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Tens of millions of units of blood are transfused worldwide each year, with each individual unit 

requiring manual typing by a trained technician prior to transfusion. Several tools exist to help 

expedite the typing process, yet typing still remains a slow and costly process. In an effort to 

increase throughput and decrease costs of blood typing, recent work involving silicon photonic 

biosensors has demonstrated their potential as a rapid, low cost tool for typing blood. This thesis 

focuses on two separate aspects of silicon photonic blood typing: photonic sensor selection and 

validation along with automation of downstream data processing. Transverse electric and 

transverse magnetic mode microring resonators are compared for serologic and phenotypic 

typing assays. Phenotypic typing data from multiplexed photonic blood typing chips is used with 

several machine learning algorithms to predict blood types with accuracies rivaling by-hand 

analysis of the same data. 
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Chapter 1. Introduction 

1.A Research Objectives 

The main objective of this MS thesis is to contribute to the development of rapid, low-cost silicon 

photonic biosensing assays for point-of-care ABO and RhD blood typing. The first half of this thesis 

focuses on different photonic devices that can be used for both forward and reverse blood typing. These 

devices, known as transverse electric and transverse magnetic mode microring resonators have differing 

strengths for biosensing, which are compared in the context of using both types of sensor to perform 

blood typing. The second half of this thesis focuses on how the analysis of data from multiplexed silicon 

photonic blood typing assays can be automated to further reduce the complexity of clinical blood typing.  

Multiple machine learning models are evaluated for use in automating this analysis, and insights into how 

this process may be further improved are discussed. 

 

1.B Motivation and Background 

1.B.1 Blood Typing 

In 1901, Karl Landsteiner discovered the ABO blood group system and later, the Rh system1. The first 

successful human blood transfusion utilizing Landsteiner’s blood typing techniques, based on red blood 

cell (RBC) agglutination, was performed in 1907, and at their core, blood typing techniques have 

remained largely unchanged since2. 

 As Landsteiner discovered, humans express oligosaccharide antigens for groups A and/or B on 

the outer surface of their RBCs and typically have antibodies in their serum against the antigens not 

present on their cells (Figure 1-1). Blood type is traditionally defined by the presence of these surface 

antigens, with the four main types known as A, B, AB, and O. Many variant subtypes of the ABO system 

have been identified, having widely varying antigen structures and densities, as well as many different 

blood group antibodies. While these variant subtypes are more common than previously believed, they are 

not considered as commonly in transfusion medicine as the “canonical” ABO types3.  
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 In addition to the ABO blood 

group system, at least 34 other blood 

group systems have been identified, 

including the Rh system4. The Rh 

system has 49 known antigens, with 

the most important to transfusion 

medicine being D, C, c, E, and e. The 

RhD antigen, an transmembrane 

protein, is widely considered to be the 

second most important antigen system 

after ABO, with both ABO and RhD 

always being typed prior to any 

transfusion. As with the ABO system, RhD is typically characterized by a presence of either the antigen 

or antibodies against the antigen, but not both. When reporting the overall type of blood, the RhD type is 

commonly expressed as a plus or minus sign following the ABO type, as in AB+ or O-. A positive RhD 

type typically indicates the presence of the D antigen and the absence of an anti-D antibody, while a 

negative indicates the opposite. 

 Prior to transfusion, the ABO and RhD types of both the donor and recipient must be determined 

to avoid hemolytic transfusion reactions in the recipient. If the types aren’t correctly matched, the 

recipient’s antibodies can cause their immune system to attack the transfused blood, which may lead to 

clotting and potentially death. Several variations of Landsteiner’s blood typing methods have been 

developed, but all common methods are still based on the agglutination of RBCs due to binding 

interactions between blood group antigens and antibodies. Because of the importance of determining the 

presence of both antibodies and antigens to prevent negative patient responses, two varieties of the 

standard blood typing test are used: forward and reverse. 

Figure 1-1 ABO blood groups in types A, B, AB, and O. The H 
antigen is a precursor to both the A and B antigen, and can be found 

on almost all RBCs. 
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 For reverse typing, unknown plasma has reference RBCs of known type added to it. If the 

antibodies present in the plasma bind to the known antigens on the cells, aggregation occurs, with the 

antibodies binding several cells together into a visible clump. By adding RBCs of differing types in 

different tubes, all possible combinations of antigens and antibodies can be tested and compared to 

determine the overall type of blood. Similar to reverse typing, forward typing is also based on the 

aggregation of RBCs with serum antibodies. In forward typing, unknown RBCs are mixed with reagent 

antibodies, and as in direct typing, if the relevant antigen is present, visible clumping of cells occurs. The 

current gold standard test for both forward and reverse typing is to mix the different combinations of 

known and unknown RBCs and antibodies in test tubes, and to visually inspect the tubes for clumping. 

This test is slow, requiring as much as an hour for complete clumping of cells to occur. The reagents 

required are expensive, so a full typing panel can cost as much as $100 per unit of blood5. Some modern 

typing methods also require specialized equipment, constraining tests to being performed in well-

equipped clinical labs, which further increases costs and slows time to result6. Finally, as measurement of 

cell aggregation is only semi-quantitative, a highly trained technician is required to evaluate the results of 

blood type testing. Together, these limitations prevent blood typing from being conducted at the point of 

care, which further complicates the transfusion workflow. 

 Many transfusions occur in trauma settings, where patients may need one or more transfusions 

immediately. Because a full typing panel can take up to an hour to complete, the type of a patient’s blood 

often cannot be determined rapidly enough to guarantee a correct match. Since mismatched blood 

transfusions can cause serious complications, all trauma patients are given universal units of blood 

composed of O- RBCs and AB+ plasma. Because of the dependence on these universal units, shortages 

(especially of O- RBCs) are common all over the country. A rapid test with an easily interpretable result 

could be used at or near the patient’s bedside, potentially reducing the dependence on universal units, in 

turn helping to reduce the strain on the medical system from blood shortages. 
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1.B.2 Silicon Photonics 

Silicon photonics is a technology 

developed by the global 

telecommunications industry for high-

speed communications and 

computation that has recently been 

adopted as a tool for biosensing. 

Silicon photonic biosensors typically 

consist of nanoscale photonic wires 

(known as waveguides) that serve as a medium for the propagation of near-infrared light. While the light 

is confined within the waveguide by total internal reflection, a portion of the light’s energy travels outside 

the waveguide as an evanescent electric field that is sensitive to the refractive index of the medium 

surrounding the waveguide (Figure 1-2).  

 In order to increase the sensitivity of photonic biosensors, resonant structures such as rings7 or 

disks8 are added in close proximity to the waveguide. The resonant wavelength of such structures is 

dependent on the geometry and material of the structure, as well as the refractive index surrounding the 

structure9. Changes to this refractive index, typically due to a change in buffer or to molecular binding at 

the resonant structure’s surface, result in a measurable change in the resonant wavelength of the sensor. 

This wavelength shift is positive for increases in refractive index and negative for decreases. 

Photodetectors can be used to quantify this shift relative to a baseline. Resonant wavelength changes 

plotted over time are known as sensorgrams, which is the standard format for interpreting photonic sensor 

data. By functionalizing these sensors with specific capture chemistries, each sensor can be used to detect 

the presence and binding of a different biomolecule in solution10. 

 For silicon surfaces, the most common chemical functionalization strategy is passive adsorption 

of a binding protein. This strategy takes advantage of nonspecific protein binding to silicon surfaces. 

When a protein is exposed to a silicon surface, it will partially unfold, using the surface to help shield its 

Figure 1-2 Evanescent field diagram of (a) transverse electric mode 

waveguide and (b) transverse magnetic mode waveguide 
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hydrophobic residues from the surrounding environment. Utilizing this property, silicon photonic 

biosensors can be coated with binding proteins such as streptavidin to provide a base for binding more 

specific capture reagents. Specialized inkjet printers can subsequently deposit sub-nanoliter sized 

droplets11 of biotinylated capture reagents on specific sensors or groups of sensors on a silicon chip to 

produce multiplexed chips capable of performing multiple bioassays simultaneously. 

 In the studies presented here, several different photonic sensors were functionalized with a variety 

of blood typing reagents in order to compare different types of photonic sensors for blood typing 

applications and to demonstrate a proof-of-concept of simultaneous forward and reverse blood typing for 

ABO and RhD on a single multiplexed chip. Data from this proof-of-concept study was also used to train 

and evaluate several different machine learning models in order to demonstrate the possibility of 

automatic type reporting without the need for a trained technician.  
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Chapter 2. Transverse Electric and Magnetic Mode Ring Resonators for Erythrocyte and 

Serologic Phenotyping 

2.A Abstract 

More than 14 million blood transfusions occur annually in the United States, and each unit of donated 

blood must be thoroughly typed prior to transfusion. This testing typically occurs in clinical laboratories 

performed by specially trained technicians and is encumbered by reagent availability, cost, and time to 

result. A diagnostic platform capable of rapid and low-cost phenotyping of blood could improve 

workflows and reduce the reliance on universal donor blood units in inventory management. Silicon 

photonic biosensors represent an appealing platform to address the sensing needs for blood typing. In this 

study, we investigated the use of both transverse electric (TE) and transverse magnetic (TM) mode ring 

resonators for both serologic and phenotypic blood typing. TM mode rings were found to offer a two-fold 

surface sensitivity improvement over TE, and performed better for forward typing applications. However, 

TE and TM devices performed similarly for serologic typing assays. We demonstrated how both TE and 

TM ring resonators can support the determination of ABO phenotype of red blood cells and plasma for 

silicon photonic-enabled lab-on-chip applications in blood typing. 

 

2.B Introduction 

2.B.1 Silicon photonic biosensors 

Silicon photonics is a chip scale technology that guides near-infrared light in nano-scale silicon wires 

known as waveguides. While high performance computing and data communication applications have 

driven the development of silicon photonic technologies12-14, they also show promise for biosensing15,16 

and for lab-on-chip systems17-19. These devices operate using an electric field to detect molecular binding 

events on the waveguide’s surface. The distribution of this electric field within the waveguide, referred to 

as the mode profile, depends on the light’s polarization and wavelength, as well as the geometry and 

material properties of the waveguide. For a single mode waveguide, a portion of the electric field mode 
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profile resides outside the waveguide as 

an evanescent field. The evanescent 

field can be enhanced using a structure 

such as a ring or a disk to create a 

resonance condition within the 

waveguide8. This resonance condition 

greatly improves the sensitivity of the 

device, allowing it to be used as a 

biosensor.  

 Figure 2-1 shows the electric 

field distribution for the fundamental transverse electric (TE) and transverse magnetic (TM) modes in a 

silicon waveguide on a silicon oxide substrate with aqueous cladding on the remaining three exposed 

sides. As biomolecules have a higher refractive index than that of the aqueous media in which they 

reside20, molecules that bind to the waveguide’s surface within the evanescent field, as shown in Fig. 2-2a 

and 2-2b, alter the propagation profile of the mode, namely loss and the effective refractive index, neff. For 

a ring resonator, the resonance condition is met when the optical length of the resonator, 2πR*neff (with R 

being the radius of the ring), is a multiple of the light’s wavelength7. A change in the effective index 

caused by a molecular binding event will shift the wavelength accordingly (see Fig. 2-2c). These 

wavelength changes can be quantified using a tunable laser and power meter. If these changes are 

continuously tracked over time, they can be displayed as a sensorgram similar to the one shown in Figure 

2-2d. 

 The sensitivity of these resonant sensors is largely dependent on the overlap with the analyte. 

From Fig. 2-1, it is expected that a TM mode will be more sensitive than a TE mode, as a greater portion 

of the mode overlaps with the aqueous cladding and binding region. However, due to the corresponding 

increase in absorption loss in the aqueous cladding for the TM mode, the intrinsic limit of detection 

remains constant8. 

Figure 2-1 Simulated TE and TM mode profiles in silicon photonic 
waveguide cross-sections. (a) Fundamental TE mode profile in a 220 
by 500 nm waveguide on buried oxide with aqueous cladding. (b) 
Fundamental TM mode profile in a 220 by 750 nm waveguide on 

buried oxide with aqueous cladding. 
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 While silicon photonic biosensors 

have been demonstrated for detection of 

proteins21, 22, nucleic acids23, viruses24, and 

bacteria25, their ability to perform serologic 

(also referred to as reverse, back, or indirect) 

and phenotypic (also referred to as forward, 

front, or direct) blood typing has only recently 

been demonstrated by our group. In this study, 

we describe the design, fabrication, and 

characterization approaches of both TE and 

TM mode rings. We also compare the 

performance of both types of rings for 

serologic and phenotypic typing assays using 

human blood samples.  

 

2.B.2 Blood typing 

The blood group antigens present on the surface of red blood cells define a patient’s blood type, with the 

process of identifying the presence and/or absence of these antigens known as blood typing. The most 

familiar red blood cell antigen systems include ABO and RhD26 (+/-). Identification of these antigens is 

paramount to transfusion medicine, as they give rise to naturally occurring alloantibodies against the 

antigens absent from the host’s red blood cells26 (RBCs). Hemolytic transfusion responses due to 

unmatched blood between donors and recipients account for approximately 25% of fatalities associated 

with transfusion errors27. As such, it is necessary to accurately establish blood type compatibility between 

donors and recipients prior to transfusion. 

 While many approaches to blood typing exist, tube-based agglutination assays remain the current 

gold standard28. Agglutination assays can either measure the blood type directly by detecting blood group 

Figure 2-2 TE and TM mode biosensor principles of 
operation. Electric field intensity of a fundamental (a) TE and 
(b) TM mode profile in a silicon ring resonator waveguide 
showing the evanescent field overlap with the substrate 
(silicon oxide) and bound biomolecules in aqueous cladding. 
(c) Example of the resonant wavelength shift resulting from a 
change in effective refractive index due to the adsorption of 
biomolecules. (d) Sensorgram of resonant wavelength shift 
tracked over the course of a reverse blood typing assay. The 
permanent wavelength shift after the rinse step indicates 
molecular adlayers bound to the waveguide’s surface. 
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antigens, or indirectly by detecting blood group antibodies. These two assays are referred to as forward 

typing and reverse typing. For forward typing assays, antigen specific IgM antibodies are introduced into 

a saline solution with suspended RBCs of unknown type. Through antibody binding, the RBCs aggregate 

and precipitate, indicating the presence of the antigen. For reverse typing, special reference RBCs of 

known type are added to a serial dilution of plasma. Agglutination indicates the presence of the blood 

group specific antibodies. For both cases, a trained technician observes the result and rates the 

agglutination semi-quantitatively on a scale of 0 (no agglutination) to 4+ (strong agglutination). 

 In 2013, more than 14 million units of whole blood were collected for transfusions in the United 

States29. Each of these units underwent forward and reverse typing to determine the blood type for both 

the ABO and RhD groups. A bench top, near-bedside, multiplexed diagnostic platform capable of 

simultaneously performing serologic and phenotypic typing for each relevant blood group could improve 

work flows, time to result, and cost, while also 

minimizing the chance of transfusion errors (e.g. 

wrong blood in tube errors). 

 Multiplexed platforms utilizing 

microarrays and SPR have been investigated for 

blood typing28, 30-33 but have yet to be extended 

to the full panel of tests required. Bonanno et al. 

used a porous silicon, label-free optical 

biosensor to detect rabbit IgG from whole rabbit 

blood with minimal sample preparation, but did 

not demonstrate the detection of RBC antigens 

directly34. The use of next-generation 

sequencing for predicting antigen phenotypes 

has also been investigated35, 36. The main  

Figure 2-3 TE and TM mode rings in fluidic channels. (a) 
Side view showing the fiber array used to couple light on 
and off the chip, the long waveguide runouts, and the 
sensors in silicone gasket channels. (b) Overhead 
photograph showing both sets of TE and TM mode rings in 
separate channels. (c) Graphic data system image showing 
the layout of the TE and TM mode rings. 
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drawback with this approach is that ABO blood 

group genes do not directly produce surface 

antigens, but instead encode 

glycosyltransferases that in turn determine the 

oligosaccharide epitopes of the surface antigens. 

Rare alleles lead to slight glycosyltransferase 

variations, which ultimately impart antigen  

phenotypes26, 37.  

 

2.C Methods and Materials 

2.C.1 Sensor design and fabrication 

Ring resonators were developed using methods described in Bogaerts et al.7. All designs assumed a 220 

nm thick silicon waveguide on 2 μm of silicon oxide. MODE Solutions (Lumerical; Vancouver, Canada)  

was used to simulate modal fields in 2D waveguides while custom MATLAB scripts were used to 

determine ideal waveguide coupling gaps and lengths. Table 2-1 summarizes design parameters for both 

TE and TM mode rings. Figure 2-3 shows the fabricated devices and their layouts. 

 Photonic rings were fabricated through a CMOS foundry compatible fabrication process (deep-

UV lithography, 193 nm) offered through ePIXfab (IMEC; Leuven, Belgium). The multi-project wafer 

(MPW) was organized by CMC Microsystems. Waveguides were patterned onto 220 nm thick crystalline 

silicon on top of wavers with 2 μm of silicon oxide. 

 Chips were cladded with a polymer cladding (CYTOP, AGC Chemicals; Exton, PA) to improve 

durability and reusability, as well as to reduce optical losses in the long waveguide runouts between the 

vertical grating I/O couplers and biosensors. CYTOP is a perfluoropolymer with high chemical resistance 

and useful optical properties, with over 95% light transmittance through deep ultra-violet (DUV) to near-

infrared (NIR) range, as well as a refractive index of 1.34. Openings in the cladding were created in order 

 TE ring TM ring units 

Waveguide width 500 750 [nm] 

Coupling length 7.24 3 [µm] 

Optical path length 265.81 257.33 [µm] 

Surface area 168.67 229.36 [µm2] 

Table 2-1 Summary of design parameters for TE and TM 

mode rings. 
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to expose biosensors to the aqueous environment38. Laser-cut silicone gaskets were used to create fluidic 

channels over the TE and TM mode sensors (Figure 2-3). 

 

2.C.2 Sensor characterization 

Bulk sensitivity was assessed in an aqueous environment using refractive index standards made from 

ultra-pure deionized water (Barnstead Nanopure, Thermo Scientific) and sodium chloride (NaCl, Acros 

Organics, Thermo Fisher Scientific). Solutions of 62.5 mM, 125 mM, 250 mM, 500 mM, and 1 M NaCl 

were degassed under vacuum in an ultrasonic bath (VWR B2500A-MTH), and their refractive indices 

were measured using a Reichert AR200 digital refractometer (Depew, NW). 

 Surface sensitivity was characterized via layer-by-layer adsorption of electrostatically charged 

polymers, as demonstrated by Bailey et al.39. Prior to characterization, sensors were cleaned with Piranha 

solution (3:1 hydrogen peroxide: sulfuric acid by volume) then rinsed with deionized water. Following 

cleaning, sensors were exposed to polyethylenimine (PEI, 5 mg/mL), a positively charged polymer which 

acts as an anchor for subsequent bilayers. Next, solutions of negatively charged polystyrene sulfonate 

(PSS, 5 mg/mL) and positively charged poly(allylamine hydrochloride) (PAH, 5 mg/mL) were alternately 

sequenced across the sensor to create bilayers reported to be 3±0.2 nm thick39. Following the exposure of 

the sensors to each electrostatic polymer solution, Tris buffer (0.5 mM, 100 mM NaCl, pH 7.1) was used 

to rinse unbound polymer from the fluidics, preventing precipitation and clogging. 

 In order to measure susceptibility to temperature variation, multiple wavelength sweeps were 

performed in an aqueous environment while thermally tuning chips. Peaks were tracked and averaged in a 

similar manner to bulk sensitivity measurements. 

 

2.C.3 Modeling and experimental validation 

Waveguide mode profiles were determined using MODE Solutions (Lumerical, Canada) in order to help 

validate the observed performance metrics and adsorbed film thickness in biosensing assays. For TE 

sensors, the computational model consisted of a 220 nm by 500 nm silicon waveguide on buried oxide 
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with aqueous cladding. TM mode sensors were simulated with a 220 nm by 750 nm waveguide in the 

same conditions. Bulk sensitivity for both waveguide geometries were simulated by performing frequency 

sweeps using measured refractive index values from the NaCl refractive index standards. Surface 

sensitivity experiments were validated by simulating adlayers with a refractive index of 1.68 in 10 nm 

increments up to 200 nm with a background cladding similar to water (n = 1.333)39. Surface sensitivity 

prediction towards biofilms were determined by simulating protein adlayers with a refractive index of 

1.4821, 40 in 10 nm increments up to 200 nm with a background cladding similar to water (n = 1.333). 

 

2.C.4 Blood typing reagents 

Bovine serum albumin (BSA) and streptavidin (SA) were purchased from Sigma Aldrich (St. Louis, MO, 

USA). DryCoat Assay Stabilizer was purchased from Virusys Corporation (Taneytown, MD, USA). For 

forward typing assays, biotinylated goat anti-mouse IgM antibodies were purchased from Thermo Fisher 

Scientific (Rockford, IL, USA). Murine IgM anti-A and anti-B antibodies were provided by Merck, 

Millipore. A phenotypic typing capture reagent mix was prepared by incubating a 1:1 molar ratio of 

biotinylated goat anti-mouse IgMs with either mouse anti-A or anti-B IgM at 4 °C for one hour. 

Biotinylated anti-glycophorin A IgG antibodies were purchased from Miltenyi Biotec (San Diego, CA, 

USA) and used in separate experiments as a positive control for phenotypic typing of red blood cells. 

 For serologic typing assays, monoclonal A and B typing antibodies were purchased from 

Immucor (Norcross, GA, USA). Biotinylated multivalent polyacrylamides containing blood group 

antigens A and B (PAA-A and PAA-B) were purchased from GlycoTech (Gaithersburg, MD, USA). The 

same biotinylated polyacrylamide polymer without either antigen (PAA) was also purchased and used as 

a negative control. Goat anti-mouse IgM and murine anti-human IgG/A/M antibodies for secondary 

amplification were purchased from Thermo Fisher Scientific (Rockford, IL, USA). 
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 Freshly drawn human blood 

samples stored in an appropriate 

anticoagulant at 4 °C were obtained in 

collaboration with Dr. Jill Johnsen of the 

Bloodworks Northwest Research 

Institute (Seattle, WA, USA). Whole 

blood samples were centrifuged at 2000 

G for 10 minutes at 4 °C. Following 

centrifugation, the plasma and buffy 

coat layers were removed from the cell 

pellet and stored separately. Undiluted 

human plasma was analyzed directly 

while whole red blood cells were 

analyzed in a 1:10 dilution in phosphate 

buffered saline (PBS). 

 

2.C.5 Reagent validation 

RBC antigenicity was validated using a standard agglutination assay with commercially available 

monoclonal A and B typing IgM antibodies purchased from Immucor (Norcross, GA). Capture antibody 

specificity was validated by comparing the sensor responses from RBCs binding to specific capture 

antibodies with sensor responses from RBCs binding to an anti-glycophorin A positive control antibody. 

For reverse typing assays, the PAA-A and PAA-B polymers had their antigenicity validated using 

commercially available anti-A and anti-B IgM antibodies from Immucor. Figure 2-4 shows an example of 

an reverse typing validation assay on TE/TM mode rings. The large signal difference between the target 

and control during the amplification step confirms the antigenicity of the PAA-A/B polymers. 

 

Figure 2-4 Example of a reverse typing reagent validation assay. 
The inset shows the reference subtracted secondary amplification 
step, with a 300 pm wavelength offset. 
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2.C.6 Sensor functionalization 

For both forward and reverse typing assays, 

streptavidin (0.1 mg/mL) was passively adsorbed 

to the sensors’ surfaces for at least three hours at 

room temperature. Chips were then rinsed with 

PBS and blown dry using filtered air. A laser-cut 

silicone gasket was then placed on each chip to 

form two separate wells for functionalization, as 

shown in Figure 2-5.  

For forward typing, one well was 

spotted with the anti-A capture reagent mix, and the other well was spotted with the anti-B capture 

reagent mix. For reverse typing, one well was spotted with biotinylated PAA-A, and the other well was 

spotted with biotinylated PAA-B. Both types of chips were then incubated in a humid environment for 

one hour at room temperature. Following incubation, chips were thoroughly rinsed with PBS, and 

subsequently blocked with 1 mg/mL BSA in PBS for 20 minutes. The chips were then rinsed again, 

dipped in DryCoat, and blown dry. Chips were 

stored dry in a refrigerator until use. 

 

2.C.7 Test platform 

A custom fiber-array based probe station, built 

by our group, enabled the automated testing and 

characterization of photonic devices. Figure 2-6 

shows a picture of the main stage and two 

channel flow cell used for characterization and 

biosensing assays. A syringe pump (not shown) 

Figure 2-5 Spotting of functionalization reagents. (a) 
Photograph of the 500 μm thick silicone spotting gasket 
positioned over sets of TE and TM mode rings. (b) 250 nL 
droplets of biotinylated typing reagents (PAA-A or PAA-B 
for reverse typing, conjugated antibody complexes for 
forward typing) for functionalization of streptavidin-coated 
sensors. 

Figure 2-6 Photograph of the automated probe station 
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sequences reagents from two well plates mounted on a motorized stage. In addition to test platform 

hardware, our custom analysis software was used to help analyze acquired datasets. This analysis tool 

includes features such as peak fitting, reference channel subtraction, and sensorgram signal difference 

measurements. 

 

2.D Results and Discussion 

2.D.1 Sensor characterization 

Due to the lack of widely accepted standard performance metrics for refractive index-based sensors, we 

chose several objective measures to compare the performance of our silicon photonic biosensors 

including sensitivity, quality factor, and limit of detection41-43. As sensitivity is defined as a change in 

resonant wavelength (λres) relative to a change in one of several environmental factors, we divided 

sensitivity into three independent metrics based on different environmental factors: bulk sensitivity, 

surface sensitivity, and temperature sensitivity.  

 

2.D.1.1 Bulk sensitivity (Sbulk) describes how 

a change in the refractive index of the 

sensor’s cladding impacts the resonant 

wavelength of the sensor. Sbulk is defined as 

 

����� = ∆�	
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 In order to predict the bulk 

sensitivity of the fundamental TE mode, we 

performed MODE simulations with a 220 by 

500 nm waveguide. The same simulations 

Figure 2-7 Sensorgram of TE and TM mode ring resonator 
wavelength shifts when exposed to NaCl refractive index 
standard solutions. Bulk sensitivity was determined by the slope 
of a best-fit line of the average wavelength at each step relative 
to the NaCl concentration of the step. 
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were performed with a 220 by 750 nm waveguide to predict the bulk sensitivity of the fundamental TM 

mode. Simulated models suggest a bulk sensitivity of 44.7 nm/RIU (refractive index unit) for the TE 

mode and 146.6 nm/RIU for the TM mode. These simulations used an aqueous environment and a central 

wavelength of 1505 nm. 

 Sbulk was determined experimentally by sequencing a two-fold serial dilution of 1M NaCl across 

TE and TM mode ring resonators while monitoring resonant wavelength. Figure 2-7 shows the observed 

resonant wavelength shifts as different concentrations of NaCl are exposed to TE and TM mode rings. 

The slope of these shifts relative to NaCl concentration determines the bulk sensitivity of a ring resonator. 

We observed bulk sensitivities of 41.2 ± 1.6 nm/RIU for TE mode rings, and 146.8 ± 2.5 nm/RIU for TM 

mode rings. Bulk sensitivity measurements were performed in triplicate and agree with the simulated 

values. 

 

2.D.1.2 Surface sensitivity (Ssurface) represents resonant wavelength change in response to the addition of 

molecular adlayers onto the surface of a waveguide. This is important for biosensing applications 

involving the adsorption of biomolecular adlayers. Protein adlayers have been reported to exhibit a 

refractive index of 1.4821, 40 and to form 1-3 nm adlayers on a native oxide surface44-47. Therefore, a 

waveguide’s resonant wavelength response (Δλres) to homogeneous protein adlayers can be calculated 

using 

∆�	
� = �	
��� ���
��� �
!�

 

where t is molecular layer thickness, ng is the group index, neff is the mode’s effective refractive index, 

and λres is the resonant wavelength. To better understand the optical response to adsorbed molecular films 

during blood typing assays, we performed MODE simulations on TE and TM mode waveguides. 

Simulations using refractive index adlayers (n=1.68) to mimic alternating electrostatic polymer layers 

were compared to the experimentally observed results.  
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Simulations were also run with 

refractive index layers similar to protein 

adlayers (n=1.48). Figure 2-8a shows the 

simulated results for protein adlayers up to 

200 nm thick. While both TE and TM mode 

waveguides approach horizontal asymptotes as 

layer thickness increases, TM waveguides 

offered improved sensitivity to thicker protein 

adlayers due to their larger evanescent field 

overlap with the surrounding environment8. 

Figure 2-8b shows the decrease in surface 

sensitivity as adlayer thickness increases. The 

ratio of these surface sensitivities is plotted as 

well, revealing that TM waveguides offer a 2x 

sensitivity improvement at the waveguide 

surface and a 3x improvement for a 30 nm-

thick protein adlayer. Based on the 

biomolecules involved in the blood typing 

assays discussed herein, we expect protein films ranging from 10 to 50 nm thick48-50. The ratio of 

wavelength shifts for TE and TM ring resonators can be used to help elucidate the biofilm thickness in an 

assay, assuming both sensors have identical functionalization and are exposed to the same biological 

sample.  

 

2.1.3. Temperature sensitivity (Stemp) represents the change in resonant wavelength in response to changes 

in the local temperature of the sensor. This is an important system-design consideration for biosensors, as 

thermal drift can greatly increase signal noise. Thermal control of the chip during measurement can be 

Figure 2-8 Surface sensitivity simulation results for TE and 
TM mode resonators. (a) Relative resonant wavelength shifts 
in response to increased thickness of a simulated 
homogeneous protein adlayer (n = 1.48 with aqueous 
background cladding of n = 1.33). (b) Surface sensitivities 
calculated by normalizing resonant wavelength shifts relative 
to adlayer thickness. Surface sensitivity ratio of TM to TE is 
plotted in black relative to adlayer thickness. 
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used minimize thermal drift, but 

in non-thermally controlled 

systems, assay detection limits 

can be negatively impacted. To 

characterize temperature 

sensitivity, resonant 

wavelengths for TE and TM 

mode ring resonators were 

monitored while thermally 

tuning the system between 15 and 40 °C. Measurements were performed in an aqueous environment on 

three TE and three TM mode rings across three different chips. We observed a temperature sensitivity of 

70 ± 0 pm/K for TE mode rings, and 39.8 += 0.75 pm/K for TM mode rings. The high temperature 

sensitivity of TE mode rings can be explained by the majority of TE modes existing within the silicon 

waveguide (Figure 2-1), which has greater thermal conductivity than the aqueous cladding surrounding 

the waveguide. TM mode rings have much less mode overlap with the waveguide, with the majority of 

TM modes existing in the aqueous cladding, thereby reducing temperature sensitivity. The lower 

temperature sensitivity of TM mode rings indicates a greater resistance to thermal noise than that of TE 

mode rings.  

 

2.1.4. Quality factor (Q) is a measure of the average number of round trips a photon makes while inside a 

resonator. This is a dimensionless number based on the resonator’s loss and the index of refraction of the 

resonator material41. Q can be approximated experimentally by dividing the wavelength of a resonant 

peak (λres) by the peak’s full width at half maximum (FWHM). Figure 2-9 shows the resonant peaks used 

to calculate Q for the TE and TM sensors. Higher Q’s reduce a sensor’s spectral noise43 and improve its 

intrinsic limit of detection (iLoD). The iLoD can be understood as the minimum refractive index change 

Figure 2-9 Measured resonant peak width used to approximate resonator Q 
for (a) TE and (b) TM mode rings. 
 



 19

required to shift the resonance wavelength 

by one resonator line width8, 51 (δλ3dB). 

Algebraically, the iLoD is defined as, 

 

"#$% = �	
�& • �  
where λres is the sensor’s resonant 

wavelength in nm, Q is the dimensionless 

quality factor of resonator, and S is the 

bulk sensitivity in nm/RIU. Using the FWHM approximation for Q, the fabricated TE rings exhibit a Q of 

22.5×103 and an iLoD of 1.6×10-3 [RIU]. The TM rings have a Q of 10.1×103 and an iLoD of 1.0×10-3 

[RIU]. 

 

 Table 2-2 summarizes the various measures of performance for the fabricated TE and TM mode 

ring resonators used in this work. The increased bulk and surface sensitivities of the TM mode ring are 

expected, as more of the evanescent field overlaps with the surrounding aqueous environment. For the 

same reason, TM mode rings also have more absorptive loss the TE mode rings, resulting in a lower Q. 

For both types of resonator, bulk sensitivity and temperature sensitivity closely match simulated values. 

Based on these performance metrics alone, the TM mode rings are expected to provide enhanced 

sensitivity for blood typing. 

 

2.D.2 Reverse typing 

Reverse blood typing involves the detection of serum or plasma blood group isohemagglutinins. Figure 2-

10 shows a schematic representation of the steps involved in functionalizing sensors and performing 

reverse typing assays. Methods for sensor functionalization are described in detail in section 2.C.6 and 

depicted in Fig 2-10. For reverse typing assays, sensors were subjected to undiluted human plasma 

 TE Meas. (Sim.) TM Meas. (Sim.) Units 

Sbulk 
41.2 (44.7) 146.75 (146.6) [nm/RIU] 

Ssurface (0.16) (0.31) [nm/nm] 

Stemp 70 (67) 39.8 (38) [pm/K] 

Q 22.5k 10.1k [] 

iLoD 1.6·10−3 1.0·10−3 [RIU] 

Table 2-2 Summary of experimental and simulated (sim.) 
measures of performance for fabricated 1550 nm wavelength TE 

and TM mode ring resonators 
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followed by a PBS rinse (Fig. 2-10d). A secondary amplification antibody (anti-human IgG/M/A) is used 

to amplify the presence of bound anti-A and anti-B antibodies (Fig. 2-10e) in order to improve the signal-

to-noise ratio. 

 Each fabricated photonic chip has four ring resonators, two TE and two TM. For reverse typing, 

one of each ring type is functionalized with polymeric blood group A and B antigen trisaccharides (PAA-

A or PAA-B). In order to characterize non-specific binding, the other two rings are functionalized as 

negative controls with polyacrylamide polymers without antigens (PAA). For analysis, a reference 

Figure 2-10 Schematic representing the steps involved with reverse typing assays. (a) Streptavidin is passively 
adsorbed to sensors. (b) Binding of biotinylated multivalent polyacrylamides with A and B blood group antigen 
trisaccharides (PAA-A and PAA-B) to the streptavidin coated surface. (c) Blocking any remaining exposed surfaces 
on the sensor using BSA. (d) Introduction of undiluted human plasma samples and binding of antibodies to the 
surface-bound antigens. (e) Signal amplification using an anti-human IgG/IgA/IgM antibody. Steps (a)-(c) were 
conducted off-line while steps (d)-(e) were performed during the assay.   
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subtraction is performed by subtracting the wavelength shift of the control ring from the wavelength shift 

of the target ring. The difference in resonance wavelength shifts after the secondary amplification 

indicates the specific binding isohemagglutinins from human plasma samples to the functionalized 

sensors. Figure 2-11 shows the acquired sensorgrams for a reverse typing assay of type-A plasma using 

TE and TM mode rings. Figure 2-12 shows the acquired sensorgrams for a reverse typing assay of type-B 

plasma using TE and TM mode rings. Figure 2-11a shows signal response using TE mode ring while Fig. 

2-11b shows the results using TM mode rings. In both plasma samples, a large shift in resonance 

wavelength observed in the sensorgrams during plasma exposure results from the matrix effect of plasma 

that consists of a multitude of proteins, which in turn cause a significant fouling of these residual proteins 

on the sensor’s surface despite a subsequent PBS rinse to remove excess, unbound molecules. In order to 

improve upon the signal-to-noise response, anti-human IgG/A/M was used as a secondary antibody that 

specifically captures isohemagglutinins and alloantibodies bound to the sensors during plasma exposure. 

Figure 2-11 Reverse typing results of type-A plasma on (a) TE and (b) TM mode microring resonators 

functionalized with PAA-B. 



 22

As expected, a TM mode ring exhibits a nearly 4-fold improvement on signal amplification in both type-

A and B plasma samples. The differential resonance wavelength shifts during secondary amplification of 

bound anti-B antibodies in type A plasma are 43 pm and 161 pm for TE and TM mode rings, respectively 

(Fig. 2-11 insets). Consistently with type-A plasma, the differential wavelength shifts during secondary 

amplification of bound anti-A antibodies are 114 pm and 404 pm for TE and TM mode rings, respectively  

(Fig. 2-12 insets). Given that the sensors were simultaneously functionalized and tested using the same 

plasma sample for each assay, this significant improvement in sensitivity is inherit to TM mode ring’s 

larger sensing surface area than that of the TE mode ring. 

 

2.D.3 Forward typing 

In contrast to indirect typing, direct blood typing is an assay performed to detect the presence of blood 

group antigens on the red blood cell surface. Figure 2-13 shows a schematic representation of the steps 

Figure 2-12 Reverse typing results of type-B plasma on (a) TE and (b) TM mode microring resonators 
functionalized with PAA-A. 
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involved in functionalizing sensors and performing direct typing assays. Methods for sensor 

functionalization are described in detail in section 2.C.6 and depicted in Fig. 2-13. For direct typing 

assays, sensors were exposed to diluted, washed human red blood cells followed by a PBS rinse (Fig. 2-

10e). Secondary amplification is not required for determining specific outcomes of the assay. Sensor 

functionalization was accomplished in a similar manner as how the photonic chip was prepared for 

indirect assay, namely anti-A and anti-B capture antibody mixes were spotted directly on to TE and TM 

Figure 2-13 Schematic representing the steps involved in the forward typing assay. (a) Streptavidin is passively 
adsorbed to sensors. (b) Preparation of the capture antibody mix by incubating equal molar of biotinylated anti-
mouse IgM and anti-blood group A or B IgM antibody. (c) Binding of the capture antibody mix to the streptavidin 
coated surface. (d) Blocking any remaining exposed surfaces on the sensor using BSA. (d) Introduction of washed 
human red blood cells to the sensor and binding of red blood cells to the antibodies. Steps (a)-(d) were conducted 
off-line while step (e) were performed during the assay.   
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mode rings. Since only type A and B 

erythrocytes were used in the analysis 

and the number of available rings is 

limited, either anti-A or anti-B sensors 

was used as a control for the sample of 

complimentary ABO blood type. A 

reference subtraction is performed by 

subtracting the wavelength shift of the 

control ring from the wavelength shift 

of the target ring for analysis. The 

differential shift suggests the presence 

of bound blood group antigens on the 

sensors. 

Figures 2-14a and 2-14b show 

the sensorgrams of direct typing assays 

on type A erythrocytes using TE and 

TM mode rings, respectively. Figures 2-15a and 2-15b show the sensorgrams of direct typing assays on 

type B erythrocytes using TE and TM mode rings, respectively. Overall, the outcomes of direct typing 

assay are specific and still consistent with indirect typing, as higher resonance wavelength shifts were 

observed on a TM mode ring than its TE counterpart by approximately two folds. It is worth mentioning 

that although erythrocytes are significantly larger than protein biomarkers, such as IgG and IgM 

immunoglobulins, the differential shifts in refractive index measured by the phenotypic typing assay are 

on par with serologic typing shifts. This equivalent response for the two assays is likely due to the limited 

penetration depth of the evanescent field and the fact that the sensing surface area of a ring resonator that 

is less accommodating for whole cells (typically 5-7 microns in diameter, 10-15 fold larger than the width 

of the waveguide) compared with much smaller biomacromolecules (5-12 nanometers). Erythrocytes can 

Figure 2-14 Forward typing results of type-A RBCs on (a) TE and (b) 
TM mode microring resonators functionalized with anti-A antibodies. 
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bind to the antibody-functionalized 

photonic chip outside of the sensing 

region, thereby limiting the total 

response of the sensor. Figure 2-16 

shows an overhead micrograph of the 

ring resonators exposed to erythrocytes 

during the assay. The relative size of 

erythrocyte to the ring resonator is 

shown in the inset. Another 

contributing factor for the observed 

signals is associated with our current 

protocol that constantly flows cells at 

20 µL/min over the sensors without 

briefly pausing the flow. I t has been 

shown on SPR that a stop flow could 

improve the signals compared to those generated during a continuous flow, providing cells sufficient time 

to bind to the surface52. Small pulsating noises on the sensorgrams of Figures 2-14 and 2-15 are 

exclusively observed in the direct typing assay and may serve as an evidence for how erythrocytes 

interact with the sensor surface under the flow condition. 

 

2.E Conclusions 

This work represents the first side-by-side evaluation of the performance of TE and TM mode ring 

resonator biosensors for both serologic and phenotypic characterization of human blood. TE and TM 

mode ring resonators were designed, fabricated, and characterized for use as biosensors. While TE mode 

rings offer higher intrinsic limits of detection, they are more susceptible to thermal noise than TM mode 

rings. TM mode rings offer higher sensitivity than TE mode rings because of a larger evanescent field 

Figure 2-15 Forward typing results of type-B RBCs on (a) TE and (b) 
TM mode microring resonators functionalized with anti-B antibodies. 
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overlap with the surrounding environment, but suffer from a larger absorption loss to the sample. Both 

types of rings were functionalized for serologic and phenotypic typing assays and in separate assays were 

monitored under exposure to human plasma and red blood cells. Sensorgram results varied due to 

differences in human samples, but could be clearly differentiated based on blood type.  

 To further improve this blood typing system, thin waveguide ring resonators8 or sub-wavelength 

grating rings53 could be used to increase the native surface sensitivity of the biosensors. Additionally, 

zwitterionic polymer coatings could be used to reduce non-specific protein adsorption54, which may help 

increase the operational range of the sensors, especially for samples with low antibody titers. Finally, 

further investigation of specific capture antibodies and antigens will ensure a robust platform capable of 

performing across a wide range of samples. We believe this work clearly demonstrates the potential for 

silicon photonic biosensors for use in blood typing applications, helping to improve the efficiency and 

utilization of blood products in transfusion medicine. 

 

 

 

Figure 2-16 An overhead micrograph of the sensors during the forward typing assay. The flow was stopped for 
taking an image. (Inset) Magnified view showing the relative size of RBCs to an individual ring resonator. 
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Chapter 3. Using Machine Learning and Silicon Photonic Biosensors for Red Blood Cell 

Characterization 

3.A Abstract 

Tens of millions of units of blood are transfused worldwide each year, with each individual unit requiring 

manual typing by a trained technician prior to transfusion. Several tools exist to help expedite the typing 

process, yet typing still remains a slow and costly process. In an effort to increase throughput and 

decrease costs of blood typing, recent work involving silicon photonic biosensors has demonstrated their 

potential as a rapid, low cost tool for typing blood. In this study, we demonstrate the potential for machine 

learning-based interpretation of photonic blood typing data, providing accurate results without the need 

for a trained technician. To the best of our knowledge, this is the first demonstration using machine 

learning to automatically analyze data from silicon photonic microring resonators. 

 

3.B Introduction 

3.B.1 ABO and RhD blood typing 

Over 100 million units of blood are donated and transfused worldwide every year55, with over 20 million 

units in the US alone56. Prior to transfusion, the ABO and RhD blood types of the blood of both the donor 

and the recipient must be determined and matched. If donated blood doesn’t match the types of the 

recipient’s blood, hemolytic reactions involving immune and clotting responses can occur, leading to 

shock, kidney failure, or even death57. These hemolytic reactions account for roughly a quarter of 

transfusion related fatalities. As such, accurate methods for blood typing are a necessity in transfusion 

medicine. 

 The current gold standard method for blood typing is based on agglutination between red blood 

cells and blood group antibodies. Typically performed by highly trained technicians in a clinical 

laboratory, standard blood typing methods consist of two parts, forward and reverse typing. Forward 

typing is performed by adding blood group antibodies of known type to diluted red blood cells of 
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unknown type. Reverse typing is 

performed by adding reference reagent 

red blood cells with known surface 

antigens to diluted plasma containing 

unknown antibodies. In both tests, the 

presence of antibodies against the 

surface antigens expressed on RBCs 

leads to an agglutination reaction, which 

is scored semi-quantitatively on a scale 

of 0 (no agglutination) to 4+ (strong 

agglutination). While these 

agglutination assays have the accuracy 

required for transfusion medicine, they 

do have several limitations. Both 

forward and reverse typing are slow, 

requiring between 30 and 60 minutes for 

complete agglutination to occur. Typing 

reagents are expensive, with a full 

typing panel costing as much as $100 per unit of blood5. Also, as measurement of agglutination is non-

quantitative, highly trained technicians are required to evaluate the results of testing. 

 

3.B.2 Silicon photonic biosensors 

Silicon photonics is a chip-scale technology that guides near-infrared light in nano-scale silicon wires 

known as waveguides. While traditionally used by the telecommunications industry, silicon photonics has 

shown promise recently for biosensing and lab-on-chip systems. These devices operate using electric 

fields to detect molecular binding events on the surface of waveguides. By adding resonant structures 

Figure 3-1 Sensorgrams of typical A forward typing results (a) 
Positive A response, type-A/RhD negative (b) Negative A response, 
type-B/RhD positive 
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such as microring resonators, the sensitivity 

of these devices can be enhanced to a range 

suitable for detection of various clinical 

analytes21-25. Recent work from Khumwan, 

et al., has demonstrated a proof-of-concept 

for using silicon photonic chips for rapid, 

low-cost, multiplexed forward and reverse 

blood typing assays58. While the 

demonstrated method addresses several of 

the current limitations of standard 

agglutination assays, it still requires a highly 

trained technician to interpret results. 

Extensive work has been done to automate 

the analysis of data from other biosensors 

using machine learning, including 

identifying epilepsy using EEG signals59, 

detecting arrhythmia from ECG data60, 

quantifying output from lateral flow 

assays61, and interpreting spectra from 

surface enhanced Raman spectroscopy62. To 

the best of our knowledge, machine learning 

has not been used to interpret data from 

multiplexed silicon photonic biosensors. As 

such, in this work, we evaluate several 

machine learning models for automatically 
Figure 3-2 Sensorgrams of typical B forward typing results (a) 
Strong B response, type-B/RhD negative  (b) Weak B response, 
type-AB/RhD positive (c) Negative B response, type-O/RhD 
positive 
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producing meaningful results from the 

data produced by silicon photonic blood 

typing chips. 

 

3.C Methods and Materials 

3.C.1 Data collection 

Forward typing assays were performed 

using IMEC-3 microring resonator 

chips and Maverick M1 system 

purchased from Genalyte, Inc., (San 

Diego, CA). Khumwan, et al., describe 

the sensor functionalization, sample 

preparation, and assay protocols in 

detail58. Briefly, chips were passively 

coated with streptavidin, and 

biotinylated forward typing reagents 

were inkjet printed onto sensors by 

Scienion AG (Princeton, NJ). Blood 

samples stored in EDTA or citrate were 

centrifuged and red blood cells were 

diluted 1:10 in PBS at room 

temperature. Following an initial PBS 

rinse, the RBC suspension was flowed 

over the chip for 5 minutes at 20 μl/min, 

followed by PBS. For this study, data 
Figure 3-3 Sensorgrams of typical D forward typing results (a) 
Strong D response, type-O/RhD positive (b) Transient D response, 
type-AB/RhD negative (c) Negative D response, type-A/RhD 
negative 
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from sensors functionalized with anti-A, anti-B, and anti-RhD (n = 8 for each reagent) was used, along 

with data from sensors functionalized with anti-glycophorin A (n = 4, positive control) and anti-mouse 

IgM (n = 4, negative control) for a total of 32 sensors. 220 separate blood samples were collected and 

analyzed, with an even distribution of ABO and RhD types across all samples. 

 

3.C.2 Data preprocessing 

Prior to analysis, several data cleaning and preprocessing steps were taken. In several isolated cases, 

individual sensors may fail to register with the photonic test system or may fail to produce a strong 

resonance peak. Across all sensors used in this study, 52 (out of over 7000) sensors had such failures and 

were removed from analysis. In these cases, missing values were imputed with the pointwise average 

signal of the remaining sensors in the local cluster of four sensors with the same functionalization. No 

chip had more than 4 failed sensors across all sensor clusters, and no chip had any completely failed 

clusters. After failed sensors were imputed, the pointwise average signal for the negative control sensors 

(anti-mouse IgM) was calculated for each chip. Data was normalized across all chips by subtracting the 

negative control average from each sensor on each chip and then dividing all data points by the maximum 

signal value on each chip. 

 To quantify the high-frequency components of RBC binding signals observed by Khumwan, et 

al., one-dimensional local binary patterns (1D-LBPs) were calculated for each sensor58. LBPs were 

calculated as described in Kaya, et al., with 4 neighbor points on either side of a center point with the 

value of the center point used as the binary threshold for each neighbor point. After the LBP value was 

calculated for each sensor, a 256-bin histogram of LBP values was generated for each sensor for use as a 

dimensionally reduced feature set. 

 

3.C.3 Computational analysis 

Following preprocessing and feature extraction, several different learning models were used as binary 

classifiers to separately predict the presence or absence of the A, B, and D blood group antigens. Support 
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vector machines (SVMs), decision trees (DTs), random forest classifiers (RFCs), and multilayer 

perceptrons (MLPs) were separately evaluated for overall accuracy, specificity, and sensitivity when 

trained and validated on either preprocessed data or 1D-LBP histograms generated from preprocessed 

data. Unless otherwise stated, hyperparameter optimization was performed using 5-fold cross-validation. 

A, B, and D types for each sample were provided by Bloodworks Northwest and used as data labels. 

 

SVM Hyperparameter Optimization: A cross-validated grid search of two hyperparameters (kernel, C) 

was performed. Linear, polynomial (degree = 3), RBF (radial basis function, gamma = 1 / number of 

features), and sigmoid kernels were tested along with values of C spanning 6 orders of magnitude (0.001 

to 100). 

DT Hyperparameter Optimization: A cross-validated grid search of two hyperparameters (maximum 

depth, minimum samples per leaf) was performed. All integer values between 2 and 10 were tested for 

both parameters. 

RFC Hyperparameter Optimization: A cross-validated grid search of three hyperparameters (maximum 

depth, minimum samples per leaf, and minimum samples per split) was performed. Maximum depth 

values between 2 and 25 were tested. Values between 1 and 32 were considered for both minimum 

sample parameters. 

MLP Optimization: Models with either one or two hidden layers (HL) of varying sizes were evaluated 

with 10-fold cross validation. Batch normalization and dropout layers were included between hidden and 

output layers. All hidden layers used rectified linear unit (ReLU) activation functions and the output layer 

used softmax activation. 

 

3.D Results and Discussion 

Following model optimization, leave-one-out cross validation (LOOCV) was used to find the overall 

accuracies, specificities, and sensitivities of each optimized model. Using the hyperparameters and 

network structures selected during optimization, each model was trained with 219 preprocessed raw data 
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samples and used to predict the A, B, and D types of the remaining sample. This process was repeated 

until all 220 samples had type predictions from every model (Table 3-1). The same process was also 

completed using 1D-LBP histograms as inputs instead of preprocessed raw data. 

 

3.D.1 Preprocessed raw data results 

Across all three typing classifications (A, B, and D), neural networks generally stood out as the most 

accurate model. For A typing, both 1 and 2 HL MLPs tied for the highest accuracy of any model, 97.3%. 

For B typing, the 1-HL MLP tied with the SVM for the highest accuracy (82.7%), with the 2-HL MLP 

coming in second at 81.4%. The 2-HL MLP performed best in D typing, with an overall accuracy of 

91.8%. Decision trees consistently had the lowest accuracy of any model, likely due to the simplicity of 

the model relative to the complexity of the data. While decision trees did have low overall accuracies, it is 

worth noting that the B and D decision trees were the only two models with higher sensitivities than 

specificities. Independent of type, the top performing models had specificities between 95 and 100% with 

lower sensitivities making up for most of the difference in overall accuracy. 

As observed by Khumwan, et al., A, B, and D all have similar features indicating a positive test 

(large signal amplitude, high-frequency noise content), but B and D tend to have wider variance in the 

strength of these features58. In A typing, positive and negative signals tend to be very distinct, as shown in 

Figure 3-1. By comparison, B typing often has weak positives that can be easily confused by both humans 

and computational models as negative results (Figure 3-2). D typing tends to have less weak positives 

than B, but more than A. There is also a special type of negative signal in D typing where the sensors 

appear to be responding positively in the first half of a test, then stop responding in the second half 

(Figure 3-3). These “transient” D responses are often confused with weak positives, which has the effect 

of increasing the number of false negatives predicted both algorithmically and by hand. 
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Table 3-1 Typing accuracy, specificity and sensitivity by antigen type and by model 
 

 

A Antigen 

 

Accuracy 

 

Specificity 

 

Sensitivity 

SVM 96.8% 100% 93.6% 

DT 94.1% 94.5% 93.6% 

RFC 96.4% 99.1% 93.6% 

1-HL MLP 97.3% 100% 94.5% 

2-HL MLP 97.3% 100% 94.5% 

 

B Antigen 

   

SVM 82.7% 99.1% 66.4% 

DT 79.5% 78.2% 80.9% 

RFC 79.5% 83.4% 75.5% 

1-HL MLP 82.7% 94.5% 70.9% 

2-HL MLP 81.4% 83.4% 79.1% 

 

D Antigen 

   

SVM 89.5% 95.5% 83.6% 

DT 77.3% 76.4% 78.2% 

RFC 87.3% 91.8% 82.7% 

1-HL MLP 90.0% 94.5% 85.5% 

2-HL MLP 91.8% 97.3% 86.4% 
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3.D.2 1D-LBP histogram results 

Compared with classification results using processed data as inputs, LBP histogram-based classification 

has lower accuracy for A, B, and D across all models, except for the A decision tree (both have 94.1% 

accuracy). The sensitivities and specificities of almost all LBP histogram models are also lower than their 

processed data equivalents. B DTs, RFCs, and 1-HL MLPs have slightly higher specificities (2-5%) when 

using LBP histograms. 

 While LBPs do capture local fluctuations due to high frequency content in a signal, their binary 

encoding loses information about signal amplitude, which is the other notable feature in the sensor data. 

As such, the LBP for a signal neighborhood with small fluctuations due to random noise may be the same 

as a neighborhood with large fluctuations due to high frequency signal content, which can lead to 

increased numbers of both false positives and false negatives. The only apparent benefit of 1D-LBPs is 

that they may be slightly better at differentiating weak positive B responses from negative B responses. 

However, the increased number of false positives more than offsets this improvement, with overall 

accuracy decreasing. 

 

3.D.3 Potential improvements 

Two main classes of limitations currently exist for the demonstrated method of blood typing. The first is 

the chemistry of the assay itself. Khumwan, et al., address a decrease in typing accuracy on older chips, 

suggesting that capture efficiency decreases over time58. There is also a need for further optimization of 

reagent immobilization techniques and investigation of capture antibodies with higher antigen specificity 

(especially anti-B and anti-RhD).  Separate from the assay chemistry, there are several issues with the 

data analysis itself. The most immediate limitation to algorithmic analysis is the number of samples 

available to train with. Especially for neural network-based approaches, more training examples are 

expected to directly improve accuracy. Additionally, improved feature extraction and dimensionality 

reduction may also improve typing results. Approaches that capture both amplitude and frequency 

information with a reduced number of features likely will reduce training complexity and improve 
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classification accuracy. Finally, accuracy may be further improved via ensemble learning such as a voting 

classifier. In cases where individual samples are classified differently by different models, a voting 

classifier has the potential to improve accuracy by taking into account the predictions from several 

different models. 

 

3.E Conclusions 

Silicon photonic biosensors have shown promise for use as a rapid, highly multiplexed, and point-of-care 

diagnostic platform for blood typing58. However, silicon photonic blood typing assays still have the 

limitation of requiring a specially trained technician to accurately interpret test results. Here, we have 

demonstrated the potential of machine learning for greatly simplifying this analysis. In addition, we have 

also identified multiple potential techniques for further improving automated analysis accuracies. We also 

acknowledge the need for larger sample sizes for improving model accuracy and reliability. Despite the 

current limitations however, the computational results are nearing the accuracy of human interpretation of 

the same assays, and are expected to exceed human accuracies once larger sample sizes are available and 

improved feature extraction methods are implemented. 
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Chapter 4. Overall Conclusions and Future Directions 

The studies performed in this thesis focus on evaluating the potential of multiple different technologies to 

be used in the development of rapid, low cost blood typing diagnostics. Transverse electric (TE) and 

transverse magnetic TM mode microring resonators were compared for forward and reverse typing assays 

involving the ABO system. Both types of sensors demonstrated adequate sensitivity for blood typing 

applications and both come with several advantages of silicon photonic biosensors over traditional blood 

typing assays. Both sensors are cheap to manufacture and use significantly smaller volumes of reagents 

than tube typing assays. Also, neither sensor requires the incubation time that a standard agglutination 

assay requires, giving the potential for a much faster assay. When compared against each other, TM mode 

sensors tend to have stronger responses in both forward and reverse typing than TE mode sensors exposed 

to the same blood sample. The 

stronger TM response is likely 

due to the increased evanescent 

field overlap with the analytes. In 

order to fully confirm the 

improved performance of TM 

mode sensors, more samples 

would need to be tested on both 

TE and TM mode sensors, but this 

preliminary work suggests that 

TM mode sensors may be better 

suited to blood typing 

applications.  

 The other technology 

evaluated for use with silicon 

Figure 4-1 Sprectrograms of forward typing data from a B-negative sample 
(a) raw data sensorgram (b) spectrogram of negative response (anti-A, 
shown in red). (c) spectrogram of weak positive response (anti-B, shown in 
blue). (d) spectrogram of strong positive response (anti-Gly, shown in 

magenta). 
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photonic blood typing assays was machine learning. With the recent increase in number of readily 

accessible machine learning toolkits, it is easier than ever before to rapidly develop accurate and user-

friendly analysis algorithms for biosensing assays. Data from a recent proof-of-concept study58 using 

highly multiplexed silicon photonic blood typing chips to type over 200 human blood samples was used 

to train, optimize, and evaluate several different machine learning algorithms for predicting blood type 

from biosensor data sets. These early results are promising, as multiple different models had accuracies 

rivaling the by-hand analysis from the previous study. Multiple limitations were present in this work, 

including a small sample size relative to most machine learning studies, and a lack of robust feature 

extraction. However, at least one additional promising feature set has already been suggested since the 

analysis was completed. Since forward typing data is known to contain meaningful high-frequency 

content, 2D spectrograms of each signal have been proposed as a calculated feature that captures 

frequency information without sacrificing amplitude data (Figure 4-1). As spectrograms and other feature 

extraction methods are tested and more blood samples are tested, automated typing accuracies should 

continue to increase and surpass the standard by-hand analysis. 
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