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ABSTRACT 

 

In sheet metal forming, the discrepancy between the fully loaded shape at the end of 

forming stage and the unloaded configuration is called springback. Springback is a major 

factor in preventing accurate dimensions of final products. Therefore, it is very important 

that springback be quantitatively predicted and compensated in the die design stage.  

In sheet metal stamping, especially when drawbead is used, the material experiences 

several cycles of bending-unbending-reverse bending. Therefore, in to order to accurately 

predict springback, the constitutive model must be able to accurately describe the 

material behaviour during cyclic loading. Yoshida-Uemori (YU) two-surface model is 

one of the most sophisticated models which is capable of reproducing the transient 

Bauschinger effect, permanent softening and workhardening stagnation.  

In this work, two different yield functions, i.e. Hill’s 1948 and Yld 2000-2d, were used in 

conjunction with YU two-surface model. Moreover, two different numerical procedures 

were developed for numerical implementation of these models: a) a semi-implicit 

approach and b) a fully-implicit approach. The numerical procedures were used to 

develop user material subroutines for ABAQUS commercial software. Then, the 

subroutines were used to evaluate the capability of the model in prediction of springback 

for a channel draw process. In addition, the isotopic hardening (IH) and combined 

isotropic-nonlinear kinematic hardening (IH+NKH) models were also used to predict the 

springback of the problem. Finally, the springback profiles obtained by each model were 

compared with the experimental data. For DP600, the error in springback prediction is 

around 3% when YU model is used. For HSLA and AA6022, the error associated with 

YU model is less than 3% and 13% at 25% and 100% drawbead penetrations, 

respectively. The YU model does not predict the springback accurately for AKDQ and 

the error is around 30%. The results also show that the IH model overestimates the 

springback for all materials. For DP600 and AA6022, the results obtained by IH+NKH 
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model are the same as those obtained by YU model. However, the YU model 

considerably improves the springback prediction compared to IH+NKH model for 

HSLA; while for AKDQ the IH+NKH model improves the springback prediction 

compared to YU model.  
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Chapter 1 

 

Springback 

 

 

 

 

1.1. Introduction:  

 

Once a deformed sheet-metal part is removed from the dies in which it was formed, the 

elastic component of strain is recovered, especially where bending, bending-unbending, 

and reverse bending are performed. The elastic recovery is accompanied by strain and 

consequently causes the final shape of the part to change. The discrepancy between the 

fully loaded shape at the end of the forming stage and the unloaded configuration is 

called springback. This phenomenon can also be explained on the stress-strain curve as 

shown in Fig. 1.1. Unloading (by removing all external forces and moments) from a total 

strain A would follow line AB, and segment OB would represent the permanent (plastic) 

deformation and BC the recovered (elastic) deformation. It can also be observed that the 

elastic recovery is greater for materials with higher strength. Springback is the most 

significant factor that makes it difficult to achieve the required dimensional accuracy of 

stamped components. Designing a die with incorrect springback compensation can lead 

to significant difficulties in downstream operations such as poor fit-up during welding 

and distortion of sub-assemblies. In some cases, tooling revisions may be required which 

could lead to delays in production. Therefore, it is very important that springback be 

accurately predicted and correctly compensated during the first die design.  
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Fig. 1.1. Elastic recovery deformation during unloading  

 

Springback after forming sheet steel can be classified in six categories:  

1. Sidewall opening: The angle forming two sides enclosing a bending edge 

line deviates from the die angle (Fig. 1.2.a).  

2. Sidewall Curl: The straight side wall becomes curved (Fig. 1.2.b).   

3. Edge line warping or bow: The bending edge line deviates in curvature 

from the edge line of the die (Fig. 1.2.c).   

4. Twist: Two neighbouring cross-sections rotate differently along their axis.  

5. Global shape change: The desired shape of the part is not achieved after it 

is removed from the tooling. 

6. Surface distortion: Local buckling occurs on the surface of a body panel 

after forming.  

 





Mild Steel  

High Strength Steel 

Elastic strain of mild steel  

Elastic strain of high strength steel  

O 

A 

B 
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Fig. 1.2. Different types of springback 

 

1.2. Springback Compensation:  

 

Several approaches have been proposed to control springback. Most of them attempt to 

reduce springback by increasing the tension in the sheet. This can be achieved by 

increasing the blankholder force, especially at the end of the forming stage or by using 

drawbeads [1-6]. In general, a larger tension in the sidewall reduces the stress gradient 

through the sheet thickness causing less springback. However, the maximum tension in 

the sheet is limited by the fracture strength of the sheet material. Moreover this stretch-

forming technique is generally not sufficient to eliminate springback. Some studies also 

suggest using a variable blank holder force during the punch trajectory. In this method, 

the blank holder force is low from the beginning until almost the end of the forming 

process and then it is increased at end of the process such that a large tensile stress is 

applied to the sheet material [5].  

Another approach is to compensate for springback at the die design stage [7-8]. That is, 

regardless of what the springback might be, the die is designed so that the final part shape 

after springback corresponds to the target part shape. For instance, the ratio of tool radius 

to sheet thickness (R/t) is a design parameter which affects springback and can be 

modified to reduce it [9-10]. The first step in implementing such a strategy is the accurate 

prediction of the springback phenomenon. Assuming that springback can be predicted 

accurately, there still remains the problem of how to use such results to arrive at a 

suitable die design to produce a target part shape. That is, the springback predictions 

wall opening wall curl 

(a) (b) 

bow 

(c) 
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allow “forward” analysis of forming and springback, while a “backward” analysis is 

needed to work from these results back toward an optimized die design. It is clear that a 

method is needed for guiding die design to compensate for springback (in a backward 

direction) using sophisticated springback prediction capabilities (forward direction). Such 

a development was reported by Karafillis and Boyce [8,11,12]. However, Gan and 

Wagoner [7] showed that this method suffers from a lack of convergence unless the 

forming operation is symmetric or has very limited geometric change during springback. 

They developed an alternate closed-loop design method that avoided many of the 

limitations of the Karafillis and Boyce model. They developed a displacement adjustment 

method that used simulated forming and springback displacements in the punch travel 

direction to predict the next die design iteration. They used their method for several 

arbitrary two-dimensional examples and showed that the advantages of their model were 

the convergence rate, the ease of implementation, and its general framework. 

 

1.3. Prediction of Springback:  

 

As mentioned in the previous section, in order to compensate for springback, it is 

necessary to quantitatively predict springback during the first die design stage. Generally, 

two methods are used for prediction of springback: analytical methods and numerical 

methods. Both types of methods have been extensively employed by researchers and die 

designers.  

Several analytical solutions have been proposed for prediction of springback. 

Buranathiti and Cao [13] performed an analytical springback prediction of a straight 

flanging process by calculating the bending moment under plane-strain conditions. They 

used the model to predict springback for a few parts and compared the predicted results 

with experimental data. Yi et al. [14] developed an analytical model based on differential 

strains after relief from the maximum bending stress for six different deformation 

patterns. They used each deformation pattern to estimate springback by the residual 
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differential strains between outer and inner surfaces after elastic recovery. Zhang et al. 

[15] also developed an analytical model to predict springback in sheets bent in a U-die 

under plane-strain conditions. They used Hill’s 1948 yield function and took into account 

the effects of deformation history, the evolution of sheet thickness and the shifting of the 

neutral surface. Lee et al. [16] proposed an analytical model for asymmetric elasto-plastic 

bending under tension followed by elastic unloading. They also compared the calculated 

springback amounts with the results of physical measurements and showed that their 

model predicted the main trends of the springback in magnesium alloy sheets reasonably 

well considering the simplicity of the analytical approach.  

Although the use of analytical models is advantageous because of their simplicity, the 

application of these models is limited to simple geometries. The amount of springback 

also depends upon many process variables such as friction, temperature, variations in the 

thickness and mechanical properties of the incoming sheet material. Moreover, complex 

strain histories and highly nonlinear deformation of the material during the forming 

process add to the difficulty of predicting springback. Therefore, the most widely used 

method of predicting springback is to carry out computer simulations that rely on 

advanced material models to compute the stress distribution in the part and the final 

geometry of the part after elastic unloading. And most researchers have used the finite 

element method to predict springback.  

Finite element (FE) simulation of springback is very sensitive to numerical parameters 

such as element type, mesh size as well as to the constitutive model that governs the 

behaviour of the deformable sheet. Several investigations have been conducted to study 

the effect of numerical parameters on the accuracy of the predicted profile after 

springback. Li et al. [17] simulated the draw-bend test and studied the sensitivity of the 

simulated springback to numerical parameters. They found that up to 51 integration 

points are required for an accurate simulation of springback. They also concluded that for 

small R/t ratios, nonlinear 3D solid elements are required for an accurate prediction of 

springback. Wagoner and Li [18] later performed an analytical study of the bending 

under tension followed by springback. They also performed a numerical analysis of this 
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problem and calculated the relative error as a function of number of integration points 

(NIP). They concluded that the relative error oscillates and in some cases even more than 

51 integration points are required. Lee et al. [19] used the Taguchi method to study 

numerical factors affecting springback after the U-bending draw test in which drawbeads 

were not used. They determined the order of significance of each numerical parameter 

relative to its effect on the prediction of springback angle and radius of curvature. The 

results of their study show that the mesh size has the strongest effect on the accuracy of 

springback prediction. Mattiasson et al. [20] also found that springback simulation is 

much more sensitive to numerical tolerances than the simulation of the forming stage.  

It is also worth mentioning that some researchers have used a combination of an 

analytical method and the finite element method to predict springback. These methods 

usually endeavour to use the advantages of each approach. Zhan et al. [21] developed a 

method based on springback angle model derived using an analytical method and 

simulation results from three-dimensional (3D) rigid-plastic finite element method 

(FEM). Lee et al. [22] proposed a simplified numerical procedure to predict springback 

in a 2D draw bend test that was developed based on a hybrid method which superposes 

bending effects onto membrane element formulation. This approach was shown to be 

especially useful to analyze the effects of various process and material parameters on 

springback. 

 

1.4. Constitutive Model:  

 

The accuracy of sheet metal forming and springback simulation depends not only on 

the forming conditions (friction, tool and binder geometry etc.), but also on the choice of 

the material constitutive model and its numerical implementation into finite element 

programs. Among these factors, the material constitutive law plays an important role in 

describing the mechanical behaviour of sheet metals, because it is essential to obtain an 

accurate stress distribution in a formed part if springback is to be correctly predicted. In 
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general, the behaviour of metals is quite complex, especially during the cyclic loading. 

So, an advanced constitutive model is usually required for an accurate prediction of 

springback. The importance of constitutive model will be further explained in the next 

chapter.  

 

1.5. Motivations:  

 

Springback has been one on the major concerns in sheet metal forming for decades. To 

reduce the weight of cars, the automotive industry is moving towards high strength 

materials that have a much lower weight-to-strength ratio than traditional steels. But as 

mentioned in section 1.1, the springback is generally larger for higher strength materials. 

Besides, the higher strength materials usually exhibit a larger Bauschinger effect which 

makes modelling of this phenomenon more important. The main purpose of this project is 

to implement advanced constitutive models into the finite element method and evaluate 

their ability to predict springback. For evaluation purposes, a channel draw process with 

drawbeads, presented as Benchmark #3 (BM3) in NumiSheet 2005 [23], was simulated 

using three different hardening models: isotropic hardening, nonlinear kinematic 

hardening and the Yoshida-Uemori two-surface plasticity model. The profile of the part 

after springback was predicted using each of these models and was compared with 

experimental profiles.  
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Chapter 2 

 

Constitutive Model 

 

 

2.1. Introduction:  

 

Finite element analysis is the most commonly used method to simulate industrial sheet 

metal forming processes in order to assess forming severity, to improve the tooling 

design, and to predict springback. The accuracy of sheet metal forming and springback 

simulation depends not only on the forming conditions (friction, tool and binder 

geometry), but also on the choice of material constitutive model and their numerical 

implementations into a finite element program. Among these factors, the material 

constitutive law plays an important role in describing the mechanical behaviour of sheet 

metals, because it determines the accuracy of the stress distribution in a formed part and 

the subsequent springback. In sheet metal forming, the material commonly experiences 

bending, unbending and unloading over the die and punch radii and sometimes multiple 

bending-unbending cycles when it is formed through a drawbead. Cyclic loading paths 

have significant effects on stress and residual stress distributions, which are important in 

springback calculation. Accurate simulation of sheet metal forming requires an 

appropriate constitutive model that can effectively describe different phenomena usually 

observed in cyclic plasticity such as Bauschinger effect, a decrease in Young’s modulus 

during unloading, permanent softening and so on. Moreover, sheet metal forming is a 

typical large-strain problem, and the springback is a process of small-scale re-yielding 

after large prestrain. Therefore, attention should be paid to the deformation behaviour of 
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large-strain cyclic plasticity and also the stress–strain responses at small-scale re-yielding 

after large prestrain.  

Phenomenological constitutive models consist of three essential components: (1) a 

yield criterion, (2) a flow rule, (3) a strain-hardening rule. The yield criterion determines 

the stress state when yielding occurs; the flow rule describes the increment of plastic 

strain when yielding occurs; the hardening rule describes how the material is strain-

hardened as the plastic strain increases; and the loading–unloading conditions specify the 

next step in the loading program. In this chapter, the notation and conventions used in 

this dissertation will be first explained and then the major components of a constitutive 

model will be introduced.  

 

2.2. Notation and Conventions: 

 

In this dissertation, scalars are shown by a lowercase letter, e.g. 𝑎, vectors and second-

order tensor are expressed by a bold-faced lowercase letter (e.g. 𝒂), and a fourth-order 

tensor is shown by a bold-faced capital letter (e.g. 𝑨). In the index notation, the 

components of a second-order and a fourth-order tensor are denoted by 𝒂𝑖𝑗  and 𝑻𝑖𝑗𝑘𝑙  

respectively. It should be noted that a second-order tensor has two subscripts and a 

fourth-order tensor has four subscripts. Summation and range conventions are used in the 

index notation. In the summation convention, a repeated index means summation of the 

term over the range of the index. For example, 𝑨𝑘𝑘  =  𝑨11  + 𝑨22  + 𝑨33 , if the range of 

the index is from 1 to 3. On the other hand, if the range of the index is from 1 to n, then 

𝑨𝑘𝑘  =  𝑨11  + 𝑨22 + ⋯ + 𝑨𝑛𝑛 , a sum of n terms. Note that the subscript n does not 

imply summation, and the index should not repeat more than once. The notation 𝑨𝑘𝑘𝑘 , for 

instance, is not defined. The repeated index k is called a dummy index because it can be 

replaced by another index with no difference in its outcome. For example, 𝑨𝑘𝑘  = 𝑨𝑖𝑖= 𝑨𝑗𝑗  

= 𝑨11 + 𝑨22 + 𝑨33  [24]. 
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The dot product of two second-order tensors is a scalar which is defined by the 

following relationship:  

𝒂:𝒃 = 𝒂𝑖𝑗𝒃𝑖𝑗 = 𝒂11𝒃11 + 𝒂12𝒃12 +𝒂13𝒃13 + 

                           𝒂21𝒃21 + 𝒂22𝒃22 +𝒂23𝒃23 + 

                           𝒂31𝒃31 + 𝒂32𝒃32 +𝒂33𝒃33  

(2.1) 

The dyadic product of two vectors is a second-order tensor which is defined by the 

following relationship: 

𝒂⨂𝒃 = 𝒂𝑖𝒃𝑗 =  
𝒂1𝒃1 𝒂1𝒃2 𝒂1𝒃3

𝒂2𝒃1 𝒂2𝒃2 𝒂2𝒃3

𝒂3𝒃1 𝒂3𝒃2 𝒂3𝒃3

  (2.2) 

The transpose of a tensor is shown by 𝒂𝑇  and is defined as follows: 

(𝒂𝑖𝑗 )𝑇 = 𝒂𝑗𝑖  (2.3) 

 

2.3. Flow Rule: 

 

The flow rule specifies the increment of plastic strain once the material has yielded. In 

general, it is assumed that plastic strain increment is obtained by differentiation of a 

plastic potential function as follows:  

𝑑𝜺𝑝 = 𝑑𝜆
𝜕Ф

𝜕𝝈
 (2.4) 

where 𝑑𝜺𝑝  is the plastic strain increment, Ф is a potential function, 𝝈 is the stress tensor 

and 𝑑𝜆 is the scalar proportionality factor or plastic multiplier. If the potential function is 

assumed to be the same as the yield function, f, then the following relationship is 

obtained:  

𝑑𝜺𝑝 = 𝑑𝜆
𝜕𝑓

𝜕𝝈
 (2.5) 
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The above equation states that the plastic strain increment is proportional to the 

gradient of the yield surface and is, therefore, normal to the yield surface. This is usually 

referred to as the normality condition. A flow rule obeying the normality condition is 

referred to as the associated flow rule. However, if any function other than the yield 

function is used as the potential function in Eq. (2.4), the plastic strain increment will not 

be normal to the yield surface. This theory is known as the non-associated flow rule 

which is mostly used for geotechnical materials. It is widely accepted that the associated 

flow rule works well for most of metals [24, 25].  

 

2.4. Yield Criterion: 

 

The yield stress 𝜎𝑦  is shown in the one-dimensional stress–strain curve of Fig. 2.1. 

According to this figure, the material behaves elastically if the applied stress is less than 

𝜎𝑦 . However, as soon as the stress reaches 𝜎𝑦  plastic yielding occurs, which is called 

initial yielding. Therefore, the condition 𝜎 = 𝜎𝑦  is the yield criterion. The yield criterion 

defines the elastic region in the stress space (the stress axis in this one-dimensional case). 

When 𝜎 > 𝜎𝑦 , which corresponds, for instance, to curve ABE in Fig. 2.1, the material 

undergoes strain-hardening, and the material is subjected to subsequent yielding. 

Generally, a yield criterion should be able to determine the elastic region in a 

multidimensional stress space. In principal three-dimensional stress space (𝜎1, 𝜎2, 𝜎3), an 

infinite number of yield points form a yield surface. In the nine-dimensional stress 

space 𝝈𝑖𝑗  is represented by a hyper-surface shown in Figure 2.2. The yield surface is a 

function of stress so that the following conditions apply [24]:  

𝑓 𝜎𝑖𝑗  = 0        plastic state 

(2.6) 𝑓 𝜎𝑖𝑗  < 0        elastic state 

𝑓 𝜎𝑖𝑗  > 0        impossible 

 

http://en.wikipedia.org/wiki/Yield_surface
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Many yield functions have been developed for different materials and applications in 

plasticity. In the next section, some of the commonly used yield functions in sheet metal 

forming are introduced.  

 

Fig. 2.1. The Schematic stress–strain curve [24] 

 

 

Fig. 2.2. (a) Yield locus in a two-dimensional stress space and (b) yield surface in the nine-

dimensional stress space [24] 
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2.4.1. Maximum shear stress criterion:  

 

The maximum shear stress criterion, also known as Tresca's criterion, is often used to 

predict the yielding of ductile materials. Yield in ductile materials is usually caused by 

the slippage of crystal planes along the maximum shear stress surface. With respect to 2D 

stress, the maximum shear stress is related to the difference in the two principal stresses. 

Therefore, this criterion requires the principal stress difference, along with the principal 

stresses themselves, to be equal to the yield shear stress:  

Max  
1

2
 𝜎1 − 𝜎2 ,

1

2
 𝜎2 − 𝜎3 ,

1

2
 𝜎1 − 𝜎3  − 𝑘 = 0 (2.7) 

where σ1, σ2, σ3 are the principal stresses and k is the yield shear stress. According to this 

function, the uniaxial yield stress is equal to half of the yield shear stress. It should be 

noted that this yield function assumes the material is isotropic.  

 

Fig. 2.3. Graphical representation of Tresca’s yield function in a two-dimensional stress space  

 

2.4.2. von Mises criterion:  

 

The von Mises Criterion (1913), also known as the maximum distortion energy 

criterion, or octahedral shear stress theory, is often used to estimate the yield of isotropic 

ductile materials. The von Mises criterion states that failure occurs when the energy of 

σ1 

σ2 

σy 

σy 

-σy 

-σy 
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distortion reaches the same energy for yield/failure in uniaxial tension. Mathematically, 

this is expressed as follows:  

1

2
  𝜎1 − 𝜎2 

2 +  𝜎1 − 𝜎3 
2+ 𝜎2 − 𝜎3 

2 − 𝜎𝑦
2 = 0 (2.8) 

where σ1, σ2, σ3 are the principal stresses and 𝜎𝑦  is the yield stress. A geometrical 

representation of this function in a 2D stress space is shown in Fig. 2.4.  

 

 

Fig. 2.4. Geometrical representation of Tresca and von Mises yield functions in a two-

dimensional stress space  

 

2.4.3. Hosford’s isotropic yield criterion:  

 

Hosford’s [26] yield criterion for isotropic materials is a generalization of the von 

Mises yield criterion. It has the form:  

1

2
 𝜎1 − 𝜎2 

𝑛 +
1

2
 𝜎1 − 𝜎3 

𝑛+
1

2
 𝜎2 − 𝜎3 

𝑛 − 𝜎𝑦
𝑛 = 0 (2.9) 

where σ1, σ2, σ3 are the principal stresses, n is a material-dependent exponent and 𝜎𝑦  is 

the yield stress. The exponent n does not need to be an integer. When n = 1 the criterion 

reduces to the Tresca yield criterion. When n = 2 the Hosford criterion reduces to the von 

σ1 

σ2 

σy 

σy 

-σy 

-σy 

von Mises 

Maximum shear 

http://en.wikipedia.org/wiki/Von_Mises_yield_criterion
http://en.wikipedia.org/wiki/Von_Mises_yield_criterion
http://en.wikipedia.org/wiki/Tresca_yield_criterion
http://en.wikipedia.org/wiki/Von_Mises_yield_criterion
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Mises yield criterion. For n = 6 and 8, this function fits closely to the experimental yield 

locus of BCC and FCC materials, respectively.  

 

Fig. 2.5. Geometrical illustration of Hosford’s isotopic yield functions in a two-dimensional 

stress space  

 

2.4.4. Hill’s quadratic yield criterion:  

 

In 1948, Hill proposed an anisotropic yield criterion as a generalization of the von 

Mises criterion. It was assumed that the material has anisotropy with three orthogonal 

symmetry planes (for sheet metal). This function was defined by Hill [27] as follows:  

1

2
 𝐹 𝜎𝑦𝑦 − 𝜎𝑧𝑧  

2
+ 𝐺 𝜎𝑧𝑧 − 𝜎𝑥𝑥  

2 + 𝐻 𝜎𝑥𝑥 − 𝜎𝑦𝑦  
2

+   2 𝐿𝜎𝑥𝑦
2 + 𝐼𝜎𝑦𝑧

2 + 𝐾𝜎𝑧𝑥
2 − 1 = 0 

(2.10) 

where 𝐹, 𝐺, 𝐻, 𝐿, 𝐼 and 𝐾 are all material constants obtained by tests of material in 

different orientations. Using matrix notation, this function can be written as [28]:  
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3

2
𝝈𝑇𝑵𝝈− 𝜎𝑦

2 = 0 (2.11a) 

where 𝑵 is a fourth order anisotropic tensor, 𝜎𝑦  is the yield stress, and 𝝈 is the stress 

tensor. The dimensionless coefficients of 𝑵 are related to the coefficients of 𝐹, 𝐺, . . , 𝐾 

according to the following matrix:  



































6

5

4

32

331

2121

0

00

000

000

000

N

NSym

N

NN

NNN

NNNN

.

N  (2.11b) 

where 

2

1
3

2
yHN  , 2

2
3

2
yGN  , 2

3
3

2
yFN  , 2

4
3

2
yLN  ,  

2

5
3

2
yIN  , 2

6
3

2
yKN   

(2.11c) 

 

2.4.5. Logan-Hosford yield criterion:  

 

Logan and Hosford [29] proposed another yield criterion for anisotropic materials 

based on Hill's generalized yield criterion. This function is written as:  

𝐹 𝜎1 − 𝜎2 
𝑛 + 𝐺 𝜎1 − 𝜎3 

𝑛+𝐻 𝜎2 − 𝜎3 
𝑛 − 1 = 0 (2.12) 

where F,G,H are material constants, σ1, σ2, σ3 are the principal stresses, and the exponent 

n depends on the type of crystal (BCC, FCC, HCP, etc.) Accepted values of n are 6 for 

BCC materials and 8 for FCC materials.  

 

 

http://wapedia.mobi/en/Hill_yield_criteria
http://wapedia.mobi/en/Body-centered_cubic
http://wapedia.mobi/en/Face-centred_cubic
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2.4.6. Hill’s generalized yield criterion:  

 

In 1979, Hill [30] proposed a generalized form of Hill’s quadratic yield function. This 

function has the following form:  

𝐹 𝜎1 − 𝜎2 
𝑚 + 𝐺 𝜎1 − 𝜎3 

𝑚+𝐻 𝜎2 − 𝜎3 
𝑚 + 𝐿 2𝜎1 − 𝜎2 − 𝜎3 

𝑚

+ 𝑀 2𝜎2 − 𝜎1 − 𝜎3 
𝑚 + 𝑁 2𝜎3 − 𝜎2 − 𝜎1 

𝑚 − 𝜎𝑦
𝑚 = 0 (2.13) 

where 𝜎1, 𝜎2, 𝜎3 are the principal stresses (which are aligned with the directions of 

anisotropy), 𝜎𝑦  is the yield stress, and 𝐹,𝐺, 𝐻, 𝐿,𝑀, 𝑁 are material constants. The value 

of 𝑚 is determined by the degree of anisotropy of the material and must be greater than 1 

to ensure convexity of the yield surface. 

 

2.4.7. Yld2000-2d yield criterion:  

 

In 2003, Barlat et al. [31] proposed a yield criterion for anisotropic materials. This 

function is usually used for aluminum alloys where the plastic anisotropy coefficients, or 

r-values, are not well predicted by the previously mentioned functions. This function was 

designated as Yld2000-2d and is written as follows [31]:  

1

2
(Фʹ + Фʹʹ) − 𝜎𝑦

𝑎 = 0 (2.14a) 

where 𝑎 is a material coefficient, 𝜎𝑦  is the yield stress, Фʹ and Фʹʹ are two isotropic 

functions and are defined as follows: 

Фʹ =  𝑋ʹ1 − 𝑋ʹ2 
𝑎  , Фʹʹ =  2𝑋ʹʹ2 + 𝑋ʹʹ1 

𝑎+ 2𝑋ʹʹ2 + 𝑋ʹʹ1 
𝑎  

(2.14b) 

where 𝑋ʹ1, 𝑋ʹ2 are the principal values of tensor 𝑿ʹ and 𝑋ʹʹ1, 𝑋ʹʹ2 are the principal values 

of tensor 𝑿ʹʹ. Tensors 𝑿ʹ and 𝑿ʹʹ are obtained by linear transformation the stress tensor as 

follows:  
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𝑿ʹ = 𝑳ʹ𝝈 , 𝑿ʹʹ = 𝑳ʹʹ𝝈  

where 𝑳ʹand 𝑳ʹʹ are related to the anisotropic coefficients of the material by: 
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where α1, α2, …, α8 are all material anisotropic coefficients. Generally, eight input data 

from the material are required to identify these constants. These data include the yield 

strength and r-value of the sheet in the rolling, transverse, diagonal directions and 

equibiaxial stress state, i.e. σ0, σ45, σ90, σb, r0, r45, r90, rb. If rb is not known or difficult to 

obtain, it is also possible to assume that 2112 LL  .  

 

2.5. Hardening Rule:  

 

There are three classes of materials: the strain-hardening material, the perfectly plastic 

material, and the strain-softening material. Generally, metals are strain hardening (or 

work-hardening) materials and geotechnical materials may exhibit strain-softening under 

certain conditions. In the multiaxial stress state, strain-hardening is considered in the 

form of hardening rules for subsequent yield surfaces. It has been observed that the yield 

surface, upon application of a deformation history, will undergo expansion, distortion, 

translation, and rotation [24]. In plasticity, the hardening rule is used to describe the 

material behaviour during the plastic deformation. As mentioned in section 1.4, cyclic 
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loading is a common type of loading in sheet metal forming. Therefore, in this section, 

the behaviour of sheet metals during cyclic loading is briefly explained and then the most 

commonly used hardening models in literature will be introduced.  

 

2.5.1. The behaviour of sheet metals during cyclic loading:  

 

The behaviour of metals during cyclic plastic deformation is quite complex. In 

particular, the behaviour during reverse loading is usually different from the behaviour in 

forward loading. Experimental cyclic tests, such as uniaxial tension-compression, are 

required to determine actual material behaviour during cyclic loading. However, it is 

difficult to carry out uniaxial cyclic tension-compression tests on thin sheet metal 

specimens because of the tendency for the sheet to buckle in compression. To overcome 

this problem, many experimental methods have been proposed to render the uniaxial 

compression of sheet specimens possible. Kuwabara et al. [32] and Boger et al. [33] 

respectively used fork-shaped dies and flat dies to provide a lateral support for the sheet 

and prevent its buckling during uniaxial tension-compression tests. Yoshida et al. [34] 

successfully bonded a few thin sheets of metal to provide support for the sheet during 

uniaxial compression. Cyclic simple shear tests have also attracted the attention of many 

researchers as the specimen is not compressed during the test. Miyauchi [35, 36], 

Genevois [37], Rauch [38] and Barlat et al. [39] have successfully used the simple shear 

test for reverse loading at large strains. From the experimental cyclic tests on mild and 

dual-phase steels, the following phenomena have been observed during cyclic plastic 

deformation of sheet metals [34]:  

 

1. During reverse deformation, the transient Bauschinger deformation, 

characterized by an early re-yielding and smooth elastic–plastic transition with a 

rapid change of workhardening rate, is followed by the plastic deformation with 

an apparent permanent softening. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWX-4MFCW0X-1&_user=1010624&_coverDate=06%2F30%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=1010624&md5=cd2ec22d54c693922420e8a8ad8b606c#bbib47
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWX-4MFCW0X-1&_user=1010624&_coverDate=06%2F30%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=1010624&md5=cd2ec22d54c693922420e8a8ad8b606c#bbib65
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2. For the mild steel sheet, abnormal shapes of reverse stress–strain curves appear 

due to the workhardening stagnation which is caused by dissolution of 

dislocation cell walls during reverse loading  

3. Cyclic stress amplitudes strongly depend on cyclic strain ranges, as well as the 

mean strains. The larger the strain ranges, the larger the saturated stress 

amplitudes. 

4. Young’s modulus decreases during unloading as the plastic strain increases and 

finally saturates to a particular value after a large amount of plastics strain. 

 

A schematic illustration of the stress-strain response of sheet metals during uniaxial 

tension-compression test is shown in Fig. 2.6 [40]. This figure illustrates some of the 

phenomena that occur during cyclic deformation and that become more significant at 

large deformations.  

 

2.5.2. Isotropic hardening:  

 

Many metals, when deformed plastically, harden; that is, the stress required to cause 

further plastic deformation increases, often as a function of accumulated plastic strain. A 

uniaxial stress–strain curve with non-linear hardening is shown in Fig. 2.7 together with 

schematic representations of the initial and subsequent yield surfaces. In this instance, the 

subsequent yield surface is shown expanded compared with the original. When the 

expansion is uniform in all directions in stress space, the hardening is referred to as 

isotropic. In Fig. 2.7, loading is in the 2-direction, so the load point moves in the σ2 

direction from zero until it meets the initial yield surface at σ2 = σy. Yield occurs at this 

point. In order for hardening to take place, and for the load point to stay on the yield 

surface (the consistency condition requires this), the yield surface must expand as σ2 

increases, shown in Fig. 2.7. The amount of expansion is often taken to be a function of 

accumulated plastic strain. So many functions have been proposed for the amount of 

expansion of the yield surface as a function of plastic strain. For the isotropic hardening, 

the yield function equation is written as:  
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𝑓 𝜎, 𝑝 = 𝜎 − 𝜎𝑦 𝑝 = 0  (2.15) 

where 𝜎  is the effective stress, p is the accumulated effective plastic strain, and 𝜎𝑦 𝑝  is 

the yield stress which might be of the form : 

 𝜎𝑦 𝑝 = 𝜎𝑦0 + 𝑟(𝑝)  (2.16) 

in which 𝜎𝑦0  is the initial yield stress and 𝑟(𝑝) is called the isotropic hardening function. 

There are many forms used for 𝑟 𝑝  but a common one is:  

𝑟  𝑝 = 𝑏 𝑄 − 𝑟 𝑝  (2.17) 

where b and Q are material constants, which gives an exponential shape to the uniaxial 

stress–strain curve which saturates with increasing plastic strain, since integrating Eq. 

(2.17) with initial condition 𝑟 0 = 0 gives:  

𝑟 𝑝 = 𝑄(1 − 𝑒−𝑏𝑝 ) (2.18) 

So, 𝑄 is the saturated value of 𝑟 so that the peak stress achieved with this kind of 

hardening, from Eq. (2.16), is therefore (𝜎𝑦0 + 𝑄). Constant 𝑏 determines the rate at 

which saturation is achieved. Fig. 2.7 shows an example of the uniaxial stress–strain 

behaviour predicted using this kind of isotropic hardening function [41]. Because of the 

uniform expansion of the yield surface, the yield stress in the reverse loading is equal to 

that in forward loading. Therefore, isotropic hardening is not able to describe the 

Bauschinger effect in reverse loading. In order to describe the Bauschinger effect, the 

kinematic hardening rules have been proposed which will be introduced in the next 

sections.  
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Fig.2.6. Schematic of the stress-strain behaviour under cyclic tension-compression [40] 

 

Fig. 2.7. Isotropic hardening, in which the yield surface expands with plastic deformation, and the 

corresponding uniaxial stress–strain curve [41] 
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2.5.3.  Kinematic hardening:  

 

In the case of monotonically increasing loading, it is often reasonable to assume that 

any hardening that occurs is isotropic. For the case of reversed loading, however, this is 

often not appropriate. Consider a material which hardens isotropically, shown 

schematically in Fig. 2.8. At a strain of εi, corresponding to load point (1) shown in the 

figure, the load is reversed so that the material behaves elastically (the stress is now lower 

than the yield stress) and linear stress–strain behaviour results until load point (2) is 

reached. At this point, the load point is again on the expanded yield surface, and any 

further increase in load results in plastic deformation. Figure 2.8(b) shows that isotropic 

hardening leads to a very large elastic region upon reverse loading, which is often not 

what would be seen in experimental data. In fact, a much smaller elastic region is 

expected and this results from what is often called the Bauschinger effect, and kinematic 

hardening. In kinematic hardening, the yield surface translates in stress space, rather than 

expanding. This is shown in Fig. 2.9. 

 

In Fig. 2.9(a), the stress increases until the yield stress, 𝜎𝑦 , is reached. With continued 

loading, the material deforms plastically and the yield surface translates. When load point 

(1) is achieved, the load is reversed so that the material deforms elastically until point (2) 

is achieved when the load point is again in contact with the yield surface. The elastic 

region is much smaller than that predicted with isotropic hardening and shown in Fig. 

2.8(b). In fact, for the kinematic hardening in Fig. 2.9, the size of the elastic region is 2σy, 

whereas for isotropic hardening, it is 2(σy + r). In the case of plastic flow with kinematic 

hardening, note that the consistency condition still holds; i.e. the load point must always 

lie on the yield surface during plastic flow. In addition, normality still holds; the direction 

of the plastic strain increment is normal to the yield surface at the load point.  
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Fig. 2.8. Reversed loading with isotropic hardening showing (a) the yield surface and (b) the 

resulting stress–strain curve [41] 

 

The yield function describing the yield surface must now also depend on the location of 

the surface in stress space. Consider the initial yield surface shown in Fig. 2.9. Under 

applied loading and plastic deformation, the surface translates to the new location shown 

such that the initial centre point has been translated by  𝜶 . So, the stresses relative to the 

new centre of the yield surface should be checked for yield. Generally, the equation of 

the yield surface with the kinematic hardening is written as:  

𝑓 𝝈 − 𝜶 − 𝜎𝑦 = 0 (2.19) 

where 𝜶 is called the backstress tensor and determines the location of the centre of the 

yield surface. For example, Hill’s quadratic yield function, written in the form of Eq. 

(2.11a) in the absence of kinematic hardening, should be converted to the following 

equation:  

3

2
 𝝈 − 𝜶 𝑇𝑵 𝝈 − 𝜶 − 𝜎𝑦

2 = 0 (2.20) 

Because the backstress is a variable defined in stress space, it has the same components 

as stress. Several functions have been proposed to define the evolution of the backstress 

in stress space.  
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Fig. 2.9. Kinematic hardening showing (a) the translation, and (b) the resulting stress–strain 

curve with shifted yield stress in compression [41] 

 

In order to reproduce the Bauschinger effect, linear kinematic hardening model was 

first proposed by Prager [42]. In Prager’s kinematic hardening rule, the evolution of 

backstress is assumed to be proportional to the plastic strain as follows: 

𝑑𝜶 =
2

3
𝑐 𝑑𝜺𝑝  (2.21) 

where c is a material constant. Ziegler [43] modified Prager’s rule and proposed another 

linear kinematic rule according to the following equation: 

𝑑𝜶 = 𝑑𝜇(𝝈 − 𝜶) where 𝑑𝜇 > 0 (2.22) 

in which 𝑑𝜇 depends on the material. The difference between the Prager and Ziegler 

hardening rules is shown in Fig. 2.10. According to Prager, the center of yield surface 

translates in a direction normal to the yield surface at P and this increment of translation 

is denoted by dα
(P)

 in the figure. On the other hand, according to Ziegler, the increment of 

translation of the yield surface, denoted by dα
(Z)

, is along the direction of OʹP. It should 

be noted that the two rules are the same if the current yield surface is a hypersphere, 
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which is true when the Mises yield surface is considered and a combined isotropic–

kinematic hardening is applied. 

 

 

Fig. 2.10. Kinematic-hardening rules by Prager and Ziegler [24] 

 

Neither linear kinematic hardening nor combined isotropic-linear kinematic-hardening 

rule can capture the transient behaviour curve during reverse loading. In order to capture 

this curve, Armstrong and Frederick [44] proposed the following nonlinear kinematic 

hardening model:  

𝑑𝜶 =
2

3
𝑐 𝑑𝜺𝑝 − 𝛾𝜶 𝑑𝑝 (2.23) 

where 𝑐 and 𝛾 are two material constants. In its uniaxial form, for monotonically 

increasing plastic strain, Eq. (2.23) can be integrated, taking 𝜶 to be zero at 𝜀𝑝 = 0, to 

give:  

𝛼 =
𝑐

𝛾
(1 − 𝑒−𝛾𝜀

𝑝
) (2.24) 

 

According to Eq. (2.24), the backstress saturates to the value c/γ as the plastic strain 

increases. So, the maximum stress saturates to 𝜎𝑦 + 𝑐/𝛾: constant γ is the time constant 

and determines the rate of saturation of stress and 𝑐/𝛾 determines the magnitude. Later, 

Chaboche [45] modified the Armstrong-Frederick nonlinear kinematic model to better 
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reproduce the transient behaviour and ratcheting in fatigue. His proposed model is a 

decomposed nonlinear kinematic hardening as follows: 
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where 4α  is a threshold to make dynamic recovery term inactive within the threshold, ic

and i are two material constants and dp and )( if α are defined as follows:  

5.0

:
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3
)( 


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
 iii aaf   

This model assumes that the backstress evolution is obtained by four components. The 

first three components are the same as that of Armstrong and Frederick. However, the 

fourth component contains a threshold level of backstress that makes the dynamic 

recovery term inactive within the threshold. Outside the threshold, the fourth component 

evolves according to the Armstrong–Frederick rule. Ohno and Wang [46] introduced a 

different threshold term to the Armstrong–Frederick rule in order to control the evolution 

of the decomposed kinematic hardening rules. Each decomposed rule stops evolving 

outside of its threshold, iic / . This model is defined as follows: 
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(2.26) 

where f(αi) is the von Mises yield function and exponents mi are proposed to be 

dependent on the non-coaxiality of the plastic strain rate and the backstress in this model. 

In an effort to improve the Ohno-Wang model, McDowell [47] proposed a new 

expression for mi, appeared in the above equation, with the purpose of improving its 

capability for multiaxial simulation as follows:  
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where s is the deviatoric stress tensor. The expression for the exponents mi include the 

constants Bi which can be calibrated using multiaxial ratcheting responses to influence 

the multiaxial ratcheting simulations without affecting the uniaxial simulations. Jiang and 

Sehitoglu [48] incorporated the non-coaxiality of plastic strain rate into the Ohno and 

Wang model and offered another generalized form of this model as follows:  
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(2.28) 

Similar to the McDowell model, the exponents mi in this model assume constant values 

(mi=A0i) and the model reduces to the Ohno–Wang model for uniaxial loading. Chun et 

al. [40, 50] further improved the cyclic hardening model of Chaboche by using different 

backstress evolution laws for monotonic loading and reverse loading. In their approach, 

several backstress laws are deactivated upon loading reversal in order to obtain a 

different flow stress saturation level. The backstress is assumed to be obtained by the 

superposition of two different backstresses as follows:  

𝜶 = 𝜶1 + 𝜶2  (2.29) 

Each component of the back-stress is made to evolve independently so that different 

kinematic shift can be realized for the initial and reversal loading: 

𝜶1 =
𝑐1

𝝈 
 𝝈 − 𝜶 𝑝 − 𝛾𝜶1𝑝  (2.30a) 

𝜶2 =  
𝑐2

𝝈 
 𝝈 − 𝜶 𝑝  

0                   

   
for initial loading 

for reverse loading 
(2.30b) 
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where 𝑐1, 𝑐2 and 𝛾 are material (hardening) parameters to be determined. The Modified 

Chaboche model is recovered when 𝜶2 approaches zero (or 𝑐2 = 0).  

 

Yoshida et al. [34] developed two constitutive models called IH+NKH and 

IH+NLK+LK. The first model uses a combined isotropic-nonlinear kinematic hardening. 

A new evolution for the expansion of yield surface has been proposed in IH. In the 

second model, a linear term has been added to the Armstrong-Frederick model for 

evolution of backstress in LK. The NLK, LK and IH have the following forms, 

respectively:  
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(2.31) 

where c, a and 
H  are all material constants. The results of their study show that neither 

IH+NLK model nor IH+NLK+LK model can accurately describe the phenomena 

observed in cyclic experiments. In order to accurately model the material behaviour, two-

surface plasticity models have been employed by many researchers which will be 

discussed in the next section.  

 

2.5.4. Two-surface plasticity models:  

 

In parallel to modification of nonlinear kinematic hardening models, two-surface 

plasticity models, originally proposed by Dafalias and Popov [51] and Krieg [52], 

attracted a lot of attention by researchers because both the transient and long-term 

behaviour of the material can be fairly well described by these models. In two-surface 

models, the evolution of the inner surface is usually defined such that it describes the 

transient response of the material and the evolution of the bounding surface is usually 

responsible to describe the long-term response of the material.  
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The two-surface model proposed by Dafalias and Popov [51] defines a continuous 

variation of the plastic modulus 
𝑑𝜎

𝑑𝜀𝑝
= 𝐸𝑝between these two surfaces. In this model, a 

bounding surface is proposed in stress space in addition to the yield surface (sometimes 

also called the loading surface). The bounding surface always encloses the yield surface 

and is a generalization of the bounds observed in the experimental results for uniaxial 

random cyclic loading on a grade 60 steel specimen. The details of the experimental 

random cyclic loading curve were presented in [51].  

Geng and Wagoner [53,54] developed a two-surface plasticity model with the purpose 

of improving the nonlinear kinematic hardening model to capture the permanent 

softening. Their hardening rule is expressed as in the Armstrong–Frederick formulation 

with an additional term to allow for translations and expansion of the limiting or 

bounding surface: 

𝑑𝜶 =
𝑐𝑝

𝜎0

 𝝈 − 𝜶 𝑑𝑝 − 𝛾(𝜶 − 𝜷)𝑑𝑝 (2.32) 

where 𝑑𝑝 is the equivalent plastic strain rate; 𝜎0, cp and 𝛾 are material parameters, with 𝜎0 

representing the yield surface size, β is the centre of the bounding surface. The stress 

mapping point 𝝈𝜷 on the bounding surface is determined as follows: 

 𝝈𝜷 −𝜷 =
𝜎𝛽0

𝜎0

 𝝈 − 𝜶  (2.33) 

where 𝜎𝛽0 represents the size of the bounding surface. The translation and expansion of 

the bounding surface is specified with a mixed hardening rule:  

𝑑𝜷 =
𝑚𝐻𝑝

𝜎𝛽0
(𝝈𝜷 − 𝜷)𝑑𝑝 (2.34) 

𝑑𝜎𝛽0 =  1 − 𝑚 𝐻𝑝𝑑𝑝 (2.35) 

where 𝐻𝑝  is the plastic modulus of the monotonic loading curve, and m is the ratio of the 

kinematic response (translation) to the isotropic response (expansion) of the bounding 

surface.  

Yoshida and Uemori [40,55] developed another two-surface plasticity model. This 

model is composed of two nonlinear kinematic hardening rules and the isotropic 

hardening of the bounding surface. The model also pays special attention to the 

workhardening stagnation. This mode will be discussed later in the next chapter.  
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Lee et al. [56] also proposed another two-surface plasticity model based on the Dafalias 

and Popov model. In their model, both surfaces translate (kinematic hardening) and 

expand (isotropic hardening) in stress space. The kinematic hardening of the surfaces is 

defined by two different linear kinematic hardening rules. They also used their model to 

predict springback in a draw-bend test and showed their model improves the predicted 

springback results. It should be mentioned that this model does not take the 

workhardening stagnation into account. McDowell [57], Ohno and Kachi [58], Ohno and 

Satra [59], Xianjie et al. [60], Iwata [61] and White [62] have also developed two-surface 

plasticity models to improve modeling the material behaviour in cyclic loading. 

 

2.5.5. Rotation of the yield surface:  

 

The rotation of the yield surface has also been taken into account by some researchers. 

In an attempt to consider the rotation of the yield surface, Suprun [63] developed a new 

constitutive model with three plasticity constants. This model is actually an anisotropic 

work hardening model characterized by translation, reshaping and turning of the 

subsequent yield surface. The yield surface is initially a hypersphere; i.e. the material is 

initially isotropic, and then it is anisotropically extended to a hyperellipsoid. Meanwhile, 

this hyperellipsoid is allowed to rotate in the deviatoric stress space. The evolution law 

for this model is defined as a function of length of plastic deformation trajectory, the 

position of the loading point and the physical properties of the material. It should be 

pointed out that this model needs four parameters: the elastic limit, and three independent 

plastic constants.  

 Choi et al. [64,65] also considered the rotation of the yield surface for the description 

of the multi-axial elastoplastic behaviour. Their model enables the anisotropic yield 

surface to grow (isotropic hardening), translate (kinematic hardening) and rotate (rotation 

of the anisotropy axes) with respect to the deformation, while the shape of the yield 

surface remains essentially unchanged. Essentially, the model is formulated on the basis 

of an Armstrong–Frederick type kinematic hardening, the plastic spin theory for the 

reorientation of the symmetry axes of the anisotropic yield function, and additional terms 

coupling these expressions. The capability of the model is illustrated with multi-path 
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loading simulations in ‘tension-shear’ and ‘reverse-shear’ to assess its performance with 

‘cross’ hardening and ‘Bauschinger’ effects. 

 

2.5.6. Distortion of the yield surface:  

 

It has been reported in the literature that the yield surface is distorted as the plastic 

deformation proceeds [66-69]. Since the plastic strain increment is obtained according to 

the normality rule in the associated flow rule, it is important to take this phenomenon into 

account. In an effort to model yield surface distortion Francois [70] proposed a method to 

take into account the yield surface distortion within the thermodynamic framework. The 

yield surface obtained by this method is an egg-shaped similar to those observed in 

experimental data. He also compared the experimental results with those simulation 

results for both proportional and non-proportional tension-torsion paths. Vincent et al. 

[71] managed to introduce nonlinear kinematic hardening model taking distortion of 

subsequent yield surface into account. They used the results of a polycrystalline model to 

get some reference predictions to utilize in the development of the constitutive laws and 

then quantitatively identified their model using experimental data on a type 316L 

stainless steel. This model is limited to two-dimensional loading paths for simplicity of 

constitutive equation. Later in 2004, Vincent et al. [72] extended this model to a general 

five-dimensional loading path.  

 

2.5.7. Yoshida-Uemori two-surface model:  

 

As mentioned in the first chapter, advanced material constitutive equations are required 

for more accurate simulation of sheet metal forming and subsequent springback. Cyclic 

loading is a very common type of loading in sheet metal forming processes as it is 

observed during the material flow over the punch radius, die radius and through a 

drawbead. Since the material behaviour is quite complex in cyclic loading, the hardening 
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rule should be able to accurately predict the material behaviour in cyclic loading. After a 

careful investigation of existing hardening models in the literature, it was found that the 

Yoshida-Uemori (YU) model [40] is one of the most sophisticated and comprehensive 

phenomenological models which is capable of reproducing the transient Bauschinger 

effect, permanent softening and workhardening stagnation in large elasto-plastic 

deformation. 

 

2.6.  Consistency Condition:  

 

The plastic multiplier, 𝑑𝜆 in Eq. (2.4), is determined by use of the consistency 

condition. This condition states that the loading from a plastic state must again lead to a 

plastic state, the stress and plastic strain that exist after the infinitesimal changes 𝑑𝝈, 𝑑𝜺𝑝  

and 𝑑𝜎𝑦  have taken place must still satisfy the yield function equation: 

𝑓 𝝈, 𝜺𝑝 ,𝜎𝑦 = 0 (2.36) 

By use of the consistency condition, the increment of the yield function is zero, that is, 

𝑑𝑓 =
𝜕𝑓

𝜕𝝈
𝑑𝝈 +

𝜕𝑓

𝜕𝜺𝑝
𝑑𝜺𝑝 +

𝜕𝑓

𝜕𝜎𝑦
𝑑𝜎𝑦 = 0 (2.37) 

In Fig. 2.11, the stress at point A is 𝝈(𝐴) and it is on the yield surface 

𝑓 𝝈(𝐴), 𝜺𝑝(𝐴),𝜎𝑦
(𝐴) = 0 (2.38) 

An infinitesimal loading has moved the stress point from A to B and it carries the yield 

surface with it, so that the stress at B is 𝝈(𝐵) and the yield surface that B is on is: 

𝑓 𝝈(𝐵), 𝜺𝑝(𝐵),𝜎𝑦
(𝐵) = 0 (2.39) 

while  

𝑓 𝝈(𝐵), 𝜺𝑝(𝐴),𝜎𝑦
(𝐴) = 0 (2.40) 

Substituting (2.5) into (2.37), we have: 
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𝑑𝑓 =
𝜕𝑓

𝜕𝝈
𝑑𝝈 + 𝑑𝜆

𝜕𝑓

𝜕𝜺𝑝
𝜕𝑓

𝜕𝝈
+

𝜕𝑓

𝜕𝜎𝑦
𝑑𝜎𝑦 = 0 (2.41) 

which may be solved to obtain 𝑑𝜆 as: 

𝑑𝜆 = −

 
𝜕𝑓
𝜕𝜎𝑦

 𝑑𝜎𝑦 +  
𝜕𝑓
𝜕𝝈

 𝑑𝝈

 
𝜕𝑓
𝜕𝝈  

𝜕𝑓
𝜕𝜺𝑝 

 (2.42) 

 

 

Fig. 2.11. The consistency condition[24] 

 

  

2.7. Return Mapping Algorithm:  

 

In any structural analysis, we need to address how to represent and model the 

deformations and the material behaviour. For the representation of the deformations, a 

displacement field needs to be assumed and the corresponding kinematic quantities, such 

as strains, strain rates, deformation gradient, etc. need to be calculated. Once, the 

kinematic variables are known, a material model is required to calculate the stresses in 

the structure. A numerical algorithm is required for stress integration of strain-driven 

problem formulations; these problems arise in the displacement-based and mixed finite 

element formulations. The task of stress integration is to determine the stresses, inelastic 

strains and internal variables at the end of the time increment. A numerical integration 

A, σij 
(A) 

 

B, σij 
(B) 
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method is usually required for integration of plasticity equations. According to 𝛼-method, 

the integral of function 𝑓(𝑡) in an interval 𝛥𝑡 can be approximated as:  

 𝑓 𝑡 𝑑𝑡 =   1 − 𝛼 𝑓𝑡 + 𝛼𝑓𝑡+𝛥𝑡  𝛥𝑡
𝑡+𝛥𝑡

𝑡

 (2.42) 

where 0 ≤ 𝛼 ≤ 1 is the integration parameter, 𝑓𝑡  denotes the value of 𝑓 at time 𝑡 and 

𝑓𝑡+𝛥𝑡  is the value of 𝑓 at time 𝑡 + 𝛥𝑡. The values 𝛼 = 0 and 𝛼 = 1 correspond to the 

Euler forward method and Euler backward method, respectively, while 𝛼 = 0.5 gives the 

trapezoidal rule. If the Euler backward method is used in integration of plasticity 

equations, the value of the function is required at the end of time increment (𝑡 + 𝛥𝑡). 

Since, the stress is not known at the end of increment, Euler backward integration is 

referred to as the implicit method. Nevertheless, using Euler forward method is referred 

to as the explicit method since all quantities, including stresses, are known at the 

beginning of time increment 𝑡.  

In the return mapping procedure, it is first assumed that the increment is purely elastic. 

An elastic constitutive law, e.g. Hooke’s law, is used to calculate the so-called trial stress. 

If the trial stress lies inside or on the yield surface, the trial stress is accepted as the final 

solution and all internal variables are updated and the stress integration procedure is 

stopped. If the trial stress lies outside the yield surface, the plastic correction procedure is 

used to bring the stress back onto the yield surface at the end of time increment. In the 

plastic corrector procedure, the plasticity equations are integrated using Euler backward 

method and all equations are usually written in terms of one single parameter which is 

usually the effective plastic strain. Substituting these equations into the yield function 

leads to a nonlinear equation in terms of the effective plastic strain increment. This 

nonlinear equation is usually solved by the Newton-Raphson numerical method. Once the 

effective plastic strain is known, the plasticity equations are used to update all variables 

at the end of the time increment. This method is also known as elastic-predictor plastic-

corrector and is illustrated in Fig. 2.12. The return mapping procedure will be used in the 

next chapters to implement the advanced constitutive models in a finite element program.  
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Fig. 2.12. The return-mapping algorithm in multidimensional stress space [24] 
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Chapter 3 

 

Semi-implicit Numerical Integration of Yoshida-Uemori 

Two-Surface Plasticity Model 

 

 

 

3.1. Introduction:  

 

In order to reproduce the material behaviour in cyclic loading, the Yoshida-Uemori 

(YU) model [40], which is capable of describing the cyclic material behaviour relatively 

accurately, is used in this work. This model is able to describe transient Bauschinger 

effect, permanent softening and workhardening stagnation. To the best of our knowledge, 

the numerical procedure to implement this model has not published in the literature up to 

now. Moreover, the constitutive models utilizing this hardening law and anisotropic yield 

functions have not been developed in the literature. So, the return mapping algorithm is 

used in this project to develop two different numerical algorithms for implementation of 

this model into finite element codes. The first algorithm, which is limited to the use of 

quadratic yield functions, is presented in this chapter and the second one, which can be 

used with any yield function including nonquadratic yield functions, is described in the 

next chapter.  

The YU model is a two-surface plasticity model that assumes kinematic hardening of 

the yield surface within the bounding surface and mixed isotropic–kinematic hardening 

of the bounding surface itself. In two-surface plasticity models, such as Dafalias and 

Popov [51] and Lee et al. [56], two independent hardening evaluations are usually 
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defined for the kinematic evolution of the yield and bounding surfaces. In these models, a 

proper equation is required to define the gap between the yield and bounding surfaces and 

this gap should be checked at each time increment to make sure that the yield surface 

stays either inside or tangent to the bounding surface at the loading point. However, in 

the YU model, the evolution of the yield surface is defined by the superposition of two 

kinematic hardening laws. The first one (𝜷) locates the centre of the bounding surface 

and the second one (𝜽) defines the relative kinematic motion of the yield surface with 

respect to the bounding surface. The relative kinematic motion (𝜽) is a function of the 

difference between the sizes of the two surfaces and is defined such that the inner surface 

never passes the outer surface. Therefore, the yield surface never passes through the 

bounding surface. This fact makes the numerical implementation of this model much 

easier compared to other two-surface models. Additionally, the model uses only a few 

numbers of material constants although it is capable of reproducing many cyclic 

phenomena relatively accurately. Most of the parameters (seven parameters in the basic 

version of this model) can be easily determined directly from the experimentally obtained 

stress–strain curves. 

In order to consider the anisotropy of the sheet metal, the Hill’s quadratic yield function 

is used to define the yield (inner) surface. As mentioned in section 2.7, there are generally 

two integration schemes to integrate the plasticity equations: implicit and explicit 

schemes. In this chapter, a semi-implicit approach is used to integrate the Yoshida-

Uemori (YU) model and implement it as a user-defined material subroutine (UMAT). In 

the next chapter, an algorithm based on a fully implicit scheme is presented for 

implementation of this model as a UMAT for commercial finite element packages. The 

equations are derived in such a way that they would be applicable for all stress states 

including plane-stress problems.  
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3.2. Plastic Strain Rate:  

 

At the presence of backstress, Hill’s quadratic yield function (Eq. 2.11) is rewritten as: 

𝑓 𝜼 =  (3/2)𝜼𝑇𝑵𝜼− 𝑌 = 0   or   𝑓 𝜼 = 𝜂 − 𝑌 = 0 (3.1a) 

 

where 𝑵 is a fourth order anisotropic tensor defined in Eqs. 2.11, 𝑌 is the yield stress, and 

𝜼 is defined as the difference between the stress and the backstress, i.e. 𝜼 = 𝝈 − 𝜶. Voigt 

notation is usually used in development of numerical algorithms for implementation into 

computer programs. In this notation, second-order tensors and fourth-order tensors are 

represented by one-dimensional arrays and two-dimensional arrays, respectively. Using 

Voigt notation, the stress and backstress tensors are represented by:  

𝝈 =

 
 
 
 
 
 
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧
𝜎𝑥𝑦

𝜎𝑦𝑧

𝜎𝑥𝑧  
 
 
 
 
 

 , 𝜶 =

 
 
 
 
 
 
𝛼𝑥𝑥

𝛼𝑦𝑦

𝛼𝑧𝑧
𝛼𝑥𝑦

𝛼𝑦𝑧

𝛼𝑥𝑧  
 
 
 
 
 

   (3.1b) 

In order to calculate the plastic strain increment, the incremental deformation theory 

[73,74] is applied to the elasto-plastic formulation based on the materially embedded 

coordinate system. Under this scheme, the strain increments in the flow formulation are 

the discrete true (or logarithmic) strain increments, and the material rotates by the 

incremental angle obtained from the polar decomposition at each discrete step. It should 

be mentioned that the plastic strain increment can also be obtained by the multiplicative 

decomposition theory. Especially when material deformation follows minimum plastic 

work path (or logarithmic strain path), multiplicative theory formulation coincides with 

the current additive decomposition theory based on the incremental deformation theory 

(Han et al. [75]). In the incremental deformation theory, the effective plastic strain 

increment is obtained as follows:  
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
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:

:
 

(3.2a) 

where 𝛥𝜆 is the plastic multiplier, 𝛥𝑝 is the effective plastic strain increment and 𝜎  is a 

first order homogenous function, that is 







 . Now, using the associated flow rule 

and Eq. (3.2a), the plastic strain increment is obtained as follows:  

𝜺 𝑝 =
3𝑝 

2𝜂 
𝑵𝜼 (3.2b) 

 

3.3.  The Yoshida-Uemori (YU) Model: 

 

The materially embedded coordinate system (co-rotational coordinate system) is used 

here in this chapter, not only because it makes the derivation of numerical equations more 

convenient but also because it is usually required by many of the commercial programs 

such as ABAQUS. The YU model consists of two surfaces in stress space that are 

schematically shown in Fig. 3.1. The kinematic hardening of the yield surface describes 

the transient Bauschinger deformation characterized by early re-yielding and a 

subsequent rapid change of workhardening rate, which is mainly due to the motion of less 

stable dislocations, such as piled-up dislocations. The isotropic hardening of the 

bounding surface represents the global workhardening, which is associated with the 

formation of stable dislocation structures, such as cell walls. Permanent softening and 

workhardening stagnation are caused by the dissolution of dislocation cell walls that were 

created during forward deformation [76,77]. In order to describe such deformation 

characteristics under stress reversals, the kinematic hardening and non-IH region during 

stress reversals are assumed for the bounding surface. The model is able to describe the 

cyclic phenomena shown in Fig. 3.2 relatively accurately.  

 The inner surface, or yield surface, determines the elastic domain of the material in 

stress space. It is assumed that this surface translates in stress space without expansion. 
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The relative kinematic motion (𝜽) of the yield surface with respect to the bounding 

surface is expressed by:  

𝜽 = 𝑐  
𝑎

𝑌
𝜼 −  

𝑎

𝜃 
𝜽 𝑝  (3.3a) 

where 𝜼 is the difference between the stress and backstress, 𝜽 is the position of the yield 

surface with respect to the centre of the bounding surface, c is a material parameter that 

controls the rate of kinematic hardening and Y is the initial yield stress. Moreover, 𝑝  is 

the effective plastic strain rate, 𝜃  is the effective backstress, and 𝑎 is the difference 

between the size of the bounding surface and the yield surface. These parameters are 

defined as follows: 

𝑝 =  
2

3
𝜺 𝑝 : 𝜺 𝑝 ; 𝜃 =  (3/2)𝜽𝑇𝑵𝜽; 𝑎 = 𝐵 + 𝑅 − 𝑌 (3.3b) 

where 𝜺 𝑝  denotes the plastic strain rate, and 𝐵 and 𝑅 are the initial size of the bounding 

surface and the isotropic hardening component, respectively. Eq. (3.3a) indicates that the 

yield surface moves in such a way that the current stress point existing on the yield 

surface is approaching the corresponding point on the bounding surface. Under the 

uniaxial stress state, Eq. (3.3a) yields:  

𝜽 = 𝑐𝑎  𝜺 𝑝 − 𝑠𝑔𝑛(𝜽) 
𝜃 

𝑎
 𝜺 𝑝   (3.4) 

A combined isotropic-nonlinear kinematic hardening model is used to describe the 

evolution of the bounding surface. The isotropic hardening of the bounding surface is 

expressed by: 

𝑅 = 𝑘 𝑅𝑠𝑎𝑡 − 𝑅 𝑝  (3.5) 

where 𝑅𝑠𝑎𝑡  is the saturated value of the isotropic hardening stress, 𝑅, at infinitely large 

plastic strain, and 𝑘 is a material parameter that controls the rate of isotropic hardening. 

The isotropic hardening of the bounding surface is used to describe the global 
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workhardening of the material. In order to describe the permanent softening observed 

during reverse loading, the kinematic hardening of the bounding surface is introduced. 

The kinematic hardening of the bounding surface is assumed by: 

𝜷 = 𝑘  
𝑏

𝑌
𝜼 − 𝜷 𝑝  (3.6) 

where 𝜷 is the kinematic hardening of the bounding surface and 𝑏 is a material 

parameter. It should be noted that parameter k is assumed to be the same as in the 

evolution equation of the isotropic hardening stress (Eq. (3.5)). It should also be 

mentioned that 𝜷  is defined in the deviatoric stress space by Yoshida and Uemori where 

the linear term (i.e. the first term) of the equation is based on Prager’s model. However, I 

assumed that the linear term of 𝜷  is in the direction of 𝜼 according to Ziegler’s model not 

only to avoid the strain softening error associated with Prager’s rule but also to define 

both backstress equations in the same stress space and then simply add them together to 

calculate 𝜶. The evolution of the yield surface is defined by superposition of the above 

nonlinear kinematic motions as: 

𝜶 = 𝜷 + 𝜽  (3.7) 

 

Fig. 3.1. Schematic illustration of Yoshida-Uemori model [40] 
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The size of yield surface is smaller than the bounding surface and makes it possible to 

capture the early re-yielding during reverse deformation. The kinematic hardening of the 

yield surface is used to describe the rapid change of workhardening in the transient 

Bauschinger region. The kinematic and isotropic hardenings of the bounding surface 

describe permanent softening and global workhardening of the material, respectively. It 

should be noted that the bounding stress in uniaxial loading is obtained by:  

  kp

sat

forward

bound bRBRB  e1  (3.8) 

 

 

Fig. 3.2. Stress-strain response of a mild steel in a forward and reverse loading and the cyclic 

phenomena 

 

At the beginning of deformation, both the yield and bounding surfaces are assumed to 

be at the origin in stress space, and the radius of the yield surface is smaller than that of 

the bounding surface. As plastic deformation takes place, the yield surface translates 

within the bounding surface which itself is both translating and expanding. The model 

also accounts for the workhardening stagnation which is discussed in section 3.4.2.  
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3.4. Stress Integration: 

 

In the following equations of this chapter, subscript 𝑛 is used to denote a quantity at the 

beginning of a time increment, whereas subscript 𝑛 + 1 is used to denote a quantity at the 

end of the time increment. If no subscript is used, this quantity is evaluated at the end of 

the increment. It is generally more advantageous to use the Euler backward method (fully 

implicit integration scheme) in order to integrate the plasticity equations because it is 

unconditionally stable. In this scheme, all quantities are written at the end of each time 

increment to ensure that the yield function is satisfied at the end of the time increment. 

Therefore, this avoids drift from the yield surface which can occur in the Euler forward 

(explicit) method. When an implicit approach is used for integration of global finite 

element equations, the Euler backward scheme generally leads to much more rapid 

solutions as it allows larger time increments to be used. However, it is more challenging 

mathematically to use a fully implicit approach with complex hardening laws. For 

example, if a fully implicit approach were used here to integrate Eq. 3.4, then we would 

need to solve a system of equations for 𝜽 in each direction because its evolution depends 

on 𝜽. Therefore, a fully implicit approach usually is both more challenging to implement 

and more computationally expensive. In addition, the implicit approach may not be able 

to converge for very complex problems as more equations are to be solved in this 

approach.  

A simpler approach is to integrate the effective plastic strain implicitly but the internal 

variables explicitly. This method is called semi-implicit integration. Since it is not 

unconditionally stable [78], a sufficiently small time increment should be used to ensure 

both stability and accuracy when this approach is used. In this study, a semi-implicit 

approach was used to integrate equations 3.3a and 3.6. A sub-step algorithm was also 

used in the user subroutine to control the size of strain increment and to control the 

integration error in the simulation. It is also worth mentioning that the strain increment is 

usually very small in the global finite element explicit approach and there is practically 

no need for such a sub-stepping algorithm. The semi-implicit integration of equations 

3.3a and 3.6 leads to: 
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𝛥𝜽 = 𝑐  
𝑎

𝑌
𝜼 −  

𝑎

𝜃 𝑛
𝜽𝑛 𝛥𝑝 (3.9) 

𝛥𝜷 = 𝑘  
𝑏

𝑌
𝜼 − 𝜷𝑛  𝛥𝑝 (3.10) 

𝛥𝜶 = 𝛥𝜷 + 𝛥𝜽 (3.11) 

It is noted that all variables except 𝜽 and 𝜷 are written at the end of the time increment. 

Using the return mapping algorithm, the trial stress and then the stress can be written in 

elastic predictor-plastic corrector form in terms of the trial stress and plastic return as:  

𝝈𝑇𝑟 = 𝝈𝑛 + 𝑫𝜟𝜺 (3.12) 

𝝈 = 𝝈𝑇𝑟 − 𝑫𝛥𝜺𝑝  (3.13) 

𝜼 = 𝝈 − 𝜶 = 𝝈𝑇𝑟 − 𝑫𝛥𝜺𝑝 − 𝜶𝑛 − 𝛥𝜶 = 𝜼𝑇𝑟 − 𝑫𝛥𝜺𝑝 − 𝛥𝜶 (3.14) 

where 𝝈𝑇𝑟 is the trial elastic stress,
 
𝝈 is stress at the end of an increment, 𝜶𝑛  and 𝜶𝑛  are 

backstresses at the beginning and end of an increment, respectively,
 
𝜺𝑛
𝑝
and 𝜺𝑝  are the 

total plastic strains at the beginning and end of an increment, respectively, and 𝑫 is the 

elasticity tensor. Eqs. (3.15a) and (3.15b) show the representation of 𝑫 in Voigt notation 

for a general 3D stress space and plane stress space respectively.  

𝑫 =

 
 
 
 
 
 
2𝐺𝐸 + 𝜆𝐸 𝜆𝐸 𝜆𝐸 0 0 0

𝜆𝐸 2𝐺𝐸 + 𝜆𝐸 𝜆𝐸 0 0 0
𝜆𝐸 𝜆𝐸 2𝐺𝐸 + 𝜆𝐸 0 0 0
0 0 0 𝐺𝐸 0 0
0 0 0 0 𝐺𝐸 0
0 0 0 0 0 𝐺𝐸 

 
 
 
 
 

 

(3.15a) 

𝑫 =
𝐸

1 − 𝜈2
 

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

  (3.15b) 

where 𝐸, 𝑣, 𝐺𝐸  and 𝜆𝐸  are the elastic modulus, Poisson’s ratio, shear modulus and 

Lame’s constant of the material, respectively. It should be emphasized that engineering 
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shear strains are used in Eqs. (3.15) to calculate the shear stresses. So, the strain tensors 

in Voigt notation for 3D and plane stress states are respectively represented as:  

𝜺 =

 
 
 
 
 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧

2𝜀𝑥𝑦
2𝜀𝑦𝑧
2𝜀𝑥𝑧  

 
 
 
 
 

, 𝜺 =  

𝜀𝑥𝑥
𝜀𝑦𝑦

2𝜀𝑥𝑦

  (3.15c) 

 The elasticity tensor for plane strain and axisymmetric states is simply obtained by 

eliminating the fifth and sixth columns and rows of Eq. (3.15a).  

Substitution of Eq. (3.2b) and Eqs. (3.9)-(3.11) into Eq. (3.14) leads to the following 

equation:  
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(3.16) 

After some mathematical manipulations, the following return map equation is obtained 

which is only in terms of a single parameter, i.e. 𝛥𝑝:  
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where  
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 (3.17b) 

Substituting Eq. (3.17) into the yield function, i.e. Eq. (3.1), results in a nonlinear 

equation in terms of 𝛥𝑝 which can be easily solved using the Newton-Raphson method. 

Once 𝛥𝑝 is known, Eq. (3.17a) is first used to obtain 𝜼, then Eqs. (3.9)-(3.11) are used to 

calculate the increment of backstress. Finally, the plastic strain increment and stress are 

obtained by using Eqs. (3.2b) and (3.13), respectively. It should be mentioned that for the 
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plane stress state, the thickness strain also needs to be updated. This thickness strain at 

the end of a time increment can be calculated using the following relationship:  

)()( p

yy

p

xxyyxxzz
E

v
   (3.18) 

where 𝐸, 𝑣 are the elastic modulus and Poisson’s ratio of the material respectively. xx , 

yy , p

xx  and 
p

yy are all written at the end of the time increment. 

 

3.4.1. The elastoplastic tangent modulus: 

 

In the implementation of a plasticity model into an implicit finite element code, it is 

necessary to provide the tangent modulus or the material Jacobian matrix which is 

required for solving the equilibrium equations or momentum balance. In general, there 

are two methods to calculate the tangent modulus. In the first method, the plasticity 

equations in the rate form are used to obtain the derivative of stress with respect to strain. 

So, the following relationship is obtained:  








ep

cD  (3.19) 

ep

cD is called continuum tangent modulus. In the second method, the derivative of stress 

increment with respect to strain increment is calculated and the following equation is 

obtained:  

)(

)(








ep

D  (3.20) 

epD is called consistent tangent modulus because it is consistent with the stress 

integration algorithm. Simo and Taylor [79] showed that the consistent tangent modulus, 

i.e. Eq. (3.20), approaches to the continuum tangent modulus, i.e. Eq (3.19), as the 

increment size approaches to zero. In general, it is more challenging and difficult to 



48 
 

calculate the consistent tangent modulus. The advantage of using a consistent tangent 

modulus is that it results to the quadratic rate of asymptotic convergence for the Newton-

Raphson method to solve the global finite element equilibrium equations as proved by 

Simo and Hughes [80]. Therefore, larger strain increment sizes can be generally solved 

when a consistent tangent modulus is used. Since a large increment size should not be 

used in the semi-implicit approach; the continuum tangent modulus was used in the user 

subroutine in order to prevent the user from using very large increments. In chapter 4, a 

fully implicit approach is used to integrate YU model and the consistent tangent modulus 

will be calculated.  

Using the additive decomposition of strain and elastic constitutive equation, the stress is 

written as follows:  

𝝈 = 𝑫𝜺𝑒 = 𝑫[ 𝜺 − 𝜺𝑝 ] (3.21) 

Time differentiation of this equation leads to: 

𝝈 = 𝑫 𝜺 − 𝜺 𝑝 = 𝑫  𝜺 −
3𝜆 

2𝜂 
𝑵𝜼  (3.22) 

The plastic consistency condition states that the stress point must remain on the yield 

surface during plastic loading. So, the time differentiation of the yield function for the 

inner surface gives:  

𝑓 =
3𝜼𝑇𝑵𝜼 

2𝜂 
= 0     𝑜𝑟   𝜼𝑇𝑵𝜼 = 0 (3.23) 

Substitution of Eq. (3.22) and Eq. (3.7) into Eq (3.22) gives:  

0
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3
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Y
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




 DNDN  (3.24) 

The effective plastic strain rate is obtained by solving Eq. (3.24):  

𝜆 =
𝜼𝑇𝑵𝑫𝜺 

𝜑
 (3.25a) 
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where 

𝜑 = 𝜼𝑻𝑵𝑫𝑵𝜼 +
4

9
 𝑎. 𝑐 + 𝑘. 𝑏 𝑌2 −

2

3
𝑌. 𝑐 

𝑎

𝜃 
𝜼𝑻𝑵𝜽 −

2

3
𝑌. 𝑘. 𝜼𝑻𝑵𝜷 (3.25b) 

Finally, Eq. (3.25a) is substituted back into Eq. (3.22) to find the tangent modulus:  

𝝈 =  𝑫 −
(𝑫𝑵𝜼) ⊗ (𝑫𝑵𝜼)

𝜑
 𝜺  (3.26) 

where  denotes the dyadic product of two vectors.  

 

3.4.2. Workhardening stagnation: 

 

The experimentally obtained stress–strain curves on a mild steel exhibit apparent 

workhardening stagnation in a certain period of reverse deformation starting from the 

reverse re-yielding [34]. This phenomenon is also related to the cyclic strain-range, as 

well as the mean-strain. 

As already mentioned, the workhardening stagnation is caused by the dissolution of 

dislocation cell walls during a reverse deformation. It can be expressed by the non-

isotropic hardening (non-IH) of the bounding surface, since in the present model the 

isotropic hardening of the bounding surface represents the global workhardening due to 

the formation of stable dislocation structures, such as cell walls. Yoshida and Uemori 

defined a non-isotropic surface of J2-type, gσ, to account for workhardening stagnation. It 

is assumed that the centre of the bounding surface is located either inside this surface or 

on the boundary of this surface. Isotropic hardening of the bounding surface takes place if 

the centre of the bounding surface is located on the boundary of gσ as shown in Fig. 3.3b. 

gσ is defined as follows:  

𝑔𝜎(𝜷, 𝒒, 𝑟) =
3

2
 𝜷 − 𝒒 𝑇𝑷 𝜷 − 𝒒 − 𝑟2 = 0 (3.27a) 
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0R ,otherwise (3.27b) 

where 𝒒 and 𝑟 denote the centre and radius of gσ, respectively, as shown in Fig. 3.3 and P 

is defined by:  
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Fig. 3.3 Schematic illustration of stagnation surface: a) non-isotropic hardening (𝑅 =0); b) 

isotropic hardening takes place (𝑅 >0) 

 

From some experimental stress–strain curves under a large-strain reverse deformation, 

it was found that the plastic strain region of workhardening stagnation increases with the 

accumulated plastic strain. Such a phenomenon can be expressed by the expansion of the 

surface gσ with increasing plastic strain. Yoshida and Uemori assumed the kinematic 

motion of the surface gσ such that the center of gσ moves in the direction of (𝜷 − 𝒒), as:  

𝒒 = 𝜇 𝜷 − 𝒒 = μ𝝃 (3.28) 

r 

O 

q β 

gσ 

r 

O 

q β 

gσ 

Bounding Surface  

(a) (b) 
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where 𝝃 = 𝜷 − 𝒒 and 𝜇 is obtained by imposing the consistency condition which states 

that the centre point of the bounding surface should be either on, or inside, the stagnation 

surface:  

𝜇 =
3𝝃𝑇𝑷𝜷 

2𝑟2
−

𝑟

𝑟 
 (3.29) 

The following evolution equation for the evolution of 𝑟 was assumed by Yoshida and 

Uemori: 

𝑟 = 𝑕
3𝝃𝑇𝑷𝜷 

2𝑟
  when 𝑅 > 0 (3.30a) 

𝑟 = 0  when 𝑅 = 0 (3.30b) 

where (0 ≤ 𝑕 ≤ 1) denotes a material parameter that determines the rate of expansion of 

surface gσ. The larger value of 𝑕 gives a rapid expansion of the non-IH surface, and as a 

result, it leads to the prediction of less cyclic hardening. Since the non-IH 

(workhardening stagnation) appears during reverse deformation after prestrain, the initial 

value of 𝑟 may be assumed to be zero. 

A description of the integration of the stagnation equations is now presented. 

Integration of Eq. (3.30a) and (3.28) using the Euler backward method leads to:  

𝑟2 = 𝑟𝑛
2 + 3𝑕𝝃𝑻𝑷𝛥𝜷 (3.31) 

𝛥𝒒 = 𝛥𝜇𝝃 (3.32) 

Furthermore, Eq. (3.32) is used to calculate 𝝃: 

𝝃 = 𝜷 − 𝒒 = 𝜷 − 𝒒𝑛 − 𝛥𝒒 = 𝜷 − 𝒒𝑛 − 𝛥𝜇𝝃 (3.33) 

𝝃 =
𝝃𝑛

1 + 𝛥𝜇
 (3.34) 

where 𝝃𝑛 = 𝜷 − 𝒒𝑛 . 
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Substituting Eqs. (3.34) and (3.31) into Eq. (3.27a) yields the following quadratic 

equation: 

3

2
𝝃𝑛
𝑇𝑷𝝃𝑛 − 3𝑕𝝃𝑛

𝑇𝑷𝛥𝜷 1 + 𝛥𝜇 − 𝑟𝑛
2 1 + 𝛥𝜇 2 = 0 (3.35) 

The analytical solution to this equation is obtained as follows:  

𝛥𝜇 =
3𝑕𝝃𝑛

𝑇𝑷𝛥𝜷 +   3𝑕𝝃𝑛
𝑇𝑷𝛥𝜷 2 + 4𝑟𝑛2  

3
2 𝝃𝑛

𝑇𝑷𝝃𝑛  

2𝑟𝑛2
− 1 

(3.36) 

Once 𝛥𝜇 is known, 𝝃 is obtained using Eq. (3.34) and then 𝜷 is found by Eq. (3.33) at 

the end of the time increment. The radius of the stagnation surface, 𝑟, is also obtained by 

Eq. (3.31). Therefore, the location and radius of the stagnation surface is found at the end 

of the increment.  

At the beginning of deformation, it is assumed that the isotropic hardening does not 

take place. The stress integration algorithm is run first to calculate the stress and all 

internal variables, i.e. 𝜷, 𝜽, 𝜶, 𝑅. Then, the stagnation surface calculations are done to 

find the final position and size of the stagnation surface, i.e. 𝒒 and 𝑟. If the centre of the 

bounding surface is located inside the stagnation surface, all solutions are accepted as 

final solutions. However, if the centre of the bounding surface is located on the boundary 

of the stagnation surface, this means that isotropic hardening should take place. 

Therefore, the current strain increment should be divided into two sub-increments. In the 

first sub-step, the centre of the bounding surface moves within the stagnation surface 

until it arrives at the boundary of the stagnation surface. In the second sub-step, the centre 

of the bounding surface remains on the boundary of the stagnation surface and isotropic 

hardening takes place. It is generally difficult and time consuming to find when the centre 

of the bounding surface reaches the boundary of the stagnation surface. Nevertheless, if 

the strain increment size is selected to be small, the change from non-isotropic hardening 

to isotopic hardening can be neglected. In other words, if the centre of the bounding 

surface lies on the boundary of the stagnation surface at the end of a time increment, it 

can be assumed that isotropic hardening takes place for this increment. As mentioned at 
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the beginning of this section, sub-step algorithm is utilized to make sure that the 

increment size is small enough for the subroutine. Therefore, in order to reduce 

computation time, the stagnation condition (Eq. 3.27) is checked at the end of each 

increment. After isotopic hardening occurs, the current status is saved in a state variable 

for the next increment. The isotropic hardening of the bounding surface takes place until 

unloading occurs. In the first unloading increment, the stress integration algorithm 

calculates the stress and all internal variables. Then, the final position and size of the 

stagnation surface is obtained. The final position of the bounding surface shows that the 

centre of the bounding surface is located inside the stagnation surface. So, the algorithm 

determines that isotropic hardening should not take place. The stress integration is re-run 

to calculate the stress and internal variables assuming that isotropic hardening does not 

take place. In summary, the isotropic hardening assumption is first made based on the 

previous increment. At the end of the increment, the solution is accepted if the 

assumption was correct. If not, the isotropic assumption will be changed and the stress 

integration subroutine is re-run. The numerical algorithm for implementation of this 

model is shown in Table A.1.  

 

3.4.3. Decrease of unloading elastic modulus: 

 

Luo and Ghosh [81] have reported that the elastic modulus during unloading and 

reloading is different from the initial elastic modulus in the un-deformed state. Levy et al. 

[82] also reported that the apparent unloading modulus is smaller than the initial elastic 

modulus and experimentally obtained the variation of unloading modulus as a function of 

plastic strain for AKDQ and DP600 sheet materials. Benito et al. [83] also observed that 

the elastic modulus of polycrystalline pure iron decreases with plastic deformation during 

a tensile test at room temperature. They measured the residual stresses and texture and 

observed the dislocation structure by TEM. Since they did not observe any significant 

change in texture during the deformation, they concluded that the decrease of elastic 

modulus was not due to either a change of texture or to residual stresses. They stated that 
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the dislocation arrangement change results in diminution of elastic modulus and proposed 

a relationship between these two parameters. Yang et al. [84], Cleveland and Ghosh [85] 

and Morestin and Boivin [86] have also reported the decrease of unloading modulus. 

Since the decrease of unloading modulus has a significant effect on the prediction of 

springback, the following empirical equation was used by Yoshida and Uemori [40,55] in 

YU model to take the decrease of unloading modulus into account:  

𝐸 = 𝐸0 −  𝐸0 − 𝐸𝑎  [1 − exp −𝜁𝑝 ] (3.37) 

where E0 and Ea are Young’s modulus for as-received and infinitely large prestrained 

materials, respectively, and 𝜁 is a material constant which determines the rate of decrease 

of the effective unloading modulus with respect to plastic strain. In simulation of BM#3, 

which is presented in the next section, the elastic modulus was taken to be constant 

during the forming stage, and the reduced unloading modulus was used in the springback 

simulation stage.  

 

3.5. Hourglass Control:  

 

If an element in reduced integration mode is used in ABAQUS/Standard, the hourglass 

stiffness needs to be calculated. Because ABAQUS/Standard calculates the hourglass 

stiffness by using the elastic properties of the material, it requires the hourglass stiffness 

when a UMAT is used in the simulation. So, the user must define the hourglass stiffness 

factor for hourglass control based on the total stiffness approach as part of the element 

section definition. It should be mentioned that the hourglass stiffness factor is not 

required for enhanced hourglass control in ABAQUS.  

Normally the hourglass control stiffness is defined from the elasticity associated with 

the material. In most cases it is based on a typical value of the initial shear modulus of the 

material, which may, for example, be given as part of the elastic material definition. For 

an isotropic elastic or hyperelastic material 𝐺𝐸  is the shear modulus. For a non-isotropic 
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elastic material an average shear modulus is used to calculate the hourglass stiffness. The 

default values for the stiffness factors are defined below. 

 For membrane or solid elements:  

𝑟𝐹 = 0.005𝐺𝐸 (3.38) 

 For membrane hourglass control in a shell:  

𝑟𝐹 = 0.005
 𝐺𝐸. 𝑑𝑡

𝑡/2

−𝑡/2

𝑡
 (3.39) 

where 𝑟𝐹 denotes the hourglass stiffness factor and t is the thickness of the shell. The 

above formulations are used to obtain the hourglass stiffness factor for the element [87].  

  

3.6. Transverse Shear Stiffness:  

 

If user subroutine UMAT is used to describe the material of beams or shells that 

calculate transverse shear energy, the user must specify the transverse shear stiffness as 

part of the beam or shell section definition to define the transverse shear behaviour. For 

all shell elements in ABAQUS/Standard that use transverse shear stiffness and for the 

finite-strain shell elements in ABAQUS/Explicit, the transverse shear stiffness is 

computed by matching the shear response for the shell to that of a three-dimensional solid 

for the case of bending about one axis.  

In all shell elements in ABAQUS/Standard that are valid for thick shell problems or 

that enforce the Kirchhoff constraint numerically and in the finite-strain shell elements in 

ABAQUS/Explicit, ABAQUS computes the transverse shear stiffness by matching the 

shear response for the case of the shell bending about one axis, using a parabolic 

variation of transverse shear stress in each layer. In calculating the transverse shear 
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stiffness, ABAQUS assumes that the shell section directions are the principal bending 

directions (bending about one principal direction does not require a restraining moment 

about the other direction). For composite shells with orthotropic layers that are not 

symmetric about the shell midsurface, the shell section directions may not be the 

principal bending directions. In such cases the transverse shear stiffness is a less accurate 

approximation and will change if different shell section directions are used. ABAQUS 

computes the transverse shear stiffness only once at the beginning of the analysis based 

on initial elastic properties given in the model data. Any changes to the transverse shear 

stiffness that occur due to changes in the material stiffness during the analysis are 

ignored. 

The transverse shear stiffness should be specified as the initial, linear elastic stiffness of 

the shell in response to pure transverse shear strains. For a homogeneous shell made of a 

linear, orthotropic elastic material, where the strong material direction aligns with the 

element's local 1-direction, the transverse shear stiffness should be: 

𝐾11
𝑡𝑠 =

5

6
𝐺13

𝐸 𝑡 , 𝐾22
𝑡𝑠 =

5

6
𝐺23

𝐸 𝑡  and 𝐾12
𝑡𝑠 = 𝐾21

𝑡𝑠 = 0 (3.40) 

where 𝐺13
𝐸 and 𝐺23

𝐸 are the material's shear moduli in the out-of-plane direction. The 

number 5/6 is the shear correction coefficient that results from matching the transverse 

shear energy to that for a three-dimensional structure in pure bending [87]. 

 

3.7. Identification of Material Constants: 

 

YU model contains seven material parameters (Y, c, B, Rsat, b, k, h). There are generally 

two ways to obtain the material parameters. The first method is to use an optimization 

method to fit the simulation stress-strain curve to that of the experiment. The second 

method is to use a systematic way to identify the material constants from the stress-strain 
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curve in cyclic deformation. In this project, the second method was used to find the 

constants for YU model. Now, each of these methods are described.  

 

3.7.1. Optimization method: 

 

Let 𝒙 = [𝑌, 𝑐, 𝐵, 𝑅𝑠𝑎𝑡 , 𝑏, 𝑘, 𝑕] denote a set of material parameters to be identified. The 

purpose is to find the vector x that minimizes the objective function:  

𝐹 𝒙 =  𝑠𝑖𝐿
𝑖=1 𝐹𝑖 𝒙  ,     𝐴𝑗 ≤ 𝒙𝑗 ≤ 𝐵𝑗  , (𝑗 = 1,2,… , 𝑁)  (3.41) 

where L is the total number of individual forward or reverse deformations (denoted by i). 

Aj and Bj are the lower and upper limits of the searching area for a material parameter xi. 

𝐹𝑖 𝒙  is the dimensionless function defined as the square difference in stress between the 

experimental data, 𝜎𝑠(exp )
𝑖  , and the corresponding calculated results for an assumed set of 

material parameters x, 𝜎 cal  
𝑖 (𝑥, 𝜀𝑠

𝑖) as:  

𝐹𝑖 𝒙 =   [𝜎𝑠 exp 
𝑖 − 𝜎 cal 

𝑖 (𝑥, 𝜀𝑠
𝑖 )]2𝑠𝑖

𝑠=1  /  [𝜎𝑠 exp 
𝑖 ]2𝑠𝑖

𝑠=1    (3.42) 

where Si is the total numbers of data points in i-th stress–strain response. In Eq. (3.41), S
i
 

is the weight coefficient which determines the relative contribution of i-th set of 

experimental data. For the minimization of the objective function, Yoshida and Uemori 

successfully used an optimization technique based on the iterative multipoint concept 

[88-90] and found the set of material parameters simultaneously.  
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3.7.2. Systematic method: 

 

In this method, the cyclic stress-strain curve is used to calculate the parameters as 

follows:  

 𝑌 is equal to the initial yield stress  

 The cyclic curve is extrapolated at the beginning of each cycle to find the 

bounding stress curve. The bounding stress curve is used in the first cycle to fit 

the experimental curve to Eq. (3.8). Therefore, parameters 𝐵, (𝑅𝑠𝑎𝑡  + 𝑏) and 𝑘 

will be found. 

 In order to find 𝑏, we need to find 𝜎𝐵0
(𝑝)

which is equal to the difference between 

the experimental yield stress and predicted yield stress by isotropic hardening 

model at the beginning of reverse loading. From Eq. (3.6), the amount of 

softening at the beginning of reverse loading is given by:  

𝜎𝐵0
(𝑝)

= 2𝛽0 = 2𝑏(1 − 𝑒−𝑘𝑝0 )  (3.43) 

where β0 denotes the kinematic hardening of the bounding surface at the stress 

reversal point, and p0 is the plastic prestrain at the beginning of reverse loading. 

From Eq. (3.43), the parameter b is obtained. Since (𝑅𝑠𝑎𝑡 + 𝑏) is already known 

from the previous step, 𝑅𝑠𝑎𝑡  is also obtained.  

 Parameter 𝑐 is identified from the stress–strain curve of the transient Bauschinger 

deformation. From Eq. (3.4), for reverse deformation after large forward 

prestrain, we have 

𝑐 ≈
2

𝑝
  1 + 𝑙𝑛2 −  

 𝜃 

𝑎
+ 𝑙𝑛  1 + 𝑠𝑔𝑛(𝜃) 

 𝜃 

𝑎
    (3.44) 
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 Parameter h is identified by the numerical simulation of such cyclic stress–strain 

responses so as to obtain the best-fit curves to the corresponding experimental 

results.  

 

3.8. Verification of the User Material Subroutine: 

 

In this section, the UMAT and VUMAT based on Hill’s quadratic yield function and 

YU model are used to simulate a few problems and verify it is able to work properly 

under different loading conditions. The simulation results will be evaluated either 

quantitatively or qualitatively. As a first evaluation, every problem can be simulated by 

both UMAT and VUMAT to compare the results. The following problems were 

simulated by both UMAT and VUMAT and it was found that both UMAT and VUMAT 

yielded almost the same results. Therefore, in the following the simulation results are 

referred to UMAT and I will not distinguish between UMAT and VUMAT. The material 

is assumed to be ADKQ in the following simulations. The experimental yield stress and 

r-values in each direction is given in Table 3.1. The material coefficient associated with 

YU model were found by fitting the simulation results to the experimental stress-strain 

curve obtained by the cyclic shear test. In addition, the experimental yield stresses in each 

direction were used to find the Hill’s coefficients. The material constants associated with 

YU model and Hill’s quadratic yield function are shown in Tables 3.2 and 3.3 

respectively.  

 

Table 3.1. The experimental yield stress and r-values in different directions  

Yield stress, MPa  r-value 

𝜎0 158.3 𝑟0 1.546 

𝜎𝑏  183.0 𝑟45  1.508 

𝜎90 166.7 𝑟90 1.942 

𝜏𝑥𝑦  84.0   
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Table 3.2. The Yoshida-Uemori material constants  

Material 𝑌 

(MPa) 

𝑐 𝐵 

(MPa) 

𝑅𝑠𝑎𝑡  

(MPa) 

𝑏 

(MPa) 

𝑘 𝑕 𝐸0 

(GPa) 

𝐸𝑎  

(GPa) 

𝜁 

AKDQ  158 300 190 240 10 8.5 0.7 206 178 160 

 

  

Table 3.3. Coefficients of Hill’s 1948 yield function 

Material F G H N 

AKDQ 0.329 0.419 0.581 1.776 

 

3.8.1. Uniaxial tension: 

 

The uniaxial tension loading can be used as a very simple and initial test to verify the 

UMAT. This type of loading is interesting as it causes a homogenous deformation in the 

structure and only one element is required in the simulation. The advantage of using one 

element is that the solution will not depend on the mesh size. The uniaxial tension is a 

very simple type of loading and in many cases it is easy to obtain an analytical solution 

for the problem. Therefore, if the user can analytically integrate the plasticity equations 

for uniaxial stress state, the relative error associated with the numerical integration of the 

model can be easily estimated. So, the uniaxial tension of a square part in the plane stress 

state is first simulated. A square of 1 mm by 1 mm was simulated using the user material 

subroutine. The bottom side of the square was fixed in the Y-direction and the node 

located in the left bottom corner was fixed in both X and Y-directions. The right and top 

sides of the square were displaced 0.2 mm in the Y-direction. A first-order quadrilateral 

element in the reduced integration mode, denoted as CPS4R, was used to mesh the part. 

The schematic of the finite element model is shown in Fig. 3.4. 

As mentioned in section 3.3, the bounding stress for uniaxial monotonic loading is 

obtained by Eq. (3.8). Therefore, as plastic deformation occurs, the stress should start 

from the yield strength and gradually approach to the stress in the bounding stress. 

Depending on the material constants, the stress should reach the bounding stress after a 
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certain amount of stress. The bounding stress was obtained using Eq. (3.8) for AKDQ 

and plotted in Fig. 3.5. The stress versus plastic strain obtained by simulation was also 

plotted in Fig. 3.5. This figure shows that the stress starts from the yield stress, which is 

below the bounding stress, approaches and finally reaches the bounding stress after a 

large amount of plastic strain.  

 

 

Fig. 3.4. Schematic representation of the finite element model for the uniaxial tension test 

 

The uniaxial tension test can also be used to evaluate the implementation of the yield 

function. Hill’s anisotropic coefficients were obtained from the uniaxial tensile yield 

stress of the material in the rolling, and transverse directions, and from the equibiaxial 

and shear yield stresses. Therefore, if the yield stress obtained by simulation in each of 

these stress states correlates with their corresponding experimental value, it can be 

concluded that the yield function was correctly implemented for each type of loading. 

Here, the uniaxial tension, equibiaxial loading and shear test were all simulated by 

UMAT and the yield stress in each problem was obtained by simulation. It was found that 

the UMAT reproduces the experimental yield stresses for all of these stress states. 

Therefore, Hill’s function was considered to be correctly implemented.  

 

X 

Y 
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Fig. 3.5. The stress and bounding stress in uniaxial tension 

 

 

3.8.2. Biaxial loading: 

 

Uniaxial tension evaluates the user material subroutine during loading in only one 

direction. It is also useful to evaluate the user material subroutine during a multiaxial 

loading. The biaxial bulge test is one of the most popular tests in sheet metal forming and 

it is also a good example of multiaxial loading. Since all cyclic phenomena occur during 

reverse loading, the YU model must predict the same results as isotropic hardening in 

monotonic loading. Therefore, it is expected that both isotropic hardening and YU model 

predict the same results for the bulge test as the loading is monotonous in this test. The 

equibiaxial loading of a 1 mm square sheet was simulated with both our UMAT and an 

ABAQUS built-in material model which is based on Hill’s quadratic yield function and 

the isotropic hardening law. The left and bottom sides of the square were fixed in the X 

and Y-directions, respectively. The right and top sides of the square were displaced 0.1 

mm in both X and Y-directions. A 4-node element with linear shape function in the 

reduced integration mode, denoted as CPS4R, was used to mesh the part. The schematic 
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of the finite element model is shown in Fig. 3.6. Fig. 3.7 compares the stress-strain 

response of the material obtained by UMAT and ABAQUS built-in material model 

(isotropic hardening model) in the equibiaxial loading. This figure shows that, as 

expected, the results obtained by UMAT and isotropic hardening model are identical.  

 

 

Fig. 3.6. Schematic representation of the finite element model for the biaxial bulge test 

 

 

Fig. 3.7. Stress-strain response of the material in equibiaxial loading obtained by YU model 

(UAMT) and isotropic model (ABAQUS built-in material model) 
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3.8.3. Bending of a cantilever beam: 

 

As explained in the previous problem, the YU model and isotropic hardening must 

predict the same amount of stress in monotonic loading. So, any monotonic loading 

problem can be simulated by using UMAT and then compared with the stress results 

obtained by isotropic hardening of ABAQUS built-in material model. Bending of a 

cantilever beam in one direction is an example of monotonic loading. This problem can 

evaluate the accuracy of the stress integration in the UMAT for forward bending 

compared with ABAQUS. A rectangle of 1 mm wide and 10 mm long was fixed at one 

end and vertically displaced downward 2 mm at the other end which is schematically 

shown in Fig. 3.8. A first-order quadrilateral element in the reduced integration mode, 

denoted as CPS4R, was used to mesh the part. The mesh size was selected to be 0.25 mm 

by 0.25 mm in the X and Y-directions. Figs. 3.9 and 3.10 show the von Mises stress 

contour on the deformed part obtained by ABAQUS built-in material model based on 

isotropic hardening and the UMAT based on YU model, respectively. A comparison of 

these two contours shows that both the ABAQUS built-in material model and the UMAT 

yield practically the same results for this problem. Fig. 3.11 also shows the predicted 

stress on the top surface of the beam obtained by ABAQUS built-in material model and 

UMAT.  

 

 

Fig. 3.8. Schematic of the cantilever beam and the boundary conditions  

 

Y 

X 
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Fig. 3.9. von Mises stress contour on the deformed part obtained by ABAQUS built-in material 

model based on isotropic hardening model 

 

 

Fig. 3.10. von Mises stress contour on the deformed part obtained by UAMT based on the YU 

model 
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Fig. 3.11. von Mises stress along the top surface of beam 

 

3.8.4. Combined tension-shear: 

 

Again the isotropic hardening and YU model are used to simulate a combined tension-

shear loading. The element CPS4R is again used to mesh a 1 mm by 1 mm square. The 

bottom side was fixed in all directions. The top side is displaced 0.1 mm in the X-

direction and 0.15 mm in the Y-direction. Fig. 3.12 shows a schematic of the problem 

and boundary conditions. Fig. 3.13 compares the effective stress-strain response of the 

material obtained by ABAQUS built-in material and UMAT. As can be seen, the results 

obtained by ABAQUS built-in material model and UMAT are almost identical. 
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Fig. 3.12. Schematic of the combined shear-tension problem and the boundary conditions  

 

 

Fig. 3.13. Stress-strain response of the material obtained by UMAT and ABAQUS built-in 

material model 
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3.8.5. Evaluation of UMAT under cyclic loading: 

 

In all of the above problems, the UMAT was used to simulate a variety of monotonic 

loading conditions. Therefore, they do not evaluate the accuracy of the stress integration 

during the cyclic loading conditions. In the remaining problems of this chapter, the cyclic 

loading of the biaxial bulge test and cyclic bending of a cantilever beam are simulated 

using both UMAT and an ABAQUS built-in material model based on combined 

isotropic-nonlinear kinematic hardening (NKH). The NKH model is not able to capture 

the workhardening stagnation. Therefore, it is not able to describe the cyclic behaviour of 

AKDQ very well and cannot be compared with YU model. In order to compare NKH 

with YU model, it is assumed that the experimental cyclic stress-strain behaviour of a 

fictitious material was obtained by NKH as shown in Fig. 3.14. The material constants 

associated with each model is shown in Table 3.4 for this material. Now, it is expected 

that both YU and NKH models predict almost the same results for different problems at 

different cyclic loading conditions. The cyclic biaxial loading and cyclic bending of a 

cantilever beam are simulated using YU and NKH models and compare the results.  

 

Table 3.4. The material constants associated with YU and NKH models for fictitious material  

               YU model          NKH model 

𝐸 210 GPa 𝐸 210 GPa 

𝑌 160 MPa 𝑌 160 MPa 

𝑐 200  𝑄 100 MPa 

𝐵 180 MPa 𝑏 8 

𝑅𝑠𝑎𝑡  120 MPa 𝐶 5000 MPa 

𝑏 200 MPa 𝛾 20 

𝑘 17   

𝑕 0.01   
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Fig. 3.14. Stress-strain response of a fictitious material obtained by UMAT (YU model) and 

ABAQUS built-in material (NKH model) 

 

 

The equibiaxial loading of a square of 1x1 mm is first simulated by both our UMAT 

and NKH models. The left and bottom sides of the square are fixed the X and Y-

directions, respectively. In the first loading step, the right and top sides of the square were 

displaced 0.1 mm in the X and Y-directions. In the second loading step, the right and top 

sides of the square were displaced 0.2 mm in the negative X and Y-directions. Fig. 3.6 

shows the schematic of the problem in the first loading step. A four-node element with 

linear shape function in the reduced integration mode, denoted as CPS4R, was used to 

mesh the part. Fig. 3.15 compares the stress-strain response of the material obtained by 

UMAT and NKH models in the cyclic equibiaxial loading. The figure shows that the YU 

model predicts almost the same response as NKH model.  
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Fig. 3.15. Comparison of stress-strain response obtained by NKH and YU models in cyclic 

equibiaxial loading  

 

In order to evaluate the UMAT in bending-reverse bending, the cyclic bending of 

cantilever beam was simulated using both YU and NKH. A rectangle of 1 mm wide and 

10 mm long was fixed at one end. The other end was first displaced 2 mm downward and 

then displaced 4 mm in the opposite direction. This type of loading causes a bending-

unbending-reverse bending deformation in the material. A first-order quadrilateral 

element in the reduced integration mode, denoted as CPS4R, was used to mesh the part. 

The mesh size was selected to be 0.25 mm by 0.25 mm in the X and Y-directions. A 

schematic of the problem and the boundary conditions in the first loading step is shown 

in Fig. 3.8. The problem was simulated with both our UMAT and an ABAQUS built-in 

material model based on NKH. Fig. 3.16 shows the predicted stress on the top surface of 

the beam obtained by ABAQUS built-in material model and UMAT.  

 

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

St
re

ss
, M

P
a

Effective Plastic Strain

NKH

YU



71 
 

 

Fig. 3.16. von Mises stress along the top surface of beam at the end of reverse bending 

 

The above simulations show that the UMAT is able to accurately predict the stress field 

in the part in several loading conditions such as tension, equibiaxial loading, bending and 

cyclic loading. The uniaxial tension is different direction also shows that UMAT 

correctly predicts the yield stress in the rolling, transverse directions. Moreover, 

simulation of equibiaxial bulge test and pure shear show that the UMAT correctly 

predicts the yield stress in these loading conditions for orthotropic sheet. The UMAT also 

correctly predicts the stress for combined loading such as combined shear-tension and 

combined bending-shear, i.e. cantilever beam. Therefore, it can be concluded that the 

material user subroutine has been correctly implemented.  
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Chapter 4 

 

Fully Implicit Numerical Integration of Yoshida-

Uemori Two-Surface Plasticity Model 

 

 

 

4.1.  Introduction:  

 

In chapter 3, the Yoshida-Uemori two-surface plasticity model (YU) was introduced 

and a semi-implicit scheme was used to integrate this model. The Hill’s quadratic yield 

function was used to consider the anisotropy of the material. As mentioned in chapter 3, 

the semi-implicit integration scheme is conditionally stable, and therefore, may not be 

able to converge to the solution if a large strain increment is used. The main advantages 

of the semi-implicit approach are its simplicity of implementation and its computational 

efficiency. In this chapter, a fully implicit integration scheme is used to integrate all 

equations including the backstress and a numerical algorithm is developed for 

implementation of this model into a finite element program. The numerical algorithm is 

implemented such that any general yield function could be used in the model. Both Hill’s 

quadratic function and Yld2000-2d function, proposed by Barlat et al. [31], are adopted 

to develop user-defined material subroutines for ABAQUS-Explicit (VUMAT) and 

ABAQUS-Standard (UMAT). Yld2000-2d is a non-quadratic yield function developed 

for highly anisotropic materials such as aluminum alloys. This function will be 

introduced in detail in section 4.6.  
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The YU model is a two-surface plasticity model with two nonlinear kinematic 

evolutions for each surface. The outer surface grows uniformly in stress space while the 

size of the inner surface is kept constant. Since the inner surface does not change its size, 

the model is able to capture early re-yielding during reverse loading. The isotropic 

hardening of the bounding surface is also used to represent the strain hardening of the 

material. A non-isotropic hardening surface is also defined in this model to account for 

the workhardening stagnation. Two nonlinear kinematic hardening evolutions for each 

surface make it possible to describe the transient and permanent behaviour of the material 

during reverse loading. So, this model is capable of reproducing the transient 

Bauschinger effect, permanent softening and workhardening stagnation in large elasto-

plastic deformation relatively accurately. This model was introduced in section 3.3. In the 

next section, the return mapping procedure is used to develop a numerical algorithm for 

implementation of this model into a finite element program.  

 

4.2. Stress Integration:  

 

In the following equations, the subscript n is used to denote a quantity at the beginning 

of the n
th

 time increment. If no subscript is used, this quantity is evaluated at the end of 

the increment. The Euler backward method (implicit) is used to integrate all plasticity 

equations including the backstress. So, all variables are referred to their values at the end 

of the time increment during integration. Using this method, integration of Eqs. (3.3a), 

(3.6) and (3.7) in the materially embedded coordinate system leads to the following 

equations:  

𝛥𝜽 =  
𝑎. 𝑐

𝑌
𝜼 − 𝑐 

𝑎

𝜃 
𝜽 𝛥𝑝 

(4.1) 

𝛥𝜷 =  
𝑘. 𝑏

𝑌
𝜼 − 𝑘𝜷 𝛥𝑝 

(4.2) 

𝛥𝜶 = 𝛥𝜷 + 𝛥𝜽 (4.3) 

The following general equation is assumed to define the yield surface in stress space:  
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𝑓 = 𝜂 − 𝑌 = 0 (4.4) 

where Y is the initial yield strength of the material and 𝜂  is the effective value for 𝜼. 

According to the associated flow rule, the increment of plastic strain is obtained by taking 

the derivative of the yield function with respect to stress. And, the plastic strain increment 

is obtained as follows:  

𝛥𝜺𝑝 = 𝛥𝑝
𝜕𝜎 

𝜕𝝈
= 𝛥𝑝

𝜕𝜂 

𝜕𝝈
= 𝛥𝑝𝒎 

(4.5) 

where 𝒎 denotes the normal to the yield surface and 𝛥𝑝 is the effective plastic strain 

increment which is obtained by solving the yield equation in the return map procedure. In 

the return map method, it is first assumed that the total strain increment is fully elastic. 

Then, the yield surface equation is used to find the effective stress. If the effective stress 

is less than, or equal to, the flow stress, then the deformation is fully elastic and the trial 

stress is accepted as the solution. If the effective stress is larger than the flow stress, the 

correction for effective plastic strain and all internal state variables is found and the new 

stress is updated by reducing the increment of plastic strain from the total strain 

increment. This iteration continues until the updated stress state satisfies the yield 

function equation. Mathematically, the return map equation is written as follows:  

𝝈 = 𝝈𝑇𝑟 − 𝑫 𝛥𝜺𝑝  (4.6) 

where 𝝈 is the stress at the end of the time increment, 𝑫 is the elasticity tensor and 𝝈𝑇𝑟  

denotes the trial stress. This incremental relationship is expressed in a materially 

embedded coordinate system. Therefore, it is objective with respect to material rotation. 

The trial stress is obtained by the elastic constitutive law, assuming that the total strain 

increment is elastic, as follows:  

 

𝝈𝑇𝑟 = 𝝈𝒏 + 𝑫 𝛥𝜺  (4.7) 
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The updated stress is obtained by substituting the plastic strain increment from Eq. (4.5) 

into Eq. (4.6): 

𝝈 = 𝝈𝑇𝑟 − 𝑫 𝛥𝑝𝒎  (4.8) 

Now, the updated stress is used to calculate the effective stress based on the yield 

function. So, the yield condition at the end of time increment leads to the following 

equation:  

𝑓 = 𝜎 (𝝈𝑇𝑟 − 𝛥𝑝𝑫𝒎) − 𝑌 = 0 (4.9) 

  

 

Fig. 4.1. Schematic view for multi-stage return mapping method [91] 

 

The Newton-Raphson method is usually used to solve Eq. (4.9). For nonquadratic yield 

functions and at large strain increments, it is usually difficult to find the solution of Eq. 

(4.9) numerically. Therefore, a multi-stage return mapping procedure is employed in this 

work to control the potential residual and guarantee the convergence to the solution. This 

method was proposed by Yoon et al. [74] and is applicable to a non-quadratic yield 
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function and a general hardening law without the need of a line search algorithm, even 

for a relatively large strain increment (10%) [91]. For sub-step k, the nonlinear equation, 

Eq. (4.9), is modified with the given residual as follows: 

𝑓(𝛥𝑝(𝑘)) = 𝜎 (𝝈𝑇𝑟 − 𝛥𝑝(𝑘)𝑫𝒎(𝑘)) − 𝑌 = 𝑓(𝑘) (4.10) 

where  

𝑓 𝛥𝑝 0 = 0 = 𝑓(0),  𝑓(𝑘)|𝑓 0 > 𝑓 1 > ⋯ > 𝑓 𝑘 > ⋯𝑓 𝑁  𝑓 𝑁 = 0 , 𝑘 = 0~𝑁 , 

𝛥𝑓 =  𝑓 𝑘−1 − 𝑓 𝑘  < 𝑌 and 𝑓𝑘=1~(𝑁−1) are prescribed values.  

As shown in Fig. 4.1, the normal to the yield surface, 𝒎, in each sub-step is estimated 

from its direction from the previous sub-step. Then the exact normal direction is obtained 

by solving Eq. (4.10) based on the Euler backward method. Now, the stress updating 

procedure can be developed by rearranging Eq. (4.10), (4.8), (4.1) and (4.2) as follows:  

𝐺1 = 𝜎  𝝈(𝑘) − 𝑌 − 𝑓(𝑘) = 0 
(4.11a) 

𝑮2 = 𝑫−1 𝝈(𝑘) − 𝝈𝑇𝑟  + 𝛥𝑝(𝑘)𝒎(𝑘) = 0 (4.11b) 

𝑮3 = 𝜽(𝑘) − 𝜽𝑛 −  
𝑎. 𝑐. 𝛥𝑝(𝑘)

𝑌
 𝜼(𝑘) +  𝑐. 𝛥𝑝(𝑘).  

𝑎

𝜃 
 𝜽(𝑘) = 0 (4.11c) 

𝑮4 = 𝜷(𝑘) −𝜷𝑛 −  
𝑘. 𝑏. 𝛥𝑝(𝑘)

𝑌
 𝜼(𝑘) +  𝛥𝑝(𝑘). 𝑘 𝜷(𝑘) = 0 (4.11d) 

where 𝝈(𝑘) = 𝝈𝑇𝑟 − 𝛥𝑝 𝑘 𝑫𝒎 𝑘 . In order to find the correction for each variable at each 

iteration, the above system of equations is linearized around the current values of the 

state variables:  

𝐺1 + 𝒎:𝑑𝝈 −𝒎:𝑑𝜷 −𝒎: 𝑑𝜽 = 0 (4.12a) 

𝑮2 +  𝑫−1 + 𝛥𝑝
𝜕𝒎

𝜕𝝈
 𝑑𝝈 −  𝛥𝑝

𝜕𝒎

𝜕𝝈
 𝑑𝜷 −  𝛥𝑝

𝜕𝒎

𝜕𝝈
 𝑑𝜽 + 𝒎𝑑𝛥𝑝 = 0 (4.12b) 

𝑮3 −  
𝑎. 𝑐. 𝛥𝑝

𝑌
 𝑑𝝈 +  

𝜕𝑮3

𝜕𝜽
 𝑑𝜽 +  

𝑎. 𝑐. 𝛥𝑝

𝑌
 𝑑𝜷 +  

𝜕𝑮3

𝜕𝛥𝑝
 𝑑𝛥𝑝 = 0 (4.12c) 
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𝑮4 −
𝑘. 𝑏. 𝛥𝑝

𝑌
𝑑𝝈 +

𝜕𝑮4

𝜕𝜷
𝑑𝜷 +  

𝑘. 𝑏

𝑌
𝛥𝑝 𝑑𝜽 −  

𝑘𝛥𝑝

𝑌
𝜼 + 𝑘𝜷 𝑑𝛥𝑝 = 0 (4.12d) 

where  

𝜕𝑮3

𝜕𝜽
= 1 +

𝑎. 𝑐. 𝛥𝑝

𝑌
+ 𝑐. 𝛥𝑝.  

𝑎

𝜃 
−
𝑐. 𝛥𝑝.  𝑎.  𝜽:

𝜕𝜃 

𝜕𝜽 

2𝜃  𝜃 
 

𝜕𝑮3

𝜕𝛥𝑝
= −

𝑎. 𝑐

𝑌
𝜼 −

𝐻. 𝑐. 𝛥𝑝

𝑌
𝜼 + 𝑐. 

𝑎

𝜃 
𝜽 +

𝐻. 𝑐. 𝛥𝑝

2 𝑎. 𝜃 
𝜃 

𝜕𝑮4

𝜕𝜷
= 1 +

𝑘. 𝑏

𝑌
𝛥𝑝 + 𝑘. 𝛥𝑝 

𝐻 =
𝜕𝑅

𝜕𝛥𝑝
= 𝑘 𝑅𝑠𝑎𝑡 − 𝑅  

Solving the above system of equations gives the correction for the effective plastic 

strain increment (𝑑𝛥𝑝), stress (𝑑𝝈) and the kinematic motions (𝑑𝜷 and 𝑑𝜽). Then each 

variable is updated, and iterations continue until the above equations (Eqs. 4.12) are 

satisfied within a prescribed tolerance.  

The implementation of workhardening stagnation and decrease of elastic modulus for 

this algorithm is the same as for the semi-implicit algorithm, and therefore are omitted 

here for the sake of brevity. The implementation of workhardening stagnation has been 

described in sections 3.4.2 and the decrease of unloading modulus is taken into account 

using Eq. (3.37).  

 

4.3. Consistent Tangent Modulus: 

 

In the implementation of a plasticity model into an implicit finite element code, it is 

necessary to provide the tangent modulus or the material Jacobian matrix which is 

required to solve the equilibrium equations or momentum balance. The elastoplastic 

tangent modulus which was obtained in chapter 3 is called continuum tangent modulus. 
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The continuum tangent modulus is developed by the plasticity equations in the rate form. 

However, if the stress integration algorithm is linearized to obtain the derivative of the 

stress increment with respect to strain, the resulting tangent modulus will be consistent 

with the stress integration algorithm and is called consistent tangent modulus. It has been 

shown [79] that as the increment size approaches zero, the continuum tangent modulus 

approaches to the consistent tangent modulus. The consistent tangent modulus preserves 

the quadratic rate of asymptotic convergence in Newton’s method at finite strain 

increments [79]. 

 In order to find the consistent tangent modulus, the following equation is used:  

𝝈 = 𝝈𝑛 + 𝑫 𝜺 − 𝜺𝑛  − 𝛥𝑝𝑫𝒎 (4.24) 

Differentiation of Eq. (4.24) yields: 

𝑑𝝈 = 𝑫 𝑑𝜺 − 𝑑𝛥𝑝𝑫𝒎− 𝛥𝑝𝑫 
𝜕𝒎

𝜕𝝈
𝑑𝝈 −

𝜕𝒎

𝜕𝝈
𝑑𝜶  (4.25) 

where  

𝑑𝜶 = 𝑑𝜽 + 𝑑𝜷 = 𝒏𝑑𝑝 (4.26a) 

𝒏 =  
𝑎. 𝑐

𝑌
𝜼 − 𝑐.  

𝑎

𝜃 
𝜽 +

𝑘. 𝑏

𝑌
𝜼 − 𝑘.𝜷  (4.27b) 

Substituting Eq. (4.26a) into Eq. (4.25) gives: 

𝑑𝝈 = 𝜩−1  𝑑𝜺 − (𝒎−
𝜕𝒎

𝜕𝝈
𝛥𝑝𝒏)𝑑𝑝  

(4.28a) 

where (𝜕𝒎/𝜕𝝈) is the derivative of the normal to yield surface and 𝜩−1 is the modified 

elastic tangent matrix and is defined as follows: 

𝜩−1 =  𝑫−1 + 𝛥𝑝
𝜕𝒎

𝜕𝝈
 
−𝟏

 (4.28b) 
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Now, the consistency condition is used to obtain 𝑑𝑝. Differentiation of the yield 

function, i.e. Eq. (4.4), leads to the following equation:  

𝑑𝑓 = 𝒎:𝑑𝝈 −𝒎:𝑑𝜶 = 0 (4.29) 

Substituting 𝑑𝝈 from Eq. (4.28a) and 𝑑𝜶 from Eq. (4.26a) gives the following equation 

for 𝑑𝑝:  

𝑑𝑝 =
𝒎𝜩−1𝑑𝜺

𝒎𝜩−1(𝒎 − 𝛥𝑝
𝜕𝒎
𝜕𝝈

𝒏) + 𝒎𝒏
 

(4.30) 

Finally, the consistent tangent modulus is obtained by substituting 𝑑𝑝 from Eq. (4.30) 

back into Eq. (4.28a):  

𝑑𝝈 = 𝑫𝑒𝑝𝑑𝜺 (4.31) 

where 

𝑫𝑒𝑝 = 𝜩−1 −
 𝜩−1(𝒎 − 𝛥𝑝

𝜕𝒎
𝜕𝝈 𝒏) ⊗  𝜩−1𝒎 

𝒎𝜩−1(𝒎 − 𝛥𝑝
𝜕𝒎
𝜕𝝈

𝒏) + 𝒎𝒏
 (4.32) 

 

The numerical algorithm used in the user-defined material subroutine is shown in Table 

A.2. Using this algorithm, we can develop a general user material subroutine for YU 

model which may include any desired yield function. The desired yield function and its 

first and second derivatives can be defined in the subroutine and be called from within 

the UMAT. In this project, the Hill’s quadratic yield function and Yld2000-2d were used.  

It should also be mentioned that for shell elements, the transverse shear stiffness must 

be calculated and be returned to the finite element software. As mentioned in section 3.6, 

Eq. (3.40) was used in this work to calculate the transverse shear stiffness. For reduced 

integration elements, the hourglass stiffness needs to be calculated. So, Eqs. (3.38, 3.39) 

were used to calculate the hourglass stiffness.  
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4.4. Yield Function: 

 

Sheet anisotropy is one of the parameters that has to be taken into account for an 

accurate simulation in sheet metal forming. Geng and Wagoner [54] conducted a study on 

the role of anisotropy on springback prediction and found that the simulated springback 

depends not only on the hardening behaviour but also on the anisotropy of the sheet. The 

numerical procedure developed in section 3 can be easily used with any yield function 

which is written in the form of Eq. (8) and whose first and second derivatives can be 

explicitly stated. In this work, two different yield functions were used to develop two user 

material subroutines: a) Hill’s quadratic yield function, b) Yld2000-2d. In order to 

complete the stress algorithm, the first and second derivatives of these functions are 

derived.  

 

4.4.1. Hill’s quadratic yield function: 

 

For YU model, Hill’s quadratic yield function is written as follows:  

 
3

2
𝜼𝑇𝑵𝜼 

1/2

− 𝑌 = 0 (4.33) 

where 𝑵 is a fourth-order anisotropic tensor that was defined in section 2.4.4. So, the 

effective quantity for 𝜼 is defined by:  

𝜂 =  
3

2
𝜼𝑇𝑵𝜼 

1/2

 (4.34) 

According to Eq. (4.5), the normal to the yield surface is obtained as follows:  

𝒎 =
𝜕𝜂 

𝜕𝝈
=

3

2

𝑵𝜼

𝜂 
 (4.35) 
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The numerical algorithm explained in this chapter also requires calculation of the 

second derivative of the yield function, i.e.  (𝜕𝒎/𝜕𝝈). Differentiation of Eq. (4.35) 

gives:  

𝜕𝒎

𝜕𝝈
=

3
2𝑵 −𝒎⨂𝒎

𝜂 
 (4.36) 

Now, the fully-implicit numerical algorithm developed in this chapter is completely 

defined for Hill’s quadratic yield function.  

 

4.4.2. Yld2000-2d: 

 

 In order to describe the anisotropy of sheet metals, Barlat et al. proposed Yld2000-2d 

anisotropic yield function. This function is not quadratic in general and it is particularly 

intended for aluminum alloy sheets. For YU model, this function is written as follows 

[31]:  

𝑓 = 𝜂 −𝑌 =  
Фʹ + Фʹʹ

2
 

1
𝑎ʹ

− 𝑌 = 0 (4.37) 

Фʹ and Фʹʹ are two isotropic functions and are defined by: 

Фʹ =  𝑋ʹ1 − 𝑋ʹ2 
𝑎ʹ , Фʹʹ =  2𝑋ʹʹ2 + 𝑋ʹʹ1 

𝑎ʹ+ 2𝑋ʹʹ2 + 𝑋ʹʹ1 
𝑎ʹ 

 

(4.38) 

where 𝑎ʹ is a material coefficient, 𝑋ʹ1, 𝑋ʹ2 are the principal values of tensor 𝑿ʹ and 𝑋ʹʹ1, 

𝑋ʹʹ2 are the principal values of tensor 𝑿ʹʹ. Tensors 𝑿ʹ and 𝑿ʹʹ are obtained by linear 

transformation the stress tensor as follows:  

𝑿ʹ = 𝑳ʹ𝜼 , 𝑿ʹʹ = 𝑳ʹʹ𝜼  

where 𝑳ʹ and 𝑳ʹʹ are related to the anisotropic coefficients of the material by:  
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where 𝛼1, 𝛼2, … , 𝛼8 are all material anisotropic coefficients. For the isotropic case, all 

independent coefficients 𝛼𝑘  (for k=1 to 8) reduce to one. Generally, eight input data from 

the material are required to identify these constants. These data include the yield stress 

and r-value of the sheet in the rolling, transverse and diagonal directions and also in an 

equibiaxial stress state, i.e. 𝜎0 , 𝜎45 , 𝜎90 , 𝜎𝑏 , 𝑟0, 𝑟45 , 𝑟90 , 𝑟𝑏 . The parameter 𝑟𝑏  characterizes 

the slope of the yield surface in balanced biaxial tension, i.e. 𝑟𝑏 = 𝜀 𝑦𝑦 /𝜀 𝑥𝑥  . 𝑟𝑏  can be 

determined with three different methods: experimentally measured, calculated with 

another yield function, or computed from a polycrystal model if the crystallographic 

texture of the material is known. If 𝑟𝑏  is either unknown or difficult to obtain, it is 

reasonable to assume that 2112 LL   and determine the coefficients using only seven input 

data.  

The principal values of 𝑿ʹ and 𝑿ʹʹ are obtained as follows:  

𝑿ʹ =  
𝑋ʹ1
𝑋ʹ2

 =

 
 
 
 
 
 𝑋ʹ𝑥𝑥 + 𝑋ʹ𝑦𝑦

2
+   

𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦
2

 

2

+  𝑋ʹ𝑥𝑦  
2

𝑋ʹ𝑥𝑥 + 𝑋ʹ𝑦𝑦
2

−   
𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦

2
 

2

+  𝑋ʹ𝑥𝑦  
2

 
 
 
 
 
 

 (4.39) 
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𝑿ʹʹ =  
𝑋ʹʹ1
𝑋ʹʹ2

 =

 
 
 
 
 
 𝑋ʹʹ𝑥𝑥 + 𝑋ʹʹ𝑦𝑦

2
+   

𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦
2

 

2

+  𝑋ʹʹ𝑥𝑦  
2

𝑋ʹʹ𝑥𝑥 + 𝑋ʹʹ𝑦𝑦
2

−   
𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦

2
 

2

+  𝑋ʹʹ𝑥𝑦  
2

 
 
 
 
 
 

 (4.40) 

 

The derivative of the yield function can be calculated using the chain rule:  

𝒎 =
𝜕𝜂 

𝜕𝝈
=  2𝑎ʹ𝜂 (𝑎ʹ−1) 

−1
 
𝜕Фʹ

𝜕𝑋ʹ

𝜕𝑋ʹ

𝜕𝑋ʹ𝛼𝛽

𝜕𝑋ʹ𝛼𝛽

𝜕𝝈
+
𝜕Фʹʹ

𝜕𝑋ʹʹ

𝜕𝑋ʹʹ

𝜕𝑋ʹʹ𝛼𝛽

𝜕𝑋ʹʹ𝛼𝛽

𝜕𝝈
  (4.41) 

where 𝛼𝛽 stands for xx, yy and xy. Now, each term can be calculated by differentiation:  

𝜕Фʹ

𝜕𝑋ʹ
=  

   𝑎ʹ(𝑋ʹ1 − 𝑋ʹ2)𝑎ʹ−2 𝑋ʹ1 − 𝑋ʹ2 

−𝑎ʹ(𝑋ʹ1 − 𝑋ʹ2)𝑎ʹ−2 𝑋ʹ1 − 𝑋ʹ2 
  

(4.42) 

𝜕𝑋ʹ

𝜕𝑋ʹ𝛼𝛽
=

 
 
 
 
 
1

2
 1 +

𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦

 𝛥ʹ
     

1

2
 1 −

𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦

 𝛥ʹ
     

2𝑋ʹ𝑥𝑦

 𝛥ʹ

1

2
 1 −

𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦

 𝛥ʹ
 

1

2
 1 +

𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦

 𝛥ʹ
 −

2𝑋ʹ𝑥𝑦

 𝛥ʹ  
 
 
 
 

 
(4.43) 

𝜕𝑋ʹ𝛼𝛽

𝜕𝝈
= 𝑳ʹ (4.44) 

𝜕Фʹʹ

𝜕𝑋ʹʹ
=  

𝑎ʹ(2𝑋ʹʹ2 − 𝑋ʹʹ1)𝑎ʹ−2 2𝑋ʹʹ2 − 𝑋ʹʹ1 + 2𝑎ʹ(2𝑋ʹʹ1 − 𝑋ʹʹ2)𝑎ʹ−2 2𝑋ʹʹ1 − 𝑋ʹʹ2 

2𝑎ʹ(2𝑋ʹʹ2 − 𝑋ʹʹ1)𝑎ʹ−2 2𝑋ʹʹ2 − 𝑋ʹʹ1 + 𝑎ʹ(2𝑋ʹʹ1 − 𝑋ʹʹ2)𝑎ʹ−2 2𝑋ʹʹ1 − 𝑋ʹʹ2 
  

(4.45) 

𝜕𝑋ʹʹ

𝜕𝑋ʹʹ𝛼𝛽
=

 
 
 
 
 
1

2
 1 +

𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦

 𝛥ʹʹ
     

1

2
 1 −

𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦

 𝛥ʹʹ
     

2𝑋ʹʹ𝑥𝑦

 𝛥ʹ

1

2
 1 −

𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦

 𝛥ʹʹ
 

1

2
 1 +

𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦

 𝛥ʹʹ
 −

2𝑋ʹʹ𝑥𝑦

 𝛥ʹʹ  
 
 
 
 

 
(4.46) 

𝜕𝑋ʹʹ𝛼𝛽

𝜕𝝈
= 𝑳ʹʹ (4.47) 

where  
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𝛥ʹ =  𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦  
2

+ 4(𝑋ʹ𝑥𝑦 )2 (4.48) 

𝛥ʹʹ =  𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦  
2

+ 4(𝑋ʹʹ𝑥𝑦 )2 (4.49) 

 

So, the first derivative of the yield function is obtained using Eqs. (4.41-4.49). In order 

to find the second derivative, Eq. (4.41) is integrated according to the chain rule:  

𝜕𝒎

𝜕𝝈
=

𝜕2𝜂 

𝜕𝝈2
=

𝜂 (1−𝑎ʹ)

2𝑎ʹ

𝜕2Ф

𝜕𝝈2
−

1 − 𝑎ʹ

𝜂 
𝒎⨂𝒎 (4.50) 

𝜕2Ф

𝜕𝝈2
=   

𝜕2Фʹ

𝜕𝑋ʹ𝜕𝑋ʹ

𝜕𝑋ʹ

𝜕𝑋ʹ𝛼𝛽

𝜕𝑋ʹ𝛼𝛽

𝜕𝝈
 

𝜕𝑋ʹ

𝜕𝑋ʹ𝛼𝛽

𝜕𝑋ʹ𝛼𝛽

𝜕𝝈

+  
𝜕2Фʹʹ

𝜕𝑋ʹʹ𝜕𝑋ʹʹ

𝜕𝑋ʹʹ

𝜕𝑋ʹʹ𝛼𝛽

𝜕𝑋ʹʹ𝛼𝛽

𝜕𝝈
 

𝜕𝑋ʹʹ

𝜕𝑋ʹʹ𝛼𝛽

𝜕𝑋ʹʹ𝛼𝛽

𝜕𝝈
 

+  
𝜕Фʹ

𝜕𝑋ʹ
 

𝜕2𝑋ʹ

𝜕𝑋ʹ𝛼𝛽 𝜕𝑋ʹ𝛼𝛽

𝜕𝑋ʹ𝛼𝛽

𝜕𝝈
 
𝜕𝑋ʹ𝛼𝛽

𝜕𝝈

+
𝜕Фʹʹ

𝜕𝑋ʹʹ
 

𝜕2𝑋ʹʹ

𝜕𝑋ʹʹ𝛼𝛽 𝜕𝑋ʹʹ𝛼𝛽

𝜕𝑋ʹʹ𝛼𝛽

𝜕𝝈
 
𝜕𝑋ʹʹ𝛼𝛽

𝜕𝝈
  

 

(4.51) 

where Ф = Фʹ + Фʹʹ.  

 
𝜕2Фʹ

𝜕𝑋ʹ𝜕𝑋ʹ
 = 𝑎ʹ(𝑎ʹ − 1) 𝑋ʹ1 − 𝑋ʹ2 

𝑎ʹ−2  
1 −1
−1 1

  (4.52) 

 
 

 
𝜕2Фʹʹ

𝜕𝑋ʹʹ𝜕𝑋ʹʹ
 = 𝑎ʹ 𝑎ʹ − 1 ×  

 2𝑋ʹʹ2 − 𝑋ʹʹ1 
𝑎ʹ−2 + 4 2𝑋ʹʹ1 − 𝑋ʹʹ2 

𝑎ʹ−2

2 2𝑋ʹʹ2 − 𝑋ʹʹ1 
𝑎ʹ−2 + 2 2𝑋ʹʹ1 − 𝑋ʹʹ2 

𝑎ʹ−2
  

  2 2𝑋ʹʹ2 − 𝑋ʹʹ1 
𝑎ʹ−2 + 2 2𝑋ʹʹ1 − 𝑋ʹʹ2 

𝑎ʹ−2

4 2𝑋ʹʹ2 − 𝑋ʹʹ1 
𝑎ʹ−2 +  2𝑋ʹʹ1 − 𝑋ʹʹ2 

𝑎ʹ−2
  

(4.53) 
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𝜕2𝑋ʹ1

𝜕𝑋ʹ𝛼𝛽 𝜕𝑋ʹ𝛼𝛽
 

=

 
 
 
 
 
 
 1

4𝛥ʹ
−
 𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦  

2

16𝛥ʹ3
 −

1

4𝛥ʹ
+
 𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦  

2

16𝛥ʹ3
−
 𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦  𝑋ʹ𝑥𝑦

4𝛥ʹ3

−
1

4𝛥ʹ
+
 𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦  

2

16𝛥ʹ3
1

4𝛥ʹ
−
 𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦  

2

16𝛥ʹ3
 𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦  𝑋ʹ𝑥𝑦

4𝛥ʹ3

−
 𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦  𝑋ʹ𝑥𝑦

4𝛥ʹ3
 𝑋ʹ𝑥𝑥 − 𝑋ʹ𝑦𝑦  𝑋ʹ𝑥𝑦

4𝛥ʹ3
1

𝛥ʹ
−
𝑋ʹ𝑥𝑦

2

𝛥ʹ3  
 
 
 
 
 
 

 

(4.54) 

 
𝜕2𝑋ʹʹ1

𝜕𝑋ʹʹ𝛼𝛽 𝜕𝑋ʹʹ𝛼𝛽
 

=

 
 
 
 
 
 
 1

4𝛥ʹʹ
−
 𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦  

2

16𝛥ʹʹ3
−

1

4𝛥ʹʹ
+
 𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦  

2

16𝛥ʹʹ3
−
 𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦  𝑋ʹʹ𝑥𝑦

4𝛥ʹʹ3

−
1

4𝛥ʹʹ
+
 𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦  

2

16𝛥ʹʹ3
1

4𝛥ʹʹ
−
 𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦  

2

16𝛥ʹʹ3
 𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦  𝑋ʹʹ𝑥𝑦

4𝛥ʹʹ3

−
 𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦  𝑋ʹʹ𝑥𝑦

4𝛥ʹʹ3
 𝑋ʹʹ𝑥𝑥 − 𝑋ʹʹ𝑦𝑦  𝑋ʹʹ𝑥𝑦

4𝛥ʹʹ3
1

𝛥ʹʹ
−
𝑋ʹʹ𝑥𝑦

2

𝛥ʹʹ3  
 
 
 
 
 
 

 
(4.55) 

 
𝜕2𝑋ʹ1

𝜕𝑋ʹ𝛼𝛽 𝜕𝑋ʹ𝛼𝛽
 = −  

𝜕2𝑋ʹ2
𝜕𝑋ʹ𝛼𝛽 𝜕𝑋ʹ𝛼𝛽

  (4.56) 

 
𝜕2𝑋ʹʹ1

𝜕𝑋ʹʹ𝛼𝛽 𝜕𝑋ʹʹ𝛼𝛽
 = − 

𝜕2𝑋ʹʹ2
𝜕𝑋ʹʹ𝛼𝛽 𝜕𝑋ʹʹ𝛼𝛽

  (4.57) 

 

4.5. Verification of the User Material Subroutine: 

 

In chapter 3, several loading cases were simulated and the results obtained by UMAT 

were compared with the results obtained with either an analytical method or with 

ABAQUS built-in material models such as isotropic hardening or combined isotropic-

nonlinear kinematic hardening. The simulation results showed that UMAT was able to 

produce the results obtained by ABAQUS built-in material models for many different 

loading conditions. In this section, the fully-implicit UMAT and the semi-implicit UMAT 

are used to simulate various loading conditions, and the comparison of results will 

provide a validation of the fully-implicit UMAT. The UMAT is based on Hill’s quadratic 

yield function and the YU hardening model and was used with ABAQUS/Standard for 
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these simulations, and the results are presented in sections 4.7.1 to 4.7.5. The material 

was assumed to be an AKDQ steel grade in the following simulations unless otherwise 

stated. The experimental yield stresses and r-values in the three significant material 

directions are given in Table 3.1. The material coefficients associated with the YU model 

were found by fitting the simulation results to the experimental stress-strain curve 

obtained by the cyclic shear test. In addition, the experimental yield stresses in each 

direction were used to find Hill’s coefficients. The material constants associated with YU 

model and Hill’s quadratic yield function are shown in Tables 3.2 and 3.3, respectively. 

Furthermore, the implementation of the Yld2000-2d yield function is also presented in 

section 4.7.6. Since this function is usually used for aluminum alloys, AA6022-T43 was 

used to verify the implementation of this model.  

 

4.5.1. Uniaxial tension: 

 

In general, the backstress equations are nonlinear with respect to the effective plastic 

strain. So, when the Euler backward stress integration method is used, regardless of the 

integration scheme the strain increment must be small in order to converge to the 

solution. Therefore, both semi-implicit and fully-implicit approaches require a sub-step 

algorithm to make sure that the strain increment is sufficiently small throughout the 

simulation. However, the advantage of a fully-implicit approach is that, although the 

backstress equations, i.e. Eqs. (4.11c, 4.11d), will not be satisfied at the end of a time 

increment if the strain increment is larger than a critical value, the user can be easily 

notified that the strain increment is too large. In order to study the relative error 

associated with numerical integration, a square of 1 mm
2
 subject to during a uniaxial 

tensile loading was simulated. The bottom side was fixed in the Y-direction and the left 

bottom corner was fixed in the X-direction. Then, the upper side was displaced in the Y-

direction. The schematic illustration of this problem and the boundary conditions are 

shown in Fig. 3.4. One CPS4R element was used to mesh the part. Initially, UMATs 

based on semi-implicit and fully-implicit approaches with no sub-step algorithm were 

used to simulate this problem.  
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When no sub-step algorithm is used, the error associated with numerical integration 

depends on the strain increment size. The relative error is defined by the following 

relationship:  

𝐸𝑟𝑟𝑜𝑟 =
 𝜎 − 𝜎∗ 

𝜎∗
⨉100 (4.58) 

where 𝜎 is the stress calculated by UMAT and 𝜎∗ is the calculated stress with sufficiently 

large number of sub-increments to make sure that the algorithm converged to the 

solution. The relative error associated with each integration scheme is plotted in Fig. 4.2. 

This figure shows that the relative error increases as the size of the strain increment 

increases. Moreover, the relative error associated with the fully-implicit method is 

smaller compared to the semi-implicit method. The reason for this lies in the fact that the 

explicit integration of backstress does not guarantee convergence to the solution at large 

strain increments. In general, the amount of relative error depends on the nonlinearity of 

the material. In order to eliminate the amount of error, the size of the strain increment 

must be small. In this work, an automatic sub-step algorithm was used to refine the strain 

increment when it is too large for the algorithm. If the effective strain increment is larger 

than a critical value, the increment size is divided into a few sub-increments to guarantee 

that the strain increment size is smaller than the critical value.  

In order to find the critical strain, the uniaxial tension was simulated using different 

values for the critical strain. The upper side was displaced 0.1 mm in the Y-direction 

causing a uniform strain of around 10%. Fig. 4.3 shows the relative error with respect to 

the critical value for semi-implicit and fully implicit approaches. This figure shows that 

the relative error increases dramatically for the semi-implicit approach if the critical 

strain is larger than 0.5%. This figure also shows that the relative error is smaller for the 

fully-implicit approach compared to the semi-implicit approach. In all subsequent 

simulations with this UMAT, a conservative value of 0.1% was selected as the critical 

strain. That is, if the strain increment is larger than 0.1%, the sub-step algorithm divides it 

such that the strain increment in each sub-step never exceeds 0.1%. This example was 

repeated to obtain the critical strain for the other materials which will be used in this 

work and it was found that this critical strain is small enough for all materials used in this 
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work. In general, the user of this subroutine can repeat this example to obtain a critical 

value for other materials. It is noted that the critical value depends upon both the material 

coefficients and the strain increment size. So, it is expected that the critical strain 

obtained by this test be small enough for other loading conditions and element types. 

Alternatively, if the user runs the simulation with a smaller strain increment and the stress 

does not change significantly, it can be concluded that the strain increment was 

sufficiently small.  

 

Fig. 4.2. The relative error with respect to strain increment size (without sub-step algorithm) 

 

 

Fig. 4.3. The relative error with respect to the critical strain increment size 
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4.5.2. Uniaxial cyclic tension-compression: 

 

The uniaxial tension-compression problem is a very simple type of loading and can be 

used as an initial test to verify the UMAT. Uniaxial tension-compression loading causes a 

homogenous deformation. Therefore a single element represents an adequate 

discretization of the model and the solution does not depend on the mesh size. In this 

problem, a square of 1 mm
2
 was loaded in uniaxial tension-compression. The bottom side 

was fixed in the Y-direction and the left bottom corner was fixed in the X-direction. The 

upper side was first pulled 0.2 mm in the Y-direction and then compressed 0.4 mm in the 

negative Y-direction. A schematic illustration of the problem and the boundary 

conditions at the end of first loading step is shown in Fig. 3.4. A first-order quadrilateral 

element in the reduced integration mode, denoted as CPS4R, was used to mesh the part. 

The problem was simulated using both the semi-implicit and the fully-implicit UMATs. 

Fig. 4.4 shows that the semi-implicit and fully-implicit approaches result in the same 

stress-strain response for uniaxial loading. Since the semi-implicit UMAT was already 

verified in section 3.8, this comparison provides an initial validation of the fully-implicit 

UMAT.  

 

 

Fig. 4.4. Comparison of fully-implicit and semi-implicit in uniaxial tension-compression 

loading  
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4.5.3. Biaxial loading: 

 

In this example, the biaxial bulge test was simulated to evaluate the fully-implicit 

UMAT in the equibiaxial stress state. A square of 1 mm
2
 was simulated by both semi-

implicit and fully-implicit UMATs. The left and bottom sides of the square were fixed 

the X and Y-directions, respectively. In the first loading step, the right and top sides of 

the square were simultaneously displaced 0.2 mm in the X and Y-directions, respectively. 

In the second loading step, the right and top sides of the square were simultaneously 

displaced 0.4 mm in the negative X and Y-directions, respectively. The finite element 

model and the boundary conditions are shown in Fig. 3.6. The comparison of the stress-

strain response of the material in the X-direction is shown in Fig. 4.5. This figure shows 

both UMATs reproduce the same stress-strain response. It is again noted that the semi-

implicit UMAT was already validated in section 3.8 and is now used as the reference 

against which the fully-implicit UMAT is evaluated.  

 

 

 

Fig. 4.5. Comparison of fully-implicit and semi-implicit in equibiaxial loading  
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4.5.4. Simple shear: 

 

In order to verify the fully-implicit UMAT in the prediction of shear stresses, this 

subroutine was used to simulate the cyclic simple shear problem. A square of 1 mm
2
 was 

fixed at the bottom side in the X and Y-directions. In the first loading step, the upper side 

was displaced 0.1 mm in the X-direction while it remained fixed in the Y-direction. In the 

second loading step, the upper side was displaced 0.2 mm in the negative Y-direction. 

Only one CPS4R element was used to mesh the part. The finite element model and the 

boundary conditions in the first loading step are shown in Fig. 4.6. Both the semi-implicit 

and fully-implicit approaches were used to simulate the problem. The deformed 

configuration of the model at the end of second loading step is shown in Fig. 4.7. The 

stress-strain response of the material obtained by semi-implicit and fully-implicit is 

shown in Fig. 4.8. Once again, it can be seen that the results obtained by both approaches 

are identical.   

 

 

Fig. 4.6. Schematic of the simple shear problem and the boundary conditions  

 

X 
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Fig. 4.7. The deformed configuration of the simple shear problem 

 

 

 

Fig. 4.8. Comparison of fully-implicit and semi-implicit in simple shear 
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deformed part obtained by fully-implicit and semi-implicit approaches, respectively. It 

can be seen that both UMATs predict essentially the same stress distributions. Fig. 4.11 

also shows the predicted stress on the top surface of the beam obtained by each method. 

The stress history of the node located on the left top corner of the beam is also plotted in 

Fig. 4.12. These figures demonstrate that both methods result in the same stress 

distribution.  

 

 

Fig. 4.9. von Mises stress contours on the deformed part obtained by fully-implicit scheme 
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Fig. 4.10. von Mises stress contours on the deformed part obtained by semi-implicit scheme 

 

 

Fig. 4.11. von Mises stress along the top surface of a cantilever beam  
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Fig. 4.12. History of nodal stress at the left top corner of a cantilever beam 

 

 

4.5.6. Validation of Yld2000-2d function: 
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of the sheet in rolling, transverse and diagonal directions and also in equibiaxial stress 

state. 

  

Table 4.1. Normalized yield stress and r-values for AA2090-T3 

 𝜎0 𝜎45  𝜎90 𝜎𝑏  𝑟0 𝑟45  𝑟90 𝑟𝑏  

Experiment* 1.000 0.811 0.910 1.035 0.21 1.58 0.69 0.67 

Simulation  0.999 0.811 0.910 1.035 0.21 1.58 0.69 0.67 

* The experiments were obtained from reference [31] 

 

Table 4.2. The anisotropic coefficients of AA6022-T43 for Yld2000-2d  

𝛼1 𝛼2 𝛼3 𝛼4  𝛼5 𝛼6 𝛼7 𝛼8  aʹ 

0.4865 1.3783 0.7536 1.0246 1.0363 0.9036 1.2321 1.4858 8 

 

 

In this section, the user material subroutines were used to simulate several problems 

and the results were verified by the semi-implicit UMAT which itself had been verified in 

the previous chapter. The results show that the fully implicit integration of YU model has 

been performed correctly. TheYld2000-2d yield function was also verified by different 

tests such as uniaxial and biaxial bulge tests. A comparison of the results of semi-implicit 

and fully-implicit approaches also reveals that the fully-implicit method results in smaller 

relative error compared to semi-implicit at larger increments if no sub-increment 

algorithm is used in the subroutine. So, it can be generally suggested to use the semi-

implicit method with ABAQUS-Explicit and the fully-implicit method with ABAQUS-

Implicit code. 
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Chapter 5 

 

Simulation of Springback 

 

 

 

5.1.  Introduction:  

 

In sheet metal forming, a part is removed from the tooling after the forming stage. 

During this unloading stage, elastic deformation is recovered and causes the final shape 

of the part to change. The discrepancy between the fully loaded shape at the end of the 

forming stage and the unloaded configuration is called springback. Springback is the 

most significant factor that makes it difficult to achieve the required dimensional 

accuracy of stamped components. Designing a die with incorrect springback 

compensation can lead to significant difficulties in downstream operations such as poor 

fit-up during welding and distortion of sub-assemblies. In some cases, tooling revisions 

may be required which could lead to delays in production. Therefore, it is very important 

that springback be accurately predicted and correctly compensated during the first die 

design.  

In order to study the ability of the YU model to predict springback, a channel draw 

process, presented as Benchmark #3 (BM3) in NumiSheet 2005 [23], was simulated 

using ABAQUS commercial finite element code. NumiSheet 2005 BM3 consists of 

drawing a rectangular blank into a deep, U-shaped channel section with the use of 

variable penetration drawbeads. This benchmark is extremely well suited to assessing the 

ability of a finite element model to predict springback for the following reasons: a) it 

provides experimental data for four different types of sheet materials, b) it covers a wide 
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range of strains by using four different drawbead penetrations, c) the deformation is 

severe in the drawbead region and d) the loading is cyclic because of a sequence of 

bending, unbending and reverse bending in the drawbeads. The complex contact 

condition in the drawbead region also presents a challenge for evaluation of the contact 

model. In this chapter, a brief introduction of BM3 is provided first and then the 

sensitivity of the predicted springback geometry to different model parameters is 

discussed. Finally, the effect of hardening model on the predicted springback profile is 

investigated.  

 

5.2. Problem Description:  

 

The objective of the NumiSheet 2005 BM3 is to document the forming characteristics 

of sheet metals in a deformation process dominated by cyclic bending and unbending. 

The channel draw die used for BM3 was designed and built by the Auto/Steel Partnership 

(A/SP). A schematic illustration of the tooling is shown in Fig. 5.1. The major 

dimensions of the tooling and drawbead are shown in Figs. 5.2-5.4 and are provided in 

Tables 5.1 and 5.2. Four different sheet materials were tested: AA6022-T43, AKDQ, 

HSLA and DP600. It is worth to mention that all steels used were hot-dip galvanized. A 

summary of mechanical properties of these materials is shown in Table 5.3. Blanks were 

1067 mm long and 254 mm wide and were drawn into the die to form a wide, plane-strain 

channel section. The sheet thickness was 0.8 mm for HSLA and 1 mm for the other 

materials. Four spacer blocks were also mounted in the die to ensure that the distance 

between the die and the binder surfaces was consistently 0.42 mm greater than the 

nominal thickness of the sheet throughout the forming stage (see Fig.5.3). This gap 

helped to minimize the effect of friction on the process. A blankholder force of 637 kN 

was generated by four 140 mm diameter hydraulic actuators set at 10.3 MPa and was 

applied using cushion pins under the blankholder. The magnitude of this blankholder 

force was sufficient to set the beads and maintain a fixed clearance between the upper die 

and binder throughout the forming process [23].  
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Two drawbead inserts were built into each side of the die as shown in Fig.5.1. The 

detail of the drawbead geometry can be seen in Fig. 5.3. Channel sections were drawn at 

each of four different drawbead penetrations: 25%, 50%, 75% and 100%. 0% drawbead 

penetration is defined by contact of the drawbead on the sheet surface, but no plastic 

bending takes place in the drawbead region; 100% is achieved when the centre of the 

male bead radii and the centre of the female shoulder radii all lie on a strait horizontal 

line. The distance Db, shown in Fig. 5.3, is given in Table 5.2 for nominal 25%, 50%, 

75% and 100% penetrations. Green et al. [92] studied the influence of drawbead 

penetration on the forming and springback behaviour of plane-strain channel sections.  

 

 

Fig. 5.1. Tooling Components and Coordinate System in Side-View [23] 
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Fig. 5.2. Major Tooling Dimensions [23] 

 

 

Fig. 5.3. Kiss block and Drawbead Dimensions and Location. Note the upper die and lower 
binder are shown in an OPEN position [23]. 
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Table 5.1. Tooling, drawbead and processing parameters in Figs. 5.2 and 5.3 [23] 

  Description  Symbol Value (mm) 
  Upper Die  
     Width of Die Cavity Wd 319.90
     Radius of Die Profile Rd 12.00
  Punch  
     Width of Punch Wp 224.00
     Radius of Punch Profile Rp 12.00
  Binder  
     Binder Gap Bg See Table 5.2 
  Drawbead  
     Bead Position Bp 31.05
     Depth of Bead Db 6.85
     Radius of Bead Rb 4.00
     Width of Channel Wc 10.80
     Radius of Channel Rc 4.00
  BLANK  
     Width BW 254.00
     Length BL 1066.80
 

 

Table 5.2. Binder gap and drawbead depth for the standard benchmark[23]  

 

 

 

 

 

Once a channel section was drawn, it was removed from the die and allowed to spring 

back freely. Fig. 5.5 shows a typical example of a drawn channel section after 

springback. In order to measure the curvature in the channel sidewalls (i.e. after 

springback), 3 to 5 channel sections drawn with a given drawbead configuration were 

scanned using a Virtek LaserQC™ 2D laser scanner. Each channel section was carefully 

placed on its edge on the glass surface of the LaserQC™ in order to avoid applying any 

constraints to the channel and thereby distorting its natural shape. The glass surface was 

Material Bg (mm) Db (mm) Db (mm) Db (mm) Db (mm) 
  25% 50% 75% 100% 

AKDQ 1.42 2.34 4.75 6.85 9.09 
HSLA 1.18 2.34 4.75 6.85 9.09 
DP600 1.42 2.34 4.75 6.85 N/A 
AA6022 1.42 2.34 4.75 6.85 9.09 



102 
 

also sufficiently slippery that the part would find its natural equilibrium. Channel sections 

were positioned in such a way that the laser could scan the edge of the RHS sidewall in 

contact with the glass without being obstructed. The scanning accuracy of the LaserQC™ 

is approximately 0.05 mm.  

 

Table 5.3. Summary of mechanical properties of Numisheet2005 BM3 materials [23] 

Material Orientation Thickness, 
mm 

0.2 % Yield 
Stress, MPa 

U.T.S.  
MPa 

Uniform 
Elong. % 

r-Value 

 
AA6022 

L 
T 
D 
Mean 

1.00 
1.00 
1.00 
1.00 

136.0 
127.6 
131.2 
131.6 

256.9 
238.3 
247.6 
247.6 

22.2 
24.0 
24.8 
23.7 

1.029 
0.728 
0.532 
0.705 

 
AKDQ 

L 
T 
D 
Mean 

1.00 
1.00 
1.00 
1.00 

158.3 
166.0 
164.7 
163.0 

315.0 
312.0 
317.0 
314.7 

26.4 
24.6 
25.1 
25.4 

1.546 
1.942 
1.508 
1.626 

 
HSLA 

L 
T 
D 
Mean 

0.80 
0.80 
0.80 
0.80 

394.3 
427.7 
395.3 
405.8 

463.7 
466.0 
447.0 
458.9 

16.4 
17.5 
17.0 
16.9 

0.581 
1.013 
1.166 
0.981 

 
DP600 

L 
T 
D 
Mean 

0.98 
0.98 
0.98 
0.98 

420.0 
425.7 
427.7 
424.4 

688.7 
697.0 
690.7 
692.1 

14.0 
13.5 
12.8 
13.4 

0.821 
0.969 
0.915 
0.905 

L, T, D stand for the longitudinal, transverse and diagonal (45º) directions of the coil 

Mean r-values are calculated as (L+T+2D)/4; other mean values are simply averages 
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anisotropic coefficients are usually obtained by uniaxial tension tests in different 

directions. For some particular yield functions, additional tests such as equibiaxial tests 

might be required. The YU hardening parameters were obtained by performing cyclic 

tests such as uniaxial tension-compression or cyclic shear tests on the material.  

Two different yield functions were used in this project to implement the YU model: a) 

Hill’s quadratic yield function and b) the Yld2000-2d non-quadratic yield function 

proposed by Barlat et al. [31]. Hill’s quadratic yield function was used to simulate the 

channel draw for all four materials used in BM3, i.e. AKDQ, HSLA, DP600 and 

AA6022. However, Yld2000 was only used to simulate drawing AA6022 channel 

sections as this function was specifically developed for aluminum alloys. So, Hill’s 

anisotropic coefficients were obtained for all four materials and the Yld2000 anisotropic 

parameters were only calculated for AA6022.  

 

5.3.1. Hill’s quadratic yield function parameters:  

 

Hill’s quadratic yield function can be written as:  

ቂܨ൫ߪ௬௬ െ ௭௭൯ߪ
ଶ ൅ ௭௭ߪሺܩ െ ௫௫ሻଶߪ ൅ ௫௫ߪ൫ܪ െ ௬௬൯ߪ

ଶ

൅   2൫ߪܮ௫௬ଶ ൅ ௬௭ଶߪܫ ൅ ௭௫ଶ൯ߪܭ െ ሺߪ௥௘௙ሻଶ൧ ൌ 0 
(5.1)

where F, G, H, L, I and K are all material constants and ߪ௥௘௙ is the yield stress in the 

reference direction. In a general 3D stress space, six coefficients are used in Hill’s 1948 

yield function. Therefore, at least six input data from the material are required to 

determine these coefficients. Any combination of the yield strength and/or r-values of the 

material in different directions can be used to calculate these constants. For instance, one 

combination is the yield strength in the rolling direction and r-values in the rolling, 

transverse and diagonal directions. Let ߪ଴ denote the yield stress in the rolling direction 

and ݎ଴, ݎଽ଴, ݎସହ denote the r-values in the rolling, transverse and diagonal directions, 

respectively. Uniaxial tension in the rolling (reference) direction gives:  
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ܩ ൅ ܪ ൌ ሺ
௥௘௙ߪ
଴ߪ

ሻଶ ൌ 1 (5.2)

The equation for r-values in each direction gives the following equations:  

଴ݎ ൌ
ሶ௬௬ߝ
௣

ሶ௭௭ߝ
௣ ൌ

߲݂
௬௬ߪ߲
߲݂
௭௭ߪ߲

ൌ
ܪ
ܩ  (5.3)

ଽ଴ݎ ൌ
ሶ௫௫ߝ
௣

ሶ௭௭ߝ
௣ ൌ

߲݂
௫௫ߪ߲
߲݂
௭௭ߪ߲

ൌ
ܪ
ܨ  (5.4)

In order to calculate the equation for ݎସହ, we need to transform the stress into the 

anisotropic axes first. Then, Eq. (5.1) must be used to calculate the plastic strain in the 

anisotropic directions. Finally, the strains must be transformed back into the original 

coordinate system and the transverse strain is extracted. Following this procedure leads to 

the following equation:  

ସହݎ ൌ
ܮ2 െ ሺܨ ൅ ሻܩ
2ሺܨ ൅ ሻܩ  (5.5)

Solving Eqs. (5.2-5.5) gives: 

ܩ ൌ
1

1 ൅ ଴ݎ
 

ܪ ൌ
଴ݎ

1 ൅ ଴ݎ
 

ܨ ൌ
଴ݎ

ሺ1 ൅ ଽ଴ݎ଴ሻݎ
 

ܮ ൌ
1

1 ൅ ଴ݎ
൬
1
2 ൅ ସହ൰ݎ ൬1 ൅

଴ݎ
ଽ଴ݎ
൰ 

(5.6)

In order to calculate I and K, the shear yield stresses or r-values in the xz and yz planes 

are required. However, in the plane-stress and plane-strain states these values are not 

required since no stress is applied in these directions. In the simulation of BM3, either the 

plane-stress assumption or the plane-strain assumption was adopted. Therefore, only the 
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constants in Eqs. (5.6) are required for simulation. The experimental yield stress and r-

values for BM3 materials are shown in Table 5.4. Eqs. (5.6) were used to calculate the 

anisotropic constants for these materials, and Hill’s material coefficients are shown in 

Table 5.5.  

 

Table 5.4. The experimental values for BM3 materials  

Material ߪ଴(MPa) ݎ଴ ݎସହ ݎଽ଴ 

AKDQ 158 1.546 1.508 1.942 

HSLA 394 0.581 1.166 1.013 

DP600 420 0.821 0.915 0.969 

AA6022 136 1.029 0.532 0.728 

 

Table 5.5. Coefficients for Hill’s 1948 yield function 

Material F G H L 

AKDQ 0.313 0.393 0.607 1.417 

HSLA 0.433 0.567 0.433 1.498 

DP600 0.465 0.549 0.451 1.435 

AA6022 0.697 0.493 0.507 1.228 

 

 

5.3.2. Yld2000-2d yield function parameters:  

 

Yield stress and r-values in the rolling and transverse directions (ߪ଴, ,ଽ଴ߪ ,଴ݎ  ଽ଴ ), yieldݎ

stress and r-value in the balanced biaxial yield stress (ߪ௕,  ௕ ) provide six input data toݎ

calculate the coefficients. The parameter ݎ௕ defines the slope of the yield surface at the 

balanced biaxial stress state (ݎ௕ ൌ  ሶ௫௫) and can be evaluated by performingߝ/ሶ௬௬ߝ

compression of circular disks in the sheet normal direction and measuring the aspect ratio 

of the specimen after deformation. If it is not possible to perform compression of a 
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circular disk, the parameter ݎ௕ can also be estimated by either Yld96 or a polycrystal 

model. Loading of the material in the uniaxial and equibiaxial stress states yields the 

following equations:  

݂ ൌ ׎ െ 2ሺߪത/ߪሻ௔ʹ ൌ 0 (5.7)

݃ ൌ ௫ݍ
׎߲
௫௫ݏ߲

െ ௬ݍ
׎߲
௬௬ݏ߲

ൌ 0 (5.8)

where ݏ௜௝ denotes the deviatoric stress, ݍ௫, ݍ௬ are defined in Table 5.6 and ׎ is given in 

Eq. (5.9).  It is worth noting that Eq. (5.7) satisfies the yield function and Eq. (5.8) 

satisfies the r-value. The function ׎ can be written as:  

׎ ൌ ߛଵߙ| െ ʹ௔|ߜଶߙ ൅ ߛଷߙ| ൅ ʹ௔|ߜସߙ2 ൅ ߛହߙ2| ൅ ௔ʹ (5.9)|ߜ଺ߙ

where ߜ ,ߛ are defined in Table 5.6 for uniaxial and biaxial stress states. Eqs. (5.7, 5.8) 

provide six equations in terms of ߙଵ to ߙ଺. So, six independent coefficients ߙଵ to ߙ଺ can 

be found by solving this set of equations simultaneously.  

 

Table 5.6. The definition of ݍ௫, ݍ௬, ߛ and ߜ for uniaxial and biaxial loading 

 γ ݍ ߜ௫ ݍ௬ 

0º 2/3 -1/3 1 െ ଴ 2ݎ ൅  ଴ݎ

90º -1/3 2/3 2 ൅ ଽ଴ 1ݎ െ  ଽ଴ݎ

Biaxial -1/3 -1/3 1 ൅ ௕ 2ݎ2 ൅  ௕ݎ

 

In order to find α଻ and α଼, the yield stress and r-value obtained by uniaxial tension test at 

45° to the rolling direction are used. If the material is loaded in uniaxial tension at 45° to 

the rolling direction, the following equation should satisfy the yield surface:  
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อ
ඥሺܭʹଶሻଶ ൅ ଻ଶߙ4

2 อ
௔ʹ

൅ อ
ଵʹʹܭ3 െ ඥሺܭʹʹଶሻଶ ൅ ଶ଼ߙ4

4 อ
௔ʹ

൅ อ
ଵʹʹܭ3 ൅ ඥሺܭʹʹଶሻଶ ൅ ଶ଼ߙ4

4 อ
௔ʹ

െ 2ሺߪത/ߪସହሻ௔ʹ ൌ 0 

(5.10)

where  

ଶʹܭ ൌ
ଵߙ െ ଶߙ

3  

ଵʹʹܭ ൌ
ହߙ2 ൅ ଺ߙ ൅ ଷߙ ൅ ସߙ2

9  

ଶʹʹܭ ൌ
ହߙ2 ൅ ଺ߙ െ ଷߙ െ ସߙ2

3  

(5.11)

 

The equation which satisfies r-value in the diagonal direction is written as follows: 

ܩ ൌ
׎߲
௫௫ߪ߲

൅
׎߲
௬௬ߪ߲

െ
ʹത௔ߪ2ܽ

ሺ1ߪ ൅ ସହሻݎ
 (5.12)

 

Eqs. (5.10, 5.12) provide two equations for ߙ଻ and ଼ߙ which can be solved to obtain 

these coefficients. Usually, the Newton-Raphson method is used to solve these equations. 

In this work, the above-mentioned procedure was used to develop a computerized 

program for calculating ߙଵ to ଼ߙ. The program was used to determine the coefficients ߙ௞ 

for AA6022-T43. Table 5.7 shows the experimental data for AA6022-T43 and Table 5.8 

lists the material coefficients for Yld2000-2d.  

 

Table 5.7. Experimental mechanical properties of AA6022-T43  

ସହߪ ௕ߪ ଽ଴ߪ ଴ߪ  ସହݎ ௕ݎ ଽ଴ݎ ଴ݎ 

136.0 127.6 136.1 131.2 1.029 0.728 1.000 0.532 
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Table 5.8. The anisotropic coefficients of AA6022-T43 for Yld2000-2d  

 ʹܽ ଼ߙ ଻ߙ ଺ߙ ହߙ ସߙ ଷߙ ଶߙ ଵߙ
0.9380 1.0451 0.9291 1.0298 0.9874 1.0359 0.9528 1.1010 8 

 

 

5.3.3. YU model parameters:  

 

As explained in section 3.7, the parameters associated with the YU model can be 

identified by either an optimization method or a systematic method. The optimization 

method calculates the parameters simultaneously by fitting the simulation to the 

experimental stress-strain curve; while the systematic method uses a graphical method to 

identify the material constants from the stress-strain curve in cyclic deformation. The 

cyclic stress-strain response of the material is required for identification procedure. So, 

uniaxial tension-compression tests were first carried out on all BM3 materials. The 

uniaxial tests were performed using a special instrument developed at Ohio State 

University by Boger et al. [3]. This testing apparatus uses flat plates pressurized with 

pneumatic cylinders to provide a lateral support for the sheet specimen and prevent it 

from buckling during uniaxial compression tests. In this approach, the geometry of the 

specimen was designed to minimize the buckling outside the constrained region. A 

schematic illustration of this anti-buckling mechanism is shown in Fig. 5.6. Figs. 5.7-5.10 

show the cyclic response of the BM3 materials in uniaxial tension-compression tests in 

the rolling direction. As can be seen in these figures, the maximum strain in compression 

is only about -0.03 because the risk of buckling increases beyond this. So, cyclic shear 

tests were also performed on all BM3 materials except for AA6022-T43 because the 

original batch of material was no longer available.   
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Fig. 5.6. Schematic of the flat dies and dimensions of specimens [3] 

 

 

Fig. 5.7. The uniaxial tension-compression response of DP600  
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Fig. 5.8. The uniaxial tension-compression response of AKDQ  

 

 

Fig. 5.9. The uniaxial tension-compression response of HSLA 
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Fig. 5.10. The uniaxial tension-compression response of AA6022-T43 

 

The cyclic simple shear tests were carried out at the Université de Bretagne-Sud, in 

France. A schematic of this testing apparatus, especially designed for the study of 

metallic sheets, used in the shear test is shown in Fig. 5.11. The sample (1) is clamped 

between two grips (2) and (3), securely attached to the fixed part (4) and the moving part 

(5) of the apparatus, respectively. The relative motion between (4) and (5) is obtained by 

pairs of linear guides symmetrically positioned with respect to the sample. The device is 

directly connected to a tensile test machine. The clamping of the sample under the grips 

is obtained by the tightening of six screws with a torque wrench; the torque is dependent 

on the tested material. The optimal value is obtained with the lowest torque that 

minimizes the sliding between the sample and the grips.  
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Fig. 5.12. Comparison of predicted stress-strain response of DP600 with experimental data 

 

 

Fig. 5.13. Comparison of predicted stress-strain response of AKDQ with experimental data 
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Fig. 5.14. Comparison of predicted stress-strain response of HSLA with experimental data 

 

 

Fig. 5.15. Comparison of predicted stress-strain response of AA6022 with experimental data 
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Table 5.9. The Yoshida-Uemori material constants (Eqs. 3.3-3.6, 3.37) 

Material Y 
(MPa) 

C B 
(MPa) 

Rsat 

(MPa) 
b 

(MPa) 
k h E0 

(GPa) 
Ea 

**
 

(GPa) 
 **ߞ

AKDQ 158 300 190 240 10 8.5 0.7 206 178 160 
HSLA* 394 200 400 195 30 8 0.8 206 178 160 
DP600 420 200 555 190 110 12 0.9 206 163 135 

AA6022 135 700 150 130 40 13 0.01 70 61 120 
*The initial size of the stagnation surface was set equal to 5 MPa.  

** These constants were obtained from reference [82] 

 

5.4. Finite Element Model:  

 

Finite element (FE) simulation of springback is very sensitive to the finite element 

model parameters such as element type, mesh size, friction and constitutive model. This 

section is therefore dedicated to studying the effect of different process parameters on the 

predicted springback of the sidewall of drawn channel sections. After careful 

investigation of the process parameters, the optimized conditions will be used to simulate 

BM3 using YU material model. In the finite element model, the deformation of tooling 

was neglected as it is very small compared to that of the sheet material and all the tooling 

was modelled as rigid entities. Furthermore, only half of the sheet was modelled due to 

symmetry and the corresponding symmetric boundary condition was applied. The penalty 

contact algorithm was used to model the contact between the blank and each tool. The 

sensitivity of the analysis to the friction coefficient will also be discussed.  

It is generally preferable to use a global implicit integration scheme for both forming 

and springback stages as the dynamic effects are not taken into account in this scheme 

[53, 94, 95]. However, deformation in the forming stage is usually complex and it is 

difficult to get convergence for such a problem. Therefore, the explicit-implicit approach 

has also been popular in springback simulation [96-99]. For BM3, it is very difficult to 

simulate the forming stage with an implicit solver because of the very severe deformation 

in the drawbead region. It also becomes more difficult when an advanced constitutive 
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model is used in the simulation. So, an explicit-implicit approach was used in this work. 

That is, the forming stage was simulated using ABAQUS-Explicit and the results were 

imported into ABAQUS-Standard that uses an implicit integration scheme for the 

simulation of unloading. For all steels, Hill’s quadratic yield function was used to 

describe the anisotropy of the steel sheets. For AA6022, both Hill’s quadratic and 

Yld2000-2d yield functions were used. Three hardening models were also used with the 

yield function for all materials: a) isotropic hardening, b) combined isotropic-nonlinear 

kinematic hardening, and c) Yoshida-Uemori model. 

 

5.4.1. The effect of element type on springback:  

 

Since the blanks were 254 mm wide, it is reasonable to assume a plane-strain 

deformation. Both shell and solid elements were used to model the blank sheet to study 

the ability of each element type to simulate springback for this benchmark. In the model 

with shell elements, only a small portion of the blank in the width direction was modelled 

and appropriate symmetric boundary conditions were imposed to ensure plane-strain 

deformation. The shell element used in this case is denoted as S4R in ABAQUS which is 

a 4-node shell element in reduced integration mode. The mesh convergence study showed 

that a mesh size 0.5 mm in the longitudinal direction represented an appropriate 

discretization of the model. In the model with solid elements, a 4-node (first order) plane-

strain element in reduced integration mode denoted as CPE4R in ABAQUS was used. 

The hourglass energy of the system and the convergence study showed that at least four 

elements along the thickness were required for CPE4R element. The aspect ratio of the 

solid elements was consistently chosen to be one, and this discretization resulted in 

convergence in all cases. 
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Fig. 5.16.  Comparison of the predicted profile using shell and solid elements for AKDQ at 
25% (left) and 100% (right) drawbead penetrations 

 

The sidewall profile predicted with each type of element is shown in Figs. 5.16-5.17 as 
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predict almost the same profile for springback. Therefore, it appears that a fine mesh with 

shell elements can produce the same springback profile as with solid elements even 

though the ratio R/t (tool radius to sheet thickness) is less than 5 in the drawbead region. 

It would seem that both shell and solid elements can be used for the simulation of this 
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Fig. 5.17.  Comparison of the predicted profile using shell and solid elements for HSLA at 25% 
(left) and 100% (right) drawbead penetrations 

 

5.4.2. The effect of number of integration points on springback:  
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NIP depends on the drawbead penetration and the material in this problem. Figs. 5.18-
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required for AKDQ and DP600, respectively, to guarantee the convergence of the 

numerical solution. Material nonlinearity and the strength of material are among the 

important factors affecting NIPs through the thickness. Usually, more NIPs are required 

for higher strength materials and more nonlinear materials. Note that the maximum 

compressive and tensile stresses depend upon yield stress. 

 

 

Fig. 5.18.  The effect of NIP on springback profile for HSLA (left) and AKDQ (right) at 100% 
drawbead penetration 

 

 
Fig. 5.19.  The effect of NIP on springback profile for DP600 (left) and AA6022 (right) at 75% 

and 100% drawbead penetrations, respectively 
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5.4.3. The effect of friction coefficient on springback:  

 

As discussed in section 5.2, the distance between the die and binder surfaces was 

always 0.42 mm more than the nominal thickness of the sheet during the drawing process 

in order to minimize the effect of friction. It is therefore expected that friction has a 

minor effect on the amount of springback in this problem. A constant friction coefficient 

of 0.16 for AA6022-T43 and 0.12 for the other materials was used, as suggested by data 

obtained from twist compression tests [100]. However, different values of the coefficient 

of friction were used in the simulations to investigate the sensitivity of the predicted 

profile to the friction coefficient.  

At the beginning of forming stage, the sheet is first bent over the die radius. After the 

punch travels a certain distance, the material points located before the drawbead region 

flow through the drawbead region and will finally end up in the sidewall. Since only a 

little area is in contact with binder, the contact area does not change significantly 

throughout the forming stage. So, the forming stage of this problem is expected to be a 

kind of steady state process. The experimental punch force, as shown at the end of this 

chapter, confirms that the punch force converges to a certain value for all materials and 

all drawbead penetrations. This suggests that the friction should be constant throughout 

the forming stage. Therefore, the change of friction coefficient during the forming stage 

is not considered here in this work.  

Figs. 5.20-5.21 show the effect of friction on the predicted profile after springback. The 

friction coefficient of 0.16 did not result in convergence of simulation for AKDQ during 

springback stage. In general, a greater coefficient of friction results in a greater tension in 

the sidewall and consequently reduces the amount of springback. Although the validity of 

this observation is confirmed by Figs. 5.20-5.21, the springback profile is not very 

sensitive to the coefficient of friction at shallow drawbead penetration (25%) where the 

restraining force is relatively low and the tension in the sidewall is not sufficiently large 

to considerably reduce springback. However, at deeper drawbead penetrations the 

springback profile is somewhat sensitive to the coefficient of friction. It is also worth 
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mentioning that a very small coefficient of friction may cause instability in the numerical 

simulation and convergence may not be obtained. A large coefficient of friction may also 

result in failure of the sheet in the sidewall. Therefore, the choice of a reasonable 

coefficient of friction is important in the simulation of the channel draw process even if 

the contact area between the sheet and the binder is minimized.  

 

 

Fig. 5.20.  The effect of coefficient of friction on springback profile of DP600 (left) and AKDQ 
(right) at 25% drawbead penetration 

  

Fig. 5.21. The effect of coefficient of friction on springback profile of AKDQ (left) and HSLA 
(right) at 100% drawbead penetration  
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5.5. Results:  

 

During the experimental work of BM3, it was found that DP600 channel sections 

drawn with 100% drawbead penetration occasionally fractured in the sidewall, therefore 

this condition was excluded from the investigation. All other combinations of sheet 

material and drawbead penetration were simulated using ABAQUS commercial software, 

resulting in a series of 15 different simulations. Three different material models were 

used in the simulations: a) isotropic hardening (IH), b) combined isotropic-nonlinear 

kinematic hardening (IH+NKH), c) Yoshida-Uemori two-surface model (YU). So, the 

results obtained by each model are first presented and then compared.  

 

5.5.1. Error between the simulated and experimental curve: 

 

In order to quantify the error between the simulation and experiment, consider point C 

on the experimental curve and its corresponding point C´ on the simulated curve, as 

shown in Fig. 5.22. The error in the x-direction and y-direction are obtained as follows:  

ሺݔߜሻܿ ൌ ሺܺܿ െ ܺܿ´) 

൫ݕߜ൯ܿ ൌ ሺܻܿ െ ܻܿ´ሻ 
(5.13)

So, the error at point C can be written as:  

ܿߜ ൌ ටሺݔߜሻܿ
2 ൅ ൫ݕߜ൯ܿ

2
 (5.14)

In fact, the error at each point is equal to the distance between that point and the 

corresponding point on the simulated curve. The sum of errors between the simulated and 

experimental curve can be calculated by the line integral over the experimental curve. So, 

the area between two curves can be used as a measure of the error between the 

experimental and simulated profiles. In order to normalize the error, this area is divided 

by the area under the experimental curve from point A to point B as follows:  
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Area between the curvesError=
Area under the experimental curve from A to B

 (5.15)

Since the area of interest is the sidewall region, only the curves from points A up to 

point B are considered. Note that point A is the end point of the punch radius.  

 
Fig. 5.22. Schematic illustrating the error between the simulated and experimental curves 

 
 

5.5.2. Isotropic hardening model (IH):  

 

Hollomon's power law relationship between the stress and the amount of plastic strain 

can be written as:  

ߪ ൌ ҧ௣ሻ௡ (5.16)ߝሺܭ

where ߪ is the stress, K is the strength index, ߝҧ௣ is the effective plastic strain and ݊ is 

the strain hardening index. This law can be used to fit the experimental stress-strain curve 

of the material and be extrapolated to obtain the material response at larger strain 

magnitudes. Table 5.10 lists the coefficients in Hollomon’s equation fitted to the uniaxial 

stress-strain curve of the material in the rolling direction of the sheet. Using the material 

coefficients in Table 5.10, the isotropic hardening model with Hill’s quadratic yield 
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function was used to simulate BM3 of NumiSheet 2005. The simulations were carried out 

using the initial elastic modulus (IEM) and the reduced elastic modulus (REM) according 

to Eq. (3.37) and the corresponding constants are given in Table 5.9. For each simulation, 

the error between the simulation and experiment were calculated according to Eq. (5.15). 

Table 5.11 shows the percentage of relative error for each material at different drawbead 

penetrations. Figs. 5.23-5.30 compare the experimental channel sidewall profile with the 

profile predicted by the IH model for all four BM3 materials. These figures show that the 

IH model over-predicts springback and the reduced unloading modulus results in a larger 

springback. In IH model, the stress is over-predicted in the simulation which results in 

overestimation of springback. However, if the decrease of unloading modulus is not taken 

into account, the springback will be underestimated. So, the simulation of springback by 

IH model with initial elastic modulus may happen to be relatively accurate due to 

compensation of these two errors. This is the case for DP600 as can be observed from 

Figs. 5.23-5.30 and Table 5.11.  In order to prove this, the experimental punch force 

during forming stage can be compared with that predicted by IH model. The punch force 

is the integral of stress. So, the punch force during the forming stage must be over-

predicted if the stresses are over-estimated by the model. The results of simulations of 

BM3 by IH model confirm that this model considerably over-predicts the punch force for 

DP600. A comparison between the predicted and experimental punch force will be 

presented later in this chapter.  

 

Table 5.10. Coefficients in Hollomon’s equation for BM3 sheet materials  

Material  ܭ(MPa) ݊ 

AA6022-T43 479.9 0.258 

AKDQ 579.9 0.256 

DP600 1080.7 0.152 

HSLA 770.0 0.187 
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Table. 5.11. The percentage of relative error in prediction of springback by IH model  

Drawbead 
Penetration 

DP600  AKDQ  HSLA  AA6022 
IEM REM  IEM REM  IEM REM  IEM REM 

25% 4.74 6.12  18.25 24.67  6.27 15.11  12.01 6.32 

50% 3.67 7.06  18.07 26.22  3.87 10.66  8.94 4.53 

75% 3.05 10.12  16.81 24.49  6.55 13.83  4.50 7.00 

100% -- --  19.30 25.62  11.87 24.49  6.38 10.96 

 

 

 

Fig. 5.23. Channel sidewall profiles predicted by the IH model for DP600 at 25% (left) and 50% 
(right) drawbead penetrations  
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Fig. 5.24. Channel sidewall profiles predicted by the IH model for DP600 at 75% drawbead 
penetration  

 

 

Fig. 5.25. Channel sidewall profiles predicted by the IH model for AKDQ at 25% (left) and 50% 
(right) drawbead penetrations  
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Fig. 5.26. Channel sidewall profiles predicted by the IH model for AKDQ at 75% (left) and 100% 
(right) drawbead penetrations  

 

 

Fig. 5.27. Channel sidewall profiles predicted by the IH model for HSLA at 25% (left) and 50% 
(right) drawbead penetrations  
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Fig. 5.28. Channel sidewall profiles predicted by the IH model for HSLA at 75% (left) and 100% 
(right) drawbead penetrations  

 

 

Fig. 5.29. Channel sidewall profiles predicted by the IH model for AA6022 at 25% (left) and 50% 
(right) drawbead penetrations  
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Fig. 5.30. Channel sidewall profiles predicted by the IH model for AA6022 at 75% (left) and 
100% (right) drawbead penetrations  

 

5.5.3. Combined isotropic-nonlinear kinematic hardening model (IH+NKH):  

 

In the previous section, it was shown that the IH model overestimates the springback 

for BM3. In this section, Hill’s quadratic yield function with the combined IH+NKH 

model is used to evaluate the capability of this model to predict springback. This model 

assumes the expansion of the yield surface as well as its translation in stress space. The 

following equation is used for the isotropic hardening:  

ܴ ൌ ܳʹሺ1 െ ݁ି௕ʹ௣ሻ (5.14)

where Qʹ and ܾʹ are two material parameters. ܳʹ is the maximum change in the size of the 

yield surface, and ܾʹ defines the rate at which the size of the yield surface changes as 

plastic straining develops. The translation of the yield surface is defined by:  

ሶߙ ൌ
ʹܥ
௬ߪ
ሺ࣌ െ ሶ݌ሻࢻ െ ሶ (5.17)݌ࢻʹߛ

where ܥʹ and ߛʹ are material parameters and ߪ௬ is the yield stress or the current size of the 

yield surface. ܥʹ is the initial kinematic hardening modulus, and ߛʹ determines the rate at 

which the kinematic hardening modulus decreases with increasing plastic deformation. 
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The kinematic hardening law can be separated into a deviatoric part and a hydrostatic 

part; only the deviatoric part has an effect on the material behaviour. When ܥʹ and ߛʹ are 

zero, the model reduces to an isotropic hardening model. The least squares method was 

used to fit the simulated stress-strain curve to the experimental curve which was obtained 

either by simple shear tests or by uniaxial tension-compression tests. Table 5.12 lists the 

material constants associated with this model for the BM3 materials. Figs. 5.31-5.34 

show the predicted response of the material by IH+NKH. As can be seen from these 

figures, IH+NKH is able to capture both permanent softening and the Bauschinger effect. 

However, the transient Bauschinger region is not accurately described by this model. The 

early re-yielding is not accurately described for DP600, HSLA and AA6022. For AKDQ, 

it seems that the amount of Bauschinger effect is not very large and therefore the 

IH+NKH model is able to describe the reverse yield stress relatively accurately. These 

figures also show that workhardening stagnation is not observed for AA6022. Therefore, 

IH+NKH model is able to better describe the reverse behaviour of DP600 and AA6022 

compared to the other two materials. However, the reverse stress-strain response of the 

material is not described very well for AKDQ and HSLA because the model is not able to 

capture workhardening stagnation. Since there is a workhardening stagnation period at 

the beginning of forward loading for HSLA, the stress-strain response is not well 

described even during forward loading. In summary, it seems that IH+NKH describes the 

behaviour of AA6022 and DP600 relatively well but it is not able to describe the 

behaviour of AKDQ and HSLA. Fig. 5.33 shows that the IH+NKH model fails to 

accurately describe the cyclic behaviour of HSLA.  

 

Table 5.12. Material coefficient for IH+NKH model 

Material  ߪ௬ (MPa) ܥʹ (MPa) ߛʹ ܳʹ(MPa) ܾʹ 

AA6022-T43 136 1027 48.6 150 11 

AKDQ 158 300 5 240 8.5 

DP600 420 9500 40 190 8 

HSLA 394 5000 140 180 7 



132 
 

 

Fig. 5.31. Predicted stress-strain response of DP600 using IH+NKH 

 

 

Fig. 5.32. Predicted stress-strain response of AKDQ using IH+NKH 
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Fig. 5.33. Predicted stress-strain response of HSLA using IH+NKH 

 

 

Fig. 5.34. Predicted stress-strain response of AA6022 using IH+NKH  
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Again, the relative error was calculated according to Eq. (5.15). Table 5.13 lists the 

percentage of relative error for each material at different drawbead penetrations. The 

predicted profile after springback using IH+NKH model is shown in Figs. 5.35-5.42. The 

springback stage was simulated using either the initial elastic modulus (IEM) or the 

reduced elastic modulus (REM) where the decrease in unloading modulus is taken into 

account. Figs. 5.35-5.36 show that springback in DP600 channel sidewalls are 

underestimated if the reduced elastic modulus is not used. If the reduced elastic modulus 

is considered, however, the predicted springback profile is relatively close the 

experimental profile. Figs. 5.37-5.38 show that, for AKDQ channels, the predicted 

sidewall curl is overestimated when the initial elastic modulus is used, and the 

overprediction is even more significant when the reduced elastic modulus is used. For 

HSLA, the discrepancy between the predicted and experimental profiles is even more 

than that of AKDQ. Finally, the predicted profile for AA6022 is predicted fairly well at 

shallow drawbead penetrations, i.e. 25% and 50%. However, the discrepancy between the 

simulation and experiment increases as the drawbead penetration increases. The results of 

these simulations show that the IH+NKH model improves the simulation results 

compared to the IH model, especially for DP600 and AA6022. So, it seems that the 

springback profiles are well predicted for materials where the cyclic stress-strain curve is 

well predicted by IH+NKH model. A more detailed discussion on the comparative ability 

of various hardening models to predict springback will be presented in section 5.5.5. 

 

Table. 5.13. The percentage of relative error in prediction of springback by IH+NKH model  

Drawbead 
Penetration 

DP600  AKDQ  HSLA  AA6022 
IEM REM  IEM REM  IEM REM  IEM REM 

25% 8.12 3.19  14.95 20.1  3.20 8.65  7.55 3.35 

50% 6.85 3.62  16.45 23.57  4.41 9.82  6.15 1.85 

75% 7.63 2.71  9.37 15.93  8.02 13.64  2.79 3.60 

100% -- --  25.24 33.53  11.70 17.56  6.11 11.52 
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Fig. 5.35. Channel sidewall profiles predicted by the IH+NKH model for DP600 at 25% (left) and 
50% (right) drawbead penetrations  

 

 

Fig. 5.36. Channel sidewall profiles predicted by the IH+NKH model for DP600 at 75% 
drawbead penetrations  

 

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

Y,
 m

m

X, mm

Experiment

NKH+IH(IEM)

NKH+IH(REM)

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

Y,
 m

m

X, mm

Experiment

NKH+IH(IEM)

NKH+IH(REM)

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

Y,
 m

m

X, mm

Experiment

NKH+IH(IEM)

NKH+IH(REM)



136 
 

 

Fig. 5.37. Channel sidewall profiles predicted by the IH+NKH model for AKDQ at 25% (left) 
and 50% (right) drawbead penetrations 

  

 

Fig. 5.38. Channel sidewall profiles predicted by the IH+NKH model for AKDQ at 75% (left) 
and 100% (right) drawbead penetrations  
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Fig. 5.39. Channel sidewall profiles predicted by the IH+NKH model for HSLA at 25% (left) and 
50% (right) drawbead penetrations  

 

 

Fig. 5.40. Channel sidewall profiles predicted by the IH+NKH model for HSLA at 75% (left) and 
100% (right) drawbead penetrations  
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Fig. 5.41. Channel sidewall profiles predicted by the IH+NKH model for AA6022 at 25% (left) 
and 50% (right) drawbead penetrations  

 

 

Fig. 5.42. Channel sidewall profiles predicted by the IH+NKH model for AA6022 at 75% (left) 
and 100% (right) drawbead penetrations  
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5.5.4. Yoshida-Uemori two surface model (YU):  

 

In this section, Hill’s quadratic yield function and the YU hardening model are used to 

predict the springback profile of BM3. The material coefficients for Hill’s function and 

YU model are shown in Tables 5.5 and 5.9, respectively. The same finite element models 

as those used in sections 5.5.1 and 5.5.2 were used to obtain the predicted profile for 

BM3. Figs. 5.43-5.50 compare the experimental sidewall profiles with the predicted 

profiles. As can be seen, the predicted profiles are fairly close to the experiment for 

DP600 if the decrease in unloading modulus is taken into account. There is quite a large 

discrepancy between the experimental and simulated profiles for AKDQ at all drawbead 

penetrations. The simulated profile for HSLA is also overestimated if the unloading 

modulus decrease is taken into account. For AA6022, the profile is predicted fairly well 

at shallow drawbead penetrations. However, as the drawbead penetration increases, the 

predicted profile is overestimated.  

 

Table. 5.14. The percentage of relative error in prediction of springback by YU model  

Drawbead 
Penetration 

DP600  AKDQ  HSLA  AA6022 
IEM REM  IEM REM  IEM REM  IEM REM 

25% 8.76 3.09  25.31 31.43  3.77 2.62  6.36 2.19 

50% 7.34 2.89  28.70 35.08  1.66 5.00  5.17 2.09 

75% 8.04 2.18  26.06 32.38  2.70 8.20  2.23 4.85 

100% -- --  25.41 31.09  6.97 12.64  6.98 12.46 
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Fig. 5.43. Channel sidewall profiles predicted by the YU model for DP600 at 25% (left) and 50% 
(right) drawbead penetrations  

 

 

Fig. 5.44. Channel sidewall profiles predicted by the YU model for DP600 at 75% drawbead 
penetrations  
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Fig. 5.45. Channel sidewall profiles predicted by the YU model for AKDQ at 25% (left) and 50% 
(right) drawbead penetrations  

 

 

Fig. 5.46. Channel sidewall profiles predicted by the YU model for AKDQ at 75% (left) and 
100% (right) drawbead penetrations  
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Fig. 5.47. Channel sidewall profiles predicted by the YU model for HSLA at 25% (left) and 50% 
(right) drawbead penetrations  

 

 

Fig. 5.48. Channel sidewall profiles predicted by the YU model for HSLA at 75% (left) and 
100% (right) drawbead penetrations  
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Fig. 5.49. Channel sidewall profiles predicted by the YU model for AA6022 at 25% (left) and 
50% (right) drawbead penetrations  

 

   

Fig. 5.50. Channel sidewall profiles predicted by the YU model for AA6022 at 75% (left) and 
100% (right) drawbead penetrations  
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5.5.5. Yld2000-2d and YU model:  

 

It has been reported in the literature that the simulated springback depends not only on 

hardening law but also on the plastic anisotropy. Geng and Wagoner [54] used four 

different yield functions to simulate the springback of AA6022-T4 formed in a draw-

bend test. They found that the springback angle at low back forces was controlled by the 

hardening law, while at higher back forces the anticlastic curvature, which depends 

principally on yield surface shape, controlled the springback angle. The results of 

simulation of BM3 for AA6022-T43 (Figs. 4.49-4.50) showed that the springback profile 

is overestimated at larger drawbead penetrations.   Since the back force increases at larger 

drawbead penetrations, using a more advanced yield function may improve the 

springback simulation. Therefore, the Yld2000-2d yield function and the YU model were 

used to study the effect of yield function on the springback response.  

In order to study the effect of yield function on the simulated springback profile 

accuracy, YU model was used with Yld2000-2d function to simulate the springback of 

BM3 for AA6022-T43. The material parameters associated with Yld2000 and YU model 

are given in Tables 5.8 and 5.9, respectively. Table 5.15 shows the calculated relative 

error for AA6022 at different drawbead penetrations. Figs. 5.51-5.52 compare the 

predicted profile with Hill’s function and Yld2000 function. As can be seen, there is a 

little discrepancy between the results obtained by Hill and Yld2000 functions. Again, the 

springback profile is overestimated at larger drawbead penetrations. Therefore, it seems 

that the hardening model dominates the amount of springback for this problem and using 

a more advanced yield function does not improve the results even at a larger penetration.  

 

Table. 5.15. The percentage of relative error in prediction of springback by Yld2000+YU model 
for AA6022-T43 

 25% 50% 75% 100% 
IEM 5.09 3.98 4.50 8.63 
REM 1.8 2.74 6.20 14.23 
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Fig. 5.51. Channel sidewall profiles predicted for AA6022 at 25% (left) and 50% (right) 
drawbead penetrations  

 

   

Fig. 5.52. Channel sidewall profiles predicted for AA6022 at 75% (left) and 100% (right) 
drawbead penetrations 
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5.5.6. Punch Force 

 

In BM3, four load cells were mounted beneath the fixed punch under the lower die in 

order to record the punch force during each test. The ram displacement, ram pressure and 

the cushion pressure in the floating binder were also recorded in real time. These data 

were recorded for each material, each drawbead penetration and for each channel that 

was formed. The punch force versus ram displacement is shown in Figs. 5.53-5.56 for all 

materials at different drawbead penetrations. As can be seen from these figures, the 

punch force increases when the ram initially starts to move, then it remains fairly 

constant until the end of stroke. So, in order to define the error between the simulated and 

experimental forces, the average punch force was determined in the steady state region 

(after 100 mm of ram displacement) and the error was defined as follows: 

Error ൌ
Fୱ୧୫ െ Fୣ୶୮

Fୣ୶୮
 (5.18)

where Fୣ୶୮ is the experimental punch force and F݉݅ݏ denotes the predicted punch force by 

simulation. The percentage of error was calculated for all materials and all drawbead 

penetrations and is shown in Fig. 5.57. This figure shows that the punch force is 

overestimated by the IH model except for HSLA at 25% drawbead penetration. The 

overestimation of punch force by the IH model is because this model fails to capture the 

Bauschinger effect and over-predicts the material response during cyclic loading. The 

reason for underestimating the punch force for HSLA at 25% drawbead penetration can 

be explained by Fig. 5.14. This figure shows that the predicted stress-response of HSLA 

is underestimated by the IH model because of workhardening stagnation of this material 

at the beginning of plastic deformation. In general, the IH+NKH and YU models improve 

the prediction of punch force. For DP600 and AA6022, both the IH+NKH and YU 

models are able to describe the cyclic behaviour of DP600 and AA6022 fairly well. As a 

result, both models predict almost the same profile for springback. Both these models 

predict similar punch forces for DP600. For AA6022 however, the punch force predicted 

with the IH+NKH model is different from that predicted with the YU model. For HSLA, 
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the punch force error predicted by YU model is relatively small at 25%. However, the 

punch forces predicted with the IH and IH+NKH models are better in agreement with 

experimental data at larger penetrations. For AKDQ, the IH+NKH and IH models predict 

the punch force more accurately at shallow and deep penetrations, respectively.  

In general, Fig. 5.65 shows that the punch force is underestimated by the IH+NKH and 

YU models at deeper drawbead penetrations. It can also be observed that for some 

materials the punch force predicted with the IH model is more accurate than the other 

models. This is not generally expected because the IH model overestimates the stress-

strain response of material. Perhaps the reason for this lies in the fact that the contact 

forces and/or friction force are not accurately calculated in the finite element simulation. 

For instance, if the coefficient of friction is chosen to be larger at deeper penetrations, the 

punch force predicted with the YU and IH+NKH models will be closer to the 

experimental punch force. This increases the tension in the sidewall during the forming 

process and results in less springback at deeper penetrations. More research is required on 

this issue to make sure the friction is accurately modeled in this process.  

 

Fig. 5.53. The punch force versus ram displacement for AKDQ at different drawbead 
penetrations 
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Fig. 5.54. The punch force versus ram displacement for DP600 at different drawbead 
penetrations 

 

 

Fig. 5.55. The punch force versus ram displacement for AA6022 at different drawbead 
penetrations 
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Fig. 5.56. The punch force versus ram displacement for HSLA at different drawbead 
penetrations 
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Fig. 5.57. The error in prediction of punch force: (a) AA6022, (b) DP600, (c) HSLA and (d) 
AKDQ 
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Chapter 6 

 

Discussion 

 

 

6.1. The role of hardening model on the accuracy of springback simulation: 

 

In the previous chapter, different models were used to simulate the springback of BM3. 

In this section, the results obtained with each model are compared and the effect of the 

hardening model on the simulated profile is discussed. Hill’s quadratic yield function was 

used with three hardening models: IH, IH+NKH and YU models. Throughout this 

section, it is assumed that the unloading modulus decreases during the springback stage 

according to Eq. (3.37).  

The springback of U-shaped channel sections was obtained for four different materials. 

Two of these materials, i.e. DP600 and AA6022, do not show any workhardening 

stagnation period during cyclic loading, whereas AKDQ and HSLA show significant 

workhardening stagnation. In addition, the HSLA shows some workhardening stagnation 

during the first forward loading because of discontinuous or non-uniform yielding of this 

material, which is characterized by the propagation of Lüders bands. The experimental 

cyclic behaviour of DP600 (see Figs. 5.7, 5.12) shows that the Bauschinger effect is quite 

significant for this material. AKDQ shows a small Bauschinger effect as the yield stress 

during the stagnation period is almost equal to that in forward loading (see Figs. 5.8, 

5.13). The other two materials show some Bauschinger effect during cyclic loading.  

Let us first consider the stress-strain behaviour as it was predicted by different 

hardening laws. The IH model does not describe the cyclic behaviour of any of these 
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materials. The IH+NKH model describes the permanent behaviour of all materials except 

HSLA because this material shows both workhardening stagnation and some Bauschinger 

effect. For AKDQ, the predicted behaviour with the IH+NKH model is fairly close to the 

experimental permanent behaviour as this material does not show a large amount of 

Bauschinger effect. The transient response is not predicted very well with the IH+NKH 

model, especially when the material shows workhardening stagnation. The YU model 

correlates very well with the experimental response for all materials and describes both 

the permanent and transient behaviour fairly accurately.  

Figs. 6.1-6.2 compare the springback profile simulated by IH, IH+NKH and YU 

models for DP600 at different drawbead penetrations. Fig. 6.3 shows the error in 

springback for each model. The figure shows that the error associated with the IH model 

increases as the drawbead penetration increases. However, the error associated with the 

IH+NKH and YU models decreases as the drawbead penetration increases. The YU and 

IH+NKH models improve the springback prediction about 3% and 8% at 25% and 75% 

drawbead penetrations, respectively. The main reason for improvement of springback 

simulation using the IH+NKH and YU models (compared to the IH model) is that these 

models describe the Bauschinger effect and do not over-predict the stress field in the 

simulation. It seems that both the IH+NKH and YU models describe the behaviour of 

DP600 relatively accurately and YU model has no considerable advantage over the 

IH+NKH model.  
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Fig. 6.1. The effect of hardening model on the simulated springback profile of DP600 channel 

sections at 25% (left) and 50% (right) drawbead penetrations  

 

 

Fig. 6.2. The effect of hardening model on the simulated springback profile of DP600 channel 

sections at 75% drawbead penetration  
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Fig. 6.3. The error in springback with respect to drawbead penetration for DP600 
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behaviour of AKDQ fairly well (see Fig. 5.32). However, the IH+NKH model also fails 

to predict the springback of AKDQ accurately. In order to determine the reason for this, 

the uniaxial tension was simulated using the material constants obtained from the simple 

shear test. Fig. 6.7 compares the experimental and simulated stress-strain response. This 

figure shows that the simulation overpredicts the experimental stress-strain response of 

AKDQ in uniaxial tension which shows that the behaviour of AKDQ in tension is 

different from that in shear. Therefore, it is thought that if the stress-strain curve was 

obtained either in uniaxial tension-compression at large strain amplitudes or in a bending-

unbending test, the prediction of springback for this material will improve.  

Another interesting observation is that the IH+NKH model reduces the springback error 

more than twice compared to the IH model for DP600. However, it does not considerably 

improve the results for AKDQ. The reason for this is that the decrease in yield stress 

during reverse loading (Bauschinger effect) is much larger for DP600 compared to 

AKDQ.  

 

 

Fig. 6.4. The effect of hardening model on the simulated springback profile of AKDQ channel 

sections at 25% (left) and 50% (right) drawbead penetrations 
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Fig. 6.5. The effect of hardening model on the simulated springback profile of AKDQ channel 

sections at 75% (left) and 100% (right) drawbead penetrations 

 

 

Fig. 6.6. The error in springback with respect to drawbead penetration for AKDQ 
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Fig. 6.7. Comparison of experimental stress-strain response of AKDQ with that obtained by 

simulation 

 

The effect of the hardening model on the simulated springback profile for HSLA 

channel sections is shown in Figs. 6.8-6.9. The error associated with each model is also 

shown in Fig. 6.10. As can be seen, the best results are obtained with the YU model 

where the error is 2.62% at 25% and it increases up to 12.6 at 100% drawbead 

penetration. For the IH model, the error first decreases for 50% penetration and then 

increases as the drawbead penetration increases. However, the error increases as the 

drawbead penetration increases for the IH+NKH and YU models.  
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Fig. 6.8. The effect of hardening model on the simulated springback profile of HSLA channel 

sections at 25% (left) and 50% (right) drawbead penetrations 

 

  

Fig. 6.9. The effect of hardening model on the simulated springback profile of HSLA channel 

sections at 75% (left) and 100% (right) drawbead penetrations 
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Fig. 6.10. The error in springback with respect to drawbead penetration for HSLA 
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Fig. 6.11 shows the stress-strain history of an integration point that is located outside 

the drawbead region at the beginning of the forming process but moves through the 

drawbead and up into the channel sidewall during the forming process. This history was 

obtained by simulation of the channel draw of an HSLA sheet using the YU model. A 

similar strain history, either TCTCT or CTCTC, is repeated for most of the material 

points that end up in the channel sidewall. In order to make sure that the material 

response is well predicted at all drawbead penetrations, uniaxial TCTCT test within the 

strain ranges shown in Fig. 6.11 are required for identification of material constants. 

Unfortunately, the uniaxial TC test that were carried out in this work as shown in Fig. 

5.7-5.10 are not in the strain ranges of Fig. 6.11. The simple shear cyclic data was carried 

out at a sufficient strain range for the BM3 problem. However, the loading direction was 

reversed only once in this test; whereas in the BM3, the loading direction was reversed 

four times. So, there is no guarantee that the material response will be predicted correctly 

at subsequent loading reversals. It is thought that, if the cyclic stress-strain response of 

the material was experimentally obtained for a larger number of cycles, the hardening 

constants would likely reproduce the material behaviour more accurately, and 

consequently, the springback profile would also be predicted more accurately. 

The friction model and/or friction coefficient may also be another cause of greater error 

at large penetrations. In general, the coefficient of friction is a function of velocity and 

pressure. At larger penetration, the severity of deformation and a larger pressure may 

increase the coefficient of friction. A greater coefficient of friction will increase the 

punch force and reduce the amount of springback. In order to see if a larger coefficient of 

friction can improve the springback simulation at deeper drawbead penetrations, the 

simulations were repeated using greater friction coefficients for HSLA at 100% 

penetration. Fig. 6.12 shows the error in springback and punch force predictions with 

respect to the coefficient of friction. The results show that a greater coefficient of friction 

(up to a certain value) improves both the punch force and the springback prediction. 

When the coefficient of friction is around 0.16, the punch force is accurately predicted 

but the springback error is 8.98%. So, this study shows that the coefficient of friction 

alone cannot lead to an accurate prediction of springback. Therefore, it appears that more 

experimental data are required on both friction and cyclic response of the material to 
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determine if a more accurate modeling of friction and material response leads to an 

accurate springback prediction for this problem. 

 

 

 

Fig. 6.11. The stress-strain history of HSLA at different drawbead penetrations  
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Fig. 6.12. The effect of friction on the accuracy of punch force and springback prediction for 

HSLA at 100% drawbead penetration 

 

Figs. 6.13-6.14 compare the predicted sidewall profiles obtained with the IH, IH+NKH 

and YU models with the AA6022 experimental profiles. Fig. 6.15 also shows the error in 

springback for each model. For the IH and IH+NKH models, the error decreases 

somewhat at 50% drawbead penetration, then starts to increase as the drawbead 

penetration increases. For the YU model, the error for AA6022 is close to the error for 

DP600 and HSLA at shallow drawbead penetrations. In general, the springback errors 

associated with the YU and IH+NKH models are almost the same for AA6022. 

Therefore, it seems that the IH+NKH model is adequate for predicting the springback of 

AA6022 in this benchmark because this model predicts the material behaviour of 

AA6022 fairly well (see Fig. 5.34). It should be mentioned that the transient region is not 

described very well by the IH+NKH model, and therefore, the YU model may be able to 

improve the springback prediction in certain die geometries, e.g. small ratios of die radius 

to sheet thickness (R/t). In summary, the YU model does not improve the springback 

prediction for AA6022 in this BM3 problem. At deeper penetrations, the error increases 

for both the IH+NKH and YU models but this may be improved with the help of more 

friction data and by using cyclic stress-strain data obtained at larger strains and with more 

stress reversals, as discussed in the previous paragraph for HSLA.  

-20

-15

-10

-5

0

5

10

15

20

0.1 0.12 0.14 0.16 0.18 0.2 0.22

Er
ro

r,
 %

Friction Coefficient

Punch Force Springback



163 
 

 

 

Fig. 6.13. The effect of hardening model on the simulated springback profile of AA6022 

channel sections at 25% (left) and 50% (right) drawbead penetrations  

 

 

Fig. 6.14. The effect of hardening model on the simulated springback profile of AA6022 

channel sections at 25% (left) and 50% (right) drawbead penetrations  
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Fig. 6.15. The error in springback with respect to drawbead penetration for AA6022 
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is important that the hardening model be able to capture the transient response of the 

material. However, a large blank holder force, a greater drawbead restraining force and/or 

a large coefficient of friction may cause significant tension in the sidewall, which in turn 

increases the magnitude of strain in the sheet. The higher tension in the sidewall after the 

last loading reversal causes the stress to increase beyond the Bauschinger transient 

region, and in this case, it is important for the constitutive model to describe the 

permanent work hardening behaviour of the material.  

 

6.3. Radius-to-Thickness Ratio:  

 

Another condition which makes it essential to reproduce the transient behaviour is 

when the die radius-to-sheet thickness ratio is small. For a small die radius, the material 

is subjected to severe bending-unbending over the die radius, and as a result, the material 

may yield during springback [55]. So, the early re-yielding must be accurately described 

by the constitutive model. It is interesting to note that in this benchmark, the radius-to-

sheet thickness ratio in the drawbead region is small, while the die radius-to-sheet 

thickness ratio is relatively large. It would appear then, that capturing the early re-

yielding is not as important as the permanent hardening when severe bending-unbending 

takes place prior to the last load reversal over a large die radius.  
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Chapter 7 

 

Conclusions 

 

 

7.1. Summary:  

 

In this work, the springback of a channel draw process, i.e. Benchmark #3 of 

NumiSheet 2005, was predicted by ABAQUS commercial software package. In order to 

describe the cyclic material behaviour, two different numerical algorithms were 

developed for numerical implementation of Yoshida-Uemori two-surface plasticity 

model. The first algorithm uses the governing parameter method, in which all equations 

are written in terms of only one unknown, and a semi-implicit integration scheme along 

with Hill’s quadratic yield function. The second algorithm uses a fully-implicit 

integration scheme and assumes a general equation for the yield function. Depending on 

the number of stress components, this approach needs to solve several equations 

simultaneously. For a 3D stress space, the second algorithm needs to solve nineteen 

equations simultaneously: one equation for the yield function, six equations for the stress, 

six equations for 𝜷 and six equations for 𝜽. However, all equations are written in terms 

plastic strain increment and the procedure is summarized to solving only one nonlinear 

equation. So, the first approach is simpler, more computational effective and more robust. 

These algorithms were implemented as user-material subroutines for both 

ABAQUS/Standard and ABAQUS/Explicit. Both Hill’s 1948 quadratic yield function 

and the Yld2000-2d yield function were used in the fully-implicit subroutines. Several 

problems were used to verify the implementation of these user subroutines. The main 

disadvantage of semi-implicit approach is that a small increment size should be used with 
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this algorithm. However, the fully-implicit approach is more stable at large increment 

sizes. Therefore, it can be generally suggested to use the semi-implicit approach with 

ABAQUS/Explicit and the semi-implicit approach with ABAQUS/Standard. The user 

subroutines were used to simulate the springback of benchmark#3.  

Four different materials were used in the benchmark. In order to find the material 

constants, two types of tests were performed on these materials: a) cyclic tension-

compression test and b) cyclic simple shear test. Since simple shear test was able to carry 

out the test at larger strain magnitudes, the stress-strain data obtained by this method 

were used to identify the material parameters associated with YU model. The r-values 

and yield stress in different directions were also used to obtain the material parameters 

associated with the yield function.  

Finally, three different hardening models were used to simulate the benchmark: a) 

isotropic hardening, b) combined isotropic-nonlinear kinematic hardening, c) YU model. 

Moreover, the effect of yield function on the accuracy of springback prediction was 

studied for AA6022. Both Hill-48 and Yld2000-2d yield functions were used to simulate 

BM3 for AA6022.  

 

7.2. Conclusions:  

 

In summary, the following conclusions can be drawn from this work:  

 

1. If a sufficiently fine mesh is used, the first-order solid element and shell element 

will result in almost the same predicted springback profiles. 

2. When using shell elements, the required NIP depends not only on the material but 

also on the drawbead penetration. It appears that 9 integration points is sufficient 

for HSLA and AA6022. However, 29 and 49 integration points are required for 

AKDQ and DP600, respectively.   
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3. The coefficient of friction has a minor effect on the predicted springback profile 

at shallow penetrations. However, it does have a more noticeable influence on the 

predicted profile at deeper penetrations.  

4. IH model overpredicts the springback as it does not take the cyclic plasticity 

phenomena into account. 

5. The decrease of unloading modulus has a significant effect on the amount of 

springback and it is needed to be taken into account for an accurate prediction of 

springback.  

6. IH+NKH model is able to predict the springback of AA6022 and DP600 fairly 

well. The profiles predicted by the YU model are very close to those obtained by 

the combined IH+NKH model for these materials. 

7. The YU model significantly improves springback prediction for HSLA compared 

to the IH+NKH model.  

8. None of these hardening models are able to accurately predict the springback for 

AKDQ. One important reason for this is that the simple shear cyclic curve was 

used to identify the material constants.  

9. The predicted springback for AKDQ by the YU model is even larger than that 

obtained by the IH model which is due to the plastic deformation during 

springback. So, it seems that the assumption of a constant size of yield surface is 

not very accurate for AKDQ which has very little Bauschinger effect, a large 

amount of workhardening and low strength. 

10. Using the Yld2000-2d yield function does not improve the springback simulation 

for AA6022 at large drawbead penetrations mainly because the yield stress for 

this material does not changes significantly at different orientations.   

11. The predicted springback profile depends on the material constants which are 

obtained by fitting the simulation curve to that of experimental cyclic material 

behaviour. So, the number of cycles and the strain level in the experimental cyclic 

material response affects the simulated springback profile. In other words, even if 

the springback profile is predicted well in one particular case, e.g. shallow 

drawbead penetration, there is no guarantee that the predicted profile is accurate 

in other cases, e.g. deep drawbead penetration.  
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12. The error associated with numerical integration with the semi-implicit scheme 

increases at larger strain increments; while the error is smaller for the fully-

implicit scheme at larger increments.  

13. The YU model is able to accurately reproduce the material behaviour. However, it 

seems that it doesn’t accurately predict the springback of materials with little or 

no Bauschinger effect such as AKDQ. So, YU model is especially suitable for 

prediction of springback of materials showing a considerable amount of 

Bauschinger effect and workhardening stagnation such as HSLA.  

14. When there is a large tension in the sheet, the permanent response of material is 

more important to be captured compared to the transient behaviour for an accurate 

prediction of springback. The IH+NKH model is usually able to describe the 

permanent behaviour of material, especially the material with no workhardening 

stagnation.  
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Flow Chart A.1.    

Semi-implicit numerical algorithm for implementation of YU model  

 

1. Elastic Predictor  

1.1.   .Dn

Tr ; 
n

TrTr   ; nn  1  
  

1.2. Set nn IsoFacIsoFac 1   

Isotropic Factor=0 during workhardening stagnation  

Isotropic Factor=1 during workhardening  

1.3.  Check for the yield condition:  

 If 0Y)
2

3
( 0.5TrTr  N  ; then set (•)n+1=(•)

Tr 
and Exit.  

 Else Goto step 2.  
 

2. Plastic Corrector  

2.1. Initialize: 

 0p  ; Tr

n  1
 

2.2. Calculate the effective plastic strain:  

 IsoFac)RR(kh nsat .. 

 

; phRR nn  .1  ; YRBa nn   11  

 Use Eq. (14) to find 1n  

 Use Eq. (15) to find Ξ  

 Calculate the residual: Y)(Res 0.5

nn   11
2

3
 N .  

 If ( Res < Tol), then Goto Step 3.  

 Set 
f

Res
pp


 where f  denotes the derivative of f  with respect to p .  

 Goto 2.2. 

 

3. Update 
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 p).
Y

b
(k nnnn    11

 

 111   nnn   

 111   nnn   

 

4. Workhardening Stagnation 

 
2

11
2

3
nnn

T

nn r)()(Res   qPq   

 If ( Res > 0 ) Then 

o If ( IsoFac=0 ), then set IsoFac=1 and Goto Step 2.  

o Use Eq. (31) to find Δμ. 

o Use Eq. (29) to update q.  

o Use Eq. (26) to update r.  

 Else  

o If ( IsoFac=1 ), then set IsoFac=0 and Goto Step 2.  

 EndIf 
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Flow Chart A.2 

Fully-implicit numerical algorithm for implementation of YU model  

 

1. Elastic Predictor  

1.1. 𝝈𝑇𝑟 = 𝝈𝑛 + 𝑫𝛥𝜺; 𝜼𝑇𝑟 = 𝝈𝑇𝑟 − 𝜶𝑛 ; 𝜶𝑛+1 = 𝜶𝑛  
  

1.2. Set IsoFacn+1= IsoFacn 

𝐼𝑠𝑜𝐹𝑎𝑐 (Isotropic Factor) =0 during workhardening stagnation  

𝐼𝑠𝑜𝐹𝑎𝑐 (Isotropic Factor)=1 during isotropic hardening  

1.3.  Check for the yield condition:  

 If  𝜂 ≤ 𝑌 ; then set (•)n+1=(•)
Tr 

and Exit.  

 Else Goto step 2.  

 

2. Plastic Corrector  

2.1. Initialize: 

 𝛥𝑝 = 0; 𝜼𝑛+1 = 𝜼𝑇𝑟   

 

2.2. Calculate the effective plastic strain, backstress and 𝜼 : 

 If (𝐼𝑠𝑜𝐹𝑎𝑐 = 0 ); then 𝑅𝑛+1 = 𝑅𝑛  

 If (𝐼𝑠𝑜𝐹𝑎𝑐 = 1 ); then 𝑅𝑛+1 = 𝑅𝑠𝑎𝑡 (1 − 𝑒−𝑘.𝑝) 

 𝑎𝑛+1 = 𝐵 + 𝑅𝑛+1 − 𝑌
 
 

 Use Eqs. (4.11) to calculate the residuals: 𝐺1, 𝑮2, 𝑮3, 𝑮4 

 If ( 𝐺1&𝑮2&𝑮3& 𝑮4)<Tolerance; then Goto Step 3 

 Use Eq. (4.28b) to calculate 𝜩−1 

 Solve Eqs. (4.12) simultaneously to find 𝑑𝛥𝑝; 𝛥𝝈; 𝛥𝜽; 𝛥𝜷 

 Update:  𝛥𝑝 𝑛+1 = (𝛥𝑝)𝑛 + 𝑑𝛥𝑝 ; 𝑝𝑛+1 = 𝑝𝑛 + 𝛥𝑝 

              𝜷𝑛+1 = 𝜷𝑛 + 𝛥𝜷; 𝜽𝑛+1 = 𝜽𝑛 + 𝛥𝜽; 𝜶 = 𝜷 + 𝜽   

                                   𝝈𝑛+1 = 𝝈𝑛 + 𝛥𝝈; 𝜼 = 𝝈 − 𝜶 

  Goto 2.2. 
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3. Workhardening Stagnation 

 𝑅𝑒𝑠 =
3

2
 𝜷𝑛+1 − 𝒒𝑛  𝑇𝑷 𝜷𝑛+1 − 𝒒𝑛  − 𝑟𝑛

2 

 If ( Res > 0 ) Then 

o If ( IsoFac=0 ), then set IsoFac=1 and Goto Step 2.  

o Use Eq. (4.22) to find Δμ. 

o Use Eqs. (4.19, 4.20) to update q.  

o Use Eq. (4.17) to update r.  

 Else  

o If ( IsoFac=1 ), then set IsoFac=0 and Goto Step 2.  

 EndIf 

4. Consistent Tangent Modulus:  

 Use Eq. (4.32) to calculate the consistent tangent modulus  
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