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ABSTRACT 

Advances in the field of psychoacoustics have resulted in the development of 

more accurate models for the calculation of loudness as well as improved contours 

representing loudness perception. This study was undertaken to experimentally determine 

a "best use" stationary loudness model among the standardized methods available. To 

accomplish this, an investigative study was performed using pure tones at varying 

frequencies to identify the strengths and weaknesses of these loudness algorithms. The 

results of the investigation showed that with the recent update to the reference equal 

loudness contours, several of the models have become outdated in their performance. The 

recently revised ANSI S3.4:2007 model was shown to have the best correlation to the 

reference curves based on experimental measurements and was also the easiest to 

implement. It is recommended that the ANSI S3.4:2007 loudness model be used as the 

present day standard for calculation of stationary loudness. 
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I. INTRODUCTION 

Efforts by industry to continuously develop and improve the quality of their 

products have produced many important findings which have influenced our everyday 

life. In order to predict customer satisfaction, certain intrinsic quantities, including noise, 

have been identified to indicate either the desirable or undesirable aspects of a product. In 

other words, the quietest product is not necessarily always the best product. For this, the 

use of sound quality metrics can play a major role in determining which acoustic cues are 

the most desirable to a consumer. For example, when a consumer uses a familiar device, 

there is an expectation of some feedback when an action is performed such as the sound 

made from the closing of a car door or the response of an automobile when the 

accelerator pedal is depressed. The appropriate sound can have the effect of portraying 

the quality of the product while reassuring the customer that it is functioning properly. 

This feedback is essential to the product image and can therefore influence the purchase 

decision of a potential buyer. Various sound characteristics have been identified which 

are used to predict customer approval. Identifiers, known collectively as the sound quality 

indicators, are derived primarily through the research and observations within an area 

referred to as psychoacoustics. 

The definition of a pleasant sound has changed slightly over the years. As the 

listening conditions and expectation levels change, the requirements for product 

developers change as well. Analyzing this phenomenon, psychoacoustics is the branch of 

science dedicated to understanding the human response to sound. In other words, it 

studies how well human beings perceive sound and what characteristics or trends 
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influence this perception. Subjective tests are conducted to identify pleasant or unpleasant 

aspects of a particular noise source, where jury testing may be used as a way to determine 

which attributes consumers find more acceptable. Here, people may be placed into an 

anechoic environment and asked to classify noise samples while identifying the specific 

'pleasant' or 'unpleasant' acoustic cues. Such studies have identified several 

characteristics that are subconsciously used to rate and compare individual differences 

between sounds. Mathematical models or metrics have since been generated to 

approximate this response, the most important of which is the perception of loudness; a 

quantity used as an input to most other sound quality models. Due to its importance, 

loudness is the target focus of this investigation. 

The complex relationship between the intensity of a sound level and its frequency 

content is the result of the non-linear response of the human ear. This makes the 

modelling of acoustical characteristics difficult; often resulting in years of research 

devoted to a single descriptor. Loudness is a psychoacoustic model relating to the 

perceived intensity of a source. As a subjective quantity, the determination of loudness 

has been an important research topic in acoustics since the 1930's. For two tones with the 

same sound pressure level, the perceived loudness can vary markedly depending on the 

spectral content. In some instances time dependence also plays an important role as the 

loudness calculation procedure varies depending on the temporal characteristics of the 

source. 

Stationary sound sources can be categorized as having signals that do not vary 

with respect to time; signals such as pure tones and random noise sources fall into this 

category, remaining essentially constant. Alternatively, samples of speech or music are 
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classified as time-varying or non-stationary signals, they are essentially unpredictable. As 

a result, time-varying signals are generally much more difficult to analyze as other 

acoustic phenomena come into effect which also need to be considered. In regard to the 

complexity of this loudness modelling, fundamental concepts relating to the calculations 

of loudness are identified in Chapter 3. 

To date, several stationary loudness models have been developed and accepted for 

different levels of standardization. The most commonly used models include standards 

developed by organizations around the world including the International Organization for 

Standardization (ISO), the German Deutsches Institut fur Normung e.V. (DIN), and the 

American National Standards Institute (ANSI). A potential problem exists though where 

these various standardizing agencies have each accepted a different method for 

calculating this same acoustic metric. The models vary not only in age of acceptance, but 

also in their calculation approaches and assumptions. If one were to calculate loudness 

using one model, the levels recorded cannot be adequately compared against those of 

another, even though the resultant value would have the same units and meaning. The 

multiple standardized programs available may be a result of reluctance to change or 

perhaps due to political disputes. A bias appears to be influencing the selection of a 

loudness model based on where the model was created and the nationality of the 

developers; regardless of the models performance. To correct this dilemma, it is 

suggested that one model should be identified as being the best-practice metric to be used 

in place of all others. This would eliminate confusion and permit exact loudness 

comparisons for a variety of products from all industries; thus making sound quality 

concerns easier to solve. 

3 



The objective of this study is to investigate and critically compare the various 

stationary loudness metrics that are presently available. From this comparison one 

calculation method will be identified as the best model for use in industry. The 

comparison will include considerations as to each models ease of use, experimental 

performance and any apparent limitations. By comparing the models this way it is the 

intention of the author to provide an unbiased opinion as to which model is most 

appropriate. In order to examine the performance, each model will be directly compared 

to a set of reference curves as defined by the ISO 226:2003 Equal Loudness Contours. 

The ISO 226 standard will serve as a benchmark set of data as it is based on a vast 

amount of auditory experimental research related to the perception of stationary loudness. 

It will be assumed that, as the ISO 226:2003 document is based on recent experimental 

data; any calculation model for the perception of loudness should closely correlate to this 

set of data as it serves as the target results for performance. This investigation will use a 

wide variety of experimental data including the collection of pure tones using both a 

direct feed approach and samples collected using a semi-anechoic room. 

Once meaningful results are obtained regarding the stationary models, the next 

goal of the project is to perform a comparison of the non-stationary loudness metrics on 

the same stationary signals investigated above. As the non-stationary loudness metrics 

relate back to concepts from the stationary models, the calculated results determined from 

this investigation should theoretically correlate well with the stationary loudness 

performance. 

Realistically, it is expected to have some discrepancies between the stationary and 

non-stationary models developed by the same authors. This will most likely be due to 

4 



differences associated with the model creation date and the complexities of temporal 

signal analysis. This investigation will study the degree of such variances and comment 

as to whether the performance changes were improvements on the stationary model 

procedures or otherwise. 

Given the approach outlined above, it is the primary purpose of this study to 

provide a meaningful comparison to the acoustics community. By conducting a thorough 

experimental analysis of the various loudness models, as well as a complete literature 

review, this project will ensure originality and provide significant insight into the 

available methods for the analysis of stationary noise signals. This will be done using 

both the stationary and non-stationary loudness metrics available through experimental 

testing. 
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II. LITERATURE SURVEY 

Prior to the experimental investigation, a review of the available literature was 

conducted to ensure that no previous study had attempted a loudness model comparison 

of this magnitude. No existing studies were found which compared all of the existing 

loudness models; neither against each other nor against the newly updated equal loudness 

contours of ISO 226:2003. Therefore, no decisions were found in the literature which 

concluded on a best use loudness model. 

A great deal of research does exist for the study of loudness and the resulting 

equal loudness contours. This research is important to this study as knowledge relating to 

an understanding of psychoacoustics and its fundamentals is necessary prior to 

comparisons of different loudness approaches. The characteristics and trends of loudness 

will be compared through the results of several published papers on the subject. In order 

to understand the calculations and procedures for loudness, a brief introduction to what 

loudness is will first be included with an in-depth description of the underlying theories 

in the following chapter. 

2.1 Definition of Loudness 

Loudness is a psychoacoustic descriptor relating to the perceived intensity 

of a sound source. While it is a subjective quantity, a great deal of research going back to 

as early as the 1920's has been devoted to quantifying this important characteristic of 

sound. As a result, one of the first documented breakthroughs for the analysis of loudness 

was in the work of Fletcher and Munson's "Loudness, Its Definition, and Measurement." 

[15] This work performed at the Bell Telephone laboratories revolutionized the 
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measurement of noise using telephone receivers and a variety of subjective tests. The end 

result was a detailed description of loudness and the trends present in the human hearing 

spectrum. 

The actual sensation describing the magnitude of a sound is related to the density 

and location of nerve endings excited within the ear at one time. However, this sensation 

can vary from person to person and depend greatly on the conditions associated with the 

excitation. As such, it is important to both define the intensity of the perception, and to 

take into consideration other factors including the physical composition of the sound and 

the conditions surrounding the listener. [15] The perception of loudness depends not only 

on the level of the intensity (relative to a reference value of 10"16 Watts per square 

centimetre), but also on the frequency content of the signal and the manner in which the 

signal was presented. The human ear is more sensitive to higher frequency ranges around 

1 kHz than to low frequency content below 100 Hz. This is thought to most likely be an 

evolutionary trait as the majority of speech signals lie in the higher frequency areas of the 

hearing spectrum. While low frequency noise is still perceptible down to approximately 

20 Hz, pure tones in this range must have very high amplitudes in order to be just 

audible. 

In the application of experimental acoustics, a variety of testing environments can 

be used for the presentation of the source signal to a listener. The most common 

controlled environments include free-field, diffuse-field or the presentation of the signal 

through headphones. A free-field application refers to an environment free of any 

obstructions within the sound field which may influence the sound propagation from the 

source to the receptor. This environment essentially has zero reflections associated with 
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the signal and is therefore an ideal testing environment for directivity analysis. A diffuse-

field on the other hand is an environment in which sound energy is incident from all 

directions with equal intensities. [48] Thus a measurement may be made anywhere in a 

diffuse-field environment and would result in the same measured sound pressure level; a 

useful tool for determining the sound power level of a source. Both listening conditions 

serve unique purposes in acoustical experimentation and are often used in the research 

and development industry. Listening via headphones is a commonly used method for jury 

testing. Although the product source is not usually present for the jury experiment, the 

use of headphones allows the listener to quickly switch between varying product sounds 

and removes the unwanted effects associated with poor acoustic memory. For loudness 

measurements, the most common setting is the free-field with frontal incidence. In this 

case, the source is placed directly in front of the receiver (or listener), which is directly 

facing the source. 

In order to quantify loudness over the frequency spectrum, Fletcher and Munson 

chose a reference tone of 1 kHz. [15] They chose this frequency based on the several 

considerations including the observation that a 1 kHz was easily defined and allows for 

easier mathematical computations, reducing computational time. At 1 kHz, the audible 

spectrum also has a larger audible range than other frequencies, measured from the 

threshold of hearing up to the threshold of pain. [15] Based on this selection, the 1 kHz 

tone has subsequently remained the reference frequency value for loudness since. As a 

result, the loudness level (unit phons) of a signal is numerically equivalent to the sound 

pressure level (dB) of an equally loud reference tone at 1 kHz. This equal loudness 

definition was the basis for the development of the equal loudness contours. [15] 
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2.2 Development of the Equal Loudness Contours 

As an important tool for the understanding of the limits for the human 

auditory system, the equal loudness contours represent an important descriptor for the 

perception of loudness. 

In 1933 Fletcher and Munson developed one of the first studies to map a set of 

contours relating to the sensation of equal loudness in a free-field. Continuing on the 

work started by Kingsbury in 1927, Fletcher and Munson conducted experiments 

deriving loudness levels over the complete practical auditory range. [15, 28] Resulting 

from this work, Figure 2.1 is the first combined set of the contours developed, the trends 

of which provide extensive insight into the strengths and weaknesses of auditory 

perception. A contour of equal loudness can be described as a group of equally loud data 

points which vary in both frequency and sound pressure level. Each individual contour 

line is referred to by the corresponding sound pressure level value at the corresponding 1 

kHz center frequency tone. From the definition of loudness above, it is at this point where 

the loudness level (in phons) and sound pressure level (in dB) are said to be equal. For 

the experiments, the authors used telephone receivers to introduce the various intensity 

levels to the subjects. As this was not an ideal free-field environment, calibration factors 

were obtained at each frequency to correct for the receiver playback. These corrections 

values were combined to form a calibration curve or transfer function which was used for 

adjusting the results. The added correction could have led to a potential error source in 

the experiment; had the experimenters had access to free-field conditions in which to 

present the pure tones, the correction factors would not have been necessary. 

Unfortunately the technology was not available at the time of this experiment, but the 

results obtained were nevertheless an important foundation for the research to follow. 
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Figure 2.1 - Fletcher's 1933 Equal Loudness Contours [15] 

The work by Fletcher and Munson was followed by several others, including 

Churcher and King in 1937 and soon after by Zwicker and Feldtkeller in 1955. [24, 57] 

Although each of these data sets portrayed experimental contours of equal loudness, 

Robinson and Dadson identified the fact that the previous investigations displayed 

considerable discrepancies when compared against each other. As a result, a more 

extensive investigation was carried out in 1956 by Robinson and Dadson at the National 

Physical Laboratory which would later be adopted as the first international standard for 

equal loudness contours. [37] The primary target of the project was to provide a 

comprehensive set of equal loudness contours which would produce consistent results 

correcting the previous discrepancies. The new study included a threshold for loudness 

and loudness values for sound pressure levels up to 130 dB. For completeness the 

frequency range for the experiment extended from 25 Hz up to 15 kHz. [37] As a result 
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of the extensive nature of this document, significant portions were used directly in the 

formulation of the first standardized set of equal loudness contours given in ISO/R 

226:1961. 

The ISO standardized equal loudness contours originally accepted as ISO 226 

have undergone several revisions to permit newer findings and corrections. The first 

revision in 1987 did not contain any records as to what changed between the 1961 

version and the latter. As a copy of the original document was not available, the specific 

differences cannot be discussed here. The 1987 revision of the standard (ISO 226:1987) 

provides the equal loudness contours for an ontologically normal person between the ages 

of 18 and 30 and is intended for free-field listening conditions with binaural perception. 

[23] Within the standard, equations were derived to calculate the loudness level of an 

independent sound pressure level for each of the preferred third-octave frequencies from 

20 Hz up to and including 12.5 kHz. In order to describe the contours graphically, the 

standard included a table of parameters as well as Equation (1) to generate the respective 

loudness levels. To use the equation, a sound pressure level (L/) given at a particular 

frequency (/) is inserted into the formula, while the variables from the built-in table, a/, b/, 

and Tf, are taken corresponding to the desired frequency value. Given these coefficients, 

a loudness level (LN) for any desired SPL can be calculated. [23] This model is only 

applicable up to 120 dB for frequencies below 1 kHz and 100 dB below 12.5 kHz. While 

not known for certain, this limit is most likely due to the physical limitations of both the 

pain threshold and the hazards present when dealing with SPLs above this amplitude; 

preventing such information from being collected. 
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Lw = 4.2 + 
l+bf(Lf-Tf) (1) 
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Figure 2.2 - Normal equal-Ioudness contours for pure tones. [23] 

The resulting plots from this equation is given in Figure 2.2 as the equal loudness 

contours for binaural free-field listening and frontal incidence; reproduced from ISO 

226:1987. [23] If compared to the contours from Fletcher and Munson (Figure 2.1), one 

can immediately see the differences between the two. Trends in the newer contours vary 

smoothly across the frequency spectrum; consistently maintaining the shape of the 

Minimum Audible Field (MAF) curve indicated by the dashed line. While the contours of 

Fletcher and Munson's rendition appear to bunch tighter together in the lower loudness 

levels, indicating an extreme sensitivity to loudness at low frequencies. 
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The contours derived by Robinson and Dadson do not apply directly to all types 

of listening conditions. A diffuse-field measurement for example would have contours 

exhibiting slightly different trends from those described in Figure 2.2. Therefore, the 

1987 version of the ISO 226 document included the considerations for conversion to a 

diffuse-field approximation as presented in the since-withdrawn ISO 454 standard. This 

addition, given as Annex C, gives the document a wider range of applicability as a useful 

reference for the user. 

As knowledge in the acoustic community progressed, an update to the ISO 

226:1987 contours was considered to be necessary. Shortly after the release of the 1987 

contours, Fasti and Zwicker noted discrepancies between the contours of the standard and 

their own findings. These results were confirmed in a compilation study produced by 

Suzuki and Takeshima indicating the research to-date concerning the equal loudness 

contours. Looking at work from various investigations as well as their own, Suzuki and 

Takeshima's study confirmed that different trends were in-fact present in the frequencies 

below 800 Hz. [47] The new investigations showed that the values of Robinson and 

Dadson's 1956 contours were lower than the present results indicated; differing as much 

as eight decibels at specific frequencies. Suzuki and Takeshima's study clearly illustrates 

this separation (reproduced in Figure 2.3), where Robinson and Dadson's standardized 

40 phon contour (solid line) is plotted against the more recent investigations (see legend 

in Figure 2.3). The separation below 800 Hz is quite large indicating the need for a 

revision. Based on their findings, Suzuki and Takeshima used the more recent collection 

of data to help derive a new set of equal loudness contours. The authors began creating 

their own by first analyzing the threshold values from each study and generating a best-fit 
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threshold function. As was done in Fletcher and Munson's work, they hypothesized that 

the equal loudness contours should be smooth and parallel to the threshold function. 

Likewise this served as starting curve which Suzuki and Takeshima based their new 

equal loudness contours from. [15,47] 
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Figure 2.3 - 40 Phon Comparison [47] 

From Equation (2), the equal loudness curves can once again be derived using 

the 1 kHz reference value as a contour identifier and a given reference frequency's sound 

pressure level (pr). The equation produces the sound pressure level (p/) in dB at each 

centre frequency using the respective frequency dependant coefficients ' a / and 'U/ 

derived by the authors. 

P2/ = ^ { ^ 2 a / - ^ 2 a / ) + ((//^)2a/}Va/ [47] (2) 
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To ensure that the contours extend smoothly with adjacent shapes, the coefficient 

values were generated at each centre frequency and smoothed under the assumption that 

the coefficients "do not change abruptly as a function of frequency." [47] This created a 

loudness function yielding excellent results when compared to the recent loudness 

studies. The results derived by these authors performed so well that they were used 

directly to derive the standardized equations stated in the updated ISO 226:2003, (see 

Figure 2.4). [24] 
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Figure 2.4 - ISO 226:2003 Equal Loudness Contours [24] 

The internationally accepted ISO 226:2003 is the most recent update to the 

standard entitled "Acoustics - Normal equal-loudness level contours." [24] With 

improvements to the calculation process, the update introduces a set of two equations for 
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deriving the normal equal-loudness contours as reproduced in Equation (3) and 

Equation (4). From the formulae, a sound pressure level (Lp) at a given centre frequency 

(/) may be determined for any desired loudness level (LN). As in the previous update to 

the standard, frequency specific coefficients can be taken from an included table which 

can be inserted directly into the equations below. The three coefficients used in this case 

are: the exponent for loudness perception (cif), the threshold of hearing (Tf) and the 

magnitude of the linear transfer function (Lu); normalized at 1 kHz. 

Lp = (j-\ogAf) dB-Lv + 94 dB [24]... (3) 

Af = 4.47 x io-3(100025Z"v - 1.14) + 0.4 x 10 (^-J «/ 
[24] ... (4) 

The new set of equal loudness contours may then be plotted as in Figure 2.4. This 

data set shows a steeper slope when compared to the previous standard, and as a result, 

matches appropriately to the research compilation of Suzuki and Takeshima seen in 

Figure 2.3. [47] It is important to point out that in this new variation, there is a more 

pronounced 'bump' around 1 kHz which the previous standards did not possess. Also, 

unlike the previous document, there is no mention of the equal loudness contours for a 

diffuse sound field; most likely due to the fact that all of the new studies mentioned 

above were focused on free-field perception. While this area of psychoacoustics has 

generated a lot of scientific findings, diffuse-field investigations are not as numerous. 

The maximum levels available have also been left out. The new contours do not 

extend to loudness levels higher than 100 phons while the previous 1987 standard 

contained equal loudness contours up to and including 110 phons. Sound pressure levels 

16 



exceeding 100 dB are nearing the boundary for discomfort and damage risk. This coupled 

with a greater emphasis on what is ethical for jury testing and experimentation, it is no 

surprise that recent studies did not include such elevated levels. Given that the ISO 

226:2003 standard was the most recent update to the equal loudness contours at the time 

this research was undertaken, it serves as the best known reference against which to 

compare any newly developed models. Therefore, it will remain the focus of all 

experimental comparisons and acting as a target set of measured or 'real' values to 

achieve. 

2.3 Loudness Metrics 
There have been many prediction methods for the calculation of loudness 

developed over the course of the last few decades. With the experimental data of the ISO 

226 describing the perception of stationary loudness exactly, several methods have been 

developed to predict this phenomenon for everyday signals through calculations; however 

few of the models developed have reach the level of a standardized calculation document. 

For this comparative study, three stationary loudness prediction models have been 

selected. These include the international standard ISO 532B and the German DIN 45631; 

two stationary loudness models based on the work of Eberhard Zwicker, plus a third, the 

ANSI S3.4:2007 an American standardized loudness metric developed by Brian Glasberg 

and Brian Moore. 

One of first loudness models accepted by a standards organization was the ISO 

532 "Acoustics - Method for calculating loudness level." [27] Accepted in 1975, the ISO 

532 document contains two separate loudness metrics which have been identified 

individually as Method A and Method B. The first model Method A, is the lesser well-
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known of the two and is based on the research of S. Stevens. In 1936, Stevens proposed a 

new scale for describing loudness based on the use of the unit sones, a set of units on 

which the majority of recent loudness metrics now base their values. [42] Over the course 

of a few decades, Stevens developed some of the fundamental concepts used in the 

prediction of loudness; including the power law and eventually the development of the 

Mark VI loudness model in 1961, now known as Method A. [44] Recommended for use 

with 1/1 octave bandwidth data, this method calculates loudness through the use of given 

equations and corresponding coefficient look-up charts. Unfortunately, the version 

included in the ISO 532 document was only applicable for a diffuse-field environment, 

further limiting its applicability. As a result of various performance comparisons, Method 

A has often been disregarded due to its poor resolution and known limitations as opposed 

to the accompanying Method B model. 

More commonly used in industry, Method B of the standard is the often preferred 

method for calculating loudness; commonly referred to as simply ISO 532B. Developed 

from the loudness model by acousticians Paulus and Zwicker, this model played an 

important role in the development of the loudness metrics still in use today. [34] Using 

concepts from Zwicker's earlier work, (see [50,51, 54,57 and 58]) the authors compiled 

a loudness model which made use of the fundamental concepts of loudness including: 

critical bandwidths, the various listening conditions, and the effects of simultaneous 

masking. 

By approximating the filtering process of the human auditory system with the use 

of critical bands, Zwicker's method attempts to better approximate the sensation of 

loudness, (a detailed description of critical bandwidths is given in Chapter 3). To make 
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the application of the model easier, it was developed such that input values can be either 

entered as critical bandwidth values or the more commonly found 1/3 octave data sets. 

During the calculation process, if the input signal is specified using the 1/3 octave values, 

the procedure simply combines the lower frequency bands into three larger sets to form 

approximate critical bandwidths. 

The ISO 532B version of Zwicker's model is based on a complete graphical 

approach. One would plot the recorded 1/3 octave data from 25 Hz to 12.5 kHz on an 

included set of charts where separate sets of stencils were dedicated to either free-field or 

diffuse-field measurements. From the stencils, a resulting plot of frequency versus 

specific loudness level was generated providing the specific loudness spectrum for the 

stationary signal presented. On the horizontal axis, the plot is generated using a Barks 

scale; one Bark represents one critical bandwidth, resulting in 28 barks across the 

spectrum. The specific loudness values are therefore provided in the unit sone/Bark, or 

loudness level per critical band. In order to connect adjacent bands, data points progress 

from left to right where increasing specific loudness levels are represented by vertical 

lines and drops and portrayed by decreasing slopes. It is the sloping plots which create 

the simultaneous masking effect, an important component of loudness mentioned again in 

the theory of Chapter 3. Once completed, the entire area under the resultant shape is 

summed to give a total loudness level for the signal in sones (or phons) using the 

appropriate side scale. 

Alternatively, the 1972 Zwicker paper also included a set of FORTRAN-VI 

computer programs to ease the calculation process; one program was available for each 

the critical bandwidth and 1/3 octave inputs. However, during the transfer process to the 
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ISO 532B standard, the FORTRAN-VI programs were neglected and only the 1/3 octave 

stencils were included - greatly reducing the application of the original model. As the 

procedure for ISO 532B above was very time-consuming and tedious, Zwicker and his 

colleagues later reproduced their original program using the modern programming 

language (BASIC code), to implement the model electronically. [59] The resulting 

loudness metric was easier to use and more popular than Method A of the document, and 

has been known to produce more accurate results. For this reason, only Method B will be 

considered in the comparisons that follow. 

The second stationary loudness model addressed in this study is the German DIN 

45631 standard. [10] Accepted in 1991 by the Deutsches Institut fur Normung (DIN -

translating to the German Institute for Standardization), this loudness model was also 

originally based on Zwicker's work above for the ISO 532B. As an improvement on the 

previous model, the standard has come to be known in industry as the Modified Zwicker 

Method. 

The procedure of the DIN model is essentially the same as that of the ISO 

standard, only this time it included a revised version of Zwicker's program code. Various 

data files in the program have been adjusted slightly from the BASIC code which is an 

improvement as the values are a better representation of the original coefficient plots. The 

same year that the DIN 45631 model was released, the updated code was re-published in 

English by Zwicker. [60] The general consensus of the changes is that the DIN 45631 

model does improve on the performance of the model below 300 Hz. The present study 

will show that it is within this frequency range that the ISO 532B procedure performed 

poorly. 
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The last model investigated was the American National Standards Institute's 

(ANSI) metric entitled ANSI S3.4:2007 "American National Standard Procedure for the 

Computation of Loudness of Steady Sound." [2] Originally produced as ANSI S3.4:1980, 

the loudness model was based on the work of S. Stevens as in Method A of ISO 

532:1975. However, in 1996 Glasberg and Moore developed a new method which would 

eventually replace the 1980 ANSI standard as an improved estimation of loudness. [30] 

Glasberg and Moore's approach was another extension of Zwicker's 1972 model. 

Retaining the main elements of the original, the basic ideas for process remained the 

same but the data and manner in which the steps are carried out differed markedly. Data 

is inserted into the model using 1/3 octave bands, which is then altered using functions 

imitating the effects of the outer and middle ear. In Moore and Glasberg's model, the 

effects are modelled using transfer function contours based on their earlier work. [17] 

The transfer functions allow for smooth modifications to the signals with no jumps in 

coefficient values. 

The filter shapes used by Glasberg and Moore also differ from Zwicker's 

approach. The shapes are based on Equivalent Rectangular Bandwidths (ERBs) which are 

used to calculate the excitation patterns required for loudness analysis. (For reference 

purposes more information on ERBs will be presented in Chapter 3 with a comparison to 

the critical bandwidths). Unlike the ISO 532B method, the Glasberg and Moore model is 

based on a computational approach only, relying heavily on tabulated values and 

formulae. As Defoe (2007) commented during his synopsis of the model, the relationship 

between specific loudness and excitation is no longer calculated using the plot results on 
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given charts; it is now primarily based on theoretical ideas and derived constants. [9] This 

makes a graphical application very complex for models of this magnitude. 

Shortly after releasing their paper in [30], Moore et al. republished the model, 

correcting known issues with performance; particularly dealing with binaural and 

threshold perception. [32] In order to improve on the model's ability to predict binaural 

loudness summation, it now operates with the assumption that a signal presented 

binaurally will be perceived as twice as loud then if the signal were presented at each ear 

individually. The absolute threshold of binaural hearing was also adjusted in accordance 

with new experimental data. It was determined that when listening with both ears the 

threshold should be 1-2 dB lower than if one was listening monaurally. [32] The last 

revision to the model was to predict a greater than zero loudness level at the threshold 

levels. This change appears intuitive given that if one can detect a single tone, then it is 

expected that the signal would have some finite loudness level. The previous model 

predicted a zero loudness level corresponding to the value at threshold. Now sub

threshold values are possible as in the case of complex tones with individual sub

threshold components summing to audible levels. 

Based on the improvements, the new Glasberg and Moore program better 

correlates with the latter equal loudness contours. The adjustments gave the model a 

steeper slope in the lower frequency regions, predicting contours that are in better 

agreement with those found in Suzuki and Takeshima's compiled study. [47] With all of 

the improvements listed here, the resulting model was a comprehensive loudness tool for 

analyzing stationary sound sources. Capable of performing measurements on a variety of 

listening conditions including: free-field, diffuse-field, binaural, monaural, or listening 
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via headphones this model was applicable for a broader signal range than any of the 

previous models developed. An executable computer program was developed in 

accordance with the model, permitting an easier implementation given the variety of 

input types. However unlike the other models, no source code was included in the paper 

making the comparison of the electronic metric styles impossible. The new Glasberg and 

Moore model soon became the revised version of ANSI S3.4:2005. 

In the transfer process from a published paper to a standardized method, the 

Glasberg and Moore 1997 model remained almost entirely the same. [1] The standard 

includes all the necessary definitions and the entire procedure of the 1997 model with 

only minor changes made to figures and data sets; while the information presented 

remained essentially the same. [9] The computer program for the model was also 

included in the standard as with the model, only now under the title of ANSILOUD.exe. 

Unfortunately the source code for the program is still not available but an analysis of the 

performance by DeFoe (2007) indicated minor discrepancies between the standard and 

the 1997 model results. [8] The deviations included formulae reproduction errors in the 

standard that did not correspond to the given sample results. Based on these findings the 

authors of the standard eventually revised the loudness model again, taking these errors 

into account. 

Although the 2005 version of the ANSI standard performed adequately, an update 

was imminent as the model needed to be adjusted to better approximate new findings on 

human perception. In 2006, Glasberg and Moore updated their model in accordance with 

the newly accepted ISO 226:2003 equal loudness contours. [18] The authors recognised 

they needed to permit the revision of the threshold of hearing. At the time that the 1997 
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model was produced, the absolute threshold values had been based on the ISO 389-

7:1996 standard. [25] The new values for the ISO 226 standard are based on the revised 

ISO 389-7:2005 for the "Reference threshold of hearing under free-field and diffuse-field 

listening conditions" [26]. To account for the update in their model, the authors modified 

the assumed middle-ear transfer function to better fit the data. [18] The alterations 

provided the desired improvements as these results now provide a slightly better 

comparison to the ISO 226:2003 equal loudness contours. The new update led to a 

second revision of the standard, resulting in the currently available ANSI S3.4:2007. [2] 

The 2007 version of the ANSI standard is the only known standardized loudness 

metric to match and account for the latest updates made to the ISO 226 equal loudness 

contours. As before, a variety of listening conditions are available for calculating 

loudness. The ANSI standard is suited for free-field, diffuse-field or listening via 

headphones; allowing for this model to have a wide range of applications. A new 

computer program was generated and included with the standard reflecting the 2006 

improvements, (LOUD2006A.exe). Alternatively the standalone executable file is also 

available from the University of Cambridge - Auditory Perception Group website. [19] 

Even though there are currently three standardized loudness metrics available, the ANSI 

S3.4:2007 being the most recently updated is assumed to be the most likely to perform in 

accordance with the reference contours. 

One other popular metric which warrants mentioning is often used to portray the 

magnitude of a sound and is commonly referred to as the A-Weighting scale. The A-

weighted sound pressure level was originally derived from the 40-phon contour line of 

the Fletcher and Munson contours. It was meant to adjust recorded tones to the 
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sensitivities of the human hearing spectrum by inverting and normalizing the 40-phon 

shape. A series of weighting values were then generated across the frequency spectrum 

which could be applied to any input signal. This resulted in an A-weighted contour which 

heavily attenuates the lower frequency SPLs and marginally reduces values above 6000 

Hz. The transfer function process could easily be implemented into sound level meters 

generating results quickly in the field. It was this ease of use that made the A-weighting 

approach popular. However, critics of the model's use have been questioning its 

applicability to loudness for years. For instance as Schomer et al. Indicated that, although 

the A-weighting filters do vary with the human sensitivity to frequency, the filter set does 

not account for the sound pressure level of the signal; the filter values always remain 

constant regardless of amplitude. [39] As a result louder signals will be corrected in the 

same manner as lower noise sources. Observation of the equal loudness contours reveals 

that the human perception in these areas differs significantly. In other words, a lot of the 

important content could be inappropriately attenuated when presenting loudness as A-

weighted decibels or dB(A). This is particularly true if the signal is outside of the range 

immediately surrounding the 40 phon curve. Due to the known errors associated with 

presenting loudness information using the A-weighting method, an in-depth look into the 

performance of this approach was not included in this comparison. Discussion of this 

method was included as it is a reoccurring focal point during the study of loudness and 

therefore should be mentioned in this discussion of available models. 

2.4 Non-Stationary Loudness Metrics 

Although the study of stationary signals is important for understanding the 

perception of loudness; the majority of signals encountered in practice tend to be 

temporal or non-stationary. Of the models studied in the previous section, two models 
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have been adapted to include the effects present in temporal signals; the Glasberg and 

Moore model named simply the Time Varying Loudness (TVL) method and the 

continuation of the German stationary model with a draft entitled DIN 45631 -

Amendment 1. [16, 11] Both of these models are still in draft form as no standardized 

method currently exists for temporal sounds. As this report is a study of the standardized 

stationary loudness metrics, it was decided to analyze these two extensions to compare 

and discuss their performance to the same stationary tones. This would provide an added 

investigation into loudness, and further the discussion on performance. 

The additional characteristics present in non-stationary signals account for the 

application of temporal masking, (for an in-depth description refer to Chapter 3), and 

temporal averaging. To convert a stationary loudness model to a non-stationary model, 

one must apply the effects of these phenomena accordingly. In 2002, Glasberg and 

Moore developed an extension of the stationary loudness procedure with a goal of 

creating a more accurate model capable of handling the discrete spectral components 

which 1/3 octaves cannot. At the same time they wanted the model to be capable of 

handling non-steady sounds which are more common than stationary noise sources. [16] 

The model they developed as a result was the TVL model, capable of calculating two 

types of non-stationary loudness: both short-term and long-term loudness. Best described 

using examples of speech; the authors explained short-term loudness as the intensity of a 

syllable. Long-term loudness would be used to measure the intensity of a much longer 

noise sample, such as a sentence. [16] To accurately model the complex signals present in 

temporal samples, the model accepts 16-bit WAVE files with a sampling rate of 32 kHz. 

Using the WAVE file as an input rather than filtering through 1/3 octaves permits the 
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information to be processed at a higher resolution, retaining as much information as 

possible. The calculations can then act on the time waveforms of the signals while 

calculating a running average of both the short term and long term loudness. 

When considering the target performance of the model, the authors wanted to 

concentrate on predicting the loudness of two important trends in temporal signals. The 

first issue deals with the amplitude modulation of a carrier sinusoid. From the overview 

of literature the authors provided, it became clear that predicting the loudness level of 

amplitude modulated signals can be quite challenging as the trends can vary as the rate of 

modulation increases. The authors wanted to develop a model capable of predicting this 

complex relationship. Secondly, the authors wanted to be able to include the effect of the 

temporal masking which takes place after a fixed intensity signal burst. Loudness levels 

of short bursts can increase for durations up to 100-200 ms, after which the levels seem to 

remain roughly constant. This was just another factor which they hoped to describe. [16] 

Aside from some minor modifications to the procedure, the majority of the 

loudness calculations remain consistent with the stationary loudness model from 1997. 

[32,16] One important modification was the use of 6 parallel FFTs to calculate spectral 

information over six bandwidths which increase in frequency and decreasing in lengths of 

time. The ranges of the filters "are 20 to 80 Hz, 80 to 500 Hz, 500 to 1250 Hz, 1250 to 

2540 Hz, 2540 to 4050 Hz, and 4050 to 15000 Hz for segment durations of 64, 32, 16, 8, 

4, and 2 ms, respectively." [16] This was done in order to retain a high spectral resolution 

at lower frequencies as is present in the auditory system. The varying time segments were 

used to give adequate temporal resolution at higher frequencies; this turned out to be an 

effective method of detecting high frequency amplitude modulation. [16] The excitation 
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pattern and instantaneous loudness levels are then calculated in the same fashion as the 

previous model. Short term loudness could then be obtained by temporally averaging the 

instantaneous levels, giving you a running average for the signal. Likewise, the long-term 

loudness is the result of a temporal average of the short-term loudness. After describing 

the procedure of the model, the authors went on to verify the performance of the model, 

even going as far as plotting the predicted equal loudness contours. Note that this was 

prior to the update in 2003 which was mentioned in the report, (see Fig. 2 in [16]). 

The second time-varying model that will be looked at is the DIN 45631 -

Amendment 1 or simply DIN 45631/A1. [11] Currently in the draft process for the DIN 

standard, this metric is the closest non-stationary loudness metric to being accepted as a 

standardized loudness model. Once again this model is based off of Zwicker's approach 

to loudness prediction. 

In 1977, Zwicker created an in-depth calculation method for temporally variable 

sounds as an extension of the 1972 stationary model. [52] As in the derivation paper for 

Glasberg and Moore's TVL model, Zwicker begins his description by looking at all of 

the temporal loudness components and stating which characteristics the model will be 

designed to approximate. Some of the temporal issues considered include phase effect, 

physiological noise, amplitude modulation, and frequency modulation. Upon review, the 

phase effect in temporal analysis was determined to have minimal influence so it was 

ignored so as to not complicate the model further. 

From an analysis of tone bursts (duration vs. loudness), it was determined that for 

tones less than 100ms in length, "a decrease of the burst duration by a factor of 10 
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decreases the perceived loudness by a factor of two." [52] A burst of at least 200 ms was 

determined to be a long-lasting burst, having the highest perceived level and the longest 

decay. This was similar to the findings in the development of the TVL model. The 

perceived loudness of tone bursts was determined to be represented by the peak loudness 

value found over the period of the burst. 

Zwicker's model was also designed to ignore pre-masking as it was determined it 

was not nearly as influential as post-masking was on loudness, (See the masking 

comparison in Chapter 3). This choice was made to include the effect of the relatively 

slow speed of the decay for a signal compared to the quick rise of the perception. Due to 

the inclusive investigations, this model had been proven capable of describing tone 

bursts, amplitude and frequency modulated signals, narrow band noise, and speech. 

When building the model, the author made it clear that the method he used resulted in a 

design which was quite complicated. The procedure was carried out this way to remain 

compatible for the previous stationary loudness model procedure, the ISO 532B. This 

was necessary in order to produce the correct critical band levels needed. As the DIN 

45631/A 1 standard is still in draft form, the complete standard was not available for 

review. However, the procedure outlined in the Zwicker 1977 paper seems to be similar 

to the one outlined in the available loudness meter description of the DIN amendment, 

but a direct connection cannot be established. [11] 

The majority of the metrics listed here have been available for several years and 

as a result, numerous authors have presented research findings comparing the 

performance and use of the models. The following is a detailed summary of their findings 

and potential areas for improvement that this project intends to correct. Although there 
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are other loudness models varying in procedure and application, the purpose of this study 

is to examine and compare the performance of only those accepted by standardizing 

committees. Analyzing and comparing every model developed to date is beyond the 

scope of this investigation. 

2.5 Loudness Metric Comparisons to Date 
Of three stationary loudness models investigated, the ISO 532B appears to 

be the most well-known and prevalent model used. Being the first standardized loudness 

model, the ISO 532B has subsequently been compared against newly developed loudness 

descriptors for years, concerning both the performance and applicability in various 

settings. In 1987, Hellman and Zwicker compared the metric against the popular A-

weighting approach. [21] 

Hellman and Zwicker's study compared the performance of the ISO 532B and the 

A-weighting approach using complex noise-tone combinations, to locate the believed 

poor performance areas of the A-weighted sound level. Using subjective tests backed up 

by calculated loudness results they were able to show that using pink noise and pure tone 

combinations, a negative correlation can exist between the A-weighted sound pressure 

levels and the calculated loudness levels of ISO 532B. In this case a reduction of 6 dB(A) 

actually resulted in a doubling of the loudness level. The findings were contrary to what 

had been previously widely accepted; helping to bring forward the inadequacies of A-

weighting for noise control purposes; particularly with complex noise sources. 

The research of Hellman and Zwicker has since been verified by various other 

studies which further discredited the use of the A-weighting scale for loudness. In a 1994 

in-depth study by Quinlan, the range of variations between the A-weighting levels and 
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the ISO 532B calculated loudness was investigated. [36] Using a variety of spectral 

conditions with a fixed A-weighted level, Quinlan was able to derive the maximum and 

minimum possible loudness values that could potentially occur using the ISO 532B. The 

results indicated an extremely broad range of values were possible for a fixed A-weighted 

sound pressure level; including at one extreme, a loudness range extending from 2.2 to 45 

sones. In this case a constant 70 dB(A) level was used where it was determined that a 20-

fold increase in loudness values was possible, given a variety of spectrally different 

signals. The full range of the author's results can be seen in Fig. 2 of [36]. As in Hellman 

and Zwicker's work, Quinlan also noted that increases in loudness were possible for 

decreasing dB(A) levels; at times observing a five-fold increase in loudness over 20 

dB(A). To support his findings, Quinlan arranged a subjective test that was carried out to 

verify the accuracy of the approach; thereby proving the significance of the results. 

The detailed approach taken by Quinlan had once again provided insight into why 

the ISO 532B method is considered a useful engineering tool where the A-weighting 

method can be considered as severely misleading. Although the findings were quite 

thorough, Quinlan's approach only verified the ISO 532B to specific areas of loudness; 

rather than over the entire frequency spectrum. It did however re-enforce the conclusions 

that A-weighting should not be used as a method of presenting loudness; providing 

further justification as to why this common descriptor will not be included in this 

comparison. 

The most recent comparison available is a discussion paper written in 2007 by 

Hellman regarding a new loudness standard ANSI S3.4:2005, (now replaced with ANSI 

S3.4:2007). [22] The purpose of the investigation was twofold, to identify and discuss the 
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improvements made for the current revision of the ANSI S3.4 standard and secondly to 

compare the performance of the new standard over the restrictions of the ISO 532 

loudness model. According to the research, the previous 1980 version of the ANSI model 

(ANSI S3.4:1980 based on Stevens' approach), had three main limitations for 

applicability: the model was restricted to broadband signals with no applicability to tonal 

components, the model suffered an inability to depict the detailed shapes of the revised 

ISO 226:2003 equal loudness contours, and lastly it was only applicable for loudness 

levels down to 20 phons. [22] As shown above, each one of these points was rectified in 

the new ANSI S3.4:2005 model which Hellman addressed in her discussion. As a recap, 

the new loudness model is applicable for all types of stationary signals where it can now 

predict the new equal loudness contours with a good amount of agreement particularly 

below 500 Hz. The new improvements to the standard also allow for the prediction of 

loudness levels down to approximately the threshold levels of hearing. By discussing the 

advantages of the new 2005 version of the ANSI standard, Hellman made it apparent that 

the new version of the standard was a vast improvement over its predecessor. The 

discussion gave reference to several sources confirming the changes but did not include 

any numerical data of its own. 

Hellman's analysis next targeted the performance of the now aged ISO 532B 

model, by using the same 'old versus new' approach. The author was once again able to 

identify three main shortcomings which the new ANSI model was able to overcome; the 

first of which related to the listening conditions for the calculation of loudness. While 

Zwicker's model only had the option of monaural loudness, the ANSI method is 

applicable for both monaural and binaural listening. In order to approximate the response 
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of binaural listening, the ANSI method relies on the assumption that a binaural 

presentation of the same signal at both ears (diotic presentation), will result in an overall 

loudness that is twice as loud as if the signal were presented at each ear separately. This 

assumption was backed up Hellman's own past research, as well as that by Marks in a 

later study. [20,29] 

The second shortcoming of the Zwicker approach is that according to previous 

findings, the ISO 532B accuracy is limited to only mid-range frequency, noise-tone 

combinations. [22] In the 1997 update by Moore and Glasberg, this issue was corrected, 

allowing the resulting ANSI S3.4:2005 method to generate better predictions below 500 

Hz. [22]. To further improve on the model, the loudness conversion factors were also 

revised to generate more accurate results. As the ISO 532B method uses the obsolete 

method for converting sones to phons, the newer ANSI model performs markedly better 

below 1 sone; this aspect will be discussed in more detail in the theory of Chapter 3 in 

this report. Concluding her comparison, Hellman has clearly indicated the performance 

areas which the ANSI S3.4:2005 model excels over the ISO 532B standard. However, the 

existing DIN 45631 model was not mentioned during this comparison. This was 

surprising given the fact that the DIN method is another Zwicker modified approach 

which also improved on the ISO 532B; particularly over the low sone conversion. 

Hellman's comparison of the ISO 532B and the ANSI S3.4:2007 stationary 

loudness models was the most recent comparison available at the time of this study. No 

mention of the DIN 45631 was found in any unbiased comparisons for loudness metrics. 

Furthermore, no comparisons have been found between the various temporal loudness 

models, either against the respective predecessors or against each other. Only the 
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inclusive performance examples within the models give any indication as to their 

performance. Therefore, lack of an unbiased investigation indicates that this area of 

research still has room for added research and improvements before any conclusions can 

be reached. 

2.6 What Is Missing Thus far 

Upon reviewing the available performance comparisons of the standardized 

loudness models, it was clear there was a void in the research within this important area 

of psychoacoustics. Where a vast amount of literature is available discrediting the use of 

A-weighting use for loudness, few documented studies exist comparing the more popular 

standardized methods available. 

With so many loudness models available, it has become difficult for engineers 

and acousticians to make informed decisions as to which model is best suited for a given 

situation. [36] As such, informative studies must be carried out continuously as new 

updates become available. Only then will the user be able justify applying one standard 

over another, rather than assuming that the newer method must be better. The selection 

may then be made based on the performance, ensuring accurate and relevant results. 

Experimental data has proven that the equal loudness contours are slightly 

different than initially thought. Research now shows that the contours are steeper with 

more pronounced shaping. The ISO 226 data represents the actual characteristics of 

auditory perception which the various loudness models are intended to predict. When the 

reference values changed, it was expected that an update to the loudness predictors would 

be essential for them to continue to be accurate. 
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To verify that an update is indeed necessary and recognise the deviations from the 

reference contours, a study must be conducted comparing the various models against 

each other and the new standard of reference, the ISO 226:2003 equal loudness contours. 

Before describing the experimental procedure and results taken in this study, a section 

outlining and comparing the important concepts of loudness will first be presented. Such 

a discussion is necessary in order to understand the underlying concepts involved in each 

model indicated above. 
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III. THEORY 

In the previous chapter, several fundamental concepts relating to the calculation 

of loudness were mentioned. These include filter bandwidths, masking effects and the 

loudness conversion function. As these acoustic concepts play a critical role in the way 

the various loudness metrics perform, a brief description of each characteristic is included 

here. 

3.1 Filter Bandwidths 

As previously discussed, the sensitivity of the hearing system is non-linear over 

the frequency spectrum. By experimentally testing subjects using sets of tones and 

varying widths of noise bands, acousticians have been able to quantify the limits of this 

sensitivity and derive models approximating the results. In 1940 Fletcher developed one 

of the first studies outlining the concept of "position coordinates" along the basilar 

membrane. [14] This study resulted in the first known auditory based filter bandwidths 

and mapping of the excitation sensitivity of the ear. As technology advanced, several 

theories surfaced as to what the shapes of these filter sets look like. The two most notable 

sets that have emerged are the critical bandwidths of Zwicker et al. and the equivalent 

rectangular bandwidths as developed by Glasberg and Moore. [58,17] 

Critical bandwidths refer to a set of frequency filters which have increasing 

bandwidths as frequency is increased. The critical values were defined through extensive 

auditory experiments by Zwicker et al. [58] According to Zwicker the ear subdivides 

itself into these various frequency bands to carry out an internal analysis of what we hear. 

[50] Expanding Fletcher's work, Zwicker and his colleagues collected information using 

a variety of jury tests targeting the bandwidth limits. Sets of tones and noise bands were 
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used along with four sets of experiments which defined the limits "on the threshold for 

complex sounds, on masking, on the perception of phase, and (through) the loudness of 

complex sounds." [50] Using this data, they were able to generate their best estimate of 

the critical band shape as a function of frequency. However, even with a complete set of 

critical bandwidths, the position of bands along the frequency spectrum was not yet 

identified. In 1961, Zwicker published an editorial as a result of an ISO standards 

meeting on the subject. [50] It was determined that for convenience the bandwidths 

should resemble the "preferred frequencies" similar to the previously arranged 1/3 octave 

bands. As such, the lowest limit of the bands was set to 20 Hz and several of the values 

were generously rounded to match various other preferred centre frequencies. [50] This 

rounding was assumed to be acceptable as the measurements of critical bands was known 

to have errors associated with them. 

The critical bandwidths at this point were available for use from a figure included 

in the editorial, but the values had to be collected directly from the plot; resulting in 

potentially different bandwidths depending on the user which defeated the purpose of 

establishing a universal bandwidth set. To define the bandwidth values in a user friendly 

manner, a second paper was later published in 1980 in which Zwicker included several 

mathematical formulae relating to the critical-band-rate function. [55] This function 

produces a critical bandwidth in unit Hz for a desired frequency given in kHz, see 

Equation (5). 

r / \ 2 i 0 - 6 9 

2k_25 + 7 S [ l + L4(JL)] [55]... (5) 

The resulting critical bandwidths remain constant below approximately 300 Hz, 

and increase logarithmically with frequency from that point onward. The above formula 
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approximates the tabulated data from [50] with an accuracy of ±10% as a result of the 

rounding errors. A complete set of critical bandwidths now exists for the 24 Bark bands 

ranging from centre frequencies of 25 Hz up to 12.5 kHz for use in loudness-calculation 

procedures. 

The second filter method introduced by Glasberg and Moore uses a set of 

formulas to calculate the equivalent rectangular bandwidths (ERBs) of the auditory 

system. The ERB is an approximation of the measured auditory bandwidth from 

experimental investigations. Following the theories of Fletcher's 1940 work, Moore and 

Glasberg conducted research examining the use of the power-spectrum model to 

determine the auditory filter shapes. [14, 31] Upon their investigation, however, they 

determined that the power-spectrum model was known to result erroneous results when 

given specific masking patterns. In these instances, observers occasionally performed 

loudness comparisons across several auditory filters rather than targeting the individual 

filter information as intended. Therefore, the authors devised a method encouraging the 

use of only the target auditory filter while retaining the assumptions of the power-

spectrum model. Based on their findings, they decided the best approach was to conduct 

their experiment using notched-noise masking data where noise bands are played in 

unison with a probe tone used to direct the listener's attention. By targeting the listener's 

attention to the notch in the noise band, the authors sought to minimize any 'off-

frequency listening.' [40, 31] Through this approach, Moore and Glasberg were able to 

identify specific trends present in the auditory shapes based on their experimental results. 

It was determined that for a normal hearing individual, the auditory filter shape is quite 

asymmetrical, with the lower branch generally rising less sharply than the upper. From 
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the summary of the auditory filter shape, the authors were able to derive the ERB values 

of the auditory filters across the audible frequency spectrum. The resulting relationship 

produced the ERB value in Hz for a given centre frequency given in kHz. The included 

equation was later updated in 1990 when Glasberg and Moore presented new findings on 

the subject. [17] In this update, the authors modified their previous procedure, increasing 

the accuracy of the filter shapes. By correcting small assumptions in their previous 

model, including an equal loudness contour correction and limiting the frequency shift to 

0.2fc (20% of the centre frequency), they were able to improve on their previous 

estimations. The new relationship, shown in Equation (6), defines the ERB value in Hz 

for a given centre frequency (F) in kHz. 

ERB = 24.7(4.37(F) + 1) [17]... (6) 

This relationship was based on an equation originally suggested by Greenwood, 

where following his original theories, the above equation locates specific distances along 

the basilar membrane and represents each segment as an individual ERB. [17] 

A second equation was included in Glasberg and Moore's 1990 paper which 

allowed the user to scale the frequency coordinates as units of ERB; hence creating a 

scale for frequency comparable to the unit Bark developed by Zwicker above. Equation 

(7) is the resulting equation for calculating the ERB Number (unit-less) given a centre 

frequency value (F) in kHz. This is useful when one wishes to present the data in a way 

which better corresponds to the trends present in the auditory system. [31] 

# of ERB = 21.4 log10(4.37(F) + 1) [17]... (7) 

The two critical bandwidth models listed here are clearly different both in the 

manner in which they were derived and in the results obtained. In Figure 3.1, Seeber 
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reproduced both critical bandwidth sets on a common plot where the specific differences 

can be easily compared. [40] 
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Figure 3.1 - Critical Bandwidth Comparison [40] 

As indicated previously, these two sets of filters differ in both shape and slope 

across the frequency spectrum. At moderate frequency values, the two filter sets appear 

to be quite similar, but as values extend into the outer frequency levels, the similarities 

stop. The constant bandwidth trends depicted by Zwicker's critical filter set are notably 

dissimilar compared to Glasberg and Moore's downward slope at the low frequencies 

values. In this range, Sek and Moore indicate that Zwicker's approach was heavily 

influenced by critical modulation frequency (CMF) due to the use of the complex tone 

signals. [41] The derivation of the critical bandwidths was based on experimental work 

where a pair of tones was continually separated in frequency until an increase in loudness 

was noticed. [58] However, at low frequencies it was evident that the tones were 

influencing each other through modulation. [41] Based on their findings, Sek and Moore 

noticed that in this low frequencies region, the CMF flattens off due to sideband 

influences and the low frequency internal noise. While in this region, Sek and Moore's 
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results indicated that auditory bandwidths actually continue to decrease, (as shown 

above). Glasberg and Moore's approach therefore seems to avoid the CMF effect with the 

use of the notched-noise test signal used in their approach. Using only one tone, there 

was no possibility of the tone modulation interference. 

Another idea used by all three approaches is the concept of masking. In order to 

provide a complete discussion of the processes involved in loudness summation, a brief 

introduction for masking is included for reference purposes. 

3.2 Masking 
The phenomenon of masking is best described as one sound characteristic 

inhibiting the audibility of another. The two most prevalent forms of masking include 

simultaneous masking and temporal masking. 

Simultaneous masking occurs when one source (the masker) is preventing another 

from being heard (the masked). A great deal of research has been done on the perception 

of tones in the presence of a masking background noise which has resulted in the 

development of informational plots such as that given in Figure 3.2, which are important 

to the understanding of the performance of the human ear. The figure is the summary of 

an experiment where a pure tone was played at varying levels and frequencies, while 

simultaneously a masker tone centered at 1 kHz (fjvi) was held constant at three 

increments of 20 dB. The various levels of masking tones (20 dB, 40 dB, and 60 dB), 

were used in order to demonstrate the effect of amplitude while the frequency of the 

masking tone always remained constant. 
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Figure 3.2 - Tone on tone simultaneous masking [13] 

From this plot, one can see the upward and downward slopes of masking 

characteristics while discovering some interesting conclusions. Seeber indicates that as 

the test tone approaches the frequency of the masking tone, the amplitude must be 

increased to levels approaching that of the masker {solid lines) to become audible. The 

slope of the masker also appears to be heavily dependent on its amplitude. This is 

especially true for the higher sound pressure levels where the slope on the high-frequency 

side becomes much shallower. [40] Note that the plot was mirrored for discussion 

purposes, where the dotted, lighter lines represent the same data set with an inverted 

frequency scale (upper abscissa). This inversion was created to show the symmetry of the 

slopes, particularly for the low amplitude tones. Studies such as this have unlocked 

important discoveries as to the characteristics of human perception. Knowledge of the 

results indicates that the phenomenon of simultaneous masking plays an important role in 

industry, particularly for the removal of unwanted noise and sound quality analysis. In 

loudness models such as the ISO 532B and the DIN 45631, the use of simultaneous 

masking is especially apparent in the inclusive stencils. The downward sloping of 
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decreases in spectral loudness is a direct result of this simultaneous masking effect. [27, 

10] 

When dealing with the measurements in most applications, temporal masking 

becomes the prominent characteristic due to the large amount of time-varying signals 

encountered. Temporal masking is an interesting phenomenon which has attracted much 

attention in recent years. The simplest example is the masking of a tone burst following a 

short noise-band. When a noise-band sample has played for a sufficiently long period of 

time and suddenly stops, the hearing response of the ear decays very slowly. Therefore, if 

a pure tone burst were to be played before the decay had finished, temporal masking may 

cause the tone to be partially or completely inaudible. To quantify this effect, 

experiments were conducted with various lengths of noise bands and short bursts of pure 

tones. As reported in Fasti and Zwicker's work, it was determined that based on the type 

masker present, pre-masking effects were evident up to 20 ms before the masker and 

post-masking effects were evident up to 200 ms after the masker had finished. [13] The 

two effects are best presented in Figure 3.3, where three types of masking are identified 

with respect to a noise band, plotted with respect to time. From this figure, one can easily 

see the transitions between masking patterns observed for a non-stationary sound sample. 
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Figure 3.3 - Temporal Masking [13] 
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Initially, before the masker is turned on, an external signal would be fully audible. 

Based on experiments, 20 ms prior to the signal being initiated partial masking starts to 

occur rising steeply until 0 ms where the masking signal is turned on and the 

simultaneous masking starts to occur. The simultaneous masking effects remain present 

the entire duration of the noise band and until 5 ms after the masker signal is turned off. 

At this point, the postmasking stage is in effect, decaying slowly. Finally, after about 

200ms there is no longer any masking present and external signals would be fully audible 

once again. Graphically, if any tone were played within the masking curves of Figure 

3.3, the signal would be either partially or completely inaudible due to this temporal 

masking effect. [13] The application of this phenomenon has been included in the various 

loudness metrics indicated above, as masking plays a prominent role in the perception of 

tones and noise samples alike. As mentioned previously however, Zwicker's model has 

been designed to ignore pre-masking as it was determined to be not nearly as influential 

as post-masking on loudness; clearly visible here. [52] 

There is one last concept used by the various loudness metrics that warrants 

discussing before moving on to the experimental procedure. As mentioned previously, 

there was some discrepancy between the models regarding the loudness conversion from 

sones to phons. As presented in the next section, this function plays an important part in 

the performance of the various loudness models. 

3.3 Loudness Conversion 

As originally derived, the loudness value of a signal was presented in the unit 

sone. One sone is defined to be the loudness value of a 1 kHz tone with a SPL of 40 dB 

relative to the reference value of 20 uPa. [36] Above this value, an increase of one sone is 
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equivalent to a doubling of loudness; two sones indicated a signal four times as loud, and 

so on. However, in order to quantify loudness using a more direct scale, a conversion was 

available to convert from a loudness value of sones to a loudness level in unit phons. A 

loudness level in phons was then equivalent numerically to the sound pressure level in 

decibels of a tone at 1 kHz, (e.g. 40 dB at 1 kHz equals 40 phons, 60 dB at 1 kHz equals 

60 phons, and so on). This is described in ISO/R131:1959, from which the ISO 532B and 

ANSI S3.4:1980 derived their conversion equations from. [22] As new information 

became available, the conversion factors below 1 sone changed (values below 40 phons), 

and the ISO standard was withdrawn. The ISO 532B was never updated since and 

thereafter the ISO 532B used an obsolete and known erroneous equation during its 

loudness calculation process, (an immediate indicator that this area would have problems 

during the following comparison). To analyze the effects of this change, the various 

conversion processes from the loudness models were plotted against each other for 

comparison. 

The ISO 532B, as mentioned above, uses the since withdrawn conversion from 

ISO/R131:1959 as shown in Equation (8). Based on a logarithmic relationship, it has 

been determined that when the loudness value of one or more sones is entered into the 

equation, the resulting loudness level is in fact the correct phons value. Below this value, 

however, the logarithmic relationship incorrectly approaches negative infinity, (see blue 

line in Figure 3.4). 

Phons = 33.2 * log10(Sones) + 40 [27]... (8) 

Prior the acceptance of the DIN 45631, another equation was derived for regions 

below one sone. The new equation permitted more appropriate levels of loudness to be 
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derived near the threshold of hearing. Seen in Equation (9) is the relationship between 

loudness values less than one sone and loudness levels in phons. 

[10]... (9) 

The ANSI S3.4:2007 document uses a similar approach but presents a tabulated 

set of values accompanied by a graph for the corresponding conversion, rather than an 

equation. From a comparison plot in Figure 8, The ANSI values shown as (A), closely 

correlate with the DIN Equation (7); deviating up to 4 phons at the lower sone values. 
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Figure 3.4 - Loudness Conversion Comparison 

It can be seen from the graphical representation in Figure 3.4 that the loudness 

conversion provided in Equation (7) creates a slightly shallower slope for loudness 

levels below 30 phons and ultimately drops down to 3 phons; corresponding to a loudness 

value of 0 sones. Likewise, the ANSI model depicts the 0 phons value as 0.0011 sones; a 

finite value as according to Glasberg and Moore's research where a zero loudness level 
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shall be above the threshold allowing for lower loudness levels than the DIN. From the 

figure, it is clearly evident that the conversion factor presented in the ISO 532B model is 

unusable below approximately 0.2 sones. Below this point the curve quickly approaches 

loudness levels of negative infinity, values that simply do not make sense. From the 

definition of a threshold level, even the threshold loudness values must have a finite 

positive value. [22] To deal with this, Zwicker's 1984 BASIC program contains an initial 

value of 0.2 sones which corresponds to a minimum loudness level of 16.8 phons for this 

model. This difference in methods is important to note when comparing the different 

loudness models against one another, particularly in the lower amplitude regions. As a 

result of these findings, we now expect that the ISO 532B loudness model will perform 

quite poorly below 1 sone or for equal loudness contours below 40 phons. 

To compare the remainder of the loudness models, a series of experiments have 

been conducted which test the performance of the metrics to stationary signals. The 

following is the experimental procedure used during this investigation. 
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IV. EXPERIMENTAL DETAILS 

In order to perform a complete and informative comparison of the various 

loudness metrics available, an experimental procedure was devised which would test the 

performance of the models in response to stationary pure tones. The testing process was 

divided into two distinct experiments; these are the direct feed loudness measurements 

and the semi-anechoic loudness measurements. The following will provide a complete 

outline of the equipment and instrumentation used, as well as the environmental 

considerations, the design and preparation for the experiment, and the experimental 

procedure taken for each of the measurement procedures. 

4.1 Direct Feed Measurement 

Prior to any laboratory testing, preliminary experiments were set up to verify the 

discrepancies between the models. This "direct feed" approach describes the process used 

to completely model the various stationary loudness metrics in the absence of any 

background influences. 

4.1.1 Equipment and Instrumentation 

For the direct feed test, the equipment and instrumentation used was 

minimized to ensure simplicity. Figure 4.1 illustrates the data acquisition 

hardware used during the direct feed approach. Signals were generated using a 

Brttel and Kjaer (B&K) Portable PULSE 3560B (B-Frame) analysis system. [64] 

The front end system housed 1 output and 5 input BNC connections which 

provided both signal generation and acquisition. This permitted the generation 

and analysis of direct feed signals using only one piece of hardware. No 

48 



microphone was necessary for this approach as the output BNC connector was 

directly fed into the BNC Input 1 of the front end using a short coaxial cable. The 

front end assembly was then connected to a Personal Computer (PC) located 

immediately next to the hardware, via an Ethernet crossover cable. 

Figure 4.1 - Front end connection layout with added 2250 SLM analyzer 

The real time acquisition and post processing system used here was 

PULSE LabShop Version 13.0.0.113 also created by B&K. [69] This software 

suite includes several individual software packages capable of performing a wide 

variety of acoustic and vibration functions including basic calculations such as the 

Fast Fourier Transform (FFT) and Constant Percentage Bandwidth (CPB) 

analysis. Alternatively it is capable of handling more complicated psychoacoustic 

models such as the sound quality loudness according to the DIN 45631; each on a 

real time or post processing basis. 
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As only the DIN 45631 model was included within the PULSE suite, other 

software packages had to be sourced for the calculation of the remaining loudness 

models. Mentioned previously, the ISO 532B model was available in the BASIC 

programming language of [59]. From this document Defoe (2007) generated a 

Microsoft EXCEL file containing the same model as a VISUAL BASIC 

calculator. This file was used in conjunction with the PULSE LabShop CPB 

values for targeting the loudness levels. To quicken this process, however, a small 

macro was created by the author to format and insert the data collected from 

PULSE into the calculator. This macro copied the necessary values from the 

constant percentage band (CPB) data and placed it into the input location for the 

calculator; only the data from 25 Hz to 12.5 kHz was used in the calculation. 

In order to derive the ANSI S3.4:2007 loudness values, the previously 

mentioned Glasberg and Moore program LOUD2006A.exe was used once again 

with values recorded in PULSE. [19] The LOUD2006A.exe software was capable 

of several input options and methods. The listening conditions permitted either a 

free-field, diffuse-field or listening via headphones, the model applied various 

transfer function based on the selected option. Next the signal was presented as 

either a monaural or binaural signal, allowing the user to completely specify the 

physical environment of the tests. In order to approximate the equal loudness 

contours, it was decided that the best option would be to present the data as a free-

field, binaural signal in order to follow how the experimental ISO 226 contours 

were derived, (this was also the default selection of the software). Implementing 

the CPB data into the model this way was a tedious process with many steps, so a 
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macro was once again created to improve the efficiency of the calculation 

process. The macro copied the 50 Hz to 16 kHz range and format it to run as free 

field, binaural, 1/3 octave inputs in the LOUD2006A.exe program. 

4.1.2 Experimental Design and Preparation 

In setting up the PULSE LabShop software package for a direct feed 

approach, several considerations were taken into account to ensure all of the 

necessary data was acquired, while maintaining an accurate response. Shown in 

Figure 4.2 are the input channel settings for the direct feed signal as seen from 

PULSE LabShop. As there was no microphone present, the sensitivity of the input 

signal was set manually to 1 V/Pa with a gain adjust value of 1, allowing the input 

signal to be adjusted directly with the voltage adjustments on the signal generator. 
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Figure 4.2 - Input signal settings for direct feed data 

To monitor the data FFT and CPB data was collected simultaneously and 

recorded for post processing. The CPB data was collected as 1/3 octave data from 
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25 Hz up to 16 kHz; in order to cover the input range requirements of the various 

loudness models being studied. Recall that both the ISO 532B method and the 

DIN required 1/3 octave data from 25 Hz to 12.5 kHz, while the ANSI S3.4:2007 

model was applicable from 50 Hz up to 16 kHz. By setting the range the same for 

every test, this would ensure applicability for all models while reducing the 

possibility for error. 

Lastly the CPB and FFT settings were adjusted to ensure that the results 

indicated true stationary signals with the precise values desired. The CPB filter 

was set to a 1/3 octave bandwidth with a linear averaging time of 30 second. The 

length ensured that the pure tone had sufficiently settled before the loudness 

levels were recorded during the derivations. The FFT filter was set-up to include 

400 lines over a span of 25.6 kHz; as the FFT filter was only used as an aid in 

determining the target SPL, this setting was determined to be sufficient without 

recording an unnecessary amount of excess data. The values from the FFT filter 

were then calculated from 10 averages determined exponentially. 

To facilitate the time-varying loudness models, recordings of the various 

pure tones were made during the measurement process. These recorded files 

(.REC) saved all the information from the tone and could be altered using PULSE 

LabShop or an accompanying program PULSE Sound Quality (SQ). PULSE 

LabShop had a built in time-edit view where the recorded signals could be 

adjusted to minimize the effect of brief noise spikes or to simply shorten the 

signal to a desired length. REC files were made in PULSE in 5 second samples 

for all of the pure tones recorded. To reduce space and computational time, the 
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signals were cropped down to 1 second for the time-varying loudness 

calculations. The signals were then transferred to PULSE SQ where a ramp-up 

filter was used to remove the 'pop' sound predicted by a loudness model if the 

signal were to start at full strength. Given the short time-spectrum of the signals, 

this would have created a loudness average much higher than the actual prediction 

intended. These steps were used for both time-varying models being studied. 

While deriving the DIN 45631/A1 non-stationary loudness contours, it 

was decided that the best approach would be to use the same pure tone signals 

recorded for the stationary model, and simply input the REC files into the non-

stationary model. It was hypothesized that if the procedure of the models closely 

resembled one another, the exact same results should occur. A draft version of the 

DIN 45631/A 1 time-varying loudness model was a built in feature of PULSE SQ 

based on binaural information. Loudness levels were read directly from this 

program based on the filtered tones and recorded into an EXCEL file. 

For the time varying loudness (TVL) model, a different approach had to 

be used as this model uses a scaling approach where a recorded signal is inserted 

into the model and calibrated as a full scale sinusoid at 100 dB. To collect target 

loudness information, the full-scale sinusoid was then scaled down to the desired 

level appropriately. For levels below 50 dB, the full-scale sinusoid was calibrated 

to 50 dB and scaled down from there. This was done so as not to lose valuable 

spectral information in the scaling process. Based on this procedure, the equal 

loudness contours for the TVL model were derived based on the findings from the 

stationary curves. The 100 dB full-scale tones were scaled down to levels 
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matching the SPLs derived in the stationary model for each frequency targeted -

once again, theoretically resulting in the same conclusions as the stationary 

model. 

4.1.3 Environment Considerations 

By performing the measurements through a direct feed approach, the 

intent was to derive an uninfluenced resultant signal, producing as pure of a tone 

as possible. With the absence of an ambient noise source, 'ideal' loudness levels 

could be predicted accurately down to near threshold levels; levels that would be 

impossible in most laboratory settings. Figure 4.3 for example shows a 10 dB 

pure tone played at 1 kHz where it is clear from this sample that no disrupting 

background noise is present above 1 dB for the direct feed data. Therefore, no 

added consideration was needed for any environmental influences of the direct 

feed approach. 
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Figure 4.3 - A CPB example of a 10 dB direct feed pure tone at 1 kHz 
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4.1.4 Testing Procedure 

As there was no simple way of collecting the equal loudness contours for 

the various metrics, a bracketing method was employed to locate and record the 

target SPL values. The following describes the procedure used: 

4.1.4a - Stationary Loudness Procedure 
1) Record a pure tone for the target frequency value. 

2) Each individual loudness model had a particular bracketing approach, 
varying higher than lower until the desired level was reached: 

A. DIN 45631 
Judging from the loudness level indicated by PULSE LabShop, adjust 
the voltage signal level accordingly until the desired loudness level is 
met. 

B. IS0 532B 
Copy the SPL data from the CPB of PULSE LabShop and paste it into 
the EXCEL formatting macro. After formatting (which collects the 
data from 25 Hz to 12.5 kHz), proceed to calculating the ISO 532B 
loudness level and if necessary go back to PULSE to adjust the voltage 
level accordingly. 

C. ANSI S3.4:2007 
Copy the SPL data from the CPB of PULSE LabShop and paste it into 
the EXCEL formatting macro. Paste the resulting formatted data (from 
50 Hz to 16 kHz), into a text file (.TXT) and run the LOUD2006A.exe 
program. If necessary based on the resultant loudness value, go back to 
PULSE and adjust the voltage level accordingly. 

3) Once the target loudness level has been located, save the CPB and FFT 
data into PULSE and record the overall SPL and loudness level into an 
EXCEL file for plotting. 

4) Save the pure tone recorded file (REC) for implementation into the time 
varying loudness models. 

5) Continue the process until all possible loudness contours are derived to be 
compared against the reference contours of ISO 226:2003. 

NOTE: A secondary procedure was used for determination of the ANSI 
S3.4:2007 contours due to the multiple input methods. Aside from the 1/3 
octave data, the contours were also derived using the pure tone 
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specification method of the LOUD2006A.EXE program. Using this 
approach, pure tones were specified at each centre frequency and varied in 
SPL until the target loudness was observed. This process was carried out 
until the complete set of contours was derived from 25 Hz to 12.5 kHz. 

4.1.4b - Time-Varying Loudness Procedure 
As motioned above, separated steps had to be used for the time-

varying loudness models. These steps are outlined as follows: 

1) Open the pure tone REC file in PULSE time-edit and cut the sample size 
down to 1 second. 

2) Apply a ramp-up filter to the tone to remove the "pop" from the 
calculations. 

3) From here the two methods take on separate approaches: 

A. DIN45631/A1 
i. Record resulting binaural loudness level according to DIN 

45631/A1 DRAFT into an EXCEL sheet for plot. 

B. Glasberg and Moore's Time-Varying Loudness (TVL) 
i. Export the resulting signal as a wave audio file (.WAV) 

ii. Import the audio file into the included resampling editor 
from the TVL model, (the file resamples the WAV signal 
from 16 kHz to 32 kHz). 

iii. Import the adjusted WAV file into TVL.EXE and calibrate 
to a full scale signal of 100 dB, (or 50 dB if targeting levels 
below 50 dB). 

iv. Scale down the calibrated signal to the desired SPL values 
and record the short term average level into EXCEL for 
plotting. 

4) This procedure is continued until all of the applicable loudness levels are 
derived and plot on a single graph. The resultant curves should resemble 
straight lines. 

4.2 Semi-Anechoic Measurement 
The primary focus of the semi-anechoic procedure was to back up and verify the 

results generated through the direct feed approach. In order to accomplish this, physical 
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measurements were conducted through the use of loudspeakers, microphone transducers 

and a semi-anechoic environment. 

4.2.1 Equipment and Instrumentation 

A semi-anechoic room, like the one used in this study, is an acoustically 

treated testing environment which approximates a free field listening condition. In 

this simulated atmosphere, sound waves are free to travel without any 

obstructions other than the limits of the device being tested and the negligent 

reflections from the acquisition equipment. The room is lined with acoustical 

absorbing wedges where theoretically all of the acoustic energy will be absorbed 

rather than being reflected. The wedges also act as an insulator for ambient noise 

sources that may pass through from outside the room, (See Figure 4.4). 

Figure 4.4 - Ceiling and walls of semi-anechoic room line with 1 metre wedges. 
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The acoustical wedges are design sufficiently large enough to create a 

desired cut-off frequency for testing. The wedge length should be one-quarter of 

the desired lower cut-off frequency, so the approximate 1 metre (m) wedges in the 

semi-anechoic room located at the University of Windsor were capable of a lower 

cut-off frequency of less than 100 Hz, (See Appendix A for calculation table). 

Measurements were again conducted using B&K's B-Frame front end, 

only this time with the use of an OmniSource sound speaker as the output driver. 

Both a binaural head and an external microphone were used for collecting the 

signals. 

To generate the desired levels of pure tones in an appropriate manner for 

the laboratory test, a Brtiel and Kjaer Type 4295 OmniSource™ Sound Source 

was used in accordance to a Brtiel and Kjaer Type 2716 Audio Power Amplifier. 

[68, 63] Using this combination, pure tones were accessible across the desired 

frequency range for nearly all of the required sound pressure levels. The highest 

SPLs could not be reached without risk of damage to the OmniSource™ sound 

source and an alternative model had to be used. While the OmniSource™ speaker 

was capable of emitting a sound power level of 105 dB, the next step up from this 

model is the Type 4292 OmniPower™ sound source, capable of a much higher 

sound power level at 122 dB. Due to the time constraints for borrowing the 

OmniPower™ sound source only the highest measurements were recorded with 

the louder speaker. At these levels, the Type 4295 model created unwanted, off-

frequency noise when the speaker was pushed to higher amplitudes. This noise 

would have negatively influenced the results and was, therefore, avoided by using 
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the Type 4292 model whenever possible. Each of the speakers listed above are 

capable of producing a multi-directional sound spectrum, radiating sound evenly 

in all directions. Based on the free-field environment, the pure tone signals could 

then be measured anywhere in the proximity to the source, at various locations 

simultaneously, (as long as the distance from the source remained constant). 

The acoustic signals were acquired via two measurement devices, a Brtiel 

and Kjasr Type 4100-D Head and Torso Simulator (HATS) and an external Briiel 

and Kjaer Type 4189 V2" prepolarized free-field microphone. [65, 66] In order to 

record binaural information, the HATS device was included in this experiment as 

it best approximates the human perception based on physical features. The 

simulator includes a formed manikin surface and moulded-silicone pinnae that 

approximate the physical geometry of the average adult head and torso. [65] To 

further adjust the diffraction of sound energy, the torso is covered with a damping 

fabric. Two microphones are placed at the entrances to the ear canals to acquire 

the sound signals where the result provides separate spatial information from both 

ears. The microphones are Briiel and Kjaer Type 4189 lA" prepolarized free-field 

microphones with a nominal sensitivity of 50mV/Pa., (individually calibrated). As 

the HATS device includes the affects of the torso, head, and pinna on a sound 

signal, the resultant information gives the user an accurate three dimensional 

recording. [65] A HATS device is used to simulate the binaural recording of 

information. This includes the added influence of the upper torso on signals 

travelling to the ears, providing the best acoustic approximation of the human 

body available. To further simulate the effects of the ear, head and torso transfer 
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functions are added to the recorded signals to account for these reflections when 

the signals are analyzed. Binaural information was required as some metrics being 

studied require binaural signals to calculate the loudness levels; particularly the 

time-varying loudness metrics. In this case, the DIN 45631/A1 time-varying 

loudness model was the only metric using the binaural response. For the 

remaining measurements, the binaural head served as an added measurement for 

quality assurance purposes. 

A third signal was recorded with an external microphone mounted on a 

tripod. Again a Briiel and Kjaer Type 4189 !4" prepolarized free-field microphone 

was used here as it is capable of a broad measurement spectrum and was designed 

for high precision. [66] With a dynamic range of 14.6 dB to 146 dB and a 

frequency range from 6.3 Hz to 20 kHz, the microphone was fully capable of 

recording the equal loudness contours from 20 to 100 phons. This signal was used 

as the monaural input for the remaining loudness metrics. All of the microphones 

remained in the same locations for the duration of the experiments to ensure 

consistency. 

To calibrate the microphones, a Briiel and Kjaer Pistonphone Type 4228 

calibrator was used at the beginning and end of each testing run. [67] This was 

done as a constant check to ensure that there were no problems with the 

microphones being used. Over the three month testing period, the left and right 

ear had an average gain value of 1.03 each, while the external microphone had an 

average gain of 1.04. These values were consistently observed and only one data 

point was particularly off the norm, (See point 04/08/09 in Figure 4.5). However, 
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this point was calibrated at the end of a test run as a check and most likely 

resulted from user error when calibrating. As the calibration for this data point 

was done after testing had been completed for that day, the gain value of 1.07 was 

not used to record any test results. Since the gain values returned to the "normal-

range" the following morning, no errors were associated with this occurrence. See 

Appendix B for a complete table of the collected gain values. 
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Figure 4.5 - August calibration trends 

4.2.2 Experimental Design and Preparation 

As with the direct feed method, PULSE LabShop was used for the signal 

generation and acquisition. The majority of the settings remained the same such 

as those for the FFT and CPB. However, for the semi-anechoic approach, there 

were now three separate inputs which had to be set up. Each signal was collected 

as both a FFT and a CPB, while the signal itself was recorded as a .REC file for 

insertion into the time-varying loudness metrics. 
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For the set-up, the measuring devices used in this experiment were placed 

at a distance of one metre, symmetrically on either side of the sound source. On 

one side sat the single external microphone transducer mounted on a tripod at 1.5 

metres. On the other side sat Head and Torso Simulator with the ears levelled to 

1.5 metres above the floor for consistency. This assembly was centered in the 

semi-anechoic room and remained essentially the same for all of the 

measurements taken, see Figure 4.6. The only change to the set up was the 

replacement of the OmniSource speaker with the larger OmniPower speaker for 

the higher amplitude measurements, see Figure 4.7 and 4.8. 
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Figure 4.6 - Semi-anechoic room layout 
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Figure 4.7 - Binaural head, OmniSource sound source and external microphone 

Figure 4.8 - Binaural head and OmniPower sound source 

Outside of the semi-anechoic room, the acquisition equipment is separated 

from the testing environment. The equipment remains connected to the 
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measurement devices through insulated 8 inch instrumentation sleeves, (seen in 

Figure 4.7). The signal path is as follows: the B-Frame produces the generated 

pure tones and feeds the signal into the signal amplifier. The amplified tone is 

then fed to the sound source via a speaker cable through the insulated sleeve. The 

recorded signal from microphones travels back through the wall and into the input 

BNC connections of the B-Frame and into the PC via an Ethernet cable. The 

exterior setup can be seen in Figure 4.9. 

Figure 4.9 - Exterior acquisition equipment set-up 

4.2.3 Environment Considerations 

When recording acoustic signals for laboratory use, one must consider the 

effects of the environment on the acquired data. Therefore, as a daily check prior 

to collecting data the temperature and humidity of the semi-anechoic room was 

recorded. Measurements were made via the Kestrel® 4000 Pocket Wind Meter; 

64 



recording both the air temperature and the relative humidity. From the 

measurement results, it was confirmed that the environmental conditions were in 

fact favourable for experimental readings; the microphones used had an operating 

temperature of -30°C to +150°C and an operating humidity range of 0 to 100% 

(without condensation). The average values recorded during the testing times 

were a room temperature of 22.3°C and an absolute humidity of 47.2%. 

Background noise is also an issue when targeting values in the low 

amplitude regions for acoustical tests. Therefore, to ensure the collection of the 

most accurate data, measurement times were staggered to work around other 

school activities that may negatively influence the results. Semi-anechoic tests 

were run only at times when the laboratory was free of students, and the traffic 

entering and exiting the building was minimal; reducing the amount of doors 

opening and closing, a common low frequency noise source. Therefore, the 

majority of the data gathered was collected between the hours of 10:00 P.M. and 

6:00 A.M. when background noises levels were at their lowest. 

Even with the staggered timeslot, a substantial amount of background 

noise was still present in the semi-anechoic room; values were generally recorded 

with excessive acoustic information located below the 100 Hz cut-off frequency 

as established by the wedge depth mentioned above, (see Figure 4.10). Therefore, 

to solve this problem, a weighting function was applied below 100 Hz reducing 

the high peak to more acceptable levels. This way the majority of the unwanted 

data was removed, permitting lower calculated loudness levels. This function 
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substantially reduced the background noise levels, allowing for more accurate 

'measured' values to be collected, as can be seen in Figure 4.11. 
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Figure 4.11 - Weighted FFT of background noise present in semi-anechoic room 
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After reducing the sound pressure levels below 100 Hz, the background 

noise was still measured at around 18-20 dB, creating a lower limit for what 

loudness levels could be recorded. This added another restriction to the areas of 

the equal loudness contours that could be explored using the semi-anechoic room 

process; the limitations now being a lower cut-off of frequency 100 Hz, a speaker 

dependant upper amplitude cut-off, and lower cut-off amplitude of 20 dB. 

4.2.4 Testing Procedure 

The procedure used for collecting loudness information in the semi-

anechoic room was essentially the same as that of the direct feed method. Only a 

few small steps were added to permit boosting the signal through an amplifier and 

running daily calibrations and environment checks for quality control. The 

Procedure was as follows: 

4.2.4a - Stationary Loudness Procedure 
1) Calibrate all three microphones at the start of each testing run. 

2) Collecting semi-anechoic room temperature and humidity levels. 

3) Adjust the amplifier until pure tone levels are within the target range 
without distorting the signal. 

4) Record a pure tone for the target frequency value. 

5) For all three models, the external microphone information was used for 
targeting the loudness contours. This signal did not require a transfer 
function to account for the head and torso effects, and presented a 
monaural signal that the Zwicker models required. Each individual 
loudness model had a particular bracketing approach: 

A. DIN 45631 
Judging from the loudness level indicated by PULSE LabShop, adjust 
the voltage level accordingly until the desired loudness level is met. 
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B. IS0 532B 
Copy the SPL data from the CPB of PULSE LabShop and paste it into 
the EXCEL formatting macro. After formatting (which collects the 
data from 25 Hz to 12.5 kHz), proceed to calculating the ISO 532B 
loudness level and if necessary go back to PULSE to adjust the voltage 
level accordingly. 

C. ANSI S3.4:2007 
Copy the SPL data from the CPB of PULSE LabShop and paste it into 
the EXCEL formatting macro. Paste the resulting formatted data (from 
50 Hz to 16 kHz), into a text file (.TXT) and run the LOUD2006A.exe 
program. If necessary based on the resultant loudness value, go back to 
PULSE and adjust the voltage level accordingly. 

6) Once the target loudness level has been located, save the CPB and FFT 
data into PULSE and record the SPL and loudness level into an EXCEL 
file for plotting. 

7) Save the pure tone recorded file (REC) for implementation into the time 
varying loudness models. 

8) Continue the process until all possible loudness contours are derived to be 
compared against the reference contours of ISO 226:2003. 

9) Calibrate all three microphones again to ensure there are no problems with 
the recorded results. 

4.2.4b - Time-Varying Loudness Procedure 

The time-varying loudness procedure remains essentially the same 

as mentioned in the design. One step was added to the process concerning 

the background noise. When implementing the time-varying loudness 

models from the anechoic results, the weighting function indicated above 

only applied to the post process of the recorded signals. Therefore, when 

the REC file was made for each of the generated tones, this weighting was 

not included. To remove this noise, a high pass filter was included into all 

of the tones during the Sound Quality modifications and the procedure 

then carried on as before. Although all of the software settings remained 

essentially the same, the environment where the recordings were made 
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warranted some unique considerations. These steps are outlined as 

follows: 

1) Open the pure tone REC file in PULSE time-edit and cut the sample size 
down to 1 second. 

2) Import the binaural sampled tone into PULSE Sound Quality using the 
HATS automatic transfer function to account for head and torso 
interaction. 

3) Apply a ramp-up filter to the tone to remove the "pop" from the 
calculations. 

4) Apply a High Pass filter to remove the content below 100 Hz. 

5) From here the two methods take on separate approaches: 

A. DIN45631/A1 
i. Record resulting binaural loudness level according to DIN 

45631/A1 DRAFT into an EXCEL sheet for plot. 

B. ANSI Time-Varying Loudness (TVL) 
i. Export the resulting signal as a wave audio file (.WAV) 

ii. Import the audio file into the included resampling editor 
from the TVL model, (resamples the WAV file to 32 kHz). 

iii. Import the adjusted WAV file into TVL.EXE and calibrate 
to a full scale signal of 100 dB, (or 50 dB if targeting levels 
below 50 dB). 

iv. Scale down the calibrated signal to the desired SPL values 
and record the short term average level into EXCEL for 
plotting. 

6) This procedure is continued until all of the applicable loudness levels are 
derived and plot on a single graph. The resultant curves should resemble 
straight lines. 
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V. ANALYSIS OF DATA AND OBSERVED RESULTS 

The results realized using the procedure described in the previous chapter are 

discussed in regard to the performance observations. The intention here is to provide an 

in-depth comparison of the various loudness metrics studied and to criticise each on their 

performance when compared against the standardized set of reference curves of the ISO 

226:2003 document. As in the order of collected data, the direct feed derivations will be 

compared first. This will include plots of both the stationary and non-stationary loudness 

models for comparison, plot on a common graph with the reference contours. Lastly, the 

verification plots as recorded in the semi-anechoic room will be analyzed and compared 

to the results of the direct feed approach. This will be done in order to check the 

repeatability of the experiment while confirming the initial results. The comparisons of 

these plots will be followed by a discussion prior to any conclusions. 

5.1 Direct Feed Results 

A direct feed approach was chosen as an initial investigation since it was 

determined to be the best approach for gathering a wide range of data while removing the 

risk of extraneous noise sources contaminating the raw data. The performance of three 

stationary loudness models and two non-stationary loudness models is compared against 

the reference contours chosen at the beginning of this study. When arranging the order 

for the comparison, the stationary models will be compared according to the date they 

were accepted as this provides the reader with a perspective on the improvements 

resulting from research conducted over the years. The direct feed time-varying loudness 

models will then be compared to their stationary predecessors on performance. Recall 
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that it is expected that they should produce identical results since the time-varying 

calculations were derived as a result of the stationary methods. 

5.1.1 ISO 532B (1975) 

As one of the first standardized stationary loudness models accepted, the 

ISO 532B has a long history of use and subsequently has roots in all of the 

loudness models which followed thereafter. Using 1/3 octave inputs from 25 Hz 

to 12.5 kHz, the equal loudness contours were derived and plotted against the ISO 

226:2003. Figure 5.1 illustrates the contours as predicted by the ISO 532B for 

direct feed pure tones. 
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Figure 5.1 - ISO 532B compared against the ISO 226:2003 reference 

From the figure it is clearly evident that the 1975 model for stationary 

loudness was not intended to predict contours of this shape. The loudness metric 
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predicts trends of a very shallow slope and does not acknowledge the added hump 

above 1 kHz. Below 300 Hz, the ISO 532B model takes on an interesting reaction 

to the tones, wavering roughly with plateaus and steep jumps in loudness. 

Hellman in 2007 explains the jump in data as a result of using a set of tabulated 

values rather than equations. [22] This wavering makes the application of the ISO 

532B model unsuitable as an accurate prediction model; especially below 300 Hz 

for any level of loudness. 

As mentioned previously, the loudness conversion used by the ISO 

loudness model is not correct for levels below 40 phons. This is again quite 

evident in the figure as the two lowest loudness curves, the 20 and the 30 phon, 

exhibit greater deviation as the levels decrease. Thus, below a loudness level of 

40 phons, the ISO 532B document should not be used. 

It is important to point out that if one were to compare the ISO 532B 

loudness model to the equal loudness contours of 1987, it is evident that for the 

time it was developed, the model predicted the contours very well above 300 Hz 

and 40 phons (see Figure 5.2). As mentioned previously, the 1987 version of the 

contours were a lot shallower with distinctly less curvature in the mid-frequency 

range; shapes that the 1975 version of Zwicker's method was able to follow 

nicely. Therefore, prior to the update, the ISO 532B document was an accurate 

model based on the current information available at that time, but there was an 

obvious need for improvements below 300 Hz. 
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Figure 5.2 - ISO 532B compared against ISO 226:1987 contours 

To quantify the relationship between the reference loudness contours of 

ISO 226:2003 and the ISO 532B model, correlation coefficients were calculated 

for each contour line. Table 5.1 is a compilation of all the correlation coefficients 

for both the 2003 equal loudness contours and the 1987 version for comparison. 

Table 5.1 - Overall correlation coefficients for comparison between ISO 532B and 
ISO 226 equal loudness contours 

Phon Contour 

ISO vs. 
IS0226:1987 

ISO vs. 
ISO226:2003 

10 

„ 

__ 

20 

0.973 

30 

0.949 

40 

0.907 

50 

0.838 

60 

0.763 

70 

0.681 

80 

0.638 

90 

0.801 

100 

0.819 
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The correlation coefficients determine how well predicted values 

approximated the actual or past derived values. A value of 1 indicates a perfect 

match while a value of 0 would indicate no relationship at all. The correlation 

coefficients determined here demonstrate how well the ISO 532B model predicts 

the contour shapes of the ISO 226 equal loudness contours. From the values of 

Table 5.1, it is interesting to note the specific trends present upon a closer 

inspection. For instance, a common occurrence between each set of the reference 

contours is the fact that, as levels increase in loudness, the slope of the low 

frequency portions of the curves tend to become slightly shallower. While the ISO 

532B model tends to get shallow as well, it does so more rapidly; almost to the 

point where it seems to progress horizontally. This would partially explain why 

the correlation coefficients progressively diminish with increasing loudness 

levels. Secondly, even though the predicted loudness contours from the ISO 532B 

appear to be better correlated with the 1987 version of the ISO 226 contours, the 

overall trends of decreasing and increasing slopes better match with the revised 

set of contours. For instance, while the 1987 version of the contours level off at 

around 400 Hz, and at times have a positive slope, the ISO 532B model is still 

sloping slightly negative which better corresponds to the more recently derived 

trends of the ISO 226:2003. These trends help explain the better correlation 

between the newer reference curves, even though the previous model appears to 

be a better match. Based on these observations, comparisons cannot be made 

using a visual comparison or correlation coefficient alone. Both of these 

observations will be used together to determine the best performance overall. 
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5.1.2 DIN 45631 (1991) 

The DIN 45631 stationary loudness model is essentially an updated 

version of the ISO 532B method indicated above. As such, it was expected to 

perform at least as good, if not better than its predecessor. Figure 5.3 is a plot of 

the experimental results generating the predicted equal loudness contours 

according to the DIN 45631 stationary loudness model. 

DIN 4S631 vs. ISO 226:2003 
140 

120 

«g 100 

> 
ft) 

3 

80 

2 60 
a. 
TS 
C 
O 40 
V) 

JO 

10 1G0 1000 
frequency [Hz] 

10000 

Figure 5.3 - DIN 45631 compared against the ISO 226:2003 reference 

At first glance it is evident that this model is a large improvement over the 

ISO 532B version. The low frequency wavering has been, for the most part, 

completely corrected and the smooth curves retain their slope at the higher 

amplitudes as well; an area where the previous model levelled off. The DIN 

4563 l 's improved loudness conversion enables the lowest contours to correlate 
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well with the expected values at the 1 kHz point. From the modification, the DIN 

model is also capable of determining loudness levels well below its predecessor 

version, permitting the derivation of the 10 phon line shown here as the lowest 

contour. Recall that the ISO 532B was only capable of prediction loudness levels 

down to a lowest level of 16.8 phons due to the programs starting value of 0.2 

sones. In the update, however, there was still no improvement for the loudness 

'bump' after 1 kHz, and although the DIN version of the Zwicker method is 

greatly improved over the ISO 532B version, the contours are still much too 

shallow for the ISO 226:2003 data set. 

As with the previous Zwicker model, the DIN 45631 metric was created to 

approximate the 1987 version of the equal loudness contours. Therefore it is no 

surprise that it performs better to the previous standard as seen in Figure 5.4. 

Here it clearly visible how much the improvements to the Zwicker 

approach resulted in a better curve match, particularly in the lower loudness 

regions. The DIN 45631 model proved to be an excellent approximation of the 

previous set of contours. Where the ISO 226:1987 contours tend to plateau in the 

400 Hz range, the DIN model still did not approximate the dip well, but as seen in 

Figure 5.3 the model accurately follows the trends of recent experimental data in 

this range. 
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Figure 5.4 - DIN 45631 compared against the ISO 226:1987 reference 

When comparing the overall correlation coefficients of the DIN 45631, it 

is apparent that as with the ISO 532B model, the contours better correlate to the 

updated reference values, although the difference between the two coefficients is 

not as large. 

Table 5.2 - Overall correlation coefficients of DIN 45631 

Phon Contour 

DIN vs. 
IS0226:1987 

DIN vs. 
ISO226:2003 

10 20 30 

0.966 

40 

0.951 

50 

0.933 

60 

0.913 

70 

0.900 

80 

0.884 

90 

0.946 

100 

0.805 

The DIN model has very high correlation values, particularly for the lower 

loudness contours for both reference curve data sets. Once again it is interesting to 

note that visually the DIN 45631 model is almost an exact match to the ISO 
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226:1987 contours below 20 phons yet the same correlation coefficient value is 

calculated for the 2003 contours. The identical calculated value is of course a 

coincidence based on the slope trends present in the model, as opposed to the 

actual performance of the predictor. Again, this shows why both forms of 

comparison are needed to make an informed decision. 

5.1.3 ANSI S3.4:2007 

As indicated previously, the ANSI S3.4:2007 stationary loudness model 

was the only metric studied that was updated to account for recent changes to the 

ISO 226:2003 document. 

When examining the performance of the ANSI standard, two separate 

methods were applied. For the purpose of the comparison, the pure tone 

specification method using the LOUD2006A.EXE software will henceforth be 

labelled as the "Program" approach and the 1/3 octave input method will be 

labelled as the "Direct" approach. Using these labels, each input method will have 

individual comparisons against the ISO 226 reference contours before being 

compared against each other. The separate graphs were generated in order to 

reduce confusion in the plots. 

Figure 5.5 represents the results of the Program approach for the ANSI 

stationary loudness model. Looking at the results, the ANSI S3.4:2007 equal 

loudness contours span the entire frequency range of the ISO 226 reference 

contours, (from 20 Hz up to 12.5 kHz). 
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Figure 5.5 - LOUD2006A.exe predicted equal loudness contour comparison. 

From Figure 5.5 it can be seen how well the Program method correlates 

with the equal loudness contours of ISO 226:2003. This is particularly true in the 

low frequency, high amplitude regions of the plot. For the 70 phon equal loudness 

contour, the low frequency data is essentially on top of the target values. 

Although the derived contours from the program seem to acknowledge the bump 

at 1 kHz, they still do not follow it completely at the higher amplitudes. One 

important trend to note is that the ANSI S3.4:2007 model appears to be the only 

model that is able to predict the high frequency drop-off after 10 kHz. Although 

the drop is only present below loudness levels of 30 phons, all other models 

examined thus far predicted concave, upward slopes in this region; an area where 

even the 1987 version of the equal loudness contours sloped downward. It is then 
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possible to conclude that the ANSI S3.4:2007 model appears to be the best 

performing model above 5 kHz. 

The alternative input approach, the 1/3 octave inputs from 50 Hz to 16 

kHz, substantially restricts the application of this model in the low frequency 

regions, (the Program method was applicable down to 20 Hz - a reduction of four 

1/3 octave bands). As this approach used the 1/3 octave information from PULSE 

as its input, it was determined that the Direct approach was the most appropriate 

input method for this comparison. The Direct method relies on the experimental 

data rather than the internal equations within the LOUD2006A.exe software. 

Therefore, it results in a more "accurate" representation of the ANSI S3.4:2007 

predicted contours as it would be used in the real world applications. As a result, 

Figure 5.6 is the experimental derivation of the Direct approach which will be 

used for this comparison. 
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Figure 5.6 - ANSI S3.4:2007 as derived from 1/3 Octave inputs. 

Aside from the restriction in applicability, the Direct approach appears to 

drop in performance with increasing frequency values. This deviation from the 

Program method reaches values of 4 dB in the 1 kHz range and can differ by 

levels that are up to 6 dB lower than the Program results at the highest 

frequencies. The effect is particularly troublesome on the performance in the 1 

kHz-bump region. In this area, the Program results were already below the 

reference values. The contours visible from the plot in Figure 5.6 reflect a 

substantial drop above 1 kHz, almost to a point where the contour shapes seem to 

line up with the reference curve below the target. Aside from the lower than 

expected values, the overall trends remain convincingly close to the reference 

contours which will result in reassuring correlation coefficient values. 
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To compare the input methods directly, Figure 5.7 was included showing 

the discrepancies between the two. 
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Figure 5.7 - ANSI Program method compared against the Direct method. 

From the figure, the difference between the methods is easily observed. 

While the response initially starts at common values, as the frequency of the tones 

is increased, the mid-range loudness levels between 30 phons and 80 phons 

diverge in performance; with differences exceeding 6 dB in the worst cases. As 

seen in Figure 5.6, this deviation results in poor curve matching at the higher 

frequency levels for the Direct approach. Quantifying this effect, Table 5.3 

includes all of the overall correlation coefficient values for the ANSI S3.4:2007 

model. The contours are only compared to the reference contours of ISO 

226:2003 as the model was never intended to compare to the 1987 version of the 

reference standard. 
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Table 5.3 - Overall correlation coefficients of ANSI S3.4:2007 

Phon Contour 

Program vs. 
ISO226:2003 
Direct vs. 
ISO226:2003 

10 

0.999 

0.999 

20 

0.997 

0.998 

30 

0.997 

0.996 

40 

0.997 

0.991 

50 

0.996 

0.983 

60 

0.992 

0.969 

70 

0.985 

0.947 

80 

0.967 

0.911 

90 

0.914 

0.795 

100 

0.809 

0.478 

It is easy to see how even though the contours of the Direct approach can 

deviate substantially from the target values, the general shape of the predicted 

loudness results in correlation coefficient values above 0.9 for essentially all of 

the contours. Both methods indicated better correlation values than any of the 

loudness prediction methods examined so far. 

With the equal loudness contours predicted from the various stationary 

loudness metrics available, the analysis techniques provided a platform on which 

to extend this investigation using the available time-varying loudness metrics 

based on the stationary signals used above. The first of which was Amendment 1 

for the DIN 45631 stationary loudness model, (DIN 45631/A1). 

5.1.4 DIN 45631 / Amendment 1 (2007) 

Due to the number of programs and data conversions involved, a different 

approach was used to compare the time-varying models. Here, the pure tones used 

to derive the stationary DIN 45631 equal loudness contours were inserted into the 

time-varying loudness model. Given this, it is expected that similar conclusions 

will be realized as before. Figure 5.8 is the resulting plot from this procedure. If 

the time-varying loudness model had in fact given the same results, the loudness 

levels would have resulted in a straight horizontal line of constant loudness levels 
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for each centre frequency. The results indicated by Figure 5.8 signify that the two 

models are very close in their predictions. 

DIN 45631/Al - Responseto Pure Tones 
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Figure 5.8 - DIN 45631/Al response to stationary signals. 

From the figure, the two metrics produce essentially identical results for 

pure tones above 200 Hz. Below this point, only minor fluctuations are observed 

deviating by no more than 3 phons at the maximum response. This demonstrates 

that the amendment for time-varying loudness has essentially the same 

performance level as the stationary DIN 45631 model. The performance is 

slightly reduced in the lower frequency regions, but the range of values is only 

plus or minus three phons. Extrapolating from these results, it is expected that the 

DIN 45631/Al would have a set of equal loudness contours nearly identical to 

those determined above; a good match for the 1987 reference contours but too 

shallow for the new ISO 226:2003 data set. 
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5.1.5 Glasberg and Moore's Time-Varying Loudness Model (2002) 

The second time-varying loudness model studied was the Glasberg and 

Moore Time-Varying Loudness (TVL) model available from the University of 

Cambridge's Auditor Perception Group website. [19] Provided as a set of 

executable files, the application of this standard was more involved than that of 

the DIN time-varying loudness model. Again, pure tones were recorded in 

PULSE LabShop and trimmed down to size using the time-edit software. The 

signals were then filtered to reduce the 'pop' sensation using Brtiel and Kjaer's 

Sound Quality software and saved as a 16-bit WAVE file. The WAVE signals 

generated were re-sampled to 32 kHz and calibrated to a full scale sinusoid of 

either 100 dB or 50 dB depending on the target SPL. Finally, the signals were 

scaled down to the appropriate values derived above to calculate the loudness. 

The target sound pressure levels used for the scaling were the same levels 

predicted by the stationary loudness software. 
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Figure 5.9 - Glasberg and Moore's TVL.exe software response to stationary signals. 

Figure 5.9 illustrates the output of the TVL.exe program to the steady 

pure tones according to ANSI S3.4:2007. Although the contours resemble the 

straight lines expected, there are specific areas where the two models do not 

predict the same values; most notably the area below 63 Hz for almost every 

loudness contour. It appears that for areas which the ANSI S3.4:2007 model 

predicts a loudness of 10-20 phons the time-vary loudness model actually predicts 

a tone much louder with one instance as much as a 14 phon deviation from the 

expected. Above the 30 phon level, the TVL.exe model under predicts the 

loudness below 50 Hz resulting in lower levels than expected. It is not clear what 

might cause these low frequency discrepancies as the model seems to perform 

quite well above 200 Hz. 
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In the frequency range from 1 kHz to 2 kHz a reoccurring bump is 

predicted by the time-varying model, and again a smaller bump from 4 kHz to 8 

kHz. These boosts in loudness values would actually improve the stationary 

model as it was at these points in the contours where the ANSI S3.4 metric was 

too low for a good correlation. It is possible that the TVL model improved on the 

stationary metric in this particular area. Although the extent of the improvements 

was not reported by the software authors, changes would account for 

discrepancies. 

Overall, the TVL model produced by Glasberg and Moore produced a 

similar result to that of the preceding stationary loudness model. The time-varying 

model does appear to have specific local differences when compared to the 

previous model; in areas not only where the previous model needed 

improvements, but also where the stationary metric excelled. 

5.2 Semi-Anechoic Results 
To verify the data derived in the direct feed results, experiments were conducted 

using the semi-anechoic chamber and pure tones produced using a sound source. This 

experimental set-up was intended to produce 'real-world' samples of the stationary 

signals which included the effects of moderate background noise and the simulated 

collection of acoustic energy via a microphone. Tests were conducted at late hours, using 

every precaution necessary to ensure the acquisition of the best results. Three samples of 

each tone were recorded to ensure the repeatability of this experiment. 

As mentioned previously, the semi-anechoic room has a lower cut-off frequency 

of approximately 100 Hz and an ambient noise level of approximately 18 dB. These 
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limitations will therefore be present for all of the contours collected. The following are 

the averaged results of this secondary study intended to provide a thorough comparison 

of the various standardized metrics available. The purpose of the plots is to prove the 

repeatability and accuracy of the initial direct feed results. Therefore, only the direct feed 

and semi-anechoic data sets will be presented on the common plots; not the reference 

curve comparisons from the previous sections. For a complete collection of the reference 

plot comparisons, please refer to the Appendix D and E of this thesis. 

5.2.1 ISO 532B (1975) 

Using the approach outlined in the experimental details, Figure 5.10 

illustrates the semi-anechoic comparison as predicted by ISO 532B. The plot is 

provided using consistent scaling from the reference contour data set to facilitate 

easier comparisons between the two. 
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Figure 5.10 - Direct feed versus semi-anechoic data for ISO 532B 

From the figure, the semi-anechoic data appears to mimic the direct feed 

approach quite well. For the 50 phon to 80 phon contours, the match between the 

recorded signals and the direct results is practically identical. Below this point 

some deviations are present where the anechoic approach seems to prematurely 

predict the target loudness level. This was however expected due to the influence 

of the ambient sound pressure levels in the semi-anechoic room. 

5.2.2 DIN 45631 (1991) 

As with the ISO 532B, the DIN 45631 contours predicted during the direct 

feed approach are reinforced from the semi-anechoic results. Once again, above 

the 40 phon contour line the results of Figure 5.11 indicate a near exact match. 
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Figure 5.11 - Semi-anechoic contours of the DIN 45631 stationary loudness model. 

The same trends appear with very good correlation above 50 phons while 

separating steadily as levels decrease. Note that for the DIN model, the anechoic 

results of the 20 phon line were partially obtained but severely affected by the 

ambient noise above 1 kHz. 

5.2.3 ANSI S3.4:2007 

The ANSI S3.4:2007 model appears to be the most heavily affected model 

by the presence of ambient noise. From Figure 5.12, it can be seen that contours 

as high as the 50 phon line are affected by the added background information. 

Meanwhile, a similar trend remains where decreasing loudness levels result in 

increasing deviations, particularly at the lower frequency levels. The 30 phon 
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contour appears to be affected the most, dropping down to levels previously 

predicted by the 20 phon line. 
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Figure 5.12 - ANSI S3.4:2007 direct versus anechoic comparison. 

From these results, the ANSI S3.4:2007 stationary loudness model is very 

sensitive to the influence of background noise. Strangely, in all three models the 

ambient influence appears to not affect the 2 kHz to 5 kHz range where the dip is 

present in the loudness models. It is not clear what may have caused this as the 

ambient SPLs were approximately consistent at -13 dB for all frequencies above 

500 Hz. 
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5.2.4 DIN 45631/Amendment 1 (2007) 

The response of the time-varying loudness models to the ambient noise 

was different than that of the stationary models. The DIN 45631 amendment as 

shown in Figure 5.13 is a good example of this. 
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Figure 5.13 - DIN 45631/A 1 influence from ambient noise. 

As the DIN time-varying loudness model performed well in the direct feed 

trials, it was surprising to notice the fluctuations present during the same 

procedure using the semi-anechoic information. In areas where the amendment 

provided the same results as the stationary model, the effects of ambient noise 

caused the values to vary with some notable trends and frequency patterns. For 

pure tones at 1 kHz and 5 kHz, the non-stationary model produced peaks which 

are not explained in the either of the stationary model comparisons (neither the 

direct nor anechoic plots). At the higher levels, Figure 5.11 indicated identical 
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results between the two and no influence from the ambient levels as indicated 

here. 

Although the overall result is consistent with the expected response, the 

trends present indicate a more thorough investigation is necessary. As this 

research project focused on the stationary loudness metrics, a more thorough 

analysis was beyond the scope of this study and should be considered as an 

examination goal for future work. 

5.2.5 Glasberg and Moore's Time-Varying Loudness Model (2002) 

The last comparison performed provided similar results. The Glasberg and 

Moore Time-Varying Loudness model appears to mimic the previously derived 

relationship, but once again, new trends and patterns are present. Note that the 

applicable range of the TVL model was significantly reduced. For the most 

accurate results, the model required full scale sinusoids recorded at 100 dB based 

on the procedure included with the program. This was only possible between 100 

Hz and 1.6 kHz using the available sound source without risking damage to the 

equipment. 
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Figure 5.14 - TVL.exe model response to semi-anechoic data. 

From the data collected, Figure 5.14 illustrates the TVL response to pure 

tones as recorded in a semi-anechoic environment. As with the DIN time-varying 

model, unexplained fluctuations are present where none existed before. Unlike the 

DIN amendment, this model indicated a loudness jump in values at 400 Hz. 

Overall, however, the data correlates well with the previous observations, again 

though with unexplainable discrepancies. 
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VI. DISCUSSION 

From the analysis described in the previous chapter, a summary of the 

observations is described here, as well as a critical comparison between the loudness 

models. These discussions will take into account the ease of use of the models, as well as 

any apparent limitations before any conclusions are made. 

6.1 Performance Summary 
Based on the analysis of the various models compared, it is clear that performance 

differences exist for all of the standardized metrics examined. As expected, the model 

with the most discrepancies was the outdated ISO 532B. While this model was the oldest 

metric compared, it is also still a current and much used loudness model standard. When 

compared to the ISO 226:2003 experimental data, the ISO 532B model did not correlate 

well with the target values, thus indicating a poor performance. 

The improved Zwicker method as given by the DIN 45631 does indeed improve 

on the performance in the low frequency response. Being another older loudness model, 

the DIN method for calculating loudness fails to approximate the trends present in the 

new target loudness data, and therefore, should be updated. 

Lastly, the performance of the ANSI S3.4:2007 metric can be described as both 

good and bad. On the good side, the Program approach of the model gives an excellent 

correlation to the reference contours of ISO 226:2003. However, when the recorded data 

is used in place of the 'specified' tones in the program, the observed performance 

decreases in the higher frequency range. This decrease extends to a point where the 
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plotted values predicted are 10 dB below the expected response. While the slopes of the 

contours appear to better correlate with the reference contours, this drop causes a 

misrepresentation of the perceived loudness. 

6.2 Ease of use 
The ease of use of an engineering tool is almost as important as its performance. 

A model that is too complex may be subject to user error while an over simplified method 

may be limited in its application. Therefore, when comparing the various loudness 

models, usability and the manner in which data could be entered should be considered. 

The ISO 532B was a very simple model to use once the program code was 

available. Originally written in BASIC code, the program was first converted into a more 

usable format such as a Visual Basic code in Microsoft Excel, as was done by Defoe 

(2007). [9] Once in this format, the use of the model was easy and straight forward, 

provided that the 1/3 octave data was available. Simply imputing the 28 third-octave data 

points from 25 Hz to 12.5 kHz into the model and specifying the recorded field type 

provided a corresponding loudness level based on the original Zwicker method. 

The DIN 45631 stationary loudness model was a little different. As the standard 

was written in German with no translation available, it was not possible to follow exactly 

what process the standard was following. From the inclusive program code, it is apparent 

that the application of the model appears to be almost identical to the method above with 

only the tabular values altered, thus improving the overall performance of the model. As 

before, the input variables continue to be the 28 third-octave band elements and the 

specification of the type of sound field. 
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The last model analysed was the ANSI S3.4:2007 model for stationary loudness. 

This program included the most options regarding types of inputs and sound field 

settings. By allowing the input data to be entered as either 1/3 octave information or 

instead by specifying the spectral elements individually, the ANSI approach is the most 

widely applicable model. While providing the user with more options for measurement 

analysis, this model can be tailored to a variety of applications with a simple selection in 

the software. Provided the user has access to the exact 'broken-down' spectral 

information of the stationary signal being analyzed, the model portrays loudness levels in 

good agreement with the reference contours of ISO 226:2003. However, as not many 

users would have access to this data, the alternative 1/3 octave inputs provided an 

accurate approximation, particularly well in the low frequency regions while 

overestimating high frequency content. 

6.3 Limitations 

While all of the loudness models appeared to be capable of handling both free-

field and diffuse-field listening conditions, the applicable frequency ranges vary with 

each individual metric. 

From the experimental results, it was determined that the ISO 532B was the most 

heavily restricted model. From the program starting point, the lowest loudness value 

obtainable is 0.2 sones, or approximately 16.8 phons according to the loudness 

conversion factor used. This lower limitation effetely reduces the number of contours that 

could be derived using this model. Secondly the low frequency performance of the ISO 

532B severely impacted the applicability of this model below 300 Hz. Below this point, 

misleading values could result in erroneous predictions in loudness. 

97 



The DIN 45631 model improved on both of the limitations of the ISO 532B 

metric. Using a corrected loudness conversion factor and an improved procedure below 

300 Hz, the DIN loudness model is applicable over the entire hearing spectrum. 

The Program approach of the ANSI S3.4:2007 model had the largest applicable 

frequency range of the metrics studied. By predicting loudness levels from 20 Hz up to 

16 kHz, this particular approach has a slightly wider scope than the previous Zwicker 

methods. When the Direct approach is used, however, the applicable frequency range is 

strictly limited to a range from 50 Hz to 16 kHz. This produces a much more restricted 

area when compared to the procedures above. Based on the 1/3 octave band inputs, the 

DIN 45631 model appears to be the least restricted model when predicting loudness. 

6.4 Uncertainty Analysis 
In order to ensure the accuracy of the results above, a full uncertainty analysis 

was carried out on the calculation procedure and the equipment used. Adhering to a very 

detailed approach taken by Defoe (2007), this analysis will account for the random 

uncertainties associated with the testing equipment and the systematic uncertainties from 

the resulting experimental data. As Defoe's project dealt with targeting loudness levels as 

well, the uncertainty analysis conducted by the author was followed almost identically, 

resulting in similar results. For the complete procedure, please refer to Defoe's 

description in [9]. 

The approach is based on the theory of error propagation as presented in Wheeler 

and Ganji's book in [49]. The total uncertainty associated with a measurement set is a 

combination of the propagated errors which result from each element used to derive the 

data. When considering most engineering related uncertainty values, these elements may 
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be grouped into two separate categories; the systematic uncertainty (uR) related to the 

measurement process, and the random uncertainty (pR) involved in each trial set. This 

thesis uses Quinlan's assumption that the various loudness models may be treated as 

simple mathematical functions with one output value (loudness level) resulting from the 

combination of several variables (band pressures). [34]. Using these ideals and the 

process outlined by Defoe, a complete uncertainty analysis was carried out resulting in 

the error bar plots of Appendix F. As Defoe pointed out, the uncertainty associated with 

direct feed data is essentially insignificant due to the procedure taken and the lack of 

physical measurements. Therefore, an uncertainty analysis was only carried out for the 

semi-anechoic room data, which is discussed as follows. 

6.4.1 Discussion of Overall Uncertainty Results 

The uncertainty of the various equal loudness contours was heavily dependent on 

the sound pressure level and frequency. This was largely due to the sensitivity of the 

various loudness metrics to small variations in sound pressure level; an effect which 

worsened with decreasing levels of sound pressure. To illustrate this effect, Figure 6.1 

represents the sensitivity of the DIN 45631 loudness calculations when pure tones are 

increased by only 1 dB. With unit Sone/Pa, the trends show that for low pressure, high 

frequency tones, the loudness calculation is very sensitive to the minor fluctuations. For 

convenience, the trends investigated were generalized into 10 dB increments. This was 

done to take into account the varying level sensitivity, while not overly complicating the 

process. As each equal loudness contour derived above remained essentially horizontal 

above 100 Hz, it was assumed this generalization was appropriate. 
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Figure 6.1 - Loudness Sensitivity of the DIN 45631 

The other models indicated similar sensitivity plots (see Appendix F), where it 

appears that the lowest sound pressure levels exhibit the largest loudness sensitivities. 

This effect is again apparent in the uncertainty analysis, as the lower equal loudness 

contours result in greater levels of uncertainty; an effect that was not present in Defoe's 

study as he only examined high SPL trends in loudness. 

To graphically show the effects of the trends, Figure 6.2 and Figure 6.3 illustrate 

the error bars associated with the ANSI S3.4:2007 - 30 phon and 90 phon equal loudness 

contours; two separate ends of the spectrum. To be able to clearly see the error bars, 

different scales had to be used on the plots as the resulting uncertainty levels varied 

markedly. From the figures, one can see the difference that the level of sound pressure 

plays in the amount of uncertainty detected. For lower level tones, the uncertainty is 

primarily a result of the systematic uncertainty, or the error associated with the 

calculation process. In the higher loudness levels, the random uncertainty associated with 
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the variations between trials is the main contributor; while remaining less than one 

percent of the recorded value. This trend was present in all three of the standardized 

stationary loudness models studied. For a complete set of contour plots with the 

associated error bar analysis, again please refer to Appendix F. 
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Figure 6.2 - ANSI S3.4:2007 - 30 Phon Error Bars 
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Figure 6.3 - ANSI S3.4:2007 - 90 Phon Error Bars 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

For this study, a detailed comparison of various loudness metrics was performed 

and documented. Targeting the performance of the standardized stationary loudness 

models, the procedure successfully identified the limitations and performance aspects of 

each model using a high resolution approach. Pure tones were used in this study as the 

stationary signal input for the loudness models. The signals were generated using a 

computer program and recorded both directly via an input-output or were acquired using 

a microphone-speaker set-up in a semi-anechoic room. The resulting plots from the above 

procedure produced contours of equal loudness according to the various loudness models 

investigated. Using a set of contours taken from perception experiments as the targeted 

trends, the derived results were critically compared to the experimental values and those 

of the various loudness models. Using the same pure tones, a secondary experiment was 

conducted to analyze the performance of the available non-stationary loudness models 

with regard to pure tone stationary signals. A comparison was then made between the two 

available models and their respective stationary predecessors as to the relationships that 

exist between the two. After reviewing the predicted shapes of the various metrics, 

several conclusions were made regarding the performance as well as some 

recommendations for further work in the related field. The following is a compilation of 

the conclusions based on those observations. 

7.1 Conclusions 

While investigating the available stationary loudness models, it became apparent 

that several trends were present in the performance of the loudness models. In order to 

compare the metrics against relevant experimental data, the predicted loudness contours 

were compared against the internationally accepted ISO 226:2003 equal loudness 
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contours which acted the reference for deciding a best performing stationary model. The 

performance, limitations and user conclusions about each model is presented as follows 

prior to the selection of the most applicable model for use in industry: 

1) The ISO 532B model being the oldest calculation tool for stationary loudness was 

expected to have lapses in performance based not only on its age, but based on the 

intended experimental results of the replaced ISO 226:1987. When compared 

against the newer equal loudness contours of ISO 226:2003, the ISO 532B model 

was simply too shallow in the trends present and neglected the important 

sensitivities above 1 kHz. The model was severely limited in the fact that 

performance below an amplitude of 40 phons (approximately 40 dB across the 

frequency spectrum) or below a frequency of 300 Hz results in known erroneous 

results due to calculation errors and tabulated coefficients. Implementation of the 

model was relatively simple so long as the program code included within the 

standard was available to the user in a usable format. For the results included in 

this study, the model was available as a visual basic macro imbedded into a 

Microsoft EXCEL spreadsheet. Based on the observed results, this stationary 

loudness model is not recommended for use as a calculation tool for determining 

loudness due to the fact that more usable and accurate models currently exist 

causing this model to be considered obsolete. The semi-anechoic data supports 

this claim by predicting the same response with pure tones as the direct approach. 

2) The DIN 45631 performed considerably better than the ISO 532B in two respects. 

First, due to more accurate readings from the coefficient plots, the predicted 

contours below 300 Hz are considerably more realistic allowing the loudness to 

103 



be better predicted down to the frequency of 25 Hz. Secondly, the loudness 

conversion equation from sones to phons was modified for values below one 

sone. This permits the DIN method to be applied to loudness levels near 

threshold. By greatly increasing the applicable range of this loudness model, 

while retaining the easy input method of ISO 532B, the DIN 45631 stationary 

loudness model predicted accurate pure tone loudness based on the reference of 

the previous ISO 226:1987 document. However, once again the model's age is 

apparent when comparing to the newer target contours of ISO 226:2003 where the 

Zwicker approach proves to be too shallow to match the new standard perception 

contours. The 1 kHz sensitivity was neglected while both the low and high 

frequency loudness estimates continued to be much lower than the target values. 

Again, the response of the DIN 45631 model to the semi-anechoic data supported 

the direct comparisons with only minor influences from background noise. 

3) The last standardized metric examined was the Glasberg and Moore ANSI 

S3.4:2007 stationary loudness model. The investigation of this approach was 

implemented using several of the input options available within the executable 

software. Initially the loudness contours were predicted using the internal pure 

tone specification approach which yielded accurate results. The predicted 

contours followed the trends and amplitudes of the ISO 226:2003 equal loudness 

contours over the entire frequency spectrum. Above 1 kHz, the model's 

performance dropped slightly as the model predicted loudness levels lower than 

expected. However, when 1/3 octave inputs were used, the performance of the 

model dropped again, resulting in loudness levels predicted well below the 
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expected. This was particularly evident as frequency levels increased where the 

two methods appeared to increasingly separate from one another. When verified 

using the semi-anechoic data, the results were further affected, dropping in 

loudness levels with pure tone amplitude; more so than any previous loudness 

metric. This indicates that the ANSI S3.4:2007 stationary loudness model is quite 

sensitive to ambient sounds at low amplitudes; it is unclear at this time whether or 

not this sensitivity is accurate or not as subjective experimental results were not 

available from the semi-anechoic room used. 

7.2 Identified Best Overall Stationary Loudness Model 
Selecting an overall best model was not a straight forward decision as each model 

has its own performance shortcomings. However, due to the age of both the ISO 532B 

and the DIN 45631, the two Zwicker methods predict overly shallow trends compared to 

the current standard of the ISO 226:2003 equal loudness contours. As such, the best use 

model from the above analysis has been identified here as the ANSI S3.4:2007 stationary 

loudness model. 

Although the ANSI model has some high frequency performance issues when 

using the 1/3 octave band inputs, the overall trends of the model remain close to the 

trends present in the reference contours. The sensitivity of the 1 kHz bump as well as the 

high frequency drop are both identified in this model; areas which the previous loudness 

metrics appear to neglect. The applicability of the ANSI program for a variety of 

listening conditions and input methods adds to the depth of the Glasberg and Moore 

model, allowing for easier use given a variety of recording conditions. Text files may be 
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written for value implementation to speed up the calculation process or pure tones may be 

specified on a hypothetical basis without the need for measured samples. 

To ensure consistency throughout the various areas of acoustical modelling, it is 

essential to select one best-use model to avoid the confusion from various methods 

portraying the same units. Based on the conclusions summarized above, the ANSI 

S3.4:2007 model is recommended for use where loudness levels are measured for sounds 

which are stationary in nature. 

7.3 Time-Varying Loudness Results 

From the time-varying loudness investigations only brief observations can be 

identified from this investigation without further analysis into the performance of the 

specific trends. As before, each model discussed individually based on the performance 

using pure tones as inputs, but no best model is selected due to the incompleteness of the 

investigation conducted. 

1) The DIN 45631 /Amendment 1 (Draft) was the first time-varying model 

examined. The analysis was performed by inserting the pure tones generated in 

the derivation of the DIN 45631 stationary loudness model directly into the time-

varying amendment. Based on the direct feed response, the two loudness models 

are quite similar in their approach resulting in nearly identical values. The 

amendment approach was therefore concluded to have a similar equal loudness 

contour set to that of the stationary model; a set which is too shallow compared to 

the ISO 226:2003. This cannot be verified though unless a more thorough 

investigation was to be carried out which completely mapped the equal loudness 

contours of the time-varying approach. For semi-anechoic data results, the 
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outcomes fluctuated substantially from the direct feed samples. Trends in peaks 

and valleys became apparent in higher frequencies while remaining somewhat 

consistent with the previous results. The amendment method appears to be quite 

sensitive to the additional ambient noise without a known cause for the peaking 

trends. 

2) The second time-varying loudness model investigated was the Glasberg and 

Moore TVL metric. Overall the direct feed results were as consistent as the DIN 

amendment model. However, below 200 Hz the similarities between the 

stationary and the non-stationary model deviate significantly, particularly at the 

lower loudness levels. While continuing to follow the expected contours, the 

results depict specific trends with relation to frequency which may be a result of 

improvements over the stationary loudness metric. Once ambient noise data was 

inserted into the model via the semi-anechoic experiments, specific trends were 

once again present in the results but his time to a lesser degree than the DIN time-

varying loudness model. It is again uncertain what caused these trends without a 

more thorough investigation. 

The two time-varying loudness models were examined based on the pure tone 

information recorded for their predecessor stationary models. As such, the comparison 

conducted was only an indication of the similarities between the stationary and non-

stationary metrics. From the information available, it is only possible to observe that both 

of the models are indeed similar to their respective stationary model and apparently 

susceptible to large influences from ambient noise sources. Without further 
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investigations, the above observations cannot be verified and no concrete conclusions 

may be reached regarding the metric performance. 

7.4 Recommendations 
The analysis of the available stationary loudness metrics has generated the 

predicted equal loudness contours for clear comparisons with verified results. There are 

areas where the investigation could be carried further for future work in the area. The 

recommendations are listed as follows: 

1) The verification of the direct feed results was hindered by the ambient sounds of 

the semi-anechoic room available. If a fully anechoic room were available with a 

lower cut-off frequency, the direct feed data may be confirmed for the entire 

frequency spectrum applicable. 

2) Only the standardized stationary loudness models were used in this study. Other 

non-standardized methods exist which have become available since the ISO 

226:2003 update which have not been compared via a unbiased third party. In 

order to truly establish a best use model, a next step would be to compare the 

ANSI S3.4:2007 metric to the various non-standardized metrics. 

3) The above investigation compared the performance of the various models to pure 

tones across the frequency spectrum. Several other forms of stationary signals 

exist including complex signals which would include the effects of simultaneous 

masking. To further test the performance of each model, an experiment may be 

derived to compare complex tone results between models to completely test the 

applicability of each metric. 
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4) The response of the time-varying loudness models to ambient sounds is 

unsettling. While the models performed adequately in direct feed testing, the 

fluctuations present during 'real tests' indicate that a more complete investigation 

is necessary into this area of psychoacoustics. For example, a thorough unbiased 

analysis of the time-varying loudness models similar to the one done here (for the 

stationary models) could map out the response to pure tones and be compared to 

the reference contours of ISO 226:2003. 

7.5 Contributions 

The completed experimental results above have provided a thorough and 

extensive investigation into the selection of a superior performing stationary loudness 

model. Due to the growing importance of loudness measurements in industry, this 

research project has provided a meaningful comparison to the acoustic community, 

allowing for a more educated decision in the selection of a loudness model. The results 

indicated above have been published in literature under the following references [5, 6, 

and 33]. 
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IX. APPENDIX 

Appendix A - Wedge Length versus Lower Cut-off Frequency 

Fr
eq

ue
nc

y 
(H

z)
 

20 
25 

31.5 
40 
50 
63 
80 
100 
125 
160 
200 
250 
315 
400 
500 
630 
800 
1000 
1250 
1600 
2000 
2500 
3150 
4000 
5000 
6300 
8000 
10000 
12500 

Wavelenth 

17.201 m 
13.761 m 
10.921 m 
8.600 m 
6.880 m 
5.461 m 
4.300 m 
3.440 m 
2.752 m 
2.150 m 
1.720 m 
1.376 m 
1.092 m 
0.860 m 
0.688 m 
0.546 m 
0.430 m 
0.344 m 
0.275 m 
0.215 m 
0.172 m 
0.138 m 
0.109 m 
0.086 m 
0.069 m 
0.055 m 
0.043 m 
0.034 m 
0.028 m 

1/4 Wavelength 
(m) 

4.3 m 
3.4 m 
2.7 m 
2.2 m 
1.7 m 
1.4 m 
1.1m 
0.9 m 
0.7 m 
0.5 m 
0.4 m 
0.3 m 
0.3 m 
0.2 m 
0.2 m 
0.1m 
0.1m 
0.1m 
0.1m 
0.1m 
0.0 m 
0.0 m 
0.0 m 
0.0 m 
0.0 m 
0.0 m 
0.0 m 
0.0 m 
0.0 m 

1/4 Wavelength 

(ft) 

14.1ft 
11.3 ft 
9.0 ft 
7.1ft 
5.6 ft 
4.5 ft 
3.5 ft 
2.8 ft 
2.3 ft 
1.8 ft 
1.4 ft 
1.1ft 
0.9 ft 
0.7 ft 
0.6 ft 
0.4 ft 
0.4 ft 
0.3 ft 
0.2 ft 
0.2 ft 
0.1ft 
0.1ft 
0.1ft 
0.1ft 
0.1ft 
0.0 ft 
0.0 ft 
0.0 ft 
0.0 ft 

**Assumed Temperature of 21.4°C * * 

c - Speed of sound (m/s) 
X - Wavelength (m) 
f- Frequency (Hz) or (sec"1) 

111= 20.057W°W 
c - Speed of sound (m/s) 
T - Air Temperature (°Kelvin) 

Wedge Length vs. Frequency 

-"•— Wedge Length j 
i 
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iTequenitf |Mi3 
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Appendix B - Calibration Trends 
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Table A-2 - Microphone Calibration Gain Values 

M
a
y
 2
00
9
 

Ju
ne
 2
00
9
 

Au
gu

st
 2
00
9
 

Date 

20/05/2009 
20/05/2009 
25/05/2009 
25/05/2009 
26/05/2009 
26/05/2009 
27/05/2009 
27/05/2009 
28/05/2009 
28/05/2009 
29/05/2009 

29/05/2009 

03/06/2009 
03/06/2009 
04/06/2009 
04/06/2009 
05/06/2009 
05/06/2009 
07/06/2009 
07/06/2009 
08/06/2009 
08/06/2009 
17/06/2009 

17/06/2009 

04/08/2009 
04/08/2009 
05/08/2009 
05/08/2009 
06/08/2009 
06/08/2009 
07/08/2009 
07/08/2009 
08/08/2009 
08/08/2009 
10/08/2009 

10/08/2009 

Start 
End 

Start 
End 

Start 
End 

Start 
End 

Start 
End 

Start 
End 

Start 
End 

Start 
End 

Start 
End 

Start 
End 

Start 
End 

Start 
End 

Start 

End 
Start 
End 

Start 

End 
Start 
End 

Start 
End 

Start 
End 

AVERAGE 

Microphone 

Left Ear 

2637736 
1.04 

1.03 

1.03 
1.04 

1.06 
1.03 
1.04 
1.03 
1.06 

1.03 

1.02 

1.02 
1.02 
1.03 
1.03 
1.02 
1.01 

1.03 
1.03 
1.02 

1.04 

1.03 
1.02 

1.02 
1.02 
1.02 
1.03 
1.01 

1.03 
1.03 
1.03 

1.03 
1.03 

Right Ear 

2637735 
1.06 

1.04 

1.03 
1.04 

1.04 
1.05 
1.04 
1.04 
1.05 

1.03 

1.03 

1.03 
1.03 
1.04 
1.03 
1.03 
1.03 
1.04 
1.03 
1.03 

1.04 

1.03 
1.02 

1.03 
1.02 
1.02 
1.03 
1.03 
1.03 
1.03 
1.03 
1.04 

1.03 

External 

2591370 
1.03 

1.04 

1.04 
1.03 
1.04 
1.04 
1.05 
1.04 
1.04 
1.04 

1.02 

1.03 
1.05 
1.04 
1.05 
1.04 
1.04 
1.04 
1.05 
1.05 

1.04 
1.07 
1.02 
1.04 
1.03 
1.03 
1.03 
1.03 
1.04 
1.05 
1.05 

1.03 
1.04 
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Appendix C - Test Condition Trends 

Figure F-l - May and June environmental condition trends 
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Figure F-2 - August environmental condition trends 
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Date 
20/05/2009 
25/05/2009 
26/05/2009 
27/05/2009 
28/05/2009 
29/05/2009 
03/06/2009 
04/06/2009 
05/06/2009 
07/06/2009 
08/06/2009 
07/08/2009 
07/08/2009 
08/08/2009 
08/08/2009 
10/08/2009 

AVG 

Temperature 
24.6°C 
20.6°C 
20.6°C 
21.4°C 
21.7°C 
21.7°C 
21.3°C 
21.7°C 
22.3"C 
20.5°C 
21.7°C 
28.8°C 
23.8°C 
20.7°C 
22.3°C 
23.3°C 

22.3°C 

Relative Humidity 
33.0% 
39.9% 
41.6% 
62.6% 
59.9% 
54.9% 
44.6% 
39.3% 
36.2% 
42.3% 
48.4% 
33.7% 
45.4% 
59.8% 
51.9% 
61.3% 

47.2% 
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Appendix D - Direct Feed Common Plot Comparisons 

Direct Comparison-10 Phons 
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Direct Comparison- 30 Phons 
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OirectComparison- SO Phons 
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Direct Comparison - 70 Phons 
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Direct Comparison - 90 Phons 
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Appendix E - Semi-Anechoic Contour Comparison Plots 

Semi-Anechoic Comparison - 30 Phons 
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Semi-Anechoic Comparison - SO PKons 
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Semi-Aneehoic Comparison - 70 Phons 
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Semi-Anechoic Comparison - 90 Phons 
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Appendix F - Overall Uncertainty Analysis Results 
A complete uncertainty analysis was carried out on all of the stationary loudness 

metric data derived in this study. Prior to calculating the results, the data was first 
checked for any outlier values using Pierce's Criterion as presented in Ross' work in 
[38]. From the check, no outlier values were located, indicating that all of the values were 
consistent for each trial. The following is a summary of the Uncertainty analysis 
conducted. 

Appendix F.l - Uncertainty Procedure (Reproduced from [9]) 

The following is a condensed procedure as produced in Defoe's dissertation 
(2007) of [9]. For a complete description of the procedure taking place please refer to the 
Defoe's work or that of Wheeler and Ganji for fundamental uncertainty concepts. [49] 

Overall Uncertainty (wR) is a combination of both systematic (uR) and random 
(pfi) uncertainty which are analyzed separately as follows. 

W ^ C V + P K 2 ) 1 ' 2 

Systematic Uncertainty (uR) 

The systematic uncertainty was determined as the magnitude of uncertainty 
associated with the digital signals used for processing. This value was represented as an 
integer between 0 and 32767 which represents the range of possible positive values 
encoded into a 16-bit data file. The value for systematic uncertainty was determined 
using the following sets of equations. 

Uncertainty in the Digital Signal (uDS) 

. 2 1 1 / 2 
\(dDS \ 2 , fdDS \ 2 1 

_v d£S _ 32767 
dv Vps 

The sensitivity of the digital signal with respect to voltage is calculated by 
dividing the maximum digital signal value (32767) by the full scale 
voltage (t;FS). 

• * vFS = —-PFS 

Full scale voltage is the product of the microphone sensitivity ( —) 

resulting from calibration, multiplied by the full scale sound 

pressure capable of being produced (PFS)-

•v dv 
-> — = 0.0526564 V/Pa (Taken From PULSE) 

oP 
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"> PFS = Pref • l O ^ ' ^ 

-> LPiFS = 102 dB (Collected From PULSE) 

-» Pref = 0.00002 Pa (Acoustics Constant) 

Uncertainty in the Analog Voltage (uv) 

The uncertainty value in the analog voltage is a result of the microphone sensitivity and 
the uncertainty associated with both the microphone (uP) and the preamp {uFRPreamv) 
used for collecting data. The values for the acoustic equipment were taken from their 
respective product data sheets. 

- \(dv \2 _._ (dv ^ 1 V 2 

" v - ^dP 'UpJ \dp" UFR>preamp) J 

"> UFRipreamp = P • (xOTo^Wrreamp) _ X ) 

"^ ^LFR.preamp = ±0-5 dB (Taken from Product Data [62]) 

-> t/p = P • ( l O ^ ^ " 1 ^ - l ) 

-» £/Lp,miC = ±2.0 dB (Taken from Product Data [66]) 

-» P = PrerWTo ^ p ) 

Uncertainty Resulting from Quantisation Error (uresADC) 

The quantisation error results from the analog to digital conversion process and may be 
expressed as follows. 

= i / vFS
2 \ 

"res.ADC 2 \32767vJ 
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Uncertainty in the Loudness Level (uLN) 

The uncertainty in the loudness level and loudness function is a large portion of the 
uncertainty measured in the system. The calculation for the loudness level uncertainty 
relies on the sensitivity of the loudness level conversion to small fluctuations in loudness 

values (-TTT) and the uncertainty of the various loudness metric calculations (UN). 

A AN = 0.1 sone was used in the calculation of the sensitivities as was done in 
Defoe [9]. 

- dLN 11 
ULN~ 1N~'UN 

_v dLN_ _ LN(N+bN)- LN(N) 

dN ~~ AN 

Depending on the loudness metric being analyzed combinations of the 
following two equations were used to derive the resulting sensitivity. Note 
that as no equation was available for the ANSI S3.4:2007 model it was 
assumed that the equations for the DIN method were sufficient, (the two 
methods produced similar results). 

-» LN(N > 1) = 33.2 *log10(W) + 40 

-» LN(N < 1) = 40 * (N + 0.0005)035 

The uncertainty in the loudness calculation is related to the sum of 
uncertainties of the band pressures (UPi) and the respective loudness 

dN 

function sensitivity to band pressure fluctuation (T-T). The number of 

bands used is represented by the variable (m). 
^ I dpi I 
~7 Upi = Unc; 

For the band pressure uncertainty, the value depends heavily on the 
fraction of digital signal uncertainty associated with each pressure 
band (uDSi) and the sensitivity of the full scale pressure to the 
digital signal. 
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_^ dPi _ PFS 

dDS 32767 

•* uDSi=^(UDS) 

The sensitivity of the loudness functions to small fluctuations in band 
pressure was analyzed for each loudness model using the following 
function. Again following Defoe's procedure for consistency, a (APj) 
value was used to correspond to an increase of 1 dB. [9] 

_^ dN ^ JVfo.Pz Pj+APj Pm)-N(PllP2 Pt Pm) 

dPi ~ APt 

I 

-» APi = PrerWTo ™UPi+i) 

Pt = Pref • 10^ ( L ^ 

Random Uncertainty (pR) 

The random uncertainty associated with the experimental data was calculated using the 
method outlined in Wheeler and Ganji [49]. The random uncertainty is the product of a 
Student's t-value (ts) taken from a table in [49] and the standard deviation of the result 
(SR). 

PR
 = ts ' SR 

,1/2 

1/2 

— TV- P-_X p — ^i=ir i 

n 

-> ts = Taken From [49] 

In order to locate a Student's t-value from the chart, a value for the degree 
of freedom was specified based on the following relationship for low 
sample measurements. The Welch-Satterthwaite formula results in 2 
degrees of freedom for each of the measurements of three trials. 

"> vfN = / (
r
5Af2) „2N Taken From [49] 

*»«)"[ 
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Appendix F.2 - ISO 532B Error-Bar Plots 

Loudness Sensitivity to Pressure Fluctuations (dN/dPi) 
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Exhibit Fl - Loudness Sensitivity of the ISO 532B Stationary Loudness Model 
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ISO 532B Error Bar Values 
30 Phon 

34 ± 19.0 dB 
34 ± 21.8 dB 
34 ± 18.5 dB 
29 ± 15.7 dB 
29 ± 15.4 dB 
29 ± 15.4 dB 
27 ± 14.4 dB 
27 ± 14.2 dB 
26 ± 13.6 dB 
26 +13.6 dB 
26 ± 13.9 dB 
26 ± 13.8 dB 
25 ± 13.2 dB 
25 ± 13.3 dB 
25 ± 13.1 dB 
23 ± 12.5 dB 
23 ± 12.5 dB 
24 ± 13.4 dB 
25 +13.9 dB 
28 ± 15.3 dB 
31 ± 17.8 dB 
40 ± 22.1 dB 

40 Phon 

44 ± 8.3 dB 
43 ±8.1 dB 
44 ±7.9 dB 
40 ± 7.2 dB 
40 ± 7.0 dB 
40 ± 6.9 dB 
39 ± 6.7 dB 
39 ± 6.5 dB 
38 ±6.4 dB 
38 ±6.4 dB 
38 ±6.6 dB 
38 ± 6.5 dB 
36 ± 6.3 dB 
36 ±6.2 dB 
35 ±6.2 dB 
33 ± 5.9 dB 
33 ±5.9 dB 
35 ± 6.3 dB 
36 ±6.7 dB 
40 ±7.5 dB 
45 ± 8.5 dB 
52 ± 7.6 dB 

50 Phon 

53 ±3.0 dB 
53 ± 3.0 dB 
53 ± 2.9 dB 
50 ± 2.7 dB 
50 ± 2.6 dB 
51+2.6 dB 
50 ± 2.5 dB 
49 ± 2.5 dB 
49 ± 2.4 dB 
49 ± 2.4 dB 
49 ± 2.5 dB 
48 ±2.5 dB 
47 ± 2.4 dB 
47 ± 2.5 dB 
46 ± 2.4 dB 
43 ± 2.3 dB 
43 ± 2.4 dB 
45 ± 2.5 dB 
47 ± 2.7 dB 
51 ±3.0 dB 
56 ±3.1 dB 
61 ± 1.4 dB 

60 Phon 

63 ± 1.1 dB 
63 ± 1.1 dB 
63 ± 1.0 dB 
60 ± 1.0 dB 
61 +1.0 dB 
61 ±0.9 dB 
60 ± 0.9 dB 
60 ±0.9 dB 
59 ±0.8 dB 
59 + 0.8 dB 
59 ± 0.8 dB 
59 ± 0.8 dB 
57+0.8 dB 
57 ±0.9 dB 
56 ± 0.8 dB 
53 ± 0.8 dB 
53 ± 0.9 dB 
55 ± 0.9 dB 
57 ±0.9 dB 
62 ± 1.0 dB 
67 ± 0.8 dB 

70 Phon 

74 ±0.4 dB 
74 ±0.4 dB 
74 ± 0.4 dB 
70 ± 0.3 dB 
71 ±0.4 dB 
71+0.3 dB 
70 ±0.3 dB 
70 ± 0.3 dB 
69 ±0.3 dB 
69 ±0.2 dB 
69 ± 0.2 dB 
69 ±0.2 dB 
68 ±0.2 dB 
67 ± 0.3 dB 
66 ±0.2 dB 
63 ± 0.3 dB 
63 ±0.3 dB 
65 ±0.2 dB 
67 ±0.3 dB 
73 ±0.2 dB 
78 ±0.1 dB 

80 Phon 

84 ± 0.3 dB 
84 ±0.1 dB 
84 ±0.1 dB 
81 ±0.1 dB 
82 ± 0.1 dB 
82 ± 0.3 dB 
81 ±0.1 dB 
80 ± 0.1 dB 
80 + 0.1 dB 
79 ±0.1 dB 
79 ±0.2 dB 
79 ± 0.2 dB 
78 ± 0.2 dB 
78 ± 0.1 dB 
76 ±0.0 dB 
73 ±0.6 dB 
74 ±0.1 dB 
75 ± 0.1 dB 
78 ± 0.3 dB 
83 ±0.0 dB 

Exhibit F2 - Error Values of the ISO 532B Stationary Loudness Model 
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ISO 532B Contours (30 Phon) 
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Exhibit F3 - 30 Phon Error-Bar Plot of ISO S32B 
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Exhibit F4-40 Phon Error-Bar Plot of ISO 532B 
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Exhibit F5-50 Phon Error-Bar Plot of ISO 532B 
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Exhibit F6- 60 Phon Error-Bar Plot of ISO 532B 
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Exhibit F7- 70 Phon Error-Bar Plot of ISO 532B 
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Appendix F.3 - DIN 45631 Error-Bar Plots 
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Exhibit F9-Loudness Sensitivity of the DIN 45631 Stationary Loudness Model 

20 ." 
25 • 

•* 30Pnon 

3 1 ' sn 40 H 
50 H 
63 H 8 0HP 
1001 | 
125 • 
160II 
200 B 
250S 
315(1 
400« 
s o o ^ 
630 
800 
1000 
125'tf 
jisoir' 

-jfiJo'fr 
«#P 
m 400& ' 
5888 

£,iS6b-
8000 
100OB 
J2S00 

1 43 ± 23.0 dB 
39 ±20.8 dB 
36 ± 1B.6 dB 
34 ± 17.6 dB 
32 ±16.5 dB 
32 ±15.8 dB 
31 ±15.1 dB 
30 ±14.7 dB 
30 ±14.4 dB 
29 ±14.3 dB 
29 ±14.5 dB 
29 ±14.4 dB 
28 ±14.0 dB 
28 ± 13.9 dB 
27 ±13.5 dB 
25 ± 12.8 dB 
25 ±12.9 dB 
26 ±13.7 dB 
27 ±14.4 dB 
31 ±16.3 dB 
36 ± 18.6 dB 
45 ± 23.3 dB 

I'M 
40Phon 

52 ±9.6 dB 
48 ±13.5 dB 
45 ±8.1 dB 
44 ± 7.6 dB 
42 ±7.2 dB 
42 ±6.9 dB 
41 ± 6.6 dB 
40 ±6.4 dB 
39 ±6.4 dB 
39 ±6.4 dB 
39 ±6.6 dB 
39 ± 6.6 dB 
38 ±6.4 dB 
38 ± 6.5 dB 
37 ± 6.4 dB 
34 ± 6.0 dB 
34 ±6.1 dB 
36 ±6.4 dB 
38 ±6.9 dB 
42 ±7.7 dB 
46 ± 5.8 dB 
56 ±7.6 dB 

f563Tlfror Bar Values "™"~"" """""""H 
50Phon 

62 ±3.1 dB 
57 ±3.0 dB 
55 ± 2.8 dB 
54 ±2.7 dB 
52 ±2.5 dB 
52 ±2.4 dB 
51 ± 2.3 dB 
51 ±2.2 dB 
50 ±2.2 dB 
50 ±2.2 dB 
50 ±2.2 dB 
49 ±2.3 dB 
48 ±2.3 dB 
48 ±2.3 dB 
47 ±2.2 dB 
44 ±2.2 dB 
44 ±2.3 dB 
46 ±2.3 dB 
48 ±2.5 dB 
53 ±2.8 dB 
58 ±2.9 dB 
64 ± 1.3 dB 

60Phon 

70 ±1.1 dB 
66 ±1.1 dB 
64 ±1.0 dB 
63 ± 0.9 dB 
62 ±0.9 dB 
62 ±0.8 dB 
61 ±0.8 dB 
61 ±0.8 dB 
60 ±0.8 dB 
60 ±0.6 dB 
60 ±0.6 dB 
60 ±0.7 dB 
58 ±0.8 dB 
58 ±0.8 dB 
57 ± 0.8 dB 
54 ±0.8 dB 
54 ±0.8 dB 
56 ±0.8 dB 
58 ±0.9 dB 
63 ± 1.0 dB 
68 ±0.7 dB 
72 ± 0.4 dB 

70Phon 

78 ±0.3 dB 
75 ±0.4 dB 
74 ± 0.4 dB 
73 ± 0.4 dB 
72 ±0.3 dB 
72 ±0.6 dB 
71 ±0.3 dB 
70 ±0.6 dB 
70 ±0.2 dB 
69 ±0.3 dB 
69 ±0.1 dB 
69 ±0.2 dB 
68 ±0.2 dB 
68 ±0.2 dB 
67 ±0.2 dB 
64 ±0.3 dB 
64 ±0.3 dB 
66 ±0.2 dB 
68 ± 0.4 dB 
74 ± 0.3 dB 
78 ±1.1 dB 

80Phon 

86 ±0.3 dB 
84 ±0.5 dB 
83 ±0.1 dB 
81 ± 0.1 dB 
81 ±0.1 dB 
81 ±0.3 dB 
80 ±0.1 dB 
80 ±0.3 dB 
80 ±0.2 dB 
80 ±0.1 dB 
79 ±0.1 dB 
79 ±0.3 dB 
78 ±0.1 dB 
78 ±0.0 dB 
77 ±0.0 dB 
74 ± 0.4 dB 
74 ±0.1 dB 
76 ±0.9 dB 
78 ±0.3 dB 
83 ± 0.6 dB 

90Phon % 

94 ±0.1 dB 
93 ±0.2 dB 
92 ±0.1 dB 
91 ± 1.2 dB 
91 ±0.2 dB 
90 ±0.2 dB 
90 ±0.3 dB 
90 ±0.2 dB 
89 ±0.4 dB 
90 ±0.7 dB 
89 ±0.2 dB 
88 ±0.2 dB 
88 ±0.0 dB 
87 ±0.1 dB 

Exhibit F10 - Error Values of the DIN 45631 Stationary Loudness Model 

Loudness Sensitivity to Pressure Fluctuations (dN/dPi) 

I 

100 1030 

Frequency (Hi) 

137 



DIN 45631 Contours (30 Phon) 

70 

ii 50 
| 40 

I 30 
et 20 HffittP 

0 100 1000 

FrequencyjHz) 

Exhibit Fll -30 Phon Error-Bar Plot of DIN 45631 

CD 
2. 
% 
> 2 
2 
2 S a 
& 
•o 
c 
3 

s 

D 
80 ; 

70 
SO 

50 

40 

30 

20 

10 ! -

0 ; 

10 

_ 

DIN 45631 Contours (40 Phon) 

100 1000 
Frequency (Hz) 

Exhibit F12 - 40 Phon Error-Bar Plot of DIN 45631 

10000 

_ 90 

2. 80 

"5 70 

I 60 
| 50 
3 40 
a 

£ 30 

| 20 

O 10 
10 

DIN 45631 Contours (50 Phon) 

Frequency (Hz) 

Exhibit F13 - 50 Phon Error-Bar Plot of DIN 45631 

9. 
T< 
> a 
s 3 

a 

Pr
e 

? 
3 

100 

90 

80 

70 
60 

bO 
40 

30 

20 

DIN 45631 Contours (60 Phon) 

10000 

Frequency (Hz) 

Exhibit F14 - 60 Phon Error-Bar Plot of DIN 45631 

138 



110 

100 

90 

80 

70 

60 

50 

40 

30 

I 
« 
> 3 
2! 
3 

2 
01 

& 
1 
3 
.9 

120 

110 

100 

90 
80 

70 

60 
50 

40 

DIN 45631 Contours (70 Phon) 

10 100 1000 10000 
Frequency (Hz) 

Exhibit F15 - 70 Phon Error-Bar Plot of DIN 45631 

DIN 45631 Contours (80 Phon) 

100 1000 
Frequency (Hz) 

10000 

Exhibit F16 - 80 Phon Error-Bar Plot of DIN 45631 

130 

120 

110 

100 

90 

80 

70 

SO 

50 

DIN 45631 Contours (90 Phon) 

100 1000 
Frequency (Hz) 

10000 

Exhibit F17 - 90 Phon Error-Bar Plot of DIN 45631 

139 



Appendix F.4 - ANSI S3.4:2007 Error-Bar Plots 

Loudness Sensitivity to Pressure Fluctuations (dN/dPi) 
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ANSI S3.4:2007 Contours (30 Phon) 
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