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Abstract 

In this research, the effect of surface patterning on the corrosion behaviour of a 

metal (nickel) was investigated. The idea originates from the fact that 

hydrophobic (low or non wettable) surfaces can decrease the contact area 

between a corrosive solution and a surface. In the current work, special surface 

patterns were created on pure nickel sheets. The corrosion behaviour of those 

surfaces was studied using a dynamic polarization method in 0.5M H2S04. It was 

found that there is a trend or dependency between the hole size (D), the hole 

distance (L), and the corrosion current density (Icorr). The higher the (D/L)2 ratio, 

the higher the corrosion current density (Icorr). The corrosion potential (Ecorr) of 

all samples was lower than that of the reference sample in all the tests. SEM 

images showed that after the first corrosion test some local corroded regions 

were created on the surfaces but in the samples with the lowest Icorr there was a 

slight change in the surface. 
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Majid Bigdeli Karimi Chapter 1: Introduction 

1. Introduction 

The corrosion resistance is one of the important properties of metals and their 

alloys. In many applications metallic structures are in contact with corrosive 

media and failure con occur in relatively short times. Hence, improving the 

corrosion resistance of metallic alloys can be of paramount importance. 

Surface roughness of materials especially metals affects their corrosion 

resistance. The pitting potential, which is the minimum potential at which stable 

pits are observed to propagate, is lower for rougher surfaces [1,2] than for 

smoother ones. Pits initiate at specific sites on the surface (usually inclusions) 

and rougher surfaces generally provide sites with a more occluded geometry. It is 

easier to maintain a concentrated local chemistry at these occluded sites, and so 

rougher surfaces tend to support a higher frequency of pit initiation [3]. Although 

it has been found that a higher surface roughness can decrease the corrosion 

resistance, in some applications having special surface pattern (topography or 

geometry) can be useful. It has been found that hydrophobic surfaces are useful 

in applications involving wear, self cleaning, and corrosion [4-7]. 

Many terrestrial plants and animals are water-repellent due to hydrophobic 

surface components with microscopic roughness. It has been shown that these 

surfaces provide a very effective anti-adhesive property against particulate 

contamination. This self-cleaning mechanism, called the "Lotus-Effect", is an 

important function of many microstructured biological surfaces [5]. The surface of 

the lotus leaf is covered with micro-protrusions, which are themselves covered 

nano-protrusions. The nano-protrusions are composed of epicuticular wax 

crystalloids that are hydrophobic [8]. 

The unusual wetting characteristics of superhydrophobic surfaces are 

governed by both their surface chemical composition and surface geometric 

microstructure [9,10]; their wettability can be decreased by creating a local 

geometry with a large geometric area relative to the projected area [9]. The origin 

of the self-cleaning property of lotus leaves has been revealed to be a 

cooperative effect of micro- and nano-scale structures on their surfaces [10]. 

1 



Majid Bigdeli Karimi Chapter 1: Introduction 

Many methods have recently been developed to fabricate surfaces with 

controlled roughness through various approaches such as the sol-gel process, 

generation of a fibrillar structure, creation of a rough surface covered with low 

surface energy molecules, and the phase separation of a polymer in a mixed 

solvent system, etc [9]. 'Etch and coat" methods are potentially useful for large 

scale production of superhydrophobic surfaces on metals. Despite the diversity of 

approaches, which have been applied to creating superhydrophobic metal 

surfaces there are just two factors which dominate the overall performance. One 

is the roughness or texture of the surface, the second is the nature of the surface 

modifying layer [11]. It is said that the fraction of air between the water droplet 

and the double-scale (patterned) surface is the important reason of 

superhydrophobicity of the surface [12]. 

Some studies have shown that creation of hydrophobic surfaces on such 

metals as aluminum and copper can increase the corrosion resistance in different 

corrosive media [7,13-18]. 

A surface with a rough structure can be fabricated by many techniques, such 

as chemical vapor deposition, anodization, soft etching, and optical lithography. 

The laser fabrication technique provides an effective tool to fabricate periodic 

structures on any material surface due to its ultrahigh peak power [19]. Some 

hydrophobic surfaces have been created on different metals and alloys such as 

stainless steel, nickel, aluminum, copper and etc [4,9,20,21]. In all of these 

studies, hydrophobicity was achieved using a roughness on a surface along with 

a material to decrease surface energy. However, some new research [22,23] has 

shown that it is possible to create hydrophobic properties on a surface whether it 

is naturally hydrophilic or hydrophobic. 

In this research nickel was selected as model metal because no work had been 

done on surface patterning of this metal thus far. The aim of this work was to 

create special surface patterns (topography) on a pure nickel surface and study 

the corrosion behavior of the patterned surfaces. In fact in this research the 

novelty was first to select pure nickel and second to create a hydrophobic surface 

using laser ablation method on pure nickel sheet without using any materials to 
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decrease the surface energy. In other words, it was targeted to fabricate a 

hydrophobic surface solely by surface patterning or topography. 
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2. Literature review 

This review covers four general topics, namely: effect of surface roughness on 

corrosion behavior; hydrophobicity; laser surface patterning and polymer 

exchange membrane fuel cells. In each section, the relevant research is 

summarized to provide a background for the current research. 

2.1. Effect of surface roughness on corrosion behavior 

Several researchers have investigated the effect of surface roughness on the 

corrosion behavior of steels. These have induced studies on surface roughness 

on cyclic potentiodynamic passivation [24], electrochemical behavior [25] and the 

effect of surface roughness on pitting corrosion resistance [26]. 

2.1.1. Surface roughness of steels 

The influence of surface roughness on the efficiency of a cyclic 

potentiodynamic passivation (CPP) method on stainless steel was investigated 

by Shahryari and his colleagues [24]. They showed that a decrease in surface 

roughness of stainless steel 316LVM on which a passive film is naturally formed, 

results in an increase in the alloy's resistance to pitting corrosion. However for 

the surface on which the passive film is formed using the CPP method, an 

increase in both general and pitting corrosion resistance was observed. It was 

also demonstrated that the CPP method is highly effective in increasing the 

general and pitting corrosion resistance of 316LVM in the entire surface 

roughness range, thus further supporting its potential use in a wide range of 

biomedical and industrial applications. Fig. 2-1 shows the EpA as a function of 

surface roughness for the 316LVM stainless steel. 

Girija and his collaborators [26] studied the effect of mechanical and chemical 

treatments of the surface on the pitting corrosion resistance of type 316LN 

stainless steel in 0.5M sodium chloride (NaCI) solution. When the surface 

roughness is greater, it is more likely that an electrochemically active inclusion is 

associated with a concavity in the surface that is deep enough to support pit 

initiation by generation of the diffusion barrier (the depression which acts as a 
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barrier to diffusion of dissolved corrosion products, protons and ions from the pit 

site). When the surface roughness is lower, the inclusions can not act as pit sites 

because their depression into the surface is not great enough to provide a 

sufficient diffusion barrier. Anyhow, they found that surface roughness has no 

significant effect on the pitting potentials after chemical treatment. Table 2-1 

presents the Grijia's results for pitting potentials in different conditions. 

378 134 117 65 62 24 

Surface roughness (rim) 

Fig 2-1. Dependence of pitting potential of the 316LVM surface on the surface roughness; the 
modified sample went through CCP method [24] 

Table 2-1. Pitting potentials after various surface treatments [26] 

Surface 
finish 

method 
Diamond cloth 

finish 

600 grit SiC 
abrasive 
polishing 

320 grit SiC 
abrasive 
polishing 

Lathe finish 

Surface 
Roughness 

(Mm) 

0 009 

0 05 

0 07 

05 

Mechanical 
treatment 

394 mV 

326 rnV 

307 mV 

152 mV 

Pickling 

672 mV 

651 rnV 

637 mV 

631 mV 

Pickling 
followed by 
passivation 

1114mV 

1040mV 

1000 rnV 

865 rnV 

In another research [27], deposited a-Ta coatings on smooth and rough AISI 

4340 steel substrates were studied in terms of porosity and corrosion behavior. 
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Maeng et al.'s research objective was to study the corrosion behavior of the 

coatings deposited on smooth and rough steel surfaces. The coatings deposited 

on both substrates showed almost identical anodic polarization behavior although 

the corrosion current density was slightly higher in the case of the coating on the 

rough substrate. Fig. 2-2 shows the potentiodynamic corrosion curves for those 

coated and uncoated surfaces. 

10 l 

1 0 ' 

1 0 ' 

1 0 ' 

1 0 ' 

10 ' 

10 

rough steel substrate 

smooth steel substrate a-Ta coating with 50 u.m 
on rough steel substrate 

Ta foil 

-0 5 0 5 

E (V) vs SCE 
1 5 

Fig 2-2 Anodic polarization curves of smooth and rough steel substrates (AISI 4340), a-Ta 
coatings deposited on these substrates and of Ta foil, in 0 5 M H2S04 deaerated with N2 at room 
temperature [27] 

The effects of oxygen, H2S04 concentration and surface roughness on the 

electrochemical behavior of high nitrogen bearing stainless steel (HNS) in 0.05 

H2SO4 + 0.5M NaCI solution was studied by Qiao and his co-workers [25]. They 

observed three corrosion potentials (active, active-passive and passive regions) 

in the potentiodynamic polarization curve which is probably due to hydrogen 

evolution reaction and even generation of metal cations [28]. The surface 

roughness has no noticeable effect on the number of corrosion potential but 

increases the values of the corrosion potentials and passivation current densities 

with increase in the surface roughness (Fig. 2-3). The surface roughness has no 

evident effects on the cathodic process but acceleration of the anodic corrosion 
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rate with increased surface roughness could be assumed to be due to the 

reduction in the average electron work function (EWF) with surface roughness 

[25]. 

1E-7 1E-6 1E-5 1E-4 1E-3 0 01 

Current density /A.cnr2 

Fig. 2-3. Potentiodynamic polarization curves for HNS in aerated 0.05M H2S04 + 0.5M NaCI 
solution at ambient temperature with different surface roughness [25]. 

Celik et al. researched the corrosion behavior of grit-blasted AISI 304L stainless 

steel substrates coated with Al203 in 1 N H2SO4 solution. The results showed that 

the corrosion resistance of plasma-sprayed coatings is reduced with increasing 

surface roughness [29]. 

2.1.2. Relationship between surface roughness and pitting corrosion 

Some works have examined the role of surface roughness in pitting corrosion. 

The pitting potential, which is the minimum potential at which stable pits are 

observed to propagate, is lower for rougher surfaces [1,2] than for smoother 

ones, a phenomenon which is in qualitative agreement with the known diffusion 

control of the rate of metastable and stable pit propagation [1]. Pits initiate at 

specific sites on the surface (usually inclusions) and rougher surfaces generally 

provide sites with a more occluded geometry. It is easier to maintain a 

concentrated local chemistry at these occluded sites, and so rougher surfaces 

tend to support a higher frequency of pit initiation [3]. A smoother surface shows 
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a smaller frequency of metastable pitting in comparison with a rougher one. The 

surface with the smoother finish, however, also shows a far higher frequency of 

nucleation events. This apparently paradoxical phenomenon is attributed to the 

repetitive nucleation of pits from individual sites of pitting [30]. The potential (Em) 

at which the metastable pit or pits start to grow on the surface depends on 

surface roughness. 

The nucleation of corrosion pits on stainless steel was researched by Burstein 

and Vines [30] in chloride solution at constant potential through observation of 

minute current transients. The nucleation of pits is a process that is apparently 

random in time, and its frequency of occurrence decays with time at constant 

potential with first-order kinetics. The time-constant associated with this is a 

function of the surface finish and reflects the ability of nucleated sites to 

propagate as metastable pits or to repassivate. A smoother surface finish makes 

propagation more difficult and allows more repetitive nucleations from the same 

site. In another work, Sasaki and Burstein [1] focused on the effect of created 

surface roughnesses on the pitting potential during slurry erosion-corrosion in 

304L stainless steel. Their results confirm that surface roughness is a critical 

parameter in determining the pitting potential of 304L stainless steel. The pitting 

potential is easily changed by several tenths of a volt by appropriate surface 

roughening. For surfaces finished by grinding on silicon carbide paper, the pitting 

potential falls linearly with increase in the reciprocal grit number (Fig. 2-4), 

implying a linear relationship with the particle size. 

0.4 

0.3 

y? 0 .2 
O 
« 
> 0.1 

Ck. 
IXJ 

0.0 

-0.1 

-0 .2 
0 0.002 0.OO4 0.006 

reciprocal grit number 
Fig. 2-4. The pitting potential, EP, of304L stainless steel measured in 0.6 M NaCI as a function of 
the surface finish [1]. 

-r—«—i—«—f T '• r r""* • t 

-JL.,.* * * • K a t , . l - i.,„. i, ,. i . . i*. i i J ' * T > i J • - L , J „ „ j — » » * 

8 



Majid Bigdeli Karimi Chapter 2: Literature review 

2.1.3. Surface roughness of coatings 

Srinivasan and his collaborators produced some coatings on AM50 magnesium 

alloy using plasma electrolytic oxidation (PEO) in a silicate-based electrolyte 

using a DC power source. The anti-corrosion ability of an oxide coating on 

AZ91D alloy is decreased with the increasing porosity. The results reveal that the 

roughness level of the coatings increase with increase in current density for a 

given processing duration and corrosion resistance decreases as well. Thus, the 

thicker (more porosity) and rougher the coating, the higher the corrosion (See 

Fig. 2-5) [31]. 

40 

VI 
4> 
c 

10' 10' 10'3 10" 10 10 
Current density, mA/cmJ 

10' 10" 

10 

04-

w 
D Thickness 

• Roughness 

A-1S 

•2 

__( o 

25 

1530 

1 ® 
1 »n 

05 

C-15 

Fig. 2-5. (a) Potentiodynamic polarisation behavior of the specimens PEO coated at different 
current densities for 15 min (test electrolyte: 0.1 M NaCI solution), (b) average thickness and 
roughness of the specimens PEO coated at different current densities for 15 min. [31]. 

Fig. 2-6 shows the potentiodynamic corrosion curve of some coatings with 

different roughnesses. Bai's research [32] confirms that an oxide coating (on 

AZ91D Mg alloy) with the minimum roughness value, exhibits the maximum 

corrosion resistance. Bai contends that the roughness (proportional to porosity) 

value of an oxide coating is the predominant factor promoting the anti-corrosion 

ability. Thus, the corrosion resistance of an oxide coating has a dependency to 

the roughness of the coating. On the other hand, the dense oxide coating with 

less porosity could show a better corrosion resistance. 
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F/g. 2-6. Potentiodynamic polarization curves obtained in the 3.5% NaCI solution at a scanning 
rate of 1 mV/s: the oxide coating with roughness of (a) 1.6 pm; (b) 4.2 pm; and (c) 6.3 pm [32]. 

Chang et al. [33] deposited a nano-composite Ti-Si-N films on tungsten 

carbide substrates by a filtered cathodic arc deposition using TiSi-alloy as arc 

sources. It was clearly proved that corrosion resistance in 1 N H2SO4 and 3.5% 

NaCI solutions increased with reduced surface roughness. The reason is that the 

dense (less porosity) or amorphous structure makes the films less permeable by 

the corrosion medium. The Ti-Si-N film exhibits superior corrosion resistance as 

the number of microparticles or surface roughness is reduced. Fig. 2-7 shows the 

polarization curves of various Ti-Si-N coatings tested in 3.5wt.% NaCI solutions. 

It was established that the corrosion potential (Ecorr) is reduced with increasing 

surface roughness. 

-6 -5 

log(i/A> 

Fig. 2-7. Polarization curves of various Ti-Si-N coatings tested in 3.5 wt.% NaCI solution [33] 
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2.2. Hydrophobicity: concepts, properties and applications 

Many terrestrial plants and animals are water-repellent due to hydrophobic 

surface components with microscopic roughness. It has been shown that these 

surfaces provide a very effective anti adhesive property against particulate 

contamination. This self-cleaning mechanism, called the "Lotus-Effect", is an 

important function of many microstructured biological surfaces [5]. It is now 

recognized that the fascinating fluid behaviors observed for the lotus plant, like 

the rolling and bouncing of liquid droplets and self-cleaning of particle 

contaminants, arise from a combination of the low interfacial energy and the 

rough surface topography of waxy deposits covering their leaves [15]. As shown 

in Fig. 2-8, the surface of the lotus leaf is covered with micro-protrusions, which 

are clothed in nano-protrusions. The nano-protrusions are composed of 

epicuticular wax crystalloids that are hydrophobic [8]. 

Fig. 2-8. SEM images of the surface of a lotus leaf [8]. 

The unusual wetting characteristics of superhydrophobic surfaces are 

governed by both their surface chemical composition and surface geometric 

microstructure [9,10]; their wettability can be decreased by creating a local 

geometry with a large geometric area relative to the projected area [9]. The origin 

of the self-cleaning property of lotus leaves has been revealed to be a 

cooperative effect of micro- and nano-scale structures on their surfaces [10]. 

Cheng and his colleagues emphasized the importance of the lotus leaf's 

nanoscale hair-like structure on its self-cleaning ability [34]. Barthlott et al. 

assumed that "Lotus effect" can be transferred to artificial surfaces (e.g. cars, 

facades, foils) and hence find a huge technical application [5]. As the surface free 
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energy of a solid surface decreases, hydrophobicity increases. To decrease the 

surface free energy, rough surfaces formed either etching or by fabrication of 

micro/nanostructures, can be useful [8]. 

Wetting properties are defined by the magnitude of contact angle. If the contact 

angle is lower than 90°, a material is hydrophilic (wettable), otherwise it is 

hydrophobic (non or low wettable). The contact angle is not only material 

property dependent, but it changes with the surrounding conditions, time and it 

also depends on the history of wetting [36]. 

The apparent contact angle (9) between a rough surface and a liquid droplet 

can be determined using: 

cos9 = rcosdT, (2-1) 

where r is the roughness ratio (the actual surface area divided by the apparent 

surface area) and 0T is the thermodynamic contact angle defined by: 

cos 9T = (Ysv - Ysi) A/*,, (2-2) 

where ysv is the solid-vapor surface energy, ysi is the solid-liquid interfacial 

energy and yiv is the liquid-vapor surface energy (see Fig. 2-9). As roughness 

increases, air can be locally trapped underneath the liquid, resulting in the 

formation of a composite surface with a large contact angle, a phenomenon that 

is described using the following theoretical equation: 

COS 9 = fS COS 9T - fair (2-3) 

Where fs is the fractional contact area between the liquid and the solid surface, 

and fair is the fractional contact area between the liquid and the air underneath 

the droplet [4]. 
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Solid 
Fig. 2-9. The schematic illustration of surface tensions on a solid surface in contact with a water 
droplet, where ysv is the solid-vapor surface energy, ys, is the solid-liquid interfacial energy and 
Yiv is the liquid-vapor surface energy. 

The successful advancement of micro-electro-mechanical systems (MEMS and 

NEMS [4,8]) with miniature moving parts, including micromotors, gears and 

transmissions, mechanical discriminators and optical microswitches, relies on the 

development of new wear resistant materials and surfaces with high 

hydrophobicity (water repellency) and low adhesion and friction. Other possible 

applications for durable water repellent surfaces range from micro-fluidic devices 

to bipolar plates in proton exchange membrane (PEM) fuel cells [4,6]. This effect 

may inspire thinking about a similar mechanism in the solid-water-corrosive 

matters system, namely, prevention of corrosion by repelling corrosive matters 

from a surface, making them easily roll off by an external force [7]. 

Because of superhydrophobic surfaces' interesting properties and important 

applications in fundamental research and industrial applications, they have 

attracted significant attention, and various fabrication methods have been 

reported [36]. Many methods have recently been developed to fabricate surfaces 

with controlled roughness through various approaches such as the sol-gel 

process, generation of a fibrillar structure, creation of a rough surface covered 

with low surface energy molecules, and the phase separation of a polymer in a 

mixed solvent system. Most of the methods unveiled to date, however, are not 

suitable for the fabrication of protective coatings on metal substrates with 

complex shapes [9]. The formation of self-assembled monolayers (SAMs) using 

monomeric compounds that bear a surface-reactive group has been known to be 

a simple and practical technique for controlling wettability, corrosion, and 

adhesion of solid surfaces [20]. 
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2.2.1. Hydrophobicity of metals 

Superhydrophobic surfaces are of great importance for many industrial 

applications, and may present a solution to the long-standing problems of 

environmental contamination and corrosion of metals [7]. The prospect of 

producing surfaces that repel water suggests huge opportunities in the area of 

corrosion inhibition for metal components, chemical and biological agent 

protection for clothing, antifouling for marine vehicles, among many other 

applications [34]. 

Generally metals are hydrophilic or wettable. To create a hydrophobic surface 

on a metal there are some methods such as creation of surface patterns, using 

some chemicals and a combination of surface patterns and chemicals. The two 

main methods of applying sufficient pattern are etching a metal substrate and 

electroless deposition of a metal coating onto the substrate. Other methods 

which produce metal-based superhydrophobic surfaces include sulfur treatment, 

either with sulfur gas or direct mixing of a thiol solution with a metal (Cd or Zn) 

salt solution. Electrochemical methods to provide roughness have also been 

reported for indium tin oxide (ITO)-coated glass and doped silicon. A range of 

techniques, including anodization has been successfully applied to Al. Between 

presented reports; there are two different approaches to lowering the surface 

energy of the roughened surfaces: use of fluorinated silanes or of fluorinated 

thiols. For metals the range of compounds that could be used to lower the 

surface energy is much larger since there are numerous functional groups that 

bind to metals. Despite the diversity of approaches, which have been applied to 

creating superhydrophobic metal surfaces there are just two factors, which 

dominate the ultimate performance. One is the roughness or texture of the 

surface, the second is the nature of the surface modifying layer [34]. Generally, 

metal oxides are more hydrophobic than the metal, so the wettability may 

become lower with increase in the amount of metal oxide [37]. The weaker 

wetting properties of aluminum, brass and stainless steel can be explained by the 

process of passivation, e.g. covering with the thin layer of oxide. The zinc, 

14 



Majid Bigdeli Karimi Chapter 2: Literature review 

aluminum or chromium oxides are hydrophobic. The passivation of copper is not 

such a rapid process as it is in the case of aluminum, zinc or chromium, so the 

surface of copper plate remains hydrophilic [36]. 

Wang and Kido studied the wetting characteristics of natural mica, polished, air 

oxidized and water immersed pure chromium, nickel, iron and SUS304 steel 

surfaces. They found that the wettability of natural mica and each metal surface 

differs from the others and the nano-size wettability is higher than the millimeter-

size even for the same metal surface [37]. It was found that copper has the best 

wettability properties, followed by: aluminum, brass and stainless steel. 

Aluminum and stainless steel lose their hydrophobic properties during the 

dropping procedure while copper and brass remain hydrophilic or hydrophobic 

[34]. 

2.2.1.1. Hydrophobic surfaces on steel 

A convenient method to prepare a water-soluble hydrophobic agent and create 

a super-hydrophobic film on the base material is by use of a film or electroless 

N'h-P composite coating on carbon steels (Fig. 2-10) as shown by Zhu and Jin 

[21]. That super-hydrophobic film, has good stability in the air at room 

temperature and good corrosion resistance in 5 wt.% NaCI solution, neutral salt 

spray test and water erosion test. 

Fig. 2-10. (a) Photo of water droplets on the phosphating film and superhydrophobic film, (b) SEM 
image of the superhydrophobic film which was fabricated by silicon sol [21]. 
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Wu and his collaborators fabricated stainless steel-based superhydrophobic 

surfaces by microstructuring using a femtosecond laser and the method of 

Silanization [12]. Fig. 2-11 shows SEM images of their created surfaces. They 

proved that these micro- and submicron double-scale structure surfaces yield 

apparent contact angles higher than those on single scale structure surfaces, 

and the maximum value was 166.3°. Also their results confirm that the fraction of 

air between the water droplet and the double-scale surface was large, which is 

the important reason of superhydrophobicity of the surface. This provides a 

simple and easily-controlled method for fabricating stainless steel-based 

superhydrophobic surfaces [12]. Fig. 2-12 is a schematic illustration of their laser 

work. 

Fig. 2-11. Top (left), side (308) (middle) and profile view (right) SEM micrographs of AISI 316L 
type austenitic stainless steel-based [12]. 

Fig. 2-12. Schematic illustration of laser-induced periodic surface structure (LIPSS) covered with 
nanoparticles formed at fluences 0.08 J/cm2. (a) The alternating array of LIPSS and 
nanoparticles. (b) The local interaction of the sort water interface with the top of LIPSS [12]. 

Larmour and his collaborators [11] worked on improving thiol-modified systems. 

No combinations of etching, Au coating and thiol modification were capable of 

producing surfaces at the higher ends of the superhydrophobic range for Ti, Zn 
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and Fe. Application of a sacrificial copper layer followed by an electroless 

galvanic deposition method can produce a good hydrophobic surface. This 

general method for the preparation of superhydrophobic surfaces on metals is 

sufficiently simple and inexpensive to be suitable for application on an industrial 

scale, for example in marine or aeronautical engineering. "Etch and coat" 

methods are potentially useful for large scale production of superhydrophobic 

surfaces on metals [11]. Kurtz et al. described such an aqueous post-dip 

treatment (Betatec), providing corrosion resistance for various types of metal 

surfaces without impairing the contact resistance and other technical properties 

[38]. The Betatec post-dip can impart beneficial hydrophobic properties to the 

gold surface with subsequent blocking of pores. This beneficial post-treatment 

has no adverse effects on electrical, solderability, or bonding properties of the 

gold electrodeposits. 

2.2.1.2. Hydrophobic surfaces on nickel 

Nickel-based alloys have been studied and used as biomaterials due to their 

corrosion resistance and excellent metallurgical compatibility with alloying 

elements. Shi et al. have studied the tribochemical behavior of nickel sheets on 

exposure to a mixture of biomaterial solutions (cell culture media). The nickel 

sheets used in this research were designed as filters (see Fig. 2-13). They found 

that the droplet contact angle of the Ni sample is 128.3°, which shows the dry 

nickel samples are hydrophobic [39]. 

Fig. 2-13. Surface and microstructure of Ni; SEM images: (a) left, overview, (b) middle, pentagon, 
(c) right, pore [39]. 
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Hexagonal-shaped nickel micromeshes (see Fig. 2-14) were designed and 

fabricated and their water-repellent and water-proofing abilities were investigated 

by Lee and his collaborators [8]. By the effect of the micromesh and PPFC 

coating, the contact angles were increased sharply from 63° of the non-coated 

flat nickel to 140° of the PPFC-coated micromesh to modify the surface from 

hydrophilic to superhydrophobic. The hole size and increasing the lattice width of 

the micromesh are necessary to improve the water- proofing ability. The 

proposed nickel micromesh sheets can be applied to many application areas that 

require water-blocking yet must allow passage of gases or sound waves. 

Examples include water- proof phones/speakers and water-proof gas detectors 

[8]. 

irtii#iitiHitiii 

Fig. 2-14. Fabricated nickel micromesh sheet: (a) photograph of a nickel micromesh prototype 
unit, (b) & (c) magnified SEM images of the micromesh [8]. 

Lotus leaf surface-textured nanocrystalline (NC) Ni films, developed by 

replicating the original biotexture, modified using a selective electrodeposition 

and a PFPE solution treatment were fabricated by Shafiei and Alpas (see Fig. 2-

15). The superhydrophobicity of the NC Ni films is attributed to successful 

development of a multi-level surface roughness (where a nanoscale surface 

texture was superimposed on a microscale structure of protuberances) with a low 

surface energy [4]. 

NC Ni crowns nanostructured 
by PFPE solution 

ft 

Fig. 2-15. A PFPE solution treatment of the surface created a nanotextured layer on the "Ni 
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crowns" [4]. 
The hydrophobic and protective mechanism has been evaluated [38] by water 

contact angle measurements on pure copper, nickel, and gold deposits together 

with nickel/gold plating on copper (before and after treatment with the gold post-

dip). The tests for a nickel surface (surface energy of nickel is 2.45 J/m2) showed 

a contact angle of approximately 92 ° after treatment with the post-dip. Hence, 

despite nickel possessing considerably higher surface energy, thereby making it 

more hydrophilic, Beratec post-dip treatment was very effective at imparting 

hydrophobic surface properties (Fig. 2-16). 

Fig. 2-16. Wetting of an acid-activated nickel surface by water after treatment with Betatec gold 
post-dip, e=92" [38] 

2.2.1.3. Hydrophobic surfaces on copper 

Han et al. [9] attempted to mimick nature by combining the features of metallic 

and organic coatings in the protective coating of a metal surface. According to 

their results, nanostructured copper sulfide was formed on the micro-structured 

copper surfaces, and the hydrophobization was successfully performed with a 

perfluorosilane compound via a solution process, resulting in the formation of 

ultra water-repellent metal surfaces. The obtained surface structure is shown in 

Fig. 2-17. Superhydrophobic surfaces composed of interconnected Cu(OH)2 

nanowires were constructed on copper plates via a simple immersion process in 

an aqueous solution by Pan et al [40]. They claimed this method is easy, fast, 

inexpensive and environmentally friendly. Since copper can easily be coated on 

the surfaces of various engineering metals, their results introduced a new 

pathway for the fabrication of superhydrophobic surfaces on engineering metals 

with many industrial applications. Xi and his collaborators [41] prepared copper 

surfaces via electroplating of different current densities to produce various 

19 



Majid Bigdeli Karimi Chapter 2: Literature review 

roughnesses. Some of the prepared copper surfaces behaved hydrophobic 

without chemical modification. When the surface configuration was properly 

fabricated, super-hydrophobicity could be obtained even on a hydrophilic 

substrate. Fig. 2-18 shows the SEM images of the copper surfaces where 

spherical grains are observed. 

Fig. 2-17. SEM images of the formation of the superhydrophobic metal surface and an image of a 
water drop on this surface: (a) the as-deposited copper surface; (b) High magnification image of 
the copper surface after electrochemical reaction with sulfur gas at 150 °C for 10 min; (c) Low 
magnification image of (b); (d) Schematic diagram of the formation of the micro- and 
nanostructured metal surface; (e) Optical image of a water drop on the surface in (b) [9]. 

Liu et al. created a novel super-hydrophobic film by n-tetradecanoic acid 

chemically adsorbed onto the copper sample. They suggested that a composite 

interface formed by the flower-like surface nanostructures, water droplet and air 

trapped in the crevices is responsible for the superior water-repellent property 

(Fig. 2-19). Their findings show that hydrophobicity plays an important role in 

corrosion behavior compared to the film thickness. Corrosion of copper was 

effectively inhibited by formation of a super-hydrophobic film [13]. In another 

similar work, n-tetradecanoic acid (CH3(CH2)i2COOH) etch, the super­

hydrophobic film was formed on the fresh copper surface [14]. The 
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microstructural results showed that the film is similar to haulm (a plant) or flower 

and the seawater contact angle is larger than 150°. The results prove that the 

super-hydrophobic surface can significantly improve the corrosion resistance of 

copper. As said, this method is a simple and inexpensive one to create 

superhydrophobic surfaces on copper. However, The interaction of pure n-

tetradecanoic acid and copper surface was very weak, so bis-

[triethoxysilylpropyljtetrasulfide (BTESPT) was used to link n-tetradecanoic acid 

and copper surface in order to enhance their interaction [42]. 

Fig 2-18. SEM images of the copper surfaces with different produced at different current 
densities- (a) current density = 0 04 A/cm2, contact angle =125' (b) Current density = 0 08 
A/cm2, Contact angle = 153 S (c) Enlarged SEM image on surface b (d) Current density = 0 10 
A/cm2, Contact angle = 132 5 [41] 

Fig 2-19 Model of the interface between super-hydrophobic surface and sterile seawater [13] 
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Wu and Shi [43] fabricated a lotus-like micro-nanoscale binary structure 

surface of copper phosphate dihydrite using galvanic cell corrosion of a copper 

foil with aqueous phosphorus acid solution droplets. They showed that the 

surface wettability can be changed from superhydrophilic to highly hydrophobic 

or superhydrophobic by just heating or modify it with an n-dodecanethiol 

monolayer. This method can be easily scaled up and has potential applications in 

industry for producing superhydrophobic materials and it is able to be applicable 

for making other interesting micro-nanoscale structures using a different 

electrolyte or changing the substrate to another metal or alloy. 

2.2.1.4. Hydrophobic surfaces on aluminum 

Cho et al. designed and synthesized a new random copolymer, poly (TMSMA-

r-fluoroMA), with the aim of fabricating superhydrophobic surfaces on oxide-

based substrates. As a model substrate, they fabricated aluminum substrates 

with varying roughnesses by controlled anodic oxidation. A superhydrophobic 

surface was generated with the polymer coated nanoporous anodic aluminum 

oxide (AAO) substrate (Fig. 2-20). They suggested that poly (TMSMAr- fluoroMA) 

could be applied to the coating of a variety of hydroxyl-presenting materials, such 

as glass, Si wafers, polymers, and other metals [20]. 

Fig. 2-20. FE-SEM images of the textured aluminum sheet: (a) top view and (b) tilted view. The 
scale bar is 1 pm [20]. 

Barkhudarov and his co-workers investigated the effectiveness of 

superhydrophobic films as corrosion inhibitors. They concluded that the extreme 

case of a superhydrophobic coating with a contact angle of >160° decreases the 

rate of corrosion roughly tenfold compared to the unprotected aluminum. Fig. 2-

21 shows the changes in aluminum thickness after the test with different surface 
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conditions. More importantly, making the protective layer superhydrophobic 

rather than hydrophilic improved corrosion by a factor of six [15]. 
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Fig. 2-21. The change in thickness of the aluminum layer versus time for samples protected by 
films of varying contact angle and a sample with only native Al203 layer (without protective film) 
[15]. 

Liu and his collaborators have successfully created a superhydrophobic 

surface on aluminum surface by an anodization process and chemical 

modification using myristic acid. The electrochemical measurements showed that 

the superhydrophobic surface significantly improves the corrosion resistance of 

aluminum in sterile seawater. The superhydrophobic surface affects mainly on 

the aluminum anodic reaction, whose currents (Icorr) are reduced by about three 

orders of magnitude, the corrosion potential (Ecorr) shifts positively by 0.2 V 

when the anodized aluminum is covered with the myristic acid (Fig. 2-22). It is 

believed that this method can be easily applied to large scale production of 

superhydrophobic engineering materials with ocean industrial applications [7]. 

In another research Liu et al. [16] studied the use of superhydrophobic surfaces 

on aluminum as a method for inhibition of microbially influenced corrosion (MIC). 

Their study claims that the superhydrophobic film does not only decrease the 

corrosion current densities (Icorr), but also microbially influencing corrosion 

acceleration inhibition (MICI) due to preventing colonization of microorganisms 

[16]. The analysis of potentiodynamic polarization, EIS and appropriate 

equivalent circuit models reveal that the aluminum corrosion is effectively 
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inhibited by the formation of a stable super-hydrophobic film [17]. Fig. 2-23 

shows the untreated and treated surfaces of aluminum prepared by myristic acid 

in Yin et al. 's research. 

Fig. 2-23. SEM images of (a) the untreated aluminum and (b) the superhydrophobic aluminum 
surfaces [17] 

The electrochemical measurements [18] showed that the super-hydrophobic 

surface significantly improves the corrosion resistance of aluminum in sterile 

seawater. The proposed mechanism of the underwater superhydrophobic 

surface applied in the corrosion resistance is presented by He and co-workers in 

a schematic figure (Fig. 2-24). The figure shows a surface with roughness of 2 

pm which is plunged in seawater. As it is seen the water could not wet all parts of 
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the surface and because of the roughness a portion (white areas) of the surface 

is unwetted. 
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Fig 2-24 A schematic of a rough surface immersed in seawater [18] 

2.2.1.5. Hydrophobic surfaces on other materials 

A superhydrophobic film was prepared by myristic acid chemically absorbed onto 

the polyethyleneimine (PEI) coated Fe^AI-type intermetallic wafer. Liu at al. 

demonstrated a simple and inexpensive method to create superhydrophobic 

surface on F e ^ / [36]. Anodic films were prepared on the AZ91D magnesium 

alloy in the electrolyte of 1.0 M Na2Si03 with and without the addition of silica sol 

by Li's group [44]. The addition of silica sol increases the thickness of the anodic 

film and improves the roughness of the film surface. As a result, such anodic 

films reveal some hydrophobic property. Moreover, the anodic film formed with a 

sol addition reveals higher hydrophobicity and provides higher corrosion 

resistance for AZ91D Mg alloy than the anodic films formed in the base 

electrolyte with more or less silica sol addition [44]. 

Narhe and collaborators [45] studied the water condensation on a metallic zinc 

surface, regularly used as anticorrosive surface. The zinc surface was coated 

with hydroxide zinc carbonate by chemical bath deposition. The results show 

that, on such surfaces, water condensation, although a complex and challenging 

process, is similar to smooth planar surfaces. As the nucleation events occur at a 

much smaller length scale than the surface texture scales, the surface chemistry 

dominates the texture effects during condensation and therefore leads to similar 

results as on a smooth surface. In particular, it is noticeable in view of corrosion 

effects that the water surface coverage remains on order of 55%. This process is 
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a simple and powerful method to modify the surface roughness and wettability, 

from hydrophobic to superhydrophobic. 

It is feasible to create a super-hydrophobic PDMS surface with ultra-low water 

adhesive force by a simple one step laser-cutting method, which can also be 

extended to fabricate other polymers. Jin et al. [10] demonstrated a facile one-

step laser-etching method to fabricate rough polydimethylsiloxane (PDMS) 

surface containing micro-, submicro-, and nano composite structures. The SEM 

image of created microstructure is shown in Fig. 2-25. Spori et al. [46] analyzed 

four different (sandblasted glass slides as well as replicas of acid etched, 

sandblasted titanium, lotus leaves, and photolithographically manufactured golf-

tee shaped micropillars [GTMs]), heavily structured over a wide range of surface 

energies via water contact angle measurements. With regard to 

superhydrophobic surfaces, the golf-tee-shaped (GTM) pillars show stable 

superhydrophobicity over a wide range of surface energies. This topography 

seems to be a very effective design for microstructured, superhydrophobic 

surfaces. 

Wu et al. [47] studied the influence of chemical and morphological 

modifications on the hydrophobicity of a silica based sol-gel hard coating. The 

substrate was anodized aluminum alloy AA6061. They obtained a sol-gel coating 

material and process which provides a one-step and low-cost method to obtain 

hydrophobic coatings with hard and durable properties for industrial applications. 

Shen and his co-workers prepared nano-Ti02 coatings on the surface of the type 

316L stainless steel and improved its corrosion resistance. To increase the 

surface hydrophobic property, fluoroalkylsilane (FAS-13) was applied on the 

surface of nano-Ti02 coating using a self-assembly method. Their 

electrochemical test results indicated that the hydrophobic coatings have an 

excellent corrosion resistance in oxygen-saturated Ringer solution (Ringer's 

solution technically refers only to the saline component, without lactate). The 

corrosion potentials shift positively, lCOrr decreases by three orders of magnitude, 

and the corrosion resistance Rt increases by more than 1000 times; so surface 
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modification by Ti02/FAS coatings might become a promising technique in 

significant improvement of the corrosion resistance of metals [48]. 

Convex width Microconvex 

Fig. 2-25. (a) Typical SEM images of the laser-etched PDMS surface with the convex width of 
about 25 mm, showing the regular arrays of microconvexes; (b) magnified image of (a), showing 
the submicro structures on each convex; (c) high-resolution image of a single convex of (b), 
showing the nanoparticles composed of each submicro block; (d) high resolution image of a 
single convex with width of about 50 mm (left) and a flat PDMS surface (right) [10]. 

2.3. Laser surface patterning 

The surfaces of different materials have been processed with different laser 

methods to create surface patterns. 

Textured surfaces basically consist of an array of lines or dots with periods 

between 20 and 200 pm fabricated using direct laser writing technique which 

means that each dot or line must be written with the laser beam separately [49]. 

Interfering laser beams from a high-power pulsed laser provide the opportunity of 

applying a direct treatment of the surface microstructure of metals in micro/nano-

scale based on photo-thermal mechanisms [50]. Selected laser melting (SLM) 

technology is able to meet the needs of manufacturing parts with the desired 

microstructure as well as macrostructure [51]. The "Laser Interference 
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Metallurgy" method permits the creation of periodic arrays with a well-defined 

long-range order on metallic surfaces from the sub-micrometer level up to 

micrometers. The principal advantage of Laser Interference Metallurgy is given 

by the fact that only a unique preparation step is required whereas other 

patterning methods (e.g., replica moulding, conventional lithography) comprise at 

least two different steps. Additionally, no masks are required and relatively large 

areas can be directly structured (in the order of cm2) in a short time scale [50]. 

A laser beam can be focused on a solid surface producing removal of target 

material, or it can be expanded and an ablation mask used. The incident energy 

and the time of interaction between the laser radiation and the target surface 

determine the phenomena that occur: a wide area of processes can be induced, 

from local heating to a very accurate removal of material without affecting the 

surrounding zones when ultra short laser pulses are used [52]. 

A patterned surface can be fabricated by many techniques, such as chemical 

vapor deposition, anodization, soft etching, and optical lithography. The laser 

fabrication technique provides an effective tool to fabricate periodic structures on 

any material surface due to its ultrahigh peak power [19]. Currently, several 

methods exist for producing multi-scale textures on materials' surfaces via 

microfabrication based on, but not limited to lasers, electron beams, and 

lithography. A relatively new method, interface method, takes advantage of the 

superposition of interfering beams of light to create a pattern of lines or dots, with 

significant long-range order, on the surface of a material. In order to accomplish 

this, properties of both the material being processed and the laser being used 

must be taken into account. The choice of laser has a large influence over the 

type of surface structure that is produced [53]. 

2.3.1. Laser interface metallurgy method 

Duarte et al. [49] tested the tribological behavior and lifetime of the lubricating 

film improvements on material textured by means of laser interface metallurgy. 

They used a commercial 304 stainless steel substrates and a high power pulsed 
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Nd.YAG laser. Fig. 2-26 shows the different periodic arrays fabricated using 2 

and 3 laser beam configurations in their work. They concluded that Laser 

Interference Metallurgy is a powerful and fast surface texturing method to 

fabricate several types of periodic arrays with a defined geometry on metallic 

substrates and these textured surfaces can be used to significantly improve 

tribological behavior of the target material especially under lubricant starvation 

conditions. Lasagni and co-workers [50] presented an alternative method to 

directly fabricate periodical structures on commercial metallic substrates with two 

and three laser beam configurations. Fig. 2-27 shows the fabricated surfaces on 

stainless steel substrates in different conditions. 

Fig. 2-26. Scanning electron micrographs of the structured surfaces irradiated with low and high 
laser intensities. Line-like structures: low (a) and (b) high laser fluence; Dot-like structures: low (c) 
and (d) high laser fluence; Cross-like structures: low (e) and (g) high laser fluence. Tilt: 52° [49]. 
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Fig 2-27 SEM micrographs of three laser beams irradiated stainless steel substrates (period = 
8.00 mm) (a) 2 15 J/cm2; (b) 2 41 J/cm2. The insert in (a) shows the three laser beams 
configuration and the calculated interference pattern Tilt 52 ° [50] 

2.3.2. Laser patterning on stainless steel 

Lloyd and co-workers used two types of lasers to create a surface pattern on 

AISI 304 stainless steels. A cross hatched scanning method technique results in 

the production of highly regular arrays of microfeatures on the surface of a 

metallic sample (Fig. 2-28). Also, it was found that to avoid the reliance on self-

assembly, it is possible to control not only the size but also the arrangement of 

microstructures by changing the way the laser beam is scanned over the target 

[54]. 
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2-28 SEM images (view tilt 30°) of the surface at incident beam angles of (a) 75°, (b) 60°, 
(c) 45° using the following parameters Laser wavelength 1064 nm, intensity 0 43 GW/cm2, 
5000 pulses/spot [54] 
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Dumitru and his colleagues [52] applied a commercial Nd.YAG laser to directly 

produce structures on steel surfaces (AISI 440C). The microstructure of laser 

induced surface is presented in Fig. 2-29. Their tribological tests showed that the 

lifetime of the laser-processed samples increases in comparison with 

unstructured ones. 
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F/g. 2-29. Structure induced in a steel surface [52] 

2.3.3. Laser operations on different materials 

Engleman and et al. investigate the use of a writing laser and the development 

of laser interference surface treatment (LIST) to produce hierarchical surface 

microstructures and physical textures for use in biological and mechanical 

systems [53]. Yang et al. fabricated micro-grooves on sol-gel T1O2 film surface by 

355 nm pulse laser and investigated the relationship between wetting properties 

and the area of hydrophilic domain [19]. Yoon et al. created roughened PDMS 

surface in nano- and microscales. The modified surface showed 

superhydrophobicity with a contact angle higher than 170° [55]. Zhou et al. [19] 

used femtosecond laser to create double-scale structures on K9 glass surface. 

Fig. 2-30. shows the SEM image of micro-raster fabricated by femtosecond laser 

and the optical image of side view of micro-raster. Two types of submicron 

structures can be observed in the groove. They told that compared with single-

scale raster, double scale structures are benefit for realizing superhydrophobicity. 
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( ^ 

Fig. 2-30. SEM image of the micro-raster structure; b Side view of micro-raster structure [19]. 
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3. Experimental procedures 

In this chapter all the experimental steps are described sequentially. Fig. 3-1 

presents a flowchart of the research procedures. 

Material 

v 

Surface preparation of samples by grinding and polishing 

ir 

Laser ablation of samples to create special surface texture 

v 

SEM and EDS of the created samples 

w 

Profilometry test 

w 

Corrosion tests 

^ 

SEM and EDS of the corroded samples 

i ' 

XRD test 

Fig. 3-1. Flowchart of experimental procedures. 

3.1. Material 

Pure nickel (99.7 Wt. %) was selected as model metal. 

3.2. Specimen preparation 

Samples of 1.5 cm * 1.5 cm size were cut from the sheet using wire electrical 

discharge machining (EDM) [ Charmilles, model Robofil]. 

The surfaces of all cut samples were polished to a standard finish. All samples 

were first cold-mounted with a fiberglass resin and a hardener. The samples 

were then ground using different abrasive SiC grinding papers with grits of 180, 

240, 400, 600, respectively. They were then rough polished with a 9 pm diamond 

suspension. Final polishing was done with alumina powder (Al203) suspensions 
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with particle sizes of 1 and 0.05 pm (Fig. 3-2). immediately after polishing, the 

samples were broken out of the cold mount and rapidly washed with ethanol 

alcohol and acetone and then dried. 

Fig. 3-2. (a) Diamond suspension and (b) alumina powder water suspension polishing machines. 

3.3. Laser ablation 

To create special surface textures on the surface of the samples, a laser 

ablation method was used. A copper bromide (CuBr) laser was used and single 

pulse was applied to create each hole. During laser ablation nitrogen gas (N2) 

was blown to protect the surfaces from oxidation and also to clean melt splashes, 

and debris. The pulse duration was selected as 30 ns which is common in laser 

ablation processes. For each hole size a different laser power was used which 

ranged from 20-80 W. The laser process was completed in LMVL Bulgaria 

Academy of Science. The surface textures were created based on repetition of 

holes in form of an equilateral triangle in both X and Y directions on an area of 

1.5 cm x 1.5 cm. Fig. 3-3 shows a schematic shape of the holes and the laser 

ablated area on the samples. 

O O O O O O 
O O O O O 

0 % © O O P 
Fig. 3-3. Schematic presentation of the proposed surface texture model; D assigns to the hole 
diameter and L assigns to the distance between the holes. The gray area is the laser ablated 
region. 
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The size of holes and distances between them were variable to obtain different 

textures. Table 3-1 presents the hole size and their distances in this work. Hole 

distances are shown by Li, L2 and L3. For easy identification of the samples a 

coding system was used; see Table 3-2. 

Table 3-1. The hole sizes and their distances of the textures created on the nickel sheet surfaces 

Hole diameter 
(D)pm 

5 
10 
20 

Holes' distance 
Li,pm 

5 
10 
20 

Holes' distance 
L2,pm 

10 
20 
30 

Holes' distance 
L3,pm 

20 
30 
40 

Table 3-2. Sample coding system 

Hole diameter (pm) Hole distance (pm) 
Smooth Sample (with no hole) 

5 
5 
5 
10 
10 
10 
20 
20 
20 

5 
10 
20 
10 
20 
30 
20 
30 
40 

Code 
REF 
D5L5 
D5L10 
D5L20 

D10L10 
D10L20 
D10L30 
D20L20 
D20L30 
D20L40 

3.4. Scanning electron microscopy (SEM) and EDS analysis 

After surface texturing of the samples by laser ablation, the samples were 

examined by SEM. The EDS analysis was also used to check the chemical 

composition of the surfaces. The SEM instrument was JEOL 5800 which is 

shown in Fig. 3-4. In addition, after each corrosion test the samples were again 

examined by SEM to evaluate any changes in surface morphology or 

composition. 
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Fig. 3-4. JEOL 5800 scanning electron microscope. 

3.5. Profilometry test 

The roughness of the patterned surfaces after laser ablation was determined 

using a Wyko Surface Profiling System NT-1100. Using different magnifications 

from 10, 20 and 50X, the surface roughness of the samples were examined and 

the data were processed with the related software. Fig. 3-5 shows the 

profilometry instrument. The Wyko NT1100 provides high resolution 3D surface 

measurement, from sub-nanometer roughness to millimeter-high steps [56]. 

Fig. 3-5. The Wyko NT1100 profilometry machine. 

3.6. Corrosion tests 

The corrosion resistance of the samples was determined using a polarization 

method, wherein the samples were immersed into a 0.5M H2SO4 solution at room 
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temperature (24 °C). A conventional three-electrode system was used in which a 

standard calomel electrode (SCE) served as the reference electrode and a 

platinum as a cathode electrode. In the tests, potentials were applied from -0.7 to 

1.5 V both versus SCE within a scan rate of 1.0 mV/s. In the corrosion tests the 

samples were stabilized at the open circuit potential (OCP) for 20 min and the 

potential-current curves were then measured. The instrument was BioLogic-

SP150 equipped with EC-Lab data analysis software version 9.4x (Fig. 3-6). For 

each corrosion test, a fresh 0.5M H2SO4 solution was prepared. The Tafel slopes 

were calculated with the mentioned software. In some cases, the software-

calculated values were not reasonable based on the curves, so in those cases 

the slopes were estimated using the curves in Excel Microsoft software. To 

calculate the linear polarization, Equation 3-1 was applied [57]. 

-**-- SA (3-i) 
M 2.3(7 )(B +B) 

app V corr J\r a r" c > 

Where Ba and Bc are the Tafel slopes of the anodic and cathodic reactions, 

AE 
respectively. icorr is the corrosion current and the term is defined in ohms 

Ai 
app 

(volts/apmers or millivolts/milliampers). 

In three corrosion tests were conducted for each sample. In each corrosion test 

the samples were examined using SEM, EDS and profilometry. 

Fig. 3-6. BioLogic-SP150 instrument. 
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3.7. X-ray diffraction (XRD) 

After the third corrosion test XRD was used to identify the phases in the 

samples whether they were the initial phase (fee. Ni) or corrosion products. The 

XRD test was done using Rigaku-D Max 1200. The incident X-ray was Cu (Ka) 

with wavelength of 1.540 °A. 
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4. Results and discussion 

In this chapter all results from SEM, energy dispersive spectroscopy (EDS), 

corrosion tests, profilometry test and X-ray diffraction (XRD) will be separately 

presented and discussed. 

4.1. SEM images of the patterned samples 

Fig. 4-1 shows the surface of the initial sample after final polishing. As can be 

seen, the surface is completely smooth and without any scratches or local rough 

regions. Because the final polishing was completed by 0.05pm-alumina powder 

particles, the maximum roughness is estimated to be around 50 nm. 

Fig. 4-2 (a) and (b) show the surface of sample D5L5. The pattern on the 

surface is an array of attached holes. In fact because hole diameter (D) and the 

hole distance (L) are equal in this sample there is some overlap between holes 

and the pattern is difficult to see (in Fig. 3-3, imagine all holes are tangent to 

each other at their perimeters). The surface of sample D5L10 [Fig. 4-2 (c) and 

(d)] shows that there is a regular array of holes. However, in some regions one or 

two holes were misplaced but this is not significant. Sample D5L20 has the same 

hole diameter as samples D5L10 and D5L5 but the hole distance is larger than 

those samples by 2 and 4 times, respectively [Fig. 4-2 (e) and (f)]. 

Figs. 4-3 (a) and (b) present the surface of sample D10L10. This sample, like 

sample D5L5, has overlap between its holes. In the background of this pattern 

there are some horizontal and vertical lines that show the arrays of holes. In 

sample D10L20 the hole size is half of the hole distance (Fig. 4-3 (c) and (d)]. 

The pattern is evident in this sample. Paying closer attention to the surface 

between the holes, it can be seen that there are some regions around the holes 

which have a different appearance compared with other areas. These regions 

are melt splashes which originated from the laser ablation. In fact, during laser 

ablation the laser locally evaporates the material within the hole regions to create 

the holes. So those melt splashes are due to local heating of the material. If 

pulse duration is decreased but with the same energy per pulse, melt splashes 

will decrease because the material will be sublimed rather than melted. In 
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addition, as it was pointed out in Chapter 3, during the laser ablation a flow of N2 

was used to remove splashes or foreign objects from the surface. Sample 

D10L30 [Fig. 4-3 (e) and (f)] has a regular array of holes. In this sample no 

misplaced holes are observed and any melt splashes are quite small. All samples 

with a hole diameter of 10 pm had well-defined patterned surfaces. 

Sample D20L20 has a similar appearance as samples D5L5 and D10L10 [Fig. 

4-4 (a) and (b)]. In this sample, the hole diameter is larger, so the pattern is 

more observable. In sample D20L30 the pattern is not as clear as other samples 

although the hole diameter is larger. The reason is that this sample has more 

melt splashes due to the higher laser power used to create the holes in this 

sample (80 W). In fact, the larger the hole diameter or size, the more the required 

energy to create that hole. Sample D20L40 has almost the same surface 

condition as sample D20L30 but with larger hole distance. This set of samples 

had a regular pattern with a very low number of missed holes. 

IS ES 
Fig. 4-1. The SEM micrographs of the initial smooth sample after final polishing with 
0.05pm alumina particles suspension. 
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Fig 4-2 The SEM micrographs of samples (a) and (b) D5L5; (c) and (d) D5L10; (e) and (f) D5L20 
after laser ablation process. 
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Fig. 4-3 The SEM micrographs of samples (a) 
D10L30 after laser ablation process. 

Chapter 4 Results and discussions 

(b) D10L10; (c) and (d) D10L20; (e) and (f) 
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Fig. 4-4. The SEM micrographs of samples (a) and (b) D20L20; (c) and (d) D20L30; (e) and (f) 
D20L40 after laser ablation process. 
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4.2. EDS analysis of the patterned samples 

Energy-dispersive x-ray spectrometry is perhaps the most useful elemental 

qualitative analytical tool. The technique can qualitatively identify elements from 

atomic number 11 to the end of the periodic table at levels from a few hundred 

nanograms in thin films to a few parts per million in bulk samples. The primary 

basis of the identification of elements in a sample is the energy and relative 

intensity of the K, L, or M spectral lines [58]. Fig. 4-5 (a) refers to sample REF. In 

this spectrum three elements, nickel (Ni), oxygen (O) and carbon (C) are 

observed. There are four peaks for Ni that show different X rays were scattered 

from different energy levels. The intensity of the most intense peaks (Ni: 

La=0.851 and O: Ko=0.523 KeV) was used to calculate the ratio of Ni/O (see the 

spectra). Other peaks refer to O and C. The origin of C can be the impurities that 

existed in the initial nickel sheet (as received). Oxygen's origin can be the 

impurities in the received nickel or oxidation during the laser ablation process. 

Anyhow a small amount of oxygen in the sample is predictable because of 

processing methods of metals or alloys. The EDS spectra of other samples are 

presented in Fig. 4-5 from (b) to (e). All samples have the same elemental peaks. 

The ratio of Ni/O is the same for the surface and inside the holes for all samples. 

These spectra prove that the chemical composition of samples did not change to 

any significant extent after the laser ablation process. 

Fig. 4-5. EDS analysis spectra of samples (a) REF, (b) D5L5; surface, (c) D5L20; surface, (d) 
D5L20; hole, and (e) D20L40; surface (continued). 
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4.3. Roughness of the patterned samples 

The profilometry test results for all samples are presented in Table 4-1. In 

addition, Figs. 4-6 to Fig. 4-10 shows the 3D roughness, X-profile, Y profile and 

histogram data for samples D5L5, D5L20, D10L20, D20L20 and D20L40. 

Roughness parameters are as follows [59,60]: 

Ra: average roughness 

Rq: Root mean square roughness 

Rt; Maximum peak to valley height 

Rv: Maximum valley depth 

Rp: Maximum peak height 

Comparing all samples with D=5 pm, shows that sample D5L10 had the 

highest roughness of all samples (see Ra value in both X and Y profiles in Table 

4-1). Since in this research the goal was to decrease the contact area between 

the solution and the surface using a special surface pattern it seems reasonable 

to select a ratio related to areas of the holes and the overall surface. So, the ratio 

of the holes area to the overall surface area is proportional to (D/L)2. Samples 

D5L5 and D5L20 are smoother than sample D5L10 [(D/L)2=0.25]. Among 

samples with D=10 pm, samples D10L20 [(D/L)2=0.25] and D10L10 =1] are the 

roughest and the smoothest ones, respectively. In this set of samples it is seen 

that by increasing the hole distance the roughness increases. Generally the 

roughness of these samples is higher than that of samples with D=5 pm 

(compare values in the Table 4-1). In this set of samples, Rt values are higher 

than those of samples with D=5 pm. To create larger holes more energy was 

used, as a result larger diameter holes are deeper than smaller diameter holes 

(compare Rv values in Table 4-1). However, there is one exception that Rt value 

of sample D5L10 is larger than that of sample D10L10. Samples with D=20 pm 

have the highest Ra amongst all samples. Sample D20L40 has the highest Ra 

value in all samples. 

Fig. 4-6 shows the roughness data for sample D5L5. The histogram curve [Fig. 

4-6 (d)] confirms that the average roughness of this sample is around zero and 

there is a normal distribution of roughness on the surface. The black curve is the 
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height distribution from the test and the red curve is the normal distribution of the 

black curve. The 3D roughness image and histogram of sample D5L20 [Fig. 4-7 

(a) and (d)] is very similar to sample D5L5. A uniform roughness and normal 

distribution in histogram is observed. In X and Y profiles [Fig. 4-7 (b) and (c)] the 

distance between peaks and valleys are larger than that of sample D5L5 which is 

due to larger hole distance in sample D5L20. The histogram curve of sample 

D10L20 is a bit different from samples D5L5 and D5L20 [Fig. 4-8 (d)]. In this 

histogram it is possible to observe some points with height of around -1.75 or 1.6 

pm but in samples D5L5 and D5L20 these heights were zero. This is because of 

higher roughness in this sample compared with samples D5L5 and D5L20. 

Sample D20L20 seems to be the same as sample D10L20 [Fig. 4-9]. In sample 

D20L20, the histogram curve has a normal distribution. The 3D roughness image 

of this sample does not show any hole clearly, which is the result of hole 

overlaps. The 3D roughness image of sample D20L40 depicts a uniform and well 

patterned surface on this sample [Fig. 4-10 (a)]. The histogram curve shows that 

the number of points with highest or lowest height is significant and the 

distribution is normal [Fig. 4-10 (d)]. 

Table 4-1. The roughness values from profilometry test for all samples 

Sample 
codes 

D5L5 
D5L10 
D5L20 

D10L10 
D10L20 
D10L30 
D20L20 
D20L30 
D20L40 

Roughness values 
X profile ( 

Rq 
0.34 
0.58 
0.26 
0.37 
0.76 
0.64 
1.02 
0.95 
1.19 

Ra 
0.27 
0.48 
0.20 
0.30 
0.65 
0.52 
0.80 
0.73 
1.06 

Rt 
2.14 
3.06 
1.81 
2.28 
3.32 
3.51 
5.11 
5.87 
4.39 

pm) 
Rp 
1.07 
1.27 
0.90 
1.16 
1.48 
1.72 
2.04 
3.24 
1.51 

Rv 
-1.07 
-1.49 
-0.91 
-1.12 
-1.84 
-1.78 
-3.07 
-2.62 
-2.88 

Y profile (pm) 
Rq 

0.32 
0.56 
0.26 
0.32 
0.68 
0.66 
0.86 
0.78 
1.14 

Ra 
0.25 
0.44 
0.20 
0.23 
0.56 
0.54 
0.70 
0.58 
0.96 

Rt 
2.02 
3.10 
1.70 
2.30 
3.27 
3.47 
4.03 
4.57 
4.3 

Rp 
1.00 
1.67 
0.81 
1.23 
1.54 
1.60 
1.47 
2.15 
1.5 

Rv 
-1.02 
-1.42 
-0.89 
-1.07 
-1.73 
-1.86 
-2.56 
-2.41 
-2.79 
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Fig. 4-6. Sample D5L5 (a) 3D roughness, (b) X-profile, (c) Y-profile and (d) histogram curve. 
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Fig. 4-7. Sample D5L20 (a) 3D roughness, (b) X-profile, (c) Y-profile and (d) histogram curve. 
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Fig. 4-8. Sample D10L20 (a) 3D roughness, (b) X-profile, (c) Y-profile and (d) histogram curve. 
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Fig. 4-9. Sample D20L20 (a) 3D roughness, (b) X-profile, (c) Y-profile and (d) histogram curve. 
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Fig. 4-10. Sample D20L40 (a) 3D roughness, (b) X-profile, (c) Y-profile and (d) histogram curve. 
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4.4. Corrosion tests 

Tables 4-2 to 4-4 present the calculated corrosion data from each of the three 

corrosion tests. Fig. 4-11 shows the potentiodynamic corrosion curves of sample 

REF. Two tests were done on fresh samples to ensure repeatability of the 

conditions. It is observed that the cathodic and anodic sides of both curves are 

very similar and there is little difference between their corrosion potentials (Ecorr) 

and corrosion current densities (Icorr). The main difference between these two 

REF samples is observed in the passive regions. In the first test the passive 

region ranges from 0.35 to 0.75 V but in the second test it ranges from 0.45 to 

0.75 V. The reason is that in each corrosion test a fresh 0.5M H2S04 was used, 

so the passive regions are slightly different. 

Fig. 4-12 shows three corrosion curves of sample D5L5. The first test curve 

has a passive region approximately from 0.25 to 0.77 V. It seems that the 

passive layer became unstable around 0.90 V and the corrosion rate increased 

after this voltage. In the second test curve, the Ecorr increased and the Icorr 

decreased (see Table 4-3) which is a sign of a stable layer's formed in the first 

test. The passive region in the second test was shorter and narrower (0.4-0.68 V) 

compared to the first one. The third test showed that corrosion rate is decreasing 

(lower Icorr and higher Ecorr). However in the third test, it is observed that the 

surface of the sample was severely corroded compared to the previous tests and 

a corrosion resistant layer was deposited. Fig. 4-21 (a) shows the current density 

(Icorr) and polarization (Rp) values of three corrosion tests for sample D5L5. As 

Icorr decreased the polarization increased. This shows that there is an increase 

in corrosion resistance due to development of the corroded layer on the surface 

after the first test. Fig. 4-21 (b) shows that the Ecorr is almost unchanged in the 

second and the third corrosion tests. Fig. 4-31 shows the surface of sample 

D5L5 after each corrosion test. The surface damage became worse after each 

corrosion test, the amount of corrosion is more and the corroded layer is 

probably thicker. So the layer protected the sample from further corrosion in the 

third test and the polarization resistance increased dramatically. 
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In sample D5L10, no passive region is observed during the first test (Fig. 4-13) 

but after the second test a short region was formed around 0.2 V which is 

probably a passive region. Finally, after the third test a stable passive region 

appeared in the curve and remained without any change up to the end of the test 

(see the third curve). It seems that in this sample's passive layer was formed 

later than that of sample D5L5 because in the second test the Icorr increased 

(but Ecorr increased too) and after the third test the Icorr decreased compared 

with previous tests (see the related values in Tables 4-2 to 4-4). 

Sample D5L20 differs from the other two in this set of samples (Fig. 4-14). In 

this sample there is a passive region in both first and second tests. The cathodic 

and anodic slopes are very similar in both curves. In the first test a passive 

region was approximately formed between 0.3 and 0.63 V and then the curve 

went through a transpassive region and the corrosion rate increased. In the 

second test, the passive region had some fluctuations or instabilities. Probably, in 

this region the passive layer was frequently broken and re-passivated, so the 

Ecorr and Icorr are fluctuating on that region. The Ecorr and Icorr are close to 

each other in both tests (Tables 4-2 and 4-3). In the third test, many fluctuations 

were observed in the cathodic to anodic transient area which is most probably 

due to a stable passive layer formed in the past tests. This layer caused a 

significant decrease in the Icorr (Table 4-4). Fig. 4-22 (a) shows the Icorr and Rp 

from three corrosion tests for sample D5L20. In these curves the Icorr is 

decreasing and Rp is increasing which is the expected behavior. Icorr did not 

change greatly in the first two corrosion tests and the Rp increased slightly, but 

after the third test the magnitude of Icorr decreased and Rp increased 

significantly which is due to a stable passive layer in the third test (SEM images 

show the changing trend, Fig. 4-33). Fig. 4-22 (b) confirms that corrosion started 

sooner in the third test. This is because the surface was corroded from previous 

tests and it was susceptible to be corroded sooner, but the Icorr is low because 

there was a passive layer on the surface coming from previous tests. 

Fig. 4-15 shows the corrosion curves for sample D10L10. Generally in this 

sample the Ecorr remained almost constant and the Icorr decreased. As 
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observed, there is a passive region in both first and second tests around 0.85 V. 

This passive region is more extended in the second test and it seems the 

passivity stabled up to the end of the test. In the third test, the Icorr decreased 

remarkably but because of the curve shape it was not possible to calculate the 

real value. 

Sample D10L20 (Fig. 4-16) has some similarity with sample D5L10 in terms of 

the passive region. In both samples, no passive region is observed in the first 

test. In the second test there are many fluctuations in the curve and it can be 

concluded that it resembles a passive region but its shape differs from the other 

samples and common passive regions. If it was a passive layer, most likely the 

layer was not stable enough and as a result in the third test, the magnitude of 

Icorr increased significantly. 

Sample D10L30 shows that after each corrosion test the sample became more 

resistant to corrosion (Fig. 4-17). In this sample, the passive region was present 

in the second test. The Icorr slightly decreased between 0.42 to 0.58 V, however, 

the decrease was not large. In fact, it seems that the passive layer did not remain 

as stable as in other tests. In the third test the curve looks like the second curve 

of sample D10L20 with many fluctuations. In this case calculation of the Icorr was 

not possible due to the curve shape. 

The corrosion curves of sample D20L20 are plotted in Fig. 4-18. The first curve 

shows a stable and long passive region from 0.0 V up to the test finish. In this 

region the Icorr is constant or decreasing. This condition is favorable for 

corrosion resistance. After the second test, it is observed that the Icorr decreased 

by about two orders of magnitude and the Ecorr was unchanged compared with 

the first test values (Tables 4-2 and 4-3). It is worth mentioning that the Icorr of 

the first test (0.4076 pA/cm2) was lower (better) than that of sample REF (0.5141 

pA/cm2). In the third test, it is thought that the passive layer did not have a 

protective property as in previous tests and, as a result, Icorr increased (Table 4-

3). 

Sample D20L30 had a vey similar corrosion behavior to sample D10L20 (Fig. 

4-19). In the first test there was no passive region and the magnitude of Icorr was 
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relatively high. In the second test the magnitude of Icorr dramatically decreased 

and the cathodic and anodic sides showed considerable fluctuations. In this 

curve, no corrosion parameters were obtained but it is evident that the magnitude 

of current density was very low. In the third test the corrosion rate increased. This 

is probably because any instability on the corroded surface can accelerate the 

corrosion rate. 

Sample D20L40 had the best corrosion behavior after the first test of all the 

samples. Fig. 4-20 presents the corrosion curves for this sample. There is a shift 

in both cathodic and anodic sides of the first curve. In the anodic side the curve 

moved almost vertically after that shift (around -0.2 V) and a passive-like region 

was formed which was stable to the test finish. The Icorr was the lowest (0.03 

pA/cm2) of all samples and even better than sample REF. However, the Ecorr 

was not the most noble (the highest). After the second test the sample still had a 

very good combination of Icorr and Ecorr (Table 4-2). Finally after the third test 

Icorr increased but Ecorr remained almost constant. No passive region was 

obtained in the third test. Fig. 4-23 (a) shows the Icorr and Rp values for all 

corrosion tests. After the first test, the Icorr and Rp increased. Usually the Rp 

value changes inversely with Icorr. This means that if Icorr increases, Rp 

decreases and vice versa. In this sample after the first test both values (Icorr and 

Rp) increased. The reason could be that some other factors such as the Tafel 

slopes affect Rp (see Eq. 3-1). However, after the third test, Icorr increased 

significantly and Rp decreased dramatically which shows the expected trend. So, 

it can be said that the passive layer formed in the first corrosion test, was stable 

in the second test because the magnitude of Icorr and Ecorr [Fig. 4-23 (b)] only 

slightly changed, but after the third corrosion test the surface was severely 

damaged. SEM images (Fig. 4-39) show this process visually. 
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Table 4-2. The corrosion data for all samples after the first test 

Sample 
codes 

REF 
D5L5 
D5L10 
D5L20 

D10L10 
D10L20 
D10L30 
D20L20 
D20L30 
D20L40 

/3a 
(mV) 

45.5 
89.9 
123.6 
160.6 
111.6 
201.9 
131.1 
115.9 
101.9 
85.7 

/3c 
(mV) 

-294 
-158.9 
-157.8 
-118.2 
-348.2 
-204.9 
-149.2 
-78.6 

-293.5 
-100.8 

Icorr 
(pA/cm2) 

Value 
0.5141 
16.56 
6.976 

0.6153 
62.51 

7.3 
6.191 
0.4076 
11.49 
0.030 

Rank 
3 
9 
6 
4 
10 
7 
5 
2 
8 
1 

Ecorr 
(mV) 

Value 
-90.8 

-295.10 
-307.5 
-262.8 
-200.5 
-312.4 
-306.2 
-305.7 
-262.7 
-280.6 

Rank 
1 
6 
9 
4 
2 
10 
8 
7 
3 
5 

RP 
(Ohm. cm2) 

Value 
32956.8 
1507.5 
4319.8 

48112.2 
587.8 

6056.8 
6594.7 

49960.2 
2705.0 
671295 

Rank 
4 
9 
7 
3 
10 
6 
5 
2 
8 
1 

Table 4-3. The corrosion data for all samples after the second test 

Sample codes 

REF 
D5L5 

D5L10 
D5L20 

D10L10 
D10L20 
D10L30 
D20L20 
D20L30 
D20L40 

/3a 
(mV) 

-
58.2 

-
68.1 
110.3 

-
128.5 
132.1 

-
260.2 

/3c 
(mV) 

-
-179.4 

-
-180.1 
-164.8 

-
-130.5 
-187.0 

-
-275.6 

Icorr 
(pA/cm2) 

Value 
-

0.340 
-

0.379 
0.781 

-
0.746 
0.006 

-
0.048 

Rank 
-
3 
-
4 
6 
-
5 
1 
-
2 

Ecc 
(m 

Value 
-

-154.2 
-

-182.7 
-242.7 

-
-295.5 
-288.0 

-
-283.2 

irr 

Rank 
-
1 
-
2 
3 
-
6 
5 
-
4 

RP 
(Ohm. cm2) 

Value 
-

56194.2 
-

56640.8 
36784.3 

-
37735.2 
5609685 

-
1212312 

Rank 
-
4 
-
3 
6 
-
5 
1 
-
2 

Table 4-4. The corrosion data for all samples after the third test 

Sample codes 

REF 
D5L5 

D5L10 
D5L20 

D10L10 
D10L20 
D10L30 
D20L20 
D20L30 
D20L40 

/3a 
(mV) 

-
200.2 
61.5 
41.3 

-
101.7 

-
278.5 
73.3 
108.7 

Pc 
(mV) 

-
-260.4 
-183.4 
-280.5 

-
-264.0 

-
-300.7 
-202.4 
-262.1 

Icorr 
(pA/cm2) 

Value 
-

0.032 
0.218 
0.01 

-
0.268 

-
1.327 
0.396 
1.155 

Rank 
-
2 
3 
1 
-
4 
-
7 
5 
6 

Ecc 
(m 

Value 
-

-159.7 
-199.5 
-325.6 

-
-265.6 

-
-328.7 
-183.2 
-273.9 

irr 

Rank 
-
1 
3 
6 
-
4 
-
7 
2 
5 

RP 
(Ohm.cm2) 

Value 
-

969872 
85368.4 
1655197 

-
89338.7 

-
33479.2 
58417.7 
22756.2 

Rank 
-
2 
4 
1 
-
3 
-
6 
5 
7 
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Fig. 4-11. Potentiodynamic corrosion curves for sample REF in 0.5M H2S04. 
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Fig. 4-12. Potentiodynamic corrosion curves for sample D5L5 in 0.5M H2S04 after different tests. 
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Fig. 4-13. Potentiodynamic corrosion curves for sample D5L10 in 0.5M H2S04 after different 
tests. 
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Fig. 4-14. Potentiodynamic corrosion curves for sample D5L20 in 0.5M H2S04 after different 
tests. 
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Fig. 4-15. Potentiodynamic corrosion curves for sample D10L10 in 0.5M H2S04 after different 
tests. 
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Fig. 4-16. Potentiodynamic corrosion curves for sample D10L20 in 0.5M H2S04 after different 
tests 
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Fig. 4-17. Potentiodynamic corrosion curves for sample D10L30 in 0.5M H2S04 after different 
tests. 
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Fig. 4-18. Potentiodynamic corrosion curves for sample D20L20 in 0.5M H2S04 after different 
tests 
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Fig. 4-19. Potentiodynamic corrosion curves for sample D20L30 in 0.5M H2S04 after different 
tests. 
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Fig. 4-20. Potentiodynamic corrosion curves for sample D20L40 in 0.5M H2S04 after different 
tests. 
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Corrosion data for sample D5L5 
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Fig. 4-21. Corrosion data of sample D5L5 (a) Icorr and Rp curves, (b) Ecorr curve. 

£ 0.2 

(a) 

Corrosion data for sample D5L20 

Test number 

Corrosion potential for sample 
D5L20 

-150 n 

^ -200-
E 
fc" " 2 5 0 i 
p 
lij -300 

•3R/1 

1 2 3 

su\ Test number 

Fig. 4-22. Corrosion data of sample D5L20 (a) Icorr and Rp curves, (b) Ecorr curve. 

Corrosion data for sample D20L40 

1.5 

z> 1-2 c\f 

ip 09 

^ 0.6 
c 
o 
.a 0.3 

(a) 

-*— Current density 

- * — Polarization 

Test number 

Corrosion potential for sample 

-273 -, 

S> -276 
E 
fcT -279-

| -282 

-9 f l * l 

(b) 

D20L40 

1 2 3 

Test number 

Fig. 4-23. Corrosion data of sample D20L40 (a) Icorr and Rp curves, (b) Ecorr curve. 
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Table 4-5 ascendingly ranks Icorr values for all samples after the first test. In 

this table there are some ratios or parameters namely (Ra/D), (Ra/D) and (D/L)2 

defined. These parameters have been defined because it is predicted that there 

is a dependency between the hole diameter, the hole distance between and the 

surface roughness. In addition, in other research [22,23,61] such parameters as 

the distance and height of surface pattern constituents (asperity height) have 

been studied. Those three ratios were defined to investigate the dependency of 

the Icorr and the Ecorr on them. According to this ranking it can be concluded 

that there are two groups. First group includes samples D20L40 to D20L20 and 

the second one starts from sample D5L20 to sample D10L10. In both groups by 

increasing the (D/L)2 parameter, Icorr also increases. In other words, by 

increasing the parameter the corrosion resistance is weakening. Fig. 4-24 can 

give more information about the mentioned trend. In this Figure Icorr was plotted 

versus hole diameter for the samples with the same ratio of (D/L)2=1 with sample 

REF. It is observed that samples with D= 5 and 20 pm had lower Icorr compared 

with sample with D-10 pm. The observed values in the graph shows that 

probably decreasing the hole size (D) less than 5 pm (toward nano scale size) or 

increasing the hole size larger than 20 pm can decrease Icorr furhter which is 

promising for corrosion resistance. If this is right, the hole size will be in the range 

of nanoscale (for smaller D) or in smooth or flat scale (for larger D). This trend is 

also seen for samples with (D/L)2=0.25 (Fig. 4-25). Regarding (D/L)2 ratio, there 

are two possibilities to have lower value. First increasing the hole distance (L) 

and second decreasing the hole diameter D. The former means going toward 

small scales such as nanoscale and the later induces a smooth surface. 

Regarding Ra/D and Ra/D parameters, no constant trend is observed. This 

shows that the well known parameters characteristics for randomly distributed 

roughness do not represent artificially patterned surfaces. The better alternative 

is to consider other surface parameters such as D and L. Fig. 4-28 shows Icorr 

values versus roughness of samples before the corrosion tests. As seen, there is 

no clear trend between all samples and the curve is ascending or descending in 

different parts. Comparison between this curve and the (D/L)2 ratio (Table 4-5) 
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confirms that the trend in Icorr values versus the ratio is more clear than that of 

roughness. In fact, for roughness no general conclusion can be made. 

Table 4-6 descendingly ranks Ecorr values for all samples after the first test. In 

this table there is no clear trend in the behavior of the defined parameters as 

Ecorr increases. For example, from sample D10L10 to sample D5L20, (D/L)2 

parameter decreased and after that increased. This is repeated for other 

parameters as well. However, for samples with the same hole diameter (D) it is 

seen that by increasing Ra/D parameter the Ecorr decreased (compare in Table 

4-6). This means that the greater the roughness, the lower the corrosion 

potential. The only exception in this trend is sample D20L40 which has higher 

Ecorr. Fig. 4-29 shows all Ecorr values versus the roughness of initial samples 

before the corrosion tests. Although there is no ascending or descending trend, 

the Ecorr values are decreasing as roughness increases. This is in good 

agreement with previous finding of other researchers [24-26]. However, it is 

obvious the roughness can not be the only factor to affect the Ecorr value. For 

example, sample D10L10 has higher (better for corrosion resistance) Ecorr 

compared to sample D5L5, while it is rougher. In both samples, the D and L 

values are different and it seems they have a significant effect on the Ecorr 

value. Figs. 4-26 and 4-27 present the Ecorr of samples with (D/L)2=1 and 

(D/L)2=0.25, respectively. A comparison between these curves confirms that for 

samples with (D/L)2=0.25, Ecorr values are in good agreement with the relevant 

Icorr values (Fig. 4-25). It means that the sample which had the lowest Icorr 

showed the highest Ecorr. This is the best combination of Icorr and Ecorr for 

better corrosion resistance. In contrast, the set of samples with (D/L)2=1 showed 

that the sample with the lowest Icorr did not have the highest Ecorr. Samples 

D20L40 and D20L20 had better (lower) Icorr values compared with sample REF 

and others. Sample REF had the best Ecorr (highest) amongst all and samples 

D20L30, D5L20 and D20L40 ranked in next places. 
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Table 4-5. Dependence of Icorr of all samples and different parameters after the first test. 

Sample 
(ranking) 

ascendingly 
1 
2 
3 
4 
5 
6 
7 
8 
9 

D20L40 
D20L20 
D5L20 

D10L30 
D5L10 

D10L20 
D20L30 
D5L5 

D10L10 

Icorr 
(pA/cm2) 

0.03 
0.4076 
0.6153 
6.191 
6.976 

7.3 
11.49 
16.56 
62.51 

X direction Y direction 

Ra/D 

0.050 
0.040 
0.040 
0.052 
0.096 
0.065 
0.036 
0.054 
0.030 

Ra/L 

0.025 
0.040 
0.010 
0.017 
0.048 
0.032 
0.024 
0.054 
0.030 

(D/L)2 

0.25 
1 

0.062 
0.108 
0.25 
0.25 

0.435 
1 
1 

1 

II 

Ra/D 

0.050 
0.035 
0.040 
0.108 
0.088 
0.056 
0.029 
0.050 
0.023 

Ra/L 

0.050 
0.035 
0.010 
0.036 
0.044 
0.028 
0.019 
0.050 
0.023 

Table 4-6. Dependence of Ecorr of all samples and different parameters after the first test. 

Sample 
(ranking) 

descendingly 
1 
2 
3 
4 
5 
6 
7 
8 
9 

D10L10 
D20L30 
D5L20 

D20L40 
D5L5 

D20L20 
D10L30 
D5L10 

D10L20 

Ecorr 
(mV) 

-200.5 
-262.7 
-262.8 
-280.6 
-295.1 
-305.7 
-306.2 
-307.5 
-312.4 

X direction Y direct 

Ra/D 

0.030 
0.036 
0.040 
0.050 
0.054 
0.040 
0.052 
0.096 
0.065 

Ra/L 

0.030 
0.024 
0.010 
0.025 
0.054 
0.040 
0.017 
0.048 
0.032 

(D/L)2 

1 
0.435 
0.062 
0.25 

1 
1 

0.108 
0.25 
0.25 

Ra/D 

0.023 
0.029 
0.040 
0.050 
0.050 
0.035 
0.108 
0.088 
0.056 

ion 

Ra/L 

0.023 
0.019 
0.010 
0.050 
0.050 
0.035 
0.036 
0.044 
0.028 
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Fig. 4-24. The Icorr values versus hole diameters (D) for all samples with (D/L) =1 and sample 
REF (D/L)2=0 after the first corrosion test. 

Icorr for (D/L) -0.25 samples 

•9 7 

0.25 

1>D(|iirf) 

Fig. 4-25. The Icorr values versus hole diameters (D) for all samples with (D/L) =0.25 and sample 
REF (D/L)2=0 after the first corrosion test. 
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Fig. 4-26. The Ecorr values versus hole diameters (D) for all samples with (D/L) =1 and sample 
REF (D/L)2=0 after the first corrosion test. 
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Fig. 4-27. The Ecorr values versus hole diameters (D) for all samples with (D/L) =0.25 and 
sample REF. 
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Fig. 4-28. Icorr values for all samples versus roughness. 
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Fig. 4-29. Ecorr values for all samples versus roughness. 
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4.5. SEM images after corrosion tests 

Fig. 4-30 shows the SEM images of sample REF after one corrosion test. As it 

can be observed, there are some severe, local corroded areas: See Fig. 4-30 (b) 

for magnified view. It is evident that those areas were formed by coalescence of 

small pits or holes. Sample REF had a severe local corrosion and unacceptable 

surface condition after the corrosion test. 

Sample D5L5 corroded surface is shown in Fig. 4-31. This figure contains three 

corroded surfaces from the three corrosion tests. After the first test there is no 

sign of any severe corrosion [see Fig. 4-31 (a) and (b)]. The second test 

destroyed the patterning. The third test result is similar to the second one [Fig. 4-

31 (e) and (f)]. 

Comparing corroded surfaces of samples D5L10 (Fig. 4-32) and D5L5 does not 

show any large differences. The patterning degradation is similar in both cases. 

The Icorr of sample D5L10 is in the middle of corrosion current density ranking 

(see Table 4-5) and the surface condition after the first test is not significantly 

damaged [(a) and (b)]. In the second and third tests the surface destruction 

became worse and worse and the pattern was fully removed. 

The corroded surfaces of sample D5L20 are presented in Fig. 2-33. In the first 

test a local corroded area was observed [(a) and (b)]. Based on values of Icorr, 

the surface of this sample (ranked 3rd) should be in good condition. The damage 

was confined to a small area and did not affect the whole surface. The surface 

after the second and the third tests showed huge corroded areas and the surface 

had a wave-like appearance. 

Sample D10L10 showed a severe corroded appearance (Fig. 4-34). After the 

first test the surface has a porous structure [(a) and (b)] and after the second test 

the surface changed significantly and any patterning was completely removed 

[(c) and (d)]. After the third test the corroded regions are deeper than samples of 

D=5pm and also the depth of different regions are different [(e) and (f)]. 

According to Icorr of this sample there is a good agreement between corrosion 

current density and the surface condition especially after the first test. 
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Sample D10L20 SEM images are presented in Fig. 4-35. The patterned 

surface was slightly changed after the first test [Fig. 4-35 (a)]. Some small 

corroded areas (maybe pits) are observed in the holes [Fig. 4-35 (b)]. This 

sample was gradually damaged from the first test to the last test [follow images 

from (b) to (d) to (f)]. It is evident that the inside of the hole was partially corroded 

in the first test and in the third one the hole was overally corroded and the shape 

was affected. The Icorr value for this sample was in the middle of the rankings. 

Sample D10L30 was similar to sample D10L20, but with the difference that 

after the first test the whole surface was corroded [Fig. 4-36 (a) and (b)]. It is 

difficult to distinguish between a hole and its surrounding flat area after the first 

corrosion test and in the next test the surface is completely destroyed. In the 

third test, there are heavily corroded areas. 

Surface images of sample D20L20 are presented in Fig. 4-37. This sample 

showed good appearance after all tests. The first corroded surface (a) showed 

almost no change compared to the original sample. In addition, in the following 

tests the sample had approximately the same appearance. The surface of this 

sample confirms low magnitude of Icorr (better than sample REF) in the tests. It 

seems that the passive layer formed in the first test was stable and protected the 

surface in subsequent corrosion tests compared to any passive behavior noted in 

polarization curves. 

Sample D20L30 [Fig. 4-38] showed almost the same behavior as samples 

D10L10 and D10L20. After the initial corrosion test, corroded areas appeared on 

the sample surface. In the following tests, the corrosion became progressively 

worse. Some severe deep corroded areas were created on the surface and any 

patterning could no longer be seen [Fig. 4-38 (e) and (f)]. 

Sample D20L40 exhibited the best amount of patterning degradation. 

Comparing the original sample and after the first corrosion test there was no 

obvious change either inside or outside the holes [Figs 4-39 (a) and 4-4 (f)]. The 

Icorr was the lowest of all samples. After the second corrosion test there was 

some surface damage but the pattern was well defined. Finally, after the third 

corrosion test the surface was damaged but the pattern was not fully degraded. 
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In summary, it can be said that in most samples the surface appearances was 

in good agreement with calculated Icorr values. Samples D20L20 and D20L40 

had the lowest surface degradation after the first test. 

Fig. 4-30. The SEM micrographs of sample REF after the first corrosion test. 
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Fig 4-31 The SEM micrographs of sample i 
second, (e) and (f) the third corrosion tests in 0 

5 after (a) and (b) the first, (c) and (d) the 
H2S04 
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Fig. 4-32. The SEM micrographs of sample L 
second; (e) and (f) the third corrosion tests in 0. 

Chapter 4: Results and discussions 

10 after: (a) and (b) the first; (c) and (d) the 
H2S04. 
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Fig 4-33 The SEM micrographs of sample I 
second; (e) and (f) the third corrosion tests in 0 

20 after (a) and (b) the first, (c) and (d) the 
H2S04 
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Fig 4-34 The SEM micrographs of sample L 
second, (e) and (f) the third corrosion tests in 0 

.10 after (a) and (b) the first, (c) and (d) the 
H2S04 
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Fig 4-35 The SEM micrographs of sample L 
second, (e) and (f) the third corrosion tests in 0 

.20 after (a) and (b) the first, (c) and (d) the 
H2S04 
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F/g 4-36 The SEM micrographs of sample D10L30 after (a) and (b) the first; (c) and (d) the 
second, (e) and (f) the third corrosion tests in 0 5M H2S04 
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Fig 4-37 The SEM micrographs of sample D20L20 after (a) and (b) the first; (c) and (d) the 
second, (e) and (f) the third corrosion tests in 0.5M H2S04. 
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Fig 4-38 The SEM micrographs of sample L 
second, (e) and (f) the third corrosion tests in 0 

.30 after (a) and (b) the first; (c) and (d) the 
H2S04 
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Fig. 4-39. The SEM micrographs of sample D 
second; (e) and (f) the third corrosion tests in 0. 

.40 after (a) and (b) the first; (c) and (d) the 
H2S04. 
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4.6. Roughness after corrosion tests 

Table 4-7 presents the roughness values of all samples after the second 

corrosion test. A comparison between all values shows that for some samples 

the roughness increased and for the others decreased. The highest and lowest 

Ra were observed for samples D10L20 (sample D20L40 before corrosion tests) 

and D5L10 (sample D5L5 before corrosion tests), respectively. Generally there 

was no clear trend or dependency in roughness changes after corrosion tests. 

Fig. 4-40 shows the roughness data for sample D5L5. The 3D image of this 

sample shows a local severely corroded area (the blue area). As it is observed 

the height distribution is less uniform compared to that of the initial sample (see 

Fig. 4-6). The histogram curve in Fig. 4-40 is a bit shifted to the right side in 

comparison to that of initial sample. This confirms the average roughness was 

increased due to corrosion phenomena after two corrosion tests. 

The roughness data of sample D5L20 are presented in Fig. 4-41. Again in this 

sample the roughness increased compared to the initial state. Local blue and red 

areas show non uniform areas on the surface as a result of the corrosion tests. In 

the histogram curve, the average roughness did not change much compared with 

the initial sample (Fig. 4-7) but the distribution was extended which is due to 

increase in height or depth at different places on the surface. Sample D10L20 is 

similar to samples D5L5 and D5L20, but its histogram curves [Fig. 4-42 (d)] is a 

bit different from the initial one [Fig. 4-8 (d)]. In the histogram curve there is a 

horizontal part but this part is much shorter in the curve before corrosion tests. 

This proves that due to corrosion reactions a larger area of the sample was 

attacked by corrosive components, the surface was damaged and as a result the 

surface is rougher. 

Comparing the histogram curves of samples D20L20 before [Fig. 4-9 (d)] and 

after corrosion tests [Fig. 4-43 (d)] gives some useful information about the 

sample. In the 3D images there is no large difference in their surface appearance 

(good agreement with the SEM images). It seems both surfaces are almost 

identical. This is in a good agreement with the Icorr values. This sample has a 

very low Icorr (lower than sample REF). The histograms are similar and there is 
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just a little shift toward down for the curve after the second corrosion test. This 

means the sample had a good corrosion resistance and its surface resisted the 

corrosive medium well. 

Sample D20L40 has a similar behavior to sample D20L20. The 3D images are 

similar and no sign of severe corrosion is observable. The histogram curves 

show that the average roughness is still close to zero after two corrosion tests. 

Some irregularities in the histogram curves after the second test maybe refer to 

some local corroded areas [see Figs. 4-44 and 4-10 (d)]. 

Table 4-7. The roughness value obtained from profilometry for some corroded samples 

Sample 
codes 

D5L5 
D5L10 
D5L20 

D10L10 
D10L20 
D10L30 
D20L20 
D20L30 
D20L40 

Roughness values 
X direction 

Rq 
0.81 
0.44 
0.72 
0.75 
1.18 
0.61 
0.74 
1.07 
0.92 

Ra 
0.58 
0.35 
0.57 
0.60 
1.07 
0.48 
0.62 
0.85 
0.71 

Rt 
4.50 
2.73 
3.84 
4.08 
4.20 
3.57 
3.62 
5.06 
4.71 

Rp 
1.63 
1.14 
1.73 
1.87 
1.36 
1.52 
1.37 
1.92 
1.64 

Rv 
-2.87 
-1.58 
-2.10 
-2.21 
-2.84 
-2.05 
-2.24 
-3.14 
-3.06 

Y direction 
Rq 

0.42 
0.48 
0.85 
0.74 
1.04 
0.60 
0.78 
1.14 
0.91 

Ra 
0.34 
0.38 
0.69 
0.6 
0.87 
0.47 
0.62 
0.98 
0.66 

Rt 
2.39 
2.81 
4.42 
3.76 
4.15 
3.61 
3.91 
4.97 
4.77 

Rp 
1.49 
1.34 
1.84 
1.47 
1.25 
1.71 
1.85 
1.85 
1.79 

Rv 
0.89 
-1.46 
-2.57 
-2.28 
-2.9 

-1.90 
-2.05 
-3.11 
-2.98 
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Fig. 4-40. Sample D5L5 (a) 3D roughness, (b) X-profile, (c) Y-profile and (d) histogram curve after 
the second corrosion test. 
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Fig. 4-41. Sample D5L20 (a) 3D roughness, (b) X-profile, (c) Y-profile and (d) histogram curve 
after the second corrosion test. 
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Fig. 4-42. Sample D10L20 (a) 3D roughness, (b) X-profile, (c) Y-profile and (d) histogram curve 
after the second corrosion test. 
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Fig. 4-43. Sample D20L20 (a) 3D roughness, (b) X-profile, (c) Y-profile and (d) histogram curve 
after the second corrosion test. 
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Fig. 4-44. Sample D20L40 (a) 3D roughness, (b) X-profile, (c) Y-profile and (d) histogram curve 
after the second corrosion test. 
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4.7. EDS after the first corrosion test 

In the corrosive environment of this research there were some ions such as Ft, 

S04
2', O2' and Ni ions. Some questions could arise as to which ion is reduced 

and which one is oxidized while corrosion or what compound would be the 

corrosion product? Regarding all EDS spectra it is understood that there is no 

sulfur peak in the spectra. So it can be said that after corrosion no NiSC>4 was 

formed on the surface. In addition, NiS04 is highly soluble in water. In turn, 

oxygen peak was observed and its amount was different in some cases. 

Generally it seems that an oxide layer was formed on the corroded surfaces 

during the corrosion tests. Another point refers to the ratio of Ni/O (the most 

intense Ni peak to the oxygen peak). Comparing sample REF in both conditions 

before the test [Fig. 4-5 (a)] and after the first test [Fig. 4-45 (a)] shows that there 

is a small change in the ratio. The EDS spectra of sample D5L20 on the surface 

[Fig. 4-45 (b)] and in the pit [Fig. 4-45 (c)] does not show any significant 

difference. The Ni/O ratio is different in sample D20L40 before and after the 

corrosion test [Fig. 4-45 (d) and Fig. 4-5 (e)]. This shows more oxygen, due to 

corrosion, in the corroded sample rather than the initial sample. Also it is seen 

that the amount of oxygen inside the hole [Fig. 4-45 (e)] s less than that on the 

surface. This could be supporting evidence to suggest corrosion into the holes is 

less than in the surrounding areas in this sample. 

Sample REF 

Ni _ 49 

3 .50 4 . 0 0 4 . 5 0 

Fig. 4-45. EDS analysis spectra of samples (a) REF, (b) D5L20; surface, (c) D5L20; pit, (d) D20L40; surface, 
and (e) D20L40; hole (continued). 
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5. Conclusions 

According to this research following conclusions can be drawn: 

1. After the first corrosion test using the dynamic polarization method it was seen 

that samples D20L40 (lcorr= 0.03 pA/cm2) and D20L20 (lcorr= 0.4076 pA/cm2) 

have the lowest (the best) Icorr among all samples even better than sample REF 

(0.5141 pA/cm2). 

D o 

2. There is a trend or dependency between (—) ratio, hole size (D) and Icorr. 
J-j 

D o 
The higher the (—) ratio, the higher the Icorr. As a result it is better to have 

D o 
lower (—) ratio for better corrosion resistance. It is expected that smaller hole 

diameter (nano size) will decrease the Icorr which increases the corrosion 

resistance. 

3. No special trend or dependency was seen between Icorr and other 

R R 
parameters, —*- and—. After the second and the third corrosion tests, Icorr for 

D L 

most of samples were lower than sample REF because of previously formed 

passive layers. In fact, those tests are useful to find the general corrosion trend 

(especially passivity) of patterned samples. 

4. Passive regions were observed in most of samples but mainly in the second 

corrosion tests. 

5. Ecorr of all patterned samples was lower than that of sample REF in all the 

tests. It means that sample REF had the highest (the best) Ecorr in all samples. 

There was no clear trend or dependency between Ecorr and the calculated 

,D l2 R ,R„ 
parameters, (—) , —^and—. 

L D L 

6. SEM images showed that after the first test some local corroded regions were 

created on surfaces but in the samples with the lowest Icorr there was slight 

change in surface (Samples D20L40 and D20L20). This confirms that the amount 

of corroded nickel after the first test was small. After the second and the third 
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tests the surfaces were severely corroded and local heavily corroded areas were 

observed in most of samples. 

7. EDS analysis showed that the corroded layer is nickel oxide rather than nickel 

sulfate. 

5.1. Recommendations for future research: 

It is predicted that the following considerations can be useful for completion of 

this research or development of this subject. 

- Using hole sizes smaller (less than 5 pm, toward nanoscale) or larger ( >20 pm) 

D 9 
can help define whether a general trend between Icorr, Ecorr and (—) . Also, 

using multiple samples can help define any relationships. 

- According to previous research on hydrophobic surfaces, different surface 

pattern shapes affect the hydrophobic properties significantly. Thus, it is 

recommended to examine other hole shapes or other patterns on the nickel 

surface. 

- Use a smaller laser pulse duration to create deeper holes, e.g. femtosecond 

pulse duration. Using this laser type can decrese the amount of splashes and it is 

possible to have a very well defined pattern on the surface. Also, since the depth 

of the holes can greatly affect the hydrophobic properties, varying depth holes 

should be examined. 

- Measurement of water contact angle on the patterned surface using a specially 

designed optical microscope to find out whether the surface is initially 

hydrophobic or hydrophilic and also after surface patterning. 

- Surface patterning on other metals or alloys, especially stainless steels. 

Stainless steels are one of the most applicable alloys with good anti corrosion 

properties and ability to produce passive layers on the surface to resist corrosion. 
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