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Abstract 

 

Material transfer and adhesion to die surface are major tribological issues 

encountered during hot-forming of aluminum and magnesium alloys, reducing process 

efficiency. This study aimed at understanding the tribological contact interface generated 

between material and die surface under dynamic conditions created by simultaneous 

effect of temperature and strain rate. Micromechanisms of plastic deformation occurring 

under simulated hot-forming conditions were identified and related to the coefficient of 

friction (COF). 

Sliding contact experiments were done using specially designed tribometer 

(operating temperature: 25 to 545°C, strain rate: 10-3 to 10-1s-1). COF of AA5083(Al-

4.5%Mg-0.7%Mn) and AZ31(Mg-3%Al-0.7%Zn) alloys were measured  during their 

plastic deformation by the simultaneous effect of temperature and strain rate. The 

as-received and plastically deformed surfaces were characterized using optical 

interferometry, SEM, FIB and TEM. Additionally, the force required to break the asperity 

junction formed at the first contact, or junction strength, was measured for both materials 

at different temperatures. 

 Deformation mechanisms identified for AA5083 in the temperature range of 420 

to 545°C and strain rate range of 5×10-3 to 4×10-2 s-1 included diffusional flow, grain 

boundary sliding (GBS) and solute drag (SD) creep. Friction maps outlining general 

relationships between tribological behaviour and micromechanisms controlling 

deformation under a set of temperature, strain and strain rate were developed. GBS 

induced high surface roughness, resulting in high COF. Low average roughness and 

retention of strength reduced COF in SD region. Dynamic recrystallization was an 

additional factor controlling material transfer in magnesium AZ31 alloy.  

Changes in oxide layer morphology were established based on the microstructural 

characterization of sample’s surface and subsurface. In AA5083 alloy, crack formation at 

temperatures <450°C or oxide ligament formation at temperature >500°C were found in 

the magnesium rich surface oxide. Magnesium rich surface oxide reduced COF, and low 

COF was found in the material having high magnesium. AZ31 alloy always showed 
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lower COF compared to AA5083.  This was confirmed by junction strength experiment 

where adhesion strength was found to be low in high magnesium content material. 

Therefore, this investigation on the plastic deformation and surface damage mechanism, 

and their relation with the tribological behaviour provided better understanding of the 

hot-forming process. 
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Chapter 1 Introduction 

1.1. General overview 

Hot-forming is a shaping operation that is performed at temperatures above the 

recrystallization temperature of a given metal and which allows near-net forming of 

contoured parts.  It is a fast and cost effective deformation processing technique for 

producing lightweight structural components made of aluminum [1,2] and magnesium 

alloys [1,3]. Hot-forming takes advantage of superplasticity of fine-grained alloys such as 

AA5083 and AZ31 [4-6] and uses gas pressure to force a heated blank to stretch into 

conformance with a die surface. One variant of hot-forming process is superplastic 

forming (SPF) where the materials exhibit exceptionally high tensile ductility, commonly 

in the range of 400 – 2000%, which provides a large design freedom. For aluminum alloy 

SPF operates at temperature and strain rate ranges of 460 – 545 °C and 10-4 – 10-3 s-1 [7] 

respectively. An important improvement over SPF is the quick plastic forming (QPF) that 

operates at relatively lower temperature and higher strain rate (~ 450 °C and > 10-3 s-1 

respectively for aluminum [7,8]) and hence reduces the forming time considerably. 

The success of hot-forming lies in understanding the tribological issues occurring 

during the process and solving them effectively. Adhesion and material transfer to the 

counterface/die material are main concerns encountered during the hot-forming process 

of aluminum and magnesium alloys, and they influence the quality of the formed part 

[9,10]. Repeated action of the same die against different sample blanks leads to 

accumulation of the transferred material on the die surface [9,10]. Both SPF and QPF 



Page | 2  
 

processes operate at temperatures higher than 400 °C, where the working material is 

relatively soft [2,8]. As a result, any foreign material present between the blank and the 

die results in a surface imperfection that needs repairing to maintain the required surface 

finish. The adhesion of the workpiece material to the die surface increases the 

maintenance cost of the process, as the surface has to be cleaned by removing the adhered 

material mechanically [10]. Therefore, it is important to study the tribological behaviour 

of aluminum and magnesium alloys during hot-forming and to understand the 

mechanisms of adhesion for better optimization of the forming process. However, very 

limited investigations have been conducted so far on high temperature tribology of 

aluminum and magnesium alloys. 

The tribological interactions during the hot-forming process are very complex in 

nature and involve friction, wear, material transfer, and plastic deformation 

simultaneously. Standard tests do not capture plastic deformation state during hot-

forming, where the material is stretching and sliding at the same time, leading to a 

dynamic tribological condition that is difficult to represent accurately. Inability of 

simulating the actual tribological conditions in the hot-forming process has led to lack of 

understanding of mechanisms of friction and adhesion in the system. Thus, a test that 

represents the conditions of the hot-forming process is needed for accurately measuring 

friction during the process. The critical parameters of the test include the ability to 

conduct the test at temperatures between 400 °C and 500 °C, and strain rates between 

0.001 s-1 and 0.1 s-1. This will produce a dynamic interface in which oxides are constantly 

being broken and reformed [10]. The composition and mechanical behaviour of the 

generated surface layer on the forming material and the contacting die determine the 
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tribological behaviour of the system. In particular, it is important to understand how both 

surface layers affect friction and adhesion between the working materials. However, 

conventional experimental procedures for measuring the coefficient of friction (COF) in 

hot metal forming processes do not allow for the study of the effect of the strain rate on 

the system [11-16]. A study of which would require the experiment to have the ability to 

significantly stretch the work piece material while it is sliding past the representative 

tooling material. Research is therefore required to understand the phenomenon of 

material deformation and for accurate measurement of COF under the dynamic condition 

generated by the simultaneous effect of temperature and strain rate. Also, the level of 

friction controls material flow and the strain distribution during forming, which in turn 

affect the contact loads, thinning, and forming time [10]. Therefore the use of friction 

data in generating more accurate hot-forming process simulations will determine whether 

a specific geometry can be successfully formed, along with the prediction of optimal 

friction distribution on the forming tool. 

1.2. Scope of research 

This work was aimed at investigating the tribological contact interface generated 

under conditions similar to the hot-forming operation so that a relation can be established 

between the friction and the deformation mechanism of aluminum and magnesium alloys 

during the forming operation. In light of many factors that must be considered in 

describing the high temperature tribological behaviour of aluminum and magnesium 

alloys, this work took a comprehensive experimental approach. The experimental 

procedure consisted of measurement of the coefficients of friction (COF) and 

identification of deformation mechanisms operating at temperature and strain rate space 
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over which the COFs were measured. Deformation mechanisms were determined from 

relevant creep equations and from the optical/focussed-ion beam (FIB)/ transmission 

electron microscopy (TEM) observations. Friction maps that plotted COF values over the 

ranges of dominant deformation mechanisms were constructed, establishing relationships 

between tribological and mechanical properties. In addition, changes in microstructure, 

surface topography, and oxide properties were determined. 

1.3. Objectives of this research 

 The commercial success of AA5083 and AZ31 alloys are attributed to the ability 

of these alloys to exhibit multiple creep mechanisms under hot-forming conditions [17-

30]. The general overview presented in Section 1.1 indicates that there are some critical 

issues which still have to be addressed for the purpose of understanding the tribological 

behaviour during the hot-forming operation. Specific reference has also been made to the 

tribology at elevated temperature, influence of the deformation mechanism on 

tribological behaviour, and the role that deformation mechanisms play in developing the 

alloy surface morphology during high temperature deformation. Therefore, the present 

work was carried out with the following objectives: 

(1) To study the tribological behaviour of aluminum (AA5083) and magnesium (AZ31) 

alloys under dynamic conditions generated by the simultaneous effect of temperature and 

strain rate. 

 (2) To establish relationships between the tribological and mechanical properties, 

particularly between the COF and deformation creep mechanisms operating at elevated 

temperature.  
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 (3) To investigate the evolution of alloy microstructure, surface morphology, and 

damage characteristics of the surface oxide layer in relation to bulk material deformation 

under simulated hot-forming conditions.  

1.4. Organization of the dissertation 

This dissertation is organized in the following way: Chapter 2 provides a 

literature survey on the hot-forming process, deformation mechanisms responsible for 

superplasticity observed in aluminum and magnesium alloys, the oxide layer on the 

surface of Al-Mg alloy, and tribology of aluminum and magnesium alloys. Chapter 3 

provides the details of the microstructures of materials that were tested, followed by 

descriptions of the experimental setup developed to simulate hot-forming conditions, pin-

on-disk setup for investing the sliding induced damage, and junction strength experiment 

for measurement of adhesion strength. The chapter also includes the procedures of 

surface and subsurface characterization using electron microscopes, FIB microscope, 

EBSD technique, surface profilometer, nano-indenter, and XPS. Chapter 4 describes the 

measurement the coefficient of friction (COF) of AA5083 alloy and establishes a relation 

between COF and deformation mechanism map (DMM). The chapter also describes the 

surface oxide characteristics including property, composition, quantification of surface 

damage, and TEM characterization of a specific surface feature. Chapter 5 establishes a 

relation between COF and deformation mechanisms of AZ31 alloy. The chapter also 

describes the evolution of surface characteristic and bulk microstructure in relation with 

deformation behaviour. Chapter 6 provides a general discussion on the COF in relation 

with the deformation behaviour of the material. Chapter 7 summarizes this entire 

research and presents the conclusions arising from this dissertation. 
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Chapter 2 Literature Review 

2.1. Introduction 

This chapter provides a literature review on the hot-forming process of AA5083 

and AZ31 sheet blanks, and review the deformation mechanisms that operate during the 

forming operation. The characteristics of the surface oxide present on the sheet blank are 

examined. In addition to that, a survey on the tribological behaviour of these materials 

under these conditions is provided. Section 2.2 describes the forming process. In the next 

section (Section 2.3), deformation mechanisms responsible for superplasticity in material 

along with constitutive equations are discussed. High temperature deformation 

mechanisms specific to aluminum and magnesium alloys are discussed in Section 2.4. 

This is followed by a section (Section 2.5) on characteristics of oxides on the surface of 

Al-Mg alloy. Tribological behaviour of aluminum and magnesium alloys is discussed in 

Section 2.6. 

2.2.  Background on the hot-forming process 

2.2.1. The forming process 

Hot-forming is accomplished by clamping a sheet of superplastic material into a 

die and subsequently applying differential gas pressure to form the sheet to the die at a 

specified temperature. Usually hot-forming operation is done with an up-acting, 100-320 

ton, hydraulic hot press. The temperature and the gas pressure used to form aluminum 

sheets are typically in the range of 450 °C to 500 °C [31] and 0.45 MPa to 3.1 MPa[7] 
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respectively. Heating of the die in hot-forming is achieved by the use of cartridge 

resistance heaters inserted into holes drilled in the die chamber. A schematic illustrating 

the process inside the hot press is shown in Figure 2.1. The sheet was heated to between 

450 °C and 500 °C for hot-forming against the contoured surface of the forming tool. The 

sheet was held against the periphery of the tool, and air/argon pressure was applied to the 

back of the sheet in order to force a heated aluminum or magnesium blank to stretch into 

conformance with a die surface. Superplastic aluminum brackets were formed on a 

forming tool at 490 °C and under a gas pressure of 0.45 MPa [7]. The forming time per 

part was approximately 40 min.  

The future advancement in hot-forming operation is intimately related to the 

control and improvement of the tribological conditions between the aluminum blanks and 

the forming tool[7]. The tribological problems that occur during these processes tend to 

be numerous, and include metallic particle transfer to the tool, which leads to adhesion 

and surface damage to both the die and the workpiece [9]. The use of solid lubricants 

reduces adhesion of aluminum to the die surface [32]. The most commonly used 

lubricants in hot-forming process are boron nitride (BN) and graphite [33]. While 

graphite provides excellent lubricity at low cost, it decreases the efficiency of the 

subsequent sheet welding process, and so must be removed from the surface after 

forming. The use of coatings, including PVD and plasma assisted CVD coatings based on 

TiAlN [34,35], thermal spray coatings based on Cr compounds, and electroless nickel-

based coatings have also been considered [36][12] to reduce the die-sticking problem. 

Although improvements in achieving low friction at temperatures above 400 °C have 
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been observed in laboratory tests, these coatings usually fall short of eliminating the 

industrial problems.  

Fundamental research aimed at understanding the factors that control friction and 

aluminum adhesion is essential to develop an effective lubricant or coating for improving 

the viability of the hot forming process that is sustainable in automotive volumes. Two 

variants of hot-forming process are mainly used in automotive industries and will be 

described in the next two sections.  

2.2.2. Superplasticity and superplastic forming (SPF) 

 Superplasticity is the ability of a material to undergo very large uniform 

tensile/compressive deformation prior to failure, at a temperature well below its melting 

point [37]. Superplastic behaviour occurs at T > 0.5Tm. Typical values of the elongation 

to failure in uniaxial tension under superplastic conditions are of the order of a few 

hundred percent, and in some alloys can even exceed 1000%. The research interest in 

superplasticity has greatly increased in the 1960s [38,39], when it was demonstrated that 

in this regime, metal sheets could undergo large tensile deformation and could easily be 

formed to complex shapes. 

 SPF is one variant of hot-forming techniques where the exceptionally high 

ductility of the working materials allows for a large freedom of design. The main 

limitation towards mass application of SPF is the relatively low strain rate that is 

associated with conventional fine-structure superplasticity. The aerospace industry 

implemented SPF of parts, as there has always been a need to use high strength-to-weight 

materials such as aluminum and titanium. The forming of complex, one-piece 

components replaced the need for welding and fastening of several pieces, thereby saving 
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both weight and production time. Superplastically formed parts are also free of residual 

stresses, in addition to having no spring-back. Examples of superplastically formed 

aircraft pieces are landing gear doors, wing tips, engine nacelles, and stiffening panels 

[31,40]. In the rail industry, superplastic aluminum panels have proven to be beneficial 

for both interior and exterior use. Internal panels are one such example in the rail industry 

[31]. Also, production of complex door inner and outer panels for automotive industries, 

ensuring structural integrity, reducing part count, and minimizing weight, was possible by 

SPF [31]. 

2.2.3. Quick plastic forming (QPF) 

 The development of QPF technology enabled high volume production of various 

automobile body components particularly made of AA5083 [8]. As an example an 

automobile decklid outer panel was formed by QPF where the component was formed at 

450 °C and at strain rate > 10-3 s-1.  During the process the forming pressure continually 

increased to 3.1 MPa over a period of 260 s and maintained for the next 60 s to achieve 

the required shape [7].  Depending upon the size and complexity of the panel to be 

formed, the process can be completed in a period of about 2 – 12 min, considerably faster 

than the time required for SPF (> 30 min) [7]. In the QPF process, the forming 

temperature is substantially reduced and the rate of forming increased from the 

conventional SPF process and hence the cycle time is much lower than the SPF process. 

The QPF process, which is similar to SPF but takes place at higher strain rates 

(> 10-3 s-1), works in the range of the transition from grain boundary sliding (GBS) to 

dislocation creep, whereas SPF is normally done at the low strain rates of the GBS 

regime [1,8,17-21]. QPF also takes advantage of the role of the magnesium addition to 
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the aluminum-base alloy, which results in control of deformation by solute drag (SD) 

creep in the dislocation deformation regime[18,22]. The flow stress is more strain-rate 

sensitive during SD creep, and this enhances ductility under QPF forming conditions 

[18,22-24]. Examples of superplastically formed automotive components are lift gate, 

decklid, and door inner and outer panel as shown in Figure 2.2 [8,41].  

2.2.4. General creep equations and typical superplastic materials 

  Deformation behaviour of the material during SPF/QPF can be described by the 

phenomenological creep equation [2]: 

        (2.1) 

Where A is the material constant, σ is the flow stress, n is the stress exponent, E is the 

temperature compensated Young’s modulus, b is the Burgers vector, d is the grain size, p 

is the grain size exponent, Q is the activation energy for deformation, and R is the 

universal gas constant.   

  The stress exponent, n, can be obtained from the slope of a log  vs. logσ plot. In 

many cases deformation behaviour of the material is also described by the inverse of 

stress exponent, 1/n (strain rate sensitivity, m).  For example, n = 2 implies deformation 

by GBS [42]. 

For superplastic behaviour, a material must be capable of being processed into a 

fine grain equiaxed structure (< 10 µm), which will remain stable at the forming 

temperature [2,6,43]. It is important also that processing leads to a predominance of high 

angle boundaries (lattice misorientation > 15°), in order that grain boundary sliding and 

grain rotation, characteristic of superplasticity, can occur [2,6,44].  
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 Numerous aluminum alloys have been shown to exhibit superplasticity; 

heat-treatable, high-strength aluminum alloys such as 7075, 7475, 2024, and 6061 are 

used in the aerospace industry [2]. A typically used Al-Mg commercial alloy is AA5083 

alloy (Al-4.5% Mg-0.7% Mn). AA5083 is a relatively inexpensive alloy with medium 

strength, excellent cold forming, welding, and spot welding behaviour, and good 

corrosion resistance [2]. For superplastic deformation at 525 °C at a strain rate of 10-4 s-1, 

tensile elongations of about 600% may be obtained, while elongations of 300 - 350% are 

observed at the commercially more attractive forming rate of 10-3 s-1 (when m = 0.5) [2]. 

 Owing to low density and high specific strength, magnesium alloys have high 

potential as lightweight structural materials. But because of their hexagonally close 

packed (HCP) structure and limited number of slip systems, they exhibit poor ductility 

and formability at room temperature. However, some magnesium alloys show large 

tensile elongation at higher temperature [45,46]. At these temperatures, an additional 

non-basal slip system (on the pyramidal) becomes active [47,48]. The use of magnesium 

in automotive structural components is limited. Magnesium AZ31B has been used for 

structural application using the SPF process and exhibits the same enhanced elongation 

characteristics at elevated temperature as aluminum AA5083 alloy [2]. Magnesium AZ31 

rolled sheet has good formability and strength, high resistance to corrosion and good 

weldability [3,49], and is used as an attractive alternative in many structural components 

such as door inner panel (Figure 2.2b) and instrument beam panel.     
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2.3. Deformation mechanisms for superplasticity 

2.3.1. Grain boundary sliding (GBS) 

 GBS involves the relative translation of two grains by a shear movement parallel 

to their common boundary. The first evidence of relative grain movement was reported 

by Rosenhain [50] in 1910, which he noted by observing the difference in level of grains 

on an originally flat polished iron surface of a specimen strained at 1000 °C.  

 In many well documented studies of superplasticity in fine-grained materials, it 

has been observed that even after large elongations, there is no appreciable change in 

grain shape, and the grains remain equiaxed [6,44]. In order to explain microstructural 

details during superplastic deformation, many GBS models have been proposed by 

considering accommodation processes in conjunction with GBS. 

 With the application of tensile stress, diffusion occurs along the grain boundaries 

as grain boundary interfaces slide past each other. Thus, there is a strong dependence on 

the grain size. Also, the entire grain rotates during this process. This typically results in 

the grains remaining equiaxed and random in texture [6,40].  

2.3.1.1. Types of GBS mechanisms 

 Two types of GBS mechanisms were reported in the literature, Rachinger sliding 

[51,52] and Lifshitz sliding [53]. Rachinger sliding is a mechanism where grains retain 

their original shape even after large elongations, as shown schematically in Figure 2.3a. 

Rachinger sliding occurs by the movement of extrinsic dislocations along grain 

boundaries, and the climbing of accumulated dislocation within a grain controls the rate 

of sliding [51,52]. In Rachinger sliding, the shape change of the specimen occurred by 
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neighbour-switching event without any permanent change in shape of the grains 

themselves. On the other hand, Lifshitz sliding is considered to be due to stress-directed 

flow of vacancies either through the grain interiors (Nabarro-Herring creep) [54,55] or 

along the grain boundaries (Coble creep) [56]. A schematic illustration of Lifshitz sliding 

is shown in Figure 2.3b. In Figure 2.3b, grains become elongated in the tensile direction 

due to the directional flow of vacancies from grain boundaries experiencing tensile 

stresses to those which have compressive stresses.  

 During superplastic deformation, large strains are achieved with grains retaining 

their equiaxed shape, which is similar to Rachinger sliding. Therefore, it is considered 

that Rachinger sliding is involved in superplastic deformation [52]. However, as 

suggested recently by Chokshi [57], Lifshitz sliding can also lead to retention of an 

equiaxed grain size by grain rearrangement and switching, which resulted from the grain 

growth that occurred during superplastic deformation.  

 Several microscopic models were proposed to explain the superplastic 

deformation behaviour of polycrystalline materials. These models can be generally 

divided into two groups: GBS accommodated by diffusional flow and GBS 

accommodated by slip, as described in two sections (Sections 2.3.1.3 and 2.3.1.4) 

following the next section.  

2.3.1.2. Diffusional flow 

 Diffusional creep may occur, through the grain boundaries, Coble creep (favoured 

at lower temperatures) or through the grains themselves, Nabarro-Herring creep 

(favoured at higher temperatures). 
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 Creep at high temperatures (T ~ Tm) and very low stresses in fine-grained 

materials was attributed 50 years ago by Nabarro and Herring [54,55] to the diffusion of 

vacancies through the grains from one grain boundary to another. Excess vacancies are 

created at grain boundaries perpendicular to the tensile axis with a uniaxial tensile stress. 

The constitutive equation under the diffusion of vacancies through the grain boundaries 

can be described as: 

E
T

 (grain boundary diffusion [56])     (2.2) 

Where Dgb is grain boundary diffusion coefficient, b is the Burgers vector, d is the grain 

size, E is the Young’s modulus, k is Boltzmann’s constant, and k1 is material constant. 

 These excess vacancies diffuse from the grain boundaries lying normal to the 

tensile direction toward those parallel to it, as illustrated in Figure 2.4. Grain boundaries 

act as perfect sources and sinks for vacancies; thus grains would elongate without 

dislocation slip or climb. The constitutive equation for diffusional flow with a 

predominant diffusion through the grain interior: 

E
T

 (lattice diffusion [54,55])      (2.3) 

Where DL is lattice diffusion coefficient, k is Boltzmann’s constant, and k2 is material 

constant. 

2.3.1.3. GBS accommodated by diffusional flow 

 Ashby and Verrall [58] proposed a 2-D model based on GBS with diffusional 

accommodation, and this was explained from a grain switching event for a four-grain unit 

without appreciable deformation of grains (Figure 2.5). The schematic illustration of the 

grain switching mechanism in Figure 2.5 showed during intermediate stages grains 
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change their original shape by diffusional flow occurring by mass transfer through grain 

boundaries.  Also, the inter-grain distance perpendicular to the tensile direction contracts 

and the grain boundaries come closer and engaging the grains in lateral direction where 

as in the other direction (along the tensile direction) the grains move apart. This model 

was modified later to incorporate a more realistic diffusion path, which considers the 

vacancy concentration associated with the normal traction distribution at any location on 

the grain boundary [59,60]. 

 However, as pointed out by Gifkins [61], the grain switching models proposed by 

Ashby–Verrall and Lee do not account for the increase in surface area at large 

elongations. Increase in surface area at large elongation has been analyzed by Hazzledine 

and Newbury [62] based on a continuous model of grain switching event. They suggested 

that in order to account for the increase in surface area during superplastic deformation, 

new grains should emerge on the surface. Later, Gifkins [61] suggested another model 

(Figure 2.6), which takes into account the increase in surface area during deformation. 

This model considers the formation of a shallow gap on a free surface due to the sliding 

of grains. Later as the gap increases, the emerging grain fills the gap. The dihedral angles 

are maintained by boundary migration, which results in the boundaries of the four grains 

becoming curved. 

 However, as noted by Langdon [63], Gifkins model is two dimensional because it 

demands that the surface grain boundaries be perpendicular to the specimen surface. 

Langdon [63] proposed another GBS model in which the grain rearrangement takes place 

in such a way that they retain equiaxed while they permit an increase in surface area by 

the exposure of grain boundary facets at the sliding boundaries as shown in Figure 2.7.  
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This model suggests that the grains move apart by sliding to expose both boundary facets 

and internal grains as in Figure 2.7b and there is a continuous rounding at grain corners 

to produce the type of configuration shown in Figure 2.7c.  

 Based on the analysis on many superplastic materials, Luthy et al. [64] confirmed 

that most of the GBS models developed so far have been found to correlate well with 

experimental data, and led to a constitutive equation for GBS accommodated either by 

lattice diffusion or grain boundary diffusion as in Equations 2.4 and 2.5 respectively. 

 (lattice diffusion controlled [42]) (2.4)  

(boundary diffusion controlled [42])  (2.5) 

Where  is strain rate, DL is lattice diffusion coefficient, Dgb is grain boundary diffusion 

coefficient, b is the Burgers vector, d is the grain size, σ is the flow stress, E is the 

Young’s modulus, and k3, k4 are material constants. In Equations 2.4 and 2.5, the stress 

dependence of the power law is given by n = 2 (also implies strain rate sensitivity 

m = 0.5), which corresponds to the GBS mechanism.  

2.3.1.4. GBS accommodated by slip 

 GBS can occur also by dislocation slip, which occurred due to dislocation pileups 

within the grain and also due to pileups in the grain boundary. The model of dislocation 

pileups in the grain interior was first proposed by Ball and Hutchinson [65] based on the 

sliding of a group of grains. The Ball and Hutchison model is schematically represented 

in Figure 2.8. In this mode, grains whose boundaries are suitably aligned will slide as 

groups during deformation. The shear stress on the group becomes concentrated on any 
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grain or protrusion that obstructs motion of the group. The local stresses would generate 

dislocations in the blocking grain and dislocations would pileup at the opposite grain 

boundary until their back stress prevents further generation of dislocations and thus 

further sliding by the group. Mukherjee [66] also mentioned a similar GBS model by 

considering the sliding of individual grains. These models are based on the assumption 

that when GBS is obstructed, the dislocations will be emitted at triple points or ledges 

along grain boundaries due to stress concentration. These dislocations traverse through 

the grain by glide process and are annihilated at the opposite grain boundary by climb of 

grain boundary dislocations. Because the dislocation glide and climb are sequential 

processes, the slowest process controls the strain rate. By assuming climb is slower than 

glide, these models suggest climb of dislocation as the rate controlling process. Based on 

this, both models predict a stress exponent of n = 2 (m = 0.5) arising from the stress 

concentration due to the dislocation pileups, an inverse grain size dependence of p = 2 

(Equation 2.1), and an activation energy which is equal to that for grain boundary 

diffusion (activation energy of boundary diffusion of aluminum is 82 kJ/mol [67]).  

 Fukuyo et al. [68] suggested another model for GBS accommodated by 

dislocation climb or glide for solid solution superplastic alloys. For fine-grained solid 

solution alloys, the model predicts dislocation climb to be the rate controlled process with 

n = 2 (m = 0.5) and the activation energy Q = Ql, activation energy for lattice diffusion. 

 The model of dislocation pileup in grain boundary plane was suggested by 

Gifkins [69] and considered the movements of grain boundary dislocations that pileup at 

triple points to be responsible for GBS. The stress concentration that results from sliding 

is being relaxed by dissociation of the leading grain boundary dislocations, either moving 
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into the other two boundaries making up the triple point or by dissociating into lattice 

dislocations [69]. These new dislocations climb or glide until they annihilate or combine 

to form different grain boundary dislocations. The sequence of these processes leads to 

grain rotation and grain rearrangement. 

2.3.2.  Dislocation glide controlled creep 

 Deformation in certain solid solution materials at intermediate stresses and certain 

combination of strain rate can often be described by three regions [70-72] and is 

illustrated in Figure 2.9. With increasing stress, the stress exponent, n, changes from 

value 5 to 3 and again to 5 in region I, II, and III respectively. Region II with stress 

exponent 3 is viscous glide of dislocation [70] also known as SD creep mechanism. This 

is due to the fact that in this regime, the dislocations interact in several possible ways 

with the solute atoms, and their movement is impeded by the solute atmosphere. 

Distribution of the solute atoms (interstitial or substitutional) around a moving 

dislocation would cause a perturbation force that acts on the dislocation opposite to the 

applied stress. Due to this opposing force the motion of dislocations slows down. This 

force can be regarded as viscous drag, which allows a steady state motion under a steady 

state stress [73], and the mechanism known as viscous glide or SD creep mechanism. 

There are two competing mechanisms over this stress range, dislocation climb and 

viscous glide, and viscous glide is slower and thus rate controlling. The constitutive 

equation that describes SD mechanism is given in the form of Equation 2.6.   

         (2.6) 
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Where Ds is solute atom diffusion coefficient, b is the Burgers vector, d is the grain size, 

E is the Young’s modulus, k is Boltzmann’s constant, and k5 is material constant. 

 There are several possible SD processes in region II, where n = 3 [74-76]. Cottrell 

and Jaswon [75] proposed that the dragging process is the segregation of solute 

atmospheres to moving dislocations. The dislocation speed is limited by the rate of 

migration of the solute atoms. Fisher [76] suggested that in solid solution alloys with 

short-range order, dislocation motion destroys the order. The generation of dislocation 

pileups of high density gives the possibility of pushing leading dislocations through the 

regions of short-range ordering. Therefore, in the course of their cooperated movement, 

the dislocations of pileups destroy the short-range ordering. Weertmen [74] suggested 

that movement dislocation is limited in long-range-ordered alloys because the implied 

enlargement of an anti- phase boundary results in an increase in energy.  

 The transition between regions II (n = 3, viscous glide) and III (n = 5, climb 

controlled creep) has been the subject of several investigations [74,77-79]. It is generally 

agreed that it is due to the breakaway of dislocations from solute atmospheres. Thus, 

glide becomes faster than climb, and the latter is then rate controlling in region III. 

  A behaviour unique to deformation under SD condition is the inverse creep 

transient, which is demonstrated schematically in Figure 2.10 for tests in which 

deformation rate is varied abruptly [18]. In inverse creep transient behaviour, upon an 

increase in strain rate, the flow stress undergoes a large, abrupt increase and then 

gradually decreases toward a steady-state value at the new increased strain rate. With the 

decrease in strain rate, flow stress shows a large, abrupt decrease and then gradually 

increases to a steady-state value at the new reduced strain rate. 
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2.4.  Deformation mechanisms of aluminum and magnesium alloys  

2.4.1. High temperature deformation mechanisms in Al and Al-Mg alloys 

 Details of the elevated temperature deformation mechanisms of an aluminum 

alloy depend on the solute content and grain size of the alloy, but the general trends 

governing temperature, strain, and strain rate dependence of the deformation behaviours 

of these alloys are well known. To represent various deformation mechanisms that 

operate in pure aluminum, a deformation mechanism map (DMM) was constructed on 

stress vs. temperature axes by Frost and Ashby [67]. The zones of different mechanisms 

were identified, based on the stress exponent (n) value. Figure 2.11 shows the DMM 

generated by Frost and Ashby for pure aluminum of grain size 10 µm. The range of strain 

rate and temperature over which the hot forming operation takes place is narrow. Another 

form of DMM was constructed by Kim et al. [80] where the grain size and the stress are 

varied and the temperature is held constant. One such DMM for aluminum alloy at a 

temperature of 527 °C is shown on grain size vs. stress axes in Figure 2.12. This map 

identifies different deformation mechanisms under the circumstances where the initial 

grain size varies largely. The superplastic AA5083 alloy is expected to show a steady 

grain size under all superplastic deformation conditions.   

 At temperatures near the melting point (T > 0.8Tm) of the alloy, and very low 

normalized stresses (σ/E < 5 × 10-7), creep normally occurs as a result of vacancy 

diffusion, a phenomenon that causes strain accumulation by grain elongation. This 

mechanism is known as Nabarro-Herring creep [54,55] and is characterized by lattice 

diffusion that occurs at the grain interiors (see Figure 2.4), where as Coble creep, for 

which the grain boundaries are the preferential diffusion paths, is normally observed at 
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T < 0.8Tm [67]. A dependence on the third power of the grain size is characteristic of 

Cobble creep. In both cases, the steady-state strain (creep) rate increases linearly with the 

applied stress, producing a stress exponent, n = 1. Another creep mechanism that operates 

at high temperatures but at very low stresses (with a resulting stress exponent of n = 1), is 

the Harper and Dorn linear viscous creep [81] that accounts for deformation rates much 

higher than those achieved by diffusional flow. One possible mechanism proposed for 

Harper-Dorn creep is climb-controlled deformation, in which the dislocation density is 

not changed with stress [82,83]. Harper-Dorn creep is independent of grain size [77] and 

is unlikely to occur in fine-grained materials like AA5083 [83,84]. Dislocation creep 

controls plastic deformation at mid-range homologous temperatures (T > 0.5Tm) and 

moderate normalized stresses (σ/E > 5×10-5), at which point a diffusion-controlled climb 

mechanism becomes responsible for strain accumulation. Dislocation creep results in a 

power-law relationship, where the creep rate shows sensitivity to the applied stress with a 

typical exponent of n  5 [78]. 

 The superplasticity of aluminum alloys, particularly with small grain sizes and 

low solute contents (Al-5Mg-1.2Cr, Al-6.3Mg-0.5Mn, Al-10Mg-0.5Mn), has been 

associated with GBS [6,52,85,86]. The earlier version of the DMM constructed by Frost 

and Ashby [67] did not show the region of GBS. However, the DMM constructed by Kim 

et al. [80] shows  the region of GBS as lying between the regions of diffusional flow and 

power-law creep as in Figure 2.12. Large total strains exceeding 300% occur at a given 

combination of temperature and strain rate within the range of T = 450 °C – 545 °C and 

dε/dt = 10-4 – 5 × 10-3 s-1 [4-6,43]. GBS is generally characterized by an activation energy 

that is equal to the activation energy for either grain boundary diffusion or lattice self-
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diffusion and a stress exponent of n = 2. Proposed models of GBS include boundary 

sliding accommodated by diffusional flow, akin to Coble creep (Ashby-Verrall model 

[58], see Figure 2.5), and GBS that occurs in a mantle-like region at the grain boundaries 

[69]. GBS is favoured in alloys with equiaxed grains < 10 μm and the presence of second 

phase particles that inhibit grain growth.  

 A solid solution may influence diffusional flow by changing the rate of diffusion 

[55]. In addition, the solid solution can impose a drag on dislocations to slow the rate of 

creep. Their redistribution can also lead to creep transients (see Figure 2.10). Taleff et al. 

[23] utilized the concept of SD creep mechanism and discussed the mechanisms of 

superplasticity in coarse grained Al-Mg alloys (Al-2.8Mg, Al-5.5Mg, Al-3Mg-0.25Mn, 

and Al-3Mg-0.5Mn) in which a large lattice misfit strain is introduced when Mg is in the 

aluminum lattice, causing a large local lattice strain. In Al-Mg alloys with a magnesium 

concentration above 2 wt %, the operation of the SD creep that shows no grain size 

dependence becomes a critical factor in extending the range of temperatures and strain 

rates in places where commercial 5000 series alloys exhibit a superplastic response. In 

fact, recent studies [17,20,87,88] have shown that temperatures of about 450 °C and fast 

strain rates (dε/dt ≥ 10-3 s-1) during hot forming often involve deformation by SD creep. 

The activation energy reported for SD creep mechanism was found to be 136 kJ/mol, 

whereas activation energy for GBS was reported as 110 kJ/mol [89].  Zener-Hollomon 

type analyses of experimental data gathered from coarse-grained Al-Mg alloys exhibiting 

SD creep have revealed that the stress exponent, n, has a value between 3 and 4 

[17,20,23] as shown in Figure 2.13 [18]. The Zener-Hollomon parameter (

  / ) combines the effects of strain rate and temperature on a single parameter. 
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However, observed value of n alone does not confirm the existence of SD creep. As a 

proof of SD controlling deformation, Kulas et al. [17] showed inverse creep transient, a 

behaviour unique to deformation under SD condition. Step at fast strain rates, which 

correspond to high flow stresses, illustrate inverse transients, shown in Figure 2.14 [17]. 

A newer version of DMM (Figure 2.15) was generated on the logarithm of true stress vs. 

temperature axes for fine grain direct-chill cast (DC) 5083 material, where the region of 

GBS and SD creep, along with power law breakdown (PLB), are shown [17]. Even 

though SD creep operates at low temperature and high strain rates, under certain 

operating conditions of hot forming (at 450 °C and 10-5 s-1 < dε/dt < 10-2 s-1), SD creep 

and GBS occur concomitantly [21,90]. The details of earlier experimental work on high 

temperature deformation of Al-Mg alloy are given in Table 2.1.  

2.4.2. High temperature deformation mechanisms in AZ series magnesium alloys 

 It is well known that magnesium, with a hexagonal unit cell and limited number 

of slip systems, exhibits low ductility unless deformation is carried out at elevated 

temperatures (> 327 °C). At these temperatures, an additional non-basal slip system (on 

the pyramidal) becomes active [47,48]. The deformation mechanisms operating in pure 

magnesium was shown by Frost and Ashby [67] in the form of a DMM. The DMM of 

magnesium shows a large region of dynamic recrystallization (DRX) [67]. Recently Kim 

et al. [91] constructed a newer version of DMMs, where grain size and stress dependence 

on deformation mechanisms were shown at a constant temperature (300 °C, 350 °C, and 

400 °C) for magnesium AZ31 alloy. One such map on grain size vs. modulus 

compensated stress axes constructed at a temperature of 400 °C is shown in 
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Figure 2.16 [91]. There have been many reports on the superplastic deformation 

characteristics of Mg- Al- Zn alloys (AZ31, AZ61 and AZ91), based on which the 

superplastic deformation in AZ series magnesium alloy are considered in the subsequent 

paragraphs. 

   Solberg et al. [26] studied superplasticity in the conventionally cast and rapidly 

solidified extruded AZ91 magnesium alloy. Conventionally cast material had a duplex 

microstructure of alternating bands of coarse (20 μm) and fine grains (3 μm), whereas the 

rapidly solidified alloy had a uniform microstructure of grain size of 1.2 ± 0.4 μm. 

Elongations above 1000% were reported for rapidly solidified alloy when tests were 

carried out at a strain rate of 3.3 × 10-3 s-1 and 275 °C and 300 °C. Based on the 

calculated activation energy of 25 and 45 kJ/mol at constant strain rate and constant 

stress, it was suggested that grain boundary diffusion was the rate controlling mechanism. 

During the initial stages of superplastic deformation of AZ91 alloy, grain refinement due 

to DRX was reported, and the alloy exhibited a maximum elongation of 604% at 300 °C 

and 1.5 × 10-3 s-1 [92]. This large elongation was attributed to significant GBS due to the 

grain refinement. 

 Takuda et al. [29] investigated the possibility of grain refinement for 

superplasticity of coarse grained (17 μm) Mg- 1.86Al- 0.79Zn alloy. The tensile tests 

were conducted with an initial strain rate of 8.3 × 10-5 s-1 – 8.3 × 10-2 s-1 at temperatures 

in the range of 200 – 500 °C. The measured strain rate sensitivity, m, was found to be  

less than 0.3 for all of the above testing conditions, and a maximum elongation of 200 % 

was observed at 400 °C and at 8.3 × 10-4 s-1.  
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 Mukai et al. [93] investigated the high temperature deformation characteristics of 

coarse- and fine-grained AZ31 alloy. They observed that the deformation mechanism in 

two alloys was different. A coarse-grained (75 μm) alloy exhibited a strain rate sensitivity 

of 0.33, giving a maximum elongation of 130 % at 5 × 10-5 s-1 and 350 °C. The activation 

energy was estimated to be 127 kJ/mol and from the evidence of m = 0.33, glide 

controlled dislocation creep was suggested as the deformation mechanism for coarse-

grained alloy. Mukai et al. [93] achieved superplastic deformation with a maximum 

elongation of > 600 % at 1 × 10-4 s-1 and at 325°C in fine-grained (3 μm) extruded AZ31 

bar. This alloy exhibited m = 0.5, and Q = 96 kJ/mol. Based on these observations, it was 

inferred that the deformation occurred by GBS accommodated by slip controlled grain 

boundary diffusion. 

 Wu and Liu [30] investigated a maximum elongation of 320 % was reported 

during superplasticity of coarse-grained AZ31 alloy with a mean grain size of 300 μm at 

500 °C and at strain rate of 1 × 10-3 s-1. Calculated strain rate sensitivity and activation 

energy in the strain rate regime below 1 × 10-3 s-1 was found to be 0.39 and 145 kJ/mol 

respectively, and the deformation mechanisms were interpreted as lattice diffusion 

controlled process. 

 Superplastic behaviour of the wrought AZ31 alloy with grain sizes 6 and 16 μm 

were studied by Somekawa et al. [94], with strain rate varying from 10-4 – 10-2 s-1 at 

temperatures of 200, 300 and 400 °C respectively. Based on the calculated value of 

m = 0.5 for both fine- and coarse-grained materials in the low strain rate range at 400 °C, 

GBS was suggested as the deformation mechanism. 



Page | 28  
 

 Tan and Tan [25] proposed a two-stage deformation method to enhance the 

superplasticity of average grain sized 12 μm AZ31 alloy sheet. The method was based on 

the capability of the material to undergo DRX. The optimum condition for grain 

refinement was indentified to be 250 °C, at a strain rate of 1 × 10-4 s-1 to a strain level of 

60 %, and the ductility was found to be 140 %. The strain rate sensitivity was calculated 

to be 0.5, and GBS accommodated by dislocation slip was the suggested deformation 

mechanism. When pre-deformed samples with refined grain size of 6 μm were tested at 

400 °C and at 1 × 10-4 s-1, the ductility was found to be improved from 250 to 320 %. A 

strain rate sensitivity of 0.3 was observed and the data were attributed to viscous glide, 

also known as SD creep mechanism. 

 Del Valle et al. [95] investigated the deformation mechanisms responsible for 

high ductility in coarse grained AZ31 alloy with an initial grain size of 17 μm. Tensile 

tests to failure were performed at 300 °C and 375 °C and at initial strain rates ranging 

from 3 × 10-5 – 5 × 10-2 s-1. They identified two deformation regimes. In the lower strain 

rate regime, the strain rate sensitivity decreased with deformation from 0.59 to 0.45, and 

the activation energy varied from 91 to 106 kJ/mol. A maximum ductility of 320 % was 

reported when the specimen was deformed at 375 °C and at 5 × 10-5 s-1. Based on the 

observations of large elongation, significant grain elongation, and the retention of basal 

fibre texture, the suggested mechanism was concurrent operation of GBS and dislocation 

slip. 

 The mechanical behaviour and microstructural evolution of AZ31 with a 

heterogeneous grain structure of equiaxed grains (4 μm) and elongated grains (200 μm) 

was investigated by Yi et al. [96]. The tensile tests were carried at room temperature (RT) 
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to 250 °C with an initial strain rate of 5.5 × 10-4 s-1. A maximum elongation of 149 % was 

reported at 250 °C, which suggests the simultaneous operation of GBS and grain 

refinement by DRX. 

 Mabuchi et al. [97] calculated activation energy of 121 kJ/mol for powder 

metallurgy AZ91 alloy with grain size 1 – 3 μm and 104 kJ/mol for Ingot metallurgy 

AZ91 with grain size 4 – 5 μm when deformed at 250 – 450 °C and with constant strain 

rate range 2 × 10-5 – 1 × 10-1 s-1
. Because these values were found to be higher than the 

activation energy of grain boundary diffusion, they suggested the rate controlling 

mechanism as a combination of lattice and grain boundary diffusion processes. However, 

equal channel angular extrusion processed AZ91 alloy with grain size of 1 μm showed a 

large elongation of 661 % at 200 °C and at 6.2 × 10-5 s-1 and with a strain rate sensitivity 

of 0.3, which suggested that the low temperature superplasticity for the AZ91 alloy was 

due to viscous glide (also known as SD) of dislocations [98]. 

 Watanabe et al. [99] studied the superplastic characteristics in 10 μm grain-sized 

AZ61 magnesium alloy at temperatures ranging from 250 – 400 °C with constant strain 

rate ranging from 1 × 10-6 – 1 × 10-3 s-1. Strain rate sensitivity (m) of 0.5 was reported for 

a true strain of 0.1, and the alloy exhibited a maximum elongation of 461% at 375 °C and 

at 3 × 10-5 s-1. The activation energies were found to be 90 kJ/mol at 250 – 300 °C and 

140 kJ/mol at 325 – 400 °C. They suggested that GBS accommodated by slip was the 

deformation mechanism controlled by grain boundary diffusion at 250 – 300 °C and 

lattice diffusion at 325 – 400 °C. At 350 °C and at 1.0 × 10-4 s-1, GBS by lattice diffusion 

was also reported for 6 μm fine-grained AZ31 alloy to be the deformation mechanism 

[100]. 
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 Lin and Huang [101] have carried out grain refinement in AZ31 alloy by a 

one-step high ratio extrusion process, which resulted in high strain rate superplasticity 

(HSRSP) and low temperature superplasticity (LTSP). The initial grain size of 70 μm was 

significantly reduced up to 2.5 μm. With an initial strain rate ranging from 1 × 10-4 –

1 × 10-1 s-1 the alloy exhibited HSRSP and/or LTSP at 200 – 300 °C. A maximum 

elongation of 900 and 600 % was reported when the alloy tested at 1 × 10-4 s-1 and at 

553 and 200 °C, respectively. At higher strain rates of 2 × 10-3 s-1 and 1 × 10-1 s-1, 

elongation was maintained at 300 % and 210 % respectively at 300 °C. The strain rate 

sensitivity was found to be 0.4, which suggested that GBS and SD creep might have 

contributed to deformation. 

 From the tensile tests carried out by Lee and Huang [102] at 200 – 450 °C and at 

6.0 × 10-4 s-1 to 1.0 × 10-1 s-1 on extruded AZ31 plate having equiaxed grains 1.7 μm, a 

maximum elongation of 740 % was observed at 300 °C and at 1.0 × 10-3 s-1. The 

observation of higher elongations at different testing conditions indicated that the AZ31 

alloy was capable for LTSP and HSRSP. The strain rate sensitivity was measured to be 

0.45 – 0.6 suggesting that GBS was the dominant deformation mechanism. 

 Fine-grained superplasticity of AZ61 having an average grain size of 3.5 μm was 

investigated by Perez-Prado et al. [103]. Ductility tests were conducted at temperatures 

ranging from 100 – 400 °C and at initial strain rate 1.0 × 10-4 s-1 – 1.0 × 10-3 s-1. A 

maximum ductility of 700 % was reported when the tensile sample was deformed at 

250 °C and at 1.0 × 10-4 s-1. The strain rate sensitivities calculated at strain rates ranging 

from 2 × 10-5 – 2 × 10-2 s-1 at 250 °C identified two regimes. At strain rates higher than 3 

× 10-4 s-1, m = 0.23 and at lower strain rates, m = 0.59, the suggested deformation 
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mechanisms were dislocation slip and GBS, respectively. GBS was also suggested by 

their observations of equiaxed grains even after large elongations and significant decrease 

in texture intensity. The measured activation energies were found to be 121 kJ/mol in the 

dislocation regime and 104 kJ/mol in the GBS regime, and a combination of lattice and 

grain boundary diffusion was proposed as the rate controlling mechanism. 

 Yin et al. [104] examined superplasticity of AZ31 alloy sheet with a grain size of 

4.5 μm. The initial grain size of 15 μm was refined to 4.5 μm by hot rolling followed by 

annealing conducted at 320 °C. Tensile tests were conducted in the temperature range of 

250 – 450 °C and at strain rates ranging from 7 × 10-4 s-1 – 1.4 × 10-1 s-1. A maximum 

elongation of 363 % was reported at 7 × 10-4 s-1 and at 400 °C. The strain rate sensitivity 

was found to be 0.5 suggesting that GBS was the dominant deformation mechanism.  

 The details of each individual work that is grain size, stress exponent, activation 

energy, deformation mechanism, and so on, are summarized in the form of a table as in 

Table 2.2. Many studies identified the deformation mechanisms by evaluating the values 

of strain rate sensitivity only, and only in some cases was the deformation mechanism 

validated with the study of post deformation microstructure. Deformation mechanisms in 

magnesium alloys have been briefly analyzed and are described in the next paragraph. 

 According to the DMM of pure magnesium [67], diffusional flow is the governing 

elevated temperature deformation mechanism at low applied stresses (that is, for 

normalized shear stress, τ/μ < 3 × 10-4, where τ and μ are the shear strength and shear 

modulus of the material). Power law creep, where deformation is controlled by 

dislocation glide and climb, becomes dominant at temperatures T/Tm > 0.4 with the 

application of high stresses τ/μ > 3 × 10-4. GBS, a shear process promoted by an increase 
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in the temperature and/or a decrease in the strain rate, is another commonly observed 

high temperature deformation mechanism [91,99,105-107]. As indicated previously, GBS 

is either controlled by lattice diffusion or grain boundary diffusion [91,99,106,108,109]. 

The high strain rate sensitivity of magnesium is often associated with the operation of 

GBS mechanisms [106], and in microstructures with small grain size, it leads to 

superplastic behaviour [25,91,99,105]. GBS has often been reported [91,99,105-107] as 

the main mechanism of plastic deformation in pure magnesium and magnesium alloys 

deformed at a temperature range between 250 and 400 °C. Since superplasticity is a high 

temperature phenomenon, grain coarsening is one major concern while deforming 

magnesium alloys. In the coarse-grained (grain size, d > 100 µm) Mg-Al-Zn alloys 

[91,107,110,111], glide and climb controlled dislocation creep operate in the temperature 

range of 300 – 400 °C. It was also reported that SD creep was responsible for the 

superplastic behaviour observed in some coarse-grained alloys, Mg-Al-Zn alloys 

[25,107,111]. Grain coarsening can be prevented by a duplex microstructure with two 

phases or by dispersing a small fraction of the second phase in finely distributed form. 

Many studies have addressed the DRX [25,67,96,105,112-115] that was observed during 

the deformation of magnesium alloys at temperatures, T/Tm  > 0.76 (temperature 

> 450 °C for pure magnesium)  and high strains (ε = 0.4 – 2.0). 

To summarize, extended ductility observed in AZ31 alloy was attributed to the 

predominance of one of these two deformation mechanisms: GBS for  small grain sizes 

(< 10 µm) [25-28,93,99] or viscous glide controlled creep in which gliding dislocations 

are dragged by the solute atmosphere for rather large grain sizes (> 20 µm) [25,29,30,93]. 

Tan et al. reported that coarse grains originated from initial DRX grains and had grown as 
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a result of a higher deformation temperature (T > 400 °C). The value of m was found 

between 0.3 and 0.5, inferring that the fine grains deformed by GBS, whereas coarse 

grains deformed by viscous glide [25,93]. It has also been found that in some cases 

dynamic recrystallization leads to in-situ grain refinement and thus enhanced plastic 

deformation in an initial coarse-grained material [37,99]. Also, effective grain refinement 

by DRX observed during the deformation of magnesium alloys, which led to the 

improvement of GBS, enhanced the superplastic behaviour of the material 

[25,28,96,101,116]. 

2.4.3. Dynamic recrystallization in magnesium alloy 

 Recrystallization refers to a process of restoration in which new dislocation-free 

grains formed within the deformed or recovered structure, and the original deformed 

grains will be consumed by newly nucleated and grown undeformed grains [114,117]. 

Recrystallization that occurs during the deformation is called dynamic recrystallization 

(DRX); on the other hand, recrystallization that occurs after the deformation is called 

static recrystallization. Recrystallization can also be divided into continuous and 

discontinuous processes. Discontinuous recrystallization (DDRX) has clear nucleation 

and growth stages, and dislocations are removed by eliminating high angle grain 

boundaries [117]. Continuous recrystallization (CDRX) has no identifiable nucleation 

and growth stages, and dislocations still remain in the recrystallized grains, which is 

generally considered as a recovery process whereby low angle boundaries transform to 

high angle boundaries [116-120]. 

 Unlike for aluminum alloy, DRX is very common in magnesium due to its low 

stacking fault energy, where recovery is very low. New fine grains nucleate at the old 
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grain boundaries. A necklace structure of recrystallized grains may be formed. Tan et al. 

[25,28] have found evidence for the transformation from low angle grain boundaries 

(<15º) to high angle grain boundaries (>15º) during dynamic recrystallization. The 

neighbouring grains in the undeformed specimen which had small misorientation angles 

of 1~2º between each other showed large angle of 28º after DRX. Figure 2.17 shows the 

TEM micrograph of DRX specimen and two neighbouring subgrains with corresponding 

diffraction patterns, which show large misorientation angles 28º between subgrains, 

which is attributed to DRX [28]. 

 Several DRX mechanisms in magnesium ZK60 at different temperatures had been 

proposed previously and are schematically shown in Figure 2.18 [116]. At a low 

temperature of 150 °C, basal slip and twining played an important role on DRX 

[116,118]. At intermediate temperatures (200 – 250 °C), continuous DRX was associated 

with cross slip and predominantly activated near the original grain boundary.  Dislocation 

rearrangements by cross slip and climb generate a low angle boundary network in the 

vicinity of the original boundary. Continuous absorption of dislocations in the low angle 

boundaries result in CDRX, that is, in formation of new grains (as in Figure 2.18b) 

[116]. At high temperature (300 – 450 °C) microscopic strain localization at the slip lines 

causes formation of bulges of grain boundaries, which leads to nucleation of DRX grains 

(as in Figure 2.18c) [116].  

 The volume fraction of the DRX grains increased with increase in temperature. 

Also, with increase in strain rate, the DRX grain size for the alloy at the same strain 

became smaller. The dislocation density of the alloy at high strain rate was higher, which 

made it easier to form finer subgrains and DRX grains [114].   
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2.5.  Oxide layers on Al-Mg alloy surfaces 

 The surface of aluminum alloy sheets contains a tribo-layer known as the 

disturbed layer that forms during the prior thermo-mechanical treatment particularly 

during hot rolling of the sheet. The disturbed layer of non-uniform thickness varies 

between 1.5 and 8.0 µm. These layers are characterized by rolled-in oxide patches and a 

distribution of ultra fine aluminum grains mixed with the comminuted fragments of 

fractured second phase particles [121,122]. Severe plastic strain in the near-surface 

region during rolling is responsible for the formation of a near-surface deformed layer 

that contained fine grains of oxide particles of 100–200 nm in diameter [123]. The 

schematic representation in Figure 2.19 shows the subsurface layer containing the 

microcrystalline oxides mixed with small-grained metal [121].  

 Studies aimed at understanding the high temperature oxidation behaviour of fresh 

surface of Al-Mg alloys revealed that these alloys tend to develop a thin, amorphous 

layer of Al2O3 during the early stages of oxidation [124]. Once heated above 400 °C, the 

amorphous layer transforms into crystalline γ-Al2O3, with the outward diffusion of 

magnesium atoms into the surface and promoting the formation of MgO islands on the 

surface and MgAl2O4 at the interface between the oxide and the bulk aluminum [125], as 

shown in the schematic model in Figure 2.20. These surface layers are generally 

observed to consist of a mixture of MgAl2O4, MgO, and Al2O3 (amorphous and/or 

crystalline), with the concentration of MgO being the highest at the surface, and the size 

of the oxide particles in the subsurface layer ranging from 3.0 to 30.0 nm [125-127]. 

Diffusion coefficient for magnesium in aluminum increased with increase in temperature 

and a value of diffusion coefficient was found to be 1.04×10-9 cm2s-1 at 425 °C [128]. 



Page | 40  
 

The diffusion of magnesium to the surface of the alloy occurs rapidly and the 

concentration of magnesium increases with time [124]. Alloy containing higher bulk 

magnesium showed more magnesium diffusion and oxide formation at the surface [129]. 

Riahi et al. [130] showed an increase in magnesium content from 0.7 % to 4.7 %, the 

thickness of oxide layer increased from 35 nm to 100 nm. 

2.5.1. Surface oxide failure mechanism modes 

 The oxide scales that form on metallic surfaces act as hard, protective layers that 

prove advantageous in some high temperature applications. In many practical 

applications however, these oxides are stressed either by an externally applied load, or by 

oxide growth stresses, which cause cracks to form that result in their failure. The thermal 

stresses induced by a mismatch of thermal expansion coefficients of the oxide layer and 

substrate [131] is another known mechanism of oxide failure. When the substrate is 

subjected to creep deformation, the surface oxide crack density initially increases with 

strain [127] and eventually reaches a saturation point. This behaviour has been illustrated 

in a model for viscous sliding of oxide segments against a substrate subjected to creep 

[127].  

 Evans [132] demonstrated that under tensile loading, sliding could occur at the 

oxide-metal interface, which results in oxide delamination and subsequent spallation. 

Le et al. [133] showed the spacing between adjacent cracks increases with oxide film 

thickness during aluminum rolling, exposing nascent aluminum. The reaction between 

the fresh metal surfaces and the atmosphere during the subsequent hot deformation 

process depends on the thickness of the initial oxide layer. The maximum aspect ratio of 

the oxide fragment that does not break was derived [133] as: 
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            (2.7) 

where λc is maximum length of oxide fragment, tc is oxide film thickness, σf is tensile 

strength on oxide film, k6 is shear yield stress of substrate, and µ is coefficient of friction 

(COF) between roll and the strip material. 

 In addition, the fresh metal may be extruded to the surface through these cracks 

because the bulk metal has a lower flow stress and a higher ductility than the oxide scale 

at hot working temperatures [133].  

2.5.2. Plasticity and creep of oxide layer 

 The number of active slip systems is fewer than five in most oxides. Two 

independent slip systems at a temperature of 987 °C were found in Al2O3, and therefore 

the secondary slip systems must be activated in order to observe plastic deformation in 

the oxide [127]. The stress required to activate the secondary slip systems decreased more 

rapidly with increasing temperatures than that required to initiate micro-cracks. So, at 

higher temperature considerable deformation by dislocation glide becomes possible. 

 Deformation mechanisms operating in Al2O3 and MgO are summarized in the 

form of DMMs, as shown in Figures 2.21a and 2.21b. Diffusion creep becomes the 

controlling mechanism at high temperatures and relatively low stresses in MgO (modulus 

compensated stress < 10-4) [67]. The stress changes the chemical potential of the atoms 

on the surfaces  of the grains in a polycrystalline material in such a way that there is flow 

of vacancies from grain boundaries experiencing tensile stresses to those which have 

compressive stresses. Flow of vacancies that takes place at the grain boundaries can be 

described as Coble-type creep [56] by 
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dε
dt

= α1DgbδσΩ

d3kT
 (2.8) 

Where α1 is a constant, Dgb is the grain boundary diffusion coefficient, σ is the applied 

stress, Ω is the atomic volume, k is Boltzmann’s constant, T is temperature, d is the 

average grain size, and δ is the thickness of the grain boundary over which diffusion 

takes place.  

 Equation 2.8 shows that a refinement of grain size by a factor of two is expected 

to increase the steady state creep rate by a factor of eight. Therefore, the oxide with 

smaller grain size is expected to show high plastic deformation even at low temperature 

and low stresses. 

2.5.3. Characteristics surface features on aluminum alloys upon high temperature 

deformation 

 The formation of fibrous structures running in the tensile direction has been 

observed on the fracture surfaces of Al-Mg alloys tested at temperatures between 250 °C 

and 550 ºC [134-137]. Topographic studies on Al-Cu-Mg alloys (AA2090) [134] 

indicated that bundles of fibres formed on oxidized surfaces and at grain boundaries that 

experienced sliding. The fibres were 0.5 – 1.0 µm in diameter and extended up to 15 µm. 

The appearance of these fibres suggests very large strains, e.g. superplasticity in the local 

regions. Zelin [134] and Chang et al. [138] reported that the formation of these fibres was 

associated with dynamic oxide growth that resulted from the interaction between freshly 

exposed material and oxygen. Proposed mechanisms for fibre superplasticity include 

viscous flow induced by the presence of liquid phase along the grain boundaries 

[136,137,139], dislocation movement facilitated by the oxygen atoms [136,140], and 
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submicron size of grains that promoted local superplastic deformation [137,141], 

prompting a phenomenon called superplasticity in micro-volume. Although the 

mechanisms of their formation are still open to discussion, the high ductility fibres that 

form on the surfaces of the AA5083 alloy are of particular interest in characterizing the 

tribological properties of this alloy at elevated temperatures. 

2.6. Tribology of aluminum and magnesium alloys at elevated 

temperature 

 When two solids are placed in contact the plastic flow occurs at the point of real 

contact until the area is sufficient to support the normal load. At these contact regions 

metallic junctions are formed as a result of a process of cold welding. These junctions are 

responsible of adhesion and friction observed in material [142]. The adhesion is the 

measure of tensile strength of the junction and the friction is a measure their shear 

strength [142]. It was shown that friction force increased with the increase in adhesion 

and hence friction has been considered as a measure of adhesion between them [15,142]. 

Thus, the friction behaviour of the alloy deformed at elevated temperature and at various 

strain rates is one of the main factors to consider while studying the adhesion mechanism.  

2.6.1. Aluminum alloys  

 Tribological data from the interaction between aluminum and steel at elevated 

temperature are rather limited to date [13-15,143-146]. The summary of existing 

literature on tribological behaviour of aluminum alloy is given in Table 2.3. Hanna [15] 

reported a maximum COF of 0.55 (as in Figure 2.22), when AA5083 sample was tested 
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under dry condition using a reciprocating tribotester (load – 50N, speed 0.11 Hz). On the 

other hand, Singh et al. [143,147] had studied elevated temperature tribology of 

aluminum 6061 alloy and reported an increase in COF from 0.5 to 2 when the 

temperature was increased from room temperature to 400 °C. In the same study the 

author had described the relationship between wear and the microscopic variable of 

deformation as in Figure 2.23. The figure reveals the range of conditions under which 

mild wear and severe wear occur. According to the map, the mild wear should involve 

plastic deformation by dislocation glide. Severe wear should proceed by creep of 

subsurface material within the temperature range of 0.5Tm < T < 0.65Tm and may involve 

micromechanisms such as climb and glide (power-law breakdown) [143]. Activation 

energy of 87 kJ/mol for the severe wear regime was calculated in the same work from the 

slope of a wear rate vs. reciprocal temperature plot [143]. Based on the theoretical model, 

the calculated COF during the metal forming process was found to be always less than 

the value of 0.577 [148], which is very close to the value reported by Hanna [15]. On the 

other hand, elevated temperature experiments on aluminum 7475 alloy by Wang et al. 

[14] also showed a trend similar to the one found by Singh and coworkers [143]. 

Wang et al. [14] have suggested that the high COF value at elevated temperature could be 

attributed to the increased plowing friction caused by the severe plastic deformation.  

 Riahi et al. [130] have used pin-on-disk tribometer to study the effect of the 

magnesium content of 5000 series aluminum alloys on their adhesion behaviour to steel 

surface. The authors have determined the junction strength between the Al–Mg alloys 

and the steel counterface by measuring the tangential force required to break the adhesive 

junctions formed during initial sliding contact. The junction strength in Al-Mg alloy was 
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found to be dependent on magnesium content of the material, as in Figure 2.24. Low 

adhesion tendency was found in the material with high magnesium content.  

2.6.2. Magnesium alloys 

 Deformation and damage mechanisms in magnesium alloys subjected to sliding 

contact at elevated temperatures have not been investigated extensively. Sliding-induced 

damage mechanisms on samples worn at room temperature are also scarce [149-153], as 

summarized in Table 2.4. Evidence based on the sliding wear experiments of AZ91 alloy 

suggests that the material removal processes are dominated by localized plastic 

deformation and the production of long, continuous grooves on the contact surfaces, 

which are suggestive of self-mated sliding from adherent deposits of magnesium 

detached from contact surface and transferred to the counterface [149]. Hiratsuka et al. 

[150] examined the dry sliding of pure magnesium against alumina at room temperature 

and observed two different types of wear mechanism, namely oxidational wear that 

occurred during tests run in air, and severe plastic deformation with high wear rates that 

was observed in vacuum.  

 Chen and Alpas [151] classified the wear behaviour of AZ91 alloy into two 

regimes: a mild wear (MW) regime, in which a steady-state wear rate is observed, and a 

severe wear (SW) regime, which featured a continuously increasing wear rate. The results 

were summarized in the form of a wear map that delineated the load and speed ranges of 

the wear micromechanisms that controlled wear rates (Figure 2.25) [151].  The transition 

from MW to SW was controlled by a critical surface temperature (= 74 °C) criterion that 

was a function of applied load and test speed. It was shown that the onset of severe wear 
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coincides with this critical surface temperature. Two material removal mechanisms 

operated in the SW regime, the first being extensive surface damage that resulted from 

the plastic deformation of material layers adjacent to contact surface. With further 

increase in load and speed, sliding-induced surface melting became significant. Under the 

processing conditions of QPF (T > 400 °C and strain rates > 1 × 10-3 s-1) it is likely that 

the surface contact promotes SW conditions. 

 Hanna [15] has seen that the affinity between magnesium and steel is very low 

compared to that between aluminum and steel. However, the characteristics of the 

interaction are different under lubricated condition. The COF of AA5083 was greatly 

reduced compared to AZ31 alloy after applying BN (Boron nitride) lubricant on the 

respective surfaces, as in Figure 2.22. According to the author, the low strength of AZ31 

alloy (20 – 25 % lower than that of AA5083 above 350 °C) resulted in a higher COF than 

that of AA5083.   

 The conventional experiments for studying friction in metal forming processes 

include the unidirectional ball-on-disk test [14], reciprocating flat-on-flat tests [15], 

drawbead tests [13], forward extrusion process [154], load-scanning test [155], and so on. 

Schematic representations of ball-on-disk (Figure 2.26a), flat-on-flat (Figure 2.26b), and 

drawbead test (Figure 2.26b) show the contact area where the COF was measured during 

the test. However, inability to simulate the contact surface similar to hot-forming 

condition, where material is stretched along with sliding, made the reported experiments 

not completely representative to the forming process.  
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2.7. Summary of Literature Review 

 The conclusions and helpful suggestions rising from the literature survey on high 

temperature deformation and tribological behaviour of aluminum and magnesium alloy 

literature survey are as follows: 

1. AA5083 and AZ31 alloys are two superplastic materials widely used to 

produce structural components using hot forming operation, which is a high 

temperature shaping process that operates at temperatures above the 

recrystallization temperature of the material. 

2. It was found the during high temperature deformation especially under the 

conditions close to hot-forming process two deformation mechanisms were 

found in aluminum alloy – GBS and SD creep mechanism. In AZ31 alloy, 

along with GBS and SD creep DRX played an additional role during high 

temperature deformation. 

3. Various studies had investigated the effect of temperature on tribological 

behaviour of aluminum alloy. COF was found to increase with the increase in 

temperature for both aluminum and magnesium alloys. Increase in COF was 

attributed to the increased plowing friction caused by the severe plastic 

deformation at elevated temperature. Also, it was shown that it was the contact 

surface temperature that determined the transition from mild wear to severe 

wear.     

 In the literature there are several studies on the elevated temperature tribological 

behaviour of aluminum and magnesium alloys and also on elevated temperature 
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deformation behaviour of these alloys. However, the relation between the tribological 

behaviour and deformation mechanisms has yet to be established. Also until now, there is 

no work in the open literature on the effect of strain rate on the tribological behaviour of 

these alloys. Strain rate is another factor to be considered while investigating the 

tribological behaviour of the hot-forming operation. To understand the complexity 

involved in the tribological contact interface generated during hot-forming operation, it is 

important to investigate the effect of temperature and strain rate on COF. It is also 

important to establish a relation to the deformation mechanisms operating in the applied 

strain rate and temperature range. 
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Figure 2. 1. Schematic representation of the hot-forming process – (a) sheet of metal is 
sealed around its periphery between an upper and lower die. The dies and sheet are 
maintained at the SPF temperature. (b) the sheet is heated to its superplastic temperature 
range, gas pressure is injected through inlets in the upper die (c) the lower cavity is 
maintained under vacuum or can be vented to the atmosphere and at the same time gas 
pressure is used to form the sheet down over the tool. 

 

  

(a)

(b)

(c) 



Page | 54  
 

 

 

(b) 

Figure 2. 2. (a) Lift gate and door outer panel from AA 5083 (Al - 5% Mg - 1% Mn) 
sheet and (b) Door inner panel from AZ31 (Mg- 3% Al- 1% Zn) sheet [8]. 

(a) 
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(a) 

 

(b) 

Figure 2. 3. Schematic illustration of grain rearrangement during (a) Rachinger sliding 
[51] and (b) Lifshitz sliding [53]. 

 

 

  

Before deformation After deformation

Before deformation After deformation
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Figure 2. 4.  Nabarro-Herring model of diffusional flow [54]. Arrows indicate the flow of 
vacancies through the grains from boundaries lying normal to the tensile direction to 
parallel boundaries. Thicker arrows indicate the tensile axis. 

  

σ

σ
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Figure 2. 5. The principle of the model of Ashby and Verrall [58] for grain rearrangement 
by diffusion: (a) ε = 0; (b) ε = 0.275; (c) ε = 0.55. In this model, grains change their 
original shape by diffusional flow occurring by mass transfer through grain boundaries.  
Also, the inter grain distance perpendicular to the tensile direction contracts and engaging 
the grains in lateral direction where as in the other direction (along the tensile direction) 
the grains move apart. 

 
 

Figure 2. 6. The stages of Gifkins model for grain rearrangement in superplasticity [61] – 
(a) sliding of grains by diffusion along the grain boundary, (b) formation of a shallow gap 
due to the sliding of grains and (c) as the gap increases, the emerging grain fills the gap. 

 
 

Figure 2. 7. Schematic illustration of Langdon’s model [63] for grain rearrangement in 
thress steps (a), (b) and (c) during superplastic deformation. The grain rearrangement 
takes place by the exposure of grain boundary facet at the sliding boundaries, which in 
turn can account for an increase in surface area with deformation. 

 

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)
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Figure 2. 8. Schematic illustration of the mechanism of superplasticity developed by Ball 
and Hutchison [65]. At any instant during deformation, of grains whose boundaries are 
suitable aligned will slide as groups. The shear stress on the group becomes concentrated 
on any grain or protrusion that obstructs motion of the group. The local stresses would 
generate dislocations in the blocking grain and dislocations would pileup at the opposite 
grain boundary until their back stress prevents further generation of dislocations and thus 
further sliding by the group.  
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      (a) 

 

      (b) 

Figure 2. 10. Inverse creep transients are demonstrated for rate-controlled experiments in 
schematics for (a) a rate increase and (b) a rate decrease [18]. In inverse creep transient 
behaviour, upon an increase in strain rate the flow stress undergoes a large, abrupt 
increase and then gradually decreases toward a steady-state value at the new increased 
strain rate. With the decrease in strain rate, flow stress shows a large, abrupt decrease and 
then gradually increases to a steady-state value at the new reduced strain rate. 
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Figure 2. 11. Deformation mechanism map (DMM) for pure aluminum of grain size 
10 µm, showing boundary and lattice diffusion controlled diffusional flow, dynamic 
recrystallization and power law creep [67]. 
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Figure 2. 12. DMM for aluminum alloy at 527 °C [80].  
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Figure 2. 13. Data for creep deformation in commercial 5000-series alloys are plotted as 
the logarithm of the Zener-Hollomon parameter versus the logarithm of modulus 
compensated stress [18]. The exponent 2 and 4 are representative of GBS and SD creep 
mechanism respectively. 
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Figure 2. 14. Transients characteristic of SD creep are shown for 5083 alloy [17]. The 
plot shows a clear transient in step upon the rate increase to a fast rate of 3 × 10-2 s-1, 
where SD creep governs deformation, but shows only a negligible transient upon the 
subsequent change to a slow rate, where GBS creep controls deformation. σss is the stress 
state when SD creep governs deformation. 
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Figure 2. 15. DMM for the fine-grained direc-chill cast AA5083 material [17]. The map 
shows the solute drag (SD), grain boundary sliding (GBS) along with power law 
breakdown (PLB) region on temperature vs. stress axes. 
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Figure 2. 16. DMM constructed for magnesium AZ31 alloy at 400 °C [91] shows the 
regions of different deformation mechanisms based on the alloy grain size and modulus 
compensated stress.  
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Figure 2. 17. TEM micrograph of two neighbouring subgrains A and B taken from a 
DRX specimen strained to 60 % at 250 °C and 1 × 10-4 s-1. Misorientation angle, θAB 
estimated from the diffraction patterns is also shown. The white arrows indicate the 
location of subgrain boundary [28]. The figure infers that subgrain boundary 
misorientation increased during high temperature deformation and low angle grain 
boundaries transformed into high angle boundaries. The large increase in grain 
misorientation observed was attributed to dynamic continuous recrystallization. 
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Figure 2. 18. Schematic representations of the nucleation process in DRX: (a) at T = 
150 °C: combined effect of basal slip and twining resulted in DRX grains, (b) at T = 200 
– 250 °C: dislocation rearrangements by cross slip and climb generate a low angle 
boundary network in the vicinity of original boundary. By absorbing the dislocations 
continuously the low angle boundaries changed to DRX grains, and (c) at T = 300 – 
450 °C: microscopic strain localization at the slip lines causes formation of bulges of 
grain boundaries which leads to nucleation of DRX grains [116].  

(b) 

(a) 

(c) 
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Figure 2. 19. Schematic representation of the subsurface layer containing the 
micriocrystalline oxides mixed with the small grained metal and covered with the 
continuous surface oxide: (A) thickness of the continuous surface oxide, 250 – 1600 Å; 
(B) thickness of the mixed subsurface layer, 1.5 – 8 µm [121].   
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Figure 2. 20. Schematic model of the growth of the oxide film on Al-Mg alloys during 
heat treatment [125] – (a) oxide crystallites nucleate and the thickness increases by grain 
boundary diffusion of aluminum and magnesium to the free surface, (b) The difference in 
diffusivity of the species ensures that the surface becomes magnesium-rich and MgO 
islands forms on the surface, (c) Al2O3 in the film is reduced by the outwardly diffusing 
magnesium to form the spinel MgAl2O4, and (d) this leaves free aluminum within the 
oxide and also leaves MgO islands that join to form an aluminum-free surface. 
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Figure 2. 21. (a) DMM for Al2O3 with a grain size of 10 µm. (b) DMM for MgO with a 
grain size of 10 µm [67]. 

 
 

(a) 

(b) 
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Figure 2. 22. Friction coefficient results of Al 5083 and Mg AZ31B with lubrication for 
sheet at 450 °C, 50 N load and 0.11 Hz sliding speed with different BN lube 
thickness [15]. 
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Figure 2. 23. The DMM for aluminum [67]. The regimes of mild and severe wear are 
shown and compared with the regimes of metal forming processes. The dynamic 
recrystallizatwn region confined to T > 0.8Tm in the original map is extended to lower 
temperatures to incorporate observations made on the 6061 Al [143].  
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Figure 2. 24. The average value of junction strength for each alloy (maximum tangential 
stress reached before the failure of adhesive junction) [130].  
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Figure 2. 25. Wear map for magnesium AZ91 alloy [151] showing mild and severe wear 
regimes and the principal wear mechanisms controlling the wear rates in each regime. 
Data points indicate measured contact surface temperatures (in K).  
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Figure 2. 26. Schematic representation of conventional experiments for studying friction 
in metal forming process (a) ball-on-disk, (b) flat-on-flat and (c) drawbead test. 
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Chapter 3 Materials and Experimental Procedures 

3.1. Introduction 

In this chapter, the materials tested and the methodology employed in the analyses 

are described. Experiments were intended to simulate conditions very close to hot-

forming process. Similar strain rates and temperatures of hot-forming were used 

simultaneously while the material was in sliding contact. The mechanisms of plastic 

deformation and surface damage in relation with COF were systematically investigated. 

Section 3.2 presents microstructures and compositions of AA5083 and AZ31 

alloys used in the present experiments. Section 3.3 describes the development of hot-

forming simulator, which consists of three main parts – a loading system, a friction 

measurement assembly and an observation system. The same section also provides a 

detailed description of measurement of COF and mechanical properties of the bulk 

AA5083 alloy under simulated hot-forming conditions. 

In Section 3.4, the sliding induced damage was investigated on the material 

without any externally applied tensile load by using a pin-on-disk tribometer. Section 3.5 

describes the measurement of junction strength (force required to break the initial 

adhesive contact) of for Al-Mg alloys.  

Section 3.6 describes the procedures and the analytical methods employed in the 

characterization of the worn surfaces and subsurface microstructures used for 

characterizing the surface and sub-surface deformation. 
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3.2. Materials and microstructures 

3.2.1. Microstructure and properties of the AA5083 alloy  

Strips of 5.0 mm wide and 1.5 m long were sectioned from 1.2 mm thick cold-

rolled AA5083 alloy (Al-4.5wt.%Mg-0.7wt.%Mn) sheet obtained in the H18 condition 

(75 % cold reduction of fully annealed starting material). The AA5083 alloy composition 

is shown in Table 3.1. The microstructure of the as-received alloy is shown in an SEM 

cross-section micrograph in Figure 3.1a. The elongated grains of the alloy were 

1.3 ± 0.4 µm long in the rolling direction and 0.3 ± 0.1 µm wide. The section of the strip 

shown in Figure 3.1a provides evidence of the presence of Al6Mn precipitates. 

Table 3. 1. Composition of the AA5083 alloy.  

Elements  Mg  Mn  Si  Fe  Cr  Cu  Al 

Weight %  4.5  0.7  0.1  0.25  0.09  0.02  The 
balance 

 

AA5083 strips were tested using a high temperature tribometer, which is capable 

of applying tensile strains at known strain rates and temperatures (see Section 3.3.1).  A 

typical cross-sectional microstructure of the AA5083 strip that was tested at a 

temperature of 420 °C and a strain rate of 4 × 10-2 s-1 using this tribometer (without 

placing the strip into sliding contact) is shown in Figure 3.1b, and illustrates the 

equiaxed grain structure of the material at this temperature. The average grain size in the 

near surface section was approximately 3.6 ± 2.1 µm.  Figure 3.1c shows the 

microstructure of a strip tested at 545 °C and a strain rate of 4 × 10-2 s-1, where equiaxed 

grains with a diameter of 4.8 ± 2.5 µm near the free surface of the sheet can be seen. 
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Once the equiaxed grain size was attained, the grain morphology and size did not change 

significantly with strain rate and temperature (Figures 3.1b and c). The volume fraction 

of Al6Mn particles was 1.6 – 2.0 %. The Al6Mn particles, 0.35 ± 0.15 µm long and 

0.13 ± 0.03 µm wide, retained their shape and did not fracture during elevated 

temperature tests. Evidence of grain boundary sliding (GBS) that produced a step on the 

surface of the sample tested at 545 °C was also observed in Figure 3.1c. The deformation 

mechanisms responsible for generating these microstructures are described in detail later 

in Chapter 4. 

The surface of the as-received alloy was covered with an oxide layer, thickness of 

which varied between a few hundred nanometers and one micron as shown in 

Figure 3.2a.  Figure 3.2a also reveals that the surface oxide consisted of nanocrystalline 

grains 10 – 100 nm in size. TEM analyses using a Gatan image filter (GIF) performed at 

equal depth intervals through the oxide layer was used to obtain elemental concentration 

distribution of the layer’s constituents. The magnesium concentration profile in 

Figure 3.2b indicates that its concentration near the sheet surface was approximately 

three times higher compared with that of the bulk. According to the selected area 

diffraction patterns (SADP) taken from material adjacent to the surface MgAl2O4, MgO 

and Al2O3 were identified as the main constituents of the oxide layers adjacent to the 

surfaces of the as-received sample (Figure 3.2c).   

3.2.2. Microstructure and properties of the AZ31 alloy 

The material tested was Mg–3wt.%Al–0.7wt.%Zn wrought alloy designated as 

AZ31. Table 3.2 shows the quantity of other alloying elements present in AZ31 alloy. 

The hardness of the samples tested was measured as 73.6 ± 2.2 HV on the Vickers scale 
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using a load of 1.0 N. The room temperature microstructure of the AZ31 sheet along the 

rolling and the transverse directions is shown in Figure 3.3a. The average grain size was 

13.9 ± 2.2 µm. These measurements were made on the surface parallel to the rolling 

direction (the contact surface during the wear tests), using a linear intercept method 

[156]. Al8Mn5 intermetallic particles appeared as light grey constituents with a particle 

size of 5.3 ± 1.3 µm, but no Al12Mg17 phase was observed.  

Table 3. 2. Composition of the AZ31 alloy. 

Elements  Al  Zn  Mn  Fe  Ca  Cu  Mg 

Weight %  3.0  0.7  0.38  0.03  0.03  0.04  The 
balance 

 

A typical cross-sectional microstructure (near surface) of the AZ31 alloy strip that 

was tested at a temperature of 350 °C and a strain rate of 4 × 10-2 s-1 is shown in 

Figure 3.3b, which illustrates the equiaxed grain structure of the material at this 

temperature. The average grain size at this deformation condition was approximately 

5.7 ± 1.1 µm.  Figure 3.3c shows the microstructure of a strip tested at 450 °C and a 

strain rate of 4 × 10-2 s-1 where the grain size was measured to be 18.5 ± 2.5 µm. From the 

micrographs in Figures 3.3b and c, it can be observed that the grain size in AZ31 alloy is 

clearly a function of temperature. The deformation mechanisms in conjunction with this 

variation in microstructure are described in detail later in Chapter 5. 

3.2.3. Counterface material 

AA5083 and AZ31 alloy materials were tested against cylindrical surface of a 

12.0 mm diameter pin made of P20 tool steel. The hardness of P20 tool steel is 
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318 ± 4.1 HV and the composition is given in Table 3.3. The P20 steel pin surface was 

polished with 3.0 µm diamond paste and cleaned ultrasonically in acetone. 

Table 3. 3. Composition of the P20 steel (sliding pins). 

Element C Cr Mn Ni Si Mo S Fe 

Weight % 0.35 1.90 0.83 0.40 0.70 0.49 ≤0.01 The 
balance

3.3. Measurement of COF using hot-forming simulator 

3.3.1. Description of the hot-forming simulator  

There is no single and widely accepted experimental procedure to measure 

friction during conventional sheet metal forming processes [10,13,16]. This is even more 

apparent in elevated temperature forming processes, where industry experience is limited. 

Many of the existent tests do not capture the deformation state, where the material is 

stretched and subjected to sliding at the same time.  Thus, a test that allows for the 

accurate measurement of friction during high temperature plastic deformation is needed.  

The critical capabilities of the equipment needed to simulate forming processes, 

like QPF, include the ability to test at temperatures between 400 °C and 500 °C, and 

strain rates between 10-3 s-1 and 10-1 s-1. Equally important is the ability to continually 

stretch the aluminum sheet while it is sliding against the die surface – a state that 

produces a dynamic interface in which the surface morphology is constantly modified as 

a result of the operating plastic deformation mechanisms. In addition to that, as discussed 

previously, surface oxides are continually broken and reformed, or in cases where they 

remain ductile, they may show a large deformation, or even superplasticity. All these 
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complex bulk and surface events have an effect on the COF. Hence, the equipment 

should be capable of measuring COF of the material while being deformed. 

In order to address these issues, a new high temperature tribometer has been built 

at University of Windsor in collaboration with General Motors R&D and with the help of 

Technical Support Centre at the university. The device has been described in the previous 

paper [157]. The tribometer with pin-on-strip configuration is capable of simulating the 

sliding contact during forming operations (Figure 3.4a).  This tribometer was used to 

measure the COF during contact between the pin surface representing the tool material, 

and a metallic strip stretching at different strain rates and temperatures. The tribometer 

consists of three main assembly parts (Figure 3.4b), which are described as follows: 

I. A loading system that consists of two linear actuators, each connected to one end of 

the strip to be tested: The actuators are synchronized in such a way that they apply 

tensile stress along the longitudinal axis of the strip at the required deformation 

(strain) rate, while the strip moves in a forward direction at a predetermined speed. 

This is achieved by the use of a synchronized slave actuator that can be assigned to 

pull the strip at a higher speed than the master actuator. In this way, while the strip 

moves forward and each point on the top surface of the strip comes in contact with 

the pin; the material in contact is subjected to plastic deformation. Thus a constant 

strain rate of various magnitudes can be applied to the strip by adjusting the 

difference in linear velocities of the actuators. Tensile load during each experiment 

was measured using a 1000.0 N maximum capacity load cell (Omega 

LCMCD-100) with a sensitivity of ± 0.1 N attached between the strip holder and 

the actuator. Figure 3.4a shows the location of the load cell to measure the tensile 
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load on the strip. 

II. A friction measurement assembly to measure the COF of the strip being stretched 

against a loaded steel pin in contact with the strip   (Figure 3.4c): The ability to 

heat the strip in contact with the pin to a constant temperature is noteworthy. The 

strip was heated while passing through the stainless steel roller heated using a 

500 W cartridge heater inserted inside the roller. The hot roller, which had an outer 

diameter of 20 mm, was in contact with the bottom face of the strip in motion while 

the P20 steel pin was in contact with the top surface. The pin contact configuration 

was selected in such a way that a uniform line contact was maintained while the 

strip was subjected to tensile deformation. Three thermocouples were inserted in 

the holes circumferentially inside the roller 120° from each other and situated 

0.5 mm below the outer surface of the cylinder’s middle length to evenly control 

the temperature of the roller. The strip temperature during experiments was 

determined from the average temperature reading simultaneously obtained from 

these three thermocouples. The temperature of the upper surface of the strip was 3 – 

5 °C lower than the average thermocouple reading. The heating time of the 

AA5083 strip before reaching a constant temperature and entering the hot zone was 

approximately 15 s. Each section of the strip remained in the hot zone at the set 

temperature for 3 – 5 s. The COF between the P20 steel pin in contact with the top 

face of the strip was measured using the force measurement system, which 

consisted of another load cell with a sensitivity of ± 0.05 N. The hot roller was 

placed on a bearing system that allowed it to rotate freely, while a boron nitride 

lubricant (purchased from VWR International AG) was applied to its surface to 
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minimize friction. It was calculated that a constant strain of 0.06 was applied to the 

strip surface during bending. No lubricant was used on the top part of the strip so 

that a dry contact was maintained between the P20 steel pin and the metallic strip 

during the COF measurements. In this work, the COF between the stretching strip 

and the P20 steel pin was measured at a normal load of 0.27 N. 

III. A camera system that records the in-situ deformation of the grids inscribed on the 

sample surface: This was used to determine the strain within the hot-zone and 

elsewhere within the strip. Details of strain measurements using the grid system are 

given in the following section. 

3.3.2. Measurement of COF  

As indicated above, the two synchronized actuators were programmed to pull the 

strip at a constant differential speed of ΔV. The linear velocity of Actuator 1 was fixed at 

V = 1.0 mm/s in all the experiments. As the strip moved over the roller heated to the test 

temperature, a constant temperature was maintained over a certain length. This constant 

temperature zone was termed as the ‘hot zone’ (refer Figure 3.5a) where the COF and 

strain rate measurements were made. The temperature of the rest of the strip was lower 

than that in the hot zone. No further deformation occurred once the strip passed the hot 

zone. The average COF values were measured at a given temperature and strain rate after 

20 s from the start of the experiments once a stable deformation condition was reached.  

The camera system installed over the top face of the strip was used to measure in-

situ major and minor strains in the hot zone by measuring changes in the initial diameter 

(2.5 mm) of circular grids inscribed on the strip’s surface (Figure 3.5a). The calculated 

major and minor strains from two consecutive grids at the location of the strip’s hot 
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deformation zone are shown in Figure 3.5b. The instantaneous (true) strain rate for the 

strip shown in Figure 3.5a tested at 545 °C was dε/dt = (ε1- ε 2)/Δt = 4 × 10-2 s-1 (where 

Δt = 2.5 s).  

AA5083 strips were placed in dry contact with the P20 steel pin and tested under 

constant strain rates applied in the range of 5 × 10-3 s-1 and 4 × 10-2 s-1 at different 

temperatures ranging from 420 °C to 545 °C. The strip was cleaned with a clean fabric 

soaked in acetone prior to each test. The experiments were conducted with the absence of 

any lubricant and the reported COF values thus represent those measured under dry 

sliding condition. Typical COF vs. sliding time plots were obtained at two different strain 

rates of 1 × 10-2 s-1 and 4 × 10-2 s-1 at 545 °C, and are shown in Figure 3.6. The COF 

measured at a strain rate of 1 × 10-2 s-1 (at a constant strain of 0.4) resulted in an average 

value of 1.0 ± 0.21. At the same temperature, the AA50803 strip subjected to the same 

total strain but deformed at a higher rate of 4 × 10-2 s-1 revealed a higher COF of 

2.09 ± 0.34. A comparison between the COF curves subjected to strains of 0.1 and 0.4, 

but at the same strain rate of 4 × 10-2 s-1, Figure 3.6, indicates that there is negligible 

effect on the COF due to the amount of strain applied to the strip at a fixed strain rate. 

The role of the applied strain rate on the bulk and surface deformation and damage is 

described later in Chapter 4. 

3.3.3. Measurement of mechanical properties of the bulk material 

Not all experiments were performed while the P20 steel pin was in contact with 

the strip.  A series of ‘non-contact’ tests were conducted using the same high temperature 

tribometer to measure the flow stress of the strip at each temperature at the strain rates 

used in the COF tests. This information, together with the measured strain rates was used 
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to determine the creep rates and the stress exponents. The deformation mechanisms 

operating in the AA5083 alloy at different temperatures and strain rates were determined 

with electron microscopy and by analyzing the experimental creep data and reported in 

Section 4.5.  

3.4. Investigation of sliding induced damage using pin-on-disk test 

apparatus 

Sliding wear tests were conducted without any externally applied strain using a 

pin-on-disk type tribometer (CSM Instruments), and a schematic diagram illustrating the 

experimental configuration is given in Figure 3.7a. The majority of the sliding wear tests 

were conducted at 400 °C, for up to 5 × 102 sliding cycles. Sliding tests were also 

performed at lower temperatures for the purpose of determining wear rates as a function 

of test temperature (and also to obtain the grain growth rates). All tests were run under 

ambient atmosphere using a constant load of 5.0 N and a constant sliding speed of 

1.0 × 10−2 ms−1. Contact surfaces were ground and polished by standard metallographic 

procedures to a roughness of 0.1 µm and cleaned ultrasonically in acetone prior to putting 

them in contact with the counterface. The counterface was made of AISI 52100 steel with 

the following composition (in wt%): 1.45 % Cr, 1.00 % C, 0.35 % Mn, 0.23 % Si, 

0.025 % P (max.), 0.025 % S (max.) and the balance Fe. Steel balls with a 6.0 mm 

diameter and a hardness of 890.0 ± 8.5 HV were polished to a surface roughness of 

0.1 µm.  

A reference marker, i.e., a thin plate of AZ31 inserted in the wear test sample 

normal to its contact surface, as shown in Figure 3.7b, was used to measure the sliding 
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displacement gradient generated in the material below the worn surface. The equivalent 

plastic strain, ε, was determined using ε = (√3)−1 (tan θ) [158-160], where θ is the angle 

between the tangent line to the marker and the axis perpendicular to the sliding surface 

(i.e., the original position of the marker) as shown in Figure 3.7c.  

The worn surfaces were investigated using WYKO NT1100 optical surface 

profilometer. Representative surface profiles of the worn surfaces of AA5083 and AZ31 

alloy materials at two temperatures of 300 °C and 400 °C after one sliding cycle are 

shown in Figures 3.8a to d. The volumetric wear loss that occurred as a result of sliding 

for a given number of cycles was calculated by averaging the wear track’s cross-sectional 

area at four equally spaced locations along the track, then multiplying it by the track 

perimeter (47.1 mm). Volumetric wear losses were plotted as a function of the number of 

sliding cycles and sliding distance. The cumulative increase in volumetric wear loss as a 

function of the number of sliding cycles at 400 °C is plotted for AZ31 alloy as shown in 

Figure 3.9a, where a linear relationship was observed. Wear rates (mm3/m) were 

determined from the slope of the volume loss versus the sliding distance plots. The 

measured wear rate values are plotted against temperature from both AA5083 and AZ31 

alloys as shown in Figure 3.9b. This plot was useful to establish the quantitative measure 

of wear rate with temperature in aluminum and magnesium alloy.   

The variation in wear rates with the temperature in AZ31 alloy can be examined 

in two separate regions distinguished according to the differences in the slopes of wear 

rate versus temperature plot. A low slope region corresponding to wear rates between 

1.0 × 10-2 and 6.0 × 10-2 mm3/m was observed in the temperature range between 298 and 

300 °C, while a high slope region existed above 327 °C, where the wear rates reached as 
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high as 2.2 × 10-1 mm3/m at 400 °C. The worn surfaces of the samples tested in the low 

slope region were oxidized, and the spallation of the oxidized surface layers was 

responsible for material loss. This work focuses on the high wear rate region where 

extensive surface damage occurred as a result of plastic deformation. The temperature 

range used during dry sliding test is also close to the operating temperature of 

hot-forming process. 

3.5. Measurement of adhesion strength using junction strength 

experiments 

The experimental setup to conduct the adhesion tests performed in this work 

followed the procedure that was described previously by Riahi et al. [130]. In the setup, 

shown in Figure 3.10a, a pin on disk type configuration was used where the sample 

materials to be studied are used as pin and the disk is made out of P20 steel. Each sample 

is heated by a cartridge heater embedded inside the sample holder. The sample holder 

connects to 3 mm diameter steel tube inserted with a 50 W cartridge heater. While the 

sample was heated to 400 °C the counterface P20 tool steel/glass was held at room 

temperature. The time required for the sample to reach the desired temperature is 

approximately 10 min. After the sample reached the desired temperature the sample tip 

was pressed against the steel surface under a normal load of 0.12 N and 0.5 N.  After 

keeping the sample in contact with the steel disk surface for 15 s in order to generate the 

junction, the disk started to rotate at a very low velocity. The tangential force required to 

slide the disk increased until a maximum value was reached, after which the force 

dropped. The maximum value represents the force required to break the asperity junction 
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formed at the first contact and hence termed as ‘junction strength’. The change in the 

tangential force, Ft, was measured throughout the experiment and used to calculate the 

coefficient of dynamic friction.  

Deformation and oxide formation on the surface of AA5083 and AZ31 alloy 

during sliding contact were observed in-situ by replacing the counterface steel disk with a 

2 mm thick quartz glass. The objective lens of a microscope was placed underneath the 

glass disk such that the video of contact surface deformation can be recorded as shown in 

Figure 3.10b.  

3.6. Surface and sub-surface characterization 

3.6.1. Microstructural characterization 

A JEOL 840 scanning electron microscope (SEM), and a ZEISS NVision 40 

CrossBeam workstation (focused ion beam, FIB) were used to study the microstructures 

of the surfaces and cross-sectional layers. Cross-sectional trenches were ion milled on the 

deformed surface using the CrossBeam workstation to investigate deformation induced 

damage in the vicinity of the surface. Care was taken to avoid ion-beam damage to the 

surface by depositing a layer of carbon. A trench was milled, using a Ga ion beam at an 

accelerating voltage of 30.0 kV with beam currents ranging from 13 nA to 700 pA. Final 

polishing was done at a lower ion-beam current of 80 pA to reduce any possible damage 

to the microstructure by the high energy beam.  

FIB H-bar method was used for preparing the TEM samples. From the strip 

sample a plate of 15 mm long, 1.5 mm wide was first cut with a low speed diamond saw. 

The plate was then mechanically polished to a thickness of approximately 30 µm with 
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SiC abrasive papers. A smaller semicircular sample with a 1.5 mm radius was cut from 

this plate. Cutting was done in such a way that the strip surface constituted the 3 mm flat 

edge of the semicircular sample to be examined by the TEM. The semicircular sample 

was then thinned using FIB milling by removing material from each parallel side of the 

sample. The details of the H-bar sample preparation method consisted of the steps 

schematically illustrated in Figures 3.11a to d:  

(i) The sample was mechanically polished from both sides to a thickness of 30 µm 

(as indicated by the dotted lines in Figure 3.11a). 

(ii)The area to be sectioned was coated with a 2 µm wide and 2 µm thick strip of 

C in order to protect the sample surface from ion beam damage (Figure 3.11b).  

(iii) Ion milling and polishing were first performed on one side of the sample 

starting from the edge and moving towards the centre of the sample, to reduce the 

thickness of the side parallel to the tensile direction (Figure 3.11c) until the region of 

interest protected by the C layer was reached.  

(iv) Ion milling and polishing were then performed on the other side of the area 

protected by the C layer. Upon finishing this step the sample reveals the H-shape 

geometry when viewed from top (Figure 3.11d). The cross-sectional sample was 

polished using a low ion beam current of 80 pA, while continually monitoring the sample 

position until a thickness of 100 nm was obtained.  

TEM cross-sectional microstructures of the samples prepared using a FIB H-bar 

method were observed by a JEOL JEM-2100F field emission electron microscope 

operating at 200.0 kV. Selected area diffraction patterns (SADP) were also taken to 
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identify oxide structures. Also, a Gatan Image Filter (GIF) was used to perform the 

elemental mapping of the oxides.  

3.6.2. Electron back scattered diffraction (EBSD) measurements 

EBSD measurements were carried out on the AA5083 samples deformed at two 

temperatures of 420 °C and 545 °C and strain rate of 4 × 10-2 s-1. Measurements were 

also taken on the samples annealed for 5 min at temperatures of 420 °C and 545 °C, and 

their textures were considered as the reference texture.  

EBSD measurements were performed on RD-ND plane (Figures 3.12a to b) over 

an area of 0.38 mm (in the rolling direction) by 0.38 mm (in the normal direction) 

containing on an average of 1500 grains in total using the EDAX TSL-OIM Data 

Collection 4.0 system attached to a LEO scanning electron microscope (Carl Zeiss SMT 

Inc., Peabody, MA). Prior to the measurements the samples were ground using 500, 800, 

1200, and 2400 grit paper, subsequently polished using 6.0, 3.0, 1.0 µm diamond 

suspension and finally with 0.05 µm colloidal silica for 5 minutes each under 22.0 N 

force, and then etched using 0.5 pct hydrofluoric acid in water base for 10 to 30 s. Prior 

to the analysis, the data was rotated using OIM analysis software in such a way that they 

represent the TD-RD plane.  

Volume fraction of ten different orientations (see Table 3.4) for each sample were 

calculated using a misorientation angle of 11°, which is also referred as the optimum 

misorientation angle to be used to get a comparable volume fraction data of texture 

components from X-ray and EBSD data [161]. Additionally, certain orientation 

components were grouped by the representative plane and the volume fraction of the 

group was calculated. Cube, R-cube and H orientation components lie on the same (001) 
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plane and considered as one group. Similarly Goss, Brass, P and Rx orientation 

components are one group lying on (011) plane. Locations of most common orientation 

components in (111) pole figure for aluminum are shown in Figure 3.12c. 

Table 3. 4. Texture components selected for analysis 

Number  Designation  Euler Angles  Orientation {hkl}〈uvw〉 

1  Cube  (0.0, 0.0, 0.0)  {0 0 1}〈1 0 0〉 

2  R‐cube  (18.4, 0.0, 0.0)  {0 0 1}〈3 ‐1 0〉 

3  H  (45.0, 0.0, 0.0)  {0 0 1}〈1 ‐1 0〉 

4  Goss  (0.0, 45.0, 0.0)  {0 1 1}〈1 0 0〉 

5  Brass  (35.3, 45.0, 0.0)  {0 1 1}〈2 ‐1 1〉 

6  P  (70.5, 45.0, 0.0)  {0 1 1}〈1 ‐2 2〉 

7  Rx  (62.8, 45.0, 0.0)  {0 1 1}〈8 ‐11 11〉 

8  S  (52.9, 74.5, 33.7)  {2 3 1}〈3 ‐4 6〉 

9  Copper  (90.0, 35.3, 45.0)  {1 1 2}〈‐1 ‐1 1〉 

10  CG  (0.0, 26.6, 0.0)  {0 1 2}〈1 0 0〉 

 

3.6.3. Surface profilometry 

A WYKO NT 1100 optical surface profilometer were used for characterization of 

the surface topographies of the samples subjected to deformation at different 

temperatures and strain rates. The profilometer characterization includes measurement of 

the surface roughness of the samples, height of the steps formed at the grain boundaries 

of the deformed surface and also volume loss during pin-on-disk type sliding tests. The 

WYKO NT 1100 was used in vertical scanning interferometry (VSI) mode. In this mode 
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unfiltered white light reflected from a reference mirror combines with the light reflected 

from the sample to produce interference fringes where the fringe with best contrast 

occurs at best focus. The device then measures the degree of fringe modulation to acquire 

the surface profile. 

3.6.4. Measurement of mechanical properties of the surface oxide 

The mechanical property (Young’s modulus and hardness) of the oxide layer were 

measured using Hysitron TI 900 Triboindenter equipped with a Berkovich nano-indenter. 

In this technique, an indenter is loaded and unloaded into a sample to a certain load in a 

controlled manner. Indentation was done using a maximum load of 2 mN. After each 

indentation the image of the indent was captured using the same indenter in the scanning 

probe microscopy (SPM) mode. A load of 2 µN and a scan area of 5 µm were used for 

imaging each indent. Indentation under an ideal case is expected to provide an indent 

shape with 3-fold-mirror-symmetry when viewed from top. Observation of the indents by 

means of SPM imaging mode were used to identify the indentations that were abnormal 

and hence eliminated from the calculation of mechanical properties of the oxide. The 

hardness and elastic modulus values of the surface oxide were extracted from its 

indentation load-displacement curve using the analysis methods developed by Oliver and 

Pharr [162,163].  

3.6.5. Measurements of elemental composition of surface oxide 

The surfaces of AA5083 in as-received condition and after deformation were 

examined using X-ray photoelectron spectroscopy (XPS) using PHI Quantera Scanning 

X-ray Microprobe. A focused, monochromatinc Al K-alpha X-ray beam, 200 µm in 

diameter, was used for analyses. XPS was combined with Ar-ion etching to provide 
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composition vs. depth information (depth profiles). Depth profile etch rates were 

calibrated as 14.3 nm/min using SiO2 thin-film standard. Because different materials etch 

at different rates, the depth scales on the depth profiles can only be used for relative 

comparisons.   
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Figure 3. 1. Cross-sectional FIB/SEM micrographs of (a) elongated Al grains in a cold 
rolled AA5083 strip; (b) equiaxed grains in the strips stretched at 420 °C and 4 × 10-2 s-1; 
and (c) at 540 °C and 4 × 10-2 s-1.  
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Figure 3. 2. (a) Cross-sectional TEM micrograph showing the oxide layer on the surface 
of a cold rolled AA5083 strip; (b) GIF elemental map showing that the Mg concentration 
near the surface was approximately three times higher than that in the bulk; and (c) 
SADP of the oxide layer that identifies MgAl2O4, MgO and Al2O3. The SADP was taken 
using an aperture of 250 nm in diameter.  
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Figure 3. 3.  (a) Composite optical micrograph of as-received AZ31 alloy sample 
showing the microstructure of the surface placed in contact with the counterface (rolling 
plane) and the subsurface (transverse plane). Micrographs of the sample deformed at (b) 
350 °C and 4 × 10-2 s-1 and (c) 450 °C and 4 × 10-2 s-1. The samples were etched with 
acetic-picral solution (5 g picric acid, 6 ml acetic acid, 10 ml water, and 100 ml ethanol).  
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Figure 3. 4. (a) Photograph of the high temperature tribometer designed to simulate the 
sliding contact during forming operations, (b) isometric view of the experimental setup 
that shows the AA5083 strip under sliding contact against the P20 steel pin being 
stretched by the linear actuators; (c) photograph of the tribometer and heater assembly.
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Figure 3. 5. (a) AA5083 strip inscribed with grids that shows elongation along the 
direction of the applied strain while being pulled; and (b) major and minor strain of the 
strip, measured from two consecutive grids (shown in plate (a)) within the hot zone. 
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Figure 3. 6. COF vs. sliding time plot at 545 °C that shows the measured COF during 
experiments at two different strains and strain rates.   
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Figure 3. 7. (a) Schematic representation of high temperature pin-on-disk experimental 
set-up; (b) Geometry of the marker inserted in the sample (disk) and the cross-section 
AA´ representing the displacement of the marker underneath the contact surface after the 
sliding wear test and (c) Cross-sectional optical micrograph showing the displacement of 
the marker towards the sliding direction after sliding for 50 cycles at 400 °C. 
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Figure 3. 8. The wear track profiles of AA5083 and AZ31 alloys at 300 °C and 400 °C 
(The width of all the profiles is 1.2 mm) (a) AA5083 at 300 °C, (b) AA5083 at 400 °C, 
(c) AZ31 at 300 °C and (d) AZ31 at 400 °C. The profiles in AA5083 indicate with the 
increase in temperature, increased adhesion result in discontinuous and uneven wear 
profile with chunks of material sticked to the disk. The profile in AZ31 alloy is generally 
continuous and at 400 °C shows deep groove in the middle indicating occurrence of 
plastic deformation.    

AA5083, 
400 °C

AA5083, 
300 °C 

AZ31, 
400 °C

AZ31, 
300 °C 

(b)(a) 

(d)(c) 

1.2 mm 

1.2 mm1.2 mm 

1.2 mm



Page | 104  
 

 

Figure 3. 9. (a) Volume loss versus sliding distance plot of AZ31 alloy showing an 
increase in volume loss with sliding cycles at 400 °C (5.0 N, 0.01 m/s); (b) The wear rate 
plot of AA5083 and AZ31 alloys against steel at temperatures 25 – 500 °C. 
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Figure 3. 10. (a) Experimental set-up for junction strength experiment and (b) close-up 
view of the setup for in-situ observation. 
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Figure 3. 11. Illustration of the steps used for the FIB H-bar procedure for TEM sample 
preparation: (a) The sample was mechanically polished from both side. (b) A C strip 
deposited on an area of interest in the wear track. (c) Ion milling of one side of the strip 
starting from the edge of the slab and heading towards the location protected by the C 
strip, followed by polishing using an ion beam with low current. (d) Ion milling parallel 
to the sample’s opposite side to create the H-bar configuration (when viewed from top) 
and finally polishing the cross-sectional TEM sample to a thickness of approximately 
100 nm using an ion beam with a low current [164]. 
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Chapter 4 Coefficient of Friction and Deformation Mechanisms 

of AA5083 Alloy  

4.1. Introduction 

This chapter presents the results of experiments conducted in order to study the 

properties of interface generated between the AA5083 alloy and the steel counterface 

under a dynamic condition generated under high temperatures and different strain rates. 

The friction experiments were performed at temperature between 420 °C and 545 °C, and 

strain rate ranges between 10-3 s-1 and 10-2 s-1. The purpose of these experiments was to 

simulate the conditions close to the hot-forming operations, where the workpiece was 

subjected to tensile forces while under sliding contact.  

In Section 4.2 results on the effect of temperature and strain rate on COF for 

AA5083 alloy are presented. Section 4.3 deals with the surface morphologies that 

developed during high temperature deformation and describes the effects of temperature 

and strain rate on the properties of surface oxide. Variation in surface roughness 

generated as a result of different surface morphologies is described in Section 4.4. The 

section will also discuss the generation of surface damage map. The composition and 

mechanical properties of the surface oxide and the damage features observed within the 

oxide layer are presented in Section 4.5. The deformation mechanisms under the 

temperature (420 – 545 °C) and strain rate (5 × 10-3 – 4 × 10-2 s-1) conditions used during 

friction experiments are discussed in Section 4.6, which includes identification of the 

operating deformation mechanism based on mechanical data, microstructural evidence 
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and texture analysis. Section 4.7 provides an overall summary of the friction behaviour 

of AA5083 alloy deformed at elevated temperature. 

4.2. Variation of coefficient of friction (COF) with temperature and 

applied strain rate  

The COF of the AA5083 alloy measured at room temperature against the P20 

steel pin without applied tensile strain and under 6 % bending strain (see Section 3.3.1) 

was 0.29 ± 0.11. Figure 4.1a shows COF variations with strain rate at two different 

temperatures characteristic of the hot-forming process (420 °C and 545 °C). The average 

COF values are plotted against the instantaneous strain rate measured in the part of the 

strip inside the hot zone (see Section 3.3.2). The reported values are averages of two tests 

at each temperature and strain rate. The COF value increased with strain rate at each of 

the two temperatures, and the increase was higher at 545 °C. The mean COF value was 

0.95 at T = 420 °C and dε/dt = 5 × 10-3 s-1. The COF increased to 1.16 at a higher strain 

rate of 4 × 10-2 s-1. Temperature had a significant effect on COF; increasing the 

temperature from 420 °C to 545 °C at a strain rate of 4 × 10-2 s-1, the COF value increased 

by 80 % to 2.09.   

In Figure 4.1b, the friction data is represented by plotting the average COF 

values as a function of the test temperature, but at two different constant strain rates of 

5 × 10-3 s-1 and 4 × 10-2 s-1. Figure 4.1b indicates that the COF values were higher when 

the strips were subjected to higher strain rates.  

The effects of strain rate and temperature on COF are mapped on temperature – 

strain rate axes, shown in Figure 4.1c. This map enables visualization of the combined 
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effect of temperature and strain rate conditions on the COF of AA5083 alloy.  

4.3. Surface oxide deformation and damage during high temperature 

deformation 

4.3.1. Pre-existing surface oxide 

 The surface morphology of AA5083 in the as-received condition is shown in 

Figure 4.2. The surface was covered with a compacted oxide layer with a morphology 

typical of rolled aluminum surfaces. The damage due to rolling manifested itself as 

continuous lines extending parallel to the rolling direction and the formation of surface 

cracks normal to the rolling direction. These cracks were almost equally spaced and 

usually 20 – 100 µm long and 1 – 5 µm wide. Groups of such oxide cracks were formed 

in some portions of the strip, whereas other portions were free of cracks altogether. The 

composition of the surface oxide was discussed in detail in Section 3.2.1. During the 

COF measurements the P20 pin came in contact with a surface that has undergone tensile 

deformation.  Examples of surface morphologies taken from deformed strips that have 

not yet contacted the P20 pin are discussed in Sections 4.3.2 and 4.3.4. 

4.3.2. Oxide layer after deformation at 545 °C 

 Figure 4.3a shows the typical surface morphology of an AA5083 alloy strip 

deformed at 545 °C and 4 × 10-2 s-1. The alloy’s grain boundaries, as well as the steps 

formed at the grain boundaries became visible on the surface due to the sliding of the 

grains relative to each other. The out-of-plane sliding of the grains, responsible for the 

formation of a faceted appearance, indicate that the alloy was subjected to deformation by 
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GBS [134]. The top surface of grain boundaries was covered with an oxide layer. The 

oxide layer that covered the surface, experienced damage with cracks forming at the 

surface layer in certain locations as indicated on the figure. Also, formation of thin and 

fibrous structures was visible at the location of the surface oxide just above the top face 

of the grain boundaries. These fibrous structures, termed as ligaments from this point 

onward, consisted of very thin fibres (about 0.1 - 0.2 µm in diameter) that extended to 

few microns. While some ligaments extended up to 3 µm in length, most were stretched 

to only about 1 µm. The location of the ligaments coincided with the grain boundaries of 

the bulk alloy that exhibited sliding. This appearance is akin to microfibres that were 

observed on the fracture surfaces of aluminum [136,137], suggesting local superplasticity 

in the oxide layer. 

 A higher magnification view of the deformed surface clearly shows how GBS 

between grains A and B (as labelled in Figure 4.3b) led to the formation of a prominent 

grain boundary step. The grain boundaries lying on the surface were covered with the 

oxide layer. The formation of 2 µm long ligaments from the oxide is shown in 

Figure 4.3b to coincide with sections of the oxide lying at the boundary where steps were 

formed by GBS.  Another example of oxide ligaments with an average length of 1.5 µm 

is observed in the step formed between grains B and C, also due to out-of-plane sliding of 

grains relative to each other. Individual oxide ligaments had a diameter < 200 nm, but in 

general, ligaments formed bundles consisting of a few to hundreds (in cases where grain 

boundaries exhibited sliding in groups) of individual fibres. A few ligaments were 

fractured (ruptured), while a majority of the ligaments sustained large amounts of 

deformation without exhibiting rupture due to the mechanism of micro-superplastic 
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behaviour reported previously [134,137,140]. It is noted however that in all the previous 

studies [134,137,140,141,165], the ligaments were observed on the portion of freshly 

generated fracture surfaces that become exposed to air during the fracture process. In the 

present study, however, formation of ligaments was observed with in the pre-existing 

oxide layer on the surface of AA5083 alloy (Figure 4.3a).  

 The oxide layer of the sample deformed at 545 °C as shown in Figure 4.4a, 

which illustrates in detail the morphology of a stretched oxide ligament and the large 

cavities that formed between the ligaments were sectioned by FIB milling across the 

ligaments. Figure 4.4b is the cross-section showing the oxide layer, which became 

detached from the underlying bulk grains in locations where ligaments were observed. 

The cross-sectional morphology of the large cavities that formed at the interface between 

the oxide layer and the bulk grain boundaries can also be seen in this micrograph. Some 

cavities even extended through the bulk grain boundaries beneath the oxide layer.  For a 

better visualization of the formation of ligaments, a schematic representation of the cross-

sectional micrograph in Figure 4.4b is also shown in Figure 4.4c. 

4.3.3. Effect of strain rate on surface oxide 

 Oxide ligaments were observed at temperatures as low as 460 °C and strain rates 

above 2 × 10-3 s-1.  When tested at low strain rates at T > 460 °C, the oxide layer 

remained ductile, with very few cracks, as shown in Figure 4.5a. Very few ligaments 

were also formed. The length of these ligaments was short. Grain X and grain Y in 

Figure 4.5a are shown schematically in Figure 4.5b, where a location of a short ligament 

formed between the two grains is indicated. The number of ligaments and their length 
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were a function of the temperature and strain rate used and will be described in detail in 

Section 4.5.3. 

4.3.4. Oxide layer after deformation at 420 °C 

 The morphology of the surface that was covered with a pre-existing oxide layer 

after deformation at 420 °C and 4 × 10-2 s-1 had a less faceted appearance. The extent of 

the out-of-plane displacement of the near surface grains, seen underneath the oxide layer, 

was also smaller (Figure 4.6a) when compared with strips deformed at higher 

temperatures. This implies that GBS at 420 °C was not as extensive as at 545 °C. 

Figure 4.6a shows that the oxide layer fractured more frequently at 420 °C and the 

resulting cracks, running normal to the direction of applied strain, were both longer and 

wider. Oxide ligaments, while not totally absent, were fewer in number. None of the 

oxide ligaments’ length observed on the surface (see Figure 4.6a) was exceeded 1.0 µm.  

 Figure 4.6b features the cross-section of the oxide layer of a sample tested at 

420 °C taken from the location indicated in the plan view of the SEM micrograph of 

Figure 4.6a. The cross-sectional micrograph indicates that the cracks running normal to 

the tensile axis propagated along the whole thickness (1 µm) of the oxide layer before 

reaching the oxide layer/bulk alloy interface. Voids (0.3 – 0.5 µm in diameter) within the 

surface oxide layer and its interface with the bulk alloy are also evident. The micrograph 

in Figure 4.6b is also shown schematically in Figure 4.6c, where the void formation at 

the interface between the surface oxide and aluminum grains could be seen. In addition to 

that, the cracks formed in the surface oxide and the exposure of bulk aluminum due to 

these oxide cracks are illustrated in the figure.  
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 In summary, considerable differences were observed between surface 

characteristics at 420 °C and 545 °C. While the oxide exhibited high plasticity during the 

strip’s deformation at 545 °C and local oxide superplasticity was evident in the form of 

ligament formation, the oxide deformed at 420 °C proved to be less ductile, with damage 

proceeding mainly as the result of crack formation. A detailed analysis of the 

characteristics of the surface oxide is presented in Section 4.4.    

4.4. Surface oxide characteristics 

4.4.1. Properties of surface oxide 

 Room temperature mechanical properties of the surface oxide were measured on 

the as-received material as well as on the material deformed at 420 °C and 545 °C, and 

under an applied strain rate of 4 × 10-2 s-1 using Hysitron TI 900 Triboindenter. 

Indentation load vs. displacement plots for all three samples are shown in Figure 4.7a. 

The images corresponding to each indentation in Figure 4.7a were taken using scanning 

probe microscopy (SPM) mode of the indenter. The images showed that the shape of the 

indents was following 3-fold mirror symmetry. Young’s modulus and hardness values of 

the oxide layers extracted from the load vs. displacement plots using Oliver and Pharr 

technique [162,163] are shown in Figures 4.7b and c respectively. The hardness was 

reduced when the deformation temperature was increased. The reduction in hardness is 

due to the varying composition of the surface oxide upon high temperature deformation. 

The hardness values of nanocrystalline MgAl2O4-Al2O4 and MgAl2O4-MgO composites 

(made from MgO and Al2O3) were found between 2.89 and 7.79 GPa [166]. In the same 

work it was also reported that the hardness value of the composite made from MgO and 
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Al2O3, decreased with the increase in MgO content. Therefore, the decrease in hardness 

of the oxide layer in the present investigation might be due to the change in composition 

i.e. increased amount of MgO content in the layer.   

4.4.2. Composition of surface oxide 

 Magnesium diffusion to the surface increased with increase in temperature. The 

Mg concentration at the surface was captured in the XPS composition vs. depth profiles 

of the pre-existing oxide and the oxides at 420 °C and 545 °C (Figures 4.8a to c). The 

highest concentration of Mg was found in the sample tested at 545 °C (Figure 4.8c) at a 

depth of 1.5 nm below the surface. Higher amount of Mg concentration was also found in 

this sample at any depth up to 35 nm below the surface. High Mg concentration at 545 °C 

supported the fact that Mg diffusion to the surface increased with increase in temperature. 

 Elemental composition from XPS data at the surface and at the depth of 35 nm 

were used to generate the bar charts shown in Figures 4.8d and e. Magnesium 

concentration increased significantly from the initial surface (7 % Mg) to the surface at 

420 °C (12 % Mg) and 545 °C (23 % Mg). However, an opposite trend was found in case 

of aluminum, where the amount of aluminum decreased 16 % at the initial surface to 9 % 

at the surface of the sample deformed at 545 °C. Surfaces with high magnesium content 

were also associated with high oxygen concentration, suggesting presence of magnesium 

rich oxides on the surface at elevated temperature and being highest at the surface 

deformed at 545 °C. According to Fick’s first law of diffusion [167], the diffusive flux 

(J) or quantity per second of diffusive matter passing normally through a unit area is 

proportional to the concentration gradient and can be written as:  
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 (4.1) 

where D is diffusivity or diffusion coefficient, which is a characteristic of the medium 

and varies exponentially with temperature. dC/dx is concentration gradient over the 

diffusion distance. 

 Diffusion coefficient for magnesium in aluminum increased with increase in 

temperature and a value of diffusion coefficient was found to be 1.04 × 10-9 cm2 s-1 at 

425 °C [128]. It was also reported that once heated above 400 °C, the outward diffusion 

of Mg atoms into the surface increased promoting the formation of MgO islands on the 

surface and MgAl2O4 at the interface between the oxide and the bulk aluminum [125].    

4.4.3. Quantification of oxide cracks and oxide ligaments 

 Statistical analyses were conducted to quantify the average length of the 

ligaments as well as the percentage of oxide area they covered. The average width of the 

cracks that appeared on the oxide surfaces was determined. The oxide damage 

mechanisms were quantified using the following measurable damage parameters: i) crack 

width, ii) oxide ligament length and iii) area percentage (%) of oxide ligaments. An 

increase in temperature (at high strain rate) promoted the formation of oxide ligaments 

and suppressed the formation of cracks. The distribution of the cracks in the oxide was 

non-uniform making the crack width unsuitable as a quantitative measure of surface 

features. The average oxide ligament length and surface crack width are plotted against 

the test temperature in Figure 4.9 at a constant strain rate of 4 × 10-2 s-1. The average 

width of the oxide cracks decreased from 8.2 ± 2.3 µm at 420 °C to 5.5 ± 1.6 µm at 
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545 °C. The length of the oxide ligaments increased from 0.9 ± 0.2 µm at 420 °C to 

2.5 ± 0.5 µm at 545 °C. 

 The area fraction of oxide surface covered by ligaments was calculated at 

temperatures between 420 °C and 545 °C on strips tested at different strain rates between 

5 × 10-3 and 4 × 10-2 s-1. By plotting the pct oxide ligaments on temperature vs. strain rate 

axes, an oxide damage map was generated, as shown in Figure 4.10. Figure 4.10 shows 

that high temperatures (T > 460 °C) and high strain rates (dε/dt > 1.5 × 10-2 s-1) promoted 

the formation of oxide ligaments.  A ‘superplastic ligaments’ region is identified when 

these features cover an area that is greater than 10 %, where the ductile nature of the 

oxide accommodates the applied strain without fracture. Deformation at T ≤ 450 °C and 

at all strain rates caused extensive cracking of the oxide; accordingly, the region was 

identified as ‘oxide damage by crack formation’. The area fraction of the surface covered 

by oxide ligaments was lower than 1 % at T > 460 °C when tested at low strain rates, and 

only a few cracks appeared on the oxide surface indicating that the oxide was still 

showing ductile behaviour. This region was highlighted as ‘oxide damage by plastic 

deformation’. The oxide damage mechanisms will be discussed in relation to the 

deformation mechanisms of the AA5083 alloy in Chapter 6. 

4.4.4. TEM characterization of ligaments 

 Detailed analyses of the microstructure and composition of oxide ligaments were 

necessary to understand how these ligaments were formed. The microstructure of the 

oxide ligaments was investigated using cross-sectional TEM. The FIB-milled cross-

section Figure 4.11a shows a subsurface microstructure that is typical at 545 °C. The 

micrograph suggests that elevation of grain D over grain E formed surface step.  Due to 
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the formation of surface step, the surface oxide that existed on top of the grain boundary 

between grain D and grain E experienced a localised stretching and formed oxide 

ligaments at that location. The TEM image of the same grains and ligaments shown in 

Figure 4.11a is given in Figure 4.11b, from which a higher magnification TEM 

micrograph capturing the surface offset between grains D and E is presented in 

Figure 4.11c.  The oxide ligament in this particular cross-section is 400 nm long and 

approximately 100 nm thick. The small crystals seen in the microstructure of the ligament 

provide evidence of its nanocrystalline grain structure. The ligament’s SADP from the 

location identified by the dotted circle is shown in Figure 4.11d, where the rings were 

indexed as {111}, {200}, {220} and {222} MgO, with a space group of Fm-3m. The 

same rings can also be indexed as {311}, {400}, {440} and {533} of the fcc MgAl2O4 

spinel phase, with a space group of Fd-3m. The diffraction peaks obtained from the 

ligaments, Figure 4.11e, were compared with those taken from the oxides of the as-

received alloy (see Figure 3.2c in Chapter 3) by using the intensity profile of each 

SADP ring obtained by the rotational average method, and plotting this against the 

inverse d-spacing.  The {222}, {220} and {116} reflections of γ-Al2O3 present in the 

as-received oxide layer was absent in the ligament structure suggesting that this perhaps 

got converted to MgO and the MgAl2O4 spinel at the test temperature. The concentration 

of each oxide layer initially consisting of Al2O3, MgO and MgAl2O4 did not remain 

constant with temperature; outward diffusion of Mg atoms enhanced Mg concentration in 

the oxide layer, and hence concentration of MgO and MgAl2O4 increased during the high 

temperature oxidation process. As MgO appears to reduce the COF as compared to Al2O3 
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this conversion appears to be beneficial. The role of MgO in reducing COF will be 

discussed in Section 6.4.1. 

 The high resolution TEM (HRTEM) micrograph in Figure 4.12 shows that the 

ligament has an extremely fine grain microstructure since the oxide grain diameters 

measured varied between 3 and 7 nm. The nanocrystalline grains had an equiaxed 

morphology and were not elongated in the direction of the strain.  

 The d-spacing between the crystal planes inside the individual grains were 

measured to be about 0.211 nm and 0.203 nm, corresponding to the {200} planes of MgO 

and the {400} planes of MgAl2O4, respectively. Figure 4.12 shows the morphology of 

MgO and MgAl2O4 grains in a plane parallel to the length of the ligament. Since the 

grains are equiaxed on this plane, it can be assumed that they have approximately 

equivalent dimensions in the transverse direction. Similar high resolution micrographs 

taken from the cross-section of several other ligaments showed an average ligament grain 

size of 4.5 ± 0.7 nm. The grain boundary regions between the oxide grains in Figure 4.12 

constitute about 30 % of the total cross-sectional area. The small size of the magnesium 

oxide grains and diffuse nature of the grain boundaries enhance atomic diffusion during 

deformation. A detailed discussion of the deformation mechanism of oxide ligaments will 

be given in Section 6.4.2.2.  

4.4.5. Adhesion and material transfer to P20 steel  

The magnesium rich oxide layers were transferred to P20 steel surface 

(counterface) when slid against AA5083 alloy surface. The material that was transferred 

and attached to the counterface during the COF measurement test was sectioned and 

viewed by FIB. Figure 4.13a shows a schematic of the P20 steel pin indicating the 
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location of transferred material attached to the contact side of the cylindrical surface of 

the pin. A typical transferred material layer generated under the experimental condition 

of T = 545 °C and  = 4 × 10-2 s-1 is also shown in Figure 4.13a. The cross-sectional 

micrograph in Figure 4.13b corresponds to the section taken along the dotted line in 

Figure 4.13a. A higher magnification view of the interface in Figure 4.13b is given in 

Figure 4.13c. Figure 4.13c shows ligament like junctions formed at the interface 

between transferred material and the P20 steel surface.  

 The FIB cross-section shown in Figure 4.13 was further polished and thinned 

down to 100 nm in thickness to be viewed under TEM. A bright field image of interface 

in Figure 4.14a shows one such area with ligament like structures making the junction 

between the transferred material and the P20 steel surface. Based on the contrast in the 

bright field image and the energy dispersive X-ray spectroscopy (EDS) dot map of 

element magnesium (Figure 4.14b), the interface area in the micrograph, which was rich 

in magnesium based oxides was indentified and termed as ‘interface oxide’. EDS analysis 

was performed at 20 spots across the interface along the dotted line AB in Figure 4.14a. 

Combining the data at each location, elemental concentration profiles across the interface 

were determined and shown in Figure 4.14c. The ‘0’ value in X-axis represents the 

location ‘A’. Aluminum and iron concentrations profiles were as expected i.e. aluminum 

concentration was highest at location A (corresponding to transferred material) and 0 % 

aluminum was found at location B. Similarly, iron concentration is highest at point B and 

lowest at point A. However, oxygen and magnesium profiles showed high concentration 

of these two elements at the interface. EDS dot map generated for magnesium element at 

the same location shows enrichment of magnesium at the interface. Therefore, it was the 
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magnesium rich oxide, present on the surface of AA5083 samples, first transferred and 

formed the first layer of the interface between the P20 steel pin and the transferred 

material. 

 It was observed that the surface damage characteristics depend on the alloy’s 

deformation behaviour. To correlate the surface damage characteristics with the bulk 

deformation behaviour, the mechanisms operating in the bulk material were investigated 

and will be discussed in Section 4.5. 

4.5. Deformation mechanisms of the bulk material at high 

temperature 

 The mechanisms operating in the bulk material were identified from the stress-

strain rate measured from the experimental data (discussed in Section 4.5.1), and were 

validated with the help of microstructural characterization (discussed in Section 4.5.3) 

and texture analysis (discussed in Section 4.5.4).   

4.5.1. Mechanisms identified based on stress-strain rate data 

The change in tensile load applied to the AA5083 strip with time was determined 

for different constant strain rates at a given temperature. Typical data is given in 

Figures 4.15a and b for tests conducted at 450 °C and 545 °C, respectively. The flow 

stress of the AA5083 was calculated using the cross-sectional area of the sample when it 

passed through the hot zone (see Figure 3.4d in Chapter 3) within a time interval, dt, 

shown in these figures and given in Table 4.1. The flow stress values are plotted in 

temperature and strain rate space in Figure 4.15c). The relationship between the imposed 
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strain rate and modulus-compensated flow stress of the strip was determined using the 

general phenomenological creep equation (Equation 4.1) from the data plotted in 

Figure 4.16. 

 (4.1) 

Where A is the material constant, σ is the flow stress, n is the stress exponent, E is 

the temperature compensated Young’s modulus, Q is the activation energy for 

deformation, and R is the universal gas constant.  

Table 4. 1. Flow stress of the bulk material at 450 °C and at 545 °C. 

Strain rate, s‐1 
Flow stress, MPa 

450ºC  540ºC 

4 × 10‐2  55.6  26.3 

3 × 10‐2  ‐  24.7 

2 × 10‐2  42.8  16.5 

1.5 × 10‐2  35.7  ‐ 

1 × 10‐2  ‐  10.7 

5 × 10‐3  13.3  5.8 

 

The stress exponent, n, was obtained from the slope of a log  vs. logσ plot in 

Figure 4.16. The values of n, thus calculated are found to be in range of 1 to 3. As 

described earlier, a stress exponent of n = 2 is indicative of creep by grain boundary 

sliding (GBS), which is a well characterized creep mechanism operating in AA5083 alloy 

with small grain size [4-6,17,20,43,52,85,86].  The value of n of approximately 2 was 
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calculated for a temperature range of 460 °C – 545 °C and strain rate range of 2 × 10-2 s-1 

– 4 × 10-2 s-1. Accordingly, GBS was the operative mechanism in this temperature and 

strain rate range.  

An effective way of summarizing the observed creep mechanisms for AA5083 

was achieved by constructing a stress exponent map in temperature and strain rate space 

to delineate the operating plastic deformation mechanisms in the present experimental 

conditions (Figure 4.17). At low strain rate (≤ 1.5 × 10-2 s-1) and at all temperature 

conditions stress exponent value of n = 1 indicated diffusional flow as a dominant creep 

mechanism. At temperature range of 460 °C – 545 °C and strain rate range of 2 × 10-2 s-1 

– 4 × 10-2 s-1 stress exponent value of n = 2 identified as GBS operated regime. At low 

temperature (< 450 °C) and high strain rate (4 × 10-2 s-1), SD creep operated regime was 

identified based on the stress exponent value n = 3.  

4.5.2. Quantification of surface roughness 

This section provides quantification of the surface roughness caused by the 

alloy’s deformation behaviour.  The surface morphology of the as-received samples and 

the samples tested at high temperatures were studied with a digital optical interferometer. 

The distribution of the surface heights and the frequency of surface height distributions 

were plotted in the form of histograms (Figures 4.18a to d). Measurements were made 

on areas of 120 µm × 90 µm, which contained 70 – 100 surface grains depending on the 

testing condition. The histograms show the relative frequency of the height distribution, 

which obey Gaussian probability distribution. Figure 4.18a shows the surface height 

distribution obtained from the samples tested at 420 °C at four strain rates of 5 × 10-3, 

1 × 10-2, 2 × 10-2 and 4 × 10-2 s-1.  The arithmetic mean deviation of the surface height, Ra 
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(average roughness), and its standard deviation increased with the strain rate. At higher 

temperatures (Figures 4.18b to d), the Gaussian behaviour is preserved, but the 

distribution is spreaded with increasing temperature. The Ra values also increased with 

the temperature.  

Five different locations on two sets of samples were considered for measuring Ra, 

and the values were given in Table 4.2. The lowest Ra of 0.29 μm was found for 

deformation at 420 °C at a strain rate of 5 × 10-3 s-1. The Ra increased to 0.52 μm at a 

higher temperature and strain rate of 545 °C and 4 × 10-2 s-1, respectively. Thus, the 

temperature and strain rate conditions resulting in high Ra values also contributed to high 

COF values.  

Table 4. 2. Surface roughness at different temperatures and strain rates. 

Strain rate, s‐1 

Roughness, µm 

420 ºC  450 ºC  500 ºC  545 ºC 

5 × 10‐3  0.29  0.28  0.24  0.35 

1 × 10‐2  0.39  0.35  0.27  0.37 

2 × 10‐2  0.37  0.43  0.40  0.49 

4 × 10‐2  0.37  0.44  0.49  0.52 

 In summary a considerable increase in roughness was observed with increase in 

temperature and strain rate. The variation in roughness is affected by the evolution of the 

surface characteristics, which depends on the alloy’s deformation behaviour.  
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4.5.3. Microstructural evidence of deformation mechanism  

Microscopic evidence for GBS is given in Figures 4.19a and b, which show an 

FIB cross-section taken from an AA5083 strip tested at 545 °C. The sliding displacement 

that took place between Grain 1 and Grain 2 (marked in Figure 4.19a) resulted in the 

formation of a surface offset. A high magnification micrograph of the same set of grains, 

in Figure 4.19b, shows the formation of a step on the oxide layer as a result of sliding of 

the surface grains relative to each other. The grain interiors appear to have a low 

dislocation density, and the grains retained their original shape during GBS, consistent 

with the observation of equiaxed grains after creep deformation.  

At low temperatures and high strain rates, the stress exponent increased to higher 

values than that of rest of the deformation conditions (Figure 4.17). The n value observed 

at temperatures between 420 °C to 450 °C and at strain rates greater than 3 × 10-2 s-1 was 

approximately 3.5, suggesting that the mechanism of solute drag (SD) creep was 

operating under these conditions [17,20]. SD creep is associated not only with higher n 

values (between 3 and 4) compared with GBS, but also with inverse creep transients [17]; 

specifically an abrupt drop in flow stress following a sudden strain rate change, which 

could be attributed to dislocations detaching from obstacles on slip planes. In general 

terms, any dislocation glide obstructed by precipitates and Mg atoms in AA5083 during 

creep (at relatively low temperatures and high strain rates) promote climb into the 

subgrain boundaries that are formed within the grains, which, in turn, accommodate the 

imposed strain. Figure 4.19c shows the surface grains on a AA5083 strip tested at 420 °C 

and 4 × 10-2 s-1. The formation of a substructure (cells of 200 nm in diameter) can be 

observed in the high magnification micrograph shown in Figure 4.19d. While this 
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microstructure alone is not proof of SD creep as an operating mechanism, but together 

with the measured stress exponent of 3 and higher flow stress values of 56 – 69 MPa 

compared with 25 – 43 MPa for GBS, as shown in Figure 4.15, is evidence of SD creep 

operating under these conditions. Subgrains were not formed during GBS, and grain 

interiors were virtually free of dislocations (Figure 4.19a).  

In addition to the microstructural evidence, the texture developed in the material 

due to deformation at elevated temperatures also supported the two deformation 

mechanisms (GBS and SD creep) operating in AA5083 alloy and will be discussed in the 

Section 4.5.4. 

4.5.4. Texture evolution in the material with temperature 

This section discusses the evolution of texture with temperature. Analysis was 

done based on the pole figures and fraction of different orientations (see Table 3.4 in 

Chapter 3) in the material tested at 420 °C and 545 °C and strain rate of 4 × 10-2 s-1. The 

preferred orientation of grains in a polycrystalline material is referred to as 

crystallographic texture also known as fiber texture. The complete description of texture 

requires determining the crystallographic plane aligned in the rolling plane of the sheet 

and the direction in that crystallographic plane aligned into the direction of rolling. The 

fiber texture is also described by the definition of the crystallographic direction aligned 

parallel to the fiber axis. 

The pole figure of the as-received material is given in Figure 4.20a, which shows 

a rolling texture that is strong S ({2 3 1}〈3 -4 6〉), Brass ({0 1 1}〈2 -1 1〉) and Copper 

({1 1 2}〈-1 -1 1〉) component and a weak cube ({0 0 1}〈1 0 0〉) component. Because the 
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samples to be analysed were deformed at two different temperatures, the texture of the 

material at those two respective temperatures were considered as the reference point. For 

example, the texture of the material annealed at 420 °C is considered as the starting 

texture for the material deformed at 420 °C and 4 × 10-2 s-1. Then the texture of the 

material deformed at 420 °C using hot-forming simulator was determined. At the centre 

line of the strip, which followed its neutral axis, experienced 0 % bending strain, whereas 

the location close to the outer surface experienced a bending strain of 6 %. The (111) 

pole figures of the annealed only, and annealed and deformed samples are shown in 

Figures 4.20b to d. The pole figure in Figure 4.20b shows the existence of 〈111〉 fibre 

texture (parallel to RD). The fibre texture was strengthened upon deformation as in 

Figures 4.20c and d. The texture components were compared by plotting them as a bar 

chart in Figure 4.20e. The volume fraction of (001), S component and Copper 

component decreased and (011) remained same and the CG component ({0 1 2}〈1 0 0〉) 

increased slightly. In the starting material it has a total 0.081 volume fraction of (001) 

plane components, which consisted with cube ({0 0 1}〈1 0 0〉) and rotated-cube 

({0 0 1}〈3 -1 0〉) texture component. Development of cube texture upon heating is most 

prominent in pure aluminum however with alloying addition the intensity decreased 

[168].  The (011) components remained unchanged at the surface and centre after plastic 

deformation of the strip. A small decrease in S and small increase in CG components 

were found from surface to the centre. Though the copper component ({112}〈-1-11〉) 

decreased from the initial texture, strengthening of 〈111〉 fibre parallel to RD was 

observed at the surface as well as at the centre of the strip. Strengthening of 〈111〉 fibre is 

might be due to strengthening of {101}〈111〉 orientation.  
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The texture of the material annealed at 545 °C was considered as the starting 

texture for this temperature. The (111) pole figures of the samples at 545 °C are shown in 

Figure 4.21. The figure shows a weakening of texture from the Figure 4.21a to Figure 

4.21c. This is due to the fact that GBS operating at this temperature providing a random 

texture. Slight strengthening of the texture in Figure 4.21b compared to the pole figure in 

Figure 4.21a (comparison made between the intensity numbers in these pole figures) are 

due to the bending strain applied while deformation. Figure 4.21d shows the comparative 

volume fraction data at 545 °C. In summary, low intensity in the pole figure indicated 

GBS as the dominant mechanism of deformation in AA5083 alloy when stretched at 

545 °C and 4 × 10-2 s-1. High volume fraction of texture components indicated more 

dislocation activity during plastic deformation of the sample at 450 °C and 4 × 10-2 s-1. 

Knowing the texture of the material, the relative COF at two temperatures can be 

predicted. Farhat [169] reported that (111) texture development in the aluminum adjacent 

to contact surface during sliding reduces the friction of sliding contact. Formation of 

(111) texture parallel to the worn surface reduced the resistance to the sliding motion 

since (111) plane is the slip plane of FCC materials. As a result this may cause the COF 

to drop. In the present case, random texture at 545 °C may not have a direct influence on 

friction. On the other hand, the random texture is indicative of GBS mechanism which 

controls the surface roughness, and hence would increase friction. Development of 〈111〉 

fibre texture formation (parallel to RD) at lower temperature of 420 °C would help in 

maintaining low COF. 
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4.6. Summary on friction behaviour of AA5083 alloy  

Friction experiments conducted using hot-forming simulator made it possible to 

recognize the role of temperature and strain rate on friction behaviour of AA5083 alloy. 

An increase in the COF with an increase in the temperature and strain rate was observed 

(see Figure 4.1). It was found that the plastically deformed material under various 

conditions of temperatures and strain rates exhibits different surface characteristics. With 

the increase in temperature and the strain rate, the surface roughness of the sample 

increased significantly. A metallographic examination of the deformed surface revealed 

the presence of grain boundary steps (as in Figure 4.3a and b) that caused the roughness 

increase in the sample when deformed at 545 °C and 4 × 10-2 s-1. In summary this chapter 

provides the relationship between the plastic deformation and surface damage 

mechanisms and their relation with the tribological behaviour of AA5083 alloy.  
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Figure 4. 1. (a) Average COF vs. strain rate plot; (b) average COF vs. temperature plot; 
and (c) average COF values plotted on temperature vs. strain rate axes. Error bars 
indicate range of fluctuations in mean COF values measured over 100 s time test period 
on each strip (following the initial 20 s heating period) at a constant temperature and 
strain rate. 
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Figure 4. 2. Secondary electron image showing the surface morphology of as-received 
AA5083 strip surface. 
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Figure 4. 3. (a) Secondary electron image showing the surface morphology of the sample 
deformed at elevated temperatures (545 °C and 4 × 10-2 s-1). (b) A higher magnification 
view of the sample surface deformed at 545 °C and 4 × 10-2 s-1. The two sided arrow in 
these and succeeding figures show the tensile direction. Surfaces are covered by oxide 
layers, and GBS beneath oxide layers is evident.  
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Figure 4. 4.  (a) FIB/SEM micrographs of the sample deformed at 545 °C and 4 × 10-2 s-1. 
The two sided arrow indicates the tensile direction. Plastically deformed surface oxide 
forms superplastic ligament-like structures at the grain boundaries and tended to align in 
the tensile direction; (b) FIB cross-section of the sample with superplastic ligaments 
taken along the dotted line in plate (a). The micrograph shows groups of detached oxide 
ligaments at two locations (the sheet normal represents the long axis of the ligament). (c) 
Schematic representation of the micrograph in plate (b) showing the group of ligaments 
detached from the underneath grains.  
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Figure 4. 5. (a) SEM micrograph of the deformed surface corresponding to the condition 
(545 °C and 1 × 10-2 s-1) where a few oxide ligaments were observed at the grain 
boundaries. (b) Schematic representation of the grains in plate (a) showing a small oxide 
ligament between grain X and grain Y.  
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Figure 4. 6. (a) FIB/SEM micrographs of the sample deformed at 420 °C and 4 × 10-2 s-1. 
Cracks in surface oxide indicate the brittle nature of the oxide at low temperatures; (b) 
cross-section of the sample taken along the dotted line in plate (a) revealing aluminum 
exposure due to the cracks in the surface oxide. (c) Schematic representation of the 
micrograph in plate (b) outlines the surface oxide, voids formed at the interface between 
the surface oxide and Al grain, exposed Al due to the oxide cracks at the surface. 
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Figure 4. 7. Typical load vs. displacement plots of room temperature indentations tests on 
the surface of as-received material, surface deformed at 420 °C and 4 × 10-2 s-1, and 
surface deformed at 545 °C and 4 × 10-2 s-1. Corresponding images at the top were taken 
using scanning probe microscopy (SPM) mode of Hysitron Triboindenter. Mechanical 
properties measured from load-displacement plots of the oxide on the surface of all three 
samples mentioned above – (b) Young’s modulus and (c) Hardness.  
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Figure 4. 8. XPS depth profile on the surface (a) initial surface, (b) surface deformed at 
420 °C and 4 × 10-2 s-1 and (c) surface deformed at 545 °C and 4 × 10-2 s-1. The highest 
concentration of magnesium was found on the surface deformed at 545 °C and 
4 × 10-2 s-1. XPS results illustrating the element concentration varied with deformation 
temperatures at (d) the surface and (e) 35 nm below the surface. 

(a) 

(b) 

(c) 

Sputter depth, nm
0 5 10 15 20 25 30 35

A
to

m
ic

 c
on

ce
nt

ra
tio

n 
, %

0

10

20

30

40

50

60

70

O

Al
M

C

Sputter depth, nm
0 5 10 15 20 25 30 35

A
to

m
ic

 c
on

ce
nt

ra
tio

n 
, %

0

10

20

30

40

50

60

70

O

Al

M

C

Sputter depth, nm
0 5 10 15 20 25 30 35

A
to

m
ic

 c
on

ce
nt

ra
tio

n 
, %

0

10

20

30

40

50

60

70

Al

O

M
C



Page | 139  
 

 

 

 

 

  

  

Elements
O Al Mg

C
om

po
si

tio
n,

 a
t.%

0

10

20

30

40

50

60
Initial surface
420 oC 
545 oC 

Elements
O Al Mg

C
om

po
si

tio
n,

 a
t.%

0

10

20

30

40

50
Initial surface
420 oC 
545 oC 

(d) 

(e) 



Page | 140  
 

 

 

 

 

Figure 4. 9. Crack width and ligament length vs. temperature plot at 4 × 10-2 s-1 shows 
that the length of the superplastic ligaments increases with temperature.  
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Figure 4. 10. Oxide damage map on temperature vs. strain rate axes where the data points 
shown are the % oxide ligaments.  
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Figure 4. 11.  (a) FIB cross-section of deformed surface taken along the tensile axis to 
illustrate the superplastic ligament formed at the surface offset that resulted from GBS.  
(b) TEM micrograph of deformed surface (at 545 °C) along the tensile axis; (c) high 
magnification image taken from region ‘A’ in plate (b) showing the formation of 
superplastic ligaments at the grain boundary between grains A and B; (d) SADP pattern 
taken from the superplastic ligament in plate (c) (with different rings in the SADP pattern 
indexed as MgO and MgAl2O4 spinel phase). (e) Selected area diffraction intensity 
profile taken from initial oxide layer and superplastic ligament structure.  
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Figure 4. 12. HRTEM micrographs taken from the superplastic ligament in plate (c). 
Main phases in the superplastic ligament are found to be particles (4.5 ± 0.7 nm) of MgO 
and MgAl2O4.  
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Figure 4. 13.  (a) Schematic representation of the P20 steel pin showing the location of 
transferred material, (b) FIB cross-section of the transferred material showing the 
material attached to the pin surface. (c) Magnified image taken from the micrograph in 
plate (b) shows the interface between the transferred material and the P20 pin. (The 
direction of pin sliding against AA5083 surface is along the cylindrical axis and towards 
the right side of the pin.) 
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Figure 4. 14. (a) Bright field image of the transferred material showing the interface 
oxide, (b) Mg dot map taken from plate (a) shows the oxides are rich in magnesium; (c) 
Elemental concentration across the interface along the dotted line AB in plate (a) shows 
presence of high oxygen and magnesium and less aluminum in the interface oxide. The 
‘0’ value in X-axis represents the location ‘A’.   
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Figure 4. 15. Tensile loads applied to AA5083 strips at different strain rates at (a) 450 °C; 
and (b) 545 °C. (The time axis indicates the duration of the test, during which a different 
section of the forward moving strip – 170 mm in length – passes through the hot zone, as 
shown in Figure 3.5a. The flow stress of the strip was measured at the section that enters 
the hot zone at t = 140 s. True strain rate was determined from the strain differences 
within a time interval of dt). (c) Flow stress calculated from experimental data in Figures 
4.15a and b and plotted on temperature vs. strain rate axes. 
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Figure 4. 16. Strain rate vs. modulus compensated flow stress plots following the general 
creep equation where ‘n’ is the stress exponent. 
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Figure 4. 17. Deformation mechanism map (DMM) for AA5083 plotted on temperature 
vs. strain rate axes, where the regions of dominance for each mechanism are identified 
based on the stress exponent value, n. The contours are for constant stress exponent 
values.  
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Figure 4. 18. Surface height distribution profiles for surfaces deformed at four 
temperatures (a) T = 420 °C, (b) T = 450 °C, (c) T = 500 °C and (d) T = 545 °C. 
Measurements at each surface were taken from areas of 120 µm × 90 µm, which were 
sufficiently large to contain typical surface features, and encompassed 70 – 100 grains. 
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Figure 4. 19. (a) Cross-sectional TEM Micrographs showing the subsurface 
microstructure of AA5083 alloys deformed at 545 °C at 4 × 10-2 s-1; (b) high 
magnification image taken from plate (a) showing that Grain 1 is at a higher elevation 
than Grain 2, which indicates the occurrence of relative sliding between them. (c) cross-
sectional TEM micrographs showing the subsurface microstructure of AA5083 alloys 
deformed at 420 °C and 4 × 10-2 s-1; and (d) a high magnification image taken from plate 
(c) that shows the formation of a subgrain structure. 
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Figure 4. 20. (a) (111) pole figure of as-received sample. (111) pole figures for series of 
samples at 420 °C (b) sample without any application of strain (c) and (d) sample 
deformed using hot-forming simulator by simultaneous application of 6 % bending strain 
and 40 % tensile strain. Pole figure in plate (c) and plate (d) were taken from the OD and 
the centre area respectively (as explained in Figure 3.12). (e) Volume fraction of different 
orientation components in the material at 420 °C.  
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Chapter 5 Friction and Deformation Mechanisms of AZ31 Alloy 

5.1. Introduction 

This chapter describes the relationship between COF and deformation 

mechanisms in the AZ31 alloy, a typical light weight Mg alloy.  This alloy is a 

superplastic material used to produce automotive components (such as deck lids and door 

inner panels) by hot forming.  

Section 5.2 presents the results on the variation in the COF of the AZ31 alloy 

with temperature and strain rate. Section 5.3 describes the evolution of the surface, that 

is, surface roughness, surface morphology, and microstructure. Characterization of oxide 

present on the alloy sheet surface and how this can be related to the COF are also 

considered in the same section. Section 5.4 describes the microstructural evolution and 

morphologies that developed during high temperature deformation. Deformation 

mechanisms operating in the material under the experimental temperature (250 – 450 °C) 

and strain rate (5 × 10-3 – 4 × 10-2 s-1) conditions are identified and discussed in Section 

5.5. In the same section, deformation mechanisms are related to the microstructural 

evolution of the bulk material. Section 5.6 discusses the deformation mechanisms that 

operated during the high temperature sliding process (without subjecting the samples to 

external strain). Microstructural evolution and material transfer process due to sliding 

induced damage are also discussed in the same section. Finally, a brief summary on the 

relationship between COF and deformation mechanisms is provided in Section 5.7. 
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5.2. Variation in coefficient of friction (COF) with temperature and 

strain rate 

The COF of the AZ31 alloy tested against the P20 steel was 0.25 ± 0.06 when 

measured at room temperature without applying external strain. Typical COF vs. sliding 

time plots, obtained at two different temperatures (300 °C and 450 °C) and at two 

different strain rates of 1 × 10-2 s-1 and 4 × 10-2 s-1, are shown in Figures 5.1a and b. 

COF measured at a strain rate of 4 × 10-2 s-1 and temperature of 450 °C resulted in an 

average COF of 0.89 ± 0.20, which was the highest COF value measured under present 

experimental conditions. At a low strain rate of 1 × 10-2 s-1, the COF value varied 

between 0.34 ± 0.13 at 300 °C and 0.59 ± 0.16 at 450 °C. The average COF values at 

different temperatures and at two strain rates are plotted in Figure 5.1c. The values 

reported are taken by averaging COF data from two experiments. The standard deviation 

in the plot represents the variation in COF value over a 100 s time span. Figures 5.1a 

and c show that for the tests at 450 °C, COF became more sensitive to the applied strain 

rate. At a high strain rate of 4 × 10-2 s-1, the COF increased from 0.55 ± 0.14 at 300 °C to 

0.89 ± 0.20 at 450 °C. For the representation of the effect of temperature and strain rate 

under various conditions, the COF values are plotted as map on temperature vs. strain 

rate axes as shown in Figure 5.1d. The data in Figure 5.1d is later used for generating 

the COF-deformation mechanism map (COF-DMM) in Chapter 6.  
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5.3. Surface evolution and COF 

In order to understand the variation in COF with temperature and strain rate, the 

surface characteristics generated under these deformation conditions were studied and 

discussed in Sections 5.3.1-5.3.3.   

5.3.1. Microstructural evolution of the surface  

The morphologies of the as-received surface as well as the surface deformed at 

elevated temperature were viewed under the SEM and are shown in Figure 5.2. The 

micrograph in Figure 5.2a shows the presence of patches of oxide layer on the surface of 

the as-received material. Figure 5.2b shows a typical surface microstructure of the 

sample deformed at T = 450 °C and  = 4 × 10-2 s-1. The micrograph shows a number of 

islands of oxides lying on the surface. Ligaments up to a 2 µm long can be seen between 

these oxide islands. These ligaments are formed in such a way that their long axes were 

aligned along the tensile direction of the sample as shown in a higher magnification view 

in Figure 5.2c. Also, at certain locations the grains underneath the oxide layer could be 

identified by their facetted appearance as in Figure 5.2d. The facetted appearance at the 

surface is due to the out-of-plane sliding of the surface grains. However, ligament 

structures in this alloy were found only between the fractured oxide islands (Figure 

5.2c). Very few ligaments were observed on oxide layers between the grains showing the 

facetted appearance generated due to out-of-plane sliding of grains (Figure 5.2d). Out-

of-plane sliding of the surface grains occurred throughout the sample surface. However, 

their facetted appearance was masked by the oxide islands and became visible only in the 

areas without broken oxides on the surface as in Figure 5.2d. Unlike aluminum alloy, the 
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evidence of grain boundary sliding (GBS) is not very obvious in AZ31 alloy, where the 

surface is covered with a layer of non-uniform initial oxide. The ligaments formed at the 

surface cracks were also observed at temperature as low as 250 °C when deformed under 

the applied strain rate of 2 × 10-2 s-1 as shown in Figure 5.2e. However, at this 

temperature a few cracks were observed at the surface. Irrespective of the deformation 

temperature, the ligaments were formed between the fractured and separated oxide 

islands as in Figures 5.2c and e.  

In summary, the surface of AZ31 alloy was covered with a layer of broken oxides 

when deformed at elevated temperature (≥ 250 °C). These oxides on the deformed 

surface were completely fractured and separated at 450 °C and 4 × 10-2 s-1 and appeared 

as oxide islands, whereas at low temperature of 250 °C and strain rate of 2 × 10-2 s-1, the 

damage to the surface oxide was limited to cracks, and only a few oxide islands were 

observed on the surface. Local oxide superplasticity was evident in certain locations 

(between the oxide islands and at the cracks) in the form of ligaments. A detailed analysis 

of the characteristics of the surface oxide is presented in Section 5.3.2.  

5.3.2. Characterization of surface oxide 

The surface morphology of the sample deformed at 450 °C and 4 × 10-2 s-1 is 

shown in Figure 5.3a, where cracks in the surface oxides running in the direction normal 

to the stretching direction are visible. The FIB–milled cross-section taken along the 

dotted line in Figure 5.3a is shown in Figure 5.3b. The oxide layer on the surface was 

non-uniform in thickness, with thickness changing from 200 nm to 1 µm in the same 

cross-section of 15 µm wide. Between the fractured oxides, the ligaments were also seen 

as indicated in the microstructure. The TEM micrograph of one such area with a ligament 
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is shown in Figure 5.3c. A high magnification image taken from Figure 5.3c is shown in 

Figure 5.3d. Figure 5.3e shows the selected area diffraction pattern (SADP) of the 

ligament taken from the location identified by the dotted circle in Figure 5.3d. 

Diffraction rings in the SADP were indexed as {111}, {200}, {220}, and {311} MgO, 

with a space group of Fm-3m. These rings in SADP are also very close to {311}, {400}, 

{440}, and {533} of the fcc MgAl2O4 spinel phase, with a space group of Fd-3m. The 

AZ31 alloy has 3 % aluminum. The activation energy of aluminum diffusion in 

magnesium (143 kJ/mol [24]) and magnesium self-diffusion (135 kJ/mol [67]) are very 

close. Therefore, enrichment of the spinel phase in the surface layer due to outward 

diffusion of aluminum is most likely to occur. The ring patterns in SADP (Figure 5.3e), 

taken using an aperture of 250 nm in diameter, are an indication of the nanocrystalline 

nature of these oxide grains in the oxide ligament structures on the surface of AZ31 alloy.  

Microstructural evolution of the surface of the sample under different temperature 

and strain rate conditions resulted in changes in the surface roughening. Variation in 

surface roughness due to deformation of the surface oxide and the surface grains at 

different temperatures and strain rates will be discussed in the next section. 

5.3.3. Quantification of surface roughness 

The surface morphology of the as-received samples and those tested at high 

temperatures were studied with a digital optical interferometer. The distribution of the 

surface heights were plotted in the form of histograms (Figures 5.4a to d). Figure 5.4a 

shows the surface height distribution obtained from the surface subjected to T = 300 °C at 

four strain rates of 5 × 10-3 s-1, 2 × 10-2 s-1, 3 × 10-2 s-1 and 4 × 10-2 s-1. The arithmetic 

mean deviation of the surface height distribution is the measure of surface roughness, Ra. 
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The average surface roughness measured over 300 µm × 225 µm area at five different 

locations and data are plotted on temperature and strain rate axes as shown in Figure 

5.4e. A roughness map has been generated by connecting the similar Ra data with iso Ra 

contours plotted on temperature and strain rate axes as shown in Figure 5.4f. The surface 

roughness under the deformation conditions generated in temperature range between 

250 °C and 450 °C and the strain rate range of 5 × 10-3 – 4 × 10-2 s-1 varied between 

0.61 µm and 1.66 µm. At a low temperature of 250 °C, the surface roughness increased 

from 0.61 µm (at 5 × 10-3 s-1) to 1.24 µm (at 4 × 10-2 s-1). However, at temperatures 

≥ 300 °C, the variation in roughness was found in the range of 1.19 – 1.66 µm. The out-

of-plane sliding of surface grains underneath the surface oxide layer did not contribute 

significantly to increase in surface roughness. This is because the surface roughening due 

to the damage in the surface oxide was much more extensive than the roughening 

resulting from GBS.  

Roughness of the polished surface (without the pre-existing oxide layer) was also 

measured after deformation at different temperatures (250 – 450 °C) and two strain 

conditions (1 × 10-2 s-1 and 4 × 10-2 s-1) and plotted as shown in Figure 5.5. Figure 5.5 

shows that the roughness of the surface increased with increase in temperature as well as 

with increase in strain rate. The highest roughness of 0.92 ± 0.06 µm was observed on the 

surface of the material deformed at 450 °C and 4 × 10-2 s-1.  

The surface roughness of the AZ31 alloy with the pre-existing oxide layer did not 

show a direct correlation with the COF of the alloy. Experiments were also done on the 

polished surface, where the initial pre-existing surface oxide was removed by mechanical 

polishing, which would help in identifying the role of the surface oxides and GBS on 
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COF. Variation in COF and surface morphology evolution of polished samples with 

temperature and strain rate are discussed in Sections 5.3.4 and 5.3.5.    

5.3.4. Effect of surface oxide on COF 

The initial oxide layer of the AZ31 alloy was mechanically removed by grinding 

with 240g, 600g, and 1200g sand paper followed by 1 µm diamond polishing. 

Figure 5.6a shows the variation of COF between polished sample and P20 steel pin with 

temperature at two strain rates. The COF values in this plot showed a slight increase with 

the temperature as well as with the strain rate. The COF data measured on the polished 

surface and the as-received surface were compared by plotting them together in 

Figures 5.6b and c. At strain rate of 1 × 10-2 s-1, COF of the as-received surface is lower 

than the COF of the polished surface under all temperature conditions. When the applied 

strain rate increased to 4 × 10-2 s-1, COF of the as-received sample remained low up to a 

temperature of 400 °C. Therefore, the pre-existing oxide layer reduced COF up to a 

temperature of 400 °C, where GBS is masked by the same oxide layer. However, at a 

temperature of 450 °C and a strain rate of 4 × 10-2 s-1, the as-received sample showed 

higher COF than that of polished surface as in Figure 5.6c. At this deformation 

condition, the pre-existing oxide layer did not act as a protective layer. In fact, the oxide 

islands present on the deformed surface, as seen in Figures 5.2a and b, might act as 

abrasive and increase the COF of the sliding pair.  

5.3.5. Microstructural evolution of the polished surface 

Microstructural features of the worn surface after a single pass sliding 

experiments using hot-forming simulator on the polished surface of AZ31 alloy are 
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shown in Figures 5.7a to f. The figure shows the width of the wear track increased with 

the temperature and also with the strain rate. More specifically, the contact width of the 

wear track increased from 13.8 ± 2.0 µm at 300 °C and 1 × 10-2 s-1 to 22.1 ± 0.3 µm at 

300 °C and 4 × 10-2 s-1, as shown in Figure 5.7g. Similarly, for the strain rate of 

4 × 10-2 s-1, changing the temperature to 450 °C made the contact width as wide as 

47.3 ± 3.5 µm. Increase in strain rate increased the surface roughness (see Figure 5.5). 

The increase in the width of the wear track was attributed to the increase in surface 

roughness. Also, the wear track at high temperature (> 350 °C) was intermittent 

compared to the continuous wear track observed at low temperature of 300 °C as shown 

in Figure 5.7. The surface of the AZ31 alloy deformed by cooperative grain boundary 

sliding (CGBS), which occurred through the movement of grain groups as an entity. The 

CGBS mechanism generates a wavy pattern on the deformed surface as shown in 

Figures 5.8a to d. Figures 5.8a to d showed surface profiles of the polished surface after 

deformation at two temperatures of 350 °C and 450 °C and at two strain rates of 

1 × 10-2 s-1 and 4 × 10-2 s-1. It was reported that CGBS usually occurred during the initial 

stage of superplastic deformation in some superplastic Al or Ti base alloys [170,171]. 

2-D profiles taken along the dotted lines in Figures 5.8a to d are shown in Figure 5.8e. 

The wavy patterns of the deformed surface due to CGBS are well captured in this figure. 

For instance, the profile of the surface deformed at 450 °C and 4 × 10-2 s-1 strain rate 

showed three major peaks. Each individual big peak in the profiles was also consisted 

with a few small peaks, which formed due to GBS of individual grains within the large 

peak. Spacing between the small peaks also matches well with the size of the individual 

grains (see Section 5.4). The elevated grains on the surface due to deformation through 
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CGBS were in contact while sliding against the counterface. The elevated grains led to 

the increase in surface roughness with increase in strain rate and temperature of 

deformation (see Figure 5.5). The increase in surface roughness is the cause of high COF 

observed at high temperature and high strain rate as in Figure 5.6. The bulk material 

exhibiting signs of CGBS also showed a gradient in microstructure with temperature and 

strain rate and will be discussed in the next section.  

5.4. Microstructural evolution of the bulk material and generation of 

grain size map 

Microstructures of the bulk material after each experiment were examined 

optically in the subsurface plane, parallel to the transverse plane. The microstructure of 

the as-received alloy (see Chapter 3) was transformed into recrystallized microstructure 

upon heating > 250 °C. The microstructure became coarser at higher temperature. The 

average grain size was measured using the linear intercept method, and grain size of 

6.12 ± 0.59 µm and 11.80 ± 0.87 µm were found in the material when heated to 300 °C 

and 450 °C respectively. The microstructures of the samples deformed at various 

temperatures and strain rates are presented in Figure 5.9.  

At low temperatures (300 °C) and low strain rates (5 × 10-3 s-1), the grains are 

6.61 ± 0.69 µm in diameter with an equiaxed shape. When the test temperature was 

increased and the strain rate kept constant, the grain size increased up to a maximum 

value of 12.7 µm at 450 °C. A microstructural feature that can be noted in Figure 5.9 is 

the effect of deformation condition on the grain boundary morphology. At low 

temperatures (≤ 350 °C), the grain boundaries became serrated when the strain rate of 
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deformation was increased, and as a result, the grains became irregular in shape. 

However, at high temperature of 450 °C, no serration at the grain boundary was observed 

when deformed at a high strain rate of 4 × 10-2 s-1. The formation of serrated boundaries 

was also observed previously in AZ31 alloy at a temperature range of 250 °C – 350 °C 

[118,172]. In that study the author described the bulging of a grain boundary due to 

dynamic recrystallization, which led to microscopic strain localization in slip lines near 

the grain boundaries. They assume that the interfering dislocation slip systems on both 

sides of the boundary contribute to the manifestation of the grain boundary serrations. 

This effect was also found in other hot deformed magnesium alloy systems such as 

Mg-rare earth alloys after creep tests at 300 – 350 °C [118,172]. 

The average grain size of the deformed material after the test at a given 

temperature and strain rate was measured from three different locations using the linear 

intercept method. Figure 5.10a shows the grain size vs. temperature plots at two strain 

rates of 1 × 10-2 s-1 to 4 × 10-2 s-1. The plot shows that the grain size of the material 

showed an increase in behaviour with temperature increase irrespective of the strain rate 

of deformation. In order to identify the effect of strain rate on grain size, the grain sizes 

of the deformed materials were also plotted against strain rate as in Figure 5.10b. In the 

plot, an increase in grain size from 12.63 ± 0.64 µm at 5 × 10-3 s-1 to 18.50 ± 1.17 µm at 

4 × 10-2 s-1 was observed when the deformation was carried out at 450 °C. However, at 

low temperature of 300 °C, the grain size value decreased from 6.6 µm at 5 × 10-3 s-1 to 

4.0 µm at 4 × 10-2 s-1. Grain size values of the deformed microstructures in the present 

investigation are plotted on temperature vs. strain rate axes as shown in Figure 5.10c. 

The microstructures in Figure 5.9 and the grain size data in Figure 5.10c showed a 
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general trend in increase in grain size with increase in temperature. However, at 

temperatures < 400 °C, the grain size decreased with an increase in the strain rate. At 

350 °C, the increase in strain rate from 5 × 10-3 s-1 to 4 × 10-2 s-1 refined the grain size 

from 8.81 ± 0.49 µm at 5 × 10-3 s-1 to 5.70 ± 0.69 µm at 4 × 10-2 s-1. At about 400 °C the 

grain size became less sensitive to the change in strain rate. The grain size at this 

temperature remained in the range of 8.92 – 10.53 µm for all strain rates. The average 

grain size data in the temperature range of 250 °C – 450 °C and strain rate range of 

5 × 10-3 s-1 – 4 × 10-2 s-1 was used to generate a grain size map and will be discussed in 

the Section 5.4.1.    

A grain size map has been generated on temperature and strain rate axes 

(Figure 5.11) based on the grain size data in Figure 5.10c. The contours in the map in 

Figure 5.11 represent the iso-grain size data. The grain size of the deformed AA5083 

alloy in the present investigation did not show a substantial increase or decrease with the 

deformation temperature and strain rate. The AZ31 alloy in the present investigation did 

not show a similar trend. The grain size of the magnesium AZ31 alloy changed with 

deformation condition as shown in Figures 5.9 to 5.11.    

Based on the grain size and morphology, three regions—recrystallization, 

dynamic recrystallization, and grain growth—are identified in the grain size map in 

Figure 11c. At low strain rates, < 1 × 10-2 s-1, and at all temperature conditions, the grain 

size of the deformed material remained close to the microstructure of static 

recrystallization. At temperature < 400 °C and at strain rate > 1 × 10-2 s-1, the grain size 

of the deformed material reduced as a result of dynamic recrystallization. At temperature 

> 400 °C and strain rate > 1 × 10-2 s-1, grain growth of recrystallized grains dominates.  
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Variation in microstructure with temperature and strain rate observed in the bulk 

material affects deformation behaviour of the material. The next section will discuss the 

deformation mechanisms in AZ31 alloy and also the role of microstructural evolution on 

the deformation behaviour of the alloy.  

5.5. Deformation mechanisms based on stress- strain rate data 

 The load required to generate tensile deformation in AZ31 sample was recorded 

during each experiment for the present temperature and strain rate ranges. Typical load 

vs. time data for tests conducted at 300 °C – 450 °C and strain rates ranging from 5 × 10-3 

s-1 to 4 × 10-2 s-1 are given in Figures 5.12a to d.     

 The flow stress of AZ31 alloy was calculated using the cross-sectional area of the 

sample when it passed through the hot zone (see Chapter 3) within a time interval, dt. 

The flow stress values are plotted on temperature and strain rate space as in Figure 5.12e. 

To characterize the effect of strain rate on plastic flow behaviour, the strain rate was 

plotted as a function of variation in flow stress and shown in Figure 5.13. The 

relationship between the imposed strain rate and temperature-compensated flow stress of 

the strip can be described using the general phenomenological creep equation 

(Equation 5.1).  

 (5.1) 

Where A is the material constant, σ is the flow stress, n is the stress exponent 

(reciprocal strain rate sensitivity, 1/m), E is the temperature compensated Young’s 

modulus, Q is the activation energy for deformation, and R is the universal gas constant.   



Page | 169  
 

 The slope of the data shown in Figure 5.13 is equal to the stress exponent, n. A 

value of n of approximately 2 was calculated for a temperature range of 250 °C – 450 °C 

and strain rate range of 2 × 10-2 s-1 – 4 × 10-2 s-1. As described earlier, a stress exponent 

of n = 2 is indicative of creep by GBS, which is a well characterized operating creep 

mechanism in fine grain AZ31. At low temperature (250 °C) and high strain rates 

(> 3 × 10-2 s-1), the stress exponent value was found > 4, suggesting dislocation activity 

dominated over GBS mechanism.  

 Deformation mechanisms in AZ31 alloy are summarized by constructing a stress 

exponent map in temperature and strain rate space. The stress exponent map is generated 

by plotting the values of stress exponent data on temperature vs. strain rate axes as shown 

in Figure 5.14. The contours in the plot represent the iso-exponent values. At low strain 

rates, < 1 × 10-2 s-1, diffusional flow (viscous creep) with a stress exponent of n = 1 

becomes dominant.  

 The constitutive equation for superplastic flow, taking the grain size into account, 

can be described as [173]  

 (5.2) 

Where b is the Burgers vector, d is the grain size, and p is the grain size exponent. The 

value of grain size exponent, p, was reported earlier as 3 in superplastic materials 

including magnesium AZ31 alloy [109] and AZ91 [97] alloy.  The activation energy of 

operating mechanisms was calculated by plotting the grain size dependent strain rate vs. 

reciprocal temperature at two normalized stress values. The relationship between the 

average grain size (from Figure 5.10c) compensated strain rate, d3, and reciprocal 
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temperature is illustrated in Figure 5.15. Here, d3 is determined at two fixed normalized 

stress values of 4 ×10-3 and 7 ×10-3 (indicated with dotted lines in Figure 5.13). The 

activation energies at two normalized stress values were calculated from the plot, which 

were found to be 79 kJ/mol and 130 kJ/mol at the normalized stress of 4 ×10-3 and 

7 × 10-3 respectively. The activation energy for grain boundary diffusion in magnesium 

was reported as 92 kJ/mol [67], which is close to the activation energy found at a 

normalized stress of 4 ×10-3. Similarly, the activation energy of 130 kJ/mol found under 

the present deformation condition at a normalized stress of 7 ×10-3 is close to the reported 

activation energy for lattice diffusion in magnesium (135 kJ/mol [67]). Therefore, over a 

large range of temperature and strain rate, GBS operates either by grain boundary 

diffusion or by lattice diffusion. DRX grains produced during high temperature 

deformation intensify GBS mechanism in the material.  

 Three dominant mechanisms were identified based on the flow stress and strain 

rate data, and the microstructural evolution in Figures 5.9 to 5.11 supports the operating 

mechanisms. The occurrence of dynamic recrystallization led to fine grain structure, and 

consequently, GBS was favoured by the fine grain microstructure and became the 

dominant mechanism of plastic deformation of the material. An increase in temperature 

made it difficult for the material to deform by GBS due to the large grain size. Under 

these conditions the AZ31 alloy deformed by dislocation glide controlled creep (or 

viscous glide creep).       

5.6. Sliding induced damage and material removal 

Evidence of GBS along with dynamic recrystallization was also found when 
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deformation in material was induced by sliding contact without subjecting the materials 

to external tensile strain. This was achieved using pin-on-disk experiments, where a very 

high sliding induced strain was observed in the subsurface of the wear track. The 

following two subsections will discuss the material removal process and surface and 

subsurface microstructural characteristics generated during sliding induced damage 

process. 

5.6.1.  Material removal and transfer process 

The surface profile of the counterface material that came into contact with the 

worn AZ31 test sample surface in pin-on-disk test is shown in Figure 5.16a and provides 

evidence of material transfer. Significant accumulation of transferred material on the 

counterface can be seen after sliding for a single cycle. The secondary electron image of 

the transferred material is shown in Figure 5.16b. The EDS analyses confirmed that the 

composition of the transferred material included magnesium, aluminum and zinc—all 

originating from the AZ31 (Figure 5.16c). As the number of sliding cycles increased, 

new material layers were deposited on previously transferred material—an accumulation 

process that resulted in the formation of debris fragments with a lamellar structure. In 

order to observe the microstructure of the transferred material, the debris particles were 

mounted in an epoxy mould along their longitudinal axes and polished until their cross-

sections were exposed. The optical micrographs in Figures 5.17a and b display a typical 

debris microstructure, revealing the presence of deformation bands extending parallel to 

each other as well as the formation of small, equiaxed, recrystallized grains between 

them. In this cross-section, the recrystallized grain size was 6.1 ± 1.4 µm, and the 

thickness of recrystallized zones varied between 10 – 15 µm. 
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5.6.2.  Worn surface and subsurface microstructure 

The worn surfaces of AZ31 samples tested at 400 °C were chemically etched to 

reveal the structure of the near surface grains that were developed during sliding contact. 

Etching the wear track with an acetic-picral solution for two seconds (without mechanical 

polishing) removed the damaged top layer and exposed the grain structure immediately 

underneath. Figure 5.18a shows the plan view of the wear track, where the equiaxed 

morphology of the exposed grains, with an average size of 6.9 ± 3.6 µm, are displayed. It 

is noted that the grains inside the wear track were smaller than those outside the wear 

track (12.7 ± 2.16 µm), which suggests the occurrence of recrystallization during sliding 

contact at this temperature. Figure 5.18b shows the cross-sectional view of the same 

wear track, which reveals the subsurface grain morphology as a function of depth below 

the contact surface. Again, the presence of some recrystallized grains on the top layer 

adjacent to the contact surface can be seen. In the region immediately below the 

recrystallized surface grains, the microstructure is characterized by a region of grain 

growth that extends within a depth of approximately 10 to 50 μm below the wear track. 

Figure 5.19 is a cross-sectional composite micrograph that shows details of the 

microstructure developed after sliding for 50 cycles. This section was cut at an angle of 

5 degrees to the contact surface as a way of enhancing the details of the near surface 

microstructure. The typical features of the sliding-induced deformation microstructure are 

clearly depicted in this micrograph: A zone of recrystallized grains that extends up to 

10 – 15 µm below the contact surface and the grain growth zone underneath the 

recrystallized grains that penetrates to a depth of 80 µm are among the important aspects 

of the microstructure.  
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Apart from dynamic recrystallization, evidence of GBS was also found during the 

sliding induced damage process. GBS was found in regions neighbouring the edges of the 

wear track, where the pileups of plastically deformed material formed elevated plateaus. 

Figure 5.20a shows the three-dimensional optical surface profile of this region, where 

the grain boundaries are clearly distinguished. Analysis of the surface profiles revealed 

that the grains shown in Figure 5.20a were either elevated or sunken in relation to the 

neighbouring grains. A two-dimensional section taken across this region (Figure 5.20b) 

indicates an average step height of 0.15 μm between the adjacent grains. The formation 

of these steps was attributed to sliding of the grain boundaries.  

5.7. Summary of observations on deformation and friction behaviour 

of AZ31 alloy 

One of the main differences in the estimation of the flow stress in AZ31 alloy 

over AA5083 alloy is that the flow stress of the magnesium alloy was sensitive to the 

concurrent grain growth. In AZ31 with an increase in temperature, the grain size 

increased from 6.6 µm at 300 °C to 13.6 µm at 450 °C. Temperature and strain rate 

conditions that generated the highest grain size (in the temperature and strain rate range 

studied) corresponded to a stress exponent value of n = 3 as shown in Figure 5.14. GBS 

was the dominant deformation mechanism over a large temperature and strain rate range 

and associated with the fine grain structure. At temperatures > 400 °C, where n > 3, the 

material appeared to deform more readily by glide controlled dislocation creep. Glide 

controlled dislocation creep (also termed viscous glide creep) was observed previously in 

the coarse grained AZ31 alloy [93]. Grain coarsening at high temperature (> 400 °C) 
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brings about a transition to dislocation dominated flow from GBS, which operates only in 

fine-grained material.  

At high temperatures the bulk material started to exhibit a bimodal grain structure, 

and two mechanisms might be operating simultaneously. The dislocation glide creep 

mechanism operates within the large grains. In addition, the AZ31 alloy deformed by 

CGBS, which occurred through the movement of grain groups as an entity. An increase 

in strain rate increased the formation of slip bands within the large grains, as can be seen 

from the microstructure of the deformed surface in Figures 5.6a and b, where the grains 

which were not in contact show the formation of slip bands. An increase in slip band 

formation with increase in stress (equivalent of strain rate increase) was reported 

previously by Kottada et al. [174].  

Occurrence of CGBS through the movement of grain groups generated multiple 

large peaks on the surface and induced roughening of the deformed surface. These large 

peaks that appeared at a level higher than the surrounding area made contact with the 

steel pin during the experiment and caused the intermittent wear track as in 

Figures 5.6a and b.      

Dynamic recrystallization was also found in the subsurface of the wear track as 

well as in the material that was transferred to the counterface during unidirectional 

sliding experiments using pin-on-disk set-up (Figures 5.18 and 5.19). However in those 

experiments, very high sliding induced surface and subsurface strains were generated, 

which resulted in the detachment of that layer from the underneath material and 

transferring of the layer to the counterface (see Chapter 6 for a detailed analysis). In 
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single pass stretching experiments, the sliding induced subsurface strain under a low load 

of 0.12 N was not sufficient to produce significant grain growth underneath the sliding 

track. The externally applied strain is uniformly accommodated in the deformed material 

without generating a strain gradient. In fact, the small grains and retention of strength at 

low temperature resulted in low COF under those conditions. With an increase in 

temperature, flow strength of the material decreased and hence increased the COF. 

Existence of surface oxide seemed to lower the COF at temperatures up to 400 °C.  When 

the deformation temperature exceeds 400 °C, the surface oxide does not act as a 

protective layer, and COF of the initial surface was found to be higher than that of the 

surface without the pre-existing layer at 450 °C.   
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Figure 5. 1. COF vs. sliding time plot at two temperatures and strain rates of (a) 
4 × 10-2 s-1 and (b) 1 × 10-2 s-1. (c) Average COF vs. temperature plot, where error bars 
indicate range of fluctuations in mean COF values measured over 100 s time test period 
on each strip; (d) Average COF values plotted on temperature vs. strain rate axes. 
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Figure 5. 2. (a) Surface morphology of the AZ31 strip in initial cold rolled condition. (b) 
SEM micrograph of the surface deformed at 450 °C and 4 × 10-2 s-1 and (c) a higher 
magnification image taken from plate (b); (d) SEM micrograph of the surface deformed 
at 450 °C and 4 × 10-2 s-1 showing the out-of-plane sliding of grains at some locations; (e) 
SEM micrograph of the surface deformed at 250 °C and 2 × 10-2 s-1. 

(c) 

 

4 µm 

Oxide ligament 

Oxide 

(b) 

 

Oxide 

Oxide 
ligament 

10 µm Oxide ligament 

Tensile direction 

20 µm (a) 

Non-uniform 
oxide layer

Rolling direction 



Page | 179  
 

 

 

  

(e)

Oxide  

Oxide ligament

1 µm 

(d)

10 µm 

Grains 

Oxide 
ligament 



Page | 180  
 

 

Figure 5. 3. (a) Surface micrograph of the AZ31 sample deformed at ace deformed at 
450 °C and 4 × 10-2 s-1, (b) FIB cross section taken along the dotted line in plate (a) 
showing the surface oxide and also ligaments covered with carbon; (c) TEM micrograph 
of deformed surface (at 450 °C) along the tensile axis (the dotted line shows the position 
of the surface); (d) high magnification image taken from plate (c) showing the area with 
superplastic ligament between the oxide island; (e) SADP pattern taken from the 
superplastic ligament in plate (d) (with different rings in the SADP pattern indexed as 
MgO). 
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Figure 5. 4. (a) Surface height distribution profiles for surfaces deformed at four 
temperatures (a) T = 300 °C, (b) T = 350 °C, (c) T = 400 °C and (d) T = 450 °C. 
Measurements at each surface were taken from areas of 300 µm × 225 µm. (e) Average 
surface roughness data (in µm) plotted on temperature vs. strain rate axes and (f) 
roughness map generated based on the value in (e). 

  

450 oC

Surface height, μm
-10 -5 0 5 10

N
um

be
r o

f d
at

a 
po

in
ts

0

5000

10000

15000

20000

4x10-2 s-1

3x10-2 s-1

2x10-2 s-1

5x10-3 s-1

300 oC

Surface height, μm
-10 -5 0 5 10

N
um

be
r o

f d
at

a 
po

in
ts

0

5000

10000

15000

20000

4x10-2 s-1

3x10-2 s-1

2x10-2 s-1

5x10-3 s-1

350 oC

Surface height, μm
-10 -5 0 5 10

N
um

be
r o

f d
at

a 
po

in
ts

0

5000

10000

15000

20000

4x10-2 s-1

3x10-2 s-1

2x10-2 s-1

5x10-3 s-1

400 oC

Surface height, μm
-10 -5 0 5 10

N
um

be
r o

f d
at

a 
po

in
ts

0

5000

10000

15000

20000

4x10-2 s-1

3x10-2 s-1

2x10-2 s-1

5x10-3 s-1

(a) (b) 

(c) (d) 



Page | 183  
 

Strain rate, s-1

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Te
m

pe
ra

tu
re

, o C

250

275

300

325

350

375

400

425

450

1.42 1.45 

1.43 1.48 1.33

1.66

1.45

1.3 

1.31 1.191.40 

0.61 1.25

1.23

(e) 

(f) 

1.29

1.24

Roughness, µm 

 

  



Page | 184  
 

 

 

Figure 5. 5. Average surface roughness vs. temperature plot for polished surface after 
deformation at two strain rates of 1 × 10-2 s-1 and 4 × 10-2 s-1.   
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Figure 5. 6. (a) Variation in average COF between polished AZ31 sample and P20 steel 
pin with temperature, at two strain rates. Average COF vs. temperature plot for 
as-received and polished surface at two different strain rates show increase in COF value 
when the temperature is increased from 300 °C to 450 °C (b) 1 × 10-2 s-1 and (c) 
4 × 10-2 s-1. Error bars indicate range of fluctuations in mean COF values measured over 
100 s time test period on each strip (following the initial 20 s heating period).  
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Figure 5. 7. SEM micrograph of the wear track on the deformed surface without any pre-
existing oxide layer (a) and (b) at 450 °C, (c) and (d) 350 °C and (e) and (f) 300 °C. 
Strain  rate applied during each experiments are given in the micrograph. The arrow 
placed in the bottom left corner of each image represents the sliding direction. (g) Width 
of the wear track vs. temperature plot after experiments at two strain rates of 1 × 10-2 s-1 
and 4 × 10-2 s-1.  
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Figure 5. 8. Surface profile of polished surface after deformation at (a)  450 °C, 
4 × 10-2 s-1, (b) 450 °C, 1 × 10-2 s-1, (c) 350 °C, 4 × 10-2 s-1, and (d) 350 °C, 1 × 10-2 s-1. 
(e) 2-D profiles taken along the dotted line in plates (a)-(d). The two sided arrow in the 
image indicates the tensile direction.     
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Figure 5. 9. Microstructure of AZ31 alloy after deformed at various temperature and strain rates.
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Figure 5. 10. (a) Average grain size vs. temperature plot at two strain rates of 1 × 10-2 s-1 
and 4 × 10-2 s-1 and (b) grain size vs. strain rate plot at two temperatures of 300 °C and 
450 °C. (c) Average grain size values (in µm) plotted on temperature vs. strain rate axes. 
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Figure 5. 11. Grain size (in µm) map generated on temperature vs. strain rate axes. The 
contours represent iso-grain size values in µm.  
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Figure 5. 12. (a) Tensile load applied to AZ31 strips vs. time plot at different strain rates 
and at (a) 300 °C, (b) 350 °C, (c) 400 °C and (d) 450 °C; (e) Average flow stress values 
(in MPa) plotted on temperature vs. strain rate axes. 
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Figure 5. 13. Strain rate vs. modulus compensated flow stress plots following the general 
creep equation where ‘n’ is the stress exponent.  
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Figure 5. 14. Stress exponent map for AZ31 where contours of constant n values are 
plotted on temperature vs. strain rate axes.  
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Figure 5. 15. Grain size compensated strain rate as a function of reciprocal temperature in 
AZ31 alloy. The plot is used to calculate the activation energy for deformation, Q, at two 
normalized stress value of 0.004 and 0.007 (see the dotted line in Figure 5.13).   
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Figure 5. 16. (a) Three-dimensional surface contour of the counterface surface after one 
cycle of contact with AZ31 at 400 °C showing material transfer; (b) SEM micrograph of 
the corresponding area of the counterface and (c) the EDS analysis of transferred material 
from inside the area marked in (b).  
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Figure 5. 17. (a) Optical micrograph showing general view of polished cross-section of 
transferred material after multiple cycles where deformation bands and zones of 
recrystallized grains can be seen; (b) higher magnification image of the rectangular area 
in (a) showing the recrystallized grains. 
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Figure 5. 18. Optical micrograph of worn sample after single cycle sliding at 400 °C: (a) 
Surface microstructure showing recrystallized grains inside the wear track. The track was 
etched with an acetic-picral solution for two seconds to remove the damaged surface 
layer; (b) Subsurface cross-sectional microstructure indicating recrystallized and grain 
growth zone. 
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Figure 5. 19. Subsurface microstructure of the worn samples developed after sliding for 50 cycles at 400 °C. Micrograph 
indicates presence of a thin recrystallized zone and an extensive grain growth zone. This micrograph was taken from a tapered 
section of the wear track where the section plane was at a 5° angle to the horizontal axis (as indicated in the inserted schematic 
diagram). 
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Figure 5. 20. (a) Worn surface profile of the plastically deformed zone adjacent to wear 
track after sliding for 50 cycles and (b) Two-dimensional profile of surface grains in the 
vicinity of wear track (from section AA’ in (a)) indicating grains in the form of horizontal 
steps, and grain  boundary elevations. The origin, i.e., ‘0’ position on distance axis 
corresponds to the edge of wear track. 
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Chapter 6 General Discussion 

6.1. Introduction 

This chapter provides a general discussion of the deformation mechanisms that 

operate at elevated temperatures. It also discusses the relationships established between 

the deformation mechanisms and the measured COFs. Section 6.2 focuses on the 

interpretation of the COF of AA5083 alloy in conjunction with its deformation 

behaviour. This section also discusses the surface damage caused by the high temperature 

deformation behaviour. Section 6.3 describes the effect of dynamic recrystallization on 

deformation mechanisms of AZ31 alloy and the ways the dynamic recrystallization and 

deformation mechanisms could affect COF. In Section 6.4, a discussion of surface 

microstructure and morphology of the work piece material and adhesion of AA5083 and 

AZ31 alloy materials to steel surface is provided. The section also includes a discussion 

on the strength of the interface generated at first contact between the working material 

and P20 steel.  This chapter also discusses the characteristic features developed on the 

surface as a result of high temperature deformation and the role of the surface 

morphologies and the surface oxide in contributing towards adhesion and friction.  

6.2. Relationships between COF and deformation mechanisms 

The delineation of deformation mechanisms that operate at elevated temperatures 

and their effect on surface conditions constitute an important step towards rationalizing 

the friction behaviour of AA5083. By analyzing the COF values simultaneously with the 

principal deformation mechanisms, a COF-deformation mechanism map (COF-DMM) 
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was developed as shown in Figure 6.1. This map incorporates iso-COF contours plotted 

together with the dominant deformation mechanism regimes. The map indicates the 

effects of different deformation mechanisms on the COF values. Accordingly, within a 

narrow temperature and strain rate region where plastic deformation occurs by SD creep, 

COF is comparatively low, that is, it varies between 1.2 and 1.4. Deformation by SD does 

not induce the roughening of the strip surface (Figures 4.19c and d) to the same extent 

as the GBS, which is evident from the comparison of Ra values (Table 4.2). Furthermore, 

the flow stress (hardness) of the alloy is the highest in the SD controlled region (Figure 

4.15c). Thus, the relatively low COF can be attributed to two factors: (i) high hardness 

and (ii) low average roughness of the strip. At low strain rates, where diffusional flow 

occurs, the COF increases from 0.95 (420 °C and 5 × 10-3 s-1) to 1.6 (545 °C and 

1 × 10-2 s-1), which corresponds to a 65 % increase in COF in a temperature range of 120 

°C. Diffusional flow is not expected to induce surface roughening, and in fact, the Ra 

values measured vary only between 0.29 µm (420 °C and 5 × 10-3 s-1) and 0.37 µm (545 

°C and 1 × 10-2 s-1) (Table 4.2). The increase in COF that occurs with temperature could 

be attributed to the softening of the alloy as its flow stress decreases from 16.9 at 420 °C 

to 5.5 MPa at 545 °C (Figure 4.15c).  

The GBS deformation operates in the widest temperature and strain rate region in 

the COF-DMM (Figure 6.1) and embraces COF values that are as low as 1.2 (440 °C and 

2.0 × 10-2 – 2.5 × 10-3 s-1) to over 2.0 (540 °C and 4.0 × 10-2 s-1). GBS has proven 

responsible for the high surface roughness values due to the formation of grain boundary 

offsets on the surfaces. The exposed surfaces were covered with an oxide layer of non-

uniform thickness. In order to determine the contribution of GBS to the formation of 
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surface offsets, these oxide layers on the surfaces of AA5083 strips were removed by 

mechanically polishing the surfaces to an initial roughness of Ra = 0.04 µm, and the 

polished strips were subjected to the plastic deformation under temperatures and strain 

rates of interest. Although a (thinner) oxide layer again formed on the surfaces, the 

surface grain topography could be distinctly observed using optical interferometry 

(Figures 6.2a to c). As shown in Figure 6.2d, an increase in the strain rate increased the 

average grain boundary step height on the free surface.  

A thorough quantification of the grain boundary step height is provided by 

conducting a statistical analysis that included the step heights formed at the grain 

boundaries of 100 – 150 grains at each temperature and strain rate. As shown in the 

histograms in Figures 6.3a and b, GBS induced plastic flow at T = 420 °C and dε/dt = 

4 × 10-2 s-1 (Figure 6.3a) resulted in a mean grain boundary step height of 

0.90 ± 0.12 µm on the surface, whereas at T = 545 °C and dε/dt = 4 × 10-2 s-1, the average 

step height increased to 1.45 ± 0.19 µm (Figure 6.3b). When the COF values are plotted 

against the grain boundary step height together with the range of operating deformation 

mechanisms (Figure 6.4a), the role of GBS in controlling the COF becomes evident. The 

COF values increased when the deformation temperature was increased while 

maintaining the same strain rate, whereas the flow stress of the material followed the 

opposite trend of COF behaviour, that is, flow stress decreased with increase in 

temperature. COF values are plotted against the grain boundary step heights normalized 

by the flow stress of the material deformation and shown in Figure 6.4b. The data points 

in the plot are fitted with a strain line, which indicates that the COF in AA5083 alloy is a 

function of grain boundary step height (or surface roughness) and flow stress of 
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deformation.       

GBS, which was one of the dominant operating deformation mechanisms in 

AA5083 alloy, was found to have a role in controlling friction under the present 

deformation conditions. Section 6.3.1 discusses the effect of dynamic recrystallization 

(DRX) on the COF of AZ31 alloy. 

6.3. Effect of dynamic recrystallization (DRX) on COF of AZ31 alloy 

6.3.1. DRX and grain growth 

 Low stacking fault energy material AZ31 alloy is very prone to undergo DRX 

upon deformation at T > 250 °C. Therefore to establish a relation between plastic 

deformation mechanism and COF, DRX and its role on deformation behaviour were 

analyzed and will be discussed in this section.  

 The evolution of microstructure (that is, grain size and morphology) with the 

temperature and strain rate in AZ31 alloy is shown in Figure 5.9. Finer DRX grains were 

formed when the strain rates were high (see Figures 5.9 to 5.11). Lowest grain size of 

3.6 µm was observed for the deformation at 250 °C and 1 × 10-2 s-1. Finer DRX grains 

with increased strain rate were also observed by Zhang et al. [175] in Mg-Zn-Y alloy. 

This was attributed to the higher dislocation density when the alloy was deformed at high 

strain rate. Fine subgrains and DRX grains could form as more dislocations were 

absorbed into high-angle boundaries. For temperature ~ 400 °C in the present 

investigation, the grain size remained constant (~10 µm) irrespective of the applied strain 

rate (see Figures 5.10 and 5.11). At temperature (> 400 °C), grain growth in the material 
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resulted in an increase in grain size, the lowest being 13 µm at 450 °C and 5 × 10-3 s-1. At 

the same temperature of 450 °C, when the applied strain rate was increased to 4 × 10-2 s-1, 

the grain size in the material became as large as 20 µm. An increase in grain size with the 

strain rate was also reported previously by Rabinovich and Trifonov [176]. Cao et al. 

[177] claimed that the lattice diffusion is the grain growth mechanism in magnesium-

lithium alloys.  

The flow stress of AZ31 alloy was influenced by the concurrent grain growth 

during the experiments. By plotting the grain size values simultaneously with the 

principal deformation mechanisms, a ‘grain size-DMM’ was developed as shown in 

Figure 6.5. This map incorporates iso-grain size contours (see Figures 5.10 and 5.11) 

plotted on the dominant deformation mechanism regimes (Figure 5.14) that were 

identified based on the stress exponent values over the experimental temperature and 

strain rate range. The grain size of AZ31 alloy varied between 3.6 µm (250 °C and 

1 × 10-2 s-1) and 18.5 µm (450 °C and 4 × 10-2 s-1) as in Figure 6.5.  It can be suggested 

that a dynamic change in the grain size could control the operating mechanisms of 

deformation. GBS is the dominant mechanism for fine grain material only [6]. With the 

increase in the grain size, the material tends to deform more readily by glide controlled 

dislocation creep (viscous glide or solute drag) [25,107,111] which can be described by 

the following equation [70]:  

         (6.1) 

Where Ds is solute atom diffusion coefficient, b is the Burgers vector, E is the Young’s 

modulus, k is Boltzmann’s constant, and k5 is material constant. 
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At temperatures > 400 °C, the DMM (see Figure 5.14) shows a stress exponent 

value > 3 indicating the change in the operating mechanism from GBS to viscous glide 

(solute drag) creep. The grain coarsening at high temperature (> 400 °C) and high strain 

rate (> 2 × 10-2 s-1) was responsible for the increase in stress exponent value (to 3.5) and 

the change in deformation mechanism to dislocation dominated flow. The stress exponent 

value 2 usually represents GBS mechanism, occurrence of which depends on the fine 

grain size of the material (usually < 10 µm) as previously indicated [91,99,105-107]. 

Viscous glide creep mechanism also operated in the region of low temperature (≤ 300 °C) 

and high strain rate (≥ 3 × 10-2 s-1) as shown in Figure 6.5. 

The deformation mechanisms were related to the COF data for an interpretation of 

the tribological behaviour of AZ31 alloy during high temperature deformation and will be 

discussed in Section 6.3.3.  

6.3.2. Elevated temperature COF of AZ31 alloy 

 Regardless of testing conditions, AZ31 magnesium alloy always showed lower 

COF compared to aluminum AA5083 alloy under the same homologous temperature and 

strain rate conditions as shown in Figure 6.6. For AA5083 alloy, plastic deformation 

mechanism at elevated temperature influences the surface characteristics, such as 

formation of grain boundary step heights at the surface (as a consequence of GBS 

mechanism operating in the bulk material). In addition to the effect of flow stress that 

changed with temperature, COF of AA5083 alloy is also affected by the variation in GB 

step heights that caused surface roughening and also by the oxide composition and 

mechanical properties. The COF of AZ31 alloy increased with temperature and strain 

rate. However, unlike AA5083 alloy, the surface roughening in AZ31 alloy (see Figures 
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5.4e and f) induced by the deformation in bulk material under the temperature (250 °C – 

450 °C) and strain rate (5 × 10-3 s-1 – 4 × 10-2 s-1) did not have a straight forward 

relationship with the change in COF (in Figures 5.1d).  GBS in AZ31 alloy operates in 

the largest temperature and strain rate range (Figure 5.14). GBS and CGBS have proven 

responsible for the increase in surface roughness in AZ31 alloy (see Figures 5.5 and 

5.8). The surface of the AZ31 alloy which was covered with an oxide layer was broken 

and formed oxide islands when the roughness increased due to the formation of elevated 

grains at 450 °C and 4 × 10-2 s-1. These oxide islands acted as abrasive and caused an 

increase in COF.    

6.3.3. COF-DMM 

To delineate the role of the deformation on the COF of the AZ31 alloy, the COF 

values (Figure 5.1) are plotted together with the regime of dominant deformation 

mechanisms (Figure 5.14) as shown in Figure 6.7. At low strain rates (< 1.5 × 10-2 s-1), 

where diffusional flow dominates, COF increased from 0.34 (300 °C and 1 × 10-2 s-1) to 

0.59 (450 °C and 1 × 10-2 s-1). This increase in COF is due to the decrease in flow stress 

of the material. At low temperatures (≤ 300 °C) and high strain rates (≥ 3 × 10-2 s-1), 

viscous glide creep mechanism operates (Figure 6.7), where the COF value remained 

low (0.47 at 250 °C and 3 × 10-2 s-1) due to the high strength of the material. For a wide 

range of temperature and strain rate, GBS operates as in Figure 6.7, and the increase in 

COF could be attributed to the increase in surface roughness and to the decrease in flow 

stress. At temperature > 400 °C and strain rate > 2 × 10-2 s-1, the stress exponent value 

(see Figure 5.14) identified the mechanism as viscous glide (or solute drag) creep 

mechanism. However, the surface profilometry data (see Figure 5.8) and the surface 
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micrographs (see Figure 5.7) in this viscous glide (or solute drag) regime also showed 

the occurrence of CGBS in addition to the glide mechanism. CGBS mechanism in the 

material caused surface roughening, which changed the surface oxide morphology that 

increased the COF.  

As mentioned previously, at temperatures lower than 400 °C, upon increasing the 

applied strain rate, the grain size decreased as a result of dynamic recrystallization. 

Accordingly, increase in COF with strain rate at these temperatures is attributed to the 

surface roughening due to the GBS mechanism, which was also supported by decreased 

grain size. At temperatures beyond 400 °C, dislocation dominated flow took over (Figure 

6.7). However, in this regime of the DMM, along with the glide controlled creep, the 

grains underwent cooperative grain boundary sliding (CGBS) mechanism, and generated 

elevated areas on the deformed surface. This CGBS deformation behaviour of the 

material was supported by the microstructural evidence from the worn surface as shown 

in Figures 5.7a and b. The micrograph in Figure 5.7b shows intermittent wear tracks, 

which was formed when the rough surface (generated by CGBS mechanism under the 

deformation condition of 450 °C and 4 × 10-2 s-1) of AZ31 alloy was in contact against 

the P20 counterface.  

    

6.3.4. Sliding induced deformation processes in AZ31 alloy 

The deformation and damage process during high temperature sliding contact was 

studied using pin-on-disk type setup (without the application of external strain). The 

multiple sliding cycle experiments were done in order to establish a relation between the 

sliding induced deformation behaviour and the material removal during high temperature 
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sliding contact. In such experiments, the plastic strain in the material (localized beneath 

the wear track) was induced by sliding contact and excluded the effect of external strain. 

This section discusses the evolution of microstructures during sliding contact by referring 

to the stress and strain states developed below the wear track.  

The metallographic evidence presented in Figures 5.17 and 5.18 suggests that at 

400 °C, the contact surface of AZ31 was subjected to severe damage and underwent 

dynamic recrystallization as well as grain growth. Material transfer to the counterface 

occurred simultaneously, and the transferred material exhibited features consistent with 

severe deformation and dynamic recrystallization. A description of the development of 

sliding-induced deformation microstructures is illustrated in Figure 6.8 based on static 

pin-on-disk tests. The schematic diagram identifies grain boundary sliding (GBS) in the 

vicinity of the wear track.  

The generic DMM constructed to represent the deformation mechanisms of 

magnesium at 400 °C was shown in Figure 2.16 [91,106]. For the sliding experiments 

that were performed under a normal load of 5.0 N, a contact stress of 70 MPa was 

estimated when considering a contact area of 7 × 10-2 mm2 (for which the contact 

diameter was assumed equal to the wear track width). As a result, a normalized stress 

(σ/E) of ~ 2 × 10-3 was obtained (with E = 36 GPa [67]). Using these values, the DMM in 

Figure 2.16 suggests that GBS should be the main deformation mechanism for 

magnesium with an initial grain size of 14 µm. GBS can occur by lattice diffusion or 

grain boundary diffusion, for which the strain rates are given by Equations 6.2 and 6.3. 

 (lattice diffusion controlled) (6.2)  
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(boundary diffusion controlled)  (6.3) 

 From Equations 6.2 and 6.3, strain rates of 4 × 10-3 s -1 and 2 × 10-3 s-1 can be 

calculated using the parameters listed in Table 6.1. Both strain rates are in general 

agreement with those used to carry out the hot-forming of magnesium alloys.  

Table 6. 1. Material constants used for calculation of strain rates for diffusional flow 
and GBS. (*E673K = ERT[1-5.3×10-4(T-300)], and ERT = 45 × 109 N/m2). 

Material Parameters 
Reported Values 

[47,91] 

Material constant, k3  7.59 × 108 

Material constant, k4  7.04 × 107 

Grain boundary diffusion coefficient, Dgb  1.5 × 10‐10 m2/s 

Lattice diffusion coefficient, DL  4.8 × 10‐16 m2/s 

Burgers vector, b  3.21 × 10‐10 m 

*Young’s modulus at 673 K, E673K  36 × 109 N/m2 

 

While evidence of GBS was found in the deformed material adjacent to the wear 

track, fine recrystallized grains were observed immediately below the contact surface, a 

location subjected to high plastic strains. The low stacking fault energy (60 – 78 kJ/mol) 

of magnesium alloys facilitates dynamic recrystallization [48], which normally occurs at 

higher temperatures than 400 °C. An increase in the imposed strain is expected to 

decrease the recrystallization temperature. For example, application of 60% tensile strain 
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(at a stain rate of 10-4 s-1) reportedly reduced the recrystallization temperature of AZ31 

alloy to a temperature of 250 °C [25]. Thus an effort has been made in this work to 

estimate the plastic strains under the worn surfaces. The experimentally determined 

equivalent (effective) plastic strain distribution under the wear track of the AZ31tested at 

400 °C is shown in Figure 6.9. The measurements were made using the artificial marker 

method described in Chapter 3.  The subsurface plastic strains exceed 100 % (ε = 1) at 

about 10 µm below the surface and reached as high as 3 or 300 % at depths less than 

5 μm. The attainment of these large strains makes dynamic recrystallization possible 

during sliding at 400 °C. The recrystallized grains were confined to a narrow zone in the 

regions immediately below the contact surface, where the strains were the highest.  

Underneath the recrystallization zone a grain growth zone was present. The 

kinetics of growth can be analyzed starting from examination of the grain size in data 

shown in Figure 6.10a which was obtained from quantitative analysis of microstructures 

in Figures 5.18 and 5.19. Figure 6.10a indicates an increase in the (largest) grain size 

from 36 ± 11 µm after one sliding cycle of sliding to 78 ± 13 µm after sliding for 

50 cycles at 400 °C. No further increase in grain size was observed for a higher number 

of sliding cycles. The average maximum grain size (dg) is re-plotted as a function of the 

sliding time (t) in Figure 6.10b, which reveals an initial high growth rate and subsequent 

decrease. Hence, the grain growth data can be expressed using the following parabolic 

equation: 

  (6.4) 

where di is the initial grain size, and dg is the grain size at sliding time t. C΄ is a 

constant, and is equal to 24.1 μm2 s-1 at 400 °C. Grain growth measurements performed at 

′2 2
g id - d = C .t
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other temperatures have shown that the parabolic relationship was maintained, so that the 

activation energy, Q, for grain growth can be obtained from a  plot against (1/T) 

in a semi-logarithmic scale (Figure 6.10c) in the range between 300 °C and 400 °C, as 

follows: 

  (6.5) 

Accordingly, the activation energy for grain growth (calculated from the slope of 

the plot in Figure 6.10c) is determined as 35 kJ/mol. This value is lower than the 

activation energy for the self-diffusion of pure magnesium (for which QL = 135 kJ/mol 

for lattice diffusion, and Qgb = 92 kJ/mol for grain boundary diffusion [67]). 

Consequently, the value of activation energy for grain growth during the sliding contact 

of AZ31 corresponds to ~ 0.38 Qgb. The activation energy value determined for sliding 

induced grain growth in AZ31 can be compared with that from other high-strain 

deformation processes. For example, data generated during equal channel angular 

pressing experiments performed on AZ31, with a strain of ε = 3.0 [178,179] provided an 

activation energy of 33.5 kJ/mol for grain growth.  Comparative activation energy data in 

the literature on high temperature sliding wear is rare, but the lower activation energy 

value of 35 kJ/mol for AZ31 is in agreement with the activation energy of 33 kJ/mol 

calculated for the severe wear of a 6061 aluminum alloy subjected to sliding contact at 

T = 200-500 °C and ε = 10 [143]. This value, too, is lower than that of the activation 

energy for the grain boundary diffusion of pure aluminum, Qgb = 84 kJ/mol [67].  

The progression of dynamic microstructural evolution events leading to material 

detachment from the surface of AZ31 can be considered as part of the cyclical damage 

2 2
g i(d - d )
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process that repeats itself during the course of sliding at 400 °C. During each cycle, high 

subsurface plastic strain gradient was generated immediately after the initiation of sliding 

contact (ε >3). This strain gradient in the subsurface caused recrystallization of grains 

within a zone of 10 μm in thickness below the contact surface. Recrystallized grains 

became detached from the underlying grain growth zone. It is conceivable that the 

material delamination process would be assisted by strain incompatibility between the 

two zones with different grain sizes. Once the material is removed and transferred to the 

counterface, fresh AZ31 surface became exposed so that another cycle of strain 

accumulation, deformation, and damage events recur. In this way, the microstructure 

would reach a dynamic equilibrium, and consequently, a constant wear rate (see 

Figure 3.9) is maintained. 

The investigation on sliding induced damage in AZ31 alloy revealed that DRX 

and grain growth resulting from the strain accumulation controls the material transfer 

process during sliding contact experiments. In addition, evidence of high temperature 

deformation process such as GBS was also found in the vicinity of the wear track. The 

finding of the sliding experiments (without the application of external strain) provided a 

basic understanding of the role of the deformation mechanism on the tribological 

behaviour. Therefore, this was considered to be an important step towards understanding 

the friction and adhesion of AZ31 alloy during elevated temperature deformation. 

6.4. Surface oxidation and adhesion 

In previous sections (Sections 6.2 and 6.3), the temperature and strain rate 

dependence of COF has been discussed for both aluminum AA5083 and magnesium 
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AZ31 alloy materials. Also, a relation between the governing mechanisms of deformation 

and COF has been established. This section provides a few thoughts on adhesion of the 

material to the counterface. The characteristic features that developed on the surface of 

AA5083 and AZ31 alloys as a result of high temperature deformation, as well as the way 

these surface oxides interact with the counterface in nano-metric scale contributing 

towards adhesion and friction, are also provided here. 

6.4.1. Junction strength 

The maximum force required to break the asperity junction formed at the first 

contact is termed as ‘junction strength’. The strength vs. time plots of junction strength 

experiments conducted on AZ31 alloy and AA5083 alloy are shown in Figure 6.11. The 

tangential force required to slide the workpiece materials against P20 counterface 

increased until a maximum value was reached, after which the force dropped. The 

maximum tangential force or junction strength values for AZ31 and AA5083 alloys 

(indicated using the dotted lines in Figure 6.11) are 0.30 N and 0.57 N respectively.  

Static sliding experiments using ball-on-disk apparatus as well as dynamic sliding 

experiments using hot-forming simulator showed lower COF in AZ31 alloy than in 

AA5083 alloy (Figure 6.6) under the same homologous deformation temperature. The 

junction strength experiments conducted on AZ31 alloy and AA5083 alloy confirmed 

that the strength of AZ31 alloy is lower than the strength of AA5083 alloy as in 

Figure 6.11. In this figure, the junction strength of magnesium alloy with higher with 

higher aluminum content (AZ91) than that present in AZ31 was also plotted. The 

junction strength of AZ91 was found to be between AA5083 and AZ31 alloys. 

Accordingly, it can be inferred that junction strength in AA5083 is high because of its 
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low magnesium content. The existence of magnesium rich surface oxide reduced junction 

strength, and hence low COF is expected in AZ31 alloy. From the in-situ observation of 

the contact surface while the material was in sliding contact against 2 mm thick quartz 

glass disk, oxide formation at the contact surface was observed. Figure 6.12a shows 

chronological changes in the contact surface of magnesium AZ91 alloy slid against 

quartz glass. Oxidation of the material at first contact is evident from the microstructure 

in Figure 6.12a. Also, the contact area became larger and the oxidation continued until 

the whole contact surface was completely oxidized, which is the reason for the darker 

appearance. Figure 6.12b shows chronological changes in the contact surface of 

aluminum AA5083 alloy slid against quartz glass. The surface contact became enriched 

with this oxide (as seen by the dark areas in Figures 6.12a and b). In AZ31 alloy, once 

the surface became completely oxidized (MgO), material transfer to counterface disk was 

reduced. However, in AA5083 alloy, the formation of MgO was not sufficient to reduce 

the material transfer and COF. The junction strength experiments provided a better 

understanding of the COF behaviour of alloys with different magnesium content. 

The surfaces of both as-received AA5083 and AZ31 alloy materials that produce 

the dynamic contact interface with the die surface were covered with a layer of oxide. 

The alloy with high magnesium content would provide a high amount of magnesium rich 

oxides and is therefore very important factor which ultimately determines COF at 

elevated temperature.      

6.4.2. Surface oxide layers: role on COF  

6.4.2.1. Surface damage mechanisms in AA5083 alloy at 420 – 545 °C 

In this section the damage mechanisms that occurred in the oxide layer that 
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covered the surface of the AA5083 alloy during plastic deformation in the 420 – 545 °C 

temperature range were considered. Thin, fibrous structures or ligaments are observed in 

samples subjected to plastic deformation, especially at high temperatures and high strain 

rates. Typically, ligaments were between 1.5 – 2.5 µm long and were elongated to more 

than ten times their diameter of 0.1 – 0.2 µm without necking, suggesting superplastic 

behaviour. It has been shown [138,141] that the test environment has a crucial effect on 

ligament formation because ligaments are observed only on surfaces exposed to air. In 

addition, the results of this work have shown that the ligaments form directly from the 

oxide layer on the material and not from the bulk alloy. Distinction should be made 

between the plastic deformation of bulk alloy and the deformation of the oxide layer. 

When the grains of the alloy are subjected to GBS, they form surface steps on the surface. 

The sliding grain boundaries apply plastic strain to the oxide stretching over these sliding 

grain boundaries. The oxide is subjected to superplastic deformation at those locations. 

The superplasticity of the oxide ligaments could be attributed to diffusional flow and will 

be discussed in Section 6.4.2.2.    

At T ≤ 450 °C, oxide layers fractured, with only a very few ligaments observed, 

while an increase in strain rate for T ≥ 460 °C increased both the length and the area 

fraction of the ligaments on the deformed oxide layer. The deformation mechanisms 

operating in the AA5083 alloy in the same temperature (420 °C – 545 °C) and strain rate 

regime (2 × 10-2 s-1 – 4 × 10-2 s-1) were described in Section 6.2. In the temperature range 

of 420 °C – 545 °C and a strain rate range of 2 × 10-2 s-1 – 4 × 10-2 s-1, GBS was the 

dominant deformation mechanism. The surface offsets at 420 °C – 440 °C were low, with 

a mean grain boundary step height of 0.90 µm that increased with the temperature to 
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1.45 µm at 545 °C. GBS of AA5083 grains adjacent to the surface imposed a plastic 

strain on the oxide layer extending layer over their boundaries, resulting in ligament 

formation. In fact, ligaments were always found to occur on the oxide patches extending 

along the grain boundaries of the near surface bulk grains that had undergone sliding. The 

length of the ligaments was equal to the length of the grain boundary steps, and the rows 

of ligaments generally formed across the entire width of the grain boundary surface steps. 

The increase in the length of the ligament with the increase in temperature and strain rate 

is as expected because GBS in the AA5083 alloy becomes more prominent at higher 

temperatures and strain rates. 

At low temperatures between 420 °C and 450 °C and high strain rates greater than 

3 × 10-2 s-1, deformation by solute drag becomes dominant. Since this mechanism does 

not promote the formation of surface offsets, oxide ligaments are not expected to form at 

the grain boundaries. On the other hand, diffusional flow becomes the main deformation 

mechanism at low strain rates. The alloy surface is flat without any grain boundary facets, 

and consequently, there is no local strain condition caused by GBS. Thus the GBS of the 

surface grains of the AA5083 alloy caused large elongations stretching oxide ligaments, 

and this is consistent with the observation that the location of the ligaments always 

corresponded to the grain boundaries of the bulk alloy, and the ligament length increased 

with increasing the grain boundary step height. The two types of oxide damage 

mechanisms are schematically illustrated in Figures 6.13a and b.  

6.4.2.2. Oxide ligament formation within the oxide layer 

The oxide ligaments within the oxide layer were able to accommodate the 

imposed strains and exhibited superplastic behaviour because of the nanocrystalline oxide 
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grains of 3 – 7 nm in diameter observed in their cross-sections. The size and geometry of 

these grains promote superplastic behaviour by grain boundary diffusion. More 

information regarding the formation of the ligaments can be obtained from Figure 4.12. 

It shows that the boundaries around the fine grains forming the ligaments are of 

significant size in relation to the grain diameters. This suggests that the ligaments are 

formed by Coble creep in which the diffusion in the material occurs mainly along the 

grain boundaries.  The results of this work agree with the fine grain superplasticity model 

proposed by Zelin [134] and Claey [141] in which the superplastic deformation of the 

material is promoted by the small grain size in the ligaments.  

Superplasticity has been observed in a number of nanocrystalline materials with 

grain sizes in the range of 10 – 100 nm tested at low temperatures (< 0.4Tm) [180,181]. 

Gleiter [182] suggested that grain boundary diffusion (Coble creep) should be the 

principal deformation mechanism in nanocrystalline materials even at T = 0.1Tm (room 

temperature). The strain rate in a material experiencing Coble creep [56] is given by: 

dε
dt

= α1DgbδσΩ

d3kT
 (6.6) 

Where α1 is a constant, Dgb is the grain boundary diffusion coefficient, σ is the 

applied stress, Ω is the atomic volume, k is Boltzmann’s constant, T is temperature, d is 

the average grain size and δ is the thickness of the grain boundary over which diffusion 

takes place.  

A schematic diagram illustrating the possible microscopic processes responsible 

for the large elongations of the oxide ligaments is given in Figure 6.14. Nanocrystalline 

oxide grains with short diffusion distances and large grain boundary areas promote 
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diffusional flow when subjected to a local plastic strain gradient. This strain gradient is 

provided by the local increase of the surface roughness due to GBS of the underlying 

AA5083 grains. This is reflected in Figure 6.14, where the section of the oxide layer is 

being stretched as a result of the formation of a surface step by sliding of adjacent grains, 

and the oxide can accommodate the imposed strains due to the enhanced diffusional flow 

because of its nanocrystalline microstructure. In addition, dynamic oxide resulting from 

the reaction of atmospheric oxygen with the outward diffused magnesium during high 

temperature plastic deformation may contribute to ligament formation [134,183]. 

 The area fractions of the oxide surface covered by the ligaments (termed ligament 

exposure) under the different temperature and strain rate conditions were used to generate 

an oxide damage map as shown previously in Figure 4.10. Apparently, both COF and 

ligament exposure increased with temperature and strain rate, when comparing 

COF-DMM in Figure 6.1 with the oxide damage map in Figure 4.10.  However, the 

increase in ligament exposure from 0.1% (at 420 °C and 5 × 10-3 s-1) to 42.0% (at 545 °C 

and 4 × 10-2 s-1) with the increase in temperature and strain was due to the higher grain 

boundary step heights resulting from GBS mechanism. These ligaments consisted of 

magnesium rich oxides (see Sections 4.4.4 and 6.4.2.2). Previously in Sections 4.4.5 

and 6.4.1, it was shown that material with high magnesium contact provided a high 

amount of magnesium rich oxide (MgO), which reduced the COF of the material by 

reducing the junction strength of the contact. Therefore, the ligament exposure may not 

be the reason for the increasing behaviour of COF.    

An interpretation of COF data at elevated temperatures required a detailed 

characterization of the material transferred to the P20 steel pin counterface. Further 
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investigations of the aluminum-steel interface are expected to shed light on the adhesion 

behaviour of the material and will be discussed in the next section. 

6.4.3. Some comments on material transfer and adhesion  

The interface between transferred material and the P20 steel surface showed the 

formation of very small junctions (< 100 nm). These appeared as miniature tensile 

samples as shown previously in Figure 4.13c. A high magnification micrograph taken 

from the same interface (Figure 6.15a) clarifies that the tensile samples at the interface 

are attached to the two surfaces as shown with the schematic representation in 

Figure 6.15b. The length and width of these interface features are not more than 60 nm 

and 20 nm respectively. Based on the angles made by these nano-tensile samples at the 

interface with the transferred material and the P20 steel surface (as in Figure 6.15c), the 

work of adhesion and the strength of the interface can be measured subsequently. The 

work of separation of these nano-tensile structures from either side can be calculated 

using Equation 6.7 [184].  

   1         (6.7) 

From the work of separation, the interface strength can be measured using Equation 6.8 

[184]. 

            (6.8) 

Where W is the work of separation, γ is the surface energy, θ is the inside angle that was 

formed at the interface of the nano-tensile structures (see Figure 6.15) and the materials, 
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and b is the Burgers vector. Surface energy and Burgers vector values of Mg, Al, and 

their oxides (MgO and Al2O3) are given in Table 6.2.  

Table 6. 2. Surface energy and Burgers vector of different materials  

Material Surface energy, γ, J/m2 

[67,185] 
Burgers vector, b, m 

[67] 

Mg 0.79 3.21×10-10 

Al 1.14 2.86×10-10 

MgO 1.00 2.98×10-10 

Al2O3 0.90 4.76×10-10 

The angle, θ, on both sides of the nano-tensile sample was measured from the 

high magnification micrograph in Figure 6.15a, where the average value of interface 

angle θ was found to be 37.22 ± 10.70° and 61.09 ± 13.93° for side A and side B (as 

indicated in Figure 6.15c) respectively. The work of adhesion and interface strength 

values calculated using Equations 6.7 and 6.8 for different materials are given in Tables 

6.3a and 6.3b. Although the interface angles are not quite consistent at all locations, the 

average strength was found to be higher on side A than that of side B. Deformation 

behaviour of these nano-scaled structures is quite complex in nature due to the high 

surface to volume ratio of these structures. As shown on Table 6.2, the surface energy of 

metallic aluminum is the highest among Mg, MgO, Al2O3, and Al, hence providing high 

work of adhesion and interfacial strength as in Table 6.3. However, as discussed 

previously, the surface of AA5083 alloy is covered by MgO upon elevated temperature 

exposure. The interface strength for MgO was found to be 12.05 GPa and 9.95 GPa for 
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side A and side B (Figure 6.15c) respectively. Depending on the strength, the interface 

will break either on the side of the transferred material or on the side of the P20 steel 

surface.  

Table 6. 3. Work of adhesion (W) and interface strength (s) for different material at 
(a) side A, considering the average angle of 37.22° and (b) side B, considering the 
average angle of 61.09°. 

(a) 

Material 
Work of adhesion,  

W, N/m 
(Calculated) 

Interface strength,  
s, GPa 

(Calculated) 

Mg 1.42 8.84 

Al 2.05 14.32 

MgO 1.80 12.05 

Al2O3 1.62 6.79 

 

(b)  

Material 
Work of adhesion,  

W, N/m 
(Calculated) 

Interface strength,  
s, GPa 

(Calculated) 

Mg 1.17 7.30 

Al 1.69 11.82 

MgO 1.48 9.95 

Al2O3 1.33 5.61 

 

The surface energy, and therefore the work of adhesion of the nano scaled 

structures formed at the surface and at the interface with the counterface material, 

contributes towards the microscopic friction behaviour.  
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6.5. Factors determining the value of COF 

 The value of coefficient of friction under a dynamic tribological condition, which 

was created by the simultaneous effect of temperature and strain rate, depends on various 

factors as follows:   

 A. The strength of the material: Decrease in strength of the material as a 

consequence of temperature rise, increased the value of COF.  

 B. Magnesium content of the alloy: The alloy which had higher magnesium 

content provided lower COF. This is due to the fact that the alloy containing higher bulk 

magnesium showed more outward diffusion of magnesium which resulted in higher 

amount of MgO formation at the surface. Formation of MgO is the responsible for the 

low COF observed in the material with high magnesium content.  

 C. Nature of the oxide: It was expected that with the increase in temperature the 

higher amount of magnesium rich oxide formation at the surface would reduce COF of 

the material. However, with the increase in temperature the oxide layer, which consisted 

of nanocrystalline oxide grains, becomes viscous in nature and tends to stick to the 

counterface and hence increases COF value.  

 D. Surface roughness: Increase in temperature also has an influence on the 

possibility of GBS mechanism operating in the bulk material. GBS mechanism was found 

to induce surface roughening of the deformed material. Increased surface roughness due 

to GBS mechanism at high temperature and high strain rate contributed to high COF 

values. 
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 Though presence of higher MgO at the contact surface at higher temperature is 

expected to reduce friction of the deforming material; however, low strength of the bulk 

material, dynamic surface roughening induced by GBS, and the sticky nature of the oxide 

at 545 °C have adverse affect on the tribological behaviour and increased the value of 

COF. 
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Figure 6. 1. Coefficient of friction-deformation mechanism map (COF-DMM) for 
AA5083 alloy plotted on temperature vs. strain rate axes, where the COF values from 
Figure 4.1c are superimposed on the DMM from Figure 4.17. The contours represent iso-
COF values. 
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Figure 6. 2. 3-D optical surface interferometry profiles of the polished surfaces of 
AA5083 alloy strips deformed at 545 °C and (a) 5 × 10-3 s-1, (b) 2 × 10-2 s-1 and (c) 
4 × 10-2 s-1; (d) 2-D profiles that show grain boundary step heights on the strip surface. 
The two sided arrow in the image indicates the tensile direction. 
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Figure 6. 3. Histograms showing the distribution of grain boundary (GB) step height on 
the surface of samples deformed at (a) 420 °C and 4 × 10-2 s-1; and (b) 545 °C and 
4 × 10-2 s-1.  

 
  

(a) 

(b) 



 

Page | 231  
 

 
 
Figure 6. 4. (a) COF as a function of grain boundary (GB) step heights measured on strips 
deformed at various temperatures and (b) COF as a function of (step height/ flow stress) 
showing the combined effect of surface characteristics and mechanical behaviour on 
COF.  
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Figure 6. 5. Grain size (µm) of AZ31 alloy plotted along with the deformation 
mechanisms on temperature vs. strain rate axes.    
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Figure 6. 6. COF of AA5083 and AZ31 alloys for same homologous temperatures at 
different strain rates.  
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Figure 6. 7. COF-DMM for AZ31 alloy plotted on temperature vs. strain rate axes.    
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Figure 6. 8. Schematic diagram summarizing sliding induced microstructural events 
observed under the contact surfaces as well as in the debris fragments generated at 
400 °C (constructed according to the Figures 5.17 to 5.20).  
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Figure 6. 9. The variation of equivalent plastic strain as a function of depth from the 
contact surface for samples tested for two different sliding cycles at 400 °C. See the 
Chapter 3 for details of the marker technique used for the stain measurements. 

Depth from Contact Surface, mm
0 20 40 60 80 100 120 140

Eq
ui

va
le

nt
 P

la
st

ic
 S

tr
ai

n,
 ε

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
50 Cycles 
500 Cycles 



 

Page | 237  
 

 
 
 
Figure 6. 10. (a) Grain size versus depth below the contact surface plot at one cycle (▼)  
and 50 cycles (●)  at 400 °C; (b) The maximum grain size from (a) plotted against sliding 
time and (c) Plot of log (dg

2-di
2) against 1/T for the estimation of activation energy of 

grain growth during sliding in the temperature range of  300 and 400 °C. 
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Figure 6. 11. Tangential force vs. sliding time plot for AA5083 and AZ31 alloys sliding 
against P20 steel at 390 °C under 0.5 N normal load. The plot shows that the junction 
strength of AZ31 alloy is lower than that of AA5083 alloy. 
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Figure 6. 12. (a) Sequential image of the AZ31 contact surface generated during a sliding experiment against glass using in-situ 
observation. Both sided arrow indicates the sliding direction. (b) Sequential image of the AA5083 contact surface generated during a 
sliding experiment against glass. 
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Figure 6. 13. The schematic representation of two types of surface damage features at two 
temperatures (a) cracks appeared on the oxide layer at 420 °C and (b) superplastic oxide 
ligaments, triggered by surface offset due to GBS, observed at 545 °C. 
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Figure 6. 14. (a) GBS of bulk grains leads to the formation of steps at the surface; (b) 
Step at the grain boundary due to relative sliding between grain A and grain B; (c) 
Suggested model for the formation of ligaments in the hot deformed AA5083 alloy. 
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Figure 6. 15. (a) A high magnification view of the interface showing the formation of 
nano-tensile structures; (b) Schematic representation showing the both ends of 
nano-tensile samples are attached to the transferred material and P 20 steel surface; and 
(c) Schematic representation of the interface angle formed by the nano-tensile samples at 
side A and side B.    
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Chapter 7 Summary and Conclusions 

7.1. Friction and plastic deformation mechanism of AA5083 alloy 

1. Friction experiments conducted on the AA5083 strips showed that the coefficient 

of friction (COF) increased from 0.95 at 420 °C and 5 × 10-3 s-1, to 2.09 at 545 °C 

and 4 × 10-2 s-1. 

2. The measured COF values were plotted on temperature and strain rate axes to 

create COF-DMM that represent the dynamic nature of friction. Three types of 

operating bulk deformation mechanisms (diffusional flow, grain boundary sliding 

(GBS) and solute drag (SD) creep) were identified within the temperature and 

strain rate ranges studied. The COF maps described the correlations between the 

dominant creep mechanisms and the COF values.  

3. The largest variation in COF occurred in the region where GBS was the dominant 

bulk deformation mechanism. GBS increased with increasing temperature and 

strain rate and led to a higher surface roughness, and thus higher COF, due to 

steps that formed at the grain boundaries on the surface.  

4. Diffusional flow did not induce surface roughening, and the Ra values varied 

within a small range. The increase in COF that occurred with temperature in this 

regime was attributed to the softening of the alloy. 

5. Low average roughness and retention of strength (hardness) during deformation, 

led to low COF values in SD regime.  
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7.2. Friction and deformation behaviour of AZ31 alloy 

1. Friction experiments conducted on the AZ31 strips showed that the COF 

increased from 0.3 at 250 °C and 5 × 10-3 s-1, to 0.89 at 450 °C and 4 × 10-2 s-1. 

Under the same homologous temperature and strain rate conditions AZ31 alloy 

showed lower COF than that of AA5083 alloy. 

2. The COF map for AZ31 alloy was generated, which showed the regions of 

dominant creep mechanisms operating in the bulk and the corresponding COF 

values. 

3. It was found that dynamic recrystallization and the grain growth are the additional 

factors to be considered while describing the tribological behaviour of AZ31 

alloy. Upon deformation, dynamic recrystallization (DRX) refined the grains and 

made the material favorable for GBS. The process of DRX enhanced with the 

increase in strain rate. 

4. At temperatures > 400 °C, grain growth became dominant and deformation 

mechanism changed to glide controlled dislocation creep (viscous glide). A clear 

distinction between the DMM for AA5083 and AZ31alloy materials is the glide 

controlled dislocation creep operating in AZ31 alloy at high temperature and high 

strain rate as a result of large grain size.  

5. Along with the viscous glide creep, occurrence of cooperative grain boundary 

sliding (CGBS) mechanism was also found at T > 400 °C. CGBS mechanism 

influenced the COF behaviour by changing surface characteristics.   
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7.3. Sliding induced deformation in AZ31 alloy 

1. During sliding wear at 400 °C, AZ31 material layers were detached and 

transferred to the counterface, which indicates that adhesion was the main 

material removal process. The transferred material was both highly deformed, and 

dynamically recrystallized. 

2. Dynamic recrystallization occurred in the AZ31 close to the contact surface, 

where high strains (~ 200 – 300%) were generated. The subsurface below the 

contact surface experienced grain growth. Grain growth kinetics obeyed a 

parabolic law with an activation energy of 35 kJ/mol, which is comparable to 

other high-strain deformation processes at similar temperatures. Evidence of GBS 

was found in the deformed material at the edges of the wear track. 

3. The large subsurface plastic strain under the wear track caused recrystallization of 

a thin layer of material, which was detached from the underlying grain growth 

zone and transferred to the counterface.  The deformation and damage events 

repeated themselves in a cyclic form leading to the attainment of a dynamic 

equilibrium microstructure and a steady-state wear rate. 
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7.4. Surface oxide damage during high temperature deformation 

1. Surface oxide damage mechanisms were found to be sensitive to the operating 

bulk deformation mechanisms. The creation of GBS-induced steps in AA5083 

alloy led to the formation of micro-superplastic fibrous structures (ligaments) at 

high temperatures. At low temperatures, the surface oxide layer damage involved 

oxide cracks that formed along the grain boundaries normal to the tensile 

direction 

2. Surface characterization of AA5083 revealed that fibres or ligaments up to 2.5 µm 

long and about 200 nm in diameter were formed on the surface of the oxide layer 

of an AA5083 alloy deformed between 420°C and 545°C.  The main constituents 

of the ligaments were magnesium rich oxides (MgO and MgAl2O4). 

3. Magnesium rich oxide was also found at the interface generated between the 

transferred material and the P20 steel surface. 

4. The ligaments in AA5083 alloy always formed at locations extending above the 

grain boundaries of bulk alloy grains that experienced sliding during plastic 

deformation. The ligaments had an average grain size of 4.5 ± 0.7 nm. Diffusional 

flow promoted by nano-size grains was concluded to be responsible for oxide 

ligaments’ superplasticity. 

5. The appearance of the thin ligaments that showed uniform extension of up to 

10 times their diameter, suggested superplastic behaviour of the oxide.  The 

results agreed with the fine grain superplasticity model where the superplastic 

deformation of the material is promoted by the small grain size in the fibres.  An 

understanding of the formation of these ligaments was important since they will 
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have a bearing on the fracture of these sheets following large-scale plasticity and 

on the friction during high temperature deformation. 

6. The ligaments were also formed on the surface of AZ31 during high temperature 

(> 250 °C) deformation. The main constituent of the oxide ligaments that were 

found in AZ31 alloy as well as AA5083 alloy was MgO. 

7. Magnesium rich surface oxides that were observed on the contact surface during 

junction strength experiments revealed that the adhesion tendency of Al-Mg 

alloys depends on the alloy’s magnesium content. Magnesium- rich surface oxide 

was the reason for lower COF observed in AZ31 than that of AA5083 under the 

same homologous temperature and strain rate conditions. 

7.5. General conclusions 

1. Role of plastic deformation and damage mechanisms on COF of aluminum 

AA5083 and magnesium AZ31 alloy is established by generating COF-DMM for 

these materials. Also, the influence of surface oxide characteristics on the COF of 

these materials is identified. 

2. By knowing the relation between friction and deformation behaviour, a desirable 

friction characteristics during hot-forming operation can be maintained by 

manipulating the deformation behaviour.  

3. The friction maps generated for AA5083 and AZ31 alloy materials are important 

findings and could be used as an input parameter to improve the process modeling 

of hot-forming of these alloys. 
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7.6. Suggestions for future work  

1. TEM investigations can be done on the AZ31 material, which was transferred to 

P20 steel pin under the same homologous temperature as in AA5083 alloy. The 

structure and composition of the interface generated between the transferred 

material and the P20 steel surface would led to the identification of the interface 

material and calculation of the strength of the interface. Also, a better 

understanding of the low COF in AZ31 alloy than that of AA5083 alloy can be 

obtained from the study.    

2. The experiments can be extended to develop COF-DMM map for another 

experimental working window where a very high strain can be applied to the 

material, and, COF can be measured using different strain rate range or different 

sliding velocity. Extension of the map would lead to the data being more 

comparable to the actual conditions QPF or SPF where the strain can reach up to 

300 %.  

3. Using the COF maps developed in this work, generation of friction constitutive 

models for elevated temperature forming operation involving aluminum and 

magnesium alloys and rigid tools can be considered. These models can be 

implemented into the commercial finite element code and can be used to validate 

the actual hot-forming operations.  
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