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ABSTRACT

In sheet metal forming, the discrepancy between the fully loaded shape at the end of
forming stage and the unloaded configuration is called springback. Springback is a major
factor in preventing accurate dimensions of final products. Therefore, it is very important
that springback be quantitatively predicted and compensated in the die design stage.

In sheet metal stamping, especially when drawbead is used, the material experiences
several cycles of bending-unbending-reverse bending. Therefore, in to order to accurately
predict springback, the constitutive model must be able to accurately describe the
material behaviour during cyclic loading. Yoshida-Uemori (YU) two-surface model is
one of the most sophisticated models which is capable of reproducing the transient
Bauschinger effect, permanent softening and workhardening stagnation.

In this work, two different yield functions, i.e. Hill’s 1948 and Yld 2000-2d, were used in
conjunction with YU two-surface model. Moreover, two different numerical procedures
were developed for numerical implementation of these models: a) a semi-implicit
approach and b) a fully-implicit approach. The numerical procedures were used to
develop user material subroutines for ABAQUS commercial software. Then, the
subroutines were used to evaluate the capability of the model in prediction of springback
for a channel draw process. In addition, the isotopic hardening (IH) and combined
isotropic-nonlinear kinematic hardening (IH+NKH) models were also used to predict the
springback of the problem. Finally, the springback profiles obtained by each model were
compared with the experimental data. For DP600, the error in springback prediction is
around 3% when YU model is used. For HSLA and AA6022, the error associated with
YU model is less than 3% and 13% at 25% and 100% drawbead penetrations,
respectively. The YU model does not predict the springback accurately for AKDQ and
the error is around 30%. The results also show that the IH model overestimates the
springback for all materials. For DP600 and AA6022, the results obtained by IH+NKH

iv



model are the same as those obtained by YU model. However, the YU model
considerably improves the springback prediction compared to IH+NKH model for
HSLA; while for AKDQ the IH+NKH model improves the springback prediction

compared to YU model.
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Chapter 1

Springback

1.1. Introduction:

Once a deformed sheet-metal part is removed from the dies in which it was formed, the
elastic component of strain is recovered, especially where bending, bending-unbending,
and reverse bending are performed. The elastic recovery is accompanied by strain and
consequently causes the final shape of the part to change. The discrepancy between the
fully loaded shape at the end of the forming stage and the unloaded configuration is
called springback. This phenomenon can also be explained on the stress-strain curve as
shown in Fig. 1.1. Unloading (by removing all external forces and moments) from a total
strain A would follow line AB, and segment OB would represent the permanent (plastic)
deformation and BC the recovered (elastic) deformation. It can also be observed that the
elastic recovery is greater for materials with higher strength. Springback is the most
significant factor that makes it difficult to achieve the required dimensional accuracy of
stamped components. Designing a die with incorrect springback compensation can lead
to significant difficulties in downstream operations such as poor fit-up during welding
and distortion of sub-assemblies. In some cases, tooling revisions may be required which
could lead to delays in production. Therefore, it is very important that springback be

accurately predicted and correctly compensated during the first die design.
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Fig. 1.1. Elastic recovery deformation during unloading

Springback after forming sheet steel can be classified in six categories:

1.

Sidewall opening: The angle forming two sides enclosing a bending edge
line deviates from the die angle (Fig. 1.2.a).

Sidewall Curl: The straight side wall becomes curved (Fig. 1.2.b).

Edge line warping or bow: The bending edge line deviates in curvature
from the edge line of the die (Fig. 1.2.c).

Twist: Two neighbouring cross-sections rotate differently along their axis.
Global shape change: The desired shape of the part is not achieved after it
is removed from the tooling.

Surface distortion: Local buckling occurs on the surface of a body panel

after forming.
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Fig. 1.2. Different types of springback

1.2. Springback Compensation:

Several approaches have been proposed to control springback. Most of them attempt to
reduce springback by increasing the tension in the sheet. This can be achieved by
increasing the blankholder force, especially at the end of the forming stage or by using
drawbeads [1-6]. In general, a larger tension in the sidewall reduces the stress gradient
through the sheet thickness causing less springback. However, the maximum tension in
the sheet is limited by the fracture strength of the sheet material. Moreover this stretch-
forming technique is generally not sufficient to eliminate springback. Some studies also
suggest using a variable blank holder force during the punch trajectory. In this method,
the blank holder force is low from the beginning until almost the end of the forming
process and then it is increased at end of the process such that a large tensile stress is

applied to the sheet material [5].

Another approach is to compensate for springback at the die design stage [7-8]. That is,
regardless of what the springback might be, the die is designed so that the final part shape
after springback corresponds to the target part shape. For instance, the ratio of tool radius
to sheet thickness (R/t) is a design parameter which affects springback and can be
modified to reduce it [9-10]. The first step in implementing such a strategy is the accurate
prediction of the springback phenomenon. Assuming that springback can be predicted
accurately, there still remains the problem of how to use such results to arrive at a
suitable die design to produce a target part shape. That is, the springback predictions
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allow “forward” analysis of forming and springback, while a “backward” analysis is
needed to work from these results back toward an optimized die design. It is clear that a
method is needed for guiding die design to compensate for springback (in a backward
direction) using sophisticated springback prediction capabilities (forward direction). Such
a development was reported by Karafillis and Boyce [8,11,12]. However, Gan and
Wagoner [7] showed that this method suffers from a lack of convergence unless the
forming operation is symmetric or has very limited geometric change during springback.
They developed an alternate closed-loop design method that avoided many of the
limitations of the Karafillis and Boyce model. They developed a displacement adjustment
method that used simulated forming and springback displacements in the punch travel
direction to predict the next die design iteration. They used their method for several
arbitrary two-dimensional examples and showed that the advantages of their model were

the convergence rate, the ease of implementation, and its general framework.

1.3. Prediction of Springback:

As mentioned in the previous section, in order to compensate for springback, it is
necessary to quantitatively predict springback during the first die design stage. Generally,
two methods are used for prediction of springback: analytical methods and numerical
methods. Both types of methods have been extensively employed by researchers and die

designers.

Several analytical solutions have been proposed for prediction of springback.
Buranathiti and Cao [13] performed an analytical springback prediction of a straight
flanging process by calculating the bending moment under plane-strain conditions. They
used the model to predict springback for a few parts and compared the predicted results
with experimental data. Yi et al. [14] developed an analytical model based on differential
strains after relief from the maximum bending stress for six different deformation

patterns. They used each deformation pattern to estimate springback by the residual
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differential strains between outer and inner surfaces after elastic recovery. Zhang et al.
[15] also developed an analytical model to predict springback in sheets bent in a U-die
under plane-strain conditions. They used Hill’s 1948 yield function and took into account
the effects of deformation history, the evolution of sheet thickness and the shifting of the
neutral surface. Lee et al. [16] proposed an analytical model for asymmetric elasto-plastic
bending under tension followed by elastic unloading. They also compared the calculated
springback amounts with the results of physical measurements and showed that their
model predicted the main trends of the springback in magnesium alloy sheets reasonably
well considering the simplicity of the analytical approach.

Although the use of analytical models is advantageous because of their simplicity, the
application of these models is limited to simple geometries. The amount of springback
also depends upon many process variables such as friction, temperature, variations in the
thickness and mechanical properties of the incoming sheet material. Moreover, complex
strain histories and highly nonlinear deformation of the material during the forming
process add to the difficulty of predicting springback. Therefore, the most widely used
method of predicting springback is to carry out computer simulations that rely on
advanced material models to compute the stress distribution in the part and the final
geometry of the part after elastic unloading. And most researchers have used the finite

element method to predict springback.

Finite element (FE) simulation of springback is very sensitive to numerical parameters
such as element type, mesh size as well as to the constitutive model that governs the
behaviour of the deformable sheet. Several investigations have been conducted to study
the effect of numerical parameters on the accuracy of the predicted profile after
springback. Li et al. [17] simulated the draw-bend test and studied the sensitivity of the
simulated springback to numerical parameters. They found that up to 51 integration
points are required for an accurate simulation of springback. They also concluded that for
small R/t ratios, nonlinear 3D solid elements are required for an accurate prediction of
springback. Wagoner and Li [18] later performed an analytical study of the bending

under tension followed by springback. They also performed a numerical analysis of this



problem and calculated the relative error as a function of number of integration points
(NIP). They concluded that the relative error oscillates and in some cases even more than
51 integration points are required. Lee et al. [19] used the Taguchi method to study
numerical factors affecting springback after the U-bending draw test in which drawbeads
were not used. They determined the order of significance of each numerical parameter
relative to its effect on the prediction of springback angle and radius of curvature. The
results of their study show that the mesh size has the strongest effect on the accuracy of
springback prediction. Mattiasson et al. [20] also found that springback simulation is

much more sensitive to numerical tolerances than the simulation of the forming stage.

It is also worth mentioning that some researchers have used a combination of an
analytical method and the finite element method to predict springback. These methods
usually endeavour to use the advantages of each approach. Zhan et al. [21] developed a
method based on springback angle model derived using an analytical method and
simulation results from three-dimensional (3D) rigid-plastic finite element method
(FEM). Lee et al. [22] proposed a simplified numerical procedure to predict springback
in a 2D draw bend test that was developed based on a hybrid method which superposes
bending effects onto membrane element formulation. This approach was shown to be
especially useful to analyze the effects of various process and material parameters on

springback.

1.4. Constitutive Model:

The accuracy of sheet metal forming and springback simulation depends not only on
the forming conditions (friction, tool and binder geometry etc.), but also on the choice of
the material constitutive model and its numerical implementation into finite element
programs. Among these factors, the material constitutive law plays an important role in
describing the mechanical behaviour of sheet metals, because it is essential to obtain an

accurate stress distribution in a formed part if springback is to be correctly predicted. In
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general, the behaviour of metals is quite complex, especially during the cyclic loading.
So, an advanced constitutive model is usually required for an accurate prediction of
springback. The importance of constitutive model will be further explained in the next
chapter.

1.5. Motivations:

Springback has been one on the major concerns in sheet metal forming for decades. To
reduce the weight of cars, the automotive industry is moving towards high strength
materials that have a much lower weight-to-strength ratio than traditional steels. But as
mentioned in section 1.1, the springback is generally larger for higher strength materials.
Besides, the higher strength materials usually exhibit a larger Bauschinger effect which
makes modelling of this phenomenon more important. The main purpose of this project is
to implement advanced constitutive models into the finite element method and evaluate
their ability to predict springback. For evaluation purposes, a channel draw process with
drawbeads, presented as Benchmark #3 (BM3) in NumiSheet 2005 [23], was simulated
using three different hardening models: isotropic hardening, nonlinear kinematic
hardening and the Yoshida-Uemori two-surface plasticity model. The profile of the part
after springback was predicted using each of these models and was compared with

experimental profiles.



Chapter 2

Constitutive Model

2.1. Introduction:

Finite element analysis is the most commonly used method to simulate industrial sheet
metal forming processes in order to assess forming severity, to improve the tooling
design, and to predict springback. The accuracy of sheet metal forming and springback
simulation depends not only on the forming conditions (friction, tool and binder
geometry), but also on the choice of material constitutive model and their numerical
implementations into a finite element program. Among these factors, the material
constitutive law plays an important role in describing the mechanical behaviour of sheet
metals, because it determines the accuracy of the stress distribution in a formed part and
the subsequent springback. In sheet metal forming, the material commonly experiences
bending, unbending and unloading over the die and punch radii and sometimes multiple
bending-unbending cycles when it is formed through a drawbead. Cyclic loading paths
have significant effects on stress and residual stress distributions, which are important in
springback calculation. Accurate simulation of sheet metal forming requires an
appropriate constitutive model that can effectively describe different phenomena usually
observed in cyclic plasticity such as Bauschinger effect, a decrease in Young’s modulus
during unloading, permanent softening and so on. Moreover, sheet metal forming is a
typical large-strain problem, and the springback is a process of small-scale re-yielding

after large prestrain. Therefore, attention should be paid to the deformation behaviour of



large-strain cyclic plasticity and also the stress—strain responses at small-scale re-yielding
after large prestrain.

Phenomenological constitutive models consist of three essential components: (1) a
yield criterion, (2) a flow rule, (3) a strain-hardening rule. The yield criterion determines
the stress state when yielding occurs; the flow rule describes the increment of plastic
strain when yielding occurs; the hardening rule describes how the material is strain-
hardened as the plastic strain increases; and the loading—unloading conditions specify the
next step in the loading program. In this chapter, the notation and conventions used in
this dissertation will be first explained and then the major components of a constitutive
model will be introduced.

2.2. Notation and Conventions:

In this dissertation, scalars are shown by a lowercase letter, e.g. a, vectors and second-
order tensor are expressed by a bold-faced lowercase letter (e.g. a), and a fourth-order
tensor is shown by a bold-faced capital letter (e.g. A). In the index notation, the
components of a second-order and a fourth-order tensor are denoted by a;; and T,
respectively. It should be noted that a second-order tensor has two subscripts and a
fourth-order tensor has four subscripts. Summation and range conventions are used in the
index notation. In the summation convention, a repeated index means summation of the
term over the range of the index. For example, 4, = A;; + A,; + Asz, if the range of
the index is from 1 to 3. On the other hand, if the range of the index is from 1 to n, then
Ay, = Ay + A4, + - +A4,,, asum of n terms. Note that the subscript n does not
imply summation, and the index should not repeat more than once. The notation Ay, , for
instance, is not defined. The repeated index k is called a dummy index because it can be

replaced by another index with no difference in its outcome. For example, Ay, = A;= A;;

= All + AZZ + A33 [24]



The dot product of two second-order tensors is a scalar which is defined by the
following relationship:

a:b =a;b; = a;1by; +apb+azbyz +
a;1by; + az by tazsbys + (2.1)
az1 b3y + asz; b3y +assbss

The dyadic product of two vectors is a second-order tensor which is defined by the
following relationship:

a,b, aib, a,b;
asb, azb; azb;
The transpose of a tensor is shown by a” and is defined as follows:
(aij)T =a; (2.3)

2.3. Flow Rule:

The flow rule specifies the increment of plastic strain once the material has yielded. In
general, it is assumed that plastic strain increment is obtained by differentiation of a

plastic potential function as follows:

dp—d/laq) 2.4
& = ao. ()

where deP is the plastic strain increment, ® is a potential function, o is the stress tensor
and dA is the scalar proportionality factor or plastic multiplier. If the potential function is
assumed to be the same as the yield function, f, then the following relationship is
obtained:

af

P — 7
deP = dA PP (2.5)
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The above equation states that the plastic strain increment is proportional to the
gradient of the yield surface and is, therefore, normal to the yield surface. This is usually
referred to as the normality condition. A flow rule obeying the normality condition is
referred to as the associated flow rule. However, if any function other than the yield
function is used as the potential function in Eq. (2.4), the plastic strain increment will not
be normal to the yield surface. This theory is known as the non-associated flow rule
which is mostly used for geotechnical materials. It is widely accepted that the associated
flow rule works well for most of metals [24, 25].

2.4. Yield Criterion:

The yield stress o

y is shown in the one-dimensional stress-strain curve of Fig. 2.1.

According to this figure, the material behaves elastically if the applied stress is less than
g,. However, as soon as the stress reaches o, plastic yielding occurs, which is called
initial yielding. Therefore, the condition & = g, is the yield criterion. The yield criterion

defines the elastic region in the stress space (the stress axis in this one-dimensional case).

When @ > g,,, which corresponds, for instance, to curve ABE in Fig. 2.1, the material

undergoes strain-hardening, and the material is subjected to subsequent vyielding.
Generally, a yield criterion should be able to determine the elastic region in a
multidimensional stress space. In principal three-dimensional stress space (g1, 65, g3), an
infinite number of yield points form a yield surface. In the nine-dimensional stress
space o;; is represented by a hyper-surface shown in Figure 2.2. The yield surface is a

function of stress so that the following conditions apply [24]:

f(o;)=0  plastic state
f(o;) <0  elastic state (2.6)

f(o;) >0  impossible
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Many yield functions have been developed for different materials and applications in
plasticity. In the next section, some of the commonly used yield functions in sheet metal

forming are introduced.

()
E
B
Oy |-y
F
(0] -
g’ &, ©
Ve

Fig. 2.1. The Schematic stress—strain curve [24]

(b)

(@)

Elastic
Region

Locus

Fig. 2.2. (a) Yield locus in a two-dimensional stress space and (b) yield surface in the nine-
dimensional stress space [24]
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2.4.1. Maximum shear stress criterion:

The maximum shear stress criterion, also known as Tresca's criterion, is often used to
predict the yielding of ductile materials. Yield in ductile materials is usually caused by
the slippage of crystal planes along the maximum shear stress surface. With respect to 2D
stress, the maximum shear stress is related to the difference in the two principal stresses.
Therefore, this criterion requires the principal stress difference, along with the principal
stresses themselves, to be equal to the yield shear stress:

1 1 1
Max [§|01—02|,§|02—U3|,5|01—U3|]—k=0 (2.7)

where o1, 62, o3 are the principal stresses and k is the yield shear stress. According to this
function, the uniaxial yield stress is equal to half of the yield shear stress. It should be
noted that this yield function assumes the material is isotropic.

G2

G1

Oy Gy

Oy

Fig. 2.3. Graphical representation of Tresca’s yield function in a two-dimensional stress space

2.4.2. von Mises criterion:

The von Mises Criterion (1913), also known as the maximum distortion energy
criterion, or octahedral shear stress theory, is often used to estimate the yield of isotropic

ductile materials. The von Mises criterion states that failure occurs when the energy of
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distortion reaches the same energy for yield/failure in uniaxial tension. Mathematically,
this is expressed as follows:

1 2 2 2 2

E[(Gl —03)° + (01 — 03)*+(0; —03)°] —0,° =0 (2.8)

where o1, o2, o3 are the principal stresses and g, is the yield stress. A geometrical

representation of this function in a 2D stress space is shown in Fig. 2.4.

Gy .
von Mises

Maximum shear

G1

Fig. 2.4. Geometrical representation of Tresca and von Mises yield functions in a two-

dimensional stress space

2.4.3. Hosford s isotropic yield criterion:

Hosford’s [26] yield criterion for isotropic materials is a generalization of the von

Mises yield criterion. It has the form:

1 1 1
E|01—Uz|n+§|01—03|"+§|02—03|"—03’}=0 (2.9

where o1, 62, o3 are the principal stresses, n is a material-dependent exponent and g, is

the yield stress. The exponent n does not need to be an integer. When n = 1 the criterion

reduces to the Tresca yield criterion. When n = 2 the Hosford criterion reduces to the von
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Mises yield criterion. For n = 6 and 8, this function fits closely to the experimental yield

locus of BCC and FCC materials, respectively.

05

-15 -1 —0.3 o] 0.3 1 135

~0.5

13

Fig. 2.5. Geometrical illustration of Hosford’s isotopic yield functions in a two-dimensional

stress space
2.4.4. Hill’s guadratic yield criterion:

In 1948, Hill proposed an anisotropic yield criterion as a generalization of the von
Mises criterion. It was assumed that the material has anisotropy with three orthogonal

symmetry planes (for sheet metal). This function was defined by Hill [27] as follows:

1

2 [F(O-yy o O-zz)z + G(o,, — O-xx)2 + H(O-xx - O-yy)z
(2.10)

+ 2(Loy,? + 10,2 + Ko, 2) —1] = 0

where F,G,H,L,I and K are all material constants obtained by tests of material in

different orientations. Using matrix notation, this function can be written as [28]:
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3 1 2
50 No—o0,"=0 (2.11a)

where N is a fourth order anisotropic tensor, o, is the yield stress, and o is the stress

tensor. The dimensionless coefficients of N are related to the coefficients of F,G,.., K
according to the following matrix:

N,+N, =N, -N, 0 0 O
N,+N,  —N, 0 0 O
N - N,+N, 0 0 O (2.11b)
N, 0 O
Sym. N, O
L No_
where
N1:§H0'§, Nz—éGaj, N3—§Fa§, N4:§L0'§,
(2.11c)
N, —|a§,N6—§Ka§

2.4.5. Logan-Hosford yield criterion:

Logan and Hosford [29] proposed another yield criterion for anisotropic materials

based on Hill's generalized yield criterion. This function is written as:
Floy — oy|" + Gloy — o3| +H|oy — 03" =1 =10 (2.12)

where F,G,H are material constants, o1, 62, o3 are the principal stresses, and the exponent
n depends on the type of crystal (BCC, FCC, HCP, etc.) Accepted values of n are 6 for
BCC materials and 8 for FCC materials.
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2.4.6. Hill’s generalized yield criterion:

In 1979, Hill [30] proposed a generalized form of Hill’s quadratic yield function. This
function has the following form:

Floy — 03|™ + Gloy — 03|™+H|oy — 03|™ + L|20y — 05 — 03|™

+ M|20, — 01 — 03|™ + N|205 — 0y — 01| —0,™ =0 (2.13)

where oy, 05, g3 are the principal stresses (which are aligned with the directions of
anisotropy), oy, is the yield stress, and F,G, H, L, M, N are material constants. The value
of m is determined by the degree of anisotropy of the material and must be greater than 1

to ensure convexity of the yield surface.
2.4.7. Y1d2000-2d yield criterion:

In 2003, Barlat et al. [31] proposed a yield criterion for anisotropic materials. This
function is usually used for aluminum alloys where the plastic anisotropy coefficients, or
r-values, are not well predicted by the previously mentioned functions. This function was
designated as Y1d2000-2d and is written as follows [31]:

1 4 " a
S (@ +0) —g, 0 =0 (2.14a)

where a is a material coefficient, o

y Iis the yield stress, ®" and ®" are two isotropic

functions and are defined as follows:
CD, = |X,1 - Xlzla y (D” = |2X"2 + X111|a+|2X”2 +X”1|a (214b)

where X';, X', are the principal values of tensor X" and X";, X", are the principal values
of tensor X”. Tensors X’ and X" are obtained by linear transformation the stress tensor as

follows:
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X=Lo,X"=L'c

where L'and L” are related to the anisotropic coefficients of the material by:

L] [2/3 0 0]

L,| [-1/3 0 0fa

L, |=| 0 -1/3 0|a,

L), 0 2/3 0|«

L] [ O 0 1]

] [-2 2 8 -2 0fe
L, 1 -4 -4 0| e,
Ly, =% 4 -4 -4 1 0fa
L., 2 8 2 -2 0]aq,
] [0 0 0 0 9]a

where a1, ay, ..., ag are all material anisotropic coefficients. Generally, eight input data
from the material are required to identify these constants. These data include the yield
strength and r-value of the sheet in the rolling, transverse, diagonal directions and

equibiaxial stress state, i.e. oo, gas, 690, 0b, Yo, I45, Feo, I'p. If 1y i NOt known or difficult to

obtain, it is also possible to assume that L, = L.

2.5. Hardening Rule:

There are three classes of materials: the strain-hardening material, the perfectly plastic
material, and the strain-softening material. Generally, metals are strain hardening (or
work-hardening) materials and geotechnical materials may exhibit strain-softening under
certain conditions. In the multiaxial stress state, strain-hardening is considered in the
form of hardening rules for subsequent yield surfaces. It has been observed that the yield
surface, upon application of a deformation history, will undergo expansion, distortion,
translation, and rotation [24]. In plasticity, the hardening rule is used to describe the

material behaviour during the plastic deformation. As mentioned in section 1.4, cyclic

18



loading is a common type of loading in sheet metal forming. Therefore, in this section,
the behaviour of sheet metals during cyclic loading is briefly explained and then the most

commonly used hardening models in literature will be introduced.

2.5.1. The behaviour of sheet metals during cyclic loading:

The behaviour of metals during cyclic plastic deformation is quite complex. In
particular, the behaviour during reverse loading is usually different from the behaviour in
forward loading. Experimental cyclic tests, such as uniaxial tension-compression, are
required to determine actual material behaviour during cyclic loading. However, it is
difficult to carry out uniaxial cyclic tension-compression tests on thin sheet metal
specimens because of the tendency for the sheet to buckle in compression. To overcome
this problem, many experimental methods have been proposed to render the uniaxial
compression of sheet specimens possible. Kuwabara et al. [32] and Boger et al. [33]
respectively used fork-shaped dies and flat dies to provide a lateral support for the sheet
and prevent its buckling during uniaxial tension-compression tests. Yoshida et al. [34]
successfully bonded a few thin sheets of metal to provide support for the sheet during
uniaxial compression. Cyclic simple shear tests have also attracted the attention of many
researchers as the specimen is not compressed during the test. Miyauchi [35, 36],
Genevois [37], Rauch [38] and Barlat et al. [39] have successfully used the simple shear
test for reverse loading at large strains. From the experimental cyclic tests on mild and
dual-phase steels, the following phenomena have been observed during cyclic plastic

deformation of sheet metals [34]:

1. During reverse deformation, the transient Bauschinger deformation,
characterized by an early re-yielding and smooth elastic—plastic transition with a
rapid change of workhardening rate, is followed by the plastic deformation with

an apparent permanent softening.

19


http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWX-4MFCW0X-1&_user=1010624&_coverDate=06%2F30%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=1010624&md5=cd2ec22d54c693922420e8a8ad8b606c#bbib47
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWX-4MFCW0X-1&_user=1010624&_coverDate=06%2F30%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=1010624&md5=cd2ec22d54c693922420e8a8ad8b606c#bbib65

2. For the mild steel sheet, abnormal shapes of reverse stress—strain curves appear
due to the workhardening stagnation which is caused by dissolution of
dislocation cell walls during reverse loading

3. Cyclic stress amplitudes strongly depend on cyclic strain ranges, as well as the
mean strains. The larger the strain ranges, the larger the saturated stress
amplitudes.

4. Young’s modulus decreases during unloading as the plastic strain increases and

finally saturates to a particular value after a large amount of plastics strain.

A schematic illustration of the stress-strain response of sheet metals during uniaxial
tension-compression test is shown in Fig. 2.6 [40]. This figure illustrates some of the
phenomena that occur during cyclic deformation and that become more significant at

large deformations.

2.5.2. lIsotropic hardening:

Many metals, when deformed plastically, harden; that is, the stress required to cause
further plastic deformation increases, often as a function of accumulated plastic strain. A
uniaxial stress—strain curve with non-linear hardening is shown in Fig. 2.7 together with
schematic representations of the initial and subsequent yield surfaces. In this instance, the
subsequent yield surface is shown expanded compared with the original. When the
expansion is uniform in all directions in stress space, the hardening is referred to as
isotropic. In Fig. 2.7, loading is in the 2-direction, so the load point moves in the o,
direction from zero until it meets the initial yield surface at 62 = oy. Yield occurs at this
point. In order for hardening to take place, and for the load point to stay on the yield
surface (the consistency condition requires this), the yield surface must expand as o3
increases, shown in Fig. 2.7. The amount of expansion is often taken to be a function of
accumulated plastic strain. So many functions have been proposed for the amount of
expansion of the yield surface as a function of plastic strain. For the isotropic hardening,

the yield function equation is written as:
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flo,p)=6—0,(p) =0 (2.15)

where & is the effective stress, p is the accumulated effective plastic strain, and o, (p) is

the yield stress which might be of the form :
0,(P) = 0,0 +7(p) (2.16)

in which g, is the initial yield stress and r(p) is called the isotropic hardening function.

There are many forms used for r(p) but a common one is:

7(p) = b(Q —71)p (2.17)

where b and Q are material constants, which gives an exponential shape to the uniaxial
stress—strain curve which saturates with increasing plastic strain, since integrating Eq.
(2.17) with initial condition r(0) = 0 gives:

r(p) =01 -e™) (2.18)

So, Q is the saturated value of r so that the peak stress achieved with this kind of
hardening, from Eq. (2.16), is therefore (g, + Q). Constant b determines the rate at
which saturation is achieved. Fig. 2.7 shows an example of the uniaxial stress—strain
behaviour predicted using this kind of isotropic hardening function [41]. Because of the
uniform expansion of the yield surface, the yield stress in the reverse loading is equal to
that in forward loading. Therefore, isotropic hardening is not able to describe the
Bauschinger effect in reverse loading. In order to describe the Bauschinger effect, the
kinematic hardening rules have been proposed which will be introduced in the next

sections.
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Fig. 2.7. Isotropic hardening, in which the yield surface expands with plastic deformation, and the

corresponding uniaxial stress—strain curve [41]
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2.5.3. Kinematic hardening:

In the case of monotonically increasing loading, it is often reasonable to assume that
any hardening that occurs is isotropic. For the case of reversed loading, however, this is
often not appropriate. Consider a material which hardens isotropically, shown
schematically in Fig. 2.8. At a strain of ¢;, corresponding to load point (1) shown in the
figure, the load is reversed so that the material behaves elastically (the stress is now lower
than the yield stress) and linear stress—strain behaviour results until load point (2) is
reached. At this point, the load point is again on the expanded yield surface, and any
further increase in load results in plastic deformation. Figure 2.8(b) shows that isotropic
hardening leads to a very large elastic region upon reverse loading, which is often not
what would be seen in experimental data. In fact, a much smaller elastic region is
expected and this results from what is often called the Bauschinger effect, and kinematic
hardening. In kinematic hardening, the yield surface translates in stress space, rather than

expanding. This is shown in Fig. 2.9.

In Fig. 2.9(a), the stress increases until the yield stress, a,, is reached. With continued
loading, the material deforms plastically and the yield surface translates. When load point
(1) is achieved, the load is reversed so that the material deforms elastically until point (2)
is achieved when the load point is again in contact with the yield surface. The elastic
region is much smaller than that predicted with isotropic hardening and shown in Fig.
2.8(b). In fact, for the kinematic hardening in Fig. 2.9, the size of the elastic region is 2ay,
whereas for isotropic hardening, it is 2(oy + r). In the case of plastic flow with kinematic
hardening, note that the consistency condition still holds; i.e. the load point must always
lie on the yield surface during plastic flow. In addition, normality still holds; the direction

of the plastic strain increment is normal to the yield surface at the load point.
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Fig. 2.8. Reversed loading with isotropic hardening showing (a) the yield surface and (b) the

resulting stress—strain curve [41]

The yield function describing the yield surface must now also depend on the location of
the surface in stress space. Consider the initial yield surface shown in Fig. 2.9. Under
applied loading and plastic deformation, the surface translates to the new location shown
such that the initial centre point has been translated by |a/|. So, the stresses relative to the
new centre of the yield surface should be checked for yield. Generally, the equation of

the yield surface with the kinematic hardening is written as:
fle—a)—0,=0 (2.19)

where a is called the backstress tensor and determines the location of the centre of the
yield surface. For example, Hill’s quadratic yield function, written in the form of Eq.
(2.11a) in the absence of kinematic hardening, should be converted to the following

equation:
3
> (6—a)'N(e—a)—0,”=0 (2.20)

Because the backstress is a variable defined in stress space, it has the same components
as stress. Several functions have been proposed to define the evolution of the backstress

in stress space.

24



Load point 1 03 (b)

ﬂ G
° » 01

/.

(a) O

Initial yield surface
o

> €2

l

Load point (2)

Fig. 2.9. Kinematic hardening showing (a) the translation, and (b) the resulting stress—strain

curve with shifted yield stress in compression [41]

In order to reproduce the Bauschinger effect, linear kinematic hardening model was
first proposed by Prager [42]. In Prager’s kinematic hardening rule, the evolution of

backstress is assumed to be proportional to the plastic strain as follows:
2
da = 3¢ deP (2.21)

where ¢ is a material constant. Ziegler [43] modified Prager’s rule and proposed another

linear kinematic rule according to the following equation:
da = du(o — a) where du > 0 (2.22)

in which du depends on the material. The difference between the Prager and Ziegler
hardening rules is shown in Fig. 2.10. According to Prager, the center of yield surface
translates in a direction normal to the yield surface at P and this increment of translation
is denoted by da™ in the figure. On the other hand, according to Ziegler, the increment of
translation of the yield surface, denoted by da‘®, is along the direction of O'P. It should

be noted that the two rules are the same if the current yield surface is a hypersphere,
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which is true when the Mises yield surface is considered and a combined isotropic—
kinematic hardening is applied.

d(lij @

d(lij ®

»Cij

Fig. 2.10. Kinematic-hardening rules by Prager and Ziegler [24]

Neither linear kinematic hardening nor combined isotropic-linear kinematic-hardening
rule can capture the transient behaviour curve during reverse loading. In order to capture
this curve, Armstrong and Frederick [44] proposed the following nonlinear kinematic

hardening model:
2
da = 3¢ de? —ya dp (2.23)

where ¢ and y are two material constants. In its uniaxial form, for monotonically
increasing plastic strain, Eq. (2.23) can be integrated, taking a to be zero at e? = 0, to

give:

o = %(1 _ e (2.24)

According to Eq. (2.24), the backstress saturates to the value c/y as the plastic strain

increases. So, the maximum stress saturates to g, + c/y: constant y is the time constant

and determines the rate of saturation of stress and ¢/y determines the magnitude. Later,

Chaboche [45] modified the Armstrong-Frederick nonlinear kinematic model to better
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reproduce the transient behaviour and ratcheting in fatigue. His proposed model is a

decomposed nonlinear kinematic hardening as follows:

da = idozi
i=1

da, = %c.dgp —yadp, fori=1,2,3 (2.25)

2 a. .
da. =—=cde’ —y.a (1-——)dp, for i=4
al 3 1 8 ?/Ia|< f( )> p

i
where a, is a threshold to make dynamic recovery term inactive within the threshold, c,

and y, are two material constants and dpand f () are defined as follows:

f(a,) = [Ba ar

This model assumes that the backstress evolution is obtained by four components. The
first three components are the same as that of Armstrong and Frederick. However, the
fourth component contains a threshold level of backstress that makes the dynamic
recovery term inactive within the threshold. Outside the threshold, the fourth component
evolves according to the Armstrong—Frederick rule. Ohno and Wang [46] introduced a
different threshold term to the Armstrong—Frederick rule in order to control the evolution
of the decomposed kinematic hardening rules. Each decomposed rule stops evolving

outside of its threshold, c, /y;. This model is defined as follows:

M
da = Z:dozi
i=1

de; =gcid£p <d8 % >[f(a)jmi
3 f(a)/\ c 1y

where f(ai) is the von Mises yield function and exponents m; are proposed to be

(2.26)

dependent on the non-coaxiality of the plastic strain rate and the backstress in this model.
In an effort to improve the Ohno-Wang model, McDowell [47] proposed a new
expression for m;, appeared in the above equation, with the purpose of improving its

capability for multiaxial simulation as follows:
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mi_A<n : f(ai)> , N'= dp _200 (s—a) (2.27)

where s is the deviatoric stress tensor. The expression for the exponents m; include the
constants B; which can be calibrated using multiaxial ratcheting responses to influence
the multiaxial ratcheting simulations without affecting the uniaxial simulations. Jiang and
Sehitoglu [48] incorporated the non-coaxiality of plastic strain rate into the Ohno and
Wang model and offered another generalized form of this model as follows:

M
daz:Z:dozi
i=1
de, =2Cid£p—}/i MHa) a,dp
3 ¢!y
a (2.28)
m=~A(2-n":——
f(a;)
p
n’:di: 3 (s—a)
dp 20,

Similar to the McDowell model, the exponents m; in this model assume constant values
(mi=Aoi) and the model reduces to the Ohno—Wang model for uniaxial loading. Chun et
al. [40, 50] further improved the cyclic hardening model of Chaboche by using different
backstress evolution laws for monotonic loading and reverse loading. In their approach,
several backstress laws are deactivated upon loading reversal in order to obtain a
different flow stress saturation level. The backstress is assumed to be obtained by the
superposition of two different backstresses as follows:

a=a +a, (2.29)

Each component of the back-stress is made to evolve independently so that different

kinematic shift can be realized for the initial and reversal loading:

C
a; = El (6 —a@)p —yap (2.309)
i = {%2 (60— @)p for initial loading (2,300
0 for reverse loading
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where c;, ¢, and y are material (hardening) parameters to be determined. The Modified

Chaboche model is recovered when a, approaches zero (or ¢, = 0).

Yoshida et al. [34] developed two constitutive models called IH+NKH and
IH+NLK+LK. The first model uses a combined isotropic-nonlinear kinematic hardening.
A new evolution for the expansion of yield surface has been proposed in IH. In the
second model, a linear term has been added to the Armstrong-Frederick model for
evolution of backstress in LK. The NLK, LK and IH have the following forms,

respectively:

da, = C(% ade” —a,dp)

(2.31)

da, :EHQ’Odsp
3

where ¢, a and H/ are all material constants. The results of their study show that neither

IH+NLK model nor IH+NLK+LK model can accurately describe the phenomena
observed in cyclic experiments. In order to accurately model the material behaviour, two-
surface plasticity models have been employed by many researchers which will be

discussed in the next section.

2.5.4. Two-surface plasticity models:

In parallel to modification of nonlinear kinematic hardening models, two-surface
plasticity models, originally proposed by Dafalias and Popov [51] and Krieg [52],
attracted a lot of attention by researchers because both the transient and long-term
behaviour of the material can be fairly well described by these models. In two-surface
models, the evolution of the inner surface is usually defined such that it describes the
transient response of the material and the evolution of the bounding surface is usually

responsible to describe the long-term response of the material.
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The two-surface model proposed by Dafalias and Popov [51] defines a continuous
variation of the plastic modulus ;% = E,between these two surfaces. In this model, a

bounding surface is proposed in stress space in addition to the yield surface (sometimes
also called the loading surface). The bounding surface always encloses the yield surface
and is a generalization of the bounds observed in the experimental results for uniaxial
random cyclic loading on a grade 60 steel specimen. The details of the experimental
random cyclic loading curve were presented in [51].

Geng and Wagoner [53,54] developed a two-surface plasticity model with the purpose
of improving the nonlinear kinematic hardening model to capture the permanent
softening. Their hardening rule is expressed as in the Armstrong—Frederick formulation
with an additional term to allow for translations and expansion of the limiting or

bounding surface:
C
da = G—”(a — a)dp — y(a — B)dp (2.32)
0

where dp is the equivalent plastic strain rate; oy, C, and y are material parameters, with o
representing the yield surface size, B is the centre of the bounding surface. The stress

mapping point o on the bounding surface is determined as follows:
0
(op—B) = GLOO (60— a) (2.33)

where g, represents the size of the bounding surface. The translation and expansion of

the bounding surface is specified with a mixed hardening rule:

i =" (6, - B)d (2.34)
dogy = (1 —m)HPdp (2.35)

where HP is the plastic modulus of the monotonic loading curve, and m is the ratio of the
Kinematic response (translation) to the isotropic response (expansion) of the bounding
surface.

Yoshida and Uemori [40,55] developed another two-surface plasticity model. This
model is composed of two nonlinear kinematic hardening rules and the isotropic
hardening of the bounding surface. The model also pays special attention to the

workhardening stagnation. This mode will be discussed later in the next chapter.
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Lee et al. [56] also proposed another two-surface plasticity model based on the Dafalias
and Popov model. In their model, both surfaces translate (kinematic hardening) and
expand (isotropic hardening) in stress space. The kinematic hardening of the surfaces is
defined by two different linear kinematic hardening rules. They also used their model to
predict springback in a draw-bend test and showed their model improves the predicted
springback results. It should be mentioned that this model does not take the
workhardening stagnation into account. McDowell [57], Ohno and Kachi [58], Ohno and
Satra [59], Xianjie et al. [60], Iwata [61] and White [62] have also developed two-surface
plasticity models to improve modeling the material behaviour in cyclic loading.

2.5.5. Rotation of the yield surface:

The rotation of the yield surface has also been taken into account by some researchers.
In an attempt to consider the rotation of the yield surface, Suprun [63] developed a new
constitutive model with three plasticity constants. This model is actually an anisotropic
work hardening model characterized by translation, reshaping and turning of the
subsequent yield surface. The yield surface is initially a hypersphere; i.e. the material is
initially isotropic, and then it is anisotropically extended to a hyperellipsoid. Meanwhile,
this hyperellipsoid is allowed to rotate in the deviatoric stress space. The evolution law
for this model is defined as a function of length of plastic deformation trajectory, the
position of the loading point and the physical properties of the material. It should be
pointed out that this model needs four parameters: the elastic limit, and three independent
plastic constants.

Choi et al. [64,65] also considered the rotation of the yield surface for the description
of the multi-axial elastoplastic behaviour. Their model enables the anisotropic yield
surface to grow (isotropic hardening), translate (kinematic hardening) and rotate (rotation
of the anisotropy axes) with respect to the deformation, while the shape of the yield
surface remains essentially unchanged. Essentially, the model is formulated on the basis
of an Armstrong—Frederick type kinematic hardening, the plastic spin theory for the
reorientation of the symmetry axes of the anisotropic yield function, and additional terms

coupling these expressions. The capability of the model is illustrated with multi-path
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loading simulations in ‘tension-shear’ and ‘reverse-shear’ to assess its performance with

‘cross’ hardening and ‘Bauschinger’ effects.

2.5.6. Distortion of the yield surface:

It has been reported in the literature that the yield surface is distorted as the plastic
deformation proceeds [66-69]. Since the plastic strain increment is obtained according to
the normality rule in the associated flow rule, it is important to take this phenomenon into
account. In an effort to model yield surface distortion Francois [70] proposed a method to
take into account the yield surface distortion within the thermodynamic framework. The
yield surface obtained by this method is an egg-shaped similar to those observed in
experimental data. He also compared the experimental results with those simulation
results for both proportional and non-proportional tension-torsion paths. Vincent et al.
[71] managed to introduce nonlinear kinematic hardening model taking distortion of
subsequent yield surface into account. They used the results of a polycrystalline model to
get some reference predictions to utilize in the development of the constitutive laws and
then quantitatively identified their model using experimental data on a type 316L
stainless steel. This model is limited to two-dimensional loading paths for simplicity of
constitutive equation. Later in 2004, Vincent et al. [72] extended this model to a general

five-dimensional loading path.

2.5.7. Yoshida-Uemori two-surface model:

As mentioned in the first chapter, advanced material constitutive equations are required
for more accurate simulation of sheet metal forming and subsequent springback. Cyclic
loading is a very common type of loading in sheet metal forming processes as it is
observed during the material flow over the punch radius, die radius and through a

drawbead. Since the material behaviour is quite complex in cyclic loading, the hardening
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rule should be able to accurately predict the material behaviour in cyclic loading. After a
careful investigation of existing hardening models in the literature, it was found that the
Yoshida-Uemori (YU) model [40] is one of the most sophisticated and comprehensive
phenomenological models which is capable of reproducing the transient Bauschinger
effect, permanent softening and workhardening stagnation in large elasto-plastic

deformation.

2.6. Consistency Condition:

The plastic multiplier, dA in Eq. (2.4), is determined by use of the consistency
condition. This condition states that the loading from a plastic state must again lead to a
plastic state, the stress and plastic strain that exist after the infinitesimal changes da, d&?

and da, have taken place must still satisfy the yield function equation:
f(o,€,0,) =0 (2.36)

By use of the consistency condition, the increment of the yield function is zero, that is,

df =L g+ ger + 45 0 (2.37)
oo o€P do, 7 '

In Fig. 2.11, the stress at point A is ¢ and it is on the yield surface
f(a'(A)' ep(A)' o'y(A)) =0 (238)

An infinitesimal loading has moved the stress point from A to B and it carries the yield

surface with it, so that the stress at B is (®) and the yield surface that B is on is:

f(e®,er®,g,®) =0 (2.39)
while
f(e®,er®, g, @) =0 (2.40)

Substituting (2.5) into (2.37), we have:
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_of of of = of _
df =—-do+dA-——+ 50, do, =0 (2.41)

which may be solved to obtain dA as:

(ﬂ) do, + (ﬂ) do

aay Jdo

(62) (7

A= — (2.42)

B, Gij ®

Fig. 2.11. The consistency condition[24]

2.7. Return Mapping Algorithm:

In any structural analysis, we need to address how to represent and model the
deformations and the material behaviour. For the representation of the deformations, a
displacement field needs to be assumed and the corresponding kinematic quantities, such
as strains, strain rates, deformation gradient, etc. need to be calculated. Once, the
Kinematic variables are known, a material model is required to calculate the stresses in
the structure. A numerical algorithm is required for stress integration of strain-driven
problem formulations; these problems arise in the displacement-based and mixed finite
element formulations. The task of stress integration is to determine the stresses, inelastic

strains and internal variables at the end of the time increment. A numerical integration
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method is usually required for integration of plasticity equations. According to a-method,

the integral of function £(t) in an interval At can be approximated as:

t+At

[ r@a=1a-of + afnlat (2.42)

where 0 < @ < 1 is the integration parameter, f, denotes the value of f at time t and
fi+ac 1s the value of f at time t + At. The values @« = 0 and a = 1 correspond to the
Euler forward method and Euler backward method, respectively, while @ = 0.5 gives the
trapezoidal rule. If the Euler backward method is used in integration of plasticity
equations, the value of the function is required at the end of time increment (t + At).
Since, the stress is not known at the end of increment, Euler backward integration is
referred to as the implicit method. Nevertheless, using Euler forward method is referred
to as the explicit method since all quantities, including stresses, are known at the
beginning of time increment t.

In the return mapping procedure, it is first assumed that the increment is purely elastic.
An elastic constitutive law, e.g. Hooke’s law, is used to calculate the so-called trial stress.
If the trial stress lies inside or on the yield surface, the trial stress is accepted as the final
solution and all internal variables are updated and the stress integration procedure is
stopped. If the trial stress lies outside the yield surface, the plastic correction procedure is
used to bring the stress back onto the yield surface at the end of time increment. In the
plastic corrector procedure, the plasticity equations are integrated using Euler backward
method and all equations are usually written in terms of one single parameter which is
usually the effective plastic strain. Substituting these equations into the yield function
leads to a nonlinear equation in terms of the effective plastic strain increment. This
nonlinear equation is usually solved by the Newton-Raphson numerical method. Once the
effective plastic strain is known, the plasticity equations are used to update all variables
at the end of the time increment. This method is also known as elastic-predictor plastic-
corrector and is illustrated in Fig. 2.12. The return mapping procedure will be used in the

next chapters to implement the advanced constitutive models in a finite element program.
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Fig. 2.12. The return-mapping algorithm in multidimensional stress space [24]
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Chapter 3

Semi-implicit Numerical Integration of Yoshida-Uemori

Two-Surface Plasticity Model

3.1. Introduction:

In order to reproduce the material behaviour in cyclic loading, the Yoshida-Uemori
(YU) model [40], which is capable of describing the cyclic material behaviour relatively
accurately, is used in this work. This model is able to describe transient Bauschinger
effect, permanent softening and workhardening stagnation. To the best of our knowledge,
the numerical procedure to implement this model has not published in the literature up to
now. Moreover, the constitutive models utilizing this hardening law and anisotropic yield
functions have not been developed in the literature. So, the return mapping algorithm is
used in this project to develop two different numerical algorithms for implementation of
this model into finite element codes. The first algorithm, which is limited to the use of
quadratic yield functions, is presented in this chapter and the second one, which can be
used with any yield function including nonquadratic yield functions, is described in the

next chapter.

The YU model is a two-surface plasticity model that assumes kinematic hardening of
the yield surface within the bounding surface and mixed isotropic—kinematic hardening
of the bounding surface itself. In two-surface plasticity models, such as Dafalias and

Popov [51] and Lee et al. [56], two independent hardening evaluations are usually
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defined for the kinematic evolution of the yield and bounding surfaces. In these models, a
proper equation is required to define the gap between the yield and bounding surfaces and
this gap should be checked at each time increment to make sure that the yield surface
stays either inside or tangent to the bounding surface at the loading point. However, in
the YU model, the evolution of the yield surface is defined by the superposition of two
kinematic hardening laws. The first one (B) locates the centre of the bounding surface
and the second one (@) defines the relative kinematic motion of the yield surface with
respect to the bounding surface. The relative kinematic motion (@) is a function of the
difference between the sizes of the two surfaces and is defined such that the inner surface
never passes the outer surface. Therefore, the yield surface never passes through the
bounding surface. This fact makes the numerical implementation of this model much
easier compared to other two-surface models. Additionally, the model uses only a few
numbers of material constants although it is capable of reproducing many cyclic
phenomena relatively accurately. Most of the parameters (seven parameters in the basic
version of this model) can be easily determined directly from the experimentally obtained

stress—strain curves.

In order to consider the anisotropy of the sheet metal, the Hill’s quadratic yield function
is used to define the yield (inner) surface. As mentioned in section 2.7, there are generally
two integration schemes to integrate the plasticity equations: implicit and explicit
schemes. In this chapter, a semi-implicit approach is used to integrate the Yoshida-
Uemori (YU) model and implement it as a user-defined material subroutine (UMAT). In
the next chapter, an algorithm based on a fully implicit scheme is presented for
implementation of this model as a UMAT for commercial finite element packages. The
equations are derived in such a way that they would be applicable for all stress states

including plane-stress problems.
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3.2. Plastic Strain Rate:

At the presence of backstress, Hill’s quadratic yield function (Eq. 2.11) is rewritten as:

fa) =y@B/2)n"Ny—-Y =0 or fa =7-Y=0 (3.1a)

where N is a fourth order anisotropic tensor defined in Egs. 2.11, Y is the yield stress, and
n is defined as the difference between the stress and the backstress, i.e. n = ¢ — a. Voigt
notation is usually used in development of numerical algorithms for implementation into
computer programs. In this notation, second-order tensors and fourth-order tensors are
represented by one-dimensional arrays and two-dimensional arrays, respectively. Using

Voigt notation, the stress and backstress tensors are represented by:

[O-xx 'l [axx 'l

FA 4

_ 10z _ 10y
T= oy |"* = |ay| (3.1b)

lon| Jarl

lo,,] L, !

In order to calculate the plastic strain increment, the incremental deformation theory
[73,74] is applied to the elasto-plastic formulation based on the materially embedded
coordinate system. Under this scheme, the strain increments in the flow formulation are
the discrete true (or logarithmic) strain increments, and the material rotates by the
incremental angle obtained from the polar decomposition at each discrete step. It should
be mentioned that the plastic strain increment can also be obtained by the multiplicative
decomposition theory. Especially when material deformation follows minimum plastic
work path (or logarithmic strain path), multiplicative theory formulation coincides with
the current additive decomposition theory based on the incremental deformation theory
(Han et al. [75]). In the incremental deformation theory, the effective plastic strain

increment is obtained as follows:
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_MNo (3.2a)

where A2 is the plastic multiplier, Ap is the effective plastic strain increment and & is a

first order homogenous function, that is & = O_Z_o-. Now, using the associated flow rule
(o

and Eq. (3.2a), the plastic strain increment is obtained as follows:
3p

& = 5N (3.2b)

3.3. The Yoshida-Uemori (YU) Model:

The materially embedded coordinate system (co-rotational coordinate system) is used
here in this chapter, not only because it makes the derivation of numerical equations more
convenient but also because it is usually required by many of the commercial programs
such as ABAQUS. The YU model consists of two surfaces in stress space that are
schematically shown in Fig. 3.1. The kinematic hardening of the yield surface describes
the transient Bauschinger deformation characterized by early re-yielding and a
subsequent rapid change of workhardening rate, which is mainly due to the motion of less
stable dislocations, such as piled-up dislocations. The isotropic hardening of the
bounding surface represents the global workhardening, which is associated with the
formation of stable dislocation structures, such as cell walls. Permanent softening and
workhardening stagnation are caused by the dissolution of dislocation cell walls that were
created during forward deformation [76,77]. In order to describe such deformation
characteristics under stress reversals, the kinematic hardening and non-1H region during
stress reversals are assumed for the bounding surface. The model is able to describe the

cyclic phenomena shown in Fig. 3.2 relatively accurately.

The inner surface, or yield surface, determines the elastic domain of the material in

stress space. It is assumed that this surface translates in stress space without expansion.
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The relative kinematic motion (@) of the yield surface with respect to the bounding

surface is expressed by:

9=cl%n—\/%elp (3.3a)
where n is the difference between the stress and backstress, 8 is the position of the yield
surface with respect to the centre of the bounding surface, c is a material parameter that
controls the rate of kinematic hardening and Y is the initial yield stress. Moreover, p is
the effective plastic strain rate, 8 is the effective backstress, and a is the difference
between the size of the bounding surface and the yield surface. These parameters are
defined as follows:

2 _
p= §ép:ép;a=,/(3/2)9T1\n9;a=B+R—Y (3.3b)

where &P denotes the plastic strain rate, and B and R are the initial size of the bounding
surface and the isotropic hardening component, respectively. Eq. (3.3a) indicates that the
yield surface moves in such a way that the current stress point existing on the yield
surface is approaching the corresponding point on the bounding surface. Under the

uniaxial stress state, Eq. (3.3a) yields:

. ]
0 =cal&l — sgn(B)\/; |&P | (3.4)

A combined isotropic-nonlinear kinematic hardening model is used to describe the
evolution of the bounding surface. The isotropic hardening of the bounding surface is

expressed by:
R= k(Rsat - R)p (35)

where R, is the saturated value of the isotropic hardening stress, R, at infinitely large
plastic strain, and k is a material parameter that controls the rate of isotropic hardening.

The isotropic hardening of the bounding surface is used to describe the global
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workhardening of the material. In order to describe the permanent softening observed
during reverse loading, the kinematic hardening of the bounding surface is introduced.
The kinematic hardening of the bounding surface is assumed by:

p=k[on-p]s 9)

where B is the kinematic hardening of the bounding surface and b is a material
parameter. It should be noted that parameter k is assumed to be the same as in the
evolution equation of the isotropic hardening stress (Eq. (3.5)). It should also be
mentioned that 8 is defined in the deviatoric stress space by Yoshida and Uemori where
the linear term (i.e. the first term) of the equation is based on Prager’s model. However, |
assumed that the linear term of 8 is in the direction of  according to Ziegler’s model not
only to avoid the strain softening error associated with Prager’s rule but also to define
both backstress equations in the same stress space and then simply add them together to
calculate a. The evolution of the yield surface is defined by superposition of the above

nonlinear kinematic motions as:

a=p5+6 (3.7)

—Yield Surface

’,'Bounding Surface

Fig. 3.1. Schematic illustration of Yoshida-Uemori model [40]
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The size of yield surface is smaller than the bounding surface and makes it possible to
capture the early re-yielding during reverse deformation. The kinematic hardening of the
yield surface is used to describe the rapid change of workhardening in the transient
Bauschinger region. The kinematic and isotropic hardenings of the bounding surface
describe permanent softening and global workhardening of the material, respectively. It
should be noted that the bounding stress in uniaxial loading is obtained by:

oo~ By R+ B =B+(R, +b)1-e™*) (3.8)

500 | Stress, MPa
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l X .......... transient region

workhardening stagnation

predicted by Isotropic
hardening

Fig. 3.2. Stress-strain response of a mild steel in a forward and reverse loading and the cyclic
phenomena

At the beginning of deformation, both the yield and bounding surfaces are assumed to
be at the origin in stress space, and the radius of the yield surface is smaller than that of
the bounding surface. As plastic deformation takes place, the yield surface translates
within the bounding surface which itself is both translating and expanding. The model

also accounts for the workhardening stagnation which is discussed in section 3.4.2.
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3.4. Stress Integration:

In the following equations of this chapter, subscript n is used to denote a quantity at the
beginning of a time increment, whereas subscript n + 1 is used to denote a quantity at the
end of the time increment. If no subscript is used, this quantity is evaluated at the end of
the increment. It is generally more advantageous to use the Euler backward method (fully
implicit integration scheme) in order to integrate the plasticity equations because it is
unconditionally stable. In this scheme, all quantities are written at the end of each time
increment to ensure that the yield function is satisfied at the end of the time increment.
Therefore, this avoids drift from the yield surface which can occur in the Euler forward
(explicit) method. When an implicit approach is used for integration of global finite
element equations, the Euler backward scheme generally leads to much more rapid
solutions as it allows larger time increments to be used. However, it is more challenging
mathematically to use a fully implicit approach with complex hardening laws. For
example, if a fully implicit approach were used here to integrate Eq. 3.4, then we would
need to solve a system of equations for @ in each direction because its evolution depends
on 6. Therefore, a fully implicit approach usually is both more challenging to implement
and more computationally expensive. In addition, the implicit approach may not be able
to converge for very complex problems as more equations are to be solved in this

approach.

A simpler approach is to integrate the effective plastic strain implicitly but the internal
variables explicitly. This method is called semi-implicit integration. Since it is not
unconditionally stable [78], a sufficiently small time increment should be used to ensure
both stability and accuracy when this approach is used. In this study, a semi-implicit
approach was used to integrate equations 3.3a and 3.6. A sub-step algorithm was also
used in the user subroutine to control the size of strain increment and to control the
integration error in the simulation. It is also worth mentioning that the strain increment is
usually very small in the global finite element explicit approach and there is practically
no need for such a sub-stepping algorithm. The semi-implicit integration of equations
3.3a and 3.6 leads to:
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40 = c|2 2o, |4 (3.9)
_CY" én n | 4P .

sg=k[on-p.]a (3.10)
Aa = AB + 40 (3.11)

It is noted that all variables except @ and B are written at the end of the time increment.
Using the return mapping algorithm, the trial stress and then the stress can be written in
elastic predictor-plastic corrector form in terms of the trial stress and plastic return as:

o'" =0, + DAs (3.12)
o=0"" — DA (3.13)
Nn=0c—a=0"—DAs? —a, — Aa =1n"" — DAe? — Aa (3.14)

where a7 is the trial elastic stress, o is stress at the end of an increment, a,, and «,, are
backstresses at the beginning and end of an increment, respectively, ehand &P are the
total plastic strains at the beginning and end of an increment, respectively, and D is the
elasticity tensor. Egs. (3.15a) and (3.15b) show the representation of D in Voigt notation

for a general 3D stress space and plane stress space respectively.

2GE + AF 2E 2E 0 0 0
2E 2GE + 2E A 0 0 0
po| 2E 26E+2 0 0 0
| o 0 0 GE 0 0 (3.152)
0 0 0 0 GE o
0 0 0 0 0 GE
1 v 0
E v 1 0
= s (3.15h)
00 —

where E, v, GF and Af are the elastic modulus, Poisson’s ratio, shear modulus and

Lame’s constant of the material, respectively. It should be emphasized that engineering
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shear strains are used in Eqgs. (3.15) to calculate the shear stresses. So, the strain tensors
in Voigt notation for 3D and plane stress states are respectively represented as:

— ((:xx -
£
EZ Z Exx
e=12¢ €= (3.15c¢)
Y 2¢
2gy, il
|26,

The elasticity tensor for plane strain and axisymmetric states is simply obtained by
eliminating the fifth and sixth columns and rows of Eq. (3.15a).

Substitution of Eq. (3.2b) and Egs. (3.9)-(3.11) into Eq. (3.14) leads to the following

equation:

. 3A b
n=oc" -Dle-¢&; _2_p N7]l-a, —C(s-n—\/eg-ﬁn)Ap—k(Vb-ﬂ—ﬂn)Ap (3.16)

Oy

After some mathematical manipulations, the following return map equation is obtained

which is only in terms of a single parameter, i.e. 4p:

_ 1 1 I a
T="""acAp bkap- D {" +\/; CAPG, + kAP ”} (3.179)

1+ + n

Y Y
where
3/2)A B
gio|pty_ G2 (3.17h)
Y +a.c.Ap+bk.Ap

Substituting Eqg. (3.17) into the yield function, i.e. Eq. (3.1), results in a nonlinear
equation in terms of Ap which can be easily solved using the Newton-Raphson method.
Once A4p is known, Eq. (3.17a) is first used to obtain n, then Egs. (3.9)-(3.11) are used to
calculate the increment of backstress. Finally, the plastic strain increment and stress are

obtained by using Egs. (3.2b) and (3.13), respectively. It should be mentioned that for the
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plane stress state, the thickness strain also needs to be updated. This thickness strain at
the end of a time increment can be calculated using the following relationship:

Zz

£, = —é(o-XX +o,)-(&y+&)) (3.18)

where E, v are the elastic modulus and Poisson’s ratio of the material respectively. o, ,

o, €5 and ¢, are all written at the end of the time increment.

3.4.1. The elastoplastic tangent modulus:

In the implementation of a plasticity model into an implicit finite element code, it is
necessary to provide the tangent modulus or the material Jacobian matrix which is
required for solving the equilibrium equations or momentum balance. In general, there
are two methods to calculate the tangent modulus. In the first method, the plasticity
equations in the rate form are used to obtain the derivative of stress with respect to strain.

So, the following relationship is obtained:

D = 5_0' (3.19)
oe

D is called continuum tangent modulus. In the second method, the derivative of stress

increment with respect to strain increment is calculated and the following equation is

obtained:

o _ 0(Ao)

~ 8(Ae) (3.20)

D®is called consistent tangent modulus because it is consistent with the stress
integration algorithm. Simo and Taylor [79] showed that the consistent tangent modulus,
i.e. Eq. (3.20), approaches to the continuum tangent modulus, i.e. Eq (3.19), as the

increment size approaches to zero. In general, it is more challenging and difficult to
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calculate the consistent tangent modulus. The advantage of using a consistent tangent
modulus is that it results to the quadratic rate of asymptotic convergence for the Newton-
Raphson method to solve the global finite element equilibrium equations as proved by
Simo and Hughes [80]. Therefore, larger strain increment sizes can be generally solved
when a consistent tangent modulus is used. Since a large increment size should not be
used in the semi-implicit approach; the continuum tangent modulus was used in the user
subroutine in order to prevent the user from using very large increments. In chapter 4, a
fully implicit approach is used to integrate YU model and the consistent tangent modulus
will be calculated.

Using the additive decomposition of strain and elastic constitutive equation, the stress is

written as follows:
0 =Dg® =D[e— €P] (3.21)

Time differentiation of this equation leads to:
31
6=D[¢— &)= Dlé—Z—ﬁan (3.22)

The plastic consistency condition states that the stress point must remain on the yield
surface during plastic loading. So, the time differentiation of the yield function for the

inner surface gives:

. 3n'Nny
f= >7
n

=0 or " Np=0 (3.23)

Substitution of Eq. (3.22) and Eq. (3.7) into Eq (3.22) gives:

34 A .o la, i ,
"N| Dé ———=DNn-"can+icY, =6 —-=kbn+ikB |=0 ,
n {8 oy DN = can 59— Kon ﬂ} (3.24)

The effective plastic strain rate is obtained by solving Eq. (3.24):

n'NDé&
2

A= (3.25a)
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where

4 2 a 2
@ =n"NDNn + 5 (a.c + k.b)Y? — §Y. c\/%nTNB - §Y. k.n"NB (3.25b)

Finally, Eq. (3.25a) is substituted back into Eq. (3.22) to find the tangent modulus:

(3.26)

o=|p_PND (DNn)] :

®

where ® denotes the dyadic product of two vectors.
3.4.2. Workhardening stagnation:

The experimentally obtained stress—strain curves on a mild steel exhibit apparent
workhardening stagnation in a certain period of reverse deformation starting from the
reverse re-yielding [34]. This phenomenon is also related to the cyclic strain-range, as

well as the mean-strain.

As already mentioned, the workhardening stagnation is caused by the dissolution of
dislocation cell walls during a reverse deformation. It can be expressed by the non-
isotropic hardening (non-1H) of the bounding surface, since in the present model the
isotropic hardening of the bounding surface represents the global workhardening due to
the formation of stable dislocation structures, such as cell walls. Yoshida and Uemori
defined a non-isotropic surface of J,-type, gs, to account for workhardening stagnation. It
is assumed that the centre of the bounding surface is located either inside this surface or
on the boundary of this surface. Isotropic hardening of the bounding surface takes place if
the centre of the bounding surface is located on the boundary of g, as shown in Fig. 3.3b.

g is defined as follows:

3
9oB,47)=5[B—ql'P[B—q]—7"=0 (3.272)
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R = 0,0therwise (3.27b)
where q and r denote the centre and radius of g,, respectively, as shown in Fig. 3.3 and P

is defined by:

0
2 -10
0
3

Sym.

w O O o o
w O O o o o

Fig. 3.3 Schematic illustration of stagnation surface: a) non-isotropic hardening (R=0); b)
isotropic hardening takes place (R>0)

From some experimental stress—strain curves under a large-strain reverse deformation,
it was found that the plastic strain region of workhardening stagnation increases with the
accumulated plastic strain. Such a phenomenon can be expressed by the expansion of the
surface g, with increasing plastic strain. Yoshida and Uemori assumed the kinematic

motion of the surface g, such that the center of g, moves in the direction of (8 — q), as:

q=ulB—ql=ung (3.28)
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where & = 8 — q and p is obtained by imposing the consistency condition which states
that the centre point of the bounding surface should be either on, or inside, the stagnation
surface:

_3¢"PB v

__ 3.29
2r? T ( )

The following evolution equation for the evolution of » was assumed by Yoshida and

Uemori:
. 35'PB ;
F=nh whenR > 0 (3.30a)
2r
=0 whenR =0 (3.30b)

where (0 < h < 1) denotes a material parameter that determines the rate of expansion of
surface g,. The larger value of h gives a rapid expansion of the non-1H surface, and as a
result, it leads to the prediction of less cyclic hardening. Since the non-IH
(workhardening stagnation) appears during reverse deformation after prestrain, the initial

value of » may be assumed to be zero.

A description of the integration of the stagnation equations is now presented.

Integration of Eq. (3.30a) and (3.28) using the Euler backward method leads to:
r2 =12 + 3hETPAB (3.31)
Aq = Aué (3.32)
Furthermore, Eq. (3.32) is used to calculate ¢:
$=B-q=B—-q,—Aq=B—q, -1 (3.33)

&
§_1+Au (3:34)

where &, = B —q,,.
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Substituting Egs. (3.34) and (3.31) into Eq. (3.27a) yields the following quadratic

equation:

%fﬂpfu — 3hETPAB[L + Al — r2[1 + Au)? = 0 (3.35)

The analytical solution to this equation is obtained as follows:

3hETPAB + \[[3hf,TlPAﬂ]2 +ar?[3€1PE,|
Au = o) -1

(3.36)

Once Apu is known, € is obtained using Eq. (3.34) and then B is found by Eqg. (3.33) at
the end of the time increment. The radius of the stagnation surface, r, is also obtained by
Eq. (3.31). Therefore, the location and radius of the stagnation surface is found at the end

of the increment.

At the beginning of deformation, it is assumed that the isotropic hardening does not
take place. The stress integration algorithm is run first to calculate the stress and all
internal variables, i.e. B, 8, a, R. Then, the stagnation surface calculations are done to
find the final position and size of the stagnation surface, i.e. g and r. If the centre of the
bounding surface is located inside the stagnation surface, all solutions are accepted as
final solutions. However, if the centre of the bounding surface is located on the boundary
of the stagnation surface, this means that isotropic hardening should take place.
Therefore, the current strain increment should be divided into two sub-increments. In the
first sub-step, the centre of the bounding surface moves within the stagnation surface
until it arrives at the boundary of the stagnation surface. In the second sub-step, the centre
of the bounding surface remains on the boundary of the stagnation surface and isotropic
hardening takes place. It is generally difficult and time consuming to find when the centre
of the bounding surface reaches the boundary of the stagnation surface. Nevertheless, if
the strain increment size is selected to be small, the change from non-isotropic hardening
to isotopic hardening can be neglected. In other words, if the centre of the bounding
surface lies on the boundary of the stagnation surface at the end of a time increment, it

can be assumed that isotropic hardening takes place for this increment. As mentioned at
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the beginning of this section, sub-step algorithm is utilized to make sure that the
increment size is small enough for the subroutine. Therefore, in order to reduce
computation time, the stagnation condition (Eq. 3.27) is checked at the end of each
increment. After isotopic hardening occurs, the current status is saved in a state variable
for the next increment. The isotropic hardening of the bounding surface takes place until
unloading occurs. In the first unloading increment, the stress integration algorithm
calculates the stress and all internal variables. Then, the final position and size of the
stagnation surface is obtained. The final position of the bounding surface shows that the
centre of the bounding surface is located inside the stagnation surface. So, the algorithm
determines that isotropic hardening should not take place. The stress integration is re-run
to calculate the stress and internal variables assuming that isotropic hardening does not
take place. In summary, the isotropic hardening assumption is first made based on the
previous increment. At the end of the increment, the solution is accepted if the
assumption was correct. If not, the isotropic assumption will be changed and the stress
integration subroutine is re-run. The numerical algorithm for implementation of this

model is shown in Table A.1.

3.4.3. Decrease of unloading elastic modulus:

Luo and Ghosh [81] have reported that the elastic modulus during unloading and
reloading is different from the initial elastic modulus in the un-deformed state. Levy et al.
[82] also reported that the apparent unloading modulus is smaller than the initial elastic
modulus and experimentally obtained the variation of unloading modulus as a function of
plastic strain for AKDQ and DP600 sheet materials. Benito et al. [83] also observed that
the elastic modulus of polycrystalline pure iron decreases with plastic deformation during
a tensile test at room temperature. They measured the residual stresses and texture and
observed the dislocation structure by TEM. Since they did not observe any significant
change in texture during the deformation, they concluded that the decrease of elastic

modulus was not due to either a change of texture or to residual stresses. They stated that
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the dislocation arrangement change results in diminution of elastic modulus and proposed
a relationship between these two parameters. Yang et al. [84], Cleveland and Ghosh [85]
and Morestin and Boivin [86] have also reported the decrease of unloading modulus.
Since the decrease of unloading modulus has a significant effect on the prediction of
springback, the following empirical equation was used by Yoshida and Uemori [40,55] in
YU model to take the decrease of unloading modulus into account:

E = Ey — [Ey — E;][1 — exp(—{p)] (3.37)

where Eo and E, are Young’s modulus for as-received and infinitely large prestrained
materials, respectively, and ¢ is a material constant which determines the rate of decrease
of the effective unloading modulus with respect to plastic strain. In simulation of BM#3,
which is presented in the next section, the elastic modulus was taken to be constant
during the forming stage, and the reduced unloading modulus was used in the springback

simulation stage.

3.5. Hourglass Control:

If an element in reduced integration mode is used in ABAQUS/Standard, the hourglass
stiffness needs to be calculated. Because ABAQUS/Standard calculates the hourglass
stiffness by using the elastic properties of the material, it requires the hourglass stiffness
when a UMAT is used in the simulation. So, the user must define the hourglass stiffness
factor for hourglass control based on the total stiffness approach as part of the element
section definition. It should be mentioned that the hourglass stiffness factor is not

required for enhanced hourglass control in ABAQUS.

Normally the hourglass control stiffness is defined from the elasticity associated with
the material. In most cases it is based on a typical value of the initial shear modulus of the
material, which may, for example, be given as part of the elastic material definition. For

an isotropic elastic or hyperelastic material G is the shear modulus. For a non-isotropic
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elastic material an average shear modulus is used to calculate the hourglass stiffness. The
default values for the stiffness factors are defined below.

e For membrane or solid elements:

rr = 0.005G¢ (3.38)

e For membrane hourglass control in a shell:

t2 g
GE. dt
rp = 0.005‘”% (3.39)

where 1 denotes the hourglass stiffness factor and t is the thickness of the shell. The
above formulations are used to obtain the hourglass stiffness factor for the element [87].

3.6. Transverse Shear Stiffness:

If user subroutine UMAT is used to describe the material of beams or shells that
calculate transverse shear energy, the user must specify the transverse shear stiffness as
part of the beam or shell section definition to define the transverse shear behaviour. For
all shell elements in ABAQUS/Standard that use transverse shear stiffness and for the
finite-strain shell elements in ABAQUS/Explicit, the transverse shear stiffness is
computed by matching the shear response for the shell to that of a three-dimensional solid

for the case of bending about one axis.

In all shell elements in ABAQUS/Standard that are valid for thick shell problems or
that enforce the Kirchhoff constraint numerically and in the finite-strain shell elements in
ABAQUS/Explicit, ABAQUS computes the transverse shear stiffness by matching the
shear response for the case of the shell bending about one axis, using a parabolic

variation of transverse shear stress in each layer. In calculating the transverse shear

55



stiffness, ABAQUS assumes that the shell section directions are the principal bending
directions (bending about one principal direction does not require a restraining moment
about the other direction). For composite shells with orthotropic layers that are not
symmetric about the shell midsurface, the shell section directions may not be the
principal bending directions. In such cases the transverse shear stiffness is a less accurate
approximation and will change if different shell section directions are used. ABAQUS
computes the transverse shear stiffness only once at the beginning of the analysis based
on initial elastic properties given in the model data. Any changes to the transverse shear
stiffness that occur due to changes in the material stiffness during the analysis are

ignored.

The transverse shear stiffness should be specified as the initial, linear elastic stiffness of
the shell in response to pure transverse shear strains. For a homogeneous shell made of a
linear, orthotropic elastic material, where the strong material direction aligns with the

element's local 1-direction, the transverse shear stiffness should be:

K = 2GEt Kfs = ZGHt and Kf5 = Kgi = 0 (3.40)

where GEand GLare the material's shear moduli in the out-of-plane direction. The
number 5/6 is the shear correction coefficient that results from matching the transverse

shear energy to that for a three-dimensional structure in pure bending [87].

3.7. ldentification of Material Constants:

YU model contains seven material parameters (Y, ¢, B, Rsat, b, k, h). There are generally
two ways to obtain the material parameters. The first method is to use an optimization
method to fit the simulation stress-strain curve to that of the experiment. The second

method is to use a systematic way to identify the material constants from the stress-strain
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curve in cyclic deformation. In this project, the second method was used to find the
constants for YU model. Now, each of these methods are described.

3.7.1. Optimization method:

Let x = [Y,c, B, Ry, b, k, h] denote a set of material parameters to be identified. The
purpose is to find the vector x that minimizes the objective function:
Fx)=%/_s'Fi(x), A <x;<B,(j=12,..,N) (3.41)
where L is the total number of individual forward or reverse deformations (denoted by i).
A; and Bj are the lower and upper limits of the searching area for a material parameter X;.

Fi(x) is the dimensionless function defined as the square difference in stress between the

experimental data, o/

s(exp) » and the corresponding calculated results for an assumed set of

material parameters X, a(ical)(x, el) as:
Fi(x) = {2221[02(@@ - 0-écal) (X, %)]2}/{2?1‘21[0_2(6@)]2} (342)

where S; is the total numbers of data points in i-th stress—strain response. In Eq. (3.41), §'
is the weight coefficient which determines the relative contribution of i-th set of
experimental data. For the minimization of the objective function, Yoshida and Uemori
successfully used an optimization technique based on the iterative multipoint concept

[88-90] and found the set of material parameters simultaneously.
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3.7.2. Systematic method:

In this method, the cyclic stress-strain curve is used to calculate the parameters as

follows:

Y is equal to the initial yield stress

The cyclic curve is extrapolated at the beginning of each cycle to find the
bounding stress curve. The bounding stress curve is used in the first cycle to fit
the experimental curve to Eq. (3.8). Therefore, parameters B, (Ry,; + b) and k

will be found.

In order to find b, we need to find agg)which is equal to the difference between

the experimental yield stress and predicted yield stress by isotropic hardening
model at the beginning of reverse loading. From Eq. (3.6), the amount of

softening at the beginning of reverse loading is given by:

ot = 2fo = 2b(1 — e7*P) (3.43)

where B, denotes the kinematic hardening of the bounding surface at the stress
reversal point, and p, is the plastic prestrain at the beginning of reverse loading.
From Eq. (3.43), the parameter b is obtained. Since (Ry,; + b) is already known

from the previous step, R, is also obtained.

Parameter c is identified from the stress—strain curve of the transient Bauschinger
deformation. From Eg. (3.4), for reverse deformation after large forward

prestrain, we have

¢~ 5[(1 +In2) — \/'7—' +n <1 + sgn(6) ﬂ)l (3.44)
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e Parameter h is identified by the numerical simulation of such cyclic stress—strain
responses so as to obtain the best-fit curves to the corresponding experimental

results.

3.8. Verification of the User Material Subroutine:

In this section, the UMAT and VUMAT based on Hill’s quadratic yield function and
YU model are used to simulate a few problems and verify it is able to work properly
under different loading conditions. The simulation results will be evaluated either
quantitatively or qualitatively. As a first evaluation, every problem can be simulated by
both UMAT and VUMAT to compare the results. The following problems were
simulated by both UMAT and VUMAT and it was found that both UMAT and VUMAT
yielded almost the same results. Therefore, in the following the simulation results are
referred to UMAT and | will not distinguish between UMAT and VUMAT. The material
is assumed to be ADKQ in the following simulations. The experimental yield stress and
r-values in each direction is given in Table 3.1. The material coefficient associated with
YU model were found by fitting the simulation results to the experimental stress-strain
curve obtained by the cyclic shear test. In addition, the experimental yield stresses in each
direction were used to find the Hill’s coefficients. The material constants associated with
YU model and Hill’s quadratic yield function are shown in Tables 3.2 and 3.3

respectively.

Table 3.1. The experimental yield stress and r-values in different directions

Yield stress, MPa r-value
0y 158.3 0 1.546
oy 183.0 45 1.508
090 166.7 Tog 1.942
Tyy 84.0
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Table 3.2. The Yoshida-Uemori material constants

Material Y c B Ry b k h Ey E, ¢
(MPa) (MPa) (MPa) (MPa) (GPa) (GPa)

AKDQ 158 300 190 240 10 8.5 0.7 206 178 160

Table 3.3. Coefficients of Hill’s 1948 yield function

Material F G H N

AKDQ 0.329 0.419 0.581 1.776

3.8.1. Uniaxial tension:

The uniaxial tension loading can be used as a very simple and initial test to verify the
UMAT. This type of loading is interesting as it causes a homogenous deformation in the
structure and only one element is required in the simulation. The advantage of using one
element is that the solution will not depend on the mesh size. The uniaxial tension is a
very simple type of loading and in many cases it is easy to obtain an analytical solution
for the problem. Therefore, if the user can analytically integrate the plasticity equations
for uniaxial stress state, the relative error associated with the numerical integration of the
model can be easily estimated. So, the uniaxial tension of a square part in the plane stress
state is first simulated. A square of 1 mm by 1 mm was simulated using the user material
subroutine. The bottom side of the square was fixed in the Y-direction and the node
located in the left bottom corner was fixed in both X and Y -directions. The right and top
sides of the square were displaced 0.2 mm in the Y-direction. A first-order quadrilateral
element in the reduced integration mode, denoted as CPS4R, was used to mesh the part.

The schematic of the finite element model is shown in Fig. 3.4.

As mentioned in section 3.3, the bounding stress for uniaxial monotonic loading is
obtained by Eq. (3.8). Therefore, as plastic deformation occurs, the stress should start
from the vyield strength and gradually approach to the stress in the bounding stress.

Depending on the material constants, the stress should reach the bounding stress after a
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certain amount of stress. The bounding stress was obtained using Eq. (3.8) for AKDQ
and plotted in Fig. 3.5. The stress versus plastic strain obtained by simulation was also
plotted in Fig. 3.5. This figure shows that the stress starts from the yield stress, which is
below the bounding stress, approaches and finally reaches the bounding stress after a
large amount of plastic strain.

A A

Y

I AR R B B
X

Fig. 3.4. Schematic representation of the finite element model for the uniaxial tension test

The uniaxial tension test can also be used to evaluate the implementation of the yield
function. Hill’s anisotropic coefficients were obtained from the uniaxial tensile yield
stress of the material in the rolling, and transverse directions, and from the equibiaxial
and shear yield stresses. Therefore, if the yield stress obtained by simulation in each of
these stress states correlates with their corresponding experimental value, it can be
concluded that the yield function was correctly implemented for each type of loading.
Here, the uniaxial tension, equibiaxial loading and shear test were all simulated by
UMAT and the yield stress in each problem was obtained by simulation. It was found that
the UMAT reproduces the experimental yield stresses for all of these stress states.

Therefore, Hill’s function was considered to be correctly implemented.
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Fig. 3.5. The stress and bounding stress in uniaxial tension

3.8.2. Biaxial loading:

Uniaxial tension evaluates the user material subroutine during loading in only one
direction. It is also useful to evaluate the user material subroutine during a multiaxial
loading. The biaxial bulge test is one of the most popular tests in sheet metal forming and
it is also a good example of multiaxial loading. Since all cyclic phenomena occur during
reverse loading, the YU model must predict the same results as isotropic hardening in
monotonic loading. Therefore, it is expected that both isotropic hardening and YU model
predict the same results for the bulge test as the loading is monotonous in this test. The
equibiaxial loading of a 1 mm square sheet was simulated with both our UMAT and an
ABAQUS built-in material model which is based on Hill’s quadratic yield function and
the isotropic hardening law. The left and bottom sides of the square were fixed in the X
and Y-directions, respectively. The right and top sides of the square were displaced 0.1
mm in both X and Y-directions. A 4-node element with linear shape function in the

reduced integration mode, denoted as CPS4R, was used to mesh the part. The schematic
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of the finite element model is shown in Fig. 3.6. Fig. 3.7 compares the stress-strain
response of the material obtained by UMAT and ABAQUS built-in material model
(isotropic hardening model) in the equibiaxial loading. This figure shows that, as
expected, the results obtained by UMAT and isotropic hardening model are identical.

rtrrtretr
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Fig. 3.6. Schematic representation of the finite element model for the biaxial bulge test
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Fig. 3.7. Stress-strain response of the material in equibiaxial loading obtained by YU model
(UAMT) and isotropic model (ABAQUS built-in material model)
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3.8.3. Bending of a cantilever beam:

As explained in the previous problem, the YU model and isotropic hardening must
predict the same amount of stress in monotonic loading. So, any monotonic loading
problem can be simulated by using UMAT and then compared with the stress results
obtained by isotropic hardening of ABAQUS built-in material model. Bending of a
cantilever beam in one direction is an example of monotonic loading. This problem can
evaluate the accuracy of the stress integration in the UMAT for forward bending
compared with ABAQUS. A rectangle of 1 mm wide and 10 mm long was fixed at one
end and vertically displaced downward 2 mm at the other end which is schematically
shown in Fig. 3.8. A first-order quadrilateral element in the reduced integration mode,
denoted as CPS4R, was used to mesh the part. The mesh size was selected to be 0.25 mm
by 0.25 mm in the X and Y-directions. Figs. 3.9 and 3.10 show the von Mises stress
contour on the deformed part obtained by ABAQUS built-in material model based on
isotropic hardening and the UMAT based on YU model, respectively. A comparison of
these two contours shows that both the ABAQUS built-in material model and the UMAT
yield practically the same results for this problem. Fig. 3.11 also shows the predicted
stress on the top surface of the beam obtained by ABAQUS built-in material model and
UMAT.

WARVARVA

L.

Fig. 3.8. Schematic of the cantilever beam and the boundary conditions
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Fig. 3.9. von Mises stress contour on the deformed part obtained by ABAQUS built-in material
model based on isotropic hardening model
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Fig. 3.10. von Mises stress contour on the deformed part obtained by UAMT based on the YU
model
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Fig. 3.11. von Mises stress along the top surface of beam

3.8.4. Combined tension-shear:

Again the isotropic hardening and YU model are used to simulate a combined tension-
shear loading. The element CPS4R is again used to mesh a 1 mm by 1 mm square. The
bottom side was fixed in all directions. The top side is displaced 0.1 mm in the X-
direction and 0.15 mm in the Y-direction. Fig. 3.12 shows a schematic of the problem
and boundary conditions. Fig. 3.13 compares the effective stress-strain response of the
material obtained by ABAQUS built-in material and UMAT. As can be seen, the results
obtained by ABAQUS built-in material model and UMAT are almost identical.
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Fig. 3.12. Schematic of the combined shear-tension problem and the boundary conditions
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Fig. 3.13. Stress-strain response of the material obtained by UMAT and ABAQUS built-in

material model
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3.8.5. Evaluation of UMAT under cyclic loading:

In all of the above problems, the UMAT was used to simulate a variety of monotonic
loading conditions. Therefore, they do not evaluate the accuracy of the stress integration
during the cyclic loading conditions. In the remaining problems of this chapter, the cyclic
loading of the biaxial bulge test and cyclic bending of a cantilever beam are simulated
using both UMAT and an ABAQUS built-in material model based on combined
isotropic-nonlinear kinematic hardening (NKH). The NKH model is not able to capture
the workhardening stagnation. Therefore, it is not able to describe the cyclic behaviour of
AKDQ very well and cannot be compared with YU model. In order to compare NKH
with YU model, it is assumed that the experimental cyclic stress-strain behaviour of a
fictitious material was obtained by NKH as shown in Fig. 3.14. The material constants
associated with each model is shown in Table 3.4 for this material. Now, it is expected
that both YU and NKH models predict almost the same results for different problems at
different cyclic loading conditions. The cyclic biaxial loading and cyclic bending of a

cantilever beam are simulated using YU and NKH models and compare the results.

Table 3.4. The material constants associated with YU and NKH models for fictitious material

YU model NKH model
E 210 GPa E 210 GPa
Y 160 MPa Y 160 MPa
c 200 Q 100 MPa
B 180 MPa b 8
Ryg: 120 MPa C 5000 MPa
b 200 MPa y 20
k 17
h 0.01
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Fig. 3.14. Stress-strain response of a fictitious material obtained by UMAT (YU model) and
ABAQUS built-in material (NKH model)

The equibiaxial loading of a square of 1x1 mm is first simulated by both our UMAT
and NKH models. The left and bottom sides of the square are fixed the X and Y-
directions, respectively. In the first loading step, the right and top sides of the square were
displaced 0.1 mm in the X and Y-directions. In the second loading step, the right and top
sides of the square were displaced 0.2 mm in the negative X and Y-directions. Fig. 3.6
shows the schematic of the problem in the first loading step. A four-node element with
linear shape function in the reduced integration mode, denoted as CPS4R, was used to
mesh the part. Fig. 3.15 compares the stress-strain response of the material obtained by
UMAT and NKH models in the cyclic equibiaxial loading. The figure shows that the YU

model predicts almost the same response as NKH model.
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Fig. 3.15. Comparison of stress-strain response obtained by NKH and YU models in cyclic
equibiaxial loading

In order to evaluate the UMAT in bending-reverse bending, the cyclic bending of
cantilever beam was simulated using both YU and NKH. A rectangle of 1 mm wide and
10 mm long was fixed at one end. The other end was first displaced 2 mm downward and
then displaced 4 mm in the opposite direction. This type of loading causes a bending-
unbending-reverse bending deformation in the material. A first-order quadrilateral
element in the reduced integration mode, denoted as CPS4R, was used to mesh the part.
The mesh size was selected to be 0.25 mm by 0.25 mm in the X and Y-directions. A
schematic of the problem and the boundary conditions in the first loading step is shown
in Fig. 3.8. The problem was simulated with both our UMAT and an ABAQUS built-in
material model based on NKH. Fig. 3.16 shows the predicted stress on the top surface of
the beam obtained by ABAQUS built-in material model and UMAT.
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Fig. 3.16. von Mises stress along the top surface of beam at the end of reverse bending

The above simulations show that the UMAT is able to accurately predict the stress field
in the part in several loading conditions such as tension, equibiaxial loading, bending and
cyclic loading. The uniaxial tension is different direction also shows that UMAT
correctly predicts the yield stress in the rolling, transverse directions. Moreover,
simulation of equibiaxial bulge test and pure shear show that the UMAT correctly
predicts the yield stress in these loading conditions for orthotropic sheet. The UMAT also
correctly predicts the stress for combined loading such as combined shear-tension and
combined bending-shear, i.e. cantilever beam. Therefore, it can be concluded that the

material user subroutine has been correctly implemented.
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Chapter 4

Fully Implicit Numerical Integration of Yoshida-

Uemori Two-Surface Plasticity Model

4.1. Introduction:

In chapter 3, the Yoshida-Uemori two-surface plasticity model (YU) was introduced
and a semi-implicit scheme was used to integrate this model. The Hill’s quadratic yield
function was used to consider the anisotropy of the material. As mentioned in chapter 3,
the semi-implicit integration scheme is conditionally stable, and therefore, may not be
able to converge to the solution if a large strain increment is used. The main advantages
of the semi-implicit approach are its simplicity of implementation and its computational
efficiency. In this chapter, a fully implicit integration scheme is used to integrate all
equations including the backstress and a numerical algorithm is developed for
implementation of this model into a finite element program. The numerical algorithm is
implemented such that any general yield function could be used in the model. Both Hill’s
quadratic function and Y1d2000-2d function, proposed by Barlat et al. [31], are adopted
to develop user-defined material subroutines for ABAQUS-Explicit (VUMAT) and
ABAQUS-Standard (UMAT). YI1d2000-2d is a non-quadratic yield function developed
for highly anisotropic materials such as aluminum alloys. This function will be

introduced in detail in section 4.6.
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The YU model is a two-surface plasticity model with two nonlinear kinematic
evolutions for each surface. The outer surface grows uniformly in stress space while the
size of the inner surface is kept constant. Since the inner surface does not change its size,
the model is able to capture early re-yielding during reverse loading. The isotropic
hardening of the bounding surface is also used to represent the strain hardening of the
material. A non-isotropic hardening surface is also defined in this model to account for
the workhardening stagnation. Two nonlinear kinematic hardening evolutions for each
surface make it possible to describe the transient and permanent behaviour of the material
during reverse loading. So, this model is capable of reproducing the transient
Bauschinger effect, permanent softening and workhardening stagnation in large elasto-
plastic deformation relatively accurately. This model was introduced in section 3.3. In the
next section, the return mapping procedure is used to develop a numerical algorithm for

implementation of this model into a finite element program.

4.2. Stress Integration:

In the following equations, the subscript n is used to denote a quantity at the beginning
of the n™ time increment. If no subscript is used, this quantity is evaluated at the end of
the increment. The Euler backward method (implicit) is used to integrate all plasticity
equations including the backstress. So, all variables are referred to their values at the end
of the time increment during integration. Using this method, integration of Egs. (3.3a),

(3.6) and (3.7) in the materially embedded coordinate system leads to the following

equations:
A0 = —n—c\f lAp (4.1)
18 ="~ k| ap “2
Aa = AB + A6 (4.3)

The following general equation is assumed to define the yield surface in stress space:
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f=i-Y=0 (4.4)

where Y is the initial yield strength of the material and 7 is the effective value for 5.
According to the associated flow rule, the increment of plastic strain is obtained by taking
the derivative of the yield function with respect to stress. And, the plastic strain increment
is obtained as follows:

00 on 4.5
A£p=Ap£=Ap£=Apm (4.5)

where m denotes the normal to the yield surface and Ap is the effective plastic strain
increment which is obtained by solving the yield equation in the return map procedure. In
the return map method, it is first assumed that the total strain increment is fully elastic.
Then, the yield surface equation is used to find the effective stress. If the effective stress
is less than, or equal to, the flow stress, then the deformation is fully elastic and the trial
stress is accepted as the solution. If the effective stress is larger than the flow stress, the
correction for effective plastic strain and all internal state variables is found and the new
stress is updated by reducing the increment of plastic strain from the total strain
increment. This iteration continues until the updated stress state satisfies the yield

function equation. Mathematically, the return map equation is written as follows:

o =0"" — D[AeP] (4.6)

where o is the stress at the end of the time increment, D is the elasticity tensor and ¢"
denotes the trial stress. This incremental relationship is expressed in a materially
embedded coordinate system. Therefore, it is objective with respect to material rotation.
The trial stress is obtained by the elastic constitutive law, assuming that the total strain

increment is elastic, as follows:

o’ =0, + D[A€] (4.7)
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The updated stress is obtained by substituting the plastic strain increment from Eq. (4.5)
into Eq. (4.6):

o=0"" — D[Apm] (4.8)

Now, the updated stress is used to calculate the effective stress based on the yield
function. So, the yield condition at the end of time increment leads to the following

equation:

f=a(c"" —ApDm) —Y =0 (4.9)

Fig. 4.1. Schematic view for multi-stage return mapping method [91]

The Newton-Raphson method is usually used to solve Eq. (4.9). For nonquadratic yield
functions and at large strain increments, it is usually difficult to find the solution of Eqg.
(4.9) numerically. Therefore, a multi-stage return mapping procedure is employed in this
work to control the potential residual and guarantee the convergence to the solution. This

method was proposed by Yoon et al. [74] and is applicable to a non-quadratic yield
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function and a general hardening law without the need of a line search algorithm, even
for a relatively large strain increment (10%) [91]. For sub-step k, the nonlinear equation,
Eqg. (4.9), is modified with the given residual as follows:

f(lpyy) = G(6"" — ApgyDm,)) =Y = fiu, (4.10)
where
f(4pey = 0) = foy ol foy > fey > =+ > fao > - fan (fany = 0), k = 0~N},

Af = (foe—1) — fuo) <Y and fi =1~ v—1) are prescribed values.

As shown in Fig. 4.1, the normal to the yield surface, m, in each sub-step is estimated
from its direction from the previous sub-step. Then the exact normal direction is obtained
by solving Eg. (4.10) based on the Euler backward method. Now, the stress updating
procedure can be developed by rearranging Eqg. (4.10), (4.8), (4.1) and (4.2) as follows:

G, = E(G(k)) —Y—fuy=0 (4.11a)

GZ = D_l [O'(k) - O'Tr] + Ap(k)m(k) =0 (411b)
a.c.Apgo a

G3 =04 — 6, — —]U(k) +|¢-4pao- 7|0 =0 (4.11c)
-k. bAp k

Go=Buy—Bn—|— ( )l’?(k) + [4pgey- k|Bay = 0 (4.11d)

where o) = 6'" — ApgyDm,. In order to find the correction for each variable at each

iteration, the above system of equations is linearized around the current values of the

state variables:
Gi+m:do—m:df —m:d@ =0 (4.123)
G, + [D—l +4 6m] d [A E)m] d [A am] 40+ mdAp =0  (4.12b)
2 Poa]? Poq B Poa masp = '

a.c.Ap 663 a.c. Ap 6G3
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k.b.A G
G, — p 4

Y B

where

663_1+a.c.Ap+ A \/E
26 y P 3

0G; a.c H.c.Ap a
=——N- n+c. 59+

a4p Y Y

0Gs (KD bk
OR

H=m=k(Rsat_R)

k.b kdp
do + dﬂ + [TAP] do — [Tn + kﬂ] dAp =0

20
c.Ap.+/a. (0. @)

(4.12d)

Solving the above system of equations gives the correction for the effective plastic

strain increment (d4p), stress (do) and the kinematic motions (df and d@). Then each

variable is updated, and iterations continue until the above equations (Egs. 4.12) are

satisfied within a prescribed tolerance.

The implementation of workhardening stagnation and decrease of elastic modulus for

this algorithm is the same as for the semi-implicit algorithm, and therefore are omitted

here for the sake of brevity. The implementation of workhardening stagnation has been

described in sections 3.4.2 and the decrease of unloading modulus is taken into account

using Eq. (3.37).

4.3. Consistent Tangent Modulus:

In the implementation of a plasticity model into an implicit finite element code, it is

necessary to provide the tangent modulus or the material Jacobian matrix which is

required to solve the equilibrium equations or momentum balance. The elastoplastic

tangent modulus which was obtained in chapter 3 is called continuum tangent modulus.
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The continuum tangent modulus is developed by the plasticity equations in the rate form.
However, if the stress integration algorithm is linearized to obtain the derivative of the
stress increment with respect to strain, the resulting tangent modulus will be consistent
with the stress integration algorithm and is called consistent tangent modulus. It has been
shown [79] that as the increment size approaches zero, the continuum tangent modulus
approaches to the consistent tangent modulus. The consistent tangent modulus preserves
the quadratic rate of asymptotic convergence in Newton’s method at finite strain
increments [79].

In order to find the consistent tangent modulus, the following equation is used:

o6 =0,+D[e—¢&,] - ApDm (4.24)

Differentiation of Eq. (4.24) yields:

om om
_ _ _ —dg — — 4.25
do = D[de] — dApDm — ApD [60 do 9o da] (4.25)
where
da =d0 + df = ndp (4.26a)
a.c a k.b
n=|yn-c [0+ n-kp (4.27Db)
Substituting Eq. (4.26a) into Eq. (4.25) gives:

a_m (4.28a)

:5_1 — —
do [de (m 70 Apn)dp]

where (dm/do) is the derivative of the normal to yield surface and £ is the modified

elastic tangent matrix and is defined as follows:

omy !
-1 = [p—1 - 4.28b
E [D + Ap 60] (4.28b)
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Now, the consistency condition is used to obtain dp. Differentiation of the yield
function, i.e. Eq. (4.4), leads to the following equation:

df =m:do —m:da =0 (4.29)
Substituting do from Eq. (4.28a) and da from Eq. (4.26a) gives the following equation
for dp:
iy — mE-lde
p= om (4.30)

mE-1(m-— Ap%n) +mn

Finally, the consistent tangent modulus is obtained by substituting dp from Eq. (4.30)
back into Eq. (4.28a):

do = DP de (4.31)
where
o1 om =1
) (m—Apao_n) ® [E71m]
per = 51 (432)

mE-1(m — Ap %L:n) + mn

The numerical algorithm used in the user-defined material subroutine is shown in Table
A.2. Using this algorithm, we can develop a general user material subroutine for YU
model which may include any desired yield function. The desired yield function and its
first and second derivatives can be defined in the subroutine and be called from within
the UMAT. In this project, the Hill’s quadratic yield function and Y1d2000-2d were used.

It should also be mentioned that for shell elements, the transverse shear stiffness must
be calculated and be returned to the finite element software. As mentioned in section 3.6,
Eq. (3.40) was used in this work to calculate the transverse shear stiffness. For reduced
integration elements, the hourglass stiffness needs to be calculated. So, Egs. (3.38, 3.39)

were used to calculate the hourglass stiffness.
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4.4. Yield Function:

Sheet anisotropy is one of the parameters that has to be taken into account for an
accurate simulation in sheet metal forming. Geng and Wagoner [54] conducted a study on
the role of anisotropy on springback prediction and found that the simulated springback
depends not only on the hardening behaviour but also on the anisotropy of the sheet. The
numerical procedure developed in section 3 can be easily used with any yield function
which is written in the form of Eq. (8) and whose first and second derivatives can be
explicitly stated. In this work, two different yield functions were used to develop two user
material subroutines: a) Hill’s quadratic yield function, b) Y1d2000-2d. In order to
complete the stress algorithm, the first and second derivatives of these functions are
derived.

4.4.1. Hill’s quadratic yield function:

For YU model, Hill’s quadratic yield function is written as follows:

1/2

(;nT Nn) —Y=0 (4.33)

where N is a fourth-order anisotropic tensor that was defined in section 2.4.4. So, the

effective quantity for n is defined by:

3 1/2
= (5n"Nn) (434
According to Eq. (4.5), the normal to the yield surface is obtained as follows:
_0n _3Nn@

m= =27 (4.35)
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The numerical algorithm explained in this chapter also requires calculation of the
second derivative of the yield function, i.e. (0m/da). Differentiation of Eq. (4.35)
gives:

3
om 7 N—m®m (4.36)
do 7

Now, the fully-implicit numerical algorithm developed in this chapter is completely

defined for Hill’s quadratic yield function.

4.4.2. YId2000-2d:

In order to describe the anisotropy of sheet metals, Barlat et al. proposed Y1d2000-2d
anisotropic yield function. This function is not quadratic in general and it is particularly
intended for aluminum alloy sheets. For YU model, this function is written as follows
[31]:

1

O+ D)7

@’ and @ are two isotropic functions and are defined by:
D' =X — XY, ®" = [2X", + X" |“+2X", + X" (4.38)
where a’ is a material coefficient, X’;, X', are the principal values of tensor X’ and X",

X", are the principal values of tensor X”. Tensors X' and X" are obtained by linear

transformation the stress tensor as follows:
X=LnX"=L"7

where L" and L” are related to the anisotropic coefficients of the material by:
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] -2 2 8 -2 0fa,
L, 1 -4 -4 0| a,
Ly, =$ 4 -4 -4 1 0a,
L;, 2 8 2 -2 0|a,
] |0 0 0 0 9|a]

where a4, a5, ..., ag are all material anisotropic coefficients. For the isotropic case, all
independent coefficients a;, (for k=1 to 8) reduce to one. Generally, eight input data from
the material are required to identify these constants. These data include the yield stress
and r-value of the sheet in the rolling, transverse and diagonal directions and also in an
equibiaxial stress state, i.e. gy, d45, G9g, G, T, 145, T90,1,- T e parameter r, characterizes
the slope of the yield surface in balanced biaxial tension, i.e. r, = &,, /€, . 1, can be
determined with three different methods: experimentally measured, calculated with
another yield function, or computed from a polycrystal model if the crystallographic
texture of the material is known. If r; is either unknown or difficult to obtain, it is
reasonable to assume that L, = L;, and determine the coefficients using only seven input

data.

The principal values of X" and X" are obtained as follows:

[ , , N 1
Xy +X Xy —X
xx yy + xx yy + (Xlxy)z
0% 2 2

’ 1
X = [X' ] - 2

2 7 7 7 7

Xy +X Xy —X

xx : vy _\/( xx > yy> + (X,xy)Z

(4.39)
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[ r rr ” ” 2 ]
X' +X X' — X 2
’” = ) s +\/< aid > yy) + (X xy)
X'

X' = [X”z] — (4.40)

7 ” 1 1 2
ot [ oY e,

The derivative of the yield function can be calculated using the chain rule:

o L _1[0® 9X' X, 0" 9X" 0X',
m=£= [Zalﬁ(a_l)] 1[ p B

0X 0Ky 0o | 0X 0Ky 00

(4.41)

where af stands for xx, yy and xy. Now, each term can be calculated by differentiation:

6;(3' _ l a' (X' — X)X — Xl

0X' [—a'(X'; — X)) 21X — X (4.42)
E(l _l_X’xx — Xlw) l(l _X’xx — ley> 2X'sy 1
ox _|2 N/ 2 NYS VI |
0X'ap | l(l _ Xex — Xlw) 1(1 + X — XIYV) _ 2X 4y | (4.43)
L2 7 2 7 vz |
0Xag _ .
do (4.44)

00" [a'(zx'2 —X"DE722X", — X+ 2a' (X" — X)) 22X — X7,
0X"  |2a'(2X"; — X" 212Xy — X" 1| + @' (X1 — X")¥ 722X, — X5 ] (4.45)

e -
ox _12 g 2 g Va
2X

X'gp |1 <1 X = X"yy> 1 <1 X X"yy> 22Xy, (4.46)
2 VI 2 VI VI
0X"s
90 L (4.47)
where
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A= (X — X'y +4(X,)? (4.48)

A= (X' = X",)) + 4K

(4.49)

So, the first derivative of the yield function is obtained using Egs. (4.41-4.49). In order

to find the second derivative, Eq. (4.41) is integrated according to the chain rule:

om 0% 7 9*d 1-d ®

do 902  2a 002 g eem (4.50)
02D ([ 0*®" X 0Xap\ 0X 0X'ap

002  |\0X0X 90X,y 00 )X, O

L [297 0X" OX'up OX” X'y
XX X yy 00 )0X'o5 00

L0 3X 0Xy) 0Ky (4.51)
X’ GX'O,[; GX'O,[; Jdo Jdo

L0V (0K 0N\ 0Ky

X" \0X";0X"y; 00 ) o

where & = @' + @”,

o} o711 =1
_ ’ L v ’ a'—2
IOX’OX’l =d@ - - xal T

(4.52)
92d” T n oy la'=2
[ - l @@ — 1) x |2X3 XI}I | +4|2X3 X3| |
0X"9X 212X", — X" 1972 + 2|2X"; — X522 .
212X"5 — X", 1972 + 2|2X" — X", |¥2 '

412X7; — X" |92+ 2X7) — X7 ¢ 2
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%X,
0X op 0X op

, ;N2 , . \2 , , .
i_(Xxx_ny) 1 (X' —X'yy) _(Xxx_ny)XXy
44 16473 44 1647 44" (4.54)
’ ’ 2 ’ ’ 2 ’ ’ ’
= _i (Xxx—ny) i_(xxx_xyy) (Xxx_ny)Xxy
44 1647 44 1647 44"
_ (X'xx — X'y )Xlxy (Xlxx — Xy )Xlxy l X'y i
44" 44" 4 A3
2%X"y
aXIIaﬁ aXllaﬁ
[ " 1" 2 " " 2 " " " T
i_(Xxx_ny) _i (Xxx_ny) _(Xxx_ny)Xxy
44" 164" 44" 164" 443
" r” 2 ” ” 2 ” " "’ 4.
= _i (Xxx_ny) i_(xxx_xyy) (Xxx_ny)Xxy (4.55)
44" 164" 44" 1643 443
_(Xxx_ny)Xxy (Xxx_ny)Xxy l_Xxy
443 443 A" A"
92X, %X,
_GX'a[; OX'a[; B aX,a[g aX,a[g (456)
aZXlll azXllz
X0 g | 0K g 0X gy (4:57)
! ap ap ap ap

4.5. Verification of the User Material Subroutine:

In chapter 3, several loading cases were simulated and the results obtained by UMAT
were compared with the results obtained with either an analytical method or with
ABAQUS built-in material models such as isotropic hardening or combined isotropic-
nonlinear kinematic hardening. The simulation results showed that UMAT was able to
produce the results obtained by ABAQUS built-in material models for many different
loading conditions. In this section, the fully-implicit UMAT and the semi-implicit UMAT
are used to simulate various loading conditions, and the comparison of results will
provide a validation of the fully-implicit UMAT. The UMAT is based on Hill’s quadratic
yield function and the YU hardening model and was used with ABAQUS/Standard for
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these simulations, and the results are presented in sections 4.7.1 to 4.7.5. The material
was assumed to be an AKDQ steel grade in the following simulations unless otherwise
stated. The experimental yield stresses and r-values in the three significant material
directions are given in Table 3.1. The material coefficients associated with the YU model
were found by fitting the simulation results to the experimental stress-strain curve
obtained by the cyclic shear test. In addition, the experimental yield stresses in each
direction were used to find Hill’s coefficients. The material constants associated with YU
model and Hill’s quadratic yield function are shown in Tables 3.2 and 3.3, respectively.
Furthermore, the implementation of the Y1d2000-2d yield function is also presented in
section 4.7.6. Since this function is usually used for aluminum alloys, AA6022-T43 was
used to verify the implementation of this model.

4.5.1. Uniaxial tension:

In general, the backstress equations are nonlinear with respect to the effective plastic
strain. So, when the Euler backward stress integration method is used, regardless of the
integration scheme the strain increment must be small in order to converge to the
solution. Therefore, both semi-implicit and fully-implicit approaches require a sub-step
algorithm to make sure that the strain increment is sufficiently small throughout the
simulation. However, the advantage of a fully-implicit approach is that, although the
backstress equations, i.e. Egs. (4.11c, 4.11d), will not be satisfied at the end of a time
increment if the strain increment is larger than a critical value, the user can be easily
notified that the strain increment is too large. In order to study the relative error
associated with numerical integration, a square of 1 mm? subject to during a uniaxial
tensile loading was simulated. The bottom side was fixed in the Y-direction and the left
bottom corner was fixed in the X-direction. Then, the upper side was displaced in the Y-
direction. The schematic illustration of this problem and the boundary conditions are
shown in Fig. 3.4. One CPS4R element was used to mesh the part. Initially, UMATSs
based on semi-implicit and fully-implicit approaches with no sub-step algorithm were

used to simulate this problem.
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When no sub-step algorithm is used, the error associated with numerical integration
depends on the strain increment size. The relative error is defined by the following
relationship:

Error = MXlOO (4.58)

o

where ¢ is the stress calculated by UMAT and o™ is the calculated stress with sufficiently
large number of sub-increments to make sure that the algorithm converged to the
solution. The relative error associated with each integration scheme is plotted in Fig. 4.2.
This figure shows that the relative error increases as the size of the strain increment
increases. Moreover, the relative error associated with the fully-implicit method is
smaller compared to the semi-implicit method. The reason for this lies in the fact that the
explicit integration of backstress does not guarantee convergence to the solution at large
strain increments. In general, the amount of relative error depends on the nonlinearity of
the material. In order to eliminate the amount of error, the size of the strain increment
must be small. In this work, an automatic sub-step algorithm was used to refine the strain
increment when it is too large for the algorithm. If the effective strain increment is larger
than a critical value, the increment size is divided into a few sub-increments to guarantee

that the strain increment size is smaller than the critical value.

In order to find the critical strain, the uniaxial tension was simulated using different
values for the critical strain. The upper side was displaced 0.1 mm in the Y-direction
causing a uniform strain of around 10%. Fig. 4.3 shows the relative error with respect to
the critical value for semi-implicit and fully implicit approaches. This figure shows that
the relative error increases dramatically for the semi-implicit approach if the critical
strain is larger than 0.5%. This figure also shows that the relative error is smaller for the
fully-implicit approach compared to the semi-implicit approach. In all subsequent
simulations with this UMAT, a conservative value of 0.1% was selected as the critical
strain. That is, if the strain increment is larger than 0.1%, the sub-step algorithm divides it
such that the strain increment in each sub-step never exceeds 0.1%. This example was
repeated to obtain the critical strain for the other materials which will be used in this

work and it was found that this critical strain is small enough for all materials used in this
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work. In general, the user of this subroutine can repeat this example to obtain a critical
value for other materials. It is noted that the critical value depends upon both the material
coefficients and the strain increment size. So, it is expected that the critical strain
obtained by this test be small enough for other loading conditions and element types.
Alternatively, if the user runs the simulation with a smaller strain increment and the stress

does not change significantly, it can be concluded that the strain increment was
sufficiently small.

| —— Semi-Implicit
35 1—e—Fully-Implicit

Relative Error, %
N
o
1

0 0.2 0.4 0.6 0.8 1 1.2
Strain, %

Fig. 4.2. The relative error with respect to strain increment size (without sub-step algorithm)
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Fig. 4.3. The relative error with respect to the critical strain increment size
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4.5.2. Uniaxial cyclic tension-compression:

The uniaxial tension-compression problem is a very simple type of loading and can be
used as an initial test to verify the UMAT. Uniaxial tension-compression loading causes a
homogenous deformation. Therefore a single element represents an adequate
discretization of the model and the solution does not depend on the mesh size. In this
problem, a square of 1 mm? was loaded in uniaxial tension-compression. The bottom side
was fixed in the Y-direction and the left bottom corner was fixed in the X-direction. The
upper side was first pulled 0.2 mm in the Y-direction and then compressed 0.4 mm in the
negative Y-direction. A schematic illustration of the problem and the boundary
conditions at the end of first loading step is shown in Fig. 3.4. A first-order quadrilateral
element in the reduced integration mode, denoted as CPS4R, was used to mesh the part.
The problem was simulated using both the semi-implicit and the fully-implicit UMATS.
Fig. 4.4 shows that the semi-implicit and fully-implicit approaches result in the same
stress-strain response for uniaxial loading. Since the semi-implicit UMAT was already
verified in section 3.8, this comparison provides an initial validation of the fully-implicit
UMAT.

500
400 ~
300 A
200 -
100 -

Fully-Implicit

o Semi-Implicit

-100 ~
-200 -
-300 -
-400 ~
-500 -
-600 T T T T

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Strain

Stress, MPa

[C =

Fig. 4.4. Comparison of fully-implicit and semi-implicit in uniaxial tension-compression
loading
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4.5.3. Biaxial loading:

In this example, the biaxial bulge test was simulated to evaluate the fully-implicit
UMAT in the equibiaxial stress state. A square of 1 mm? was simulated by both semi-
implicit and fully-implicit UMATS. The left and bottom sides of the square were fixed
the X and Y-directions, respectively. In the first loading step, the right and top sides of
the square were simultaneously displaced 0.2 mm in the X and Y-directions, respectively.
In the second loading step, the right and top sides of the square were simultaneously
displaced 0.4 mm in the negative X and Y-directions, respectively. The finite element
model and the boundary conditions are shown in Fig. 3.6. The comparison of the stress-
strain response of the material in the X-direction is shown in Fig. 4.5. This figure shows
both UMATS reproduce the same stress-strain response. It is again noted that the semi-
implicit UMAT was already validated in section 3.8 and is now used as the reference
against which the fully-implicit UMAT is evaluated.

600

o Semi-Implicit
400

Fully-Implicit

200 A

o, MPa
o

-200 4

-400 -

-600 T T T T

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
E)()(

Fig. 4.5. Comparison of fully-implicit and semi-implicit in equibiaxial loading
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4.5.4. Simple shear:

In order to verify the fully-implicit UMAT in the prediction of shear stresses, this
subroutine was used to simulate the cyclic simple shear problem. A square of 1 mm?* was
fixed at the bottom side in the X and Y-directions. In the first loading step, the upper side
was displaced 0.1 mm in the X-direction while it remained fixed in the Y-direction. In the
second loading step, the upper side was displaced 0.2 mm in the negative Y-direction.
Only one CPS4R element was used to mesh the part. The finite element model and the
boundary conditions in the first loading step are shown in Fig. 4.6. Both the semi-implicit
and fully-implicit approaches were used to simulate the problem. The deformed
configuration of the model at the end of second loading step is shown in Fig. 4.7. The
stress-strain response of the material obtained by semi-implicit and fully-implicit is
shown in Fig. 4.8. Once again, it can be seen that the results obtained by both approaches
are identical.

Y

I m D
X

Fig. 4.6. Schematic of the simple shear problem and the boundary conditions
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Fig. 4.7. The deformed configuration of the simple shear problem
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Fig. 4.8. Comparison of fully-implicit and semi-implicit in simple shear

4.5.5. Bending of a cantilever beam:

A rectangle 1 mm wide and 10 mm long was fixed at one end and displaced 2 mm at
the other end. ABAQUS CPS4R element was used to mesh the part. The mesh size was
selected to be 0.25 mm by 0.25 mm in the X and Y-directions. A schematic of the

problem is shown in Fig. 3.8. Figs. 4.9 and 4.10 show the von Mises stress contour on the

92



deformed part obtained by fully-implicit and semi-implicit approaches, respectively. It
can be seen that both UMATS predict essentially the same stress distributions. Fig. 4.11
also shows the predicted stress on the top surface of the beam obtained by each method.
The stress history of the node located on the left top corner of the beam is also plotted in
Fig. 4.12. These figures demonstrate that both methods result in the same stress
distribution.

3, Mises
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Z.657e+02
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Fig. 4.9. von Mises stress contours on the deformed part obtained by fully-implicit scheme
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Fig. 4.10. von Mises stress contours on the deformed part obtained by semi-implicit scheme
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Fig. 4.11. von Mises stress along the top surface of a cantilever beam
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Fig. 4.12. History of nodal stress at the left top corner of a cantilever beam

4.5.6. Validation of YId2000-2d function:

In this section, the implementation of Y1d2000-2d is verified by simulation of uniaxial
tension and equibiaxial tension of a square of unit length. Either seven or eight input data
are required to obtain the Y1d2000-2d anisotropic material parameters, i.e. a; (k=1 to 8).
The input data are usually yield stresses and r-values of the material in the rolling,
transverse and diagonal directions and in the equibiaxial stress state. These input data
were used by Barlat et al. [31] for AA2090-T3 to determine the material parameters a;,
(k=1 to 8). The experimental input data and the yield function coefficients are listed in
Tables 4.1 and 4.2, respectively. If the yield function is correctly implemented, the finite
element simulation of the uniaxial tension and equibiaxial bulge tests must predict the
corresponding experimental values. So, a square of unit length was simulated using the
UMAT for uniaxial tensile tests in three directions and for equibiaxial tension. The
material was assumed to be rigid-plastic so as to easily find out the predicted yield stress
by simulation. The yield stresses and r-values obtained by simulation are also shown in

Table 4.1. This table shows that the UMAT is able to accurately reproduce the anisotropy
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of the sheet in rolling, transverse and diagonal directions and also in equibiaxial stress
state.

Table 4.1. Normalized yield stress and r-values for AA2090-T3

0o 045 099 Op To 145 T90 Ty

Experiment* 1.000 0.811 0.910 1.035 0.21 1.58 0.69 0.67
Simulation ~ 0.999 0.811 0.910 1.035 0.21 1.58 0.69 0.67

* The experiments were obtained from reference [31]

Table 4.2. The anisotropic coefficients of AA6022-T43 for Y1d2000-2d

a az as Ay as de az ag

0.4865 1.3783 0.7536  1.0246 1.0363 0.9036 1.2321 1.4858 8

In this section, the user material subroutines were used to simulate several problems
and the results were verified by the semi-implicit UMAT which itself had been verified in
the previous chapter. The results show that the fully implicit integration of YU model has
been performed correctly. TheY1d2000-2d yield function was also verified by different
tests such as uniaxial and biaxial bulge tests. A comparison of the results of semi-implicit
and fully-implicit approaches also reveals that the fully-implicit method results in smaller
relative error compared to semi-implicit at larger increments if no sub-increment
algorithm is used in the subroutine. So, it can be generally suggested to use the semi-
implicit method with ABAQUS-Explicit and the fully-implicit method with ABAQUS-

Implicit code.
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Chapter 5

Simulation of Springback

5.1. Introduction:

In sheet metal forming, a part is removed from the tooling after the forming stage.
During this unloading stage, elastic deformation is recovered and causes the final shape
of the part to change. The discrepancy between the fully loaded shape at the end of the
forming stage and the unloaded configuration is called springback. Springback is the
most significant factor that makes it difficult to achieve the required dimensional
accuracy of stamped components. Designing a die with incorrect springback
compensation can lead to significant difficulties in downstream operations such as poor
fit-up during welding and distortion of sub-assemblies. In some cases, tooling revisions
may be required which could lead to delays in production. Therefore, it is very important
that springback be accurately predicted and correctly compensated during the first die

design.

In order to study the ability of the YU model to predict springback, a channel draw
process, presented as Benchmark #3 (BM3) in NumiSheet 2005 [23], was simulated
using ABAQUS commercial finite element code. NumiSheet 2005 BM3 consists of
drawing a rectangular blank into a deep, U-shaped channel section with the use of
variable penetration drawbeads. This benchmark is extremely well suited to assessing the
ability of a finite element model to predict springback for the following reasons: a) it

provides experimental data for four different types of sheet materials, b) it covers a wide
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range of strains by using four different drawbead penetrations, C) the deformation is
severe in the drawbead region and d) the loading is cyclic because of a sequence of
bending, unbending and reverse bending in the drawbeads. The complex contact
condition in the drawbead region also presents a challenge for evaluation of the contact
model. In this chapter, a brief introduction of BM3 is provided first and then the
sensitivity of the predicted springback geometry to different model parameters is
discussed. Finally, the effect of hardening model on the predicted springback profile is

investigated.

5.2. Problem Description:

The objective of the NumiSheet 2005 BM3 is to document the forming characteristics
of sheet metals in a deformation process dominated by cyclic bending and unbending.
The channel draw die used for BM3 was designed and built by the Auto/Steel Partnership
(A/SP). A schematic illustration of the tooling is shown in Fig. 5.1. The major
dimensions of the tooling and drawbead are shown in Figs. 5.2-5.4 and are provided in
Tables 5.1 and 5.2. Four different sheet materials were tested: AA6022-T43, AKDQ,
HSLA and DP600. It is worth to mention that all steels used were hot-dip galvanized. A
summary of mechanical properties of these materials is shown in Table 5.3. Blanks were
1067 mm long and 254 mm wide and were drawn into the die to form a wide, plane-strain
channel section. The sheet thickness was 0.8 mm for HSLA and 1 mm for the other
materials. Four spacer blocks were also mounted in the die to ensure that the distance
between the die and the binder surfaces was consistently 0.42 mm greater than the
nominal thickness of the sheet throughout the forming stage (see Fig.5.3). This gap
helped to minimize the effect of friction on the process. A blankholder force of 637 kN
was generated by four 140 mm diameter hydraulic actuators set at 10.3 MPa and was
applied using cushion pins under the blankholder. The magnitude of this blankholder
force was sufficient to set the beads and maintain a fixed clearance between the upper die

and binder throughout the forming process [23].
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Two drawbead inserts were built into each side of the die as shown in Fig.5.1. The
detail of the drawbead geometry can be seen in Fig. 5.3. Channel sections were drawn at
each of four different drawbead penetrations: 25%, 50%, 75% and 100%. 0% drawbead
penetration is defined by contact of the drawbead on the sheet surface, but no plastic
bending takes place in the drawbead region; 100% is achieved when the centre of the
male bead radii and the centre of the female shoulder radii all lie on a strait horizontal
line. The distance Dy, shown in Fig. 5.3, is given in Table 5.2 for nominal 25%, 50%,
75% and 100% penetrations. Green et al. [92] studied the influence of drawbead

penetration on the forming and springback behaviour of plane-strain channel sections.

Drawbeads
Upper Die \
Kiss Blocks
(outside sheet A
contact area) Z-axis
A 4 k A
s T R

Movable Binder

Fixed Punch

- e

&\\\\\\\\\\D\\\\\\\\\\\\

Drawbead Channels

Fig. 5.1. Tooling Components and Coordinate System in Side-View [23]
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Fig. 5.2. Major Tooling Dimensions [23]

e

Fig. 5.3. Kiss block and Drawbead Dimensions and Location. Note the upper die and lower
binder are shown in an OPEN position [23].
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Table 5.1. Tooling, drawbead and processing parameters in Figs. 5.2 and 5.3 [23]

Description Symbol Value (mm)
Upper Die

Width of Die Cavity Wwd 319.90

Radius of Die Profile Rd 12.00
Punch

Width of Punch Wp 224.00

Radius of Punch Profile Rp 12.00
Binder

Binder Gap Bg See Table 5.2
Drawbead

Bead Position Bp 31.05

Depth of Bead Db 6.85

Radius of Bead Rb 4.00

Width of Channel We 10.80

Radius of Channel Re 4.00
BLANK

Width BW 254.00

Length BL 1066.80

Table 5.2. Binder gap and drawbead depth for the standard benchmark[23]

Material Bg(mm) D, (mm) D,(mm) D,(mm) D, (mm)

25% 50% 75% 100%
AKDQ 142 2.34 4.75 6.85 9.09
HSLA 1.18 2.34 4.75 6.85 9.09
DP600  1.42 2.34 4.75 6.85 N/A
AA6022 142 2.34 4.75 6.85 9.09

Once a channel section was drawn, it was removed from the die and allowed to spring
back freely. Fig. 5.5 shows a typical example of a drawn channel section after
springback. In order to measure the curvature in the channel sidewalls (i.e. after
springback), 3 to 5 channel sections drawn with a given drawbead configuration were
scanned using a Virtek LaserQC™ 2D laser scanner. Each channel section was carefully
placed on its edge on the glass surface of the LaserQC™ in order to avoid applying any

constraints to the channel and thereby distorting its natural shape. The glass surface was
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also sufficiently slippery that the part would find its natural equilibrium. Channel sections
were positioned in such a way that the laser could scan the edge of the RHS sidewall in
contact with the glass without being obstructed. The scanning accuracy of the LaserQC™

is approximately 0.05 mm.

Table 5.3. Summary of mechanical properties of Numisheet2005 BM3 materials [23]

Material Orientation Thickness, 0.2 % Yield U.T.S. Uniform r-Value
mm Stress, MPa MPa Elong. %
L 1.00 136.0 256.9 22.2 1.029
AA6022 T 1.00 127.6 238.3 24.0 0.728
D 1.00 131.2 247.6 24.8 0.532
Mean 1.00 131.6 247.6 23.7 0.705
L 1.00 158.3 315.0 26.4 1.546
AKDQ T 1.00 166.0 312.0 24.6 1.942
D 1.00 164.7 317.0 25.1 1.508
Mean 1.00 163.0 314.7 25.4 1.626
L 0.80 394.3 463.7 16.4 0.581
HSLA T 0.80 427.7 466.0 17.5 1.013
D 0.80 395.3 447.0 17.0 1.166
Mean 0.80 405.8 458.9 16.9 0.981
L 0.98 420.0 688.7 14.0 0.821
DP600 T 0.98 425.7 697.0 13.5 0.969
D 0.98 427.7 690.7 12.8 0.915
Mean 0.98 424.4 692.1 13.4 0.905

L, T, D stand for the longitudinal, transverse and diagonal (45°) directions of the coil

Mean r-values are calculated as (L+T+2D)/4; other mean values are simply averages
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Fig. 5.4. Blank size and location, rolling direction of sheet coil, and XY coordinate system in
plan-view [23]

S e s

Fig. 5.5. Photograph of a drawn channel section after springback

5.3. Material Parameters:

Two sets of data are required for the YU model to completely define the material

response: @) the anisotropic coefficients, b) the YU hardening parameters. The

103



anisotropic coefficients are usually obtained by uniaxial tension tests in different
directions. For some particular yield functions, additional tests such as equibiaxial tests
might be required. The YU hardening parameters were obtained by performing cyclic

tests such as uniaxial tension-compression or cyclic shear tests on the material.

Two different yield functions were used in this project to implement the YU model: a)
Hill’s quadratic yield function and b) the Y1d2000-2d non-quadratic yield function
proposed by Barlat et al. [31]. Hill’s quadratic yield function was used to simulate the
channel draw for all four materials used in BM3, i.e. AKDQ, HSLA, DP600 and
AA6022. However, Y1d2000 was only used to simulate drawing AA6022 channel
sections as this function was specifically developed for aluminum alloys. So, Hill’s
anisotropic coefficients were obtained for all four materials and the Y1d2000 anisotropic

parameters were only calculated for AA6022.

5.3.1. Hill’s quadratic yield function parameters:

Hill’s quadratic yield function can be written as:

[F(ayy - O'ZZ)Z + G(0,, — 0y )* + H(axx — ayy)z

(5.1)
+ 2(Logy? +10,,% + Ka,2) — (0rep)?] = 0

where F, G, H, L, | and K are all material constants and Oref is the yield stress in the
reference direction. In a general 3D stress space, six coefficients are used in Hill’s 1948
yield function. Therefore, at least six input data from the material are required to
determine these coefficients. Any combination of the yield strength and/or r-values of the
material in different directions can be used to calculate these constants. For instance, one
combination is the yield strength in the rolling direction and r-values in the rolling,
transverse and diagonal directions. Let o, denote the yield stress in the rolling direction
and 1y, 199, 145 denote the r-values in the rolling, transverse and diagonal directions,

respectively. Uniaxial tension in the rolling (reference) direction gives:
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0,
G+H=(L2=1

o (5.2)

The equation for r-values in each direction gives the following equations:

, 9
LBy _Foy M
aO-zz
» I
o _fx 00y _H
90 — ézpz - af - F (5-4)
do,,

In order to calculate the equation for 735, we need to transform the stress into the
anisotropic axes first. Then, Eq. (5.1) must be used to calculate the plastic strain in the
anisotropic directions. Finally, the strains must be transformed back into the original

coordinate system and the transverse strain is extracted. Following this procedure leads to

the following equation:

_2L-(F+G)
"5 T TF 1 6) (5.5)
Solving Egs. (5.2-5.5) gives:
- 1
1+
141
1 5.6
p__ T (5:6)
(1 +10)190
L= (1+ )(1+22)
T 1+1\2 745 Too

In order to calculate | and K, the shear yield stresses or r-values in the Xz and yz planes
are required. However, in the plane-stress and plane-strain states these values are not
required since no stress is applied in these directions. In the simulation of BM3, either the

plane-stress assumption or the plane-strain assumption was adopted. Therefore, only the
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constants in Egs. (5.6) are required for simulation. The experimental yield stress and r-
values for BM3 materials are shown in Table 5.4. Egs. (5.6) were used to calculate the
anisotropic constants for these materials, and Hill’s material coefficients are shown in

Table 5.5.

Table 5.4. The experimental values for BM3 materials

Material ~ g,(MPa) 7o Tys T90

AKDQ 158 1.546 1.508 1.942
HSLA 394 0.581 1.166 1.013
DP600 420 0.821 0.915 0.969
AA6022 136 1.029 0.532 0.728

Table 5.5. Coefficients for Hill’s 1948 yield function

Material F G H L

AKDQ 0.313 0.393 0.607 1.417
HSLA 0.433 0.567 0.433 1.498
DP600 0.465 0.549 0.451 1.435
AA6022 0.697 0.493 0.507 1.228

5.3.2. Yld2000-2d yield function parameters:

Yield stress and r-values in the rolling and transverse directions (ay, qq, 19, 79 ), yield
stress and r-value in the balanced biaxial yield stress (03,7, ) provide six input data to
calculate the coefficients. The parameter 7;, defines the slope of the yield surface at the
balanced biaxial stress state (1, = €,,/€y,) and can be evaluated by performing
compression of circular disks in the sheet normal direction and measuring the aspect ratio

of the specimen after deformation. If it is not possible to perform compression of a
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circular disk, the parameter 73, can also be estimated by either Y1d96 or a polycrystal
model. Loading of the material in the uniaxial and equibiaxial stress states yields the

following equations:

f=0-2G/0)*=0 (5.7)
L ° _,
g_quxx_qu_ (5.8)

where s;; denotes the deviatoric stress, qy, g, are defined in Table 5.6 and @ is given in
Eq. (5.9). It is worth noting that Eq. (5.7) satisfies the yield function and Eq. (5.8)

satisfies the r-value. The function @ can be written as:

O = lary — 8| + lazy + 22,68 + [2asy + as6]* (5.9)

where y, § are defined in Table 5.6 for uniaxial and biaxial stress states. Egs. (5.7, 5.8)
provide six equations in terms of a; to a¢. So, six independent coefficients a; to ag can

be found by solving this set of equations simultaneously.

Table 5.6. The definition of gy, q,,, ¥ and § for uniaxial and biaxial loading

Y 8 Ax 4y
0° 2/3 173 1—1, 2+,
90° 173 2/3 2 + 799 1 — 79
Biaxial 173 173 1+ 2n, 247,

In order to find a; and ag, the yield stress and r-value obtained by uniaxial tension test at
45° to the rolling direction are used. If the material is loaded in uniaxial tension at 45° to

the rolling direction, the following equation should satisfy the yield surface:
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a

\/(Klz)z + 4“72 ¢ + 3K”1 - \/(K”Z)Z + 4’“82
2 4
, (5.10)
a
3K”; +/(K"5))2 + 4dag? ,
[EAASETT e
where
, a; —
K. =
2 3
2a: + as + a; + 2a
= 5 69 3 4 (5.11)
20 +a, —a; — 2«
K", = 5 63 3 4

The equation which satisfies r-value in the diagonal direction is written as follows:

_09 99 2a5%
00y 00y, o(1+415)

G (5.12)

Egs. (5.10, 5.12) provide two equations for a,; and ag which can be solved to obtain
these coefficients. Usually, the Newton-Raphson method is used to solve these equations.
In this work, the above-mentioned procedure was used to develop a computerized
program for calculating a; to ag. The program was used to determine the coefficients a
for AA6022-T43. Table 5.7 shows the experimental data for AA6022-T43 and Table 5.8
lists the material coefficients for Y1d2000-2d.

Table 5.7. Experimental mechanical properties of AA6022-T43

Op Ogg Op 045 To T Tp T45

136.0 127.6 136.1 131.2 1.029 0.728 1.000 0.532
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Table 5.8. The anisotropic coefficients of AA6022-T43 for Y1d2000-2d

’

a, a, as Qy as Qg a; Qg a

0.9380 1.0451 0.9291 1.0298 0.9874 1.0359 09528 1.1010 8

5.3.3. YU model parameters:

As explained in section 3.7, the parameters associated with the YU model can be
identified by either an optimization method or a systematic method. The optimization
method calculates the parameters simultaneously by fitting the simulation to the
experimental stress-strain curve; while the systematic method uses a graphical method to
identify the material constants from the stress-strain curve in cyclic deformation. The
cyclic stress-strain response of the material is required for identification procedure. So,
uniaxial tension-compression tests were first carried out on all BM3 materials. The
uniaxial tests were performed using a special instrument developed at Ohio State
University by Boger et al. [3]. This testing apparatus uses flat plates pressurized with
pneumatic cylinders to provide a lateral support for the sheet specimen and prevent it
from buckling during uniaxial compression tests. In this approach, the geometry of the
specimen was designed to minimize the buckling outside the constrained region. A
schematic illustration of this anti-buckling mechanism is shown in Fig. 5.6. Figs. 5.7-5.10
show the cyclic response of the BM3 materials in uniaxial tension-compression tests in
the rolling direction. As can be seen in these figures, the maximum strain in compression
is only about -0.03 because the risk of buckling increases beyond this. So, cyclic shear
tests were also performed on all BM3 materials except for AA6022-T43 because the

original batch of material was no longer available.
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Fig. 5.6. Schematic of the flat dies and dimensions of specimens [3]
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Fig. 5.7. The uniaxial tension-compression response of DP600
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Fig. 5.9. The uniaxial tension-compression response of HSLA
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Fig. 5.10. The uniaxial tension-compression response of AA6022-T43

The cyclic simple shear tests were carried out at the Université de Bretagne-Sud, in
France. A schematic of this testing apparatus, especially designed for the study of
metallic sheets, used in the shear test is shown in Fig. 5.11. The sample (1) is clamped
between two grips (2) and (3), securely attached to the fixed part (4) and the moving part
(5) of the apparatus, respectively. The relative motion between (4) and (5) is obtained by
pairs of linear guides symmetrically positioned with respect to the sample. The device is
directly connected to a tensile test machine. The clamping of the sample under the grips
is obtained by the tightening of six screws with a torque wrench; the torque is dependent
on the tested material. The optimal value is obtained with the lowest torque that

minimizes the sliding between the sample and the grips.
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Fig. 5.11. The schematic of simple shear device [93]

Simple shear tests were performed on BM3 sheet steels at different prestrain
magnitudes. A systematic method, explained in section 3.7.2, was used to obtain the YU
hardening parameters for these materials. Figs. 5.12-5.14 show the experimental stress-
strain response of DP600, AKDQ and HSLA obtained by simple shear test. The
identified material constants are used to simulate the stress-strain response of these
materials. As can be seen, the YU model is able to accurately describe the stress-strain
response of these materials. In order to compare isotropic hardening (IH) model with the
YU model, the predicted response by IH model is also shown for the largest strain
magnitude. It is observed that the IH model over-predicts the stress as it is not able to
model the cyclic phenomena. A comparison of the uniaxial tension-compression test and
simple shear test reveals that the maximum compressive strain in the uniaxial test was
much smaller than the reversal strain in the simple shear test. We also know that the
strain level in BM3 is around 30% for shallowest drawbead penetration which is much
larger than the strain achieved in the uniaxial test. So, we used the constants obtained by
simple shear test as shown in Table 5.9. As mentioned before, the AA6022-T43 was no
longer available for the simple shear test. So, we used the cyclic tension-compression
curve to obtain the constants for AA6022-T43. Fig. 5.15 compares the predicted response
by YU model with that of experiment.
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Fig. 5.12. Comparison of predicted stress-strain response of DP600 with experimental data
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Fig. 5.13. Comparison of predicted stress-strain response of AKDQ with experimental data
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Fig. 5.14. Comparison of predicted stress-strain response of HSLA with experimental data
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Table 5.9. The Yoshida-Uemori material constants (Egs. 3.3-3.6, 3.37)

FF

Material Y C B Riat b k h Eo E, -
(MPa) (MPa) (MPa) (MPa) (GPa) (GPa)

AKDQ 158 300 190 240 10 8.5 0.7 206 178 160
HSLA* 394 200 400 195 30 8 0.8 206 178 160
DP600 420 200 555 190 110 12 0.9 206 163 135
AA6022 135 700 150 130 40 13 0.01 70 61 120

*The initial size of the stagnation surface was set equal to 5 MPa.

** These constants were obtained from reference [82]

5.4. Finite Element Model:

Finite element (FE) simulation of springback is very sensitive to the finite element
model parameters such as element type, mesh size, friction and constitutive model. This
section is therefore dedicated to studying the effect of different process parameters on the
predicted springback of the sidewall of drawn channel sections. After careful
investigation of the process parameters, the optimized conditions will be used to simulate
BM3 using YU material model. In the finite element model, the deformation of tooling
was neglected as it is very small compared to that of the sheet material and all the tooling
was modelled as rigid entities. Furthermore, only half of the sheet was modelled due to
symmetry and the corresponding symmetric boundary condition was applied. The penalty
contact algorithm was used to model the contact between the blank and each tool. The

sensitivity of the analysis to the friction coefficient will also be discussed.

It is generally preferable to use a global implicit integration scheme for both forming
and springback stages as the dynamic effects are not taken into account in this scheme
[53, 94, 95]. However, deformation in the forming stage is usually complex and it is
difficult to get convergence for such a problem. Therefore, the explicit-implicit approach
has also been popular in springback simulation [96-99]. For BM3, it is very difficult to
simulate the forming stage with an implicit solver because of the very severe deformation

in the drawbead region. It also becomes more difficult when an advanced constitutive

116



model is used in the simulation. So, an explicit-implicit approach was used in this work.
That is, the forming stage was simulated using ABAQUS-Explicit and the results were
imported into ABAQUS-Standard that uses an implicit integration scheme for the
simulation of unloading. For all steels, Hill’s quadratic yield function was used to
describe the anisotropy of the steel sheets. For AA6022, both Hill’s quadratic and
Y1d2000-2d yield functions were used. Three hardening models were also used with the
yield function for all materials: @) isotropic hardening, b) combined isotropic-nonlinear

kinematic hardening, and ¢) Yoshida-Uemori model.

5.4.1. The effect of element type on springback:

Since the blanks were 254 mm wide, it is reasonable to assume a plane-strain
deformation. Both shell and solid elements were used to model the blank sheet to study
the ability of each element type to simulate springback for this benchmark. In the model
with shell elements, only a small portion of the blank in the width direction was modelled
and appropriate symmetric boundary conditions were imposed to ensure plane-strain
deformation. The shell element used in this case is denoted as S4R in ABAQUS which is
a 4-node shell element in reduced integration mode. The mesh convergence study showed
that a mesh size 0.5 mm in the longitudinal direction represented an appropriate
discretization of the model. In the model with solid elements, a 4-node (first order) plane-
strain element in reduced integration mode denoted as CPE4R in ABAQUS was used.
The hourglass energy of the system and the convergence study showed that at least four
elements along the thickness were required for CPE4R element. The aspect ratio of the
solid elements was consistently chosen to be one, and this discretization resulted in

convergence in all cases.
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Fig. 5.16. Comparison of the predicted profile using shell and solid elements for AKDQ at
25% (left) and 100% (right) drawbead penetrations

The sidewall profile predicted with each type of element is shown in Figs. 5.16-5.17 as
an example for two materials at two different drawbead penetrations. A comparison
between the simulated profile by solid and shell elements shows that both elements
predict almost the same profile for springback. Therefore, it appears that a fine mesh with
shell elements can produce the same springback profile as with solid elements even
though the ratio R/t (tool radius to sheet thickness) is less than 5 in the drawbead region.
It would seem that both shell and solid elements can be used for the simulation of this

benchmark.
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Fig. 5.17. Comparison of the predicted profile using shell and solid elements for HSLA at 25%
(left) and 100% (right) drawbead penetrations

5.4.2. The effect of number of integration points on springback:

The number of integration points (NIP) through the sheet thickness is of critical
significance when using shell elements. In general, more integration points are required
when a larger stress gradient is to be captured by the element. Therefore, the required
NIP depends on the drawbead penetration and the material in this problem. Figs. 5.18-
5.19 show the effect of NIP on the predicted sidewall profile after springback for
different materials and for the deepest drawbead penetrations which need more
integration points through the thickness. A comparison of the predicted profile with the
experimental profile shows that the predicted profile is underestimated for HSLA and
AKDQ when only 5 integration points (the default value in ABAQUS) are used through
the thickness. However, the use of 5 integration points results in an overestimation of
springback for DP600. This observation shows that the predicted springback profile
oscillates around the converged solution which is consistent with the observation of
Wagoner and Li [18]. These figures show that at least 9 integration points are required for
HSLA and AA6022 to guarantee convergence. However, a larger number of integration

points are required for DP600 and AKDQ. These figures show that at least 29 and 49 are
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required for AKDQ and DP600, respectively, to guarantee the convergence of the
numerical solution. Material nonlinearity and the strength of material are among the
important factors affecting NIPs through the thickness. Usually, more NIPs are required
for higher strength materials and more nonlinear materials. Note that the maximum

compressive and tensile stresses depend upon yield stress.
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Fig. 5.18. The effect of NIP on springback profile for HSLA (left) and AKDQ (right) at 100%
drawbead penetration
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Fig. 5.19. The effect of NIP on springback profile for DP600 (left) and AA6022 (right) at 75%
and 100% drawbead penetrations, respectively
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5.4.3. The effect of friction coefficient on springback:

As discussed in section 5.2, the distance between the die and binder surfaces was
always 0.42 mm more than the nominal thickness of the sheet during the drawing process
in order to minimize the effect of friction. It is therefore expected that friction has a
minor effect on the amount of springback in this problem. A constant friction coefficient
of 0.16 for AA6022-T43 and 0.12 for the other materials was used, as suggested by data
obtained from twist compression tests [ 100]. However, different values of the coefficient
of friction were used in the simulations to investigate the sensitivity of the predicted

profile to the friction coefficient.

At the beginning of forming stage, the sheet is first bent over the die radius. After the
punch travels a certain distance, the material points located before the drawbead region
flow through the drawbead region and will finally end up in the sidewall. Since only a
little area is in contact with binder, the contact area does not change significantly
throughout the forming stage. So, the forming stage of this problem is expected to be a
kind of steady state process. The experimental punch force, as shown at the end of this
chapter, confirms that the punch force converges to a certain value for all materials and
all drawbead penetrations. This suggests that the friction should be constant throughout
the forming stage. Therefore, the change of friction coefficient during the forming stage

1s not considered here in this work.

Figs. 5.20-5.21 show the effect of friction on the predicted profile after springback. The
friction coefficient of 0.16 did not result in convergence of simulation for AKDQ during
springback stage. In general, a greater coefficient of friction results in a greater tension in
the sidewall and consequently reduces the amount of springback. Although the validity of
this observation is confirmed by Figs. 5.20-5.21, the springback profile is not very
sensitive to the coefficient of friction at shallow drawbead penetration (25%) where the
restraining force is relatively low and the tension in the sidewall is not sufficiently large
to considerably reduce springback. However, at deeper drawbead penetrations the

springback profile is somewhat sensitive to the coefficient of friction. It is also worth
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mentioning that a very small coefficient of friction may cause instability in the numerical
simulation and convergence may not be obtained. A large coefficient of friction may also
result in failure of the sheet in the sidewall. Therefore, the choice of a reasonable
coefficient of friction is important in the simulation of the channel draw process even if

the contact area between the sheet and the binder is minimized.

400 q......ee. Fric=0.08 400 7 ......... Fric=0.08
350 |====- Fric=0.12 ‘ 350 4 ==--- Fric=0.12
= = = Fric=0.16 = = = Fric=0.16
300 A \ 300 A
250 e o — \\ 250 o e
£ \ Y € \
€ 200 - \ J € 200 - \
> >
A\ 5 \
150 A Sy o’ 150 A \
100 - 100 - T
50 A 50 -
0 T : : T T T T ) 0 T T T T T : T )
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
X, mm X, mm

Fig. 5.20. The effect of coefficient of friction on springback profile of DP600 (left) and AKDQ
(right) at 25% drawbead penetration
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Fig. 5.21. The effect of coefficient of friction on springback profile of AKDQ (left) and HSLA
(right) at 100% drawbead penetration
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5.5. Results:

During the experimental work of BM3, it was found that DP600 channel sections
drawn with 100% drawbead penetration occasionally fractured in the sidewall, therefore
this condition was excluded from the investigation. All other combinations of sheet
material and drawbead penetration were simulated using ABAQUS commercial software,
resulting in a series of 15 different simulations. Three different material models were
used in the simulations: @) isotropic hardening (IH), b) combined isotropic-nonlinear
kinematic hardening (IH+NKH), ¢) Yoshida-Uemori two-surface model (YU). So, the

results obtained by each model are first presented and then compared.

5.5.1. Error between the simulated and experimental curve:

In order to quantify the error between the simulation and experiment, consider point C
on the experimental curve and its corresponding point C* on the simulated curve, as

shown in Fig. 5.22. The error in the x-direction and y-direction are obtained as follows:

(6x)c = (XC - Xc)

(5.13)
(6y)c = (Yc - Yc’)
So, the error at point C can be written as:
2 2
8. = \/(SX)C + (5y)c (5.14)

In fact, the error at each point is equal to the distance between that point and the
corresponding point on the simulated curve. The sum of errors between the simulated and
experimental curve can be calculated by the line integral over the experimental curve. So,
the area between two curves can be used as a measure of the error between the
experimental and simulated profiles. In order to normalize the error, this area is divided

by the area under the experimental curve from point A to point B as follows:
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Area between the curves

Error= -
Area under the experimental curve from A to B (5.15)

Since the area of interest is the sidewall region, only the curves from points A up to

point B are considered. Note that point A is the end point of the punch radius.

Y
4 A Simulation
----- Experiment
\
, B

» X

Fig. 5.22. Schematic illustrating the error between the simulated and experimental curves

5.5.2. Isotropic hardening model (IH):

Hollomon's power law relationship between the stress and the amount of plastic strain

can be written as:

o=K(P)" (5.16)
where o is the stress, K is the strength index, &P is the effective plastic strain and n is
the strain hardening index. This law can be used to fit the experimental stress-strain curve
of the material and be extrapolated to obtain the material response at larger strain
magnitudes. Table 5.10 lists the coefficients in Hollomon’s equation fitted to the uniaxial
stress-strain curve of the material in the rolling direction of the sheet. Using the material

coefficients in Table 5.10, the isotropic hardening model with Hill’s quadratic yield
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function was used to simulate BM3 of NumiSheet 2005. The simulations were carried out
using the initial elastic modulus (IEM) and the reduced elastic modulus (REM) according
to Eq. (3.37) and the corresponding constants are given in Table 5.9. For each simulation,
the error between the simulation and experiment were calculated according to Eq. (5.15).
Table 5.11 shows the percentage of relative error for each material at different drawbead
penetrations. Figs. 5.23-5.30 compare the experimental channel sidewall profile with the
profile predicted by the IH model for all four BM3 materials. These figures show that the
IH model over-predicts springback and the reduced unloading modulus results in a larger
springback. In TH model, the stress is over-predicted in the simulation which results in
overestimation of springback. However, if the decrease of unloading modulus is not taken
into account, the springback will be underestimated. So, the simulation of springback by
IH model with initial elastic modulus may happen to be relatively accurate due to
compensation of these two errors. This is the case for DP600 as can be observed from
Figs. 5.23-5.30 and Table 5.11. In order to prove this, the experimental punch force
during forming stage can be compared with that predicted by IH model. The punch force
is the integral of stress. So, the punch force during the forming stage must be over-
predicted if the stresses are over-estimated by the model. The results of simulations of
BM3 by IH model confirm that this model considerably over-predicts the punch force for
DP600. A comparison between the predicted and experimental punch force will be

presented later in this chapter.

Table 5.10. Coefficients in Hollomon’s equation for BM3 sheet materials

Material K(MPa) n

AA6022-T43 479.9 0.258
AKDQ 579.9 0.256
DP600 1080.7 0.152
HSLA 770.0 0.187
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Table. 5.11. The percentage of relative error in prediction of springback by IH model

Drawbead DP600 AKDQ HSLA AA6022
Penetration TEM REM IEM REM IEM REM IEM REM
25% 4.74 6.12 18.25 24.67 6.27 15.11 12.01 6.32
50% 3.67 7.06 18.07 26.22 3.87 10.66 8.94 453
75% 3.05 10.12 16.81 24.49 6.55 13.83 4.50 7.00
100% -- -- 19.30 25.62 11.87 24.49 6.38 10.96
400 4  eeee. Experiment-25% 40 4 =ee=. Experiment-50%
IH(REM) IH(REM)
350 - L eeeeee IH(IEM) 350 - T IH(IEM)
300 - 300 - |
250 250 A
£ £
€ 200 € 200 4 s
> > 2/
150 150 A
100 A 100 A
50 - 50 A
0 0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
X, mm X, mm

Fig. 5.23. Channel sidewall profiles predicted by the IH model for DP600 at 25% (left) and 50%
(right) drawbead penetrations
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Fig. 5.24. Channel sidewall profiles predicted by the IH model for DP600 at 75% drawbead

penetration
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Fig. 5.25. Channel sidewall profiles predicted by the IH model for AKDQ at 25% (left) and 50%
(right) drawbead penetrations
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Fig. 5.26. Channel sidewall profiles predicted by the IH model for AKDQ at 75% (left) and 100%
(right) drawbead penetrations
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Fig. 5.27. Channel sidewall profiles predicted by the IH model for HSLA at 25% (left) and 50%
(right) drawbead penetrations
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Fig. 5.28. Channel sidewall profiles predicted by the IH model for HSLA at 75% (left) and 100%
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Channel sidewall profiles predicted by the I[H model for AA6022 at 25% (left) and 50%
(right) drawbead penetrations
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Fig. 5.30. Channel sidewall profiles predicted by the IH model for AA6022 at 75% (left) and
100% (right) drawbead penetrations

5.5.3. Combined isotropic-nonlinear kinematic hardening model (IH+NKH):

In the previous section, it was shown that the IH model overestimates the springback
for BM3. In this section, Hill’s quadratic yield function with the combined TH+NKH
model is used to evaluate the capability of this model to predict springback. This model
assumes the expansion of the yield surface as well as its translation in stress space. The

following equation is used for the isotropic hardening:

R=Q (1 —e7?P) (5.14)
where Q" and b are two material parameters. Q" is the maximum change in the size of the
yield surface, and b’ defines the rate at which the size of the yield surface changes as
plastic straining develops. The translation of the yield surface is defined by:

Cl

a=—(@—a)p—yap (5.17)
Oy

where C"and y’ are material parameters and g,, is the yield stress or the current size of the
yield surface. C” is the initial kinematic hardening modulus, and y’ determines the rate at

which the kinematic hardening modulus decreases with increasing plastic deformation.
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The kinematic hardening law can be separated into a deviatoric part and a hydrostatic
part; only the deviatoric part has an effect on the material behaviour. When C" and y’ are
zero, the model reduces to an isotropic hardening model. The least squares method was
used to fit the simulated stress-strain curve to the experimental curve which was obtained
either by simple shear tests or by uniaxial tension-compression tests. Table 5.12 lists the
material constants associated with this model for the BM3 materials. Figs. 5.31-5.34
show the predicted response of the material by IH+NKH. As can be seen from these
figures, IH+NKH is able to capture both permanent softening and the Bauschinger effect.
However, the transient Bauschinger region is not accurately described by this model. The
early re-yielding is not accurately described for DP600, HSLA and AA6022. For AKDQ,
it seems that the amount of Bauschinger effect is not very large and therefore the
IH+NKH model is able to describe the reverse yield stress relatively accurately. These
figures also show that workhardening stagnation is not observed for AA6022. Therefore,
IH+NKH model is able to better describe the reverse behaviour of DP600 and AA6022
compared to the other two materials. However, the reverse stress-strain response of the
material is not described very well for AKDQ and HSLA because the model is not able to
capture workhardening stagnation. Since there is a workhardening stagnation period at
the beginning of forward loading for HSLA, the stress-strain response is not well
described even during forward loading. In summary, it seems that IH+NKH describes the
behaviour of AA6022 and DP600 relatively well but it is not able to describe the
behaviour of AKDQ and HSLA. Fig. 5.33 shows that the IH+NKH model fails to
accurately describe the cyclic behaviour of HSLA.

Table 5.12. Material coefficient for IH-NKH model

Material o, (MPa) C'(MPa) V' Q'(MPa) b’
AA6022-T43 136 1027 48.6 150 11
AKDQ 158 300 5 240 8.5
DP600 420 9500 40 190 8
HSLA 394 5000 140 180 7
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Fig. 5.31. Predicted stress-strain response of DP600 using IH+NKH
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Fig. 5.32. Predicted stress-strain response of AKDQ using IH+NKH
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Fig. 5.33. Predicted stress-strain response of HSLA using [H+NKH
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Fig. 5.34. Predicted stress-strain response of AA6022 using IHH-NKH
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Again, the relative error was calculated according to Eq. (5.15). Table 5.13 lists the
percentage of relative error for each material at different drawbead penetrations. The
predicted profile after springback using IH+NKH model is shown in Figs. 5.35-5.42. The
springback stage was simulated using either the initial elastic modulus (IEM) or the
reduced elastic modulus (REM) where the decrease in unloading modulus is taken into
account. Figs. 5.35-5.36 show that springback in DP600 channel sidewalls are
underestimated if the reduced elastic modulus is not used. If the reduced elastic modulus
is considered, however, the predicted springback profile is relatively close the
experimental profile. Figs. 5.37-5.38 show that, for AKDQ channels, the predicted
sidewall curl is overestimated when the initial elastic modulus is used, and the
overprediction is even more significant when the reduced elastic modulus is used. For
HSLA, the discrepancy between the predicted and experimental profiles is even more
than that of AKDQ. Finally, the predicted profile for AA6022 is predicted fairly well at
shallow drawbead penetrations, i.e. 25% and 50%. However, the discrepancy between the
simulation and experiment increases as the drawbead penetration increases. The results of
these simulations show that the IH+NKH model improves the simulation results
compared to the IH model, especially for DP600 and AA6022. So, it seems that the
springback profiles are well predicted for materials where the cyclic stress-strain curve is
well predicted by IH+NKH model. A more detailed discussion on the comparative ability

of various hardening models to predict springback will be presented in section 5.5.5.

Table. 5.13. The percentage of relative error in prediction of springback by IH+NKH model

Drawbead DP600 AKDQ HSLA AA6022
Penetration TEM REM IEM REM IEM REM IEM REM
25% 8.12 3.19 14.95 20.1 320 8.65 7.55 3.35
50% 6.85 3.62 16.45 23.57 441 9.82 6.15 1.85
75% 7.63 2.71 9.37 15.93 8.02 13.64 2.79 3.60
100% -- -- 2524 33.53 11.70 17.56 6.11 11.52
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Fig. 5.35. Channel sidewall profiles predicted by the IH+NKH model for DP600 at 25% (left) and
50% (right) drawbead penetrations
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Fig. 5.36. Channel sidewall profiles predicted by the IH+NKH model for DP600 at 75%
drawbead penetrations
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Fig. 5.37. Channel sidewall profiles predicted by the IHHNKH model for AKDQ at 25% (left)
and 50% (right) drawbead penetrations
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Fig. 5.38. Channel sidewall profiles predicted by the IH+NKH model for AKDQ at 75% (left)
and 100% (right) drawbead penetrations
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Fig. 5.39. Channel sidewall profiles predicted by the IH+NKH model for HSLA at 25% (left) and
50% (right) drawbead penetrations
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Fig. 5.40. Channel sidewall profiles predicted by the [H+NKH model for HSLA at 75% (left) and
100% (right) drawbead penetrations
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Fig. 5.41. Channel sidewall profiles predicted by the IH+NKH model for AA6022 at 25% (left)
and 50% (right) drawbead penetrations
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Fig. 5.42. Channel sidewall profiles predicted by the IH+NKH model for AA6022 at 75% (left)
and 100% (right) drawbead penetrations
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5.5.4. Yoshida-Uemori two surface model (YU):

In this section, Hill’s quadratic yield function and the YU hardening model are used to
predict the springback profile of BM3. The material coefficients for Hill’s function and
YU model are shown in Tables 5.5 and 5.9, respectively. The same finite element models
as those used in sections 5.5.1 and 5.5.2 were used to obtain the predicted profile for
BM3. Figs. 5.43-5.50 compare the experimental sidewall profiles with the predicted
profiles. As can be seen, the predicted profiles are fairly close to the experiment for
DP600 if the decrease in unloading modulus is taken into account. There is quite a large
discrepancy between the experimental and simulated profiles for AKDQ at all drawbead
penetrations. The simulated profile for HSLA is also overestimated if the unloading
modulus decrease is taken into account. For AA6022, the profile is predicted fairly well
at shallow drawbead penetrations. However, as the drawbead penetration increases, the

predicted profile is overestimated.

Table. 5.14. The percentage of relative error in prediction of springback by YU model

Drawbead DP600 AKDQ HSLA AA6022
Penetration TEM REM IEM REM IEM REM IEM REM
25% 8.76 3.09 2531 31.43 3.77 2.62 6.36 2.19
50% 7.34 2.89 28.70 35.08 1.66 5.00 5.17  2.09
75% 8.04 2.18 26.06 32.38 2.70  8.20 223 4285
100% -- -- 2541 31.09 6.97 12.64 6.98 12.46
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Fig. 5.43. Channel sidewall profiles predicted by the YU model for DP600 at 25% (left) and 50%
(right) drawbead penetrations
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Fig. 5.44. Channel sidewall profiles predicted by the YU model for DP600 at 75% drawbead
penetrations

140



400 Jemm=- Experiment-25% 400 7 = ===« Experiment-50%

B YU(IEM) 350 4 YU(IEM)
YU(REM) YU(REM)
300 A 300
250 250
S £
€ 200 € 200
> >
150 150
100 100
50 50
0 T T T T T T T | 0 T T T T T T T 1
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
X, mm X, mm

Fig. 5.45. Channel sidewall profiles predicted by the YU model for AKDQ at 25% (left) and 50%
(right) drawbead penetrations
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Fig. 5.46. Channel sidewall profiles predicted by the YU model for AKDQ at 75% (left) and
100% (right) drawbead penetrations
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Fig. 5.47. Channel sidewall profiles predicted by the YU model for HSLA at 25% (left) and 50%
(right) drawbead penetrations
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Fig. 5.48. Channel sidewall profiles predicted by the YU model for HSLA at 75% (left) and
100% (right) drawbead penetrations
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Fig. 5.49. Channel sidewall profiles predicted by the YU model for AA6022 at 25% (left) and
50% (right) drawbead penetrations
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Fig. 5.50. Channel sidewall profiles predicted by the YU model for AA6022 at 75% (left) and
100% (right) drawbead penetrations
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5.5.5. YI1d2000-2d and YU model:

It has been reported in the literature that the simulated springback depends not only on
hardening law but also on the plastic anisotropy. Geng and Wagoner [54] used four
different yield functions to simulate the springback of AA6022-T4 formed in a draw-
bend test. They found that the springback angle at low back forces was controlled by the
hardening law, while at higher back forces the anticlastic curvature, which depends
principally on yield surface shape, controlled the springback angle. The results of
simulation of BM3 for AA6022-T43 (Figs. 4.49-4.50) showed that the springback profile
is overestimated at larger drawbead penetrations. Since the back force increases at larger
drawbead penetrations, using a more advanced yield function may improve the
springback simulation. Therefore, the Y1d2000-2d yield function and the YU model were

used to study the effect of yield function on the springback response.

In order to study the effect of yield function on the simulated springback profile
accuracy, YU model was used with Y1d2000-2d function to simulate the springback of
BM3 for AA6022-T43. The material parameters associated with Y1d2000 and YU model
are given in Tables 5.8 and 5.9, respectively. Table 5.15 shows the calculated relative
error for AA6022 at different drawbead penetrations. Figs. 5.51-5.52 compare the
predicted profile with Hill’s function and Y1d2000 function. As can be seen, there is a
little discrepancy between the results obtained by Hill and Y1d2000 functions. Again, the
springback profile is overestimated at larger drawbead penetrations. Therefore, it seems
that the hardening model dominates the amount of springback for this problem and using

a more advanced yield function does not improve the results even at a larger penetration.

Table. 5.15. The percentage of relative error in prediction of springback by Y1d2000+YU model
for AA6022-T43

25% 50% 75% 100%
IEM 5.09 3.98 4.50 8.63
REM 1.8 2.74 6.20 14.23
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5.5.6. Punch Force

In BM3, four load cells were mounted beneath the fixed punch under the lower die in
order to record the punch force during each test. The ram displacement, ram pressure and
the cushion pressure in the floating binder were also recorded in real time. These data
were recorded for each material, each drawbead penetration and for each channel that
was formed. The punch force versus ram displacement is shown in Figs. 5.53-5.56 for all
materials at different drawbead penetrations. As can be seen from these figures, the
punch force increases when the ram initially starts to move, then it remains fairly
constant until the end of stroke. So, in order to define the error between the simulated and
experimental forces, the average punch force was determined in the steady state region
(after 100 mm of ram displacement) and the error was defined as follows:

l:‘sim - Fexp

Error = (5.18)

Fexp
where F.y,, is the experimental punch force and F;, denotes the predicted punch force by
simulation. The percentage of error was calculated for all materials and all drawbead
penetrations and is shown in Fig. 5.57. This figure shows that the punch force is
overestimated by the IH model except for HSLA at 25% drawbead penetration. The
overestimation of punch force by the IH model is because this model fails to capture the
Bauschinger effect and over-predicts the material response during cyclic loading. The
reason for underestimating the punch force for HSLA at 25% drawbead penetration can
be explained by Fig. 5.14. This figure shows that the predicted stress-response of HSLA
is underestimated by the IH model because of workhardening stagnation of this material
at the beginning of plastic deformation. In general, the IH+NKH and YU models improve
the prediction of punch force. For DP600 and AA6022, both the IH+NKH and YU
models are able to describe the cyclic behaviour of DP600 and AA6022 fairly well. As a
result, both models predict almost the same profile for springback. Both these models
predict similar punch forces for DP600. For AA6022 however, the punch force predicted
with the IH+NKH model is different from that predicted with the YU model. For HSLA,
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the punch force error predicted by YU model is relatively small at 25%. However, the
punch forces predicted with the IH and IH+NKH models are better in agreement with
experimental data at larger penetrations. For AKDQ, the IH+NKH and IH models predict

the punch force more accurately at shallow and deep penetrations, respectively.

In general, Fig. 5.65 shows that the punch force is underestimated by the IH+NKH and
YU models at deeper drawbead penetrations. It can also be observed that for some
materials the punch force predicted with the IH model is more accurate than the other
models. This is not generally expected because the IH model overestimates the stress-
strain response of material. Perhaps the reason for this lies in the fact that the contact
forces and/or friction force are not accurately calculated in the finite element simulation.
For instance, if the coefficient of friction is chosen to be larger at deeper penetrations, the
punch force predicted with the YU and IH+NKH models will be closer to the
experimental punch force. This increases the tension in the sidewall during the forming
process and results in less springback at deeper penetrations. More research is required on

this issue to make sure the friction is accurately modeled in this process.
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Chapter 6

Discussion

6.1. The role of hardening model on the accuracy of springback simulation:

In the previous chapter, different models were used to simulate the springback of BM3.
In this section, the results obtained with each model are compared and the effect of the
hardening model on the simulated profile is discussed. Hill’s quadratic yield function was
used with three hardening models: IH, IH+NKH and YU models. Throughout this
section, it is assumed that the unloading modulus decreases during the springback stage
according to Eq. (3.37).

The springback of U-shaped channel sections was obtained for four different materials.
Two of these materials, i.e. DP600 and AA6022, do not show any workhardening
stagnation period during cyclic loading, whereas AKDQ and HSLA show significant
workhardening stagnation. In addition, the HSLA shows some workhardening stagnation
during the first forward loading because of discontinuous or non-uniform yielding of this
material, which is characterized by the propagation of Liders bands. The experimental
cyclic behaviour of DP600 (see Figs. 5.7, 5.12) shows that the Bauschinger effect is quite
significant for this material. AKDQ shows a small Bauschinger effect as the yield stress
during the stagnation period is almost equal to that in forward loading (see Figs. 5.8,

5.13). The other two materials show some Bauschinger effect during cyclic loading.

Let us first consider the stress-strain behaviour as it was predicted by different

hardening laws. The IH model does not describe the cyclic behaviour of any of these
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materials. The IH+NKH model describes the permanent behaviour of all materials except
HSLA because this material shows both workhardening stagnation and some Bauschinger
effect. For AKDQ, the predicted behaviour with the IH+NKH model is fairly close to the
experimental permanent behaviour as this material does not show a large amount of
Bauschinger effect. The transient response is not predicted very well with the IH+NKH
model, especially when the material shows workhardening stagnation. The YU model
correlates very well with the experimental response for all materials and describes both
the permanent and transient behaviour fairly accurately.

Figs. 6.1-6.2 compare the springback profile simulated by IH, IH+NKH and YU
models for DP600 at different drawbead penetrations. Fig. 6.3 shows the error in
springback for each model. The figure shows that the error associated with the IH model
increases as the drawbead penetration increases. However, the error associated with the
IH+NKH and YU models decreases as the drawbead penetration increases. The YU and
IH+NKH models improve the springback prediction about 3% and 8% at 25% and 75%
drawbead penetrations, respectively. The main reason for improvement of springback
simulation using the IH+NKH and YU models (compared to the IH model) is that these
models describe the Bauschinger effect and do not over-predict the stress field in the
simulation. It seems that both the IH+NKH and YU models describe the behaviour of
DP600 relatively accurately and YU model has no considerable advantage over the
IH+NKH model.
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Figs. 6.4-6.5 show a comparison between the simulated profiles obtained by each
model for AKDQ at different drawbead penetrations. Fig. 6.6 shows the error associated
with each model at different drawbead penetrations for this material. In general, the error
in springback is much larger for AKDQ compared to DP600. For the IH+NKH model,
the error for AKDQ is more than 10 times greater than the error for DP600. These results
show that the springback is overestimated by all material models and the error is much
larger for this material compared to the other materials. It is even more surprising to see
that the error associated YU model is larger than the error associated with the IH model
as the predicted stress YU model at the end of forming stage is smaller than that predicted
with the IH model. The reason for this lies no doubt in the fact that the initial yield stress
is rather small for AKDQ which makes the YU model predict a very early re-yielding and
more plastic deformation during the springback stage. Evidently, the assumption of a
constant size of the yield surface in the YU model is not realistic for low strength
materials that exhibit little Bauschinger effect, such as AKDQ. Therefore, one may
expect that the springback profile for AKDQ predicted with the IH+NKH model would

correlate with the experimental data because this model describes the permanent
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behaviour of AKDQ fairly well (see Fig. 5.32). However, the IH+NKH model also fails
to predict the springRack of AKDQ accurately. In order to determine the reason for this,
the uniaxial tension wag simulated using the material constants obtained from the simple
shear test. Fig. 6.7 compgres the experimental and simulated stress-strain response. This
figure shows that the simWation overpredicts the experimental stress-strain response of
AKDQ in uniaxial tension \vhich shows that the behaviour of AKDQ in tension is

'nt from that in shear. TXerefore, it is thought that if the stress-strain curve wy&s

OR \- either in uniaxial tensionycompression at large strain amplitudes or in a berding-

unbe the prediction of spNngback for this material will improve.
Another INE

' g observation is that the IH+NKH model reduces theApringback error

more than twice

ii

PN

\ d to the IH model for DP600. However, it g¢0es not considerably
improve the results\ DQ. The reasoq for this is that the”decrease in yield stress

N

during reverse loading }.\ chinger effect) is much lagger for DP600 compared to
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The effect of the hardening model on the simulated springback profile for HSLA
channel sections is shown in Figs. 6.8-6.9. The error associated with each model is also
shown in Fig. 6.10. As can be seen, the best results are obtained with the YU model
where the error is 2.62% at 25% and it increases up to 12.6 at 100% drawbead
penetration. For the IH model, the error first decreases for 50% penetration and then
increases as the drawbead penetration increases. However, the error increases as the

drawbead penetration increases for the IH+NKH and YU models.
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The IH+NKH model improves the results compared to the IH model simply because it
captures the Bauschinger effect and permanent softening. However, because this model
fails to describe both the transient and permanent response of HSLA (see Fig 5.33), it is
not able to predict springback accurately. The YU model significantly improves the
results for HSLA compared to the IH+NKH model because it describes the cyclic
behaviour of HSLA better than the IH+NKH model. However, the discrepancy between
the simulation and experiment increases as the drawbead penetration increases. In order
to understand the reasons for this, the loading path, punch force and springback were

studied simultaneously.

Fig. 5.57 also shows that the punch force is underestimated with the YU and IH+NKH
models at deep drawbead penetrations for all materials. Note that the IH+NKH model
overestimates the punch force for HSLA at deep penetrations because this model fails to
describe the cyclic behaviour of HSLA as shown in Fig. 5.33 which indicates that the
IH+NKH model over-predicts the stress. The overestimation of springback at larger
penetrations can be caused by several factors such as the material model, the element

formulation, the complex contact and friction conditions.
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Fig. 6.11 shows the stress-strain history of an integration point that is located outside
the drawbead region at the beginning of the forming process but moves through the
drawbead and up into the channel sidewall during the forming process. This history was
obtained by simulation of the channel draw of an HSLA sheet using the YU model. A
similar strain history, either TCTCT or CTCTC, is repeated for most of the material
points that end up in the channel sidewall. In order to make sure that the material
response is well predicted at all drawbead penetrations, uniaxial TCTCT test within the
strain ranges shown in Fig. 6.11 are required for identification of material constants.
Unfortunately, the uniaxial TC test that were carried out in this work as shown in Fig.
5.7-5.10 are not in the strain ranges of Fig. 6.11. The simple shear cyclic data was carried
out at a sufficient strain range for the BM3 problem. However, the loading direction was
reversed only once in this test; whereas in the BM3, the loading direction was reversed
four times. So, there is no guarantee that the material response will be predicted correctly
at subsequent loading reversals. It is thought that, if the cyclic stress-strain response of
the material was experimentally obtained for a larger number of cycles, the hardening
constants would likely reproduce the material behaviour more accurately, and

consequently, the springback profile would also be predicted more accurately.

The friction model and/or friction coefficient may also be another cause of greater error
at large penetrations. In general, the coefficient of friction is a function of velocity and
pressure. At larger penetration, the severity of deformation and a larger pressure may
increase the coefficient of friction. A greater coefficient of friction will increase the
punch force and reduce the amount of springback. In order to see if a larger coefficient of
friction can improve the springback simulation at deeper drawbead penetrations, the
simulations were repeated using greater friction coefficients for HSLA at 100%
penetration. Fig. 6.12 shows the error in springback and punch force predictions with
respect to the coefficient of friction. The results show that a greater coefficient of friction
(up to a certain value) improves both the punch force and the springback prediction.
When the coefficient of friction is around 0.16, the punch force is accurately predicted
but the springback error is 8.98%. So, this study shows that the coefficient of friction
alone cannot lead to an accurate prediction of springback. Therefore, it appears that more

experimental data are required on both friction and cyclic response of the material to
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determine if a more accurate modeling of friction and material response leads to an

accurate springback prediction for this problem.

——t— HSLA-25% —&— HSLA-50%
800 : 800
600 600
400 A o 400
b &
4
S 200 gy g j <« S 200
= 2 3 =
@ 0 g 0
&
& 200 ‘: &-200
) @
-400 400
)
-600 -600
-800 -800
-0.05 0 0.05 0.1 -0.05 0 0.05 0.1 0.15
True Strain True Strain
—@— HSLA-75% —#— HSLA-100%
800 : ; 800 : :
e l
600 600 fﬂ 1
400 400
o 200 © 200 A et e e
o o
= =
@ 0 @ 0
" w
g g f ¢
& 2200 & -200
-400 [T T QT TN TR S SR S | RS S— S—
-600 -600 -+ »
-800 -800
-0.05 0 0.05 0.1 0.15 0.2 -0.05 0 0.05 0.1 0.15 0.2
True Strain True Strain
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Figs. 6.13-6.14 compare the predicted sidewall profiles obtained with the IH, IH+NKH
and YU models with the AA6022 experimental profiles. Fig. 6.15 also shows the error in
springback for each model. For the IH and IH+NKH models, the error decreases
somewhat at 50% drawbead penetration, then starts to increase as the drawbead
penetration increases. For the YU model, the error for AA6022 is close to the error for
DP600 and HSLA at shallow drawbead penetrations. In general, the springback errors
associated with the YU and IH+NKH models are almost the same for AA6022.
Therefore, it seems that the IH+NKH model is adequate for predicting the springback of
AA6022 in this benchmark because this model predicts the material behaviour of
AA6022 fairly well (see Fig. 5.34). It should be mentioned that the transient region is not
described very well by the IH+NKH model, and therefore, the YU model may be able to
improve the springback prediction in certain die geometries, e.g. small ratios of die radius
to sheet thickness (R/t). In summary, the YU model does not improve the springback
prediction for AA6022 in this BM3 problem. At deeper penetrations, the error increases
for both the IH+NKH and YU models but this may be improved with the help of more
friction data and by using cyclic stress-strain data obtained at larger strains and with more

stress reversals, as discussed in the previous paragraph for HSLA.
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6.2. Loading Path:

In general, the accuracy of the springback sidewall profile predicted with the IH+NKH
model depends not only on the material behaviour but also on the loading path. For
instance, the IH+NKH model is not able to accurately reproduce the behaviour of DP600
at the beginning of the reverse loading (see Fig. 5.31). If the strain path changes shortly
after the first reverse loading, the stress will be overestimated by the model. In addition,
if the strain path changes several times shortly after each loading reversal, the stress error
will be accumulated and a larger discrepancy will be observed between the simulation
and the experiment. However, as can be seen in Fig. 5.31, the stress-strain curve
predicted with the IH+NKH model will eventually coincide with the experimental stress-
strain curve. So, it seems that it is more important to capture the permanent behaviour of
the material in order to accurately predict springback in this problem. Generally, when
there is little tension in the channel sidewall, the magnitude of the plastic strain in the
sidewall does not increase significantly after the last load reversal. So, the final stress-

strain state of the material lies in the transient region of material response. In this case, it
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IS important that the hardening model be able to capture the transient response of the
material. However, a large blank holder force, a greater drawbead restraining force and/or
a large coefficient of friction may cause significant tension in the sidewall, which in turn
increases the magnitude of strain in the sheet. The higher tension in the sidewall after the
last loading reversal causes the stress to increase beyond the Bauschinger transient
region, and in this case, it is important for the constitutive model to describe the

permanent work hardening behaviour of the material.

6.3. Radius-to-Thickness Ratio:

Another condition which makes it essential to reproduce the transient behaviour is
when the die radius-to-sheet thickness ratio is small. For a small die radius, the material
is subjected to severe bending-unbending over the die radius, and as a result, the material
may yield during springback [55]. So, the early re-yielding must be accurately described
by the constitutive model. It is interesting to note that in this benchmark, the radius-to-
sheet thickness ratio in the drawbead region is small, while the die radius-to-sheet
thickness ratio is relatively large. It would appear then, that capturing the early re-
yielding is not as important as the permanent hardening when severe bending-unbending

takes place prior to the last load reversal over a large die radius.
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Chapter 7

Conclusions

7.1. Summary:

In this work, the springback of a channel draw process, i.e. Benchmark #3 of
NumiSheet 2005, was predicted by ABAQUS commercial software package. In order to
describe the cyclic material behaviour, two different numerical algorithms were
developed for numerical implementation of Yoshida-Uemori two-surface plasticity
model. The first algorithm uses the governing parameter method, in which all equations
are written in terms of only one unknown, and a semi-implicit integration scheme along
with Hill’s quadratic yield function. The second algorithm uses a fully-implicit
integration scheme and assumes a general equation for the yield function. Depending on
the number of stress components, this approach needs to solve several equations
simultaneously. For a 3D stress space, the second algorithm needs to solve nineteen
equations simultaneously: one equation for the yield function, six equations for the stress,
six equations for B and six equations for 8. However, all equations are written in terms
plastic strain increment and the procedure is summarized to solving only one nonlinear
equation. So, the first approach is simpler, more computational effective and more robust.
These algorithms were implemented as user-material subroutines for both
ABAQUS/Standard and ABAQUS/Explicit. Both Hill’s 1948 quadratic yield function
and the Y1d2000-2d yield function were used in the fully-implicit subroutines. Several
problems were used to verify the implementation of these user subroutines. The main

disadvantage of semi-implicit approach is that a small increment size should be used with

166



this algorithm. However, the fully-implicit approach is more stable at large increment
sizes. Therefore, it can be generally suggested to use the semi-implicit approach with
ABAQUS/Explicit and the semi-implicit approach with ABAQUS/Standard. The user
subroutines were used to simulate the springback of benchmark#3.

Four different materials were used in the benchmark. In order to find the material
constants, two types of tests were performed on these materials: a) cyclic tension-
compression test and b) cyclic simple shear test. Since simple shear test was able to carry
out the test at larger strain magnitudes, the stress-strain data obtained by this method
were used to identify the material parameters associated with YU model. The r-values
and yield stress in different directions were also used to obtain the material parameters
associated with the yield function.

Finally, three different hardening models were used to simulate the benchmark: a)
isotropic hardening, b) combined isotropic-nonlinear kinematic hardening, ¢) YU model.
Moreover, the effect of yield function on the accuracy of springback prediction was
studied for AA6022. Both Hill-48 and Y1d2000-2d yield functions were used to simulate
BM3 for AA6022.

7.2. Conclusions:

In summary, the following conclusions can be drawn from this work:

1. If a sufficiently fine mesh is used, the first-order solid element and shell element
will result in almost the same predicted springback profiles.

2. When using shell elements, the required NIP depends not only on the material but
also on the drawbead penetration. It appears that 9 integration points is sufficient
for HSLA and AA6022. However, 29 and 49 integration points are required for
AKDQ and DP600, respectively.
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10.

11.

The coefficient of friction has a minor effect on the predicted springback profile
at shallow penetrations. However, it does have a more noticeable influence on the
predicted profile at deeper penetrations.

IH model overpredicts the springback as it does not take the cyclic plasticity
phenomena into account.

The decrease of unloading modulus has a significant effect on the amount of
springback and it is needed to be taken into account for an accurate prediction of
springback.

IH+NKH model is able to predict the springback of AA6022 and DP600 fairly
well. The profiles predicted by the YU model are very close to those obtained by
the combined IH+NKH model for these materials.

The YU model significantly improves springback prediction for HSLA compared
to the IH+NKH model.

None of these hardening models are able to accurately predict the springback for
AKDQ. One important reason for this is that the simple shear cyclic curve was
used to identify the material constants.

The predicted springback for AKDQ by the YU model is even larger than that
obtained by the IH model which is due to the plastic deformation during
springback. So, it seems that the assumption of a constant size of yield surface is
not very accurate for AKDQ which has very little Bauschinger effect, a large
amount of workhardening and low strength.

Using the Y1d2000-2d yield function does not improve the springback simulation
for AA6022 at large drawbead penetrations mainly because the yield stress for
this material does not changes significantly at different orientations.

The predicted springback profile depends on the material constants which are
obtained by fitting the simulation curve to that of experimental cyclic material
behaviour. So, the number of cycles and the strain level in the experimental cyclic
material response affects the simulated springback profile. In other words, even if
the springback profile is predicted well in one particular case, e.g. shallow
drawbead penetration, there is no guarantee that the predicted profile is accurate

in other cases, e.g. deep drawbead penetration.
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12.

13.

14.

The error associated with numerical integration with the semi-implicit scheme
increases at larger strain increments; while the error is smaller for the fully-
implicit scheme at larger increments.

The YU model is able to accurately reproduce the material behaviour. However, it
seems that it doesn’t accurately predict the springback of materials with little or
no Bauschinger effect such as AKDQ. So, YU model is especially suitable for
prediction of springback of materials showing a considerable amount of
Bauschinger effect and workhardening stagnation such as HSLA.

When there is a large tension in the sheet, the permanent response of material is
more important to be captured compared to the transient behaviour for an accurate
prediction of springback. The IH+NKH model is usually able to describe the
permanent behaviour of material, especially the material with no workhardening

stagnation.
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Flow Chart A.1.

Semi-implicit numerical algorithm for implementation of YU model

1. Elastic Predictor
11. " =0, +DAe; " =0 —a,; @,, =,
1.2. Set IsoFac,,, = IsoFac,

Isotropic Factor=0 during workhardening stagnation
Isotropic Factor=1 during workhardening

1.3. Check for the yield condition:

o If (grfr N 7™ ) —Y <0 ; then set (*)n+1=(*)""and Exit.

e Else Goto step 2.

2. Plastic Corrector

2.1. Initialize:

Tr

i Ap = 0 ! 77n+1 = 77
2.2. Calculate the effective plastic strain:

e h=k(R,—-R,).IsoFac ;R =R, +hAp;a,  =B+R, Y
Use Eq. (14) to find 7,.,
Use Eqg. (15) to find =

e Calculate the residual: Res :(gnn+l Nz, )°-Y.
e If (Res < Tol), then Goto Step 3.

e Set Ap=Ap —% where f'denotes the derivative of f with respect to Ap.

e Goto 2.2.
3. Update
a a
o 9. .=0 +C(—L, — [ 9 )A
n+1 n ( Y nn+l 0 n) p

n
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b
* iBn+l = ﬂn + k(?'”m—l _/Bn )Ap

* an+1 = 0n+1 + IBn+1

® o-n+1 = ”n+1 + an+l

4. Workhardening Stagnation

3
Res :E(ﬂnﬂ -3, )T P(ﬂn+1 -0, )_ r-n2

If (Res>0) Then
o If(IsoFac=0), then set IsoFac=1 and Goto Step 2.
o Use Eq. (31) to find Ap.
o Use Eq. (29) to update g.
o Use Eq. (26) to update .

Else
o If(IsoFac=1), then set IsoFac=0 and Goto Step 2.
EndIf
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Flow Chart A.2

Fully-implicit numerical algorithm for implementation of YU model

1. Elastic Predictor
11.6"" =0, +DAg;n"" =06 —a,;a,;; = a,
1.2. Set IsoFacy+1= IsoFac,
IsoFac (Isotropic Factor) =0 during workhardening stagnation
IsoFac (Isotropic Factor)=1 during isotropic hardening
1.3. Check for the yield condition:

o If 7 <Y ;thenset (*)n+1=(*)" and Exit.
e Else Goto step 2.

2. Plastic Corrector

2.1. Initialize:

e Ap=0;m,4=10"

2.2. Calculate the effective plastic strain, backstress and 7 :

e If(IsoFac=0);thenR,;1 =R,

o If(IsoFac =1);then R, ;1 = Ry (1 — e7P)

* ayy1 =B+ Ry —Y

e Use Egs. (4.11) to calculate the residuals: G, G5, G5, G4

o If(G,&6G,&G;5& G,)<Tolerance; then Goto Step 3

e Use Eq. (4.28b) to calculate £~1

e Solve Egs. (4.12) simultaneously to find d4p; Aa; 46; AB

Update: (4p)y41 = (Ap)n + dAp ; Ppi1 =pn +4p
Bn+1 :ﬁn+AB;0n+1 = Bn +A0;a=ﬁ+0
O,.1=0,tAoc;n=0—a

Goto 2.2.
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3. Workhardening Stagnation

e Res= ; [ﬂn+1 - qn]TP[ﬂn+1 - qn] - rnz
e If(Res>0) Then
o If(IsoFac=0), then set IsoFac=1 and Goto Step 2.
o Use Eq. (4.22) to find Ap.
o Use Egs. (4.19, 4.20) to update q.
o Use Eq. (4.17) to update r.
e Else
o If(IsoFac=1), then set IsoFac=0 and Goto Step 2.
e EndIf

4. Consistent Tangent Modulus:

e Use Eq. (4.32) to calculate the consistent tangent modulus
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