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Abstract 

The efforts of this research were to determine the sensitivity to interfacial gaps in laser 

transmission welding using various laser welding parameters. Note that the melting of the 

transparent side of the interface relies mainly on heat conduction from the absorbing side 

since the laser beam energy is mainly absorbed in the non-transparent material. If a gap 

exists between the parts at the faying surface, the weld may not form at that location.  

 

For this study, interfacial gaps created via manufactured voids were moulded into the 

components to be welded. After welding, the samples were then assessed using 

microstructural analysis, fracture surface analysis and hydraulic burst testing.   

 

The research has shown laser transmission welding has the potential of obtaining strong 

welds, exceeding those of linear vibration welds of similar geometry 

 

Surprisingly, very strong bonds were observed even with a large degree of porosity/voids 

in the weld.  
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Chapter 1: Introduction 

It is difficult to imagine a world without plastics. Plastics are utilized in automotive 

components, electronics, consumer goods and medical devices. The use of plastics is 

continually growing since plastics offer good strength-to-weight ratio, complex part 

geometries, low cost and an ease of recycling. As the need for plastic components grows, 

more complex components arise which cannot be manufactured as one piece, instead they 

need to be joined from two or more components. Joining methods for plastics is an 

evolving art that continually demands cost effective, environmentally friendly, and 

efficient processes with a high degree of quality. Joining techniques for plastics are 

categorized into the following:  adhesive joining, mechanical joining/fastening and fusion 

bonding/welding (only for thermoplastics) [1].  With each method there are advantages 

and disadvantages. The current study utilizes a fusion bonding/welding technique known 

as laser transmission welding (LTW).  

 

Laser transmission welding employs one material that is transparent to the laser beam and 

one that is absorbent. The laser goes through the transparent material and the energy is 

absorbed and converted to heat, mainly in the absorbent plastic near the interface of the 

two materials. The absorbent material being heated expands and transfers heat to the 

transparent material by conduction. The result is a melt pool bridging the interface, 

producing a weld after freezing. LTW has many advantages as summarized in Table 1 [2-

4]. Laser welding of plastics is already utilized in industry for some applications [5, 6], 

for example electro-pneumatic pumps [7], with many more potential applications such as 

air intake manifolds, fluid reservoirs and medical devices. Medical devices may 
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especially benefit from laser welding since micro-welds with no particulates are 

obtainable. 

 
Table 1: Advantages and disadvantages of laser transmission welding [2-4] 

Advantages Disadvantages 
- no meltdown distance required 
- welds are stronger than vibration 

welds 
- greater flexibility in design 

geometry 
- reduced flash, small heat affected 

zone (HAZ) 
- reduction in material usage given 

proper joint design 
- aesthetically pleasing (no flash, 

markings) 
- possibility of re-welding 
- one laser welding machine can be 

reprogrammed to weld parts of 
differing geometry 

- no harmful fumes such are present 
when using adhesives 

- shock sensitive electric components 
can be welded 

- no mechanical stress on the joint 
components 

 

- no meltdown 
- continuous contact across faying 

surface requires tight dimensional 
control 

- limited welding thickness 
- somewhat higher capital cost 

initially 
 

 
 

1.1  Objectives of the Research 

The motivation of the present research is to demonstrate the ability of laser welding to 

overcome the shortfalls associated with other thermal welding techniques. Vibration 

welding for instance dominates the automotive field, being used for air induction 

modules, fluid reservoirs, and electrical modules. Linear vibration welding is limited to 

geometries that can tolerate relative movement in only one direction. Vibrations caused 

by ultrasonic or vibration welding may affect sensitive electrical components resulting in 
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the part being discarded. Hot plate welding, utilized for lighting assemblies, can 

encounter a poor fit when joining and as a result can have high residual stresses. As 

stated in Table 1 joint design flexibility is an advantage of laser welding. Since there is 

no relative movement of the components during laser welding, shock sensitive electrical 

components will not be damaged. These advantages have inspired research towards the 

further understanding and development of laser welding. 

 

The purpose of the present study is to determine the sensitivity of interfacial gaps in laser 

transmission welding using various laser welding parameters. It is important to note that 

the melting of the transparent side of the interface relies mainly on heat conduction from 

the hotter absorbing side of the joint, since the laser beam energy is mainly absorbed in 

the non-transparent material. Gaps may be present between adjoining surfaces due to 

forming defects or warping of the components. If a gap exists between the parts at the 

faying surface, the weld may not form at that location.  

 

For this study, interfacial gaps created via manufactured voids were moulded into the 

components to be welded. After welding, the samples were then assessed using 

microstructural analysis, fracture surface analysis and hydraulic burst testing.  The main 

objective was to experimentally investigate the sensitivity to interfacial gaps in laser 

transmission welding.  
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1.2 Thesis Map 

Chapter 2 gives an overview of the joining of plastics, including information about lasers, 

review on the different processes of laser welding, and a brief literature review on 

experimental and modeling work relating to laser transmission welding as well as optical 

properties, and process parameters. Included in Chapter 3 is an introduction of 

manufactured voids, an explanation of the design of the injection moulded specimen, and 

the type of laser welder used. The experimental approach is detailed in Chapter 4 along 

with an explanation of each assessment method. The experimental results for each 

assessment method: burst test analysis, fracture surface analysis and microstructural 

analysis are presented, analyzed and discussed in Chapters 5, 6 and 7, respectively. 

Chapter 8 includes discussion and interpretation of the results. Chapter 9 provides 

conclusions and recommendations for future work. Finally Appendix I and II includes the 

images and data generated for this research. 
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Chapter 2: Plastic Joining and Laser Transmission Welding 

The intention of this chapter is to review scientific and technical documentation and 

interpretation in previous research on plastic joining, mainly centered on thermal plastic 

welding processes. 

 

Thermoplastics have an advantage over other materials in that they may be formed to 

near net shape through fewer operations. Provided with the proper design of the mould, 

close tolerances can be held on plastics eliminating the need for post mould machining 

(excluding the specialized machining required for some joining purposes). Given that 

plastics have low cycle times enables high production. Colorants added to the plastic 

resin before moulding eliminate the need for painting and drying required by most other 

materials. Common operations used for producing thermoplastics include injection 

moulding, extrusion, blow moulding, compression moulding, thermoforming and 

variations of each [8]. 

 

Thermoplastic components often need to be assembled from two or more components for 

example due to the complexity of the part. For closed-hollow components made by 

injection moulding this is always true. Welding processes may also be necessary when 

aesthetics require varying colors and textures, or because of the size of part. Originally 

categorized by Stokes [1], joining of plastics may be completed using chemical 

techniques such as adhesives (mainly used for thermosets), mechanical technologies such 

as snap fits and fasteners, or thermal techniques such as welding (only for 
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thermoplastics). The current research uses hollow thermoplastic components joined by 

laser transmission welding. 

2.1 Various Welding Techniques (Thermal, Friction, Electromagnetic) 

The welding of the thermoplastic materials involves heating the interfaces to be welded 

until they have been melted or softened, followed by, or combined with pressing them 

together which induces intermolecular diffusion of the adjoining surfaces to create the 

weld. Therefore, the fundamental steps for welding thermoplastics include surface 

preparation, heating, pressing, intermolecular diffusion and cooling. Welding of 

thermoplastics is categorized by the heating method used; thermal, frictional/mechanical, 

or electromagnetic [2]. 

 

During thermal welding, heating relies on convection, conduction and/or radiation to heat 

the weld surface. Examples of thermal welding techniques for thermoplastics that use 

external heating are hot tool welding, hot gas welding, extrusion welding, implant 

induction welding, and resistive implant welding.  

 

Frictional/mechanical welding relies on the conversion of mechanical energy into heat 

via surface friction or intermolecular friction. Examples of frictional/mechanical welding 

are ultrasonic welding and friction/vibration welding. 

 

Electromagnetic welding relies on the absorption and conversion of electromagnetic 

radiation into heat. Examples of electromagnetic welding are radio frequency welding, 

infrared/laser welding and microwave welding. 
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2.2 Lasers - An Overview 

The word laser is an acronym meaning Light Amplification by Stimulated Emission of 

Radiation. The basis of the LASER was originally concluded by Einstein; excited species 

(atoms, ions and molecules) could be stimulated to emit a photon by the arrival of another 

photon [9]. The generation of the laser light is due to the near-simultaneous transitions 

between the high and low energy states in species in various mediums. The 

electromagnetic spectrum shown in Figure 1 is the continuous range over which radiation 

can be produced with wavelength ranging from 10-7 nm to 1014 nm. The light produced by 

lasers has unique properties in that it is monochromatic, coherent, has low divergence and 

high brightness [9].  

 

Figure 1: The electromagnetic spectrum (UV-ultraviolet, IR- infrared) [9] 

 

Lasers have proven to be a flexible tool in industrial applications producing a beam of 

light with unique properties, high accuracy control, a small spot size, and being an 

intense source of energy. Lasers in manufacturing can be used for welding, cutting, 

drilling, surface hardening, and marking of various materials including plastics [9]. The 
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type of laser, active medium and parameters vary depending on the material and 

application. Examples of laser parameters include wavelength, power, energy and mode 

(pulse or continuous). The active medium can be gas, liquid or solid; Figure 2 gives a 

summary of the types of lasers for each category and Figure 3 shows various commercial 

lasers used in material processing, measurement and/or communication. Also shown is 

the average power versus the wavelength for each laser.  

 

Figure 2: Laser types used in material process categorized by the type of active medium [9] 

 

Figure 3: Average power vs. wavelength for commercial lasers [9] 
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A laser device works by light radiation being emitted from the transitions between energy 

levels in the lasing medium. For common incandescent white light radiation, electrons in 

the conduction band are excited, thus putting them in a metastable state. White light 

radiation is emitted in all directions with a wide range of frequencies when the electrons 

decay back to their stable state. Laser light radiation is different since it uses the process 

of stimulated emission whereby a photon collides with the lasing material to release 

additional photons. The processes of spontaneous emission, stimulated emission and 

absorption are illustrated in Figure 4. The photons emitted for laser light radiation have 

the same polarization, frequency and phase (temporal and spatial). This is the reason laser 

light has its unique properties (monochromatic, coherent, low divergence and high 

brightness). 

 

Figure 4: Radiation processes associated with the interaction of light with matter spontaneous 

emission, stimulated emission and absorption [10] 
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The laser device also amplifies the light as the stimulated emissions of radiation are 

internally reflected between mirrors on either side of the lasing medium. Figure 5 

illustrates the photons traveling between two mirrors. The output mirror is only partially 

reflective, thus allowing the amplified light beam to be emitted from the laser. 

 

Figure 5: Amplification of light by stimulated emission of radiation [9] 

2.3 Process Review- Plastics Welding with Lasers 

Infrared (IR) and laser welding is a technique that utilizes energy from lasers and laser 

diodes to heat the joining materials. There are three basic techniques utilized for 

infrared/laser welding of plastics; i) surface heating, ii) IR/laser transmission welding and 

iii) IR/laser staking. 

2.3.1 Surface Heating 

Surface heating process is similar to hot plate welding in that the surfaces to be joined are 

heated directly by the IR/laser to produce a molten layer. The surfaces are then pressed 

together and allowed to cool, thus producing a weld; refer to Figure 6 for a schematic of 

this process. 
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Figure 6: Surface heating using IR/laser welding [2] 

2.3.2 Infrared/Laser Transmission Welding 

Infrared/laser transmission welding employs one material that is transparent to the laser 

beam and one that is absorbent. The laser goes through the transparent material and the 

energy is absorbed and converted to heat, mainly near the interface of the two materials. 

The absorbent material being heated expands and transfers heat to the transparent 

material by conduction. The result is a melt pool bridging the interface, producing a weld, 

see Figure 7.  

 

Figure 7: Infrared/laser transmission welding (LTW) 
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2.3.3 Infrared/Laser Staking 

Similar to other staking techniques (ultrasonic and hot air cold staking), staking is used 

for joining materials that cannot be welded, such as a metal component to thermoplastic 

component. The laser beam heats the post and a forming head forms the post to a desired 

shape, joining the components.   

2.3.4 Heating Using Transmitted Radiation 

Infrared radiation can be supplied to the joining surface by three main methods, 

scanning/contour, continuous illumination, or mask welding [2]. During scanning the IR 

source is translated across the faying surface, Figure 8 (a). This process is easily 

programmable for welding various components. Continuous illumination uses the IR 

source to illuminate the entire faying surface to be welded by simultaneous or quasi-

simultaneous methods, Figure 8 (c) and (d) respectively. Mask welding, Figure 8 (b), is 

similar to illumination except that a mask is used to block sections of the parts from the 

IR source. This method is highly suitable for complex and micro-structured areas. 

 

Figure 8: Methods of delivery of the laser beam to the joint interface: a) contour welding, b) mask 

welding, c) simultaneous welding (form of continuous illumination), d) quasi-simultaneous welding 

(form of continuous illumination) [11] 
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The electromagnetic radiation from the IR source interacts with the polymer whereby a 

fraction is reflected ( R ), a fraction is transmitted (T ) and a fraction is absorbed ( A ) 

giving ATR ++=%100 , (Figure 9). 
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OI  is the intensity of the incident radiation, RI  is the intensity of light reflected. TI  is the 

intensity of light transmitted, and AI  is the intensity of light absorbed. 

 

Figure 9: Interaction of radiation from laser beam with plastic, reflection, transmission and 
absorption 

 

Most plastics do not reflect much light, therefore the fraction of reflection is typically low 

(between 2-8%), giving absorption and transmission the greater influence on the laser 

transmission welding process.  

 

Transmission of the light/radiation is complex due to the refraction of light when 

traveling through two materials of differing indexes of refraction, see Figure 10. The 

amount of refraction can be determined by Snell’s law, Equation 1 where an  and bn  is 

the refraction index of material a and b respectively. 
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Figure 10: Refraction of light through two 

materials with differing index of refraction [2] 

 

 
 
 
 

Equation 1: Snell's law [2] 
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For pure, unfilled polymeric materials the chemical structure defines the amount of light 

that can be transmitted and absorbed. When incident light encounters the polymer, the 

resonant absorption of infrared radiation excites the molecular bonds which then vibrate 

in particular modes. Table 2 gives summary of wavelengths at which common chemical 

bonds vibrate and the mode of vibration. The vibration of the molecular bond dissipates 

heat which raises the temperature of the material promoting melting. 

 

Table 2: Vibration modes for chemical bonds during infrared radiation exposure [2] 

 

For transmission laser welding processes, the laser frequency is chosen to avoid having a 

wavelength near the main bonds’ natural vibration frequencies. So the laser wavelengths 

are selected to be at infrared (IR) wavelengths with relatively high transmissibility. 
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Scattering may also occur, especially with crystalline materials, since each phase will 

refract and scatter the light/radiation. Additives, like glass fibres or mineral flour may 

cause absorption. Therefore during laser transmission welding, the thicker the sample the 

more energy is needed since more scatter will occur, decreasing the energy reaching the 

faying surface. The amount of scatter or the decrease in intensity due to absorption can be 

determined from Equation 2, Lambert Bouger’s Law, where tI  is the intensity of light, α  

is the absorption coefficient, t  is the thickness, and oI  is the intensity of radiation. This 

simple exponential equation is material dependent since the absorption coefficient is 

dependent on quality, color and additives present in the material such as glass fibres, talc, 

and/or inorganic dies. 

Equation 2: Lambert Bouger’s Law [2] 

)( t
ot eII α−=  

The light absorbed is dependent on the material chemical structure, crystallinity and type 

and quantity of additives. Note that the “transparent” material should absorb minimal 

radiation whereas the “absorbent” material should absorb nearly 100% of the radiation 

near the surface. Crystallinity affects the light absorbed since with higher crystallinity 

there is more scatter of the IR radiation thus producing more vibrations of the chemical 

bonds.  Additives such as carbon black are beneficial in the absorbent material since it 

effectively acts as a blackbody, absorbing almost all wavelengths. Relatively low carbon 

black levels are needed to absorb nearly 100% of IR radiation. For example 0.03 wt% is 

needed for nearly 100% absorption within a depth of 0.5mm, and only 0.07 wt% for a 

nearly 100% absorption within a depth of 0.25mm [2]. 
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Considering the case for contour welding, the heat source is concentrated to a small 

region and this source travels along the faying surface. Assuming point-source heating, 

moving at a constant velocity, for a semi-infinite material, Equation 3 along with Figure 

11 can be utilized to determine the temperature distribution.  

 

Figure 11: Moving heat source (Scan welding) [2] 

 

Equation 3: Temperature distribution for moving heat source [2] 
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Where: vtxtw −=)( , 222)()( zytwtr ++= , v is the velocity, P  is the power, )(tθ  is 

the temperature, t  is time, iθ  is the initial temperature of the solid, λ is the thermal 

conductivity, κ is the thermal diffusivity. 

 

Infrared/laser welding is a flexible welding process which can reduce flash and eliminate 

meltdown distance (which is needed for other welding techniques such as ultrasonic 

welding), thus providing an aesthetically pleasing component. The disadvantages of 



17 
 

IR/laser welding are the need for continuous contact requiring tight dimensional control 

and the limitation on the thickness of material for the transparent component in laser 

transmission welding. 

2.4 Porosity/Voids in Polymers 

In the laser welding carried out for this thesis, a surprising level of voids was observed at 

and near the faying surface in the welded parts. It is therefore convenient to provide the 

reader with a review of the characteristics and sources of some types of voids in 

polymers.  

 

Voids in polymers can be attributed to any of a number of reasons; non-uniform 

shrinkage to volatile vapours to degradation of the polymer. A list of some causes of 

voids in polymers is summarized below. Moisture is the most common cause of voids in 

polymers due to the hygroscopic nature of some polymer materials or of their additives 

[12]. 

Causes of voids in polymers [12] 
- Poor filling of cavity during injection moulding 
- Depolymerization of the polymer to produce volatiles (e.g. PS, POM, PMMA) 
- Degradation of the polymer to produce volatiles (e.g. PVC) 
- Water vapour evolved from moist resin during processing 
- Evolution of water from dehydration of pigments during processing 
- Entrapped humid air during manufacture (especially in composites) 
- Excessive volume contraction of the polymer during cooling (shrinkage) 
- In situ water evolution during polymerization 
- Air encapsulation during moulding 
- Non-optimum processing conditions (e.g. During injection- and rotomoulding) 
- Carbon dioxide produced during polymerization (e.g. polyurethanes) 

 

Welding of polymers needs to be strictly controlled to prevent the formation of 

voids/porosity at or near the welded region. The material may undergo degradation due to 
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high temperatures resulting in void formation. Figure 12 is an example of PVC welded by 

hot-gas welding. The temperature was too high, thus allowing for degradation and void 

formation.  

 

Figure 12: Voids present in PVC that has been hot-gas welded. The ellipsoidal shape of the voids is 
due to the deformation of the material by the pressure applied during welding [12] 

 

Microstructural analysis of the voids can assist in determining the causes of the voids. 

Figure 13 is a tree diagram illustrating the characterization of voids based on their 

appearance. 
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Figure 13: Tree diagram illustrating the characterization of voids based on their appearance [12] 

2.5 Laser Transmission Welding – Literature Review 

The mid 1980’s to the early 1990’s was the gestation period of interest and studies into 

the joining of plastics using lasers. The motives included the relatively low cost of lasers 

and laser diodes and their fixturing, and the increase demand for part quality [2]. Patents 

[13] and processes emerged adapting existing joining methods for laser welding 

purposes. Adapting the process of non-contact hot plate welding by modifying the 

heating phase, simple butt joints were utilized to determine the feasibility, and flexibility 

of the laser welding process. 

 

Some original studies using simple contact butt joints set out to determine the effects of 

process parameter such as laser power, welding time and clamping pressure [14, 15]. Ou 

et al [14] observed weld strengths approaching those of the bulk material while welding 
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butt joints of high-density polyethylene (HDPE) and polypropylene (PP) using a CO2 

laser. 

 

Studies utilizing laser transmission welding and specifically contour laser welding began 

in the late 1990’s with respect to the physics of the process. Grimm [16] describes the 

process of through transmission laser welding and observed the effects of weld force and 

welding rates on the strength of the weld. Good weld strengths and aesthetics were 

obtained when welding PMMA to PC. 

 

Kagan et al. [3, 4, 17-20] utilized laser transmission welding on different materials 

mainly studying nylons. His studies on the optical properties [18] of nylons included the 

effects of  fillers, modifiers, reinforcing agents and pigments. These studies show a 

decrease in the laser transmission with the increase of glass fibre content. This decrease is 

attributed to the increase in light scattering due to the glass fibres. The addition of 

mineral fillers dramatically reduces the laser transmission which was attributed to the 

particle size differences and possibly the refractive index. It was also shown that very low 

levels of carbon black was needed (0.03-0.07 wt %) to obtain very low transmission 

values (<0.3%). Kocheny, with Kagan and Macur [20] studied the effects of moisture for 

laser transmission welding using nylon 6, filled and unfilled. The moisture content was 

varied between dry-as-moulded (DAM) and 7.5 wt%. Shear strengths equal or near to 

frictional and hot plate welding joint strengths were obtained under optimized welding 

conditions. It was concluded that moisture up to 4 wt% does not have a significant effect 

for through transmission laser welding of nylon 6. Kagan and Pinho [19], compared the 
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tensile strengths of T-type butt joints of nylons welded via frictional vibration welding or 

transmission laser welding. Results show laser transmission welding as a viable 

alternative joining method demonstrating tensile strengths equal or near to fictional 

vibration tensile strengths.  

 

Optical properties of the materials are especially important for laser transmission 

welding. Grimm and Yeh [21] studied the transmission of coloured acrylonitrile-

butadiene-styrene (ABS) and polyethylene (PE) with varying levels of carbon black. It 

was seen that heating primarily by surface absorption was obtained at carbon black level 

in excess of 0.03 wt%. 

 

Vegte et al. [22] studied optical requirements and physical aspects of the welded 

interface. Materials studied included PC, PA6, PA46 and PBT, unfilled and filled with 

various reinforcing agents, mineral filler, stabilizers etc. Agreeing with previous studies 

glass fibre content, fillers and crystallinity reduces transmission of laser light.  

 

In some cases optical properties can interfere with part aesthetics. The challenge lies with 

creating an assembly for laser welding one color visually but with components having 

different optical properties in the infrared region (being that one component is transparent 

while the other is opaque to the infrared radiation). The result for PA6 30%GF by Vegte 

et al. [22], is an absorbing side that contains carbon black, rendering the component black 

in the visible spectrum region and opaque in the infrared region. The transparent 



22 
 

component has pigments such that the material is black in the visible spectrum and 

transmissive in the near infrared region this is shown in Figure 14. 

 

 

Figure 14: Transmission spectra for 30% GF PA6 [22] 

 

Clearweld ® is TWI’s solution to manufacture aesthetically pleasing assemblies without 

the use of carbon black [9].  Clearweld ® utilizes a visually colorless infrared absorbing 

medium between the adjoining parts (either painted/printed on one side, or as a film 

between the parts or encompassed in the bulk material). The welds produced are nearly 

invisible, making it well suited for clear products and also viable for coloured products. 

 

Wang, Bates and Zak [23] studied the transmittance and reflectance of polypropylene 

(PP), polyamide 6 (PA6), and polycarbonate (PC) with different surface roughness, 

thickness and glass fibre content. It was shown that reflectance increases with increasing 

thickness of the sample for PA6, while transmittance decreases. The transmittance also 

decreases with the increase of glass fibre content. Lee and Ballou [24] studied laser 
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energy transmission (LET ) measurements using nylon 6 with 30%GF. It was determined 

that local sample thickness can significantly affect the accuracy of measurement of LET. 

Also the exposure time varied the laser transmittance rate especially with thinner parts. It 

was recommended for industry wide standard procedure for measuring the LET.  

 

2.5.1 Previous Measurements of Gap Bridging and Factors Affecting Transmission Laser 

Welding Tensile Strengths 

Bates, Chen et al, have done many studies on the through transmission laser welding of 

plastics [25-27]. Especially relevant to Chen’s present thesis was gap bridging studies 

wherein it was found that the weld strength decreases as the gap between adjoining parts 

increases.  The gaps were provided by putting shims between the opposite ends of small 

plates. The laser beams were then passed across the plates, and when the molten zone on 

the lower absorbent material swelled enough to make contact with the transparent upper 

plate, welds were sometimes formed. Higher laser powers were needed to achieve 

maximum strengths for larger gaps since more material needed to be in the melt pool to 

bridge the gap. They found that increasing the power further resulted in higher 

temperatures and thus could eventually lead to polymer degradation. Also evaluated by 

this group were the influences of line energy, glass fibre content and part thickness using 

shear lap test samples of PA mXD6, again with shims between the samples being welded. 

For glass fibre contents of 0-60 wt% and part thicknesses of 0.5-2 mm, shear strengths 

comparable to the base material were measured. Maximum bridgeable gaps were found 

to be ~0.17 mm, and ~0.07 mm for carbon black contents of 0.025 wt%, and 1 wt%, 

respectively. Also, it is suggested that line energy can be used to correlate data for the 
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laser transmission welding material and speeds used in their studies, and possibly for 

other materials and parameters. Work was done by Prabhakaran, Bates and Baylis [28], 

using modified T-weld samples of nylon 6 welded with a diode laser, to investigate the 

effects of various welding parameters on the weld strength. The minimum line energy 

needed to generate meltdown was estimated to be between 2 and 3 J/mm. 

 

Al-Wohoush and Kamal [29] examined the joint tensile strength and the microstructure 

of samples of PC, PA-6 and PA-6 30%GF, laser welded by Bates group These studies 

showed micro-flow and some fibre reorientation in the laser affected zone. It was 

suggested the weaker joints at high laser power could be attributed to the reduction of 

crystallinity and the fibre re-orientation. 

 

Haberstroh and Luetzeter [30, 31] used PBT to study the effects of injection moulding 

parameters on the quality of LTW. It was found that optical properties vary, resulting in 

more or less transmission of laser light due to changes in mould and melt temperature as 

well as the injection speed. Furthermore, variation in the injection moulding parameters 

affected the crystalline zones and hence spherulite diameters creating either fine 

spherulite zones with high laser light transmission or coarse spherulite zones with lower 

transmittance. The lower transmittance is due to reflection and scattering at the interfaces 

with the crystalline areas. Therefore, it was recommended that any changes in the 

injection moulding parameters be relayed to the weld operator, so that modification to the 

laser transmission welding parameters can be made. 
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Laser welding of polymers produces high quality welds for a variety of material 

combinations, in some cases achieving weld strengths comparable to the bulk material. 

Laser welding has found a place in the industry reducing cost, improving quality and 

reducing environmental impact. There are many applications where laser welding is 

utilized and many more potential applications [5-7, 32]. 

 

2.6 Material Background- Nylons (Polyamides) 

Nylon is the generic name for the thermoplastic family of polyamides (PA). The main-

chain of polyamides/nylons consists of a repeating amide group shown in Figure 15. 

Although nylons are structurally related, each nylon is distinct, having significant 

differences in properties and processing behaviours. 

 

Figure 15: Amide group [33] 

 

Nylon’s superior properties are due to the hydrogen bonding between molecular chains, 

and the flexibility of the carbon chains [33]. Nylons have low frictional properties, low 

melt viscosity, good toughness, good chemical resistance, good abrasion resistance, and 

at elevated temperatures offer superior load-bearing capability. Nylons and glass 

reinforced nylons are used in many applications including air intake manifolds, engine 

fan blades, un-lubricated gears, bearings, as well as fluid reservoirs.  
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Nylon 6 (PA6) is in the group of polyamides that is a melt-processable thermoplastic. 

The 6 in the name refers to the number of carbon atoms in the Caprolactam ring.  Nylon 6 

is produced by ring-opening polymerization, as per Figure 16. Caprolactam is heated at 

533K in an inert atmosphere of nitrogen, where the ring breaks and undergoes 

polymerization.  

 

 

Figure 16: Ring-opening polymerization of nylon 6 [33] 

 

A sometimes detrimental property of nylon 6 is that it is hygroscopic, that is to say nylon 

6 will readily absorb moisture. The absorption of water molecules enables chain scission, 

thus breaking the polymer chains, reducing the strength and stiffness and increasing the 

flexibility and resilience. Care must be taken to dry nylon 6 before any melt processing. 

 

Table 3: Properties of Nylon 6 (30% GF) [34] 

Property SI units Imperial units 
Density 1350-1420 kg/m3 0.022-0.023 kg/in3 

Melting Temperature 228ºC (440ºF) 
Specific heat capacity 16-80 (106K) 

Tensile strength at break 165 MPa 24 ksi 
Tensile modulus 8.62-10.0 GPa 1.25-1.45 (106psi) 

 

Table 3 above gives some of the basic properties of nylon 6 (30% glass fibre or GF).  
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In the present thesis studies, nylon 6 with 30% GF is used with three concentrations of 

carbon black. The transparent material component (natural, denoted as N in this thesis) 

has no carbon black added. The material components that are opaque to the laser are 

black and denoted B in this thesis.  There are two concentrations of carbon black. The 

first has the natural material with its standard commercial addition of carbon black as-

commercially supplied by DSM, denoted S in this thesis. The second is a 50-50 blend of 

natural, and the natural plus carbon black materials (50% N + 50% S) this concentration 

is denoted S/2. The latter material allows some investigation in how gap bridging is 

affected by the carbon black level in the opaque component. 
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Chapter 3: The Creation, Characterization and Welding of 

Manufactured Voids 

3.1 The Concept of Manufactured Voids 

The work [25-27] of the Bates group at Queen's University Kingston used shim plate 

spacers to create gaps between plates to be welded. They measured the values of welding 

parameters required to create the gap-bridging welds. In their study the gaps were 

essentially unbounded parallel to the plate surfaces. These conditions usefully represent 

severe warping conditions in the faying surface, but do not represent localized bounded 

dimples, divots, sink marks or gouges that may be present on the faying surfaces.  For 

this reason, the manufactured void method was invented to create reproducible sets of 

voids on the faying surfaces of the flanges of hemispheric parts, previously used by 

Siemens/Mahle to test polymer weld joint geometries. The mould has a removable ring 

insert which can be modified to change the details of geometry of the faying surfaces on 

the flanges of the plastic parts. In the present variation, ten sub-inserts were fitted into the 

removable flange ring. Each sub-insert had a groove machined into it, and along the base 

of the groove were small plateaus, 50 to 150 microns in height which would create the 

voids on the flange surfaces of the injection moulded parts. 

 

 From previous studies [35] of laser welding shear lap samples, it was found that the weld 

puddle travelling along with the laser beam had a high pressure within it. The evidence 

was that when the beam reached the final edge of the sample a tongue of plastic was 

ejected out from the faying surface. This led to restating the gap problem from the Bates 
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study of bridging a gap, to one of a high pressure fluid flooding into an enclosed void on 

the faying surface. From this point of view, the question becomes one of whether 

different shapes of voids would fill differently, and would the loss of pressure measurably 

affect the overall weld strength.  

 

The primary removable ring insert, shown in Figure 17 left has ten sub-inserts, each with 

1 to 16 voids, arranged around the ring on this flange.  CAD drawings of the moulded 

parts are shown in Figure 18 showing the gate location and the positions of the sub-

inserts. Figure 17 right, is a photograph, lighted with highly oblique conditions, of one of 

the sub-inserts showing the groove and plateaus that will create the raised ring and voids.  

 

Both the transparent specimens and the absorbent specimens are moulded using the same 

ring and sub-inserts, so that when they were fitted together, with the gates aligned for 

welding, sub-insert 1 on the transparent material is superimposed over sub-insert 10 on 

the opaque material. The void pattern on sub-insert one is matched to that of sub-insert 

10, but they have different void depths. Similarly the arrowheads on sub-inserts 4 and 7 

point in opposite directions on the mould so that they will match when fitted together. In 

total there are 66 voids on the moulded parts.  

 

The differences in void depth between the matching sub-inserts allow twice as many 

voids to be produced by rotating the gates 15o from being aligned. That places the 

transparent moulded sub-inserts against the flat flange sections on the absorbent side. 

These voids would be shallower. This option proved to be unnecessary.  
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The void geometry was designed using CAD software. The void groove and plateaus, 

typically 50-200μm high were machined using a Militronic CNC machining center and 

very sharp carbide end mills. 

 

Figure 17: Left:  Removable ring for Mahle injection mould for hemispherical parts. Right: Sub 

insert from removable ring insert for injection mould 

 

Figure 18: Left - Flange where reproducible voids are present on hemispherical component. Right - 

Each sub insert is labelled 1 though 10. 

 

The geometry of the voids present in each insert is summarized in Table 4. The images 

shown are from the moulded parts not the sub-inserts of the mould.  
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Table 4: Insert geometry on the moulded parts (Stereographic microscope with oblique lighting) 

# Moulded Insert Area Highlighted Schematic 

1 

   

2 

   

3 

   

4 

   

5 

   

6 

   

7 

   

8 

   

9 

   

10 
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3.2 Moulding the Parts, and Characterization of the Voids 

The moulding of the parts was completed using a 400 Ton Cincinnati injection moulding 

machine at the Mahle facility in Windsor. The material used is 30%, glass fibre filled 

nylon 6, which was provided by DSM. The absorbing material had the common standard 

commercial addition level of carbon black, but other parts were made that had a 50-50 

mixture of the natural and the standard commercial carbon black level to give a reduced 

absorption coefficient. Once a stable moulding condition was reached, providing good 

definition of the void surfaces, then all the parts were moulded at that condition. It is 

important to note that the thickness of the ring flange material (neglecting the voids) 

penetrated with the laser is 4.4 mm. 

3.2.1 Characterization of the Voids 

A topographical image of each void after moulding but before welding was prepared 

using an optical profilometer with sub-micron resolution. These images allow for 

comparison of the geometry (especially the profile and the depth) of the voids before and 

after welding. An example of the optical profilometer micrographs is shown in Figure 19, 

the remaining images can be found in Appendix I.  
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Figure 19: Topographical image of manufactured void showing profile and depth 

3.3 Laser Welding of the Parts 

The laser welder used for the current studies was a Nd:YAG laser. The wavelength of the 

laser is 1064 nm. The laser is located at Fraunhofer Center for Laser Technology in 

Plymouth Michigan. Figure 20 shows the experimental setup for laser welding. Noting 

that the specimen being welded has circular symmetry, a rotating table was used instead 

of programming the laser to translate around the circumference of the specimen. 

Therefore the robotic arm, once in position above the specimen need not move during the 

welding. Also the rotating table could also be easily programmed to rotate at different 

speeds. The working distance (distance from the laser output to the specimen surface) 

was set at 269mm. The specimen was clamped in the specimen holder to prevent 

movement of the parts during rotation. The toggle clamps are positioned between the 

inserts since the clamp handle shadow prevents the laser from reaching the part. 
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Therefore the areas shadowed by the clamps are not welded, and the areas occupied by 

the inserts are welded. 

 

Figure 20: Equipment setup for the Nd:YAG laser at Fraunhofer Center for Laser Technology 

  

A summary of the welding parameters used for these studies can be found in Table 5. The 

parameters were chosen so as to easily compare welding parameters; Settings A-B 

compares laser power, A-C compares amount of carbon black addition level, B-D 

compares the beam transverse speed, and C-E compares line speed effect at constant line 

energy. 

 

The line energy is the laser power setting divided by the traverse speed, giving it units of 

J/mm.  It is the amount of energy applied per unit length along the weld line, so if the 
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power setting and beam speed are increased by the same factor, then the energy will be 

deposited on a given part of the faying surface at a rate (W/mm/second) which is the 

same as the original rate, since W=J/s. But doubling both the power and speed applies 

this energy twice as quickly. The effect of heating a given small area faster is that during 

the time that the energy is being applied, it has less time to diffuse away by conduction, 

so the peak melt temperature is higher but the volume melted may be lower [35].  

 

Table 5: Welding parameters (S denotes commercial grade, S/2 denotes 50-50 mixture of natural and 

commercial grade) 

 

One of the welded samples for each parameter setting was used for sectioning and 

microstructural analysis, one sample was forcibly separated immediately after welding 

for fracture surface analysis and estimating general strength levels, and one sample was 

used for hydraulic burst testing. The procedure for each assessment method will be 

explained in further detail in the sections which follow. 

 

 
Specimen 

Identification 
Carbon black 

level 
Power 
(W) 

Speed 
(mm/min) 

Line Energy Ratio 
(power/speed) 

A HG 25, 26, 27 S/2 180 1500 0.12 
B HG 28, 29, 30 S/2 270 1500 0.18 
C HG 8, 9, 10 S 180 1500 0.12 
D HG 34, 35, 36 S/2 270 1800 0.15 
E HG 2, 3, 4 S 240 2000 0.12 
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Chapter 4: Welding - Quality Assessment Methods 

4.1 Microstructural Analysis (Sectioning) 

One method of characterization of the welded zones is through microstructural analysis. 

Initially a stacked specimen, Figure 21, is assembled which incorporates the welded 

sample and two cut ring flanges from un-welded hemispheres. The un-welded specimen 

rings are positioned to line up above and below the corresponding welded sub insert 

regions so that they give a clear reference location of the manufactured voids as the 

specimen is sectioned through.   

 

The steps for assembling the stacked specimen is as follows, referring to Figure 21; take 

welded sample A, and two flanges cut from an un-welded hemisphere shown in B. Using 

epoxy, join the flanges to the welded sample, C, making sure the gates align. If the gates 

are aligned then the inserts on the un-welded samples should align with the 

corresponding insert on the welded sample. Once the epoxy has cured the stacked 

specimen can be cut, D, giving the stacked specimen for each insert, E. Lastly the stacked 

specimen is mounted in a PVC pipe using epoxy, F.  Small diameter fiducial marker 

holes were drilled perpendicular to the flat face of the mounted stacked specimen, parallel 

to and at the faying surface marking the positions of the ends of the sub-inserts.  These 

were an aid in lining up the micrographs from one sequential section to the next, and in 

locating the same manufactured void remnants on different sections of the same 

specimen. 
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Figure 21: Steps for assembly of stacked specimen. A- Welded sample. B- Two flanges cut from an 

un-welded hemisphere (preassembly). C- Un-welded flanges glued to welded hemisphere. D- Stacked 

specimen for each insert is cut out. E- Stacked specimen for one insert.  F- Stacked specimen is 

mounted in a PVC pipe using epoxy. 

 

The mounted specimen can now be sectioned by polishing in increments of 

approximately 0.2 mm- 0.4 mm. The sections start from the outer circumference (0mm) 

of the flange and work towards the center (~6 or 7mm). 

 

Figure 22: Line of sight for the microscope. (Perpendicular to the center axis, z, of the assembly) 
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This process was very time consuming, therefore for each welding condition only three 

specimens are used. One specimen is taken from the area near the gate where no 

manufactured voids appear. These samples are denoted “no insert” and give a baseline for 

the welding conditions. The remaining two specimens are from the section with insert 3 

natural/transparent, insert 8 black/opaque, denoted as “3N-8B”, and from the section with 

insert 4 natural/transparent, 7 black/opaque, denoted as “4N-7B”. These inserts were 

chosen since they are representative of the majority of the remaining manufactured voids. 

 

In addition, for each welding condition, images were taken along the weld line in an area 

with no manufactured voids, looking parallel to the direction of travel of the laser beam. 

Figure 23 shows circled the surface that is polished and microphotographed.  These 

images are useful for showing the location of the laser beam with respect to the flange, as 

well as an indication of the energy intensity and porosity profile,  the depth of laser beam 

penetration as well as any misalignment of the sample. 

 

Figure 23: The location of laser beam with respect to the flange is obtained by images taken parallel 
to the direction of travel. Circled is the surface that is polished and microphotographed. 
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4.2 Fractured Surface Analysis 

One sample for each condition was broken immediately after welding for fracture surface 

analysis. Steel wedges were inserted between the welded inserts to pry apart the 

components Figure 24. As stated previously the clamp handle shadow prevented the laser 

beam from reaching the part between the inserts, thus these areas were not welded, 

allowing easier insertion of the wedges. The wedges were then hammered into the joint to 

break the sample open without otherwise disturbing the fracture surfaces where the weld 

occurred.  Most of the welds were very strong, requiring that the wedges be driven in 

with many hammer blows, frequently bending the tips of the steel wedges. The fracture 

finally occurred with a loud bang, and usually fractured only the welds adjacent to the 

wedges. This was an early indication of overheating, and also a predictor that the 

presence of voids was not deleterious to the weld strength. 

 

 

Figure 24: Welded sample being separated for fracture surface analysis. Wedges are inserted 

between the welded inserts to “pry” apart the components. The clamps’ shadow prevented the laser 

beam from reaching the part between the inserts, thus these areas are not welded. 
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Later, using oblique lighting and a digital camera, images were taken of the fractured 

surfaces. The images were then analyzed to find;  

i) The amount of transfer determined by percentage of opaque material area visible 

on the transparent side,  

ii) The area of adhesion contact, determined by the percentage of area visibly 

fractured on the absorbing side and  

iii)  If any manufactured voids were still visible.  

4.3 Burst Test 

The welding of the burst tested samples is slightly different than the microstructural and 

fracture samples. The samples are initially welded with the clamps in the clamped 

position. Since the clamps created a shadow and prevented these areas from being 

welding, and knowing that a hermetic seal is needed for burst testing, the samples had to 

be welded again with the clamps removed. Square pieces of steel acting as shields were 

placed over the sections which were welded by the first pass to prevent them from being 

welded a second time. Welding the same area twice was to be avoided since the purpose 

of the burst test is to estimate the effect of unwelded voids on the weld strength. A 

sample with the clamps removed and shield placed can be seen in Figure 25. This 

particular method would not be used in a commercial application. Instead a mask would 

be produced and precisely placed to shield previous welded areas, or a different clamping 

system would be developed where the laser beam can reach the entire faying surface. 
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Figure 25: Shields used for burst tested samples 

 

The burst test involved drilling a hole in the stub section of the two hemispheres that are 

initially laser welded. The part is held underwater until the air is removed from the 

sample. The pressure was recorded as more water was pumped into the sample while the 

whole part is under water, until the sample fails. Failure was by leaking or bursting at the 

weld seam. Due to the geometry of the part and set up for the burst testing, the parts 

undergo a “peeling” force rather than a purely tensile force when under pressure. These 

forces act in the radial and z direction of the hemisphere; see Figure 26. 

 

Figure 26: Axis system for burst tested samples 
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Chapter 5: Laser Transmission Welding Results – Burst Test 

 
Burst testing involved placing the welded samples underwater and pumping water into it 

until the part fails. Failure was by leaking or bursting at the weld seam. The resulting 

burst pressures are shown in Table 6. Previous studies by Xu et. al [36], have shown that 

an ideal geometry for laser welds is to incorporate them into a wall parallel to the 

specimen axis, connecting the two flanges. These specimens were moulded in the same 

mould used for the present work, but with different ring inserts. This geometry is called 

the taper lock joint. This removes most of the peel component at the faying surface, and 

shifted the location of the failure away from the faying surface to the change of cross-

section where the flange intersects the body of the hemisphere. The taper lock joint 

themselves did not fail. This reference [36] also gave data on vibration welds of similar 

geometry and material as the hemispheric components used in the present  thesis 

research. The vibration welds had burst strengths of 360-680 kPa, and the peel 

component moved the failure to the faying surface. It is important to note that these 

vibration welds and the present laser welds both have a similar peel component of stress, 

since both welds are located on the raised rings on an external flange. When comparing 

the burst strengths of the vibration welds with the current laser transmission welds with 

manufactured voids, it can be seen that the laser transmission welds are stronger, even in 

some cases where leaking occurred before fracture. 

 

Leak-before-break results were caused by slightly misplaced shields on the parts causing 

a very small section to not be welded. This provided the water with an easy escape route, 
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preventing the pressure from reaching the true burst value. The un-welded areas 

commonly went from the inside edge across to the outer edge of the flange, and so they 

also acted as a stress raiser. Therefore the burst stresses recorded for the samples that 

leaked before breaking probably do not represent the burst value for the same welding 

condition on a fully welded faying surface. This is especially true for the usual case 

where the break was confined to an area near the leak. 

 

Table 6: Burst test results 

Sample 
Identification 

Carbon 
Black 
Level 

Power  
(W) 

Speed 
(mm/min) 

Line 
Energy 
(J/mm) 

Burst 
Pressure 

(psi) 

Burst 
Pressure 

(kPa) 
Failure 

E HG-4 S 240 2000 7.2 119.68 825 Weld 

 HG-7 S 210 2000 6.3 n/a n/a Leaked 

C HG-10 S 180 1500 7.2 61.43 424 Leaked 

 HG-12 S 150 1500 6 126.4 871 Weld 

 HG-17 S 150 1500 6 40 276 Leaked 

 HG-18 S 150 1500 6 40 276 Leaked 

A HG-27 S/2 180 1500 7.2 86.52 597 Weld 

B HG-30 S/2 270 1500 10.8 131.92 910 Weld 

 HG-33 S/2 225 1500 9 24 165 Leaked 

D HG-36 S/2 270 1800 9 89.4 616 Weld 

 HG-39 S/2 180 1200 9 124.8 860 Weld 

 

5.1 Influence of Variations in Welding Parameters on Burst Strengths 

The idea of “manufactured voids” is original in the work described in this thesis. Because 

of the uncertainty of whether it would work at all, only a limited number of hemispheres 

were moulded, and the high leakage rates in the burst tests were not anticipated. The 

burst strength tests themselves have a significant variation amongst duplicate samples. 



44 
 

Therefore the data does not have sufficient duplicate burst strength values to make 

definitive claims in the section below.  However some trends are evident, and especially 

when combined with the meticulous micrographic section studies, reveal interesting and 

important results. 

   

Comparisons below of the peak temperature reached and size of the melt pool are based 

largely on the work of Watt et al, [37] and Haung et al [38]. The next few sections will 

compare different conditions to determine the affects of laser power, carbon black 

addition level, laser beam traverse speed and line speed effect at constant line energy. 

 

5.1.1 Power - A (P180, S1500, CB S/2, LE7.2), vs. B (P270, S1500, CB S/2, LE10.8)  

Condition B with the higher power shows a higher burst strength of 910 kPa when 

compared with condition A having a burst strength of 597 kPa. This difference is due to a 

lack of heating in A resulting in smaller melt pool and a lower peak temperature, hence 

poorer bonding between the two surfaces. These results show that increasing the laser 

power increases the burst strength. 

 

5.1.2 Carbon Black Level - A (P180, S1500, CB S/2, LE7.2), vs. C (P180, S1500, CB S, 

LE7.2) 

Condition A has a lower carbon black level than condition C, so it would be expected that 

the laser beam would penetrate deeper into A, producing a larger melt pool with a lower 

peak temperature. The burst test results show C has lower burst strength (424 kPa) than A 
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(597 kPa) but C leaked during the burst test. So, consider substituting for C the results for 

sample HG-12 (P150 S1500 CB S) where burst strength of 871 kPa was attained. Bearing 

in mind the effect of power level from the section above, it suggests that if sample C had 

not leaked, a strength level much higher than the 597 kPa found for sample A would have 

been obtained. This implies that peak temperature is more significant than the depth of 

the weld pool.  

 

5.1.3 Beam Traverse Speed - B (P270, S1500, CB S/2, LE10.8), vs. D (P270, S1800, CB 

S/2, LE9) 

B has burst strength of 910 kPa whereas D with the faster speed has lower burst strength, 

616 kPa. The slower the part moves, the greater the amount of energy supplied to any 

given area along the faying surface. In other words, for a given area, the amount of time 

the power has to heat the surface is greater if the speed is lower. Given that B has a lower 

speed than D; B receives more energy allowing for more heating, a higher peak 

temperature and melt depth, and thus a higher strength.  These results show that 

increasing the laser beam traverse speed decreases the burst strength of the weld. 

 

5.1.4 Line Speed Effect at Constant Line Energy - C (P180, S1500, CB S, LE7.2) vs. 

E(P240, S2000, CB S, LE7.2) 

Both C and E have the same line energy, although E has a higher laser power and a 

higher beam traverse speed. The burst test results show C having lower burst strength 

than E. But C leaked during the burst test. Again substituting HG-12 (P150, S1500, CB S, 
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LE7.2) for C, burst strength of 871 kPa is obtained which is similar to the 825 kPa from 

condition E. It is assumed that if sample C had not leaked, a higher strength would have 

been obtained giving similar results when comparing line speed effect at constant line 

energy. Work by Huang [38], has shown that using a higher speed and power at the same 

line energy produces higher strength welds. This is because a higher peak temperature is 

reached at the higher speed and power; the heat has less time to diffuse away from the 

weld zone by solid state conduction. For the present work on hemispheres, this effect 

may be lost in the inherent scatter of burst test results. 
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Chapter 6: Laser Transmission Welding Results - Fractured Surface 

Analysis 

Using oblique lighting and a digital camera, images were taken of the fractured surfaces 

of the samples split open immediately after welding. The images were then compared to 

determine the amount of transfer (determined using transparent half), the area of adhesion 

(determined using the absorbing half), and if the manufactured voids are still visible. 

Transfer is defined here as the amount (area fraction) of absorbent material transferred 

onto the transparent side of the faying surface within the boundaries of the sub-insert. 

This transfer is the result of the crack path veering into the absorbent material. Similarly 

the transfer of transparent material over to the absorbent fracture side means the crack ran 

through the transparent side at that part of its journey. Adhesion is defined here as the 

area fraction of the absorbent side of the fracture that shows visible fracture 

characteristics as opposed to the smooth as-moulded surface. The presence of the latter 

means that there was insufficient melting to form an adequate weld bond.   

 

The digital images are used to measure the area of transfer and adhesion by object 

analysis (threshold) using computer software techniques. The steps are as follows, 

referring to Figure 27. The image is loaded into the software and calibrated. Next a 

freehand box is set around the area of interest. Only the area of the insert is examined, 

this area does not include the welded area beyond the insert, or the flash (faying surface 

material ejected radially). Finally a threshold technique is used to determine the area of 

transfer or adhesion. 
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Figure 27: Image analysis using computer software techniques. Top- Before (left) and after (right) 
images of the transfer area defined by threshold technique. Bottom- Before (left) and after (right) 

images of the adhesion area defined by threshold technique. 
 
 

Once all the areas have been determined, the two graphs shown in Figure 28 are compiled 

to show the percent of transfer and percent of adhesion, as well as a comparison of 

welding parameters. Table 7 through Table 12 are the images taken of the fracture 

surfaces. 

 

The first letter of the sample designation for Table 7 through Table 12  refers to the 

welding conditions given in Table 6. 
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Table 7: Fracture surfaces A- HG 25 

# Transparent - N Absorbent - B # 

1 
  

10 

2 

  

9 

3 
  

8 

4 

  
7 

5 

  
6 

6 

  

5 

7 

  

4 

8 

  
3 

9 

  

2 

10 

  

1 

L 
  

R 

R 

  

L 
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Table 8: Fracture surfaces B- HG 28 

# Transparent - N Absorbent - B # 

1 

  

10 

2 

  

9 

3 

  

8 

4 

  

7 

5 

  

6 

6 

  

5 

7 

  

4 

8 

  

3 

9 
  

2 

10 

  

1 

L 
  

R 

R 

  

L 
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Table 9: Fracture surfaces C- HG 8 (Welded backwards, L and R - flat area left and right of gate 
respectively) 

# Transparent – N Absorbent - B # 

1 

  

4 

2 

  

 
3 

3 

  

2 

4 

  

1 

5 
  

L 

6 
  

R 

7 

  

10 

8 

  

9 

9 

  

8 

10 

  

7 

L  

  

5 

R 

  

6 
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Table 10: Fracture samples D- HG34 

# Transparent - N Absorbent - B # 

1 
  

10 

2 
  

9 

3 

  

8 

4 
  

7 

5 
  

6 

6 
  

5 

7 

  

4 

8 
  

3 

9 
  

2 

10 

  

1 

L 
  

R 

R 

  
L 
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Table 11: Fracture surfaces E- HG 2 

# Transparent - N Absorbent - B # 

1 
  

10 

2 

  

9 

3 

  

8 

4 

  

7 

5 

  

6 

6 

  
5 

7 

  
4 

8 

  

3 

9 

  

2 

10 

  

1 

L 

  
R 

R 
  

L 
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Table 12: Fracture surfaces- All 
 Transparent - N Absorbent - B 

A-  
HG 25 

  

B-  
HG 28 

  

C-  
HG 8 

  

D-  
HG 34 

  

E-  
HG 2 

 

  



55
 

 

 
F

ig
ur

e 
28

: F
ra

ct
ur

e 
su

rf
ac

e 
- P

er
ce

nt
 o

f 
tr

an
sf

er
 (

to
p)

 a
nd

 a
dh

es
io

n 
(b

ot
to

m
) 



56 
 

Conditions A and B show the lowest level of weld material transfer, followed by 

condition D, then C, leaving condition E with the greatest transfer. The adhesion is 

shown to be good for most conditions, with the exception of A and some inserts on C.  

 

Each insert gives comparable results, compared to the other inserts, as the welding 

conditions are changed. Insert 7 tends to have the greatest transfer for most conditions. 

However, for welding condition C, the fracture surface has some areas where no weld 

occurred. This may be a consequence of a clamp unsecured during welding. When 

comparing welding parameters of the various conditions, insert areas of this type are 

neglected. 

 

6.1 Power A (P180, S1500, CB S/2, LE7.2), vs. B (P270, S1500, CB S/2, LE10.8) 

If the laser power is increased while the other process parameters are fixed, then one 

would expect to have a deeper weld pool with a higher maximum temperature. Despite 

the difference in power, the two conditions, A and B, have similar material transfer.  

Condition B, with the higher power, has a greater area of adhesion all around the faying 

surface. This higher adhesion, although not resulting in much transfer, does create a 

strong bond. Condition A has a much lower adhesion surface area than B. Also 

manufactured voids are still visible on the absorbing side of A, indicating insufficient 

heating. The lack of heating for A resulted in a lower melt volume and peak temperature, 

resulting in poorer bonding between the two surfaces. 



57 
 

6.2 Carbon Black Level  - A (P180, S1500, CB S/2, LE7.2), vs. C (P180, S1500, CB S, 

LE7.2) 

The lower carbon black level means the beam will penetrate deeper into the absorbing 

material, but the same energy will therefore be used to heat a larger volume, resulting in a 

lower maximum temperature in the melt. Condition A has a lower carbon black level than 

C, while their power and speed parameters are the same. This causes A to have a lower 

amount of material transfer and a lower adhesion surface area. The higher carbon black 

level in C results in a more concentrated absorption of the laser energy at the faying 

surface. Neglecting the inserts for C which did not weld (due to a clamp not being 

secured), the amount of transfer is much greater, suggesting a stronger weld. The 

adhesion area is lower for A, and the manufactured voids are still visible on the absorbing 

side of A, indicating an insufficient temperature rise. The result is poor bonding between 

the two surfaces. 

 

6.3 Beam Traverse Speed - B (P270, S1500, CB S/2, LE10.8), vs. D (P270, S1800, CB 

S/2, LE9) 

The faster the beam traverses along the weld line, the less the energy available for a given 

point along that line. So if the other parameters, laser power setting and carbon black 

content are held constant, increasing the speed will lower the melt volume and the peak 

temperature in the melt. When comparing B and D, it can be seen that the adhesion is 

similar. But D, with the higher speed, has a slightly higher amount of transfer than 

condition B. Although the transfer for B is lower, the burst strength is higher than D.  
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The slower the part moves under a fixed laser source, the greater the amount of energy 

supplied to the surface. In other words, for a given length, the amount of time the power 

has to heat the surface is greater if the speed is lower. Given that B has a lower speed 

than D, B has more time to heat the surface allowing for more melting, and a higher peak 

temperature, and thus a higher strength.  

 

6.4 Line Speed Effect at Constant Line Energy - C (P180, S1500, CB S, LE7.2) vs. 

E(P240, S2000, CB S, LE7.2)  

Line energy is the amount of energy per unit length along the weld line, calculated as the 

power divided by beam traverse speed. Condition C and E have the same line energy or 

rate at which power is supplied to the faying surface, but E has a higher power and beam 

traverse speed setting. Recall that the effect of the heating of a given small area faster, is 

that the energy has less time to diffuse away by conduction, so the peak melt temperature 

is higher but the volume melted is lower [35].  

 

Neglecting the inserts which did not weld on sample C, the amount of transfer and the 

adhesion area is similar for C and E. Condition E, with the higher power and speed has a 

slightly higher percent of transfer overall, in addition to an apparently higher burst 

strength than C. However, C leaked before bursting, It is assumed that if this sample had 

not leaked, a higher strength would have been obtained, since in general a good bond was 

present. 
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Chapter 7: Laser Transmission Welding Results - Microstructural 

Analysis 

The remaining method of characterization of the welded zones was through 

microstructural analysis. The mounted specimen, sectioned by polishing in increments of 

approximately 0.2 mm- 0.4 mm was examined at each section using an inverted optical 

microscope. Micrographs allow direct comparison of the corresponding welded and un-

welded sections. The objective is to find to what extent each of the welded voids healed, 

for the given welding parameters. This procedure also reveals the porosity caused by the 

welding process at the opaque near-surface and the rest of the weld pool zone. 

 

The entire length of the weld cannot be micrographed at once; therefore multiple images 

are taken along the length and stitched together in a montage fashion using computer 

software. Figure 29, is an example of the stitched montage of micrographs, the profile of 

the un-welded and welded sections are highlighted for clarity. 

 

Figure 29: Micrographs of the healed voids and un-welded cross-sections from a stacked specimen. 
N- Un-welded natural/transparent material. W-weld line, upper section is transparent material and 

lower section is absorbent material. B- Un-welded black/absorbent material. (Micrographs of 
welding condition B) 

 

Some cross-sections of the weld line show little healing of the voids, hence the 

manufactured voids are still visible; this is shown in Figure 30. Welding condition A 
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shows the majority of the manufactured voids unhealed throughout the sections of each 

of its inserts. Most of the other welding conditions show cross-sections with the 

manufactured voids healed, and a large degree of porosity present. 

 

Figure 30: Montage of weld with voids that have not healed from welding (Micrographs of welding 
condition A) 

 

Using computer software, the amount of porosity and unhealed voids was quantified as 

the sum of the areas (mm2) of the pores on the cross-section per unit length (mm). The 

length was then determined by the distance between the holes drilled in the sample. This 

distance, shown in Figure 31, is the same for each section of a given insert but different 

for each insert. By normalizing the areas of the cross-section by the length between the 

holes, the porosity results for different welding conditions and inserts can be compared. 

Once the area per length of each section for a given sample has been determined, the data 

was complied in a graph of area/length for a section versus the depth into the sample at 

which the section was taken.  
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Figure 31: Porosity and unhealed voids is quantified as the average area (mm2) of the pores on the 
cross section per unit length (mm) 

 

An example of these graphs is shown in Figure 32. Each point on the graph represents 

one section through the sample, giving approximately 25 sections for insert 3N-8B and 

4N-7B, and 13 sections for the no insert sample. The profile of the curve of best fit 

through the data was a result of the intensity profile of the Nd-YAG laser beam. The Nd-

YAG laser beam intensity profile was Gaussian, thus giving a higher intensity at the 

center resulting in higher porosity. The remaining graphs can be found in Section 7.3. 

 

An example of the montage micrographs for each welding condition is given in Figure 33 

through Figure 35. The complete set of micrograph sections for each welding condition 

and insert can be found in Appendix II. 
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Figure 32: Area/length Porosity through Depth of B- HG 29 
 

 

Figure 33: No Insert 
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Figure 34: Insert 3N8B 
 

 

Figure 35: Insert 4N7B 
 
 

7.1 Cross-sections Perpendicular to the Direction of the Laser Beam 

The images taken across the weld line viewed parallel to the direction of travel of the 

laser beam can be found in Figure 36 through Figure 40 for each welding condition.  

 

These images are useful for showing that the weld covers the entire span of the flange, 

except for the case of condition A. The images show a small amount of flash mostly on 
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the inside of the part. Also, an estimate of the minimum depth of penetration of the laser 

beam into the opaque material can be measured as the depth of the distance where 

porosity occurs in these figures.  

 
Figure 36: A- HG 26 (Right is outer side of part, top is natural material) 

 

 
Figure 37: B- HG 29 (Right is outer side of part, top is natural material) 

 

 
Figure 38: C- HG9 (Right is outer side of part, top is natural material) 

 

 
Figure 39: D- HG 35 (Right is outer side of part, top is natural material) 

 

 
Figure 40: E- HG 3 (Right is outer side of part, top is natural material) 

 
 

Table 13: Depth of Penetration of Laser Beam 

 Depth of Penetration (mm) 

A ~0-0.08 

B ~0.28-0.3 

C ~0.2-0.35 

D ~0.2-0.3 

E ~0.15-0.2 
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7.2 Mechanisms for Porosity Formation 

A study of the micrographs and the shape of the porosity/voids suggests a mechanism for 

porosity formation. The Tree Diagram of Figure 13 was used as the guide for the 

characterization of voids based on their appearance. The majority of the porosity voids 

can be categorized as shrinkage voids due to their irregular shape. Some voids appear 

spherical in shape leading to the belief these could be caused by other means, either by 

air encapsulation during welding or by water vapour or other volatiles. Each of these 

mechanisms for porosity formation will be explained in further detail. 

 

7.2.1 Air Encapsulation During Welding 

It is not hard to imagine air being encapsulated during welding Figure 41 since the 

manufactured voids themselves can hold a relatively large quantity of air between the 

adjoining surfaces. During welding as the polymer temperature rises, the softened or 

molten material expands to fill the manufactured voids. If the expansion of the material is 

insufficient or the air is unable to escape into the flash or otherwise, then upon cooling 

the trapped air remains creating porosities/voids at the faying surface. 

 
Figure 41: Manufactured voids and air encapsulation 
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7.2.2 Water Vapour Evolved from Moist Resin During Processing 

Spherical voids may just as easily be caused by water vapour within the material. 

Although careful consideration was undertaken when processing the injection moulded 

hemispheric halves, proper storage before welding was not. As explained earlier in 

Section 2.6, the material for these studies is nylon 6, a hygroscopic material. In addition 

the additive used for the absorbing material, carbon black, is also a hygroscopic material. 

Given that the sample halves were stored in cardboard boxes in a common room, 

moisture from the air will have seeped into the material over time.  The samples were not 

dried prior to welding, thus the moisture within the material would have created water 

vapour at the elevated temperatures of the welding process, thus forming porosities/voids. 

 

7.2.3 Excessive Volume Contraction of the Polymer During Cooling (Shrinkage) 

Excessive volume contraction could easily occur during the rapid cooling following the 

laser beam path, because the laser beam melts only the central region of the raised ring 

faying surface, meaning that there is no meltdown, and the distance between the flanges 

is not affected by the melting-freezing process.  During contour laser transmission 

welding the laser beam traverses the length of the joint, typically at about 2 meters per 

minute, and at any point the melting and freezing process takes about 150 milliseconds 

[35]. In this short time plastic resin melts and expands, causing a compressive pressure. 

Ideally this causes expansion to fill the manufactured voids, and detrimentally it can 

possibly cause some flash to be expel molten material from the weld zone. This flash is 

visible in Figure 36 through Figure 40, as well as the ragged edge on the bottom of weld 

zone on transparent side of Figure 27, and many of the other facture surfaces. As the 
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molten material cools, freezes and then further cools back to ambient temperature, it 

should cool back to the initial volume it had before heating, minus the flash. If the flanges 

remain the same distance apart, effectively there is too little material to completely fill 

the manufactured voids and maintain a continuous solid continuum between the two 

flanges. If a continuum could be maintained then it would be under a tensile hydrostatic 

stress to make up for the missing resin. But liquid plastic and even hot solid polymer has 

a limited tensile strength, though it has high ductility. For reasons that are not understood 

at the time of this writing, the voids appear to be nucleated by a cavitation process at the 

boundary between the solid polymer and the region where the viscoelastic soft material 

exists. It is known that high hydrostatic stresses are developed in the softer material 

where two materials having a large difference in elastic modulus are bonded together and 

are subjected to unidirectional tensile stresses [39]. These hydrostatic tensile stresses 

could nucleate the cavitation. As the polymer shrinks to the previous volume during 

cooling, it appears that the original manufactured void volume and the missing flash 

material volume is redistributed along the boundaries of the viscoelastic soft material as 

shrinkage porosity, refer to Figure 42.  

 

 
Figure 42: Porosity/void formation by shrinkage 
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It is unlikely that only one of these mechanisms for porosity formation is the cause of the 

large degree of porosity present. Instead it is assumed the porosity is due to a complex 

combination of all the causes; flash loss, air encapsulation, water vapour and shrinkage. 

 

7.3 Graphical Data and Results 

The following section includes the graphs obtained by porosity analysis of the cross 

sections for each welding condition. Also included are graphs used for a comparison of 

welding conditions and a discussion on results obtained by these graphs. 

 

  
Figure 43: Area/length porosity through depth of A- HG 26 
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Figure 44: Area/length porosity through depth of B- HG 29 

 
 

  
Figure 45: Area/length porosity through depth of C- HG 9 
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Figure 46: Area/length porosity through depth of D- HG 35 

 

   
Figure 47: Area/length porosity through depth of E- HG 3 

 
 

When comparing the porosity area/length for the different samples within the same 

welding condition, one can see from Figure 43 through Figure 47 that insert geometry 

affects the degree of porosity present in the samples. Insert 4N-7B (single arrowhead 

void) has the highest area/length porosity for each case, insert 3N-8B (2 rows of small 

rectangular voids) is next followed by the near the gate area (No insert) for conditions A, 

B and E, and for conditions C and D no insert is followed by insert 3N-8B.   
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The area/length porosity calculated for condition A, incorporates the porosity as well as 

the visible unhealed manufactured voids. Looking at the side profile micrograph in 

Figure 36, it appears that the weld width does not extend the width of the flange resulting 

in only the inside portion of the adjoining surfaces to be welded. For this reason the outer 

voids from insert 3N8B did not weld producing two distinct peaks for the graph in Figure 

43. Although not as well defined in the graph, the void for 4N7B was also only partially 

welded, and can be seen in Appendix II along with the no-insert sections which also only 

partially welded. 

 

The area/length porosity for conditions B through E does not have visible unhealed 

manufactured voids. However the profiles of the manufactured voids are visible in some 

micrographs in Appendix II, for example E-HG 3- 3N8B- section 7 depth 1.51mm.  
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7.3.1 Comparison of Welding Conditions 

7.3.1.1 Power - A (P180, S1500, CB S/2, LE7.2), vs. B (P270, S1500, CB S/2, LE10.8) 
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Figure 48: Insert 3N-8B, power level comparison, condition A and B 
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Figure 49: Insert 4N-7B, power level comparison, condition A and B 
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Figure 50: No insert, power level comparison, condition A and B 
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As stated before, if the power is increased while the other process parameters fixed, then 

we would expect to have a deeper weld pool with a higher maximum temperature. 

Condition B, with the higher power has a higher level of porosity than condition A for 

each sample 3N8B, 4N7B, and No insert. These results are typically to what would be 

expected. With the higher maximum temperature and deeper weld pool, a more sufficient 

melting is accomplished for condition B, resulting in a higher degree of porosity. 

Looking at the micrographs for condition A, Appendix II, the manufactured voids are still 

visible indicating inadequate melting and mixing of the materials along the faying 

surface.  The micrographs for condition B, Appendix II, show moderate pore sized evenly 

dispersed throughout the length for each section of the inserts. The high level of porosity 

present does not have a detrimental effect on the burst strengths of the weld, since both 

condition A and condition B show appreciable results in burst strength.   

 



74 
 

7.3.1.2 Carbon Black Level - A (P180, S1500, CB S/2, LE7.2), vs. C (P180, S1500, CB S, 
LE7.2) 
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Figure 51: Insert 3N-8B, carbon black level comparison, condition A and C 
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Figure 52: Insert 4N-7B, carbon black level comparison, condition A and C 
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Figure 53: No insert, carbon black level comparison, condition A and C 
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Condition A has a lower carbon black level than C, while their laser power and beam 

traverse speed parameters are the same. The lower carbon black level in A allows for 

deeper penetration of the laser beam in the absorbing material. Given that the power and 

speed are the same for A and C, the same amount of energy is supplied. The energy in A 

is dispersed in a larger volume since the penetration is deeper, hence the maximum 

temperature of the melt will be lower. Looking at the micrographs for condition A, 

Appendix II, the manufactured voids are still visible indicating inadequate melting and 

mixing of the materials along the faying surface.  Comparing condition A micrographs 

with condition C micrographs, C shows moderate pore sized evenly dispersed throughout 

the length and for each section of the inserts. The graphs in Figure 51 through Figure 53 

show the anticipated results of C having higher porosity than A for each of the given 

inserts. 
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7.3.1.3 Beam Traverse Speed - B (P270, S1500, CB S/2, LE10.8), vs. D (P270, S1800, CB 
S/2, LE9) 
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Figure 54: Insert 3N-8B, beam traverse speed comparison, condition B and D 
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Figure 55: Insert 4N-7B, beam traverse speed comparison, condition B and D 
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Figure 56: No insert, beam traverse speed comparison, condition B and D 
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As previously stated, the slower the beams traverse speed, the greater the amount of 

energy supplied to a given point along the line of travel. Condition B has a lower speed 

than condition D, while the laser power and carbon black content is held constant. The 

lower speed for condition B allows for greater energy supplied to the weld line resulting 

in a higher melt volume and higher maximum temperature in the melt. From the graphs in 

Figure 54 through Figure 56, of the three insert geometries, condition B has greater 

area/length porosity than condition D, which is expected. 
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7.3.1.4 Line Speed Effect at Constant Line Energy - C (P180, S1500, CB S, LE7.2) vs. 
E(P240, S2000, CB S, LE7.2) 
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Figure 57: Insert 3N-8B, line speed effect, condition C and E 
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Figure 58: Insert 4N-7B, line speed effect, condition C and E 
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Figure 59: No insert, line speed effect, condition C and E 
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As stated before line energy is laser power divided by traverse speed. Condition C and 

condition E have the same line energy and carbon black level. The power and speed of E 

are higher than C. Although the amount of energy per unit length is the same, the higher 

power and speed of condition E will heat a given area faster, so the energy will have less 

time to diffuse away by conduction, thus resulting in a higher peak temperature and 

possibly a lower melt volume [35]. The area/length porosity of C and E shown in Figure 

57 through Figure 59 is similar for each insert geometry, suggesting that increasing the 

speed and power by 33% at this line energy has only minor affects. 
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Chapter 8: Discussion and Interpretation of Results 
 
The superior strength of the current laser welds compared with standard vibration welds, 

(introduction to Chapter 5) can be partially attributed to the random arrangement of the 

glass fibres after laser welding. During vibration welding the fibre orientation is parallel 

to the direction of the movement of the parts. This direction is perpendicular to the tensile 

force exerted during the burst test. Since the glass fibres only strengthen for loads 

primarily in their length direction, there is no benefit if the orientation is perpendicular to 

the major tensile force. During transmission laser welding the glass fibres maintain a 

random orientation at the weld line, enabling the glass fibres to share some of the tensile 

force exerted during burst testing. This is confirmed by burst testing results and the loud 

banging noise emitted during the separation by wedges of the fracture surface analysis 

samples indicating a large release of stored elastic energy.  

 

Overall the results show that even with a large degree of porosity the welds produced by 

laser transmission welding are stronger than vibration welds. Contrary to popular belief 

the large degree of porosity did not have detrimental effects on the strength of the welds. 

 

8.1 Overall Assessment of Each Welding Parameter 

Let us now examine in detail the effect of the welding parameters. 
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8.1.1 Power (Conditions A-B) 

Welding conditions A and B were compared to determine the effects of laser power. A 

and B had a speed of 1500 mm/min and both had the carbon black level of S/2. A has a 

laser power of 180 W and B has a laser power of 270 W.  Given that the power is 

increased while the other process parameters fixed, we would expect B to have a deeper 

weld pool with a higher maximum temperature. The results of the fracture samples does 

show that B had a greater area of adhesion all around the faying surface. The higher 

power and maximum temperature allowed for greater conduction of heat to the 

transparent material promoting melting and mixing of both the transparent and absorbent 

materials. The lack of heating in A resulted in poor bonding between the faying surface, 

noticeable in the low levels of adhesion and the fact that the manufactured voids are still 

visible on the absorbing side of A. The manufactured voids are also clearly visible in the 

micrographed sections for condition A since they did not heal during welding. In contrast 

the micrographs for condition B show moderately sized pores evenly dispersed 

throughout the length for each section of the inserts. The burst results show B having 

burst strength pressure of 910 kPa where A has burst strength pressure of 597 kPa. 

Therefore, these results show that increasing the laser power also increases bonding at the 

faying surface allowing for higher burst strengths. 

 

8.1.2 Carbon Black Level (Conditions A-C) 

Condition A and C had the same laser power, 180 W, and the same speed, 1500 mm/min. 

The carbon black addition level in C is higher than A. The higher level of carbon black in 

C promotes heating at the surface since the material will more readily absorb the laser 
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energy. The laser beam will penetrate deeper in A and the energy will be more dispersed 

in a larger volume, instead of concentrated in the case of C. Since the same amount of 

energy is being used to heat a larger volume for A, the transfer and adhesion values are 

lower on the fracture surfaces as a result of insufficient temperature rise and poor 

bonding. This poor bonding is also present in the micrographs of A since the 

manufactured voids did not heal and are still visible. The micrographs for C shows 

moderately sized pores evenly dispersed throughout the length and for each section of the 

inserts. The porosity of C is also higher than A, which is what is to be expected since the 

energy was more concentrated, and actually healed the manufactured voids. Assuming 

the burst test results of HG-12 are similar to those that would be obtained if C had not 

leaked, then a burst strength of C would be higher than A, being ~871 kPa and 597 kPa 

respectively.  These results show that increasing the carbon black concentration produces 

a stronger weld when the power is held constant. 

 

8.1.3 Laser Beam Traverse Speed (Conditions B-D) 

Conditions B and D have the same concentration of carbon black, same laser power 

setting of 270 W, but have different beam traverse speeds. B has a speed of 1500 mm/min 

and D has a speed of 1800 mm/min. The slower the part moves under a fixed laser 

source, the greater the amount of energy supplied to the surface, this is apparent when 

looking at the line energies, 10.8 J/mm for B and 9 J/mm for D. The higher amounts of 

energy supplied to the faying surface in B allows for a higher peak temperature, more 

melting and greater bonding. The burst strength for B, 910 kPa, is hence higher than D, 

616 kPa. The fracture surfaces for B and D show similar results for both transfer and 
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adhesion. The micrographs for B and D both show moderately sized pore evenly 

dispersed throughout the length and for each section of the inserts. Although the 

micrographs are similar the calculated area/length porosity across the depth is different, 

with B higher for each insert. 

 

8.1.4 Line Speed Effect at Constant Line Energy (Conditions C-E) 

As stated previously line energy is laser power divided by traverse speed. Condition C 

and condition E have the same line energy and carbon black level. The power and speed 

of E are higher than C. Although the amount of energy per unit length is the same, the 

higher power and speed of condition E will heat a given area faster, but the energy will 

have less time to diffuse away by conduction, thus resulting in a higher peak temperature 

and lower melt volume [35].  The generated heat cannot diffuse away sufficiently fast 

and apparently causes a saturation effect. The micrographs of C and E are similar in both 

appearance and calculated area/length porosity vs. depth. Fractured surface analysis also 

reveals similar results as C and E had comparable transfer and adhesion areas. Assuming 

the burst test results of HG-12 are similar to those that would be obtained if C had not 

leaked, then burst strength of C and E would be ~871 kPa and 825 kPa respectively.  

These results suggest that samples with the same line energy but moderately different 

power levels will have similar welds. 
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Chapter 9: Conclusions and Future Work 

9.1 Conclusions 

The following is a summary of the conclusions based on the results of the present study:  

1. Conventional wisdom states that porosity in plastics (or any other material) 

reduces the mechanical properties. This is especially thought to be true when the 

porosity is present as sheets of pores lying perpendicular to the principal direction 

of loading. If these are in a highly stressed region, premature failure is expected. 

Porosity present at a weld line should weaken the joint, and open cell porosity 

would make it difficult to create a hermetic seal [8]. The micrographs in the 

present study show a large degree of closed cell porosity, present in sheets parallel 

to the faying surface. The level of porosity, similar to early stage crazing, suggests 

the weld would be weak. In fact the burst test show high values of burst pressures, 

indicating a very strong bond is present even with the presence of porosity. 

 

2. Laser transmission welding has the potential of obtaining strong welds, exceeding 

those of linear vibration welds of similar geometry. The increased strength of the 

laser welds can be attributed to the glass fibres being in a more random 

orientation after welding. During vibration welding the fibre in the faying surface 

rotate so that they lie in that surface. This orientation is perpendicular to the 

tensile force exerted during the burst test. Since the glass fibres only add strength 

when loaded in their length direction, there is no benefit if the orientation is 

perpendicular. In fact, because of their high stiffness compared with the polymer, 



85 
 

they act as stress raisers. During transmission laser welding the glass fibres 

maintain a more random orientation at the weld line, enabling the glass fibres to 

share some of the tensile force exerted during burst testing. 

 
 

3. The burst strengths of transmission laser welded nylon6 30%GF parts was found 

to increase as laser power increased, or carbon black addition increased, or if the 

beams traverse speed decreased within the range of those values used in these 

tests.  

 

4. Line energy is a ratio defined as the laser power divided by beam traverse speed. 

Line speed effect at constant line energy was compared using two conditions with 

the same line energy, but a 4/3 difference in the speed and power setting. Despite 

results of previous studies [35] indicating the higher power and speed condition 

will heat a given area faster and have less time to diffuse the energy, thus 

resulting in higher peak temperature and lower melt volume, the current study did 

not show significant difference between the two conditions studied. Therefore, 

these results suggest that samples with the same line energy but moderately 

different speed and power levels will have similar welds. 
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9.2 Recommendations for Future Work 

The following is suggestions for further research based on the present study: 

1. The current research is limited to a small statistical sample size due to various 

reasons as previously discussed. The burst strength tests themselves have a 

significant variation amongst duplicate samples. It is therefore recommended to 

complete more burst tests with the samples with manufactured voids and under 

the same welding parameters as A through E. Additional burst testing will allow 

for a more statistically significant analysis. 

 

2. Gaps between adjoining surfaces prior to welding are a common occurrence due 

to warping. The gaps may span the entire width of the weld. It is therefore 

recommended to redesign the manufactured voids to have voids which span 

across the entire sub insert from outside edge to inside edge. Because of the 

multiple parts of the mould, only the sub-inserts would need to be manufactured 

to create this design change. The idea of this further work would be to determine 

if a hermetic seal is possible with gaps spanning the width prior to welding. The 

gaps may be designed with different depths and sizes, and assessment may be 

completed in a similar fashion as the present study. 

 
 

3. The research should be extended to neat nylon6 to examine the role played by the 

glass fibres. Note that this could be done without the sub-inserts, using just the 

ring inserts made for vibration testing. 
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4. The research should be extended on dry as-moulded glass filled nylon to examine 

the effects of absorbed water. 

 
 

5. The methods used in this research may be extended for research of other polymer 

materials, and of combinations of different polymers. 
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Appendix I : Optical Profilometer Data and Micrographs 

Optical profilometer data was gathered by Ming Chen and Dr. Alpas, of the University of 
Windsor.
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