrations, which make structure

prediction from NMR data strikingly difficult, a homology model was produced based on the

bovine structure and the human sequence (Figure 1.2) [4]. Atomic force microscopy (AFM)

has been used to visualize fibrin molecules and fibrin-fibrin interactions. The AFM images

detail how fibrin monomers interact with one another to form protofibrils. The protofibrils

can be found laterally aggregating together via αC domains. αC domains feature an oblong

shape tethered to the triple helical and globular regions by the αC region [16].
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1.1.1.1 Previous attempts to model αC polymers.

Upon the discovery of the human αC domain by DSC [11], many efforts were made in vain

to understand the tertiary structure of the αC domain. The solution state NMR structure

of the homologous bovine αC domain N-terminal β-hairpin was elucidated [17] before both

hairpins were resolved [14, 15]. The high β-hairpin content prompted the hypothesis that

the αC polymer could form amyloid-like fibrils. Different models were proposed, which

relied heavily on backbone amide interactions [15]. During this study, disulfide bonds were

introduced to “lock” the hairpins together, in an effort to see if polymerization was affected

by β-hairpin swapping. The disulfide bonds slowed down and decreased the degree of αC

polymerization [15]. This suggests that rigid-body motion and flexibility of the hairpins are

important for polymerization.

1.2 Haemostasis.

Haemostasis is a series of complex processes to keep blood cells inside damaged vessels in

the event of a vascular injury. These processes can be separated into three distinct, yet

overlapping phases: primary, secondary and tertiary haemostasis. Primary haemostasis is

characterized by vasoconstriction, which helps stop blood flow, and platelet plug formation.

During primary haemostasis, bivalent fibrin binds to αIIbβ3 integrin, the major platelet

surface receptor and aggregates platelets at the site of injury [2]. Secondary haemostasis is

characterized by activation of the coagulation cascade, including the activation of fibrinogen

into fibrin by thrombin, and the deposition of insoluble fibrin fibers around platelets. Finally,

during tertiary haemostasis, proteases degrade fibrin clots in a process called fibrinolysis

[2, 18]. There is a delicate balance between fibrin activation and fibrinolysis. If too much

fibrin is activated, thrombosis may occur, while an excess of fibrinolysis may lead to depletion

of fibrinogen in the blood, causing bleeding [2].
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1.2.1 Coagulation pathways.

Under the cascade model, coagulation can be separated into three pathways: the extrinsic,

the intrinsic and the common pathways (Figure 1.3). Activation of the cascade triggers

enzymes that activate proenzymes in order to amplify the signal to form a clot. There are

complementary inhibitory mechanisms to prevent thrombosis. The extrinsic pathway is trig-

gered by vascular injury, which exposes Tissue Factor (TF). TF binds to FVII, producing

FVIIa, which initiates the extrinsic pathway (Figure 1.3) [19]. The intrinsic pathway is ac-

tivated when FXII binds to a negatively charged surface, such as collagen, polyphosphates,

high molecular weight kininogen (HMWK), kallikrein, or lipopolysaccharide (LPS) from bac-

terial cell walls and is further upregulated by thrombin activity [20–22]. FXIIa activates FXI,

which activates FIX. Thrombin activates FVIII, which forms the tenase complex (enzyme

complex that activates FX) with FIXa in the presence of phospholipids (PL) and Ca2+ ions.

Both of these pathways result in tenase complexes, which are responsible for activating FX.

FXa then binds to thrombin-activated FVa in the presence of PL and Ca2+ ions to form the

prothrombinase (PTase) complex, which activates thrombin [18,23]. Thrombin then cleaves

N-terminal fibrinopeptides from fibrinogen to release the αC domains from the central E

domain, producing fibrin. This step allows for knob-hole interactions to form protofibrils,

followed by the lateral aggregation of protofibrils into fibers mediated by αC domain homod-

imers, Since the development of the cascade model, a cell-based approach has been proposed,

which accounts for the roles immune and endothelial cells play in coagulation, which better

approximates in vivo conditions [18,24].

The cell-based model of coagulation describes the interplay between active, inactive

platelets, and TF-bearing cells, such as subendothelial and fibroblast cells, which are typi-

cally shielded from blood flow. The cell-based model occurs with four overlapping phases:

initiation, amplification, propagation and stabilization. Initiation is characterized by the

formation of tenase and PTase activity on TF-bearing cells. Low levels of FIXa, FXa and

thrombin are produced on TF-bearing cells. When these protein levels rise above a threshold,
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coagulation is initiated. Next, during amplification, platelets are activated by adhering to

the site of injury and the presence of thrombin. Thrombin then activates FV, FVIII (which

is a cofactor of PTase), and FXI before the platelet surface is remodeled by the localization of

clotting factors. Then, during propagation, activated platelets form tenase and PTase com-

plexes by co-localization, which results in a much higher production of thrombin than during

initiation, which is enough to activate sufficiently large amounts of fibrinogen [24,25]. During

stabilization, thrombin activates FXIII, which is a transglutaminase capable of cross-linking

Gln and Lys residues along the αC region. This cross-linking has been shown to improve

mechanical and chemical stability of the clot [2,25]. If lateral aggregation is inhibited, FXIIIa

is unable to cross-link the αC regions, which impairs secondary and tertiary haemostasis [2].

1.2.2 Anticoagulation pathways.

Endogenous anticoagulants target different parts of the coagulation pathways (Figure 1.3).

Antithrombin (AT) is a serine protease inhibitor, which targets thrombin, FIXa, FXa, FXIa,

and FXIIa and has more enzymatic activity in the presence of heparin localized on endothelial

cells. Thrombin is mostly inhibited by AT, although α2 macroglobin and α1-antitrypsin

target thrombin as well. Tissue factor pathway inhibitor (TFPI) inhibits formation of FXa

in the extrinsic pathway with Protein S as a cofactor. Protein C is activated by thrombin and

inhibits FVa and FVIIIa, which are required for tenase and PTase activity in the intrinsic

and common pathways, respectively [25]. The anticoagulation pathway shown in Figure 1.3

ensures that activation of the coagulation pathway occurs only above a certain threshold.

1.2.3 Fibrinolytic pathway.

During tertiary haemostasis, plasminogen can be cleaved by either tissue plasminogen ac-

tivator (tPA) or urokinase (uPA) into plasmin, which proteolytically cleaves fibrin (Fig-

ure 1.4) [26]. tPA is secreted by endothelial cells and is the primary mode of fibrin degra-

dation. uPA is localized near the cell surface, which act on cell-bound plasminogen [27].

Plasmin recognizes cleavage sites all along the Aα, Bβ and γ chains due to their sequence
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homology. The C-terminus of the Aα chain is the most susceptible to cleavage. An early

plasmin product, Fragment X, is characterized by cleavage of the αC regions. Early studies of

the αC region involves treating fibrin with plasmin and isolating the αC fragments [28]. Later

fibrin degradation products lack C-termini of multiple chains [28]. Plasminogen activation

inhibitors (PAI-1/PAI-2) and α2-antiplasmin (α2-AP) are capable of slowing fibrinolysis by

degrading the plasminogen activators (tPA and uPA) and plasmin, respectively [26]. PAI-1

is more ubiquitous than PAI-2, which is expressed during pregnancy and pathological con-

ditions. During the stabilization phase, thrombin-activateable fibrinolysis inhibitor (TAFI)

plays an important role in downregulation of fibrinolysis by cleaving C-terminal Lys residues

of fibrin, which decreases the number of available tPA and uPA binding sites and therefore

limiting the production of plasmin [29].

1.3 Inflammation.

1.3.1 Role of neutrophils in inflammation.

Each day, about 1011 neutrophils are produced in the bone marrow via granulopoiesis, de-

stroyed via apoptosis or necrosis throughout the body and cleared by macrophages via ef-

ferocytosis [30, 31]. Neutrophils can become activated upon exposure to stimuli such as

damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns

(PAMPs). Activated neutrophils extravasate into the tissue, where they mediate acute and

chronic inflammation by clearing pathogens and recruiting immune cells [32]. Activated

neutrophils employ different antimicrobial tactics, including recruitment of dendritic cells,

macrophages, natural killer and T cells via chemokine production; degranulation; reactive

oxygen species (ROS) production; autophagy; neutrophil extracellular traps (NET) by NE-

Tosis; protease activity (protease-3 and cathepsin G); and microparticle release [30, 33]. In-

flammatory neutrophils multi-task and may perform many of these processes at once, while

continually recruiting other neutrophils [30,32]. NETosis is characterized by the breakdown

of nuclear structures, the mixing of nuclear and cytoplasmic material and its extrusion into
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the extracellular space to physically encapsulate pathogens and kill them via oxidative en-

zymes such as NADPH oxidase and MPO by autophagy [33]. Some pathogens have evolved

to express DNases to defend against NETs [33]. NETosis typically involves neutrophil death,

however certain cytokines and LPS have been shown to promote neutrophil survival, which

may promote chronic inflammation [31]. MPO is highly expressed in the neutrophil, where

it accounts for approximately 5% of the neutrophil mass and is required for NET forma-

tion [34,35]. Neutrophils can release MPO in several mechanisms: neutrophil degranulation,

apoptosis or necrosis and by NETosis. MPO deficiency has an incidence of 1 in 2,000-

4,000 in European populations and 1 in 55,000 in Japan, [35] which confers a heightened

sensitivity to certain bacterial and fungal infections but may also confer some resistance

to cardiovascular disease and chronic inflammation [31, 34, 36]. While neutrophils have po-

tent inflammatory effects, neutrophils may also downregulate inflammation by converting

to resolving neutrophils. The resolution response is largely mediated by these resolving

neutrophils. Neutrophil microparticles may carry pro-inflammatory cargo in inflammatory

neutrophils, and pro-resolving cargo in resolving neutrophils [30,32].

1.3.1.1 Acute inflammation.

Upon vascular injury, inflammatory neutrophils are the first immune cells recruited to the

site of stimulus [33]. NETs are structures containing depolymerized chromatin, oxidative

enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and MPO

to produce ROS. NADPH oxidase produces H2O2, and MPO utilizes H2O2 to catalyze the

following reaction:

H2O2 +X - MPO−−−→ H2O +HOX

X- is a halide ion, which is most often Cl- under physiological conditions, and HOX would

then correspond to HOCl. HOCl is a strong oxidizing agent, which converts exposed Met

residues into Met(O) with a rate constant on the order of 107 M-1·s-1, as a way of neutralizing

pathogen machinery. The Escherichia coli proteins are highly susceptible to oxidation via
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HOCl treatment; up to 50% of all E. coli Met residues were oxidized following MPO treatment

[37]. Interestingly, neutrophil cytoplasm contain high concentrations of methionine sulfoxide

reductase B (MsrB) [38] and may help attenuate oxidative stress inside the neutrophil. MsrB

is localized inside the neutrophil (including during degranulation) and the rate constant

for reduction of free methionine sulfoxide is approximately 37 M-1·s-1 [39]. This suggests

extracellular proteins containing methionine sulfoxide are metabolized into fragments faster

than the reduction reaction.

Inflammation resolution is important for haemostasis and tissue homeostasis [33,40]. The

resolution phase is mediated, in part, by ω-3 fatty acids docosahexaenoic (DHA) and eicos-

apentaenoic acid (EPA). DHA and EPA are converted into D series resolvins, protectins and

E series resolvins, respectively, which compete with pro-inflammatory lipids, such as arachi-

donic acid [32]. D and E series resolvins halt neutrophil migration and E resolvins can induce

efferocytosis (clearing of dead/dying neutrophils by macrophages) [41]. Inflammatory neu-

trophils may transition into resolving neutrophils upon exposure to prostaglandin E2, where

they downregulate inflammatory pathways. Resolving neutrophils cease pro-inflammatory

cytokine production, produce pro-resolving lipid mediators and secrete pro-resolving mi-

croparticles, which express annexin A1 and phosphatidylserine (PS) on the surface [32].

Annexin A1 triggers neutrophil apoptosis, and triggers efferocytosis. Surface PS is a well-

known ‘eat-me’ signal, which further facilitates efferocytosis. Inflammatory neutrophils rely

on efferocytosis in order to transition into resolving neutrophils before destruction by apop-

tosis and clearance by phagocytosis. Failure to clear the dead neutrophils and/or failure to

clear the stimulus or pathogen may induce chronic inflammation [30]

1.3.1.2 Chronic inflammation.

If a stimulus, such as LPS, is not cleared and the host is unable to initiate the resolution

response, the host develops chronic inflammation. Autoimmune disorders are a unique form

of chronic inflammation, where the adaptive immune system targets an autoantigen and is

perpetuated by the inability to clear the stimulus. For patients with autoimmune disor-
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ders, such as psoriasis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE),

activated neutrophils permeate tissues such as skin, synovial tissue and fluid and kidney

glomeruli, respectively and perpetuate the inflammatory response [31]. One notable feature

of chronic inflammation is the damage of tissue and subsequent fibrosis: the build up of

collagen and connective tissue at the affected site [40]. Chronic inflammatory diseases are

often associated with cardiovascular disorders due to the sensitivity of haemostasis to in-

flammation. For example, RA patients have a 50% higher cardiovascular risk and mortality

than the general population. Autopsies of patients with SLE showed a presence of coronary

atherosclerosis at 40%, compared to 2% of the control group [42]. Chronic inflammation is

complex and targets many tissues, imposing long-term damage.

1.3.2 Fibrin and inflammation.

Inflammation and coagulation are intrinsically linked processes. Inflammation triggers the

expression of TF in endothelial cells and leukocytes, which initiates the coagulation cascade,

in part, by activating thrombin [43]. Fibrinogen is also a critical part of the acute phase

response (APR).

1.3.2.1 Acute phase response.

The APR is characterized by a decrease in normal blood proteins called “negative” acute

phase proteins (APP), and an increase in “positive” APPs, primarily from altered hepatic

expression, including C-reactive protein, serum amyloid A, haptoglobin and cytokines. These

cytokines either affect cell growth (positively or negatively), pro-inflammatory cytokines and

anti-inflammatory cytokines . The pro-inflammatory group (TNF-α/β, IL− 1α/β, IL-6, IL-

8 and IFN-α) induce fever via inflammation and promote induction of other cytokines via

positive feedback regulation [44, 45]. IL-6 is the main driver of the APR and since all three

fibrinogen promoter regions are IL-6-responsive, fibrinogen synthesis is a major consequence

of IL-6 signalling [44–46]. Upon exposure to PAMPs or DAMPs, IL-6 is synthesized at the

site of injury and travels through the bloodstream, where it triggers platelet production
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in the bone marrow, fibrinogen and C-reactive protein production in the liver as well as

pro-inflammatory T-cell modulation [9, 45,46].

1.3.2.2 Regulation of cell aggregation and inflammation via fibrinogen-integrin interactions.

Fibrin mediates inflammation and immune cell aggregation by recognizing integrins with

β2 and β3 subunits: αIIbβ3, αVβ3, αMβ2, and αxβ2 (Table 1.2) [43]. αIIbβ3 is platelet-

specific and is recognized by RGD motifs on the Aα chain and a dodecapeptide in the γ

chain via the β3 domain. Platelet aggregation is partially mediated by αIIbβ3-fibrin inter-

actions [47]. αVβ3 is known as the vitronectin receptor, which recognizes the same motifs

as αIIbβ3 and helps recruit macrophages [43, 47–49]. Chronic activation of αVβ3 is associ-

ated with atherosclerosis, a chronic inflammatory disease associated with thrombosis and

myocardial infarction [50]. Chronic inflammation is, in part, mediated by αVβ3 activation,

which prevent macrophages from performing efferocytosis and inhibits resolution [50]. αMβ2

(also known as CD11b/CD18) is expressed on neutrophils and monocytes, which strongly

enhances inflammation by leukocytes [43] and triggers fibrinolysis via uPA secretion by neu-

trophils [29]. αxβ2 (also known as CD11c/CD18) is expressed on monocytes, macrophages

and dendritic cells. αxβ2 recognizes the GPRP motif on fibrin and competes with αMβ2

for binding [48, 49]. Fibrin activation of leukocyte integrins (αVβ3,αMβ2 and αxβ2) triggers

TF production and upregulates NF-κB signaling, which prevents initiation of resolution and

impairs tertiary haemostasis [51]. NF-κB is a transcription factor that activates expression

of pro-inflammatory genes including integrins and is activated by TNF-α or LPS via the

PI3K/AKT pathway as well as IL-6 [46, 49]. Fibrin degradation products, such as FpA,

FpB, D fragments, FnE, and Bβ15-42 have been shown to possess pro-inflammatory proper-

ties and are markers for organ dysfunction, although no dose-dependent relationship exists

between disease severity and fibrin fragment levels. FpA and FpB serve as chemoattractants

for neutrophils, macrophages and monocytes, establishing an early connection between fibrin

activation and inflammation [43]. Fibrinogen can initiate and mediate inflammation via a

variety of mechanisms [43].
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1.3.2.3 Met476 and innate immunity.

MPO-produced HOCl is capable of oxidizing three fibrinogen methionine residues: αMet476

(will be referred to as Met476), βMet367 and γMet78. Oxidized βMet367 and γMet78 residues

are not expected to drastically affect fibrin function. γMet78 is found in the triple helical

region of fibrinogen and is not expected to disrupt binding interactions. βMet367 lies in hole

‘b’ in the D domain, which forms intermolecular interactions with knob ‘B’ in the E domain.

Based on MD simulations, βMet367 oxidation is not expected to disrupt the binding site [39].

The exact role of the ‘B:b’ interactions in polymerization are cryptic as the BβD432A muta-

tion does not impact protofibril formation or lateral aggregation. Although ‘B:b’ interactions

can form when the ‘A:a’ interactions are impaired due to hereditary dysfibrinogenemia [3].

In contrast, Met476 lies in the αC domain, which mediates lateral aggregation between fibrin

protofibrils into thick fibers. Disruption of αC domain interactions by HOCl treatment has

been shown by mass spectrometry to produce abnormally dense blood clots [1]. Secondary

haemostasis is impaired upon Met476 oxidation due to the failure to form fibers and failure

to cross-link αC regions via FXIIIa. Tertiary homeostasis is also impaired due to the im-

permeability of the resulting fibrin clot which prevents proteolytic degradation. Swapping

the human αC domain with the analogous chicken αC domain prevents protofibril lateral

aggregation and have very similar physical properties as HOCl-treated fibin clots [52].

Fibrin clots are capable of trapping pathogens and inhibiting infection, as part of the in-

nate immune system. Thrombin-activated plasma is capable of killing Group A Streptococci

(GAS), Group B Streptococci (GBS), and Staphylococcus aureus, which is, in part, mediated

by fibrin-binding proteins on the pathogen surface [53]. However, certain pathogens, such

as Yersinia pestis, express fibrinolytic enzymes that allow the pathogen to evade the im-

mune system [54]. As discussed in Section 1.3.1.1, MPO activity is highly associated with

antimicrobial activity due to the inactivation of pathogen proteins containing exposed me-

thionines [37]. However, HOCl produced by MPO has off-target effects and can affect nearly

any protein with an exposed methionine. Met476 oxidation inhibits fibrinolysis by altering
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clot morphology and has demonstrated antimicrobial activity against GAS [1, 54, 55]. To

determine if this trait is common among other closely-related mammals, a BLAST search

using the αC domain (residues 441-496) was performed [56]. The top non-redundant 16

results, as well as Rattus norvegicus and Bos taurus were aligned using the ClustalOmega

algorithm [57] (Figure 1.5). Like the human sequence, gorillas, rats and two new world

monkey species have a Met at this position. Most mammals listed, however, have an Ile

residue at this position, which has a similar side chain SASA and hydrophobicity as Met,

but is insensitive to oxidation (Figure 1.5) [58]. For instance, an Ile to Met mutation is

tolerated in egg lysozyme due to their similar chemical properties [59]. This suggests the

inflammation-associated antimicrobial properties of the αC domain, as part of the innate

immune system, may be unique to some species, including humans. While this antimicrobial

function provides some evolutionary advantage, oxidized fibrin clots have an increased the

risk of thrombosis and may lead to bleeding by fibrin depletion [1, 55,60].

1.4 Molecular dynamics simulations.

MD is a computational tool that uses Newton’s three laws of motion to numerically calculate

atomic trajectories given an initial state, a force field (FF), periodic boundary conditions

(PBCs) and user-defined simulation parameters. With the development of high-performance

computing (HPC) clusters and parallel computing algorithms, MD simulations have been

able to address a growing number of biological, chemical and physical problems. For protein

systems, MD simulations can be used, among other applications, to study protein-ligand

and protein-protein interactions, minimize low-resolution electron microscope structures or

homology models, and calculate FELs.

1.4.1 General principles and system configuration.

In its simplest form, MD simulations take a series of atomic positions, and produces a time-

series of updated atomic positions. One major component of MD simulation configuration



14

is the FF, which describes the interactions between atoms in space. The CHARMM36

FF uses a modified Lennard-Jones potential to approximate van der Waals (vdW) forces

along with the Coulomb potential to approximate electrostatic interactions . The parameter

and topology files complement one another to encode the CHARMM36 FF for use by MD

simulation software such as CHARMM or NAMD. The parameter file lists the numerical

constants necessary to evaluate the forces and energies simulated by MD. The topology file

describes the connectivity between atoms in order to generate the necessary structure files for

MD [61,62]. Most parameter and topology files describe the canonical amino acids and water;

new files are developed for post-translationally modified residues such as phosphoserine,

methionine sulfoxide or N-linked-glycosylated-asparagine [63].

PBCs are often used to avoid finite size effects and allow for the implementation of particle

mesh Ewald (PME), which is a very fast method to calculate pairwise interactions with a

complexity ofO(N logN) where N is the number of atoms in the system, compared toO(N2)

for the conventional approach. PME calculates potentials based on the Fourier transform of

the system within the PBC, which can be implemented using a fast Fourier transform (FFT)

algorithm [64]. In order to improve performance time, the vdW interactions are switched

on and off between a relevant window, typically between 6 (switch on) and 12 (non-bonded

cutoff) Å. Electrostatic interactions are computed classically within this range and PME is

used to calculate long-range electrostatics beyond the non-bonded cutoff. The list of non-

bonded atoms is assembled using a pair-list cutoff that is 1–2 Å above the non-bonded cutoff.

This ensures that atoms that move outside of the non-bonded cutoff between timesteps don’t

cause an unphysical jump in vdW or electrostatic potentials [65].

Hydrogen covalent bonds fluctuate over femtosecond timescales. As a result, a much

shorter time step, 0.5–1 fs, is required in order to maintain accuracy. However, an algorithm

such as SHAKE, which restrains hydrogen covalent bonds to a fixed length, reduces the

number of DoF and allows for the use of a 2 fs time step (2–4-fold improvement in efficiency)

[66]. The longer time step makes longer simulation times more feasible.

NAMD assigns velocities and accelerations to atoms throughout a simulation based on
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the temperature and a thermostat is used to hold temperature constant. In this dissertation,

classical MD is performed using the Langevin thermostat with a piston to hold pressure

constant. The Langevin thermostat is used for simulations described in this dissertation due

to the incorporated stochasticity and ease of use within NAMD [67,68]. .

Static atom configurations need to be slowly heated until the target temperature is

reached before production MD simulations can be performed. Once solvated and salt ions

added, energy minimization of the hydrogen atoms is performed while the heavy atoms are

restrained, followed by another minimization step with no restraints. To equilibrate the sys-

tem, harmonic restraints are applied to all heavy protein atoms, while simulated in solvent

for less than a nanosecond. This allows for the solvent to equilibrate around the solute and

expand. Equilibration continues during the first 10 ns of the production run and is typically

excluded from analysis.

1.4.2 Implicit solvation.

Explicit solvent simulations typically have large numbers of atoms, which scale on the order

of r3 with the size of the periodic box length, r. Implicit solvation, in contrast, reduces the

number of atoms in the system, which can drastically decrease simulation run time. The free

energy of solvation, ∆Gsol, is comprised of a non-electrostatic and electrostatic terms:

∆Gsol = ∆Gnon-pol + ∆Gpol, (1.1)

∆Gsol is defined as the reversible work required to move a solute from a vacuum to solution

and the goal of implicit solvation methods is to approximate this value for each solute [69].

∆Gnon-pol is the amount of energy required to solvate a solute with no partial charges and

can be approximated using the the solvent accessible surface area (SASA) of the atom.

∆Gpol accounts for the energy associated between solvent-solute electrostatic interactions

and is typically approximated using the Poisson-Boltzmann (PB) equation, however this
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computationally intensive and is infeasible for calculating MD trajectories. An alternative

method, the generalized Born (GB) model, approximates the ∆Gpol term with the Born

free energy. Using the GB model, each charged atom is assigned a calculated Born radius,

αi, based on a parameterized data set [70, 71]. The Born radius defines the distance from

the center of the atom where charge is screened; this can be visualized as the molecular

surface [72]. Higher salt concentrations screen charges more effectively, which increases the

effective distance between the two atoms by shrinking the effective Born radii. The effective

Born free energy, ∆Gpol,i, is related to the effective Born radius term by:

∆Gpol,i = −1
2
( 1
εp
− 1

εw
)
q2i
αi

, (1.2)

where εp is the dielectric constant of the protein, εw is the dielectric constant of the water,

q2
i is the partial charge of atom i and αi is the Born radius of atom i upon solvation [70].

To approximate vdW interactions and solvent cavitation — the energy required to create a

“solute sized cavity” [73] — SASA is calculated for each atom in the following manner:

∆Gsurf =
∑N

i=1 γAi, (1.3)

where N is the number of atoms in the system, γ is the surface tension term in kcal mol-1

Å-2, and Ai is the SASA of the atom in Å2 [70, 71]. This implementation is known as the

Onufriev, Bashford, Case generalized Born with surface area (GBSA) model [70, 71, 73, 74].

For calculating potentials between pairwise Born radii, six effective regimes of distances are

used to apply descreening effects within a cutoff (greater than 4× the effective Born radius of

the atom). These regimes from furthest distance to closest to spherei are as follows: spherej

beyond cutoff, spherej partially within cutoff, a smoothing regime, spherej not overlapping,

spherej overlapping and spherej inside spherei [71, 75].
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GBSA improves sampling due to the lack of friction of water present in explicit solvent

simulations. Implicit solvation methods may introduce artefacts into the system, which may

impact the hypothesis being tested. For example, GB implicit solvation may overstabilize

salt bridges, while surface area based models, like GBSA, overstabilize pair-wise non-polar

interactions [69]. Using an implicit solvation model requires thorough testing to minimize

the possibility of artefact introduction.

1.4.3 Enhanced sampling techniques.

Classical MD simulations sample a conformational space at a single temperature and may

be trapped inside a deep local energy minimum. In this case, the energy well will be well-

sampled. Enhanced sampling techniques address the ‘local minimum problem’ by exploiting

statistical mechanics to ask thermodynamic questions about the system. Accelerated molec-

ular dynamics (aMD) uses a “boost potential” when energy drops below a threshold, which

signifies sampling deep wells. This boost potential diminishes the depth of energy wells,

which allows for the traversing of energy barriers without changing the system tempera-

ture. Following an aMD simulation, the energy landscape is reconstructed by taking into

account each potential boost in a process called reweighting [76,77]. Metadynamics is an en-

hanced sampling technique that uses a collective variable (CV), which is a function of atomic

coordinates such as RMSD, distance, or Rg, to bias the simulation during runtime. Meta-

dynamics enhance sampling by disfavoring visiting previously-sampled conformational space

by adding Gaussian potentials to the force-field. The algorithm encourages sampling of new

low-energy conformations in CV space. Metadynamics simulations that converge produce

a flat free energy landscape (FEL), which allows for the reconstruction of the original FEL

in CV space. Variations on metadynamics include, but are not limited to, free energy per-

turbation (FEP), thermodynamic integration (TI), umbrella sampling, weighted histogram

analysis method (WHAM), adaptive force bias, and steered MD (SMD) [78]. Temperature

replica exchange MD (T-REMD) is another enhanced sampling technique used to sample

large regions of conformational space with reasonable efficiency by exploiting parallel com-
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puting algorithms. T-REMD ensembles can be analyzed using CVs, however the CVs do

not influence the simulation parameters, in contrast to metadynamics. In and , T-REMD

and FEP are used, respectively, to probe the effects of oxidation on fibrinogen αC domain

dimerization.

1.4.3.1 Replica exchange molecular dynamics.

T-REMD uses parallel simulations, called replicas, running at multiple temperatures in order

to simultaneously sample wells thoroughly and traverse energy barriers. Each replica corre-

sponds to the canonical ensemble at their respective temperatures and satisfies the detailed

balance, which allows for the calculation of ensemble averages of each replica. T-REMD is dif-

ferent from classical MD in that T-REMD doesn’t calculate trajectories. Instead, T-REMD

is a tool to sample canonical ensembles, which utilizes “unphysical” replica swapping [79].

Overlap between replica energy distributions indicates the likelihood of swapping between

replicas, according to the Metropolis criterion described in Equation 1.4 (Figure 1.6). The

probability of accepting a swap, Ptarget, between adjacent replicas, i and j, is given by:

Ptarget = min{1, e(βi−βj)(U(rNi )−U(rNj ))}, (1.4)

where βi = (1/kBTi) is the reciprocal temperature of the replica, U is the potential energy of

the configuration and rNi specifies the coordinates of N atoms in system i. There are different

schools of thought when it comes to Ptarget selection. If Ptarget is too low, the efficiency of

the algorithm drops because it would take longer for each replica to converge. The upper

limit for Ptarget depends heavily on the system in question, although it seems exchanging

more frequently is beneficial [80]. The minimum temperature should represent the relevant

context of the protein, such as room temperature (300 K) or physiological temperature

(310 K), for example. The maximum temperature needs to be sufficient to traverse energy

barriers. The choice of Ptarget can be limited by computing resources. For example, a high

Ptarget value requires more replicas, which requires more computer nodes and therefore more

computational time [80]. Using the online web server available at http://folding.bmc.uu.

http://folding.bmc.uu.se/remd/
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se/remd/, temperatures can be estimated by providing Ptarget, the minimnum and maximum

temperatures and the number of DoF in the system (solvent and protein) to estimate the

heat capacity of the system. The algorithm provides a list of temperatures and the number

of required replicas to achieve the Ptarget [81]. In the NAMD replica exchange package, the

provided temperatures are approximated using:

Ti = Tmin · e
(lnTmax

Tmin
)( i

Nreplicas−1
)
, (1.5)

where Ti is the temperature of replica i, Tmin and Tmax are the minimum and maximum

temperatures, respectively and Nreplicas is the number of replicas.

Each replica energy distribution depends on the heat capacity of the system, which can

change throughout the simulation [81]. In order to preserve the average kinetic energy of

the system upon replica swapping, 3
2
NkBT , momenta must be reassigned so that the new

momenta are scaled appropriately according to:

p’i =
√

Tnew

Told
pi, (1.6)

where pi is the old momenta for replica i, p′i is the new momenta for replica i and Told and

Tnew are the old and new temperatures, respectively [79]. Certain behavior can affect the

energy distributions during the simulation, however. For example, if Tmax were too high

and inconsistently melted one or more of the replicas, the energy distribution would narrow.

One of these affected replicas could become trapped in the high-temperature replica with no

sufficient energy overlap with its neighbor to perform a swap. In this case, the Ptarget would

diminish over simulation time, making the simulation less efficient and risking accuracy of

the canonical ensembles. To address this issue, one could choose a more optimal Tmax or

increase Ptarget.

M -dimensional FELs can be constructed post hoc by creating an M -dimensional his-

togram with M CVs for M + 1 axes. For example, a 2-dimensional histogram is converted

http://folding.bmc.uu.se/remd/
http://folding.bmc.uu.se/remd/
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to a 3-dimensional FEL by:

Gbin = −kBTreplica ln(N frames), (1.7)

where Gbin is the Gibbs free energy of the bin (z-axis), kB is the Boltzmann constant,

Treplica is the temperature of the replica, and Nframes is the number of frames in the bin.

There are other methods of approximating FELs such as a disconnectivity graph, which

utilizes hierarchical clustering to identify the most relevant conformers. This method does

not report energies of states [82]. Multidimensional (>2 CVs) FELs may be useful for certain

applications, but are difficult to visualize. CVs can be thought of as reaction coordinates

in chemistry, in that both are low-dimensional representations of a FEL that contains many

degrees of freedom (DoF). A CV should be able to describe large or important changes in

structure. Choosing an atomic distance that doesn’t exceed 3 Å as a CV may not be as

useful as the Rg, which describes the global distribution of atoms in the polymer, unless

those 3 Å are significant for the protein dynamics or catalysis. Choosing an optimal CV pair

is non-trivial and often requires trial and error.

1.4.3.2 Method to model binding between flexible peptides or proteins

Docking suites such as Rosetta and ZDOCK use rigid-body transformations to optimize an

energy function for shape complementarity, among other physical features [83–86]. RBD

approaches, including methods with flexible side chains such as RosettaDock, are designed

for structures with interacting domains. RosettaDock allows for flexibility of linker regions

by introducing perturbations of the φ and ψ backbone angles. Docking two peptides with

RosettaDock, is inefficient because the method calculates the interaction energy based upon

the definitions of a linker and domains [84]. FlexPep is a docking protocol available through

Rosetta that docks flexible peptides to receptor proteins, but the receptor must have a pre-

identified binding pocket [87]. ClusPro uses a FFT approach, followed by a clustering step

and MD refinement in CHARMM to clear clashes [88]. RBD approaches are limited by their

ability to sample conformations. There is a need for novel approaches to flexible peptide-
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peptide docking. Enhanced sampling methods, as described in Section 1.4.3, overcome this

challenge by sampling as many conformations as possible despite a large number of DoF. I

propose using T-REMD to describe the conformational landscape of αC-domain dimerization

followed by the identification of low-energy dimers using clustering. Weak restraints on the

centers of mass may be used to improve sampling of dimer structures.

1.4.3.3 Free energy perturbation.

FEP uses MD trajectories to estimate the ∆∆G of structural changes, although in this case

we’re referring to oxygen, although it could extend to any post-translational modification

(PTM). In contrast to T-REMD, FEP uses a CV, λ, to scale the potential energy of an

atom to effectively turn it ‘on’ or ‘off’ throughout the course of the simulation. This process

is called an alchemical transformation and FEP uses these transformations to estimate the

free energy changes between states in the thermodynamic cycle shown in Figure A.1 [89,90].

Alchemical transformations are interpreted using λ, which varies from 0 to 1 to switch atoms

on or off using:

G(λ)oxidation = λGox + (1− λ)Gunox, (1.8)

where the Gibbs energies, Gunox and Gox [90]. The structure where λ=0 is known as the

reference, and λ=1 refers to the target structure, which will be denoted by ‘unox’ and ‘ox’,

respectively [91].

During small windows of simulation time (dλ), the energy of the system is calculated

such that the total free energy change is estimated by the summation:

∆Goxidation = Gox −Gunox =
1∑

λ=0

−RT ln 〈e−∆E/RT 〉λ, (1.9)

where ∆E = Eλ+ dλ-Eλ, R is the real gas constant, and 〈〉λ is the canonical ensemble average

over λ [90]. The length of these windows can vary based upon the size and complexity of the

system in question and each window includes an equilibration period prior to data collection.

Both the dimer (reference) and monomer, modeled as a tripeptide (target), structures are
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used to evaluate how oxidation affects dimerization. The forward and backward (0 → 1

and 0 ← 1) simulations are used to estimate the free energy change using the Bennett’s

Acceptance Ratio (BAR). The derivation of ∆GBAR is shown in equation 1.10:

eβ(∆GBAR−C) =
〈f(β(C −∆U))〉ox
〈f(β(∆U − C))〉unox

, (1.10)

where f(x) = 1
1+ex

, 〈〉 is the canonical ensemble average over the unoxidized states, and C

is an iteratively calculated and self-consistent constant. BAR loses accuracy when applied

to large energy gaps and therefore, FEP requires an overlap between sampled states. A

dual topology approach is used to maintain overlap, which encodes both the non-interacting

reference and target alchemical groups in the simulation (Figure 1.7) [90, 92]. The ∆∆Gox

is estimated by comparing the ∆G values from the FEP simulations by:

∆∆GFEP
ox = ∆GBAR

ox −∆GBAR
unox (1.11)

The sign of ∆∆GFEP
ox indicates if dimerization upon oxidation is unfavorable (+) or favorable

(-). In Appendix A, I describe how FEP was performed on representative frames (equilibrated

in explicit solvent) to

1.4.4 Nuclear Overhauser effect restraints.

Nuclear Overhauser effect (NOE) restraints are calculated based on dipole-dipole interaction

data from NOE spectroscopy (NOESY) 2-D NMR experiments and are often included in

NMR solution structure entries in the Protein Database (PDB) [93]. NOE signals decay on

the order of the sixth power of the interproton distance. In order to properly account for

time averaging, an inverse sixth-power term must be used in the following manner,

rNOE = 〈r(t)6〉−1/6, (1.12)

where r(t) is the collection of sampled distances from the NOESY experiment and t is

time [94]. NOEs can be used to understand the congruence between a structural model

and experimental data. To do this, interproton distance ranges collected from NOESY



23

experiments are converted into post hoc passive restraints. To calculate the number of NOE

violations based on an MD trajectory, rNOE is calculated for all NOE restraints. rNOE is

then compared to the NOE violation distances and distances above the upper bound are

considered violated [95]. NOE restraints can be mutually exclusive, ambiguous, or both,

since NMR captures ensembles of structures that can differ significantly between states.

This heterogeneity limits the number of total NOEs that can be used for analysis [94]. The

existence of mutually exclusive NOE restraints suggests that most structures will have an

ambient number of NOE violations.

In contrast, restraints can be defined within a simulation, where a force is applied between

atoms and across dihedral angles to maintain the interproton distance within the NOE

restraint. Active NOE restraints are often used for NMR structure refinement and can be

used as CVs for metadynamics. [93,94]. In , I used NOE restraints post hoc to probe whether

implicit solvation introduced artefacts compared to explicit solvation.
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Cytokine Cell types Functions

TNF-α Macrophages

Phagocyte (neutrophil, monocyte,

macrophage, dendritic cell

and mast cell) activation

[44,45,49]

TNF-β
Monocytes

T-cells

Triggers phagocytosis,

stimulates cytokine production
[44,45]

IL-1
Macrophages, B-cells

dendritic cells

Stimulates neutrophil

cell proliferation

from bone marrow

[44,45]

IL-6
TH-cells, macrophages,

fibroblasts

Fibrinogen synthesis

and IgG production
[44–46]

IL-8 Macrophages Neutrophil chemotaxis [45]

IFN-γ T-cells

Macrophage activation,

increases neutrophil,

and monocyte function

[44,45]

Table 1.1:: Pro-inflammatory cytokine functions
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1.5 Tables.

Integrin Cell type Additional functions

αMβ2

Neutrophils,

monocytes
Enhances fibrinolysis, TF production [49]

αxβ2

Monocytes,

macrophages,

dendritic cells

Enhances TF production [49]

αIIbβ3 Platelets Platelet aggregation [47]

αVβ3 Platelets
Recruits macrophages and

inhibits efferocytosis
[47]

Table 1.2:: Fibrinogen-binding integrins and their functions
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1.6 Figures.

Figure 1.1:: Structural organization of fibrinogen

The X-ray crystal structure of fibrinogen (PDB ID 3GHG) and the human homology

model of the αC domain. The Aα chain is shown in blue, the Bβ chain is shown in

red and the γ chain is shown in gray. The side chain of Met476 in the αC domain is

shown in the stick and ball representation and labeled. Dotted lines correspond to

unresolved electron density in the αC region. Adapted from [96].
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Figure 1.2:: The αC domain structure

(a) The NMR solution structure of the bovine fibrinogen αC domain (PDB ID 2JOR)

and (b) the human homology model of the αC domain. β-hairpin and pseudohairpin

regions are labeled.
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Figure 1.3:: Coagulation cascade and anticoagulation pathway

The intrinsic and extrinsic pathways result in Tenase and PTase formation (black).

PTase activates thrombin (which converts fibrinogen into fibrin), the intrinsic pathway

via positive feedback loops (dotted) and Protein C. Antithrombin is the main actor

in the anticoagulation pathway (red), which restricts the activation of the intrinsic

pathway and common pathways. TFPI and Protein S inhibit the extrinsic pathway

via FX.
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Figure 1.4:: The fibrinolytic pathway

Plasminogen is activated by tissue plasminogen activator (tPA) and urokinase (uPA)

into plasmin, which proteolytically cleaves fibrin. Plasminogen activator inhibitor

(PAI-1) inhibits tPA and uPA. α2-antiplasmin (α2-AP) is a serine protease inhibitor

that targets plasmin. Thrombin-activatable fibrinolysis inhibitor (TAFI) cleaves C-

terminal plasmin binding sites on fibrin, inhibiting fibrinolysis.



30

Figure 1.5:: Multiple sequence alignment of putative αC domains

Sequence identity is denoted by “*” and similarity is denoted by “:” (< 3 differences

between sequences and must have similar hydrophobicity, charge, polarity, or size)

The human β-hairpin is highlighted in cyan, the linker region is highlighted in yellow

and the pseudohairpin is highlighted in magenta. Residues aligned with human Met476

are in boldface.
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Figure 1.6:: Energy distributions of replicas in T-REMD

Gaussian energy distributions, P(E), at a given mean temperature, T, of each replica.

To maintain overlap between replicas and avoid overlapping with non-adjacent repli-

cas, spacing between temperatures increases (according to Equation 1.5) and the

standard deviation of each distribution increases. Ptarget is proportional to the energy

overlaps between adjacent replicas.
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Figure 1.7:: Dual topology for FEP calculations allows for sampling overlap

(a) Met476 when λ = 0 (reference), (b) Met(O)476 when λ = 1 (target) and (c)

Superposition of Met476 and Met(O)476 side chains, which do not interact with one

another under the dual topology approach. All other atoms in the system are treated

classically, which allows for the required overlap between sampled states, (a) and (b).
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Chapter 2

Modeling a flexible protein dimer

2.1 Introduction

Protein-protein interactions (PPIs) are incredibly important for biological functions, so there

is a demand for accurate models of protein binding in basic science and industrial settings.

Many proteins contain highly flexible regions that make studying interactions involving these

regions difficult. Intrinsically disordered proteins (IDPs) account for 11% of proteins cat-

alogued by Swiss-Prot and it is estimated that 35-51% of human proteins contain flexible

loop regions [97]. IDP interactions are important for signal transduction, scaffolding, tran-

scription (DNA-protein interactions), cell cycle regulation and chaperoning [98]. IDPs can

adopt transient secondary structures during binding and these “fuzzy complexes” can still

exhibit disordered behavior even in bound states [98]. Other examples where the binding

between flexible proteins needs to be modeled in detail include disease-related misfolding

and aggregation. For example, the prion (PrPc) hydrophobic domain undergoes a large un-

folding transition before rearranging disulfide bonds, followed by a relaxation to a misfolded

multimer state (PrPsc) [99, 100]. Finally, it is often also necessary to model a flexible part

of a protein that is missing from the experimentally determined structure. For example,

the blood protein von Willebrand factor (VWF) contains a 34-residue long, highly flexible

region between the D’D3 domains and the A1 domain that is known to bind to the core
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of the A1 domain and to regulate binding to blood platelets [101]. However, there is cur-

rently no resolved structure of the A1 domain with the long linker, and yet it would improve

understanding how this regulatory region functions.

Protein docking software aim to understand the nature of PPIs. Most docking software,

including Rosetta, utilize some form of rigid body docking (RBD). For example, Rosetta-

based docking is a powerful technique that works for many proteins but struggles with targets

that undergo conformational changes upon binding [102]. PPIs between flexible proteins,

which includes IDPs and IDRs, are difficult to study with these approaches due to the large

numbers of DoF and structural heterogeneity.

To address the need for a new method to model PPIs, I propose an MD-based approach

that can capture the structural heterogeneity of flexible proteins despite the large number

of DoF. The method uses an initial guess for the docked configuration, but because it uses

enhanced-sampling techniques, there is no dependence on the initial conformation. Here,

I describe the use of temperature replica exchange MD (T-REMD), an enhanced-sampling

technique, to produce free energy landscapes, which can be represented as 2-D histograms.

Next, the deepest minima are probed for the representative frames, which are used for

analysis. A similar process, using T-REMD, was performed on the amelogenin monomer,

which is an intrinsically disordered protein, although there are some important differences

[103]. I will refer to this previous method as the clustering method. The proposed method

constructs a FEL using the frames from the T-REMD simulation, whereas the clustering

method organizes frames into substates. By constructing a FEL, thermodynamic information

is preserved and the global minimum can be identified, which is an advantage over the

clustering method. Both methods utilize similar hierarchical clustering strategies to identify

representative frames, however the clustering method uses all frame, rather than the subset of

structures identified from a local minimum. The described MD-based methods are far slower

than RBD approaches, but MD can be used on disordered and flexible proteins, regions or

peptides. In this chapter, I detail the individual steps to model a flexible protein dimer (the

αC domain).
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The αC domain is a largely flexible region of the fibrinogen Aα chain. NMR experiments

on the human αC domain have been informative but have failed to resolve a structure,

due to the high aggregation propensity [4]. The bovine αC domain, which shares 57%

sequence identity to the bovine αC domain, was used to construct the homology model used

throughout this dissertation [4, 14]. Two copies of the homology model were arranged in a

planar fashion such that the pseudohairpin of one monomer was adjacent to the β-hairpin of

the other monomer. An MD simulation was performed on this initial structure with restraints

on the CoM between each monomer. A frame was taken from the end of the simulation to

initialize the T-REMD and sample dimer structures. The sampling of dimer conformations

by T-REMD is sufficient that the initial frame is irrelevant during analysis.

2.2 Methods & Materials

2.2.1 Explicit solvent simulations

Explicit solvent simulations approximate in vivo/in vitro conditions by including water and

salt atoms in the simulation. Prior to performing such simulations, the system must be

equilibrated. Harmonic constraints were applied to the heavy atoms of the protein and

performed 0.2 ns of simulation time at 300 K. 300 and 310 K are common temperature options

for MD simulations, as they correspond to room and physiological temperature, respectively,

although we have chosen to use 300 K for explicit solvent simulations. In simulations with

Met(O) residues, harmonic constraints were kept on all heavy atoms, excluding those atoms

in the Met(O) residue and sequentially neighboring residues, and equilibrated for 2 ns. After

these steps, harmonic constraints were released. For 300-K simulations, the first 10 ns are

considered equilibration and are not used for analysis. During equilibration and production

runs, the temperature is held constant by using the Langevin thermostat [67] in NAMD

with a damping coefficient of 1 ps-1. In explicit solvent simulations, the pressure was held

constant at 1 atm by applying a pressure piston to mimic physiological conditions [68].

Explicit solvent simulations were initiated from the NMR structure of bovine αC domain
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or a human homology model of the αC domain. Each simulation was started with different

initial random velocities to ensure that each trajectory is not identical to other trajectories

that used the same initial structure.

2.2.1.1 Nuclear Overhauser effect and restraints

NOE distance restraints of the bovine structure [14] were used to assess how similar a set

of simulation conditions are to native conditions. A NOE distance restraint was considered

violated in silico if the equation 〈r(t)-6〉 - 1
6 ≤ rmax

exp + 0.5 Å was not fulfilled, where r(t)

is the interproton distance, at simulation time t, rmax
exp is the experimentally determined

upper distance limit, and 〈 〉 represents a time average. Here, a 0.5 Å buffer term is included

to take edge cases into account. The buffer term is not necessary, but can be used to include

restraints that fall within reasonable instrumental or experimental error, without introducing

undue uncertainty.

NOE violations are reported as percentages by the equation NOE%=
Nviolations
Nrexp

× 100%

where Nviolations is the number of NOE violations and Nrexp is the number of experimentally

determined distance ranges. A large number of NOE violations may indicate non-native

sampling, however, NOE distance restraints can be mutually exclusive and therefore, most

MD trajectories will have a background level of NOE violations.

2.2.2 Implicit solvation model selection

There are many options when choosing an implicit solvent for production MD runs. The

Generalized Born (GB) model approximates the Poisson-Boltzmann (PB) equations as de-

scribed in Section 1.4.2 and is very efficient compared to PB-based approaches and explicit

solvent [70]. The GB model does not account for hydrophobic interactions, however. To rec-

tify this, other implicit solvent models such as GBSA and FACTS build on the GB model,

but these implementations may introduce artefacts, such as introducing secondary structure

biases that are not reflective of the true secondary structure. The ideal implicit solvent model

would be efficient for use with T-REMD and introduces the fewest number of artefacts.
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2.2.2.1 Generalized Born implicit solvent

One set of implicit solvent simulations were run with the GBSA model [70,71]. The general-

ized Born model estimates the electrostatic contribution of atoms to estimate the solvation

energy. SASA is also considered to approximate non-polar contribution of the solvation

energy. A user-supplied surface tension scalar term, γ = 0.0054 kcal/mol/Å2, is used to

adjust the contribution of the SASA term [70, 71]. The electrostatic interactions cutoff was

set to 12 Å and van der Waals interactions were treated with the use of a switch function

starting at 10 Å and turning off at 12 Å. A cutoff of 14 Å was used for the list of non-bonded

pairs. Dynamics were integrated with a time step of 2 fs. The covalent bonds involving

hydrogens were rigidly constrained by means of the SHAKE algorithm with a tolerance of

10-8. Snapshots were saved every 10 ps for trajectory analysis.

2.2.2.1.1 FACTS implicit solvent Another set of implicit solvent simulations were run

with the FACTS model. FACTS implicit solvation is a parameterized extension of the GB

model that takes into account the geometry of the solute and uses the SASA to estimate the

non-polar contributions of the solvation free energy [104]. A preset surface tension scalar

term, γ = 0.0075 kcal/mol/Å2, is used to the contribution of the SASA term [104]. The

electrostatic interactions cutoff was set to 12 Å and van der Waals interactions were treated

with the use of a switch function starting at 10 Å and turning off at 12 Å. A cutoff of 14 Å

was used for the list of non-bonded pairs. Dynamics were integrated with a time step of 2 fs.

The covalent bonds involving hydrogens were rigidly constrained by means of the SHAKE

algorithm with a tolerance of 10-8. Snapshots were saved every 10 ps for trajectory analysis.

2.2.2.1.2 Comparing GBSA and FACTS implicit solvent with the bovine and human αC

domains Implicit solvents are important for this method because they reduce the number

of atoms in the system, which means fewer replicas are required. There are different implicit

solvent models that calculate the free energy of solvation, ∆Gsolv. The two discussed here,

GBSA and FACTS, were used in αC domain monomer simulations to compare trajectories.
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The bovine αC domain can be used to assess the utilities of GBSA and FACTS since NOE

violations calculated from the trajectories can be compared to explicit solvent simulations.

The human αC domain simulations are then compared to the bovine simulations to ensure

structure stability and minimize artefact introduction.

To ensure artefacts are not introduced, 50 ns simulations were performed in explicit sol-

vent, (Figure 2.1), GBSA implicit solvent (Figure 2.2) and FACTS implicit solvent (Fig-

ure 2.3) and the secondary structure elements of each frame were calculated using the

STRIDE algorithm in VMD [105, 106]. In explicit solvent, the β-hairpin features β-strands

separated by a turn, which is consistent with the initial frame indicating explicit solvent

simulations maintain stability of the αC domain. 310-helices and α-helices are sampled but

are transient and located in the pseudohairpin (Figure 2.1). GBSA implicit solvent shows

similar secondary structure elements although there is more α-helical structure compared

to explicit solvent (Figure 2.1 and Figure 2.2). In contrast, FACTS introduced the π-helix

artefact, which is also transient, but π-helices are not found in either the explicit solvent or

GBSA simulations.

NOE violations of trajectories of bovine αC domains indicate that FACTS shows similar

number of violations to GBSA. The ideal implicit solvent will minimize NOE violations

compared to explicit solvent. NOE analysis reveals that GBSA has a clear advantage over

FACTS when it comes to the pseudohairpin. For example, both implicit solvents show an

increase in NOE violations in the inter-pseudohairpin category, but GBSA shows statistically

significantly fewer violations for the total pseudohairpin and intra-pseudohairpin regions (p

< 0.05) (Figure 2.4). This is noteworthy as the Met476 residue lies in the pseudohairpin

region, which indicates that the GBSA implicit solvent is an attractive option.

Figure 2.5 shows the number of β-hairpin hydrogen bonds in each solvent condition.

Interestingly, none of the implicit solvents recapitulated the hydrogen bond stabilities com-

pared to the NMR structure. However, human GBSA approximates the number of hydrogen

bonds present in the human explicit solvent simulations. For example, the first 4 hydrogen

bonds listed show decreased stability compared to the NMR structure by both human GBSA
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and explicit solvent. For the bovine simulations, the last 4 hydrogen bonds are destabilized

by FACTS and GBSA. The agreement between GBSA and explicit solvent suggests that it

should be used to preserve native structure.

In order to assess stability of the bovine and human αC domains in different solvents,

the mean Cα RMSD of each segment (β-hairpin, linker and pseudohairpin) is shown in

Figure 2.6a. The differences between human and bovine αC domains in explicit solvent

shows a statistically significant difference by Students T test (p < 0.05), but the difference

is negligible in terms of distance in Å. There is no significant difference between the human

explicit and GBSA simulations, which suggests GBSA implicit solvent may be a reliable

option. In addition, the RMSF of each residue is plotted in Figure 2.6b, which describes the

local flexibility. There are no statistically significant differences between bovine αC domain

in explicit solvent and human αC domain in explicit solvent or GBSA.

I have demonstrated that the bovine and human αC domains in explicit solvent behave

similarly to one another. The human GBSA simulations agree with the corresponding ex-

plicit solvent in terms of secondary structure, NOE violations, hydrogen bonding, structural

deviation (RMSD) and flexibility (RMSF). Furthermore, FACTS is only available on multi-

core machines with a license, which is prohibitively expensive for our purposes. As a result,

GBSA was chosen as the implicit solvent for production runs of the human αC domain.

2.2.3 Enhanced sampling methods

The enhanced sampling simulations, T-REMD, were performed with NAMD using the CHARMM36

force field [62,65]. The force field parameters for methionine sulfoxide were obtained from the

SwissSidechain website [63] adapted per analogy for the CHARMM36 force field. Acceler-

ated MD and metadynamics simulations can also be utilized, as long as there is enough data

to construct a free energy landscape. In this study, T-REMD was used to traverse barriers

in the FELs of αC-domain dimers. T-REMD simulations were performed in GBSA implicit

solvent to reduce friction, atom count and the number of required replicas. Without friction,

αC domains are free to sample more conformational space, resulting in an improvement in
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sampling efficiency.

T-REMD uses temperature to traverse energy barriers by performing simultaneous sim-

ulations, replicas, of the same system at a nearby temperature. Each replica is assigned

a temperature value, which corresponds to a Gaussian distribution of energy [79]. If two

replicas sample the overlap between these distributions, it is theoretically impossible to dis-

tinguish which replicas corresponds to which temperatures. During this instance, the replicas

swap temperatures according to the Metropolis-Hastings criterion. Multiple replicas allow

a simulations to sample other wells that were previously computationally intensive using

classical MD. Temperature selection is critical for successful T-REMD simulations. First,

the lowest temperature (Tmin) is chosen, which typically has some sort of significance, such

as 300 K (room temperature) or 310 K (physiological temperature). After the simulations

are complete, all frames sampled at Tmin are typically used for analysis. The Tmax replica

should not exceed the melting temperature of the system. If the protein melts in the Tmax

replica, the heat capacity of the system is lowered (a more dispersed energy distribution),

which affects the overlap with its neighbor. The exchange probability between other repli-

cas would be so low that the efficiency of the simulations decrease over time. A proper

temperature range will allow for the protein to undergo large conformational changes with-

out melting the solute. Next, the number of replicas was chosen using this online tool:

http://folding.bmc.uu.se/remd/, which estimates the heat capacity of the system by

calculating the numbers of DoF in the system. The algorithm calculates a series of temper-

atures based on the desired temperature range, the exchange attempt frequency (EAF) and

the desired exchange probability, Pacc [79]. Pacc is a function of the EAF, the temperature

spacing between replicas and the relaxation rate of potential energy between adjacent repli-

cas [107]. The EAF should be high, but the autocorrelation time of sampling represents the

upper limit of Pacc [80]. If the EAF is too fast, the atoms do not have time for relaxation,

and relevant information is lost [80,107,108].

In this study, the exchange attempts occurred every 10 picoseconds with a desired Pacc

= 0.45. After running a short, 1 nanosecond simulation of the bovine αC domain in GBSA

http://folding.bmc.uu.se/remd/


41

implicit solvent at 330 K and 360 K. The 330 K and 360 K simulations melt the β-hairpin

within 400 ps and 100 ps, respectively Figure 2.7. With an estimated upper limit of 350 K,

the online temperature calculator suggested the following temperatures: 300.00 K, 306.35

K, 312.83 K, 319.45 K, 326.19 K, 333.05 K, 340.06 K and 347.19 K. The replica exchange

module available in NAMD approximates these temperatures using the formula,

Ti = Tmin · e
(lnTmax

Tmin
)( i

Nreplicas−1
)
, (2.1)

where Ti is the temperature of replica i, Tmin = 300 K and Tmax = 347 K are the minimum

and maximum temperatures, respectively and Nreplicas is the number of replicas. The re-

sulting list of temperatures is as follows: 300.0 K, 306.30 K, 312.74 K, 319.31 K, 326.02 K,

332.87 K, 339.86 K, and 347.00 K. Pacc of the unoxidized and oxidized αC-domain dimers

were 0.43 ± 0.04 and 0.40 ± 0.01, respectively. Restraints on the β-hairpin were applied

to improve sampling and restraints on the centers of mass were applied to ensure that only

dimer structures were being sampled. It is sometimes desirable to simulate the monomer

states as well in order to understand the unbound to bound transition. Here, we are only

interested in the dimer conformations and without a restraint, we would needlessly sample

monomer states. In explicit solvent simulations of the αC domain monomer, the β-hairpin

structure is largely unperturbed Figures 2.1 and 2.5. Restraining the β-hairpin is used to

recapitulate this behavior in implicit solvent and is therefore unlikely to introduce bias.

2.2.4 Constructing free energy landscapes

Two collective variables must be chosen to construct a three-dimensional energy landscape.

In this study, the radii of gyration were used to represent the FEL of the αC-domain

monomers from the enhanced sampling runs. Collective variables should be chosen appro-

priately to ensure that they can represent large structural changes. The FEL is constructed

from a two-dimensional histogram. A text file containing two columns representing the radii

of gyration of each frame is converted into a two-dimensional histogram using the “hist-

counts2” function in MATLAB. Each bin in the histogram can be converted to an energy
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value using a Boltzmann distribution GBin = −RT ln(NFramesInBin) where GBin is the Gibbs

free energy of the bin, R is the ideal gas constant in (kcal g-1 mol-1 K-1), T = 300 K and

NFramesInBin is the number of frames in a particular bin.

2.2.4.1 Binning and minima selection

Bin widths can dramatically affect minima selection if they are too large or too small. If

the bin widths are too large, wells are difficult to define and each well will be excessively

heterogeneous. If bin widths are too small, however, there are lots of minima that are too

similar to one another, introducing noise. Bin size choice will affect the number of minima,

and is very important for minima selection. When comparing FELs across different states

(such as unoxidized and oxidized states) bin widths should be consistent to ensure that the

integral of both surfaces are also consistent. Small deviations may be tolerated to ensure

that bins are properly spaced,

Minima are defined by the “imregionalmin” function in MATLAB, which finds bins with a

single deep edge that is surrounded by higher values. When deciding on bin size, the minima

must not be near one another to avoid redundancy. To ensure that only relevant minima are

subject to analysis, minima are selected based on their depth. Using a modified Boltzmann

equation, fB = e(E0-Ei)/RT where E0 is the energy from the deepest well, Ei is the energy of

the ith well, R is the ideal gas constant, T = 300 K and 0 ≤ fB ≤ 1. fB is the theoretical

transition probability between the most populated state and the ith state. A cutoff for fB

must be defined a priori for minima selection and it must be consistent throughout analysis.

In this study, a cutoff of fB=0.2 was used although this value will depend on the individual

system and the depths of the wells. This method utilizes statistical mechanics to estimate the

number of relevant minima, although there could be other strategies with different systems.

2.2.5 Identifying dimer conformers

In order to identify a conformer from a single bin in the FEL, average linkage hierarchi-

cal clustering was performed on all frames in the aforementioned bin, as is common when



43

depositing NMR ensembles to the PDB [109], which is available as part of the Chimera

software package [110]. First, the distance matrix is constructed based on the RMSD values

between all frames. Average linkage hierarchical clustering, measures the distance between

two clusters as the average distance between all states each cluster. This distance is then

used to calculate the average spread of each cluster. Alternatively, hierarchical clustering can

be performed with single or maximum linkage distances. This decision is context specific,

although the average linkage approach is suitable for our needs. The penalty value, P , is

calculated based on the average spread and the number of clusters, N . N is chosen based on

the value that minimizes P . Finally, the frames that approximate the centroid of the cluster

are considered the representative frame of that minimum [109]. These representative frames

are then subject to 50 ns explicit water simulations to assess stability and the introduction of

artefacts by implicit solvation. Furthermore, the representative frames are considered dimer

conformers.

2.3 Discussion

I present a novel method to identify low-energy protein dimer conformations using enhanced

sampling techniques, implicit solvent and clustering. This method is extensible to a consid-

erable degree as it can be used to study monomers, dimers, or higher order structures as well

even though the work discussed here pertains to dimers. As previously discussed, many dock-

ing algorithms use rigid body transformations to optimize shape complementarity. However,

these methods fail to capture the natural flexibility of many protein-protein interactions.

In an effort to utilize the flexibility of proteins in dimer conformations, enhanced sampling

techniques, such as T-REMD, are used to sample the conformational space of the state in

question (monomer, dimer, post-translationally modified residues, etc.). T-REMD is only

one of many possible enhanced sampling techniques that could be employed, although T-

REMD is fairly straightforward and can be performed without much information about the

system. T-REMD can be implemented in very efficient ways to minimize the amount of run
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time required. In this study, simulating 1650 atoms for 1 µs took over 30 days of simulation

time, including time waiting in the queue. For each new system, implicit solvent methods

should be compared to explicit solvent in order to ensure that artefacts are not introduced

and the solvent preserves the native structure. Helical proteins, for example, would likely

utilize a different implicit solvent model to avoid overstabilization of non-helical secondary

structure. Once the simulations are complete, post hoc analysis of the trajectories are used

to construct 2-D histograms and FELs in an effort to preserve thermodynamic information.

The global and local minima are labeled and clustering is used to identify the representative

frames of each minimum. This method fulfills a gap in the current literature about modeling

dimers of flexible or intrinsically disordered proteins.
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2.4 Figures

Figure 2.1:: Secondary structure elements of bovine αC domain in explicit solvent.

Time series analysis of secondary structure elements for each residue in the αC do-

main based on the STRIDE algorithm. Cyan corresponds to turns/bends, green

corresponds to β-strands, pink corresponds to α-helices and blue corresponds to 310-

helices.
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Figure 2.2:: Secondary structure elements of bovine αC domain in GBSA implicit solvent.

Time series analysis of secondary structure elements for each residue in the αC do-

main based on the STRIDE algorithm. Cyan corresponds to turns/bends, green

corresponds to β-strands, pink corresponds to α-helices and blue corresponds to 310-

helices.
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Figure 2.3:: Secondary structure elements of bovine αC domain in FACTS implicit solvent.

Time series analysis of secondary structure elements for each residue in the αC do-

main based on the STRIDE algorithm. Cyan corresponds to turns/bends, green cor-

responds to β-strands, pink corresponds to α-helices, blue corresponds to 310-helices

and red corresponds to π-helices.
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Figure 2.4:: NOE violations of Bovine αC domain monomer in explicit solvent, FACTS and

GBSA implicit solvent.

Percent NOE violations for the β-hairpin, linker and pseudohairpin regions for the

bovine αC domain in TIP3P explicit solvent, FACTS and GBSA implicit solvent in

black, red and blue bars, respectively. The values were averaged over three 300-K

simulations. Error bars represent the standard error of the mean.



49

Figure 2.5:: Hydrogen bond stabilities for human and bovine αC domain simulations

Average hydrogen bond stabilities were calculated for ten hydrogen bonds along the

human β-hairpin region. The values were averaged over three 300-K simulations.

Error bars represent the standard deviation.
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Figure 2.6:: Comparison of RMSD and RMSF between human and bovine αC domain in

explicit solvent and GBSA.

(a) Mean RMSD of each region of the human and bovine αC domains in TIP3P

explicit solvent and the human αC domain in GBSA implicit solvent. The values

were averaged over three 300-K simulations. Error bars represent the standard error

of the mean. (b) Mean RMSF of each residue in the human and bovine αC domains

in TIP3P explicit solvent and the human αC domain in GBSA implicit solvent. The

values were averaged over three 300-K simulations. Error bars represent the standard

error of the mean.
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Figure 2.7:: High temperature simulations of the bovine αC domain in GBSA implicit solvent.

(a) Folded bovine αC domain after equilibration at 330 K. (b)Unfolded bovine αC

domain after 400 ps at 330 K. (c) Folded bovine αC domain after equilibration at

360 K. (d) Unfolded bovine αC domain after 100 ps at 300 K.
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Chapter 3

Oxidation-induced destabilization of

the fibrinogen αC-domain dimer

investigated by molecular dynamics

simulations.

The work described in this chapter comes from a manuscript published in Proteins [96]

Abstract.

Upon activation, fibrinogen is converted to insoluble fibrin, which assembles into long strings

called protofibrils. These aggregate laterally to form a fibrin matrix that stabilizes a blood

clot. Lateral aggregation of protofibrils is mediated by the αC domain, a partially structured

fragment located in a disordered region of fibrinogen. Polymerization of αC domains links

multiple fibrin molecules with each other enabling the formation of thick fibrin fibers and

a fibrin matrix that is stable but can also be digested by enzymes. However, oxidizing
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agents produced during the inflammatory response have been shown to cause thinner fibrin

fibers resulting in denser clots, which are harder to proteolyze and pose the risk of deep

vein thrombosis and lung embolism. Oxidation of Met476 located within the αC domain is

thought to hinder its ability to polymerize disrupting the lateral aggregation of protofibrils

and leading to the observed thinner fibers. How αC domains assemble into polymers is still

unclear and yet this knowledge would shed light on the mechanism through which oxidation

weakens the lateral aggregation of protofibrils. This study used temperature replica exchange

molecular dynamics simulations to investigate the αC-domain dimer and how this is affected

by oxidation of Met476. Analysis of the trajectories revealed that multiple stable binding

modes were sampled between two αC domains while oxidation decreased the likelihood of

dimer formation. Furthermore, the side chain of Met476 was observed to act as a docking

spot for the binding and this function was impaired by its conversion to methionine sulfoxide.
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3.1 Introduction.

Fibrinogen is a plasma protein that is essential for the blood coagulation process. In its

inactive form, fibrinogen is normally soluble. However, once activated through the action of

thrombin it is called fibrin and it becomes insoluble, forming a matrix that stabilizes a blood

clot. The structure of fibrinogen consists of six chains (two Aα, two Bβ and two γ chains,

respectively) arranged in an elongated manner (Figure 3.1a) [13]. The N-termini are located

in a central nodule called the E-domain while the C-termini of Bβ and two γ chains form

distally located globular folds called D-domains (Figure 3.1a) [13]. On the other hand, each

of the Aα chains contains an intrinsically disordered C-terminal region that is not resolved in

the X-ray crystallographic structure of fibrinogen [13]. Located within this disordered region

is the so called αC domain whose N-terminal sub-domain presents an ordered structure in

NMR experiments with the bovine sequence (Figure 3.1b; for simplicity, “αC domain” in

this manuscript will from now on refer to the N-terminal sub-domain). The NMR conformers

reveal that the αC domain consists of a β-hairpin and a pseudohairpin linked together also

by a disulfide bond (Figure 3.1b) [14,17,111]. Thrombin activates fibrinogen and turns it into

fibrin by cleaving N-terminal peptides of the Aα and Bβ chains (so called fibrinopeptides).

The exposed “knobs” in the remaining chains interact with so called “holes” in the D-domains

of another fibrin molecule in a half-staggered arrangement that leads to protofibrils [3]. The

αC domains are thought to interact with the E nodule in fibrinogen, but upon cleavage of

the fibrinopeptides they are liberated and interact intermolecularly mediating the lateral

aggregation of protofibrils into thick fibrin fibers [3, 16]. There is experimental evidence

that during such intermolecular interactions the αC domains polymerize into so called αC

polymers [15]. However, there are currently neither experimental nor computational studies

that shed light on the structure of αC polymers at atomic level of detail.

Yet, understanding the structural details of the polymerization process of αC domains

is crucial to explain structural modifications in fibrin fibers observed in the presence of oxi-

dants produced during inflammation [1]. The inflammatory response is a defense mechanism,
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which evolved in higher organisms as a protection against infection by external pathogens.

Under inflammatory conditions, neutrophils secrete the enzyme myeloperoxidase, which con-

verts hydrogen peroxide into the oxidizing agent hypochlorous acid (HOCl). A study using

mass spectrometry revealed that HOCl converts specific methionine residues in fibrinogen to

methionine sulfoxide causing the formation of a dense network of thin fibers [1]. In particu-

lar, Met476 in the αC domain was found to be oxidized and this is postulated to disrupt the

lateral aggregation of protofibrils [1,55]. This is supported by the observation that the fibrin

clots obtained under oxidizing conditions exhibit similar characteristics as fibrin gels where

human αC domain was replaced with the chicken sequence [52]. The resulting denser fibrin

clots under oxidizing conditions are more resistant to fibrinolysis and were also found to be

weaker [1]. This mechanism likely evolved as a protection against pathogens by trapping

them inside a clot [37,54]. However, oxidized clots can lead to excessive bleeding right after

traumatic injury while later on they can detach from the site of injury, travel in the vascular

system and lead to a pulmonary embolism [1,5,60,112,113]. Furthermore, chronic inflamma-

tion may also increase the risk of thrombosis associated with fibrinogen oxidation [37, 114].

For these reasons, it is essential to study the structural mechanism by which oxidation dis-

rupts the normal function of the αC domain. To date, structural studies of the αC domain

have been very limited. In fact, currently only a homology model of the human αC domain

exists based on the NMR structure of its bovine sequence [4], highlighting the difficulty of

using experimental structural determination techniques with this fibrinogen fragment.

In this study, we used molecular dynamics (MD) simulations with the enhanced sam-

pling method, temperature replica exchange MD (T-REMD), to investigate the dimer of αC

domains and how this is altered by oxidation of Met476. The goal was to understand how

Met476 contributes to the formation of the dimer and how conversion to methionine sulfoxide

impairs its function. In order to improve sampling efficiency, the T-REMD simulations were

performed using an implicit solvent model [82,103]. The obtained models of the αC-domain

dimers were tested and further analyzed through simulations in explicit solvent.
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3.2 Materials and Methods.

3.2.1 Initial conformations.

The coordinates for the NMR solution structure of bovine αC domain were used to start

simulations of the bovine sequence [14]. Simulations with the human αC domain were started

from a homology model based on the bovine sequence [4]. The initial conformation for

the simulations of the oxidized structure was obtained by replacing Met476 with methionine

sulfoxide per analogy and subsequently performing 100 steps of steepest descent minimization

with the program CHARMM [61] in vacuo while holding all atoms fixed except the mutated

residue. While it is possible that methionine oxidation could result with methionine sulfone,

with two oxygen atoms bonded to the sulfur, this is unlikely given that mass spectrometry

data suggests that only the sulfoxide form is present at detectable levels [1].

3.2.2 General setup of the systems.

The MD simulations were performed with the program NAMD [65] using the CHARMM36

force field [62]. The force field parameters for methionine sulfoxide were obtained from

the SwissSidechain website [63] and adapted per analogy for the CHARMM36 force field.

Simulations were performed in either explicit or implicit solvent and are summarized in

Table 3.1.

3.2.2.1 Explicit solvent simulations.

The TIP3P model of water was used in the explicit solvent simulations. The monomeric αC

domain was inserted into a cubic water box with side lengths of 75 Å, while the side lengths

of 100 Å and 150 Å were used for the unoxidized and oxidized dimeric αC-domain, respec-

tively. Chloride and sodium ions were added to neutralize the system and approximate a salt

concentration of 150 mM. The water molecules overlapping with the protein or the ions were

removed if the distance between the water oxygen and any atom of the protein or any ion was

smaller than 3.1 Å. The resulting systems contained a total of ca. 39,000, 94,000 and 324,000
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atoms for monomeric, unoxidized dimeric and oxidized dimeric αC domain, respectively. To

avoid finite size effects, periodic boundary conditions were applied. After solvation, each

system underwent 500 steps of minimization while the coordinates of the heavy atoms of the

protein were held fixed, which was followed by 500 steps with no restraints. Electrostatic

interactions were calculated within a cutoff of 10 Å while long-range electrostatic effects

were taken into account by the particle mesh Ewald summation method [64]. Van der Waals

interactions were treated with the use of a switch function starting at 8 Å and turning off at

10 Å. A cutoff of 12 Å was used to generate the list of non-bonded atom pairs, which was

updated every 20 ps [115].

3.2.2.2 Implicit solvent simulations.

In the implicit solvent simulations, solvation effects were taken into account through the

generalized Born model with the solvent accessible surface area term (GBSA) [70, 71]. The

electrostatic interactions cutoff was 12 Å and van der Waals interactions were treated with

the use of a switch function starting at 10 Å and turning off at 12 Å. A cutoff of 14 Å was

used for the list of non-bonded atom pairs. In both, explicit and implicit solvent simula-

tions, the dynamics were integrated with a time step of 2 fs. The covalent bonds involving

hydrogens were rigidly constrained by means of the SHAKE algorithm with a tolerance of

10-8. Snapshots were saved every 10 ps for trajectory analysis.

3.2.3 Equilibration and room-temperature simulations.

Before production runs, harmonic constraints were applied to the positions of all heavy atoms

of the protein to equilibrate the system at 300 K for a total duration of 0.2 ns. To equilibrate

the position of atoms around a methionine sulfoxide side chain, harmonic constraints were

kept on all heavy atoms except those of the methionine sulfoxide residue and the neighboring

amino acids, and equilibration was continued for another 2 ns. After these equilibration steps,

the harmonic constraints were released. In each room-temperature simulation, the first 10

ns of unconstrained simulation were also considered part of the equilibration and were thus
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not used for analysis. During, both equilibration and production, the temperature was kept

constant at 300 K by using the Langevin thermostat [67] with a damping coefficient of 1

ps-1. In explicit solvent simulations, the pressure was held constant at 1 atm by applying

a pressure piston [68]. Explicit solvent simulations were started from either the bovine or

the human αC domain, respectively (Table 3.1). Implicit solvent simulations were run with

the human αC domain to compare solvation models and to justify the use of GBSA in the

enhanced sampling runs described below (Table 3.1). Each simulation was started with

different initial random velocities to ensure that different trajectories were sampled despite

the same initial conformation was used in multiple runs. Explicit solvent simulations at 300

K were also started from representative conformations of free energy minima identified in

enhanced sampling runs described below (Table 3.1).

3.2.4 Analysis of hydrogen bonds and side chain contacts.

The room-temperature trajectories were screened for persistent hydrogen bonds and side

chain contacts. A hydrogen bond was said to be formed if the H· · ·A distance was not larger

than 2.7 Å and the D-H· · ·A angle was at least 120, where a donor D and an acceptor A

could both be either an oxygen or a nitrogen. A native side chain contact was defined to

occur when the distance between the centers of mass of the two side chains was within 6 Å.

Hydrogen bonds and side chain contacts present in at least 60% of the frames of a simulation

were considered to be persistent in that particular simulation.

3.2.5 Nuclear Overhauser effect distance restraints.

The MD trajectories with the bovine αC domain were compared with distance restraints

derived from Nuclear Overhauser effect (NOE) experiments [14]. A NOE distance restraint

was considered violated in the simulations if the equation 〈r(t)-6〉 - 1
6 ≤ rmax

exp + 0.5 Å was

not fulfilled, where r(t) is the interproton distance, at simulation time t, rmax
exp is the

experimentally determined upper distance limit, and 〈 〉 represents a time average. A 0.5

Å buffer term is added to account for edge cases while introducing a minimal amount of
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uncertainty. NOE violations are reported as percentages, which are defined by the equation

NOE%=
Nviolations
Nrexp

× 100% where Nviolations is the number of NOE violations and Nrexp is the

number of experimentally determined distance ranges. NOE violations were calculated also

along the 20 NMR conformers for comparison.

3.2.6 Enhanced sampling simulations of the dimer.

3.2.6.1 Temperature replica exchange molecular dynamics simulations.

Temperature replica exchange molecular dynamics (T-REMD) utilizes temperature to over-

come free energy barriers [79]. Here, we used T-REMD to explore the free energy landscape

(FEL) of the αC-domain dimer in the unoxidized state and compare it to the FEL in the

oxidized state. The GBSA implicit solvation model [73, 82, 103] was used to decrease the

number of atoms, thus requiring fewer replicas. The simulations consisted of eight replicas

with the following temperatures: 300.0 K, 306.30 K, 312.74 K, 319.31 K, 326.02 K, 332.87 K,

339.86 K, 347.00 K. This set of temperatures was obtained using the temperature generator

for REMD simulations available online through http://folding.bmc.uu.se/remd/ [81] indicat-

ing a desired swapping frequency of 0.45. After every 10 picoseconds, temperatures between

adjacent replicas were swapped according to a Metropolis criterion [79, 81]. After running

the simulations, the achieved swapping frequencies were 0.43 ± 0.04 for the unoxidized sim-

ulations and 0.40 ± 0.01 for the oxidized simulations. To enhance sampling, a 2 Å restraint

on the RMSD of each β-hairpin was added. This is justified because we do not expect the β-

hairpins to significantly change conformation upon dimerization. The distance between the

centers of mass of the monomer was also restrained to avoid the single monomers diffusing

away from each other. Each of the eight replicas was run for 125 ns of simulation time for a

total of 1 µs of sampling for both unoxidized and oxidized configurations, respectively.
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3.2.6.2 Representation of the free energy landscape.

The radius of gyration of each monomer was used to represent the FEL of the αC-domain

dimer sampled in the T-REMD simulations. The resulting FEL is a two-dimensional his-

togram, and is represented as a matrix where the x- and y-axes correspond to the radius of

gyration of each monomer and the z-axis is the energy of the bin derived using the Boltzmann

distribution GBin = −RT ln(NFramesInBin) where GBin is the Gibbs free energy of the bin, R

is the ideal gas constant in (kcal g-1 mol-1 K-1), T = 300 K and NFramesInBin is the number of

frames in a particular bin. The bin width was chosen as 1/3 Å and 1/4 Å for the simulations

with the unoxidized and oxidized dimer, respectively.

3.2.6.3 Selection of minima.

The following criteria were used to define the minima in the obtained FELs. First, the bin

with the lowest free energy was defined as the deepest minimum. Then, those bins whose

Boltzmann factor relative to the deepest minimum was ≥ 0.2 were considered local minima.

The Boltzmann factor was defined as fB = e(E0-Ei)/RT where E0 is the energy from the deepest

well, Ei is the energy of the ith well, R is the ideal gas constant, T = 300 K and 0 ≤ fB ≤ 1.

fB is the theoretical transition probability between the most populated state and the ith

state. If two local minima were separated by a single bin and their energies differed by no

more than 1 kcal/mol, the two bins were merged into one single minimum. The so identified

deepest minimum and local minima were used to suggest models of the αC-domain dimer.

For this purpose, hierarchical clustering was performed on all frames in each minimum. The

centroid of the largest cluster was calculated and the frame nearest the centroid was chosen

as the representative frame of a particular minimum [109]. The so obtained models of the

αC-domain dimer, in both the unoxidized and oxidized state, were further analyzed through

explicit solvent simulations.



61

3.3 Results

3.3.1 Flexibility of monomers: bovine vs. human.

Before modeling the dimer, it is necessary to study the conformational plasticity of a sin-

gle monomer. While experimental coordinates exist for the αC domain sequence, only a

homology model of the human αC domain is available [4]. For this reason, explicit sol-

vent simulations were run with both, human and bovine αC domain (Table 3.1), and the

results were compared (Figure 3.2). Both human and bovine αC domain present large Cα

root mean square fluctuations (RMSF) for the pseudohairpin (Figure 3.2a), while the Cα root

mean square deviation (RMSD) from the initial conformation for both hairpins was generally

below 4 Å (Figure 3.2b). Thus, most of the flexibility is likely due to the rigid-body motion

of the pseudohairpin, which is facilitated by the rather flexible 11-residue linker between the

β-hairpin and the pseudohairpin regions (Figure 3.2b). On the other hand, the β-hairpin

is rather stable presenting persistent backbone hydrogen bonds in both bovine and human

αC domain simulations (Figure 3.3). The similarity between bovine and human αC domain

suggests that the homology model of the human sequence is an acceptable approximation.

To exclude that the observed flexibility could be an artefact of the simulation setup, the

trajectories with the bovine sequence were compared to NOE-derived distance restraints [14].

The percentage of violations for the entire αC domain and within the two main regions (β-

hairpin and pseudohairpin) were generally below 20% and were comparable to the percentage

of violations within the 20 NMR conformers themselves (Figure 3.3). Interestingly, the

simulations presented fewer violations between each region and the rest of the protein than

the NMR conformers themselves (Figure 3.4). This indicates that the flexibility observed

in the simulations is consistent with experimental data and the rigid-body motions of the

β-hairpin and the pseudohairpin with respect to each other is likely a realistic characteristic

of the αC domain.
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3.3.2 Models of the αC-domain dimer

3.3.2.1 Justification for the use of GBSA.

The T-REMD method was used here to overcome energy barriers and sample the FEL

of the αC-domain dimer. A previous T-REMD study with just the αC domain monomer

was performed in explicit solvent and the size of the system required a large number of

replicas [39]. A similar study with the dimer would be computationally prohibitive because

an even larger number of replicas would be required for temperature swaps to occur. In

this study, the GBSA implicit solvation model was used to reduce the number of atoms and

replicas [73, 82, 103]. To test whether GBSA is a suitable approximation, 300-K simulations

were performed with human αC domain using GBSA and were compared to the explicit

solvent simulations. The αC domain presented a similar flexibility in the implicit solvent as in

the explicit solvent simulations (Figure 3.2b). Generally, the β-hairpin has a similar pattern

of hydrogen bond formation between explicit and implicit solvent simulations (Figure 3.3a).

The exception are the two hydrogen bonds between residues 446 and 462, which are slightly

less stable in implicit solvent (Figure 3.3a). Interestingly, in the NMR conformers of the

bovine sequence [14], the backbone of residue 458 (corresponding to residue 462 in the

human sequence) presents a relatively large flexibility as indicated by the relatively weak

458NH· · ·O442 hydrogen bond and the fact that only one NOE distance was measured

involving residue 458 (Figure 3.3a). Thus, the discrepancy between implicit and explicit

solvent in this region could be due to the former sampling a larger conformational space,

which is likely in part due to the absence of the friction normally provided by water molecules.

3.3.3 Comparison between the unoxidized and the oxidized αC-domain dimer through

REMD simulations.

3.3.3.1 Models of the αC-domain dimer in the unoxidized and oxidized states.

In order to overcome energy barriers, REMD simulations were performed with the αC-

domain dimer. One set of 8 replicas was run with the unoxidized αC domain and another
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set after replacing Met476 with Met(O)476 in both monomers. For each set, the frames were

projected onto the radius of gyration of each monomer (Figure 3.5). For the unoxidized

state, seven distinct minima were identified (Figure 3.5a), while for the oxidized state three

distinct minima were observed (Figure 3.5b). Representative structures from the minima

highlight the variety in binding modes for both the unoxidized (Figure 3.6a) and the oxidized

(Figure 3.7a) dimers. However, the oxidized αC domain can access a relatively smaller

number of binding modes than in the unoxidized state (Figure 3.5). If we assume that

all conformations sampled in all minima of either the unoxidized or oxidized FEL define a

congregate dimeric state, then we can compare the thermodynamic stability of the unoxidized

dimer with that of the oxidized dimer and estimate the change of the ∆G of dimerization upon

oxidation, i.e., ∆∆Goxidation
dimer . One can write ∆∆Goxidation

dimer = (Gox
dimer−Gox

monomer)− (Gunox
dimer−

Gunox
monomer). If we substitute Gox

dimer = −RT ln(
∑3

i=1Ni) and Gunox
dimer = −RT ln(

∑7
i=1Ni),

and assume that oxidation does not significantly alter the thermodynamic stability of single

monomers (i.e., Gunox
monomer ≈ Gox

monomer), we obtain ∆∆Goxidation
dimer = 6.23 kcal/mol. Ni is the

number of frames in the ith minimum.

3.3.3.2 Stability of the dimer models and role of Met476 in dimer formation.

Molecular dynamics simulations in explicit solvent were started from the representative struc-

tures in each minimum (Figures 3.6 and 3.7) to test the stability and further investigate dif-

ferences between unoxidized and oxidized dimer models (Table 3.1). The radius of gyration

for the total dimer was calculated along the explicit solvent simulations and compared to its

value in the initial structure. In five out of seven simulations with the unoxidized dimer, the

average radius of gyration (calculated over the last 40 ns of the in total 50-ns long simula-

tions) was within 2 standard deviations from the value calculated for the initial structure,

while in one run it was slightly smaller and in another slightly larger (Figure 3.6b). In two

out of three simulations with the oxidized dimer, the average radius of gyration was also

within two standard deviations from the initial value while in one run it was slightly smaller

(Figure 3.7b). Calculated for each single monomer, the radius of gyration was generally also
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within two standard deviations from the value of the initial conformation (supplementary

Figure S1). These observations illustrate that the dimer models obtained from the T-REMD

simulations are stable along the explicit solvent simulations. The explicit solvent simulations

were also used to analyze differences between unoxidized and oxidized dimer at the site of

Met476. Analysis of the solvent accessible surface area (SASA) revealed that in all simulations

with the unoxidized dimer at least one of the two Met476 was on average partially buried (see

Figure 3.8a and its caption for the definition of “partially buried”). In comparison, in one

out of three simulations with the oxidized dimer, none of the methionine residues was par-

tially solvent exposed (Figure 3.8a). In general, Met476 had a smaller SASA then Met(O)476

(Figure 3.8b, averages calculated using only the methionine with the smaller SASA for each

run). Analysis of persistent side chain contacts revealed that Met476 was shielded from the

solvent in the simulations with the unoxidized dimer in part by interdomain (Section 3.7a-e)

and in part by intradomain side chain contacts (Section 3.7f). However, in the simulations

with the oxidized dimer, Met(O)476 presented only intradomain but no interdomain side

chain contacts (Section 3.7f). This is probably due to the increase in hydrophilicity upon

conversion of Met476 to methionine sulfoxide, which makes this side chain more likely to be

solvent exposed. These observations support the idea that Met476 could serve as a docking

spot for the αC-domain dimerization process but oxidation impairs this function.

3.4 Discussion.

The oxidizing agent HOCl produced during inflammation is known to alter the mechanical

characteristics of fibrin clots rendering them weaker but also denser and thus more difficult

to proteolyze. Although this is part of a defense mechanism meant to trap and incapacitate a

pathogen, it can lead to a clot to detach from a site of injury and cause a lung embolism. The

altered clot properties under inflammatory conditions have been linked to the oxidation of

Met476 in the αC domain [1], a region of fibrinogen that is thought to polymerize intermolec-

ularly linking protofibrils to thick fibrin fibers [15, 16]. However, because of its flexibility
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experimental studies of human αC domain and its polymerization have been limited. Here,

MD simulations were used to propose models of the αC-domain dimer and study the effect

of Met476 oxidation. The following four conclusions emerge from this study.

First, the β hairpin and the pseudohairpin of the αC domain undergo rigid-body motions

with respect to each other. This flexibility is key for the dimerization process. In fact, an

experimental study showed that engineering a disulfide bond that locks the motion of the

two hairpins with respect to each other prevents dimerization [15]. The flexibility of the

hairpins likely allows multiple binding modes between two or more αC domains.

Second, multiple distinct binding modes were observed in enhanced sampling simulations.

This information could be useful to guide future NMR studies of αC-domain polymerization.

The availability of multiple binding modes is likely to increase the rate of binding between

αC domains facilitating the lateral aggregation of protofibrils into thick fibrin fibers [116].

On the other hand, oxidation of Met476 was observed in the enhanced sampling simulations

to decrease the thermodynamic stability of the αC-domain dimer. The change in the free

energy of dimerization was estimated to be 6.23 kcal/mol upon oxidation. Interestingly, the

binding free energy between αC domains has been determined by sedimentation to be -6.7

kcal/mol [4] suggesting that oxidation may drastically weaken the dimer.

Third, in each dimer model of the unoxidized state Met476 of at least one of the monomers

is partially buried and in most cases it is shielded from the solvent by interdomain side chain

contacts. This supports a model for the αC-domain dimerization process where the side chain

of Met476 serves as a docking spot. Since most dimer models presented one Met476 partially

buried and one completely solvent exposed, it can be speculated that the solvent exposed

methionine residue serves as a docking spot for a third αC domain, and so on, enabling

polymerization. However, in the oxidized state, Met(O)476 did not engage in interdomain

side chain contacts thus weakening the polymerization process.

Fourth, this study presents an example of how the binding between two flexible pep-

tides can be modeled through computational simulations. This would be challenging for

conventional docking software like AutoDock [117] or the docking mode of Rosetta [83],
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since the first assumes the involved molecules to be rigid and the second would need to be

trained with a large set of similar examples. Thus, MD simulations are a powerful tool to

study the binding function of flexible peptides and miniproteins and how this is affected by

post-translational modifications such as oxidation.

In conclusion, the present study provides an explanation how oxidation of a methionine

residue in the fibrinogen αC domain impairs the lateral aggregation of protofibrils leading to

thinner fibrin fibers and the observation of a denser fibrin clot [1]. In general, the destabilizing

effect of methionine oxidation is likely an important link between inflammation and the

thrombotic function of blood proteins. In fact, methionine oxidation has been found to

activate the coagulatory protein von Willebrand factor by destabilizing one of its domains

[118]. The dimer models presented here could be used to suggest the design of molecules

that stabilize the interaction between two αC-domain dimers in order to maintain a normal

clot morphology also under oxidizing conditions. For this purpose, the interface of the dimer

models could be searched for pockets that can be used as docking spots for designed molecules

administered to patients at risk of lung embolism such as after traumatic injury or surgery.
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3.6 Tables.

Name Solvent Starting Structure 4◦ Structure Type Duration [ns]

Bovine Expl. TIP3P 2JOR Mono 300 K 3×50

Human Expl. TIP3P Homology model Mono 300 K 3×100

Human Impl. GBSA Homology model Mono 300 K 3×100

Human REMD GBSA Homology model Dimer REMD 8×125

Human Minima TIP3P
Homology model

minima 1-7
Dimer 300 K 7×50

Human Ox REMD GBSA
Homology model

Met476 → Met(O)476
Dimer REMD 8×125

Human Ox Minima TIP3P
Homology model

minima 1-3
Dimer 300 K 3×50

Table 3.1:: Simulation systems.



68

Minimum

Side Chain

Contact
1 2 3 4 5 6 7

Ser441-Met476 0.75

Cys442-Met476 0.94

Lys444-Met476 0.95 0.90

Val464-Met476 0.69

Ser466-Met476 0.96

Cys472-Met476 0.93

Pro473-Met476 0.67 0.87

His492-Met476 0.61

Pro495-Met476 0.73

Table 3.2:: Persistent interdomain side chain contacts involving Met476.
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3.7 Figures

Figure 3.1:: Available structures of fibrinogen and the αC domain and illustration of me-

thionine oxidation.

(a) The X-ray crystal structure of fibrinogen (PDB ID 3GHG) and the human ho-

mology model of the αC domain. The side chain of Met476 in the αC domain is

shown in the stick and ball representation and labeled. (b) The bovine αC domain

NMR solution structure (PDB ID 2JOR). (c) Conversion pathway of methionine to

methionine sulfoxide.
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Figure 3.2:: Backbone flexibility at room temperature.

(a) Mean Cα RMSF calculated from the last 40 ns of the 50 ns of bovine simulations

and 90 ns of the last 100 ns of human simulations in explicit solvent. Averages were

computed over three 300-K simulations. Error bars represent the standard error of the

mean. (b) The Cα RMSD from the initial conformation averaged over three 300-K

simulations for the last 40 ns of the 50 ns bovine simuations and the last 90 of the 100

ns of the human simulations. The RMSD is calculated for the αC domain without

the N- and C-terminal (residues 442-494), the β-hairpin region (residues 444-464),

the linker region (residues 465-475) and the pseudohairpin region (residues 476-494).

Error bars represent the standard error of the mean over three simulations.



71

Figure 3.3:: Formation of backbone hydrogen bonds in the β-hairpin.

(a) Average hydrogen bond stabilities were calculated for ten hydrogen bonds along

the human β-hairpin region. The values were averaged over three 300-K simulations.

Error bars represent the standard deviation. (b) The number of persistent hydrogen

bonds per simulation were averaged over three 300-K runs. Error bars represent the

standard error of the mean. The definition of a persistent hydrogen bond is given in

“Materials and Methods”.
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Figure 3.4:: Percent NOE violations along the simulations with the bovine sequence.

The number of violations were computed using the last 40 ns of the in total 50-ns long

simulations at 300 K. Values were averaged over three runs and the standard error of

the mean was calculated and shown as error bars. NOE violations of PDB ID 2JOR

were computed across all NMR conformers. Violations between either the β-hairpin

or the pseudohairpin and the rest of the protein are reported as “inter”. Violations

occurring within the β-hairpin or pseudohairpin regions are reported as “intra”.
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Figure 3.5:: Free energy landscapes of the αC-domain dimer projected onto the radii of

gyration,Rg 1 and Rg 2.

(a) T-REMD simulations of the unoxidized αC-domain dimer. The seven deepest

minima are labeled. (b) T-REMD simulations of the oxidized αC-domain dimer.

The three deepest minima are labeled. Minima are labeled by crosses.
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Figure 3.6:: Representative dimer conformations from the local minima of the FEL shown

in Figure 3.5a.

(a-g) Met476 and the disulfide bond Cys442-Cys472 are shown in the stick and ball

representation. Monomer 1 is colored in blue and monomer 2 is colored in red. (h)

The radius of gyration of the dimer computed from the last 40 ns of the in total 50-ns

simulations. Cyan circles correspond to the radius of gyration of the dimer of the

representative frame in each bin. Error bars represent the standard deviation.
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Figure 3.7:: Representative dimer conformations from the local minima of the FEL shown

in Figure 3.5b.

(a-c) Met(O)476 and the disulfide bond Cys442-Cys472 are shown in stick and ball

representation. Monomer 1 is colored in blue and monomer 2 is colored in red. (d)

The radius of gyration of the dimer computed from the last 40 ns of the in total 50-ns

simulations. Cyan circles correspond to the radius of gyration of the dimer of the

representative frame in each bin. Error bars represent the standard deviation.
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Figure 3.8:: Solvent accessible surface area (SASA) of each Met476 residues in the explicit

solvent simulations started from the energy minima.

(a) SASA of each individual Met476. The values were computed from the last 40 ns of

the in total 50-ns simulations. The horizontal dashed line indicates the cutoff value of

106.88 Å2 below which a side chain was considered partially buried. This value was

calculated as 60% of the SASA of Met476 in the unfolded state of the monomeric αC

domain. This was obtained by averaging the SASA of Met476 along the last 40 ns of

an in total 50-ns long explicit-solvent simulation with a tripeptide containing Met476

flanked by Ala475 and Asp477. (b) Average SASA of the most buried of the two Met476

in each explicit solvent simulation. Error bars in (a) represent the standard deviation

and in (b) the standard error of the mean, respectively. A difference was considered

statistically significant if the p-value (calculated from a one-tailed Student’s t-test)

was smaller than 0.05 (indicated in the figure).
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Figure 3.9:: Visualization of interdomain side chain contacts involving Met476.

Side chains involved in persistent interdomain contacts with Met476 in the explicit

solvent simulation started from (a) minimum 1, (b) minimum 3, (c) minimum 5, (d)

minimum 6, and (e) minimum 7, respectively (Table 3.2). The conformations shown

correspond to snapshots sampled after 10 ns in each respective simulation, except for

the snapshot in (c), which was sampled after 29 ns in the simulation started from

minimum 5. For distinction, monomer 1 is colored in blue and monomer 2 in red.

Side chains are shown in the stick and ball representation and labeled. The respective

carbon atoms are colored either in cyan (if belonging to monomer 1) or in orange (if

belonging to monomer 2). Side chains from either monomer 1 or monomer 2 involved

in interdomain contacts are highlighted by blue or red circles, respectively. The

Met476 side chain not involved in interdomain contacts is also indicated and labeled

but not circled. The location of the β-hairpin is indicated by the label ”HP” colored

accordingly. (f) Average number of inter- and intradomain contacts involving Met476

in the simulations started from the minima of the FEL of unoxidized and oxidized

dimer, respectively. Error bars indicate standard errors of the mean. A difference

was considered statistically significant if the p-value (calculated from a one-tailed

Student’s t-test) was smaller than 0.05 (indicated in the figure).

3.8 Supplemental information



79

Figure S3.1:: The radius of gyration of each monomer.

(a) The radius of gyration of each monomer in the unoxidized dimer computed from

the last 40 ns of the 50-ns simulations. (b) The radius of gyration of each monomer

in the oxidized dimer computed from the last 40 ns of the 50-ns simulations. Cyan

circles correspond to the radius of gyration of the dimer of the representative frame

in each bin. Error bars represent the standard deviation.
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Chapter 4

Free energy calculations.

4.1 Introduction

MD simulations can be used to calculate free energy differences between states, which is

important for understanding chemical reactions, binding affinities, and protein dynamics.

Two schools of thought can be used to perform free energy calculations. Work described

in Chapter 3 exemplifies the “density-of-states” approach, in which a large conformational

space is sampled and degenerate states indicate low-energy conformers. In contrast, FEP

uses a “work” approach, which uses short trajectories to sample the paths between states and

estimate ∆∆Gox, which describes the change in free energy of dimerization upon oxidation

[120]. In this chapter, I detail how FEP is implemented and how its results bolster the

argument that Met476 oxidation inhibits αC-domain dimerization.

4.2 Materials and Methods.

The change in the free energy of dimerization due to the oxidation of a methionine residue

was estimated using alchemical transformations [89] in combination with the thermodynamic

cycle [90] represented in Figure 4.1 in a similar manner to the FEP calculations performed

in Interlandi, 2018 [118]. The alchemical transformations were performed through FEP

calculations [121]. The seven representative frames — the centroids of the largest cluster
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— from each minimum in the FEL were simulated for 50 ns in explicit solvent to assess

stability of the conformations in the unoxidized state. The 40 ns, 45 ns and 50 ns frames

were extracted from each of the seven trajectories and subject to alchemical transformations

in the forward and backward direction in explicit solvent. In the forward transformation, Met

side chain is slowly converted to Met(O) which contains an oxygen atom doubly covalently

bonded to the sulfur atom. The conformation achieved in the forward transformation is

then used to initialize the backward transformation where Met(O) is converted back to Met.

The amount of work required for each transformation is calculated regularly during the

simulations. The forward and backward calculations were then combined and a value for the

∆Galch of the oxidation reaction was obtained using the Bennett’s acceptance ratio method

[91] implemented in the ParseFEP plugin for VMD [105]. Each forward and backward

transformation was performed for 1 ns during the parameter, λ, was incrementally varied

from 0 (Met) to 1 (Met(O)) and from 1 to 0, respectively in time intervals of 0.025 ns for a

total of 40 intermediate states. The first half of the each time window involved equilibration

and the second half data collection. A soft core term was introduced to the van der Waals

potential to avoid singularities [122]. Similar ∆G values were obtained when the alchemical

transformation was performed for only 1 ns and with time intervals of 0.025 ns, indicating

that the side chain has likely thoroughly sampled its local environment in the nanosecond

time scale. Alchemical transformations were performed in the dimer and monomeric states.

The latter was approximated by the situation where a methionine is fully solvent exposed,

which was accomplished by using an Ala-Met-Asp tripeptide, mimicking the Met476 local

environment. By considering the thermodynamic cycle Figure 4.1, the difference in the free

energy of dimerization upon methionine oxidation can be approximated by the difference

between the ∆G values calculated from the alchemical simulations in the dimer and monomer

states.
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4.3 Results.

Representative frames from each minima in the unoxidized simulations were subject to ex-

plicit solvent simulations to assess stability Table 3.1. Unbiased selection of frames from

those simulations were then used to estimate the free energy change of dimerization upon

oxidation by FEP, denoted by ∆∆Gox
FEP. ∆G1

alch values are shown in Figure 4.2 by black

and red bars. ∆G2
alch is also reported in Figure 4.2 in blue. ∆G1

alch values that are above

the blue dashed line correspond to ∆∆Gox
FEP > 0 since ∆∆Gox

FEP = ∆G2
alch − ∆G1

alch. The

mean free energy change due to oxidation, ∆∆Gox
FEP, is 1.74 ± 1.24 kcal/mol excluding those

without buried Met/Met(O) residues. A residue is considered buried if the mean SASA over

40 of the 50-ns explicit solvent simulations is less than 106.88 Å2 (Figure 3.8). This result

indicates that oxidation makes dimerization less favorable.

4.4 Discussion.

Met476 oxidation is predicted to disrupt αC polymerization and I performed FEP with BAR

to assess ∆∆Gox. Work described in Chapter 2 highlights the importance of a hydrophobic

core to nucleate αC polymerization. Using FEP, I demonstrate that the hydrophobic core can

be disrupted by the introduction of Met(O)476. The energy associated with hydrogen bonds

is 1–3 kcal/mol [123], which is comparable to ∆∆Gox
FEP. A rough estimation of ∆∆Gox

FEL

from the FELs calculated in Chapter 2 was approximately 6.2 kcal/mol. Assuming that

the monomeric unoxidized and oxidized states have approximately the same energy when

solvated, ∆∆Gox
FEL and ∆∆Gox

FEP can be reduced to ∆Gox
FEL = 6.2 kcal/mol and ∆Gox

FEP =

1.74 kcal/mol, respectively. This energy approximates the solvation energies of Met and

desolvation of Met(O) residues, and provides insight into the mechanism of impaired αC

domain polymerization.

In this system, FEP samples the two endpoints of the oxidation reaction in the dimer and

monomer cases but does not provide insight about the encounter complex. While the mag-

nitude of ∆∆Gox
FEP may be on the order of a single hydrogen bond, there are possible kinetic
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effects that cannot be described using FEP. Figure 4.3 shows the conversion of FELs from

unoxidized to oxidized αC domain. ∆∆Gox
polym, shown in Figure 4.3 is approximated by

∆∆Gox
FEL and ∆∆Gox

FEP using FELs and FEP, respectively. Ultimately, oxidation stabilizes

both the monomeric and dimeric states, although the monomeric state is more favorable.

The slight disagreement in magnitude between FEP and FEL results is likely negligible as

both values are of the same order of magnitude. Most importantly, ∆∆Gox
FEP and ∆∆Gox

FEL

are both positive, indicating that oxidation renders dimerization unfavorable. ∆∆Gox corre-

lates with the solvent exposure of Met476/Met(O)476, which is consistent with previous FEP

studies of Met oxidation in VWF A2 domain [118]. Therefore, we can conclude that Met

oxidation is unfavorable when Met is buried.
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4.5 Figures.

Figure 4.1:: Thermodynamic cycle used to estimate the change in free energy of dimerization

upon oxidation of Met476.

The horizontal reactions correspond to the conversion of Met476 to Met(O)476 in the

dimerized state, respectively. The vertical reactions describe the dimerization in

the unoxidized and oxidized state, respectively. ∆G1,2
alch is calculated as described in

the text. The change in free energy of dimerization can then be derived as follows:

∆∆Gox
FEP = ∆G2

dimerize −∆G1
dimerize = ∆G2

alch −∆G1
alch
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Figure 4.2:: Mean ∆Galch for seven minima and a tripeptide

Black and red bars correspond to the mean ∆G2
alch of each Met residue on monomers 1

and 2, respectively across three different configurations. The blue bar and blue dashed

line correspond to the mean ∆G1
alch across three different configurations. Error bars

represent the variance [105].
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Figure 4.3:: Free energy diagram of αC polymerization

αC domain polymerization reaction. The reaction coordinate of polymerization, x,

and the free energy at coordinate x, G(x), represent the x- and y-axes, respectively.

The FEL of unoxidized αC domain (black) depicts ∆Gpolym, which is the free energy of

polymerization. Likewise, ∆Gox
polym depicts the free energy change between monomeric

and dimeric states of the oxidized αC domain. The FEL of the oxidized αC domain

(red) shows stabilized monomeric and dimeric states. ∆∆Gox
polym describes the energy

difference between the unoxidized dimeric state and the oxidized monomeric state.

Unoxidized αC domain polymerization is cooperative and ∆Gpolym decreases by -6.7

kcal/mol per monomer [4], which means the energy well of the polymer state decreases

as the polymer grows. The FEL of the unoxidized αC domain is dynamic, although

this is not explicitly depicted. In contrast, oxidized αC domain dimerization is not

cooperative.
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Chapter 5

Conclusions.

5.1 Identification of dominant subpopulations of peptide conformers using enhanced sam-

pling methods.

In Chapter 2, I describe, in detail, a process of identifying low-energy dimer conformers

of flexible peptides. A T-REMD simulation was used to sample dimer conformations and

GBSA implicit solvation was used to improve sampling, due to the lack of friction of water,

and reduce the number of required replicas. The Rg of each monomer were used as the

CVs to construct a 2-D histogram, which was converted into a FEL using the equations

described in Section 2.2.6.2. The structures that comprised the lowest bins of the deepest

wells were hierarchically clustered and the representative frames of the largest clusters were

identified [4]. The representative frames were subject to explicit solvent simulations to assess

dimer stability and to probe for artefact introduction by implicit solvation. This process can

be implemented with metadynamics or aMD simulations as long as they converge and can

be used to produce a FEL.

5.1.1 Comparison to rigid-body docking

Enhanced-sampling-based methods are computationally intensive by comparison to FFT-

based methods like ZDOCK, but they are designed to sample large swaths of conformational
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space. These methods may provide a theoretical advantage to RBD when dealing with

intrinsically disordered regions (IDR), proteins with unknown flexibility or proteins that

undergo large conformational changes upon binding.

5.2 The hydrophobic core model of αC polymerization: a new understanding of the αC

domain.

The work described in Chapter 2 proposes a new model of the αC polymer that predicts

amorphous binding modes between monomers (the hydrophobic core (HC) model). The

HC model predicts that Met476 acts a docking spot by nucleating a hydrophobic patch in

aqueous solution, which allows for the binding of two αC monomers. In the majority of

the dimer models, we observe that only one methionine residue is buried while the other

is exposed. The exposed Met476 in the dimer likely serves as a docking spot to recruit an

additional αC-domain monomer. Each iteration would further stabilize and grow the αC

polymer [4, 15].

Some intrinsically disordered proteins can undergo a transition from a disordered state to an

ordered state upon binding to another protein. Proteins that only differ between ordered and

disordered states by 5–15 kcal/mol, like the unoxidized αC region, may exhibit a “fly-casting”

mechanism which allows them to fold and subsequently interact with another disordered part-

ner to form a more stable complex [124]. The αC domain lies in an IDR, and becomes more

flexible upon oxidation [1]. αC domains likely exhibit this disordered-to-ordered transition

upon binding [4, 15], however, if the oxidized αC domain has a ∆Gpolym < 5 kcal/mol, si-

multaneous folding and polymerization is unlikely [124]. Free energy calculations described

in Chapter 4 indicate a substantial loss in ∆Gpolym, which is due to a small stabilization of

the oxidized dimer state due to the introduction of hydrogen bonding. However, oxidation

stabilizes the unbound state even more (Figure 4.3). The addition of the oxygen reduces

the number of available hydrophobic residues capable of forming a HC, which stabilizes the

energy well of the monomeric oxidized state, driving the equilibrium towards the monomeric
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state (Figure 5.1) . The equilibration time for oxidized αC polymerization would likely far

slower than the degradation rate of fibrin in vivo and would therefore never be sampled

under physiological conditions. The HC model is consistent with results from simulations

and previous literature on Met476 oxidation and fibrin clot morphology [1, 3, 39,60].

5.3 Summary

Fibrinogen is one of the principle components of the coagulation cascade and regulates in-

flammation. Too much inflammation can induce oxidation of fibrin molecules, which leads to

coagulopathy, thrombosis and bleeding. Despite the lack of structural knowledge of the αC

domain, I performed MD simulations and free energy calculations to understand how oxida-

tion affects αC domain dynamics. The work described in this dissertation aimed to resolve

the energetic and structural consequences of αC domain oxidation and to further the current

understanding of flexible regions in proteins. By using enhanced sampling MD techniques,

I developed a new process of identifying low-energy conformers from constructed FELs that

is more equipped to handle protein flexibility than currently-available RBD programs. Us-

ing this technique and free energy calculations, I propose a thermodynamic model, the HC

model, by which oxidation disrupts the HC of the αC polymer, favoring the monomer state.

Prior to this work, the common hypothesis was that the αC polymer is driven by amyloid-

like interactions. I demonstrate that the αC-domain dimer interface is highly amorphous

and, like many protein-protein interactions, is driven by the hydrophobic effect rather than

hydrogen bonds from β-sheet stacking.

5.4 Future Directions

The in silico work presented in this dissertation requires further testing and experimental

validation. The computational process to identify flexible conformers should be applied

to other peptides with well-characterized dynamics. The effects of selecting different CVs

for analysis on peptide identification and reproducibility should also be further examined.
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There is significant value in probing the accuracy of the HC model using biophysical and

biochemical experiments. Fluorescence correlation spectroscopy (FCS), as one example,

measures the diffusion times of proteins, which is correlated to their size (and number of

binding partners). FCS could be used to study the relative subpopulations of the monomer

and polymer states before and after oxidation in a way to probe the HC model. Oxidomimetic

mutations such as Met476Gln could be used in lieu of HOCl treatment, which is non-specific,

due to the similar side chain chemistry (Figure 5.2).

5.5 Figures.
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Figure 5.1:: Free energy diagram with trajectories of αC domain polymerization

The reaction coordinate of polymerization, x, and the free energy at coordinate x,

G(x), represent the x- and y-axes, respectively. (a) Free energy diagram of unoxidized

αC polymerization (solid black lines). Black dotted lines represent a theoretical

trajectory of an αC domain as it samples the polymer and monomer states and

crosses the energy barrier. (b) Free energy diagram of oxidized αC polymerization

(solid red lines). Red dotted lines represent a theoretical trajectory of an αC domain

that thermodynamically favors the monomeric state as oxidation slightly stabilizes

the dimeric state but stabilizes the monomeric state even more.
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Figure 5.2:: Structural similarity between Met(O) and Gln residues

(a) The methionine sulfoxide side chain. (b) The glutamine side chain.
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Appendix A

Free energy landscapes.

The FELs of the unoxidized αC-domain dimers were calculated at 306.30 K, 312.74 K,

319.31 K, 326.02 K, 332.87 K, 339.86 K and 347.00 K (Figures A.1 to A.8). The FELs

of the oxidized αC-domain dimers were calculated at using the same temperature series

(Figures A.9 to A.16).

A.1 Figures.



110

Figure A.1:: Free energy landscapes of the unoxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 300.0 K.
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Figure A.2:: Free energy landscapes of the unoxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 306.30 K.
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Figure A.3:: Free energy landscapes of the unoxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 312.74 K.
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Figure A.4:: Free energy landscapes of the unoxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 319.31 K.
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Figure A.5:: Free energy landscapes of the unoxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 326.02 K.
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Figure A.6:: Free energy landscapes of the unoxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 332.87 K.
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Figure A.7:: Free energy landscapes of the unoxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 339.86 K.
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Figure A.8:: Free energy landscapes of the unoxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 347.00 K.
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Figure A.9:: Free energy landscapes of the oxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 300.0 K.
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Figure A.10:: Free energy landscapes of the oxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 306.30 K.



120

Figure A.11:: Free energy landscapes of the oxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 312.74 K.
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Figure A.12:: Free energy landscapes of the oxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 319.31 K.
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Figure A.13:: Free energy landscapes of the oxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 326.02 K.



123

Figure A.14:: Free energy landscapes of the oxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 332.87 K.
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Figure A.15:: Free energy landscapes of the oxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 339.86 K.
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Figure A.16:: Free energy landscapes of the oxidized αC-domain dimer projected onto the

radii of gyration Rg 1 and Rg 2 with frames sampled at 347.00 K.


