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Motivation: Chronic stress is an aversive experience that can have maladaptive effects on an 

individual’s cognition and behavior, ultimately leading to increased risk of developing conditions 

such as anxiety, depression, or amplifying symptoms of drug use disorder. Stress-induced release 

of dynorphin activates the kappa opioid receptor (KOR), causing short- and long-term 

disturbances at the behavioral, circuit, and cellular levels.  

Contents: This thesis discusses experimental and computational methods to probe the KOR-

dynorphin system at the behavioral, circuit, and cellular levels are described. At the behavioral 

level, the differential reinforcement of low response rate and delayed alternation tasks are used to 

investigate KOR effects on aspects of motivated behavior. At the circuit level, in vivo fiber 

photometry is used to illuminate important aspects of reward signaling following stress. Finally, 

at the circuit level, real-time cellular microscopy is used to investigate the cellular pathways 

activated via KOR, providing potential therapeutic targets for stress-induced pathophysiologies.  

Results: The behavioral assays demonstrated that KOR activation causes cognitive disruptions 

that affect both inhibitory control as well as working memory-dependent decision making. The 

fiber photometry results demonstrated that stress causes a KOR dependent increase in dopamine 

neuron activity in a major reward center, following the stress exposure. Finally, the real-time 

cellular measurements revealed a new branch of G-protein coupled receptor signaling that results 

in production of reactive oxygen species which leads to permanent KOR inactivation.  
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Santa Rosa Fairies 
 
The needle is a heaven 

Piercing a damp cardboard reality 

Penetrating the tulip heart of a rebel 

A hill of sprouting fairies 

Singing lullabies to the Devil 

 

The needle is a hell 

A volcano spewing black tar 

He knows the feathers let him fly 

Escape the clawing disease of thought 

As china white snow turns dry 

 

The sky bursts to flame  

As hands reach for the number 8 

The charcoal rain has begun  

Young sees the needle 

And the damage done 

 

Tears fall behind rolling eyes 

Tunneling under pale cheek skin 

Raining on a cracked tongue 

Who spits “we all are  

like a setting sun” 

 

"Don't worry though my dear" 

Whisper brown eyes turning grey 

"Take this rag and polish up the spoon 

And I will be singing  

With the fairies soon" 

 
Santa Rosa Sunset 
 
The flame cauterizes the pain 

 the guilt, the shame  

Setting fire to the spoon 

 a ladle for the joyous stew 

Melting; tar from vows,  

cotton from clouds 

A heavenly vacancy 

 drawing up, up impatiently 

Pierce the freckled leather 

 pushing down, down into the nether 

 

Tomorrow’s effluent flows through veins 

 warming, soft, smile again 

He sings the song from wrinkled jowls 

 “I love you baby” the dry voice howls 

A pelvic swing starts the dance 

a 12-step tango, fairies prance 

The bunny hop turns to Easter eggs 

all about run little legs 

A gentle embrace from his giggling girl 

assure him this is a better world 

 

But fairies turn to skunks 

children become drunks 

Rosy cheeks and illuminating smiles 

 now missing teeth and yellow bile 

Chew through tongues and cracking lips 

“some more, more” desperation spits 

Men in black load up cars 

 phobic hands cling to metal bars  

Weary knees drop to the floor 

wheel flanges screech, locking doors 

 

Blind to what has fallen away    

 The sun sets on another day 

 

Metamorphosis  

 

In the room of a poisoned man, trapped  

within lavender walls 

dusty stuffed animals shoved to a corner  

under sparkling bottles reeking of wasted spirits. Below,  

a shell of sun hardened leather and soggy lips 

grey with empty promises, shivers 

 

within a cocoon of butterfly blankets-- 

drowning in a toxic rain, he never 

grew his wings 

 

Tracks of purplish blackish veins, thirsty 

tunneling under his skin, searching 

for a way out of this pulsing carcass 

 

Two helpless grey eyes roll  

towards me within blackened holes-- 

I watch my reflection, dancing 

on those glossy frozen lakes  

 

Four smiles emerge--one  

breaking through cracking skin 

broken teeth, yellowed tongue 

spitting and choking, two and three 

on the little girls gliding 

across iris fields, staring 

back at me, four 

wings uncurling from the corners of my mouth 

soft, pink--I am  

 

the butterfly. 
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ABSTRACT 
 

Motivation: Chronic stress is an aversive experience that can have maladaptive effects on an 

individual’s cognition and behavior, ultimately leading to increased risk of developing conditions 

such as anxiety, depression, or amplifying symptoms of drug use disorder. Stress-induced release 

of dynorphin activates the kappa opioid receptor (KOR), causing short- and long-term 

disturbances at the behavioral, circuit, and cellular levels.  

Contents: This thesis discusses experimental and computational methods to probe the KOR-

dynorphin system at the behavioral, circuit, and cellular levels are described. At the behavioral 

level, the differential reinforcement of low response rate and delayed alternation tasks are used to 

investigate KOR effects on aspects of motivated behavior. At the circuit level, in vivo fiber 

photometry is used to illuminate important aspects of reward signaling following stress. Finally, 

at the circuit level, real-time cellular microscopy is used to investigate the cellular pathways 

activated via KOR, providing potential therapeutic targets for stress-induced pathophysiologies.  

Results: The behavioral assays demonstrated that KOR activation causes cognitive disruptions 

that affect both inhibitory control as well as working memory-dependent decision making. The 

fiber photometry results demonstrated that stress causes a KOR dependent increase in dopamine 

neuron activity in a major reward center, following the stress exposure. Finally, the real-time 

cellular measurements revealed a new branch of G-protein coupled receptor signaling that results 

in production of reactive oxygen species which leads to permanent KOR inactivation. 
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CHAPTER 1 – INTRODUCTION   

 

OVERVIEW 
 

Chapter 1 introduces the contextually significant background related to the relationships between 

stress, cognition, and behavior. This information details the behavioral, cognitive, and 

physiological effects of acute stress as well as the clinically relevant effects of severe or chronic 

stress on mood disorders and drug abuse and relapse. Stemming from this context, the 

importance of the kappa opioid receptor (KOR) and its endogenous activator, dynorphin, on the 

aforementioned stress effects is described. A broad understanding of the behavioral, circuit, and 

cellular levels of KOR action is developed with an emphasis on the complexity of the KOR-

dynorphin system at each level of investigation.  

The complexity of KOR action introduces the motivational context surrounding data driven 

research. The arms race between investigative tools and data analysis methods is described with 

the conclusion being that analysis methods are struggling to keep up with the technological 

advancements of investigative tools. This analysis bottleneck motivates the need for 

computational tools that can handle, process, analyze, and communicate large, multi-variate, 

heterogenous data sets.  

With experimental context critical for appropriate computational development, the experimental 

approaches used throughout this thesis are introduced. Investigative methods of behavior, circuit 

dynamics, and cellular pathways are described with an emphasis on the gaps between classical 

analysis methods and the extensive data available.  

Finally, the state-of-understanding prior to the work of this thesis is depicted and key 

pharmacological agents are defined.  

 

BACKGROUND AND SIGNIFICANCE 

 

STRESS, COGNITION, AND BEHAVIOR 

 
Stress plays a critical role in survival. Stress signaling occurs as a result of a challenge or 

demand and can scale with the severity of the stressor. Small bursts of stress can help individuals 

escape a dangerous or difficult situation and are followed by a positive emotion of relief or even 

excitement. However, persistent, uncontrolled stress is highly aversive and can have negative 

effects on the individual’s motivation and reward circuitry (Gold and Chrousos, 2002; Volkow 

and Li, 2004; Fox et al., 2007; Koob and Kreek, 2007). 

Stress evokes acute behavioral, cognitive, and physiological changes, typically associated with 

fear responses. These stressors can evoke either defensive or escape behaviors – typically 
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nominalized as the ‘Fight or Flight Response.’ This behavioral response is stereotypically 

coupled with affective changes such as a shift to distress or fear, as well as apathy towards the 

non-immediate situation (Gold et al., 1998). In addition, the acute response to danger involves 

physiologic changes such as increased heart rate, redirection of blood flow, and inhibition of 

neurovegetative functions such as feeding, sleep, growth, and reproduction. Following a stressful 

experience, individuals often have an affective shift towards reward or relief and a reinstatement, 

or in some cases, over-instatement of neurovegetative functions (e.g. increased eating or sleep) 

(Lazarus, 1999).  

Acutely, these changes in behavior and physiology are temporary and beneficial for rapid 

survival decisions. However, severe or chronic stress is known to cause cognitive disruptions and 

increase the risk of mood disorders like depression and anxiety as well as the risk of drug abuse 

and relapse (Campeau et al., 2011; Gold and Chrousos, 2002; Volkow and Li 2004; Kreek and 

Koob, 2007; Sinha, 2001). In the case of mood disorders, typical symptoms include generalized 

anxiety and/or apathy, consistent with the affective changes observed during the stress response. 

In addition, physiologic symptoms of mood disorders such as disruptions to appetite, sleep, and 

arousal are also consistent with the physiologic effects of stress.   

In the case of drug abuse and relapse, alterations in motivation and reward are associated with an 

increased risk of use escalation or relapse in drug seeking behaviors (Piazza et al., 1990; Shaham 

and Stewart, 1994). The affective and physiologic changes associated with both acute and 

chronic stress have been shown to increase addictive tendencies, however there are a number of 

theories about the exact mechanisms behind this phenomenon (Tomkins, 1966; Russell and 

Mehrabian, 1975; Leventhal and Cleary, 1980; Shiffman, 1982; Marlatt and Gordon, 1985; Wills 

and Shiffman, 1985; Koob and Le Moal, 1997).  

 

THE KOR-DYNORPHIN SYSTEM 

 
The classical stress response described above is driven by the activation of the hypothalamic-

pituitary-adrenal (HPA) axis by corticotrophin releasing factor (CRF). The HPA axis controls the 

stereotypical physiologic effects of stress. However, CRF also has intracerebral targets which 

result in the cognitive and emotional stress effects. Specifically, CRF induces activation of a 

class of endogenous opioid peptides, dynorphins. Dynorphins activate the kappa opioid receptor 

(KOR) to produce the dysphoric effects of stress as well as promote the rewarding effects of 

drugs of abuse (Land et al., 2008; McLaughlin et al., 2003).  

At the behavioral level, animals lacking KOR and animals treated with KOR antagonists show 

stress-resilience when assessed for anxiety, aversion, and drug reinstatement (Van’t Veer  and 

Carlezon Jr., 2013). Additionally, activation of KOR in humans produces aversive and 

depressive-like emotional states coupled with cognitive disruptions (Pfeiffer et al., 1986). This 

suggests that KOR plays a critical role in the relationship between stress and mood disorders and 

drug use disorders. Alternatively, KOR activation has been shown to produce analgesia without 

the proaddictive effects mu opioid agonists (Shippenberg and Herz, 1986; Pfeiffer at al., 1986). 
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The effects of KOR on behavior are broad with studies showing clinical potential for both KOR-

antagonists as well as KOR-agonists.  

At the circuit level, KOR is expressed in a number of brain regions classically associated with 

motivation, mood, and cognition. Namely, the mesolimbic system is a major driver of affective 

behavior with KOR playing an important role in this circuit’s dynamics. The mesolimbic system 

originates in the ventral tegmental area (VTA) with projections to the nucleus accumbens (NAc), 

hippocampus, amygdala, prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST) 

(Swanson, 1982). Inputs from the dorsal raphe nucleus (DRN) to the NAc are also implicated in 

KOR mediated affective behavior. KOR is highly expressed in the DRN, VTA, NAc, PFC, and 

BNST and regulates serotonergic, dopaminergic and glutamatergic inputs throughout this 

system, leading to affective changes and behavioral effects (Figure 1; adapted from Van’t Veer 

and Carlezon WA Jr., 2013).  

 

Figure 1: KOR Expression and Behavioral Outputs of the Mesolimbic System 
Schematic illustrating the mesocorticolimbic brain areas involved in various aspects of information processing and 

motivated behaviors.  Regions that have been identified to have high expression of KOR are denoted with the ‘pac-

man’ receptor symbol. AMY, amygdala; BNST, bed nucleus of the stria terminalis; DRN, dorsal raphe nucleus; HIP, 

hippocampus; PFC, prefrontal cortex; NAc, nucleus accumbens; VTA, ventral tegmental area. Adapted from Van’t 

Veer and Carlezon WA Jr., 2013. 

 

At the cellular level, KOR stimulation activates two signaling pathways – the Gβγ-mediated 

pathway and the GRK/arrestin-mediated p38 MAPK pathway. Studies using Gβγ selective KOR 

agonists produce analgesia without the dysphoric or cognitive effects associated with unbiased 

KOR activation (Bruchas and Chavkin, 2010). Better understanding of the cellular mechanisms 

of KOR activation will provide insight into the circuit dynamics and behavioral effects 

associated with stress, cognition, and behavior.  
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MOTIVATION 

 
Investigating the KOR-dynorphin system provides insight that will allow for the development of 

better clinical therapeutics to treat pain, mood disorders, and addiction. However, the KOR-

dynorphin system is integrated into a greater multi-dimensional biological system with highly 

sensitive and variable outputs for a given series of inputs. As introduced, current investigational 

strategies approach questions at the behavioral, circuit, and cellular levels. Fortunately, the state-

of-the-art investigational tools are producing larger, more complex data sets, allowing 

researchers to probe more complex questions with greater consistency and resolution of results. 

However, the technology available to researchers has been advancing so rapidly, that the analysis 

methods have been struggling to keep up (Mattmann, 2013; Marx, 2013).  

Currently, there is a major bottleneck in biological research between data acquisition and data 

analysis. While other fields such as physics, astronomy, and computer science have been 

handling large data sets for many decades, biological data sets are significantly more 

heterogeneous and multivariate, thus requiring a new degree of computational methods (Marx, 

2013). To complicate the problem further, biological research is significantly less centralized and 

standardized than other fields – there are thousands of biology labs developing new experiments 

and probing at systems in new ways; standardizing the analytic methods for this vastly 

heterogenous discipline is a daunting yet critical task.  

There are four major challenges in computational biology: data handling, data processing, data 

analysis, and data communication (Alyass et al., 2015). Data handling refers to the movement, 

storage, and organization of data. As data sets grow in size, storage and movement of that data 

becomes cumbersome and time-intensive. As the complexity increases, organizing the data in a 

logical and useful way becomes challenging. Data processing refers to the series of steps that 

convert ‘raw data’ into ‘usable data.’ Often times, biological data are noisy and represent outputs 

from a range of inputs. Processing this data requires extensive filtering and the accounting for 

uncontrolled inputs. Data analysis refers to the quantification of the data to answer the posed 

research question. Analysis requires both computational and statistical methods to appropriately 

interpret the present information. Finally, data communication begins at computation – to 

effectively communicate results, data must be displayed in an accessible and visually self-

evident way; visual representation of data is a computational challenge in and of itself.  

 

EXPERIMENTAL APPROACH AND NEEDS ASSESSMENT 

 
In order to appropriately handle, process, analyze and communicate data, an understanding of the 

experimental tools and methods is necessary – a “new breed of researcher equally familiar with 

science and advanced computing” (Mattmann, 2013). Refocusing on the questions surrounding 

the KOR-dynorphin system, the latest experimental approaches used to probe this system are 

introduced.   
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BEHAVIOR 

 
As previously discussed, behavioral implication is the primary motivator for research into the 

KOR-dynorphin system. To better understand the relationship between stress, cognition, and 

behavior, appropriate experimental paradigms to assess behavior are needed. The following 

behavioral assays assess various cognitive effects associated with activation of the KOR-

dynorphin system. 

 

DRL 

 

One cognitive output of interest is inhibitory control. Inhibitory control, or rather the loss-

thereof, is associated with various behavioral and mood disorders such as obsessive-compulsive 

disorder (OCD), anxiety, posttraumatic stress disorder (PTSD), and substance use disorder 

(Chamberlain et al., 2005; Clauss and Blackford, 2012; Falconer et al., 2008; Jentsch and Taylor, 

1999). Stress-induced KOR activation has been shown to increase the behavioral and cognitive 

symptoms of these disorders, but a direct link between KOR and inhibitory control had not been 

investigated.  

One method to investigate inhibitory control is through the differential reinforcement of low 

response rate (DRL) task. The DRL task reinforces responses (lever presses) only if an animal 

withholds responding for a prescribed wait time (Sidman, 1956). After a training period, the wait 

time is set and consistent across animals and trials. To assess the role of stress and KOR on task 

behavior, behavioral, pharmacological and genetic perturbations can be used in conjunction with 

the DRL task (Abraham et al., 2018).  

The output from this type of paradigm includes within-trial temporal information and 

performance as well as longitudinal changes in performance. Classically, DRL data is assessed 

for distribution of inter-response time (IRT), total number of reinforced responses as well as 

response efficiency (% reinforced) (McGuire and Seiden, 1980; O’Donnell et al., 2005, Selleck 

et al., 2015), however little attention has been paid to the IRT distribution apart beyond how it 

informs response efficiency. In essence, complex temporal information is simplified into a binary 

output: reinforced or non-reinforced. In order to better quantify impulsivity with the DRL task, 

there is a computational need to analyze the temporal data with greater resolution of result 

output.  

 

DELAYED ALTERNATION 

 

Another cognitive output of interest is disruption of working memory. Memory impairment is a 

symptom in a number of mood disorders (Morris and Cuthbert, 2012). Furthermore, stress is 

known to have complex effects on working memory through disruption of the inputs to the 

hippocampus and PFC (Luithi et al., 2008; Weerda et al., 2010). KOR agonism has been shown 

to disrupt working memory in behavioral tasks, however there is also evidence that KOR 
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activation can improve memory (Carey et al., 2009; Kuzmin et al., 2006). Therefore, there is a 

need to better understand the role of KOR in working memory.  

One method to investigate working memory is through the operant delayed alternation task. The 

operant delayed alternation talk reinforces responses (lever presses) only if an animal correctly 

alternates levers after a subscribed mandatory wait time (Izaki et al., 2001). Similar to the DRL 

task, the role of KOR can be assessed through pharmacological or genetic manipulation prior to 

the task.  

Also similar to the DRL task, the output from this type of paradigm includes within-trial 

temporal information and performance and longitudinal changes in performance, as well as lever 

press patters within and across trials. Classically, delayed alternation data is assessed for percent 

of correct alternations and perseverance (repetition of the same lever press) for a given trial, 

however little attention has been paid to the timing of these responses or how the timing and 

performance change temporally within a single trial. In order to better quantify the type of effects 

KOR has on working memory, there is a computational need to analyze the finer temporal 

characteristics of performance in the delayed alternation task.  

 

CIRCUIT 

 
In addition to higher resolution of behavioral outputs, a better understanding of the circuit 

dynamics underlying those behaviors is necessary. A key component of understanding the circuit 

to behavior relationship is elucidating the real-time activity of neurons within a given region 

during behavioral tasks. The following investigative technique can assess various aspects of 

neural activity at the regional level during behavior.  

 

FIBER PHOTOMETRY 

 

One measure of neural activity is calcium signaling. Calcium ions (Ca++) enter neurons during 

the firing of an action potential and during synaptic transmission. Therefore, the concentration of 

Ca++ in the cell can be a correlate for neural activity (Yasuda et al., 2004). Genetically encoded 

calcium indicators (GECIs) such as GCaMP are the state-of-the art for calcium-signaling 

analysis (Tian et al., 2009). In addition to the monitoring of neural activity, other byproducts of 

pathway activation can be monitored with similar optically active proteins. For example, 

administration of opioids has been shown to produce reactive oxygen species (ROS), with 

potentially detrimental effects (Skrabalova et al., 2013; Schattauer, 2017b). ROS production can 

be monitored with the optically active protein HyPerRed.   

In order to monitor calcium or ROS activity during behavior in vivo, fiber photometry can be 

used. Fiber photometry utilizes implanted optical fibers to capture photon release from optically 

active proteins to detect broad activity of neurons or pathway byproducts within the implanted 

region (Cui et al., 2013; Gunaydin et al., 2014). To assess the disruption in circuit dynamics 
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during behavior, various behavioral assays, pharmacological agents, and genetic manipulation 

can be utilized prior to or during fiber photometric recording. 

The output from this type of recording includes temporal intensity information across the 

duration of the trial as well as behavioral and pharmacological time points that can be time-

locked with the neural signals. The sheer amount of data collected during these types of 

recordings can cause data handling issues. Classically, fiber photometry data is down-sampled 

and assessed for change in fluorescence over a baseline or quantified by the occurrence of events 

consistent with a set of parameters (i.e. signal exceeding a % change threshold or short spikes of 

increased activity). However, these analyses only scratch the surface of the available information 

recorded in each session. In order to better unravel the neural activity and outputs contributing to 

disruptions in circuit dynamics during behavior, there is a computational need to improve the 

data handling techniques and breadth of analyses available to researchers. 

 

OPTRODE 

 

While fiber photometry provides high temporal resolution, its spatial resolution is limited to a 

single brain region. To truly investigate circuit dynamics, there is a need to develop in vivo 

multi-site recordings tools and analysis techniques. The proposal and design of such a tool is 

documented in Appendix A.  

 

CELLULAR 

 
Lastly, proper interpretation of neuronal activity and outputs is reliant on an understanding of the 

cellular mechanisms underlying those endpoints. As previously discussed, activation of KOR 

initiates two signaling cascades resulting in variable physiological effects. Much effort has been 

devoted to quantifying the mRNA and protein levels of various players in those signaling 

cascades, but these methods neglect an important temporal variable (Schattauer et al., 2012). The 

following investigative technique can assess various aspects of cellular mechanisms while 

maintaining temporal resolution.  

 

SINGLE CELL HYPERRED IMAGING 

 
In order to monitor the temporal components of cellular mechanisms, real-time microscopy can 

be coupled with optically active proteins like those used in fiber photometry. Real-time cellular 

microscopy records a series of images over the course of an experimental time period to track 

changes over time. This technique allows researchers to administer a pharmacological agent and 

observe the cellular effects in real-time.  

The output from real-time cellular microscopy includes a series of images with pixel intensity 

information captured over time. Classical analysis of cellular microscopy requires selection and 

numbering of cells by hand prior to computer-facilitated quantification. This process is time 
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consuming and leaves room for biasing and arbitration of results (Ninomiya et al, 2016). In order 

to efficiently and appropriately analyze real-time cellular microscopy images, there is a 

computational need to automate the cellular identification, tracking, and quantification steps.  

 

CURRENT UNDERSTANDING  

 

Figure 2: State of Understanding Prior to Presented Work 
Schematics depicting the relevant understanding of behavioral (a-b), circuit (c), and cellular (d) level relationships 

between KOR activation and respective outputs. Dashed lines and ovals depict the gaps in current understanding 

that will be investigated in Chapters 2-4.  

Note: Primarily intended as a reference for the information presented in the Chapters 2-4, compare to Figure 22.  
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KEY PHARMACOLOGICAL AGENTS 

 
As a reference for the content in future chapters, Table 1 summarizes some of the key 

pharmacological agents used in the experimental approaches to probe the KOR-dynorphin 

system.  

 

Compound κ Activity General Effect Through κ 

Dynorphin Endogenous agonist Analgesia, dysphoria, prodepressive,  

Morphine Weak agonist Analgesia 

Salvinorin Agonist Hallucination, dysphoria, anxiogenic 

U50,488 Agonist Dysphoria, reinstatement 

Nalfurafine Gβγ biased agonist Analgesia without dysphoria  

Nor-BNI Antagonist Anti-depressant,  

Buprenorphine Antagonist  Anti-depressant 

Naloxone Antagonist Precipitated withdrawal, hyperalgesia 

MJ33 PRDX6 selective inhibitor Prevents norBNI inhibition, Reduced 

tolerance to morphine  

 

Table 1: Key Pharmacological Agents 
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CHAPTER 2 – BEHAVIOR 
 

OVERVIEW 
 

Chapter 2 introduces the importance of appropriately regulated motivated behavior and the 

factors underlying this branch of behavior. This information details the biological, 

environmental, cognitive, and emotional inputs that are integrated to produce a behavior, 

especially within the context of risk and reward valuation. Stemming from this context, the effect 

of stress on the production of both adaptive and maladaptive behaviors is described. Following, 

two aspects of motivated behavior that can be disrupted by stress – inhibitory control and 

working memory – are explained within both a physiological and pathological context. Finally, 

the role of KOR, on the aforementioned stress effects is described.  

This chapter describes two behavioral assays that can be used to investigate KOR-mediated 

stress effects on inhibitory control and working memory: the differential reinforcement of low 

response rate (DRL) task and the operant delayed alternation task, respectively. The current gaps 

in knowledge leading to the research questions being investigated are explained. Then, the 

experimental and computational methods used to investigate these questions are described in 

detail, with an emphasis on novel computational approaches to analyzing the data produced.  

Finally, the experimental results discovered through these assays are presented within the context 

of KOR-mediated implications on motivated behavior.  

 

BACKGROUND AND SIGNIFICANCE 

 
Just as a computational system integrates a series of inputs to generate an output, biological 

systems integrate environmental factors with internal signaling within their genetic framework to 

produce a functional output – namely, behavior. Motivated behavior is the critical output that 

determines an organism’s survival, fitness, and well-being.  Underlying motivated behavior is a 

complex, and sometimes unstable, balancing act between risk and reward. Every behavioral 

action has an associated risk, from basic energy expenditure to imminent survival consequences 

like predation. Thus, the greater the risk, the greater the reward must be to pursue the behavior. 

Motivated behavior is the dynamic product of four major factors: biology, environment, 

cognition, and emotion (Petri, 2005). Biology hardwires some innate behaviors such as reflex 

responses, arousal, aspects of social interaction, and feeding (McDougall, 1970; Lorenz, 1950; 

Tinbergen, 1951). However, biology also has more subtle effects on how an individual responds 

to environmental stimuli and their susceptibility to cognitive and emotional disruptions (Fraga et 

al., 2005).  
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Environmental stimuli have a major effect on behavior. Behaviors learned through observation 

or via classical or instrumental conditioning are typically not exhibited unless there is a 

motivation for that behavior (Lieberman, 2004). This motivation can come from a negative 

consequence – risk (e.g. punishment) – which reduces the probability of a future action, or from 

a positive consequence – reward – which increases the probability of a future action (Watson and 

Rayner, 1920). However, motivation can become destabilized when the risk or reward values of 

an action are unclear, i.e. when an individual does not know whether an action will generate 

more reward than risk, or when an individual’s reward circuitry is disrupted (Pavlov, 1960). This 

reward valance ambiguity can result in maladaptive behaviors. As discussed in Chapter 1, an 

environmental stressor is an aversive experience and chronic stress can skew the risk-reward 

valuation of a situation. For example, animals who are in a prolonged stressful situation without 

the ability to escape will exhibit “learned-helplessness” – they will stop trying to escape even 

when an escape option is made available (Overmier and Seligman, 1967).  

To interpret the risk-reward ratio of a situation and act on or pursue a previously learned 

behavior, cognition comes into play. One theory surrounding the cognitive component of 

motivation is expectancy theory – the evaluation of previous successes and failures, present 

expectations of success, and the reward value of a given situation (Atkinson and Birch, 1978). In 

order to evaluate a situation and develop an appropriate reward expectation for an action, an 

individual must properly integrate reward signaling, aversion and reward processing, memory, 

and decision making, requiring coordination of the VTA, NAc, hippocampus, and PFC (see 

Figure 1). Since stress is known to produce physiologic changes in these regions, stress, and its 

associated physiologic effects, will affect cognition and decision making in a learned task.  

Following from expectancy theory, prior experiences affect not only the cognitive, but the 

emotional appraisal of the current situation (LeDoux, 2000; Lazarus, 1982). Additionally, 

changes in emotional state will affect the subsequent reward appraisal and resultant action in a 

situation. As discussed in Chapter 1, chronic stress can result in maladaptive changes in 

emotional state which, by expectancy theory, can deregulate the reward appraisal of a situation 

resulting in behaviors with averse consequences such as learned helplessness or loss of inhibitory 

control (Moore et al., 2008; Tice et al., 2001, Moeller et al., 2001).  

Situationally appropriate behavior is a critical part of survival, thus developing a better 

understanding of the factors that motivate or disrupt behavioral adaptation is critical. Since the 

factors driving behavior (biology, environment, cognition, and emotion) are individually 

complex their interactions become exponentially complex in an uncontrolled setting. To 

investigate how environmental responses, such as stress, affect the cognitive and emotional 

regulation of behavior, controlled and targeted experimental paradigms with appropriate analysis 

methods are necessary. This chapter introduces two behavioral paradigms that target specific 

aspects of the relationship between stress, cognition, and behavior, details the inputs and outputs 

under investigation, and describes computational methods to better utilize and interpret the data 

produced. 
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DRL 

 

MOTIVATION 

 
As introduced, behavior is regulated by assessment of the risk-reward ratio of a situation. While 

the obvious outcome of this assessment is the performance of an action, an equally important 

outcome is the inhibition of action. If a behavior is learned or expected to result in more risk than 

reward, the appropriate decision would be to withhold action. However, maladaptive 

mechanisms can result in the loss of this inhibitory control (Arce and Santisteban, 2006; 

Kirkpatrick et al., 2013).  

Inhibitory control requires two broad functions: selection and stopping (Anderson and Weaver, 

2009). Selection refers to the decision between multiple competing actions in response to a given 

set of cues. As a basic example, the appropriate selection between ‘fight’ and ‘flight’ has critical 

implications on an organism’s survival. A hyper-aggressive individual may impulsively select to 

fight in an inappropriate situation, resulting in maladaptive consequences. Stopping refers to the 

preempting of an action that would have undesirable consequences, such as not catching a falling 

object if that object is realized to be a hot pan. Another critical component of inhibitory control is 

timing (Brown et al., 2015). A basic example of timing related inhibitory control is the Stanford 

marshmallow task in which a less preferred reward could be attained with immediate action, but 

the inhibition of action until a later time point would grant a greater reward (Mischel et al., 

1972). The ability to select a preferred course of action, stop an immediate action, and 

appropriately time an action to achieve the desired outcome are critical aspects of inhibitory 

control and adaptive behavior.  

The loss of inhibitory control is associated with various behavioral and mood disorders such as 

obsessive-compulsive disorder (OCD), anxiety, posttraumatic stress disorder (PTSD), and 

substance use disorder (Chamberlain et al., 2005; Clauss and Blackford, 2012; Falconer et al., 

2008; Jentsch and Taylor, 1999). Environmental stressors are known to amplify behavioral 

symptoms of these disorders including loss of inhibitory control (Fornaro et al, 2009). Stress-

induced KOR activation has been shown to increase the behavioral and cognitive symptoms of 

these disorders and pharmacological KOR activation has been shown to degrade response 

inhibition (Walker and Kissler, 2013). However, a direct link between stress-induced KOR 

activation and a loss of inhibitory control had not been investigated.  

 

EXPERIMENTAL APPROACH 

 
To investigate the timing and stopping aspects of inhibitory control, a time-dependent reinforced 

task paradigm can be used. A validated paradigm for testing in rodents is the differential 

reinforcement of low response rate (DRL) task. The DRL task requires animals to wait a set 

period of time between responses in order to receive the reward (Sidman, 1956). If the animal 

does not wait the prescribed time, the action is not rewarded and the time resets. A typical 
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response task used for mice is a nose poke with the reward being a sucrose pellet. In this task, the 

behavioral decision of nose-poking requires the mouse to integrate the passing of time with the 

evaluation of the expected reward – sucrose – and the potential risk – resetting the wait period.   

The goal of this assay was to assess the role of stress and KOR on a learned, time dependent 

behavior to inform KOR-dependent disruptions of inhibitory control. Beginning with the 

behavioral phenomenon observed, forced swim stress paradigms, systemic KOR agonism, local 

KOR antagonism, and genetic excision of KOR or deletion of GRK3/p38 MAPK were used to 

determine regional characteristics, neuronal population effects, and the cellular signaling 

mechanisms behind the behavioral effects observed (Abraham et al., 2018). 

 

METHODS 

 

The DRL task consists of 3 specific periods in the experimentation process: behavior acquisition, 

behavior stabilization, and a test period. During behavior acquisition, the mice learn the task 

through trial and error of nose poking for their reward. During the behavior stabilization period, 

the learned behavior of the mice is reinforced through repeated sessions and monitored for 

consistency. The test period generally consists of 2 test days, a control day followed by a stress 

or drug trial test day. 

The DRL operant chambers have two nose-poke holes: active and inactive. The mice were first 

trained to discriminate between the active and inactive holes. Following, mice were trained in a 

60-min DRL procedure (Horwood et al, 2001). During each session, a single nose poke led to 

food reward delivery after which the mouse was required to withhold responding for a specified 

wait period – 15 seconds. If the mouse nose poked before the end of the wait period, the wait 

time reset and no reward would be administered. After a training period, test sessions included 

either systemic U50,488 treatment; nalfurafine treatment, repeated forced-swim stress (rFSS); 

microinjection of nor-BNI into the PFC, DRL, or VTA; or conditional or global knockout of 

KOR or GRK3/p38 MAPK followed by U50,488 administration.  

The software connected to the operant chamber recorded timestamps for active nose pokes, 

reinforced nose pokes, head entries into the pellet hopper, wait period resets, and inter response 

times (IRTs). The data was exported as a .txt file.  

 

COMPUTATIONAL APPROACH 

 
Classically, DRL data is assessed for distribution of inter-response time (IRT), total number of 

reinforced responses as well as response efficiency (% reinforced) (McGuire and Seiden, 1980; 

O’Donnell et al., 2005, Selleck et al., 2015). This type of analysis reduces the complex temporal 

information into a binary output: reinforced or non-reinforced. Changes in performance 

efficiency can be explained by a number of factors such as disruption of memory formation or 

retrieval, disruption in time perception, task distraction, or loss of inhibitory control. In order to 
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better dissociate and quantify the loss of inhibitory control from other factors, there is a 

computational need to analyze the temporal dimension of the data with greater resolution of 

result output. 

Specific effort was devoted to quantifying ‘burst responses’ – a non-reinforced response within 1 

second of a previous response. Responses occurring within such a short time period are unlikely 

to be cause by disruption in time perception, memory formation, or distraction. Thus, these burst 

responses are most likely attributed to deficits in inhibitory control (Selleck et al., 2015).  

 

HANDLING  

 

The DRL system generates a large amount of data per animal, per run. The times of every 

reinforced nose poke, reset response, head entry, inactive nose poke, and the inter response time 

between each nose poke are recorded. A given run can generate between 500 and 3000 pieces of 

data per animal. With approximately 7 runs per day, with 8 animals per run, over the course of 

30 test days, there was approximately 1 million raw data points generated.   

In order to read each file into MATLAB (version R2016a) and organize both by date and by 

cohort, the files were named in an iterative format. Therefore, the DRL .txt files were named by 

their date followed by their cohort and placed into a single destination folder (ex. 

“20150326_drl5.txt”). A date vector with integer values corresponding to the dates of the test 

days for each cohort was declared (Appendix II, DRL Code, lines 6-8). The data were then 

extracted from the destination folder using textread. An outer for-loop loops through the date 

vector to pull out the integer value at the given index (lines 10-12). A string can then be 

concatenated from the integer values and the cohort name to read the file name from the folder 

(lines 21-22).  

Once the file was read into MATLAB, a search algorithm (strfnd) was used to find the 5 

subheadings within the file that precede the related data. The line number at which the given 

subheading was found within the file was then stored to a vector (lines 24-25). For example, the 

sub header “ActiveNosePokeTimes(sec)” preceded all of the number values representing the 

time of an active nose poke during the testing period. The line number where the text 

“ActiveNosePokeTimes(sec)” was found in the file would be stored to the vector IndexActNP. 

 

PROCESSING 

 

A matrix was used to store the time data for each subheading within the file. I will be referring to 

the Active Nose Poke matrix code (lines 43-64), however the method is the same for each 

subheading. Each file contains all of the animals for that run (up to 8 animals), additional for-

loops with i values denoting the number of animals in the file is used to parse through the index 

vectors instantiated in the previous method (line 43). Within each of the i for-loops, a start and 

last variable are pulled from the index vectors to denote the line numbers between which the data 

under the subheading for the specified animal is contained (lines 44, 45). The data information 
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between those 2 maximal values is stored to a temporary cell (line 46). The length of that cell is 

then checked against the length of the preexisting matrix storing the data cells from the previous 

animals in the run. If the length of the new cell is shorter than the preexisting matrix, the 

appropriate number of zero entries are concatenated to the end of the additive cell. If the length 

of the matrix is shorter than the additive cell, the appropriate number of zeros are added to the 

bottom of each column of the matrix (lines 47-62). The new cell is then concatenated column-

wise to the pre existing matrix (line 63).  

At the end of each i loop, a matrix containing as many columns as animals in the cohort will 

have the specified subheading data times in the columns, with zero padding at the bottom of each 

column to fill in the whole matrix. I used MATLAB’s eval function to save each of the 5 

matrices generated per r loop so that the date was iteratively inserted into the name of the matrix 

(lines 164-168). For example, the temporary ActiveNP storage matrix would be renamed and 

stored as ActiveNP_0204 and so on for each subheading and each test day. 

From the data collected, there were 6 critical pieces of information required to answer the 

research questions posed. Collected from the data were all of the inter response times (amount of 

time between 2 consecutive responses) for each animal, as well as the total number of reinforced 

responses, error responses, and head entries. Finally, computed from the tallied totals were the 

total number of responses and the percent error of each animal’s responses. 

To extract the above information, a new date vector for-loop was instantiated (line 176). The 

eval function was then utilized again to copy the resets, reinNP, and headEnt matrices for 

the given day to temporary storage matrices (lines 179-181). A nested for-loop, a, with number 

of iterations equal to the number of animals in the cohort was instantiated to parse animal 

specific information from the columns of the data matrices (line 183). Each column of the given 

matrix was isolated into a vector (line 184), and any zero padding at the end of the vector that 

was added in the previous method was removed (line 185). The length of that vector was then 

stored to a variable (line 186) which was then stored to a matrix coordinate with rows 

corresponding to the date and columns corresponding to the animal (line 187). For example, the 

number of error responses on the 6th test day for the 9th animal in the cohort would be saved to 

the 6th row in the 9th column of the numResets matrix. 

 

ANALYSIS 

 

PERCENT ERROR  

 

The percent error calculation took the total number of error responses for a given animal and 

divided that by the sum of the number of error responses and the number of reinforced responses. 

This value was then stored into the percentError matrix in the same fashion as described 

above (line 199). Finally, to compute the total response number matrix, the error response and 

reinforced response matrices were summed together (line 203). 
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BURST ANALYSIS 

 

The final research questions pulled directly from the data were related to the concept of burst 

responses. A burst response was defined to be any response occurring within 1 second of the 

preceding response. A series of burst responses are grouped into clusters. The burst responses 

were then split into 2 categories: bursts/clusters following an error response and bursts/clusters 

following a reinforced response.  

Using another date for-loop and the eval function, temporary matrices were instantiated and 

stored with the reset times, reinforced nose poke times, and inter response times for the specified 

date (lines 205-215). A for-loop was used to parse through the inter response times for each 

animal. Any zero padding at the end was turned into a series of 9’s. Any inter response time 

above 1 second was stored as a 0 (negative for a burst response) and any inter response of 1 

second or under was stored as a 1 (positive for a burst response (lines 217-226). A series of 3 if-

else statements nested within a while-loop were used to develop a second binary vector which 

stored a 1 for a reinforced response or a 0 for an error response for every response given by an 

animal (lines 234-254).  

A final series of nested if-then statements, for-loops, and while-loops compared the binary burst 

vector with the binary correct response vector. 4 different types of burst responses were 

recorded: a 1 denotes a burst after a correct response, a 2 denotes a burst after an error response, 

a 3 denotes a burst after a correct burst (signifying a successive reinforced cluster response), and 

a 4 denotes a burst after an error burst (signifying a successive error cluster response) (lines 261-

304). This burst analysis was completed for each animal and saved to a matrix with the columns 

representing the analysis results for each animal. The matrix was then saved with the date via the 

iterative naming process described in method 2 (line 305). 

 

COMMUNICATION 

 

RASTER PLOTS 

 

A raster plot is a way of communicating discrete events (such as a nose poke) over a period of 

time. Once all of the data was extracted and stored in MATLAB matrix format, the data needed 

for the raster plot had to be isolated and organized into a plottable vector format. A vector 

containing the animal numbers used for the plots was defined for each cohort (lines 488-490). To 

compare all of the animals and runs on a single plot, the saline and test days were separated on 

the y-axis by 0.5 units (lines 492, 493). For each cohort of animals, a for-loop was used to loop 

through the matrix stored from the Data Matrix Storage step to isolate the time data for each 

animal of interest (line 495). Two vectors were initialized containing the reinforced and reset 

times for the animal of interest (lines 497, 498). Nested for-loops were then used to remove the 

empty indices concatenated on the vectors during the Data Matrix Storage step (lines 500-512).  
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Since all of the time data for a single run would be plotted at a single y-axis value, a vector of the 

same length as the time data vectors was instantiated with 1’s (lines 514-515). For-loops were 

then used to re-instantiate the y-vectors with the appropriate placement on the y-axis (lines 517-

523).  The reinforced response were then plotted as a dot at the appropriate time indices and the 

reset responses were plotted as a “+” sign (lines 525-528). 

 

RESULTS 

 
The computational methods described above allowed for efficient and robust handling, 

processing, analysis, and communication of the DRL data. Classical presentation of DRL data 

includes IRT binning and binary performance plots. However, those summaries lose much of the 

temporal information of an animal’s behavior. To visualize the complete response activity of an 

animal during a test session, raster plots were used. A representative raster plot of a male mouse 

with saline and U50,488 pretreatment is shown (Figure 3, from Abraham et al., 2018). This type 

of data presentation displays the total number of responses, ratio between reinforced and non-

reinforced responses, all of the IRTs, and temporal patterns across the trial. For example, under 

U50,488 treatment, it is clear that the number of non-reinforced responses increased and the 

number of reinforced responses decreased, which is classically summarized with a bar graph. 

However, it is also apparent that the response frequency during the first 30 minutes of the 

U50,488 session is lower which suggests information about the temporal effects of U50,488 – 

information not captured with classical presentation methods.  

 

Figure 3: Raster Plot of DRL Behavior with Saline and U50,488 Pretreatment  
Raster plot of a sample data set. Responses from a single male animal during a 60 min DRL sessions with saline (top) 

or U50,488 (bottom) pretreatment. Closed circles represent reinforced responses and ‘+’ symbols represent 

nonreinforced responses. From Abraham et al., 2018.  
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Figure 4: System KOR Activation Produced Disruptions in DRL Performance  
(a) KOR activation by U50,488 decreased the total number of reinforced responses and increased nonreinforced 

responses without altering total number of responses. The number of responses made by an individual mouse 

during a 60 min period following saline pretreatment were compared with responses following U50,488 

pretreatment by a paired t-test (*po0.05). (b) KOR activation significantly increased percent error during the DRL 

session. (c) A histogram of interresponse times showing the number of responses per 3 s bin. U50,488 increased 

responses occurring within 0–3 s of the previous response. (d) KOR activation significantly increased the number of 

burst responses (an additional response ≤1 s after the previous response). (e) Repeated forced-swim stress 

increased percent error. Pretreatment with nor-BNI (KOR antagonist), but not saline, blocked increases in percent 

error following a second exposure to repeated forced-swim stress compared with baseline. Error bars indicate SEM. 

*P<0.05; ***p<0.0001; NS, not significant. Adapted from Abraham et al., 2018. 

 

As interpreted from Figure 3, the animal’s response frequency is lower during the first 30 

minutes of U50,488 treatment compared to control treatment. This is potentially due to U50-

induced locomotor suppression (Paris et al., 2011). However, this suppression of activity at the 

beginning of the trial does not affect the total number of responses across the trial (Figure 4.a; 

adapted from Abraham et al., 2018). Importantly, U50,488 treatment does increase the percent 

error during the task (Figure 4.b), due in part to an increase in burst responses (Figure 4.d). 
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Additionally, pre-exposure to a stress paradigm increases the response error, but that response is 

blocked by KOR-antagonist nor-BNI, suggesting that the stress-induced behavioral disruption is 

KOR-dependent.  

 

Figure 5: KORs in VTA Dopamine Neurons Are Required for KOR-Mediated DRL Disruptions 
(a) There was a significant increase in the number of nonreinforced responses in Control and DRN/nor-BNI, but not 

VTA nor-BNI or PFC/nor-BNI, following U50,488 treatment. (b) U50,488 caused a significant increase in percent error 

in Control, DRN/nor-BNI, and PFC/nor-BNI mice, but not VTA/nor-BNI-injected mice. (c) There was a significant 

effect of U50,488 treatment on the number of burst responses, but no significant interaction between treatment 

and brain region. (d) U504,88 treatment significantly increased the number of nonreinforced responses but there 

was no significant interaction between treatment and genotype. KOR activation significantly increased percent error 

(e) and burst responses (f) in Control and KOR CKOPET mice, but not KOR CKODAT or KOR KO mice. Error bars 

indicate SEM. *P<0.05; **p<0.01, ***p<0.0001. Adapted from Abraham et al., 2018. 

 

At the circuit level, micro-injections of nor-BNI in the VTA, but not the PFC or DRN, block 

U50-induced increases in percent error (Figure 5.b; adapted from Abraham et al., 2018). 

However, the increase in percent error in the PFC is due to a non-significant increase in non-

reinforced responses (Figure 5.a) and not an increase in burst responses (Figure 5.c), potentially 

suggesting that the PFC plays a role in the loss of inhibitory control observed through the burst 

response output. Additionally, both global KOR knockout and conditional knockout of KOR in 

dopaminergic (DAT) neurons blocked the U50-induced increases in both percent error (Figure 

5.e) and burst responding (Figure 5.f), suggesting that dopamine neurons are required for KOR-

mediated disruptions in DRL performance and inhibitory control. Lastly, conditional knockout of 

p38 MAPK from dopamine neurons (Figure 6.a, from Abraham et al., 2018) and global deletion 
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of GRK3 (Figure 6.b) does not prevent KOR-mediated increases in percent error, and G-biased 

KOR agonist nalfurafine significantly increases percent error (Figure 6.c). These results suggest 

that KOR-mediated DRL disruptions are arrestin independent.  

 

Figure 6: KOR-Mediated DRL Disruptions are Arrestin Independent 
 (a) Conditional deletion of the p38α MAPK in dopamine neurons does not prevent KOR-mediated increases in 

percent error in the DRL task. (b) Global deletion of the GRK3 does not prevent KOR-mediated increases in percent 

error in the DRL task. (c) The G-biased KOR agonist nalfurafine significantly increases percent error in the DRL task, 

indicating that DRL disruptions are arrestin independent. Error bars indicate SEM. *P<0.05, ***p<0.0001. 

Cumulatively, these results demonstrate that KOR-activation, either by stress or pharmacological 

means, plays an important role in the disruption of a time-dependent behavioral inhibition task. 

The VTA was required for these behavioral disruptions suggesting that reward value and reward 

expectancy are important in the disruption of inhibitory control (Schultz et al., 1997; Hart et al., 

2014).  

My results from this analysis were published: Abraham, A.D., Fontaine, H.M., Song, A.J., 

Andrews, M.M., Baird, M.A., Kieffer, B.L., Land, B.B., Chavkin, C. (2018) Kappa opioid 

receptor activation on dopamine neurons disrupts behavioral inhibition. 

Neuropsychopharmacology, 43:362-372. [PMC5729556] 

 

DELAYED ALTERNATION 
 

MOTIVATION 
 

As demonstrated by the DRL assays, the VTA’s encoding of reward valuation and reward 

expectancy play an important role in an inhibitory control task. This further supports the 

involvement of expectancy theory in behavioral control and motivated decision making. As 

introduced previously, expectancy theory involves the evaluation of previous successes and 

failures, present expectations of success, and the reward value of a given situation (Atkinson and 

Birch, 1978). In order to appropriately place an expectation on a certain action, memory of 

previous experiences and the events leading up to the current decision are necessary.  
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Generally, there are three types of memory that can be integrated to form decisions and inform 

behavior: long-term, short-term, and working memory (Cowan, 2009). Long-term memory is the 

large store of knowledge of prior events. Short-term memory refers to a duration and capacity 

restricted cache of information about recent or recently recalled events. Short-term memory may 

involve conscious or unconscious information encoded by presently active cell-assemblies 

(Hebb, 1949). Working memory is often considered a subset of short-term memory and is 

involved in the conscious thoughts used to plan and carry out a behavior (Miller et al., 1960). 

Working memory is involved in cognitive decision making and is prone to disturbance and 

distraction (Unsworth and Engle, 2007). Playing chess is an example – to become good at chess, 

a player must integrate memories from previous games (long-term memory) with information 

about recent moves (short-term memory) and compute the potential outcomes of a given set of 

potential next moves (working memory). 

Impaired working memory is associated with various stress-related psychiatric disorders 

including PTSD, depression, anxiety, and substance use disorder (Vasterling et al., 1998; 

McDermott and Ebmeier, 2009; Moran, 2016; Yan et al., 2014). Stress is known to have 

complex effects on working memory through disruption of the inputs to the hippocampus and 

PFC (Luithi et al., 2008; Weerda et al., 2010). Furthermore, both stress-induced activation of 

KOR and protracted withdrawal from opiates has been shown to cause deficits in learning and 

working memory (Carey et al., 2009; Lutz et al., 2014). However, there is conflicting evidence 

around the role of KOR in these deficits, with KOR agonism being shown to improve working 

memory in some studies (Ohno et al., 1991; Wall and Messier, 2002; Kuzmin et al., 2006). 

 

EXPERIMENTAL APPROACH 
 

Behavioral paradigms to investigate working memory require both a decision that is determined 

by a prior event and a delay between the prior event and the decision. A validated paradigm for 

testing working memory in rodents is the operant delayed-alternation task (Rossi et al., 2012; 

Figure 7). The delayed-alternation task requires an animal to make a free response, wait a set 

period of time, then make an alternation contingent response, i.e. respond differently from the 

first response (Izaki et al., 2001; Dudchenko, 2004). The animal is only rewarded if their second 

response is an alternation from the first response. A typical response task for a mouse is a lever 

press with the reward being a sucrose pellet. In this task, the decision of which lever to press 

requires the mouse to integrate their previous decision with the evaluation of the expected reward 

– sucrose – and the potential risk – resetting the trial.  

The goal of this assay was to assess the effect of PFC KOR and opiate withdrawal on working 

memory. Beginning with the behavioral task, forced swim stress paradigms, systemic KOR 

agonism with and without local KOR antagonism, and morphine withdrawal were tested to 

observe their effects on delayed-alternation timing and performance.  
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Figure 7: Operant Delayed-Alternation Task Paradigm  
To start the trial, the animal is presented with both levers and allowed to make a free response choice (Left). The 

levers are then retracted for a set wait period (Middle). At the end of the wait period, the levers re-extend, and the 

animal can make their decision (Right). If the animal chooses the opposite lever as their free choice, they are 

rewarded with a food pellet.  

METHODS 

 

The operant delayed-alternation task consists of 3 specific periods in the experimentation 

process: behavior acquisition, behavior stabilization, and a test period. During behavior 

acquisition, the mice learn the task through trial and error of lever pressing for their reward. They 

are then trained to alternate lever presses for reward. During the behavior stabilization period, the 

learned behavior of the mice is reinforced through repeated sessions and monitored for 

consistency. The test period either consists of 2 test days, a control day followed by a stress or 

drug trial test day, or longitudinal tracking of performance over multiple days. 

The delayed-alternation operant chambers have two levers. The mice begin in a fixed ratio (FR1) 

task where every lever press results in delivery of a sucrose pellet. They then move into 60 

minute delayed-alternation conditioning starting with 2-second, then 5-second, then 10-second 

wait periods. During the delayed alternation conditioning, both levers would be presented, the 

animal had free choice for their first press. Both levers would then retract during the prescribed 

wait period with the house light remaining on. When the wait period was over, the levers would 

come back out and the mouse would make its choice: if the mouse chose the same lever, there 

would be no reward; if the mouse chose the opposite lever, a sucrose pellet would be delivered. 

The second lever press concludes the trail – the house lights would turn off, and the levers would 

retract for 20 seconds during the intertrial period (adapted from Yin, 2010). After a training 

period, test sessions included either systemic U50,488 treatment in mice with ACSF (control) or 

nor-BNI microinjection in the PFC; repeated forced-swim stress (rFSS) in mice with ACSF or 

nor-BNI microinjection in the PFC; or mice with increasing doses of morphine over a 5-day 

period followed by a 5 day withdrawal period.  

The software connected to the operant chamber recorded timestamps for right and left lever 

presses, correct and incorrect alternations, head entries into the food tray, and delay period start 
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and end. The data was exported as a .txt file. 

 

COMPUTATIONAL APPROACH 

 
Classically, delayed alternation data is assessed for percent of correct alternations and 

perseverance (repetition of the same lever press) for a given trial, however little attention has 

been paid to the timing of these responses or how the timing and performance change temporally 

within a single trial. In order to better quantify the type of effects KOR has on working memory, 

there is a computational need to analyze the finer temporal characteristics of performance in the 

delayed alternation task.  

Specific effort was devoted to quantifying the latency of a response (the amount of time after the 

levers are presented and the alternation choice), the correlation between latency and 

performance, and within session time binning to observe performance changes within a given 

session.  

 

HANDLING  

 

The delayed-alternation system generates a large amount of data per animal, per run. The times 

of every lever press, reinforced and non-reinforced response, head entry, and delay period is 

recorded. A given run can generate between 1000 and 5000 pieces of data per animal. With 

approximately 3-8 runs per day, with 2 animals per run, over the course of 94 test days, there 

was approximately 3 million raw data points generated.   

In order to read each file into MATLAB (version R2017a) and organize both by date and by 

animal, the files were named in an iterative format. Therefore, the files were named by their date 

followed by their box number and placed into a single destination folder (ex. “20181206cda5”). 

A folder path was defined, the number of files in the directory was extracted using load, dir 

and numel and a for-loop was used to extract data from all the files (Appendix II, Delayed 

Alternation Code, lines 7- 23). A regular expression (regexp) was used to load each file as 

whitespace (\s+) and new line (\n) delimited (lines 26-27). The raw data was loaded into a cell 

array and NaN values were used to maintain column-wise structure (lines 29-41).  

Once the file was read into MATLAB, a search algorithm (find) was used to find the 4 data 

heading within the file that precede the related data. The line number at which the given 

subheading was found within the file was then stored to the datalocations entry in the 

structured variable for that given file (lines 44-47). The run date was then extracted from the top 

of the file and stored into the date entry of the structured variable (lines 49-51). Finally, the 

number of boxes recorded in the file was determined by the number of data headings and stored 

in the structured variable (lines 53-54).  

The vector data under each data heading (B, E, and T) was then extracted by evaluating the first 

line under the given heading and the last line above the next heading, the data was stored in the 
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structured variable as parsedData under the given file, box number, and data heading (lines 56-

91). The total number of left and right presses, correct and incorrect alternations on each lever, 

and pellets delivered was extracted from the B data and stored into the structured variable under 

totals in the given file and box number (lines 93-112).  

Animal ID numbers were extracted from the file name using regexp and stored in the structured 

variable under the given file in the animalID entry (lines 113-124). If no ID number was 

present in the file name, that file was flagged and the file name was stored in the structured 

variable to be checked (lines 112, 118-119, 126-128). All of the data was then restructured to be 

organized by date as opposed to file name into the sortByDate structure (lines 156-205) 

(Figure 8). Finally, the dates for each run were translated into number of days from the first 

delayed alternation training day (10/29) and stored in the vector days (lines 210-214).  

Finally, the event and time stamp information were extracted from parsedData and stored into 

the sortByDate structure. The index of every right lever press, left lever press, correct 

alternations right, correct alternation left, incorrect alternations right, incorrect alternations left, 

delay start, and delay end were stored into vectors (lines 514-521). Those indices were then 

coded into a vector, press_latency_vector and stored into the sortByDate structure. 

Those indices were then used to extract the time stamp data from for each event and erroneous 

indices were removed (lines 523-554). The time data was then stored into the sortByDate 

structure under the given animal number and box in the latencies entry (lines 557-565).  

 

PROCESSING 

 

In order to extract higher resolution temporal information, the response latency was calculated 

for all responses across 15 minute time bins throughout the trial. The number of bins was set to 4 

and the bin bounds were calculated assuming a 60 minute session (lines 635-636). Using nested 

for-loops, empty entries were created in latencies.analysis to store incorrect latency and 

correct latency information for the whole run and within bins (lines 646-653). The 

press_latency_vector and plb data was then saved in temporary vectors (lines 655-656). 

To do the latency calculation, the second press was first determined to be correct or incorrect 

from the coded values in press_latency_vector (lines 667, 680). The latency of each press 

was then calculated by subtracting the time at the end of the delay from the time of the second 

lever press using the coded values stored in press_latency_vector; this data was then stored 

in the corresponding entries in latencies.analysis and in the appropriate bins (lines 668-

678, 681-690).  

 

ANALYSIS 

 

AVERAGE LATENCY, TOTAL RESPONSES, PERCENT CORRECT 
 

The binned latency times were then used to calculate the average, standard deviation, number of 
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incorrect and correct latencies, total number of responses, and percent correct within each bin; 

those values were stored in the bins entry under latencies.analysis (lines 700-721). The 

averages and standard deviations were calculated using the mean and std functions. The number 

of correct and incorrect responses were calculated using the length function and these values 

were added to determine the total number of responses per bin. Finally, the percent correct was 

calculated by dividing the number of correct alternations by the total number of responses.  

AVERAGE ACCROSS TEST GROUPS  

 

To average the latencies, total responses, and percent correct across test groups, vectors 

containing test days for each group were declared (lines 767-800). A new structured variable 

named binPlot was declared to store the full vectors of the percent correct, total number of 

responses, correct latencies, and incorrect latencies for each group separated by time bins (lines 

819-825). The aforementioned values were then copied from their respective places in 

sortByDate into binPlot for each treatment group and test day (lines 827-995). The mean, 

standard deviation, and standard error was then calculated for each data type, test group, test day, 

and mean (lines 997-1006). Mean and standard deviation were calculated using nanmean and 

nanstd to account for NaN values generated by dividing by 0 and standard error was calculated 

by dividing the standard deviation by the square root of the length of the respective vector 

(sqrt(length(…))). The same was repeated for the morphine test group across all morphine 

and withdrawal trial days (lines 1026-1073).  

 

COMMUNICATION 

 

RASTER PLOTS 

 

To create a raster plot that fully captured the animal’s behavior, information about which lever is 

being pressed, whether that press was correct or incorrect, and the latency of that press must be 

represented. In order to do so, black ticks indicate the first press (to give a sense of latency), and 

the remainder of the information is represented in the second press – the alternation attempts. 

Correct attempts were indicated by a positive tick, incorrect attempts were indicated by a 

negative tick. Right lever presses were indicated by a blue tick, left lever presses were indicated 

by a yellow tick. In order to generate the raster, correct and incorrect alternations on each lever 

and delay start data (to represent the first lever press) was extracted from each date and animal in 

the latencies entry of sortByDate (lines 578-582). First press was plotted as a small black 

tick centered on the time axis, correct responses on the right lever were plotted as a blue positive 

tick, incorrect responses on the right lever were plotted as a blue negative tick, and so on (lines 

584-589). 

 



27 
 

LONGITUDINAL PLOTS 

 

In order to visualize how animal behavior changes over multiple sessions, longitudinal plots are 

used. First, the data was parsed by cohort (ACSF or nor-BNI microinjected animals). The days 

that each animal in that cohort was run is determined by evaluating which indices of the 

percentcorrect matrix for that animal have a value and storing the respective days in 

daysTemp (lines 196-200). Plot with the given percent correct and total response numbers on 

each day for each animal is generated (lines 201-209). A cell array containing the respective 

value for each animal on each day is created (lines 210-211). Those cell arrays are then 

translated into matrices with NaN values filling empty entries (lines 219-223). The average, 

standard deviation, and standard error within each day across animals is then calculated using 

nanmean, nanstd, and dividing the standard deviation vector by the square root of the length of 

that vector, respectively; the values were stored in new vectors (lines 225-227). A plot of the 

mean and standard error of the given value across days was then generated and labels were 

included to mark test days (lines 230-248). This was repeated for both cohorts to visualize both 

percent correct and total responses across days (lines 251-378). A similar method was repeated 

to visualize percent correct and total responses across the morphine test days (lines 391-500).  

 

BIN PLOTS 

 

To generate plots that show change between baseline and test days in the average correct and 

incorrect latencies, percent correct, and total number of alternations within bins, bar graphs were 

generated. The bar plots were separated by bin and difference colored bars were used to 

differentiate a baseline day from a test day and incorrect versus correct latencies. For each cohort 

and test group, the latency, performance, and response data stored in the binPlot structure was 

extracted and stored into a matrix (lines 1160-1193). A bar plot with error bars was then 

generated for each cohort, test type, and data category (lines 1195-1229). The latency plots were 

generated with 4 bars per bin: baseline correct, baseline incorrect, test day correct, test day 

incorrect. The percent correct and total response plots were generated with 2 bars per bin: 

baseline and test day.  

 

LATENCY HEAT MAPS 

 

To observe the change in latencies within bins across all of the morphine test days, heat maps 

were generated. The mean and variance of the binned correct and incorrect latency data was 

sorted and copied into matrices such that the first four rows were the 15-minute bins of animals 

1-4, the next four rows were the 30-minute bins of animals 1-4, and so on; the columns 

represented each morphine test day (lines 1097-1109). Heat maps of the average correct, average 

incorrect, variance of correct, and variance of incorrect latencies across animals, bins and days 

were generated (lines 1118-1130).  
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Figure 8: sortByDate Structured Variable Diagram 
Diagram depicting the database-like structure of the variable holding the delayed alternation data. Bolded text 

depicts a data field. Arrows depict the relationship between fields and the data within those fields. The column of 

bolded entries on the left depicts the variable call used to retrieve the data to the right.  
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RESULTS 

 

U50,488 AND STRESS 

 

The computational methods described above allowed for efficient and robust handling, 

processing, analysis, and communication of the delayed alternation data. Classical presentation 

of delayed alternation data includes percent of correct alternations and perseverance (repetition 

of the same lever press) for a given trial. However, those summaries lose much of the temporal 

information of an animal’s behavior. To visualize the complete response activity of an animal 

during a test session, raster plots were used. Representative raster plots of a mouse with a control 

microinjection of ACSF into the PFC are shown (Figure 9). As the animal progresses through 

training, their performance (percent correct) increases from 30% on the 2-second-delay paradigm 

to 74% on the 10-second-delay paradigm over the course of 94 days (Figure 9, plots 1-5). The 

raster plot presentation conveys information about the animal’s preferred lever. From the first 

plot, it is clear that the animal prefers the left lever. This preference results in perseverance 

which causes the untrained performance to be worse than chance (50%). On day 95, the animal 

was administered systemic U50,488 prior to being placed in the operant chamber (Figure 9, plot 

6). Administration of U50,488 resulted in a drop in performance back to untrained levels.  

 

Figure 9: Raster Plots of Delayed Alternation Behavior Across Training and on U50 Test Day 
Representative raster plots of a control mouse with micro injection of ACSF into the PFC. Plot 1 shows the first day 

of alternation training with a 2 second wait period. Plot 2 shows the first day of training with a 5 second wait period. 

Plots 3-6 are with 10 second waits. Plot 5 (pretest) shows standard performance of a trained animal (65-75% 

correct). Plot 6 shows reduction of performance on a U50 test day. Plots numbered 1 (top) to 6 (bottom). 
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Figure 10: Performance of ACSF and nor-BNI Treated Animals Over Training and Test Days 
Longitudinal performance (% correct) of control animals with ACSF microinjections (a) and nor-BNI microinjected 

animals (b). The training period begins with 2s and 5s delay training (gray bars) followed by 10s delay periods for the 

remainder of the testing. Test days are depicted by colored bars: blue = forced swim stress, red = 5 mg/kg U50 

pretreatment, orange = 10 mg/kg U50 pretreatment. (a) U50, but not stress, reduces performance to untrained 

level for control animals. (b) This reduction of performance is blocked by a micro-injection of nor-BNI into the PFC.  

This training trend and U50 effect was observed across all animals in the ACSF test group 

(Figure 10.a). U50 doses of 10 mg/kg (orange) and 5 mg/kg (red), but not forced swim stress 

(blue) reduced performance to untrained levels. This effect was blocked by local nor-BNI in the 

PFC (Figure 10.b) suggesting that KOR in the PFC is required for this KOR-mediated effect on 

delayed alternation performance.  

The raster plots also convey information about temporal changes in performance within a given 

trial. For example, during the U50 test day, the animal had a reduction in total number of 
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responses during the first 30 minutes of the trail (Figure 9, plot 6), likely due the same effects 

observed in the DRL performance (see Figure 3). The response frequency was recovered by the 

end of the trial. To parse out whether the change in performance was due to reduced response 

rate, the behavior factors were analyzed in 15-minute bins (Figure 11). As observed in the raster 

plots, the total number of responses was reduced during the first 30 minutes after U50 

administration (light blue), but the response frequency recovered to control levels (dark blue) by 

the end of the session (Figure 11.a, bottom plot). Importantly, the reduction in performance after 

U50 administration was observed through the duration of the session, even after the response 

frequency was recovered (Figure 11.a, middle plot). This suggests that the U50 mediated 

performance disruption was not simply due to a reduced response frequency.  

 

Figure 11: Temporal Effect of U50 on Behavior Within a Session 
Average latency (top), percent correct (middle), and total number of alternation attempts (bottom) of ACSF (a) and 

nor-BNI (b) microinjected animals on saline and U50 test days. U50 pretreatment decreases the percent correct 

throughout the duration of the trial, decreases the total number of responses during the first 30 minutes, and 

increases the latency to respond during the first 30 minutes. All effects are blocked in nor-BNI treated animals.   
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In addition to the changes in performance, the average latency to make a response during the first 

30 minutes after U50 administration was increased compared to baseline (Figure 11.a, top plot, 

note the change in scale). This increase may be due to locomotor effects; however, the effect 

appears more prominent on correct alternations (blue) than incorrect alternations (red) suggesting 

that there may be a cognitive component involved in this timing effect as well.  

 

MORPHINE WITHDRAWAL  

 

To visualize the effect of escalated morphine administration and spontaneous withdrawal on 

delayed alternation behavior, raster plots were generated (Figure 12). Prior to morphine 

administration, the animal was responding at a typical trained level (Figure 12, plot 1). On the 

fifth day of increased morphine administration, the animal had a disrupted response pattern 

during the last 30 minutes of the session, but their performance was similar to baseline (Figure 

12, plot 2). Over the course of a 5-day spontaneous withdrawal period, the animal’s performance 

increased above typical trained levels (Figure 12, plots 3-4).  

 

Figure 12: Raster Plots of Behavior During Morphine Treatment and Withdrawal 
Representative raster plots of a mouse treated with escalating doses of morphine followed by spontaneous 

withdrawal. Plot 1 shows standard trained performance. Plot 2 shows the last day of morphine treatment. Plot 3 

shows the first day of morphine withdrawal and Plot 4 shows the increase in performance observed on the fifth day 

of morphine withdrawal. Plots numbered 1 (top) to 4 (bottom). 
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This surprising result was observed across all animals who went through the morphine treatment 

paradigm (Figure 13). On the first high dose day of morphine treatment (blue, day 2), the total 

number of responses dips to about 30 percent of baseline (gray) with recovery over the next 3 

days of treatment (Figure 13.b). This dip in response frequency is likely due to the 

hypolocomotive effects of morphine and the recovery in response frequency is likely due to 

morphine tolerance (Timár at al., 2005). The delayed alternation performance was not 

significantly affected by morphine treatment, although the variance of performance between 

animals increased (Figure 13.a). Interestingly however, spontaneous morphine withdrawal 

(orange) resulted in an improvement in performance from baseline over five days and a sustained 

increase in total number of responses.  

 
Figure 13: Delayed Alternation Behavior Across Morphine Treatment and Withdrawal 
Longitudinal performance (% correct) (a) and total number of alternation attempts (b) for animals prior to morphine 

treatment (gray), during morphine escalation (blue), and during spontaneous withdrawal (orange). Morphine 

treatment initially reduced the total number of responses but had little effect on performance. During the 

withdrawal period, animals increased their total number of responses and continually increased their performance 

over the 5 days observed.  
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Additionally, the variance in the total number of responses during the withdrawal period 

decreased, and observation of the raster plot suggests that the animals are responding quickly and 

regularly. To test this observation, the average response latencies and latency variance was 

calculated for both correct and incorrect responses (Figure 14). The response latency increased 

during days 2-4 of morphine treatment likely due to the locomotor effects mentioned previously. 

During morphine withdrawal, both the average response latency and the variance of the latencies 

decreased suggesting that the animals were responding more rapidly and more consistently. 

Further investigation into these effects are required to draw a conclusion, but one hypothesis is 

that the animals were more motivated for a sucrose reward during withdrawal because they had 

lost body mass during morphine treatment, thus improving their attentions and performance.  

 

Figure 14: Response Latency During Morphine Treatment and Withdrawal 
Heat map showing the average (top) and variance (bottom) of correct (left) and incorrect (right) response latencies 

during 15-minute bins within test days during baseline, morphine treatment, and withdrawal periods. Morphine 

withdrawal decreases both the average latency and latency variance for all animals across all time bins.  

 

My findings will be submitted for publication: Abraham AD, Casello SC, Andrews MM, 

Rivera ZMG, Land BB, Chavkin C. Prefrontocortical kappa opioid receptor activation disrupts 

working memory via an arrestin-dependent mechanism. 
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CONCLUSION 

 
The principal findings of the studies presented in this chapter provide insight into the role of the 

KOR-dynorphin system on two important aspects of motivated behavior: inhibitory control and 

working memory. The DRL task demonstrated that KOR-activation in the VTA, either by stress 

or pharmacological means, disrupts behavioral inhibition in an arrestin-independent manner. The 

operant delayed alternation task demonstrated that pharmacological KOR activation in the PFC 

disrupts performance in a working memory task, but that rFSS does not cause PFC-KOR 

dependent disruptions in working memory. Additionally, spontaneous withdrawal from escalated 

morphine administration enhance delayed alternation performance. Collectively, these results 

demonstrate that KOR activation causes cognitive disruptions that affect important aspects of 

motivated behavior, potentially explaining clinically relevant relationships between stress and 

various cognitive and behavioral disorders. 
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CHAPTER 3 – CIRCUIT 
 

OVERVIEW 

 
Chapter 3 introduces the importance of neural circuit plasticity on the regulation of behavior in 

response to internal and external inputs. This information details the short-term and long-term 

synaptic changes that can occur as a result of adaptive and maladaptive responses to external 

pressures. Stemming from this context, the effects of stress on the production of both adaptive 

and maladaptive changes in synaptic activity are described. Finally, the current understanding of 

the role of KOR on affecting neural transmission is detailed.  

The role of KOR on the valuation of reward is discussed, especially KOR’s effect on changes in 

reward valuation following stress. This chapter describes an experimental technique, in vivo fiber 

photometry, that can be used to investigate the role of KOR on stress-induced changes in neural 

activity in behaving animals. The current gaps in knowledge leading to the research questions 

being investigated are explained. Then, the experimental and computational methods used to 

investigate these questions are described in detail, with an emphasis on novel computational 

approaches to analyzing the data produced.  

Finally, the experimental results discovered through these assays are presented within the context 

of KOR-mediated implications on stress-induced changes in reward signaling. 

 

BACKGROUND AND SIGNIFICANCE 
 

Just as a computational system uses electrical circuits to store and integrate inputs, biological 

systems use neural circuits to store and process inputs to produce appropriate behaviors. Neural 

circuits are plastic, ever-changing processing units with the ability to adjust to both external 

stimuli and internal pressures to promote learning and adaptive behaviors. However, under 

intense or prolonged pressures, changes in neural circuitry can result in maladaptive behaviors. 

Changes in neural function can result from effects at the level of single receptors, to cell 

excitability and morphology, to synaptic transmission, to large circuit dynamics and can cover 

timescales from milliseconds to years (Destexhe and Marder, 2004). Neurons communicate with 

each other through chemical and electrical synapses. An action potential is generated by 

summing the excitatory and inhibitory inputs from all of the synapsing neurons; when the 

summation reaches a threshold, an action potential is fired. These inputs are generated in the 

form of neurotransmitters released by the presynaptic cell that bind to receptors on the post 

synaptic neuron. The threshold of the neuron is determined by its resting potential, density of 

receptors, and receptor subtypes (Platkiewicz and Brette, 2010).  
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The strength of a synapse can be altered by the temporal firing pattern of the presynaptic neuron 

or by the neuropeptides delivered hormonally or by neuromodulatory neurons (Marder and 

Thirumalai, 2002). Short-term changes can include depression or facilitation in which successive 

action potentials decrease or increase respectively. These short term changes are typically due to 

changes in neurotransmitter release – repeated presynaptic firing causes an increased 

concentration of neurotransmitter in the synaptic cleft; changes in membrane potential – repeated 

firing causes a build-up of ions within the post-synaptic cell which can cause depolarization or 

hyperpolarization; receptor desensitization – repeated activation of a receptor resulting in the 

receptor becoming inactive; or retrograde signaling – the release of messengers from dendrites 

that act to inhibit or excite presynaptic terminals (Abbott and Regehr, 2004). However, 

prolonged or persistent short-term changes can result in long-term changes coined long-term 

potentiation (LTP) or long-term depression (LTD). LTP and LTD can result from changes in 

presynaptic transmitter release, postsynaptic receptor expression, and morphological changes at 

the synapse (Bliss and Collingridge, 1993).   

These changes in synaptic strength are required for organisms to process and incorporate 

information about prior experiences (Holtmaat and Svoboda, 2009; Wilbrecht et al., 2010). 

However, dysregulation of synaptic plasticity results in maladaptive behaviors and has been 

implicated in a number of stress-related disorders such as addiction, schizophrenia, anxiety, 

depression, and PTSD (Russo et al., 2009; Hayashi-Takagi et al., 2010; Liu et al., 2017; Flor and 

Nees, 2014). Stress has been shown to alter cell morphology, specifically dendritic spine density, 

which alters the strength of synapses (McEwen, 2000; Wellman, 2001; Vyas et al., 2003). 

Additionally, stress has been shown to alter the receptor type and density expression on neurons, 

also causing changes in synaptic strength (Campioni et al., 2009).  

Changes in neural activity evoked by environmental factors affect circuit dynamics, resulting in 

short- and long-term behavioral changes that can be adaptive or maladaptive. To determine the 

mechanisms of how environmental factors, such as stress, affect behavior, investigation into the 

underlying circuit dynamics in needed. To elucidate the short-term changes resulting from a 

given experience, in vivo neural recording tools, coupled with appropriate analysis methods are 

necessary.  This chapter introduces a method of in vivo neural recording that can be used during 

behavioral experiments, details the inputs and outputs under investigation, and describes 

computational methods to better utilize and interpret the data produced. 

 

GCaMP FIBER PHOTOMETRY 

 

MOTIVATION 
 

As introduced in Chapter 1, stress activates the KOR-dynorphin system. KOR activation is 

known to stimulate G-protein signaling resulting in reduction in neural activity by means of ion 

channel and neurotransmitter release changes (Bruchas et al., 2010). Additionally, KOR 

activation results in activation of the p38 signaling pathway which has been shown to cause LTD 
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(Moult et al., 2008). These synaptic changes are likely involved in the aversive learning and 

reward signaling disruptions associated with stress and drug abuse.  

 

Figure 15: KOR-Mediated Effects on Cocaine Reward Potentiation 
(a) Cocaine-conditioned place preference scores for animals receiving cocaine after no pretreatment or after 

pretreatment with U50,488 either 15 or 60 min prior. KOR activation at 15min prior blocks cocaine reward. KOR 

activation 60min prior potentiates cocaine reward. Error bars represent SEM. Adapted from Ehrich et al., 2014. (b) A 

conceptual model to explain the behavioral results depicted in a. Aversion due to KOR agonist treatment within 15 

minutes prior to cocaine exposure cancels the rewarding effects of the cocaine, blocking the reward preference. 

Aversion due to KOR treatment 60 minutes prior to cocaine exposure reduces the reward baseline without blocking 

the rewarding effects, effectively causing reward potentiation compared to normal cocaine reward. Adapted from 

Ehrich et al., 2014. (c)  Activation of the KOR/dynorphin system through stress increases dysphoria, negatively 

shifting the hedonic or ‘mood’ state of the animal. This downward shift in baseline creates larger potential positive 

valence for the drug of abuse, allowing the animal to experience more rewarding effects of the drug. From Bruchas 

et al., 2010. (d) U50,488-conditioned place aversion was restored after injection of DIO-KOR-GFP into the VTA of 

DATCre/+, KOR knockout mice, suggesting KOR on VTA DAT neurons is sufficient to observe U50-CPA, Adapted from 

Ehrich et al., 2015.  

Studies reporting the effect of KOR activation on reward valence have shown that KOR 

activation 60 minutes prior to cocaine exposure produces an increase in cocaine reward, however 

exposure 15 minutes prior blocks the rewarding effects of cocaine (McLaughlin et al., 2006) 

(Figure 15.a; Ehrich et al., 2014). This effect is hypothesized to be produced by KOR-mediated 

presynaptic inhibition of dopamine release resulting in a reduction in baseline state (Carrol and 

Carlezon, 2013; Shippenberg et al., 2001) (Figure 15.b; Ehrich et al., 2014). This effect has been 
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nominalized as the ‘Hedonic State’ hypothesis in which a reduced hedonic state caused by stress 

(or pharmacological KOR activation), would result in a greater change in mood following a 

rewarding stimulus, effectively increasing reward valance (Figure 15.c; Bruchas et al., 2010).   

Additionally, KOR-induced aversion (discussed in Chapter 1), is mediated by KOR activity in 

VTA dopamine neurons supporting the hypothesis that these behavioral effects are produced by 

KOR-mediated inhibition of dopamine release in the VTA (Figure 15.d; Ehrich et al., 2015). 

However, KOR on VTA dopamine (DAT) neurons has not been directly linked to stress induced 

cocaine potentiation. Nor has the proposed KOR-mediated activity of these neurons been 

observed during or following stress in vivo.   

 

EXPERIMENTAL APPROACH 

 
In order to determine if stress-induced activation of KOR on VTA DAT neurons causes changes 

in neuronal activity that can explain the increased reward valence of cocaine under stress, tools 

to allow for recording of neuronal activity in vivo are necessary.  

One measure of neural activity is calcium signaling. Calcium ions (Ca++) enter neurons during 

the firing of an action potential and during synaptic transmission. Therefore, the concentration of 

Ca++ in the cell can be a correlate for neural activity (Yasuda et al., 2004). Genetically encoded 

calcium indicators (GECIs) such as GCaMP are the state-of-the art for calcium-signaling 

analysis (Tian et al., 2009). In order to monitor calcium activity during behavior in vivo, fiber 

photometry can be used. Fiber photometry utilizes implanted optical fibers to capture photon 

release from optically active proteins to detect broad activity of neurons or pathway byproducts 

within the implanted region (Cui et al., 2013; Gunaydin et al., 2014).  

The goal of this assay was to assess the activity changes of VTA DAT neurons during behavioral 

experiences to inform the role that VTA DAT neurons play in KOR-mediated behavioral 

changes. Beginning with the fiber implantation, VTA recordings during rewarding experiences 

such as sucrose pellet interaction followed by recordings during stress paradigms were 

conducted. Recordings during stress paradigms were done in both wildtype mice as well as mice 

with genetic excision of KOR from dopamine neurons to determine the regional dynamics and 

neuronal population effects underlying the encoding of experience in the context of future 

behaviors.  

 

METHODS 

 

To express GCaMP on DAT neurons in the VTA, an AAV-DIO-GCaMP6m virus was injected 

into the VTA of DAT-Cre expressing mice. Mice were then implanted with an optic fiber into 

the VTA and given time to recover. On a test day, mice are connected to the fiberoptic cable and 

the recording is started. Acquisition is done via the Tucker-Davis Technologies Fiber 

Photometry System with Synapse software.  
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While recording, mice were run through two behavioral paradigms: sucrose pellet interaction and 

repeated forced swim stress (rFSS). During pellet interaction, mice are placed in a housing cage 

and allowed to freely explore and interact with food pellets placed within the cage. During the 

rFSS paradigm, mice are placed in water buckets to swim for 6 minutes, then given a 6-minute 

rest, repeated 4 times in succession.  

 

The software outputs a .tdt file containing the fluorescent values recorded. The .tdt file is 

converted into a .txt file in a custom program created by Scott Evans.  

 

COMPUTATIONAL APPROACH 

 
The output from this type of recording includes temporal intensity information across the 

duration of the trial as well as behavioral and pharmacological time points that can be time-

locked with the neural signals. Classically, fiber photometry data is down-sampled and assessed 

for change in fluorescence over a baseline or quantified by the occurrence of transients (spikes in 

calcium signaling over a threshold). While robust, these analyses only scratch the surface of the 

available information recorded in each session. In order to better unravel the neural activity and 

outputs contributing to disruptions in circuit dynamics during behavior, there is a computational 

need to improve the data handling techniques and breadth of analyses available to researchers. 

Specific effort was devoted to exploring various analysis techniques in an attempt to capture a 

higher resolution of temporal information from the recordings.   

 

HANDLING  

 

The fiber photometry system generates a large amount of data per animal, per run. At a sampling 

frequency of 1017 Hz, every 16 minutes of recording time generates 1 million data points. With 

an average rFSS recording lasting 2 hours, each recording contains about 7.5 million data points 

to be read in and handled.  

In order to read each file into MATLAB (version R2017a), a file name is defined (Appendix II, 

Fiber Photometry Code, Load In, line 10). That filename is then sent to analyzer (Appendix 

II, Fiber Photometry Code, Analyzer Function). analyzer concatenates the filename passed 

with the recording type and file suffix (e.g. Subject1-190314-120806 becomes Subject1-

190314-120806_greG.txt)  (lines 11). The data is read in as whitespace delimited using 

textread and converted into a vector using str2double (lines 13-14). That vector stores each 

time value followed by the fluorescence signal value, thus every odd entry is a time value and 

every even entry is a signal value. That vector is then sent into separate to divide the vector 

into two separate vectors containing the time and signal information (Appendix II, Fiber 

Photometry Code, Separate Function). The separate function uses a for-loop to separate the 

data into time and signal vectors (lines 4-7). The separated vectors are then returned to 

analyzer.  analyzer then produces a raw data plot to check the recording quality (Analyzer 
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Function, lines 39-43) and returns the separated data to the main file. The data is then saved as a 

.mat file under the same name as the original file (Load In, lines 15-16).  

 

PROCESSING 

 

For simplicity, a sample program is included in the appendix (Appendix II, Fiber Photometry 

Code, Sample Program) to demonstrate the processing, analysis, and communication 

computations, however this program is a simplified version of the actual programs used to 

analyze the data. 

 

FILTER 

 

Fiber photometry recordings typically have a low signal to noise ratio. In order to pull out the 

real signal, a filtering or smoothing function can be used. A typical smoothing function is a 

smoothing window or moving average. A moving average takes a ‘window’ of a set size (line 

11), averages all of the points within the window (lines 16-17), stores the averaged value in a 

new vector (line 19), then shifts the window by a set amount and averages again (for-loop 

iteration). To retain the sampling frequency, the window only shifts by 1 index, but to down 

sample, the for-loop can be set to iterate by a step greater than 1. To achieve the same effect as a 

moving window, but without the option to down sample, a simple transfer function can be used 

(lines 25-27).  

 

NORMALIZE 

 

The fiber photometry system takes photons as an input, then translates photons to electric current 

to produce a value. Thus, the baseline value depends on the average number of photons entering 

the system, the resistance along the optical pathway, and the photon capture rate. Thus, the final 

output value of the system is proportional to but not directly representative of the number of 

photons being emitted. Therefore, the values outputted by the system must be normalized to a 

baseline. To normalize, a baseline period must be set (lines 30-31), then those values are 

averaged to determine an average baseline (line 33). The baseline value is then subtracted from 

the original signal and the resulting difference is divided by the baseline (line 35) to achieve a 

ΔF/F value.  

 

ADJUST FOR DRIFT 

 

Fiber photometry recordings are also susceptible to drift. Drift can occur from the system at the 

level of the photodetector (Zalocusky et al., 2016) which typically presents as linear drift, or at 

the biological level from reduction in initial excitability and photobleaching which typically 

presents as a first order exponential decay. To adjust for these effects, a linear adjustment using 



42 
 

polyfit (lines 42-46) or an exponential adjustment using fit (lines 49-57) can be performed. 

Typically, these adjustments are performed on a baseline period and applied to the whole 

recording (lines 38-39) to ensure that experimental results are not being captured and discarded 

with the function fit.  

 

ANALYSIS 

 

AVERAGE ACROSS ANIMALS 

 

To observe trends across animals, signals must be averaged with attention to appropriate time-

locking of signals. Not shown in the code is time-locking definitions. To average signals across 

animals, it is important to consistently time-lock events with the signal and compare signals that 

are recorded during the same behavioral experiences. It is assumed that this has been done to 

define swim1_1 (the first swim of animal 1), swim1_2 (the first swim of animal 2), etc. (lines 

60-66). Any signals being compared should be the same length, i.e. swim1_1 should be the 

same length as swim1_2, etc. Each signal being compared can then be concatenated column-

wise into a matrix (e.g. swim1) (lines 60-66). To average each signal for the full time period, 

mean is used to average each column of the matrix, i.e. compute the average signal for each 

animal during the behavioral time period (lines 68-71). To compute an average across animals, a 

second mean is used (lines 68-71). The same logic is used to compute standard deviation with 

std, and standard error by dividing by the square root of the number of animals being averaged 

(lines 73-76).  

 

FOURIER ANALYSIS 

 

Every time dependent signal can be represented as a weighted sum of sinusoidal signals of 

constant frequencies. A Fourier transform decomposes a time-domain signal into its respective 

frequency contributions. The frequency contributions provide insight about the dominant 

frequencies within a signal which can suggest biologically relevant frequencies and shifts in 

peaks can inform how a given treatment changes the underlying circuit dynamics.   

 

To transform a time-domain signal into the frequency domain, the discrete fast Fourier transform 

function, fft, is used (line 80). The output of fft if a vector, Y, the same length, L, as the 

original signal, sig, such that: 

𝑌(𝑘) = ∑ 𝑠𝑖𝑔(𝑙) ∗ 𝑒(−𝑗∗2∗𝑝𝑖∗(𝑘−1)∗
𝑙−1

𝐿
) , 1 ≤ 𝑘 ≤

𝐿

𝑙=1

𝐿 

To reconstruct the frequency contribution, the transform must be divided by the length of the 

signal which produces a 2-sided frequency spectrum (line 81). To produce a 1-sided spectrum, 
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only the first L/2 elements are stored (lines 82-83). To display against the appropriate 

frequencies, the sampling frequency divided by the length is uses as a scalar multiple on a vector 

of the length of the original signal (line 84).  

 

COMMUNICATION 

 

AVERAGE SIGNAL PLOT 

 

To display the average signal across animals with the standard deviation of the mean across 

signals, a column-wise matrix similar to that described in the Average Across Animals section of 

Analysis is be constructed (lines 93-94). The mean and standard deviation between signals at 

each time point if computed (lines 99-102). The average signal is then displayed using plot 

(line 105). The standard deviation is displayed using the fill / flip functions and filled with a 

transparent color using the alpha function (lines 107-109). 

 

BAR PLOT 

 

Using the results computed in the Average Across Animals section of Analysis, a bar plot with 

error bars can be generated. The average values are plotted as the bar heights (line 115). The 

error bars are then plotted with the bar centered at the height of each bar and the bar length being 

defined by the standard error values (lines 116-117).  

 

RESULTS 

 

PROOF OF CONCEPT – FOOD PELLET INTERACTION 

  

The computational methods described above allowed for efficient and robust handling, 

processing, analysis, and communication of the fiber photometry data. To validate our recording 

setup and to design the computational methods to be used in future experiments, extended 

recording trials were done with various pharmacological and behavioral perturbations (Figure 

16.a). The four runs contain calcium activity signals from three animals (plots 2,3 are the same 

animal on separate days) expressing GCaMP on dopamine neurons with the fiber implanted in 

the VTA (see schematic in Figure 16.b). The perturbations include U50,488 administration, 

cocaine administration, nor-BNI administration, interactions with food pellets, and opening of 

the experiment room door.  

To determine the consistency of VTA DAT neuron responses to a rewarding stimulus across 

animals, every instance of a food pellet interaction was extracted and averaged (Figure 16.b). 

The amplitude and time course of the response was consistent across the 6 instances of food 

pellet interactions. The calcium signal increase within 5 seconds approaching the food pellet. 
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The average peak response was a change in fluorescence over baseline of 7.4±2.6 percent at 22 

seconds after the initial interaction with the signal returning to baseline 120 seconds after the 

initial interaction.  

These results provide a proof-of-concept validation that VTA-DAT neurons increase activity in 

response to a rewarding stimulus and that that signal can be recorded, extracted, and analyzed for 

consistency across animals.  

 

Figure 16: Calcium Activity in VTA Dopamine Neurons During Food Pellet Interaction 
(a) Four GCaMP fiber photometry traces from VTA DAT neurons from three animals (plots 2,3 are the same animal) 

during various perturbations. Green boxes indicate response following interaction with a food pellet. (b) Average 

response to food pellet interaction averaged across 6 interactions. Interaction increased VTA-DAT calcium activity 

within 5 seconds with activity returning to baseline 120 seconds after the initial interaction.  
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U50,488 ADMINISTRATION 

 

After confirming that experimental events can be time-locked with a validated fiber photometry 

signal, the effect of U50,488 administration on VTA DAT neuron activity was investigated. Four 

animals were injected with U50,488 during fiber photometry recording sessions over the course 

of three days. Additionally, 3 animals were injected with saline during recording sessions to act 

as controls. Sample raw traces of a U50,488-injected (day 1) and saline-injected animal are show 

inn Figure 17.a-b, respectively (pink line marks injection time).  

The recordings were smoothed with a moving average function to remove noise and averaged 

together (Figure 17.c). The recordings had a stereotyped exponential decay drift likely due to 

photobleaching (Mao et al., 2008). This drift was accounted for by fitting a first-order 

exponential to the baseline signal (Figure 17.d) and subtracting the fitted function from the 

signal. After removing the exponential drift, the averaged signal for the U50,488 injected 

animals is displayed in Figure 17.e. The same method was applied to the control signals, and a 

larger smoothing window was ran across the signals. The average U50,488 response (red) was 

plotted against the control signals (gray) (Figure 17.f). 

Unexpectedly, U50 appeared to increase VTA DAT activity post injection. To better understand 

the temporal effects of this treatment, the analysis was separated by treatment day (Figure 17.g). 

On Day 1, the calcium signal decreased directly following U50 administration and remained 

suppressed for approximately 15 minutes and didn’t reach peak fluorescence until approximately 

25 minutes post-treatment. The reverse trend was observed on Day 2 in which U50 

administration immediately increase calcium signaling and declined to baseline 25 minutes post-

treatment. On Day 3, there was initial suppression of signal followed by a peak in fluorescence 

25 minutes post administration. All signals returned to baseline by 50 minutes post-treatment. 

While additional investigation into this U50 effect is needed, the initial reduction of calcium 

signal on Day 1 is consistent with the evidence that U50,488 administration decreases DAT 

activity (Ehrich et al., 2015). The inhibitory time-course of the signal is also consistent with the 

time-course of hypolocomotion observed during behavioral assays as demonstrated in Chapter 2 

and quantified by Paris et al., 2011. The latter temporal response properties on Day 1 could be 

indicative of receptor desensitization and/or internalization as characterized by Li et al., 1999. 

The increase in calcium signal observed on all three days may also be due to compensatory 

effects within the VTA or within regions projecting to the VTA. While this increase in calcium 

signaling following U50,488 administration requires additional investigation, it may suggest a 

post-inhibitory rebound effect caused by the initial suppression of VTA DAT activity.  
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Figure 17: GCaMP Signal Processing and VTA DAT Activity After U50 Administration 
Sample raw fiber photometry traces of a U50,488-injected (day 1) (a) and saline-injected (b) animal. Pink line marks 

injection time. (c) U50 traces after being smoothed with a moving average function to remove noise and averaged 

together. (d) Exponential decay fit line used to adjust the recordings for drift. (e) Averaged U50 signals after 

removing the exponential drift. (f) Average adjusted recordings from U50 treated animals (red) and control animals 

(gray) across all days. (g) U50 and control recordings split up by day. Generally, U50 treatment causes an initial 

reduction in calcium signal followed by an increase in signal. 
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REPEATED FORCED SWIM STRESS 

 

In order to observe the effects of stress-induced activation of KOR on VTA DAT neuron 

activity, fiber photometry data was recorded during a repeated forced swim stress (rFSS) 

paradigm. During this paradigm, animals swim for 4 repeated 6 minute sessions (S1-4, Figure 

18) with a 6 minute rest between swims (P1-4, Figure 18). Filtered traces from a representative 

animal with wildtype expression of KOR (blue) and an animal with conditional knockout of 

KOR from DAT neurons (yellow) are shown in Figure 18 with the swim periods highlighted.  

In animals with normal expression of KOR, an increase in calcium activity following each swim 

period is observed. Additionally, this increase in activity is potentiated with each swim. This 

increase in calcium activity following stress is consistent with the increase in calcium activity 

following U50 administration, however the close time-locking with the behavioral events 

suggests that this may be indicative of a reward or ‘relief’ signal following the swim stress as 

opposed to a compensatory or pharmacokinetic effect. Both the post-swim increase in calcium 

activity and the potentiation of that increase is suppressed in the DAT flox KOR mice supporting 

the hypothesis that KOR is directly mediating the stress-induced changes in reward signaling.  

This increase in calcium activity following stress may begin to explain the neural mechanism 

underlying KOR-mediated stress-induced cocaine reward potentiation. Calcium activity in VTA 

DAT neurons is consistent with reward signaling. A KOR-dependent post-stress increase in 

calcium activity in that neural population could explain the reward potentiating effects of stress 

on drugs of abuse.  

 

Figure 18: VTA DAT Activity During Repeated Forced Swim Stress 
Repeated swim stress potentiates calcium activity in dopamine neurons. S1-S4 show average calcium activity during 

repeated forced swim stress, and P1-P4 shows average calcium activity in the period immediately following each 

swim stress. Deletion of KOR from dopamine neurons appears to suppress the increases in calcium activity following 

swim stress. *p<0.05; Error bars indicate SEM. 
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CONCLUSION 

 
The principal findings of the studies presented in this chapter provide insight into the role of the 

KOR-dynorphin system on important aspects of neural activity and circuit dynamics. The in vivo 

GCaMP fiber photometry recordings demonstrated that pharmacological KOR activation causes 

an initial inhibition in VTA DAT neuron activity followed an increase in activity, potentially 

suggesting a post-inhibitory rebound effect caused by the initial KOR-dependent suppression of 

VTA DAT activity. However, the magnitude and time course of this effect changes over 

successive days of administration and requires further investigation to understand the full 

implications of these findings. Additionally, rFSS demonstrated a KOR-dependent post-stress 

increase in calcium activity in VTA DAT neurons. Collectively, these results demonstrate that 

KOR activation in VTA DAT neurons, either through stress or pharmacological means, cause 

changes in neuronal activity that could explain stress-induced changes in reward signaling 

including the reward potentiating effects of stress on drugs of abuse.  
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CHAPTER 4 – Cellular 
 

OVERVIEW 

 
Chapter 4 introduces the importance of cellular pathways on the regulation of cellular responses 

to extracellular inputs. This information details the signaling cascades that occur as a result of 

receptor activation and discusses their implications on cell functioning. Stemming from this 

context, the signaling cascades resulting from KOR activation are discussed, including their 

implications on higher level cognitive and physiological changes. Finally, the outputs of the 

described signaling pathways are discussed, including their implications on receptor inactivation.  

This chapter describes an experimental technique, real-time cellular microscopy, that can be used 

to investigate the role of KOR agonism on an identified cellular pathway. The current gaps in 

knowledge leading to the research questions being investigated are explained. Then, the 

experimental and computational methods used to investigate these questions are described in 

detail, with an emphasis on novel computational approaches to analyzing the data produced.  

Finally, the experimental results discovered through these assays are presented within the context 

of KOR agonist effects on a receptor-inactivating signaling cascade. 

 

BACKGROUND AND SIGNIFICANCE 
 

Just as a computational system uses nodes to integrate inputs to generate a binary output, neural 

systems use cells to integrate information to produce a similarly binary output. However, unlike 

computational systems – where the integration is done in a linear manor with a single output, the 

cells of biological systems have complex, diverging, nonlinear pathways with the ability to 

integrate, compute, store, and respond to a complex series of inputs to generate a collection of 

outputs, including but not limited to the binary action potential discussed in Chapter 3. 

Understanding the cellular mechanisms and pathways underlying adaptive changes in circuit 

dynamics is necessary to complete the story of how a series of inputs can generate lasting 

changes in behavior.  

Cells receive external inputs via receptors located on the cell surface or within the cell. When a 

change in the environment activates a receptor, the receptor undergoes a conformational change 

– a change in the physical structure of the protein – resulting in a cascade of intracellular events. 

The general model of signal transduction includes a chain reaction initiated by ligand binding to 

the receptor, followed by a conformational change, activation of enzymes and second 

messengers to amplify the signal, resulting in transcriptional and nontranscriptional effects (Wu, 

2013). This receptor triggered signal transduction influences nearly every physiological output in 

a biological system. 
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A common signal transduction mechanism conserved evolutionarily to sense many extracellular 

signals begins with G protein-coupled receptors (GPCRs) (Bockaert and Pin, 1999). Ligand 

binding to a GPCR results in recruitment of heterotrimeric G proteins (Gα and Gβγ) and 

stimulation of guanine nucleotide (GDP to GTP) exchange (Granier and Kobilka, 2012). The 

GTP-bound α subunits (Gα) dissociate from the β and γ subunits (Gβγ), each effecting target 

proteins for production of second messengers.  

In addition to the second messenger cascades initiated directly by the G protein subunits, GPCRs 

can initiate signaling cascades through another class of proteins, GPCR kinases (GRKs). GRK 

pathways are also remarkably conserved throughout biological signaling, however they play a 

very different role. Once activated, GRKs phosphorylate the active receptor resulting in high 

affinity binding of arrestin, blocking future G protein binding and activation, resulting in 

receptor desensitization (Pitcher at al., 1998). While GRKs act as a negative feedback control to 

prevent overstimulation of target cells, consequences of their regulation contribute to a number 

of disease classes including opiate addiction, hypertension, and chronic heart failure.  

Activation of a single receptor can result in multiple different signaling cascades resulting in an 

array of variable cellular outputs and physiological implications that can be adaptive or 

maladaptive. Understanding the mechanisms and outputs of those various pathways is necessary 

to understand the complex cognitive and behavioral implications of a given environmental 

stimulus. To investigate a given cellular pathway, the ability to isolate that pathway, perturb it’s 

inputs, and record the given outputs in live cells, coupled with appropriate analysis methods is 

necessary. This chapter introduces a method of in vitro live cell recording that can be used 

during a series of cellular perturbations, details the inputs and outputs under investigation, and 

describes computational methods to better utilize and interpret the data produced. 

 

SINGLE CELL HYPERRED IMAGING 
 

MOTIVATION 
 

As introduced, KOR activation results in both a Gβγ, arrestin-independent signaling cascade, as 

well as a GRK3, arrestin-dependent cascade (Bruchas and Chavkin, 2010). Therapeutically, 

functionally selective agonists that only activate the Gβγ signaling produce analgesia without the 

dysphoric effects of unbiased activation (Ehrich et al., 2015; Brust et al., 2016; Schattauer et al., 

2017a). However, KOR antagonists can also promote stress resilience including reduction of the 

dysphoric, anxiogenic and pro-addictive effects of stress exposure (McLaughlin et al., 2003a; 

Mague et al., 2003; McLaughlin et al., 2006; Carlezon et al., 2006; Knoll and Carlezon, 2010). 

Thus, both KOR antagonists and KOR agonists have been advancing in clinical trials (Carroll 

and Carlezon, 2013; Chavkin and Martinez, 2015). However, the functionally distinct signaling 

responses of KOR activation underlying these conflicting therapeutic benefits are not fully 

understood.   
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In addition to the conventional GPCR and GRK pathways, KOR activation initiates other protein 

kinase cascades. KOR activation of the mitogen-activated protein kinase (MAPK) ERK1/2 

occurs in an arrestin-independent early phase and an arrestin dependent late phase (McLennan at 

al., 2008; Schattauer et al., 2012). However, KOR activation of p38 MAPK occurs only in the 

arrestin dependent late phase (Bruchas at al., 2006). Additionally, both KOR agonsist and 

antagonist binding activate a third class of MAPK, c-Jus N-terminal kinase (JNK) (Bruchas et 

al., 2007; Melief et al., 2011; Schattauer et al., 2017b). Activation of pJNK by nor-BNI 

ultimately results in the production of reactive oxygen species (ROS) (Schattauer et al, 2017b). 

This ROS production causes permanent inactivation of the KOR-Gαi/o complex via stimulation 

of peroxiredoin 6 (PRDX6), requiring new receptor synthesis to restore function.  

This suggests that receptor-inactivating KOR antagonists such as nor-BNI are in fact JNK-biased 

agonists that cause long term effects through this ROS-mediated inactivation. Interestingly, KOR 

agonists also increase pJNK. However, the signaling mechanisms of this process are unclear, and 

the physiological consequences of this agonist activation are unknown (Kam et al., 2004; 

Bruchas et al., 2007).  

 

EXPERIMENTAL APPROACH 
 

In order to investigate the mechanisms and effects of KOR agonist induced JNK signaling, there 

is a need to elucidate the effects of early-phase, arrestin-independent signaling from late-phase, 

arrestin-dependent signaling on the production of the functional byproduct, ROS.  

In order to monitor the temporal components of cellular mechanisms such as ROS production, 

real-time microscopy can be coupled with optically active proteins like those used in fiber 

photometry. Real-time cellular microscopy records a series of images over the course of an 

experimental time period to track changes over time and allows for the administration of 

pharmacological agents to observe the cellular effects in real-time. To monitor ROS production, 

the fluorescent sensor HyPerRed can be used (Ermakove et al., 2014). HyPerRed is expressed by 

transfection, thus it is a viable readout for ROS production in live cells.  

The goal of recording the fluorescence of HyPerRed transfected cells using real-time cellular 

microscopy was to investigate the time-course of ROS production by KOR agonists under 

various pharmacological conditions. Beginning with baseline recordings, images were taken of 

cells after application of U50,488, as well as blocking and reversal trials with naloxone. 

Monitoring of ROS production after application of KOR-targeted pharmacological agents helped 

to determine the cellular mechanisms underlying the physiological response to stress-induced 

dynorphin release.  

 



52 
 

COMPUTATIONAL APPROACH 

 
The output from real-time cellular microscopy includes a series of images with pixel intensity 

information captured over time. Classical analysis of cellular microscopy requires selection and 

numbering of cells by hand prior to computer-facilitated quantification. This process is time 

consuming and leaves room for biasing and arbitration of results (Ninomiya et al, 2016). In order 

to efficiently and appropriately analyze real-time cellular microscopy images, there is a 

computational need to automate the cellular identification, tracking, and quantification steps. 

Specific effort was devoted to efficiently, accurately, and robustly identifying cells from the 

background in order to automate the quantification and tracking of their fluorescence over time.   

 

HANDLING 
  

Live cell imaging generates a large amount of data per imaging session. Each image contains 

262,141 pixels. With 3 channels per position, 3 color values per channel (red, green, and blue), 

approximately 60 images per position, and four positions per session, there are over 500 million 

point values generated per session.  

The imaging system exports the image series as .lif files. ImageJ is used to load the .lif files and 

convert the image series into GIFs. The GIFs contain a series of 3 images for each time point, 

one for each channel. To separate the channels, a file path is defined in MATLAB (version 

R2017a) and every file within that path is loaded into from the working directory (Appendix II, 

Live Cell Imaging Code, Cell Quantifier, lines 4-10). The channels containing HyPerRed frames 

and cell membrane frames are defined in the self-defined function loadFrames (Quantification 

Functions, lines 3, 6).  The frames of interest from the .gif files are then imported using the 

imread built-in function (lines 4, 7). The frames are saved into 4-dimensional matrices 

containing the red, green, and blue intensities of each pixel for each frame (e.g. 

imgHyper(1,2,3,4) would be the pixel in the first row, of the second column, the blue pixel 

intensity (red = 1, green = 2, blue = 3), of the 4th frame in the series) (Cell Quantifier, line 18).  

 

PROCESSING 

 

IDENTIFY CELLS FROM BACKGROUND 

 

For each frame, the red pixel values of the HyPerRed channel are sent to the findClusters 

function (Cell Quantifier, lines 25-27). The pixels over a given noise threshold value are 

amplified by a given enhancement amount (Quantification Functions, lines 15-23). Noisy dark 

pixels are filled using imfill and a local Laplace filter with a sigma of 0.1, alpha of 5, and 

with 10 levels is run across the image to smooth sharp changes between values, i.e. reduce pixel 

noise (lines 26-31). An opening function using a disk shaped structured element of radius 3 is 
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run across the image to remove noisy pixel groups and protrusions smaller than a 3 pixel radius 

(lines 33-34).  

A self-defined cell border finding algorithm was created that, for every pixel in the image, 

evaluates the pixels above and below and to the left and right a set distance, dist, away from 

the center pixel (lines 45-51). If the pixel above (or to the left) is greater than a given upper 

threshold, and the pixel below (or to the right) is less than a given lower threshold (or vice 

versa), the center pixel is determined to be on a border and it’s index is saved in a 

clusterBorders matrix (lines 53-63).  The fully evaluated border matrix is then filtered with 

closing (dilation followed by erosion), pixel bridging, diagonal filling, and thinning functions to 

connect close unconnected pixels and then thin the borders to a minimal thickness (lines 65-68). 

The defined cluster borders are then sent to the fillCluster function (Cell Quantifier, line 

31). Within fillCluster, an algorithm was defined to evaluate whether a cell border 

coincided with the edge of the image and to fill the border if so (Quantification Functions, lines 

73-100). Then, the defined cell regions are filled with the imfill function (line 102).  

The defined filled clusters are then sent to the watershedClusters function to separate 

overlapping cells within a cluster (Cell Quantifier, line 34). Within watershedClusters, the 

black and white clusters image is inverted and a Euclidean distance transform, bwdist is ran 

across the image to determine the distance between each pixel and the nearest nonzero pixel 

(Quantification Functions, lines 109-111).  All minima in the output of the Euclidian distance 

transform within the boundaries of the inverted cluster matrix with a value less than 3 (i.e. any 

pixels whose closest non-zero pixel is less than 3 pixels away) are then stored in a new matrix 

(lines 112-113). This matrix is then passed through the watershed function to separate cells 

whose borders were overlapping other cells by a radius of 3 pixels (line 114). All watershed cells 

are set to pixel values of 1 and the image is converted to a logical matrix (lines 116-128). 

The watershed clusters are then sent to the labelClusters function to filter cells based on size 

and label the passing cells (Cell Quantifier, line 37). Within labelClusters, the filled, 

watershed cells are numerically labeled using bwlabel (Quantification Functions, line 135). The 

labeled cells are then evaluated to determine if their area is within a defined range for reasonable 

cell sizes as chosen by visual assessment (lines 137-138) and identified cells smaller or larger 

than that range are deleted from the image (lines 140-151). The cell size filtered image is then 

relabeled (line 153). A new border map is then created using the newly defined cell image with 

the same algorithm used to define borders originally (lines 156-199).  

 

ANALYSIS 

 

CELL TRACKING 

 

To identify and track the same cells across all frames of a given recording, the labelled cells were 

sent to the getCentroids function (Cell Quantifier, line 40). Within getCentroids, the 

regionprops function is used to calculate the centroids (center of mass) of every cell region in 
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the labeled image (Quantification Functions, line 205). The x and y values of the centroid 

positions are then stored in a matrix (lines 207-211).  

The centroid positions for all cells across all frames of a given recording are then sent to the 

defineCells function (Cell Quantifier, line 48). Within defineCells, the x and y positions 

of the centroids for each frame are stored into matrices (Quantification Functions, lines 251-

265). The centroids from each frame are then clustered to determine which centroids are most 

likely to belong to the same cell across frames (lines 273-275). Centroids that do not appear in at 

least one third of the frames for a given centroid cluster are deleted and numbers are assigned to 

each centroid to denote its given cell ID (lines 273-309).  

The cell numbers for all cells across all frames of a given recording along with the cell labeled 

images are then sent to the labelCells function (Cell Quantifier, line 51). Within 

labelCells, the cell labeled image is relabeled with the cell numbers defined by the centroid 

cluster analysis (Quantification Functions, lines 316-334). A new border mask for the cell 

labeled image is created using the same algorithm described previously (lines 337-366).  

 

CELL QUANTIFICATION 

 

To quantify the fluorescence of each cell, the cell label mask and original HyPerRed image are 

sent to the quantifyCells function (Cell Quantifier, line 58). Within quantifyCells, the 

cell label mask is converted into a 3-dimensional matrix comprising a stack of binary masks for 

each individual cell (i.e. cellMask(:,:,1) is a cell mask for the first cell in the imaged 

position) (Quantification Functions, lines 378-389). Each cell is then quantified by multiplying 

the given cell mask by the original HyPerRed image (line 397). The size of the cell is calculated 

by summing across the cell mask and the total fluorescence is calculated by summing across the 

product of the cell mask and original image (lines 399-400). The average fluorescence of the cell 

is calculated by dividing the total fluorescence of the cell by the cell size (line 402). 

 

To quantify full frames, sums across the original HyPerRed images are taken (Cell Analysis, 

lines 47-49). To account for frame-to-frame noise fluctuations in the time-course data, a two-

frame-window moving average was used (lines 51-59).  

To calculate the average fluorescence across a treatment group for the full time series, the ΔF/F 

values are first calculated by averaging the fluorescent values across a set of baseline frames, 

then dividing all of the frame fluorescent values by that baseline average (lines 90-92). The ΔF/F 

values of all frames from each recording are then concatenated into a matrix, e.g. 

stackableFrameFluor_u50(1,2) would contain the ΔF/F value for the second frame of the 

first recording within the U50 treatment group (lines 93-105). The average across groups for 

each frame is calculated using the mean function and the standard deviation is calculated using 

the std function (lines 129-130). The standard error is calculated by dividing the standard 

deviation by the square root of the number of recordings in the given group (line 131).  
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COMMUNICATION 

 

AVERAGE ACROSS GROUPS PLOT 

 

To plot the average fluorescence across a treatment group for the full time series, the mean 

calculated in line 133 is plotted as a solid line using plot (line 138). The standard error is 

displayed using the fill / flip functions and filled with a transparent color using the alpha 

function (lines 139-140). This is repeated for the control treatment group and displayed on the 

same graph (lines 142-144).  

 

CELL TRACKING PLOT 

 

To create a plot that displays the fluorescence of each cell in a given recording across frames, the 

average cell fluorescence calculated in the quantifyCells function is sent to the 

cellFluor2Plot function (Cell Quantifier, line 62). Within cellFluor2Plot a matrix 

containing the cell fluorescent values of each identified cell in the recording is created 

(Quantification Functions, lines 410-417). A plot is then created in which the fluorescence of a 

given cell across all frames is plotted as a single color; each cell’s fluorescence is plotted as a 

different color on the same plot (Cell Quantifier, lines 67-79). The image generated is then 

formatted and saved to the working directory (lines 81-86).  

 

RESULTS 

 

CELL REGION IDENTIFICATION 

  

The computational methods described above allowed for automated and unbiased handling, 

processing, analysis, and communication of the live cell imaging data. To automate the cell 

identification, tracking, and quantification process, a program was developed to identify cell 

regions (Figure 19). Raw images showing HyPerRed fluorescence in mycKOR-expressing 

HEK293 cells from the recording session (Figure 19.a) were sent into the program where cell 

regions were identified from the background (Figure 19.b). The identified region borders were 

then overlaid onto original image to quantify the fluorescence within the identified regions 

(Figure 19.c). 

By automating the cell identification process, hundreds of images are able to be processed and 

quantified automatically within minutes, as opposed to the current method of outlining cells by 

hand to be quantified by the computer, which can take hours to days. In addition, outlining cells 

by hand allows room for human bias and error. While still a preliminary tool, the automated 

process allows for unbiased and rapid identification of cell regions for quantification. To 

improve the cell identification process, a program that can properly identify single cells within 

clusters would allow for higher resolution of analysis.  
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Figure 19: Cell Region Identification  
(a) Sample image showing HyPerRed fluorescence in cells during real-time microscopy. (b) Cell borders identified by 

the cell identification algorithm with dots showing centroid calculation (no watershedding). (c) Overlay of border 

mask on original image.  

 

To track the regions across the recording session, the centroids of each region were calculated 

(Figure 19.b-c, yellow dots). The centroids across all frames were clustered to statistically 

determine which centroids were likely to belong to the same cells. Each cell could then be 

tracked and quantified for its change in fluorescence from baseline and plotted over the duration 

of the recording (Figure 20).  

For all recording days, four positions were recorded with two positions receiving a control 

vehicle serum and two positions receiving the experimental drug, e.g. U50,488. Figure 20 shows 

the change in fluorescence from a baseline from a sample session of cell regions receiving 

vehicle (Figure 20.a) and for cell regions receiving bath application of U50,488 (Figure 20.b). At 

the end of every recording, hydrogen peroxide was applied in the bath as a response control 

causing the spike in fluorescence observed at the end of the session. Across all sessions of cells 

receiving vehicle, 9% of cell regions had an increase in fluorescence over a threshold of 25%, 

and 11% of cell regions had a decrease in fluorescence under a threshold of -25% (Figure 20.c). 

Across all sessions of cells receiving 100nM of U50,488, 23% of cell regions had an increase in 

fluorescence over a threshold of 25%, and only 5% of cell regions had a decrease in fluorescence 

under a threshold of -25% (Figure 20.d). These results suggest that U50,488 tends to cause an 

increase in ROS production when compared to controls.  
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Figure 20: Cell Region Tracking and HyPerRed Fluorescence Quantification 
Sample cell tracking plots of cells treated with vehicle (a) or U50,488 (b). Each line represents the change in 

fluorescence of one identified cell within the frame. (c) Across all vehicle treated cells, 11% had a maximum increase 

in fluorescence (prior to hydrogen peroxide treatment) over a 25% threshold and 9% decreased below -25%. (d) 

Across all U50.488 treated cells, 23% had a maximum increase in fluorescence (prior to hydrogen peroxide 

treatment) over a 25% threshold and 5% decreased below -25%.  

To investigate this observed phenomenon and to account for variability across cells, the average 

change in fluorescence across all cells was calculated using full-frame fluorescence. When the 

result of the full-frame analysis was averaged across the recording time period for all treatment 

groups, it showed that 100 nM U50,488 elevated ROS at approximately 30 minutes post-

treatment and remained elevated at 45 min post-treatment (red) compared to controls (black) 

(Figure 21.a). This supports the evidence that KOR agonists increase pJNK to produce ROS. The 

time course of ROS activation also suggests that ROS generation is mediated through the earlier, 

arrestin-independent phase of JNK activation.  

Additionally, the long-lasting elevation in ROS was blocked by pretreatment with 10 µM 

naloxone (black), and treatment with 10 µM naloxone 30 minutes after U50,488 activation 

completely reversed the increase in ROS within 15 min after the addition of naloxone (red) 

(Figure 21.b). This suggests that ROS activation is both a blockable and reversible process, 

which supports the hypothesis that ROS activation can be suppressed by arrestin-dependent 

activation of p38 MAPK by blocking JNK-activated signaling (Schattauer et el., 2019, ahead of 

print).  
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Figure 21: Effect of U50 and Naloxone on ROS Production In Vitro 
(a) Change in fluorescence of cells treated with 100 nM U50,488 (red) or vehicle (black). Fluorescence was 

significantly increased by U50,488 in mycKOR-expressing HEK293 cells. Repeated measures two-way ANOVA 

(significant effect of time, P<0.0001 and significant interaction between time and drug, P<0.0001, n=9), with Holm-

Sidak post-hoc comparison against vehicle (*P<0.05). Graph depicts mean+SEM. (B) Change in fluorescence of cells 

pretreated with 10 µM naloxone (black) or vehicle (red) 5 min prior to treatment with 100 nM U50,488; cells were 

post-treated with vehicle (black) or 10 µM naloxone (red) 30 min after U50,488. 45 min after U50,488, cells were 

treated with 200 µM H2O2. Fluorescence was significantly increased after U50,488 in mycKOR expressing HEK293 

cells which were not pretreated with naloxone. Repeated measures two-way ANOVA (significant interaction 

between time and drug, P<0.0001, n=7), with Holm-Sidak post-hoc comparison against naloxone pretreatment 

(*P<0.05). Adapted from Schattauer et al., 2019, ahead of print. 

A manuscript describing my findings has been submitted for review: Selena S. Schattauer, 

Andrea Bedini, Floyd Summers, Aiden Reilly-Treat, Mackenzie M. Andrews, Zeena M. G. 

Rivera, Jennifer S. Steger, Benjamin B. Land, Charles Chavkin (2019) Ligand directed activation 

of c Jun Kinase signaling by Gi/o protein coupled receptor agonists revealed by fluorescent 

sensors. 

CONCLUSION 

 
The principal findings of the studies presented in this chapter provide insight into the effects of 

KOR activation on cellular pathways and temporal sensitivity. The real-time cellular microscopy 

recordings demonstrate that pharmacological KOR activation results in arrestin-independent 

production of ROS which can be reversed by KOR antagonism and inhibited by arrestin-

dependent p38 activity. This ROS production results in permanent KOR inactivation which may 

explain a mechanism of tolerance to repeated opioid receptor activation. Additionally, this KOR-

dependent ROS production may contribute to the stress-induced vulnerability to 

neurodegeneration, mood disorders, and cardiovascular disease.    
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CHAPTER 5 – SIGNIFICANCE AND FUTURE 

DIRECTIONS 
 

OVERVIEW 
 

Chapter 5 summarizes the experimental findings described in the previous chapters within the 

context of the relationships between stress, cognition, and behavior. The significance of the 

computational work contributing to these findings is discussed with respect to both the broader 

implications on biological research as well as the implications on the experiments discussed 

herein. Within this context, a detailed description of the new findings is provided including their 

significance for future research and clinical considerations. 

From the new findings, confounds with previous work and findings requiring further 

investigation are described. Future directions and descriptions of continuing experiments are 

provided including experimental suggestions for behavioral probing, pilot studies for extending 

cellular finding to animal models, and hardware design for probing of circuit dynamics.  

Finally, concluding remarks on the greater relevance of these findings are provided and a call-to-

action for the standardization of computational approaches is emphasized.  

 

SUMMARY OF FINDINGS 
 

The principal findings of these studies describe critical relationships between KOR activation 

and clinically relevant physiological changes at the behavioral, circuit, and cellular levels. In 

Chapter 2, two behavioral paradigms proved valuable in probing the effects of KOR activation 

on motivated behavior. The results demonstrated that KOR activation causes cognitive 

disruptions that affect both inhibitory control as well as working memory-dependent decision 

making. These findings provide insights into clinically relevant relationships between stress and 

cognitive and behavioral disorders. In Chapter 3, in vivo neural recordings illuminated a key 

finding about the effect of KOR activation on dopamine neuron activity. These results 

demonstrated that stress causes a KOR dependent increase in dopamine neuron activity in the 

VTA, a major reward center, following the stress exposure. These findings provide insights into 

a mechanism that may explain stress-induced changes in reward processing including the reward 

potentiating effects of stress on drugs of abuse. Finally, in Chapter 4, real-time cellular 

measurements elucidated a new branch of KOR activated signaling. These results demonstrated 

that KOR activation results in reversible production of ROS which leads to permanent KOR 

inactivation. These findings may explain both mechanisms of tolerance to opioid exposure as 

well as stress-induced vulnerability to neurodegeneration, mood disorders, and cardiovascular 

disease.   
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These findings provide insight into the role of the KOR-dynorphin system on the relationship 

between stress, cognition, and behavior. Investigating these relationships from the behavioral, 

circuit, and cellular levels, develops a framework of clinically relevant behavioral effects backed 

by the neural activity that may be contributing to those behavioral outputs, and provides cellular 

mechanisms underlying those neuronal changes that may act as pharmacological targets for the 

development of future treatments.  

 

COMPUTATIONAL SIGNIFICANCE 
 

The results and analyses presented in these studies would not have been possible without the 

development of novel computational approaches and tools. As discussed in Chapter 1, advances 

in the state-of-the-art investigational tools are allowing researchers to probe more complex 

questions at higher informational resolutions. Resultantly, these tools are producing increasingly 

larger and more complex data sets. However, these technologies have been advancing so rapidly, 

that the classical analysis methods are struggling to capture the breadth of information available 

in the new data sets.  

As a result, there is a major bottleneck in biological research between data acquisition and data 

analysis, primarily due to the heterogeneity and multivariability of biological systems. Further 

complicating the problem, biological research is relatively decentralized – there are thousands of 

biology labs developing new experiments and probing systems in new ways. Thus, standardizing 

the analytic methods for this vastly heterogenous discipline is a daunting yet critical task.  

In order to 1) capture the increased complexity and resolution of data, 2) account for 

heterogeneity and multivariability, and 3) standardize analysis methods across the biological 

discipline, new tools must make considerations at four major steps in the analysis process: data 

handling, data processing, data analysis, and data communication. In the preceding chapters, the 

considerations and methods used at each of these four steps were detailed and the code used to 

develop the tools described was documented.  

Specific effort was devoted to incorporating the classical analysis techniques for each type of 

experiment, while building off those methods to fill the analysis gap needed to answer the posed 

research questions. In the case of the behavioral experiments, classical analyses reduce the 

dimensionality of the complex temporal information. In order to dissociate the factors affecting 

behavior, effort was devoted to developing tools to analyze and visualize the micro and macro 

temporal components of motivated behavior. Such tools included database structuring, burst 

analysis, latency analyses, training observations, and raster plot generation.  

In the case of the circuit level interrogations, classical analyses down-sample data and only 

explore discrete changes in signal qualities. In order to unravel the neural activity and outputs 

contributing to disruptions in circuit dynamics during behavior, effort was devoted to developing 

tools to preserve the temporal resolution of the data while expanding the types of analyses 

explored. Such tools included signal filtering and normalization, Fourier analysis, and temporally 

comprehensive signal comparisons.  
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Finally, in the case of cellular imaging, classical analyses require extensive involvement of the 

researcher which is time consuming and leaves room for biasing and arbitration of results. In 

order to efficiently and appropriately analyze real-time cellular microscopy images, effort was 

devoted to developing tools to automate the cellular identification, tracking, and quantification 

steps. Such tools included image analysis for cell identification, centroid calculation and 

statistical clustering for cell tracking, and automated cellular quantification from boundary 

masks.  

 

NEW UNDERSTANDING  
 

Due to the intellectual curiosity of the researchers, advancements of investigational technologies, 

and the development of the computational tools described previously, the studies detailed have 

started to fill the knowledge gaps introduced in Chapter 1 (Figure 2 v. Figure 22). At the 

behavioral level, the DRL task confirmed the hypothesized link between stress-mediated KOR-

activation and disruptions of inhibitory control (Figure 22.a). These studies found that both 

stress-induced and pharmacologically-induced KOR activation cause reductions in DRL 

performance and increases in burst responses that are both VTA-dependent and arrestin-

independent. The operant delayed alternation task challenged the existing information in the field 

by demonstrating that pharmacologically-induced KOR activation disrupts the performance of a 

working memory dependent task in a PFC-dependent manor (Figure 22.b. However, repeated 

forced swim stress was not sufficient to produce behavioral disruptions through the PFC circuit 

being interrogated. Additionally, spontaneous morphine withdrawal actually increased 

performance on the task, a finding that requires further investigation. One hypothesis is that the 

enhanced activity is due to compensatory inputs from other brain regions.  

At the circuit level, in vivo GCaMP fiber photometry revealed that pharmacological KOR 

activation does cause short-term decreased in dopamine neuron activity in the VTA, consistent 

with previous findings (Figure 22.c). However, both pharmacological KOR activation and stress 

exposure appeared to cause post-inhibitory or post-stress increases in VTA DAT activity. The 

post-stress increases in activity were compounded following repeated stress exposures. This 

finding may begin to provide a neural framework for reward potentiation, i.e. KOR-activation-

induced suppression of VTA DAT activity may lead to a post-suppression increase in neural 

activity consistent with a reward or relief signal. Further investigation may be needed to 

determine whether this finding supports or contradicts the hedonic-state hypothesis. 

Finally, at the cellular level, real-time cellular microscopy helped to elucidate the mechanisms 

and physiological effects of KOR agonist-induced increases in JNK production (Figure 22.d). 

These findings demonstrated that KOR agonism causes short-term arrestin-independent increases 

in JNK production which leads to increases in ROS production and KOR inactivation. However, 

KOR agonism also results in a slower, arrestin-dependent activation of p38 which suppresses 

JNK production, ultimately reducing ROS production. This supports the previous finding that 

KOR antagonists, such as nor-BNI, are actually JNK-biased agonists and the long-lasting nature 

of their action is due to the ROS-induced permanent inactivation of KOR. Parsing out this third 
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branch of GPCR signaling, and understanding how these effects play out in vivo may allow for 

the development of more targeted therapies for pain and mood disorders.  

 

Figure 22: State of Understanding Incorporating New Findings 
Schematics depicting the new understanding of behavioral (a-b), circuit (c), and cellular (d) level relationships 

between KOR activation and respective outputs. Content within green ovals represents new knowledge gained from 

the experiments described. Arrow heads indicate an activating or causal relationship, blunted heads indicate a 

blocking or suppressatory relationship.  

Note: Primarily intended as a reference for the information presented in the Chapters 2-4, compare to Figure 2. 
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FUTURE DIRECTIONS 

 

WITHDRAWAL, STRESS, AND DELAYED ALTERNATION 

 
The findings presented were helpful in filling some of the knowledge gaps in the field, however, 

some of the findings seemed to challenge existing knowledge or open the door to a new series of 

questions. As eluded to previously, the delayed alternation findings challenged both the existing 

work showing that stress-induced KOR activation disrupts working memory and the hypothesis 

that opioid withdrawal would disrupt working memory. One potential explanation for the lack of 

stress-effect is that swim stress does not cause dynorphin release in the PFC or that 

compensatory mechanisms from other brain regions reduce the observable behavioral effect. In 

order to detangle these hypotheses, future experiments may include: 1) testing other stress 

paradigms such as social defeat stress or fear-induced stress such as foot shock, 2) measuring 

stress-induced dynorphin release in the PFC, and 3) recording coordinated behavior between 

brain regions that project to the PFC to determine if compensatory effects could be at play.  

Addressing the morphine withdrawal findings, potential explanations for the increase in 

performance are 1) the animals experienced an increase in motivation due to morphine-induced 

bowel disruptions leading to the animals being more food motivated, 2) the animals were less 

distracted due to a decrease in locomotion and thus were more focused on the task, or 3) 

compensatory effects from other regions during the morphine exposure resulted in increased 

performance during spontaneous withdrawal. To parse out what effects may be contributing to 

these observations, future experiments may include: 1) test performance following precipitated 

withdrawal to determine if compensatory effects are at play, 2) quantify animal locomotion 

during the task, and 3) test the withdrawal effects of other opioids and/or alternative 

administration protocols on the behavior paradigm.  

 

HYPERRED FIBER PHOTOMETRY 
 

While behavioral findings often require follow up experiments to probe lower level – circuit and 

cellular – effects to understand behavior confounds, cellular level findings require higher level 

experiments to investigate their applicability to system-level physiology.  In the case of the real-

time cellular microscopy findings, the time course and magnitude of the KOR-activation-induced 

ROS production, as well as the physiological consequences thereof, must be confirmed in vivo. 

In order to do so, the same fiber photometry techniques used to probe calcium signaling in vivo 

using GCaMP can be used to probe ROS production using HyPerRed.  

To record ROS production following KOR-activation in vivo, pilot studies using HyPerRed fiber 

photometry have been initiated (Figure 23). Increasing doses of U50,488 were administered 

while the HyPerRed signal was recorded. While preliminary, this pilot appears to support the 

hypothesis that KOR activation increases ROS production in vivo.  
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Figure 23: In Vivo HyPerRed Fiber Photometry Pilot 
Sample trace of in vivo HyPerRed fiber photometry recordings during escalating doses of U50.488 administration. 

Doses of 0.01mg/kg (yellow), 1mg/kg (orange), and 10mg/kg (red) were administered approximately 40 minutes 

apart. Pilot data appears to show a trend toward an increase in HyPerRed fluorescence following U50,488 

administration. 

 

CONNECTING THE REGIONS – OPTRODE  
 

While fiber photometry begins to probe circuit level questions, it is currently limited to recording 

from one brain region at a time. To investigate circuit dynamics, such as the coordination 

dynamics discussed in the Withdrawal, Stress, And Delayed Alternation section, the ability to 

record from multiple brain regions simultaneously it needed.  

Multi-site recordings would help connect regional information such as the VTA-dependent 

cognitive disruptions investigated with the DRL task with the PFC-dependent disruptions 

investigated with the delayed alternation task, while providing a new dimension of temporal 

resolution to parse out coordination effects. However, multi-site recordings require technological 

advancements from both the hardware and software sides of the equation. From a hardware 

standpoint, multi-site recording devices are limited by the size and weight constraints of the 

animal – the animal must be able to support the device on their head during behavior. The design 

and development of such a device is detailed in Appendix I, Capstone Thesis. This work may 

provide the foundation for future advancements in neuronal recordings and expand the types of 

questions that can be pursued by researchers.  

 

CONCLUDING REMARKS 

 
This work marks an important step forward in our understanding of the relationship between 

stress, cognition, and behavior within the context of the KOR-dynorphin system. The findings 

presented improve our understanding of the clinically relevant physiological changes caused by 

stress and how stress contributes to cognitive, behavioral, and mood disorders such as pain, 

PTSD, anxiety, depression, and drug abuse. Additionally, this work provides insight into 

potential therapeutic targets to treat such disorders. 
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These findings would not have been possible without the computational approaches described 

herein. In order for neuroscience and larger biological disciplines to continue advancing, there is 

an ever-growing need to standardize and innovate computational approaches to analyzing 

heterogenous, multivariate systems. Without a consolidation of computational knowledge and 

standardization of approaches, the analysis bottleneck will continue to constrict, vastly limiting 

the rate at which we can understand and treat not just physical, but societal ailments.   
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ABSTRACT 
Motivation: Drug addiction is a highly prevalent disease with common potentiating risk factors 

including stress-exposure, anxiety, and depression. Several brain regions have been linked to 

drug seeking and abuse behaviors, however little is known about how these regions communicate 

to regulate those behaviors. In order to gain a better understanding of the networks driving 

addiction associated behaviors, there is a need for devices that can simultaneously record and 

modulate neural activity in multiple brain regions. 

Contents: This report discusses neuropharmacological research in the field of drug abuse and 

the drawbacks of current investigational strategies. It then outlines the needs, specifications, and 

design constraints for developing a new research device and tracks the design process through to 

the development of a novel research device. Finally, it discusses the experimental design and 

preliminary computational results pertaining to the project.  

 

Results: The deliverables of this project are (1) an optimized research device capable of dual-site 

recording and modulation of neuronal activity and (2) a proof-of-concept computational program 

that validates the ability to time-lock neural activity recording to behavioral events to offer 

insight to the cellular activity underlying reward-driven behaviors.  

  



APPENDIX I – CAPSTONE THESIS 

2 | Capstone Thesis Page Number  83 
   

 

INTRODUCTION 

BACKGROUND 

Significance of Drug Abuse 

Drug abuse is highly prevalent in the United States with approximately 25 million 

Americans (over 9 percent of the population) using an illicit drug in any given month (NIDA, 

2015).  Stress-exposure is a widely-recognized risk factor leading to compulsive drug abuse and 

relapse during abstinence (Goeders, 2002).  Addiction potentiating stressors such as anxiety and 

major depressive disorders are the most common mental illnesses in the United States with 

anxiety affecting about 18% of adults in any given year (Kessler, 2005) and major depression 

inflicting 6.7% of all U.S. adults (Center for Behavioral Health Statistics and Quality, 2016).  

The relationship between stress and addiction is reciprocally compounding where stress exposure 

increases addiction risk and drug exposure increases the vulnerability to stress.   

Neuropharmacology of Drug Abuse 

Several brain regions have been implicated in drug seeking and abuse related behaviors. 

A pathway of particular interest is the mesolimbic dopamine system which mediates reward 

signaling. This pathway originates in a dopamine-rich nucleus called the ventral tegmental area 

(VTA). These dopaminergic neurons project primarily to the nucleus accumbens (NAc) which 

processes the reward signal. Other brain regions interact with this pathway such as the amygdala 

which is involved in reward valuation and is important in habit formation, craving, and 

withdrawal. Other regions have important functions that mediate drug seeking such as the 

hippocampus for memory, hypothalamus for regulating stress and motivation, and pre-frontal 

cortex (PFC) which is responsible for decision making and may play a role in impulsivity. 

At a molecular level, studies on the relationship between stress and addiction have shown 

that stress-exposure causes the release of dynorphins, a class of endogenous opioid peptides. 

Dynorphins act primarily through the κ-opioid receptor (KOR) to potentiate the rewarding effects 

of drugs of abuse including cocaine, ethanol, and nicotine (Chavkin, 2014). Dynorphin is widely 

produced in the central nervous system (CNS) and regulates neurons that project to many of the 
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aforementioned brain regions including the VTA to regulate their excitability (Figure 1) 

(Chavkin, 2014).  

 

Figure 1: KOR in the Mesolimbic Dopamine Pathway – Schematic showing KOR-mediated GABAergic and glutamatergic input 
to the VTA. The VTA has dopaminergic and glutamatergic projections to the nucleus accumbens (NAc) also mediated by KOR. 
These projections signal ‘incentive salience’ to the NAc, a primary driver of addictive behavior. The NAc also sends dynorphin 
containing afferents to the VTA presumably contributing to the reciprocal stress-addiction relationship.   

 

INVESTIGATIONAL TOOLS AND STRATEGIES 

Current Methods for Investigating Neural Circuitry  

Our current knowledge of the brain regions and pathways involved in drug seeking and 

abuse has come from an evolution and advancement of investigational tools and strategies. 

General investigational approaches include cell labelling, recording of neural activity, genetic 

modification, and artificial modulation of neural signals.  

Neuronal Tracers 

 One of the earliest technologies developed to investigate neural connectivity was 

neuronal tracers. Neurons have existing machinery in place to transport materials between the 

cell body and axon terminals. Anterograde transport is the movement of materials towards axon 

terminals and retrograde transport is movement of materials to the cell body. Neuronal tracers 
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use the existing axonal transporters in neurons to transport labelled particles through the cell. 

Neuronal tracing studies have been important for the field because they allow for identification 

of neuronal pathways and functions (Oztas, 2003).  

A typical tracing experiment will involve the injection of a labelled dye into a brain 

region of interest. This dye will be taken up by the neurons and transported along their axons. In 

retrograde tracing experiments, the dye will be taken up by the axons of the neurons that project 

to the region of interest and will be transported to label the location of the cell bodies of those 

neurons. In anterograde tracing experiments, the dye will be taken up by the cell bodies in the 

region of interest and transported to the axon terminals to show the regions where those neurons 

project.  

Despite its powerful ability to elucidate brain connectivity, one downside of neuronal 

tracing is that it doesn’t offer information about the activity of the neurons that are being labeled. 

In basic tracing experiments, weak neural connections will be labeled the same as strong neural 

connections, so it is difficult to parse out which regions and networks are important for driving 

animal behavior.  

Electrophysiology 

 In order to investigate and record the activity of neurons, electrophysiological methods 

have been used. Electrophysiology is the study of the electrical properties of cells through the 

measurement of voltage changes or electrical current. In neuroscience, electrophysiology is used 

to measure the electrical activity of neurons. Electrophysiological methods can be used to 

measure activity from the scale of a single ion channel to broad field potentials of entire brain 

regions (Nicolelis, 2002).  

In order to study how the activity of individual neurons and neural connections are 

driving behavior, in vivo electrophysiology is used. For in vivo electrophysiology recording, an 

electrode (typically a conductive wire or silicon probe) is inserted into the brain region of 

interest. The animal is then attached to an electrical tether so that the neural activity can be 

recorded and saved to a signal acquisition system. The animal is then able to move freely to 

conduct a behavioral test or for the researcher to observe the animal behavior.  
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In vivo electrophysiology has allowed researchers to learn how the activity of neurons 

drives or modulates the behavior of an animal. However, the downside to this type of recording 

method is that its difficult to tell what subtype of neurons is being recorded from and it does not 

offer a way to change or modify the neural activity in order to ask experimental questions.  

Genetic Modification 

 In order to investigate how specific subtypes of neurons, receptors, or endogenous 

molecules drive behavior, genetic tools were developed to alter the expression or regulation of 

the variable in question. Genetic investigation involves germline modifications of early embryos. 

These approaches allow researchers to upregulate ('knock-ins'), downregulate (‘knock-downs’), 

or delete ('knock-outs') specific genes (Lowenstein, 2001). These techniques allow researchers to 

investigate how changes in gene expression of a research target alter animal development and 

behavior. 

 Genetic modification is an extremely powerful tool in neuroscience because it elucidates 

the role of specific sub properties of neurons. However, a downside is that it does not allow for 

real time modulation of neural activity. When researching a disease such as addiction, where the 

functioning of the brain changes over the course of the disease, its important to be able to ask 

questions about how modulation of specific subtypes of neurons can modify animal behavior in 

real time.  

Optogenetics 

 Fortunately, the combination of genetic techniques with light activated proteins has 

developed a tool for real-time, reversible modulation of neuronal activity. Optogenetics involves 

the insertion of a light activated protein, or ‘opsin’, into the cell membrane. When exposed to a 

light with a wavelength within the protein’s activation range, the conformation of the protein will 

change, typically opening an ion channel. The opening of a channel will result in the flow of ions 

in or out of the cell, which will change the excitability profile of the cell. The first, and most 

common opsin used for optogenetic experiments is channelrhodopsin-2 (ChR2) (Buchen, 2010). 

When activated by blue light, ChR2 allows the flow of positive ions into the cell, depolarizing 

the membrane, increasing the cell’s excitability. 
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 The use of optogenetics in vivo has allowed researchers to investigate how the 

modulation of neural activity affects animal behavior in real-time. To do optogenetic 

investigation in vivo, an animal must be genetically modified or virally infected in order to 

express the opsin protein. Optogenetics allows sub-type specific expression of the opsin, i.e. the 

opsin can be differentially expressed in a specific type of neuron in a specific region of the brain. 

A light fiber is then implanted in the brain in the region of interest. The fiber is then connected to 

a laser which is controlled by the researcher to send pulses of light to the brain. The animal is 

able to move freely and perform behavioral tasks.  

The real-time modulation of neural activity during behavioral tasks has elucidated how 

specific subtypes of neurons or regional neural activity affects behavior and brain function 

including memory consolidation (Rolls, 2011), impulsivity (Miyazaki, 2014), and drug seeking 

(Stefanik, 2012). However, optogenetics alone doesn’t give researchers detailed information 

about the real-time activity of neurons, because there are no neural recording modalities in place.  

Optrodes 

 In order to acquire neuronal activity measurements while maintaining the ability to 

artificially modulate the cellular activity, combinatorial methods must be used. Researchers have 

developed devices in which electrodes are implanted alongside an optical fiber, terming the name 

‘optrode’. A major benefit of optrodes is that optically stimulating a neuron will not produce any 

electrical artifacts, so the cells can be modulated in real-time while not disrupting the recorded 

signal. 

 Optrodes have traditionally been chronically implanted in rodents and used for in vivo 

modulation and recording of neural activity during behavioral tasks. Following is a brief review 

of some of the landmark studies and reviews that have led to the current state-of-the-art optrode 

devices.   

The Evolution of the Optrode 

Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo 

In 2007, Gradinaru et al. wrote a review on the first strategies combining optogenetic 

modulation with electrophysiological recording. They described that optogenetics allow for the 
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targeting of cells in various ways such as viral mediated injection during development to 

incorporate the proteins into neural layers, injection with promoter fragments that only promote 

in specific subtypes of neurons or specific subcellular portions of the neurons, and also the 

simple projection of the photo stimulus. All of these targeting methods allow for more specified 

research from locations and subtypes of cells even to the subcellular level of a single neuron. The 

group showed examples of research that had been done that shows these methods were all quite 

effective in different ways (Figure 2). 

 

Figure 2: Optogenetic Targeting Techniques - Immunohistochemical validation of a number of opsin targeting modalities 
including through breeding (A), via axonal projection (B), viral promoter targeting (C), and subcellular targeting (D).  (Adapted 
from Gradinaru et al., 2007) 

 

The group described that the implementation of optically stimulated proteins can be 

paired with numerous methods of data recording. A major benefit being the fact that optically 

stimulating a neuron will not produce any electrical artifacts. It can be paired quite effectively 

with electrophysiological signal recording done via a simple electrode. Due to the high speed of 

these signals and effective recording, very high temporal resolution can be seen. Optical neural 

control can also be paired with other methods such as luminescent optical recording and long 
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term biochemical analysis. If the speed of acquisition and optical stimulation delivery is 

sufficient, luminescent optical recording can be used to determine the molecular and ionic 

information concerning neuronal and local circuit action potentials. The long term biochemical 

analysis on the other hand, may allow for the long-term tracking and validation of the effects 

optical neural control has on neurons and circuits. Through simple visual analysis however, 

larger scale changes can be seen through the use of optical neural control. Specifically, the 

behavior of conscious rodents can be altered via optogenetic stimulation. This could be seen in 

an experiment in which, only the right side of a rodent's brain was optogenetically stimulated 

while awake. This experiment resulted in the continued tendency for the rodent to turn left and 

walk in a counterclockwise spiral while stimulated (Figure 3). 

 

Figure 3: Optical Control of Behavior – Walking behavior of a mouse before (green), during (black), and after (red) optical 
stimulation. Optical control of the right motor cortex caused the animal to walk in left hand circles. (Adapted from Gradinaru et 
al., 2007) 

Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and 

recording of local neural circuits in the behaving animal 

Once the idea of the optrode was exposed to the field, there was a major push to increase 

the spatial resolution of the devices. In order to achieve this aim, Royer et al., (2010) developed 

multi-array silicon probes equipped with micron-scale optical fibers for optogenetic probing of 

neural circuits. Figure 4 shows the general engineering design and images of the completed 

device. The group etched the optical fiber using hydrofluoric acid and then cured the fiber to the 
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silicon probe via UV curable epoxy (Figure 4A-B). The optical fiber equipped shanks were then 

arranged in either 4 or 8 shank probes (Figure 5). The shanks were designed such that the optical 

fiber could terminate between 300 micrometers before the tapering of the shank to 100 

micrometers past the end of the shank, allowing for versatility in where the light modulation was 

occurring.  

 

Figure 4: Silicon Array Schematic – A-top) Etching of optical fiber via hydrofluoric acid; B) Securing of optical fiber to silicon 
array via UV curable epoxy; C) Images of completed silicon array; A-bottom) Schematic of implantation into a rodent. (Adapted 
from Royer et al., 2010) 
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Figure 5: Multi-Shank Silicon Probe – A) 4-shank probe with one light equipped channel; B) 8-shank silicon probe with 4 light 
equipped channels; C) 8-shank silicon probe with 4 light equipped channels of variable fiber optic termination location. (Adapted 
from Royer et al., 2010) 

 Using these multi-shank silicon probes, the group injected a parvalbumin targeting 

halorhodopsin virus into the hippocampus of mice. By implanting a 4-shank probe with one light 

equipped shank into the halorhodopsin expressing animals, the group was able to show spatial 

specificity in neural modulation via the light equipped channel (Figure 6). The 8-shank probe 

was capable of recording from “50 to 140 well-clustered neurons,” which was a significant 

increase in spatial resolution compared to previous methods. Using this technique, the group 

went on to show an example of a behavioral task in which light modulation was applied, 

selectively activating specific neurons during the task (Figure 7). 

 

Figure 6: Light Modulation – Sinusoidal light modulation on one channel of a 4-shank probe showing spatial specificity in neural 
activity modulation. (Adapted from Royer et al., 2010) 



APPENDIX I – CAPSTONE THESIS 

11 | Capstone Thesis Page Number  92 
   

 

 

Figure 7: Neural Modulation During Behavior – A) Behavioral set up; B) Light modulation during specific behavioral region; C) 
Recordings from 10 cells during behavior showing specificity inn responsiveness. (Adapted from Royer et al., 2010) 

The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of 

neuronal ensembles in freely moving  

Chronic recording of neuronal ensembles is challenging, especially in behaving mice. 

The complexity of available drive mechanisms, implant weight tolerated by mice, and finding 

the precise positioning for high-quality recording, limits current methods to recordings from no 

more than 4–8 electrodes in a single target area. This becomes even more complicated when 

integrating optic fibers for optogenetic manipulations. Mice comfort and survivability imposes 

weight limit of about 4g, and even 2g when a combination of recording with behavioral 

phenotyping is desired (motion and videography needs). Previous studies bypassed the weight 

problem by offsetting the implant weight with a pulley system or attaching a helium-filled 

balloon to the implant, or by placing the animal on a headpost, which aren’t ideal. Another 

method utilizes static electrode arrays to make large-scale recordings within a lightweight 

device. However, in case of inaccurate positioning or glial encapsulation, use of static electrodes 

prevents an easy change in position. There is a need for a low weight, with high number of 

individually movable electrodes, high placement stability, and independently adjustable optical 

fibers that would allow high-quality recording in behaving mice. 
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A highly miniaturized drive design that replaces the drive mechanisms found in current 

implants with a one-piece spring design was developed. “FlexDrive” (Figure 8) fits 16 

individually movable tetrodes (up to 64 channels), can maintain stable recording conditions for 

months, integrates 2+ optic fibers, and only weighs ~2g (Figure 8B).  Electrodes are positioned 

by an array of flexible polyimide guide tubes, while the electrode sits in a movable “shuttle tube” 

that can be laterally adjusted using screws (Figure 8A), where each screw turn corresponds to a 

250μm lateral motion. This allows the user to adjust the position of individual electrode, even 

after surgery, which is important for several reasons like in the case of glial encapsulation.   

An injection of adenovirus was used to deliver the gene for channelrhodopsin-2 (ChR2) 

to the SI region and the device was mounted, all in the same surgical procedure (Figure 9A). The 

authors were able to show recorded activity from relevant neurons in response to laser pulses 

(Figure 9B). In addition, a multi-site recording from both the SI region and the thalamic reticular 

nucleus (RTN) was achieved by adjusting individual electrodes, showing that the design can 

produce parallel recordings from 16 electrodes from two sites with the accuracy required to 

observe neurons in small, deep targets such as the TRN. To conclude, the flexDrive presents a 

straightforward method for obtaining stable and high-quality electrophysiological data from 

multiple target sites in awake, behaving mice. This permits researchers to make full use of the 

precision and specificity of optogenetic methods by directly probing the concerted function of 

neural circuits, rather than individual neurons. 

 

Figure 8: flexDrive Schematic - A) Internal view of flexDrive featuring the interface board, the 16 adjusting screws, the polyimide 
drive body, and the drive spring; B) External view of the flexDrive mounted on a mouse’s head, weighing only ~2g and 22mm 
head to cap; C) Adjustable electrode mechanism. The mobile shuttle tube is adjustable by the drive spring (connected to the 
screw) and slides laterally inside the guiding tube to control the position of the electrode. (Adapted from Voigts et al., 2013) 
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Figure 9: Optical Modulation with flexDrive - A) Activation of neurons in S1 region with ChR2; B) Trace of an identified neuron 
on one of the tetrodes for one session. (Adapted from Voigts et al., 2013) 

Drawbacks of Current Designs 

 A number of advances have been made in the field of optogenetic modulation coupled 

with electrophysiological recording. The flexDrive currently offers the largest number of 

individually drivable recording channels and is the first device capable of stimulating and 

recording from more than one brain region simultaneously. However, the flexDrive limits the 

regions that it can record from to a lateral separation of no more than 1.5 mm.  

 The primary reason that no devices have the capability to record from multiple brain 

regions with high spatial separation is the limitations of the size and weight of the devices. As 

mentioned previously, the upper bound on weight for chronic implantation and behavioral 

recording in mice is approximately 2g. Current devices such as the flexDrive are already 

bordering on this weight limit and thus could not possibly be implanted in multiple regions. Even 

if the current devices weighed less, their sheer size is a limiting factor for multi-site implantation 

on a mouse skull.  

STATEMENT OF PROBLEM AND NEED 

While the field of drug abuse research has identified important brain centers, pathways, 

molecular agents, and targets responsible for mediating addictive behaviors, there is a gap in 
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knowledge about how these regions actively communicate in awake and behaving animals. In 

order to develop new treatments for addiction and related mental illnesses, we must understand 

how neuronal activity, at a multi-region, circuit-wide level regulates specific behaviors such as 

drug seeking.  

Recording from a freely behaving animal, requires devices that are small enough to fit on 

an animal’s head and light enough to be carried by the animal. In addition to the size constraints, 

the devices must be able to modulate and record neuronal activity with high spatiotemporal 

resolution. Current devices that meet these requirements are only capable of recording from one 

brain region at a time or are limited to simultaneous recordings from regions with low spatial 

separation.  

The head mount assemblies must include an electrode interface board (EIB), electrode 

fibers, an optical fiber, and a driving mechanism to adjust fiber position. In addition, the fiber 

driving mechanisms must be easily accessible by the researcher to adjust fiber position between 

recording sessions.  

In order to achieve a multi-site recording device, significant design modification must be 

made to reduce the weight and size of the device while maintaining high spatiotemporal 

resolution and fiber driving capabilities.  
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DESIGN PROCESS 

CURRENT MODEL DEVICE – ZWEIFELTRODE 

 The current optrode device used in the University of Washington Pharmacology 

Department was designed by Yong Jo in the lab of Larry Zweifel, termed ‘Zweifeltrode’. This 

device was the basis for all design modifications, optimizations, and validation testing described 

in this report.  

Device Description 

The Zweifeltrode (Figure 10) is a single-site optrode consisting of a single optical fiber, 

and four tetrode bundles resulting in 16 electrode wires. The electrodes interface to an EIB 

containing a female connector for the data acquisition system. The optical fiber terminates in an 

optic ferrule for connection with the laser driving system. The device contains a screw driving 

mechanism to drive the optic and electrical fibers simultaneously into the brain. The device is 

manufactured with 3D printed parts and assembled entirely in-house.  

 

Figure 10: Images of Zweifeltrode – Two perspective images of the current model optrode used by the University of Washington 
Pharmacology Department. This single-site optrode was design by Yong Jo of the Zweifel Lab. Numbered part labels correspond 
to the part reference numbers in Table 2: Zweifeltrode Parts List.  
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Device Specifications 

The following is a table of relevant specifications for the current model device. These are 

the specifications that will be compared to the new device for validation of device optimization.   

TABLE 1: ZWEIFELTRODE SPECIFICATIONS 

Description Metric 

Size  

Height 15 mm 

Width 18 mm 

Length 14 mm 

Weight 1.9 g 

Drive Mechanism  

Drive Range 3.5 mm 

Drop/turn .212 mm 

Recording Capabilities  

Number of Sites 1 

Electrodes/site 16 

Optic Fibers/site 1 

 

Parts List 

The following is a parts list for the current model device. All of the parts have a reference 

number corresponding the numbered parts in the device image, (Figure 10). 

TABLE 2: ZWEIFELTRODE PARTS LIST 

Part Description Part Spec. Source Catalogue # Ref. # 

Drive Main Yong CAD, ABS Plastic Yong So N/A 1 

Drive Small Yong CAD, ABS Plastic Yong So N/A 2 

EIB 16-channel, 1x1x0.6cm, 200mg Neuralynx E1676292 3 

Support Post 23G, 304 stainless steel, 15mm SmallParts HTX-23R-12-10 4 

Outer Tubing 19G, 304 stainless steel, 7mm SmallParts HTX-19R-12-10 5 

Inner Tubing 23G, 304 stainless steel, 16mm SmallParts HTX-23R-12-10 6 
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Polyamide Tubing 0.0137in, polyamide tubing MicroLumen BA863484 7 

EIB Screws Any Fit Acceptable N/A N/A 8 

Drive Screw 0-80, 1 cm, stainless steel hex screw N/A N/A 9 

Drive Screw Nut 0-80 Hex nut N/A N/A 10 

Gold Pins 0.015-0.025in, gold plated   Neuralynx Large EIB Pins 11 

Optic Ferrule 1.25mm, 230um bore, Ceramic Zirc. Prec. Fiber Prod. MM-FER2007C 12 

Optic Fiber Silica, 0.22 NA, Ø200 µm Core Thorlabs FG200LEA 13 

Tetrode Wire .00099in, Tungsten 99.95%  CA Fine Wire Co By Quote Only 14 

Ground Wire 32G, Insulated Stainless Steel  Unknown Unknown 15* 

Ground Screw Any Stainless Steel Screw Accept. N/A N/A 16* 

*Not shown in device image 

 

Assembly Protocol 

The following is the assembly protocol for the current model device. The protocol is 

based on full in-house assembly with the tools available in the Zweifel Lab work bench space.  

HARDWARE ASSEMBLY 

I. Prepare metal cannula using dremel 

a. Cut two pieces of 23G tubing at 16mm (inner tubing) and 15mm 

(support post) 

i. Sand down 

b. Cut one piece of 19G tubing at 7 mm (outer tubing) 

i. Sand down 

II. Prepare holes in Drive Main 

a. Thread middle hole with 0.08in screw driver from top 

b. Drill 2 holes for EIB board on top post with hand drill 

III. Mount EIB with EIB screws 

a. ‘2’ next to vertical post on Drive Main 

IV. Mount tubing 

a. Place inner tubing in bridge hole on Drive Small from bottom 

i. Superglue from bottom 

b. Place support post in lateral hole on Drive Main from top 

i. Superglue from top 

c. Place outer tubing in medial hole on Drive Main from bottom 

i. Superglue from bottom 

V. Prepare drive screw 

a. Place drive screw through center hole of Drive Small from top 

b. Glue drive screw nut 

i. Screw drive screw nut onto drive screw from bottom 

ii. Put superglue on drive screw close to bottom of Drive Small 
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iii. Screw drive screw nut into superglue 

VI. Assemble Drive Small to Drive Main 

a. Place inner tubing into outer tubing from top 

b. Place support post into outer hole on Drive Small from bottom 

c. Screw drive screw into threading of middle hole on Drive Main 

i. Ensure alignment and easy driving 

VII. Mount polyamide tubing 

a. Thread polyamide tubing through inner tubing 

i. Cut with 1mm clearance on both ends 

ii. Superglue from top 

 

TETRODE PREPARATION 

I. Prepare tetrode wire 

a. Cut to 14 in (length of diagonal of standard 8.5x11in paper) 

i. Ensure no kinks 

b. Fold in half once 

i. Cut at loop 

c. Fold in half again 

i. DO NOT cut 

d. Twist ends 

II. Use tetrode spinner 

a. Mount wires 

i. Place twisted ends in clamp of tetrode spinner 

ii. Place loop on ring stand post 

1. Ensure wire is taut but not suspending clamp 

b. Spin wires 

i. 35 Forward, 27 Reverse 

1. Adjust as necessary 

c. Heat Gun 

i. 3 passes on high: Up; Down; Up 

OPTIC FIBER PREPARATION 

I. Cut optic fiber 

a. Use fiber stripper to remove insulation 

b. Measure length for brain region of interest 

c. Use diamond blade to score fiber 

d. Brake by bending 

II. Polish fiber 

a. Place fiber(s) in holding rod of appropriate length 

b. Polish one end on polishing paper in ascending grit 

i. Start with least perfect end 

ii. Polish until no imperfections 

III. Mount in ferrule 

a. Place non-polished end of fiber into ferrule 

i. From open end to tapered end 
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b. Secure with epoxy 

i. Mix 2-part optic fiber epoxy 

ii. Place epoxy in open end around fiber 

iii. Cure with heat gun until dark brown 

IV. Polish Fiber 

a. Polish ferrule end on polishing paper in ascending grit 

i. Polish until no imperfections 

FIBER MOUNTING 

I. Thread tetrodes 

a. Thread 4 tetrodes through polyamide tubing from top 

b. Thread tetrodes to EIB 

i. Cut loop in tetrode 

ii. Thread wires through 4 holes on one side of EIB from bottom 

c. Secure with gold pins from top 

i. Clamp with plyers 

II. Thread optic fiber 

a. Thread through polyamide tubing from top 

i. Ensure 1mm clearance at bottom end of polyamide 

III. Cut tetrode wires 

a. Trim wires from top 

b. Cut wires at angle on bottom with 0.5-1mm clearance from bottom of 

optic fiber 

IV. Epoxy optic fiber 

a. Mix 2-part epoxy 

b. Secure optic fiber with cone shaped epoxy mount from top 

GROUND WIRE PREPARATION 

I. Cut ground wire 

a. Cut to 2in 

b. Strip 0.5in insulation from both ends 

II. Solder ground wire to ground screw 

a. Wrap end of wire around top of screw threads 

b. Solder to screw 

III. Mount to EIB 

a. Place end of wire through ground hole ‘G’ from bottom 

b. Secure with gold pin from top 

 

MULTI-SITE DESIGN CONSIDERATIONS 

 Using the Zweifeltrode as the model device, design iterations were made to design an 

optimized device with multi-site implantation capability. Throughout the design process, a 

number of device needs and design constraints were considered in order to develop a viable final 
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product. The following are the device requirements and additional considerations that were used 

throughout the design process.  

Device Requirements 

The requirements used in designing the new device were based on a number of factors. 

The first factor to consider is the needs of the parties that will be affected by the device design 

process. The stakeholders for this device are the research team (Chavkin Lab), the research 

organism (mice), the regulatory body that will approve the use of the device (The Institutional 

Animal Care and Use Committee, IACUC), and the financial stakeholders or parties funding the 

research. Each stakeholder has a different set of needs, however many of the needs between 

stakeholders overlap. Following is a summary of the primary needs of each of the stakeholders 

considered.  

Design Needs 

TABLE 3: DESIGN NEEDS  

# Need Description 

Stakeholder I – Chavkin Lab 

1 Answers Research Aim Must answer the questions motivating the design process 

2 Promotes Naturalistic Behav. Allows animal to move freely to perform behav. tasks 

3 Reproducible Must be able to make multiple devices to replicate results 

4 Low Cost Comparable in cost to current model device 

5 Easy to Use Comparable ease of use as current model device 

Stakeholder II – Mice 

2 Promotes Naturalistic Behav. Allows animal to move freely to perform behav. tasks 

6 Minimally Harmful Does not cause excessive discomfort or harm to animal 

Stakeholder III – IACUC 

6 Minimally Harmful Does not cause excessive discomfort or harm to animal 

7 Follows Mouse Implant Prot. Within protocol requirements for implantation in mice 

Stakeholder IV – Funding Parties 

1 Answers Research Aim Must answer the questions motivating the design process 



APPENDIX I – CAPSTONE THESIS 

21 | Capstone Thesis Page Number  102 
   

 

3 Reproducible Must be able to make multiple devices to replicate results 

4 Low Cost Comparable in cost to current model device 

8 Time Efficient Can be completed within time frame of grants 

 

The Chavkin Lab’s reason for holding stake in the device is to answer the research 

questions posed. In order to meet those research aims, the device must produce novel data while 

promoting naturalistic behavior so that the animal can perform behavioral tasks. In addition, all 

results developed by the device must be reproducible, thus the device itself must be reproducible. 

The Chavkin Lab also needs the device to be low cost in order to be able to fund the project. 

Finally, the device must be easy for the researchers to use, i.e. it should not require any highly 

specialized training or advanced skill to use.  

The mice are the most intimately affected stakeholder in the development of the device. 

The device must be minimally harmful to the animals and thus should not cause severe 

discomfort or unnecessary harm (e.g. infection or irritation). In addition, in order for the mice to 

perform the required behavioral tasks and survive independently, the device must allow the mice 

to behave naturalistically and must not inhibit independent movement, eating, and drinking. 

The regulatory body, IACUC, is primarily concerned with the reasonable care and use of 

the animals for research. Thus, IACUC also requires that the device is minimally harmful and 

thus does not cause excessive discomfort to the animal. IACUC also requires that the device be 

within the size and weight constraints for implantation.  

Finally, the parties funding the design of this device are the financial stakeholders. As 

financial stakeholders, the funding parties require that the device is low cost. In addition to being 

low cost, the device must effectively answer a novel research aim. Therefore, the funding bodies 

also require that the device produce reproducible, novel data. Finally, the funding bodies have 

time limits on their funding, thus the device must be made within the time requirements of the 

grants.  

Needs-Metric Translation 

 In order to convert the stakeholder needs into evaluable design requirements, the needs 

had to be translated into design specifications. Each design specification must be accompanied 
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by a metric so that the final design specifications can be evaluated to ensure that the device 

design meets the stakeholder needs.  

TABLE 4: NEEDS-METRIC 
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1 Answers Aim      x x x x x   

2 Prom.Nat. Behav.    x x        

3 Reproducible           x x 

4 Low Cost           x  

5 Easy to Use   x          

6 Min. Harmful x x  x x        

7 Follows Protocol x x  x x        

8 Time Efficient            x 

MP = Material Properties, T/F = True or False 

 

Design Constraints 

 In order to design the device with specifications that meet the needs described, the 

specifications had to be constrained to measurable values. In order to place values on the design 

constraints, a number of factors had to be considered. The first factor is the model organism. 

Using a mouse as the test organism places strict size and weight constraints on the device. Using 

a mouse also determined the appropriate drive range as the drive range must equate to the size of 

the brain region being recorded from. The next factors to be considered are the cost and time 

constraints placed on the project by the funding agencies. These factors are determined by the 
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terms of the grant. Following is a table displaying the design constraints determined by 

considering all of the necessary factors.  

TABLE 5: DESIGN CONSTRAINTS 

Specification  Constraint  

Material Properties  

Biocompatible Non-degradable plastics, 304 Stainless Steel 

Aseptic Sanitizable material 

Size Per Site, Assuming 2 Sites 

Height < 15 mm 

Width < 3 mm 

Length < 10 mm 

Weight < 1 g 

Drive Mechanism  

Accessibility By Hand 

Drive Range > 2 mm 

Drop/turn < 0.25 mm 

Recording Capabilities  

Number of Sites ≥ 2 

Electrodes/site ≥ 8 

Optic Fibers/site 1 

 

 The material requirements are based on the definitions of biocompatible and aseptic 

materials. For the purpose of this device design, all materials used were the same as the materials 

in the model device. The use of ABS for 3D printing, polyamide tubing, and 304 surgical 

stainless steel from medical materials suppliers ensured that the materials were within the design 

criteria.  

 The size constraints were determined base on the model organism. The use of mice limits 

the weight of chronic skull implantation for behavioral assays to 2 grams (Voigts, 2013). In order 

to be implanted in two sites simultaneously, the device must be less than half the weight 
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constraint, therefore the device must be less than 1 gram. The length and width of the device are 

constrained by the size of the animal’s skull and the regions of interest. Using mouse strain 

C57BL/6, the implantable skull area is 11.6 x 5.3 mm (Kawakami, 2008). This constrains the 

length of the device to approximately 10 mm. For the purpose of the design process, we are 

assuming recording from the PFC and VTA. The stereotaxic coordinates of the PFC are P: +1.8, 

L: ±0.3, V: 2.25 → 3.25 mm from Bregma; the stereotaxic coordinates of the VTA are P: -3.1, L: 

±0.5, V: 4.3 mm from Bregma (Paxinos, 2012). The total separation between the implant 

coordinates for the VTA and PFC is 4.9 mm. To maintain accessibility, 2 mm must remain 

between the implants. This constrains the width of the device to 3 mm. The height constraint is 

based on the height of the current model device.  

 The range of the drive mechanism is based on the dorsoventral length of the brain regions 

of interest. The PFC is the longest region of interest with a dorsoventral length of 1mm. 

Assuming the fibers are implanted 0.5 mm above the region and are driven until they are 0.5 mm 

below the region, the total drive range must be at least 2 mm. In order to get at least 3 recording 

sessions per region in each animal, the maximal fiber drop per turn of the drive mechanism must 

not exceed 0.25 mm.  

 The electrode fiber count constraint was determined by the assumption that the fibers are 

bundled into tetrodes. In order to resolve spatial information, at least two tetrodes must be 

implanted per region thus requiring that each region have at least 8 electrode fibers.   

Additional Considerations 

In addition to the physical design parameters, additional considerations were made during 

the device and experimental design of this project. The following recognizes some potential 

concerns from an ethical, regulatory, and economic perspective and overviews the considerations 

made as a result.   

Ethical 

From a socio-ethical standpoint, the project was potentially controversial on two fronts. 

First, the involvement of animal research made the project prone to backlash from animal rights 

activist groups such as People for the Ethical Treatment of Animals (PETA). In order to protect 

the research from interference by said groups, all work strictly adhered to the IACUC protocols 
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for the proper treatment pf research animals and animal wellbeing was made a priority. However, 

being aware that many animal rights activists are entirely against all forms of animal research, 

privacy measures were taken to ensure that only approved persons had contact with animals.  

Second, since the topic of research was drug abuse, the social stigma around addiction as 

a medical and societal disease makes research in the field a sensitive and controversial subject. In 

response to critique, outreach efforts were made to inform the public through press coverage and 

Washington State legislature through attending legislative sessions about the milestones in 

addiction research and potential impact the findings have on society. 

Regulatory 

From a regulatory standpoint, the project involves animal research, so all of the work had 

to follow and be approved by IACUC regulations (IACUC Guidebook, 2002). The project also 

involved the use of Schedule I drugs such as cocaine so all procedures had to adhere to the Drug 

Enforcement Administration (DEA) guidelines. Regular inspections by both of these regulatory 

agencies were mandated.    

Economic 

The major constraint for this project at the onset was funding limitations contingent on 

the grants available to the lab and the cost of the other projects being conducted by the lab. The 

major funding sources for the lab come from the National Institute of Drug Abuse (NIDA) and 

the National Institute of Mental Health (NIMH) which are both branches of the National Institute 

of Health (NIH). The current grants available to the Chavkin Lab have specific research aims 

associated with the funding and thus this project had to uphold to those aims. In addition to those 

funding sources, this project was funded by the Levinson Emerging Scholar Award which 

allowed a spending budget of $3,500.  

DESIGN ITERATIONS 

 By taking the design needs, specifications, and constraints into consideration, the optrode 

device was redesigned over a number of iterations. The majority of the device optimizations 

were made by redesigning the driving mechanism. The iterations resulted in two landmark 

designs: an intermediary prototype and the final design to-date.  
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Prototype I – Coaxial Driving Mechanism 

 Taking in to consideration the needs and constraints of the final design, the most obvious 

component to optimize was the driving mechanism. The model driving mechanism consisted of 3 

axle rods: the support post, the drive screw, and the fiber cannula. In order to consolidate the 

number of rods, the first design used a coaxial driving mechanism where the fiber cannula and 

drive screw were conserved in the same axle.  

 The coaxial driving mechanism consisted of 3 nested rods (Figure 11). The inner most 

rod housed the fibers and was externally threaded (Figure 11B-C, Blue). The center rod was 

internally threaded to the inner rod (Figure 11B-C, Red). The outer most rod was a guide shaft 

for the inner rods and would be mounted extracranially (Figure 11B-C, Green). The fibers would 

be driven by rotating the center rod which would drop the inner most rod (the fiber cannula) into 

the brain via the screw threads. In order to ensure that the fibers would not rotate relative to the 

brain, a torsional lock held the inner most rod rotationally stationary relative to the outer rod.  

 

Figure 11: Prototype I Sketch – A) CAD sketch of full prototype design including dimension labels. B) Transparent sketch with 
nested rods labeled by color. Blue: Inner rod housing fibers with external threading, Red: Center rod to drive inner rod with 
internal threading, Green: Outer rod acting as a guide shaft for drive mechanism. C)  Ventral view of device with color labels 
corresponding to labels in B and rod diameter dimensions labeled.  

C 

A B 
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The design was projected to be made with 304 stainless steel tubing. The inner rod would 

be made of 20 gauge hypodermic tubing externally threaded with a 1.10 UNM die. The center 

rod would be made of 18 gauge hypodermic tubing internally threaded with a 1.10 UNM tap. 

The outer rod would be made of 16 gauge hypodermic tubing. The projected materials, 

dimensions, weight, and drive specifications all met the needs and constraints of the device 

(Table 6).  

A micro-machinist (Kevin Willis, Verus Design & Prototype) was hired to manufacture 

the prototype. The materials and necessary tooling was ordered to manufacture the device. 

Unfortunately, the machining proved to be infeasible due to the thread size and brittleness of the 

needle stock. Therefore, manufacturing of Prototype I was abandoned (Figure 12). 

TABLE 6: PROJECTED SPECIFICATIONS (PROTOTYPE I) 

Specification  Constraint  Projected 

Material Properties   

Biocompatible Non-degradable plastics, 304 

Stainless Steel 

Polyamide, 304 Stainless Steel 

Aseptic Sanitizable material UV and EtOH sanitizable  

Size Per Site, Assuming 2 Sites Per Site 

Height < 15 mm 13 mm 

Width < 3 mm 1.83 mm 

Length < 10 mm 2.83 mm 

Weight < 1 g 0.4 g 

Drive Mechanism   

Accessibility By Hand By Hand 

Drive Range > 2 mm 3 mm 

Drop/turn < 0.25 mm 0.212 mm 

Recording Capabilities   

Number of Sites ≥ 2 2 

Electrodes/site ≥ 8 8 

Optic Fibers/site 1 1 



APPENDIX I – CAPSTONE THESIS 

28 | Capstone Thesis Page Number  109 
   

 

 

Figure 12: Infeasible Manufacturing – Manufacturing of Prototype I proved infeasible due to the thread size and material 
properties of 304 stainless steel hypodermic needle stock. Manufacturing of Prototype I was abandoned.  

 

Prototype II – Coaxial with Driving Nut 

 After abandoning manufacturing of Prototype I, the design was reiterated to account for 

feasibility of manufacturing. Through collaboration with the manufacturer, a new design was 

created (Figure 13). The new design adapted the coaxial drive mechanism to use a drive nut 

instead of an internally threaded rod. The fiber cannula remained as an externally threaded rod, 

the outer rod was conserved as a guide shaft. The torsional lock was also enlarged to ensure 

manufacturing feasibility.  

The design was approved by the micro-machinist (Kevin Willis, Verus Design & 

Prototype) and was successfully manufactured (Figure 14). The torsional lock guide was 3D 

printed using ABS plastic. The torsional lock shafts were cut from 304 stainless steel. The fiber 

cannula was cut from a 0-80 thread stainless steel screw and a 0.027 inch diameter hole was 

bored from the center of the screw. The drive nut used was a 0.125 flats stainless steel hex nut. 

The outer rod was cut from 15 gauge, thin-walled, stainless steel needle stock. The final 

materials, dimensions, weight, and drive specifications all met the needs and constraints of the 

device (Table 7).  
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Figure 13: Protoype II Sketch – Manufacturer approved sketch of prototype II including dimension labels, thread size, and drive 
nut specifications. Left: Slice of device through sagittal plane showing threading and torsional lock dynamics, Right: Side view of 
device showing slender dimensions, Upper-Right: Schematic sketch of prototype design. 

 

 

Figure 14: Manufactured Prototype II – Images of the final manufactured product of prototype design II. The right image shows 
the device to scale on a US dime coin. 
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Achieved Device Specifications 

TABLE 7: ACHIEVED SPECIFICATIONS (PROTOTYPE II) 

Specification  Constraint  Achieved 

Material Properties   

Biocompatible Non-degradable plastics, 304 

Stainless Steel 

ABS, Polyamide, 304 Stainless 

Steel 

Aseptic Sanitizable material UV and EtOH sanitizable  

Size Per Site, Assuming 2 Sites Per Site 

Height < 15 mm 12 mm 

Width < 3 mm 2.5 mm 

Length < 10 mm 7.6 mm 

Weight < 1 g 0.7 g 

Drive Mechanism   

Accessibility By Hand By Hand 

Drive Range > 2 mm 3 mm 

Drop/turn < 0.25 mm 0.212 mm 

Recording Capabilities   

Number of Sites ≥ 2 2 

Electrodes/site ≥ 8 8 

Optic Fibers/site 1 1 

 

DEVICE VALIDATIONS 

 In order to ensure that the new design was a valid optimization of the previous device, a 

number of validation tests must be performed. The first validation is a comparison between the 

old design and the new design to ensure that the necessary optimizations were achieved while 

maintaining the device requirements. When comparing the new design to the previous design 

(Table 8), all required device components were maintained while significant optimizations were 

made to the device size (Figure 15). The new device only had decreased evaluations for the drive 

range and the number of electrodes per site. The drive range is still within the device constraints 
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and was understandably reduced because the drive mechanism was the primary component of 

optimization. The number of electrodes per site is restricted by the number of pins in the EIB 

divided by the number of recording sites. This number could easily be increased by using a 

larger EIB, however this would add to the total weight and size of the device.  

TABLE 8: OPTIMIZATION COMPARISON 

Specification  Previous Design New Design Optimization       (%) 

Material Properties    

Biocompatible ABS, Polyamide, 

304 Stainless Steel 

ABS, Polyamide, 304 

Stainless Steel 

Maintained 

Aseptic UV and EtOH 

sanitizable 

UV and EtOH 

sanitizable 

Maintained 

Size Per Site Per Site  

Height 15 mm 12 mm - 3 mm            (20%) 

Width 18 mm 2.5 mm - 15.5 mm       (86%) 

Length 14 mm 7.6 mm - 6.4 mm         (46%) 

Weight 1.9 g 0.7 g -1.2 g              (63%) 

Drive Mechanism    

Accessibility By Screw Driver By Hand No tool req. 

Drive Range 3.5 mm 3 mm - 0.5 mm         (14%) 

Drop/turn .212 mm 0.212 mm Maintained 

Recording 

Capabilities 

   

Number of Sites 1 2 + 1                 (100%) 

Electrodes/site 16 8 - 8                   (50%) 

Optic Fibers/site 1 1 Maintained 
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Figure 15: Comparison Between New and Previous Device – Side-by-side comparison of the previous device (Left) to the new 
device (Right) showing significant reduction in size for the new device. Note: This is an image of the new device without the 
fibers implanted or EIB attached which makes it appear smaller than the final implanted device would be.   

 Further validation testing would be required before implanting the new device including 

drive mechanism testing of fully constructed device, electrical conductance testing, and optical 

luminance testing. The drive mechanism must be tested to ensure that an appropriate amount of 

force is required to drive the fibers such that the nut will not spin on its own yet is easily driven 

by the researcher as to not apply excessive torsional force to the animal’s skull. Since the new 

device was manufactured this month and the materials to fully construct the final device have not 

been delivered, these final validation tests will be conducted at a future date.  
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EXPERIMENTAL DESIGN AND RESULTS 

BACKGROUND AND INTRODUCTION 

 The new device is intended for use in behavioral experiment in mice with the goal of 

improving the understanding of how brain regions communicate to drive behaviors associated 

with stress and addiction. Numerous studies have shown that persistent, inescapable stress 

increases the likelihood of drug abuse in humans (Piazza, 1990; Shaham, 1994; Kosten, 2000). 

The Chavkin Lab aims to investigate the neural mechanisms and pharmacology involved in this 

relationship between stress and addiction. In previous work, the Chavkin Lab has shown that the 

KOR/dynorphin system (described in Introduction) is responsible for the stress-induced increase 

in cocaine preference (Figure 16) (McLaughlin, 2003). 

 

Figure 16: Stress-Induced Cocaine CPP is Blocked by nor-BNI – nor-BNI, a KOR antagonist, blocks the stress-induced increase in 
cocaine preference in the conditioned place preference (CPP) task. A) Experimental paradigm for B. B) Forced swim stress (FSS) 
increases time spent on cocaine paired chamber during CPP, this effect is blocked by nor-BNI pretreatment. C) Experimental 
paradigm for D. D) The FSS induced reward potentiation is observed multiple days after initial stress exposure, the effect of nor-
BNI continues throughout time course of experiment. (Adapted from McLaughlin et al., 2003).  

Further work demonstrated that activation of the KOR/dynorphin system is aversive 

(Land, 2008), and activation of KOR during cocaine conditioning results in an elimination of 

cocaine preference. Due to these results, it was theorized that activation of the KOR/dynorphin 
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system reduces the baseline hedonic state of the animal, allowing for a greater potential positive 

valence of the rewarding drug (Figure 17) (Bruchas, 2010).  

 

 

Figure 17: Change in Hedonic State Theory of KOR Mediated Reward – Activation of the KOR/dynorphin system through stress 
increases dysphoria, negatively shifting the hedonic or ‘mood’ state of the animal. This downward shift in baseline creates larger 
potential positive valence for the drug of abuse, allowing the animal to experience more rewarding effects of the drug. 

  In explanation of the ‘reduced hedonic baseline’ reward theory, the Chavkin Lab 

proposed a cellular mechanism. Since KOR is expressed on dopamine neurons and activation of 

the KOR/dynorphin system is aversive, the Chavkin Lab proposed that KOR keeps dopamine 

neurons in a prolonged inhibitory state which results in the reduction in hedonic state. In order to 

test this hypothesis, cellular level interrogation of the reward circuit during behavioral analysis is 

required. This interrogation involves real-time neural activity recording and modulation at 

multiple brain regions, necessitating a multi-site optrode. An overview of the designed 

experimental paradigm is described in brief below.  

EXPERIMENTAL DESIGN 

 The basic experimental design proposed mimics the CPP paradigm from the predecessing 

experiments (outlined in Figure 16). The cocaine CPP paradigm is a four-day experiment (Figure 

18). On the first day, an animal is placed into a 3-chamber apparatus and allowed to explore 

freely. The amount of time spent in each chamber is recorded and serves as the pre-test baseline. 



APPENDIX I – CAPSTONE THESIS 

35 | Capstone Thesis Page Number  116 
   

 

After the pretest, the animal is exposed to a 15-minute forced swim stress (FSS). On the second 

day, the animal is exposed to a repeated forced swim stress (rFSS) paradigm in which it is forced 

to swim for 6 minutes, 4 times. After the rFSS the animal is conditioned by being injected with 

either cocaine (test group) or saline (control group) and placed into one chamber in the original 

3-chamber apparatus, but is not allowed to explore the other chambers. The conditioning 

paradigm allows the animal to associate one of the chambers with the rewarding drug. On the 

third day, the animal is conditioned again with either cocaine or saline and placed in the same 

chamber as the previous day. On the final day, the animal is placed in the open apparatus and 

allowed to explore freely. The amount of time the animal spends in each chamber is recorded 

and compared to their pretest values to determine whether there was an increased the preference 

for the drug-paired chamber. A non-stressed control group is used in all experiments.  

 

Figure 18: CPP Paradigm – Schematic describing the 4-day cocaine conditioned place preference paradigm used in the 
behavioral experiments. Day 1: Pretest in 3-chamber apparatus followed by 15-minute forced swim stress. Day 2: Repeated 
forced swim stress followed by drug-paired chamber conditioning. Day 3: Repeated chamber conditioning. Day 4: Test day in 
open 3-chamber apparatus.  

Optogenetic Inhibition 

 This CPP paradigm is repeated with either an injection of U50-488, a selective KOR 

agonist or optogenetic inhibition of dopaminergic or serotonergic neurons in the VTA using 

Step-waveform inhibitory ChR (SwiChR) prior to conditioning. We would expect pretreatment 

with U50-488 to be aversive and cancel out the rewarding effects of cocaine, resulting in reduced 

or eliminated cocaine reward potentiation. To confirm the hypothesis that the KOR mediated 



APPENDIX I – CAPSTONE THESIS 

36 | Capstone Thesis Page Number  117 
   

 

reward potentiation is due to a prolonged inhibition of dopaminergic neurons, we would expect 

the SwiChR inhibition to also result in a similar prevention of cocaine conditioning as seen with 

the U50-488 pretreated animals.  

Electrophysiological Recording 

 To confirm that SwiChR is successfully inhibiting the dopamine neurons and to 

determine how that inhibition is affecting behavior, real-time electrophysiological recordings are 

required during the SwiChR inhibition. Recording the neural activity will allow us to determine 

whether the effects of SwiChR are due to a reduction in neural noise during the inhibition, or 

whether the effects are due to an increase in signal strength post-inhibition.  

 The use of electrophysiological recording during the behavioral experiments would also 

allow us to determine changed in the real-time neural activity during key behavioral time points. 

For example, we would be interested in investigating how the rate of neuronal firing changes 

when an animal enters a new chamber in the apparatus.  

Multi-Site Recording 

 After determining the behavioral and cellular effect of optogenetic inhibition of 

dopamine neurons in the VTA prior to cocaine conditioning, we could use the dual-site modality 

of the device to investigate the circuit properties of the drug-induced behavioral changes. By 

exciting or inhibiting neurons in the VTA and recording simultaneously from the PFC or DRN, 

we could gain insights into the circuit level neural activity changes.   

COMPUTATIONAL RESULTS 

 After collecting the electrophysiological neuronal activity data, we need a way to process 

and analyze the results. This requires the generation of a computational tool that can read the raw 

signal data, process the signal across a time scale, time-lock the signal to the recorded animal 

behavior, and perform post-processing analysis. Post-processing analysis entails determination of 

signal baseline, change from baseline calculations, and statistical analysis across trials. While the 

previously described data has not been collected using the new device, similar data could be used 

to begin developing the program that will be used to process the experimental data once it has 

been made available. Using the results from an adjacent experiment in the Chavkin Lab, a proof-

of-concept computational program, with the aforementioned utilities was developed. 
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GCaMP Imaging 

 The related experiment in the Chavkin Lab uses GCaMP imaging to record in vivo neural 

activity signals. GCaMP is a calcium indicator protein that fluoresces when calcium 

concentrations increase. When a neuron is excited, the intracellular calcium concentration 

increases which causes GCaMP to fluoresce. The data collected from these experiments carries 

similar information to what will be recorded using the electrophysiology set-up; an increase in 

fluorescence represents an increase in neural activity using GCaMP just as an increase in voltage 

change represents an increase in neural activity using electrophysiology.  

Using a fiber photometry set-up, the Chavkin Lab has recorded GCaMP signals from 

mice during behavioral experiments. During these experiments, the animal is able to move 

freely. Important behavioral time-points are recorded during the session to be time-locked with 

the neural activity during the signal processing step.   

Computational Design 

 Before the GCaMP data could be processed in MATLAB, an intermediary program 

(TDT2TXT) was developed by Scott Ng-Evans to extract the data from the acquisition system 

format (.tdt) and export as a MATLAB readable format (.txt). Using the exported files, the 

GCaMP data was read into MATLAB (Appendix A). The data was down-sampled by a factor of 

10 and sorted into two vectors (signal and time). Timestamps were then generated corresponding 

to the recorded animal behaviors.  

 The post-processing analysis began with calculating an activity baseline by taking the 

mean value of the data preceding the behavior of interest. The change from baseline was then 

calculated by taking the mean value of the data during the peak behavioral timepoint and 

subtracting the baseline value.  

 To evaluate the neural activity across behavioral trials, a 200 second window of data (50 

seconds preceding behavioral timestamp, 150 second post behavior) was saved for each 

behavioral instance. The data were represented as a percent change by taking the absolute value 

of the data, subtracting the baseline value for each trial, and dividing by the baseline. A running 

average was used to smooth the data, then the mean and standard error were calculated across 

trials and plotted.  
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Results 

 Example traces of fluorescence data timestamped with important events from four 

separate behavioral trials can be seen in Figure 19. The recordings were from dopaminergic 

neurons in the VTA. In the top plot, there appears to be a gradual downwards drift of baseline 

after injection of U50-488 (black line) which we would expect if KOR activation causes a 

sustained inhibition of dopamine neurons. In all of the plots, the green line marks interaction 

with a food pellet. There appeared to be a stereotypical activity increase during each food pellet 

interaction. The effects of the other events (cocaine administration, interaction with nestlet, door 

opening, and administration of nor-BNI) are difficult to resolve through the noise of the 

recording.  

 

Figure 19: Event-Stamped GCaMP Fluorescence of Dopaminergic Neurons in VTA – Raw data traces of GCaMP activity in 
dopaminergic neurons in the VTA during four recording sessions, timestamped with event tags. Top: Mouse 1 with injection of 
U50-488 and interaction with a food pellet. Second: Mouse 2, Day 1 with interactions with a food pellet, nestlet, and cocaine 
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injection. Third: Mouse 2, Day 2 with interactions with a pellet, cocaine injection, and experimental disturbance of a door 
opening. Bottom: Mouse 3 with multiple food pellet interactions and an injection of nor-BNI.  

 Each instance of a pellet interaction from the four traces in Figure 19 were then averaged 

to determine a ‘fingerprint’ of neural activity during the behavior (Figure 20). The GCaMP 

activity showed a sharp increase within 5 seconds following the interaction with a gradual 

decline back to baseline over the course of 120 seconds. This activity was consistent across each 

interaction for every animal.  

 

Figure 20: GCaMP Activity in Dopaminergic Neurons in VTA During Interaction with Food Pellet – Plot showing the mean and 
standard error of GCaMP activity in dopaminergic neurons in the VTA of 3 separate mice across 6 interactions with a food pellet 
(1 from Mouse 1; 1 from Mouse 2, day 1; 1 from Mouse 2, day 2; 3 from Mouse 3). The GCaMP activity showed a sharp increase 
within 5 seconds following the interaction with a gradual decline back to baseline over the course of 120 seconds. This activity 
was consistent across each interaction for every animal. 

These results provide insight into the neuronal activity of dopaminergic neurons in the 

origin region of the mesolimbic pathway during a rewarding animal behavior. The mesolimbic 

pathway is responsible for processing reward signals and has been implicated as a major driver 

of drug abuse associate behaviors. While preliminary, these results offer a proof-of-concept 

validation that neural activity recordings can be time-locked to behavioral events and offer 

insight to the cellular activity underlying reward-driven behaviors.  
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CONCLUSION AND FUTURE WORK 

AIMS ACHIEVED 

 The grounding purpose of this project was to develop the tools necessary to gain insights 

into the neural mechanisms and circuitry underlying the behaviors associated with drug abuse 

and addiction. There was a need for a multi-site in vivo recording device with the ability to 

modulate and record neuronal activity with high spatiotemporal resolution. In order to meet this 

need, significant design modification had to be made to reduce the weight and size of the current 

optrode device while maintaining high spatiotemporal resolution and fiber driving capabilities.  

Optimization of Current Optrode Design 

 The first aim of this project was to optimize the current model device (Figure 10) to 

reduce the size and weight while maintaining the necessary functions for in vivo neural 

modulation and recording. Through multiple design iterations (Figures 11-13), a final design was 

manufactured (Figure 14), and validated against the predicate device for proof of optimization 

and maintenance of utility (Table 8). When comparing the new design to the previous design, all 

required device components were maintained while significant optimizations were made to the 

device size (Figure 15). 

Development of Dual-Site Optrode 

 The second aim of this project was to develop a device capable of multi-site implantation 

while maintaining the necessary functions for in vivo neural modulation and recording. This aim 

was achieved concurrently to the first aim by taking the needs (Table 3), specifications (Table 4), 

and constraints (Table 5) for a dual-site device into consideration throughout the design process. 

The final design (Figures 13-14) successfully met the material, dimension, weight, and drive 

specification constraints for a dual-site optrode (Table 7).  

Proof-Of-Concept Computational Design and Results 

 The final aim of this project was to develop the computational tools necessary to 

process and analyze neural activity data in the context of a behavioral experiment. While no data 

was generated from the device designed, data from a correlated experiment was used to develop 

a program capable of processing neural activity data, timestamping the data with behavioral 
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events, and analyzing the data for neural activity trends during behavior (Appendix A). The 

results from the processing and analysis of GCaMP activity in dopaminergic neurons in the VTA 

during interaction with a food pellet (Figures 19-20) offer a proof-of-concept validation that 

neural activity recordings can be time-locked to behavioral events and offer insight to the cellular 

activity underlying reward-driven behaviors.  

UNFORESEEN BARRIERS 

 Throughout this process, a number of barriers delayed the progress of the project. While 

this was an independent research design project, collaboration with a number of other individuals 

was necessary to achieve the proposed aims. Through this process of collaboration, a number of 

roadblocks and project delays were met.  

Machinist Delays 

 The primary delays were experienced while working with the micro-machinist. The 

machinist was based out of California, so all communication was done by email or phone and all 

materials had to be shipped by mail. Miscommunications over email resulted in design set-backs 

and unnecessary design iterations on both ends. Shipping delays also accounted for a large 

amount of the timeline set-backs.  

 The primary set-back was encountered when Prototype I (Figures 11-12) was deemed 

infeasible to manufacture and had to be redesigned. This redesign process took an additional 2.5 

months during the 12-month timeline, significantly reducing timely progress. In the future, I will 

account for the likelihood of multiple design iteration phases when developing the project 

timeline.  

Communication with Funding Personnel 

 Additional barriers were faced during communication with the funding and budget 

personnel for the project. Lack of timely information regarding available budget and appropriate 

spending strategies resulted in delays while ordering materials for the project. The primary delay 

occurred while ordering the required tooling. The budget personnel did not notify me of a vendor 

spending minimum until multiple weeks after the initial purchase request was sent. In the future, 

I will request a complete budget plan and guidelines for spending at the forefront of the project.  



APPENDIX I – CAPSTONE THESIS 

42 | Capstone Thesis Page Number  123 
   

 

ACKNOWLEDGEMENTS 

KEY PERSONNEL 

I would like to thank Dr. Charles Chavkin for allowing me to work in his lab and for 

opening this field of research and inspiring the ground work and direction for this project. I 

would also like to thank my direct mentor, Dr. Antony Abraham, for his consistent devotion to 

ensuring the academic and personal success of his students and for his generosity with time and 

knowledge throughout this project. I also want to acknowledge key members of the Zweifel Lab: 

Larry Zweifel, Yong Jo, and Barbara Juarez, for their collaboration and sharing of knowledge, 

workspace, and materials. I also want to acknowledge my machinist, Kevin Willis, and his 

partner, Ken Brown, for their consultation during the device design process and generosity 

during prototyping. Finally, I want to thank my Bioengineering Co-Advisor, Dr. Alyssa Taylor, 

for her support of the project and ensurance that I was meeting all of the project requirements.  

EQUIPMENT AND FACILITIES 

 The majority of this project was conducted in the University of Washington Health 

Sciences Building. The construction of the model devices were done in Larry Zweifel’s lab using 

his equipment and materials. The equipment used included a dremel, soldering iron, dissecting 

microscope, and a number of hand tools. Some of the design process and prototyping was 

conducted in Makerspace at the University of Washington, for use of their 3D printers. The final 

device development was done in the Verus Design and Prototype workshop. Finally, Autodesk 

Inventor was used for the CAD modelling of the device and MATLAB was used for the 

computational development.  

FUNDING 

 I would like to thank the National Institute of Mental Health, the National Institute on 

Drug Abuse, the UW Institute for Neural Engineering, the Washington Research Foundation, 

and the Levinson Emerging Scholar Award for funding the materials and spaces for this work. I 

would also like to thank the UW Computational Neuroscience Program for funding my research 

time and efforts. (R01 DA030074 (CC), T32 DA007278 (AA), and P50MH106428 (LZ, 

CC). The authors declare no financial conflict of interest.)  



APPENDIX I – CAPSTONE THESIS 

43 | Capstone Thesis Page Number  124 
   

 

REFERENCES 

Bruchas, M.R., Land, B.B. & Chavkin, C. (2010). The Dynorphin-Kappa Opioid System as a 

Modulator of Stress-induced and Pro-addictive Behaviors. Brain Res., 1314C: 44.  

 

Buchen, L. (2010). Neuroscience: Illuminating the brain. Nature, 465:26-28.  

 

Center for Behavioral Health Statistics and Quality. (2016). Key substance use and mental 

health indicators in the United States: Results from the 2015 National Survey on Drug 

Use and Health (HHS Publication No. SMA 16-4984, NSDUH Series H-51). Retrieved 

from http://www.samhsa.gov/data/   

 

Chavkin, C., & Ehrich, J. M. (2014). How does stress-induced activation of the kappa opioid 

system increase addiction risk? Biological Psychiatry, 76(10):760–762.  

 

Goeders, N.E. (2002). Stress and cocaine addiction. J Pharmacol Exp Ther., 301:785–789.   

 

Gradinaru, V., Thompson, K.R., Zhang, F., Mogri, M., Kay, K., Schneider, M.B., & Deisseroth, 

K. (2007). Targeting and Read out Strategies for Fast Optical Neural Control In Vitro 

and In Vivo. J. Neurosci., 27(52):14231–14238. 

 

Institutional Animal Care and Use Committee Guidebook (2nd ed.). (2002) Bethesda, MD: 

Office of Laboratory Animal Welfare, NIH.  

 

Kawakami, M. & Yamamura, K. (2008). Cranial bone morphometric study amound mouse 

strains. BMC Evolutionary Biology, 8:73 

 

Kessler, R.C., Chiu, W.T., Demler, O., & Walters, E.E. (2005). Prevalence, severity, and 

comorbidity of twelve-month DSM-IV disorders in the National Comorbidity Survey 

Replication (NCSR). Archives of General Psychiatry, 62(6):617-27.  

 

Kosten, T.A., Miserendino, M.J.D. & Kehoe, P. (2000) Enhanced acquisition of cocaine self-

administration in adult rats with neonatal isolation stress experience. Brain Res., 875:44–

50. 

 

Land, B.B., Bruchas, M.R., Lemos, J.C., Xu, M., Melief, E.J. & Chavkin, C. (2008). The 

dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid 

system. J Neurosci., 28(2):407-14. 

 

Lowenstein, P.R. & Castro, M.G. (2001). Genetic engineering within the adult brain: 

implications for molecular approaches to behavioral neuroscience. Physiol. Behav., 

73(5):833-839. 

 



APPENDIX I – CAPSTONE THESIS 

44 | Capstone Thesis Page Number  125 
   

 

McLaughlin, J.P., Marton-Popovici, M., & Chavkin, C. (2003) Kappa opioid receptor 

antagonism and prodynorphin gene disruption block stress-induced behavioral responses. 

J Neurosci., 23:5674–5683. 

 

Miyazaki, K.W., Miyazaki, K., Tanaka, K.F. Yamanaka, A., Takahashi, A., Tabuchi, S., & 

Doya, K. (2014). Optogenetic Activation of Dorsal Raphe Serotonin Neurons Enhances 

Patience for Future Rewards. Current Biology, 24(17):2033-2040. 

 

Nicolelis, M.A. & Ribeiro, S. (2002). Multielectrode recording: the next steps. Current Opinion 

in Neurobiology, 12(5):602-606. 

 

NIDA. (2015). Nationwide Trends. Retrieved from 

https://www.drugabuse.gov/publications/drugfacts/treatment-statistics.  

 

Oztas, E. (2003) Neuronal tracing. Neuroanatomy, 2:2-5. 

 

Paxinos, G. & Franklin, K. (2012). Paxinos and Franklin's the Mouse Brain in Stereotaxic 

Coordinates (4th ed.). Academic Press 

 

Piazza, P.V., Deminiere, J.M., Le Moal, M. & Simon, H. (1990) Stress- and pharmacologically 

induced behavioral sensitization increases vulnerability to acquisition of amphetamine 

self-administration. Brain Res., 514:22–26. 

 

Rolls, A., Colas, D., Adamantidis, A., Carter, M., Lanre-Amos, T., Heller, H.G., & de Lecea, L. 

(2011). Optogenetic disruption of sleep continuity impairs memory consolidation. PNAS, 

108(32):13305-13310. 

 

Royer,, S., Zemelman, B.V., Barbic, M., Losonczy, A., Buzsáki, G., & Magee, J.C. (2010). 

Multi-array silicon probes with integrated optical fibers: light assisted perturbation and 

recording of local neural circuits in the behaving animal. Eur J Neurosci., 31(12): 2279–

2291. 

 

Shaham, Y. & Stewart, J. (1994). Exposure to mild stress enhances the reinforcing efficacy of 

intravenous heroin self-administration in rats. Psychopharmacology (Berl), 114:523–

527. 

 

Stefanik, M.T., Moussawi, K., Kupchik, Y.M., Smith, K.C., Miller, R.L., Huff, M.L., 

Deisseroth, K., Kalivas, P.W., & LaLumiere, R.T. (2012). Optogenetic inhibition of 

cocaine seeking in rats. Addiction Biology, 18(1):50-53. 

 

Verus Design & Prototype. (2017). Consulting. Retrieved from http://www.v-dp.com. 

 

Voigts, J., Siegle, J.H., Pritchett, D.L. & Moore, C.I. (2013). The flexDrive: an ultra-light 

implant for optical control and highly parallel chronic recording of neuronal ensembles 

in freely moving mice. Front. Syst. Neurosci., 7(8): 1662-5137. 

 

https://www.drugabuse.gov/publications/drugfacts/treatment-statistics
https://www.drugabuse.gov/publications/drugfacts/treatment-statistics
https://www.drugabuse.gov/publications/drugfacts/treatment-statistics


APPENDIX I – CAPSTONE THESIS 

45 | Capstone Thesis Page Number  126 
   

 

APPENDICIES 

APPENDIX A – MATLAB SCRIPT 

Data Read, Sort, and Timestamp 

%% Mouse 18 %% 

%Pellet: 255 - 264 

%Pellet approach: 271 

%New Pellet: 310 - 330 

%norbni: 560 

%New Pellet: 1480 - 1550 

  

filename_text_18 = 'Mouse-180418-112035_dvbg.txt'; 

  

data_text_18 = textread(filename_text_18,'%s');  

data_text_18 = str2double(data_text_18); 

  

[time_18,sig_18] = separate(data_text_18); 

  

timelin_18 = linspace(0,data_text_18(end-1)*60,length(sig_18)); 

  

figure(1) 

subplot(4,1,4) 

plot(timelin_18,sig_18, 'k') 

hold on 

plot([245,245],[min(sig_18),max(sig_18)], 'g') 

plot([310,310],[min(sig_18),max(sig_18)], 'g') 

plot([1480,1480],[min(sig_18),max(sig_18)], 'g') 

plot([560,560],[min(sig_18),max(sig_18)], 'm') 

 

Down-Sample and Separate Signal from Time 

function [time, sig] = separate(data) 

    time = []; 

    sig = []; 

    for i = 1:20:length(data)-1 

        time = [time,data(i)]; 

        sig = [sig,data(i+1)]; 

    end 

end 

 

Data Read, Sort, and Timestamp 

preNorbni_18 = mean(sig_18(460*101:560*101)); 
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postNorbni_18 = mean(sig_18(560*101:660*101)); %how long should 

this last?  

changeNorbni_18 = postNorbni_18 - preNorbni_18; 

  

prePellet_18_1 = mean(sig_18(155*101:255*101)); 

postPellet_18_1 = mean(sig_18(255*101:305*101)); 

changePellet_18_1 = postPellet_18_1 - prePellet_18_1; 

  

pelletSig_18_1 = (sig_18(205*101:355*101)-

prePellet_18_1)./prePellet_18_1; 

pelletTime_18_1 = linspace(0,200,length(pelletSig_18_1)); 

plot(pelletTime_18_1, pelletSig_18_1) 

  

prePellet_18_2 = mean(sig_18(264*101:310*101)); 

postPellet_18_2 = mean(sig_18(310*101:360*101)); 

changePellet_18_2 = postPellet_18_2 - prePellet_18_2; 

  

pelletSig_18_2 = (sig_18(260*101:410*101)-

prePellet_18_2)./prePellet_18_2; 

pelletTime_18_2 = linspace(0,200,length(pelletSig_18_2)); 

plot(pelletTime_18_2, pelletSig_18_2) 

  

prePellet_18_3 = mean(sig_18(1380*101:1480*101)); 

postPellet_18_3 = mean(sig_18(1480*101:1530*101)); 

changePellet_18_3 = postPellet_18_3 - prePellet_18_3; 

  

pelletSig_18_3 = (sig_18(1430*101:1580*101)-

prePellet_18_3)./prePellet_18_3; 

pelletTime_18_3 = linspace(0,200,length(pelletSig_18_3)); 

plot(pelletTime_18_3, pelletSig_18_3) 

 

Post-Processing 

pelletAll = [pelletSig_16, pelletSig_17_1, pelletSig_17_2,... 

    pelletSig_18_1, pelletSig_18_2, pelletSig_18_3]; 

  

pelletTime = pelletTime_16; 

  

pelletAllRun = []; 

  

avgWind = 500; 

half = avgWind/2; 

  

for j = 1:size(pelletAll,2) 

    for i = 1:size(pelletAll,1)-(avgWind-1) 

        wind = pelletAll(i:i+avgWind-1,j); 
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        avg = mean(wind); 

        sd = std(wind); 

        pelletAllRun(i,j) = avg; 

    end 

end 

  

pelletAvgRun = []; 

pelletStdRun = []; 

  

for i = 1:size(pelletAllRun,1) 

    pelletAvgRun(i) = mean(pelletAllRun(i,1:end));  

    pelletStdRun(i) = std(pelletAllRun(i,1:end));  

end 

  

pelletErrRun = pelletStdRun./sqrt(6); 

  

pelletTimeRun = pelletTime_16(1:length(pelletAvgRun)); 

  

figure(2) 

subplot(3,1,3) 

plot(pelletTimeRun, pelletAvgRun,'k-'); 

hold on 

fill([pelletTimeRun flip(pelletTimeRun)],[pelletAvgRun-

pelletErrRun 

flip(pelletAvgRun+pelletErrRun)],'k','LineStyle','none') 

hold on 

alpha(0.25) 

hold off; 

  

plot(pelletTimeRun, pelletAvgRun,'k-'); 

hold on 

fill([pelletTimeRun flip(pelletTimeRun)],[pelletAvgRun-

pelletErrRun 

flip(pelletAvgRun+pelletErrRun)],'k','LineStyle','none') 

hold on 

alpha(0.25) 

hold off; 

xlabel('Time (s)') 

ylabel('DeltaF/F') 

 

 

 



129 
 
 

APPENDIX II – CODE DOCUMENTATION  
 

  



Appendix II – Code Documentation 

130 
 

DRL CODE 
 

1. clear all; close all; clc; 

2.  

3. %1-8 = dkt4 

4. %9-16 = mc23 

5.  

6. dateV = [204,205,208,209,210,211,215,216,217,218,... 

7.     219,222,223,224,225,226,229,301,302,303,304,... 

8.     307,308,309,310]; 

9.  

10. for d = 1:25 

11.      

12.     date = dateV(d); 

13.      

14.     activeNP = 0; 

15.     reinNP = 0; 

16.     headEnt = 0; 

17.     resets = 0; 

18.     irt = 0; 

19.  

20.     for r = 1:2 

21.         filename = strcat('0',num2str(date),'_',num2str(r),'.txt'); 

22.         data = textread(filename,'%s'); 

23.  

24.         IndexActNP = strfind(data, 'ActiveNosePokeTimes(sec)'); 

25.         IndexActNP = find(not(cellfun('isempty', IndexActNP))); 

26.  

27.         IndexReinNP = strfind(data, 'ReinforcedTimes(sec)'); 

28.         IndexReinNP = find(not(cellfun('isempty', IndexReinNP))); 

29.  

30.         IndexHeadEnt = strfind(data, 'HeadEntryTimes(sec)'); 

31.         IndexHeadEnt = find(not(cellfun('isempty', IndexHeadEnt))); 

32.  

33.         IndexReset = strfind(data, 'DRLresetTimes(sec)'); 

34.         IndexReset = find(not(cellfun('isempty', IndexReset))); 

35.  

36.         IndexIRT = strfind(data, 'IRTs(sec)'); 

37.         IndexIRT = find(not(cellfun('isempty', IndexIRT))); 

38.  

39.         IndexEnd = strfind(data, 'Number_of_Bursts'); 

40.         IndexEnd = find(not(cellfun('isempty', IndexEnd))); 

41.  

42.         %Active Nose Poke 

43.         for i = 1:8 

44.             start = IndexActNP(i)+1; 

45.             last = IndexReinNP(i)-1; 

46.             addCell = data(start:last); 

47.             lengthAdd = size(addCell,1); 

48.             lengthPrior = size(activeNP,1); 

49.             add = zeros (lengthAdd,1); 

50.             for j = 1 : lengthAdd 
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51.                 add(j) = str2double(addCell{j}); 

52.             end 

53.             if lengthAdd > lengthPrior 

54.                 padlength = lengthAdd - lengthPrior; 

55.                 padwidth = size(activeNP,2); 

56.                 padMatrix = zeros(padlength,padwidth); 

57.                 activeNP = [activeNP;padMatrix]; 

58.             else 

59.                 padlength = lengthPrior - lengthAdd; 

60.                 padVector = zeros(padlength,1); 

61.                 add = [add;padVector]; 

62.             end 

63.             activeNP = [activeNP, add]; 

64.         end 

65.  

66.         %Reinforced Nose Poke 

67.         for i = 1:8 

68.             start = IndexReinNP(i)+1; 

69.             last = IndexHeadEnt(i)-1; 

70.             addCell = data(start:last); 

71.             lengthAdd = size(addCell,1); 

72.             lengthPrior = size(reinNP,1); 

73.             add = zeros (lengthAdd,1); 

74.             for j = 1 : lengthAdd 

75.                 add(j) = str2double(addCell{j}); 

76.             end 

77.             if lengthAdd > lengthPrior 

78.                 padlength = lengthAdd - lengthPrior; 

79.                 padwidth = size(reinNP,2); 

80.                 padMatrix = zeros(padlength,padwidth); 

81.                 reinNP = [reinNP;padMatrix]; 

82.             else 

83.                 padlength = lengthPrior - lengthAdd; 

84.                 padVector = zeros(padlength,1); 

85.                 add = [add;padVector]; 

86.             end 

87.             reinNP = [reinNP, add]; 

88.         end 

89.  

90.         %Head Entries 

91.         for i = 1:8 

92.             start = IndexHeadEnt(i)+1; 

93.             last = IndexReset(i)-1; 

94.             addCell = data(start:last); 

95.             lengthAdd = size(addCell,1); 

96.             lengthPrior = size(headEnt,1); 

97.             add = zeros (lengthAdd,1); 

98.             for j = 1 : lengthAdd 

99.                 add(j) = str2double(addCell{j}); 

100.             end 

101.             if lengthAdd > lengthPrior 

102.                 padlength = lengthAdd - lengthPrior; 

103.                 padwidth = size(headEnt,2); 
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104.                 padMatrix = zeros(padlength,padwidth); 

105.                 headEnt = [headEnt;padMatrix]; 

106.             else 

107.                 padlength = lengthPrior - lengthAdd; 

108.                 padVector = zeros(padlength,1); 

109.                 add = [add;padVector]; 

110.             end 

111.             headEnt = [headEnt, add]; 

112.         end 

113.  

114.         %Resets 

115.         for i = 1:8 

116.             start = IndexReset(i)+1; 

117.             last = IndexIRT(i)-1; 

118.             addCell = data(start:last); 

119.             lengthAdd = size(addCell,1); 

120.             lengthPrior = size(resets,1); 

121.             add = zeros (lengthAdd,1); 

122.             for j = 1 : lengthAdd 

123.                 add(j) = str2double(addCell{j}); 

124.             end 

125.             if lengthAdd > lengthPrior 

126.                 padlength = lengthAdd - lengthPrior; 

127.                 padwidth = size(resets,2); 

128.                 padMatrix = zeros(padlength,padwidth); 

129.                 resets = [resets;padMatrix]; 

130.             else 

131.                 padlength = lengthPrior - lengthAdd; 

132.                 padVector = zeros(padlength,1); 

133.                 add = [add;padVector]; 

134.             end 

135.             resets = [resets, add]; 

136.         end 

137.  

138.         %Inter response time 

139.         for i = 1:8 

140.             start = IndexIRT(i)+1; 

141.             last = IndexEnd(i)-1; 

142.             addCell = data(start:last); 

143.             lengthAdd = size(addCell,1); 

144.             lengthPrior = size(irt,1); 

145.             add = zeros (lengthAdd,1); 

146.             for j = 1 : lengthAdd 

147.                 add(j) = str2double(addCell{j}); 

148.             end 

149.             if lengthAdd > lengthPrior 

150.                 padlength = lengthAdd - lengthPrior; 

151.                 padwidth = size(irt,2); 

152.                 padMatrix = zeros(padlength,padwidth); 

153.                 irt = [irt;padMatrix]; 

154.             else 

155.                 padlength = lengthPrior - lengthAdd; 

156.                 padVector = zeros(padlength,1); 
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157.                 add = [add;padVector]; 

158.             end 

159.             irt = [irt, add]; 

160.         end 

161.          

162.     end 

163.      

164.     eval(['activeNP_0' num2str(date) '=activeNP(1:end,2:end);']) 

165.     eval(['reinNP_0' num2str(date) '=reinNP(1:end,2:end);']) 

166.     eval(['headEnt_0' num2str(date) '=headEnt(1:end,2:end);']) 

167.     eval(['resets_0' num2str(date) '=resets(1:end,2:end);']) 

168.     eval(['IRT_0' num2str(date) '=irt(1:end,2:end);']) 

169. end 

170.  

171. percentError = zeros(length(dateV),i*r); 

172. numResets = zeros(length(dateV),i*r); 

173. numReins = zeros(length(dateV),i*r); 

174. numHeadEnts = zeros(length(dateV),i*r); 

175.  

176. for d = 1:length(dateV) 

177.     date = dateV(d); 

178.      

179.     eval(['reset = resets_0' num2str(date) ';']) 

180.     eval(['rein = reinNP_0' num2str(date) ';']) 

181.     eval(['headEnts = headEnt_0' num2str(date) ';']); 

182.      

183.     for a = 1:i*r 

184.         resetAnimal = reset(1:end,a); 

185.         resetAnimal(resetAnimal==0) = []; 

186.         numReset = length(resetAnimal); 

187.         numResets(d,a) = numReset; 

188.          

189.         reinAnimal = rein(1:end,a); 

190.         reinAnimal(reinAnimal==0) = []; 

191.         numRein = length(reinAnimal); 

192.         numReins(d,a) = numRein; 

193.          

194.         headEntAnimal = headEnts(1:end,a); 

195.         headEntAnimal(headEntAnimal==0) = []; 

196.         numHeadEnt = length(headEntAnimal); 

197.         numHeadEnts(d,a) = numHeadEnt; 

198.          

199.         percentError(d,a) = numReset/(numReset+numRein); 

200.     end 

201. end 

202.  

203. totalNum = numResets + numReins; 

204.  

205. for d = 1:length(dateV) 

206.     for z = 1:size(totalNum,2) 

207.         t = totalNum(d,z); 

208.         tempRes = strcat('resets_0',num2str(dateV(d))); 

209.         eval(['res = ' tempRes '(1:end,z);']) 
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210.         res(res==0) = []; 

211.         tempRei = strcat('reinNP_0',num2str(dateV(d))); 

212.         eval(['rei = ' tempRei '(1:end,z);']) 

213.         rei(rei==0) = []; 

214.         tempBurst = strcat('IRT_0',num2str(dateV(d))); 

215.         eval(['burst = ' tempBurst '(1:end,z);']) 

216.          

217.         for n = 1:length(burst) 

218.             if burst(n) == 0 

219.                 burst(n) = 9; 

220.             else if burst(n) <= 1 

221.                     burst(n) = 1; 

222.                 else 

223.                     burst(n) = 0; 

224.                 end 

225.             end 

226.         end 

227.          

228.         correct = zeros(1, length(res)+length(rei)); 

229.          

230.         j = 0; 

231.         c = 1; 

232.         w = 1; 

233.         n = 1; 

234.         while j==0 

235.             if c <= length(rei) 

236.                 if w <= length(res) 

237.                     if rei(c) < res(w) 

238.                         correct(n) = 1; 

239.                         c = c+1; 

240.                         n = n+1; 

241.                     else 

242.                         w = w+1; 

243.                         n = n+1; 

244.                     end 

245.                 else 

246.                     j = 1; 

247.                     for m = n:t 

248.                         correct(m) = 1; 

249.                     end 

250.                 end 

251.             else 

252.                 j = 1; 

253.             end 

254.         end 

255.          

256.         %1 = burst after correct 

257.         %2 = burst after incorrect 

258.         %3 = bursts after correct burst 

259.         %4 = bursts after incorrect burst 

260.          

261.         diff = zeros(1,length(correct)-1); 

262.         n = 1; 
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263.         while n <= length(diff) 

264.             if correct(n) == 1 

265.                 if burst(n) == 1 

266.                     diff(n) = 1; 

267.                     for n = n+1:length(diff) 

268.                         if correct(n) == 1 

269.                             break 

270.                         else if burst(n) == 1 

271.                             diff(n) = 3; 

272.                             else 

273.                                 break 

274.                             end 

275.                         end 

276.                     end 

277.                 end 

278.                 n = n+1; 

279.                  

280.             else if correct(n) == 0 

281.                     if burst(n) == 1 

282.                         diff(n) = 2; 

283.                         for n = n+1:length(diff) 

284.                             if correct(n) == 1 

285.                                 break 

286.                             else if burst(n) == 1 

287.                                 diff(n) = 4; 

288.                                 else 

289.                                     break 

290.                                 end 

291.                             end 

292.                         end 

293.                     end 

294.                 end 

295.                 n = n+1; 

296.             end 

297.         end 

298.         for row = 1:length(diff) 

299.             burstAnalysis(row,z) = diff(1,row); 

300.         end 

301.         for row = length(diff)+1:length(burst) 

302.             burstAnalysis(row,z) = 9; 

303.         end 

304.     end 

305.     eval(['burstAnalysis_0' num2str(dateV(d)) '= burstAnalysis;']) 

306.     clear burstAnalysis; 

307. end 

 

488. drl5animals = [1,2,3,4]; 
489. dkt4animals = [5,6,7,8]; 
490. mc23animals = [1,4,5,6,8]; 
491.  
492. ySal = 0; 
493. yTest = -.5; 
494. %DRL5 SALINE 
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495. for a = 1:length(drl5animals) 
496.     ySal = ySal + 2; 
497.     xReinSal = DRL5reinNP_0324(1:end, drl5animals(a)); 
498.     xResetSal = DRL5resets_0324(1:end, drl5animals(a)); 
499.  
500.     for i = 1:length(xReinSal) 
501.         if xReinSal(i) == 0 
502.             xReinSal = xReinSal(1:i-1); 
503.             break 
504.         end 
505.     end 
506.  
507.     for i = 1:length(xResetSal) 
508.         if xResetSal(i) == 0 
509.             xResetSal = xResetSal(1:i-1); 
510.             break 
511.         end 
512.     end 
513.      
514.     yReinSal = ones(length(xReinSal),1); 
515.     yResetSal = ones(length(xResetSal),1); 
516.      
517.     for y = 1:length(xReinSal) 
518.         yReinSal(y) = ySal; 
519.     end 
520.      
521.     for y = 1:length(xResetSal) 
522.         yResetSal(y) = ySal; 
523.     end 
524.      
525.     plot(xReinSal,yReinSal, 'b.', 'MarkerSize', 12)  
526.     hold('on'); 
527.     plot(xResetSal,yResetSal, 'b+', 'MarkerSize',12) 
528.     hold('on'); 
529. end 

  



Appendix II – Code Documentation 

137 
 

DELAYED ALTERNATION CODE 
 

1. %Delayed Alternation Task 
2. %Chavkin Lab 2017 
3. %Author: Mackenzie Andrews 
4.  
5. clear all; close all; clc; 
6.  
7. load('C:\Users\Kenzie Marae\Desktop\Lab Materials\MATLAB\Delayed Alternation 

Data\loadin_workspaceData.mat'); 
8.  
9. %% 
10. clear all; close all; clc; 
11.  
12. %Enter File Path Containing Raw Data 
13. folderPath = 'C:\Users\Kenzie Marae\Desktop\Lab Materials\MATLAB\Delayed Alternation 

Data\raw_data'; 
14. cd(folderPath); 
15.  
16. files      = dir('**'); 
17. files(1:2) = []; 
18. % files(n:end) = []; 
19. numfiles   = numel(files); 
20.  
21. [runs(1:numfiles).filename] = files.name; 
22.  
23. for filenum = 1:numfiles 
24.     filename = files(filenum).name; 
25.      
26.     loadin = regexp( fileread(filename), '\n', 'split').'; 
27.     split1 = regexp(loadin,'\s+','split'); 
28.      
29.     rawData = cell(length(split1),8); 
30.     for i = 1:length(split1) 
31.         D = split1{i}; 
32.         for j = 1:length(D) 
33.                 insert = D{j}; 
34.                 if isempty(insert) == 1 
35.                     insert = NaN; 
36.                 elseif isempty(str2num(insert)) == 0 
37.                     insert = str2num(insert); 
38.                 end 
39.                 rawData{i,j} = insert; 
40.         end 
41.     end 
42.     runs(filenum).rawdata = rawData; 
43.      
44.     runs(filenum).datalocations.rowB = find(strcmp(rawData(:,1),'B:')); 
45.     runs(filenum).datalocations.rowC = find(strcmp(rawData(:,1),'C:')); 
46.     runs(filenum).datalocations.rowE = find(strcmp(rawData(:,1),'E:')); 
47.     runs(filenum).datalocations.rowT = find(strcmp(rawData(:,1),'T:')); 
48.          
49.     dateTemp = split1{4}{3}; 
50.     date = strcat([dateTemp(7:8),dateTemp(1:2),dateTemp(4:5)]); 
51.     runs(filenum).date = date; 
52.  
53.     numBox = length(runs(filenum).datalocations.rowB); 
54.     runs(filenum).numboxes = numBox; 
55.      
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56.     %Create B vector 
57.     for boxnum = 1:numBox 
58.         Braw = 

rawData(runs(filenum).datalocations.rowB(boxnum)+1:runs(filenum).datalocations.rowC(box
num)-1,3:7); 

59.         Btemp = []; 
60.         for j = 1:size(Braw,1) 
61.             current = Btemp; 
62.             next5   = Braw(j,:); 
63.             Btemp   = [current,next5]; 
64.         end 
65.         runs(filenum).animal(boxnum).parseddata.B = Btemp; 
66.     end 
67.      
68.     %Create E vector 
69.     for boxnum = 1:numBox 
70.         Eraw = 

rawData(runs(filenum).datalocations.rowE(boxnum)+1:runs(filenum).datalocations.rowT(box
num)-1,3:7); 

71.         Etemp = []; 
72.         for j = 1:size(Eraw,1) 
73.             current = Etemp; 
74.             next5   = Eraw(j,:); 
75.             Etemp   = [current,next5]; 
76.         end 
77.         runs(filenum).animal(boxnum).parseddata.E = Etemp; 
78.     end 
79.      
80.     %Create T vector 
81.     for boxnum = 1:numBox 
82.         Traw = 

rawData(runs(filenum).datalocations.rowT(boxnum)+1:runs(filenum).datalocations.rowT(box
num)+ceil(length(runs(filenum).animal(boxnum).parseddata.E)/5),3:7); 

83.         Ttemp = []; 
84.         for j = 1:size(Traw,1) 
85.             current = Ttemp; 
86.             next5   = Traw(j,:); 
87.             Ttemp   = [current,next5]; 
88.         end 
89.         runs(filenum).animal(boxnum).parseddata.T = Ttemp; 
90.     end 
91. end 
92.  
93. for f = 1:numfiles 
94.     numBoxes = runs(f).numboxes; 
95.     for ani = 1:numBoxes 
96.         if isempty(runs(f).animal(ani).parseddata.B) == 1 
97.             break; 
98.         else  
99.             Bcur = runs(f).animal(ani).parseddata.B; 
100.             
101.            runs(f).animal(ani).totals.right_presses        = Bcur(1); 
102.            runs(f).animal(ani).totals.left_presses         = Bcur(2); 
103.            runs(f).animal(ani).totals.correct_alts         = Bcur(3); 
104.            runs(f).animal(ani).totals.missed_alts          = Bcur(4); 
105.            runs(f).animal(ani).totals.pellets_deliv        = Bcur(8); 
106.            runs(f).animal(ani).totals.correct_alts_right   = Bcur(9); 
107.            runs(f).animal(ani).totals.correct_alts_left    = Bcur(10); 
108.            runs(f).animal(ani).totals.incorrect_alts_right = Bcur(11); 
109.            runs(f).animal(ani).totals.incorrect_alts_left  = Bcur(12); 
110.        end 
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111.    end 
112.end 
113.%% 
114.flag = []; 
115.for f = 1:numfiles 
116.     
117.        id = regexp(runs(f).filename(9:end),'\d+','match'); 
118.        if length(id) == 0; 
119.            flag = [flag,f]; 
120.        else 
121.        runs(f).animalID = str2num(id{1}); 
122.        end 
123.     
124.end 
125. 
126.for i = 1:length(flag) 
127.    a{i,1} = {runs(flag(i)).filename}; 
128.end 
129. 
130. 
131.%% PUT NUM CORRECT,MISSED; % CORRECT; TOTAL RESPONSES INTO STRUCTURE 
132.dates = unique({runs.date}); 
133. 
134.clear sortByDate 
135.for i = 1:length(dates) 
136.    sortByDate(i).dates = dates{i}; 
137.end 
138. 
139.numcorrect        = cell(length(dates),8,2); 
140.nummissed         = cell(length(dates),8,2); 
141.percentcorrect    = cell(length(dates),8,2); 
142.totalresponses    = cell(length(dates),8,2); 
143.rightpresses      = cell(length(dates),8,2); 
144.leftpresses       = cell(length(dates),8,2); 
145.correctaltsright  = cell(length(dates),8,2); 
146.correctaltsleft   = cell(length(dates),8,2); 
147.incorrectaltsright= cell(length(dates),8,2); 
148.incorrectaltsleft = cell(length(dates),8,2); 
149. 
150.for f = 1:numfiles 
151.    for d = 1:length(dates) 
152.        if runs(f).date == dates{d} 
153.            for id = 1:8 
154.                if runs(f).animalID == id 
155.                    for b = 1:runs(f).numboxes 
156.                         
157.                        numcorrect{d,id,b}         = 

cell2mat(runs(f).animal(b).totals.correct_alts); 
158.                        nummissed{d,id,b}          = 

cell2mat(runs(f).animal(b).totals.missed_alts); 
159.                        percentcorrect{d,id,b}     = 

numcorrect{d,id,b}./(numcorrect{d,id,b}+nummissed{d,id,b}); 
160.                        totalresponses{d,id,b}     = 

numcorrect{d,id,b}+nummissed{d,id,b}; 
161.                        rightpresses{d,id,b}       = 

cell2mat(runs(f).animal(b).totals.right_presses); 
162.                        leftpresses{d,id,b}        = 

cell2mat(runs(f).animal(b).totals.left_presses); 
163.                        correctaltsright{d,id,b}   = 

cell2mat(runs(f).animal(b).totals.correct_alts_right); 
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164.                        correctaltsleft{d,id,b}    = 
cell2mat(runs(f).animal(b).totals.correct_alts_left); 

165.                        incorrectaltsright{d,id,b} = 
cell2mat(runs(f).animal(b).totals.incorrect_alts_right); 

166.                        incorrectaltsleft{d,id,b}  = 
cell2mat(runs(f).animal(b).totals.incorrect_alts_left); 

167.                         
168.                         
169.                        sortByDate(d).ID(id).box(b).numcorrect = 

cell2mat(runs(f).animal(b).totals.correct_alts); 
170.                        sortByDate(d).ID(id).box(b).nummissed  = 

cell2mat(runs(f).animal(b).totals.missed_alts); 
171.                        sortByDate(d).ID(id).box(b).percentcorrect = 

numcorrect{d,id,b}./(numcorrect{d,id,b}+nummissed{d,id,b}); 
172.                        sortByDate(d).ID(id).box(b).totalresponses = 

numcorrect{d,id,b}+nummissed{d,id,b}; 
173.                         
174.                        sortByDate(d).ID(id).box(b).parsedData = 

runs(f).animal(b).parseddata 
175.                        sortByDate(d).ID(id).box(b).totals = runs(f).animal(b).totals 
176.                    end 
177.                end 
178.            end 
179.        end 
180.    end 
181.end 
182. 
183.%percentcorrect = cell2mat(numcorrect)./(cell2mat(numcorrect)+cell2mat(nummissed)); 
184. 
185.%% 
186.days = [1,2,3,4,5,8,9,10,11,12,15,16,17,18,19,22,29,30,32,33,36,37,38,39,40,... 
187.        

50,51,52,53,54,66,67,68,71,72,73,74,75,78,79,80,81,82,83,84,85,86,87,88,89,90,... 
188.        92,93,94,95,96,99,100,101,102,103,106,107,108,109,110,113,115,116,... 
189.        120,121,123,124,127,128,129,130,131,134,135,136,137,... 
190.        157,158,159,160,161,162,163,164,165,166,167,168]; %starting 10/29 = 1 
191.%% PLOT % CORRECT AND TOTAL ALTERNATIONS FOR SALINE AND ACSF ANIMALS ON TEST DAYS 
192.%norbni 
193.figure; 
194.for id = 1:4 
195.    for box = 1:2 
196.        for i = 1:size(percentcorrect,1) 
197.            emp(i) = ~isempty(percentcorrect{i,id,box}); 
198.        end 
199.        daysTemp = days.*emp; 
200.        daysTemp(daysTemp == 0) = []; 
201.        subplot(2,1,1) 
202.        title('norbni'); 
203.        ylabel('Percent Correct'); 
204.        xlabel('Days'); 
205.        plot(daysTemp,[percentcorrect{:,id,box}]); hold on; 
206.        subplot(2,1,2) 
207.        ylabel('Total # Alternations'); 
208.        xlabel('Days'); 
209.        plot(daysTemp,[totalresponses{:,id,box}]); hold on; 
210.        stackablevPCnorb{(id*2-rem(box,2)),:} = {percentcorrect{:,id,box}}; 
211.        stackablevTRnorb{(id*2-rem(box,2)),:} = {totalresponses{:,id,box}}; 
212.    end 
213.end 
214. 
215. 
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216.for i = 1:94 
217.    vec = []; 
218.    for j = 1:8 
219.        if isempty(cell2mat([stackablevPCnorb{j}(i)])); 
220.             vec(end+1) = NaN; 
221.        else 
222.        vec(end+1) = cell2mat([stackablevPCnorb{j}(i)]); 
223.        end 
224.    end 
225.    avPCnorb(i) = nanmean(vec); 
226.    sdPCnorb(i) = nanstd(vec); 
227.    sePCnorb(i) = sdPCnorb(i)/sqrt(length(vec)); 
228.end 
229. 
230.daysplot = days; 
231.daysplot(isnan(avPCnorb)) = []; 
232.avPCnorb(isnan(avPCnorb)) = []; 
233.sePCnorb(isnan(sePCnorb)) = []; 
234. 
235.figure; 
236.subplot(2,1,1) 
237.plot(daysplot,avPCnorb,'k.'); 
238.hold on 
239.errorbar(daysplot,avPCnorb,sePCnorb) 
240.% fill([daysplot flip(daysplot)],[avPCnorb-sePCnorb 

flip(avPCnorb+sePCnorb)],'k','LineStyle','none') 
241.hold on 
242.% alpha(0.25) 
243.plot([52,52],[0,1],'r');hold on; %stress 
244.plot([80,80],[0,1],'b');hold on; %drug 
245.plot([94,94],[0,1],'b');hold on; %drug 
246.title('norbni') 
247.xlabel('Days') 
248.ylabel('Percent Correct') 
249. 
250. 
251.for i = 1:94 
252.    vec = []; 
253.    for j = 1:8 
254.        if isempty(cell2mat([stackablevTRnorb{j}(i)])); 
255.             vec(end+1) = NaN; 
256.        else 
257.        vec(end+1) = cell2mat([stackablevTRnorb{j}(i)]); 
258.        end 
259.    end 
260.    avTRnorb(i) = nanmean(vec); 
261.    sdTRnorb(i) = nanstd(vec); 
262.    seTRnorb(i) = sdTRnorb(i)/sqrt(length(vec)); 
263.end 
264. 
265.daysplot = days; 
266.daysplot(isnan(avTRnorb)) = []; 
267.avTRnorb(isnan(avTRnorb)) = []; 
268.seTRnorb(isnan(seTRnorb)) = []; 
269. 
270.subplot(2,1,2) 
271.plot(daysplot,avTRnorb,'k.'); 
272.hold on 
273.errorbar(daysplot,avTRnorb,seTRnorb) 
274.% fill([daysplot flip(daysplot)],[avPCnorb-sePCnorb 

flip(avPCnorb+sePCnorb)],'k','LineStyle','none') 
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275.hold on 
276.% alpha(0.25) 
277.plot([52,52],[0,100],'r');hold on; %stress 
278.plot([80,80],[0,100],'b');hold on; %drug 
279.plot([94,94],[0,100],'b');hold on; %drug 
280.title('norbni') 
281.xlabel('Days') 
282.ylabel('Total # Alternations') 
283. 
284. 
285. 
286.%ACSF 
287.figure; 
288.for id = 5:8 
289.    for box = 1:2 
290.        for i = 1:size(percentcorrect,1) 
291.            emp(i) = ~isempty(percentcorrect{i,id,box}); 
292.        end 
293.        daysTemp = days.*emp; 
294.        daysTemp(daysTemp == 0) = []; 
295.        subplot(2,1,1) 
296.        title('ACSF'); 
297.        ylabel('Percent Correct'); 
298.        xlabel('Days'); 
299.        plot(daysTemp,[percentcorrect{:,id,box}]); hold on; 
300.        subplot(2,1,2) 
301.        ylabel('Total # Alternations'); 
302.        xlabel('Days'); 
303.        plot(daysTemp,[totalresponses{:,id,box}]); hold on; 
304.        stackablevPCacsf{((id-4)*2-rem(box,2)),:} = {percentcorrect{:,id,box}}; 
305.        stackablevTRacsf{((id-4)*2-rem(box,2)),:} = {totalresponses{:,id,box}}; 
306.    end 
307.end 
308. 
309. 
310.for i = 1:94 
311.    vec = []; 
312.    for j = 1:8 
313.        if isempty(cell2mat([stackablevPCacsf{j}(i)])); 
314.             vec(end+1) = NaN; 
315.        else 
316.        vec(end+1) = cell2mat([stackablevPCacsf{j}(i)]); 
317.        end 
318.    end 
319.    avPCacsf(i) = nanmean(vec); 
320.    sdPCacsf(i) = nanstd(vec); 
321.    sePCacsf(i) = sdPCacsf(i)/sqrt(length(vec)); 
322.end 
323. 
324.daysplot = days; 
325.daysplot(isnan(avPCacsf)) = []; 
326.avPCacsf(isnan(avPCacsf)) = []; 
327.sePCacsf(isnan(sePCacsf)) = []; 
328. 
329.figure; 
330.subplot(2,1,1) 
331.plot(daysplot,avPCacsf,'k.'); 
332.hold on 
333.errorbar(daysplot,avPCacsf,sePCacsf) 
334.% fill([daysplot flip(daysplot)],[avPCnorb-sePCnorb 

flip(avPCnorb+sePCnorb)],'k','LineStyle','none') 
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335.hold on 
336.% alpha(0.25) 
337.plot([86,86],[0,1],'r');hold on; %stress 
338.plot([94,94],[0,1],'b');hold on; %drug 
339.plot([115,115],[0,1],'b');hold on; %drug 
340.title('ACSF') 
341.xlabel('Days') 
342.ylabel('Percent Correct') 
343. 
344. 
345. 
346. 
347.for i = 1:94 
348.    vec = []; 
349.    for j = 1:8 
350.        if isempty(cell2mat([stackablevTRacsf{j}(i)])); 
351.             vec(end+1) = NaN; 
352.        else 
353.        vec(end+1) = cell2mat([stackablevTRacsf{j}(i)]); 
354.        end 
355.    end 
356.    avTRacsf(i) = nanmean(vec); 
357.    sdTRacsf(i) = nanstd(vec); 
358.    seTRacsf(i) = sdTRacsf(i)/sqrt(length(vec)); 
359.end 
360. 
361.daysplot = days; 
362.daysplot(isnan(avTRacsf)) = []; 
363.avTRacsf(isnan(avTRacsf)) = []; 
364.seTRacsf(isnan(seTRacsf)) = []; 
365. 
366.subplot(2,1,2) 
367.plot(daysplot,avTRacsf,'k.'); 
368.hold on 
369.errorbar(daysplot,avTRacsf,seTRacsf) 
370.% fill([daysplot flip(daysplot)],[avPCnorb-sePCnorb 

flip(avPCnorb+sePCnorb)],'k','LineStyle','none') 
371.hold on 
372.% alpha(0.25) 
373.plot([86,86],[0,100],'r');hold on; %stress 
374.plot([94,94],[0,100],'b');hold on; %drug 
375.plot([115,115],[0,100],'b');hold on; %drug 
376.title('ACSF') 
377.xlabel('Days') 
378.ylabel('Total # Alternations') 
379. 
380. 
381.pc = zeros(94,8,2) 
382.for i = 1:8 
383.    a = cell2mat(percentcorrect(:,i,1)); 
384.    b = cell2mat(percentcorrect(:,i,2)); 
385.     
386.    pc(1:length(a),i,1) = a; 
387.    pc(1:length(b),i,2) = b; 
388.end 
389. 
390.%% Morphine Days 
391.avPCmorphine = []; 
392.sdPCmorphine = []; 
393.sePCmorphine = []; 
394. 
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395.avTRmorphine = []; 
396.sdTRmorphine = []; 
397.seTRmorphine = []; 
398. 
399. 
400.figure; 
401.for id = 5:8 
402.    for box = 1:2 
403.        for i = 1:size(percentcorrect,1) 
404.            emp(i) = ~isempty(percentcorrect{i,id,box}); 
405.        end 
406.        daysTemp = days.*emp; 
407.        daysTemp(daysTemp == 0) = []; 
408.        subplot(2,1,1) 
409.        title('ACSF'); 
410.        ylabel('Percent Correct'); 
411.        xlabel('Days'); 
412.        plot(daysTemp,[percentcorrect{:,id,box}]); hold on; 
413.        subplot(2,1,2) 
414.        ylabel('Total # Alternations'); 
415.        xlabel('Days'); 
416.        plot(daysTemp,[totalresponses{:,id,box}]); hold on; 
417.        stackablevPCacsf{((id-4)*2-rem(box,2)),:} = {percentcorrect{:,id,box}}; 
418.        stackablevTRacsf{((id-4)*2-rem(box,2)),:} = {totalresponses{:,id,box}}; 
419.    end 
420.end 
421. 
422. 
423.for i = 83:94 
424.    vec = []; 
425.    for j = 1:8 
426.        if isempty(cell2mat([stackablevPCacsf{j}(i)])); 
427.             vec(end+1) = NaN; 
428.        else 
429.        vec(end+1) = cell2mat([stackablevPCacsf{j}(i)]); 
430.        end 
431.    end 
432.    avPCmorphine(i) = nanmean(vec); 
433.    sdPCmorphine(i) = nanstd(vec); 
434.    sePCmorphine(i) = sdPCmorphine(i)/sqrt(length(vec)); 
435.end 
436. 
437.daysplot = days; 
438.daysplot(isnan(avPCmorphine)) = []; 
439.daysplot(avPCmorphine == 0) = []; 
440.avPCmorphine(isnan(avPCmorphine)) = []; 
441.avPCmorphine(avPCmorphine == 0) = []; 
442.sePCmorphine(isnan(sePCmorphine)) = []; 
443.sePCmorphine(sePCmorphine == 0) = []; 
444. 
445. 
446. 
447.figure; 
448.subplot(2,1,1) 
449.plot(daysplot,avPCmorphine,'k.'); 
450.hold on 
451.errorbar(daysplot,avPCmorphine,sePCmorphine) 
452.% fill([daysplot flip(daysplot)],[avPCnorb-sePCnorb 

flip(avPCnorb+sePCnorb)],'k','LineStyle','none') 
453.hold on 
454.% alpha(0.25) 
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455.% plot([86,86],[0,1],'r');hold on; %stress 
456.% plot([94,94],[0,1],'b');hold on; %drug 
457.% plot([115,115],[0,1],'b');hold on; %drug 
458.title('Morphine Treatment') 
459.xlabel('Days') 
460.ylabel('Percent Correct') 
461. 
462. 
463. 
464. 
465.for i = 83:94 
466.    vec = []; 
467.    for j = 1:8 
468.        if isempty(cell2mat([stackablevTRacsf{j}(i)])); 
469.             vec(end+1) = NaN; 
470.        else 
471.        vec(end+1) = cell2mat([stackablevTRacsf{j}(i)]); 
472.        end 
473.    end 
474.    avTRmorphine(i) = nanmean(vec); 
475.    sdTRmorphine(i) = nanstd(vec); 
476.    seTRmorphine(i) = sdTRmorphine(i)/sqrt(length(vec)); 
477.end 
478. 
479.daysplot = days; 
480.daysplot(isnan(avTRmorphine)) = []; 
481.daysplot(avTRmorphine == 0) = []; 
482.avTRmorphine(isnan(avTRmorphine)) = []; 
483.avTRmorphine(avTRmorphine == 0) = []; 
484.seTRmorphine(isnan(seTRmorphine)) = []; 
485.seTRmorphine(seTRmorphine == 0) = []; 
486. 
487. 
488.subplot(2,1,2) 
489.plot(daysplot,avTRmorphine,'k.'); 
490.hold on 
491.errorbar(daysplot,avTRmorphine,seTRmorphine) 
492.% fill([daysplot flip(daysplot)],[avPCnorb-sePCnorb 

flip(avPCnorb+sePCnorb)],'k','LineStyle','none') 
493.hold on 
494.% alpha(0.25) 
495.% plot([86,86],[0,100],'r');hold on; %stress 
496.% plot([94,94],[0,100],'b');hold on; %drug 
497.% plot([115,115],[0,100],'b');hold on; %drug 
498.title('Morphine Treatment') 
499.xlabel('Days') 
500.ylabel('Total # Alternations') 
501.%% PULL EVENT & TIME STAMP INFORMATION 
502. 
503.for f = 1:length(sortByDate) 
504.    for id = 1:length(sortByDate(f).ID) 
505.        if length(sortByDate(f).ID(id).box)>=1 
506.            for b = 1:length(sortByDate(f).ID(id).box) 
507. 
508.                Emat = cell2mat(sortByDate(f).ID(id).box(b).parsedData.E); 
509.                Tmat = cell2mat(sortByDate(f).ID(id).box(b).parsedData.T); 
510.                 
511.                Emat(isnan(Emat)) = []; 
512.                Tmat(isnan(Tmat)) = []; 
513. 
514.                right_lever_press_E = (Emat == 1); 
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515.                left_lever_press_E = (Emat == 2); 
516.                correct_alts_right_E = (Emat == 15); 
517.                correct_alts_left_E = (Emat == 16); 
518.                incorrect_alts_right_E = (Emat == 17); 
519.                incorrect_alts_left_E = (Emat == 18); 
520.                delay_starts_E = (Emat == 23); 
521.                delay_ends_E = (Emat == 24); 
522. 
523.                press_latency_vector{f,ani} = 10.*delay_ends_E + ... 
524.                    2.*correct_alts_right_E + 2.*correct_alts_left_E + ... 
525.                    1.*incorrect_alts_right_E + 1.*incorrect_alts_left_E; 
526.                 
527.                sortByDate(f).ID(id).box(b).latencies.press_latency_vector = ... 
528.                    10.*delay_ends_E + ... 
529.                    2.*correct_alts_right_E + 2.*correct_alts_left_E + ... 
530.                    1.*incorrect_alts_right_E + 1.*incorrect_alts_left_E; 
531.                 
532. 
533.                press_latency_binary_E = delay_ends_E + ... 
534.                    correct_alts_right_E + correct_alts_left_E + ... 
535.                    incorrect_alts_right_E + incorrect_alts_left_E; 
536. 
537.                right_lever_press_T = Tmat.*right_lever_press_E; 
538.                left_lever_press_T = Tmat.*left_lever_press_E; 
539.                correct_alts_right_T = Tmat.*correct_alts_right_E; 
540.                correct_alts_left_T = Tmat.*correct_alts_left_E; 
541.                incorrect_alts_right_T = Tmat.*incorrect_alts_right_E; 
542.                incorrect_alts_left_T = Tmat.*incorrect_alts_left_E; 
543.                delay_starts_T = Tmat.*delay_starts_E; 
544.                delay_ends_T = Tmat.*delay_ends_E; 
545.                press_latency_binary_T = Tmat.*press_latency_binary_E; 
546. 
547.                right_lever_press_T(right_lever_press_T == 0 | 

isnan(right_lever_press_T)) = []; 
548.                left_lever_press_T(left_lever_press_T == 0 | 

isnan(left_lever_press_T)) = []; 
549.                correct_alts_right_T(correct_alts_right_T == 0 | 

isnan(correct_alts_right_T)) = []; 
550.                correct_alts_left_T(correct_alts_left_T == 0 | 

isnan(correct_alts_left_T)) = []; 
551.                incorrect_alts_right_T(incorrect_alts_right_T == 0 | 

isnan(incorrect_alts_right_T)) = []; 
552.                incorrect_alts_left_T(incorrect_alts_left_T == 0 | 

isnan(incorrect_alts_left_T)) = []; 
553.                delay_starts_T(delay_starts_T == 0 | isnan(delay_starts_T)) = []; 
554.                delay_ends_T(delay_ends_T == 0 | isnan(delay_ends_T)) = []; 
555.                %press_latency_binary_T(press_latency_binary_T == 0 | 

isnan(press_latency_binary_T)) = []; 
556. 
557.                sortByDate(f).ID(id).box(b).latencies.rlp = right_lever_press_T; 
558.                sortByDate(f).ID(id).box(b).latencies.llp = left_lever_press_T; 
559.                sortByDate(f).ID(id).box(b).latencies.car = correct_alts_right_T; 
560.                sortByDate(f).ID(id).box(b).latencies.cal = correct_alts_left_T; 
561.                sortByDate(f).ID(id).box(b).latencies.iar = incorrect_alts_right_T; 
562.                sortByDate(f).ID(id).box(b).latencies.ial = incorrect_alts_left_T; 
563.                sortByDate(f).ID(id).box(b).latencies.dst = delay_starts_T; 
564.                sortByDate(f).ID(id).box(b).latencies.den = delay_ends_T; 
565.                sortByDate(f).ID(id).box(b).latencies.plb = press_latency_binary_T; 
566.            end 
567.        end 
568.    end 



Appendix II – Code Documentation 

147 
 

569.end 
570. 
571.%% MAKE RASTER PLOTS 
572. 
573.for f = 70:length(sortByDate) 
574.    for id = 1:length(sortByDate(f).ID) 
575.        if length(sortByDate(f).ID(id).box)>=1 
576.            for b = 1:length(sortByDate(f).ID(id).box) 
577. 
578.                car = (sortByDate(f).ID(id).box(b).latencies.car)./(100*60); 
579.                cal = (sortByDate(f).ID(id).box(b).latencies.cal)./(100*60); 
580.                iar = (sortByDate(f).ID(id).box(b).latencies.iar)./(100*60); 
581.                ial = (sortByDate(f).ID(id).box(b).latencies.ial)./(100*60); 
582.                dst = (sortByDate(f).ID(id).box(b).latencies.dst)./(100*60); 
583.               
584.                cr = plot([car;car],[ones(1,length(car)).*0;ones(1,length(car))],'b-

','linewidth',2); hold on; 
585.                cl = 

plot([cal;cal],[ones(1,length(cal)).*0;ones(1,length(cal))],'Color',[1,.6,.2],'linewidt
h',2); hold on; 

586.                ir = plot([iar;iar],[ones(1,length(iar)).*0;ones(1,length(iar)).*-
1],'b-','linewidth',2); hold on; 

587.                il = plot([ial;ial],[ones(1,length(ial)).*0;ones(1,length(ial)).*-
1],'Color',[1,.6,.2],'linewidth',2); hold on; 

588.                fp = plot([dst;dst],[ones(1,length(dst)).*-
0.2;ones(1,length(dst)).*0.2],'k-','linewidth',2); hold on; 

589.                ce = plot([0,60],[0,0],'Color',[0,0,0,0.4]) 
590.                %                 fp = 

plot([dst],[zeros(1,length(dst))],'k.','MarkerSize',10); hold on; 
591.                 
592.                if length(cr) > 0 & length(cl) > 0 
593.                    subset = [cr(1),cl(1)]; 
594.                    legend(subset,'Right Lever','Left Lever','Location','eastoutside') 
595.                    legend boxoff 
596.                elseif length(ir) > 0 & length(il) > 0 
597.                    subset = [ir(1),il(1)]; 
598.                    legend(subset,'Right Lever','Left Lever','Location','eastoutside') 
599.                    legend boxoff 
600.                elseif length(cr) > 0 & length(il) > 0 
601.                    subset = [cr(1),il(1)]; 
602.                    legend(subset,'Right Lever','Left Lever','Location','eastoutside') 
603.                    legend boxoff 
604.                elseif length(ir) > 0 & length(cl) > 0 
605.                    subset = [ir(1),cl(1)]; 
606.                    legend(subset,'Right Lever','Left Lever','Location','eastoutside') 
607.                    legend boxoff 
608.                end 
609.                    
610.                 
611.                names = {'Inorrect {\bf\downarrow}';'Correct {\bf\uparrow}'};                 
612.                xlabel('Time (min)'); 
613.                ylim([-1.2,1.2]) 
614.                ax = gca 
615.                set(gca,'TickLength',[0,0]) 
616.                set(gca,'ytick',[-.5,.5],'yticklabel',names) 
617.                ax.FontSize = 20; 
618.                 
619.                fig = gcf; 
620.                set(gcf,'color','w'); 
621.                fig.PaperUnits = 'inches'; 
622.                fig.PaperPosition = [0 0 30 3]; 
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623.                box off 
624.%  
625.                savename = strcat('C:\Users\Kenzie Marae\Desktop\Lab 

Materials\MATLAB\Delayed Alternation 
Data\rasterPlots2\',sortByDate(f).dates(1:end),'_',num2str(id),'_',num2str(b),'.jpg'); 

626.                saveas(gcf,savename) 
627.                close 
628.            end 
629.        end 
630.    end 
631.end 
632. 
633.%% BIN LATENCIES, % CORRECT, and TOTAL RESPONSE  
634. 
635.numberOfBins = 4; 
636.bins = [0:60/numberOfBins:60]; 
637. 
638.% avg_correct_latency = zeros(numfiles,2); 
639.% avg_incorrect_latency = zeros(numfiles,2); 
640. 
641.for f = 1:length(sortByDate) 
642.    for id = 1:length(sortByDate(f).ID) 
643.        if length(sortByDate(f).ID(id).box)>=1 
644.            for b = 1:length(sortByDate(f).ID(id).box) 
645.                 
646.                

sortByDate(f).ID(id).box(b).latencies.analysis.incorrect_lat_eventtimes = []; 
647.                sortByDate(f).ID(id).box(b).latencies.analysis.correct_lat_eventtimes 

= []; 
648.                sortByDate(f).ID(id).box(b).latencies.analysis.incorrect_lat = []; 
649.                sortByDate(f).ID(id).box(b).latencies.analysis.correct_lat = []; 
650.                for i = 1:numberOfBins 
651.                    

sortByDate(f).ID(id).box(b).latencies.analysis.bins(i).incorrect_lat = []; 
652.                    sortByDate(f).ID(id).box(b).latencies.analysis.bins(i).correct_lat 

= []; 
653.                end 
654. 
655.                press_latency = 

sortByDate(f).ID(id).box(b).latencies.press_latency_vector; 
656.                latency_times = sortByDate(f).ID(id).box(b).latencies.plb; 
657. 
658.                for i = 1:length(press_latency) 
659.                    incorrect_lat_eventtimes = []; 
660.                    correct_lat_eventtimes = []; 
661.                    incorrect_lat = []; 
662.                    correct_lat = []; 
663. 
664.                    if press_latency(i) == 10 
665.                        last_delay = latency_times(i); 
666.                    end 
667.                    if press_latency(i) == 1 
668.                        

sortByDate(f).ID(id).box(b).latencies.analysis.incorrect_lat(end+1) =... 
669.                            latency_times(i)-last_delay; 
670.                        

sortByDate(f).ID(id).box(b).latencies.analysis.incorrect_lat_eventtimes(end+1) =... 
671.                            last_delay; 
672. 
673.                        for j = 1:numberOfBins 
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674.                             if last_delay > bins(j)*60*100 & last_delay <= 
bins(j+1)*60*100 

675.                                 
sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).incorrect_lat(end+1) =... 

676.                                     latency_times(i)-last_delay; 
677.                             end  
678.                        end 
679.                    end 
680.                    if press_latency(i) == 2 
681.                        

sortByDate(f).ID(id).box(b).latencies.analysis.correct_lat(end+1) =... 
682.                            latency_times(i)-last_delay; 
683.                        

sortByDate(f).ID(id).box(b).latencies.analysis.correct_lat_eventtimes(end+1) =... 
684.                            last_delay; 
685.                        for j = 1:numberOfBins 
686.                            if last_delay > bins(j)*60*100 & last_delay <= 

bins(j+1)*60*100 
687.                                 

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).correct_lat(end+1) =... 
688.                                     latency_times(i)-last_delay; 
689.                            end  
690.                        end 
691.                    end 
692.                end 
693.                 
694.                sortByDate(f).ID(id).box(b).latencies.analysis.avg_correct_latency 

=... 
695.                    mean(sortByDate(f).ID(id).box(b).latencies.analysis.correct_lat); 
696.                sortByDate(f).ID(id).box(b).latencies.analysis.avg_incorrect_latency 

=... 
697.                    

mean(sortByDate(f).ID(id).box(b).latencies.analysis.incorrect_lat); 
698.                     
699.                for j = 1:numberOfBins 
700.                    

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).incorrect_latency_mean =... 
701.                        

mean(sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).incorrect_lat); 
702.                    

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).correct_latency_mean =... 
703.                        

mean(sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).correct_lat); 
704.                     
705.                    

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).incorrect_latency_std =... 
706.                        

std(sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).incorrect_lat); 
707.                    

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).correct_latency_std =... 
708.                        

std(sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).correct_lat); 
709.                     
710.                    

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).incorrect_latency_num =... 
711.                        

length(sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).incorrect_lat); 
712.                    

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).correct_latency_num =... 
713.                        

length(sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).correct_lat); 
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714.                     
715.                    

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).totalNumResponses =... 
716.                        

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).correct_latency_num +... 
717.                        

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).incorrect_latency_num; 
718.                     
719.                    

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).percentCorrect =... 
720.                        

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).correct_latency_num / ... 
721.                        

sortByDate(f).ID(id).box(b).latencies.analysis.bins(j).totalNumResponses; 
722.                end 
723.                 
724.            end 
725.        end 
726.    end 
727.end 
728. 
729.avg_cor_lat = zeros(5,12); 
730.avg_inc_lat = zeros(5,12); 
731.for f = 83:94 
732.    for id = 6:8 
733.        for b = 1:length(sortByDate(f).ID(id).box) 
734.             
735.          avg_cor_lat(((id-5)*2-2+b),f-82) = 

sortByDate(f).ID(id).box(b).latencies.analysis.avg_correct_latency; 
736.          avg_inc_lat(((id-5)*2-2+b),f-82) = 

sortByDate(f).ID(id).box(b).latencies.analysis.avg_incorrect_latency; 
737.        end 
738.    end 
739.end 
740. 
741.aniAvg_cor_lat = mean(avg_cor_lat); 
742.aniSD_cor_lat = std(avg_cor_lat); 
743.aniSE_cor_lat = aniSD_cor_lat./sqrt(size(avg_cor_lat,1)); 
744. 
745.aniAvg_inc_lat = mean(avg_inc_lat); 
746.aniSD_inc_lat = std(avg_inc_lat); 
747.aniSE_inc_lat = aniSD_inc_lat./sqrt(size(avg_inc_lat,1)); 
748. 
749.figure; 
750.plot(daysplot,aniAvg_cor_lat,'g.'); 
751.hold on 
752.errorbar(daysplot,aniAvg_cor_lat,aniSE_cor_lat) 
753.% fill([daysplot flip(daysplot)],[avPCnorb-sePCnorb 

flip(avPCnorb+sePCnorb)],'k','LineStyle','none') 
754.hold on 
755.plot(daysplot,aniAvg_inc_lat,'r.'); 
756.hold on 
757.errorbar(daysplot,aniAvg_inc_lat,aniSE_inc_lat) 
758.% alpha(0.25) 
759.% plot([86,86],[0,100],'r');hold on; %stress 
760.% plot([94,94],[0,100],'b');hold on; %drug 
761.% plot([115,115],[0,100],'b');hold on; %drug 
762.title('Morphine Treatment Latencies') 
763.xlabel('Days') 
764.ylabel('Average Latencies') 
765. 
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766.%% 
767.norBNI = [1,2,3,4,5,6,7,8,27,28,29,30,34,35,36,37,41,42,43,44]; 
768.ACSF   = [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,... 
769.          31,32,33,38,39,40,45,46]; 
770.       
771.norBNI_pre = [1,2,3,4]; 
772.norBNI_fss = [5,6,7,8]; 
773. 
774.ACSF_pre = [12,13,14]; 
775.ACSF_fss = [15,16,17]; 
776. 
777.norBNI_sal_10_1 = [27,28,29,30]; 
778.norBNI_sal_10_2 = [34,35,36,37]; 
779.norBNI_u50_10 = [41,42,43,44]; 
780. 
781.ACSF_sal_10_1 = [31,32,33]; 
782.ACSF_sal_10_2 = [38,39,40]; 
783.ACSF_u50_10 = [45,46,47]; 
784. 
785.stress_groups = {norBNI_pre, norBNI_fss; ACSF_pre, ACSF_fss}; 
786.drug_groups = {norBNI_sal_10_1, norBNI_sal_10_2, norBNI_u50_10;... 
787.               ACSF_sal_10_1, ACSF_sal_10_2, ACSF_u50_10}; 
788.            
789.%% DATES and GROUPS 
790.acsf_pre = 47; 
791.acsf_fss = 48; 
792. 
793.norB_pre = 28; 
794.norB_fss = 29; 
795. 
796.norB_sal = 41; 
797.norB_u50 = 42; 
798. 
799.all_sal  = 54; 
800.all_u50  = 55; 
801. 
802.%% 
803.%binPlot(1) = acsf_pre 
804.%binPlot(2) = acsf_fss 
805.%binPlot(3) = norB_pre 
806.%binPlot(4) = norB_fss 
807.%binPlot(5) = norB_sal 
808.%binPlot(6) = norB_u50 
809.%binPlot(7) = norB_sal (all) 
810.%binPlot(8) = norB_u50 (all) 
811.%binPlot(9) = acsf_sal (all) 
812.%binPlot(10) = acsf_u50 (all) 
813. 
814.%data(1) = percent correct 
815.%data(2) = number of responses 
816.%data(3) = correct latency 
817.%data(4) = incorrect latency 
818. 
819.for i = 1:numberOfBins 
820.    for j = 1:4 
821.        for k = 1:10 
822.            binPlot(k).bin(i).data(j).vectors = []; 
823.        end 
824.    end 
825.end 
826. 
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827.day = acsf_pre; 
828.plotnum = 1; 
829.for i = 6:8 
830.    for b = 1:length(sortByDate(day).ID(i).box) 
831.        for Bin = 1:numberOfBins 
832.            binPlot(plotnum).bin(Bin).data(1).vectors(end+1) =... 
833.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
834.            binPlot(plotnum).bin(Bin).data(2).vectors(end+1) =... 
835.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
836.            binPlot(plotnum).bin(Bin).data(3).vectors =... 
837.                [binPlot(plotnum).bin(Bin).data(3).vectors, ... 
838.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
839.            binPlot(plotnum).bin(Bin).data(4).vectors =... 
840.                [binPlot(plotnum).bin(Bin).data(4).vectors, ... 
841.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
842.        end 
843.    end 
844.     
845.    for b = 1:length(sortByDate(day+1).ID(i).box) 
846.        for Bin = 1:numberOfBins 
847.            binPlot(plotnum+1).bin(Bin).data(1).vectors(end+1) =... 
848.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
849.            binPlot(plotnum+1).bin(Bin).data(2).vectors(end+1) =... 
850.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
851.            binPlot(plotnum+1).bin(Bin).data(3).vectors =... 
852.                [binPlot(plotnum+1).bin(Bin).data(3).vectors, ... 
853.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
854.            binPlot(plotnum+1).bin(Bin).data(4).vectors =... 
855.                [binPlot(plotnum+1).bin(Bin).data(4).vectors, ... 
856.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
857.        end 
858.    end 
859.end 
860. 
861.day = norB_pre; 
862.plotnum = plotnum+2; 
863.for i = 1:4 
864.    for b = 1:length(sortByDate(day).ID(i).box) 
865.        for Bin = 1:numberOfBins 
866.            binPlot(plotnum).bin(Bin).data(1).vectors(end+1) =... 
867.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
868.            binPlot(plotnum).bin(Bin).data(2).vectors(end+1) =... 
869.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
870.            binPlot(plotnum).bin(Bin).data(3).vectors =... 
871.                [binPlot(plotnum).bin(Bin).data(3).vectors, ... 
872.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
873.            binPlot(plotnum).bin(Bin).data(4).vectors =... 
874.                [binPlot(plotnum).bin(Bin).data(4).vectors, ... 
875.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
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876.        end 
877.    end 
878.     
879.    for b = 1:length(sortByDate(day+1).ID(i).box) 
880.        for Bin = 1:numberOfBins 
881.            binPlot(plotnum+1).bin(Bin).data(1).vectors(end+1) =... 
882.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
883.            binPlot(plotnum+1).bin(Bin).data(2).vectors(end+1) =... 
884.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
885.            binPlot(plotnum+1).bin(Bin).data(3).vectors =... 
886.                [binPlot(plotnum+1).bin(Bin).data(3).vectors, ... 
887.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
888.            binPlot(plotnum+1).bin(Bin).data(4).vectors =... 
889.                [binPlot(plotnum+1).bin(Bin).data(4).vectors, ... 
890.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
891.        end 
892.    end 
893.end 
894. 
895.day = norB_sal; 
896.plotnum = plotnum+2; 
897.for i = 1:4 
898.    for b = 1:length(sortByDate(day).ID(i).box) 
899.        for Bin = 1:numberOfBins 
900.            binPlot(plotnum).bin(Bin).data(1).vectors(end+1) =... 
901.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
902.            binPlot(plotnum).bin(Bin).data(2).vectors(end+1) =... 
903.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
904.            binPlot(plotnum).bin(Bin).data(3).vectors =... 
905.                [binPlot(plotnum).bin(Bin).data(3).vectors, ... 
906.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
907.            binPlot(plotnum).bin(Bin).data(4).vectors =... 
908.                [binPlot(plotnum).bin(Bin).data(4).vectors, ... 
909.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
910.        end 
911.    end 
912.     
913.    for b = 1:length(sortByDate(day+1).ID(i).box) 
914.        for Bin = 1:numberOfBins 
915.            binPlot(plotnum+1).bin(Bin).data(1).vectors(end+1) =... 
916.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
917.            binPlot(plotnum+1).bin(Bin).data(2).vectors(end+1) =... 
918.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
919.            binPlot(plotnum+1).bin(Bin).data(3).vectors =... 
920.                [binPlot(plotnum+1).bin(Bin).data(3).vectors, ... 
921.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
922.            binPlot(plotnum+1).bin(Bin).data(4).vectors =... 
923.                [binPlot(plotnum+1).bin(Bin).data(4).vectors, ... 
924.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
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925.        end 
926.    end 
927.end 
928. 
929.day = all_sal; 
930.plotnum = plotnum+2; 
931.for i = 1:4 
932.    for b = 1:length(sortByDate(day).ID(i).box) 
933.        for Bin = 1:numberOfBins 
934.            binPlot(plotnum).bin(Bin).data(1).vectors(end+1) =... 
935.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
936.            binPlot(plotnum).bin(Bin).data(2).vectors(end+1) =... 
937.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
938.            binPlot(plotnum).bin(Bin).data(3).vectors =... 
939.                [binPlot(plotnum).bin(Bin).data(3).vectors, ... 
940.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
941.            binPlot(plotnum).bin(Bin).data(4).vectors =... 
942.                [binPlot(plotnum).bin(Bin).data(4).vectors, ... 
943.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
944.        end 
945.    end 
946.     
947.    for b = 1:length(sortByDate(day+1).ID(i).box) 
948.        for Bin = 1:numberOfBins 
949.            binPlot(plotnum+1).bin(Bin).data(1).vectors(end+1) =... 
950.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
951.            binPlot(plotnum+1).bin(Bin).data(2).vectors(end+1) =... 
952.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
953.            binPlot(plotnum+1).bin(Bin).data(3).vectors =... 
954.                [binPlot(plotnum+1).bin(Bin).data(3).vectors, ... 
955.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
956.            binPlot(plotnum+1).bin(Bin).data(4).vectors =... 
957.                [binPlot(plotnum+1).bin(Bin).data(4).vectors, ... 
958.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
959.        end 
960.    end 
961.end 
962. 
963.day = all_sal; 
964.plotnum = plotnum+2; 
965.for i = 6:8 
966.    for b = 1:length(sortByDate(day).ID(i).box) 
967.        for Bin = 1:numberOfBins 
968.            binPlot(plotnum).bin(Bin).data(1).vectors(end+1) =... 
969.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
970.            binPlot(plotnum).bin(Bin).data(2).vectors(end+1) =... 
971.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
972.            binPlot(plotnum).bin(Bin).data(3).vectors =... 
973.                [binPlot(plotnum).bin(Bin).data(3).vectors, ... 
974.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
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975.            binPlot(plotnum).bin(Bin).data(4).vectors =... 
976.                [binPlot(plotnum).bin(Bin).data(4).vectors, ... 
977.                

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
978.        end 
979.    end 
980.     
981.    for b = 1:length(sortByDate(day+1).ID(i).box) 
982.        for Bin = 1:numberOfBins 
983.            binPlot(plotnum+1).bin(Bin).data(1).vectors(end+1) =... 
984.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
985.            binPlot(plotnum+1).bin(Bin).data(2).vectors(end+1) =... 
986.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
987.            binPlot(plotnum+1).bin(Bin).data(3).vectors =... 
988.                [binPlot(plotnum+1).bin(Bin).data(3).vectors, ... 
989.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
990.            binPlot(plotnum+1).bin(Bin).data(4).vectors =... 
991.                [binPlot(plotnum+1).bin(Bin).data(4).vectors, ... 
992.                

sortByDate(day+1).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
993.        end 
994.    end 
995.end 
996. 
997.for k = 1:10 
998.    for i = 1:numberOfBins 
999.        for j = 1:4 
1000.            binPlot(k).bin(i).data(j).mean = 

nanmean(binPlot(k).bin(i).data(j).vectors); 
1001.            binPlot(k).bin(i).data(j).std = 

nanstd(binPlot(k).bin(i).data(j).vectors); 
1002.            binPlot(k).bin(i).data(j).sem = binPlot(k).bin(i).data(j).std./... 
1003.                sqrt(length(binPlot(k).bin(i).data(j).vectors)); 
1004.        end 
1005.    end 
1006.end 
1007. 
1008.%% 
1009.%% MORPHINE RESPONSE LATENCIES BINNED 
1010.%binPlotMorphine(1) = morphine1, etc 
1011.%binPlot(2) = acsf_fss 
1012.%binPlot(3) = norB_pre 
1013.%binPlot(4) = norB_fss 
1014.%binPlot(5) = norB_sal 
1015.%binPlot(6) = norB_u50 
1016.%binPlot(7) = norB_sal (all) 
1017.%binPlot(8) = norB_u50 (all) 
1018.%binPlot(9) = acsf_sal (all) 
1019.%binPlot(10) = acsf_u50 (all) 
1020. 
1021.%data(1) = percent correct 
1022.%data(2) = number of responses 
1023.%data(3) = correct latency 
1024.%data(4) = incorrect latency 
1025. 
1026.for i = 1:numberOfBins 
1027.    for j = 1:4 
1028.        for k = 1:12 
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1029.            binPlotMorphine(k).bin(i).data(j).vectors = []; 
1030.        end 
1031.    end 
1032.end 
1033. 
1034.for day = 83:94 
1035.    plotnum = day-82; 
1036.     
1037.    for i = 6:8 
1038.        for b = 1:length(sortByDate(day).ID(i).box) 
1039.            for Bin = 1:numberOfBins 
1040.                binPlotMorphine(plotnum).bin(Bin).data(1).vectors(end+1) =... 
1041.                    

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).percentCorrect; 
1042.                binPlotMorphine(plotnum).bin(Bin).data(2).vectors(end+1) =... 
1043.                    

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).totalNumResponses; 
1044.                binPlotMorphine(plotnum).bin(Bin).data(3).vectors =... 
1045.                    [binPlotMorphine(plotnum).bin(Bin).data(3).vectors, ... 
1046.                    

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).correct_lat]; 
1047.                binPlotMorphine(plotnum).bin(Bin).data(4).vectors =... 
1048.                    [binPlotMorphine(plotnum).bin(Bin).data(4).vectors, ... 
1049.                    

sortByDate(day).ID(i).box(b).latencies.analysis.bins(Bin).incorrect_lat]; 
1050.            end 
1051.        end 
1052.    end 
1053.     
1054.end 
1055. 
1056.cor_lat_matrix = zeros(5*4,12); 
1057.inc_lat_matrix = zeros(5*4,12); 
1058.cor_lat_matrixV = zeros(5*4,12); 
1059.inc_lat_matrixV = zeros(5*4,12); 
1060. 
1061.for i = 83:94 
1062.    for Bin = 1:4 
1063.        for id = 6:8 
1064.            for b = 1:length(sortByDate(i).ID(id).box) 
1065.                animal = (id-5)*2-2+b; 
1066.                cor_lat_matrix(animal*4-4+Bin,i-82) = 

nanmean((sortByDate(i).ID(id).box(b).latencies.analysis.bins(Bin).correct_lat)./100); 
1067.                inc_lat_matrix(animal*4-4+Bin,i-82) = 

nanmean((sortByDate(i).ID(id).box(b).latencies.analysis.bins(Bin).incorrect_lat)./100); 
1068.                cor_lat_matrixV(animal*4-4+Bin,i-82) = 

var((sortByDate(i).ID(id).box(b).latencies.analysis.bins(Bin).correct_lat)./100); 
1069.                inc_lat_matrixV(animal*4-4+Bin,i-82) = 

var((sortByDate(i).ID(id).box(b).latencies.analysis.bins(Bin).incorrect_lat)./100); 
1070.            end 
1071.        end 
1072.    end 
1073.end 
1074. 
1075.%Sort by animal 
1076.xvalues = {'BL1','BL2','M1','M2','M3','M4','M5','W1','W2','W3','W4','W5'}; 
1077.yvalues = {'Ani1_15min','Ani1_30min','Ani1_45min','Ani1_60min',... 
1078.           'Ani2_15min','Ani2_30min','Ani2_45min','Ani2_60min',... 
1079.           'Ani3_15min','Ani3_30min','Ani3_45min','Ani3_60min',... 
1080.           'Ani4_15min','Ani4_30min','Ani4_45min','Ani4_60min',... 
1081.           'Ani5_15min','Ani5_30min','Ani5_45min','Ani5_60min',}; 
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1082.figure; 
1083.heatmap(xvalues,yvalues,cor_lat_matrix,'ColorLimits',[0 10]); 
1084.title('Mean Correct') 
1085.figure; 
1086.heatmap(xvalues,yvalues,inc_lat_matrix,'ColorLimits',[0 10]); 
1087.title('Mean Incorrect') 
1088. 
1089.figure; 
1090.heatmap(xvalues,yvalues,cor_lat_matrixV,'ColorLimits',[0,30]); 
1091.title('Var Correct') 
1092.figure; 
1093.heatmap(xvalues,yvalues,inc_lat_matrixV,'ColorLimits',[0,30]); 
1094.title('Var Incorrect') 
1095. 
1096.%Sort by bin 
1097.for i = 83:94 
1098.    for Bin = 1:4 
1099.        for id = 6:8 
1100.            for b = 1:length(sortByDate(i).ID(id).box) 
1101.                animal = (id-5)*2-2+b; 
1102.                cor_lat_matrix(Bin*5-5+animal,i-82) = 

nanmean((sortByDate(i).ID(id).box(b).latencies.analysis.bins(Bin).correct_lat)./100); 
1103.                inc_lat_matrix(Bin*5-5+animal,i-82) = 

nanmean((sortByDate(i).ID(id).box(b).latencies.analysis.bins(Bin).incorrect_lat)./100); 
1104.                cor_lat_matrixV(Bin*5-5+animal,i-82) = 

var((sortByDate(i).ID(id).box(b).latencies.analysis.bins(Bin).correct_lat)./100); 
1105.                inc_lat_matrixV(Bin*5-5+animal,i-82) = 

var((sortByDate(i).ID(id).box(b).latencies.analysis.bins(Bin).incorrect_lat)./100); 
1106.            end 
1107.        end 
1108.    end 
1109.end 
1110. 
1111.xvalues = {'BL1','BL2','M1','M2','M3','M4','M5','W1','W2','W3','W4','W5'}; 
1112. 
1113.yvalues = {'Ani1_15min','Ani2_15min','Ani3_15min','Ani4_15min','Ani5_15min',... 
1114.           'Ani1_30min','Ani2_30min','Ani3_30min','Ani4_30min','Ani5_30min'.... 
1115.           'Ani1_45min','Ani2_45min','Ani3_45min','Ani4_45min','Ani5_45min',... 
1116.           'Ani1_60min','Ani2_60min','Ani3_60min','Ani4_60min','Ani5_60min'}; 
1117. 
1118.figure; 
1119.heatmap(xvalues,yvalues,cor_lat_matrix,'ColorLimits',[0 10]); 
1120.title('Mean Correct') 
1121.figure; 
1122.heatmap(xvalues,yvalues,inc_lat_matrix,'ColorLimits',[0 10]); 
1123.title('Mean Incorrect') 
1124. 
1125.figure; 
1126.heatmap(xvalues,yvalues,cor_lat_matrixV,'ColorLimits',[0,30]); 
1127.title('Var Correct') 
1128.figure; 
1129.heatmap(xvalues,yvalues,inc_lat_matrixV,'ColorLimits',[0,30]); 
1130.title('Var Incorrect') 
1131. 
1132. 
1133.%% PLOT 
1134. 
1135. 
1136.BinPlot{1} = 'acsf,pre'; 
1137.BinPlot{2} = 'acsf,fss'; 
1138.BinPlot{3} = 'norB,pre'; 
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1139.BinPlot{4} = 'norB,fss'; 
1140.BinPlot{5} = 'norB,sal'; 
1141.BinPlot{6} = 'norB,u50'; 
1142.BinPlot{7} = 'norB,sal'; %(all) 
1143.BinPlot{8} = 'norB,u50'; %(all) 
1144.BinPlot{9} = 'acsf,sal'; %(all) 
1145.BinPlot{10} = 'acsf,u50'; %(all) 
1146. 
1147.for i = 1:2:10 
1148.    x = bins(2:end); 
1149.     
1150.    y1 = zeros(4,4); 
1151.    s1 = zeros(4,4); 
1152. 
1153.    y2 = zeros(4,2); 
1154.    s2 = zeros(4,2); 
1155. 
1156.    y3 = zeros(4,2); 
1157.    s3 = zeros(4,2); 
1158.     
1159.    %latencies 
1160.    for b = 1:numberOfBins 
1161.        row = 1; 
1162.        for j = 0:1 
1163.            for k = 3:4 
1164.                y1(b,row) = [binPlot(i+j).bin(b).data(k).mean]; 
1165.                s1(b,row) = [binPlot(i+j).bin(b).data(k).sem]; 
1166.                row = row+1; 
1167.            end 
1168.        end 
1169.    end 
1170.     
1171.    %percent correct 
1172.    for b = 1:numberOfBins 
1173.        row = 1; 
1174.        for j = 0:1 
1175.            for k = 1:1 
1176.                y2(b,row) = [binPlot(i+j).bin(b).data(k).mean]; 
1177.                s2(b,row) = [binPlot(i+j).bin(b).data(k).sem]; 
1178.                row = row+1; 
1179.            end 
1180.        end 
1181.    end 
1182.     
1183.    %total responses 
1184.    for b = 1:numberOfBins 
1185.        row = 1; 
1186.        for j = 0:1 
1187.            for k = 2:2 
1188.                y3(b,row) = [binPlot(i+j).bin(b).data(k).mean]; 
1189.                s3(b,row) = [binPlot(i+j).bin(b).data(k).sem]; 
1190.                row = row+1; 
1191.            end 
1192.        end 
1193.    end 
1194.     
1195.    figure; hold on; 
1196.    subplot(3,1,1) 
1197.    hbar1 = bar(x,y1); hold on; 
1198.    xe1 = cell2mat(get(hbar1,'XData')).'+[hbar1.XOffset]; 
1199.    errorbar(xe1,y1,s1,'k.'); 
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1200.    mycolor1=[0 0 1;1 0 0;0 .5 1;1 .5 0]; 
1201.    colormap(gca,mycolor1) 
1202.    xlabel('15 min Bins') 
1203.    ylabel('Average Latencies') 
1204.    lgd1 = legend(strcat(BinPlot{i}, ',correct'),strcat(BinPlot{i}, ',incorrect'),... 
1205.           strcat(BinPlot{i+1}, ',correct'),strcat(BinPlot{i+1}, ',incorrect')); 
1206.    lgd1.FontSize = 6; 
1207.     
1208.    subplot(3,1,2) 
1209.    hbar2 = bar(x,y2); hold on; 
1210.    xe2 = cell2mat(get(hbar2,'XData')).'+[hbar2.XOffset]; 
1211.    errorbar(xe2,y2,s2,'k.'); 
1212.    mycolor2=[0 0 1;0 .5 1]; 
1213.    colormap(gca,mycolor2) 
1214.    xlabel('15 min Bins') 
1215.    ylabel('Percent Correct') 
1216.    lgd2 = legend(BinPlot{i},BinPlot{i+1}); 
1217.    lgd2.FontSize = 6; 
1218.     
1219.    subplot(3,1,3) 
1220.    hbar3 = bar(x,y3); hold on; 
1221.    xe3 = cell2mat(get(hbar3,'XData')).'+[hbar3.XOffset]; 
1222.    errorbar(xe3,y3,s3,'k.'); 
1223.    mycolor3=[0 0 1;0 .5 1]; 
1224.    colormap(gca,mycolor3) 
1225.    xlabel('15 min Bins') 
1226.    ylabel('Total # Alternations') 
1227.    lgd3 = legend(BinPlot{i},BinPlot{i+1}); 
1228.    lgd3.FontSize = 6; 
1229.end 
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FIBER PHOTOMETRY CODE 
 

LOAD DATA 
1. clear all; close all; clc; 
2.   
3. global time_gcamp; 
4. global timelin_gcamp; 
5. global sig_gcamp; 
6. global time_hyper; 
7. global timelin_hyper; 
8. global sig_hyper;  
9.      
10. subject_1 = 'Subject1-190314-120806-hyperredOnly'; 
11. u50_1 = []; 
12.   
13. [inject_sig, all_sig] = analyzer(subject_1, u50_1); 
14.  
15. savename = strcat(subject_1,'.mat'); 
16. save (savename, 'sig_gcamp','timelin_gcamp','sig_hyper','timelin_hyper'); 

 

ANALYZER FUNCTION 
1. function [inject_sig, all_sig] = analyzer(subject, u50) 
2.      
3.     global time_gcamp; 
4.     global timelin_gcamp; 
5.     global sig_gcamp; 
6.     global time_hyper; 
7.     global timelin_hyper; 
8.     global sig_hyper; 
9.      
10.     %GCAMP 
11.     filename_gcamp = [subject,'_greG.txt']; 
12.   
13.     data_gcamp = textread(filename_gcamp,'%s');  
14.     data_gcamp = str2double(data_gcamp); 
15.   
16.     [time_gcamp, sig_gcamp] = separate(data_gcamp); 
17.      
18.     timelin_gcamp = linspace(0,length(sig_gcamp)/1017, length(sig_gcamp)); 
19.      
20.     %HYPER 
21.     filename_hyper = [subject,'_redH.txt']; 
22.   
23.     data_hyper = textread(filename_hyper,'%s');  
24.     data_hyper = str2double(data_hyper); 
25.   
26.     [time_hyper, sig_hyper] = separate(data_hyper); 
27.   
28.     timelin_hyper = linspace(0,length(sig_gcamp)/1017,length(sig_hyper)); 
29.   
30.     %PLOT 
31.     timelin_gcamp_plot = timelin_gcamp(5*1017:end-(5*1017)); 
32.     sig_gcamp_plot = sig_gcamp(5*1017:end-(5*1017)); 
33.      
34.     timelin_hyper_plot = timelin_hyper(5*1017:end-(5*1017)); 
35.     sig_hyper_plot = sig_hyper(5*1017:end-(5*1017)); 
36.      
37.     fig = figure; 
38.   
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39.     subplot(2,1,1) 
40.     plot(timelin_gcamp_plot,sig_gcamp_plot, 'k') 
41.     ylabel('GCaMP') 
42.     hold on; 
43.     title(subject) 
44.   
45.     subplot(2,1,2) 
46.     plot(timelin_hyper_plot,sig_hyper_plot, 'k') 
47.     ylabel('HyPer') 
48.   
49.     inject_sig = []; 
50.     all_sig = []; 
51. end 

 
 

 

SEPARATE FUNCTION 
1. function [time, sig] = separate(data) 
2.     time = []; 
3.     sig = []; 
4.     for i = 1:2:length(data)-1 
5.         time = [time,data(i)]; 
6.         sig = [sig,data(i+1)]; 
7.     end 
8. End 

 
 

SAMPLE PROGRAM 
1. clear all; close all; clc; 
2.   
3. sf = 1017; %sampling frequency 
4.   
5. data = open('subject-date-time.mat'); 
6.   
7. sig = data.sig_gcamp; 
8. tim = data.timelin_gcamp; 
9.   
10. %% SMOOTH DATA  
11. windowSize = sf*60; %60s smoothing window 
12.   
13. %Smooth with window 
14. for j = 1:size(sig,1) 
15.     for i = 1:size(sig,2)-(windowSize-1) 
16.         wind = sig(j,i:i+windowSize-1); 
17.         avg = mean(wind); 
18.         sd = std(wind); 
19.         sig_smoothed(j,i) = avg; 
20.     end 
21. end 
22. time_plot = linspace(0,size(sig_smoothed,2)/sf,size(sig_smoothed,2)); 
23.   
24. %Smooth with filter 
25. b = (1/windowSize)*ones(1,windowSize); 
26. a = 1; 
27. sig_smoothed = filter(b,a,sig); 
28.   
29. %% NORMALIZE DATA TO DELTA F / F 
30. start_baseline = 60; 
31. end_baseline   = 1000; 
32.   
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33. baseline = mean(sig_smoothed(start_baseline*sf:end_baseline*sf)); 
34.   
35. sig_norm = (sig_smoothed-baseline)./baseline; 
36.   
37. %% Function Adjust 
38. x = tim(start_baseline*sf:end_baseline*sf); 
39. y = sig_norm(start_baseline*sf:end_baseline*sf); 
40.   
41. %Linear Adjust 
42. p = polyfit(x,y,1); 
43.   
44. lin_adj = (p(1).*x); 
45.   
46. sig_linAdj = sig_norm - lin_adj; 
47.   
48. %1st Order Exponential Adjust 
49. f = fit(x,y,'exp1'); 
50.   
51. coefs = coeffvalues(f); 
52. a = coefs(1); 
53. b = coefs(2); 
54.   
55. exp_adj = a*exp(b.*x); 
56.   
57. sig_expAdj = sig_norm - exp_adj; 
58.   
59. %% Average Across Animals 
60. swim1 = [swim1_1, swim1_2, swim1_3]; 
61.   
62. swim2 = [swim2_1, swim2_2, swim2_3]; 
63.       
64. swim3 = [swim3_1, swim3_2, swim3_3]; 
65.       
66. swim4 = [swim4_1, swim4_2, swim4_3].'; 
67.   
68. avg_swim1 = mean(mean(swim1)); 
69. avg_swim2 = mean(mean(swim2)); 
70. avg_swim3 = mean(mean(swim3)); 
71. avg_swim4 = mean(mean(swim4)); 
72.   
73. se_swim1 = std(mean(swim1))./sqrt(size(swim1,2); 
74. se_swim2 = std(mean(swim2))./sqrt(size(swim2,2); 
75. se_swim3 = std(mean(swim3))./sqrt(size(swim3,2); 
76. se_swim4 = std(mean(swim4))./sqrt(size(swim4,2); 
77.   
78. %% Fourier Transform 
79. L = length(sig); 
80. Y = fft(sig); 
81. P2 = abs(Y/L); 
82. P1 = P2(1:L/2+1); 
83. P1(2:end-1) = 2*P1(2:end-1); 
84. f = sf*(0:(L/2))/L; 
85.   
86. figure; 
87. plot(f,P1) 
88. ylim([0,1]) 
89. xlim([0,30]) 
90. xlabel("Swim 1") 
91.   
92. %% Average Signal Plot 
93. pelletAll = [pelletSig1, pelletSig2, pelletSig3,... 
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94.              pelletSig4, pelletSig5, pelletSig6]; 
95.   
96. pelletAvg = []; 
97. pelletStd = []; 
98.   
99. for i = 1:size(pelletAll,1) 
100.    pelletAvg(i) = mean(pelletAll(i,1:end));  
101.    pelletStd(i) = std(pelletAll(i,1:end));  
102.end 
103.  
104.figure; 
105.plot(pelletTime, pelletAvg,'k-'); 
106.hold on 
107.fill([pelletTime flip(pelletTime)],[pelletAvg-pelletStd 

flip(pelletAvg+pelletStd)],'k','LineStyle','none') 
108.hold on 
109.alpha(0.25) 
110.hold off; 
111.  
112.  
113.%% Bar Plot 
114.figure; 
115.bar([1,2,3,4],[avg_swim1,avg_swim2,avg_swim3,avg_swim4],0.4,'b');hold on; 
116.errorbar([1,2,3,4],[avg_swim1,avg_swim2,avg_swim3,avg_swim4]... 
117.                   [se_swim1, se_swim2, se_swim3, se_swim4],'.');hold on; 
118.  
119.ylim([0,.5]) 
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LIVE CELL IMAGING CODE 
 

CELL QUANTIFIER 
1. clear all; close all; clc; 
2.   
3. % folderPath1 = actualFile folder 
4. folderPath1 = 'C:\Users\Kenzie Marae\Desktop\lif processing\korlite2'; 
5. cd(folderPath1); % path of the folder 
6.   
7. files = dir('**'); 
8. files(end-5:end) = []; 
9. files(1:2) = []; 
10. numfiles = numel(files); 
11. %%  
12. for numits = 1:numfiles 
13.      
14.     filename = files(numits).name; 
15.     %StackSize = StackSizes{numits}; 
16.   
17.     %LOAD FRAMES %% 
18.     [imgHyper, imgMem] = loadFrames(filename); %loadFrames2chan 
19. %     [imgHyper,map] = imread(filename); 
20.      
21.     % DEFINE FRAMES TO PROCESS 
22.     for FOI = 1:size(imgHyper,4) 
23.   
24.         % FIND CLUSTERS %% 
25.         frameHyper  = imgHyper(:,:,1,FOI); 
26.   
27.         [clusterBorders(:,:,FOI)] = findClusters(frameHyper); 
28.   
29.   
30.         % FILL CLUSTERS%% 
31.         [filledClusters(:,:,FOI)] = fillClusters(clusterBorders(:,:,FOI)); 
32.   
33.         % WATERSHED CLUSTERS%% 
34.         [filledClusters(:,:,FOI)] = watershedClusters(filledClusters(:,:,FOI)); 
35.   
36.         % SIZE FILTER AND LABEL CLUSTERS%% 
37.         [labeledImage(:,:,FOI), numberOfClusters(FOI), binaryLabIm(:,:,FOI), 

clusterBorders(:,:,FOI)] = labelClusters(filledClusters(:,:,FOI), 
clusterBorders(:,:,FOI)); 

38.   
39.         % GET CENTROIDS %% 
40.         [centroids{FOI}] = getCentroids(labeledImage(:,:,FOI)); 
41.   
42.         % QUANTIFY EACH CLUSTER %% 
43.         [clusterSize{FOI}, avgFluor_Clusters{FOI}] = 

quantifyClusters(labeledImage(:,:,FOI), numberOfClusters(FOI), frameHyper); 
44.   
45.     end 
46.   
47.     % SORT CLUSTERS INTO DEFINED CELLS %% 
48.     [cellNumbers, maxNumOfCells] = defineCells(centroids); 
49.   
50.     % CREATE LABELED IMAGE MASK WITH CELL NUMBERS %% 
51.     [cellLabeledImage, cellBorders] = labelCells(labeledImage, cellNumbers); 
52.   
53.     for FOI = 1:size(imgHyper,4) 
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54.         % QUANTIFY EACH CELL %% 
55.         frameHyper  = imgHyper(:,:,1,FOI); 
56. %         frameMem    = imgMem(:,:,1,FOI); 
57.   
58.         [cellSize{FOI}, avgFluor_Cells{FOI}] = quantifyCells(cellLabeledImage(:,:,FOI), 

maxNumOfCells, frameHyper); 
59.     end 
60.   
61.     % CREATE A MATRIX OF CELL FLUORESCENCE TO PLOT %% 
62.     [cellFluorMatrix] = cellFluor2Plot(avgFluor_Cells); 
63.   
64.     % PLOT CELL FLUORESCENCE OVER FRAMES %% 
65.     frames = [1:size(imgHyper,4)]; 
66.   
67.     figure; 
68.     ColorSet=varycolor(size(cellFluorMatrix,1)); 
69.     for i = 1:size(cellFluorMatrix,1) 
70.         cellFluorVector = cellFluorMatrix(i,:); 
71.         idx = ~any(isnan(cellFluorVector),1); 
72.   
73.         plot(frames(idx), cellFluorVector(idx),'o-

','Color',ColorSet(i,:),'LineWidth',3) 
74.         hold on; 
75.     end 
76.     legend show  
77.     title(filename) 
78.     xlabel('Time (min)') 
79.     ylabel('Cell Fluorescence') 
80.   
81.     set(gcf, 'PaperUnits', 'inches'); 
82.     x_width=10; y_width=10; 
83.     set(gcf, 'PaperPosition', [0 0 x_width y_width]); 
84.   
85.     savenameJPG = strcat(filename(1:end-3), 'jpg'); 
86.     saveas(gcf,savenameJPG) 
87.   
88.     hold off; 
89.      
90.     savenameMAT = strcat(filename(1:end-3), 'mat'); 
91.     saveDirectory = strcat(folderPath1,'\processed\',savenameMAT); 
92.     save (saveDirectory, 'cellFluorMatrix',... 
93.                        'imgHyper',... 
94.                        'cellLabeledImage',... 
95.                        'cellBorders',... 
96.                        'cellSize'); 
97.      
98.     clearvars -except folderPath1 files numits numfiles      
99.   
100.end 

 

QUANTIFICATION FUNCTIONS  
1. %% LOAD FRAMES 
2. function [imgHyper, imgMem] = loadFrames(filename, StackSize) 
3.     frames = [3:3:StackSize]; 
4.     [imgHyper,map] = imread(filename,frames); 
5.   
6.     frames = [1:3:StackSize]; 
7.     [imgMem,map] = imread(filename,frames); 
8. end 
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9.   
10. %% FIND CLUSTERS 
11. function [clusterBorders] = findClusters(frameHyper) 
12.     frameHypAnalyze = frameHyper; %frameHyper = original frame 
13.   
14.     %Enhance Bright Regions 
15.     thresholdVal = 8; 
16.     enhanceAmt   = 25; 
17.     for i = 1:size(frameHypAnalyze,1) 
18.         for j = 1:size(frameHypAnalyze,2) 
19.             if frameHypAnalyze(i,j) >= thresholdVal 
20.                 frameHypAnalyze(i,j) = frameHypAnalyze(i,j) + enhanceAmt; 
21.             end 
22.         end 
23.     end 
24.   
25.     %Preprocess Smoothing and Filtering 
26.     sigma     = .1; 
27.     alpha     = 5; 
28.     numLevels = 10; 
29.   
30.     frameHypAnalyze = imfill(frameHypAnalyze); 
31.     frameHypAnalyze = locallapfilt(frameHypAnalyze,sigma,alpha,'NumIntensityLevels', 

numLevels); 
32.   
33.     se = strel('disk',3); 
34.     frameHypAnalyze = imopen(frameHypAnalyze,se); %frameHypAnalyze = preprocessed 
35.   
36.     %Find Cluster Borders 
37.     clusterBorders = zeros(size(frameHyper,1),size(frameHyper,2)); 
38.   
39.     dist        = 2; 
40.     threshUpper = 20; 
41.     threshLower = 20; 
42.      
43.     for r = 1+dist:size(frameHyper,1)-dist 
44.         for c = 1+dist:size(frameHyper,2)-dist 
45.             p   = frameHypAnalyze(r,c); 
46.             pU1  = frameHypAnalyze(r-dist,c); 
47.             pL1  = frameHypAnalyze(r,c-dist); 
48.             pR1  = frameHypAnalyze(r,c+dist); 
49.             pB1  = frameHypAnalyze(r+dist,c); 
50.   
51.             AOI = [p pU1 pB1 pL1 pR1];  
52.   
53.             if sum(AOI) ~= 0 
54.                 if p >= threshUpper 
55.                     if ((pU1<=threshLower & pB1>= threshUpper) | (pU1>=threshUpper & 

pB1<=threshLower)) 
56.                         clusterBorders(r,c) = 1; 
57.                     elseif (pL1<=threshLower & pR1>= threshUpper) | (pL1>=threshUpper & 

pR1<=threshLower) 
58.                         clusterBorders(r,c) = 1; 
59.                     end 
60.                 end 
61.             end 
62.         end 
63.     end 
64.      
65.     clusterBorders = bwmorph(clusterBorders,'close'); 
66.     clusterBorders = bwmorph(clusterBorders,'bridge'); 
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67.     clusterBorders = bwmorph(clusterBorders,'diag'); 
68.     clusterBorders = bwmorph(clusterBorders,'thin'); %bordersClust = borders 
69. end 
70.   
71. %% FILL CLUSTERS 
72. function [filledClusters] = fillClusters(clusterBorders) 
73.     inCell = 0; 
74.     last1 = 0; 
75.     numberOfChanges = 0; 
76.     for i = 1:size(clusterBorders,2) 
77.         if clusterBorders(5,i) == 1 
78.             if (inCell == 0) & (last1 == 0) 
79.                 inCell = 1; 
80.                 last1 = i; 
81.             elseif (inCell == 0) & (last1 == i-1) 
82.                 inCell = 0; 
83.                 last1 = i; 
84.             elseif (inCell == 1) & (last1 == i-1) 
85.                 inCell = 1; 
86.                 last1 = i; 
87.             else 
88.                 inCell = 0; 
89.                 last1 = i; 
90.             end 
91.         end 
92.         if clusterBorders(5,i) == 0 
93.             if numberOfChanges <= 30 
94.                 break; 
95.             elseif inCell == 1 
96.                 clusterBorders(5,i) = 1; 
97.                 numberOfChanges = numberOfChanges + 1; 
98.             end 
99.         end 
100.    end 
101.     
102.    filledClusters = imfill(clusterBorders,'holes'); %filledClusters = nonfiltered 

clusters 
103.    %figure; imshow(filledClusters) 
104.end 
105.  
106.%% WATERSHED CLUSTERS 
107.function [newFilledClusters] = watershedClusters(filledClusters); 
108.  
109.    oldClust = filledClusters; 
110.    BW = oldClust; 
111.    D = -bwdist(~BW); 
112.    D(~BW) = -Inf; 
113.    D = imhmin(D,3); 
114.    L = watershed(D); 
115.  
116.    for i = 1:size(L,1) 
117.        for j = 1:size(L,2) 
118.            if L(i,j) <= 1 
119.                L(i,j) = 0; 
120.            else  
121.                L(i,j) = 1; 
122.            end 
123.        end 
124.    end 
125.     
126.    %figure; imshow(double(L)) 
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127.     
128.    newFilledClusters = logical(L); 
129.     
130.end 
131.  
132.%% LABEL CLUSTERS 
133.function [labeledImage, numberOfClusters, binaryLabIm, clusterBorders] = 

labelClusters(filledClusters, clusterBorders) 
134.    
135.    [labeledImage, numberOfRegions] = bwlabel(filledClusters); 
136.  
137.    minClusterSize = 200; %was 100 for all other quantifications 
138.    maxClusterSize = 1500; %was 1000 
139.     
140.    for i = 1:numberOfRegions 
141.        bin = (labeledImage == i); 
142.        if sum(sum(bin)) < minClusterSize || sum(sum(bin)) > maxClusterSize 
143.            for i = 1:size(labeledImage,1) 
144.                for j = 1:size(labeledImage,2) 
145.                    if bin(i,j) == 1 
146.                        labeledImage(i,j) = 0; 
147.                    end 
148.                end 
149.            end 
150.        end 
151.    end 
152.  
153.    [labeledImage, numberOfClusters] = bwlabel(labeledImage); 
154.     
155.    % CREATE BINARY CLUSTER MASK, REMOVE SMALL CLUSTERS FROM BORDER MAP 
156.    binaryLabIm = zeros(size(labeledImage,1),size(labeledImage,2)); 
157.    for i = 1:size(labeledImage,1) 
158.        for j = 1:size(labeledImage,2) 
159.            if labeledImage(i,j) ~= 0 
160.                binaryLabIm(i,j) = 1; %filtered filled clusters, binary 
161.            end 
162.%             if labeledImage(i,j) == 0 
163.%                 clusterBorders(i,j) = 0; %remove borders surrounding filtered out 

clusters 
164.%             end 
165.        end 
166.    end 
167.     
168.    %CREATE NEW BORDER MAP 
169.    clusterBorders = zeros(size(binaryLabIm,1),size(binaryLabIm,2)); 
170.    dist        = 1; 
171.    threshUpper = 20; 
172.    threshLower = 20; 
173.     
174.    for r = 1+dist:size(binaryLabIm,1)-dist 
175.        for c = 1+dist:size(binaryLabIm,2)-dist 
176.            p   = binaryLabIm(r,c); 
177.            pU1  = binaryLabIm(r-dist,c); 
178.            pL1  = binaryLabIm(r,c-dist); 
179.            pR1  = binaryLabIm(r,c+dist); 
180.            pB1  = binaryLabIm(r+dist,c); 
181.  
182.            AOI = [p pU1 pB1 pL1 pR1];  
183.  
184.            if sum(AOI) ~= 0 
185.                if p == 1 
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186.                    if ((pU1==0 & pB1==1) | (pU1==1 & pB1==0)) 
187.                        clusterBorders(r,c) = 1; 
188.                    elseif (pL1==0 & pR1==1) | (pL1==1 & pR1==0) 
189.                        clusterBorders(r,c) = 1; 
190.                    end 
191.                end 
192.            end 
193.        end 
194.    end 
195.     
196.    clusterBorders = bwmorph(clusterBorders,'close'); 
197.    clusterBorders = bwmorph(clusterBorders,'bridge'); 
198.    clusterBorders = bwmorph(clusterBorders,'diag'); 
199.    clusterBorders = bwmorph(clusterBorders,'thin'); 
200.     
201.end 
202.  
203.%% GET CENTROIDS 
204.function [centroids] = getCentroids(labeledImage) 
205.    measurements = regionprops(labeledImage, 'Centroid'); 
206.  
207.    centroids = zeros(size(measurements,1),2); 
208.  
209.    for i = 1:size(measurements,1) 
210.        centroids(i,:) = measurements(i,:).Centroid; 
211.    end 
212.end 
213.  
214.%% QUANTIFY CLUSTERS  
215.function [clusterSize, avgFluor_Clusters] = quantifyClusters(labeledImage, 

numberOfClusters, frameHyper); 
216.  
217.    %Create labeled cluster masks to break up original frame 
218.    clusterMask = zeros(size(labeledImage,1), size(labeledImage,2), numberOfClusters); 
219.  
220.    for k = 1:numberOfClusters  
221.        for i = 1:size(labeledImage,1) 
222.            for j = 1:size(labeledImage,2) 
223.                if labeledImage(i,j) == k 
224.                    clusterMask(i,j,k) = 1; 
225.                end 
226.            end 
227.        end 
228.    end 
229.  
230.    %Quantify Each Cluster 
231.    quantifyEachCluster = zeros(size(labeledImage,1), size(labeledImage,2), 

numberOfClusters); 
232.    avgFluor_Clusters = zeros(numberOfClusters,1); 
233.    clusterSize = zeros(numberOfClusters,1); 
234.  
235.    for k = 1:numberOfClusters  
236.        quantifyEachCluster(:,:,k) = double(frameHyper).*clusterMask(:,:,k); 
237.  
238.        clusterSize(k) = sum(sum(clusterMask(:,:,k))); 
239.        totalFluor  = sum(sum(quantifyEachCluster(:,:,k))); 
240.  
241.        avgFluor_Clusters(k) = totalFluor/clusterSize(k); 
242.    end 
243.  
244.end 
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245.  
246.%% DEFINE CELLS 
247.function [cellNumbers, clusterNumber] = defineCells(centroids) 
248.  
249.    %PLOT CENTROIDS OF ALL CLUSTERS ACROSS ALL FRAMES 
250.  
251.    xVec = []; 
252.    yVec = []; 
253.    len = []; 
254.  
255.    for i = 1:size(centroids,2) 
256.        a = cell2mat(centroids(i)); 
257.        x = a(:,1); 
258.        y = a(:,2); 
259.  
260.        len(i) = size(a,1); 
261.  
262.        xVec = [xVec; x]; 
263.        yVec = [yVec; y]; 
264.  
265.    end 
266.  
267.    %hold off; 
268.  
269.    %CLUSTER CENTROIDS 
270.     
271.    rng(1); 
272.  
273.    clusterNumber = max(len); %round(max(len)*1.5); % identify *twice* as many custers 

as the max number of centroids 
274.    data = [xVec,yVec]; % Set your data you want to cluster 
275.    [idx,C,sumd,D] = kmeans(data, clusterNumber); % idx is the index array, for each 

sample data 
276.  
277.  
278.    %SORT CENTROIDS 
279.    [Y,I] = min(D,[],2); 
280.  
281.    cNew = C; 
282.    idxNew = idx; 
283.    nullC = []; 
284.     
285.    frameApp = round(size(centroids,2)/3,0); %cell must appear in atleast 1/3 of 

frames 
286.     
287.    for i = 1:clusterNumber 
288.        a = data(idx==i,:); 
289.        if size(a,1) < frameApp 
290.            cNew(i,:) = [0,0]; 
291.            idxNew(idx==i) = 0; 
292.            nullC = [nullC,i]; 
293.        end 
294.    end 
295.  
296.    for i = 1:length(Y) 
297.        if Y(i) >= 500  
298.            idxNew(i) = 0; 
299.        end 
300.    end 
301.  
302.    cellNumbers = {}; 
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303.    index = 1; 
304.    for i = 1:length(len) 
305.        cellNumbers{i} = [idxNew(index:index+len(i)-1)]; 
306.        index = index+len(i); 
307.    end 
308.  
309.end 
310.  
311.%% LABEL CELLS 
312.function [cellLabeledImage, cellBorders] = labelCells(labeledImage, cellNumbers); 
313.  
314.    cellLabeledImage = labeledImage; 
315.  
316.    for i = 1:size(cellNumbers,2) 
317.        cellLabIm = cellLabeledImage(:,:,i); 
318.  
319.        cellNums = cell2mat(cellNumbers(i)); 
320.        numCells = length(cellNums); 
321.  
322.        cellLabImMask = zeros(size(cellLabIm,1),size(cellLabIm,2)); 
323.         
324.        for j = 1:numCells 
325.            cellLabIm_Temp = cellLabIm; 
326.            cellLabIm_Temp(cellLabIm_Temp ~= j) = 0; 
327.            cellLabIm_Temp(cellLabIm_Temp == j) = cellNums(j); 
328.            cellLabImMask = cellLabImMask + cellLabIm_Temp; 
329.        end 
330.          
331.  
332.        cellLabeledImage(:,:,i) = cellLabImMask; 
333.  
334.    end 
335.     
336.    %CREATE NEW BORDER MAP 
337.    cellBorders = zeros(512,512,size(cellLabeledImage,3)); 
338.    dist        = 1; 
339.     
340.    for i = 1:size(cellLabeledImage,3) 
341.        for r = 1+dist:512-dist 
342.            for c = 1+dist:512-dist 
343.                p   = cellLabeledImage(r,c,i); 
344.                pU1  = cellLabeledImage(r-dist,c,i); 
345.                pL1  = cellLabeledImage(r,c-dist,i); 
346.                pR1  = cellLabeledImage(r,c+dist,i); 
347.                pB1  = cellLabeledImage(r+dist,c,i); 
348.  
349.                AOI = [p pU1 pB1 pL1 pR1];  
350.  
351.                if sum(AOI) ~= 0 
352.  
353.                        if ((pU1<=0 & pB1>=1) | (pU1>=1 & pB1<=0)) 
354.                            cellBorders(r,c,i) = 1; 
355.                        elseif (pL1<=0 & pR1>=1) | (pL1>=1 & pR1<=0) 
356.                            cellBorders(r,c,i) = 1; 
357.                        end 
358.  
359.                end 
360.            end 
361.        end 
362.  
363.        cellBorders(:,:,i) = bwmorph(cellBorders(:,:,i),'close'); 
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364.        cellBorders(:,:,i) = bwmorph(cellBorders(:,:,i),'bridge'); 
365.        cellBorders(:,:,i) = bwmorph(cellBorders(:,:,i),'diag'); 
366.        %cellBorders(:,:,i) = bwmorph(cellBorders(:,:,i),'thin'); 
367.     
368.    end 
369.end 
370.  
371.%% QUANTIFY CELLS 
372.function [cellSize, avgFluor_Cells] = quantifyCells(cellLabeledImage, numberOfCells, 

frameHyper, frameMem); 
373.     
374.    %Create labeled cluster masks to break up original frame 
375.    cellMask = zeros(size(cellLabeledImage,1), size(cellLabeledImage,2), 

numberOfCells); 
376.  
377.    nullCells = []; 
378.    for k = 1:numberOfCells  
379.        for i = 1:size(cellLabeledImage,1) 
380.            for j = 1:size(cellLabeledImage,2) 
381.                if cellLabeledImage(i,j) == k 
382.                    cellMask(i,j,k) = 1; 
383.                end 
384.            end 
385.        end 
386.        if sum(sum(cellMask(:,:,k))) == 0 
387.            nullCells = [nullCells,k]; 
388.        end      
389.    end 
390.  
391.    %Quantify Each Cell 
392.    quantifyEachCell = zeros(size(cellLabeledImage,1), size(cellLabeledImage,2), 

numberOfCells); 
393.    avgFluor_Cells = zeros(numberOfCells,1); 
394.    cellSize = zeros(numberOfCells,1); 
395.  
396.    for k = 1:numberOfCells 
397.        quantifyEachCell(:,:,k) = double(frameHyper).*cellMask(:,:,k); 
398.  
399.        cellSize(k) = sum(sum(cellMask(:,:,k))); 
400.        totalFluor  = sum(sum(quantifyEachCell(:,:,k))); 
401.  
402.        avgFluor_Cells(k) = totalFluor/cellSize(k); 
403.    end 
404.  
405.end 
406.  
407.%% CELL FLOUR 2 PLOT 
408.function [cellFluorMatrix] = cellFluor2Plot(avgFluor_Cells) 
409.  
410.    fluor = cell2mat(avgFluor_Cells); 
411.  
412.    cellFluorMatrix = []; 
413.    for i = 1:size(fluor,1) 
414.        if sum(fluor(i,:),'omitnan') ~= 0 
415.            cellFluorMatrix = [cellFluorMatrix;fluor(i,:)]; 
416.        end 
417.    end 
418.end 
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CELL ANALYSIS 
1. clear all; close all; clc; 
2.   
3. % folderPath1 
4. folderPath1 = 'C:\Users\Kenzie Marae\Desktop\lif processing\final groups\u50_100nm-vs-

veh\u50_100nm'; 
5. cd(folderPath1); 
6.   
7. files = dir('**'); 
8. files(1:2) = []; 
9. numfiles = numel(files); 
10.   
11. for numits = 1:numfiles   
12.     filenames_u50{numits} = files(numits).name;  
13. end 
14.   
15. % LOAD IN DATA %% 
16. imgHyper_u50 = {}; 
17.   
18. for i = 1:numfiles 
19.     vars1 = open(filenames_u50{i}); 
20.     imgHyper_u50{i} = vars1.imgHyper; 
21. end 
22.   
23. %% 
24. % folderPath2  
25. folderPath2 = 'C:\Users\Kenzie Marae\Desktop\lif processing\final groups\u50_100nm-vs-

veh\veh'; 
26. cd(folderPath2); 
27.   
28. files = dir('**'); 
29. files(1:2) = []; 
30. numfiles = numel(files); 
31.   
32. for numits = 1:numfiles   
33.     filenames_veh{numits} = files(numits).name;  
34. end 
35.   
36. % LOAD IN DATA %% 
37. imgHyper_veh = {}; 
38.   
39. for i = 1:numfiles 
40.     vars2 = open(filenames_veh{i}); 
41.     imgHyper_veh{i} = vars2.imgHyper; 
42. end 
43.   
44. %% 
45. for i = 1:numfiles 
46.     imgHyper = imgHyper_u50{i}; 
47.     for j = 1:size(imgHyper,4) 
48.         frameFluorID(j) = sum(sum(imgHyper(:,:,1,j)>10)); 
49.     end 
50.      
51.     window = 2; 
52.     frameFluor_runAv = []; 
53.     for m = 1:length(frameFluorID)-(window-1) 
54.         wind = frameFluorID(m:m+window-1); 
55.         avg = nanmean(wind); 
56.         frameFluor_runAv(m) = avg;         
57.     end 
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58.      
59.     frameFluor_u50{i} = frameFluor_runAv; 
60.      
61. %     figure; 
62. %     plot(frameFluor_runAv) 
63.     clear imgHyper frameFluorID frameFluor_runAv 
64. end 
65.   
66. for i = 1:numfiles 
67.     imgHyper = imgHyper_veh{i}; 
68.     for j = 1:size(imgHyper,4) 
69.         frameFluorID(j) = sum(sum(imgHyper(:,:,1,j)>10)); 
70.     end 
71.      
72.     window = 2; 
73.     frameFluor_runAv = []; 
74.     for m = 1:length(frameFluorID)-(window-1) 
75.         wind = frameFluorID(m:m+window-1); 
76.         avg = nanmean(wind); 
77.         frameFluor_runAv(m) = avg;         
78.     end 
79.      
80.     frameFluor_veh{i} = frameFluor_runAv; 
81.      
82. %     figure; 
83. %     plot(frameFluor_runAv) 
84.     clear imgHyper frameFluorID frameFluor_runAv 
85. end 
86.   
87. %% 
88. stackableFrameFluor_u50 = []; 
89. for i = 1:length(frameFluor_u50) 
90.     frameFluor = frameFluor_u50{i}; 
91.     baseline = mean(frameFluor(5:9)); 
92.     frameFluor = (frameFluor - baseline)./baseline; 
93.     if size(stackableFrameFluor_u50,2) == 0 
94.         diff = 0; 
95.     else 
96.         diff = size(stackableFrameFluor_u50,2) - size(frameFluor,2); 
97.     end 
98.     if diff > 0 
99.         stackableFrameFluor_u50(i,:) = [frameFluor, zeros(1, diff)]; 
100.    elseif diff < 0 
101.        stackableFrameFluor_u50 = [stackableFrameFluor_u50, 

zeros(size(stackableFrameFluor_u50,1),abs(diff))]; 
102.        stackableFrameFluor_u50(i,:) = frameFluor; 
103.    else 
104.    stackableFrameFluor_u50(i,:) = frameFluor; 
105.    end 
106.end 
107.  
108.stackableFrameFluor_veh = []; 
109.for i = 1:length(frameFluor_veh) 
110.    frameFluor = frameFluor_veh{i}; 
111.    baseline = mean(frameFluor(5:9)); 
112.    frameFluor = (frameFluor - baseline)./baseline; 
113.    if size(stackableFrameFluor_veh,2) == 0 
114.        diff = 0; 
115.    else 
116.        diff = size(stackableFrameFluor_veh,2) - size(frameFluor,2); 
117.    end 
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118.    if diff > 0 
119.        stackableFrameFluor_veh(i,:) = [frameFluor, zeros(1, diff)]; 
120.    elseif diff < 0 
121.        stackableFrameFluor_veh = [stackableFrameFluor_veh, 

zeros(size(stackableFrameFluor_veh,1),abs(diff))]; 
122.        stackableFrameFluor_veh(i,:) = frameFluor; 
123.    else 
124.        stackableFrameFluor_veh(i,:) = frameFluor; 
125.    end 
126.end 
127.  
128.%% 
129.mean_u50 = mean(stackableFrameFluor_u50); 
130.sd_u50 = std(stackableFrameFluor_u50); 
131.se_u50 = sd_u50./sqrt(size(stackableFrameFluor_u50,1)); 
132.  
133.mean_veh = mean(stackableFrameFluor_veh); 
134.sd_veh = std(stackableFrameFluor_veh); 
135.se_veh = sd_veh./sqrt(size(stackableFrameFluor_veh,1)); 
136.  
137.figure; 
138.plot([1:length(mean_u50)], mean_u50, 'm', 'LineWidth', 3); hold on 
139.plot([1:length(mean_u50)], mean_u50-(se_u50/2), 'm--', 'LineWidth', 3); hold on 
140.plot([1:length(mean_u50)], mean_u50+(se_u50/2), 'm--', 'LineWidth', 3); hold on 
141.  
142.plot([1:length(mean_veh)], mean_veh, 'k', 'LineWidth', 3); hold on 
143.plot([1:length(mean_veh)], mean_veh-(se_veh/2), 'k--', 'LineWidth', 3); hold on 
144.plot([1:length(mean_veh)], mean_veh+(se_veh/2), 'k--', 'LineWidth', 3); hold on 
145.  
146.plot([1,74],[0,0], 'k', 'LineWidth',3); hold on 
147.plot([11,11],[-.2,.2],'k--'); hold on  
148.plot([60,60],[-.2,.2],'k--'); hold on  
149.  
150.xlabel('Frame# (1 Frame / min)') 
151.ylabel('Delta F / F') 
152.title('U50, 100nm vs Veh') 

 

 

 

 

 


