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ABSTRACT 

 

An investigation of non-linear multi-objective optimization is conducted in order to 

define a set of process parameters (i.e. load paths) for defect-free tube hydroforming. 

A generalized forming severity indicator that combines both the conventional forming 

limit diagram (FLD) and the forming limit stress diagram (FLSD) was adopted to 

detect excessive thinning, necking/splitting and wrinkling in the numerical simulation 

of formed parts. 

 

In order to rapidly explore and capture the Pareto frontier for multiple objectives, two 

optimization strategies were developed: normal boundary intersection (NBI) and 

multi-objective genetic algorithm (MOGA) based on the concept of “dominated 

solutions”. The NBI method produced a uniformly distributed set of solutions. For the 

MOGA method, a stochastic Kriging model was used as a surrogate model. 

Furthermore, the constraint-handling technique was improved, Kriging model 

updating was automated and a hybrid global-local search was implemented in order to 

rapidly explore the Pareto frontier. 

 

Both piece-wise linear and pulsating pressure paths were investigated for several case 

studies, including straight tube, pre-bent tube and industrial tube hydroforming. For 

straight tube hydroforming, the optimal load path was obtained using the NBI method 

and it showed a smaller corner radius compared to that predicted by the commercial 

program LS-OPT4.0. Moreover, the hybrid method coupling global search (MOGA) 

and local search (sequential quadratic programming: SQP) was applied for straight 

tube hydroforming, and the results showed a significant improvement in terms of the 

stress safety margin and reduced local thinning. For a commercial refrigerator door 

handle, the MOGA method was utilized to inversely analyze the loading path and the 

calculated path correlated well with the production path. For a hydroformed T-shaped 

tubular part, the amplitude and frequency of the pulsating pressure were optimized 

with MOGA. Thinning was reduced by 25% compared with experimental results.  

 



 vi

A multi-stage (prebent) tube hydroforming simulation was performed and it indicated 

that the reduction in formability due to bending can be largely compensated by end 

feeding the tube during hydroforming. The loading path optimized by MOGA showed 

that the expansion into the corner of the hydroforming die increased by 16.7% 

compared to the maximum expansion obtained during experimental trials. 
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Chapter 1: Introduction and Problem Statement 

 

In the automotive industry, the hydroforming process has drawn the attention of designers 

because tubular hydroformed structures have a greater stiffness-to-weight ratio. Parts are 

formed with an evolution of internal pressure and end-feed displacement by applying 

compressive forces to the ends of the tube (commonly known as end feed); this 

combination defines the loading path. Although a variety of hydroforming processes have 

been proposed to produce automotive parts, the determination of the optimum loading 

path remains a challenge with regard to maximizing formability and minimizing 

manufacturing costs. The objective of this work is to obtain the optimum loading path for 

tubular hydroforming that will generate a quality part using multi-objective optimization 

methods. 

 
1.1 Introduction 

1.1.1 Tube hydroforming and its advantages 

 

Tube hydroforming (THF) is a metal forming process that involves the use of high fluid 

pressures to deform metal into shapes that otherwise would have been unobtainable using 

conventional manufacturing processes. Tube hydroforming technology can be traced 

back to the forming of a T-shaped tube in 1940 (Dohmann and Hartl, 1996). Between 

1950 and 1970, researchers in the United States, United Kingdom and Japan developed 

related patents and application products. After 1970, researchers in Germany studied tube 

hydroforming and applied it to produce structural parts for automobiles. Since the early 

1980's, tube hydroforming has been increasingly used in the automotive and aerospace 

industries, manufacturing of household appliances, and other applications. 

 

Tube hydroforming offers several advantages over conventional manufacturing via 

stamping and welding, such as part consolidation, weight reduction, improved structural 

stiffness, reduced tooling costs due to fewer parts, fewer secondary operations, tighter 

dimensional tolerances and reduced distortion due to springback and reduced scrap, since 
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trimming of excess material can be completely eliminated in THF (Dohmann and Hartl, 

1996). 

 
As the number and variety of parts produced by THF technology increased dramatically 

in the automotive industry over the last two decades, problems related to practical 

production conditions required further research and development. One of the most 

significant areas of research has been the determination of loading path.  

 
1.1.2 Tube failure in THF 

The success of a THF process is, however, dependent on a number of parameters such as 

the loading path, lubrication conditions, and material formability (Aue-U-Lan et al., 

2004). A suitable combination of all these variables is vital to avoid part failure. Most  

failure modes in THF can be classified as wrinkling or buckling, bursting, or severe 

thinning. These types of failures are caused by either excessive internal pressure or 

excessive axial end feed during the forming process. 

 
1.1.3 Evaluation of forming severity in THF: FLD and FLSD 

The severity of the hydroforming process increases with the deformation of the tube. In 

order to ensure a robust manufacturing process, it is necessary to measure its severity 

relative to known process limits. 

 

A number of in-process methods have been proposed to measure the deformation of the 

tube, such as the use of linear variable differential transformers (LVDTs) and charge 

coupled device (CCD) image sensors. In most situations, however, the forming severity 

has been evaluated through circle grid analysis, which consists of electrochemically 

etching a pattern of circles onto the surface of the undeformed tube, and measuring the 

deformation of individual circles after the part has been hydroformed (past-process). 

 

In spite of the fact that tube deformation can be detected, the determination of the 

forming severity is not straightforward using circle grid analysis. A deformed circle is 

manually or automatically measured at a critical location, and the corresponding surface 

strains are compared to a forming limit diagram (FLD). The FLD provides information 
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about how much a specific metal can be deformed before necking occurs. However, it has 

been found that the traditional FLD does not reliably predict necking in situations with 

nonlinear strain paths such as pre-forming, pre-bending, and crushing followed by 

hydroforming (Ghosh and Laukonis, 1976; Graf and Hosford, 1994; Stoughton, 2000). 

Therefore, the FLD is not a reliable failure criterion for tube hydroforming applications. 

One way to overcome this limitation is to use the forming limit stress diagram (FLSD) 

since it has been shown to be nearly insensitive to strain path effects.  Furthermore, the 

stress-based failure criterion appears to be applicable to complex forming processes such 

as multi-stage forming and hydroforming. 

 

Asnafi (1999) identified process limits for wrinkling, fracture, yielding, and sealing, and 

sketched a THF process window where the safe working range is dependent on the 

combination of the axial compressive force and internal pressure (Fig. 1.1).  

 

Chu and Xu (2004a, 2004b) formulated a theoretical process window for predicting 

forming limits induced by buckling, wrinkling, and bursting of free-expansion THF. An 

 

Fig. 1.1 Example of THF process window (Adapted from Asnafi, 1999) 
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optimal loading path was also proposed in the process window diagram (PWD) with an 

attempt to define the ideal forming process.  However, an assumption of a proportional 

loading path was adopted. Since using a piece-wise linear combination of strain paths 

might enable the process to achieve a larger expansion ratio for the THF process, such a 

curved loading path will result in translating the boundary of the process window. The 

path dependency of the PWD was not discussed in their paper. Moreover, the window for 

an industrial part may be very small due to multi-stage forming and is difficult to 

determine.  

 

1.1.4 Multi-objective optimization 

Engineering design, by its very nature, is non-linear and multi-objective, often requiring 

tradeoffs between disparate and conflicting objectives. For instance, for typical 

hydroformed components, there are competing objectives; there is a need to reduce the 

risk of necking/fracture and wrinkling, minimize thinning, while achieving a specified 

geometry and maintaining a reasonably uniform thickness distribution throughout the part. 

This constitutes a problem of multiple objectives.  

 

To solve problems with multiple objectives, it is common practice to reduce the problem 

to a single objective, even though there may exist different conflicting goals (e.g., 

maximizing formability and minimizing thinning) for the optimization task. As a result, 

multiple goals are often redefined as a weighted sum objective function, to provide an  

equivalent cost or a profit value, thereby artificially reducing the number of apparently 

conflicting goals into a single objective. However, the correlation between objectives is 

usually rather complex and dependent on the alternatives available. Moreover, the 

different objectives are typically conflicting, so it is difficult to aggregate them into one 

synthetic objective function (where the objective function is used to calculate the 

objective value). As a consequence, it may be very difficult to combine different 

objectives into a single goal function a priori, that is, before alternatives are known.  
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One way of defining optimality in a more precise way is via the concept of “dominated 

solutions”. A point or solution b for hydroforming problem (green dot) is called 

“dominated” by another point a (red dot) when all objective values of a are smaller (Deb 

et al., 2002) (Fig. 1.2). The set of non-dominated points is called the “Pareto front” or 

“Pareto solutions”, and represents a set of optimal solutions. It may be comparatively 

easier to choose among a given set of alternatives if appropriate decision support is 

available for the decision maker (DM). Hence, the main purpose of multi-objective 

problems is to find such non-dominated points. 

 

 
Fig. 1.2: Pareto set for multi-objective optimization with two objectives (Minimizing) 

 

Ingarao et al. (2009) pointed out that two main phases should be developed in metal 

forming optimization in order to reach an optimal solution: the modelling phase and the 

computation phase. In the modelling phase the proper design variables to be optimized 

must be selected, and a correct formulation of the objective function must also be 

developed. Moreover, in most metal forming optimization problems the analytical 

linkage between the design variables and the objective function is not available. 

 

Through numerical simulation, finite element analysis can assist in setting up the link 

between design variables and the objective function, and therefore be employed to find an 
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acceptable load path. The cost of the complete series of simulations, however may be 

expensive. To save computation time, a widely accepted practice is to build an 

inexpensive approximation model to replace the time-consuming simulation problem, and 

to optimize the surrogate model instead of the original finite element simulations. 

 

Recently, the Kriging method, or design and analysis of computer experiments (DACE) 

(Sacks et al., 1989), which originated from the field of spatial statistics, has attracted 

attention in the area of metal forming (Stander et al., 2007; Lee and Kang, 2007). This 

model predicts the value of the unknown point using stochastic processes. Sample points 

are interpolated with the Gaussian random function to estimate the trend of the stochastic 

processes. However, the Kriging model is not a suitable method for data sets which have 

anomalous pits or spikes, or abrupt changes such as breaklines, and it is a much more 

complex method to use compared to the response surface methodology. 

 

1.2 Problem statement  

Currently, the development of THF processes is greatly delayed by long lead times, 

which result from many iterations of either trial-and-error based finite element (FE) 

simulations or expensive changes to prototype tooling. Moreover, the hydroformability of 

tubular parts is affected by a large number of parameters such as material properties, tube 

geometry, complex die-tube interface phenomena, and process parameters (i.e. loading 

paths). Consequently, more powerful design tools are needed to help engineers design 

better products and robust processes and to reduce lead time and cost. As a result, the 

goals of the proposed work are to: 

 
1. Determine a forming severity indicator for hydroformed tubular parts and establish a 

general form of objective functions for THF; 

2. Investigate two optimization strategies for solving multi-objective optimization 

problems: normal boundary intersection (NBI) and multi-objective genetic algorithm 

(MOGA); 

3. Seek to reduce the computational expense of multi-objective optimization by focusing 

on efficient methods for obtaining rich Pareto sets; a method that employs design of 



 7

experiments (e.g. central composite designs, Latin hypercubes) and surrogate 

approximations (e.g. response surfaces, Kriging models) is considered to rapidly explore 

and capture the Pareto frontier; 

4. Investigate both piece-wise linear pressure and pulsating pressure paths;  

5. Investigate applications in straight tube, pre-bent tube and industrial part hydroforming 

to validate the proposed algorithm. 

 
1.3 Dissertation Organization 

Finally, the outline of this dissertation work by chapters is: 

Chapter 1: Introduction and problem statement 

Chapter 2: Literature review 

Chapter 3: A hybrid forming severity indicator for tube hydroforming simulation 

Chapter 4: Multi-objective optimization and sensitivity analysis for tube hydroforming 

using normal boundary intersection 

Chapter 5: Loading path design using multi-objective genetic algorithm for a straight tube 

and an industrial part 

Chapter 6: Optimization of loading path in hydroforming with pulsating pressure 

Chapter 7: Loading path design in multi-stage tube forming 

Chapter 8: Conclusions and future work 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 8

Chapter 2: Literature Review  
 

In this chapter, the background of this research will first be presented, then the literature 

on THF optimization will be reviewed. A review of the current optimization software 

development and their advantages and shortcomings will also be presented. Finally, a 

new level of metamodelling closely linked to the multi-objective optimization process is 

introduced. 

 

2.1 Tube hydroforming 

2.1.1 Introduction 

 
Tube hydroforming (THF) uses a pressurized fluid and axial compressive forces to 

plastically deform a tube into a desired shape. A typical straight tube hydroforming 

process is shown in Fig. 2.1. For parts with a more complex geometry, the process may 

also include preparing the tube, preforming, hydroforming, trimming or end cutting.  

 

As far as the author could survey, approximately one half of the technical papers written 

and published on various aspects of hydroforming address THF processes. 

 

 

 
Fig. 2.1 Tube hydroforming process for a straight tube (Adapted from Koç, 2008) 
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2.1.2 Examples of hydroforming in the automobile industry 

 
Some of the most common applications of tube hydroforming can be found in the 

automobile industry.  In 2002, the American automobile maker, Chrysler, began 

incorporating hydroforming to help reduce chassis vibration on its redesigned Dodge 

Ram (http://www.thomasnet.com). Likewise, General Motors' (GM) suppliers began 

using hydroforming to create suspension parts. There was an eventual increase of 

approximately 20 percent in manufacturing productivity for GM, and the switch to 

hydroforming may have contributed to the gain. GM continues to use hydroforming in its 

production methods. In 2006, it became one of the first automakers to use this process to 

create structural products on vehicles (Pontiac, Chevrolet) for several of its brands. Other 

examples of hydroforming in the automobile industry include the making of engine 

cradles for various, Ford, and Chrysler models. The process has also been used by several 

European automobile manufacturers, such as Volkswagen, who switched from deep 

drawing to hydroforming in order to create unibody frames for some of their vehicles. In 

addition, parts such as roof pillars, frame rails, engine cradles, rear axles, and exhaust 

manifolds are widely manufactured using tube hydroforming techniques (Ahmetoglu and 

Altan, 2000; Dohmann and Hartl, 1997). Fig. 2.2 illustrates some typical hydroformed 

tubular parts in an automobile. 

 

As noted by many researchers (Ahmetoglu and Altan, 2000; Asnafi, 1999; Asnafi and 

Skogsgardh, 2000; Rimkus et al., 2000; Jirathearanat et al. 2004; Koç, 2003,2004; Koç 

and Altan, 2002; Ahmed and Hashmi 1998) the success of the hydroforming process 

depends on a proper combination of simultaneously applied internal pressure and axial 

load. Therefore, it is vital to determine a method of obtaining the optimal loading path 

(internal pressure vs. axial feeding) in order to ensure robust manufacturing. 
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Fig. 2.2 Typical hydroformed parts in an automobile (Adapted from http://nsm.eng.ohio-
state.edu/Advances_in_Hydro.swf) 

 
 
2.2 Conventional design method of loading path  

 
After the 1970's, a number of studies were carried out on different aspects of tube bulging, 

among these being the work of Hashmi (1981,1983), Hashmi and Crampton (1985), 

Dohmann and Klass (1987), Murata et al. (1989) and Thiruvarudchelvan and Lua (1991), 

which led to an understanding of tube bulging under axial compressive load. The 

compressive load, as found in these works, delays the onset of plastic instability by 

''feeding'' extra material into the forming zone.  

 

In order to successfully obtain the final desired hydroformed parts, it is necessary to study 

the influence of the forming parameters on the hydroformability. The influence of 

material properties and process parameters on the THF process has been investigated by 

means of experiments, analytical models, and finite element simulations. For instance, 
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Rama et al. (2003) developed a two-dimensional numerical method based on membrane 

theory to explicitly relate the deformation sequence with the pressure loads for tube 

expansion. However, the loading parameters (i.e.pressure and end feed) are still largely 

determined by the experience of hydroforming press operators.  

 

Prior to the introduction of an analytical method, some early experiments were performed 

to achieve better bulge forming. Limb et al. (1973) carried out bulge forming of tubes of 

different metals and alloys with different wall thicknesses. It was found that increasing 

the internal pressure incrementally in steps during the axial load application was the most 

satisfactory method of bulging thin walled tubes. Manabe et al. (1984) carried out 

experiments using a computer-controlled testing apparatus to examine the influence of 

linear and non-linear loading paths on the behavior of thin-walled aluminum tubes during 

hydroforming. Thiruvarudchelvan and Lua (1991) developed a device for applying an 

axial compressive force proportional to the internal pressure and obtained an optimum 

ratio for maximum bulging. Dohmann and Hartl (1994,1996) presented a flexible tool 

system that divided the die into segments that can be driven separately during the process. 

Bieling (1992) carried out a number of experiments of bulge forming with tubes and 

hollow shafts to investigate a range of suitable bulge forming parameters. 

 

2.2.1 Analytical method 
 
Bieling (1992) developed a group of equations to determine the suitable internal pressure 

and axial force for stepped cross-sectional tubes. Ahmed and Hashmi (1997) provided a 

theoretical method for bulge forming to estimate the internal pressure, axial load and 

clamping load which are required to design the dies, punches and accessories for the 

process.  

 

Asnafi (1999) analytically investigated the limits during the free forming, and the 

influence of material and process parameters on the loading path and the forming result. 

Only free-forming was treated in this work. Asnafi and Skogsgardh (2000) completed 

stroke-controlled hydroforming with free-forming theoretically and experimentally. The 



 12

forming limit curve (FLC) was used as an aid to finite-element simulations in component 

and process design. The study showed that the FLC of the tube material must be 

determined by bulge test. Kim and Kim (2002) used the analytical models to determine 

the forming limits for the THF process and demonstrated how the loading path and 

material parameters of the strain hardening exponent (n-value) and anisotropic parameter 

(r-value) influenced the forming results.  

 

Rimkus et al. (2000), Jirathearanat et al. (2004) and Koç (2002, 2003) utilized simple 

analytical methods to obtain initial values of yielding, maximum pressure and axial 

feeding for the loading path design. 

 
Rimkus et al. (2000) presented formulas and diagrams to aid in the estimation of the load 

parameters for the hydroforming of steel tubes and especially for the determination of the 

calibration pressure (the pressure for calibrating small radii or bringing the tube in 

complete contact with the tool cavities). It was pointed out that the load-curve defined the 

load history and was influenced by the material, the wall thickness, the tube diameter, the 

ratios between the wall thickness and the tube diameter and forming radius. To conduct a 

simulation of the forming process accurately using the finite element method (FEM), it 

was necessary to calculate the following parameters: (1) the axial force, necessary to 

control the change of the wall thickness; (2) the forming pressure, required to press the 

tube into the tool; and (3) the calibration pressure, necessary to achieve the final (smaller) 

radii. The authors defined a typical load curve in this manner, and calculated the axial 

force, forming pressure and calibration pressure as shown in Fig. 2.3.  



 13

 
Fig. 2.3    Load-curve for internal pressure vs. time (Adapted from Rimkus et. al, 2000) 

 

In Fig. 2.3, the internal pressures Pi1 (at point 1) and Pi2 (at point 2) were determined as 

follows: 

 

yi PP 9.01 =
                                                                                                                  (2.1)

 

yi PP )4.1~2.1(2 =
                                                                                                    (2.2) 

 
where, Py is the pressure to yield the tubular part. However, the calibration pressure was 

determined by the radius-pressure curve, and was affected by the tube wall thickness, the 

material and the radius which was to be achieved. 

 

Jirathearanat et al. (2004) analytically estimated the initial group of process parameters 

for Y-shape THF, optimized it using FEA, and confirmed that higher material feeding at 

the initial stages of hydroforming was beneficial. Koç and Altan (2002) conducted 

determination of process limits and parameters for hydroforming by applying widely 

known plasticity, membrane and thin/thick walled tube theories, and analytical 

predictions were compared with their experimental findings. Koç (1999, 2002) estimated 

the yield pressure Py and bursting pressure Pb according to the following relationships 

(Koç and Altan, 2002). 
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where yσ is the yield stress, 

UTSσ is the ultimate tensile stress of the tube material, 0t  is 

the initial wall thickness and 0D  is the initial outer diameter. An estimation of the 

maximum calibration pressure Pc at the moment of die corner filling was obtained based 

upon an estimation of the pressure required to achieve a certain target corner radius (CR ), 

according to the following equation (Koç and Altan, 2002): 
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where UTSσ is the ultimate tensile stress of the material and t is the current wall thickness. 

Eq. (2.5) indicates that the pressure required to achieve a certain corner radius increases 

as the radius decreases.  

 

Braeutigam and Butsch (1992) proposed an empirical equation that is suitable as a first 

approximation of the maximum internal pressure required to hydroform a part: 

C
UTSk R

t
P σ2.1≈

                                                                                                            (2.6) 

 

Guan et al. (2006, 2008) used Fourier series based finite element analysis to study the 

axisymmetric bulge of tubes. Four to six Fourier series terms to approximate 

displacement were used to quickly and efficiently model the cross-section of the tube and 

accurately predict the final deformed shape and strain distribution.  

 

Smith et al. (2006) proposed an analytical model on corner-forming limit diagrams 

(CFLD) for THF. The theory accounted for friction effects and accommodated regular 

shaped polygon die sections. This method was using a closed form approach for 

capturing friction effects and it was independent of employing the FEM. 
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All these analytical models provide an estimation of the internal pressure at some key 

stages during the forming process. Moreover, these models have mostly been limited to 

the axisymmetric bulging of tubes, and as such, are useful during the early stages of the 

process design. However, due to the highly non-linear nature of the process, theoretical 

studies to date have produced a relatively limited understanding of the mechanics of the 

hydroforming process. 

 

2.2.2 Finite Element Method 

 
Undoubtedly, almost all tests of the THF process were conducted experimentally and 

involved significant costs and time. The computer simulation of THF processes using the 

finite element method (FEM) has proven to be efficient and useful (Ponthot and 

Kleinermann, 2006), as it allows for the virtual testing and comparison of several 

candidate processes, thus avoiding the use of costly “trial and error” prototype tests. 

Several tools based on FEA simulations and experiments were developed to determine 

the process window for failure-free hydroforming (Gao et al., 2002; Manabe and Amino, 

2002; Strano et al., 2004). 

 

Ahmed and Hashmi (1998, 1999a, 1999b) showed that the FEM was a suitable tool for 

the simulation of forming processes. They presented theoretical and practical work for the 

estimation of the load parameters in THF. Gao et al. (2002) suggested a classification of 

THF processes based on their sensitivity to internal pressure or axial load. Manabe et al. 

(1984) investigated the optimal ratio between axial stress and internal pressure that 

produced a more uniform thickness distribution in straight tube hydroforming. Manabe & 

Amino (2002) also confirmed with both finite element (FE) simulations and experiments 

that key process and material factors affect the tube wall thickness distribution. They 

suggested that tube materials with a high strain-hardening coefficient (n-value) and a high 

anisotropic parameter (r-value) should be selected, and that good lubrication should be 

maintained to obtain a uniform thickness distribution. However, the optimal loading path 

was not investigated.   
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Palumbo et al. (2004) performed experiments and numerical simulations of the forming 

of a compound part consisting of a cylindrical region (the base) and a square part (the 

protrusion). Hwang et al. (2002) proposed a mathematical model and a finite element 

code ‘‘DEFORM’’ to examine the relationship between the internal pressure and the 

bulge height of the tube during the bulge hydroforming process in an open die. The 

effects of various forming parameters, such as the die entry radius, the initial thickness, 

the initial length of the tube, etc., upon the forming pressures were discussed. Lei et al. 

(2001) developed a three-dimensional rigid-plastic finite element model, HydroForm-3D, 

to analyze several typical hydroforming processes such as tee extrusion, cross-extrusion, 

the hydroforming process combined with the pre-bent process and subframe. The 

hydraulic pressure force was applied to the normal direction of the tube workpiece by 

integrating the pressure with respect to each element’s surface area. MacDonald and 

Hashmi (2000) performed a finite element simulation of the manufacture of cross 

branches from straight tubes to investigate the effects of varying process parameters. It 

was concluded that when designing processes to bulge form cross-joints that compressive 

axial loading should be used in combination with pressure loading where possible; 

friction should be kept to a minimum where maximum branch height is required and 

greater tube thickness should be used when seeking to reduce stress and thinning 

behaviour in the formed component. Yoon et al. (2006) extended the direct design 

method that was based on ideal forming theory for the design of non-flat preform for 

THF processes. A preform optimization methodology for non-flat blank solutions was 

proposed based on the penalty constraint method for the cross sectional shape and length 

of a tube. The hybrid membrane/shell method was employed to the capture thickness 

effect while maintaining membrane formulation in the ideal forming theory. 

 
Advantages and disadvantages 
 
The FEM is a powerful method for rapidly designing both prototype and production 

components. Initial product design by the FEM, however, has often been carried out by 

trial-and-error in order to investigate the influence of various process parameters. But the 

trial-and-error approach would require an excessive and unmanageable amount of time to 

numerically predict the optimal process design. Consequently, an efficient design method 
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is required that will minimize numerical simulation time, while maintaining a high level 

of accuracy. 

 

2.3 Optimization method in tube hydroforming 

 

The finite element analysis is able to provide a valuable understanding of the 

hydroforming process. Nevertheless, the trial-and-error approach to optimizing the 

process design can be very time consuming. Instead, this iterative FEA method can be 

performed systematically and automatically in conjunction with various optimization 

methods, and the determination of the loading path can be treated as a classical 

optimization problem. Once the optimal loading path is found it can be utilized to 

maximize the part formability.  

 

There are a variety of optimization strategies which can be classified into two categories: 

gradient and non-gradient methods (derivative free optimization). Gradient-based 

methods include the steepest descent method, the Newton, and the Quasi-Newton method 

used for linear and non-linear static optimization problems. For highly complex problems 

(optimizing a very large number of design variables), non-gradient-based methods are 

normally applied, such as response surface methods and genetic algorithms. However, the 

methods can also be classified in terms of computational intelligence (Engelbrecht, 2007): 

classical optimization (gradient-based and some of the non-gradient-based methods) and 

intelligent optimization (e.g. artificial neural networks (ANN), evolutionary computation 

(EC), swarm intelligence (SI), artificial immune systems (AIS), and fuzzy systems (FS)). 

 
2.3.1 Classical optimization algorithms 

 
2.3.1.1 Conjugate Gradient Method 
 
Many of the problems related to the improvement of product quality and production 

efficiency can be directly associated with the optimization procedures. Efficient 

optimization procedures, integrating the classical mathematical methods of optimization 
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with the finite element method, have been developed and applied to structural 

engineering and to the area of metal forming.  

 

Yang et al. (2001) sought to determine the optimal hydroforming process design using 

numerical simulation combined with an optimization tool that is based on the gradient 

method and sequential quadratic programming. A B-spline curve with six control points 

was used to describe the load path. The tube thickness variation was minimized. In 

addition, the thickness sensitivity analysis with respect to initial pressure was carried out. 

Fann and Hsiao (2003) applied the conjugate gradient method with the FE method to 

investigate how various loading conditions affect the thickness distribution in the tube 

wall and the part geometry. They also sought to determine an optimal loading condition 

using both a batch mode and a sequential mode, where the batch mode defined in their 

study was used to optimize all the process variables at once in view of their influence on 

the final result. The sequential mode was used to optimize the loading conditions one 

stage at a time in view of their effect on the results at each intermediate forming stage. 

The sequential mode generated a loading path with better tube quality than that generated 

with batch mode. 

 

Lorenzo et al. (2006) proposed an integrated approach which combines FEM simulations 

and gradient-based optimization techniques with the aim to determine the optimum blank 

contour in a typical 3-D deep drawing operation. An optimal blank shape was obtained 

which guarantees that thinning is minimized. 

 

Advantages and disadvantages 

Optimization based on the gradient method is a sequential calculation process, and it 

normally involves only one objective or weighted sum of multiple objectives. Some 

software, LS-DYNA for example, can be run as a command in the DOS operation system, 

so that the LS-DYNA process simulation and the related calculation programs generated 

with Microsoft Visual C++ 6.0 can be integrated as a batch or a script file for DOS to 

carry out the optimization process. 
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Since the operation is gradient-based, there are two situations in engineering where 

applying the finite-difference derivative approximation is inappropriate: when the 

function evaluations are costly and when they are noisy. In the first case, it may be 

prohibitive to perform the necessary number of function evaluations (normally no less 

than the number of variables plus one) to provide a single gradient estimation. In the 

second case, the gradient estimation may be completely useless. Moreover, in some 

complex problems, either the derivatives are unobtainable, or the finite differences 

approximation is expensive. Furthermore, considering the optimization method  

(Conjugate Gradient Method – constrained or non-constrained conditions), it is simple to 

carry out, but needs a good initial point and the penalty scalar for the step adjustment. 

Consequently, it is difficult to fulfill the multi-objective optimization using the conjugate 

gradient method. 

 
2.3.1.2 Self-feeding and adaptive simulation method 
 

Aue-U-Lan et al. (2004) proposed to use self-feeding (SF) and adaptive simulation (AS) 

to find robust and cost effective techniques to determine optimal loading paths. The 

implementation of these two approaches is now presented. 

 

(1) SF approach 

 

This method was designed to restrict the search for the loading path to a proper family of 

curves and to select the optimum within this family. This method contains two steps:  

1) Determine the relationship between internal pressure (P) and axial feed (dax), where 

the process is simulated by imposing only the internal pressure versus time. The friction 

at the interface is assumed to be zero.  

2) Determine the displacement versus time at the node located at the ends of the tube and 

the maximum thinning on the deforming tube. This information is used to estimate 

approximately how much the axial feed should be in order to avoid excessive thinning of 

the hydroformed tube. In this simulation step, a friction coefficient is prescribed and the 
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axial feed is increased by a certain amount using a scaling factor, α (α*SF), as shown in 

Fig. 2.4. This scaling factor was varied until a successful part is formed. 

 
 

Fig. 2.4 SF loading paths: α is a scale factor to increase the amount of axial feeding (Adapted 
from Aue-U-Lan et al., 2004) 
 
(2) AS approach 
The principal idea of the AS method is to feed the material into the deformation zone as 

much as possible without any wrinkles or fracture. At the beginning of the simulation, the 

tube is “deformed” by pressurizing to the yield pressure (Piy). Then, axial feeding is 

applied in the simulation, while maintaining the pressure at Piy, until wrinkles are 

detected. The wrinkles are then eliminated by pressurizing the tube without any axial 

feeding. Once the wrinkles are eliminated, the tube is subject to axial feeding at a 

constant pressure (see Fig. 2.5). These steps are repeated until a part without wrinkles or 

excessive thinning is obtained. 
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Fig. 2.5 Schematic procedure of the AS ( Pi: internal pressure, ∆Pi: internal pressure 
increment, Piy: yield pressure, ∆Da: axial feed increment). (Adapted from Aue-U-Lan et al., 2004) 
 
The SF is a “systematic trial-and-error” approach for establishing a family of loading 

paths via FEA. The THF experiments done using this approach have shown that SF can 

significantly reduce the number of trial runs necessary for process development. However, 

these two methods sometimes failed to find an optimal solution. 

 

2.3.2 Intelligent optimization algorithms 

2.3.2.1 Fuzzy adaptive method 

 

Though it is possible to determine suitable process parameters by repeating a series of FE 

simulations, this trial-and-error process can be extremely time-consuming. In order to 

reduce the time for optimization, some researchers combined the fuzzy method with FE 

simulation to identify the optimal loading path. Adaptive simulation uses different 

judgment rules in order to improve the results of the simulation: when defects or quality 

conditions are detected the loading path is automatically adjusted.   

 

Fuzzy expert systems are advanced systems that use fuzzy rules and approximate 

reasoning. A database-assisted fuzzy control system is able to automatically optimize the 

process without any expert assistance by utilizing a knowledge database. The process 

control program is an additional user-defined subroutine that plays the role of the 
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processor, sensor and actuator in a real closed-loop system. Process control can be 

accomplished by using the current feed-back to modify the control parameters for next 

step of analysis. The control values are determined automatically based on artificial 

intelligence (AI) rules in the user-defined subroutine. The simulated results of the next 

step may include the effect of the process-controlled path.  

 

Wu (2003) investigated the adaptive simulation of T-shape tube hydroforming by 

combining the FE code LS-DYNA with a fuzzy logic controller subroutine. During the 

simulation process (Fig. 2.6), subroutines can adjust the loading path according to the 

values of the minimum tube thickness and its variance. The goal of a better thickness 

distribution at the side branch of the formed part was achieved. Comparing with other 

linear loading paths, this adaptive control method led to better results. 

 

 
 
Fig. 2.6 The process of the adaptive simulation (Adapted from Wu, 2003) 
 

Strano et al. (2004) investigated both a self-feeding simulation approach and an adaptive 

simulation approach to determine successful loading paths in a timely manner. Strano et 

al. (2001) proposed a defect criterion based on the geometry to detect the wrinkling 

phenomenon, and implemented it into different commercial FEA software. Miyamoto et 

al. (2001) used a fuzzy controller (the member function was variation of the bulge height 

and branch contact area) to discuss the effect of branch punch to the forming thickness. 

Manabe et al. (2002) proposed an approach using a virtual-forming system with FE 

simulation, the new database-assisted fuzzy adaptive process control system for THF. 

Manabe et al. (2006) applied the database-assisted fuzzy process control algorithm to T-
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branch forming with a counterpunch with a validation of an aluminum alloy THF. An 

adequate loading path was searched using the fuzzy control algorithm, and the quality of 

the hydroformed product was improved compared to parts that were formed with a 

loading path determined on the basis of experience. Ray et al. (2004) determined the 

optimal load paths for X- and T-shaped hydroformed parts using FE simulations and an 

intelligent fuzzy logic-based load control algorithm: this enabled them to maximize part 

expansion while simultaneously maintaining wall thickness, forming stresses and plastic 

strains within the allowable limits. Aydemir et al. (2005) presented an adaptive method 

using a fuzzy knowledge-based controller to obtain a more efficient process control for 

THF processes, and therefore avoiding the onset of wrinkling and bursting with the help 

of dedicated stability criteria. The wrinkling criterion uses an energy-based indicator 

inspired by the plastic bifurcation theory. For necking followed by bursting, a criterion 

based on the forming limit curve was employed. Park et al. (2005) analyzed the empirical 

relationships between process parameters and hydroformability by fuzzy rules. Many 

process parameters were converted to a quantitative relationship by the use of 

approximate reasoning of a fuzzy expert system. Finally, Lorenzo et al. (2004a, 2004b) 

proposed a fuzzy system integrated with a FE code to obtain a closed-loop control for 

process design.  

 

Advantages and disadvantages  

The fuzzy adaptive method may well reduce the amount of simulation. Compared to 

optimization methods the fuzzy method required less simulation time and is easier to 

implement. However, the accuracy of this method depended on the selection of fuzzy 

rules and the member function. 

 

2.3.2.2 Genetic algorithms 

 

To reduce defects in THF, the applied internal pressure must be high enough to suppress 

buckling but low enough so as not to cause tube bursting. In conventional process 

simulation procedures, a pressure profile and feed rate must be supplied as an input to the 

finite element program. Based on the results of each finite element simulation, an 
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improved pressure profile and feed rate can be identified based on intuition and 

experience. Although adaptive simulation and fuzzy control can be used to find an 

appropriate loading path, it may not lead to an optimal solution within a reasonable time. 

There is a need, therefore, to develop an improved methodology to determine the loading 

paths.  

 

Abedrabbo et al. (2005, 2009) presented a method using a Genetic Algorithm (GA) 

search method in combination with LS-DYNA to optimize the process parameters to 

determine the best loading paths of THF in a square-shaped die. Their goal was to 

maximize formability by identifying the optimal internal hydraulic pressure and feed rate 

while ensuring that the strains in the part did not exceed the forming limit curve (FLC). 

The hierarchical evolutionary engineering design system (HEEDS) was used in 

combination with the nonlinear finite element code LS-DYNA. Compared to the best 

results of a manual optimization procedure, a 55% increase in expansion was achieved by 

the automated procedure. 

 

Roy et al. (1997) described an adaptive micro-genetic algorithm (µGA) for design 

optimization of process variables in multi-stage metal forming processes (e.g. multi-pass 

cold wire drawing, multi-pass cold drawing of a tubular profile and cold forging of an 

automotive bar). 

 

 

Advantages and disadvantages 

 

While many design optimization approaches are limited to a small number of design 

variables, hybrid genetic algorithms carry out a productive search over hundreds of 

variables at a time. As mentioned above, genetic algorithms use multiple autonomous 

agents to hierarchically decompose a problem into subsets with highly decomposed 

overlapping relationships. Some commercial software (e.g. HEEDS) combines 

evolutionary search algorithms with local optimization techniques. However, since there 
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are only rare applications of this approach to THF, further improvements are needed, 

such as the optimization of multiple objectives. 

 

2.3.3 Summary of the classical and intelligent method 

 

While classical optimization (CO) algorithms have been shown to be very successful (and 

more efficient than intelligent algorithms like GAs) in linear, quadratic, strongly convex, 

unimodal and other specialized problems, GAs have been shown to be more efficient for 

discontinuous, non-differentiable, multimodal and noisy problems. GA and CO differ 

mainly in the search process and the information about the search space that is used to 

guide the search process: 

• The search process: CO uses deterministic rules to move from one point in the search 

space to the next point. GA, on the other hand, uses probabilistic transition rules 

(Engelbrecht, 2007). Also, GA applies a parallel search of the search space, while CO 

uses a sequential search. A GA search starts from a diverse set of initial points, which 

allows for a parallel search of a large area of the search space. CO starts from one point, 

successively adjusting this point to move toward the optimum. 

 

• Search surface information: CO uses derivative information, usually first order or 

second-order, of the search space to guide the path to the optimum. GA, on the other hand, 

uses no derivative information. The fitness value (i.e. the objective value) of individual 

candidate solutions is used to guide the search. 

 

2.3.4 Multi-objective optimization 

Recently, multi-objective optimization algorithms have been increasingly applied to 

metal forming processes in which several objectives must be achieved simultaneously. 

Hereinafter, some concepts related to this algorithm are briefly discussed. 

 

2.3.4.1 Multi-objective optimization problem (MOP) 

Considering a generic minimization problem, a general formulation of the MOP can be 

presented in mathematical notation as Eq. (2.7) 



 26

 

Minimize:   T
m xFxFxFxF ])(),...,(),([)( 21=  

subject to: 

UL xxx

xg

xh

≤≤
≤
=

0)(

0)(

 

(2.7) 

where F is the vector of objective functions, x ∈ Rn is the vector of decision variables, h 

and g are the possible sets of equality and inequality constraints, respectively, and Lx  and 

Ux  are the lower and upper bounds for the decision variables. Finally, n is the number 

of variables and m is the number of objectives. 

 

2.3.4.2 Pareto optimality 

Pareto optimality is defined using the concept of domination (Zitzler and Thiele, 1999). 

Given two parameter vectors a and b, a dominates b if and only if (iff) a is at least as 

good as b in all objectives, and better in at least one. Similarly, a is equivalent to b iff a 

and b are identical to one another in all objectives. A parameter vector a is Pareto 

optimal iff a is non-dominated with respect to the set of all allowed parameter vectors. 

Pareto optimal vectors are characterized by the fact that improvement in any one 

objective means worsening at least one other objective.  

 

The Pareto optimal set is the set of all Pareto optimal parameter vectors, and the 

corresponding set of objective vectors is the Pareto optimal front. Fig. 2.7 shows the 

Pareto front for two objectives. The Pareto optimal set is a subset of the search space, 

whereas the Pareto optimal front is a subset of the solution space. 

 

As mentioned earlier, most real world optimization problems are in fact non-linear multi-

objective optimization problems; i.e., they are concerned with several (often conflicting) 

objective functions that must be optimized simultaneously. In general, the solution that is 

simultaneously optimal for all objectives (the utopia point O in Fig. 2.7) is not feasible 

and the real purpose of multi-objective optimization is to generate the set of so-called 

Pareto-optimal solutions, i.e. the set of solutions that represents the best alternatives.  
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Mathematically, a feasible solution x* is a Pareto-optimal (or non-dominated, or non-

inferior, or efficient) solution if there exists no x such that *)()( xFxF ii ≤  for all i=1, ..., n 

with *)()( xFxF jj <  for at least one j=1,...,m. This definition signifies that all non-

dominated solutions are optimal in the sense that it is not possible to improve one 

objective without degrading one or more of the other ones. After obtaining the set of 

Pareto-optimal solutions, the designer is able to select a suitable compromise between all 

objectives. In order to help the decision-making process, it is important to find a set of 

solutions as diverse as possible and uniformly distributed along the Pareto front. 

 

For Pareto optimality (Fig. 2.7), there are several methods available to determine the 

Pareto set (weak or strong), such as the weighted sum method, the ε-constraint method, 

the goal attainment method and the multi-objective GA method. In this work, the Normal  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.7  Pareto-optimal solution for two objectives 
 
Boundary Intersection (NBI) method and Multi-objective Optimization Genetic 

Algorithm (MOGA) were chosen to obtain the Pareto set. 
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2.3.4.3 Surrogate model 

A surrogate model, or meta-model, is constructed to replace the time-consuming FE 

simulation, and will be used together with the multi-objective optimization algorithms to 

find the optimal loading path parameters in hydroforming applications. Fig. 2.8 shows the 

entire philosophy of surrogate modelling in the form of a flow chart. 

 
More details of this method can be found in section 2.3.5. 

 

 
 
Fig. 2.8 Surrogate modelling philosophy (Adapted from Kulkarni, 2006) 
 

2.3.4.4 Taguchi method 

The Taguchi method has been widely used for robust design and quality engineering in 

industry (Taguchi, 1981; Ross, 1988). The Taguchi method utilizes a mathematical tool 

of orthogonal array experiments to study a large number of decision variables with a 

small number of experiments. It also uses a generic signal-to-noise (S/N) ratio to quantify 

the present variation for robust design against noises. According to Taguchi method, the 

loss function, which is equivalent to objective function, can be divided into three 

characteristics, including “lower-the-better”, “nominal-the-better”, or “higher-the-better ” 

(Taguchi, 1981). 
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The S/N ratio for the lower-the-better characteristics related to the tube hydroforming is 

given by 
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where yi indicates the measured objectives, and n is the number of simulation repetitions 

under the same design parameter conditions. Regardless of the definition of the S/N, a 

greater S/N ratio always corresponds to a better quality characteristic. 

 

In the Taguchi method, a statistical method of analysis of variance (ANOVA) is further 

employed to quantitatively investigate the effects of the parameters on objectives. A 

design parameter is considered to be significant if its influence is large compared to the 

virtual experimental error. 

 

2.3.4.5 NBI 

The NBI method is a preferred approach for multi-objective optimization and was 

developed by Das and Dennis (1998). The details of this method are provided in Chapter 

4. 

 

2.3.4.6 Multiobjective evolutionary algorithm (MOEA) 

Since the first studies on evolutionary algorithms (EA), major research and application of 

EAs in multi-objective optimization, only started in the early of 1990s. However, the 

effectiveness of evolutionary computation methodologies in the solution of multi-

objective optimization problems has generated significant research interest in recent years.  

 

Some basic terminology is given to aid in the understanding of the subsequent work. 

1. Parent: a solution used during crossover operation to create a child solution.  

2. Children (or Offspring): new solutions (or decision variable vectors) created by a 

combined effect of crossover and mutation operators. 

3. Population: a set of solutions used in one generation of an evolutionary algorithm (EA). 

The number of solutions in a population is called ‘population size’. 
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4. Fitness: a fitness or a fitness landscape is a function derived from objective function(s), 

constraint(s) and other problem descriptions which is used in the selection (or 

reproduction) operator of an EA. 

5. Crossover: an operator in which two or more parent solutions (chromosome 1 and 2, 

Fig. 2.9a) are used to create (through recombination) one or more offspring solutions. 

The operation is illustrated by swapping two parts at the crossover point in Fig. 2.9a. 

6. Mutation: an EA operator which is applied to a single solution to create a new 

perturbed solution (Fig. 2.9b). A fundamental difference with a crossover operator is that 

mutation is applied to a single solution, whereas crossover is applied to more than one 

solution.  

 

    

(a) Crossover                                                       (b) Mutation 

Fig. 2.9 The crossover and mutation operations in EA 

 

A number of evolutionary multi-objective optimization (EMO) methodologies have been 

developed, such as Non-dominated Sorting Genetic Algorithm (NSGA) and its second 

generation (NSGA-II), Strength Pareto Evolutionary Algorithm (SPEA), and Pareto-

Archived Evolution Strategy (PAES) (Deb, 2008), and are being continuously improved 

in order to achieve better performance (Deb, 2008). Multi-objective genetic algorithm 

(MOGA) stands for the class of those methods that use genetic algorithms. These 

techniques have illustrated their superiority over traditional multiobjective optimization 

techniques and are now considered to be a robust optimization tool.  Fig. 2.9 shows a 

schematic of a two-step multi-objective optimization procedure. The reasons for their 

popularity are many. Evolutionary optimization (EO) has become increasingly popular 

because i) it does not require any derivative information, ii ) it is relatively simple to 

implement and iii ) it has wide-spread applications. 
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The NSGA-II algorithm developed by Deb et al. (2002) has been a popular optimization 

tool in recent years. It adopts an elitism strategy and crowding-distance calculation, 

which offer a much better spread of solutions and better convergence in most problems 

near the true Pareto-optimal front compared to Pareto-archived evolution strategy and 

strength-Pareto Evolutionary Algorithm – two other elitist multi-objective evolutionary 

algorithms (MOEA) that pay special attention to creating a diverse Pareto-optimal front. 

The algorithm of NSGA-II and its improvements will be detailed in chapter 5. 

 

 

 

Fig. 2.10 Schematic of a two-step multiobjective optimization procedure (Adapted from 

Deb, 2008) 
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2.3.5 Meta-model based multi-objective optimization 

By properly constructing meta-models, designers can address the challenge posed by 

prohibitively high computational times. The resulting approximation is computationally 

efficient functions and allows for a comprehensive exploration of the design space, and  

may yield significantly improved designs. The literature review also shows the trend in 

THF: from single-objective optimization to multi-objective optimization; from direct FE 

simulation to meta-model based optimization.  

 

In order to accelerate the calculations, a variety of surrogate methods are used to 

substitute the FEA simulations: Polynomial regression (Myers and Montgomery, 2002), 

Radial basis functions (Hussain et al., 2002), ANN (Rafiq, 2001) and Kriging models 

(Strano, 2006). It is obvious that the allocation of the sampling points used to build the 

approximation have an effect on the final performance of the surrogate model. Many 

schemes and criteria have been proposed to allocate a-priori the sample points in a 

convex domain of interest: Factorial design, Box-Behnken, Koshal, Central Composite 

design, D-Optimal and Space-filling design. All these efforts are made to approach the 

true response surface of the practical problems. It is practically difficult to conclude 

which one is most suitable for allocation and reduction of sampling points to reach a 

desired precision.  

 

There are normally three stages that describe this methodology:  

1) First stage: design of experiments (DOE). 

2) Second stage: selection and construction of a surrogate model. 

3) Third stage: multi-objective optimization. 

 

2.3.5.1 Design of experiments  

 

The design of experiments (DOE) is a powerful tool to analyze the influence of process 

variables over some specific range, which is an unknown function of these process 

variables. DOE involves planning a set of experiments. When the results of these 

experiments are analyzed, they help to identify optimal conditions and the factors that 
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most influence the results. Statistical approval to experimental design is necessary if we 

wish to draw meaningful conclusions from the data (Montgomery, 1997).  

 

This section compares several experimental design schemes, such as factorial design, 

central composite design, D-optimal design, and latin hypercubes. 

 

Factorial design 

Factorial designs include full factorial design and fractional factorial design. Both these 

designs are characterized by the terms factor and level. In the optimization of the tubular 

hydroforming process, a factor would represent a specific process variable, and the level 

would represent the magnitude of this variable. Consider a 23 full factorial design, for 

example, where there are two levels and three factors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
Fig. 2.11 A two level full factorial design (factors X1, X2, X3); (b) fractional design  
 

A fractional design is a fraction of a full factorial design, and is created by blocking some 

of the design nodes; e.g. the fractional factorial design shown in Fig. 2.11 b) is designed 

with nodes 1, 4, 6, 7 only, and nodes 2, 3, 5 and 8 have been blocked.  

 

 

(a) (b) 
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Central composite design  

This design uses the 2n
 factorial design, the center point, and the ‘face center’ points and 

therefore consists of P = 2n
 + 2n + 1 experimental design points. For n = 3, the 

coordinates of the nodes are: 

 
where the value of α is: 4 2n=α .                                                                  (2.9)  

The points are used to fit a second-order function.  

 

D-optimal design 

The D-optimality criterion is the most widely used criterion for selecting data points for 

computer generated DOE. The D-optimality criterion maximizes the determinant of the 

moment matrix, W, which is defined (e.g., Myers and Montgomery, 2002) as 
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where p is the total number of parameters included in the response surface model (the 

order of the matrix W), X is an k×(p+1) matrix (also defined in eq. 2.14). If all variables 

are normalized so that they vary from -1 to 1, then the maximum value of Deff  is 1. 

Furthermore, the quality of the set of points can then be measured by Deff (Todoroki and 

Ishikawa, 2004). 

Latin hypercubes 

Latin hypercube sampling (LHS) was developed to address the need for uncertainty 

assessment for a particular class of problems. Latin hypercube sampling, due to McKay et 

al. (1979), is a strategy for generating random sample points ensuring that all portions of 

the vector space are represented. Consider the case where we wish to sample m points in 

the n-dimensional vector space D∈Rn. The Latin hypercube sampling strategy is as 

follows (Lophaven et al., 2002): 

 

1. Divide the interval of each dimension into m non-overlapping intervals having equal 

probability (here we consider a uniform distribution, so the intervals should have equal 

size). 

2. Sample randomly from a uniform distribution a point in each interval in each 

dimension. 

3. Pair randomly (equal likely combinations) the point from each dimension. 

 

This method was found to be more accurate than random sampling and stratified 

sampling in estimating the means, variances and distribution functions of an output. 

Moreover, it ensures that each of the input variables has all portions of its range 

represented. It can cope with many input variables and is computationally inexpensive to 

generate. 

 

2.3.5.2 Approximation techniques 

In order to accelerate the optimization, a variety of surrogate methods have been used to 

limit the number of FEA simulations: polynomial regression (Myers and Montgomery, 

2002), radial basis functions (Hussain et al., 2002), ANN (Rafiq, 2001) and Kriging 

models (Strano, 2006) are some of the most common techniques. However, the design of 
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sample points used to build the approximation has an influence on the performance of the 

surrogate model. Many schemes and criteria have been proposed to assign a-priori the 

sample points in a convex domain of interest, such as the factorial design, Koshal, central 

composite design, D-optimal and space-filling design (Stander et al., 2007) (Table 2.1). 

Every effort is made to approach the true response surface of the practical problems. 

However, it is difficult to conclude which one is most suitable for the assignment of 

sampling points to reach a desired accuracy. 

 

Table 2.1 Number of experimental points required for experimental designs (Stander et al., 2007) 

 
 

Response surface method  

By far the most popular technique for building meta-models in engineering is the 

traditional response surface method (RSM), which typically employs second-order 

polynomial models that are fit using least-squares regression techniques. 

 

RSM is a collection of statistical and mathematical methods that are useful for modelling 

and analyzing engineering problems. In this technique, the main objective is to optimize 

the response surface that is influenced by various process parameters. RSM also 

quantifies the relationship between the controllable input parameters and the obtained 

response surfaces (Myers and Montgomery, 2002).  

 

Response surface methodology is applied to obtain an approximation to a response 

function in terms of predictor variables. The response model is generally written as: 

               ε+= )(xfy                                                                                (2.12) 
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where y is the response, x=(x1, x2, . . ., xn) are predictor variables, and ε is random error 

that is assumed to be normally distributed with mean zero and variance σ2 . The error, εi , 

at each observation is assumed to be independent and identically distributed. The function 

f(x) is normally selected to be a polynomial. For a quadratic polynomial, f(x) is written as: 
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where β represents unknown coefficients. The response model can also be rewritten in 

matrix form as: 

                                  εβ += Xy                                                                        (2.14) 

where ε is the error vector. The unbiased estimator b of the coefficient vector β is 

obtained using the least square error method as: 

                                     YXXXb TT 1)( −=                                                                      (2.15) 

By obtaining b, the vector of coefficients from Eq. (2.14), the response surface is 

prepared. 

 

Kriging method 

A FE simulation is a repeatable deterministic process; however, when an established 

analytical model based on some limited data is used to predict "new" data, the output 

becomes uncertain due to the limited information that was used to define the "black box" 

model. The Kriging (or DACE) technique, which originated from the field of spatial 

statistics, was developed to represent stochastic variables. The response is modelled as a 

realization of a regression model and a random process (Lophaven et al., 2002). The 

universal model can be expressed as: 
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where the coefficients 
iβ (i=1,...p) are the regression parameters, fi(x) (i=1,...p) are  

known functions of x; Z(x) is a random process with mean zero, variance σ2 , and non 

zero covariance  

    pkxwxwCov k ,...,2,1),,,(),( 2 == θρσ                                                                        (2.17) 
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where 2
kσ  is the process variance of the kth component of the response and ),,( ii xwθρ  is 

the correlation model. Usually, the stochastic process is stationary, which implies that the 

correlation ),,( ii xwθρ  depends only on wi-xi, namely 

     ),(),,( iiii xwxw −= θρθρ                                                                                           (2.18) 

A Gaussian correlation function (2.19) and a surrogate model with polynomial order 2 are 

typically used. 

    








∑ −−=
=

n

i
iiiii xwxw

1

2exp),,( θθρ
                                                                                (2.19) 

Unlike response surfaces, however, the Kriging method has found extremely limited use 

in hydroforming optimization since its introduction by Sacks et al. (1989). 

 

Comparison of RSM and Kriging method 

 

Fig. 2.12 lists the most common approximation techniques and the way these models are 

constructed. The differences between the RSM and Kriging methods are shown in Fig. 

2.13 and 2.14. More details can be found in Simpson et al. (1998, 2001).  
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Fig. 2.12 Approximation techniques (Simpson et al., 1998) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.13 Response surface methodology (i.i.d: independent and identically distributed) 
(Simpson et al.,1998) 
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Fig. 2.14 Kriging model (Simpson et al.,1998) 
 
 

2.3.6 Literature of multi-objective optimization in tube hydroforming 

Li B. et al. (2006) developed a method to analyze the effects of the forming parameters 

on the uniformity of tube wall thickness by using the Taguchi method and FEA, and 

determined the optimal combination of forming parameters for the process. In his work, a 

free-form THF process was employed to find the optimal combination of forming 

parameters that leads to the highest bulge ratio and the lowest thinning ratio. A multi-

objective optimization approach was proposed by simultaneously maximizing the bulge 

ratio and minimizing the thinning ratio and was solved by using a weighted goal-

attainment method.  Furthermore, Li B. et al. (2007) studied the robustness of the 

hydroforming process using the Taguchi method to minimize the variation and the 

average value of the thinning ratio. A two-dimensional cross-extrusion hydroformed tube 

was employed to illustrate the effectiveness of this approach. However, the influence of 

loading path was not investigated since the process did not include end feeding. 
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Ingarao et al. (2009) integrated numerical simulations, response surface methodology and 

Pareto optimal solution search techniques to design a complex Y-shaped tubular 

hydroformed part. In particular, the calibration of internal fluid pressure and 

counterpunch force was investigated with a view to achieving three different quality 

objectives: minimize thinning, reduce under-filling and improve the accuracy of the final 

fillet radius at the bulge zone corner. The weighted sum method was applied and 

integrated with the e-constraint procedure in order to perform a multi-objective 

optimization and to determine the optimal Pareto solutions.  

 

Consequently, the quality requirements of tubular hydroformed parts have led to a 

challenging problem of developing multi-objective optimization algorithms to explore a 

process window or Pareto loading path with regard to the above-mentioned constraints 

and objectives. 

 
2.4 Review of available software in metal forming optimization 

 

Some applications of metal forming optimization using commercial software can be 

found in the literature. For instance, Imaninejad et al. (2005) utilized the commercial 

optimization software LS-OPT® and FE analysis to determine the optimum loading paths 

for closed-die and T-joint tube hydroforming. However, two major factors have hindered 

the development of automatic optimization of the THF process, namely a lack of smooth 

data exchange between commercial FEA programs and user-defined optimization 

algorithms and failure criteria, especially when dealing with multi-objectives.  

 

Currently, optimization modules are only offered by some of the better-known FEA 

software packages, such as ABAQUS, PAM-STAMP, ANSYS and LS-DYNA. Although 

these software packages provide their own interface for users to modify the input 

parameters (process or material parameters) and extract the output data (stress/strain and 

structure response), the optimization algorithms and criteria are relatively limited. In the 

LS-OPT program (Stander et al., 2009) for example, the failure criterion is limited to 

processes with linear strain paths, and it is difficult for the user to optimize multi-stage 
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metal forming processes. Moreover, since the optimization algorithms are typically based 

on response surface methodology (RSM) and Artificial Neural Networks (ANN) (which 

will be discussed in more detail in section 2.5.2), it is difficult for the user to concurrently 

check the precision of the surrogate model for unknown data. Although a non-dominated 

sorting genetic algorithm (NSGA-II) was incorporated into the latest version of LS-OPT 

V3.4 for multi-objective optimization, the constraint-handling technique has not been 

explicitly introduced. Similar issues exist in other popular software packages such as 

ABAQUS and PAM-OPT.  

 
As stated above, modern metal forming system design requires extensive use of 

simulation-based design and analysis tools (i.e. finite element analysis – FEA), which 

requires prohibitively long computational times to obtain results from such complex 

models, especially when seeking to optimize the forming process. In order to 

comprehensively explore the design space, a meta-model based optimization tool was 

introduced to THF and will be presented in Chapter 4.  
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Chapter 3: A Hybrid Forming Severity Indicator for Tube 
Hydroforming Simulation  

 
To investigate the process parameters, it is necessary to understand what kind of failures 

might occur during the hydroforming process and how to prevent these failures from 

occurring. According to the literature review, the primary failures in tube hydroforming 

can be classified into three modes: necking/fracture, buckling/wrinkling and severe 

thinning. 

 
3.1 Failure modes of THF 

In the tube hydroforming process a tube must be shaped to conform to the inner surface 

of the hydroform die through simultaneous application of an internal fluid pressure and 

an axial compressive force (Fig. 3.1). The final shape of the part is determined by the die 

shape and by the way in which these parameters evolve throughout the hydroforming 

process.  

 

Instability modes limit the extent to which the tube can be deformed, and occur when the 

stress and strain states in a part reach critical levels. The predominant failure modes in 

tube hydroforming are global buckling, localized wrinkling, necking or bursting, and 

folding of tubes, as illustrated in Fig. 3.2, and reported by Dohmann and Hartl 

(1996,1997), Koç and Altan (2002), Chu and Xu (2004a), Zhang (1999), and Xia (2001). 
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Fig. 3.1 The principle of tube hydroforming: (a) original tube shape and (b) final tube shape 
(before unloading). Adapted from Asnafi (1999). 
 

 
Fig. 3.2 Diagram showing various failure modes in tube hydroforming (Adapted  from  
Dohmann and Hartl, 1996) 
 
 

Buckling occurs when eccentric compressive forces develop in the tube and exceed the 

instability limit. Buckling in THF process occurs during the initial stages of deformation 

when strain levels are small (Koç and Altan, 2002). With regard to the loading path, 
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buckling takes place at this stage when high axial load might be accompanied by an 

insufficient increase of section modulus of the tube (Zhang, 1999). The risk of buckling 

increases for longer tubes with thicker walls. To avoid buckling, simple estimations of 

permissible load for the corresponding free length of the tube can be made based on 

analytical assumptions (Koç and Altan, 2002). 

 

Wrinkling is usually observed during both initial and intermediate stages of hydroforming 

and is not related to the length of the tube, but to the wall thickness (Koç and Altan, 

2002). Wrinkles are sometimes unavoidable in the intake regions of the die, but can later 

be eliminated by increasing the internal pressure. Wrinkling occurs because of excessive 

axial loading or insufficient internal pressure. Nevertheless, some wrinkles cannot be 

ironed out or could require substantially higher internal pressure, which might not be 

attainable due to limited press clamping load capability (Sorine, 2007).  

 
Bursting occurs when a tube reaches a critical amount of expansion under the influence 

of large tensile forces (Koç and Altan, 2002). Fracture is often preceded by necking. 

Once necking starts, the deformation and thinning become non-uniform throughout the 

part. As a consequence, strain localizes causing necking to proceed very rapidly towards 

fracture. This process is highly sensitive to friction between the tube and the die wall. 

High friction forces can cause material to stick to the die surface, decreasing its flow into 

the deformation zone. This in turn triggers strain localization and subsequent splitting of 

the material (Sorine, 2007). 

 

Inward folding occurs when tubes are expanded in dies where tube wall material is forced 

into the die by the end-feed punches, or in areas of heavily-expanded thin tubes. Folds 

can occur under excessively high axial force (Dohmann and Hartl, 1997). 

 

It was noted that even though the cause of wrinkling is also excessive compressive 

loading, the way buckling and wrinkling take place are quite different depending on the 

geometrical configuration of the tubular component. Buckling of tubes as a column is 

observed when a tube is long and has relatively thick walls. Wrinkling tends to occur in 

tubes with thin walls. However, there is no definite boundary between buckling and 
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wrinkling conditions since they are both dependent on a combination of many other 

factors such as material, boundary conditions, geometry, imperfections and loading types 

(Koç and Altan, 2002). In tube hydroforming, plastic buckling and wrinkling analyses are 

common interests. On the other hand, in aircraft and oil industry, structural (elastic) 

instability is the case. 

 

3.2 Strain based forming limit diagram (FLD) 

During the last few decades, different methods have been proposed to assess the severity 

of metal forming processes. The most useful of these has been the forming limit diagram 

(FLD). This method is widely used in factory and research laboratories because of its 

simplicity and ease of use. 

 

The concept of FLDs, as it is known today, was developed by Keeler and Backofen (1963) 

and extended by Goodwin (1968). Keeler and Goodwin generated FLD in principal strain 

space in which a forming limit curve (FLC) represents the limit of necking for a given 

sheet metal (Fig. 3.3). Since then, researchers have developed various experimental and 

analytical techniques to determine the FLC for a given sheet material. A comprehensive 

overview of these techniques is given by Green and Black (2002). In the metal forming 

industry, FLD has been widely used to evaluate the forming severity of stamped 

components, and this has reduced the lead time and improved the process robustness and 

product quality (Green, 2008). Furthermore, the FLC was also shown to accurately 

predict the necking of straight tubes tested in free-expansion. 
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Figure 3.3 The conventional forming limit diagram (FLD) for a low-carbon steel sheet 
 
 
Building on their observations of plastic instability in low-carbon steel sheets, Keeler and 

Brazier (1977) developed a very simple empirical relationship that predicts the position 

of the FLC (i.e. the plane-strain intercept) as a function of the terminal strain hardening 

coefficient and the initial thickness of the sheet: 

            )21.0/()13.143.23(0 ntFLD ⋅+=                                                                          (3.1) 

Due to its accuracy, the Keeler-Brazier relationship is still very much in use today, 

particularly in press-shop applications.  

 

Three approaches have been proposed and utilized to meet the challenge of accurately 

predicting the FLCs, which are bifurcation analysis, damage model analysis and 

Marciniak and Kuczynski analysis (Marciniak and Kuczynski, 1967). Bifurcation 

analysis initiated from the work of Hill (1952), followed by Stïren and Rice (1975), 

Hutchinson and Neale (1978a, 1978b). Damage model analysis assumes microdefects in 

the material and forming limit is predicted when the evolution of these microdefects 

Fracture 



 48

reaches a limit. Tjotta (1992) implemented a damage model for void growth during 

plastic deformation in finite element model to predict the onset of failure in uniaxial 

tension and plane strain tension. Huang et al. (2000) adopted a macroscopic yield 

criterion for anisotropic porous sheet metal to develop a failure prediction methodology 

that can be used to investigate the failure of sheet metals under forming operations. The 

M-K analysis was employed to predict failure by assuming a higher void volume fraction 

inside the randomly oriented imperfection band. 

 
3.2.1 Path dependence of strain-based forming limits 
  
In certain forming processes such as tube bending and hydroforming, the material is 

subjected to complex, non-linear strain paths. Several researchers (Nakazima,1971;Ghosh 

and Laukonis,1976;Arrieux et al., 1982;Graf and Hosford, 1993a, 1993b,1994)  have 

demonstrated that complex strain path cause the shape and position of the FLC’s to 

change significantly (Fig. 3.4). This makes it difficult and ambiguous to determine the 

limit strains for processes that lead to complex strain paths. The development of 

computational models for complex strain-paths following the Marciniak-Kuczynski (M-K) 

approach has become an active research field since the early 1980’s (see Barata et al., 

1985). More recently, Butuc et al. (2002, 2003, 2006), developed a general computer 

code to predict the FLC in the case of complex load paths using various hardening 

models (both phenomenological – Swift, Voce, and miocrostructural ones). Cao and Yao 

(2000, 2002) analyzed the influence of the changing strain paths on the limit strains. A 

more extensive review of this subject can be found in Green and Stoughton (2004) and 

Green (2008).   
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Figure 3.4 Strain path-dependency of FLC (Adapted from Graf and Hosford, 1993a) 
 
 

 
Fig 3.5 Prestraining in biaxial tension shifts the FLC down and to the right (Adapted from 
Hosford and Caddell, 2007). 
 

 

FLC after prestrain 

As-received FLC 

prestrain 

ε2 

ε1 



 50

Figure 3.5 illustrates the importance of using the correct FLC to evaluate the forming 

severity of a part that was subject to a non-linear strain history. This figure shows that 

prestraining in biaxial tension shifts the FLC down and to the right. After the prestraining 

strains corresponding to the open circle would be possible, but those corresponding to the 

black dot would cause failure. Therefore, it is generally accepted that the FLD should 

only be used in applications where the strain path is quasi linear (Graf and Hosford, 

1993a, 1993b,1994) . 

 
3.3 Stress-based FLD 

Similar to the forming limit diagram, a forming limit stress diagram (FLSD) was 

proposed by Arrieux et al. (1982) and Zhao et al. (1996). Their work showed that 

regardless of the shape of the as-received FLD and the type of pre-strain (linear, bilinear 

and trilinear straining) imposed, the FLSDs were almost all identical. In contrast, when 

plotted in strain space the FLD was very sensitive to the type of strain path.  

 

Stoughton (2000, 2001) generalized the stress-based forming limit criterion and 

established a procedure for determing the FLSD from the as-received FLD. The 

uniqueness of the proposed stress based criterion was verified using data from several  

 

 
        (a) FLD                                                                    (b) FLSD 
Fig. 3.6 (a) Comparison of the as-received FLC with that after a prestrain to 0.07 strain in 

equibiaxial tension, and (b) the corresponding FLSC in stress space (Adapted from Stoughton and 

Zhu, 2004) 
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non-proportional loading paths for both aluminum and steel alloys. Fig. 3.6 shows that 

the stressed-based FLC is strain-path independent, indicating that the FLSC can be used 

to assess forming severity in cases of non-proportional loading. In particular, the FLSC is 

very well suited for formability analysis after a virtual forming simulation since the 

numerical simulation code computes the stresses in the part: the stresses in the as-formed 

component can be directly compared with the FLSC. 

 

One drawback of using the FLSD is that the forming stresses can rarely be measured 

experimentally. In complex forming operations, strains must be measured on the part and 

then converted to stresses using elastic–plastic constitutive equations after which the 

stresses can be compared to stress-based forming limits. Another concern arises when 

applying stress-based forming limits to dynamic events, such as crashworthiness studies, 

because of the strong oscillations in stress due to stress wave propagation. To avoid this 

issue, Gholipour et al. (2004) considered the application of a damage-based constitutive 

model, namely the Gurson–Tvergaard–Needleman model, to predict damage evolution 

over the forming and impact history. It was shown that this approach is useful in 

predicting formability of the alloys considered in their research, under combined tube 

bending and hydroforming operations. 

 

3.4 General objectives for defect-free tube hydroforming 

 

In tubular hydroforming, a first priority is to produce a defect-free product while 

satisfying the specified geometric constraints. So, it is necessary to define objective 

functions in terms of accepted quality standards. Consequently, general failure objectives 

that consider necking/fracture, wrinkling and severe thinning were proposed to evaluate 

the quality of a hydroformed part.  

 

Since the forming limit stress curve (FLSC) has been shown to be almost insensitive to 

strain path effects, an optimization technique should make use of the FLSC to assess the 

severity of the forming process in order to be more widely applicable. 
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In this work, the FLSC for a given tube material was determined from the experimental 

strain-based FLC by following the mapping procedure outlined by Stoughton (2000). 

Furthermore, Stoughton & Yoon (2005) pointed out that the most critical stress states 

attained during the forming simulation ought to be evaluated against the forming limit 

stress curve (FLSC), and not merely the stress states recorded for post-processing 

purposes. Therefore, in order to account for the widest possible range of failures, a multi-

objective failure criterion was adopted to evaluate the effects of load path, and the types 

of failures considered were, necking or splitting in the tube wall, wrinkling and severe 

thinning. 

 

The objective functions were taken to be the difference in terms of major stress (i.e. df) 

(Fig. 3.7b) between the maximum stress in the formed part and the FLSC at the 

corresponding minor stress, the sum of the total distance dw, and the sum of the square of 

distance dth as defined by equations (3.2) to (3.5), where the notation i (i=1, 2, ...N) is the 

element number, and N is the total number of elements in the tube. 

 

Objective function for necking or fracture: 
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ffdfObj σσ −== max
1_  (3.2) 

where σ1
max is the numerically calculated maximum principal stress in element i (i=1 to N) 

and σf is the corresponding forming stress limit (Fig. 3.7b). The optimization will seek to 

maximize this objective function because a greater distance signifies a reduced tendency 

for plastic instability or fracture to take place. However, the maximum principal stress 

may be greater than the stress limit. In this case, a scale coefficient k is introduced to  
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 a) 
 

 
          b) 
 
Fig. 3.7 Graphical interpretation of the objective functions on a) the FLD and b) the FLSD 
 
 

dth

η(ε2)

d  Thinning limit

a  FLC
b  Safety margin limit
c  Balanced biaxial tension

dth

η(ε2)

d  Thinning limit

a  FLC
b  Safety margin limit
c  Balanced biaxial tension

 



 54

scale up the stress limit fσ . Therefore, for the sake of convenience, Equation (3.2) is 

rewritten as a minimization in Equation (3.3): 

ff kd
fObjf

σσ −
===

max
1

1
11

_
 (3.3) 

where k is a scaling factor intended to prevent the maximum stress from exceeding the 

stress forming limit; the value of k is determined by the user’s experience and may vary 

between 1.1 and 2.5. 

 

Objective function for wrinkling: 
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where dw is the distance from a point (σ1, σ2) in stress space to the major stress axis as 

shown in Fig. 3.7b.  

 

Objective function for severe thinning: 
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where ε1 is the major strain in element i, and η(ε2) is the thinning limit d (Fig. 3.7a). dth is 

the minimum distance from a point (ε1, ε2) in strain space to the limit d. In order to 

optimize the hydroforming process, the minimum value of each of these objective 

functions is sought. 

 

When it comes to a specific hydroforming application, this model is sufficiently flexible 

to add specific objectives and constraints to the above general objectives. When 

hydroforming T-shaped and Y-shaped tubular parts, for example, the requirements 

related to a specified bulge height, the conformity of the final part and the die, and the 

wall thickness distribution in the final part would also be an indispensable geometrical 

objective. 
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Chapter 4: Multi-objective Optimization and Sensitivity 
Analysis for Tube Hydroforming Using Normal Boundary 

Intersection  
 
 
4.1 Introduction 

In order to avoid the defects caused by excessive internal pressure or inadequate 

end-feed forces, it is necessary to ensure that these process parameters are kept within a 

small process window (Fig. 4.1) throughout the hydroforming operation. When the 

forming process is not sufficiently robust the part may fail as a result of necking or 

fracture, wrinkling or severe thinning, as mentioned in the previous chapter. Therefore, 

the determination of the loading path (i.e. pressure vs. end-feed displacement) plays a 

vital role in the production of quality hydroformed components. Consequently, the 

objective of this chapter is to establish a methodology to determine the optimal loading 

path for tubular hydroformed parts. 

 
Fig. 4.1 Process windows for tube hydroforming. (Adapted from Yuan et al., 2007) 
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To correctly carry out tube hydroforming, it is advantageous to investigate the sensitivity 

of the tube responses to variations in geometrical dimensions, material properties and 

process parameters (e.g. loading path). Since there is no explicit relationship between 

forming severity and loading path, it is very difficult to perform a sensitivity analysis by 

analytical methods. Experimental methods would be very expensive and at times, 

impossible. Numerical simulation is an effective and less expensive way to carry out the 

sensitivity analysis. 

 

The Taguchi method has been shown to be an effective design of experiments for a 

variety of industrial applications. It employs an orthogonal array to study a large 

parameter space using only a small number of experiments. Another benefit of the 

Taguchi approach is that it determines the relative contribution of each factor to process 

reliability by the analysis of variance (ANOVA) statistical method. This allows design 

efforts to be concentrated on the most sensitive factors. Therefore the optimal loading 

path can be determined by carrying out finite element simulations of the hydroforming 

process, in combination with the Taguchi method. 

 

It can be seen from the literature review (Chapter 2), that most optimization efforts have 

been limited to a single objective and fail to consider all the quality criteria for 

hydroformed parts. Indeed, after a comprehensive review of optimization of metal 

forming problems, Bonte et al. (2008) state that “modelling is mostly done in an arbitrary 

way, addressing the specific problem of the considered metal forming process only. 

Furthermore, the selection of the optimization algorithm is also mainly related to that 

specific problem”. Moreover, multiple design objectives may be difficult to describe with 

an explicit function. The optimization of loading path is a multi-objective decision-

making problem, and as such, it may have a set of alternative solutions rather than a 

single optimal solution.  

 

When dealing with multi-objective optimization problems (MOPs), classical optimization 

methods such as multi-criterion decision-making methods suggest converting MOPs to a 

single-objective optimization problem by emphasizing one particular Pareto-optimal 
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solution. Common multi-objective solution methods are the weighted sum method, the å-

constraint method and the goal attainment method. In addition, there are a variety of 

multi-objective genetic algorithms in the literature, such as NSGA-II, SPEA, and PAES. 

But apart from NSGA-II, which is implemented in LS-OPT® (Stander et al., 2009) for the 

optimization of metal forming processes, no other algorithm appears to have been used to 

optimize tube hydroforming. A further investigation of NSGA-II algorithm will be 

presented in the next chapter. 

 

This chapter begins with the algorithm of normal boundary intersection . The next section 

describes the proposed methodology for determining the optimum loading path in regard 

to achieving defect-free parts. In the following section, multi-objective functions are 

defined on the basis of failure criteria that are used to evaluate the quality of thin-walled 

structures. In the next section, the proposed optimization methodology is applied to the 

corner-fill benchmark test in which a straight tube is expanded in a die with a square 

cross-section. Finally, some conclusions are drawn in the last section. 

 

4.2 Response surface methodology 

 

The basic idea of response surface methodology (RSM) was introduced in chapter 2. It 

was used to construct surrogate approximations to each objective and constraint.  In this 

chapter, a second order polynomial with the following expression was used: 
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The regression coefficients β  of the quadratic response surface are defined as follows: 
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4.3 Normal Boundary Intersection 

 

The NBI method is a preferred approach for multi-objective optimization and was 

developed by Das and Dennis (1998). NBI and its derivatives offer the advantage that 

they are applicable for all dimensions, produce points evenly distributed on the Pareto 

surface and can be combined with a Pareto filter to identify non-Pareto points on the 

boundary of the feasible region (Cramer et al., 2006). However, NBI is seldom used for 

tube hydroforming applications, no doubt because of its complex theoretical background 

and the fact that explicit MOP software is not readily available. 

 

Some terminologies were defined herein to understand how NBI works. The Convex Hull 

of Individual Minima (CHIM) is defined as the set of points that are linear combinations 

of ** )( FxF i −  for i=1, …, m, where *
ix  is the global optimal solution of Fi(x) and F* is 

the shadow minimum (or utopia point), i.e. the vector containing the individual global 

minima of the objectives (Seferlis and Georgiadis, 2004). The pay-off matrix is defined 

as an m × m matrix whose ith column is ** )( FxF i − . Given a vector β, Φ·β defines a 

point on the CHIM. Mathematically, the so-called NBI subproblem is formulated as: 

 
Maximize  tN                                                                                                                    (4.3) 

Subject to: 

*)(ˆ FxFntN −=⋅+⋅Φ β                                                                                                (4.4) 

and the same set of constraints given by Eq. (2.7). n̂  is the unit normal to the CHIM 

pointing to the origin (objectives are redefined with the shadow minimum shifted to the 

origin), and tN is a scalar such ntN ˆ⋅+⋅Φ β  represents a point on that normal. This 

subproblem has to be solved for various β. The global solution to this problem gives the 

intersection point between the normal and the boundary of the objectives space closest to 

the origin. In practice, the algorithm uses a quasi-normal direction given by an equally 

weighted linear combination of the columns of Φi multiplied by –1. 

 

There are two steps for implementing the NBI algorithm: 
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(1) Find the global of each objective individually—shadow minima problem;  

(2) Find the "best" set of tradeoff solutions between the objectives. 

 

This method first considers each objective function separately, as an individual single-

objective sub-problem. Each sub-problem is solved using a single-objective solver. 

Afterwards all the NBI sub-problems are solved successively and the "best" set of 

tradeoff solutions is found. A more detailed description of this method can be found in 

Rigoni (2004). 

 

Take two objectives of engine output for example. The objectives are: Maximizing the 

torque (TQ) and minimizing the NOx emissions. The objectives space is shown in 

Figures 4.2 and 4.3. The figures also show graphically the working of the NBI method, 

and the aspect of one single NBI-subproblem. 

 

In the first step, the best values of the two objectives were found: point T maximizes the 

first objective function f1, and point N minimizes the second objective f2: point F* is then 

the utopia point. 

 

In the second step, the NBI subproblem of Eq. (4.4) was solved and the tradeoff solutions 

were found. In this example the convex hull of individual minima (CHIM) corresponds to 

the line segment NT . Any NBI subproblem is specified giving its barycentric 

coordinates (weights). For example the NBI subproblem outlined in Fig. 4.3 corresponds 

to β = (0.5, 0.5). These values locate the position of point H along the CHIM: in fact the 

components of the vector β are, respectively, the normalized lengths of the segments 

NH  and TH  (the normalization is made over the length of the segment NT ). The line n 

is the quasi-normal direction passing through H, and it represents the constraints 

introduced by the NBI subproblem. Point P is then the solution of the single-objective 

constrained NBI-subproblem. The length of the segment HP represents the new variable 

tN introduced by the NBI subproblem. Consequently, the Pareto front was found by 

solving all the subproblems (Fig. 4.3 b). 
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Fig. 4.2 Finding the shadow minima in step 1 (represented by two dots N and T)  
(Adapted from http://biounder.kaist.ac.kr/board/bx/docs/matlabman/cage.pdf) 
 
 
 

 
 
 (a)  NBI subproblem                                                              (b) Pareto front 

Fig. 4.3 Finding the best set of trade-off solutions in step 2  

(Adapted from http://biounder.kaist.ac.kr/board/bx/docs/matlabman/cage.pdf) 

 

L 2 norm 

 

A widely used method known as the Lp norm proposed by Eschenauer et al. (1990), was 

used to find one solution among the various Pareto solutions that has a minimum value. 
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As shown in Fig. 2.7, the L2 norm represents the minimum distance from the Pareto 

frontier to the utopia point and the optimal compromise solution is thus obtained as the 

minimum L2 norm (Pareto) solution. Consequently, this method is generalized for the 

determination of Pareto optimum in n-dimensional space with n objectives (n≥2). This 

solution was determined according to the following expression: 

 

Minimize 
pm

i

p
iip fxfL

/1

1

* ))(( 






 −= ∑
=

   (4.5) 

where )(xf i and ∗
if are the values of the ith objective function at a feasible point and at the 

Utopia point ( ∗
if = 0 in this case), respectively. The most common applications of the Lp 

norm are the L1, L2 and L ∞  norms (where p=1, 2 and ∞). In this study, the L2 norm (p=2) 

was used: this method is also referred to as the minimized distance method. 

 

4.4 A RSM based optimization algorithm for tube hydroforming 

The procedure for carrying out the optimization is described as follows: 

1. Identify the design space and implement a first run with L9 orthogonal array (OA) 

2. Carry out virtual experiments using a DOE and FEA to produce samples 

 (i) Sensitivity analysis with ANOVA to select key factors  

 (ii) Additional run with L18 OA to create a refined parameter space 

3. Construct a surrogate multi-objective model with RSM 

4. Optimize and obtain the Pareto solution set 

5. Verify the optimum result (with minimum L2 norm value) with a FEA.  

6. Repeat Step 2 to Step 5. Stop when the accuracy criterion is met and go to Step 7 

7. Last run with minimum value of L2 norm, output results. 

 

A flowchart of the procedure is shown in Fig. 4.4. Fig. 4.5 illustrates the interface with 

FEA to calculate the objectives of necking/fracture, wrinkling and severe thinning. 
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Fig. 4.5 Interface with FEA to calculate the objectives of necking/fracture, wrinkling and 

severe thinning 

 

 

4.5 Implementation 

The proposed algorithm described in Section 4.4 was implemented in MATLAB R2008a. 

After obtaining the RSM models, the NBI optimization algorithm in the Model-Based 

Calibration Toolbox was selected to search for the Pareto optimal solutions.  

 

4.6 Application to straight tube hydroforming 

In this section, the optimization model is applied to the hydroforming of a straight tube in 

a die with a square cross-section. 

 

 

Input Load Path  

Simulate and output principal stress 
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4.6.1 Objectives and optimization model for tube hydroforming with square die 

As the pressure inside a tube is increased, the tube wall gradually expands into the corner 

of the square hydroforming die and the radius of the tube wall decreases. The corner 

radius is an important geometric factor that correlates with the formability of the tube: the 

more formable the tube material is, the smaller the corner radius that can be achieved. In 

addition to the three objectives of necking/fracture, wrinkling and severe thinning listed 

in Eq. (3.3)-(3.5), for the corner filling simulation, another objective function for the 

corner radius was defined as: 

)3,2,1(_4 NNNRadiusrObjf ==  (4.5) 

where N1, N2 and N3 (Fig. 4.6) are three nodes located in the corner of the part at the 

mid-section of the expanded region. It was assumed that the circle that passes through 

these three points is tangent to the adjacent die surfaces. 

 

 

 

 

 

 

 

 

Fig. 4.6 Location of three nodes used to measure the corner radius 

 

Consequently, this hydroforming problem yielded the following mathematical 

optimization model: 

Find     X= [x1, x2, ..., xn]
T 

to minimize MOP:  F(X)= (f1(X), f2(X), f3(X), f4(X)) (4.6) 

subject to 06.0)()X( 11 ≤−= Xfg
, 

0)(2.0)X( 12 ≤−= Xfg  

 

 

N 1

N 2

N 3

N 1

N 2

N 3

fine mesh 
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 06.0)()X( 23 ≤−= Xfg ,
 0)(2.0)X( 24 ≤−= Xfg  

 06.0)()X( 35 ≤−= Xfg
, 

0)(2.0)X( 36 ≤−= Xfg
 (4.7)

 

 06.0)()X( 47 ≤−= Xfg
, 

0)(2.0)X( 48 ≤−= Xfg  

 UL XXX ≤≤  

where fi(X) (i=1 to 4) are normalized values between 0.2 and 0.6 determined by RSM 

corresponding to equations (3.3) to (3.5) and (4.5), respectively. The normalized range 

[0.2, 0.6] was determined to avoid numerical problem related to dividing by zero, which 

occurs often in the normalized region of [-1,1]. Parameter variables X is also a 

normalized vector of pressure (with (n-1) nodes, i.e. x1 to xn-1) and end feed (xn). The 

vector length n is determined after the pressure nodes were decided by sensitivity analysis. 

 

4.6.2 Finite Element Simulation with LS-DYNA® 

In this study, straight tube hydroforming in a square die under various load paths was 

simulated using the finite element method. This simple forming process is commonly 

referred to as the corner-fill test. Fig. 4.7 shows a FE model of the corner-fill test set up 

with LS-DYNA® (Hallquist, 2007). Corner filling is generally carried out to investigate 

the formability of the tube material in the hoop direction of the tube (i.e. cross section A-

A). In cross-section B-B (Fig. 4.7), the tube wall is subject to bending as well as  

 

Fig. 4.7 One quarter of the FE model of straight tube hydroforming 
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expansion. Therefore, the strain path becomes non-linear during this hydroforming 

process. The geometry of cross-section A-A for the tube and the die is shown in Fig. 4.8. 

The distance between the outer surface of the tube and the inner surface of the die was set 

to 3.0 mm. The outside tube diameter was 90 mm and the tube wall thickness was 2 mm. 

 

 

 

 

 

 

 

 

 

Fig.4.8 Geometry of the cross-section of die and tube (RC is the final corner radius of the 

deformed tube)  

 

The die surface was considered to be rigid. The as-received tube was considered to be 

mild steel and the mechanical properties of this material are listed in Table 4.1. The tube 

was modelled using Belytschko-Tsay shell elements, with 7 integration points through 

the thickness. The material hardening law was defined by a piece-wise linear 

representation of the uniaxial stress-strain curve ("*MAT_PIECEWISE_LINEAR_ 

PLASTICITY" material model in LS-DYNA®). Due to symmetry, only one quarter of the 

die and tube were modelled and appropriate boundary conditions were applied along the 

planes of symmetry. The model was discretized into 10,902 nodes and 10,025 shell 

elements (2,565 elements for the tube and 7,460 elements for the die). After comparing 

different mesh sizes, it was determined that a fine mesh was needed to capture more 

accurate stress and strain results in the middle section of the tube. A fine mesh (Fig. 4.6) 

was applied to this section using "*CONSTRAINED_ ADAPTIVITY" in order to 

 

-50

-40

-30

-20

-10

0

10

20

30

40

50

-50 -40 -30 -20 -10 0 10 20 30 40 50

Tube Width (mm)

T
u

b
e 

H
ei

g
h

t 
(m

m
)

RC

s=3 mm

-50

-40

-30

-20

-10

0

10

20

30

40

50

-50 -40 -30 -20 -10 0 10 20 30 40 50

Tube Width (mm)

T
u

b
e 

H
ei

g
h

t 
(m

m
)

RC

s=3 mm

RC

s=3 mm



 67

achieve more accurate stress and strain predictions. The time scaling method was used 

with different termination times, and it was found that a termination time of 0.005 s was 

able to achieve a good energy balance with a reasonably low kinetic energy. 

 

An internal pressure was applied to the tube according to the load curve shown in Fig. 4.9. 

An end-feed displacement was applied to both ends of the tube node sets. Finally, the 

coefficient of friction for the contact interface between the tube and the die was set to a 

value of µ = 0.1 based on twist-compression test data (Reid, 2002). 

 
Table 4.1: Tube properties 

 

Mechanical properties 
Density  7800 kg/m3 
Young's modulus 210 GPa 
Strength coefficient 601.8 MPa 
Hardening exponent n 0.168 
Poisson's ratio  0.3 
Yield stress 265 MPa 
Ultimate tensile stress 380 MPa 
Geometric parameters 
Length of tube L0 280 mm 
Outer radius of tube r0 45 mm 
Thickness of tube t0 2.0 mm 
Bulge width  120 mm 

 

4.6.3 Virtual Experiment Design of Loading Path 

In their investigations, Imaninejad et al. (2005) and Al-Qureshi & Moriera Filho (2001) 

concluded that increasing the number of loading path segments approximating the 

optimum load curve not only increases the computational efficiency but also produces 

final components with a more uniform thickness distribution and/or larger bulge heights. 

Therefore, the loading path for straight-tube hydroforming was constructed with four 

parameters: P1, P2, and P3 which are three levels of internal pressure (and correspond 

with the pre-expansion, expansion and calibration stages) and D, the displacement 

applied at the tube ends. Accordingly, a five-stage path was chosen for the internal 

pressure in the current sensitivity study (Fig. 4.9). The total simulation time was 0.005 s. 

In order to generate a small corner radius, the calibration pressure was set to a much 

higher value.  
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Fig. 4.9  Piecewise linear load curve for internal pressure and axial end feed displacement 

 
The yield pressure P1 was initially estimated according to the relationship (Koç and Altan, 

2002) of equation (2.3): 

MPa33.12
2

00

0 =
−

=
tD

t
P yy σ   

where yσ is the yield stress of the tube material, 0t  is the initial wall thickness and 0D  is 

the initial outer diameter. An estimation of the maximum calibration pressure P3 was also 

obtained based upon an estimation of the pressure required to achieve a certain target 

corner radius ( CR ), according to the equation (2.5). The calibration pressure P3 was 

estimated to be in the range of 30 ≤ P3 ≤ 90 MPa. 

 

The Taguchi orthogonal array is a design of experiments that has the advantage of 

introducing a sensitivity analysis by ANOVA, and was utilized for the DOE in this case. 

On the basis of estimated yield and calibration pressures, an orthogonal array (L9(3
4)) of 

 

P2 

P3 

P1 



 69

four factors with three levels for each was developed for the virtual experiments. Table 

4.2 shows the values of each loading path parameters in this Taguchi orthogonal array. 

 

Table 4.2: L9(3
4) orthogonal array 

 

 

 

 

 

 

 

The hydroforming simulations showed that the strain path in the most critical element 

was typically non-linear regardless of the loading conditions (see Fig. 4.10). The true 

major strain and true minor strain were the circumferential strain and axial strain, 

respectively. During the final stage of hydroforming, the tube wall actually undergoes 

bending as it fills the corner of the die, thus causing the strain path to become non-linear. 

Therefore it can be seen that even a very simple hydroforming process such as this 

requires a failure criterion that is strain-path independent. 

 

 

Run No. Layout P1 (MPa) P2 (MPa) P3 (MPa) D (mm) 
1 1111 10 20 30 8 
2 1222 10 25 45 10 
3 1333 10 30 60 12 
4 2123 14 20 45 12 
5 2231 14 25 60 8 
6 2312 14 30 30 10 
7 3132 18 20 60 10 
8 3213 18 25 30 12 
9 3321 18 30 45 8 
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Fig. 4.10 Predicted strain paths in the most critical element (maximum major stress) for 

each loading condition in the DOE 

 

4.6.4 Results and Analysis 

For multi-objective problems, each objective function has a different magnitude and 

different units, and it is not possible to evaluate the quality of the simulated tubes directly 

from the values of the objective function. Therefore, after obtaining the results for each 

virtual experiment, the objective values were normalized to a dimensionless value 

between 0.2 and 0.8 (Table 4.3). The following formulae were used for this normalization 

procedure: 
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where Nf ,Nw , Nth and Nr are the normalized values for the objective of necking/fracture, 

wrinkling, severe thinning and corner radius, respectively. Obj_f, Obj_w, Obj_th and 

Obj_r are the values of the four objective functions. Obj_fmax, Obj_wmax, Obj_thmax and 

Obj_rmax are the maximum values of each objective function obtained in the numerical 

simulations.  Although there are various ways to normalize these objective functions, the 

normalization method does not actually affect the Pareto ranking. 

 

After the objective functions were determined, the Signal-to-Noise ratio (eq. 2.8) was 

calculated for each run, as follows: 











−=

n

y
NS i

2

log10/  (4.9) 

where yi are the normalized values of the four objectives, calculated from Eq. (4.8) and 

provided in Table 4.3, and n is the number of repeat tests (n = 1 in this study). Regardless 

of the definition of the S/N, a greater S/N ratio always corresponds to a better quality 

characteristic. 

 
Table 4.3: Factor responses with L2 norm value and S/N ratio for each objective 

 

Run 
No. 

f1 
(MPa) 

f2 
(104) 
(MPa) 

f3 
 

f4 
(mm) 

Normalization  S/N ratio 

f1 f2 f3 f4 
L2 norm 
value 

f1 f2 f3 f4 

1 146.3 0.65 0 18.83 0.4308 0.2653 0.2000 0.8000 0.9675 7.31 11.52 13.98 1.94 
2 126.9 4.37 0.001 13.65 0.4662 0.6382 0.2001 0.6350 1.0333 6.63 3.90 13.97 3.94 
3 56.3 5.98 4.786 10.59 0.8000 0.8000 0.8000 0.5375 1.4862 1.94 1.94 1.94 5.39 
4 124.2 3.74 0 14.48 0.4719 0.5747 0.2000 0.6613 1.0150 6.52 4.81 13.98 3.59 
5 81.8 1.81 0.512 12.03 0.6128 0.3819 0.2642 0.5834 0.9651 4.25 8.36 11.56 4.68 
6 72.7 2.35 2.19 14.79 0.6643 0.4353 0.4747 0.6712 1.1431 3.55 7.22 6.47 3.46 
7 108.2 2.09 0 12.62 0.5122 0.4100 0.2000 0.6020 0.9126 5.81 7.74 13.98 4.41 
8 123.1 2.28 0 17.56 0.4744 0.4286 0.2000 0.7595 1.0127 6.48 7.36 13.98 2.39 
9 72.2 4.14 1.307 12.84 0.6679 0.6146 0.3639 0.6091 1.1521 3.51 4.23 8.78 4.31 
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By using L2 norm, the Pareto set can be calculated as shown in Table 4.3, where the 

minimum value of the L2 norm is in bold font. 

 

Since FE simulations require substantial preparation and execution time, a surrogate 

model or “response surface model” can be constructed to obtain the prediction of 

objectives using a reduced number of FE simulations. Koç et al. (2000) presented low-

cost RSM models to predict the protrusion height of “T-shaped” hydroformed parts, and 

the method was shown to provide an economical prediction and optimization of this 

height as a function of geometrical parameters subject to thinning of the wall in the 

protrusion region. 

 

For this straight tube hydroforming case, a further DOE with a L18 orthogonal array 

(Table 4.4) was carried out and used to fit the RSM model.  

 

Table 4.4: L18(36) orthogonal array 

 

 

Run No. P1 (MPa) P2 (MPa) P3 (MPa) P4 (MPa) P5 (MPa) end feed 
(mm) 

1 10 20 26 30 40 10 
2 10 24 28 32 60 12 
3 10 28 30 34 80 14 
4 14 20 26 32 60 14 
5 14 24 28 34 80 10 
6 14 28 30 30 40 12 
7 18 20 28 30 80 12 
8 18 24 30 32 40 14 
9 18 28 26 34 60 10 
10 10 20 30 34 60 12 
11 10 24 26 30 80 14 
12 10 28 28 32 40 10 
13 14 20 28 32 40 14 
14 14 24 30 34 60 10 
15 14 28 26 30 80 12 
16 18 20 30 34 80 10 
17 18 24 26 30 40 12 
18 18 28 28 32 60 14 
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From the analysis of variance (ANOVA) for the L9 orthogonal array, it was evident that 

P2 and P3 are more significant parameters for the four objectives. Therefore, two 

intermediate pressure factors were inserted between P2 (at time 2.5ms, Fig.4.9) and P3, 

and the parameters that define the loading path were then renamed as P1, P2 (at time 1.0 

ms) , P3 (at time 2.5 ms) , P4 (at time 3.5 ms), P5 (at time 5.0 ms) and D.  

 

The simulation results for the 18 load paths are presented in Table 4.5 as well as the 

Pareto solutions obtained using L2 norm.  

 

Table 4.5: Factor responses with L2 norm value and S/N ratio for 
each objective of the L18 orthogonal array 

Run 
No. 

f1 
(MPa) 

f2 
(104)  
(MPa) 

f3 
f4 
(mm) 

Normalization S/N ratio 

f1 f2 f3 f4 
L2 norm  
value 

f1 f2 f3 f4 

1 129.7 2.69 0.00006 14.34 0.4133 0.4922 0.2000 0.7663 1.019 7.7 6.2 14.0 2.3 
2 57.2 4.31 2.89 10.85 0.6840 0.6692 0.3377 0.6282 1.193 3.3 3.5 9.4 4.0 
3 46.1 3.95 12.58 8.26 0.8000 0.6301 0.8000 0.5261 1.398 1.9 4.0 1.9 5.6 
4 103.2 5.52 0.0 11.70 0.4680 0.8000 0.2000 0.6618 1.156 6.6 1.9 14.0 3.6 
5 55.6 3.53 2.97 9.11 0.6975 0.5840 0.3416 0.5597 1.121 3.1 4.7 9.3 5.0 
6 64.2 1.89 4.23 12.85 0.6311 0.4061 0.4020 0.7075 1.107 4.0 7.8 7.9 3.0 
7 96.1 3.29 0.0 10.10 0.4878 0.5582 0.2000 0.5986 0.974 6.2 5.1 14.0 4.5 
8 94.6 2.69 0.10 15.20 0.4924 0.4924 0.2050 0.8000 1.080 6.2 6.2 13.8 1.9 
9 52.7 4.24 5.79 9.32 0.7247 0.6615 0.4762 0.5681 1.230 2.8 3.6 6.4 4.9 
10 110.1 4.60 0.01 11.75 0.4512 0.7009 0.2007 0.6641 1.085 6.9 3.1 14.0 3.6 
11 48.2 4.65 7.42 7.75 0.7745 0.7059 0.5538 0.5061 1.289 2.2 3.0 5.1 5.9 
12 57.2 2.32 6.52 11.40 0.6833 0.4522 0.5109 0.6501 1.164 3.3 6.9 5.8 3.7 
13 121.7 3.26 0.00004 15.08 0.4274 0.5545 0.2000 0.7953 1.078 7.4 5.1 14.0 2.0 
14 51.3 4.24 3.42 10.26 0.7394 0.6614 0.3629 0.6051 1.217 2.6 3.6 8.8 4.4 
15 50.4 3.49 7.76 8.55 0.7493 0.5799 0.5702 0.5374 1.230 2.5 4.7 4.9 5.4 
16 99.1 2.39 0.20 9.95 0.4792 0.4602 0.2098 0.5929 0.915 6.4 6.7 13.6 4.5 
17 82.0 3.08 0.30 15.10 0.5373 0.5348 0.2145 0.7962 1.120 5.4 5.4 13.4 2.0 
18 58.0 2.86 3.58 11.45 0.6770 0.5107 0.3707 0.6519 1.132 3.4 5.8 8.6 3.7 

 
 

It was also noted that Runs No. 7 and 16 were the two optimal runs with the lowest 

values of L2 norm (see Table 4.5). The corner radius for Runs No. 7 and 16 is 10.10 mm 

and 9.95 mm, respectively. 

 

For each objective, the ANOVA showed the sensitivity of each factor (Fig.4.11). They 

are provided below from the most sensitive to the least sensitive:  
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Fig. 4.11 ANOVA of four objectives with each loading path parameter 
 

(1) For the fracture objective (f1): P2 P5 P4 P1 P3 D;  

(2) For the wrinkling objective (f2): P5 P2 P1 D P3 P4;  

(3) For the objective of severe thinning (f3): P2 P4 P5 P1 D P3, and  

(4) For the corner radius objective (f4): P5 P4 P2 P1 D P3, which showed that P3 is the 

least sensitive factor in the loading path variable settings.  

Therefore, P3 was set to a constant value of 28 MPa and was omitted when setting up the 

RSM model. 

 
In order to obtain the global optimum loading path with the smallest corner radius (i.e. 

maximum expansion into the corner of the die) without failure, a quadratic RSM model 

based on  methods described in Section 4.2.3 was generated using the L18 simulation 

results with the parameter set {P1, P2, P4, P5, D}. 
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According to central composite design for the response surface method, the parameter 

vector {P1, P2, P4, P5, D} can be transformed to the range [0.2, 0.8] using the following 

transformation: 

8

101
6.02.01

−⋅+= P
x , 

8

202
6.02.02

−⋅+= P
x ,  

4

304
6.02.03

−⋅+= P
x , 

40

405
6.02.04

−⋅+= P
x , 

4

10
6.02.05

−⋅+= D
x  (4.12) 

 

As a result, the quadratic RSM functions were obtained for each objective and then were 

input to the NBI optimization toolbox to find the Pareto optimal solutions. 

 

The parameter options for the NBI algorithm were selected as follows: the number of 
tradeoff points per objective pair was 10; for shadow minima options, the maximum  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 Pareto sets with regard to objectives of fracture (f1), wrinkling (f2), severe 

thinning (f3)  and corner radius (f4), where one solution is highlighted as a larger dot. 
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function evaluations were 100; the maximum iterations were 20; the tolerances for each 

function, variable and constraint were all set to a default value (0.0001). The options for 

the NBI sub-problem were chosen the same as shadow minima. There were 220 sub-

problems and the Pareto set was found (Fig. 4.12) after 20 minutes of computation on a 

HP xw9300 workstation with AMD Opteron™ Processor 248, 2.19 GHz, with 4 GB of 

RAM. 

 

In Fig. 4.12, the non-dominated optimal solutions of the numerical example provide the 

complete picture of the trade-off between the objectives. Minimizing fracture is equal to 

minimizing severe thinning (f1 vs. f3), and maximizing wrinkling (f1 vs. f2), which 

indicated that except for the f1 and f3 objectives, the objectives are always in conflict. 

Since the NBI method produced a Pareto set of 220 solutions, a FE calculation was 

performed with the optimum loading path generated by the L2 norm calculation in order 

to verify the optimum solution. 

 

In total, there were two batches of 18 FE simulations that were each carried out to make 

sequential improvements to the RSM model. For each batch, an additional FE run was 

carried out to validate the optimum solution determined by the NBI method. The two 

FEA results and the prediction of RSM are shown in Table 6. The good correlation 

between these two results demonstrates the effectiveness of the RSM. Table 4.7 

represents the global optimum loading path parameters, obtained with a minimum L2 

norm value, within the Pareto solution set.  

 
Table 4.6: Two optimum solutions obtained with the NBI method using L2 norm and FEA for 

verification 

 f1 
(MPa) 

f2 
(104)  

(MPa) 
f3 

f4 
(mm) 

Normalization Pareto L2 Norm value 

f1 f2 f3 f4 Prediction Calculation 

RSM #1 555.4 2.184 1.84 11.08 0.2498  0.4376 0.2879 0.6374 0.862  

FEA #1 91.7 2.186 1.77 9.20 0.5016  0.4379 0.2844 0.5634  0.917 

RSM #2 89.4 0.039 0.99 8.78 0.5096  0.2043 0.2473 0.5468 0.813  

FEA #2 94.6 2.034 0.86 9.08 0.4924  0.3641 0.2411 0.5586  0.863 
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Table 4.7: Loading path parameters for the global optimum solution 

P1(MPa) P2(MPa) P3(MPa) P4(MPa) P5(MPa) D(mm) 

19 19.03 28 34 83.761 10.06 
 

The optimal value of L2 norm is: F = 0.813, whereas the FEA result is 0.863 (Table 4.6). 

The prediction error is 5.78%, which is within an acceptable range. The parameter vector 

for this objective value is X = [0.8 0.2183 0.2 0.6513 0.2093]T, and represents a loading 

path defined by the values in Table 4.7 and shown in Fig. 4.12.  

 

Table 4.8 Comparison of objectives of final optimum (L2 norm value) and intermediate results 

Run  Max. stress (MPa) f1 (MPa) f2 (104) (MPa) f3 f4 (mm) 

L9 optimum 551 108 2.0941 0 12.62 

L18 optimum 560 99 2.3916 0.2047 9.95 

Final optimum 564 95 2.0339 0.8615 9.08 

 

 
Fig. 4.13 Stresses in the part after it was hydroformed with the loading path defined by 
the Pareto optimum layout, compared with the FLSC. 
 

 

As-received FLSD

FEA stress

As-received FLSD

FEA stress
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It can be seen that the optimum loading path is similar to Run No.16 (Table 4.5) obtained 

by L2 norm. However, the optimum loading path leads to a smaller corner radius, 

compared to the best run (No. 7) in the L9 orthogonal array (Table 4.3) and the best run 

(No. 16) in the L18 orthogonal array (Table 4.5), by 28% and 8.7%, respectively, and the 

corner radius decreased from 12.62 mm and 9.95 mm to 9.08 mm. At the same time, 

there was a slight increase in the maximum stress in the most critical element (by 2.4% 

and 0.7%), however, the stress remains far below the FLSC (Fig. 4.13). This indicates 

that the optimum layout leads to a significant improvement in the hydroforming process. 

 

Fig. 4.14 illustrates the evolution of loading path in the optimization process. In total, 36 

load paths were plotted, 18 for each of the L18 orthogonal arrays (iterations 1 and 2). 

Compared to iteration 1 where several load paths lead to failure, the load paths in 

iteration 2 all resulted in parts without failure. It was shown from the comparison that 

more end feed was required during the beginning of the process to push material into the 

die cavity to reduce the risk of failure. It can also be noted in Fig. 4.14 that a Pareto 

solution set of 220 load paths was generated by the NBI method, and these form a process 

window that may enhance the process robustness compared to a single optimal solution 

obtained by the L2 norm method. These results will be further discussed in the next 

section. 
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Fig.4.14 Sequential L18 load paths (Iteration 1 and Iteration 2) 
 
4.6.5 Validation with LS-OPT ® 4.0 

 

In order to validate the proposed optimization method, the same hydroforming example 

was optimized with the commercial optimization software LS-OPT® 4.0, often used for 

metal forming applications (Stander et al., 2009). The program requires the input of 

design variables, optimization algorithms and parameters, which can be provided using a 

graphic user interface (GUI). Once again, the objective was to minimize the corner radius 

during die filling. The constraints available in LS-OPT® 4.0 are the thinning ratio in the 

tube wall and the FLD. The FLD was embedded in the software as a constraint to make 

sure no failure occurs. The constraints can be written as: 

0)(

35.0)(

<
≤∆
xg

xt
FLD

 (4.13) 

where, Ät is the thickness reduction which is positive when the thickness is reduced. The 

FLD constraint is satisfied (i.e. the strains lie under the FLC) when 0)( <xg FLD . The 

parameters in the LS-OPT® GUI are listed in Table 4.9 and the codes are listed in 
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Appendix C and D. It can be noted that 180 load paths (6 iterations of 30 runs each) were 

simulated with each method in LS-OPT®, whereas only 36 load paths were simulated 

with the NBI method. The hybrid algorithms were used, which start with the genetic 

algorithm (GA) or adaptive simulated annealing (ASA) to find an approximate global 

optimum after which a leapfrog optimizer for constrained minimization is used to sharpen 

the solution. The solution to a hybrid algorithm will be at least as good as the one 

provided by the global optimizer (ASA or GA). 

 

Table 4.9 Algorithms and parameters in LS-OPT® GUI 

strategy variables 
(load parameters) sampling Algorithms 

sequential 
with 
domain 
reduction 
(SRSM) 

P1: 10-19 
P2: 19-28 
P3: 26-28 
P4: 30-35 
P5: 40-85 
D: 10-14 

1) metamodel: polynomial; 
order: linear; 
2) point-selection: D-
optimal; 
3) Total Number of 
simulation points: 30 

1) hybrid ASA with 
default settings 
2) hybrid GA with 
population size:  200 
and number of 
generations:  250 

 

Table 4.10 Optimum results obtained using LS-OPT® (unit: mm for radius) 

 

Hybrid ASA Hybrid GA 

computedpredicted 
absolute 
prediction error 
(%) 

computed predicted absolute prediction 
error (%) 

Thickness 
reduction (%) 31.37 35 11.6 23.20 28.21 21.59 

FLC -0.02 -7.3e-8 N/A -0.002 -0.028 N/A 
Radius 9.81 9.51 3.1 9.50 9.51 0.11 

 

Table 4.10 indicates that the loading path obtained using the hybrid GA produced a 

smaller corner radius (9.50 mm) than the one using the hybrid ASA algorithm (9.81 mm). 

However, the minimized corner radius obtained using the hybrid GA in LS-OPT® 4.0 was 

larger than the minimum radius predicted with the NBI method (9.08 mm), and this with 

fewer simulations. Figure 4.15 also shows that the loading path obtained with the hybrid 

GA is close to the upper bound of the 220 Pareto set using the NBI method.  
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Therefore, compared with the above mentioned optimization methods that have been 

applied in tube hydroforming, the recent NBI method has the ability to generate a process 

window (Fig. 4.15) rather than a single load path, because it was designed to generate 

Pareto fronts with an even spread of points. Consequently, from this standpoint the multi-

objective optimization strategy that was combined with the NBI algorithm can guarantee 

a more robust process than the solution provided by LS-OPT® with a single objective 

optimization strategy. 

 
 

 
 
Fig. 4.15 Comparison of load paths obtained with the proposed multi-objective algorithm 
and with the single-objective strategy of LS-OPT® 

 
 
 
4.6.6 Conclusions 

In this chapter, a multi-objective optimization algorithm combined with the Taguchi 

statistical method and FEA was developed to determine the optimal loading path for a 

simple tube hydroforming process. In addition, an ANOVA was used to determine the 

sensitivity of the hydroforming process to the various parameters that define the load path. 
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The optimal load paths were obtained using both the proposed NBI approach and the 

single-objective approach with the commercial optimization software LS-OPT® 4.0. The 

following conclusions can be drawn from this study: 

1) The sensitivity analysis helped to identify the most significant factors for loading path 

optimization and reduced the computational cost.  

2) Sequential response surface models were constructed and applied to the global 

optimization of the load path. This provided explicit surrogate models for tube 

hydroforming with acceptable accuracy and limited the number of simulations that were 

required.  

3)  The FLC and the FLSC were found to be very effective to evaluate the influence of 

the loading path on the forming severity of hydroformed parts. The FLSC was required to 

evaluate the risk of necking or fracture and wrinkling since these are dependent on the 

stress state, and the FLC was more advantageous to evaluate the risk of excessive 

thinning. 

4) With regards to multi-objective optimization, the NBI method was very effective in 

finding the Pareto-optimum load path. It also indicated a complete picture of the trade-off 

between the objectives from the optimal set. Minimizing the risk of fracture is equivalent 

to minimizing severe thinning, and maximizing wrinkling. Apart from the objectives of 

fracture and severe thinning, the objectives were always in conflict.  

5) The investigation showed the robustness of the tube hydroforming process with an 

appropriate loading path set. Compared with the hybrid methods (ASA and GA) in LS-

OPT® 4.0, the optimization method with NBI was shown to provide a greater process 

window guaranteeing a more robust hydroforming process. 
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Chapter 5: Loading path design using multi-objective genetic 
algorithm for a straight tube and an industrial part 

 

In this chapter, a state-of-the-art evolutionary multi-objective optimization (EMO) 

methodology—nondominated sorting genetic algorithm (NSGA-II) is introduced for 

loading path design. First, the Kriging metamodel is introduced into the EMO method, 

and the accuracy assessment of the model is presented. In the next section, a coupled 

method that combines NSGA-II and the Kriging method is proposed. In the following 

section, an enhancement of the coupled method is presented by the addition of a hybrid 

global and local search. These methods are then validated with case studies: tube 

hydroforming of a square-shaped part and an industrial part. Some conclusions are then 

drawn in the final section. 

 

5.1 Kriging metamodel 

The Kriging model has been shown to be a global model in contrast to response surfaces 

which are local models, employing normally distributed basis functions, so both an 

expected sampling value and variance are obtained for each test point (Goovaaerts, 1997). 

For more details of the universal model refer to Chapter 2 (Section 2.5.2.2). 

 

The accuracy of the Kriging response surface model can also be measured by checking 

the  predictability of its response using the prediction error sum of squares (PRESS) and 

R2 for the prediction (R2pred) (Myers and Montgomery, 1995). After obtaining the 

surrogate model, a 10-fold cross-validation technique was used to check the fitting 

performance for the "new" data. The PRESS statistic and R2
pred of the predictor model 

were calculated as: 

pyyPRESS
p

i
ii∑ −=

=1

2* )ˆ(                                                                                                (5.1) 

yy
pred S

PRESS
R −= 12                                                                                                           (5.2) 
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where yi is the actual value, *ˆiy  is the value predicted by the Kriging predictor for the ith 

testing point, and p is the number of prediction points. Syy is the total sum of squares of 

the errors. The final PRESS is the average of ten cross-validation tests. 

 

5.2 MOGA and constraint handling technique 

5.2.1 MOGA 

The aforementioned NBI method was implemented by solving the subproblem, which 

involved assigning weights to locate point H along the CHIM (See Fig. 4.4). In order to 

circumvent the difficulty of selecting a relative weight for each objective, a Pareto 

optimization algorithm (called NSGA-II) which uses a ranking, elitist selection and non-

dominated sorting strategy was adopted for this study. 

 

The NSGA-II algorithm developed by Deb et al. (2002) has been a popular optimization 

tool in recent years. It adopts an elitism strategy and crowding-distance calculation, 

which offer a much better spread of solutions and better convergence in most problems 

near the true Pareto-optimal front compared to Pareto-archived Evolution strategy and 

Strength-Pareto Evolutionary Algorithm – two other elitist multi-objective evolutionary 

algorithms (MOEA) that pay special attention to creating a diverse Pareto-optimal front.  

 

The principle of this algorithm is illustrated in Fig. 5.1 as follows: the Pareto fronts were 

sorted to different ranks according to a fitness value (Fig. 5.1a); after this non-dominated 

sorting, a crowding distance was calculated for each individual (Fig. 5.1b). The purpose 

of assigning a crowding distance value is to generate a series of uniformly distributed 

Pareto fronts, which helps to maintain a better diversity of the population.  
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(a)                                                                                                 (b)  

Fig. 5.1 (a) Schematic of the NSGA-II procedure, and (b) the crowding distance calculation 

(Adapted from Deb et al. 2002) 

 

Goel et al. (2007) noted that in MOEA, the genetic operators may destroy some of the 

solutions to explore the design space. Introducing elitism in MOEAs alleviates this 

problem to some extent, but when the number of non-dominated solutions in the 

combined population exceeds the population size, as happens commonly in elitist 

MOEAs, some of the non-dominated solutions have to be dropped. This problem is 

referred to Pareto drift as the Pareto optimal solution is lost, which may lead to a 

suboptimal global solution. 

 

Therefore, an archiving strategy is suggested to augment NSGA-II, and is referred as 

archiving NSGA-II (NSGA-IIa) (Goel et al., 2007). The strategy of NSGA-IIa is to keep 

all the potential non-dominated solutions in one group during the whole evolution process. 

In this work, the archive was initialized with all non-dominated solutions inherited from 

the points from the design of experiment (DOE), and then complemented with the 

potential non-dominated solutions from new generations for which fitness functions were 

calculated by FEA. 
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5.2.2 Constraint handling technique 

 

In problems with constraints, it is more difficult to handle violation of the constraints. 

Most real-world optimization problems have constraints that must be satisfied. Currently, 

a single-objective genetic algorithm (GA) can employ five different constraint handling 

strategies: (i) discarding infeasible solutions, (ii) reducing the fitness of infeasible 

solutions by using a penalty function, (iii) if possible, customizing genetic operators to 

always produce feasible solutions, (iv) repairing infeasible solutions, and (v) hybrid 

methods. Handling of constraints has not been adequately researched for multi-objective 

GAs (Konak et al. 2006). For example, all major multi-objective GA assume problems 

have no constraints. 

 

In general, constraint handling strategies (i), (iii) and (iv) are suitable for both the single-

objective GA and MOGA. However, for the most widely used penalty function strategies, 

it is not straightforward in MOGA, since it operates on the fitness assignment of an 

objective value, while for MOGA the fitness assignment is usually based on the non-

dominance rank of each solution. 

 

In the constrained NSGA-II, a method using the category (iv) is described to handle three 

different non-dominated rankings. Wang and Yin (2008) proposed a method of M+1 non-

dominated sorting to solve the constraints in engineering design problems (M and 1 

referred to the number of objectives and the overall constraint violation). Favuzza et al. 

(2006) proposed two crowded comparison operators for constraints handling in electric 

distribution network design. Deb et al. (2002) proposed the constraint-domination 

concept and a binary tournament selection method based on it, which was called the 

constrained tournament method. The main advantages of the constrained tournament 

method are that it requires fewer parameters and it can be easily integrated into multi-

objective GA. The NSGA-II algorithm was accessible at the Matlab center (Seshadri, 

2006). However, the constraint-handling program is not available. Since there are no 

constraint-handling programs available, NSGA-II users must develop their own 

constraint-handling technique.  



 87

 

Hence, in this work a hybrid constraint handling method was proposed (Fig. 5.2), which 

aims to utilize the simple operation of the penalty function method and also the 

tournament selection method. This method can be described as follows. 

 

Step 1: Weeding out the infeasible solutions in the process of generating new children. 

Evaluate each child using the Kriging model and eliminating those with a constraint 

violation.  

 

Following the initiation of the population, new children were generated through genetic 

operations (mutation and crossover). The objective values of the children were evaluated 

with the Kriging predictor. If any of the objective values violated the boundary, then it 

was marked with over =1. Then the program continually generated new children until it 

met the constraints (with over =0). Though this satisfaction of the constraints may be 

pseudo feasible since the true objective values probably still violated the boundaries, the 

violation would be small by using a well-established Kriging model. Moreover, the 

operation in Step 2 will help to keep the feasible solutions and eventually eliminate the 

infeasible solutions.  

  

Step 2: Ranking by constraint violation (Stage I, Fig. 5.2) 

The comparison mechanism considered here, operated on those solutions having a 

constraint violation and arranged a rank for each solution (See Appendix A). The 

measure for the constraint-violation (CV) values was calculated as: 

∑=
=

l

i
i xgCV

1
)(

                                                                                                               (5.4) 

if there is constraint violation, i.e. gi(x)>0; l is the number of constraints. CV equals 0 if 

there is no constraint violation and gi(x)≤ 0. 

 

Step 3: Ranking of general NSGA-II with non-dominated sorting, crowding distance 

sorting and elitism selection (Stage II, Fig. 5.2) 
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The algorithm operated in such a way that the CV operator was carried out for the 

merged population made up of the parent and the offspring. It dominated during both the 

early and late stages of the execution of the MOGA, however, the conventional NSGA-II 

dominated the selection of population for the next generation when the number of 

feasible individuals in the merged population had reached the designed population 

number. 

 

 

Fig. 5.2 Constrained NSGA-II algorithm (Adapted from Deb et al., 2002) 

 

5.3 MOGA I (Global Search) and MOGA II (Hybrid Global a nd 

Local Search or H-MOGA) 

5.3.1 MOGA I 

In this algorithm, a selection method based on the ranking of constraint violation 

(CV) (when there is constraint violation) and a second ranking of non-domination of 

objectives and local crowding distance (when no constraint violation occurs) is described. 

What makes this algorithm different from other NSGA-II applications is the innovative 

sequential constraint algorithm. The flowchart of MOGA-I is presented in Fig. 5.3. 

The selection procedure of the MOGA is described as follows. 

(1) Generate the parent population Pt' (see Fig. 5.2) 

(2) Create the offspring Qt' through the crossover and mutation operators. The 

objective function values are calculated using the Kriging predictor. If the generation 

Stage I: Ranking by CV Stage II: NSGA-II

Ranking by CV

E1

E2

E3

Qt’

Pt’

Rejected
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reaches a predefined interval (say, five generations), the FE program is called to 

obtain the objective function values for each offspring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Flowchart of optimization strategy using Kriging predictor for generating both new 

points and offsprings  

 

(3) Recombine the parent and child populations into a new population Ut = Pt'UQt'. 

Carry out non-dominated sorting for CV first. Assign a rank for each individual as 
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E=E1, E2,... (Fig. 5.2 and 5.4). If the number of Ut exceeds the current population 

size N, go to step (4); If else go to (5). 

(4) Recombine the parent and child populations into a new population Rt = PtUQt. Do 

non-dominated sorting for objective rank and crowding distance, and assign a rank for 

each individual (F=F1, F2,...) (Fig. 5.2 and 5.4). 

(5) Select the next generation Pt+1. An elitist individual is transferred to the next 

population with a size N. 

(6) Steps (1) to (5) are repeated to generate subsequent generations. The process is 

terminated when the predetermined number of generations is reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 MOGA ranking strategy 

 

The algorithm was used to optimize the loading path of the same square-shaped tube 

hydroforming problem as the one described in Chapter 4. The results will be presented in 

section 5.5 and compared to those solutions obtained in Chapter 4 with the NBI method. 
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5.3.2 MOGA II (H-MOGA) 

In multi-objective optimization problems with four or more objectives, the predefined 

Kriging model may not reach a desirable prediction accuracy for all objectives of the new 

points. As pointed out by Hughes (2005), one concern with the methods described so far 

is that fitness assignments based on dominance rank (like NSGA-II) can perform poorly 

when the number of objectives is greater than three or four. Although the accuracy could 

be improved by adding more sampling points, the prediction error may still affect the 

constraint handling and the poor results may be amplified through the effect of Pareto 

drift (Goel et al., 2008).  

 

The selection procedure of the MOGA II (Fig.5.5) is described as follows. 

(1) Initialize the parent population Pt'. 

(2) Create the offspring Qt' through the crossover and mutation operators. The objective 

function values are calculated using the Kriging predictor.  

(3) Check the constraint violation (CV) of each child. If CV>0, randomly generate a new 

point and evaluate the function by Kriging predictor until the child population is fully 

filled. 

(4) Recombine the parent and child population into a new population Ut = Pt'UQt'. Carry 

out non-dominated sorting for CV first. Assign a rank for each individual as E=E1, E2,... 

(Fig. 5.2). If the number of Ut exceeds the current population size N, go to step (5); If else 

go to (6). 

(5) Recombine the parent and child populations into a new population Rt = PtUQt. Do 

non-dominated sorting for objective rank and crowding distance, and assign a rank for 

each individual (F=F1, F2,...) (Fig. 5.2).  

(6) Select the next generation Pt+1. An elitist individual is transferred to the next 

population with a size Np.  

(7) The true objective values are calculated with FEA and then the ranking in step (4)-(5) 

is run once again for the actual values. 

(8) Steps (1) to (7) are repeated to generate subsequent generations. The MOGA process 

is terminated when the stop criterion, such as a predetermined number of generations, is 

satisfied.  
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(9) The local search is done after the Pareto solution set is obtained. The sequential 

quadratic programming algorithm in MATLAB® was used as the local optimizer. 

 

It was noted that, in order to utilize the information from constraint violations, the 

amount of infeasibility (or the extent of constraint violation) was used for ranking the 

solutions. During the first several stages (e.g. n=1 to 10), the constraint information was 

used to explore additional design points near the boundary by keeping those individuals 

that were found to violate the constraints after obtaining the actual objective values by 

FEA. However, as stated above, with the genetic operation continuing, these points end 

up being automatically eliminated.  

 

The method shown in Fig. 5.5 differed from the previously proposed method (Fig. 5.3) in 

the function evaluation: the former proposed a local search and direct FEA analysis for 

function evaluation while the latter completed the function evaluation wholly by using an 

updated Kriging model modified to obtain a higher accuracy. However, as was already 

noted, the latter method may not reach a global Pareto solution efficiently when there are 

four and more objectives. 
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Fig. 5.5 Flowchart of optimization strategy with the Kriging predictor used only for generating 

new points and FEA used for generating offsprings 
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5.4 Case study 1: Straight tube hydroforming using Algorithm I 

5.4.1 The FE model 

For convenience, the hydroforming of a straight tube in a die with square-shaped cross-

section (Section 4.6) is shown again in Fig. 5.6. The FE mesh and the cross-section are 

shown in Fig. 5.6a and 5.6b, respectively. The forming process consisted of pressurizing 

and expanding the tube a radial distance s until it contacted the die. The tube ends were 

simultaneously subjected to end-feed to supply more material into the die cavity and thus 

to avoid severe thinning. More FE details and the tube properties can be found in section 

4.6.2. 

 

 

 

                                   

Fig 5.6  (a) One quarter of the FE model  (b) Geometry of the cross-section of die and tube (RC is 

the final corner radius of deformed tube) 

 

5.4.2 Optimization procedure 

 

The primary objective of this tube hydroforming problem is to maximize the amount of 

expansion of the tube wall into the corners of the die, or in other words, to minimize the 

corner radius, and therefore the following objective function is given as: 

CRf =4  (5.5) 
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In addition, the formability objectives Eq. (3.3) to (3.5) must also be minimized. 

Therefore, the problem can be summarized by the following formulation which places 

constraints on each objective: 

 

Minimize F(x) = [f1(x), f2(x), f3(x), f4(x)]                                                               (5.6) 

s.t. 
60.02.0;30.02.0

75.02.0;75.02.0

43

21

≤≤≤≤
≤≤≤≤

ff

ff                                                                     (5.7) 

where x is the normalized vector of design variables: x = [P1, P2, P3, P4, P5, D]T. The 

ranges of each design variable are the same after normalization: 0.2≤ xi ≤ 0.8, i =1,2,...5. 

 

Simulations were carried out with the commercial FE software LS-DYNA (Hallquist, 

2007). First, the loading path was defined such that the pressure vs. time curve is a 

piecewise linear curve and the end feed vs. time curve is linear. A sensitivity analysis was 

then performed to identify the least sensitive factors. Then a design of experiments was 

carried out and the simulation results were used to establish a surrogate Kriging model. 

The model was validated with the k-fold cross-validation method to confirm the model 

had been accurately set up. The MOGA was used to carry out the optimization using the 

Kriging model to predict the objective functions for each loading path within the 

population. During the optimization process, the Kriging model was updated every five 

generations by calling LS-DYNA to carry out another series of simulations. This process   
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Fig 5.7  Load curve for (a) internal pressure; and (b) axial end feed displacement 
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was repeated for a predetermined number of generations. This procedure is described in 

the flowchart in Fig. 5.3.  

 

5.4.3 Design of experiments 

The loading path was designed with five parameters for pressure and one for end feed, 

namely P1, P2, P3, P4, P5 and D (Fig. 5.7a). P1 to P5 are different pressure levels, in 

MPa, (P1 is the yield pressure, P2, P3 and P4 are intermediate pressure levels and P5 is 

the calibration pressure) and D is the maximum end feed, in mm, at the end of the process. 

The ranges selected for each design variable are as follows: 

                        
1410;80540;34430

30326;28220;18110

≤≤≤≤≤≤
≤≤≤≤≤≤

DPP

PPP                                         (5.8) 

According to the sensitivity analysis, parameter P3 was shown to be the least sensitive, 

and it was set to a constant P3 = 28 MPa and omitted from the surrogate model, leaving 

only 5 design parameters. 

 

The design of experiments consisted of the Latin hypercube sampling (LHS) method. In 

order to build a quadratic model, Mehnen et al. (2007) proposed that the minimum 

number of experiments should be k = [d(d −1)/2+3d+1], where d is the number of design 

parameters to be optimized. In this work, d = 5 therefore k = 26. But in order to increase 

the accuracy of the model, the number of experiments was taken to be 40. 

 

The Kriging method was used to establish a surrogate model. After obtaining the model, 

a 10-fold cross-validation was completed to check the fitting performance of the "new" 

data. 

 

5.4.4 Strategy for automatic data processing 

 

Once the 40 FE simulations specified by the design of experiments were carried out, the 

objective functions were calculated from the stresses and strains in each element of the 

FE model, and for each experiment. In order to automate the entire analysis, the stresses 

and strains were extracted from the DYNAIN file that is automatically generated by LS-
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DYNA. However, additional calculations were required to obtain the principal stresses 

and principal strains since the "DYNAIN" file only provides the six stress components (at 

seven integration points) and the six strain components (at the upper and lower surfaces). 

Therefore a user-defined program was developed in VC++ to carry out the 

transformations and calculate the principal stresses and strains. 

 

Principal stresses and strains were determined by calculating the eigenvalues of the stress 

and strain tensors, respectively. Since shell elements were used in the FE model, it was 

also necessary to determine which two principal strains lie in the plane of the shell 

element and which one represents the through-thickness strain as this is required in the 

calculation of the objective function that evaluates thinning severity. This identification 

was done by correlating the plane normal vector with the strain direction cosines (Fig. 

5.8). This computation was done sequentially for both the upper and lower surfaces of 

each element in the model. 

 
Data exchange was carried out with the user-defined VC++ program which called for the 

automatic generation of LS-DYNA output files. 

 

 

 

Fig 5.8 Principal strain determination for shell elements (where 
21 SSn ×= , 

311 NNS = , 

422 NNS = ) 
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5.4.5 Results 

 
The surrogate model was established with 40 simulations using the Kriging method. The 

errors of the predictor model for the four objective functions were 0.0089, 0.0046, 0.0075 

and 0.0013, respectively. Optimized results were obtained after 40-generation evolutions 

using constrained NSGA-II. The Pareto solution set was plotted to show every pair of 

objectives (Fig. 5.9). In this figure, it can be shown that the smallest corner radius 

obtained is located at point Q, where f4 = 0.5341, which corresponds to a corner radius of 

8.57 mm. The other objective values are 84.18 MPa, 32216 MPa and 0.2 for f1, f2 and f3, 

respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5.9 Pareto graph with comparison of each objective pair (Q is the solution with minimum 
corner radii; P is the point where f1 monotonically increases with a decrease of f4) 
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However, it was also noted that after the corner radius reaches point P, the value of 

objective functions f4 and f2 increased rapidly with the decrease of corner radius. The 

corner radius at P is 8.88 mm, corresponding to fracture/necking objectives f1=89.59 

MPa, severe thinning f2=0.104 and wrinkling f3=30342 MPa. It may then be concluded 

that point P is an unstable point, where a small decrease in corner radius will result in a 

dramatic decrease in the tube thickness and lead to a rapidly increasing deformation of 

the tube. 

 

Fig 5.10a shows the stress distribution in the part after it was hydroformed with the 

loading path defined by the Pareto optimum layout, and compared with the FLSD. It was 

shown that the maximum stress in the part is approximately 25MPa below the stress 

forming limit, which ensures the part would be safely hydroformed. Fig 5.10b, in 

contrast, shows the stress distribution for a loading path which leads to failure. 

 

 
Fig 5.10 Stresses in the part after it was hydroformed with the loading path defined by (a) the 
Pareto optimum layout and (b) One leading to failure, compared with the FLSD. 

 

5.4.6 Discussion 

A ratio of corner radius to thickness r/t = 4.28 was obtained with MOGA. This is much 

smaller than the ratio r/t = 4.54 obtained with the Normal Boundary Intersection (NBI) 

method (see Chapter 4). The load paths are also compared with the optimization result 

obtained by NBI method and one with failure (Fig. 5.11, Tables 5.1 and 5.2) where 
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loading path 1 is the optimum loading path obtained with the MOGA, loading path 2 is 

the optimum loading path that was obtained with the NBI method and loading path 3 

leads to failure. However, this does not mean that the NBI method is inferior, because the 

NBI method requires less calculation time and less sampling points and can generate an 

evenly distributed solution set. 

 

A comparison between load paths 1 and 2 (See Fig. 5.11, Tables 5.1 and 5.2), indicates 

that loading path 1 has a larger rate of pressure increase (or larger ∆P/∆D) at stage 1 

   

 

Fig 5.11 Comparison of optimal loading path using MOGA, NBI method and one with 
failure 

 

Table 5.1. Three different load paths 

 P1 
(MPa) 

P2 
(MPa) 

P3 
 (MPa) 

P4  
(MPa) 

P5 
(MPa) 

D 
(mm) 

Path 1 14.8 21.91 28 31.76 79.93 11.57 
Path 2 19 19.03 28 34 83.76 10.06 
Path 3 11.56 23.52 28 31.71 71.66 13.08 
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Table 5.2. Comparison of the forming results with different loading paths 

 Stage 1 Slope Stage 2 Slope final objective results 
  

 ∆P 
(MPa) 

∆D 
(mm) 

∆P/∆D ∆P 
(MPa) 

∆D 
(mm) 

∆P/∆D f1 
(MPa) 

f2  
(MPa) 

f3 f4 
(mm) 

Path 1 7.11 1.9 3.07 9.85 5.8 1.22 84 32216 0.200 8.57 
Path 2 0.03 1.6 0.015 15 5 2.13 95 20339 0.862 9.082 
Path 3 11.96 2.1 4.57 8.19 6.5 0.89 56.32 53474 2.899  8.01 

 

compared to loading path 2, but has greater rate of end feed (smaller ∆P/∆D) at stage 2 

compared to load path 2. 

 

Loading path 3 displays the greatest rate of pressure increase (∆P/∆D) at stage 1 and the 

smallest one at stage 2 (Table 5.2). From the comparison, it can be seen that the loading 

path with the greatest ∆P/∆D slope at deformation stage 1, and a smallest ∆P/∆D slope at 

stage 2 (i.e. loading path 3) is able to achieve the smallest corner radius. On the contrary, 

a loading path having the smallest ∆P/∆D slope in stage 1 and the greatest ∆P/∆D slope 

in stage 2 (i.e. loading path 2), is able to produce a part with the least forming severity 

(greater safety factor), but fails to minimize the corner radius. Therefore, the optimum 

loading path is a compromise between load paths 2 and 3. Loading path 1 (obtained with 

MOGA) is a compromise between loading path 2 and 3 and leads to a safe part in which 

wall-thinning is minimized and a smaller corner radius is achieved. This is the most 

desirable load path. 

 

It also appears that loading path 1 applied less pressure at the end of the calibration stage 

than loading path 2, but results in a smaller corner radius. Therefore, a smaller corner 

radius is not achieved by merely increasing the calibration pressure, but by applying an 

appropriate match of the pressure and end-feed. Meanwhile, it is important to notice that 

in the calibration stage (beyond C1 or C2), the final set of 40 Pareto load paths (Fig. 5.11) 

exhibited almost the same ∆P/∆D slope: the curves are practically parallel with each 

other. This observation underscores the fact that the loading path during the early stages 

of deformation is more critical to the success of the hydroforming operation than the final 

calibration stage. Therefore, close attention should be paid to the design of the first part 

of the load path. 
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In regards to computation costs, the run time for FE simulations for one generation with a 

population of 40 experiments using a HP xw9300 workstation with 2.19 GHz AMD 

Opteron™ Processor 248 with 4 GB of RAM was about 4hrs without considering 

optimization time. If the layouts in this case study were completely carried out by FE 

simulation, the total simulation time would be 40×4=160 hrs. However, the proposed 

method using a combination of FEA and a hybrid Kriging model only requires 8 FE 

updates, and a CPU time of 8×4=32 hrs, which is one fifth of the former calculation. 

 

The cross-validation accuracy after eight series of FE simulation updates (every five 

generations) is also examined: the errors of the predictor model for the four objectives f1, 

f2, f3 and f4 were 0.0043, 0.0012, 0.0037 and 0.0013, respectively. It is noted that the 

errors of the predictor model obtained in Section 4 for the four objectives (prior to the 

MOGA optimization) were 0.0089, 0.0046, 0.0075 and 0.0013. The prediction error for 

f4 remained the same; this indicates that the initial Kriging model was accurately set up 

with 40 samples. However, the errors for the other objectives (f1, f2 and f3) decreased by 

a half compared to the initial Kriging model. As such, the overall prediction accuracy has 

greatly improved.  

 

5.4.7 Conclusions for case study 1 

 
A method of searching for the global optimization using MOGA combined with a 

recurrently updated Kriging model was proposed. The overall prediction accuracy of the 

surrogate model was shown to double for three of the four objectives. The multi-objective 

functions used to evaluate forming severity were established based on both the FLD and 

the FLSD. A Kriging model was established for each objective to improve the 

optimization efficiency, and was updated every five generations through FE simulation. 

The Pareto optimal sets were obtained for all four objectives. The optimal loading path 

was able to achieve a minimum ratio of corner radius to wall thickness r/t=4.28 and it 

was shown to lead to a safer and more robust hydroforming process. 
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5.5 Case study 2: Straight tube hydroforming considering local 

thinning using H-MOGA 

 

The straight tube corner fill problem described in section 5.6.1 was also optimized using 

the MOGA II (H-MOGA) which imposes greater restrictions in tube thinning: i.e. no 

more than 30% thickness strain.  

 

5.5.1 Design variables 

 

The design variables for the loading path included five parameters for pressure and one 

for end feed, namely P1, P2, P3, P4, P5 and D (Fig. 5.8). P1 to P5 were different pressure 

levels, in MPa, (P1 was the yield pressure, P2, P3 and P4 were the intermediate pressure 

levels and P5 was the calibration pressure) and D was the maximum end feed, in mm, at 

the end of the process. The ranges selected for each design variable were as follows: 

                        
1410;85540;35430

28326;28220;19110

≤≤≤≤≤≤
≤≤≤≤≤≤

DPP

PPP                                         (5.9) 

All the design variables and the objective values were linearly normalized between 0.2 

and 0.8.  

 

5.5.2 Design objective function and constraints 

 

The loading path design of corner-filling tube hydroforming has two primary objectives: 

(1) improvement of die-filling at the corner and, (2) minimizing thinning of the tube wall, 

while satisfying the forming limits defined by the stress/strain forming limit diagram.  

 

The primary objective of the current tube hydroforming problem is to maximize the 

amount of expansion of the tube wall into the corners of the die, or in other words, to 

minimize the corner radius. Once again the corner radius objective function is defined as: 

CRf =4                                                                                                                         (5.10) 
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The function (3.5) of severe thinning was evaluated on every element in the tube. In 

reality, the local thickness reduction may reach a limit. Hence, the maximum local 

thinning ratio was employed to minimize the function: 

                      
0min05 /%100)( tttf ×−=                                                                  (5.11) 

where t0 is the original tube thickness, and tmin is the final minimum thickness on the 

deformed tube. The constraint for f5 is: f5<30%. 

 

Again, the objectives of formability (Eq. (3.2) to (3.5)) must also be minimized, and the 

problem can be summarized by the following formulation which places constraints on 

each objective: 

 

Minimize F(x) = [f1(x), f2(x), f3(x), f4(x), f5(x)] 

s.t. 
38.02.0;60.02.0;30.02.0

75.02.0;75.02.0

543

21

≤≤≤≤≤≤
≤≤≤≤

fff

ff                                     (5.12) 

where x is the normalized vector of design variables: x = [P1, P2, P3, P4, P5, D]T. The 

ranges of each design variable are the same after normalization: 0.2≤ xi ≤ 0.8, i =1,2,...6. 

 

It can be noted that the five objectives are different and some of them may be conflicting 

on the design domain. Therefore, the objectives may not reach one single optimal 

solution to satisfy each objective at the same time. 

 

5.5.3 Kriging surrogate model 

 

The design of experiments was carried out using the Latin hypercube sampling (LHS) 

method. A group of 50 runs was adopted to obtain a more precise model (Appendix B). 

Then, the 10-fold cross-validation was implemented and the PRESS value was obtained 

for the model with regard to each objective. The data was divided into 10 subsets. Nine of 

the subsets were input as the training data and the last one was used as the testing data. 

The total average error of the cross-validation was obtained as the estimation of the 

precision.  
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The quality of the Kriging model is demonstrated by the error and correlation values in 

Table 5.3. The PRESS error for each objective was low, and f4 had the lowest value. 

Except for objective f2, the Kriging response surface for all of the other objectives had a 

high adjusted coefficient of determination which indicated an explanation above 92.69% 

of the variability in predicting new observations. The result for f2 was a little low, but the 

value was still acceptable. 

 
Table 5.3 Accuracy of response surface of objectives 

 
 f1 f2 f3 f4 f5 

# of observations 50 50 50 50 50 
PRESS 0.0040 0.0050 0.0065 0.0008 0.0012 

2
predR  0.9339 0.7408 0.9269 0.9557 0.9611 

SST 0.0606 0.0193 0.0885 0.0186 0.0302 
 

 

5.5.4 Results 

 

The optimization was implemented with MOGA in 15 generations. The elitist 

chromosomes were saved in an independent archive for each generation. Fig. 5.12 shows 

three stages in the evolution of the optimization with regard to the 4th and 5th objectives: 

the 1st generation, the 15th generation and the final archived solution set. From Fig. 5.12, 

it can be seen that both objectives (i.e. the minimum corner radius f4 and the minimum  

thinning ratio f5 evolved efficiently toward the Utopia point, which is defined as the point 

(0,0). The archiving successfully retained the elitist solutions in each generation. Three 

solutions, including two extreme points and one with the second minimum L2 norm, were 

selected for investigation.  

 

Table 5.4 lists the normalized values and actual objective values (in bold). It was noted 

from Table 5.4 that solution A has the smallest corner radius (f4) of 9.165 mm among the 

three solutions, but the greatest local thinning ratio (f5). Solution C has the smallest 

thinning ratio, but the greatest corner radius of 10.13 mm. This indicates that these two 

objectives are in opposition to each other. Moreover, Solution B has a larger stress 



 106

objective value (lower stress safety margin), L2 norm and corner radius than solution A, 

but its thinning (local and global) and wrinkling values are smaller. Generally, it was 

difficult to determine which solution is better based on one objective. Therefore, the final 

decision for the best solution should be made with the designer's specific criterion or 

preference. In this work, the decision was made according to the preferences to corner  

 

 

Fig. 5.12 The evolution of the 4th and 5th objectives (generations 1, 15 and archived set) 
 

Table 5.4. The objectives of the three selected points (without units) 
 f1 f2 f3 f4 f5 L2 norm 

A (Norm*) 0.4511 0.5914 0.2078 0.5437 0.3775 0.6619 
B (Norm) 0.4519 0.46836 0.20012 0.5607 0.3542 0.6632 
C (Norm) 0.4513 0.606 0.200003 0.5799 0.3450 0.6748 
A (True**) -98.42 260946 0.1629 9.1650 0.2958 — 
B (True) -98.06 178909 0.002436 9.6198 0.2569 — 
C (True) -98.32 270663 0.000067 10.130 0.2417 — 

* norm: normalization; 

** True: FEA results. 
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Fig. 5.13 The evolution of the stress safety margin (the y axis: absolute value of f1) 

 

radius and thinning ratio by local search. 

 

If the stress safety margin for this hydroforming process is defined as the difference in 

major stress between the most critical stress state in the part and the SFLC, Fig. 5.13 

shows that the maximum safety margin improved after 15 generations. It indicated that 

though the average f1 value did not vary much, the maximum safety margin to stress 

limit had decreased and approached a value of 91 MPa in the last generation. This can be 

seen as a upper limit value for safe margin of stress to obtain a defect free part in this 

hydroforming. It was believed that this improved safety margin to stress limit will benefit 

the forming process for generating a quality part. 

 

Therefore, it can be seen that the maximum stress margin value has been improved for 

the last population after optimization. In the next step of the local search, it can be 

assumed that all of the design points in the nearest domain of the Pareto front had met the 

formability safety requirements which were represented by the objectives. 
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5.5.5 Local search using sequential quadratic programming (SQP) 

 

In the above constraint handling study, the boundary of the local thinning ratio was 

relaxed from a normalized value of 0.38 to 0.44 (corresponding to an increase in 

maximum thinning ratio from 30% to 40%) to investigate the effect of boundary size on 

the efficiency of the search. A second archived data set was therefore determined and is 

plotted in Fig. 5.14. From the comparison of the two sets shown in Fig. 5.14, it was 

verified that the first archived set consists of a more uniform distribution and better 

Pareto solutions (approaching closer to the origin). Nevertheless, it should also be noted 

that by relaxing the boundary of the thinning ratio objective f5 improved somewhat (see 

circled region A in Fig. 5.14). This means that it is possible to improve the results in this 

small region A which is close to those solutions having minimum corner radius. 

 
 

 
Fig. 5.14 Comparison of two archived data sets 
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The data from regions A and B (Fig. 5.14 ) were used to establish a Kriging response 

surface model for local search in these two regions, respectively. Only the two objectives 

of corner radius and local minimum thinning ratio were kept in the new dataset for setting 

up the Kriging model. The datasets had a matrix of 50×8 and 55×8 in size, which were 

extracted from 361×11 dataset. The SQP algorithm with function FMINCON in Matlab 

2008a was used to search for the local minimum: 

 

[optfactors, fval]= 

fmincon(@objfunsq,x0,[],[],[],[],lb,ub,@confun); 

The results were plotted in the circle in Fig. 5.16.  
 

 
Fig. 5.15 Best results of local search and sampling points in zoomed region A and region B 
 
 

For the local search in both regions, the local minima were obtained after approximately 

40 seconds of run time. Fig. 5.15 shows an enlargement of region where it can be seen 
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that the minimum was slightly better than the value obtained by MOGA I. For the local 

search in region B, there was a significant improvement. The optimized results (with *) 

were presented and compared to the two archived data sets (shown in Table 5.5 and 5.6).  

 
Table 5.5 Local search result in region A 

 
 f4 f5 L2 norm f1 f2 f3 

Local min A+ 0.5418 0.3789 0.6619 0.4705 0.4131 0.2057 
Global best 1 0.5437 0.3775 0.6619 0.4511 0.5914 0.2078 
Global best 2 0.5421 0.3788 0.6613 0.4665 0.6208 0.2069 
Local min A∆ 9.115 0.298 — -91.35 142089 0.1187 
Global best 1 9.165 0.296 — -98.42 260946 0.1629 
Global best 2 9.123 0.298 — -92.72 280533 0.1467 

 
Table 5.6 Local search result in region B 

 
 f4 f5 L2 norm f1 f2 f3 

Local min B+ 0.5785 0.3436 0.6728 0.4508 0.6011 0.2000 
Global best 3 0.5799 0.3450 0.6748 0.4513 0.6060 0.2000 
Local min B∆ 10.09 0.239 — -98.53 267381 1.26E-5 
Global best 3 10.13 0.242 — -98.32 270663 6.72E-5 

+ Prediction of local search; 

∆ FEA results of local search; 

 

The load paths for these two final minimum objectives through local search were plotted 

and compared with the Pareto loading path solutions using MOGA I (Fig. 5.16). 

 
5.5.6 Results validation and discussion 

The predicted results (with +) in the local searches were examined by two additional FEA 

runs and were also presented in Tables 5.5 and 5.6 (with ∆). 
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Fig. 5.16 Comparison of the loading path from MOGA and local searches 
 
Note: Global best 1 and 3 were from the first archived solution set using global search; Global 

best 2 was from the second archived solution set using global search; Local min represented for 

local search. 

 

Since the solution from the local search was better than that from the MOGA search, the 

final minimum corner radius was chosen to be 9.115mm in region A with the preference 

of a smaller corner radius; meanwhile, the other objective (f5) under the same loading 

path had reached a thinning ratio of 29.8% which is less than 30%. The stress safety 

margin is 91.35 MPa, which indicates a very safe process. Meanwhile, if less thinning 

was preferred, the final decision could also be chosen from Region B, which represents a 

maximum thinning of 23.9% and a corner radius of 10.09 mm. The results also show that 

the other objectives improved in terms of the stress safety margin of 98.53 MPa, 

wrinkling of 267381 MPa and thinning value of 1.26e-5. 
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5.5.7 Conclusions for case study 2 

In this study a hybrid global and local search optimization strategy was proposed and 

applied to designing the loading path of a hydroformed tubular part with a square cross-

section. The constraint handling technique was developed and coupled with the 

conventional NSGA-II. The following conclusions can be drawn: 

1. A constraint handling algorithm was applied and implemented to the multi-objective 

optimization with more than three objectives, which incorporated the ranking of 

constraint violations and a second ranking of non-domination of objectives and local 

crowding distance. 

2. A hybrid algorithm H-MOGA combining the global search (using MOGA) and local 

search (using SQP) for multi-objective optimization was proposed and applied to the 

optimization of a hydroformed tube. The case study showed better results, with smaller 

corner radius and thickness thinning ratio being obtained compared to the single MOGA 

search. 

3. The optimization problem with five objectives was investigated. It was noted that the 

proposed method, which uses the Kriging predictor to generate new points, with 

constraint handling and FE calculation for evaluating new offsprings can achieve a good 

performance in terms of both accuracy and efficiency in dealing with more than three 

objectives. 

4. Visualization was used to assist in decision-making and to search for the Pareto 

solutions. It is suggested that the plotting of results be focused on the preferred 

objectives.  

5. This case study showed that the stress safety margin improved when the corner filling 

and thinning objectives were achieved. The improved stress safety margin leads to a more 

robust forming process and a better quality part. 
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5.6 Case study 3: Inverse Analysis Using MOGA for Hydroforming of 

A Refrigerator Door Handle 

 

5.6.1 Introduction 

 

Inverse analysis has been widely used to determine material characteristics and process 

parameters during metal forming operations. Computer simulation using the finite 

element method (FEM) has been effectively used to identify constitutive models and their 

input parameters. FE simulations require several kinds of input parameters (Aue-U-Lan et 

al., 2004;Imaninejad et al., 2005), such as tool geometry, mesh, loading conditions, non-

linear constitutive laws, friction laws, etc. Similarly, the simulation output may be 

evaluated in terms of part quality, forming severity, shape conformity, structural stability 

or production cost. Consequently, the problem becomes a multiple input and multiple 

output (MIMO) inverse problem. 

 

 Ponthot and Kleinermann41 (2006) proposed a cascade optimization methodology for 

two categories of MIMO inverse problems in metal forming simulation: (1) parameter 

identification; and (2) shape/process optimization. The first category involves evaluating 

the material parameters for material constitutive models that would lead to the most 

accurate results with respect to physical experiments, i.e. minimizing the difference 

between experimental results and FEM simulations. On the other hand, the second 

category involves determining the initial geometry of the specimen and/or the shape of 

the forming tools, as well as some parameters of the process itself, in order to provide the 

desired final geometry after the forming process. Eight types of non-linear gradient based 

algorithms were compared in each case study and it was shown that the algorithm named 

"Levenberg-Marquart + Conjugate gradient + globally convergent 3MA (Modified 

Method of Moving Asymptotes)" is the most effective in terms of robustness and 

accuracy. However, it can be noted that only a single objective function was used in all 

these cases. 
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Peñuelas et al. (2009) proposed a method to determine the elasto-plastic and damage 

parameters on small punch tests, which was based on the inverse method, the design of 

experiments, the polynomial curve adjustment and the evolutionary multi-objective 

optimization. It was applied to identify ten different parameters which were characterized 

with either macro-mechanical or micromechanical models in each of five stages of the 

load-displacement curve, i.e. elastic deformation, elasto-plastic transition zone, 

generalized plastic deformation, plastic instability and fracture initiation, fracture 

softening and final fracture stages. 

 

In this study, an inverse method of loading path design in tube hydroforming of a 

refrigerator door handle is presented. The motivation is to inversely analyze the loading 

path in terms of internal pressure vs. time and end-feed displacement vs. time, and to 

verify the applicability of developed algorithms. The proposed multi-objective 

optimization algorithm MOGA-I was used to determine the hydroforming loading path 

parameters. 

 

5.6.2 Geometry of the Tube and the Die 

 

The part under consideration is a refrigerator door handle (Fig. 5.17), which is produced 

by Schuler Inc. A straight tube is first bent with a bend angle of approximately 24 degrees 

and a radius of curvature of R=447.5 mm. The influence of bending is not significant 

since the maximum bending strain is only about 2.8%. The bent tube is hydroformed and 

the straight portion of the tube is then trimmed off to produce the final part. The objective 

of this study is to determine the process parameters (pressure and end feed) which will 

lead to a hydroformed part that fully conforms to the die shape without any failure 

occurring. 

 

5.6.3 FEA Model 

 

The tube material is an annealed 304 stainless steel whose mechanical properties are 

given in Table 5.7. The upper and lower dies were modelled as rigid bodies with a total of 
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14,598 elements. The mid-surface of the tube was modelled with 19,848 Belytschko-Tsay 

shell elements (Fig 5.18), having five integration points through the thickness. An 

isotropic material model based on the von Mises yield criterion and named 

"MAT_PIECEWISE_LINEAR_ PLASTICITY" (No. 24 in LS-DYNA) was chosen to 

represent the hardening behaviour and the true stress-strain curve is given in Fig 5.19. 

Coulomb's coefficient of friction was set to 0.05 for the contact interface. In addition, a 

COF of 0.1 was also applied to study the sensitivity of the loading path with regard to 

friction. 

 

Table 5.7 Mechanical Properties and Geometry of the Tube (provided by Schüler Inc.) 
 

Strength 
Coefficient 

(MPa) 

Yield 
stress 
(MPa) 

Ultimate 
tensile 
stress 
(MPa) 

Density 
(kg/m3) 

Young's 
modulus 
(GPa) 

Poisson's 
ratio 

Hardening 
exponent n 

Outer  
Diameter  

(mm) 

Length 
(mm) 

Thickness 
(mm) 

75 276 665 8000 193 0.3 0.43 25.4 1250 1.6 

 
 

 

 
 

Fig. 5.17 Forming process of a refrigerator door handle (courtesy of Schüler Inc.) 
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Fig. 5.18  Finite element mesh 

 
 

 
Fig. 5.19  Stress-strain curve (true and engineering) 

 

5.6.4 Loading path Design and Sensitivity Analysis 

The loading path was defined such that the pressure vs. time curve was a piecewise linear 

profile and the end feed vs. time curve was linear. A sensitivity analysis was then 

performed to identify the most sensitive factors in the hydroforming process. Two 

sequential L18 orthogonal arrays were carried out to identify the ranges of pressure and 
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end feed parameters. A loading path was finally selected with 12 parameters, which 

consisted of 7 pressure variables (P1~P7) and 5 end-feed displacement variables 

(D1~D5), as shown in Fig 5.20. 

 

 
 (a) Internal pressure 

Fig. 5.20  Loading path design 
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(b) Axial end feed displacement 
 

Fig. 5.20  Loading path design (Continued) 
 

5.6.5 Process optimization 

 

As mentioned earlier, process optimization problems are one category of inverse 

problems. When a specific part geometry is required, it is necessary to quantify any 

deviation from the desired shape. This can be done by projecting the nodes on the 

external surface of the deformed mesh onto the desired shape and by computing the gap 

between each node and the prescribed shape (Fig 5.21). In this work, one objective was, 

therefore, defined as the root of the average sum of square of the gaps: 

 .))((
1

)(
1

2∑
=

=
n

i
i xgap

n
xf

rr
                                                                                            (5.13) 

where xr  is the vector of control variables to be optimized, n is the number of projected 

nodes, i.e. the dimension of vector x
r , and gapi is the gap between the ith projected node 

and the prescribed shape. 
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Fig. 5.21  An example of objective function and optimization variables, where par1 to par4 are 

optimization variables (Adapted from Ponthot and J.P. Kleinermann, 2006) 

 

The vector of control variables x
r  is chosen as a function of the loading path parameters: 

  

),( DPxx
rrr =                                                                                                                         (5.14) 

where P
r

 and D
r

 are the vector of the pressure points and the end feed points obtained 

from the screening analysis. 

 

In this study, two representative points (node number 14272 and 15291 in Fig 5.22(a) and 

5.22(b), respectively) at the lower and upper sides of the deformed tube were used to 

measure the gap between the die shape and the deformed tube shape. 
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(a) zoom-in of zone A in Fig. 5.18                                  (b) Zoom-in of zone B in Fig. 5.18 

Fig. 5.22 (a) Measure of distance d1 in the lower die  and  (b) Measure of distance d2 in the upper 

die 

 

5.6.6 Inverse strategy 

The proposed methodology in this research is based on a combination of the inverse 

method, a design of experiments, numerical simulations, the Kriging predictor and multi-

objective genetic algorithms. 

 

It can be noted from equation (5.13), that the shape conformity objective is a single 

objective. Therefore, a single objective optimization algorithm will be used to solve this 

type of problem such as BFGS algorithms, or conjugated gradient, etc. However, the 

derivative of the equilibrium equation (either the continuum-based or the discretized 
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equation) is difficult to obtain. At the same time, the constraints of the problem may form 

a non-convex domain of solutions. Evolutionary algorithms (GA and GP) are more 

suitable for solving the current problem since they do not require the difficult calculation 

of sensitivities, and they have the tendency to find the global optimum and can take 

advantage of parallel computing. However, evolutionary algorithms require a rather large 

number of function evaluations and this has been regarded by some as a serious 

drawback. Nevertheless, this can be solved by implementing RSM or the Kriging 

surrogate method to reduce the cost of time-consuming function evaluations. 

 

5.6.7 Objective Functions 

The direct calculation was first established and adjusted before the reverse analysis. The 

material parameters were determined and the validation of the simulation was performed 

as shown in Fig. 5.23. It was noted that the two curves are almost identical up to a strain ε 

= 0.5, and the maximum relative difference in stress is 2.3% when ε > 0.5. 

 

In the following step, the inverse parameters were identified. The complete hydroforming 

process requires the determination of a considerable number of variables such as 

pressure, end feed, coefficient of friction (COF) (µ), simulation time (T). However, some 

parameters can be obtained from the literature or from previous experience. Time T was 

set to be 0.002s. To study the sensitivity of the COF in the hydroforming process, two 

levels of the coefficient of friction were considered, i.e. 0.05 and 0.1. So the total number 

of parameters was reduced to the pressure and the end feed displacement, and these were 

represented by twelve variables: P1 to P7 for the pressure and D1 to D5 for the end feed 

(Fig. 5.20). 
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Fig. 5.23 Validation of simulation by comparing the stress-strain response from FEA and 

extrapolated experimental data 

 

The objectives included two measures of die filling, which are d1 and d2 (See Fig 5.22). 

Furthermore, the hydroforming process should be able to overcome the difficulty of 

either excessive internal pressure or excessive end feed, where the former will lead to a 

burst or fracture and the latter will result in wrinkling or buckling. Generally, these 

constraints generate a small process window for tube hydroforming. In this paper, 

constraints were transformed into objectives and then objective functions were 

minimized. The objectives of necking/fracture, wrinkling, severe thinning were adopted 

for global evaluation (An et al., 2009), and maximum thinning was used for local 

assessment. The objective functions are presented in Equations (5.15) to (5.20) as 

follows: 
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where t0 and tmin are the original tube thickness and the minimum thickness of the 

deformed tube, respectively. 

 

5.6.8 Optimization Results for Loading Path 

 

This multi-objective optimization problem was solved using the evolutionary genetic 

algorithm NSGA-IIa. The genetic operators were crossover and mutation with a 

crossover rate Cr=0.9 and a mutation rate mr=0.2. The generation number was 20 with a 

population size of 50. In addition, the Kriging method was used to replace time-

consuming FE simulations in the evaluation of functions during genetic operations. 

 

Fig. 5.24 shows the Pareto sets obtained in the last generation for three pairs of objectives 

(i.e. f1 vs. f2, f1 vs. f6 and f1 vs. f3) as well as all the solutions obtained in all 

generations that lead to a safe hydroforming process (but where the thinning ratio may be 

larger than the 30% constraint). Table 5.8 shows a comparison of the objectives for two 

optimum load paths obtained with coefficients of friction of 0.05 and 0.1, respectively. 
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Fig. 5.24 Pareto optimal set for four objectives (f2, f6 and f3 vs. f1). (The squares show the final 

solution set with a constraint of maximum thickness reduction of 30%) 

 

Table 5.8 Comparison of the objectives for two optimum load paths with different COF values 

COF 
f1 

fracture/ 
necking (MPa) 

f2 
wrinkling 
(107 MPa) 

f3 
thinning 

 

f4 
dist1 
(mm) 

f5 
dist2 
(mm) 

f6 
maximum 

thinning ratio (%) 

FLSD 
limit  

(MPa) 

Max. 
stress 
(MPa) 

0.05 -2224 1.04 0 0.83 0.97 24.69 1647 1069 

0.1 -2073 0.89 0 0.66 0.94 29.68 1628 1183 
 

 

The corresponding input parameters were identified and are listed in Table 5.9 and shown 

in Fig. 5.25. Results indicate that the optimal loading path with the lower COF (0.05) 

requires a slightly lower calibration pressure and greater end feed to deform the tube to 

the die shape. This indicates that good lubrication contributes to move the tube material 

into the die cavity. Improved friction conditions also help to reduce wall thinning (the 

maximum thinning was 24.69%), and to increase the safety margin under the stress limit 

(the maximum principal stress is 1069 MPa). 

 objective f2 

objective f6 

objective f3 
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Table 5.9.  Pressure and end feed parameters for two coefficients of friction 

COF Pressure (MPa) End Feed (mm) 

P1 P2 P3 P4 P5 P6 P7 D1 D2 D3 D4 D5 

0.05 49.98 56.49 72.15 90.15 102.0 108.4 133.4 50.08 72.11 83.15 94.89 106.60 

0.1 47.25 51.06 73.72 87.47 101.2 108.3 136.9 50.45 73.55 83.17 94.77 103.82 

 

 
 

Fig. 5.25 The comparison of loading paths for two COF (0.05 and 0.1, respectively) 

 

In the actual manufacturing process, good lubrication is maintained by applying a dry 

film onto the tube and a coating on the die. Therefore, in order to be consistent with 

actual forming conditions, the simulation that was carried out with a COF of 0.05 was 

chosen for further discussion.  
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(a)                                                                                                        (b) 

 

 

 

(a) 

  

(b) 

Fig. 5.26 (a) The tube filling and the thickness distribution in a cross-section  

(b) The effective stress distribution and the maximum stress 
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Fig. 5.26(a) shows a cross-section of the expanded tube in the die cavity and the wall 

thickness distribution when the COF is 0.05. This figure indicates that the tube has fully 

filled the die cavity. The minimum thickness is 1.205 mm and is located on the left side 

of the elliptical cross-section in Fig 5.26(a), which was cut along a plane through section 

C-C in Fig 5.18.  

 

The stress analysis showed that the maximum effective stress is 1295 MPa at the location 

identified in Fig 5.26(b). The maximum major principal stress is 1069 MPa (Table 5.8). 

However, this stress is significantly lower than the stress forming limit at this location, 

which is 1647 MPa. Therefore, the deformed part is very safe in this simulation. 

 

The optimized loading path was compared with four actual load paths that have produced 

acceptable parts. The calculated calibration/maximum pressure is 133.4 MPa, and the 

maximum end feed is 106.6 mm. In this study, a time scale of 400 was used to correlate 

the simulation with the industrial hydroforming process (Fig 5.27), but this does not 

affect the pressure vs. end feed load path. This shows, however, that the calculated and 

actual load paths correlate very well in several aspects: the yield pressure, the calibration 

pressure and total end feed (See bold values in Table 5.10). Among the four actual load 

paths, Path 4 is the closest to the optimal result (Fig 5.27a and 5.27b). 

 

The experimental validation was not carried out because of an interruption in the demand 

for this part. 

 

Table 5.10 Comparison of the Predicted and Actual Load Paths 

 
Yield Pressure 

(MPa) 
Calibration Pressure 

(MPa) 
Total End Feed 

(mm) 

simulation 57.3 133.4 106.6 

Actual 
values 

Path1:  60.0 

Path2:  45.3 

Path3:  63.0 

Path4:  57.3 

133.8 

127.0 

132.0 

133.3 

111.0 

122.3 

102.3 

102.7 
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5.6.9 Conclusions 

An inverse problem of loading path design in tube hydroforming of a refrigerator door 

handle was presented and solved using a multi-objective optimization method. The 

inverse method was coupled with a design of experiment, the Kriging predictor, the 

evolutionary NSGS-II algorithm and finite element simulations of the hydroforming 

process. The loading path parameters that were obtained included seven pressure 

variables and five end-feed variables. The results were compared with actual load paths 

of the hydroforming process, and the calculated key values agreed very well with those 

recorded during production. 

 

        
(a) 

 
Fig. 5.27 Comparison to the actual load path: (a) Pressure vs. time  and (b) End feed vs. time 
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(b) 
 

Fig. 5.27 (b) End feed vs. time (Continued) 
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Chapter 6: Optimization of Loading Path in Hydroforming 
with Pulsating Pressure 

 
6.1 Introduction 

In order to determine the optimum loading path in hydroforming applications, numerous 

systematic studies have been carried out with the aid of finite element analysis (FEA) 

(Manabe et al., 2006;Ray and Mac Donald, 2004;Aue-U-Lan, 2004). The most common 

load paths tend to be linear or piece-wise linear (in terms of pressure vs. time and end 

feed vs. time). Recently, a forming technology using internal pulsating pressure was 

employed to deform a tube (Loh-Mousavi et al., 2008; Mori et al., 2007). In this process, 

the internal pressure oscillated during the hydroforming of a tube in a square or T-shaped 

die.  

 

The mechanism by which a pulsating pressure can improve the uniformity of expansion 

in the bulge region was clearly addressed by Mori et al. (2007), and will be presented in 

section 6.2. In pulsating hydroforming, the effect of amplitude and frequency on the 

uniformity of the deformation and on the ability of the tube to fill the die cavity is 

significant. Different levels of amplitude and frequency have been applied to a T-shaped 

hydroformed part to examine the effects on tube thickness distribution and die filling 

(Loh-Mousavi et al., 2008). Both the simulation and the experiments revealed that the 

formability improved with a decrease in frequency, and with an increase in amplitude.  

However, the optimal parameters for a pulsating hydroforming process were never 

reported in the literature. 

 

In the present study, three types of load paths were applied to hydroform the same T-

shaped component as reported by Loh-Mousavi et al. (2008) and these are described in 

section 6.3. The finite element model of the forming process is described in section 6.4. 

In the fifth section, an optimization strategy is introduced and applied to optimize the 

parameters that control a pulsating load path. Considering the existence of non-linear 

strain paths in typical hydroforming applications, a stress-based forming limit diagram 

(FLD) was used to evaluate the severity of the process in terms of the risk of necking/ 
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fracture, wrinkling and severe thinning. The optimization procedure was carried out with 

a multi-objective genetic algorithm (MOGA) in combination with a series of numerical 

simulations of the hydroforming process. Finally, results of the optimized process are 

discussed, and conclusions are drawn in the last section. 

 
6.2 Mechanism of pulsating hydroforming 

As stated by Mori et al. (2007), the stress components vary with the osillation of internal 

pressure (Fig. 6.1). The hydroformed tube showed a uniform expansion in both 

simulation and experiment. The change in axial and hoop stress components was 

explained to have caused such a phenomenon (Fig. 6.2). Similarly, Yuan et al. (2007) 

stated that the intermediate wrinkles can be considered as an alternative approach for 

obtaining preforms by accumulating material into the expanding area. Therefore, the   

 

 
Fig. 6.1 Calculated oscillation of stress components during pulsating hydroforming (Adapted 
from Mori et al., 2007) 
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Fig. 6.2 Cause of uniform expansion in pulsating hydroforming by change in stress components 
(Adapted from Mori et al., 2007) 

 

recurring wrinkles and bulge generated by the alternate higher axial force and internal 

pressure helped the tube to deform in a stable and uniform manner. 

 

6.3 Loading path design for hydroforming 

Three types of pressure paths, i.e. a higher, piecewise linear pressure (HP), a lower, 

piecewise linear pressure (LP) and a pulsating pressure (PP) (see Fig. 6.3) were applied to 

examine the effect of internal pressure on the forming severity and thickness distribution 

of a T-shaped tubular part. For the PP load path, the amplitude of the oscillating pressure 

was 7 MPa and the frequency was 1.33 cycles/mm of end feed, when the end feed was in 

the range of 1 to 15 mm. The equation for a pulsating pressure can be expressed as: 

 

0)1(2sin psAp p +−= πω                                                                                           (6.1) 

 

where Ap is the amplitude of the pressure curve,  is the number of cycles per unit end 

feed, p0 is the mean value of the pulsating pressure, and s is the end feed. The HP loading 

path corresponds with the upper bound of the pulsating pressure peaks. The parameters 

ω
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for each pressure curve are listed in Table 6.1. For each of the three load paths, the end 

feed was linearly increased from 0 mm to 15 mm. 

 

Table 6.1. Three types of pressure paths 

 

load path P1 (s=1mm) P2 (s= 12mm) P3 (s= 15mm) 
HP 25 32 62 
LP 17 25 62 
PP 25 25 62 

 

 
Fig. 6.3 Three types of loading paths applied to a T-shaped hydroformed part 
 

6.4 Finite element model 

The T-shaped part was made of mild steel and the tube mechanical properties were 

provided by Loh-Mousavi et al. (2008) and are listed in Table 6.2. The outer die and two 

end-feed punches were modelled as a rigid body in LS-DYNA v.971 (Hallquist, 2007). 

The tube was modelled with 3480 Belytschko-Tsay shell elements, each having five 

integration points through the thickness. A material model designated as 

"MAT_PIECEWISE_LINEAR_PLASTICITY" (No. 24) was selected to represent the 

hardening behavior. Tube-die friction was modelled with the penalty-based contact 

algorithms in the commercial program LS-DYNA. Coulomb's coefficient of friction was 

set to 0.1 for the contact interface. Fig. 6.4 shows the geometry of the tools and the tube 

and Fig. 6.5 shows the mesh. The forming process consisted of pressurizing a tube to 
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cause it to bulge out and protrude a vertical distance s until it contacts a fixed upper die. 

As the internal pressure increases the tube wall gradually fills the die cavity and the 

maximum filling ratio is determined by the formability of the tube and the efficiency of 

the hydroforming process. 

 
Table 6.2. Mechanical properties of the tube 

 

Strength 
coefficient 

(MPa)  

Yield 
stress 
(MPa) 

Density 
(kg/m3) 

Young's 
modulus 
(GPa) 

Poisson's 
ratio  

Hardening 
exponent 

n 

Outer 
diameter 

(mm) 

Initial 
wall 

thickness 
(mm) 

510 290  7800 210  0.3 0.12 38.4 1.1 
 
 

 
 

Fig. 6.4  Geometry of the tube and the T-shaped hydroform die (Adapted from Loh-Mousavi et 
al., 2008) 

 
 

Fixed 
punch

Pressure

Tube Feeding

Punch

Die

160

120

Φ38.4

R2.5

9.
5

Φ
38

.4

R2.5R2.5



 135

 
Fig. 6.5 The finite element meshes 
  
The simulation results are presented in Table 6.3 and Fig. 6.6. The comparison of the 

maximum effective stresses, strains and deformed tube characteristics, such as die filling 

and minimum thickness, are given for the three types of load paths (Table 6.3). Fig. 6.6 

shows the thickness distribution of the protrusion, as well as the degree to which the die 

cavity was filled. It can be seen that the loading path with the higher pressure (HP) led to 

a severe reduction of the tube thickness, which exceeds the conventional thinning limit of 

20%. In comparison, the other two load paths (LP and PP) generate a higher die filling 

ratio (above 85%) and less thinning (the minimum thickness is around 0.69 mm). 

Compared to the LP load path, the PP path achieved a slightly better thickness 

distribution and die filling ratio. In addition, it was noted that the PP caused a reduction 

of the maximum effective stress from 508 MPa for HP and 505 MPa for LP load paths to 

486 MPa for the PP load path, which increases the safety margin of the hydroforming 

process. Hence, the pulsating pressure can generate a tube with less wall thinning and a 

more uniform thickness in the forming zone.  
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Table 6.3 FEA results with three load paths 

 

 
Maximum 

effective stress 
(MPa) 

Effective strain at three levels 
Die Filling 
ratio (%) 

Minimum 
thickness 

(mm) Lower Medium Upper 

HP 508 0.884 0.896 0.890** 91.9 0.464 
LP 505 0.534 0.658 0.590* 85.9 0.688 
PP 486 0.560 0.552 0.555** 86.4 0.691 
* the three strain values are for different elements 
** the three strain values are for the same element 

 
 
 

 
Fig. 6.6  Thickness distributions of the formed protrusions with three different load paths 
 
 

6.5 Optimization procedure 

 

In this section, the two parameters that define the pulsating internal pressure, i.e. the 

amplitude and frequency, were further investigated in order to determine an optimal load 

path. 
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6.5.1 The MOGA algorithm 

For the T-shaped hydroformed component under consideration, there are also competing 

objectives: there is a need to reduce the risk of necking/fracture and wrinkling, minimize 

thinning, but also to achieve a specified geometry while maintaining a reasonably 

uniform thickness distribution throughout the part: this constitutes a problem of multiple 

objectives. In order to circumvent the difficulty of selecting a relative weight for each 

objective, the Pareto optimization algorithm proposed in Section 5.5.1 (called MOGA-I) 

which uses a ranking and non-dominated sorting strategy was adopted for this study. 

 

6.5.2 Mathematical model of the T-shape pulsating hydroforming 

The objectives in this application include the forming severity functions and the quality 

requirements such as thickness distribution and die filling. 

 

6.5.2.1 Forming severity functions 

 

The three objective functions required to achieve defect-free tube hydroforming are those 

that minimize necking/fracture, wrinkling and severe thinning. These objective functions 

are described in detail in Chapter 3, but are listed below for convenience. 
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6.5.2.2 Objective functions of maximum thinning and die filling 

 

The above function of severe thinning was evaluated for every element in the tube. In 

reality, the local thickness reduction may reach a limit. Hence, the maximum local 

thinning was employed to minimize the function: 
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min4 ttf −=                                                                                                                                            (6.5) 

 

where t is the original tube thickness, and tmin is the final minimum thickness in the 

deformed tube.  

 

The die filling was calculated in the central cross-section of the deformed tube. This 

function is also designed to be minimized: 

 

0
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Fig. 6.7  Calculation of the die filling of the tube protrusion 

 

where A0 is the total area of the die cavity (area of MNKL) and A is the area filled by the 

protruding tube wall (shaded area in Fig. 6.7).  

 

Therefore, the following mathematical function can be written as: 

 

Minimize             F(x) = [f1(x), f2(x), f3(x), f4(x), f5(x)]                                            (6.7) 
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where x is the normalized vector of design variables: x = [Ap, ω]T, 2≤Ap≤10, 0.1≤ω≤2. 

The ranges of each design variable are the same after normalization: 0.2≤ xi ≤ 0.8, i =1,2. 

 

6.6. Results and discussion 

 

The MOGA was initialized with a population size of 40 and a generation of 50. The 

crossover and mutation probability are 0.9 and 0.2, respectively. The Pareto set for 

optimized results were obtained after 50-generation evolutions using constrained NSGA-

II. The L2 norm was used to choose the layout with the minimum L2 norm value and the 

results are listed in Table 6.4. The optimum loading path has a pressure amplitude of 9.91 

MPa and a frequency of 2 cycles/mm (Table 6.4). The objective values were 0.4170, 

0.5659, 0.2099, 0.2881 and 0.3431 for objectives f1,  f2,  f3,  f4 and f5, respectively. 

 

Table 6.4 Optimal results using MOGA with a minimum L2 norm 

 

 Pulsating parameters final objective results 
L2 

norm  
Amplitude 
Ap (MPa) 

frequency 
ω 

(cycles/mm) 

f1 
(MPa) 

f2 
(MPa) 

f3 

 
f4 

 
f5 

(mm) 

Normalized 
value 0.675 0.80 0.4170 0.5659 0.2099 0.2881 0.3431 0.8596 

Optimum 
load path 9.91 2 147.458 182960 0.3296 0.8531 0.862 ____ 
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(a) 
 

 
(b) 

 

Fig. 6.8 (a) The thickness distribution and (b) die filling in the part with the optimum loading 

path 

 

The minimum thickness and die filling ratio achieved when using the parameters 

provided by Loh-Mousavi et al. (2008) were calculated to be 0.69mm and 85%, 

respectively. In contrast, the minimum thickness for the optimized process is 0.862 mm – 

significantly better than with the non-optimized process – and the die filling ratio is 

85.31%. It can be seen that there is only a minor change in the die filling ratio when using 

optimization, however, the improvement in minimum thickness is significant, as it 
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increased by 25%. Compared to the PP result obtained in Section 6.4, the die filling ratio 

is only 1.1% lower for the optimum load path, whilst the tube thickness is much thicker 

with a 25% increase of 0.171 mm. Since the objectives of maximizing die filling and 

minimizing wall thinning are in conflict with each other when the total end feed is fixed, 

the optimum loading path leads to a trade-off between these two objectives. This explains 

why the minimum tube thickness has significantly improved and the die filling ratio has 

slightly decreased. However, the optimized result shows a uniform thickness distribution 

in the central cross-section of the protrusion (Fig. 6.8b). 

 

6.7 Conclusions 

 

A loading path optimization for a hydroformed T-shaped part was investigated with 

MOGA. The objectives were to minimize the forming severity in terms of the risk of 

necking/fracture, wrinkling and severe thinning with both the FLD and the FLSD, to 

minimize wall thinning and maximize the die filling ratio. The following conclusions can 

be drawn:  

1. The comparison between the three types of load paths – the higher pressure (HP), the 

lower pressure (LP) and the pulsating pressure (PP) indicated that the pulsating pressure 

can generate a more uniform wall thickness than the other two load paths. In addition, the 

process safety margin increased as a result of the maximum effective stress being 

significantly reduced. 

2. The amplitude and frequency of the pulsating pressure were optimized with MOGA. 

Compared to experimental results from the literature, the optimal loading path reduced 

the amount of thinning by 25% compared with experimental results (Loh-Mousavi et al. 

(2008)), and a die filling ratio of 85.31% was achieved, which is just slightly higher than 

the experimental result. 

3. The multi-objective genetic algorithm with constraint handling method was shown to 

be effective in obtaining a Pareto set of the objectives. A compromise solution can be 

reached among a conflicting series of objectives, which enables one or more objectives to 

be improved without adversely affecting the others. 
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Chapter 7: Loading path design in multi-stage tube forming  
 
7.1 Introduction 

 

When manufacturing automobile tubular components, such as engine cradles (Fig.7.1), 

frame rails, subframes and cross-members, pre-bending and pre-forming operations are 

often required prior to hydroforming (Lee et al., 2005). Also the success of the tube 

hydroforming process is largely determined by the preceding forming operations.  

 

Pre-bending is generally needed so that a tube will fit into the hydroforming die. The 

effect of pre-bending, which changes the strain and thickness in the tube, should be well 

understood in order to improve the amount of residual ductility for the subsequent tube 

hydroforming operation (Oliveira et al., 2005). For hydroforming applications, the two 

main methods of bending tubes are hydrobending and rotary-draw bending. 

 

 
 
Fig. 7.1 Typical production steps for an automobile engine cradle (Adapted from Schuler 
Hydroforming Inc.) 
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7.2 Rotary-draw bending 

 

Rotary-draw bending is one of the most versatile, accurate and cost-effective methods of 

bending thin-walled tubes. Rotary-draw tube bending provides consistent bends with 

repeatable thickness and strain distributions, which is particularly important for the 

success of subsequent hydroforming operations (Ahmetoglu and Altan, 2000; Dyment et 

al., 2003; Bardelcik and Worswick, 2005a).  

 

 

Fig. 7.2 Rotary-draw tube bender tools (Adapted from Bardelcik and Worswick, 2005b) 
 

The main tools of the rotary-draw tube bender include the clamp die, the bend die, the 

wiper die, the pressure die and the mandrel assembly (Figure 7.2). The clamp die grips 

the tube end and draws the tube around the bend die, with some pushing assistance from 

the pressure die. For bends with tight radii and small tube wall thickness an optional 

mandrel can be utilized to prevent cross-sectional collapse and wrinkling on the inside of 

the bend. The following sections describe key factors controlling the rotary-draw tube 

bending process. 
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7.2.1 Factors affecting bending 

Successful tube bending depends on a variety of factors: the ratio of the centerline radius 

(CLR) of the bend to the tube outer diameter (D or OD), or R/D ratio, lubrication, 

bending boost, and process variables such as tube/tools clearance, mandrel extension 

length, and bending velocity.  

 

Yang J. et al. (2001) found that smaller bend radii produced larger thinning of the tube on 

the outside of the bend and higher levels of cross-sectional distortion. Therefore one of 

the ways to increase residual formability after the bending operation is to reduce bending 

strains by increasing the R/D ratio. 

 

The bend difficulty factor (DF) or bend factor (Singh, 2003) is defined in such a way as 

to describe the feasibility of bending: 

DOB

FactorWall
DF =

 (7.1) 

Where, the wall factor is the ratio of tube OD to wall thickness (T); and DOB is the bend 

ratio (R/D). And they are formulated as: 

TODFactorWall /=  (7.2) 

DRDOB /=  (7.3) 

 

It was noted that a decrease of the DOB (or R/D ratio) together with an increase in the 

wall factor is indicative of an increased bend severity (Bardelcik and Worswick, 2005a). 

 
7.2.2 Boost method 

 

Mentella et al. (2008) presented a comparison among five types of boost approaches, 

including pressure die only, pressure die with connected boost block, and pressure die 

and independent booster. It was indicated that the independent pressure die and booster 

technology (the “c” configuration in Fig. 7.3) provided the greatest process flexibility and 

performance. 
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Fig. 7.3 Boost methods (Adapted from Mentella et al., 2008) 
 

Dyment (2003), Dyment et al. (2004) and Bardelcik et al. (2005a) investigated the effect 

of bending boost on thickness and strain distributions of pre-bent IF, AKDQ and DP600 

steel tubes. Comparison of tubes bent with low (95%), medium (100%) and high (105%) 

boost levels confirmed that the increased boost had an overall positive effect, increasing 

thickness around the circumference of the tube and decreasing strains on the outside of 

the bend. The major engineering strain along the outside of the R/D=2.0 bend reduced 

about 8% with an increase from low to high boost level. 

 
 
7.3 Bent tube hydroforming 

 
Hydroforming of pre-bent tubes can be carried out at different pressure levels depending 

on the forming strain and final geometry required for the product (see Fig. 7.4). Yang et 

al. (2001), Sorine (2007), Koç and Altan (2001), Trana (2002), Dyment et al. (2003), 

Bardelcik and Worswick (2005a, 2005b) and Oliveira et al. (2005) showed that the ability 

of a tube to be hydroformed was severely reduced by the pre-bending operation. The 

bending operation may affect the hydroforming by consuming a large portion of available 

formability, and a small change in bending strains can significantly affect the 

hydroformability of the part (Dyment et al. 2003). Bardelcik (2006) pointed out that the 
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reduction of formability can be compensated by end feeding the tube into the die cavity 

during hydroforming. Thus, it is possible to improve the hydroforming process by 

optimizing the load path. 

 

 

 
Fig. 7.4 Pre-bend tube hydroforming (Adapted from Simha et al., 2007) 
 

7.4 Simulation of tube bending and hydroforming 

The numerical simulation of a tube bending and hydroforming process was carried out 

with a view to understanding how to optimize the hydroforming loading path in a multi-

stage forming process. The finite element simulation was performed with the commercial 

code LS-DYNA, and results were compared to experimental data published by Bardelcik 

(2006) in which a straight tube was bent 90º in a rotary draw bender, then hydroformed 

into a die with a square cross-section. The following sections describe the numerical 

simulations of this process in more detail. 

 

7.4.1 Material properties 

 

The straight tube was made of DP600 steel and the tube mechanical properties were 

provided by Bardelcik (2006) and are listed in Table 7.1. The true stress-strain curve of 

the as-recieved tube is given in Fig. 7.5. A material model "MAT_PIECEWISE_ 

LINEAR_PLASTICITY" (No. 24) was selected to represent the hardening behaviour.  
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Table 7.1. Mechanical properties of the tube 

 

Grade 
Strength 

coefficient 
(MPa) 

Yield 
stress 
(MPa) 

Density 
(kg/m3) 

Young's 
modulus 
(GPa) 

Poisson's 
ratio 

Hardening 
exponent 

n 

Outer 
diameter 

(mm) 

Initial 
wall 

thickness 
(mm) 

DP600 795.8 390 7800 265 0.30 0.115 76.2 1.85 

 
 
 

Table 7.2 COF used in tube bending simulations 

 

Die Tool Higher COF (DP600) Lower COF (DP600) 

Bend/Clamp/Pressure 0.14 0.08 

Wiper 0.10 0.04 

Mandrel 0.10 0.06 

 
 
 
 

 
 
 
Fig. 7.5 DP600 true stress versus true plastic strain input curve 
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Fig.7.6 FEA mesh of bending setup (half-cut to show the inside tools) 
 

7.4.2 Procedure for the bending simulation  

The bending simulation was carried out by modelling the bending tools as rigid bodies. 

Tube-die friction was modelled with the penalty-based contact algorithms in program LS-

DYNA. Coulomb's coefficient of friction were set for each pair of contact interface 

(Table 7.2). Fig. 7.6 shows geometry and mesh of the tools and the tube.  

 

The tube bending model includes several steps (Fig.7.7): (1) Explicit tube bending; (2) 

Implicit springback; (3) Trimming. After the bending simulation, a file including the 

geometry, the plastic strains and stress state at every integration point was obtained and 

transferred to the hydroforming simulation. 

 

Pressure Die 

Clamp Die 

Bend Die 

Wiper Die 

Mandrel Post and Ball 
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Fig. 7.7 Explicit tube bending simulation (with thickness distribution) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.8 Springback simulation 
 

 

 

 

 

 

 

Angle:1.75° degrees  
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Fig. 7.9 Bent tube measurement (a) Hoop direction (Ø=0° −360°)  
  (b) Bend arc direction (θ=0° − 90°) 
 

7.4.3 Hydroforming simulation 

In the hydroforming simulation of the pre-bent tube, a file generated from the tube 

bending history was utilized as an input, and the top view of the half-cut mesh is shown 

in Fig. 7.10. 

 
Fig. 7.10 Hydroforming setup and mesh (half-cut) 
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Fig. 7.11 (a) shows the experimental cross-section of a bent and hydroformed tube in the 

final stage of deformation (Bardelcik, 2006). Fig. 7.11 (b) shows the predicted cross-

section of the same part at an intermediate stage in the simulation, which shows the same 

deformation trend as the experiment. This simulation demonstrated the fact that in 

prebent tube hydroforming, the extrados deforms first, and the tube fills the extrados 

corners better than the intrados corners of the bent tube. 

 

       
 

Fig. 7.11 (a) Experimental result of the prebent tube (Adapted from Bardelcik, 2006) 
                (b) One simulation result (θ = 45°) 
 

7.4.4 Results of tube bending simulations (Strain and thickness) 

 
In this study, the main objective was to investigate the effect of loading path on pre-bent 

tube hydroformability. Therefore, the factors that affect the bending results, such as 

different levels of boost force, pressure force, mandrel location etc, were not thoroughly 

studied, but a suitable setting was selected for each of these bending parameters and was 

maintained throughout the simulations.  

 

The bending process was simulated using the parameters provided by Bardelcik et al., 

2005c with a R/D=2.5. The medium boost (MB) was applied through the pressure die and 

an independent booster (style "c" in Fig. 7.3). The tube ends were allowed to move in the 



 152

x- and z-directions for applying the end feed. The die was fixed. In this simulation, the 

COF between the tube and the die was selected as 0.035. 

 

The strain and thickness distributions were presented and compared to the experimental 

results of Bardelcik et al.(2005c). For better comparison, the bending result with R/D=2.0 

(Bardelcik, 2006) is also listed in Table 7.3. The results showed a good agreement in 

strain and thickness distribution for R/D=2.5. However, the bending results for R/D=2.0 

showed much larger strains and thickness reduction compared with experimental data. 

 

Table 7.3 The Comparison of predicted and experimental strains and thickness  

R/D 

True strain (%) Maximum/Minimum thickness (mm) 

Circumference Arc Intrados Arc Extrados   

Major Minor Major Minor Major Minor 

Thickness 

/(Angle) 

(mm/°) 

Reduction 

(%) 

Thickness 

/(Angle) 

(mm/°) 

Reduction 

(%) 

2.5 15.2 -23.3 7.12 -24.3 18.8 -4.90 
2.242 

(30°) 
-21.2 

1.6109 

(60°) 
12.90 

R/D2.5 

Ref.[1]* 
20.48 -22.31 5.78 -24.26 21.16 -7.15 

2.207 

(30°) 
-19.3 1.631(60°) 11.8 

R/D2.0 

Ref.[2]**  

 

24.3 -30.1 3.92 -29.2 25.3 -5.48 
2.290  

(45°) 
-23.8 

1.5175 

(75°) 
17.97 

 
* Ref.[1]: Bardelcik et al.(2005c) 
** Ref.[2]: Bardelcik, 2006 
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Fig. 7.12 Predicted and experimental thickness distribution in the hoop direction at the middle of 
the bend (θ = 45°)(Bardelcik, 2005c) 
 
 

 
 
Fig. 7.13 Predicted and experimental thickness distribution along the length of the bent tube 
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Fig. 7.14 Predicted and experimental strain distribution along the length of the bent tube (Intrados) 
 

 
 
Fig. 7.15 Predicted and experimental strain distribution along the length of the bent tube 
(Extrados) 
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Fig. 7.16 Predicted and experimental strain distribution in the hoop direction of the bent tube 
 
 
 
7.5 Optimization of Pre-bent tube hydroforming 

7.5.1 Objective Functions 

 

Two of the objectives for the optimization of the hydroforming process included the 

corner radii (R1 and R2 ) in the intrados and extrados of the bend at θ = 45°; both these 

corner radii show the extent to which the die is filled (Fig 7.17). The corner radius can be 

easily converted into a corner fill expansion which can then be correlated to the actual 

expansion of the tube wall as it would be measured by an LVDT located in the corner of 

the die and oriented toward the centre of the tube (this calculation is provided in 

Appendix E). 
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Fig. 7.17 Corner radius in intrados (R2) and extrados (R1) of the bent tube 
 

The objectives of necking/fracture, wrinkling, and severe thinning were adopted for 

global evaluation, and maximum thinning was used for local assessment. The objective 

functions are presented in Equations (7.1) to (7.6) as follows: 
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tttf /%100)( min4 ×−=                                                                                          (7.4) 

15 Rf =      (extrados)                                                                                                  (7.5) 

26 Rf =     (intrados)                                                                                                   (7.6) 

 

Therefore, the problem can be summarized by the following formulation which places 

constraints on each objective: 

 

Minimize F(x) = [f1(x), f2(x), f3(x), f4(x), f5(x), f6(x)]                                              (7.7) 

s.t. 
;70.02.0;70.02.0;35.02.0

;30.02.0;70.02.0;70.02.0

654

321

≤≤≤≤≤≤
≤≤≤≤≤≤

fff

fff                                        (7.8) 

where x is the normalized vector of design variables: x = [P1, P2, P3, P4, P5, D]T. The 

ranges of each design variable are the same after normalization: 0.2≤ xi ≤ 0.8, i =1,2,...5. 

 
7.5.2 Design of experiments 

 
The loading path was designed with five parameters for pressure and one for end feed, 

namely P1, P2, P3, P4, P5 and D (See Fig. 5.9a). P1 to P5 are different pressure levels, in 

MPa, and D is the maximum end feed, in mm, at the end of the process. The ranges 

selected for each design variable are as follows: 

                        
5010;1505100;100480

70350;50220;18110

≤≤≤≤≤≤
≤≤≤≤≤≤
DPP

PPP                                   (7.9) 

 

The design of experiments was carried out by Latin hypercube sampling (LHS) with 50 

sampling points. Then, a 10-fold cross-validation was implemented and the PRESS value 

was obtained for the model with regard to each objective. The quality of the Kriging 

model is given in Table 7.4. The PRESS error for each objective was low, and f2 had the 

lowest value. The Kriging response surface for all of the other objectives had a high 

adjusted coefficient of determination which indicated an explanation above 89.94% of the 

variability in predicting new observations. 
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Table 7.4 Accuracy of response surface of the objectives 

 f1 f2 f3 f4 f5 f6 
Number of 

observations 50 50 50 50 50 50 

PRESS 0.0159 0.0079 0.0733 0.0426 0.0239 0.0096 
2
predR  0.8994 0.9962 0.9557 0.9721 0.9125 0.9099 

SST 0.0025 0.0166 0.1213 0.0650 0.0065 0.0010 

 

7.5.3 Results obtained using MOGA-I 

The optimization was implemented with MOGA-I in 15 generations. An archived dataset 

was recorded to keep the elitist individuals. The L2 norm was used to choose the layout 

with the minimum L2 norm value in the archived set. Fig. 7.18 indicates the evolution of 

the loading path from the first population to the 15th generation. 

 

The current optimum loading path obtained using MOGA-I has a minimum L2 norm 

value of 0.8143 (Table 7.5). The objective values were 0.6587, 0.5936, 0.2000, 0.2889, 

0.5419 and 0.5358 for objectives f1, f2,  f3,  f4,   f5 and f6, respectively. The corner fill 

expansions are 11.50 mm (CFE=70.8%) and 12.59 mm (CFE=77.7%) for inside and 

outside corner, respectively (Table 7.6).  

 
Table 7.5 The optimal loading path obtained using MOGA 

 P1 
(MPa) 

P2 
(MPa) 

P3 
(MPa) 

P4 
(MPa) 

P5 
(MPa) 

D 
(mm) L2 norm 

Normalized value 0.7538 0.5672 0.2741 0.5229 0.7893 0.6991 0.8143 

Loading path 1 17.38 38.36 52.47 90.76 149.11 43.28 - 

 
 

Table 7.6 The objectives obtained by current optimal load path 

 Final objective results Corner expansion (mm) 

 f1 
(MPa) 

f2
 

(106) 
(MPa) 

f3 f4 f5 
(mm) 

f6 
(mm) 

Outside 
corner 
(mm) 

Inside  
corner 
(mm) 

Normalized 
value 0.6587 0.5936 0.2000 0.2889 0.5419 0.5358 - - 

Optimal 
Path 1 -981 1.640 0 0.148 8.55 11.19 12.59 

(77.7%) 
11.50 

(70.8%) 
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Fig. 7.18 Evolution of the three objectives f4, f5 and f6 in 3D plot  
 

 
Fig.7.19 Evolution of the two objectives f4 and f5  in 2D plot  

Optimum 

Optimum 
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Fig. 7.20 Evolution of the two objectives f4 and f6 in 2D plot  
 

 
Fig. 7.21 Comparison of the optimum loading path set  

Optimum 
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7.5.4 Discussion of the stress history  

Once optimum results were obtained using the global search, the stress history was 

further investigated. It was noticed that the minimum value of the maximum principal 

stress at all seven integration points in the element with the minimum final thickness (No. 

1798) had exceeded the FLSC (Fig. 7.22). The maximum principal stress in this element 

is plotted in Fig. 7.23 for additional detail. It was noticed that the principal stress value in 

the final stage (point E in Fig. 7.23) is below the FLSD limit, however, during the stress 

history, there were three points (A, B and C) that surpassed the FLSC (Fig. 7.22) at the 

simulation time period of t = 1 ms to 2 ms. The stress at Point D is high but it is below 

the limit of Fig. 7.22. From the loading path curve (Fig. 7.21), it indicated that the 

excessive stress occurred during the deformation stage when the end feed was between 

D=10 mm and 20 mm. Consequently, a subsequent local search of the optimal loading 

path for this stage (D=10 to 20 mm) was implemented. 

 

 
Fig. 7.22 Stress path for element 1798 with the minimum thickness 
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Fig. 7.23 History of maximum principal stress for element 1798 (Minimum value among all 7 
integration points) 
 
A Latin hypercube sampling method with 50 seeds was carried out to find solutions with 

a positive safety margin in the stress forming limit diagram. The parameters were defined 

as shown in Table 7.7. Within this group of solutions, 41 of them presented major 

principal stresses that were under the forming limit stress curve (FLSC) (Fig. 7.26). 

However, the remaining 9 simulations showed stresses above the FLSC. It was noted that 

the generated FLSC was in good coincidence with the reference (Bardelcik and 

Worswick, 2005). The best result was selected to be with a minimum L2 norm value for 

objectives f4, f5 and f6. The optimal loading path is listed in Table 7.8. The generated 

objectives were listed and compared to the experimental results in Table 7.9. 

 

It was noted in the experiment that the minimum corner radius was 12.22 mm, and the 

maximum corner expansion was 10.73 mm for the hydroformed part with a medium 

mandrel boost (MB) in pre-bending. However, the optimized loading path was able to 

reduce the corner fill radius to 8.73 mm and 11.24 mm for the extrados and intrados of 
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the bend, respectively. The corner fill expansion was improved by 16.7% (or 1.79 mm) 

compared to the maximum expansion of 10.73 mm obtained experimentally. 

 

The geometry of the part after the hydroforming simulation is shown in Fig. 7.25. The 

predicted tube thickness is 1.613 mm at the extrados and 1.722 mm at the intrados. 

Compared to the calculated tube thickness after bending which was 1.62 mm at the 

extrados and 2.124 mm at the intrados, the thickness reduction due to hydroforming 

remained almost the same at the extrados (-12.8%), but decreased somewhat at the 

intrados (i.e. −6.9% thickness reduction compared to the original thickness). 

 
Table 7.7 The parameters for local search 

time 
(10-3s) 

P1 
(MPa) 

P2 
(MPa) 

P3 
(MPa) 

D1 
(mm) 

D2 
(mm) 

D3 
(mm) 

t = 1.0 28-38   8-9   

t = 2.5  42-50   21-28  

t = 5.0   140-149.5   40-43.5 
 

 
Table 7.8 The optimal load path 

 
P1 

(MPa) 
P2 

(MPa) 
P3 

(MPa) 
P4 

(MPa) 
P5 

(MPa) 
D 

(mm) L2 norm 

Normalized value 0.2801 0.3843 0.7669 0.3877 0.2166 0.7082 0.8167 

Optimal load path 29.34 44.46 148.98 8.31 21.19 42.96 - 

 
 

Table 7.9 Comparison of the optimal and experimental results (Bardelcik et al. 2005) 

 Final objective results Corner expansion (mm) 

 
f1 

(MPa) 

f2 
(106) 

(MPa) 
f3 f4 

f5 
(mm) 

f6 
(mm) 

Outside 
corner 

Inside 
corner 

Normalized 
value 0.6631 0.5740 0.2 0.2770 0.5493 0.5372 - - 

Optimal Path 
2 -972 1.560 0 0.128 8.73 11.24 12.52 

(77.2%) 
11.48 

(70.7%) 

Ref.[158]     Minimum radius 
12.22 (MB) 

Maximum expansion 
10.73 mm (MB) 

Note: MB represents for medium mandrel boost  
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Fig. 7.24 Final optimal loading path with maximum principal stresses under the FLSD limit 
 
 
 

 
 
Fig. 7.25 Thickness distribution of the tube hydroformed with the optimal loading path 
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Fig. 7.26 Stress path and FLSD for element 3423 
 

In this study a displacement based end feed was numerically applied to the tube ends. In 

order to determine the end feed forces that were applied for this simulation, the nodal 

forces were calculated. The maximum total load force in the X and Z directions were 

almost identical at the tube ends, with a value of 412 kN (Fig. 7.27 and 7.28). Compared 

to the experimental load path, this predicted loading path was almost four times greater 

than the maximum end feed force applied for pre-bent tube hydroforming and two times 

greater than for the straight tube hydroforming, which were 133 kN and 200 kN, 

respectively. Consequently, it is suggested that the end feed force be significantly 

increased to generate a better corner fill for pre-bent tube hydroforming in future 

experiments. 
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Fig. 7.27 Total load force of the nodes feeding in the X direction 
 
 
 

 
 
Fig. 7.28 Total load force of the nodes feeding in the Z direction 
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Chapter 8: Conclusions and Future Work 
 
8.1 Conclusions 

 

Engineering design by its very nature is non-linear and multi-objective, often requiring a 

compromise between disparate and conflicting objectives. The goals of this study were to 

consider multiple objectives in the development of a) a general method for evaluating the 

forming severity of tubular hydroformed parts, and b) strategies for the design and 

optimization of hydroforming process parameters (i.e. loading path) using finite element 

simulation. As a result of this work, the following conclusions can be drawn: 

 

1. A hybrid forming severity indicator that combines both the conventional forming limit 

diagram (FLD) and the forming limit stress diagram (FLSD) was firstly developed to 

assess the risk of thinning, necking/splitting and wrinkling. This indicator is far more 

suitable than single indicators such as the FLD or the FLSD for complex and highly 

nonlinear forming processes. Furthermore, for each specific optimization application, this 

hybrid indicator can be combined with other objectives of geometry/quality requirements 

such as die filling and thickness distribution. 

 

2. Two optimization strategies were proposed to solve this type of multi-objective 

optimization problem: normal boundary intersection (NBI) and multi-objective genetic 

algorithm (MOGA). The advantages of the NBI algorithm compared to the weighted sum 

method are that it generates the Pareto solution set with uniformly distributed points and 

it can be easily applied with Matlab. However, it needs sequential improvements of the 

RSM model to obtain the global optimum.  

 

3. Compared to the NBI algorithm, a more robust MOGA was implemented and 

combined with finite element analysis and a Kriging model for optimization. In this 

MOGA method, several improvements were made in terms of the constraint-handling 

technique, the automatic updating of the Kriging model, and the combination of global 

and local searches. This hybrid MOGA was shown to generate better results than the 
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conventional NSGA-II because of the global and local search strategy adopted for 

problems with three or more objectives. 

 

4. The proposed methods were applied to the loading path design of several case studies: 

straight THF in a square-cavity die, T-shaped THF and the hydroforming of an industrial 

refrigerator door handle. Moreover, the proposed methods were compared with the 

commercial software LS-OPT4.0, and the results showed that both methods performed 

better than LS-OPT4.0 to generate a smaller corner radius without failure. 

 

5. An investigation of THF with pulsating pressure in a T-shaped die was completed to 

optimize the amplitude and frequency of the pulsating curve. The numerical simulations 

demonstrated that pulsating pressure does indeed improve the formability of the tube 

hydroforming process. An optimization procedure was implemented to identify the 

optimal amplitude and frequency of the pulsating pressure. Compared to the published 

experimental data, this optimization algorithm was able to further improve the 

formability and generate a quality part with 25% less thinning and a lesser tendency of 

wrinkling or bursting. 

 

6. The MOGA method was further utilized to optimize a multi-stage forming process in 

which a tube was pre-bent prior to THF. With the optimal loading path, the corner fill 

expansion significantly increased at both the intrados (CFE of 11.48 mm) and extrados 

(CFE of 12.52 mm) of the bent and hydroformed part, which represented a 16.7% 

increase compared to the maximum expansion of 10.73 mm obtained experimentally. It 

was also noted that the wall thickness of the part hydroformed according to the optimized 

loading path remained almost the same as that of bent tube at the extrados, and was only 

slightly less than the original wall thickness at the intrados. This demonstrates that the 

reduced formability due to pre-bending can be largely compensated by end feeding the 

tube during hydroforming. Moreover, results showed that a gradually applied axial load 

may be beneficial to generate a smaller corner fill radius without failure. 
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8.2 Recommendations for future work 

The following recommendations are proposed for further research and development. 

 

1. Consider the effect of through-thickness stress on the forming behaviour of the tube 

and apply a three-dimensional stress-based failure criterion in the optimization model. 

The extended stress-based forming limit criterion that was proposed by Simha et al. 

(2007) is suggested for assessing the through-thickness stress effect. 

 

2. Develop parallel computing using a Message Passing Interface (MPI) platform to 

enhance the computation capacity and reduce simulation time, especially when 

considering a large scale finite element model with solid elements.  

 

3. Further investigate the loading path design of complex-shaped hydroformed parts with 

pulsating pressure to generate a more uniform wall thickness and achieve smaller as-

formed radii. 

 

4. Establish a knowledge database and explore adaptive loading path design method for 

THF control. The expert system and fuzzy logic theory can be used to generate such a 

database and provide the logic for real-time control of the THF process. 

 
 



 170

Bibliography 

 

Abedrabbo N., et al. (2005), Optimization of a Tube Hydroforming Process, Red 

 Cedar Technology, MI, 48823, USA, www.redcedartech.com.  

Abedrabbo N., et al. (2009), Optimization methods for the tube hydroforming process 

 applied to advanced high-strength steels with experimental verification, J. 

 Mater. Process. Technol., 209:110–123 

Ahmetoglu M., Altan T. (2000), Tube hydroforming: state-of-the-art and future 

 trends, J. Mater. Process. Technol., 98:25-33, 

Ahmed M., Hashmi M.S.J (1997), Estimation of machine parameters for hydraulic 

 bulge forming of tubular components, , J. Mater. Process. Technol., 64:9-23  

Ahmed M., Hashmi M.S.J (1998), Finite-element analysis of bulge forming applying 

 pressure and in-plane compressive load 3, J. Mater. Proces. Technol. 77 (1-3) 

 95-102. 

Ahmed M., Hashmi M.S.J (1999), Three-dimensional finite element simulation of 

 bulge  forming, in: Proceedings of the Intl. Conf. on Adv. in Mater. and 

 Process. Technol., AMPT'99 & IMC 16, Vol. 1, Dublin, pp.153-161. 

Ahmed M., Hashmi M.S.J (1999), Finite element simulation of manufacturing metal 

 bellows from tubes, in: Proceedings of the Advances in Materials & Processing 

 Technologies 1998, Vol. 11, Kuala Lumpur, pp. 982-989. 

Al-Qureshi HA, Moriera Filho LA (2001), Junction Forming in Aluminum Tubes 

 Using an Elastomer Technique. Mater. Manuf. Processes 16:717–724. 

An H., Green D. E., Johrendt J. (2009), A global optimization of load path design for

 tube hydroforming applications using MOGA, IDDRG conference, June, 

 Golden, CO, USA, pp307-318. 

Andries P. Engelbrecht (2007), Computational intelligence: An introduction, Second 

 Edition, John Wiley & Sons Ltd., England, ISBN 978-0-470-03561-0. 

Arrieux R., Bedrin C. and Boivin M. (1982), Determination of an intrinsic forming 

 limit stress diagram for isotropic metal sheets, Proceedings of the 12th Biennial 

 Congress of the IDDRG, Ste Margherita Ligure, pp. 61–71. 

Asnafi N. (1999), Analytical modelling of tube hydroforming, Thin-Walled Structures 

 34: 295–330 



 171

Asnafi N. and Skogsgardh A. (2000),  Theoretical and experimental analysis of stroke 

 controlled tube hydroforming, Materials Science and Engineering, 279:95–110 

Aue-U-Lan Y., Ngaile G., Altan T. (2004), Optimizing tube hydroforming using 

 process simulation and experimental verification, J. Mater. Process. Technol., 

 146:137–143. 

Aydemir A., et al. (2005), An adaptive simulation approach designed for tube 

 hydroforming  processes, J. Mater. Process. Technol., 159:303–310 

Barata D.R.A., Barlat F., Jalinier J.M. (1985), Prediction of the forming limit diagrams 

 of anisotropic sheets in linear and non-linear loading. Mat. Sci. Eng. 68:151-

 164 

Bardelcik A., Worswick M.J. (2005a), Numerical investigation into the effects of 

 bending boost and hydroforming end-feed on the hydroformability of DP600 

 tube, 2005-01- 0094, Proceedings of SAE Conference 

Bardelcik A., Worswick M.J. (2005b), The effect of element formulation on the 

 prediction of boost in numerical tube bending, Proceedings of Numisheet 2005, 

 pp. 775-780. 

Bardelcik A., et al. (2005 c), Tube Bending and Hydroforming of DP600, IF and 

 AKDQ Steel Tube. AUTO21 Group Meeting, March  21.  

Bardelcik A. (2006), Effect of pre-bending and hydroforming parameters on the 

 formability of advanced high strength steel tubes, Master Thesis, University of 

 Waterloo. 

Bieling P., Untersuchungen zum aufweitstauchen von rohren zu hohlwellen, 

 Dissertation, Universität-Gesamthochschule Paderborn, 1992. 

Bonte MHA , van den Boogaard AH, Huétink J (2008), An optimisation strategy for 

 industrial metal forming processes, Modelling, screening and solving of 

 optimisation problems in metal forming. Struct Multidisc Optim 35:571–586 

Butuc, C. et al. (2002), A more general model for FLD prediction. J. Materials Proc. 

 Techn. 125-126:213-218 

Butuc, C., Gracio, J.J., Barata da Rocha A. (2003), A theoretical study on forming 

 limit diagrams prediction. J. Material Proc. Techn., 142:714–724 

Butuc MC, Gracio JJ, Barata D.R.A (2006), An experimental and theoretical analysis  

 on the application of stress-based forming limit criterion. Int. J. Mech. Sci. 

 48:414-429 



 172

Braeutigam and Butsch (1992) Hydroformen - als Ausweg aus der Investitionsklemme, 

 in VDI Berichte Nr 94, Duesseldorf, VDI 

Cao, J. et al. (2000), Prediction of localized thinning in sheet metal using a general 

 anisotropic yield criterion. Int. J. Plasticity, 16:1105-1129 

Cramer E J, et al. (2006), Multi-objective optimization for complex engineering 

 simulation and its application to nozzle design. 11th AIAA/ISSMO 

 Multidisciplinary Analysis and Optimization Conference 3:1937-1943 

Chu, E., Xu, Y. (2004a), Hydroforming of aluminum extrusion tubes for automotive 

 applications. Part I. Buckling, wrinkling and bursting analyses of aluminum 

 tubes. Int. J. Mech. Sci. 46, 263–283. 

Chu E., Xu Y. (2004b), Hydroforming of aluminum extrusion tubes for automotive 

 applications. Part II: process window diagram, Int. J. Mech. Sci., 46: 285–297 

Das I, Dennis JE (1998), Normal-Boundary Intersection: A New Method for 

 Generating the Pareto Surface in Nonlinear Multicriteria Optimization 

 Problems. SIAM J. on Optimization  8(3):631-657 

Deb K, Pratap A, Agarwal S, et al. (2002), A fast and elitist multiobjective genetic 

 algorithm: NSGA-II, IEEE Trans. on Evolutionary Comput., 6(2):182-197. 

Deb K. (2008),  Introduction to evolutionary multiobjective optimization, Chapter 3 in 

 Multiobjective optimization interactive and evolutionary approaches, Branke J., 

 et al. (Eds.), ISBN-103-540-88907-8, Springer NewYork 

Dyment J., Worswick M.J., Normani F., Oliveira D., Khodayari G. (2003), Effect of 

 endfeed on strains and thickness during bending and on the subsequent 

 hydroformability of steel tubes, SAE Paper No. 2003-01-2837 

Dyment J. (2004), The Effect of Bending Process on the Hydroformability of Steel 

 Tubes,  MASc. Thesis, University of Waterloo. 

Dwyer N., et al. (2003), Pre-bending and subsequent hydroforming of tube: simulation 

 and experiment, Proceedings of IBEC2003, Japan, October  

Dohmann F., Klass F. (1987), Liquid bulge forming of tubular workpieces, Strips, 

 Sheets and Tubes 4(1):7-10. 

Dohmann F. and Hartl C. (1994) , Liquid bulge forming as a flexible production 

 method, J. Mater. Proces. Technol. 45:377-382.  

Dohmann F., Hartl Ch. (1997), Tube hydroforming – research and practical 

 applications, J. Mater. Process. Technol., 71:174-186 



 173

Dohmann F. and Hartl C. (1996), Hydroforming -a method to manufacture light 

 weight parts, J. Mater. Proces. Technol. 60: 669-676.  

Eschenauer H, Koski J, Osyczka AE (1990), Multicriteria design optimization: 

 procedures and applications. Berlin, Heidelberg, NY: Springer Corporation  

Favuzza S, Ippolito M G, Sanseverino E R (2006), Crowded comparison operators for 

 constraints handling in NSGA-II for optimal design  of the compensation 

 system in electrical distribution networks, Adv. Engrg. Info., 20: 201-211 

Engelbrecht A.P. (2007), Computational intelligence: An introduction, Second Edition, 

 John Wiley & Sons Ltd., England, ISBN 978-0-470-03561-0. 

Fann KJ, Hsiao PY (2003), Optimization of loading conditions for tube hydroforming. 

 J. Mater. Process. Technol., 140:520–524 

Gao L., Motsch S., Strano M. (2002), Classification and analysis of tube hydroforming 

 processes with respect to adaptive FEM simulations, J. Mater. Process. 

 Technol., 129:261- 267 

Goovaaerts P (1997), Geostatistics for Natural Resources Evolution. New York, NY: 

 Oxford University Press. 

Goel T., et al. (2007),Response surface approximation of Pareto optimal front in multi-

 objective optimization, Compt. Methods Appl. Mech. Engrg. 196:879-893 

Guan Y.B., Pourboghrat F. (2008), Fourier series based finite element analysis of tube 

 hydroforming-Generalized plane strain model, J. Mater. Process. Technol., 

 197:379-392 

Guan Y.B., Pourboghrat F, Yu W.R. (2006), Fourier series based finite element 

 analysis of tube hydroforming: An axisymmetric model, Engineering 

 Computations, v 23, n 7: 697-728 

Goodwin G.M. (1968), Application of strain analysis to sheet metal forming in the 

 press shop. SAE paper No. 680093. 

Gholipour J. et al. (2004), Severity of the bend and its effect on the subsequent 

 hydroforming  process for aluminum alloy tube,AIP conference proceedings, n 

 712, pt.1, p 1089-94, NUMIFORM 2004. 

Graf A. F. and Hosford W. F. (1993a), Calculations of forming limit diagrams for 

 changing strain path, Metallurgical Transactions A, 24, 2497–2501.  

Graf A. F. and Hosford W. F. (1993b), Effect of changing strain paths on forming limit 

 diagram of Al 2008-T4, Metallurgical Transactions A, 24, 2503–2512. 



 174

Graf A. F. and Hosford W. F. (1994), The influence of strain-path changes on forming 

 limit diagram of Al 6111-T4, International Journal of Mechanical Sciences, 10, 

 897–910. 

Green DE and Stoughton TB (2004), Evaluating hydroforming severity using stress–

 based forming limit diagrams, Proceedings of the 2nd Annual North American 

 Hydroforming Conference, sponsored by SME/TPA, Waterloo, ON,Canada. 

Green D.E., Black K.C. (2002), A Visual Technique to Determine the Forming Limit 

 of Sheet Materials, SAE paper 2002-01-1062. 

Green DE (2008), Formability Analysis for Tubular Hydroformed Parts, in: 

 Hydroforming for advanced manufacturing (Chapter 5), Woodhead Publishing 

 Ltd., Cambridge, England, ed. M. Koç, ISBN 978-1-84569-328-2 

Ghosh A.K., Laukonis J.V. (1976), The influence of strain-path changes on the 

 formability of  sheet steel, 9th Biennial Congress of the IDDRG, Sheet Metal 

 Forming and Energy Conservation, ASM Publication 

Hallquist J.O. (2007), LS-DYNA. Keyword User's Manual", Ver. 971. LSTC  

Hashmi M.S.J. (1981), Radial thickness distribution around a hydraulically bulge 

 formed annealed copper T-joint: Experimental and Theoretical Predictions, 

 22nd Int. MTDR Conf. Proc.. 

Hashmi M.S.J. (1983), Forming of tubular components from straight tubing using 

 combined axial load and internal pressure: Theory and Experiment, Proc. Int. 

 Conf. on Dev. on Drawing of Metals, Metals Society. 

Hashmi M.S.J., Crampton R. (1985), Hydraulic bulge forming of axisymmetric and 

 asymmetric components: Comparison of Experimental Results and Theoretical 

 Predictions, Int. MTDR Conf. Proc.. 

Hill, R. (1952), On discontinuous plastic states, with special reference to localized 

 necking in thin sheets. J. Mech. Phys. Solids 1, 19. 

Huang H.M., Pan J. and Tang S.C. (2000), Failure prediction in anisotropic sheet 

 metals under forming operations with considderation of rotating principal 

 stretch directions. Int. J. Plasticity 16:611 

Hughes E J (2005), Evolutionary Many-Objective Optimisation: Many Once or One 

 Many? In: 2005 IEEE Congress on Evolutionary Computation (CEC’2005), 

 vol. 1, pp. 222–227. IEEE Computer Society Press, Los Alamitos  

Hussain M.F., Burton R.R., Joshi S.B.(2002), Metamodeling: radial basis functions, 

 versus  polynomials,  Europe J Oper Res  138:142–154 



 175

Hutchinson, J.W., Neale, K.W. (1978a), Sheet necking—II: time-independent behavior.  

 In: Koistinen, D.P., Wang, N.M. (Eds.), Mechanism of Sheet Metal Forming. 

 Plenum Press,  New York, p. 127. 

Hutchinson, J.W., Neale, K.W. (1978b), Sheet necking—III: strain-rate effects. In: 

 Koistinen, D.P., Wang, N.M. (Eds.), Mechanism of Sheet Metal Forming. 

 Plenum Press, New York, p. 269. 

Hwang Y.M., Lin Y.-K. (2002), Analysis and finite element simulation of the tube 

 bulge hydroforming process,J. Mater. Process. Technol., 125–126: 821–825 

Hosford W.F., Caddell R. (2007), Metal forming: Mechanics and metallurgy, third 

 edition, Cambridge University press 

Imaninejad M, Subhash G, Loukus A (2005),  Load Path Optimization of Tube 

 Hydroforming Process. Int. J. Mach. Tools Manuf. 45:1504–1514. 

Ingarao G. et al. (2009), Internal pressure and counterpunch action design in Y-shaped 

 tube hydroforming processes: A multi-objective optimisation approach, 

 Computers and Structures 87:591–602. 

Jirathearanat S., Hartl Ch., Altan T. (2004), Hydroforming of Y shapes – product and 

 process design using FEA simulation and experiments, J. Mater. Process. 

 Technol., 146:124-129 

Keeler S.P., Backhofen W.A. (1963), Plastic instability and fracture in sheet stretched 

 over rigid punches. ASM Trans. Quart. 56, 25–48. 

Keeler S. P. and Brazier w. G. (1977), Relationship between laboratory material 

 characterization and press shop formability, Proceedings of Microalloy 75, 

 Union  Carbide, New York, pp. 447–452. 

Kim, S. T. and Kim Y.S. (2002), Analytical study for tube hydroforming, J. Mater. 

 Process. Technol.,  128:232-239 

Konak A, Coit D W, Smith A E (2006), Multi-objective optimization using genetic 

 algorithms: A tutorial, Reliability Engineering and system safety, 91: 992-1007 

Koç M, Allen T, Jiratheranat S, Altan T (2000), The use of FEA and design of 

 experiments to establish design guidelines for simple hydroformed parts. Intl. J. 

 Machine Tools & Manufacture, 40:2249–2266 

Koç M, Altan T (2002), Prediction of forming limits and parameters in the tube 

 hydroforming  process. Intl. J. Machine Tools & Manufacture, 42:123–138 



 176

Koç M. (2004), Advances in tube hydroforming – an enabling technology for low-

 mass vehicle manufacturing – material, lubrication, loading, simulation issues 

 and alternatives, Tsinghua Science and technology, 9(5):527-545 

Koç M. (2003), Investigation of the effect of loading path and variation in material 

 properties on robustness of the tube hydroforming process, J. Mater. Process. 

 Technol., 133:276-281 

Koç M. (1999), Development of guidelines for tube hydroforming, doctoral 

 dissertation, Columbus OH 

Kulkarni A. (2006), Adaptive Sampling based Sampling Strategies for the DACE 

 Surrogate Model for Expensive Black-box functions, AE 497 B.Tech. Project, 

 Dept. of Aerospace Engrg., Indian Institute of Technology, Bombay, April  

Lee H., Van Tyne C.J., Field D. (2005), Finite element bending analysis of oval tubes 

 using rotary draw bender for hydroforming applications. J. Mater. Process. 

 Technol., 168:327–335 

Lee K-H and Kang D-H (2007), Structural optimization of an automotive door using 

 the kriging interpolation method.Proc. IMechE Vol. 221 Part D: J. Automobile 

 Engineering, DOI: 10.1243/09544070JAUTO, 403:1525-1534. 

Lei L.P., et al (2001), Analysis and design of hydroforming processes by the rigid-

 plastic finite element method, J. Mater. Process. Technol., 114:201–206 

Limb M.E., Chakrabarty J. and Garber, S. (1973), the Forming of Axisymmetric and 

 Asymmetric Components from Tube,  Proc. Int. M.T.D.R. Conf., pp799-805. 

Li B., Nye T.J., Metzger D. R. (2006), Multi-objective optimization of forming 

 parameters for tube hydroforming process based on the Taguchi method. Int J 

 Adv Manuf Technol, 28: 23–30 

Li B, Nye TJ, Metzger DR (2007), Improving the reliability of the tube-hydroforming 

 process by the Taguchi method. Transactions of the ASME 129:242-247 

Loh-Mousavi M., et al. (2008), Improvement of formability in T-shape hydroforming 

 of tubes by pulsating pressure, Proc. IMechE Vol. 222 Part B: J. Engineering 

 Manufacture, DOI: 10.1243/09544054JEM1143, pp1139-1146 

Lophaven S. N., Nielsen H.B., Søndergaard J. (2002), DACE—a Matlab Kriging 

 toolbox,Version 2.0, Technical Report IMM-REP-2002-12, Informatics and 

 Mathematical Modelling, Technical University of Denmark 

Lorenzo R. D., et al. ( 2004a), An integrated approach to the design of tube 

 hydroforming  processes: artificial intelligence, numerical analysis and 



 177

 experimental investigation, Materials processing and design: Modeling, 

 Simulation and Applications (NUMIFORM 2004), AIP Conference 

 Proceedings, Vol. 712, pp. 1118-1123.  

Lorenzo R. D., et al. ( 2004b), Optimal design of tube hydroforming processes: a 

 fuzzy-logic-based approach,Proc. Instn Mech. Engrs Vol. 218 Part B: J. Engrg. 

 Manuf., p599-606 

Lorenzo R. D., Ingarao G., Micari F. (2006), Sensitivity analysis based preform die 

 shape design for net-shape forging, IDDRG 2006 Conference: Drawing the 

 things to come-Trends and advances in sheet metal forming, June 19-21, Porto, 

 Portugal, 371-378.  

Mac Donald B.J., Hashmi M.S.J. (2000), Finite element simulation of bulge forming 

 of a cross-joint from a tubular blank, J. Mater. Process. Technol., 103: 333-342 

Mathworks (2008), Matlab Model-Based Calibration Toolbox™ 3-CAGE User’s 

 Guide.  

Manabe K., Miyamoto S., Koyama H. (2002), Application of Database- Assisted 

 Fuzzy Adaptive Process Control System to Tube Hydroforming Process, 

 Intelligence in a Materials World (Selected Papers from IPMM2001), CRC 

 Press, pp. 537–543. 

Manabe K.,et al. (2006), Hydroforming process optimization of aluminum alloy tube 

 using intelligent control technique, International Journal of Machine Tools & 

 Manufacture 46:1207–1211. 

Manabe K., et al. (1984), Bulge forming of thin walled tubes by Micro-computer 

 controlled hydraulic press, Advanced technology of plasticity, 1:279-284. 

Manabe K., Amino M. (2002), Effects of process parameters and material properties 

 on deformation process in tube hydroforming, J. Mater. Process. Technol., 

 123 :285–291 

Marciniak Z., Kuczynski K. (1967), Limit strains in the processes of stretch-forming 

 sheet metal. Int. J. Mech. Sci. 9, 609. 

McKay M. D., Bechman R. J., and Conover W. J. (1979), A Comparison of Three 

 Methods for Selecting Values of Input Variables in the Analysis of Output 

 from a Computer Code, Technometrics, 21(2):239–245. 

Mehnen J, Michelitsch T, Lasarczyk C, et al. (2007), Multi-objective evolutionary 

 design of mold temperature control using DACE for parameter optimization, 

 Intl. J. Applied Electromagnetics and Mechanics, 25:661–667 



 178

Mentella A., Strano M., Gemignani R. (2008), A new method for feasibility study and 

 determination of the loading curves in the rotary draw-bending process, Int. J. 

 Mater. Forming, Vol.1, Suppl.1, DOI: 10.1007/s12289-008-0017-0, P165-168 

Miyamoto S., Koyama H. and Manabe K. (2001), Fuzzy adaptive control system for 

 tube hydroforming process, The proceedings of the 52nd Japanese Joint 

 conference for the technology of plasticity, pp.6. 

Montgomery C. (1997), Design and Analysis of experiments, 4th ed. Wiley, NY. 

Mori K., et al. (2007), Mechanism of improvement of formability in pulsating 

 hydroforming of tubes, J. Machine Tools & Manufacture 47 978–984 

Murata M., et al. (1989), The hydraulic  tube bulging of a tube attached lining rubber 

 membrane with axial compressive force, JSME Int. J. Series III, 32. 

Myers R H, Montgomery D C (1995), Response Surface Methodology – Process and 

 Product Optimization Using Designed Experiment, Wiley-Interscience. 

Myers R. and Montgomery D. (2002), Response surface methodology: process and 

 product optimization using designed experiments", 2nd edn. Wiley, New York  

Nakazima K, Kikuma T., Hasuka K. (1971), Study on the formability of steel sheets. 

 Yawata Tech. Rep. No. 284: 678-680 

Oliveira D.A., Worswick M.J., Grantab R. (2005), Effect of lubricant in mandrel-

 rotary draw tube bending of steel and aluminum, Canadian Metallurgical 

 Quart., 44(1), pp.71-78 

Palumbo G., et al. (2004), Analysis Of Hydro Formed Complex Shape Parts Using A 

 Ductile Fracture Criterion, AIP Conference Proceedings, June  

Panos Seferlis, Michael C. Georgiadis (Editors) (2004), The Integration of Process 

 Design and Control, Published by Elsevier, ISBN 0444515577, 

 9780444515575. 

Park K.S., Kim B.J., Moon Y.H. (2005), Optimization of tube hydroforming process 

 by using fuzzy expert system, The fifth pacific rim intl. conference on adv. 

 mater. and process., pts 1-5 materials sci. forum, 475-479: 3283-3286, Part 1-5 

Peñuelas I., et al. (2009), Inverse determination of the elastoplastic and damage 

 parameters on small punch tests. Fatigue Fract Engrg Mater Struct 32: 872–885. 

Ponthot J.P. and Kleinermann J.P. (2006),  A cascade optimization methodology for   

             automatic parameter identification and shape/process optimization in metal  

 forming simulation. Comput. Methods Appl. Mech. Engrg. 195:5472–5508.  



 179

Rafiq M.Y., Bugmann G., Easterbrook D.J. (2001), Neural network design for 

 engineering applications, Comput Struct 21(17): 1541–1552 

Ray P. and Mac Donald B.J. (2004) , Determination of the optimal load path for tube 

 hydroforming processes using a fuzzy load control algorithm and finite element 

 analysis, Finite Elements in Analysis and Design 41:173–192 

Rimkus W., Bauer H., Mihsein M.J.A. (2000), Design of load-curves for 

 hydroforming  applications, J. Mater. Process. Technol., 108: 97-105 

Reid JV (2002) Twist compression evaluation of hydroforming lubricants. Private 

 contract report submitted to DA Stuart Inc. by the Industrial Research & 

 Development  Institute (IRDI), Midland, ON, Canada 

Rigoni E (2004) NBI-NLPQLP Scheduler, Technical Report 2004-003. 

 http://www.kxcad.net/ESTECO/modeFRONTIER320/html/userman/files/ 

 Schedulers/ NBI_NLPQLP.pdf 

Ross PJ (1988), Taguchi Techniques for Quality Engineering: Loss Function, 

 Orthogonal Experiment, Parameter and Tolerance Design. McGraw-Hill, 

 pp.120–123. 

Roy S., Ghosh S., and Shivpuri R. (1997), A new approach to optimal design of multi-

 stage metal forming processes with micro genetic algorithms, Int. J. Mach. 

 Tools Manuf. Vol. 37, No. 1, pp. 29-44 

Sacks J., et al. (1989), Design and Analysis of Computer experiments, Statistical 

 Science, vol. 4, no. 4:409-435, 

Seshadri A (2006), Multi-objective optimization using evolutionary algorithms 

 (MOEA), Matlab website: http://www.mathworks.com/matlabcentral/file 

 exchange/10429, by 19 Mar  (Updated 27 Jan 2009), accessed on Mar. 8, 2009 

Simha C.H.M., et al. (2007), Prediction of Necking in Tubular Hydroforming Using an 

 Extended Stress-Based Forming Limit Curve. Transactions of the ASME, Vol. 

 129:36-47 

Simpson T.W., et al. (1998), Comparison of Response Surface and Kriging Models for 

 Multidisciplinary Design Optimization, Paper No. AIAA-98-4755,7th 

 AIAA/USAF/NASA/ ISSMO Symposium on Multidisciplinary Analysis and 

 Optimization, St. Louis, MO, September 2-4, 1998.  

Simpson T.W., et al. (2001), Kriging Models for Global Approximation in Simulation-

 Based  Multidisciplinary Design Optimization, AIAA JOURNAL, Vol. 39, No. 

 12, December, p2233-2241 



 180

Singh H. (2003), Fundamentals of hydroforming, the society of Manufacturing 

 Engineers,  p128. 

Sorine M. (2007), Formability of advanced high strength steel tubes in tube bending 

 and hydroforming, MASc. Thesis, University of Waterloo. 

Stander N., et al. (2007), LS-OPT user's manual V3.2, Livermore Software Techn. Co. 

Stander N., Roux W., Goel T., et al. (2009), LS-OPT® user’s manual, April, LSTC 

Storen, S., Rice, J.R. (1975), Localized necking in thin sheets. J. Mech. Phys. Solids 

 23, 421. 

Stoughton TB. Stress-based forming limits in sheet-metal forming. J Eng Mater 

 Technol 2001;123:417–22. 

Stoughton T.B. (2000), A general forming limit criterion for sheet metal forming. Int. J. 

 Mech. Sci. 42:1–27, Transactions on Evolutionary Computation, 6(2): 182-197. 

Stoughton TB (2001). Stress-based forming limits in sheet-metal forming. J Eng Mater 

 Technol. 123:417–22. 

Stoughton TB, Yoon JW (2005), Sheet metal formability analysis for anisotropic 

 materials under non-proportional loading. International Journal of Mechanical 

 Sciences 47:1972-2002. 

Stoughton T. B., Zhu Xinhai (2004), Review of theoretical models of the strain-based 

 FLD and their relevance to the stress-based FLD, International Journal of 

 Plasticity 20: 1463–1486 

Strano M. (2006), Optimization under uncertainty of sheet-metalforming processes by 

 the finite element method, Proc. IMechE Vol. 220 Part B: J. Engineering 

 Manufacture. 1305-1315 

Strano M., Jirathearant S. and Altan T. (2001), Adaptive FEM simulation for tube 

 hydroforming: a geometry-based approach for winkle detection, Annals of the 

 CIRP,  Vol. 50, pp.185-190. 

Strano M., Jirathearanat S., Shr S., Altan T. (2004), Virtual process development in 

 tube hydroforming, J. Mater. Process. Technol., 146:130-136 

Taguchi G (1981) System of Experimental Design. UNIPUB/ Kraus Intl. Publication 

Thiruvarudchelvan S. and Lua A.C. (1991), Bulge forming of tubes with axial 

 compressive force proportional to the hydraulic pressure, Mat. Shaping Tech.9. 

Tjotta, S. (1992). Formability and the growth of damage. Wood, R.D., Zienkiewicz, 

 O.C. (Eds), Numerical Methods in Industrial Forming Processes, Balkema, 

 ISBN 9054100877, 187. 



 181

Trana K. (2002), Finite element simulation of the tube hydroforming process – 

 bending, performing and hydroforming, Mater. Process. Technol.,127: 401-408 

Todoroki A., Ishikawa T. (2004), Design of experiments for stacking sequence 

 optimizations with genetic algorithm using response surface approximation, 

 Composite Structures, 64:349–357 

Wang J and Yin Z (2008), C-NSGA-II-MOPSO: An effective multi-objective 

 optimizer for engineering design problems, Chapter 4 in Book: Global design 

 to gain a competitive edge,519-528, Springer London. DOI: 10.1007/978-1-

 84800-239-5 

Wu H.Z. (2003), Adaptive simulation for Tee-shape tube hydroforming processes, 

 [Master thesis], National Sun Yat-Sen University, Kaohsiung, Taiwan,China 

Xia Z.C. (2001), Failure analysis of tubular hydroforming, J. of Engineering Materials 

 and Technology, 123, pp. 423-429 

Yang J., Jeon B., Oh S. (2001), The tube bending technology of a hydroforming 

 process for an automotive part, J. Mater. Process. Technol., 111:175-181 

Yang JB, Jeon BH, Oh SI (2001), Design sensitivity analysis and optimization of the 

 hydroforming process. J. Mater. Process. Technol. 113:666–672. 

Yao, H., Cao, J. (2002),  Prediction of forming limit curves using an anisotropic yield 

 function with prestrain induced backstress. Int. J. Plasticity 18, 1013–1038. 

Yoon J. W. , Chung K., Pourboghrat F. (2006), Design optimization of extruded 

 preform for hydroforming processes based on ideal forming design theory, 

 Intl. J. Mechanical Sciences 48: 1416–1428 

Yuan S, Wang X, Liu G, Wang ZR (2007), Control and use of wrinkles in tube 

 hydroforming. J. Mater. Process. Technol., 182:6–11. 

Zhang S. (1999), Developments in hydroforming, J. Mater. Process. Tech., 91:236-244 

Zhao L., Sowerby R. and Sklad M. P. (1996), A theoretical and experimental 

 investigation of limit strains in sheet metal forming. Int. J. Mech. Sci. 38, 

 1307-1317 

Zitzler Eckart and Thiele Lothar (1999), Multiobjective Evolutionary Algorithms: A 

 Comparative Case Study and the Strength Pareto Approach, IEEE transactions 

 on evolutionary computation, Vol. 3, No. 4:257 

http://www.thomasnet.com/articles/custom-manufacturing-fabricating/hydroforming-

 auto-industry, accessed on Jan 10, 2010 

http://nsmwww.eng.ohio-state.edu/Advances_in_Hydro.swf, accessed on Jan 6,2010 



 
 

182

Appendix A:  Two examples of the evolution with sorting by CV operation in 
constrained NSGA-IIa (the last two columns are the violation values and their ranks, 
respectively) 
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Appendix B: The normalized dataset of DOE with LHS: input of 6 and output of 5 
(Chapter 5) 
 
0.66395 0.59625 0.35247 0.25549 0.60740 0.42283 0.45407 0.53078 0.20609 0.59925 0.41807 

0.39064 0.42063 0.39298 0.57850 0.40203 0.44094 0.41827 0.62498 0.20313 0.64742 0.37713 

0.39895 0.72036 0.38903 0.77600 0.48577 0.22547 0.71321 0.61993 0.61687 0.52444 0.57489 

0.28397 0.76351 0.23605 0.65226 0.45083 0.69883 0.71519 0.45714 0.63472 0.55677 0.57457 

0.52433 0.39931 0.60002 0.59071 0.20531 0.20922 0.38473 0.61646 0.20034 0.72238 0.36363 

0.62584 0.30544 0.29082 0.68363 0.56553 0.39556 0.43693 0.45046 0.20111 0.63901 0.37573 

0.57901 0.68652 0.49538 0.62240 0.52030 0.47564 0.66567 0.55544 0.39998 0.58069 0.56276 

0.50394 0.56204 0.43107 0.47833 0.28702 0.39082 0.43315 0.59366 0.20671 0.70312 0.40669 

0.53743 0.32628 0.26677 0.21162 0.34411 0.75425 0.43202 0.53717 0.20012 0.68987 0.35614 

0.68743 0.27146 0.70497 0.31048 0.73305 0.73997 0.46354 0.47004 0.20020 0.57632 0.35895 

0.32683 0.52431 0.65962 0.53412 0.71270 0.52891 0.68389 0.54220 0.41210 0.52752 0.56588 

0.60587 0.38635 0.56777 0.54142 0.55930 0.29372 0.43450 0.42551 0.20134 0.62365 0.37271 

0.35500 0.63241 0.74057 0.28807 0.77840 0.58456 0.56347 0.54719 0.47681 0.51015 0.53945 

0.65334 0.66296 0.77835 0.67185 0.25131 0.62097 0.50181 0.46178 0.22349 0.75434 0.47876 

0.30633 0.23587 0.55025 0.73312 0.22779 0.49425 0.40960 0.62518 0.20149 0.71862 0.38473 

0.42139 0.61111 0.48135 0.78598 0.63366 0.34996 0.48393 0.53721 0.25005 0.56579 0.45675 

0.26067 0.36573 0.33088 0.36438 0.31638 0.33611 0.40308 0.60589 0.20199 0.67662 0.36956 

0.72832 0.21611 0.77326 0.40962 0.32172 0.65063 0.41832 0.59635 0.20000 0.68868 0.34233 

0.79419 0.45949 0.45108 0.37681 0.76116 0.30487 0.45158 0.48005 0.22081 0.54635 0.39283 

0.20279 0.55409 0.51233 0.49326 0.61689 0.54006 0.64678 0.53587 0.41479 0.55154 0.55429 

0.22416 0.48863 0.64871 0.72450 0.43918 0.67229 0.57243 0.54259 0.30503 0.61999 0.52351 

0.44036 0.29247 0.61537 0.44543 0.68771 0.26618 0.45501 0.38753 0.21440 0.58435 0.41899 

0.71885 0.47232 0.69553 0.24189 0.49524 0.79693 0.43330 0.48825 0.20211 0.66894 0.38050 

0.47729 0.73171 0.20702 0.43350 0.66138 0.70723 0.79568 0.48806 0.63247 0.49795 0.56899 

0.75502 0.78288 0.31310 0.33737 0.37928 0.58291 0.61400 0.47423 0.43183 0.64093 0.54628 

0.36355 0.25580 0.51471 0.56408 0.55925 0.30778 0.46075 0.39746 0.20682 0.62789 0.42110 

0.55818 0.43948 0.20588 0.52672 0.76444 0.56423 0.51645 0.48651 0.26275 0.49143 0.47873 

0.40558 0.69274 0.27556 0.68635 0.69217 0.28118 0.68735 0.57773 0.53273 0.51291 0.56733 

0.21341 0.56935 0.22032 0.41861 0.57207 0.77565 0.76398 0.46111 0.57473 0.51075 0.56410 

0.79928 0.49291 0.76215 0.59290 0.67260 0.41751 0.44461 0.52709 0.20137 0.57941 0.37003 

0.73746 0.33176 0.62878 0.61137 0.39443 0.52786 0.42233 0.64710 0.20011 0.65731 0.35499 

0.56434 0.37310 0.50605 0.32509 0.72350 0.29444 0.43633 0.39345 0.21037 0.57548 0.39677 

0.51245 0.44497 0.66110 0.62335 0.70876 0.70672 0.54445 0.63237 0.26139 0.50910 0.47000 

0.45492 0.51742 0.32246 0.41202 0.38631 0.68357 0.44255 0.51544 0.20745 0.68594 0.39405 

0.51983 0.53714 0.35836 0.35534 0.45193 0.57812 0.42522 0.56123 0.20405 0.64567 0.37943 

0.60787 0.24051 0.57810 0.62323 0.62860 0.77464 0.44171 0.52477 0.20030 0.61065 0.36178 

0.75128 0.22095 0.21987 0.73507 0.57130 0.24190 0.43838 0.39385 0.20005 0.62924 0.35054 

0.60196 0.50203 0.60499 0.25363 0.44585 0.38927 0.43161 0.58461 0.20100 0.63957 0.36351 

0.47808 0.75664 0.44642 0.79895 0.23227 0.60363 0.52638 0.45650 0.29322 0.74515 0.50096 

0.37983 0.31485 0.22167 0.79641 0.28017 0.54002 0.40837 0.65178 0.20068 0.69070 0.37155 

0.78300 0.63837 0.76424 0.31972 0.53127 0.58411 0.46702 0.49264 0.21968 0.63250 0.41718 

0.36480 0.48691 0.79037 0.73534 0.63575 0.21157 0.68671 0.48249 0.41475 0.54100 0.56737 

0.65479 0.39782 0.35561 0.73060 0.37303 0.42513 0.40749 0.64450 0.20031 0.66631 0.36249 

0.71759 0.44731 0.25303 0.62912 0.47643 0.67378 0.44020 0.58497 0.20043 0.63617 0.36601 

0.26221 0.38390 0.53287 0.62078 0.36799 0.63560 0.42323 0.59507 0.20478 0.66009 0.38846 

0.38172 0.39535 0.40324 0.33360 0.31520 0.23346 0.40172 0.58730 0.20120 0.68036 0.36539 

0.27474 0.79932 0.40868 0.40528 0.20682 0.31653 0.66116 0.49542 0.62302 0.62307 0.56069 

0.63552 0.73757 0.69646 0.63627 0.79513 0.51069 0.67807 0.54952 0.45178 0.51888 0.56704 

0.45920 0.30529 0.76411 0.28409 0.79432 0.78357 0.48101 0.48834 0.20179 0.56317 0.37240 

0.74276 0.36324 0.39169 0.27277 0.78482 0.63701 0.45211 0.59927 0.20738 0.54552 0.37666 
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APPENDIX C: CODE FOR OPTIMIZATION OF THF IN SQUARE-SHAPED 
DIE USING LS-DYNA 
 

LS-DYNA file 
 
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
$ LS-DYNA(970) DECK WRITTEN BY : eta/FEMB-PC versio n 28.0 
$   PROJECT : Prebent tube hydroforming by Kevin An  
$     UNITS : MM,  KG,  SEC,  N 
$      TIME : 12:50:25 AM 
$      DATE : Monday, April 20, 2009 
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
*KEYWORD 
*PARAMETER 
rpa,14,rpb,35,rpc,60,rpd,90 
rpe,125,rfend,25 
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
*TITLE 
PREBENT TuBE HYDROFORMING (t=1.85) 
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
$                                                                     
$                                 CONTROL CARD                                 
$ 
$                                                                     
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
*CONTROL_TERMINATION 
$   ENDTIM    ENDCYC     DTMIN    ENDENG    ENDMAS 
   0.00500         0       0.0       0.0       0.0 
*CONTROL_TIMESTEP 
$   DTINIT    TSSFAC      ISDO    TSLIMT     DT2MS      LCTM      
       0.0      0.60         0                                                   
$   DT2MSF   DT2MSLC 
*CONTROL_CONTACT 
$   SLSFAC    RWPNAL    ISLCHK    SHLTHK    PENOPT    THKCHG      
      0.10                             2         4         1                       
$   USRSTR    USRFRC     NSBCS    INTERM     XPENE     SSTHK       
         0         0        10         0       4.0                               
$    SFRIC     DFRIC       EDC       VFC        TH     TH_SF     
       0.0       0.0       0.0       0.0       0.0       0.0        
$   IGNORE    FRCENG   SKIPRWG    OUTSEG   SPOTSTP   SPOTDEL 
         0         0         0         0         0         0 
*CONTROL_SHELL 
$   WRPANG     ESORT     IRNXX    ISTUPD    THEORY       BWC      
        20         0        -1         1         2         2          
*CONTROL_ENERGY 
$     HGEN      RWEN    SLNTEN     RYLEN 
         2         2         2         2 
*CONTROL_HOURGLASS 
$      IHQ        QH 
         1      0.10 
$*HOURGLASS 
$     HGID       IHQ        QM       IBQ        Q1        Q2     
$         1         6       1.0                                                   
*CONTROL_OUTPUT 
$    NPOPT    NEECHO    NREFUP    IACCOP     OPIFS    IPNINT     
         1         3         0         0       0.0         0        
$    IPRTF 
         0 
*DATABASE_NODOUT 
$       dt   binary 
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     0.001        2 
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
$                          SPRINGBACK DYNAIN FILE                               
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
*INTERFACE_SPRINGBACK_LSDYNA 
$     psid 
         1 
$      nid     tcode     rcode 
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
$                          DATABASE CONTROL FOR ASC II                           
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
*DATABASE_GLSTAT 
$       DT    BINARY 
   0.00020           
*DATABASE_RCFORC 
$       DT    BINARY 
   0.00020           
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
$                         DATABASE CONTROL FOR BINA RY                           
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
*DATABASE_BINARY_D3PLOT 
$  DT/CYCL      LCDT      BEAM     NPLTC 
   0.00020                               
$    IOOPT 
         0 
*DATABASE_BINARY_D3THDT 
$  DT/CYCL      LCDT 
       0.0           
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
$                            DATABASE EXTENT CARDS                              
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
*DATABASE_EXTENT_BINARY 
$^ 
$    NEIPH     NEIPS    MAXINT    STRFLG    SIGFLG    EPSFLG    
RLTFLG    ENGFLG 
         0         0         7         1         1         1         
1         1 
$   CMPFLG    IEVERP    BEAMIP     DCOMP      SHGE     STSSZ     
         0         0         0         0         0         0           
$  NINTSLD 
         1 
*DATABASE_HISTORY_NODE 
$      id1       id2       id3       id4       id5       id6       
id7       id8 
      2992      2790      2614      1613      1331      1161      
2298      2290 
$      id1       id2       id3       id4       id5       id6       
id7       id8 
       957 
.................... 
... 
.................... 
*LOAD_SHELL_SET 
$^LOADED AT SHELL SET 1        
$     ESID      LCID        SF        AT 
         1         1   -1.0000       0.0 
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
$                               LOAD CURVE CARDS                                
$---+----1----+----2----+----3----+----4----+----5- ---+----6----+---- 
*DEFINE_CURVE_TITLE 
LCur_2 



 
 

186

$     LCID      SIDR       SFA       SFO      OFFA      OFFO    
DATTYP 
         2                 1.0       1.0       0.0       0.0         
0 
$                           A1        O1 
                 0.0                 0.0 
             0.00001                 1.0 
               0.050                 1.0 
$ 
$ LOAD CURVES  
$ 
*DEFINE_CURVE 
4,0,0.000E+00,0.000E+00,0.000E+00,0.000E+00,0 
0.0000000000000E+00,0.0000000000000E+00 
5.0000000000000E-03,&fend 
6.0000000000000E-03,&fend 
$ 
*DEFINE_CURVE 
1,0,1.000E+00,1.000E+03,0.000E+00,0.000E+00,0 
0.0000000000000E+00,0.0000000000000E+00 
1.0000000000000E-04,4.0000000000000E+00 
2.0000000000000E-04,&pa 
1.0000000000000E-03,&pb 
2.5000000000000E-03,&pc 
3.5000000000000E-03,&pd 
5.0000000000000E-03,&pe 
$ 
*DEFINE_CURVE 
$ FLD curve 
90 
$ 
-0.57,1.9552 
-0.5,1.5415 
-0.4,1.1179 
-0.3,0.8154 
-0.2,0.5884 
-0.1,0.4119 
0,0.2707 
0.1,0.331 
0.2,0.3818 
0.3,0.4168 
0.4,0.434 
0.42,0.4354 
0.43,0.4358  
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APPENDIX D: CODE FOR OPTIMIZATION OF THF IN SQUARE-SHAPED 
DIE USING LS-OPT3.4 
 
"Square Tube Hydroforming" 
Author "An" 
$ Created on Fri Jul 03 13:16:27 2009 
$ NO HISTORIES ARE DEFINED 
$ 
$ DESIGN VARIABLES 
variables 6 
 Variable 'pa' 14 
  Lower bound variable 'pa' 10 
  Upper bound variable 'pa' 19 
 Variable 'pb' 25 
  Lower bound variable 'pb' 19 
  Upper bound variable 'pb' 28 
 Variable 'pc' 28 
  Lower bound variable 'pc' 26 
  Upper bound variable 'pc' 28 
 Variable 'fend' 10 
  Lower bound variable 'fend' 10 
  Upper bound variable 'fend' 14 
 Variable 'pd' 30 
  Lower bound variable 'pd' 30 
  Upper bound variable 'pd' 35 
 Variable 'pe' 60 
  Lower bound variable 'pe' 40 
  Upper bound variable 'pe' 85 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
Optimization Method SRSM 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "1" 
$ DEFINITION OF SOLVER "1" 
  solver command "C:\temp\LS_OPT\test5\ls971_single .exe" 
  solver input file "C:\temp\LS_OPT\test5\sqhydro1. dyn" 
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Post-processor -------- 
$   NO POSTPROCESSOR SPECIFIED 
$ ------ Metamodeling --------- 
  solver order RBF 
  solver experiment design space_filling 
   solver number experiments 12 
   solver update doe 
$ ------ Job information ------ 
  solver concurrent jobs 1 
$ 
$ RESPONSES FOR SOLVER "1" 
$ 
 response 'THICK2' 1 0 "DynaThick REDUCTION 1 MAX" 
 response 'NODOUT_X1' 1 0 "BinoutResponse -res_type  Nodout  -cmp 
x_coordinate -id 1855 -select TIME " 
 response 'NODOUT_Y1' 1 0 "BinoutResponse -res_type  Nodout  -cmp 
y_coordinate -id 1855 -select TIME " 
 response 'NODOUT_Z1' 1 0 "BinoutResponse -res_type  Nodout  -cmp 
z_coordinate -id 1855 -select TIME " 
 response 'NODOUT_X2' 1 0 "BinoutResponse -res_type  Nodout  -cmp 
x_coordinate -id 1967 -select TIME " 
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 response 'NODOUT_Y2' 1 0 "BinoutResponse -res_type  Nodout  -cmp 
y_coordinate -id 1967 -select TIME " 
 response 'NODOUT_Z2' 1 0 "BinoutResponse -res_type  Nodout  -cmp 
z_coordinate -id 1967 -select TIME " 
 response 'NODOUT_X3' 1 0 "BinoutResponse -res_type  Nodout  -cmp 
x_coordinate -id 1743 -select TIME " 
 response 'NODOUT_Y3' 1 0 "BinoutResponse -res_type  Nodout  -cmp 
y_coordinate -id 1743 -select TIME " 
 response 'NODOUT_Z3' 1 0 "BinoutResponse -res_type  Nodout  -cmp 
z_coordinate -id 1743 -select TIME " 
 response 'FLD2' 1 0 "DynaFLDg LOWER 1 90" 
$ 
$ COMPOSITE EXPRESSIONS   $ 
composite 'CE1' {(NODOUT_X2-NODOUT_X1)**2+(NODOUT_Y 2-
NODOUT_Y1)**2+(NODOUT_Z2-NODOUT_Z1)**2} 
 composite 'CE2' {(NODOUT_X3-NODOUT_X2)**2+(NODOUT_ Y3-
NODOUT_Y2)**2+(NODOUT_Z3-NODOUT_Z2)**2} 
 composite 'CE3' {(NODOUT_X3-NODOUT_X1)**2+(NODOUT_ Y3-
NODOUT_Y1)**2+(NODOUT_Z3-NODOUT_Z1)**2} 
 composite 'CE4' {(NODOUT_Y2-NODOUT_Y1)*(NODOUT_Z3- NODOUT_Z2)-
(NODOUT_Z2-NODOUT_Z1)*(NODOUT_Y3-NODOUT_Y2)} 
 composite 'CE5' {(NODOUT_Z2-NODOUT_Z1)*(NODOUT_X3- NODOUT_X2)-
(NODOUT_X2-NODOUT_X1)*(NODOUT_Z3-NODOUT_Z2)} 
 composite 'CE6' {(NODOUT_X2-NODOUT_X1)*(NODOUT_Y3- NODOUT_Y2)-
(NODOUT_Y2-NODOUT_Y1)*(NODOUT_X3-NODOUT_X2)} 
 composite 'CE7' {CE4**2+CE5**2+CE6**2} 
 composite 'CE8' {0.5*sqrt(CE1)*sqrt(CE2)*sqrt(CE3) /sqrt(CE7)} 
$ 
$ OBJECTIVE FUNCTIONS  $ 
objectives 1 
 objective 'CE8' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 3 
 constraint 'THICK2' 
  lower bound constraint 'THICK2' 0 
  upper bound constraint 'THICK2' 35 
 constraint 'FLD2' 
  strict 
  upper bound constraint 'FLD2' 0 
 constraint 'CE8' 
  slack 
  lower bound constraint 'CE8' 5 
  upper bound constraint 'CE8' 12 
$ 
$ PARAMETERS FOR METAMODEL OPTIMIZATION 
$ 
 Metamodel Optimization Strategy SEQUENTIAL 
$ 
  iterate param design 0.01 
  iterate param objective 0.01 
  iterate param stoppingtype and 
$ 
$ OPTIMIZATION ALGORITHM 
$ 
 Optimization Algorithm simulated annealing 
$ 
$ JOB INFO  $ 
 iterate 3 
STOP 
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APPENDIX E: Conversion between corner radius and corner fill expansion (CFE) 
 
1. Calculate the corner radius through 3 points to get Rin and Rout (Assumption: the 
curve is tangent to die at the contact points) 
 
2. Calculate the distance d1 and d2 

R
R

RNBABa
2

22
2

−=−=−=  

Rad )12(21 −==  

')12(22 ' Rad −==  

inin Rad )12(22 ' −==  

outout Rad )12(22 ' −==   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.G1 Calculation of the distance measurement by LVDT 
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So, for R'=Rin and R'=Rout, the displacement δmeasured by LVDT is d1-d2. 
Therefore, the equations of LVDT movement and corner fill expansion ratio (CFE%) 
for intrados and extrados are: 
 

inin dd 21−=δ  

( ) 1/21CFE% ddd inin −=  

 
and, 
 

outout dd 21−=δ  

( ) 1/21CFE% ddd outout −=  

 
 
Example (using Excel):  
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