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Abstract

A geometry and reactant delivery method relevant to burners with low emission of

nitrogen oxides is studied at the laboratory-scale. The design is an inverse diffusion

flame of methane, with a central air jet discharging into a jet of fuel. Surrounding the

fuel is an additional co-flow of either air or co-flowing combustion products from a

premixed, burner-stabilized methane-air flame at lean, stoichiometric, or rich equiv-

alence ratio. The co-flowing combustion products simulate the flow of combustion

gases that would be present in a furnace employing a burner with low nitric oxide

emissions. The location of the central air discharge is raised above the burner, to

allow the fuel to mix with the co-flowing gas before reacting with the central air

stream.

Characteristics of these flames are studied experimentally with excited-state CH∗

chemiluminescence imaging, over the range of air velocities from zero to the transition

to turbulent flow. Numerical simulations are validated through comparison with the

experimental measurements of relative CH∗ chemiluminescence emission. Simulation

results are post-processed to account for chemiluminescent emission from the excited-

state CH∗ radical, and to model the non-ideality of the imaging system.

At low velocities of the central air jet, hysteresis behaviour of the inner flame

is observed. A partially-premixed flame is formed on the centreline at a constant

fraction of the outer diffusion flame height. When the central air velocity reaches a

critical level, this flame propagates upstream and stabilizes closer to the burner face

as an inverse diffusion flame. The spread in velocity between this transition, and the

extinction of the inner flame as the central air velocity is decreased, is larger with

co-flowing combustion products.

Simulation results are analyzed to explain the characteristics of the flames ob-

served in the experimental images, and how these characteristics affect the heat re-

lease and pollutant emissions from the flames. As the central air velocity is increased,

emission of nitric oxide is decreased, as more of the combustion takes place in a pre-

mixed versus a diffusion flame, but this is offset by increased emissions of CO and

v



unburned fuel that are entrained into the central air jet and exit the simulation do-

main. Raising the discharge location of the central air stream tends to increase the

emissions of nitric oxide, as the fuel is displaced outwards and more of it reacts in

the diffusion flame.
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Chapter 1

Introduction

1.1 Flameless oxidation

In order to increase the thermal efficiency of reheating furnaces, regenerative burners

have been employed. These burners use a heat exchanger to extract thermal energy

from exhaust gases and preheat incoming air. However, increased air temperatures

lead to higher emissions of nitrogen oxides (NOx) through the thermal mechanism

(Miller and Bowman 1989). Flameless oxidation is a mode of combustion that can

be employed with or without air preheat, while maintaining low NOx emissions.

In flameless oxidation, fuel and oxidizer are injected directly into the furnace

cavity. Through design and placement of the fuel and air nozzles, each jet entrains

combustion products from within the furnace that have been cooled by heat transfer

to the load. This spreads the reaction zone over a large area compared to premixed

flames, and lowers the peak temperatures in the reaction zone, decreasing the NOx

emissions from the thermal mechanism. In practice, there is no definite flame visible

within the furnace, hence the name. This extended reaction zone also provides more

uniform heat transfer to the load, minimizing the appearance of hot-spots.

Wünning and Wünning (1997) were one of the first to pioneer the concept and

produced a map of the stability regions for flameless oxidation. They characterized the

regions of combustion stability in terms of the furnace temperature and the exhaust

gas recirculation rate,

KV =
ṀE

ṀF + ṀA

(1.1)

where Ṁ is the flow-rate of (E) recirculated exhaust gas, (F) fuel, and (A) air into the

reaction zone. They found that stable combustion is possible at all furnace tempera-

tures for KV ≤ 0.5 (somewhat higher KV is possible at higher furnace temperatures).
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For KV ≥ 3 another stable mode of combustion is possible, with furnace temperatures

greater than 800 ◦C, which is approximately the auto-ignition temperature of the fuel.

This region is called flameless oxidation. Variations on the concept also call it mod-

erate and intense low-oxygen dilution (MILD) combustion, and high-temperature air

combustion (HTAC). It is not possible to operate a furnace solely in flameless oxida-

tion mode, and a premixed burner typically needs to be fired to bring the furnace to

a sufficiently high temperature before switching to flameless mode.

Much work has been done on fairly large-scale furnace experiments operating in

flameless oxidation mode. One common setup is the use of the regenerative burner

coupled to various nozzle designs. Flow enters alternately from each side of the

furnace and the enthalpy of the exhaust gases is transferred to a regenerative heat

exchanger which is then used to preheat the incoming air. A pilot flame is used to

heat up the furnace before switching to flameless oxidation mode, and in some cases

is fired at all times, to ensure continuous combustion. In flameless oxidation mode,

the fuel jet is separated from the air jet, allowing for the fuel and air jets to entrain

furnace combustion products before entering the reaction zone.

Yang and Blasiak (2005) used a variation on the switching regenerative furnace.

In their burner, a central fuel jet is surrounded by 6 pairs of jets. Within each pair,

one jet is an air inlet and the other is an exhaust gas outlet. Each jet is connected to

a regenerator and the air inlet and exhaust gas outlet is switched every 10 seconds.

As the fuel jet remains in the same position and the air jets are only slightly shifted

each time, a nearly-constant flame position is produced.

Other studies have used steady-flow regenerative burners that are simpler to mea-

sure and interpret, as the flow is not being alternated. Plessing et al. (1998) studied

the FLOX burner of Wünning and Wünning (1997), which consists of a central fuel

jet surrounded by six air jets, again surrounded by an annulus of reverse-flowing com-

bustion products. They measured temperature with Rayleigh thermometry and OH

radical concentration with laser-induced predissociative fluorescence. They compared

the flameless oxidation combustion zone to a turbulent bunsen flame and noted the

relatively uniform temperature and OH concentration fields in flameless oxidation.

Özdemir and Peters (2001) studied a similar type of burner and measured velocities

with LDV, residence times with Mie scattering, and temperature and OH concen-

tration with the same techniques as Plessing et al. (1998). They note that the high

inert content of the fuel and air jets leads to slower chemistry, with time scales on

the order of the flow time scales. The temperature rise is thus much lower than in

typical combustion, suppressing the thermal NOx formation.
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Sobiesiak et al. (1998) studied the Canadian Gas Research Institute (CGRI)

burner. The burner has 7 pairs of fuel and air jets arranged in a circle around a

central pilot flame. Several burners were tested with air jets angled at 10◦ to the

burner axis, and fuel jet angles ranging from 30–65◦. These burners were tested un-

der various furnace configurations, loads, temperatures and air preheat levels. They

related the flow and mixing to the “strong-jet/weak-jet” model of Grandmaison et al.

(1998). In the initial zone of this model, fuel and air jets each entrain combustion

products from the furnace, and the weak fuel jet is itself entrained by the strong air

jet, up to the point where they begin to mix. In the main combustion zone, fuel

and air, and entrained combustion products react, and downstream the combustion

products are further diluted with furnace gases. They found very low NOx emissions

and postulated that this might be due to fuel-rich oxidation and NOx reburning in

the fuel jets as they entrain combustion products from within the furnace.

Fleck (1998) and Fleck et al. (2000) made more detailed measurements on a single

burner with 10◦ air and 15◦ fuel jet angles. They measured velocity, temperature and

concentrations of O2, CO2, CO, NOx, and CH4. From the CH4 measurements they

estimate that the fuel jet was diluted with 7-8 parts furnace gas to one part fuel at

the point where it meets the air jet. NOx emissions were also very low, around 6 ppm.

In another variation, Weber et al. (1999, 2000, 2001, 2005) used a pre-combustor

with lean combustion of natural gas with air to which oxygen was added to maintain

the oxygen concentration at 21%. This simulates the air preheating present in the

regenerative furnaces. To this system they coupled several different nozzle configura-

tions and tested different fuels—natural gas, light and heavy fuel oils, and coal. They

measured velocity, temperature, radiation, and concentrations of O2, CO, CO2, CH4,

H2, and soot. The burners in their studies consisted of a plate with a central air jet

surrounded by 2 or 4 fuel jets/atomizers. They note the uniform temperature and

chemistry fields within the furnace, similar to a well-stirred reactor, as well as the sig-

nificant entrainment of combustion products into both the fuel and air jets. In their

1999 study they note a need for more fundamental study on a fuel jet injected into

hot combustion products, similar to Sobiesiak et al. (1998), who postulated fuel-rich

oxidation in the fuel jets.

1.2 Inverse diffusion flames

From these studies, an essential aspect of the flameless oxidation regime is the mixing

of fuel with combustion products before reacting with air. In several of these studies,
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the burner consisted of a central air jet surrounded by fuel jets. This is similar to

the inverse diffusion flame (IDF), where a central air jet discharges into a co-flowing

fuel jet, the inverse of a “normal” diffusion flame (NDF), with fuel discharging into

co-flowing air.

Wu and Essenhigh (1984) mapped the structure of inverse diffusion flames of

methane. They identified six different flame types in a map of air and fuel jet veloc-

ities. They used gas chromatography to measure species concentrations, and found

a pool of CO and H2 at the top of the flames. Wentzell (1998) extended the study

to turbulent methane-air inverse diffusion flames with co-flowing air and inert gases,

and Sobiesiak and Wentzell (2005) characterized the stability limits of these flames.

They note the presence of partial premixing which evolves into a well-mixed reaction

zone on the flame centerline. As the level of premixing increases, the range of fuel jet

velocities producing stable flames is increased.

At the laboratory-scale, flames generated by reaction with combustion products

have been studied in several different configurations. Partridge et al. (1999) stud-

ied inverse diffusion flames of air burning with combustion products from a fuel-rich

premixed ethane-air flat flame and measured temperature with thermocouples, and

NO concentration with laser-saturated fluorescence. They note that most of the ad-

ditional NO was generated at the tip of the flame. Cabra et al. (2005) studied a

fuel jet in a vitiated co-flow created from an array of lean hydrogen-air flames. Dally

et al. (2002) studied methane-hydrogen flames stabilized in a hot co-flow of vari-

able oxygen concentrations, [O2], of 3, 6 and 9%, called jet in hot co-flow (JHC).

Using Raman-Rayleigh-laser-induced fluorescence they measured point-wise temper-

ature and species concentrations, and found that at [O2] = 3%, a different chemical

pathway is present for NO formation.

1.3 Objective

While these studies looked at either fuel flowing in an oxidizer co-flow, or air in a

fuel co-flow, the current work focuses on an initially non-premixed configuration of

fuel and air issuing into an additional co-flow of either air or co-flowing combustion

products from a burner-stabilized flame. The products of the burner-stabilized flame

act as the furnace gases that the fuel and air jets would entrain in the flameless

oxidation burners. A central air jet discharges inside an annular fuel jet, which is

surrounded by the co-flowing air or combustion products. This creates a “double”

flame structure—an outer diffusion flame between the fuel and the co-flow, and an
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inner flame between the central air and fuel flows.

This three-feed mixing configuration is analogous to that encountered in the flame-

less oxidation burners. The central air jet is raised above the burner face, providing

additional time for the fuel to mix with the co-flowing combustion products before

reacting with the air. It is postulated that raising the central air jet will reduce the

NOx emissions, as occurs in flameless oxidation.

The configuration studied here has also been called a tri-axial burner by Ko

et al. (2005). They analyzed the flames both theoretically, using a modified Burke-

Schumann (Burke and Schumann 1928) analysis including the effects of axial diffusion

and unequal stream velocities (Chung and Law 1984), and experimentally. They note

the history-dependent flame configuration of the inner diffusion flame as the inner air

flow rate is changed. Kamal (2008) studied a similar burner configuration of an air

tube inside a fuel tube with an outer co-flow of air, and were able to decrease NOx

emissions with high turbulence and entrainment between air and fuel.

1.4 Methodology

Flames are imaged with excited-state CH∗ radical chemiluminescence (Schefer 1997),

and these results are compared to numerical simulation data from a two-dimensional

laminar flame calculation with detailed chemical kinetics. The numerical simulation

methodology is validated through comparison with experiments conducted over a wide

range of co-flow stoichiometries, and central air and fuel inlet velocities. Detailed

information about the flames is extracted from the simulation data. Characteristic

features of the flames are discussed, and the effects of these on the total heat release

and pollutant emissions is analyzed.

1.5 Outline

The experimental burner, gas delivery and chemiluminescence imaging systems are

described in Chapter 2, and the numerical simulation methodology is presented in

Chapter 3. Chapter 4 discusses the behaviour of the flames at low central air veloci-

ties, where there is a hysteresis behaviour associated with the inner flame. Chapter 5

discusses the flame behaviour at higher central air velocities from the experimen-

tal images. Chapter 6 shows a comparison between the experimental and numerical

results to validate the numerical simulation methodology, including a discussion of

the sensitivity of the flames to the inlet temperatures. Chapter 7 presents the de-
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tailed analysis of the numerical simulation results, discussing the characteristics of the

flames, the overall heat release and emissions, and how these are affected by raising

the central air tube above the burner face. Conclusions are presented in Chapter 8.
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Chapter 2

Experimental apparatus

2.1 Burner

Figure 2.1 shows a cross-section along the centreline of the burner used in this work,

and an example flame image. Flame images presented have been inverted so that dark

regions correspond to higher levels of CH∗ chemiluminescence emission. A 30mm

diameter brass plate with an array of 1114 0.5mm diameter holes provides co-flowing

air, or co-flowing combustion products from a flat, premixed, burner-stabilized flame.

The flame visible in Fig. 2.1 is a burner-stabilized flame at equivalence ratio Φ = 0.78.

Within the centre of the perforated plate, a 6.35mm outer diameter tube supplies

methane fuel and, within this tube, a 3.96mm outer diameter tube supplies air. Both

tubes have a wall thickness of 0.254mm. An outer, normal diffusion flame is formed

between the central fuel flow and the co-flowing gas, and an inner, inverse diffusion

flame is formed between the central air and fuel flows. The inner flame is called an

inverse diffusion flame as the delivery of reactants, air into fuel, is the inverse of the

“normal” reactant delivery of fuel into co-flowing air. Figure 2.2 shows a top-view

photograph of the burner face.

Three cases were studied, with the air tube positioned flush with the burner

face, and raised above the burner face by 3mm and 6mm. For flames in this work

with co-flowing air, the co-flow velocity was 16.27 cm/s. For flames with co-flowing

combustion products, these were generated from a premixed methane-air flame at

equivalence ratios Φ = 0.78, 1.0 and 1.2. Surrounding the perforated plate is a curtain

of inert nitrogen gas to stabilize and shield the flames from ambient air. The flow-rate

of the nitrogen was set just high enough to damp out any visible flame oscillations,

as much as possible. Flames were studied at central fuel velocities over the range

ucf=8.5–27.6 cm/s, and central air velocities over the range uca=0–1000 cm/s, with
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Inverse diffusion
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Normal diffusion
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Figure 2.1: Cross-section of experimental
burner with example CH∗ flame image. The
burner-stabilized flame is at equivalence ra-
tio Φ = 0.78.

Central air flow

Central fuel flow

Co−flow air or
premixed flame

Inert gas curtain

Figure 2.2: Top view of experimen-
tal burner, shown 1.5 times actual size.
Perforated plate diameter 30mm; cen-
tral fuel tube 6.35mm; central air tube
3.96mm.

the complete list of experimental conditions listed in Appendix E.

Figure 2.3 shows a section view of the gas flow to the burner head. The central fuel

and air flows are delivered through stainless steel tubes and separated at the bottom

of the burner with a Swagelok union connector. Below the surface of the burner, a

sintered metal sleeve in the fuel annulus helps align the tubes concentrically. The co-

flow stream flows through two inlets at the bottom of the outer annulus. Glass beads

distribute the flow around the annulus, and the teflon nozzle at the top accelerates

the flow towards the perforated plate. The gas for the inert curtain is delivered into

an annular channel surrounding the burner, and distributed through glass beads.

2.2 Gas delivery

Figure 2.4 shows a schematic of the gas delivery system for the burner. All gases

are supplied from compressed gas bottles. Flow-rates are controlled with metering

valves (Swagelok B-SS4 for co-flow fuel and central fuel, B-SS2-D for central air,

and B-4MG for co-flow air), and measured with electronic mass flow-meters (Alicat

Scientific M-2SLPM-D/5M for co-flow fuel and central fuel, M-2SLPM-D/5M or M-

10SLPM-D/5M for central air, and M-20SLPM-D/5M for co-flow air). The gas for

the inert gas curtain is supplied from a bottle of compressed nitrogen gas and metered

through a rotameter (Omega FL-1448-G). Over the course of each flame experiment,

the flow-rates fluctuated by no more than 1% of the reading. Central fuel and air

velocities quoted in this work (ucf and uca) are the plug-flow velocities based on the

measured flow-rate at room temperature and pressure, upstream of the burner.
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Figure 2.3: Section view of burner.
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Figure 2.4: Gas delivery schematic.
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2.3 Chemiluminescence imaging system

In this work, flame structure is measured by imaging chemiluminescence from the

excited-state CH radical (denoted CH∗). The CH radical was chosen as it exists “near

the flame-front, and reveals where the combustion chemistry is taking place” (Crosley

1989). It is also important in the “prompt” NO formation mechanism, responsible for

NO formation at lower temperatures, typical of advanced low-NOx burners (Renfro

et al. 2001).

Point-wise measurements of CH∗ and OH∗ chemiluminescence have been used to

investigate the local flame-front structure in a premixed laminar Bunsen flame (Ko-

jima et al. 2005), and in a turbulent premixed flame (Ikeda et al. 2000). Marley

and Roberts (2005) used high-speed imaging of CH∗ chemiluminescence to determine

flame speeds of premixed spherical flames. Schefer (1997) imaged moderately turbu-

lent CH4-air jet flames at Reynolds numbers 7000 and 12100, also noting that the

CH chemiluminescence signal originates in the flame zone. Walsh et al. (1998) stud-

ied laminar diffusion flames with ground-state CH planar laser induced fluorescence,

and excited-state CH∗ and OH∗ chemiluminescence, finding good agreement between

their experiments and computations using the GRI 2.11 mechanism with additional

reactions for the excited-state species. De Leo et al. (2007) measured CH∗ and OH∗

chemiluminescence in opposed flow diffusion flames of methane and oxygen-enriched

air and found good agreement with numerical predictions using the GRI 3.0 mecha-

nism (Smith et al.), also with additional reactions for the excited-state species. CH∗

chemiluminescence imaging has also has been used for active control of high-pressure

Bunsen flames (Docquier et al. 2000), and low-NOx industrial burners (Delabroy et al.

1998).

The CH∗ radical chemiluminescence signal from the flames is imaged through a

10 nm bandpass (full width at half-maximum) optical filter centred at 430 nm (An-

dover Corp. 430FS10-50) with a 90mm macro lens (Tamron) onto an intensified CCD

camera (Cooke Corp. DiCAM-Pro). Exposure time was adjusted to maximize the

collected signal while ensuring that no pixels in the image became saturated. For

flames with co-flowing combustion products, chemiluminescence emission from the

flat flame was blocked, so as to maximize the signal from the rest of the flame. The

lens operates at f/32, and magnification 1:4, at a distance of 45 cm from the burner

axis to the front of the lens. At this magnification and image distance, one pixel

corresponds to 47µm in the flow. Each image used for analysis is the average of 256

individual images, from which a reference “dark” image, taken at the same exposure

11



with no flame, has been subtracted, thus reducing image noise. Relative CH∗ con-

centrations are calculated from the images with a three-point Abel transform based

on the formulas of Dasch (1992), after correcting for typographical errors in Eq. 7

(Ayrancı et al. 2007). Details on the chemiluminescence imaging system and the

image processing methodology can be found in Appendix A.
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Chapter 3

Numerical modelling

Numerical modelling is conducted with the National Research Council (NRC) 2-D

Laminar Flame Code. A detailed description of the code is given by Guo et al. (2002).

The governing equations for axisymmetric flow in cylindrical coordinates, including

soot formation, are solved on a non-uniform grid with points closely spaced near the

flame, and farther apart downstream and away from the centreline. Simulations are

carried out at two different central fuel velocities, ucf=18.4 and 23.0 cm/s, with grid

sizes of 230 and 300 grid points in the axial direction, respectively, and 75 in the radial

direction, corresponding to physical sizes of 3.39 and 5.47 cm in the axial direction,

and 1.52 cm in the radial direction. Along the centreline and outer boundary, a no-

through-flow and zero-gradient boundary condition is applied, and a zero-gradient

condition is applied at the top out-flow boundary. The GRI-Mech 3.0 (Smith et al.)

chemical kinetics mechanism is used throughout, with standard thermodynamic and

transport properties.

The mass flow-rates of the co-flow, central fuel and central air streams are matched

to those of the experiments, and top-hat velocity profiles are used for the three

streams, as shown in Fig.3.1. For this case, the central air velocities were uca =

49.8 cm/s, and ucf = 23.0 cm/s. As explained in Chapter 2, uca and ucf are the plug-

flow velocities at ambient temperature. The inlet velocities in the simulation are

increased from these by two factors — one to account for the increased temperature

and reduced density, and the other to account for the edges of the top-hat profile, in

order to maintain the same mass flux as the experiments. The inlet temperature for

the central fuel and air flows is set to 400K. For cases with co-flowing air, the inlet

temperature for the co-flow is also set to 400K. For cases with co-flowing combus-

tion products, the composition, velocity and temperature of the co-flow stream are

calculated from a premixed, burner-stabilized flame calculation using the Cantera
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Figure 3.1: Example simulation inlet velocity profile.

Table 3.1: Co-flow velocities and temperatures used as inlet conditions in simulations.

Co-flow Velocity [cm/s] Temperature [K]
air 16.27 400.0
Φ = 0.78 104.70 1855.8
Φ = 1.0 206.78 2135.4
Φ = 1.2 119.28 1957.5

simulation package (Goodwin 2003), with the same mass-flux and burner area as in

the experiments. The velocities and temperatures used for the co-flow inlet are shown

in Table 3.1. Chapter 6 compares the numerical simulation results to the experimen-

tal results, and includes a discussion of the sensitivity of the numerical results to the

in-flow temperatures.

The calculation domain is initialized with a high-temperature region near the

centreline, in order to “ignite” the flame. The flow is then marched forward in time

until convergence is reached. The convergence criterion used here is that the root

mean square difference in the quantity of interest between successive iterations, over

the entire solution domain, scaled by the maximum of that quantity, should be less

than 10−5. In the first calculation, reactions involving nitrogen dissociation and NOx

production are removed, and the system is solved until convergence is reached in the

temperature and CH mole fraction. The calculation is then restarted, including the

previously removed reactions, until convergence is reached in the NO mole fraction

as well.

For cases with a raised central air tube, properties of the cells occupied by the

air tube are modified as follows. Axial and radial velocities are set to zero, viscosity

is set to a large value, here 105 g/cm·s, and diffusion velocities for all species are set

to zero. Simulations with a raised central air tube are initialized from a converged

14



Table 3.2: Reactions used in calculation of CH∗ concentration and emission (extracted
from Walsh et al. 1998, and references therein).

# Reaction A B Ea

1 C2H + O2 ←→ CH∗ + CO2 1.08 · 1013 0.00 0
2 C2H + O←→ CH∗ + CO 2.17 · 1010 0.00 0
3 CH∗ −→ CH 1.85 · 106 0.00 0
4 CH∗ + N2 ←→ CH + N2 3.03 · 102 3.40 -381
5 CH∗ + O2 ←→ CH + O2 2.48 · 106 2.14 -1720
6 CH∗ + H2O←→ CH + H2O 5.30 · 1013 0.00 0
7 CH∗ + H2 ←→ CH + H2 1.47 · 1014 0.00 1361
8 CH∗ + CO2 ←→ CH + CO2 2.40 · 10−1 4.30 -1694
9 CH∗ + CO←→ CH + CO 2.44 · 1012 0.50 0

10 CH∗ + CH4 ←→ CH + CH4 1.73 · 1013 0.00 167

solution with a flush tube, and then solved until convergence is reached, as described

above.

In order to compare to the experimental measurements of chemiluminescent emis-

sion from CH∗, the concentration of CH∗ is calculated in a post-processing step, using

the reactions in Table 3.2 (Walsh et al. 1998). As explained by Nori and Seitzman

(2009), the highly reactive radical CH∗ has a very small net formation rate, and a

very high destruction rate through quenching by collisions with other molecules, and

so the quasi-steady-state approximation can be applied. The production rate of CH∗

is
d [CH∗]+

dt
= k1 [C2H] [O2] + k2 [C2H] [O] (3.1)

and the destruction rate is

d [CH∗]−

dt
= k3 [CH∗] +

10
∑

j=4

kj [CH∗] [Mj] (3.2)

where ki is the rate of reaction i from Table 3.2 and [Mj ] is the molar concentration

of the quenching species in reactions 4–10 (N2, O2. . . ). Invoking the steady-state

approximation, the production and destruction rates are set equal to each other, and

the concentration of CH∗ is then given by

[CH∗] =
k1 [C2H] [O2] + k2 [C2H] [O]

k3 +
∑10

j=4 kj [Mj]
(3.3)

Among the destruction reactions, reaction 3 is the one from which a photon of
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light is emitted. To compare to the experimental data, the rate of photon emission is

then calculated at each grid point in the simulation, using Eqn. (4) from Walsh et al.

(1998):

Sem = k3 [CH∗] Vem
Ωεη

4π
τ (3.4)

where Vem is the volume in the flow corresponding to one pixel, Ωεη are constants

of the optical system—taking into account the solid angle of light collection, and the

sensitivity of the imaging system—and τ is the exposure time. Within one image,

the pixel volume, integration time, and optical system constants are unchanged, so

the ratio of the collected signal at one pixel to the maximum signal over the entire

image is
Sem

Sem,max

=
k3 [CH∗]

(k3 [CH∗])max

. (3.5)

Finally, the numerical simulation data of relative CH∗ emission is convolved with the

point-spread function of the imaging system (Sec. A.3), and this is compared to the

experimental data.
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Chapter 4

Flame hysteresis behaviour at low

central air velocities

At low central air velocities, there is a hysteresis behaviour associated with the in-

verse diffusion flame as the central air velocity is changed. Two sequences of flame

chemiluminescence images taken at the four flame-states of interest for this hystere-

sis phenomenon are shown in Fig. 4.1 for co-flowing air at two different central fuel

velocities. In the first image in each sequence, the central air velocity is zero, and

there is only fuel flowing through the annulus and reacting with the co-flowing air.

As the central air velocity is increased from zero, a partially-premixed flame becomes

visible on the centerline. The second image was taken at the point just before this

partially-premixed flame propagates upstream and stabilizes closer to the air tube as

an inverse diffusion flame. The third image shows the inverse diffusion flame, taken

at the same air velocity as the second image. Decreasing the air velocity, the inverse

diffusion flame will move towards the air tube, getting weaker and weaker, until it

extinguishes. The fourth image was taken just before this extinction point.

A similar sequence is shown in Fig. 4.2 with co-flowing combustion products from

a premixed, burner-stabilized methane-air flame at equivalence ratio Φ = 0.78. The

burner-stabilized flame is visible at the bottom of the image. The sequence of images

in Fig. 4.2 shows the same four flame-states as Fig. 4.1: normal diffusion flame with no

central air, partially-premixed flame just before transition, stabilized inverse diffusion

flame, and near-extinction inverse diffusion flame, visible just above the tip of the

central air tube. With co-flowing combustion products, the overall flame height is

higher than with co-flowing air at a similar fuel velocity, as would be expected from

the correlation of Roper (1977) due to the reduced oxygen mole fraction in the co-

flow, which is estimated at 4% for this equivalence ratio of premixed flame, and the
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Figure 4.1: Flame chemiluminescence images illustrating the inner flame hysteresis,
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sion flame, partially-premixed flame just before transition, stabilized inverse diffusion
flame, and near-extinction inverse diffusion flame.

 z
 [c

m
]

u
cf

=9.7cm/s

u
ca

[cm/s]= 0.0 26.9 26.9 11.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.2: Flame chemiluminescence images with co-flowing combustion products
at Φ = 0.78 and central air tube flush. The burner-stabilized flame is visible at the
bottom, and image intensity has been adjusted to improve visibility. From left to
right are the normal diffusion flame, partially-premixed flame just before transition,
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line) and extinction of the inverse diffusion flame (lower, thin line).

outer diffusion flame is much weaker and more diffuse.

As shown in Fig. 4.1, flame heights are measured from the images. For flames with

no central air, and central fuel velocities high enough for soot to be visible along the

centreline, the soot height, Hsoot, is the location of the peak image intensity along the

centreline. The height of the partially-premixed flame just before transition, Hprem, is

measured by taking the location of the peak CH∗ intensity in a 20 pixels-wide swath

near the centreline. The height of the near-extinction inverse diffusion flame, Hext, is

the location of maximum image intensity within the central flame region, away from

the outer diffusion flame.

From the experiments, the two central air velocities of interest—at the transition

from partially-premixed to inverse diffusion flame, and at the extinction of the inverse

diffusion flame—are plotted in Fig. 4.3 for flames with co-flowing air and co-flowing

combustion products. For a given central fuel velocity, as the central air velocity is

increased from zero, the partially-premixed flame becomes more and more prominent,

until the transition to the inverse diffusion flame at the upper curve. As the central

air velocity is decreased from the upper curve, the flame height is reduced, and the

flame gets weaker until it is extinguished at the lower curve. Figure 4.3 shows the

hysteresis character of the flames—at a given central fuel velocity, for central air

velocities between the upper and lower curves, there are two possible flame states,

depending on the history of the flame. This is similar to the hysteresis behaviour

between lift-off and drop-back of non-premixed jet flames (Law 2006, p.363). The

difference between the stabilization and extinction velocities is larger with co-flowing

combustion products than with co-flowing air.

Flame heights measured from the images are shown in Fig. 4.4(a), plotted versus
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Figure 4.4: (a) Flame heights of the partially-premixed flame (upper, thick line)
and the near-extinction inverse diffusion flame (lower, thin line), plotted against the
central fuel velocity. (b) Flame heights of the partially-premixed flame (upper, thick
line) and the near-extinction inverse diffusion flame (lower, thin line), plotted against
the central air velocity.

central fuel velocity, and Fig. 4.4(b) versus central air velocity. The upper, thick line

is the height of the partially-premixed flame just before transition, and the lower,

thin line is the height of the inverse diffusion flame just before extinction.

The repeatability error in flame heights and velocities are low due to the averaging

of 256 images (Appendix A) for the flame height, and the small fluctuations in mass

flow-rate during the recording of each image, on the order of 1% (Chapter 2). However,

there is a bias error associated with the measurements of this hysteresis phenomenon.

In order to capture the partially-premixed flame before transition, the central air

velocity is gradually increased until a point as close as possible to the transition point

is reached, and the images and velocities are recorded there. Thus, the true velocity for

transition from the partially-premixed flame will be under-predicted. To capture the

inverse diffusion flame before extinction, the central air velocity is gradually decreased

until a point just before extinction. Thus, the velocity and flame height at extinction

will be over-predicted.

Both the central air velocity for transition from the partially-premixed to inverse

diffusion flame, and the height of the partially-premixed flame before transition are

generally linear with fuel velocity in both cases, and are consistently higher for flames

with co-flowing combustion products. Close examination of the experimental images

reveals that the outer diffusion flame is connected to the partially-premixed flame at

the tip. This suggests that the partially-premixed flame is sustained by the outer

diffusion flame, and in fact, over the range of fuel velocities with visible soot, taking

the soot height, Hsoot, as a measure of the outer diffusion flame height, the height

20



of the partially-premixed flame before transition is a constant fraction of the outer

diffusion flame height: Hprem/Hsoot ∼ 0.53 for co-flowing air, and Hprem/Hsoot ∼ 0.37

for co-flowing combustion products at Φ = 0.78. As the outer diffusion flame height

is linear with fuel velocity, from the correlation of Roper (1977), then the partially-

premixed flame height should also be linear with fuel velocity. As the central fuel

velocity is increased, the height of the partially-premixed flame increases, so the

central air velocity required to reach that location and create a flammable mixture

will also be increased.

At low central fuel velocities, there is not a significant difference in the extinction

velocities between co-flowing air and combustion products. This is the region in

Fig. 4.4(b) at low central air velocities where the extinction height is nearly constant,

near zero, as the flames at extinction are very close to the burner. In these cases, the

inverse diffusion flame is stabilized by the presence of the outer flame, but only in so

far as it is getting heated by heat transfer both through the gas from the base of the

outer diffusion flame, and through the burner, with co-flowing combustion products,

as the entire burner gets hot due to the proximity of the burner-stabilized flame.

At higher fuel velocities, there is a larger difference in the extinction velocities

between co-flowing air and co-flowing combustion products. At these higher fuel

velocities, the inverse diffusion flame extinguishes at a location above the burner

face, and so is more affected by the co-flowing combustion products. In Fig. 4.4(b),

this is the region for higher central air velocities where the slope of the extinction

height curve increases and matches the slope of the partially-premixed flame height,

showing the effect of the co-flow.

Flames shown in Figs. 4.1 and 4.2 were analyzed with numerical simulations.

Contour plots of measured and simulated CH∗ radical chemiluminescence are shown

in Fig. 4.5 for co-flowing air and in Fig. 4.6(a) for co-flowing combustion products.

The three cases shown are the normal diffusion flame (uca=0), partially-premixed

flame, and stabilized inverse diffusion flame. The small rectangles along the bottom

of each figure represent the locations of the central air and fuel tubes. The numerical

simulations with partially-premixed flames are started from a converged solution of

the normal diffusion flame with no central air flow, adding central air at the in-flow

boundary, and re-calculating until convergence is reached. This is analogous to the

way the experiments are conducted, starting from a normal diffusion flame with no

central air flow and increasing the air velocity slowly until the partially-premixed

flame becomes visible.

With co-flowing air, the numerical simulations predict taller CH∗ contours for the
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Figure 4.5: Experimental (thin line) and numerical (thick dashed line) contours of
CH∗ emissions, scaled to the maximum value per image, showing the 10% contour.
The three cases shown are the normal diffusion flame, partially-premixed flame, and
stabilized inverse diffusion flame, and the experimental contours are calculated from
the first three images in each set of Fig. 4.1. Co-flowing air and central fuel velocity
(a) ucf=9.1 cm/s, (b) ucf=17.3 cm/s.
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Figure 4.6: (a) Experimental (thin line) and numerical (thick dashed line) contours
of CH∗ emissions, scaled as in Fig. 4.5. Experimental contours are calculated from
the first three images in each set of Fig. 4.2. Co-flowing combustion products at
Φ=0.78, ucf=9.7 cm/s.. (b) Simulated axial temperature (thick lines) and CH mass
fraction (thin lines) on the centreline for the partially-premixed flame with co-flowing
air (solid lines) at ucf=17.3 cm/s, and co-flowing combustion products (dashed lines)
at ucf=9.7 cm/s.
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outer normal diffusion flame, most likely due to preheating of the reactants, as flame

height is very sensitive to the temperature of the incoming reactants (McEnally et al.

1997). With co-flowing combustion products, the CH∗ emission from the burner

stabilized flames is visible in the experimental data, lifted off the burner face by

the flame standoff distance of approximately 0.8mm (Fig. 4.6(a)). The base of the

outer diffusion flame is attached to the burner-stabilized flame. In the numerical

simulations, the in-flow is already combustion products at elevated temperature, so

there is no standoff and the outer diffusion flame stabilizes at the face of the burner.

However, the radial location and overall height of the outer flame still match well.

With both co-flows, the overall shape, width and axial location of the inner, inverse

diffusion flames are well predicted by the numerical simulations.

Numerical simulation does not predict the presence of the strong partially-premixed

flame near the centerline in the CH∗ contour at these central air velocities. How-

ever, there is a partially-premixed flame along the centreline, even though the CH∗

concentration is not high enough to show up in the contour plot. Figure 4.6(b)

shows the axial distribution of temperature and CH mass fraction on the centreline

of the partially-premixed flame simulations for co-flowing air at ucf=17.3 cm/s, and

co-flowing combustion products at ucf=9.7cm/s. The premixed character of the flame

along the centreline is evident from the rapid temperature rise. For co-flowing air,

the first peak of CH on the centreline is from the partially-premixed flame, and the

second is from the tip of the outer diffusion flame as it wraps around to the centreline.

This corroborates the observation from the experimental images that the partially-

premixed flame is sustained by the outer diffusion flame. For co-flowing air, the pre-

dicted height of the partially-premixed flame is Hprem ≃1.5 cm, which is higher than

the observed flame in the experiments at Hprem ≃1.1 cm. This is consistent with the

simulations predicting taller outer diffusion flames, as the partially-premixed flame

height scales linearly with the outer diffusion flame height, as mentioned above. For

co-flowing products, the predicted height is Hprem ≃0.7 cm, closer to the experimen-

tally measured flame height of Hprem ≃0.75 cm.

A sequence of simulations was conducted with co-flowing combustion products

at ucf=18.4 cm/s, increasing the central air velocity from zero until the partially-

premixed flame formed on the centreline. Figure 4.7(a) shows the axial temperature

profiles for increasing central air velocities. In this case, when the central air veloc-

ity was increased from 64.0 to 73.6 cm/s, the partially-premixed flame propagated

upstream and stabilized as an inverse diffusion flame. Figure 4.7 shows the 10% con-

tours of CH mass fraction, scaled to the maximum for the partially-premixed flame,
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Figure 4.7: (a) Centreline axial temperature from a series of simulations, starting with
uca=0, and increasing uca, for Φ = 0.78 co-flow and ucf=18.4 cm/s. (b) Simulated
contours of CH mass fraction for partially-premixed flame (grey dashed line) and
inverse diffusion flame (black dashed line), scaled by the maximum for the partially-
premixed flame, showing the 10% contour. Both simulations have the same in-flow
conditions: Φ = 0.78 co-flow, ucf=18.4 cm/s, and uca=64.0 cm/s.

for two simulations with the same in-flow conditions: co-flowing products at Φ = 0.78,

ucf=18.4 cm/s, uca=64.0 cm/s. The partially-premixed flame case was started from

a normal diffusion flame with uca=0, as described above, and the inverse diffusion

flame case was initialized with a high-temperature region in the centre of the sim-

ulation domain, in order to ignite the inner flame, as described in Chapter 3. This

illustrates the two flame states that are possible for central air velocities in the region

of hysteresis between stabilization and extinction.

The mechanism for formation of the partially-premixed flame is that the fluid

velocity should be balanced by the flame propagation velocity for the local mixture

composition and temperature. As the central air velocity is increased, the mixture

on the centreline upstream of the partially-premixed flame location is becoming more

lean, towards stoichiometry. In the simulations at uca=64.0 cm/s, the local equiva-

lence ratio reaches a peak of 1.09 upstream of the partially-premixed flame. Beyond

this value, a critical point is reached where the propagation velocity overtakes the

fluid velocity and the flame propagates upstream to stabilize as an inverse diffusion

flame.

As for the inner inverse diffusion flame, the mechanism for its stabilization is the

triple, or tribrachial flame, where the base of the flame is premixed and stabilizes at a

location where its propagation velocity is equal to the fluid velocity. In the analysis of

non-premixed jet flames (Lee and Chung 1997), it is predicted, and has been confirmed
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Figure 4.8: Sequence of CH mass fraction contours (10% of the maximum for the
highest uca case) as uca is lowered towards extinction for (a) co-flowing air and (b)
co-flowing combustion products at Φ = 0.78, both at ucf=23.0 cm/s.

experimentally, that lifted diffusion flames of methane are unstable. In their analysis

of the structure of inverse flames of methane in air, Wu and Essenhigh (1984) did not

see any lifted flames, and their flames blow off directly from the attached state. Thus,

the lifted methane inverse diffusion flame requires the presence of the outer diffusion

flame to be stabilized.

A sequence of simulations was conducted with co-flowing air and co-flowing com-

bustion products at Φ = 0.78, both at ucf=23.0 cm/s, in order to investigate the

behaviour of the flames near extinction. Starting with a converged solution of a

stabilized inverse diffusion flame, the central air velocity was gradually reduced in in-

crements of 1 cm/s, until the inner flame extinguished. Figure 4.8 shows the CH mass

fraction contours for a selection of simulations from this sequence. For co-flowing

air, when the central air velocity was reduced from 34.0to 33.0 cm/s, the flame extin-

guished. For co-flowing products, the flame extinguished when the central air velocity

was reduced from 20.0 to 19.0 cm/s. As the central air velocity is reduced, the inverse

diffusion flame moves closer to the burner, and eventually begins to shrink in radial

extent as the extinction velocity is approached.

At this central fuel velocity in the experiments, the heights and central air veloc-

ities for the near-extinction flame are nearly equal for co-flowing air and co-flowing

combustion products. In the simulations, flames extinguish lower, and at lower central
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Figure 4.9: Flame chemiluminescence images illustrating the inner flame hysteresis,
with co-flowing air and central air tube raised 3mm. From left to right are the nor-
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Figure 4.10: Flame chemiluminescence images with co-flowing combustion products
at Φ = 0.78 and central air tube raised 3mm. The burner-stabilized flame is visible at
the bottom, and image intensity has been adjusted to improve visibility. From left to
right are the normal diffusion flame, partially-premixed flame just before transition,
stabilized inverse diffusion flame, and near-extinction inverse diffusion flame.

air velocities for co-flowing combustion products versus co-flowing air.

Figure 4.9 shows two sequences of flame chemiluminescence images for co-flowing

air, with the central air tube raised above the burner face by 3mm. Figure 4.10 shows

the same sequence for co-flowing combustion products at Φ = 0.78, with the central

air tube raised above the burner by 3mm.

Figure 4.11(a) shows the velocity for transition from the partially-premixed to

the inverse diffusion flame as the central air tube is raised above the burner. As the

tube is raised, the central air velocity needed to stabilize the partially-premixed flame

is reduced. However, as shown in Fig. 4.11(b), the height of the partially-premixed

flame just before transition to the inverse diffusion flame is fairly insensitive to the

height of the central air tube above the burner. The height of the partially-premixed

flame is insensitive to the tube being raised, because, as discussed above, the partially-
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Figure 4.11: (a) Central air velocity for transition from the partially-premixed flame
with the central air tube raised by the amounts shown in the legend; (b) height of the
partially-premixed flame (Hprem) above the burner, with the central air tube raised.

premixed flame is sustained by the outer flame, and its height is scaled by that of

the outer flame. The central air velocity required for the partially-premixed flame

is decreased because, as the air is being injected closer to the flame, the air velocity

need not be as high in order to bring the mixture closer to stoichiometry and form

the partially-premixed flame.

In summary, for low central air velocities, there is a hysteresis behaviour associ-

ated with the flames in this work. As the central air velocity is increased from zero, a

partially-premixed flame forms on the centreline, whose height scales with the outer

diffusion flame height, and is insensitive to the height of the central air tube above the

burner. When the central air velocity reaches a critical value, the partially-premixed

flame propagates upstream to stabilize as an inverse diffusion flame. Simulation re-

sults suggest that the critical condition for this transition is when the local equivalence

ratio upstream of the flame approaches one. The inverse diffusion flame would be un-

stable without the presence of the outer diffusion flame, and as the central air velocity

is decreased, it moves closer to the burner, shrinks in size and eventually extinguishes.
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Chapter 5

Flame characteristics at higher

central air velocities

This chapter discusses the experiments conducted on flames with higher central air

velocities, outside of the hysteresis region discussed in the previous chapter.

The entire set of experimental images that were acquired during this work is

shown in Appendix B. Figures 5.1, 5.2, and 5.3 show sample sequences of flame

chemiluminescence images at ucf ∼ 23.0 cm/s with the four different co-flows (air, and

combustion products at Φ = 0.78, 1.0 and 1.2). Across each sequence of images, the

central air velocity is increasing, with the value given underneath each image. Down

each page, images are shown at similar central air velocities for the four different

co-flows.

The intensity of all images has been inverted, so that dark regions correspond to

high levels of CH∗ chemiluminescence emission. Also, exposure times were adjusted to

maximize the signal-to-noise ratio for each individual image, without saturating any

pixels. This is why the background intensity varies across the images, particularly

in Fig. 5.1(c), where there is significant emission of CH∗ chemiluminescence from

the burner-stabilized flame. For this particular sequence, at low and high central

air velocities, the exposure times were long, resulting in high image intensity in the

background. In the middle range of central air velocities, the CH∗ chemiluminescence

emission from the lifted flame was higher, so the exposure times were shorter, result-

ing in lower background intensity. Thus, comparisons among different flame images

should be made on flame shape, location, and relative chemiluminescence intensity

within each image, but not on absolute image intensity across different images. In

all cases, the darkest points in each image represent the highest emission of CH∗

chemiluminescence within that flame, along the line-of-sight.
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For those cases with co-flowing combustion products, the burner-stabilized flame

is not visible in these images. Emission from the burner-stabilized flame was blocked

from reaching the camera, since collecting sufficient signal for the rest of the flame

would have resulted in saturated pixels for the burner-stabilized flame, especially

with stoichiometric and rich combustion product co-flows. This is most evident at

the bottom of Fig. 5.3(c), where the light was blocked up to z ∼ 0.25 cm, resulting in

a white region in these inverted images.

Asymmetries are evident in some of the flames, particularly with co-flowing com-

bustion products and a raised central air tube. As mentioned in Chapter 2, there is a

sintered metal sleeve in the fuel annulus, designed to maintain the air and fuel tubes

concentric, but there are still asymmetries that were unavoidable. For example, in

Fig. 5.1(c), for uca = 606.5 and 955.2 cm/s, the flame is tilted down and to the right,

along an axis perpendicular to the imaging direction. In Fig. 5.2(c), for central air

velocities above uca = 101.4 cm/s, the flame gets distorted more along an axis parallel

to the imaging direction, resulting in an oval shape. Similar behaviour is evident at

the higher central air velocities in Fig. 5.3. In all cases, though, asymmetries are not

evident at lower central air velocities.

Starting in Fig. 5.1(a) with co-flowing air and flush central air tube, there is the

outer, normal diffusion flame between the central fuel and co-flowing air, and the

inner, inverse diffusion flame between the central air and fuel. At low central air

velocities, the inverse diffusion flame is lifted off the burner and separate from the

outer diffusion flame (uca = 49.45 cm/s). As the central air velocity is increased, the

inner flame moves higher, the tip of the flame opens, and it connects with the outer

diffusion flame in a ring-shaped flame. The ring-shaped flame looks flat in many of

these images since they are line-of-sight, but in cases with asymmetries, it is clear

that the flame is ring-shaped. The ring-flame reaches a maximum height around

uca ∼ 200 cm/s. As the central air velocity is raised further, from 200–1000 cm/s, the

height of the ring flame gradually decreases, and the outer diffusion flame gets pulled

closer to the centreline by the entrainment of the central air jet. At uca ≃ 1000 cm/s,

the Reynolds number for the central air flow reaches Reca ≃ 2000, which is the

beginning of the transition to turbulence for pipe flow. Above this velocity, the flame

oscillates between two flame states, and only reaches steady-state when the central

air velocity reaches uca = 1500 cm/s. At this velocity, the Reynolds number for the

central air flow is Reca ≃ 3500, which is nearly outside of the transition to turbulence

for pipe flow. With turbulent flow in the central air tube, the contraction of the outer

flame is quite pronounced, and the flame height is lowered considerably.
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Figure 5.1: Sample sequence of flame images at ucf ∼ 23.0 cm/s, with central air tube
flush, and co-flow given for each set of images.
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Figure 5.2: Sample sequence of flame images at ucf ∼ 23.0 cm/s, with central air tube
raised 3mm, and co-flow given for each set of images.
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Figure 5.3: Sample sequence of flame images at ucf ∼ 23.0 cm/s, with central air tube
raised 6mm, and co-flow given for each set of images.
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For co-flowing combustion products at Φ = 0.78 (Fig. 5.1(b)), the outer diffusion

flame is weaker than with the air co-flow, as the oxygen content in the co-flowing gas

is reduced. The behaviour of the inner flame is similar, though. At low central air

velocities, the inverse diffusion flame is lifted off the burner and separate from the

outer diffusion flame. As the central air velocity is increased, the tip of the flame

opens up, and the inner flame joins the outer flame in the ring-shaped flame. The

height of the ring-flame reaches a maximum around uca ∼ 200 cm/s, and decreases

gradually as the central air velocity is further increased. Similar behaviour is also

seen in the transition to turbulence at uca = 1460 cm/s, as the outer diffusion flame

is drawn in towards the centreline, and the height of the ring-flame is reduced.

For co-flowing combustion products at Φ = 1.0 (Fig. 5.1(c)), the outer diffu-

sion flame is again weaker, and is barely visible near the burner face. At Φ = 1.2

(Fig. 5.1(d)), the outer diffusion flame is not visible, as there is no longer any oxygen

in the co-flow to react with the central fuel. For these two co-flows, the behaviour of

the inner flame is similar to that described above.

With the three combustion product co-flows, starting at uca ∼ 200 cm/s, there is a

diffusion-type flame downstream of the ring flame. This flame is particularly evident

for the Φ = 1.2 co-flow, as there is more unburned fuel in the co-flow available to

react with the central air jet in a diffusion-type flame.

Flames with the central air tube raised 3mm are shown in Fig. 5.2. For co-flowing

air, at the lowest central air velocity shown, the inner flame has a closed tip and is

attached to the central air tube. As the central air velocity is increased, the tip of the

flame opens up, the base lifts off the central air tube, and the flame joins the outer

flame in the ring-flame structure. The height of the ring-flame gradually increases

for all central air velocities up to uca ∼ 1000 cm/s, where there is the transition to

turbulent pipe flow. For the turbulent flame, the height of the ring flame is slightly

decreased, but not as much as with the central air tube flush. The base of the outer

flame is not entrained towards the centreline, leading to the bulbous shape of the

outer flame.

With co-flowing combustion products, the behaviour is similar. At low central air

velocities, the inner flame is attached to the central air tube with a closed tip. As

the central air velocity is increased, the tip opens up and the flame lifts off the tube.

The diffusion flame downstream of the ring flame is more prominent with the raised

tube, starting around uca ∼ 100 cm/s, and gets longer as the central air velocity is

increased. A similar bulbous shape for the turbulent outer flame is evident with the

Φ = 0.78 co-flow.
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Flames with the central air tube raised 6mm are shown in Fig. 5.3. At the lowest

central air velocity shown, the inner flame has a closed tip and is attached to the

central air tube. For co-flowing air, at uca = 51.41 cm/s, the tip of the inner flame

has opened up and joined with the outer flame, although the base of the inner flame

is still attached to the central air tube. At uca = 116.5 cm/s, the base of the inner

flame is still attached to the central air tube, and the chemiluminescence emission

from the diffusion flame that joins with the outer flame is more intense, relative to

the base of the outer flame. At uca = 218.1 cm/s, the flame has lifted off the central

air tube, and for higher central air velocities, the height of the ring-flame does not

change significantly, even for the turbulent flow case at uca = 1469 cm/s.

With co-flowing combustion products the behaviour is similar. At the lowest cen-

tral air velocity shown, the inner flame has a closed tip and is attached to the central

air tube. As the central air velocity is increased, the diffusion flame downstream of

the ring-flame lengthens, and the flame lifts off from the central air tube. The change

in flame height going to the turbulent flame is not as large as with the central air

tube flush.
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Chapter 6

Numerical simulation validation

Flames with central fuel velocities of ucf = 18.4 and ucf ≃ 23.0 cm/s were analyzed

with numerical simulations, as described in Section 3. In this chapter, the numerical

results are compared to the experimental CH∗ chemiluminescence measurements in

order to validate the simulation methodology. Simulation results are post-processed

to calculate the CH∗ radical concentration and CH∗ chemiluminescence emission rate,

then convolved with a matrix corresponding to the point-spread function of the imag-

ing system, which models the experimental measurements.

A series of simulations was conducted to study the effects of the in-flow bound-

ary conditions on the flame shape. A number of flames were chosen, and the inlet

temperature was modified, to find the sensitivity of the flame shape and location

to the in-flow conditions. The in-flow temperature for the three separate streams

was increased to 500K, separately, and the velocity for that stream was adjusted to

maintain a constant mass flux.

6.1 CH
∗ contours

Figures 6.1–6.8 show a selection of comparisons between experimental and numerical

CH∗ contours. The complete set of contour plots of experimentally measured and

numerically calculated CH∗ chemiluminescence emission is included in Appendix C.

A summary of the comparisons is presented here.

Simulation data is plotted with the thick dashed line, and the thin lines are the ex-

perimental data from the Abel transform of the images. As discussed in Appendix A,

flame images are split into the left- and right-hand side, and both are calculated

through the Abel transform. Generally, the two sides are in good agreement, but

there are differences when the flames are asymmetric. In Figs. 6.1–6.8, the thin black
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line is data from the right-hand side, and the thin grey line is data from the left-hand

side.

For co-flowing air with central fuel velocity ucf = 18.4 cm/s and the central air

tube flush (Fig. 6.1(a)), the outer flame is well predicted up to uca = 89.11 cm/s.

For the inner flame, at low central air velocities, simulations predict a lower flame

height. At uca = 89.11 cm/s, the simulations predict a higher location for the inner

flame, although the shape of the flame is in good agreement. Above this velocity, as

the inner flame joins with the outer flame, the simulated flame is drawn in towards

the centreline much more than in the experiments. This phenomenon is particularly

visible at uca = 506.9 cm/s. With the central air tube raised 3mm (Fig. 6.1(b)), the

outer flame is displaced further outwards in the simulations, although the location of

the base of the outer flame is in good agreement with the experiments. The location

and height of the inner flame agree well up to uca = 50.87 cm/s. For higher central air

velocities, the simulations predict higher inner flames, but the shapes of the flames

are in good agreement. At the highest central air velocities, the base and tip of the

flame are in good agreement, but the middle portion of the flame is entrained more

towards the centreline in the simulations, as was seen with the central air tube flush.

With the central air tube raised 6mm (Fig. 6.1(c)), the trends are similar to those

at 3mm. The outer flame is displaced further outwards in the simulations, although

the location of the base of the outer flame is in good agreement. At low central

air velocities, up to uca = 171.1 cm/s, the inner flame location and shape are well

predicted. Above that, the simulations predict a higher location for the inner flame,

such as at uca = 384.2 cm/s. At the highest central air velocity, here uca = 1109 cm/s,

the agreement is excellent for all parts of the flame.

For co-flowing air at central fuel velocity ucf = 23.0 cm/s (Fig. 6.2), the agreement

is similar to that at ucf = 18.4 cm/s. With the central air tube flush, the simulations

predict a lower flame location for central air velocities up to uca = 80.75 cm/s. Above

this, the simulations predict a higher flame, and at high central air velocities, as the

inner flame joins with the outer flame, the simulated flame is drawn in towards the

centreline much more than in the experiments. With the central air tube raised 3mm,

at low central air velocities, there is good agreement in the location and shape of the

inner flame. At the middle range of central air velocities, the simulations predict a

higher location for the inner flame. At high central air velocities, the base and tip

of the flame are in good agreement, but the middle portion of the flame is entrained

more into the centreline in the simulations. With the central air tube raised 6mm, at

low central air velocities, when the flame is still attached to the tip of the central air
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Figure 6.1: Experimental (thin grey line: left side; thin black line: right side) and
numerical (thick dashed line) CH∗ contours with co-flowing air, ucf = 18.4 cm/s, and
uca given.
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Figure 6.2: Experimental and numerical CH∗ contours with co-flowing air, ucf =
23.0 cm/s, and uca given. Legend as in Fig. 6.1.
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Figure 6.3: Experimental and numerical CH∗ contours with Φ = 0.78 co-flow, ucf =
18.4 cm/s, and uca given. Legend as in Fig. 6.1.
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Figure 6.4: Experimental and numerical CH∗ contours with Φ = 0.78 co-flow, ucf =
23.0 cm/s, and uca given. Legend as in Fig. 6.1.
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Figure 6.5: Experimental and numerical CH∗ contours with Φ = 1.0 co-flow, ucf =
18.4 cm/s, and uca given. Legend as in Fig. 6.1.
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Figure 6.6: Experimental and numerical CH∗ contours with Φ = 1.0 co-flow, ucf =
23.0 cm/s, and uca given. Legend as in Fig. 6.1.
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Figure 6.7: Experimental and numerical CH∗ contours with Φ = 1.2 co-flow, ucf =
18.4 cm/s, and uca given. Legend as in Fig. 6.1.
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tube, the agreement is good. At the middle range of central air velocity, simulations

predict a higher location for the inner flame. At high central air velocities, the outer

flame is in good agreement, asymmetries are more prominent in the experiments, and

the simulations again predict a higher location for the inner flame.

For co-flowing combustion products at Φ = 0.78 (Fig. 6.3), the locations of the

burner-stabilized flame in the simulations and experiments are different because in

the experiments the flame is stabilized on top of the perforated plate, with a standoff

distance. This was discussed in Chapter 4 (Fig. 4.2, pg. 18), but in these experiments,

emission from the burner stabilized flame was blocked from reaching the camera, so

the burner stabilized flame is not visible in Fig. 6.3. In the simulations, the combustion

products are flowing directly from the inlet, with no standoff distance, so the outer

flame stabilizes at the burner face.

For the Φ = 0.78 co-flow at central fuel velocity ucf = 18.4 cm/s, with the central

air tube flush (Fig. 6.3(a)), at low central air velocities the simulations predict a lower

flame height than the experiments, although the flame shape is in good agreement. At

uca = 108.2 cm/s, and above, the location and shape of the inner flame are in good

agreement between experiments and simulations. With the central air tube raised

3mm (Fig. 6.3(b)), the simulations predict a lower base of the inner flame at low

central air velocities, but flame shape and location are well predicted over the entire

range of central air velocities. With the central air tube raised 6mm (Fig. 6.3(c)), at

low central air velocities, the location and vertical extent of the inner flame are well

predicted. At higher central air velocities, asymmetries in the experimental flames

become more and more pronounced, starting with the arc-shaped flame region at

uca = 200.8 cm/s. This is the result of taking the Abel transform of an asymmetric

flame image, where the ring-shaped flame is tilted along the imaging axis, as discussed

in Chapter 5. Despite these asymmetries, the location of the inner flame is in good

agreement. At central fuel velocity ucf = 23.0 cm/s (Fig. 6.4), the trends are very

similar to those at ucf = 18.4 cm/s.

For the Φ = 1.0 co-flow at central fuel velocity ucf = 18.4 cm/s, with the central

air tube flush (Fig. 6.5(a)), at low central air velocities, below uca = 275.4 cm/s,

the simulations predict a lower flame height than the experiments. Above uca =

275.4 cm/s, the flame shape and location are in good agreement, although tilting of

the flame perpendicular to the imaging axis is visible, particularly at uca = 793.3 cm/s.

With the central air tube raised 3mm (Fig. 6.5(b)), at low central air velocities, the

location of the tip of the inner flame is in good agreement, although the simulations

predict a lower location for the base of the inner flame. For central air velocities of
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uca = 180.0 cm/s and above, asymmetries are evident. Despite these asymmetries,

the location of the inner flame is in good agreement. With the central air tube raised

6mm (Fig. 6.5(c)), the agreement is similar to that at 3mm. At low central air

velocities, the location of the tip of the inner flame is in good agreement, although

the simulations predict a lower location for the base of the inner flame. Despite the

asymmetries visible at uca = 225.2 cm/s and above, the location of the inner flame is

in good agreement. At central fuel velocity ucf = 23.0 cm/s (Fig. 6.6), the trends are

similar to those at ucf = 18.4 cm/s.

For the Φ = 1.2 co-flow at central fuel velocity ucf = 18.4 cm/s, with the central

air tube flush (Fig. 6.7(a)), the simulations predict a lower location for the inner

flame at low central air velocities, up to uca = 127.9 cm/s. At uca = 127.9 cm/s,

the inner flame agrees well, but above this velocity the simulations predict a higher

location for the inner flame. Over the entire range of central air velocities, though,

the shape of the inner flame is well predicted. With the central air tube raised 3mm

(Fig. 6.7(b)), the location of the tip of the inner flame is in good agreement, although

the simulations predict a lower location for the base of the inner flame. At higher

central air velocities, asymmetries are more pronounced, but the location of the inner

flame is in good agreement. With the central air tube raised 6mm (Fig. 6.7(c)), at

low central air velocities, the location of the base and tip of the inner flame are in

good agreement. At higher central air velocities, asymmetries are more pronounced,

but the location of the inner flame is in good agreement.

At central fuel velocity ucf = 23.0 cm/s (Fig. 6.8), the trends are similar to those

at ucf = 18.4 cm/s. With the central air tube flush, at low central air velocities, sim-

ulations predict a lower inner flame, but at and above uca = 206.3 cm/s, there is good

agreement. With the central air tube raised 3mm and 6mm, there is good agreement

in the tip of the inner flame, and despite asymmetries in the experimental images at

high cental air velocities, the location of the inner flame is in good agreement.

6.2 Sensitivity analysis

Sensitivity calculations were carried out for a selection of flames with co-flowing air

and central fuel velocity ucf = 23.0 cm/s. Calculations were run changing individually

the inlet temperature of the co-flow, central fuel and central air streams from 400K to

500K. The velocities for the streams were increased in order to maintain a constant

mass flow-rate.

Figures 6.9–6.11 show the contours of 10% of the maximum CH∗ chemilumines-
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Figure 6.9: Experimental and numerical CH∗ contours showing effects of in-flow
temperature, with co-flowing air, central air tube flush, ucf = 23.0 cm/s and (a)
uca = 124.9 cm/s, (b) uca = 603.0 cm/s. Legend as in Fig. 6.1
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Figure 6.10: Experimental and numerical CH∗ contours showing effects of in-flow
temperature, with co-flowing air, central air tube raised 3mm, ucf = 23.0 cm/s and
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Figure 6.11: Experimental and numerical CH∗ contours showing effects of in-flow
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cence emission. With the central air tube flush, in Fig. 6.9(a), increasing the temper-

ature does move the inner flame down, into better agreement with experiments. In

Fig. 6.9(b), increasing the inlet temperature causes the flame to move further inward

towards the centreline, with poorer agreement with experiments.

With the central air tube raised 3mm, in Figs. 6.10(a) and (b), increasing the inlet

temperature moves the inner flame lower, giving better agreement with experiments.

The smallest effect is from increasing the fuel temperature, with the co-flow and

central air stream temperatures having a greater effect. In Fig. 6.10(c), increasing

the inlet temperature has very little effect on the base or tip of the flame, but does

cause the middle portion of the flame to be drawn closer to the centreline.

With the central air tube raised 6mm, in Fig. 6.11(a), changing the inlet temper-

ature has very little effect on the diffusion flame attached to the lip of the central

air tube. With the air temperature increased, the outer flame seems to get shorter,

but this is most likely due to an increase in the maximum CH∗ concentration in the

inner flame, causing the 10% contour of the outer flame to shorten. In Fig. 6.11(b),

increasing the temperature does move the inner flame down, into better agreement

with experiments.

In summary, for lifted inner flames, increasing the inlet temperature of the central

air or co-flow streams by 100K does have a small effect on the flame location, moving

it towards better agreement with the experiments. At the high central air velocities,

though, the small changes in the flame from an increase in inlet temperature cause

the agreement with experiments to worsen.
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Chapter 7

Numerical simulation results

This chapter presents the numerical simulation results. After comparing the numer-

ical and experimental results, and validating the numerical method, the numerical

results are analyzed in order to address the question of whether NOx emissions can

be reduced through this type of burner.

The first section describes the relevant characteristics of the flames through con-

tour plots and radial distributions of species and temperature at different heights,

illustrating important elements of the flames that contribute to the emissions. The

second section describes the trends in heat release and emission of CO and NO for the

different co-flows as the central air velocity is increased. These trends are explained

with detailed analysis of some flames in particular, illustrating the changes as the

central air velocity is increased, and as the central air tube is raised.

7.1 Flame characteristics

As mentioned in Chapter 4, the lifted inverse diffusion flame is stabilized with a

premixed base. This is evident from data taken along the streamline through the

point of the maximum destruction rate of CH4 in the inner flame. Figures 7.1 and 7.2

show axial velocity and temperature along this streamline for flames with co-flowing

air and ucf = 18.4 cm/s. At low central air velocities, the premixed nature of the

flame is evident as the velocity and temperature rise steeply through the flame. At

higher central air velocities, the inner flame joins with the outer diffusion flame, but

retains the premixed character along the streamline, again evident from the rapid

rise in temperature along the streamline. At higher central air velocities the same

character is evident in the velocity plot, although the sudden rise in velocity is not

as evident since the scale of the velocity plot is so much greater. At higher central
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Figure 7.1: (a) Axial velocity and (b) temperature along streamline through the point
of maximum destruction rate of CH4, for co-flowing air and central air tube flush.
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Figure 7.2: (a) Axial velocity and (b) temperature along streamline through the point
of maximum destruction rate of CH4, for co-flowing air and central air tube flush.

air velocities, the temperature increase along the streamline before the flame location

is greater, due to increased entrainment of products from the outer diffusion flame

as the central air velocity is increased. This increased temperature is necessary for

the propagation velocity of the flame to match fluid velocities on the order of several

metres per second. The premixed nature of the base of the inner flame is also seen

with the combustion product co-flows, and with the raised central air tube.

Figures 7.3–7.5 show the radial distribution of temperature, CH4, O2, and CO2

at two different heights—upstream and downstream of the inner flame—and contour

plots of temperature and CH mass fraction, with co-flowing air and central air tube

flush.

For uca = 54.43 cm/s, upstream of the inner flame at z = 0.4 cm, there is the

outer diffusion flame at r ∼ 0.45 cm. In this flame, central fuel, as well as some

central air that has mixed with the central fuel, are reacting with the co-flowing
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Figure 7.3: Radial profiles of species (solid: CH4, dashed: O2, dotted: CO2) and
temperature (thick grey line) for co-flowing air, central air tube flush, ucf = 18.4 cm/s,
and uca = 54.43 cm/s. On the right is a contour of temperature (lightest shade of
grey is 400K, increasing by 200K each contour line) and 10% of the maximum CH
mass fraction in white.
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Figure 7.4: Radial profiles of species and temperature, and contour plot of tem-
perature and CH for co-flowing air, central air tube flush, ucf = 18.4 cm/s, and
uca = 138.7 cm/s (legend as in Fig. 7.3).
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Figure 7.5: Radial profiles of species and temperature, and contour plot of tem-
perature and CH for co-flowing air, central air tube flush, ucf = 18.4 cm/s, and
uca = 506.9 cm/s (legend as in Fig. 7.3).

air, and there is a corresponding peak in temperature and CO2 at that location.

Downstream of the inner flame, at z = 0.6 cm, the air and fuel near the centreline

have been completely consumed, with a corresponding increase in the temperature

and CO2 near the centreline. The fuel and air that remain around r ∼ 0.25 cm

continue to react with the co-flowing air in the outer diffusion flame.

For uca = 138.7 cm/s (Fig. 7.4), the inner flame has started to join with the outer

flame. At z = 0.8 cm, central fuel and air have mixed and are reacting with co-flowing

air in the outer diffusion flame, now located closer to the centreline at r ∼ 0.4 cm,

due to the entrainment of the higher velocity central air jet. Above the location of

the inner flame, at z = 1.0 cm, the fuel and oxygen have been reacted through the

inner flame, but some of the unburned fuel has been entrained into the central air jet,

and is visible near the centreline.

For uca = 506.9 cm/s (Fig. 7.5), the entrainment into the central air jet is even

stronger. At z = 0.5 cm, the outer diffusion flame is located at r ∼ 0.25 cm, with a

peak in temperature and CO2 at that location. Through the tip of the flame, between

z = 0.5–1.0 cm, fuel is consumed, with some unburned fuel around z = 0.15 cm that

is entrained into the central air jet.

Figures 7.6–7.8 show the contours and radial distributions for co-flowing air with
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Figure 7.6: Radial profiles of species and temperature, and contour plot of temper-
ature and CH for co-flowing air, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 78.97 cm/s (legend as in Fig. 7.3).
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Figure 7.7: Radial profiles of species and temperature, and contour plot of temper-
ature and CH for co-flowing air, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 239.6 cm/s (legend as in Fig. 7.3).
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Figure 7.8: Radial profiles of species and temperature, and contour plot of temper-
ature and CH for co-flowing air, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 754.2 cm/s (legend as in Fig. 7.3).

the central air tube raised 6mm. For uca = 78.97 cm/s (Fig. 7.6), the inner flame

is attached to the lip of the central air tube as a diffusion flame. At z = 0.75 cm,

fuel from the central fuel tube is reacting in two diffusion flames—the outer diffusion

flame at r ∼ 0.55 cm, and the inner diffusion flame attached to the central air tube

at r ∼ 0.2 cm, with corresponding peaks in temperature and CO2 at those two radial

locations. At z = 1.0 cm, all the central fuel has been consumed through those two

flames.

For uca = 239.6 cm/s (Fig. 7.7), the inner flame has lifted off the central air tube

and, as described earlier, the base of that flame is premixed, with a diffusion flame

attached to it. At z = 0.75 cm, central fuel is reacting in the outer diffusion flame at

r ∼ 0.5 cm. Fuel near r ∼ 0.25 cm is consumed through the premixed lifted flame,

and downstream of the lifted flame at z = 0.9 cm, the small amount of remaining

fuel is reacting in the two diffusion flames at r ∼ 0.3 and 0.45 cm, with an additional

small pocket of unburned fuel around r ∼ 0.15 cm.

For uca = 754.2 cm/s (Fig. 7.8), the entrainment into the central air jet is stronger,

so the diffusion flame that was attached to the premixed flame is no longer present,

and most of the fuel has been consumed downstream of the premixed flame with a

small pocket of unburned fuel at r ∼ 0.15 cm.

57



0 0.25 0.5 0.75 1
400

800

1200

1600

2000

2400

T
 [K

]

 r [cm]

(a)  z = 0.2 cm

0

0.05

0.1

0.15

0.2

0.25

M
as

s 
fr

ac
tio

n

0 0.25 0.5 0.75 1
400

800

1200

1600

2000

2400

T
 [K

]

 r [cm]

(b)  z = 0.5 cm

0

0.05

0.1

0.15

0.2

0.25

M
as

s 
fr

ac
tio

n

 r [cm]

 z
 [c

m
]

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

Figure 7.9: Radial profiles of species and temperature, and contour plot of temper-
ature and CH for Φ = 0.78 co-flow, central air tube flush, ucf = 18.4 cm/s, and
uca = 48.2 cm/s (legend as in Fig. 7.3).
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Figure 7.10: Radial profiles of species and temperature, and contour plot of tem-
perature and CH for Φ = 0.78 co-flow, central air tube flush, ucf = 18.4 cm/s, and
uca = 108.2 cm/s (legend as in Fig. 7.3).
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Figure 7.11: Radial profiles of species and temperature, and contour plot of tem-
perature and CH for Φ = 0.78 co-flow, central air tube flush, ucf = 18.4 cm/s, and
uca = 444.7 cm/s (legend as in Fig. 7.3).

Figures 7.9–7.11 show the contours and radial distributions for Φ = 0.78 co-flow

and central air tube flush. The general flame characteristics are similar to those

observed with co-flowing air.

For uca = 48.20 cm/s (Fig. 7.9), the outer diffusion flame is located further away

from the centreline, due to the reduced oxygen concentration in the co-flow. Up-

stream of the inner flame at z = 0.2 cm, central fuel and air are reacting in the outer

diffusion flame at r ∼ 0.55 cm. The peaks in temperature and CO2 at the outer flame,

are not as defined as with the air co-flow, since the co-flowing combustion products

already contain CO2 at elevated temperature. At z = 0.5 cm, fuel and air near the

centreline have been consumed through the inner flame, with a corresponding increase

in temperature and CO2. The remaining fuel and air continue to react in the outer

diffusion flame, now pushed further outwards at r ∼ 0.6 cm, due to expansion from

the inner flame.

For uca = 108.2 cm/s (Fig. 7.10), the lifted inner flame has separated from the

centreline. Central fuel and air around r ∼ .25 cm are consumed through the in-

ner flame, but there is some unburned fuel entrained into the central air jet at the

centreline.

For uca = 444.7 cm/s (Fig. 7.11), upstream of the inner flame at z = 0.8 cm,
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Figure 7.12: Radial profiles of species and temperature, and contour plot of tempera-
ture and CH for Φ = 0.78 co-flow, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 85.91 cm/s (legend as in Fig. 7.3).

the outer diffusion flame has been pulled in towards the centreline and is now at

r ∼ 0.4 cm. Through the inner flame, a large portion of the fuel and air around

r ∼ 0.15 cm is consumed, but there is a small pocket of fuel that is un-reacted and

entrained into the central air jet.

Figures 7.12–7.14 show the contours and radial distributions for the Φ = 0.78

co-flow and central air tube raised 6mm.

For uca = 85.91 cm/s (Fig. 7.12), the inner flame is attached to the lip of the

central air tube. At z = 0.75 cm, central fuel is reacting in two diffusion flames—the

inner flame attached to the central air tube, and the outer diffusion flame which has

been pushed further out into the co-flow due to the presence of the raised central air

tube, and is now around r ∼ 0.75 cm. There are corresponding peaks of CO2 and

temperature at those two locations. Most of the central fuel has been consumed by

z = 1.25 cm, with the remainder continuing to react in the inner and outer diffusion

flames.

For uca = 200.8 cm/s (Fig. 7.13), the inner flame has lifted off the central air tube.

Through the inner flame, a large portion of the central fuel and air are consumed at

r ∼ 0.25 cm. Downstream, at z = 1.0 cm, the remaining fuel is reacting in the diffusion

flame attached to the premixed flame at r ∼ 0.25 cm, and in the outer diffusion flame
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Figure 7.13: Radial profiles of species and temperature, and contour plot of tempera-
ture and CH for Φ = 0.78 co-flow, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 200.8 cm/s (legend as in Fig. 7.3).
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Figure 7.14: Radial profiles of species and temperature, and contour plot of tempera-
ture and CH for Φ = 0.78 co-flow, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 569.2 cm/s (legend as in Fig. 7.3).
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at r ∼ 0.75 cm, with a small pocket of unburned fuel remaining around r ∼ .15 cm.

For uca = 569.2 cm/s (Fig. 7.14), the diffusion flame attached to the lifted flame is

no longer present. Through the lifted flame, the central fuel and air at r ∼ 0.25 cm are

consumed, with a small pocket of fuel entrained into the central air jet at r ∼ 0.15 cm.

The behaviour of the flames with the Φ = 1.0, and Φ = 1.2 co-flows is similar

to that with co-flowing air. Plots of radial species and temperature for those flames

are included in Appendix D. The outer diffusion flame is weaker with the Φ = 1.0

co-flow, and disappears completely with the Φ = 1.2 co-flow as there is no longer any

oxygen in the co-flow, but the flames retain the same general characteristics.

In summary, the general characteristics of these flames are as follows. For the

central air tube flush, at low central air velocities, there is a lifted inner flame near

the centreline. Some of the central fuel and air are consumed in this flame, and the

rest react in the outer diffusion flame. With the Φ = 1.0 co-flow, this outer flame

is very weak and so the remaining reaction of fuel in that region is very slow. With

the Φ = 1.2 co-flow, this outer flame is no longer present, as the co-flow is devoid of

oxygen. As the central air velocity is increased, the inner flame moves away from the

centreline and joins with the outer diffusion flame, if one is present. The entrainment

of fuel and co-flowing gas into the central air jet increases. This entrained mixture is

consumed through the lifted flame, but some fuel remains entrained into the central

air jet, and at high central air velocities, can exit the domain unburned.

With the central air tube raised, the inner flame is attached to the lip of the

central air tube at low central air velocities. In this configuration, central fuel reacts

with central air in the inner diffusion flame attached to the central air tube, and also

in the outer diffusion flame, if one is present. Increasing the central air velocity, the

inner flame will lift off the central air tube with a premixed base, and an attached

diffusion flame. As the central air velocity is increased further, the length of the

attached diffusion flame decreases as more of the central fuel is entrained into the

central air jet to react in the premixed lifted flame.

7.2 Heat release and emissions

Figure 7.15 plots the total heat release within the simulation domain, normalized by

the chemical energy input from the fuel stream, ṁCH4
·LHVCH4

. Figure 7.16 plots the

percent unburned CH4 exiting the simulation domain, and Fig. 7.17 plots the change

in mass flow rate of CO (mass flow rate at the end of the simulation domain minus

the mass flow rate at the beginning of the domain, to remove the contribution of CO
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Figure 7.15: Total heat release, normalized by the chemical energy input from the
fuel (ṁCH4

· LHVCH4
). Air tube: flush (solid line), raised 3mm (dashed line), and

raised 6mm (dotted line).
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Figure 7.16: Fraction of unburned fuel at the exit of the simulation domain.Air tube:
flush (solid line), raised 3mm (dashed line), and raised 6mm (dotted line).
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Figure 7.17: Change in mass flow-rate of CO, scaled by the inlet mass flow-rate of
fuel. Air tube: flush (solid line), raised 3mm (dashed line), and raised 6mm (dotted
line).
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that enters with the combustion product co-flows), scaled by the inlet mass flow rate

of fuel.

For co-flowing air, there is a slight decrease in the total heat release as the central

air velocity is increased, along with a slight increase in unburned fuel and CO. This

is due to the high velocity air jet. Fuel that gets entrained into the central air jet

does not react and gets carried out of the simulation domain. Also, the reaction zone

at the edge of the jet gets more diluted with cold air, leaving less chance for CO to

oxidize before exiting the simulation domain. As the central air tube is raised there

is less unburned fuel and CO, because of the reduced entrainment into the central air

jet, due to the presence of the raised central air tube.

For the Φ = 0.78 co-flow, at low central air velocities there is low total heat release

and high emissions of CO. This is due to the reduced oxygen content in the co-flow,

which is insufficient to oxidize the fuel and CO within the simulation domain. Around

uca ∼ 200 cm/s, the normalized heat release reaches one and emissions of CO are very

low, as there is enough oxygen in the system to oxidize the CO and generate heat

release. Over the middle range of central air velocities, there is very little unburned

fuel, but at high central air velocities, above uca ∼ 400 cm/s, unburned fuel starts

increasing, as the entrainment into the central air jet increases.

For the Φ = 1.0 and Φ = 1.2 co-flows, at low central air velocities the heat release

is very low. At the lowest central air velocities with the Φ = 1.2 co-flow, the heat

release is slightly negative, indicating the presence of some endothermic reactions

between the fuel and the co-flow. At high central air velocities with the central air

tubeflush, though, the heat release is greater than one, as some of the co-flow reacts

with the central air jet. Raising the central air tube has very little effect on the heat

release and CO emissions for uca . 200 cm/s, and above this, raising the central air

tube decreases the heat release and increases the emission of CO. This is because as

the central air tube is raised, more of the fuel is displaced outwards into the co-flow,

and there is less chance for entrainment into the central air jet.

For the Φ = 1.0 co-flow, the behaviour of the unburned fuel is similar to the

Φ = 0.78 co-flow. In the middle range of central air velocities there is very little

unburned fuel, with a slight increase at high central air velocities due to increased

entrainment into the central air jet. For the Φ = 1.2 co-flow, the unburned fuel is

much higher at low central air velocities, reaches a minimum in the middle range,

and increases slightly at higher central air velocities.
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Figure 7.18: Emission index of NO. Air tube: flush (solid line), raised 3mm (dashed
line), and raised 6mm (dotted line).
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Figure 7.18 shows the emission index of NO,

EINO [g/kgCH4
] =

1000 ·MWNO

∫

z

∫

r
ω̇NO2πrdrdz

−MWCH4

∫

z

∫

r
ω̇CH4

2πrdrdz
(7.1)

which is the ratio of the total mass of NO produced within the simulation domain to

the total mass of CH4 consumed.

For co-flowing air and combustion products at Φ = 0.78, NO emissions are reduced

as the central air velocity is increased, and increased as the central air tube is raised.

For the Φ = 1.0 co-flow, NO emissions gradually decrease with increasing central air

velocities above uca ∼ 200 cm/s, with a slight increase as the central air tube is raised.

For the Φ = 1.2 co-flow, EINO is negative at low central air velocities, indicating a

reduction of the NO present in the co-flowing stream through reburn reactions with

the fuel. Above uca ∼ 200 cm/s, NO destruction in this region is overtaken by NO

production in the inner reaction zone. Emissions of NO are higher with the central

air tube flush, as more of the fuel is entrained and reacted with the central air jet.

To explain the trends in emissions of NO as the central air velocity is increased,

Figs. 7.19–7.22 plot the mass flow-rate, and the radially-integrated net production

rate of NO versus the axial distance above the burner. The normal diffusion flame

(uca = 0) is included for reference.

For the air co-flow (Fig. 7.19), NO is produced in the normal diffusion flame

up to the tip of the flame around z ∼ 2.6 cm. With the central air tube flush, at

uca = 54.4 cm/s, due to the dilatation from the inner flame, the production of NO near

the burner face is increased slightly, as the outer diffusion flame is pushed outwards

into the co-flow. Some of the central air reacts in the inner lifted flame, causing a small

peak in NO production at z ∼ 0.5 cm. The rest of the central air mixes with fuel and

reacts in the outer diffusion flame, reducing the length of the flame to approximately

1.9 cm, and decreasing the production of NO. At uca = 138.7 cm/s, production of

NO is concentrated in the premixed flame at z ∼ 0.9 cm. At uca = 686.6 cm/s,

entrainment from the central air jet is very strong. The initial production of NO near

the burner is reduced as the outer flame is drawn closer to the centreline. There is a

small peak in NO production at z ∼ 0.6 cm, and a slight reduction of NO above the

flame as the fuel that was entrained into the central air jet slowly reacts.

With the central air tube raised 6mm, the production of NO near the burner face

is increased relative to the normal diffusion flame, as the central air tube pushes the

outer flame into the co-flow. At uca = 239.67 cm/s, there is a peak in NO formation

from the premixed flame at z ∼ 0.9 cm, and another peak in the radial integral
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Figure 7.19: Radial integral of net production rate of NO for air co-flow at ucf =
18.4 cm/s. The thick grey line is for uca = 0 and central air tube flush. The legend is
above the small contours of 10% maximum CH mass fraction on the right, with uca

given underneath each contour.
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Figure 7.20: Radial integral of net production rate of NO for Φ = 0.78 co-flow at
ucf = 18.4 cm/s. The thick grey line is for uca = 0 and central air tube flush. The
legend is above the small contours of 10% maximum CH mass fraction on the right,
with uca given underneath each contour.
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Figure 7.21: Radial integral of net production rate of NO for Φ = 1.0 co-flow at
ucf = 18.4 cm/s. The thick grey line is for uca = 0 and central air tube flush. The
legend is above the small contours of 10% maximum CH mass fraction on the right,
with uca given underneath each contour.
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Figure 7.22: Radial integral of net production rate of NO for Φ = 1.2 co-flow at
ucf = 18.4 cm/s. The thick grey line is for uca = 0 and central air tube flush. The
legend is above the small contours of 10% maximum CH mass fraction on the right,
with uca given underneath each contour.
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downstream of this, as the attached inner diffusion flame wraps around and joins

with the outer diffusion flame. At uca = 572.8 cm/s, NO production is concentrated

in the premixed flame at z ∼ 1.0 cm, with a slight reduction due to reaction of the

entrained fuel in the central air jet.

For the Φ = 0.78 co-flow (Fig. 7.20), NO is produced up to the end of the simu-

lation domain. With the central air tube flush, at uca = 64.0 cm/s, there is a peak

in NO production from the lifted inner flame at z ∼ 0.5 cm. At uca = 108.1 cm/s,

there is a peak in NO production from the premixed flame at z ∼ 1.0 cm, and a

plateau of NO production from the attached diffusion flame. At uca = 444.7 cm/s,

NO production near the burner is reduced as the outer flame is drawn towards the

centreline, and NO production is concentrated in the premixed flame at z = 1.0 cm,

with no attached difusion flame.

With the central air tube raised 6mm, NO production in the near-burner region

is increased compared to the normal diffusion flame. At uca = 85.9 cm/s, the inner

flame is attached to the lip of the central air tube, with a plateau of NO production

between z ∼ 0.6–2.1 cm. As the central air velocity is increased, NO production is

concentrated in the premixed flame, and the axial extent of the attached diffusion

flame decreases, with a corresponding decrease in total NO production.

The behaviour of the NO production for the Φ = 1.0 co-flow is similar to that

for the Φ = 0.78 co-flow. With the central air tube flush, at low central air velocity,

there is a small peak of NO production at the lifted inner flame. At uca = 183.4 cm/s,

there is a peak in NO production at the lifted premixed flame (z ∼ 1.0 cm), and a

plateau from the attached diffusion flame. At uca = 611.9 cm/s, NO production is

concentrated in the premixed flame at z ∼ 1.0 cm. With the central air tube raised

6mm, the inner diffusion flame is attached to the lip of the central air tube, with a

plateau of NO production. As the central air velocity is increased, the axial extent

of the diffusion flame decreases, and NO production is concentrated in the lifted

premixed flame.

For the Φ = 1.2 co-flow at uca = 0, NO production is negative throughout the

domain, meaning that NO from the co-flowing gas is being consumed in reactions

between the co-flow and the injected fuel. As the central air velocity is increased,

there are peaks in NO production from the lifted inner flame. With the central

air tube raised 6mm, there are the characteristic peaks at the location of the lifted

premixed flame, and the attached diffusion flame downstream.

For each of the co-flows studied, there is a central air velocity where the flames

for the three different central air tube conditions have nearly the same height at
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Table 7.1: Listing of in-flow conditions for three tube cases with ucf = 18.4 cm/s.

Co-flow Central air tube uca [cm/s]
Air flush 227.9

3mm 271.8
6mm 239.6

Φ = 0.78 flush 314.8
3mm 326.6
6mm 298.7

Φ = 1.0 flush 410.9
3mm 414.4
6mm 347.2

Φ = 1.2 flush 278.2
3mm 358.8
6mm 299.2

nearly the same central air and fuel velocities. These flames are listed in Table 7.1.

Examination of these flames will show how raising the central air tube affects the NO

production.

Figure 7.23 shows contours of 10% of the maximum and minimum of NO pro-

duction, and stoichiometric local equivalence ratio for these flames. In general, the

stoichiometric line neatly divides the NO production on the lean side, towards the

co-flow or central air stream, from the NO destruction on the rich side, towards the

central fuel stream. The exception is the tail of NO destruction above the lifted pre-

mixed flame, near the centreline. This is due to the slow reaction of fuel that has

been entrained into the central air jet, and not reacted in the lifted premixed flame.

As the central air tube is raised, the fuel is displaced outwards into the co-flow,

due to the presence of the raised central air tube. There is less chance for fuel to

be entrained into the central air jet, so more of the fuel reacts in the outer diffusion

flame, and the axial extent of the diffusion flame attached to the lifted premixed flame

is increased.

Figure 7.24 shows the radially integrated net production rate of NO for the flames

listed in Table 7.1. For the air co-flow with the central air tube flush, there is a small

peak in NO production at the location of the lifted premixed flame (z ∼ 0.9 cm).

With the central air tube raised 3mm, there is a larger peak at z ∼ 0.9 cm, from

a combination of the lifted premixed flame and the attached diffusion flame which

wraps around and is oriented horizontally at that location. With the central air tube

raised 6mm, there is a small peak from the lifted premixed flame, and a larger peak

at z ∼ 1.0 cm, where the two diffusion flames join together.
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(c) Φ = 1.0 co-flow
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(b) Φ = 0.78 co-flow
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(d) Φ = 1.2 co-flow
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Figure 7.23: Contours of NO production—10% of maximum (black line); 10% of
minimum (grey line)—and contours of local equivalence ratio equal to one (dotted
line) for the flames listed in Table 7.1, at ucf = 18.4 cm/s, and co-flow given.
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Figure 7.24: Radially-integrated net production rates of NO for flames listed in Ta-
ble 7.1 at ucf = 18.4 cm/s, and co-flow given.
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For the Φ = 0.78 and Φ = 1.0 co-flows, there are peaks in NO production from the

lifted premixed flame at z ∼ 1.15 and 1.05 cm, respectively. As the central air tube

is raised, those peaks from the premixed flame become smaller, and the plateaus in

NO production from the attached diffusion flames grow longer, increasing the total

production of NO.

For the Φ = 1.2 co-flow, production of NO is negative up to the location of the

premixed flame. There is a peak in NO production from the lifted premixed flame

at z ∼ 1.55 cm, which gets smaller as the central air tube is raised, but without the

corresponding increase in NO from the attached diffusion flame seen for the Φ = 0.78

and Φ = 1.0 co-flows.
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Chapter 8

Conclusions

A flame geometry and reactant delivery configuration of interest to flameless oxidation

and low-NOx combustion has been investigated, experimentally and numerically. The

geometry is an inverse diffusion flame burner with a co-flow of either air or co-flowing

combustion products at Φ = 0.78, 1.0 or 1.2. The tube delivering the central air

stream is raised above the burner by up to 6mm, providing time for the fuel and

co-flowing gas to mix and react before reacting with the central air.

At low central air velocities, there is a hysteresis behaviour associated with the

inner flame between the central air and fuel streams. As the central air velocity is

increased from zero, the central air mixes with fuel and forms a partially-premixed

flame on the centreline. The height of the partially premixed flame is scaled by the

soot height of the corresponding normal diffusion flame, and this ratio is 0.53 for

co-flowing air, and 0.37 for co-flowing combustion products at Φ = 0.78. The height

of the partially-premixed flame is insensitive to the height of the central air tube, as it

is scaled by the outer diffusion flame. When the central air velocity reaches a critical

level, the partially-premixed flame propagates upstream and stabilizes closer to the

burner face as an inverse diffusion flame. Numerical simulation results suggest that

this critical point is reached when the local equivalence ratio upstream of the flame

approaches one.

As the central air velocity is decreased, the inverse diffusion flame gets weaker

and moves closer to the burner face until it extinguishes. The region of hysteresis

between transition to, and extinction of the inner inverse diffusion flame is extended

with co-flowing combustion products at Φ = 0.78, compared to co-flowing air. This

effect is most evident when the flame stabilizes above the burner face, giving the heat

and combustion products from the outer flame time to diffuse inwards.

For higher central air velocities, the inverse diffusion flame lifts higher off the
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burner face and joins with outer flame in a premixed ring-shaped flame. Numerical

simulation data for these flames are post-processed to calculate the chemiluminescent

emission from the excited-state CH∗ radical, and convolved with a matrix correspond-

ing to the point-spread function of the imaging system, modeling the experimental

diagnostic. The simulation data are in good agreement with experimental measure-

ments of CH∗ chemiluminescence emission for these flames.

The data from the numerical simulations is analyzed for the behaviour of heat

release and pollutant emissions. For co-flowing air, as the central air velocity is

increased, there is a slight decrease in the total heat release and a slight increase in

CO and unburned fuel emissions, as the central air jet entrains fuel and dilutes the

reaction zone, preventing oxidation of CO before the end of the simulation domain.

As the central air tube is raised, entrainment into the central air jet is delayed, and

these emissions are reduced.

For co-flowing products at Φ = 0.78, the co-flowing stream has lower oxygen con-

tent and so has less heat release and higher CO emissions at low central air velocities,

but CO is reduced and normalized heat release approaches one as the central air

velocity is increased. For the Φ = 1.0 and Φ = 1.2 co-flows, the heat release at low

central air velocities is even lower, but increases with increasing central air velocity,

and at the highest central air velocities, some of the co-flow gas is also oxidized.

In general, emissions of NO are decreased as the central air velocity is increased,

except for the Φ = 1.2 co-flow where NO from the co-flow is being reduced through

reactions with the injected fuel. Contrary to the proposed hypothesis, the mixing of

fuel with the co-flowing gas before reacting with the central air does not reduce the

emissions of NO. As the central air tube is raised above the burner, fuel is pushed

outwards into the outer diffusion flame, and less fuel is entrained into the central air

jet to react in the lifted premixed flame. Thus, more fuel is burned in a diffusion

flame and emissions of NO are increased.
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Appendix A

Chemiluminescence imaging

As explained in Chapter 2, flame chemiluminescence from the CH∗ radical is imaged

with an ICCD camera. This appendix provides a detailed description of the image

processing methodology.

A.1 Abel transform

An example image is shown in Fig. A.1. The white line at the centre of the image

is the axis of symmetry. The image is split into the left- and right-hand sides. Each

side is processed through a three-point Abel transform based on the formulas of

Dasch (1992), after correcting for typographical errors in Eq. 7 (Ayrancı et al. 2007),

producing a two-dimensional distribution of the emitted signal, in detector counts.

This is scaled by the maximum within the flame, and 10% contours are plotted, as

shown in Fig. A.2. The centreline is adjusted until the distributions from each side line

up as well as possible. Distributions shown throughout this thesis in comparison to

the numerical simulation data are taken from the right-hand side. The zero reference

point in the axial direction is measured from a reference image of the burner with no

flame, and an illuminated background.

Singla et al. (2005) explained the conditions that must be satisfied for inversion

of imaging data into 2-D slices to be valid:

This type of numerical tomography is suitable if (1) the flame is axisym-

metric, (2) self-absorption of the light radiated by the flame is not too

large, (3) light ray deflection by refraction index gradients remains lim-

ited, and (4) distance between the camera and the flame is large, compared

to the radial size of the combustion chamber
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Figure A.1: Example flame image, with
centreline in white.
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Figure A.2: Abel inversion of data from
Fig. A.1. Data from the right-hand side
in black, and from the left-hand side in
grey.
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Furthermore, “flame luminosity [must be] contained within the focal depth of the

camera system” (Yoo et al. 2002), and magnification changes over the flame depth

should be limited to 1% (Walsh et al. 1998).

In this work, the flames are axisymmetric, although there are some asymmetries

at high central air velocities, especially when the central air tube is raised above the

burner. It was very difficult to maintain perfect axisymmetry for these cases.Self-

absorption of the light radiated from the CH∗ radicals is assumed to be negligible,

because its spatial distribution is narrow, and its mole fraction is low (Singla et al.

2005). Light-ray deflection by index-of-refraction gradients (shadowgraph effect) is

minimized by focusing the camera on the mid-plane of the burner (Snelling et al.

1999). The nominal position of the camera is such that the front end of the lens is

located 45 cm away from the axis of the burner. This distance is large compared to

the typical flame diameter of approximately 1 cm.

Ray (1988) gives the following formula for the depth of field, T , for macro pho-

tography

T =
2Cf/# (1 + m)

m2
(A.1)

where C is the so-called “circle of confusion” and m is the magnification. For the

optical setup used in this work, the circle of confusion is C = 1.22 pixels (see Sec-

tion A.3), corresponding to 8.2 · 10−4cm at the sensor plane, and the magnification is

1:4 (m = .25). Using f /32 results in a depth-of-field of T = 1.04 cm, comparable to

the typical flame diameters in this work.

To confirm this choice, a typical flame was imaged at a series of f /# settings, f /4,

f /8, f /16, and f /32. Figure A.3 shows the images of the flame at each f /#, where

each image shown is the average of 256 individual images (see Section A.2). As the

f /# is reduced, the CH∗ layer appears more blurred and spread out. Each of these

images was processed through the Abel inversion to yield 2-D data of the relative

CH∗ emission levels. The width (FWHM) of the CH∗ layer was calculated near the

base of the flame, and the percent error relative to the width at f /32 is shown in

Fig. A.4. Thus, images are recorded at f /32 in order to get the thinnest CH∗ profile.

To confirm that the magnification changes are limited over the flame depth, the

standard USAF 1951 resolution target (Edmund Optics Part# NT38-257) was im-

aged, translating the camera relative to the target, up to 1.5 cm on each side, while

keeping the focus fixed. Figure A.5 shows an example image of the resolution target,

taken at the nominal focus position. To calculate the magnification of the optical

system, a pixel intensity profile was taken through the Group 0 Element 1 line pairs
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Figure A.3: Sequence of images with increasing f /#.
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Figure A.4: Percent error in CH∗ layer thickness (relative to value at f /32) as a
function of f /# for flames shown in Fig. A.3.
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Figure A.5: Image of resolution target taken at nominal focus position. Streaks
from Group 0, Element 1 used for calculating magnification are seen at the lower-left
corner, and the square (Group 0, Element 2) used for estimating the point-spread
function (Section A.3) of the imaging system can be seen on the right-hand side.

(1 line pair per millimetre), averaging the central 20 pixel-rows. This data was in-

verted and scaled to yield the profile shown in Fig. A.6. Similar to the methodology

of Bergthorson (2005) in calculating particle-streak velocimetry (PSV) data, these

“streaks” were thresholded to a level of 0.4 times the peak intensity and the distance

from the start-to-start (points S1, S2 and S3) and end-to-end (points E1, E2 and E3)

of the streaks was taken as the number of pixels corresponding to 1mm. This yields

four estimates for the magnification, two from the start-to-start and two from the

end-to-end of the streaks. The magnification is taken as the average of these four

estimates.

Figure A.7 shows the calculated optical system magnification (pixels/cm) over

a range of ±1.5 cm from the nominal focus position. The dashed lines represent a

difference of 1% relative to the nominal position. Over the range of typical flame

radii (∼0.5 cm), the magnification changes are within 1% of the nominal value.

A.2 Image averaging

When using intensified cameras for imaging, noise in the signal is also amplified. To

improve the signal-to-noise ratio, the final image used for analysis is the average of

multiple individual images, as long as the phenomenon is steady, which it is in this

work. In order to determine how many images to average, a large number of images

(4096) were taken of the example flame shown at the right-hand side of Fig.A.3. The
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Figure A.6: Scaled and inverted pixel intensity through Group 0, Element 1 line pairs,
and start (S) and end (E) of streaks.
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the nominal position.

85



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−1000

0

1000

2000

3000

4000

5000

 r [cm]

co
un

ts

Figure A.8: CH∗ emission data from one pixel row and one image (dashed line), and
fit (solid line) from Eqn. A.2.

data from each image was processed through the Abel inversion (Sec. A.1).

For each of the 4096 images, a two-sided Lorentzian function (Bergthorson 2005)

of the form

SCH∗ =







SCH∗
,maxw2

1

(x−xCH∗)2+w2
1

, x < xCH∗

SCH∗
,maxw2

2

(x−xCH∗)2+w2
2

, x > xCH∗

(A.2)

was fit to a pixel row near the base of the flame. Here, the location of the peak CH∗

is xCH∗ , and the width is (w1 + w2)/2. Figure A.8 shows the raw data and the fit

using Eqn. A.2. As is typical for data processed through the Abel inversion, there is

a large amount of scatter in the inner region, from r = 0 – 0.4 cm.

Figure A.9 shows the histograms for the fit parameters from Eqn. A.2 (peak

location and width). The uncertainties in the fit parameters when fitting to data

from a single image are 6.5 · 10−3 cm (corresponding to 1.4 pixels at the ICCD sensor

plane) in the peak CH∗ location, and 3.5 · 10−3 cm (0.75 pixels) for the CH∗ layer

thickness. Calculating the mean fit parameters from the average of 256 images reduces

the uncertainty in the mean values by a factor of 16, to 4.1 ·10−4 cm (0.087 pixels) for

the peak CH∗ location, and 2.2 · 10−4 cm for the CH∗ layer thickness, which is 1.1%

of the mean layer thickness of 2.0 · 10−2 cm.

With these results, data for processing is taken as the average of 256 individual

images. Figure A.10 shows CH∗ emission data from one pixel row processed from the

average of 256 individual images, and a curve fit using the average fit parameters and

Eqn. A.2.
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Figure A.9: Histogram of (a) peak CH∗ location and (b) CH∗ layer width from curve
fits to single images.
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Figure A.10: CH∗ emission data from one pixel row and the average of 256 images
(dashed line), and fit calculated from average fit parameters (solid line) and Eqn. A.2.
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Figure A.11: Normalized intensity profile through square of target image (Fig. A.5).
Experimental data (circles) and fit (line) using Eqn. A.3.

A.3 Point-spread-function

Through imaging, the ideal CH∗ distribution is blurred by the point-spread function

of the imaging system. This is a common problem in astronomical imaging, where

an image of a point-source, such as a distant star, ends up as a disk on the detector.

Imaging the resolution target provides a means to estimate this blurring.

The square shown in Fig. A.5 was imaged and the profile of inverted and normal-

ized intensity through the central 20 pixel rows is shown in Fig. A.11. This shows

how the ideal step-change in intensity on the target image gets blurred on the CCD

sensor.

A Cauchy distribution function, of the form

D(x) = S

[

π

2
+ tan−1

(

x−m

w

)]

(A.3)

was fit to the experimental normalized intensity, yielding a width of w = 5.67·10−3 cm

(corresponding to 1.22 pixels). Thus, the line-spread function for the imaging system

is given by a Lorentzian function with a half-width of 1.22 pixels. The point-spread

function (PSF) of the imaging system is the Abel inversion of the line-spread function

(Jones 1958). In processing the simulation data to compare to the experiments, the

simulation data is convolved with a matrix corresponding to the PSF, and this is

compared to the experimental image data.
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Appendix B

Experimental chemiluminescence

images

Included in this appendix are the complete set of chemiluminescence images acquired

in this work.
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Figure B.1: Air co-flow, central air tube flush.
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Figure B.2: Air co-flow, central air tube raised 3mm.
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Figure B.3: Air co-flow, central air tube raised 6mm.
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Figure B.4: Φ = 0.78 co-flow, central air tube flush.
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Figure B.5: Φ = 0.78 co-flow, central air tube raised 3mm.
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Figure B.6: Φ = 0.78 co-flow, central air tube raised 6mm.
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Figure B.7: Φ = 1.0 co-flow, central air tube flush.
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Figure B.8: Φ = 1.0 co-flow, central air tube raised 3mm.
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Figure B.9: Φ = 1.0 co-flow, central air tube raised 6mm.
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Figure B.10: Φ = 1.2 co-flow, central air tube flush.
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Figure B.11: Φ = 1.2 co-flow, central air tube raised 3mm.
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Figure B.12: Φ = 1.2 co-flow, central air tube raised 6mm.
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Appendix C

Experimental/numerical CH∗

contour comparisons

Included here are all the contour plots comparing experimental and numerical CH∗

emissions in this work, with the central air velocity given in each case. Experimental

contours are plotted with the thin lines. The thin black line is data from the Abel

transform of the left-hand side of the images, and the thin grey line is data from

the right-hand side of the images. Simulations are post-processed to model the CH∗

chemiluminescence emission, and the point-spread function of the imaging system,

and plotted with the thick dashed line.
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Figure C.1: Air co-flow, ucf=18.4 cm/s, air tube flush.

103



    

0.25

 0.5

0.75

   1

1.25

 1.5

 z
 [c

m
]

25.44 cm/s 32.02 cm/s 39.67 cm/s 50.87 cm/s 71.33 cm/s 92.85 cm/s 127.5 cm/s

0 .25 .5 .75
   0

0.25

 0.5

0.75

   1

1.25

 1.5

 z
 [c

m
]

 r [cm]

188.5 cm/s 271.8 cm/s 441.1 cm/s 610.1 cm/s 775.5 cm/s 953.4 cm/s

Figure C.2: Air co-flow, ucf=18.4 cm/s, air tube raised 3mm.

104



    

0.25

 0.5

0.75

   1

1.25

 1.5

 z
 [c

m
]

43.05 cm/s 78.98 cm/s 171.1 cm/s 239.6 cm/s 311.6 cm/s

0 .25 .5 .75
   0

0.25

 0.5

0.75

   1

1.25

 1.5

 z
 [c

m
]

 r [cm]

384.2 cm/s 572.8 cm/s 754.2 cm/s 933.8 cm/s 1110 cm/s

Figure C.3: Air co-flow, ucf=18.4 cm/s, air tube raised 6mm.
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Figure C.4: Φ = 0.78 co-flow, ucf=18.4 cm/s, air tube flush.
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Figure C.5: Φ = 0.78 co-flow, ucf=18.4 cm/s, air tube raised 3mm.
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Figure C.6: Φ = 0.78 co-flow, ucf=18.4 cm/s, air tube raised 6mm.
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Figure C.7: Φ = 1.0 co-flow, ucf=18.4 cm/s, air tube flush.
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Figure C.8: Φ = 1.0 co-flow, ucf=18.4 cm/s, air tube raised 3mm.
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Figure C.9: Φ = 1.0 co-flow, ucf=18.4 cm/s, air tube raised 6mm.

111



    

0.25

 0.5

0.75

   1

1.25

 1.5

1.75

   2

 z
 [c

m
]

36.29 cm/s 41.80 cm/s 48.92 cm/s 57.28 cm/s 64.57 cm/s 71.51 cm/s 80.58 cm/s 89.65 cm/s 111.0 cm/s

0 .25 .5 .75
   0

0.25

 0.5

0.75

   1

1.25

 1.5

1.75

   2

 z
 [c

m
]

 r [cm]

127.9 cm/s 156.9 cm/s 189.3 cm/s 278.2 cm/s 434.0 cm/s 608.3 cm/s 786.2 cm/s 958.7 cm/s

Figure C.10: Φ = 1.2 co-flow, ucf=18.4 cm/s, air tube flush.
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Figure C.11: Φ = 1.2 co-flow, ucf=18.4 cm/s, air tube raised 3mm.
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Figure C.12: Φ = 1.2 co-flow, ucf=18.4 cm/s, air tube raised 6mm.
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Figure C.13: Air co-flow, ucf=23.0 cm/s, air tube flush.
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Figure C.14: Air co-flow, ucf=23.0 cm/s, air tube raised 3mm.
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Figure C.15: Air co-flow, ucf=23.0 cm/s, air tube raised 6mm.
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Figure C.16: Φ = 0.78 co-flow, ucf=23.0 cm/s, air tube flush.
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Figure C.17: Φ = 0.78 co-flow, ucf=23.0 cm/s, air tube raised 3mm.
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Figure C.18: Φ = 0.78 co-flow, ucf=23.0 cm/s, air tube raised 6mm.
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Figure C.19: Φ = 1.0 co-flow, ucf=23.0 cm/s, air tube flush.
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Figure C.20: Φ = 1.0 co-flow, ucf=23.0 cm/s, air tube raised 3mm.
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Figure C.21: Φ = 1.0 co-flow, ucf=23.0 cm/s, air tube raised 6mm.
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Figure C.22: Φ = 1.2 co-flow, ucf=23.0 cm/s, air tube flush.
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Figure C.23: Φ = 1.2 co-flow, ucf=23.0 cm/s, air tube raised 3mm.

125



    

0.25

 0.5

0.75

   1

1.25

 1.5

1.75

   2

2.25

 2.5

2.75

   3

 z
 [c

m
]

47.67 cm/s 65.81 cm/s 96.23 cm/s 112.9 cm/s 126.8 cm/s 150.7 cm/s 173.6 cm/s 213.4 cm/s 247.8 cm/s 306.8 cm/s 379.9 cm/s

Figure C.24: Φ = 1.2 co-flow, ucf=23.0 cm/s, air tube raised 6mm.
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Appendix D

Numerical simulation analysis

D.1 Radial plots of species and temperature

This appendix includes the full selection of radial species and temperature plots for

the Φ = 1.0, and Φ = 1.2 co-flows.

Figures D.1–D.3 show the radial distribution of temperature, CH4, O2, and CO2 at

two different heights, with Φ = 1.0 co-flow and central air tube flush. Characteristics

of these flames are similar to those with the Φ = 0.78 co-flow, but the outer diffusion

flame is very weak, as there is very little oxygen in the co-flow. For uca = 54.61 cm/s,

central fuel and air near the centreline are consumed through the inner flame, leaving

a pocket of fuel and air around r ∼ 0.3 cm. For uca = 145.7 cm/s, central air and

fuel at r ∼ 0.25 cm are consumed through the lifted inner flame with a small pocket

of unburned fuel near the centreline. For uca = 611.9 cm/s, central air and fuel at

r ∼ 0.25 cm again consumed through the lifted inner flame with a small pocket of

unburned fuel, now away from the centreline at r ∼ 0.15 cm.

Figures D.4–D.6 show the radial distribution of temperature, CH4, O2, and CO2

at two different heights, with Φ = 1.0 co-flow and central air tube raised 6mm. For

uca = 105.8 cm/s, the inner flame is attached to the lip of the central air tube and

most of the central fuel is consumed in the inner flame up to z = 1.25 cm. For

uca = 272.3 cm/s, the flame lifts off the central air tube, and shows the characteristic

premixed base and attached diffusion flame. The central fuel and air at r ∼ 0.25 cm

are consumed through the premixed flame, with some remaining fuel at z = 1.25 cm

reacting in the attached diffusion flame. For uca = 446.5 cm/s, the attached diffusion

flame has shortened. Central fuel and air at r ∼ 0.25 cm are again consumed through

the lifted premixed flame, with a small pocket of fuel entrained into the central air

jet at r ∼ 0.2 cm, and a small amount of fuel reacting in the attached diffusion flame.
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Figure D.1: Radial profiles of species (solid: CH4, dashed: O2, dotted: CO2) and tem-
perature (thick grey line) for Φ = 1.0 co-flow, central air tube flush, ucf = 18.4 cm/s,
and uca = 54.61 cm/s. On the right is a contour of temperature (lightest shade of
grey is 400K, increasing by 200K each contour line) and 10% of the maximum CH
mass fraction in white.
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Figure D.2: Radial profiles of species and temperature, and contour plot of tem-
perature and CH for Φ = 1.0 co-flow, central air tube flush, ucf = 18.4 cm/s, and
uca = 145.7 cm/s (legend as in Fig. D.1).
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Figure D.3: Radial profiles of species and temperature, and contour plot of tem-
perature and CH for Φ = 1.0 co-flow, central air tube flush, ucf = 18.4 cm/s, and
uca = 611.9 cm/s (legend as in Fig. D.1).
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Figure D.4: Radial profiles of species and temperature, and contour plot of tempera-
ture and CH for Φ = 1.0 co-flow, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 105.8 cm/s (legend as in Fig. D.1).
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Figure D.5: Radial profiles of species and temperature, and contour plot of tempera-
ture and CH for Φ = 1.0 co-flow, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 272.3 cm/s (legend as in Fig. D.1).
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Figure D.6: Radial profiles of species and temperature, and contour plot of tempera-
ture and CH for Φ = 1.0 co-flow, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 446.5 cm/s (legend as in Fig. D.1).
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Figure D.7: Radial profiles of species and temperature, and contour plot of tem-
perature and CH for Φ = 1.2 co-flow, central air tube flush, ucf = 18.4 cm/s, and
uca = 57.27 cm/s (legend as in Fig. D.1).
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Figure D.8: Radial profiles of species and temperature, and contour plot of tem-
perature and CH for Φ = 1.2 co-flow, central air tube flush, ucf = 18.4 cm/s, and
uca = 127.9 cm/s (legend as in Fig. D.1).
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Figure D.9: Radial profiles of species and temperature, and contour plot of tem-
perature and CH for Φ = 1.2 co-flow, central air tube flush, ucf = 18.4 cm/s, and
uca = 434.0 cm/s (legend as in Fig. D.1).

Figures D.7–D.9 show the radial distribution of temperature, CH4, O2, and CO2 at

two different heights, with Φ = 1.2 co-flow and central air tube flush. Characteristics

of these flames are similar to those with the Φ = 0.78 and Φ = 1.0 co-flow, but the

outer diffusion flame is no longer present, as there is no oxygen in the co-flow. For

uca = 57.27 cm/s, central fuel and air near the centreline are consumed through the

inner flame, leaving a pocket of fuel and air around r ∼ 0.3 cm. For uca = 127.9 cm/s,

central fuel and air at r ∼ 0.2 cm are consumed in the lifted flame, leaving some

unburned fuel entrained into the central air jet near the centreline, and some central

fuel and air reacting in a weak diffusion flame with additional central air at r ∼

0.25 cm. For uca = 434.0 cm/s, central fuel and air at r ∼ 0.2 cm are consumed

through the lifted flame, leaving some unburned fuel entrained into the central air jet

at r ∼ 0.15 cm.

Figures D.10–D.12 show the radial distribution of temperature, CH4, O2, and

CO2 at two different heights, with Φ = 1.2 co-flow and central air tube raised 6mm.

For uca = 109.2 cm/s, the inner flame is attached to the central air tube, and at

z = 1.25 cm there is a broad region of unburned fuel centred at r ∼ 0.5 cm. For

uca = 193.7 cm/s, the flame has lifted off the central air tube, and central fuel and air

at r ∼ 0.25 cm are consumed through the premixed base. There is a small pocket of
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Figure D.10: Radial profiles of species and temperature, and contour plot of temper-
ature and CH for Φ = 1.2 co-flow, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 109.2 cm/s (legend as in Fig. D.1).

fuel entrained into the central air jet at r ∼ 0.15 cm, and the remainder of the central

fuel is reacting in the attached diffusion flame at r ∼ 0.25 cm. For uca = 383.1 cm/s,

the attached diffusion flame is much shorter, and downstream of the premixed flame

is a small pocket of fuel entrained into the central air jet at r ∼ 0.15 cm.
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Figure D.11: Radial profiles of species and temperature, and contour plot of temper-
ature and CH for Φ = 1.2 co-flow, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 193.7 cm/s (legend as in Fig. D.1).
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Figure D.12: Radial profiles of species and temperature, and contour plot of temper-
ature and CH for Φ = 1.2 co-flow, central air tube raised 6mm, ucf = 18.4 cm/s, and
uca = 383.1 cm/s (legend as in Fig. D.1).
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Appendix E

Experiment and simulation matrix

Included in this appendix are tables listing all flames analyzed in this work, and the

flow conditions associated with them.
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Table E.1: Matrix of experimental conditions for air co-flow and flush central air
tube.

exp# sim# ucf [cm/s] uca[cm/s]
936 8.523 17.25
937 8.523 20.81
938 8.523 26.15
939 8.523 32.91
940 8.523 42.87
941 8.523 55.32
942 8.523 65.81
943 8.523 82.18
944 8.523 100.9
945 8.523 133.0
946 8.523 191.9
947 8.523 292.6
948 8.523 464.2
949 8.523 649.2
950 8.523 827.1
951 8.523 1009
952 13.82 32.19
953 13.82 39.13
954 13.82 46.96
955 13.82 57.63
956 13.82 70.26
957 13.82 89.83
958 13.82 115.1
959 13.82 170.9
960 13.82 264.0
961 13.82 441.1
962 13.82 620.8
963 13.82 802.2
964 13.82 983.6
965 13.82 1475
966 40 18.43 37.71
967 51 18.43 45.71
968 53 18.43 54.43
969 54 18.43 62.79
970 55 18.43 74.35
971 56 18.43 89.11
972 57 18.43 138.7

exp# sim# ucf [cm/s] uca[cm/s]
973 58 18.43 227.9
974 59 18.43 321.4
975 60 18.43 506.9
976 61 18.43 686.6
977 62 18.43 864.5
978 63 18.43 958.7
979 18.43 1462
980 220 23.27 49.45
981 221 23.27 57.45
982 222 23.27 64.03
983 223 23.27 71.15
984 224 23.27 80.75
985 225 23.27 94.98
986 226 23.27 124.9
987 227 23.27 190.5
988 228 23.27 254.9
989 229 23.27 325.7
990 230 23.27 412.7
991 231 23.27 603.0
992 232 23.27 777.3
993 233 23.27 962.3
994 23.27 1466
995 27.64 62.61
996 27.64 69.01
997 27.64 76.31
998 27.64 83.78
999 27.64 93.03

1000 27.64 108.1
1001 27.64 126.8
1002 27.64 160.3
1003 27.64 214.3
1004 27.64 288.2
1005 27.64 396.7
1006 27.64 581.6
1007 27.64 759.5
1008 27.64 976.5
1009 27.64 1464

136



Table E.2: Matrix of experimental conditions for air co-flow and central air tube
raised 3mm.

exp# sim# ucf [cm/s] uca[cm/s]
1113 13.82 18.32
1114 13.82 25.61
1115 13.82 32.73
1116 13.82 41.62
1117 13.82 58.16
1118 13.82 92.85
1119 13.82 158.0
1120 13.82 241.6
1121 13.82 425.1
1122 13.82 606.5
1123 13.82 775.5
1124 13.82 949.8
1125 13.82 1133
1126 13.82 1311
1127 13.82 1466
1128 13.82 1676
1129 13.82 1853
1130 116 18.43 25.44
1131 117 18.43 32.02
1132 118 18.43 39.67
1133 119 18.43 50.87
1134 120 18.43 71.33
1135 121 18.43 92.85
1136 122 18.43 127.5
1137 123 18.43 188.5
1138 124 18.43 271.8
1139 125 18.43 441.1
1140 126 18.43 610.1
1141 127 18.43 775.5
1142 128 18.43 953.4
1143 18.43 1327
1144 18.43 1469
1145 18.43 1679
1146 18.43 1859

exp# sim# ucf [cm/s] uca[cm/s]
1148 324 23.04 27.21
1149 325 23.04 34.69
1150 326 23.04 41.98
1151 327 23.04 50.52
1152 328 23.04 64.21
1153 329 23.04 81.47
1154 330 23.04 96.76
1155 331 23.04 117.8
1156 332 23.04 148.0
1157 333 23.04 195.7
1158 334 23.04 297.6
1159 335 23.04 421.6
1160 336 23.04 595.9
1161 337 23.04 777.3
1162 338 23.04 957.0
1163 23.04 1464
1164 23.04 1656
1165 23.04 1839
1166 27.64 25.61
1167 27.64 31.84
1168 27.64 39.13
1169 27.64 46.78
1170 27.64 55.50
1171 27.64 65.46
1172 27.64 74.71
1173 27.64 88.22
1174 27.64 107.1
1175 27.64 131.3
1176 27.64 167.4
1177 27.64 247.8
1178 27.64 421.6
1179 27.64 599.4
1180 27.64 782.6
1181 27.64 948.1
1182 27.64 1466
1183 27.64 1663
1184 27.64 1841
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Table E.3: Matrix of experimental conditions for air co-flow and central air tube
raised 6mm.

exp# sim# ucf [cm/s] uca[cm/s]
1440 208 18.43 15.65
1441 209 18.43 25.61
1442 210 18.43 43.05
1443 211 18.43 78.98
1444 212 18.43 171.1
1445 213 18.43 239.6
1446 214 18.43 311.6
1447 215 18.43 384.2
1448 216 18.43 572.7
1449 217 18.43 754.2
1450 218 18.43 933.8
1451 219 18.43 1110
1452 18.43 1290
1453 18.43 1469
1454 18.43 1645
1455 18.43 1821
1456 389 23.04 27.21
1457 390 23.04 37.35
1458 391 23.04 51.41
1459 392 23.04 82.53
1460 393 23.04 116.5
1461 394 23.04 140.7
1462 395 23.04 155.5
1463 396 23.04 183.9
1464 397 23.04 218.1
1465 398 23.04 273.0

exp# sim# ucf [cm/s] uca[cm/s]
1466 399 23.04 358.1
1467 400 23.04 546.1
1468 401 23.04 748.8
1469 402 23.04 928.5
1470 23.04 1286
1471 23.04 1469
1472 23.04 1647
1473 23.04 1821
1474 27.64 26.15
1475 27.64 36.11
1476 27.64 46.96
1477 27.64 60.30
1478 27.64 78.98
1479 27.64 97.12
1480 27.64 107.8
1481 27.64 124.7
1482 27.64 146.9
1483 27.64 188.7
1484 27.64 247.1
1485 27.64 351.7
1486 27.64 556.7
1487 27.64 754.2
1488 27.64 935.6
1489 27.64 1467
1490 27.64 1645
1491 27.64 1825
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Table E.4: Matrix of experimental conditions for Φ = 0.78 co-flow and flush central
air tube.

exp# sim# ucf [cm/s] uca[cm/s]
1010 8.523 52.47
1011 8.523 60.48
1012 8.523 74.71
1013 8.523 95.70
1014 8.523 125.4
1015 8.523 175.9
1016 8.523 269.7
1017 8.523 446.5
1018 8.523 633.2
1019 8.523 811.1
1020 8.523 989.0
1021 8.523 1467
1022 13.82 32.73
1023 13.82 43.93
1024 13.82 53.90
1025 13.82 62.79
1026 13.82 71.50
1027 13.82 86.98
1028 13.82 115.8
1029 13.82 174.5
1030 13.82 266.1
1031 13.82 437.6
1032 13.82 615.4
1033 13.82 793.3
1034 13.82 967.6
1035 13.82 1467
1036 100 18.43 35.40
1037 101 18.43 41.62
1038 102 18.43 48.20
1039 103 18.43 54.43
1040 104 18.43 64.03
1041 105 18.43 73.64
1042 106 18.43 86.62
1043 107 18.43 108.1
1044 108 18.43 137.7
1045 109 18.43 210.2
1046 110 18.43 314.8

exp# sim# ucf [cm/s] uca[cm/s]
1047 111 18.43 444.7
1048 112 18.43 613.7
1049 113 18.43 800.4
1050 114 18.43 990.8
1051 18.43 1466
1052 18.43 1466
1053 234 23.04 48.91
1054 235 23.04 57.81
1055 236 23.04 66.70
1056 237 23.04 75.60
1057 238 23.04 85.73
1058 239 23.04 94.81
1059 240 23.04 108.3
1060 241 23.04 134.5
1061 242 23.04 193.9
1062 243 23.04 275.7
1063 244 23.04 455.4
1064 245 23.04 627.9
1065 246 23.04 809.3
1066 247 23.04 989.0
1067 23.04 1460
1068 23.04 1466
1069 27.64 80.40
1070 27.64 86.62
1071 27.64 93.38
1072 27.64 102.3
1073 27.64 112.8
1074 27.64 130.6
1075 27.64 166.1
1076 27.64 228.7
1077 27.64 302.9
1078 27.64 428.7
1079 27.64 572.7
1080 27.64 757.7
1081 27.64 958.7
1082 27.64 1469
1083 27.64 1475
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Table E.5: Matrix of experimental conditions for Φ = 0.78 co-flow and central air
tube raised 3mm.

exp# sim# ucf [cm/s] uca[cm/s]
1185 8.523 11.74
1186 8.523 18.14
1187 8.523 25.44
1188 8.523 34.33
1189 8.523 51.05
1190 8.523 151.5
1191 8.523 276.2
1192 8.523 451.8
1193 8.523 633.2
1194 8.523 816.4
1195 8.523 989.0
1196 8.523 1172
1197 8.523 1345
1198 8.523 1485
1199 8.523 1663
1200 8.523 1843
1201 13.82 22.23
1202 13.82 30.42
1203 13.82 42.51
1204 13.82 60.65
1205 13.82 97.65
1206 13.82 122.2
1207 13.82 160.1
1208 13.82 256.5
1209 13.82 366.4
1210 13.82 469.6
1211 13.82 645.7
1212 13.82 823.6
1213 13.82 1001
1214 13.82 1471
1215 13.82 1654
1216 13.82 1834

exp# sim# ucf [cm/s] uca[cm/s]
1217 151 18.43 25.97
1218 152 18.43 33.80
1219 153 18.43 46.78
1220 154 18.43 58.16
1221 155 18.43 73.11
1222 156 18.43 84.13
1223 157 18.43 103.2
1224 158 18.43 138.9
1225 159 18.43 174.3
1226 160 18.43 233.0
1227 161 18.43 326.6
1228 162 18.43 474.9
1229 163 18.43 651.0
1230 164 18.43 828.9
1231 165 18.43 1003
1232 18.43 1475
1233 18.43 1661
1234 18.43 1845
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Table E.5 (cont.): Matrix of experimental conditions for Φ = 0.78 co-flow and central
air tube raised 3mm.

exp# sim# ucf [cm/s] uca[cm/s]
1235 339 23.04 30.24
1236 340 23.04 43.05
1237 341 23.04 51.23
1238 342 23.04 57.10
1239 343 23.04 66.52
1240 344 23.04 77.20
1241 345 23.04 89.11
1242 346 23.04 102.5
1243 347 23.04 124.7
1244 348 23.04 148.0
1245 349 23.04 172.9
1246 350 23.04 209.5
1247 351 23.04 290.3
1248 352 23.04 412.7
1249 353 23.04 588.8
1250 354 23.04 772.0
1251 355 23.04 944.5
1252 23.04 1485
1253 23.04 1660
1254 23.04 1845

exp# sim# ucf [cm/s] uca[cm/s]
1255 27.64 28.10
1256 27.64 36.64
1257 27.64 45.89
1258 27.64 55.50
1259 27.64 64.92
1260 27.64 74.53
1261 27.64 85.02
1262 27.64 95.16
1263 27.64 111.0
1264 27.64 133.0
1265 27.64 164.0
1266 27.64 223.4
1267 27.64 405.5
1268 27.64 585.2
1269 27.64 763.1
1270 27.64 948.1
1271 27.64 1469
1272 27.64 1665
1273 27.64 1836
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Table E.6: Matrix of experimental conditions for Φ = 0.78 co-flow and central air
tube raised 6mm.

exp# sim# ucf [cm/s] uca[cm/s]
1492 13.82 23.12
1493 13.82 38.78
1494 13.82 58.88
1495 13.82 94.81
1496 13.82 128.8
1497 13.82 165.1
1498 13.82 199.2
1499 13.82 239.2
1500 13.82 296.7
1501 13.82 349.7
1502 13.82 435.8
1503 13.82 597.7
1504 13.82 754.2
1505 13.82 937.4
1506 13.82 1466
1507 13.82 1647
1508 13.82 1827
1509 248 18.43 21.34
1510 249 18.43 40.02
1511 250 18.43 57.27
1512 251 18.43 85.91
1513 252 18.43 116.7
1514 253 18.43 150.5
1515 254 18.43 174.5
1516 255 18.43 200.8
1517 256 18.43 240.0
1518 257 18.43 298.6
1519 258 18.43 369.8
1520 259 18.43 450.0
1521 260 18.43 569.2
1522 261 18.43 770.2
1523 262 18.43 940.9
1524 18.43 1466
1525 18.43 1647
1526 18.43 1830

exp# sim# ucf [cm/s] uca[cm/s]
1527 403 23.04 30.42
1528 404 23.04 50.87
1529 405 23.04 80.04
1530 406 23.04 103.3
1531 407 23.04 112.6
1532 408 23.04 128.1
1533 409 23.04 146.6
1534 410 23.04 166.5
1535 411 23.04 205.3
1536 412 23.04 249.9
1537 413 23.04 332.4
1538 414 23.04 412.7
1539 415 23.04 581.6
1540 416 23.04 761.3
1541 417 23.04 944.5
1542 23.04 1475
1543 23.04 1656
1544 23.04 1836
1545 27.64 28.46
1546 27.64 44.29
1547 27.64 57.81
1548 27.64 74.71
1549 27.64 80.04
1550 27.64 88.76
1551 27.64 98.01
1552 27.64 111.3
1553 27.64 128.8
1554 27.64 154.4
1555 27.64 185.2
1556 27.64 228.4
1557 27.64 313.6
1558 27.64 410.9
1559 27.64 594.1
1560 27.64 775.5
1561 27.64 957.0
1562 27.64 1476
1563 27.64 1660
1564 27.64 1837
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Table E.7: Matrix of experimental conditions for Φ = 1.0 co-flow and flush central
air tube.

exp# sim# ucf [cm/s] uca[cm/s]
865 8.639 78.44
866 8.639 120.8
867 8.639 166.3
868 8.639 233.7
869 8.639 405.5
870 8.639 594.1
871 8.639 784.4
872 8.639 969.4
873 8.639 1464
849 13.94 44.65
850 13.94 51.76
851 13.94 58.70
852 13.94 67.59
853 13.94 76.66
854 13.94 93.03
855 13.94 118.8
856 13.94 156.7
857 13.94 206.3
858 13.94 319.6
859 13.94 492.7
860 13.94 668.8
861 13.94 828.9
862 13.94 973.0
863 13.94 1464
832 84 18.43 33.08
833 85 18.43 40.55
834 86 18.43 47.85
835 87 18.43 54.61
836 88 18.43 63.14
837 89 18.43 72.22
838 90 18.43 82.53
839 91 18.43 96.05
840 92 18.43 116.0
841 93 18.43 145.7
842 94 18.43 183.4
843 95 18.43 275.3
844 96 18.43 410.9

exp# sim# ucf [cm/s] uca[cm/s]
845 97 18.43 611.9
846 98 18.43 793.3
847 99 18.43 974.7
848 18.43 1459
814 290 23.27 34.15
815 291 23.27 41.98
816 292 23.27 47.85
817 293 23.27 53.18
818 294 23.27 60.57
819 295 23.27 67.06
820 296 23.27 74.17
821 297 23.27 84.85
822 298 23.27 100.9
823 299 23.27 121.0
824 300 23.27 156.9
825 301 23.27 198.2
826 302 23.27 285.3
827 303 23.27 425.1
828 304 23.27 606.5
829 305 23.27 784.4
830 306 23.27 955.2
831 23.27 1457

1084 27.64 62.43
1085 27.64 72.04
1086 27.64 79.51
1087 27.64 88.76
1088 27.64 99.25
1089 27.64 112.2
1090 27.64 135.2
1091 27.64 163.1
1092 27.64 215.2
1093 27.64 296.0
1094 27.64 437.6
1095 27.64 601.2
1096 27.64 793.3
1097 27.64 958.7
1098 27.64 1467
1099 27.64 1473
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Table E.8: Matrix of experimental conditions for Φ = 1.0 co-flow and central air tube
raised 3mm.

exp# sim# ucf [cm/s] uca[cm/s]
1274 13.82 25.26
1275 13.82 33.97
1276 13.82 43.05
1277 13.82 60.83
1278 13.82 82.36
1279 13.82 106.9
1280 13.82 141.6
1281 13.82 194.6
1282 13.82 279.4
1283 13.82 441.1
1284 13.82 615.4
1285 13.82 796.9
1286 13.82 944.5
1287 13.82 1494
1288 13.82 1676
1289 13.82 1855
1290 172 18.43 26.50
1291 173 18.43 36.11
1292 174 18.43 45.54
1293 175 18.43 57.81
1294 176 18.43 80.93
1295 177 18.43 95.34
1296 178 18.43 107.8
1297 179 18.43 125.9
1298 180 18.43 152.4
1299 181 18.43 180.0
1300 182 18.43 224.3
1301 183 18.43 289.6
1302 184 18.43 414.4
1303 185 18.43 595.9
1304 186 18.43 775.5
1305 187 18.43 957.0
1306 18.43 1491
1307 18.43 1668
1308 18.43 1843

exp# sim# ucf [cm/s] uca[cm/s]
1309 356 23.04 28.28
1310 357 23.04 37.89
1311 358 23.04 47.31
1312 359 23.04 57.81
1313 360 23.04 73.28
1314 361 23.04 84.67
1315 362 23.04 101.4
1316 363 23.04 127.4
1317 364 23.04 148.3
1318 365 23.04 189.6
1319 366 23.04 273.2
1320 367 23.04 434.0
1321 368 23.04 610.1
1322 369 23.04 782.6
1323 370 23.04 958.7
1324 23.04 1466
1325 23.04 1654
1326 23.04 1837
1327 27.64 34.15
1328 27.64 45.00
1329 27.64 53.36
1330 27.64 63.86
1331 27.64 72.75
1332 27.64 82.71
1333 27.64 94.09
1334 27.64 115.1
1335 27.64 138.7
1336 27.64 182.0
1337 27.64 217.7
1338 27.64 328.9
1339 27.64 439.3
1340 27.64 604.8
1341 27.64 789.8
1342 27.64 949.8
1343 27.64 1469
1344 27.64 1645
1345 27.64 1832

144



Table E.9: Matrix of experimental conditions for Φ = 1.0 co-flow and central air tube
raised 6mm.

exp# sim# ucf [cm/s] uca[cm/s]
1565 13.82 24.19
1566 13.82 39.31
1567 13.82 62.26
1568 13.82 90.00
1569 13.82 127.9
1570 13.82 187.1
1571 13.82 277.5
1572 13.82 368.2
1573 13.82 441.1
1574 13.82 620.8
1575 13.82 804.0
1576 13.82 971.2
1577 13.82 1464
1578 13.82 1649
1579 13.82 1830
1580 263 18.43 26.15
1581 264 18.43 40.91
1582 265 18.43 70.44
1583 266 18.43 105.8
1584 267 18.43 142.1
1585 268 18.43 187.8
1586 269 18.43 225.2
1587 270 18.43 272.3
1588 271 18.43 347.2
1589 272 18.43 446.5
1590 273 18.43 629.7
1591 274 18.43 805.8
1592 275 18.43 971.2
1593 18.43 1469
1594 18.43 1649
1595 18.43 1832

exp# sim# ucf [cm/s] uca[cm/s]
1596 418 23.04 27.04
1597 419 23.04 39.67
1598 420 23.04 54.25
1599 421 23.04 72.75
1600 422 23.04 108.5
1601 423 23.04 129.3
1602 424 23.04 153.9
1603 425 23.04 186.4
1604 426 23.04 231.1
1605 427 23.04 303.3
1606 428 23.04 405.5
1607 429 23.04 608.3
1608 430 23.04 793.3
1609 431 23.04 969.4
1610 23.04 1478
1611 23.04 1656
1612 23.04 1835
1613 27.64 23.83
1614 27.64 36.46
1615 27.64 47.85
1616 27.64 74.35
1617 27.64 92.85
1618 27.64 108.1
1619 27.64 124.7
1620 27.64 143.7
1621 27.64 171.3
1622 27.64 218.2
1623 27.64 288.2
1624 27.64 383.1
1625 27.64 579.9
1626 27.64 784.4
1627 27.64 969.4
1628 27.64 1471
1629 27.64 1652
1630 27.64 1836
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Table E.10: Matrix of experimental conditions for Φ = 1.2 co-flow and flush central
air tube.

exp# sim# ucf [cm/s] uca[cm/s]
874 8.523 67.41
875 8.523 85.73
876 8.523 102.3
877 8.523 132.5
878 8.523 190.1
879 8.523 275.9
880 8.523 441.1
881 8.523 627.9
882 8.523 820.0
883 8.523 999.6
884 8.523 1498
885 13.82 44.47
886 13.82 53.34
887 13.82 60.65
888 13.82 71.33
889 13.82 80.58
890 13.82 93.03
891 13.82 112.1
892 13.82 138.9
893 13.82 186.9
894 13.82 285.5
895 13.82 467.8
896 13.82 656.4
897 13.82 836.0
898 13.82 953.4
899 13.82 1451
900 129 18.43 36.29
901 130 18.43 41.80
902 131 18.43 48.91
903 132 18.43 57.27
904 133 18.43 64.57
905 134 18.43 71.50
906 135 18.43 80.58
907 136 18.43 89.65
908 137 18.43 111.0
909 138 18.43 127.9
910 139 18.43 156.9

exp# sim# ucf [cm/s] uca[cm/s]
911 140 18.43 189.3
912 141 18.43 278.2
913 142 18.43 434.0
914 143 18.43 608.3
915 144 18.43 786.2
916 145 18.43 958.7
917 18.43 1457
918 307 23.27 37.53
919 308 23.27 44.65
920 309 23.27 51.76
921 310 23.27 58.7
922 311 23.27 66.52
923 312 23.27 73.46
924 313 23.27 80.22
925 314 23.27 90.00
926 315 23.27 102.3
927 316 23.27 123.3
928 317 23.27 144.1
929 318 23.27 206.3
930 319 23.27 291.0
931 320 23.27 421.6
932 321 23.27 595.9
933 322 23.27 773.7
934 323 23.27 951.6
935 23.27 1462

1100 27.64 112.1
1101 27.64 119.9
1102 27.64 134.5
1103 27.64 151.4
1104 27.64 177.0
1105 27.64 246.2
1106 27.64 321.6
1107 27.64 442.9
1108 27.64 613.7
1109 27.64 795.1
1110 27.64 980.1
1111 27.64 1466
1112 27.64 1467
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Table E.11: Matrix of experimental conditions for Φ = 1.2 co-flow and central air
tube raised 3mm.

exp# sim# ucf [cm/s] uca[cm/s]
1346 8.523 14.94
1347 8.523 27.75
1348 8.523 47.31
1349 8.523 83.60
1350 8.523 101.4
1351 8.523 121.0
1352 8.523 157.6
1353 8.523 206.5
1354 8.523 289.0
1355 8.523 389.5
1356 8.523 535.4
1357 8.523 652.8
1358 8.523 788.0
1359 8.523 965.8
1360 8.523 1466
1361 8.523 1651
1362 8.523 1829
1363 13.82 29.17
1364 13.82 43.22
1365 13.82 59.41
1366 13.82 71.33
1367 13.82 89.83
1368 13.82 106.0
1369 13.82 123.1
1370 13.82 144.1
1371 13.82 171.1
1372 13.82 203.5
1373 13.82 263.4
1374 13.82 357.5
1375 13.82 535.4
1376 13.82 748.8
1377 13.82 944.5
1378 13.82 1471
1379 13.82 1658
1380 13.82 1836

exp# sim# ucf [cm/s] uca[cm/s]
1381 188 18.43 24.01
1382 189 18.43 43.22
1383 190 18.43 58.34
1384 191 18.43 71.15
1385 192 18.43 85.91
1386 193 18.43 101.4
1387 194 18.43 117.6
1388 195 18.43 135.0
1389 196 18.43 154.0
1390 197 18.43 181.4
1391 198 18.43 210.8
1392 199 18.43 267.9
1393 200 18.43 358.8
1394 201 18.43 569.2
1395 202 18.43 754.2
1396 203 18.43 933.8
1397 18.43 1469
1398 18.43 1651
1399 18.43 1830
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Table E.11 (cont.): Matrix of experimental conditions for Φ = 1.2 co-flow and central
air tube raised 3mm.

exp# sim# ucf [cm/s] uca[cm/s]
1400 371 23.04 30.59
1401 372 23.04 40.73
1402 373 23.04 48.56
1403 374 23.04 56.03
1404 375 23.04 64.03
1405 376 23.04 76.49
1406 377 23.04 90.72
1407 378 23.04 105.5
1408 379 23.04 118.1
1409 380 23.04 140.7
1410 381 23.04 167.6
1411 382 23.04 194.4
1412 383 23.04 239.6
1413 384 23.04 338.0
1414 385 23.04 432.2
1415 386 23.04 608.3
1415 386 23.04 608.3
1416 387 23.04 784.4
1417 388 23.04 958.7
1418 23.04 1473
1419 23.04 1651
1420 23.04 1836

exp# sim# ucf [cm/s] uca[cm/s]
1421 27.64 48.56
1422 27.64 57.81
1423 27.64 68.30
1424 27.64 76.66
1425 27.64 88.94
1426 27.64 103.0
1427 27.64 118.1
1428 27.64 133.0
1429 27.64 152.4
1430 27.64 185.7
1431 27.64 230.9
1432 27.64 324.3
1433 27.64 430.5
1434 27.64 601.2
1435 27.64 777.3
1436 27.64 932.1
1437 27.64 1464
1438 27.64 1656
1439 27.64 1830
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Table E.12: Matrix of experimental conditions for Φ = 1.2 co-flow and central air
tube raised 6mm.

exp# sim# ucf [cm/s] uca[cm/s]
1631 8.523 19.57
1632 8.523 35.04
1633 8.523 50.16
1634 8.523 67.95
1635 8.523 85.91
1636 8.523 138.4
1637 8.523 277.1
1638 8.523 457.1
1639 8.523 636.8
1640 8.523 814.7
1641 8.523 992.5
1642 8.523 1466
1643 8.523 1651
1644 8.523 1834
1645 13.82 18.50
1646 13.82 38.42
1647 13.82 66.52
1648 13.82 94.27
1649 13.82 121.8
1650 13.82 190.0
1651 13.82 285.0
1652 13.82 343.3
1653 13.82 423.3
1654 13.82 603.0
1655 13.82 796.9
1656 13.82 980.1
1657 13.82 1469
1658 13.82 1649
1659 13.82 1836

exp# sim# ucf [cm/s] uca[cm/s]
1660 276 18.43 34.33
1661 277 18.43 57.99
1662 278 18.43 82.36
1663 279 18.43 109.2
1664 280 18.43 134.5
1665 281 18.43 159.2
1666 282 18.43 174.1
1667 283 18.43 193.7
1668 284 18.43 236.4
1669 285 18.43 299.2
1670 286 18.43 383.1
1671 287 18.43 556.7
1672 288 18.43 768.4
1673 289 18.43 967.6
1674 18.43 1467
1675 18.43 1652
1676 18.43 1820
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Table E.12 (cont.): Matrix of experimental conditions for Φ = 1.2 co-flow and central
air tube raised 6mm.

exp# sim# ucf [cm/s] uca[cm/s]
1677 432 23.04 27.93
1678 433 23.04 47.67
1679 434 23.04 65.81
1680 435 23.04 96.23
1681 436 23.04 112.9
1682 437 23.04 126.8
1683 438 23.04 150.7
1684 439 23.04 173.6
1685 440 23.04 213.4
1686 441 23.04 247.8
1687 442 23.04 306.8
1688 443 23.04 379.9
1689 444 23.04 585.2
1690 445 23.04 786.2
1691 446 23.04 973.0
1692 23.04 1466
1693 23.04 1652
1694 23.04 1843

exp# sim# ucf [cm/s] uca[cm/s]
1695 27.64 26.15
1696 27.64 38.60
1697 27.64 54.78
1698 27.64 72.57
1699 27.64 81.82
1700 27.64 94.98
1701 27.64 110.6
1702 27.64 135.2
1703 27.64 166.8
1704 27.64 210.6
1705 27.64 248.0
1706 27.64 299.2
1707 27.64 387.8
1708 27.64 492.7
1709 27.64 633.2
1710 27.64 796.9
1711 27.64 973.0
1712 27.64 1467
1713 27.64 1649
1714 27.64 1830
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