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Abstract 

 

This study examined the behaviour of dual phase steel tubes from three different strength 

grades undergoing rotary draw bending and pressure sequence hydroforming. It was found that 

the level of strain experienced by the tubes was independent of the steel grade. It was also 

shown that the same microstructural features that affect strength and elongation in uniaxial 

tensile testing affected dual phase steel tubes undergoing tube bending. 

 

Seven commercial dual phase steels from three different suppliers were compared. It was found 

that the strength of the steels was mainly dependent on martensite volume fraction, while 

elongation was influenced by the level of martensite banding. 

 

Nano indentation techniques were developed to facilitate the measurement of hardness of 

individual phases within dual phase steel. Three steels from different strength grades were 

tested. It was found that the hardness of the martensite phase followed the trend predicted by 

the calculated martensite carbon content. 
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Chapter 1: 

Introduction  

 

Dual phase steels were first investigated in 1963 by Williams and Davies [1], however they 

gained little attention until the oil crisis of the 1970’s. It was during this time that automotive 

manufacturers focused their efforts on developing lighter vehicles in a bid to increase fuel 

economy. This interest faded in the following decades; however, more recently the trend 

towards light weight vehicles has re-emerged. In order to achieve weight savings, it is essential 

to reduce the overall mass of individual components within a vehicle. A large percentage of this 

weight is attributable to the body and structural components [2]. These components are 

typically constructed from flat sheet material; therefore by utilizing materials that possess 

higher strength, the thickness of these components can be reduced while still retaining their 

overall strength and integrity. 

 

Dual phase steels have unique properties which make them ideally suited for use in automotive 

applications. Their excellent combination of strength and elongation, as seen in Figure 1.1, 

means that for a given strength level, they are able to be formed into more complex shapes 

than mild steel or high strength low alloy alternatives [3]. Dual phase steels exhibit low 

yield/tensile strength ratios combined with high rates of work hardening [4,5]. This allows them 

to be more easily formed while still providing final as-formed parts with significant strength. 

They also display continuous yielding behaviour, i.e. no indication of yield point elongation, 

giving them better forming characteristics [5,6].  
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Figure 1.1: Comparison of total elongation and tensile strength for several types of steel [3] 

 

Compared to other alternative non-ferrous materials such as aluminum and magnesium, dual 

phase steels offer several cost benefits for manufacturers. Their production is very similar to 

conventional steel, meaning that they require relatively low amounts of energy to produce [7]. 

They are also able to be recycled alongside other ferrous materials, giving them the ability to be 

handled by existing recycling facilities using standard sorting techniques. With regards to use on 

the production line, dual phase steels are able to be formed and joined using traditional 

methods [8]. This provides manufacturers significant cost savings as the costs of retooling 

factories are kept to a minimum. Due to these factors, it is expected that the use of dual phase 

steels in the automotive industry will continue to rise. It is therefore important that research 

and investigation of these steels continues, with efforts focusing on both improving the steels 

and refining the methods used to form them. 

 

1.1 Objectives of Research 

Vari-Form, a Tier 1 supplier of automotive structural components, currently utilizes several 

grades of dual phase steel in their production components. This steel is supplied by the 

producer to a tubing mill which roll forms, welds, and cuts it into straight tube lengths for 

utilization by Vari-Form’s production line. Upon receipt of the tubing, it is subjected to a series 

of bending and hydroforming operations to produce completed components which are shipped 

to the automaker. As components become more complex in design, the demands placed on the 

strength and formability of dual phase steels is pushed to the limit. Previously, Vari-Form’s 
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metallurgical knowledge of the steels they utilized was limited to what was provided to them by 

the steel maker. While they performed some mechanical testing of their own, their knowledge 

of what was happening to the material on a microstructural level during forming operations was 

lacking. Through partnership with the University of Windsor, their desire was to develop a 

greater understanding of material behaviour during their specific forming operations.  

 

Vari-Form sources steel for their production from a number of suppliers. Traditionally, dual 

phase steel sourced from a steel producer is shipped with specifications of the material’s 

minimum strength and elongation. There is no single standard to which all dual phase steels 

conform, and therefore each producer has their own specific “recipe” to produce a steel of a 

given strength grade. Steel of the same grade from different suppliers may vary in composition, 

microstructure, and behaviour at a microstructural level during forming. These differences can 

lead to variations in forming performance, and also cause certain steels to be less forgiving 

during the forming process. These differences become particularly important in a production 

scale environment, where an increase in scrap can cause time and financial losses. It is therefore 

desirable to take a detailed look at dual phase steels from several suppliers and compare them 

to determine whether differences exist, and how those differences might affect the steel 

performance based on what is known from literature. 

 

The objectives of this research can be summarized as follows:   

 

1. Observe and characterize both macro and microstructural performance of dual phase steel 

tubes undergoing Vari-Form’s rotary draw mandrel bending and pressure sequence 

hydroforming processes.  

 

2. Identify material differences that may affect deformation behaviour during tube bending, and 

make recommendations on what Vari-Form should look for when selecting a dual phase steel.  
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3. Characterize and compare several commercially available dual phase steels of similar grades 

from different suppliers with the intention of making recommendations as to which supplier’s 

steel would be best for Vari-Form.  
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Chapter 2: 

Literature Review 

 

The following literature review is separated into three main sections. The first section addresses 

the important microstructural, physical and mechanical aspects of dual phase steels. A detailed 

overview of their production is provided, along with information related to their forming 

behaviour. The second section describes several manufacturing processes commonly used to 

fabricate tubular dual phase steel components. Finally, a brief summary of nano indentation 

hardness testing is presented. 

 

2.1  Dual Phase Steels 

Dual phase steels are low carbon steels that posses a microstructure consisting of a combination 

of ferrite and martensite. These phases are arranged such that the hard martensite is present in 

islands located at the grain boundaries within a soft ferrite matrix [1]. The islands can be 

separated, such as those seen in Figure 2.1, or connected to form a continuous martensite 

network.  

 

 

Figure 2.1: Diagram of dual phase steel microstructure [3] 

 

The result of this composite microstructure is steel which possesses both high strength and 

good elongation. A comparison of tensile curves for three low carbon steels can be seen in 
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Figure 2.2. It is readily apparent that the dual phase steel possesses significantly higher strength 

than the conventional ferrite/pearlite low carbon steel, while still retaining good elongation. 

When compared to the high strength low alloy steel, the dual phase steel possesses better 

elongations at the same tensile strength, with continuous yielding behaviour.  

 

 

Figure 2.2: Comparison of tensile curves for different low carbon steels [9] 

 

2.1.1 Production 

Typical dual phase steels have carbon contents in the range of 0.05 to 0.2 weight percent. The 

region of the iron-carbon phase diagram which is of primary interest to dual phase steel 

production can be seen in Figure 2.3. The dual phase microstructure can be obtained from steel 

consisting of solely iron and carbon; however, it is more common for steels to contain additional 

alloying elements to assist in their production and improve their mechanical properties [10]. 

Such elements include manganese and silicon. 
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Figure 2.3: Iron-carbon phase diagram showing area of interest for typical dual phase steels 

 

The dual phase steel microstructure can be created using two methods, namely sequential 

quenching and intercritical annealing [11]. The distinction between the two lies in the direction 

by which the α+γ phase field is reached. In sequential quenching, the α+γ field is reached by 

cooling the sample, while in intercritical annealing the α+γ field is reached by heating the 

sample. Graphical representations of the heat treatment paths for sequential quenching and 

intercritical annealing can be found in Figures 2.4 and 2.6, respectively. 

 

In sequential quenching, the steel is first heated into the γ region to obtain a completely 

austenitic structure. This austenizing is often accompanied by hot rolling to reduce the thickness 

of the steel. After sufficient thickness reduction has been achieved, the steel is cooled to a 

temperature below the Ar3, but above the Ar1 placing it in the α+γ region. It is then held for a 

period of time. Ferrite grains begin to nucleate at the prior austenite grain boundaries and start 

to grow into the austenite grains. It is important that the temperature of the steel at this stage 

be uniform across its width. It is possible for the centre of the strip to remain fully austenitic, 

while the edges enter the α+γ region [12]. This can produce a heterogeneous microstructure 
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that varies across the width of the steel sheet. After sufficient holding time the steel can be 

quenched to transform the austenite into martensite. The final dual phase microstructure 

produced from sequential quenching typically consists of large blocky shaped martensite islands 

surrounded by a coarse ferrite matrix [11]. This distinct martensite morphology can be observed 

in Figure 2.5. The substructure of the martensite can vary from lath to plate structures. It is 

dictated by the carbon content of the austenite present in the intercritical region; however, the 

percentage of carbon at which the transformation from lath to plate occurs can be influenced by 

the presence of other alloying elements [13]. 

 

Due to the limitations of the hot rolling process and the difficulty in obtaining consistent sheet 

thickness in the sub-millimetre range, hot rolled dual phase steels are typically used in 

applications requiring thicker material such as wheels, bumpers and suspension components. 

 

 

Figure 2.4: Heat treatment path for sequential quenching 
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Figure 2.5: Microstructure of a sequentially quenched dual phase steel [11] 

 

In order to obtain thin sheet commonly used in auto body components, dual phase steel is cold 

rolled followed by intercritical annealing heat treatment. In this method, the steel is supplied by 

the mill in the form of ferrite/pearlite sheet which can easily be cold rolled [14]. After rolling to 

the desired thickness, the steel is heated above the Ac1 temperature, but below the Ac3 

temperature placing it in the α+γ phase region.  Three main stages occur during intercritical 

annealing [15,16]. In the first stage, the dissolution of pearlite begins to occur at ferrite/carbide 

interfaces [11], forming austenite with eutectoid composition. This process is controlled 

primarily by carbon diffusion in austenite and occurs nearly instantaneously given that the 

diffusion distance is on the order of the pearlite interlamellar spacing. In the second stage, 

austenite begins to grow along grain boundaries and into the ferrite to achieve final equilibrium 

at the annealing temperature. This stage is controlled by both carbon and substitutional alloying 

element diffusion. In the last stage, there is final equilibration within the austenite. The 

concentration gradients of the substitutional elements are eliminated by their diffusion through 

the austenite grains. However, this is an extremely slow process given the slow diffusion rates of 

alloying elements in austenite, and does not fully progress during conventional intercritical 

annealing time scales [17]. 
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Figure 2.6: Heat treatment path for intercritical annealing 

 

 

Figure 2.7: Microstructure of an intercritically annealed dual phase steel [11] 

 

Austenite transformation following intercritical annealing is different from that after 

austenization in sequential quenching in two ways [17]. First, a nucleation step is not required to 

form new ferrite during cooling since the old ferrite present during annealing can grow 

epitaxially into the austenite. Secondly, under short intercritical annealing times, carbon but not 

substitutional alloying elements segregate and determine phase proportions and compositions. 

 

In the intercritical annealing process, parameters such as temperature, holding time, and 

cooling rate control the volume fraction and composition of the constituents in the final 

microstructure. An example of a dual phase microstructure produced by intercritical annealing 

can be observed in Figure 2.7. Annealing temperature and soaking time in the intercritical region 
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controls the volume fraction of austenite, which is transformed to martensite upon quenching 

[18]. A higher intercritical annealing temperature will result in the formation of more austenite, 

while the carbon content of the austenite will be reduced. The fraction of austenite that 

transforms to martensite is a function of cooling rate and is affected by the carbon and alloying 

element content of the austenite and by the fineness of the dispersion of austenite particles 

[19]. A fine dual phase structure produces more martensite than a coarse microstructure after 

annealing at low temperatures and cooling at slow rates. This increased martensite fraction is a 

result of higher carbon enrichment in fine structures as compared to coarse ones [11]. The 

amount of interstitial carbon in ferrite of a dual phase steel depends on the intercritical 

annealing temperature and cooling rate. The solubility of carbon decreases with increasing 

intercritical annealing temperature [20]. At fast cooling rates, high levels of interstitial carbon 

may be trapped within the ferrite, reducing its ductility at room temperature [20]. 

 

2.1.2 Effects of Common Alloying Elements 

The addition of alloying elements is very common in dual phase steels and is generally done to 

facilitate their production. The most common of these elements are manganese and silicon, due 

to their abundance and low cost. 

 

When added to steel, manganese acts as an austenite stabilizer and can reduce the activity of 

carbon within the austenite phase [21]. These aspects retard the transformation kinetics 

allowing martensite to be formed at slower cooling rates. The diffusivity of manganese is 

substantially slower in austenite than in ferrite. With short holding times during intercritical 

annealing, the outer edges of austenite particles can become enriched in manganese. This 

increases local hardenability which, depending on cooling rate, may lead to the edges of the 

austenite particles transforming to martensite while the interior transforms to a ferrite/carbide 

aggregate [15]. The manganese enriched zone can be seen around the edges of the martensite 

particle in Figure 2.8. 
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Figure 2.8: Manganese enriched zone within a martensite particle [15] 

 

The composition of the austenite during intercritical annealing is also affected by the silicon 

content of the steel. The presence of silicon promotes carbon migration from the ferrite into the 

austenite, adding to the carbon content of the austenite [22]. Silicon also retards cementite 

formation during cooling which can suppress the formation of pearlite. 

 

To allow for slower cooling rates after annealing while still giving the ability to form martensite, 

alloying elements such as molybdenum and chromium can be added to the steel [9]. While 

these elements reduce the critical cooling rate required to form martensite, they also increase 

the stability of the iron carbide in the initial sheet, requiring longer hold times in the intercritical 

region to dissolve it [18]. 

 

Dual phase steels can also benefit from precipitation hardening within the ferrite phase. 

Elements such as vanadium and titanium can be added to form fine dispersions of carbonitride 

precipitates. These precipitates provide a strengthening component within the ferrite and 

contribute to the hardenability of the steel. At typical intercritical annealing temperatures, the 

precipitates do not dissolve. As the steel is cooled, they inhibit the movement of the 

ferrite/austenite interfaces which results in a greater likelihood of martensite formation [9]. 
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2.1.3 Banding 

Microstructural banding in low alloy steel is caused by the segregation of substitutional alloying 

elements during dendritic solidification upon casting [23]. The addition of elements such as 

manganese, chromium, and molybdenum causes solidification to occur over a range of 

temperatures and compositions. This results in the dendrite cores solidifying as relatively pure 

metal, while alloying elements are rejected into the interdendritic spaces which become 

enriched in solute. These high and low solute regions are then elongated into parallel bands 

during rolling operations [24]. Differences in austenite transformation behaviours between the 

bands can lead to the formation of laminated microstructures upon subsequent heat treatment. 

This can be observed graphically from the CCT diagrams seen in Figure 2.9. Bands can transform 

into discrete layers of martensite, bainite, ferrite, and pearlite in the final cooled microstructure 

[25]. 

 

Manganese is the alloying element most responsible for the development of microstructural 

banding in low alloy steels [26]. During cooling, carbon migrates from low to high manganese 

regions. This redistribution of carbon is due to the effect of substitutional alloying elements on 

the temperature at which austenite begins to transform to ferrite (the Ar1 temperature). During 

cooling, ferrite forms in bands with a high Ar3 temperature and rejects carbon into the austenite 

of adjacent low Ar3 temperature bands. This results in the formation of carbon rich and carbon 

depleted layers which directly impact the resulting microstructure during cooling. 
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Figure 2.9: CCT diagrams for 5140 steel with (a) 0.82 wt% Mn and (b) 1.83 wt% Mn [26] 

  

Regarding dual phase steels, hot rolled dual phase steels do not generally exhibit banding [27]. 

The presence of martensite banding in intercritically annealed dual phase steels is a direct result 

of inherited microstructure from the original ferrite/pearlite sheet. Although alloying element 

concentration gradients play a role, cooling rate, austenite grain size, and austenizing 

temperature also influence the severity of microstructural banding [26]. These parameters are 

controlled during the creation of the hot rolled ferrite/pearlite sheet, and thus cannot be altered 

during the intercritical annealing process. Permanent elimination of microstructural banding can 

only be achieved by high temperature homogenization treatments to remove the underlying 

compositional gradients. Such treatments are not practical on an intercritical annealing line, and 

therefore any elimination of banding in dual phase steels must come during the casting and hot 

rolling stages. 

 

2.1.4 Structure-Property Relationships 

The most important parameter dictating the mechanical properties of dual phase steels is 

martensite volume fraction [28]. Micrographs for three dual phase steels with varying 

martensite volume fractions can be seen in Figure 2.10. For a given martensite particle size, 

increasing the martensite volume fraction increases the tensile strength and work hardening 

rate, while decreasing the total elongation [9]. Yield strength is also affected by martensite 
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volume fraction; however, as the volume fraction is increased yield strength first decreases 

before starting to increase. This can be observed in Figure 2.11, and is thought to be associated 

with the gradual removal of yield point elongation at low martensite volume fractions [10]. 

 

   

Figure 2.10: Steels with martensite volume fractions of (a) 14%, (b) 21%, and (c) 34% 

 

 

Figure 2.11: Strength vs. martensite volume fraction for two dual phase steels [28] 

 

At a constant volume fraction of martensite, decreasing the mean particle size produces no 

effect on the tensile strength, but increases the work hardening rate and the maximum uniform 

elongation [29]. A reduction in ferrite grain size gives significant strengthening at small strains, 

but an increasing proportion of this strength arises from work hardening [9]. At low strains, the 

strain hardening rate increases with decreasing grain size, while at high strains the strain 

(a) (b) (c) 
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hardening rate becomes nearly independent of grain size [30]. The optimum combination of 

strength and formability is obtained by a microstructure with a very fine distribution of 

martensite in a ferrite matrix with very small grain size [9]. 

 

The strengths of the individual phases within a dual phase steel play a role in the strength of the 

overall material. The strength of the ferrite phase is controlled mainly by steel chemistry and 

initial dislocation density upon cooling [31]. The addition of precipitate forming elements such 

as vanadium and titanium increase the strength of the ferrite [22]. The strength of martensite is 

determined by its structure (lath or plate) and by its carbon content [31]. The carbon content of 

martensite is determined by the intercritical annealing temperature. As the intercritical 

annealing temperature is decreased, the carbon content of the martensite increases [20]. Both 

the yield strength and tensile strength depend on martensite carbon content [32]. This can be 

seen in Figure 2.12. Increasing the martensite carbon content increases the yield and tensile 

strength of the steel [33]. A smaller volume of high carbon martensite produces the same 

strength steel as a larger volume of martensite of lower carbon content, however elongations 

may differ [22]. 

 

 

Figure 2.12: Comparison of strength for different martensite carbon contents [34] 
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2.1.5 Continuous Yielding Behaviour 

The absence of yield point elongation in dual phase steel is attributable to the numerous free 

mobile dislocations, seen in Figure 2.13, introduced into the microstructure during the 

formation of martensite [5]. Upon quenching, there is a volume expansion of 2-3% which 

accompanies the martensitic transformation [35]. This introduces large numbers of dislocations 

in the vicinity of martensite particles.  At low strains, these dislocations are able to move freely 

and yielding can start in several regions at the same time rather than in one localized region. 

This behaviour initiates a general yield process catastrophically. Additionally, localized regions 

are prevented from yielding due to the high back stresses the martensite islands exert on glide 

bands within the ferrite [9]. 

 

  

Figure 2.13: High dislocation density near martensite particles [35] 

 

2.1.6 Work Hardening Behaviour 

Unlike most conventional steels, the stress/strain behaviour of dual phase steel cannot be 

approximated by a simple parabolic function over the entire strain range [35]. In order to better 

understand the work hardening behaviour of the material, it is useful to perform a Jaoul-

Crussard analysis [36]. This analysis consists of plotting the logarithm of the strain hardening 

rate as a function of the logarithm of true plastic strain. The resulting curve can then be 

analyzed for changes in slope to give indications of changes in work hardening behaviour. Jaoul-

Crussard plots for several dual phase steels can be found in Figure 2.14. Based on this analysis, it 

is found that the work hardening of dual phase steels consists of three distinct phases [37,38]. 

Stage one results from the homogeneous deformation of the ferrite matrix produced by the 



 

18 

glide of mobile dislocations present near the martensite particles. Stage two, unique to dual 

phase steels, covers a period of diminished work hardening associated with constrained ferrite 

deformation in the presence of rigid martensite. In stage three, dislocation cell formation takes 

place after which further ferrite deformation takes place by cross slip and dynamic recovery 

processes. During this stage, it is also possible for the hard martensite phase to experience some 

degree of plasticity. 

 

 

Figure 2.14: Jaoul-Crussard plot of several dual phase steels [14] 

 

2.1.7 Deformation and Fracture 

The composite deformation and fracture behaviour of dual phase steel can be ductile or brittle 

depending on the strength and level of damage development between the two phases [39]. At 

low martensite volume fractions, deformation and fracture is ductile and occurs by void 

nucleation, growth, and coalescence [40]. Void nucleation in dual phase steel has been 

associated primarily with martensite particles [40,41]. At low strains martensite particles begin 

to crack and separate, nucleating voids. This is followed by decohesion of ferrite/martensite 

interfaces as the strain is increased [40]. These mechanisms can be observed in Figure 2.15. The 

decohesion of the two phases is due to their widely different stress/strain characteristics, which 

results in their incompatibility [42]. The number of voids increases as the strain is increased and 

the size of these voids depends directly on the size of the martensite particles [43].  
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Figure 2.15: (a) Martensite separation and (b) ferrite/martensite decohesion [44] 

 

When void growth is considered, the majority of voids formed at the ferrite/martensite 

interfaces grow along the ferrite boundaries parallel to the applied load. Voids formed under 

uniaxial stress tend to elongate in the tensile direction without coalescing, while voids formed 

under triaxial stress tend to grow in the transverse direction, eventually coalescing and causing 

failure [42].  

 

At high martensite volume fractions, the fracture mode shifts toward brittle failure. The 

morphology of microvoids changes from decohesion at the ferrite/martensite interfaces to 

microcracks and fracture. Microcracks form at right angles to the tensile axis and experience 

minimal plastic deformation. There is no fixed martensite volume fraction at which brittle 

fracture occurs, and it is possible to see mixed mode fracture in steels with intermediate 

martensite volume fractions [45]. 

 

2.2 Manufacturing Processes 

Thin-walled closed section tubular components are very desirable in automotive applications 

due to their strength and inherent stiffness [46]. In order to fabricate these components, it is 

common to start with tubes of a circular cross section. The following sections review the 

fundamentals of the manufacturing processes used to create dual phase steel tubes, and form 

them into finished components. 

 

(a) (b) 
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2.2.1 Roll Form Tube Making 

To obtain a tubular structure, it is possible to subject flat steel sheet to a number of roll forming 

operations to form it into a round tube. In this continuous process, illustrated in Figure 2.16, the 

steel strip is guided through a series of roll forming stands, which deform the steel until it takes 

on the desired cross section. Once formed, the seam joining the two ends is welded either by 

high frequency resistance or laser welding techniques. The enclosed cross section then 

undergoes a sizing operation to obtain the required final dimensions, and is then cut into 

sections of a desired length.  

 

 

Figure 2.16: Layout of a tube rolling mill 

 

The quality of incoming roll formed tubes is a major concern for bending and hydroforming 

operations [47,48]. Variations in tube material properties such as yield stress, flow stress, and 

hardness can lead to thinning or splitting during subsequent forming processes. It is known that 

the strain distribution around a roll formed tube is not uniform, and that for a given material 

and sheet thickness this non-uniformity is controlled by the roll forming sequence [49]. An 

illustration of this non-uniformity can be seen in Figure 2.17. This non-uniform strain causes 

non-uniform behaviours in strain hardening, flow stress, and elongation, which can significantly 

affect subsequent forming performance. It is of particular concern in dual phase steels where 

the high initial strain hardening rate exacerbates these non-uniformities [48]. Dual phase steel 

tubes produced for bending and hydroforming operations must be roll formed utilizing a 

sequence designed to minimize non-uniform strains around the tube circumference.  
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Figure 2.17: Effective strain of steel sheet after roll forming [49] 

 

2.2.2 Rotary Draw Mandrel Tube Bending 

The manufacture of complex tubular components produced using hydroforming often requires 

pre-forming operations before hydroforming can take place [50,51]. The most common of these 

pre-forming operations is tube bending, in which a straight length of tube is bent in one or more 

locations to get its rough shape close enough to the final shape so that it can be placed in the 

hydroforming die. Although several techniques can be used to bend tubing, the most popular 

and cost effective for bending thin walled tube is rotary draw mandrel bending. This process, 

seen in Figure 2.18, allows thin walled tube to be bent quickly and accurately without the 

undesirable side effects of tubing collapse or wrinkling [52]. 
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Figure 2.18: Example of a steel tube which has undergone rotary draw mandrel bending 

 

The rotary draw mandrel bending process utilizes a specialized bender which incorporates a 

series of dies and a mandrel [53]. A schematic of this equipment can be seen in Figure 2.19. A 

straight length of tube is placed over the mandrel and positioned against the clamp die. The 

clamp die is hydraulically forced against the tube to securely hold it in place. The bend die then 

begins to rotate, drawing the tube around it. While this is occurring, the pressure die opposes 

the outward force of the tube allowing it to be formed around the bend die. To prevent tubing 

collapse during forming, the mandrel remains inside the tube to give it support. As the tube is 

pulled around the bend die, it slides over the mandrel. This sliding motion can generate large 

frictional forces, and proper internal lubrication of the tube is required to avoid tube failure [54]. 

 

 

Figure 2.19: Schematic of a rotary draw mandrel bender [53] 
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In tube bending, the severity of the bend can be quantified using a number known as the bend 

ratio. The bend ratio, seen in Equation 2.1, is defined as the ratio between the centreline radius 

of the bend and the outside diameter of the tube being bent. It is considered the most 

important factor in determining the amount of deformation the tube will experience [55]. 

 

           
                      

                     
    (2.1) 

 

A decrease in bend ratio causes an increase in the tensile axial strain on the extrados of the 

bend and an increase in the compressive axial strain on the intrados of the bend [56]. As the 

bend ratio is decreased, the severity of the bend increases and the strains become greater. 

These strains result in a thinning of the tube on the extrados and a thickening of the tube on the 

intrados. If the thinning on the extrados becomes too great, the tube may fracture. To evaluate 

the strain in the tube extrados, a plane strain assumption may be used to give a rough 

approximation of the axial and thickness strains [52]. The axial strain can be calculated using 

Equation 2.2. 

 

            
  

   
      (2.2) 

 

where OD is the outer tube diameter and Ro is the centreline radius of the bend. Once the axial 

strain is calculated, the thickness strain can be approximated by Equation 2.3. 

 

                       (2.3) 

 

Bending influences the properties of the tube and consequently its formability in subsequent 

hydroforming operations [51,57]. While strains experienced in hydroforming are mainly 

circumferential, tube bending strains are predominately axial. This sets up complex strain states 

within the tube, making predictions about the behaviour of the tube difficult [51]. Since plastic 

deformation in the cross section of the tube is not uniform after bending, the hydroformability 

is restricted by the thinned material around the extrados of the bend. This thinning can be 
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reduced by utilizing push assist during bending. If properly equipped, the bender can apply an 

axial force on the tube assisting its motion into the bend die. Tubes that are bent utilizing push 

assist will have more uniform wall thicknesses compared to tubes that are bent without it [57]. 

When utilizing materials such as high strength steels, which have limited formability, the use of 

push assist can be of great benefit to help reduce thickness variations in the final hydroformed 

part. 

 

2.2.3 Pressure Sequence Hydroforming 

Hydroforming is a specialized forming process in which a high pressure fluid is used to form 

material within a die at room temperature. Most commonly in the automotive industry, this 

process is used to form tubular components with complex cross sections [58,59]. An example of 

an upper fender rail produced for a sport utility vehicle can be seen in Figure 2.20. Traditionally, 

these components were fabricated using multi-piece stampings that were welded together to 

produce a closed section. The development of hydroforming allowed this welding step to be 

eliminated and provided the possibility of forming more complex shapes [59]. 

 

 

Figure 2.20: Example of an upper fender rail produced by hydroforming 

 

In the conventional hydroforming process, seen in Figure 2.21, a high pressure fluid is pumped 

into a tube to raise its internal pressure. Once the hoop stress of the cross section exceeds the 

yield strength of the material, the forming begins and the tube expands to fill the surrounding 
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die [60]. Due to high internal pressures, when the tube begins to contact the walls of the die, 

significant frictional forces are generated. These forces oppose further sliding movement of the 

tube, and as a result, these areas stretch less while areas such as the corners which do not 

contact the die experience additional stretching [60]. It causes uneven wall thickness in the 

finished part and can lead to excessive material thinning in the corners, which may cause tube 

failure before the die is completely filled.  

 

 

Figure 2.21: Illustration of the high pressure hydroforming process [61] 

 

To avoid problems with excessive corner thinning, Vari-Form developed a patented 

hydroforming process referred to as pressure sequence hydroforming [62]. This process, seen in 

Figure 2.22, differs from traditional hydroforming in that it utilizes much lower fluid pressures. 

Instead of the tube expanding to fill a closed die, the die is initially open and is slowly closed 

around the tube with internal fluid pressures serving only to prevent collapse and pinching of 

the wall. Pressure sequence hydroforming forms the part by forcing the tube material to flow 

into the corners of the die without stretching or expansion [60,61]. The circumference of the 

initial tube is the same as the periphery of the die, meaning that the tube’s cross section is only 

re-shaped, not expanded. The material’s yield limit is exceeded in a bending mode to form the 

corner radii as opposed to a tensile mode in the conventional process. Additionally, since the 

tube forming is controlled by the closing die, the tendency for pinching at the die split line, 

common to high pressure hydroforming, is completely eliminated [61]. After completion of the 

die closing stage, internal pressures within the tube can be increased to flatten out the sides of 

the cross section and provide support for hole punching operations. Because the corners are 

formed by the closing of the press, the internal pressures required to completely form the cross 
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section are not governed by the pressures required to form the corners [60]. This allows 

complex cross sections to be formed with tight corner radii and without the risk of splitting the 

tube. 

 

 

Figure 2.22: Illustration of the pressure sequence hydroforming process [61] 

 

The pressure sequence hydroforming process is very useful in the forming of high strength 

materials such as dual phase steels, due mainly to the fact that average wall thickness after 

hydroforming is essentially equal to the wall thickness prior to hydroforming [61]. This can be 

observed in Figure 2.23, where the cross section of the pressure sequence hydroformed part 

exhibits significantly less thickness variation as compared to the cross section of the part formed 

by high pressure hydroforming. High strength steels, which posses lower elongations than 

conventional steels, can be successfully hydroformed without the concern of running out of 

elongation and failing in the corners of the die [61,63]. The limitations for the shapes of 

components able to be produced become contingent on material performance during pre-

forming operations such as tube bending as opposed to hydroforming.  
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Figure 2.23: Comparison of tube wall thickness after hydroforming [60] 

 

2.3 Nano Indentation Hardness Testing 

The application of small scale indentation techniques to measure the hardness of materials is a 

long used and well established practice. In these techniques, a hard tipped indenter is forced, 

using a known load, into the surface of a sample material whose hardness is to be determined. 

Upon removal of the indenter, an impression is left behind. By measuring the dimensions of this 

residual indentation, the hardness of the material can be calculated according to Equation 2.4. 

 

              (2.4) 

  

where Pmax is the maximum indenter load and Ar is the surface area of the residual indentation. 

In order to measure the area of the indentation, these traditional techniques rely on the 

observation of the indentation dimensions using microscopy. This measurement presents a 

challenge as indentation size is reduced in order to probe smaller volumes. It becomes more 

difficult to adequately measure the dimensions on a small scale. The reduction of indentation 

size also presents a problem for the indenter tip. As indenting loads are reduced to limit the size 

of the indented area, indenters must be sufficiently sharp to leave an indentation which can be 

used to describe the hardness. 
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Nano indentation improves on these traditional methods by utilizing a nano scale indenter with 

a very precise tip shape. Due to the small indenter size, indentations in the sub-micron range are 

possible. The process by which nearly all nano indentation testing is done today was first 

described in 1992 by Oliver and Pharr [64]. The Oliver and Pharr method is carried out by 

utilizing indentation equipment, which can precisely measure both the load applied to the 

indenter, as well as the linear displacement of the indenter tip. It allows for the generation of a 

load-displacement plot, such as the one seen in Figure 2.24, from which values of several 

mechanical properties can be obtained.  

 

 

Figure 2.24: Example of a nano indentation load-displacement curve [65] 

 

With one complete loading and unloading cycle performed, the hardness of the sample material 

can be calculated using Equation 2.5.  

 

                (2.5) 

 

where Pmax is the maximum indenter load and A(hc) is the projected area of the indentation 

calculated as a function of the contact depth of the indenter. Given the inherent difficulty in 

measuring the dimensions of small indentations using microscopy, the Oliver and Pharr method 
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utilizes an area function which can be calculated in real-time based on the knowledge of the 

current indenter height. For the commonly used Berkovich indenter tip, seen in Figure 2.25, the 

area function can be described according to Equation 2.6.  

 

          
           

         
        

         
    

  (2.6) 

 

where hc is the indenter contact height, and C0 through C5 are calibration coefficients. For an 

ideal Berkovich indenter, C0 will be equal 24.5 while the rest of the calibration coefficients will 

be equal to zero. To calibrate a real indenter, indentations are made on several materials with 

known elastic properties. An iterative procedure can then be used to identify and validate the 

correct tip shape function [64]. 

 

 

Figure 2.25: Ideal Berkovich indenter (a = 65.35°) 

 

The slope of the load-displacement curve upon unloading is indicative of the stiffness of contact 

with the sample material. This stiffness can be related to the elastic modulus and the contact 

area using Equation 2.7. 

 

   
 

  
             (2.7) 

     

where  is a constant related to the indenter shape, A(hc) is the indenter area function, and Er is 

the reduced elastic modulus of the material being indented. The reduced elastic modulus 
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obtained from this relationship includes a stiffness contribution from both the sample material 

and the indenter. In order to separate the effect of each, Equation 2.8 can be used.  

 

 

  
 

     
  

  
 

     
  

  
      (2.8) 

 

where i and Ei are the Poisson ratio and elastic modulus of the indenter, and  s and Es are the 

Poisson ratio and elastic modulus of the sample material.  

  

2.3.1 Associated Challenges 

Given the small scale of nano indentation testing, several issues arise that introduce errors and 

potentially provide invalid results. The most prominent source of error is the effect of surface 

roughness of the sample being tested. Due to the small size of the indenter tip, testing on a 

sample which is not sufficiently smooth can mean that the deformation induced by the indenter 

is not uniform. An example of this can be seen in Figure 2.26. On a high roughness surface, it is 

possible that the indenter will encounter peaks on the sample surface. This can cause the 

measured load to be unrepresentative of the true load required to force the indenter into the 

surface at the given depth. 

 

 

Figure 2.26: Effect of surface roughness on indenter tip 

 

The indentation size effect must also be noted when performing nano indentation tests. It is 

often observed that the hardness of a material increases as the indentation size is decreased. 

This phenomenon must be taken into account when comparing indentation results obtained 

using different loads. For the best possible results, it is wise to only compare indentations that 

have been performed using similar loading levels. 
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When performing multiple indentations inside a defined area, it is possible for indenter drift to 

occur. This phenomenon involves the unintended and undesired movement of the indenter tip. 

Nano indentation equipment is very large in comparison with the size of the displacements it is 

designed to measure. It is possible for the thermal expansion of the equipment to have a 

significant influence on the position and stability of the indenter. Differences in rates of heat 

generation by the equipment can cause persistent deviations to the indenter position. This 

problem has been addressed on many new devices by the inclusion of automatic routines, which 

make corrective movements to the indenter tip to counter the undesired movements. Although 

this method provides a remedy to the problem, drift may still be encountered when large 

numbers of indentations are placed within a small area. While it is possible for the effects of the 

issues discussed above to be minimized, it is important for the operator of the nano indentation 

equipment to be aware of them, and to be able to properly interpret the results obtained from 

experiments.   
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Chapter 3: 

Experimental Details 

 

Commercial dual phase steels were obtained from three suppliers. Mechanical testing and 

metallography was performed on each steel to ascertain its mechanical and microstructural 

properties. The following chapter describes in detail, the steps performed to test and 

characterize each material.   

 

3.1 Materials 

Dual phase steels falling under three different strength grades were acquired from three 

separate suppliers. All steels were obtained in the form of cold rolled flat sheet.  In order to 

assure both confidentiality and consistency throughout experimentation, identification numbers 

were assigned to each steel. These steels and corresponding identification numbers have been 

summarized in Table 3.1. 

 

 
DP600 DP780 DP980 

ID# 1 2 3 4 5 6 7 

Supplier A B C A B A B 

Thickness (mm) 1.2 1.25 1.0 1.2 1.5 1.2 1.2 

Table 3.1: Dual phase steel material summary 

 

3.2 Tensile Testing 

Tensile specimens were cut from as-rolled sheet using a wire EDM to minimize distortion. 

Dimensions were chosen according to the ASTM E8 standard sheet type specimen size. 

Thickness “T”, as seen in Figure 3.1, varied depending on the steel tested. For each material, 

specimens were obtained from longitudinal, transverse and 45° diagonal orientations. 
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Figure 3.1: ASTM E8 standard sheet type specimen (dimensions in mm) 

 

Testing was carried out using an ADMET 2613 universal testing machine, seen in Figure 3.2, 

equipped with a 50 kN load cell. Strain readings were taken using two Epsilon Technologies 

extensometers, measuring axial and width strains with a typical linearity of 0.2%. All samples 

were tested at room temperature utilizing a crosshead speed of 0.1 mm/sec. Data was collected 

and analyzed using ADMET’s MTEST software. 

 

 

Figure 3.2: Tensile testing setup 

 

3.2.1 Strain Hardening Exponent 

Calculation of the strain hardening exponent, or n-value, was performed as specified in ASTM 

E646. The engineering stress/strain values obtained from the tensile tests were converted to 

true stress/strain values according to Equations 3.1 and 3.2. 
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             (3.1) 

              (3.2) 

 

where σ and ε are the true stress and true strain values, and S and e are the engineering stress 

and engineering strain values. The n-value was determined for strains between 5 and 10 

percent, or up to the uniform elongation when it was found to fall inside this range. By taking a 

line of best fit of N true stress/strain data pairs, the n-value was calculated according to 

Equation 3.3. 

 

  
              

 
                   

 
   

 
   

        
          

 
   

     (3.3) 

 

3.2.2 Plastic Strain Ratio 

The plastic strain ratio, or r-value, is a parameter that indicates the ability of a sheet metal to 

resist thinning or thickening under tensile and compressive forces in the plane of the sheet. It is 

defined for a uniaxial tension test in Equation 3.4. 

 

  
  

  
  

          

          
     (3.4) 

 

where εw is the width strain, εt is the thickness strain, wf is the final specimen width, wo is the 

initial specimen width, tf is the final specimen thickness and to is the initial specimen thickness. 

 

Due to the difficulties in precisely measuring thickness strains during tensile testing, it is possible 

to replace εt according to Equation 3.5, using a constant volume assumption. 

 

                      (3.5) 

 

This equation allows the r-value to be easily calculated utilizing the length and width 

extensometer data based on Equation 3.6. 
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     (3.6) 

 

where lo is the initial specimen gauge length and lf is the final length of the gauge. The average r-

value for each test was determined between 5 and 10 percent strain. According to ASTM E517, a 

final mean r-value was calculated by averaging the r-values obtained for tensile specimens taken 

in the 0, 45 and 90 orientations according to Equation 3.7. 

 

                        (3.7) 

  

3.3 Tube Bending and Hydroforming 

Tube bending and hydroforming was performed on steels 1, 4, and 7. In order to create tubes 

from the dual phase steel, coils were sent to a tubing mill which roll formed and welded the 

material to create tubes with an outside diameter of 63.5 mm. The DP600 and DP780 tubes 

were welded using conventional high frequency electric resistance welding; however, the 

strength of the DP980 required the use of more precise laser welding.  

 

3.3.1 Tube Preparation 

Tubing received from the mill was cut to appropriate lengths and then etched using the electro-

etching apparatus seen in Figure 3.3. Grids consisting of 2.54 mm circles were imprinted around 

the circumference of the sample tubes in several locations corresponding to the regions where 

subsequent bending was to take place. 
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Figure 3.3: Electro-etching apparatus 

 

3.3.2 Tube Bending 

Tube bending was carried out using an Eagle Precision Technologies electro-hydraulically driven 

rotary draw mandrel bender. The bender, seen in Figure 3.4, was fully CNC enabled allowing 

bending parameters to be easily adjusted. Standard production quality tooling was utilized, 

including bend, clamp, pressure, and wiper dies. To ensure tube integrity and to prevent tubing 

collapse, a flexible five-ball mandrel was used. 

 

For each steel grade, bending was attempted using bend ratios of 3.1, 2.0, and 1.73 (see 

Equation 2.1). In order to achieve the desired bend, the bend angle was increased to account for 

material springback. Due to the high strength of the material, a boost pressure of 12.4 MPa was 

used while 9.0 MPa was applied to the pressure die. 
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Figure 3.4: Eagle Precision Technologies rotary draw mandrel bender 

 

3.3.3 Hydroforming 

Hydroforming was carried out on Vari-Form’s manufacturing line utilizing tooling used to 

produce upper fender rails for a production vehicle.  Their pressure sequence hydroforming 

process was used with low fluid pressures of 7 MPa and high fluid pressures of 55 MPa. Due to 

the constraints imposed by the production tooling, only tubes which had been bent with a bend 

ratio of 3.1 were able to be hydroformed.  

 

3.3.4 Strain Measurements 

After bending and hydroforming, strain measurements were obtained using the etched circle 

grids which had been deformed into ellipses. The bent sections of tube were cut into wedges, 

similar to that seen Figure 3.5, for observation. 
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Figure 3.5: Circle gridded section on a bent tube 

 

Observation was carried out using a Leica MZ8 stereomicroscope, seen in Figure 3.6. The tube 

sections were placed on the microscope and dimensions were recorded for the deformed circles 

on the extrados of the tube bend and around the tube circumference at the midpoint of the 

bend. Thickness measurements were performed using both a ball end micrometer and a GE CL5 

ultrasonic tester. 

 

 

Figure 3.6: Circle grid strain measurement equipment 
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After measurement, true principal strains were calculated for each deformed circle according to 

Equations 3.8 through 3.10. 

 

     
  

  
     (3.8) 

     
  

  
     (3.9) 

       
 

  
     (3.10) 

 

where: 

 1 – ellipse major diameter; 

 2 – ellipse minor diameter; 

 0 – initial circle diameter;  

 0 – initial tube wall thickness; 

  – final tube wall thickness. 

 

3.4 Micro Hardness 

Micro hardness measurements were performed in accordance with ASTM E384. Measurements 

were taken from the normal orientation on flat sheet samples. Testing was done using a Buehler 

Micromet II equipped with a Vickers indenter set at 300 g. Indentation dimensions were 

obtained using the machine’s built in measuring system, and converted to Vickers hardness 

values according to Equation 3.11. 

 

   
       

    
      (3.11) 

 

where F is the indenter force in newtons and davg is the average of the two pyramidal lengths in 

millimetres. 
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3.5 Nano Hardness 

Nano indentation testing was performed on steels 1, 4, and 6 in order to obtain hardness values 

for the ferrite and martensite phases within each material. Testing was carried out following the 

guidelines specified in ASTM E2546. Samples were prepared from flat sheet, and both etched 

and unetched samples were tested. Indentation was performed using a Hysitron TI 700 Ubi 

scanning nano indenter, seen in Figure 3.7, equipped with in-situ SPM capabilities. Indentation 

data was collected and processed using Hysitron’s Triboscan software. 

 

  

Figure 3.7: Hysitron TI 700 Ubi nano indenter 

 

A Berkovich tip indenter was used to produce indentations in rectangular grid patterns of 

varying dimensions. A maximum load of 250 N was applied using a trapezoidal loading 

function, illustrated in Figure 3.8, to reduce time dependent effects. Values for hardness and 

elastic modulus were determined using the methods of Oliver and Pharr as described in Section 

2.3. 
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Figure 3.8: Trapezoidal loading function 

 

3.6 Microstructural Analysis 

Microstructural analysis was performed on as-received flat sheet, tensile samples, and bent 

tubing. Samples were prepared using polishing and etching, and then observed with optical and 

electron microscopes. Micrographs were taken, and used to determine a variety of 

microstructural properties. 

 

3.6.1 Sample Preparation 

Metallographic specimens from the as-rolled flat sheet were cut into samples approximately 1 

cm2 in size. These samples were mounted in 38.1 mm molds using diallyl phthalate 

thermosetting resin, which was cured at 150 °C and 3000 psi for 90 seconds. For each specimen, 

three samples were mounted, exposing the normal, rolling, and transverse planes. After 

mounting, samples were subjected to grinding and polishing according to the following 

sequence: 

 

1. Four stage progressive manual grinding using SiC paper (240, 320, 400, 600 grit). 

2. Intermediate polishing using 9 m diamond paste on a nylon cloth wheel. 

3. Two stage final polishing using alumina powder on micro cloth wheels (1 m, 0.05 m). 
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Upon completion of each polishing step, samples were cleaned with soap and water, and then 

rinsed with ethanol. To develop the ferrite grain boundaries and to reveal the ferrite/martensite 

interfaces, a 2% Nital etchant was prepared and placed in a shallow dish [66]. Samples were 

then immersed in the etchant for approximately 10-20 seconds to expose the microstructure. 

 

Fracture surfaces were observed for both tensile and bent tube samples. For tensile samples, 

one side was collected from each specimen and carefully cut to remove the necked region and 

fracture surface. For bent tube samples, after failure during bending, a band saw was used to 

remove the section of interest. For both sample types, cleaning was carried out using an 

ultrasonic cleaner before observation. 

 

For each tensile fracture surface that was observed, a corresponding sample was taken from the 

opposite side of the failed specimen in order to observe void sizes and distributions. Samples 

were cut according to Figure 3.9 using a wire EDM in order to preserve the void patterns. The 

wire EDM was offset from the centreline of the sample by half its kerf width, ensuring that the 

plane to be observed was in the exact middle of the tensile sample. 

 

 

Figure 3.9: Fracture cross section 

 

Preparation of the fracture cross section samples was carried out using the same three step 

grinding and polishing sequence performed on the flat sheet samples. After polishing, initial 

etching was carried out using 2% Nital to remove any flowed metal on the sample surface. A 

final re-polishing was completed using 0.05 m alumina. 
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3.6.2 Microscopy 

Optical microscopy was carried out using a Leitz Laborlux 12ME equipped with a Paxit PAXcam 

imaging system. Images were taken of all flat mounted samples. 

 

A JEOL JSM-5800LV scanning electron microscope equipped with an EDAX energy dispersive 

spectrometer was used to image both flat mounted samples and fracture surfaces. Images were 

taken with an accelerating voltage of 15 kV using secondary electrons. Fracture surfaces and 

samples with large exposed surface areas were imaged without modification. Through-thickness 

samples were sputter-coated with gold in order to avoid problems with sample charging.  

 

3.6.3 Grain Size 

Ferrite grain size was determined according to the ASTM E112 grain counting method. A 

combination of optical and SEM micrographs were used in conjunction with Media Cybernetic’s 

Image-Pro Plus analysis software to obtain a mean grain size for each material. 

 

3.6.4 Martensite Volume Fraction 

Martensite volume fraction was determined using Image-Pro Plus software according to ASTM 

E1245. Both optical and SEM micrographs were utilized for each material in order to obtain the 

best possible representative value. In order to confirm the results from the image analysis 

software, several micrographs from each material were treated to the traditional point counting 

method as described in ASTM E562. 

 

3.6.5 Martensite Banding 

To describe and characterize the extent of martensite banding in the sample steels, the ASTM 

E1268 linear intercept method was used. The anisotropy index was calculated for each sample 

material according to Equations 3.12 through 3.14. 
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               (3.12) 

               (3.13) 

               (3.14) 

 

where: 

AI – anisotropy index (for a non-banded microstructure AI = 1); 

N⊥ – number of feature interceptions with test lines perpendicular to the rolling direction; 

N  – number of feature interceptions with test lines parallel to the rolling direction; 

Lt – test line length (mm). 

 

3.7 Chemical Composition 

The chemical compositions of each sample material were determined using a Thermo Scientific 

ARL 3460 optical emission spectrometer according to ASTM E415. These results were found to 

match the heat chemistries supplied by the steel producers very closely.  
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Chapter 4: 

Experimental Results 

 

The following chapter presents a summary of the results obtained from tensile testing, tube 

forming, and microstructural analysis. Numerical data has been compiled into tables, while 

tensile curves, tube strains, micrographs, and nano indentation results have been shown using 

representations indicative of what was observed for each material.    

 

4.1 Tensile Testing 

Tensile testing was carried out on each steel using three samples from each orientation. Figure 

4.1 shows representative engineering stress-strain curves for each steel taken from samples 

oriented parallel to the rolling direction. 

  

 

Figure 4.1: Representative tensile curves for tested steels 
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Table 4.1 summarizes the average values of the mechanical properties for each steel. Values 

obtained from replicate tests were found to vary by no more than five percent. Due to the 

continuous yielding behaviour of the steels, yield strength was determined by the 0.2 percent 

offset stress. The entry entitled yield discontinuity refers to the observation of discontinuous 

yielding seen in the DP600 and DP780 grades from supplier A. The values represent the range of 

strain over which discontinuous yielding was found to occur. Discontinuous yielding is not 

commonly seen in dual phase steels, as one of their key features is the lack of yield point 

elongation. Further discussion on this issue and an overview of some potential causes is found in 

Section 5.2.2. 

 

 
DP600 DP780 DP980 

ID# 1 2 3 4 5 6 7 

Yield Strength (MPa) 383.6 434 424.4 474 552 621.7 748 

Tensile Strength (MPa) 638.9 682 692.1 789 804 1085.7 1153 

YS/TS 0.60 0.64 0.61 0.60 0.69 0.57 0.65 

Yield Discontinuity (%) 0.5 0 0 0.25 0 0 0 

Uniform Elongation (%) 16.2 13.8 13.4 11.5 14.4 9 9.1 

Total Elongation (%) 21.4 18.7 22.8 17.2 19.7 13.4 12.4 

n-value 0.16 0.13 0.2 0.13 0.15 0.1 0.08 

r-value 1.11 0.96 0.91 0.93 0.87 0.78 0.73 

Table 4.1: Summary of mechanical properties for tested steels 

 

4.2 Tube Bending 

Tube bending was carried out on steels 1, 4, and 7; representing one steel from each strength 

grade.  As the bend ratio was decreased, material failures began to occur. These results have 

been summarized in Table 4.2. The DP980 steel was not tested using a bend ratio of 1.73 given 

its poor performance with a bend ratio of 2.0. 
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ID# 
Steel 

Grade 

Bend Ratio - 3.1 Bend Ratio - 2.0 Bend Ratio - 1.73 

# of Tubes Result # of Tubes Result # of Tubes Result 

1 DP600 12 Success 8 Success 8 1 Failed 

4 DP780 12 Success 8 5 Failed 6 5 Failed 

7 DP980 8 Success 6 5 Failed - - 

Table 4.2: Summary of tube bending results 

 

4.2.1 Strain Distributions 

Strains were obtained by measuring the dimensions of the deformed circles that were etched 

onto the surface of each tube. To ensure a proper comparison amongst all tubes, each 

measured circle was identified using a series of angles based on its location on the bent tube. 

The locations to which these angles correspond can be found in Figure 4.2. For strains measured 

around the tube circumference, 0 corresponds to the weld seam with angle increasing towards 

90 at outside of the bend. For strains measured around the extrados of the bend, 0 

corresponds to the location of the clamp die with angle increasing towards the mandrel side of 

the tube. 

 

 

Figure 4.2: Orientations and angles used for strain measurements 

 

Figures 4.3 through 4.8 summarize and compare the bending strains as follows: each steel grade 

for a given bend ratio; each bend ratio for a given steel grade; and bending versus hydroforming 

for a given steel grade. Hoop strains were found to be significantly less than axial and thickness 

strains, and therefore have been omitted from the graphs for the sake of clarity. 
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Figure 4.3: Tube extrados strains for each steel grade (bend ratio - 3.1) 

 

 

Figure 4.4: Tube circumference strains for each steel grade (bend ratio - 3.1) 
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Figure 4.5: DP600 tube extrados strains for each bend ratio 

 

 

Figure 4.6: DP600 tube circumference strains for each bend ratio 
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Figure 4.7: DP780 tube extrados strains for bending and hydroforming 

 

 

Figure 4.8: DP780 tube circumference strains for bending and hydroforming 
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4.3 Microstructure 

The micrographs seen in Figures 4.9 through 4.15 represent the microstructures observed for 

each as-received material. The cubes consist of optical micrographs taken from the normal (ND), 

rolling (RD) and transverse (TD) directions of the steel sheet. They are intended to act only as a 

representation of the steel, and not a specific volume element within it. The scanning electron 

micrographs are taken from the normal direction of the sheet and provide enhanced detail of 

the grain structure and martensite morphology. 
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Figure 4.9: Steel 1 (Optical micrographs - 200x, SEM micrograph - 750x) 
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Figure 4.10: Steel 2 (Optical micrographs - 200x, SEM micrograph - 750x) 
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Figure 4.11: Steel 3 (Optical micrographs - 200x, SEM micrograph - 750x) 



 

55 

 

 

Figure 4.12: Steel 4 (Optical micrographs - 200x, SEM micrograph - 750x) 
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Figure 4.13: Steel 5 (Optical micrographs - 200x, SEM micrograph - 750x) 
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Figure 4.14: Steel 6 (Optical micrographs - 200x, SEM micrograph - 750x) 
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Figure 4.15: Steel 7 (Optical micrographs - 200x, SEM micrograph - 750x) 
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4.4 Martensite Volume Fraction and Ferrite Grain Size 

The values obtained for martensite volume fraction and mean ferrite grain size can be found in 

Table 4.3. Due to the nature of the martensite morphology, it was not possible to obtain a single 

number which described the martensite particle size.  In general, it can be said that the size of 

the martensite particles tends to increase as the martensite volume fraction increases and 

decrease as the ferrite grain size decreases. This can be observed in the micrographs shown in 

Section 4.3. 

 

 
DP600 DP780 DP980 

ID# 1 2 3 4 5 6 7 

Martensite Volume Fraction (%) 14.1 16.2 18.5 21.2 26.2 34.6 38.1 

Mean Ferrite Grain Size (μm) 8.86 9.36 7.40 8.44 4.89 8.28 6.68 

Table 4.3: Martensite volume fraction and mean ferrite grain size of each steel 

 

4.5 Martensite Banding 

The anisotropy index values calculated for each steel are presented in Table 4.4. While these 

results indicate the overall severity of the banding within each material, they do not adequately 

capture steels with single large martensite bands at the centreline of the sheet. Further 

discussion on banding, and its impact on mechanical properties can be found in Section 5.2.4.  

 

 
DP600 DP780 DP980 

ID# 1 2 3 4 5 6 7 

NL⊥ (#/mm) 162 143 181.2 174.6 167.1 176 150.3 

NL  (#/mm) 141.1 120 124.4 125.4 122.4 144 117 

AI (NL⊥/NL ) 1.15 1.19 1.46 1.39 1.37 1.22 1.28 

Table 4.4: ASTM anisotropy index values for martensite banding 
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4.6 Chemical Composition 

The chemical compositions measured for each steel are listed in Table 4.5. The steels fall into 

two general categories: carbon-manganese, and carbon-manganese plus additional alloying 

elements. The differences between the two are discussed in Section 5.2.1. 

  

 
DP600 DP780 DP980 

ID# 1 2 3 4 5 6 7 

C (%) 0.1 0.12 0.09 0.11 0.15 0.16 0.16 

Si (%) 0.31 0.4 0.01 0.32 0.2 0.31 0.52 

S (%) 0.005 0.004 0.003 0.004 0.004 0.007 0.003 

P (%) 0.006 0.014 0.014 0.01 0.012 0.007 0.007 

Mn (%) 0.99 0.93 1.81 1.77 1.68 1.42 1.49 

Ni (%) 0.01 0.04 0.02 0.01 0.04 0.01 0.05 

Cr (%) 0.02 0.04 0.2 0.02 0.42 0.02 0.03 

Mo (%) 0 0 0.18 0 0 0 0.01 

Table 4.5: Chemical compositions of tested steels 

 

4.7 Micro Hardness 

Micro hardness values for each steel can be seen in Table 4.6. As expected, these results 

correlate well with the macroscopic tensile strengths of the steels. Observation of the 

indentations under the microscope showed Vickers pyramidal lengths of approximately 38 to 48 

m, much larger than the mean ferrite grain and martensite island size. This indicates that the 

hardness values obtained are bulk material values and not phase specific.  

 

 
DP600 DP780 DP980 

ID# 1 2 3 4 5 6 7 

Hardness (HV) 240 244 261 299 295 360 379 

Table 4.6: Micro hardness values for each steel 
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4.8 Nano Hardness 

Nano indentation testing was performed on steels 1, 4, and 6. For each steel tested, a series of 

64 indentations were made in an eight by eight grid placed within a 30 m by 30 m square on 

the surface of the material. The results, shown in Figures 4.16 through 4.21, have been 

presented in two ways. First, histograms summarize the number of indentations measured for 

each range of reduced modulus and hardness values. Second, scanning probe micrographs and 

corresponding hardness contour maps show the specific locations from which each hardness 

value was obtained.  

 

  

Figure 4.16: Modulus and hardness histograms for steel 1 

 

  

Figure 4.17: SPM image of grid pattern and corresponding hardness contour map for steel 1 



 

62 

  

Figure 4.18: Modulus and hardness histograms for steel 4 

 

  

Figure 4.19: SPM image of grid pattern and corresponding hardness contour map for steel 4 
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Figure 4.20: Modulus and hardness histograms for steel 6 

 

  

Figure 4.21: SPM image of grid pattern and corresponding hardness contour map for steel 6 
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Chapter 5: 

Discussion of Results 

 

This chapter contains a detailed discussion of the results presented in Chapter 4. It is broken 

down into the following sections: tube bending and hydroforming, comparison of commercial 

dual phase steels, and nano indentation testing. A common link is developed between each of 

these sections, and details of their interrelationships are discussed.  

 

5.1 Tube Bending and Hydroforming 

Inspection of Table 4.2 shows that the results of the tube bending process are stochastic in 

nature. For a given strength grade and bend ratio, there is no guarantee of the same result for 

multiple tubes. While one tube may be successfully bent, another may fail. For the dual phase 

steel tubes tested, there appears to be a minimum bend ratio to which the tubes can be reliably 

and consistently bent. For the DP600 tubes this was found to be 2.0, while the DP780 and DP980 

tubes could only be reliably bent using a bend ratio of 3.1. As the bend ratio was decreased, the 

reliability of the bending process dropped, with a greater percentage of tubes failing. 

 

Observation of the strains in Figure 5.1, taken around the extrados of the bent tube, reveals two 

distinct strain regions. First, at the clamp side there is a sudden spike in strain for approximately 

the first ten degrees of the bend. This is the location where the bending impulse is first applied 

to the tube, initiating the bending process. The severity of this spike was found to be influenced 

by parameters such mandrel lubrication, mandrel position and bending speed. Following the 

initial rise in strain, there is a drop off followed by a steady region in which the strains remain 

constant until they trail off at the end of the bend.  
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Figure 5.1: Regions of strain in bent tubes 

 

Failures during bending were found to occur in both strain regions, however the majority 

occurred during steady strain. The angle of the bend at which failures occurred was seemingly 

random. Different tubes of the same grade bent with the same bend ratio would fail at different 

angles in the steady strain region.  While it is possible that this occurred due to nuances in the 

bending process, it is more likely that the material itself was the cause. 

 

The few failures that occurred during the initial bending impulse were much more violent in 

nature than those occurring during steady strain. These failures were often damaging to the 

bending equipment, such as the case of the DP980 tube seen in Figure 5.2. Given the high 

strength of the DP980, upon fracture the tube was able to destroy the mandrel before 

catastrophic failure of the material. Extreme care is required when bending the higher strength 

steel grades as the tube is not always the weakest link in the process. 
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Figure 5.2: Tube failure during (a) steady strain and (b) initial bend impulse 

 

5.1.1 Calculation of Effective Strains 

It was observed that nearly all tube failures initiated at the extrados of the bend where the axial 

strains were positive. Summaries of the strains measured at this location for each steel grade 

and bend ratio are presented in Tables 5.1 through 5.3. The calculation of the effective strain 

has been performed using the von Mises yield criterion, according to Equation 5.1. 

 

     
 

 
    

 
 
 
    

 
 
 
    

 
 
 
      (5.1) 

 

where     is the effective plastic strain, and   
 

,   
 

, and   
 

 are the principal plastic strains [67]. 

The strain values used in these calculations are the average principal strains taken from the 

steady strain region of each tube. The approximated effective strains have been determined 

using the principal strains obtained from Equations 2.2 and 2.3 which assume a plane strain 

condition in the tube wall. 
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Bend Ratio - 3.1 

Steel 
Grade 

# of Tubes 
Measured 

Maximum 
Axial Strain 

Average 
Axial Strain 

Average 
Effective Strain 

Approximated 
Effective Strain 

DP600 6 17.1 12.6 16.0 17.3 

DP780 6 18.7 14.3 16.1 17.3 

DP980 2 22.2 13.3 13.4 17.3 

Table 5.1: True strains measured for a bend ratio of 3.1 

 

Bend Ratio - 2.0 

Steel 
Grade 

# of Tubes 
Measured 

Maximum 
Axial Strain 

Average 
Axial Strain 

Average 
Effective Strain 

Approximated 
Effective Strain 

DP600 4 40.2 25.1 30.5 25.8 

DP780 3 29.6 26.8 28.8 25.8 

DP980 - - - - - 

Table 5.2: True strains measured for a bend ratio of 2.0 

 

Bend Ratio - 1.73 
Steel 

Grade 
# of Tubes 
Measured 

Maximum 
Axial Strain 

Average 
Axial Strain 

Average 
Effective Strain 

Approximated 
Effective Strain 

DP600 3 52.1 29.7 35.6 29.3 

DP780 1 33.4 31.4 36.8 29.3 

DP980 - - - - - 

Table 5.3: True strains measured for a bend ratio of 1.73 

 

5.1.2 Comparison of Steel Grades 

Figures 4.3 and 4.4 show comparisons of the strains measured for each steel grade undergoing 

bending with the same bend ratio. It is evident that the level of strain experienced by each steel 

grade is very similar. This is confirmed by comparison of the average effective strains in Section 

5.1.1. The strains experienced by dual phase steel tubes undergoing rotary draw bending do not 

appear to be dependent on the steel grade. This observation confirms what has been described 

by Khodayari [55], that principal bending strains are a function of bend ratio only and therefore 

material neutral. 
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5.1.3 Effect of the Weld Zone 

For all bending experiments, the weld zone of the tube was oriented so that it was as close as 

possible to the neutral axis during bending. Based on tensile testing done on samples cut from 

tubular material and on the work done by Pavalina et al. [48], it is known that the fusion and 

heat affected zones generated by the tube welding process have substantially higher strength 

and lower elongation than the rest of the tube material. Figure 4.6 shows that as you move 

away from the neutral axis of the bend, the axial strain greatly increases. The lack of elongation 

at the weld zone causes tube failure if it is exposed to even moderate levels of strain. It is 

therefore important that the weld be placed as close as possible to the neutral axis. This 

placement was found to be particularly important for the DP600 and DP780 tubes joined using 

high frequency electric resistance welding. The heat affected zones on these tubes were nearly 

double the size of the laser welded DP980 tubes and were more likely to cause tube failures 

when positioned away from the neutral axis. 

  

5.1.4 Comparison of Strains Before and After Hydroforming 

As discussed in Section 2.2.3, the pressure sequence hydroforming process used by Vari-Form 

does not subject the tube to significant hoop and thickness strains like traditional high pressure 

hydroforming. The majority of the strain imparted on the tube comes during the pre-bending 

operation. Strain measurements were taken from tubes after bending and then again after 

hydroforming. A comparison of these strains for a DP780 tube can be seen in Figure 5.3. It is 

clear that the strains are very similar and match quite closely when overlaid. The thickness 

strains measured for the hydroformed tube show no sign of additional thinning as would be 

expected with a traditional high pressure process. These results confirm that the pressure 

sequence hydroforming process is well suited to forming high strength steels and that concerns 

regarding their formability should be focused on the pre-bending operations.  
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Figure 5.3: Comparison of strains before and after hydroforming for DP780 tube 

 

5.1.5 Microstructural Observation of Bent Tubes 

Observation of the microstructure of both failed and successfully bent tubes was carried out in 

order to identify deformation and fracture mechanisms operating during the tube bending 

process. As discussed in Section 2.1.7, the deformation behaviour of dual phase steels can vary 

from ductile to brittle depending on the martensite volume fraction of the material. The DP600 

and DP780 tubes, with martensite volume fractions of 14.1% and 21.2% respectively, exhibited 

exclusively ductile behaviour while the DP980 tubes with 38.1% martensite volume fraction 

displayed mixed mode behaviour. Figure 5.4 shows a micrograph of the fracture surface of a 

failed DP980 tube. The presence of quasi-cleavage facets indicate that a brittle mode of fracture 

is occurring due to the large percentage of martensite contained within the microstructure. 
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Figure 5.4: DP980 tube fracture surface showing mixed mode behaviour 

 

Ductile deformation and fracture in dual phase steels has been shown to be associated with 

nucleation, growth and coalescence of micro voids. The mechanisms by which these voids 

nucleate and grow in samples undergoing uniaxial tension were shown in Section 2.1.7 to be by 

the fracture and separation of martensite particles at low strains, followed by the decohesion of 

the ferrite/martensite interfaces at  higher strains. Metallographic samples taken from the 

extrados of the bent tubes show these void nucleation and growth mechanisms to also be 

functioning in the dual phase steel during tube bending. Figure 5.5 shows examples of these 

mechanisms occurring. When the micrographs in Figure 5.5 are compared to micrographs taken 

for uniaxial tensile samples, as seen in Section 2.1.7, it can be concluded that the same void 

nucleation and growth mechanisms operating in the uniaxial tensile strain state are also 

functioning in the more complex strain state encountered during tube bending. 
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Figure 5.5: Void nucleation by (a) fracture of martensite and (b) separation of interfaces 

 

As illustrated above, the DP980 tubes showed indications of brittle behaviour on their fracture 

surfaces. This was also observed in metallographic samples taken from the extrados of the 

DP980 tubes. Figure 5.6 shows both the formation of a large crack opened up on the fracture 

surface and the cross section of this crack and its path through the microstructure. The crack can 

be seen taking an intergranular path through the martensite network until it is eventually 

blunted by converging regions of martensite. This mechanism was not observed in any of the 

micrographs taken of the DP980 material undergoing uniaxial tensile testing. The crack 

morphology seen in Figure 5.6 is likely a consequence of the steel’s high volume fraction of 

martensite being exposed to the tube bending strain state.  

 

  

Figure 5.6: DP980 tube (a) fracture surface crack and (b) cross sectional view of crack path 

 

(a) (b) 

(a) (b) 
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Several researchers have observed the effects of both inclusions and martensite banding on the 

tensile behaviour of dual phase steels. Park et al. [27] stated that there is a clear indication that 

martensite bands and inclusions significantly influence the formability of dual phase steels. 

Broek [68] found that voids attributed to large inclusions gave rise to increased stresses within 

the material and often determined the location and moment of ductile fracture. The effects of 

both banding and inclusions within the material were found to manifest themselves on the 

fracture surface of the failed material. Avramovic-Cingara et al. [42] found that the pattern and 

size of dimples on the tensile fracture surface reflected the distribution of the martensite within 

the material. A uniform dimple pattern was observable for interfacial decohesion nucleation 

sites, while parallel striations reflected void nucleation along martensite bands. Large voids 

present on the fracture surface indicated void nucleation and growth on inclusion particles. 

Observation of the fracture surfaces obtained from tubes which failed during bending indicate 

that the same microstructural issues which influence dual phase steels undergoing uniaxial 

tension, namely martensite banding and inclusions, also affect dual phase steels undergoing 

tube bending. Figure 5.7 shows the fracture surfaces of failed DP600 and DP780 tubes. In both 

micrographs there is clear evidence of large voids nucleated at inclusions, consistent with what 

has been observed by others in uniaxial tensile samples. Inspection of the DP780 fracture 

surface shows the tell-tale signs of martensite banding, with long parallel striations through the 

thickness of the steel. Voids that have preferentially nucleated on the bands are visible on the 

fracture surface. The DP600 tube does not exhibit these characteristic striations. These findings 

are explained when the degree of banding, given by the anisotropy index, is considered for both 

tube materials. As seen in Table 4.4, the anisotropy index for the DP600 is 1.15 and for the 

DP780 is 1.39. It indicates that the DP780 is in fact much more heavily banded. The effects of 

this are readily apparent at the fracture surface of the tube. 
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Figure 5.7: (a) DP600 and (b) DP780 tube fracture surfaces 

 

Observation and comparison of the tube fracture surfaces indicates that although the state of 

strain is different in tube bending as compared to uniaxial tensile testing, the same 

microstructural features affecting deformation and fracture still apply. For a dual phase steel to 

perform to its full potential in the tube bending process, it is important that both inclusions and 

martensite banding be minimized. 

 

5.1.6 Identification of Inclusions in Tube Material 

Non-metallic inclusions trapped within steel are typically a consequence of the steelmaking 

process. They generally arise from the entrapment of slag and deoxidation products used to 

treat impurities in the steel. Inclusions in the steels used for tube bending were found to be of 

two types; oxides and sulphides. Figures 5.8 and 5.9 show micrographs of each type of inclusion, 

along with EDS profiles indicating their chemical composition.  

 

The most common inclusions were found to be sulphides. During the steelmaking process 

sulphur is present in the form of iron sulphide. Iron sulphide is able to form a eutectic with the 

surrounding iron which causes it to become segregated at the grain boundaries during cooling. It 

can weaken the bonding of the grains and contribute to increased brittleness of the steel. In 

order to avoid this problem steelmakers typically utilize manganese additions to preferentially 

combine with the sulphur and form manganese sulphide, reducing the detrimental effects of 

(a) (b) 
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sulphur. These manganese sulphide inclusions remain in the steel and tend to elongate as the 

steel undergoes hot rolling. During subsequent plastic deformation, the compatibility between 

these elongated inclusions and the surrounding steel causes them to act as void nucleation sites. 

In Figure 5.8, the areas associated with manganese sulphide show clear indications of nucleated 

voids. These are likely the predominant nucleation sources for the large voids seen on the 

fracture surfaces of the tubes.  

 

  

Figure 5.8: Voids nucleated along rolling direction at sulphide inclusions 

 

Less common, but much larger in size, were oxide inclusions. These oxides were found to 

include aluminum and calcium. Dual phase steels are generally aluminum killed, meaning that 

aluminum is added to the molten steel prior to solidification to deoxidize the material and form 

slag. Small particles of slag trapped within the steel upon solidification become excellent sites 

for the nucleation of voids. Oxide inclusions are much harder than the steel and are only weakly 

bonded to the surrounding material. Upon application of strain, voids can easily nucleate at 

their interfaces.  
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Figure 5.9: Large oxide inclusion 

 

Given the limited number of oxide inclusions which were found within the dual phase steels, it is 

much more likely that the sulphide inclusions were the primary cause of reduced mechanical 

behaviour. The effects of sulphide inclusions on dual phase steels have been commented on by 

other researchers. Avramovic-Cingara et al. [42], Chawla et al. [69] and Szewczyk et al. [70] all 

found that sulphide inclusions played a role in the fracture of dual phase steels. This was 

observed first hand in the case the DP600 tube seen in Figure 5.10. This tube did not fracture 

catastrophically, but instead formed a small neck on its surface. Upon removing the necked area 

from the tube and observing it utilizing EDS analysis, it was found that the area contained high 

levels of calcium and sulphur. This is likely a consequence of the desulphurizing process used 

during steelmaking. Calcium oxide is often added to remove sulphur from the steel and form a 

calcium sulphide slag. It is possible that some of this slag became trapped and was still present 

in the steel after solidification. The presence of these calcium sulphide inclusions inside the 

microstructure was likely the reason for the localized failure seen on the tube. 

 



 

76 

 

 

Figure 5.10: Localized tube failure with fracture surface micrograph and EDS profile 

 

5.2 Comparison of Commercial Dual Phase Steels 

Although the materials used in this work fall under only three different strength grades, it is 

apparent from Figure 4.1 that the actual strengths and elongations of the steels are 

underestimated to varying degrees by each steel producer. This underestimation is important, 

as it directly impacts the forming process. Steels exhibiting higher strengths than indicated by 

the supplier will require the application of greater forces and pressures during the tube bending 

and hydroforming processes. Additionally, if the tubes posses greater elongation than that 

indicated by the supplier, their reliability during forming may be increased. 
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5.2.1 Chemical Compositions 

Table 4.5 shows that the commercial steels tested fall into two categories, carbon-manganese 

and carbon-manganese plus additional alloying elements. These additional alloying elements 

consist primarily of chromium and molybdenum, indicating that they were added for heat 

treatment purposes as opposed to strengthening via precipitation hardening. Although Lis et al. 

[12] commented that alloying elements such as molybdenum are rarely added to commercial 

dual phase steels due to cost, it was found to be present in steel 3. The presence of 

molybdenum, along with the relatively high manganese content indicates that the producer of 

steel 3 likely utilized a continuous annealing line which did not allow for the necessary fast 

cooling rates required to form the dual phase microstructure using the low alloy steel 

compositions used by the other suppliers. 

 

Commercial continuous annealing lines generally contain cooling systems which utilize either 

hydrogen gas jet cooling or water quenching. Water quenching can achieve substantially faster 

cooling rates and therefore produce martensite in dual phase steels containing much lower 

concentrations of alloying elements. The primary benefit of using low alloy dual phase steels is 

cost; however, a reduced alloy content can also give the steel better weldability and galvanizing 

behaviour [71]. 

 

Although specific heat treatment parameters are proprietary information and therefore not 

available from the steel producers, it is still possible to obtain estimates of these values based 

on the public work of other researchers. Tobiyama et al. [72] have shown that the empirical 

formulas developed by Andrews [73] can be used to approximate the Ac1, Ac3, and martensite 

start temperatures for low carbon dual phase steels. These formulas are presented in Equations 

5.2 through 5.4.   

 

                                                                (5.2) 

                                                              (5.3) 

                                                      (5.4) 
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These equations were used to calculate the Ac1, Ac3, and martensite start temperatures for each 

commercial steel. Calculated temperature values are presented in Table 5.4. Based on these 

values, it appears that the intercritical temperature range for all of the steels is fairly similar. The 

greatest differences seem to be present in the martensite start temperatures. 

 

 
DP600 DP780 DP980 

ID# 1 2 3 4 5 6 7 

Ac3 (°C) 859.5 857.0 854.9 856.8 839.7 842.5 851.6 

Ac1 (°C) 721.6 724.8 707.0 713.5 717.4 717.0 721.9 

Ms (°C) 466.2 458.8 441.8 438.2 418.7 427.7 424.7 

Table 5.4: Calculated values for Ac1, Ac3, and Ms 

 

Cooling rates are much more difficult to estimate, and therefore only general comparisons 

between similar steels are possible. An equation has been developed by Irie et al. [74] to 

describe the manganese equivalent of low carbon steel containing additional alloying elements 

critical to heat treatment. Equation 5.5 illustrates that both chromium and molybdenum are 

more effective in reducing the critical cooling rate as compared to manganese. 

 

                                (5.5) 

 

The manganese equivalent for each of the commercial steels has been calculated in Table 5.5. 

These values, combined with the knowledge of the carbon content of each steel indicate that 

the critical cooling rates of steels 3 and steel 5 are likely lower than the other steels. Beyond this 

simple inference, it is not possible without more detailed thermo-mechanical experimentation 

to obtain quantitative knowledge of the cooling rates used by the steel producers.  

 

 
DP600 DP780 DP980 

ID# 1 2 3 4 5 6 7 

Manganese (%) 1.0 0.9 1.8 1.8 1.7 1.4 1.5 

Manganese Equivalent (%) 1.0 1.0 2.6 1.8 2.2 1.4 1.6 

Table 5.5: Calculated values for Mneq 
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5.2.2 Discontinuous Yielding 

One of the key features of dual phase steels is their continuous yielding behaviour. By 

eliminating yield point elongation normally found in mild and high strength low alloy steels, 

finished parts are able to be produced with more uniform strain distributions [20]. As described 

in Section 2.1.5, the absence of yield point elongation in dual phase steels is due to the large 

number of free mobile dislocations created within the microstructure upon heat treatment. 

From the tensile curves seen in Figure 4.1, it is apparent that both the DP600 and DP780 steels 

from supplier A demonstrate signs of discontinuous yielding. It indicates that the heat treatment 

used by this supplier included a tempering step following quenching. 

 

Specimens which have been tempered show discontinuous yielding behaviour due to the 

diffusion of interstitial solute atoms to the free dislocations generated during intercritical 

annealing. Gunduz [75] showed that for tempering temperatures between 100 °C and 600 °C, 

that discontinuous yielding began to reappear somewhere between 200 °C and 300 °C. 

Comparison of the tensile curves obtained from supplier A’s steels to those generated by 

Gunduz, seen in Figure 5.11, gives some indication of the degree to which supplier A tempered 

their steels. The DP600 from supplier A appears to have received a greater level of tempering 

than the DP780. 

 

 

Figure 5.11: Effect of tempering temperature on tensile behaviour [75] 
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Tempering of dual phase steel sheet can often occur during the galvannealing process, in which 

the steel is heated to promote interdiffusion between the base material and the zinc coating. 

The steel sheet used in this work was not zinc coated and therefore the reason for this 

tempering is likely a function of the intercritical annealing process of supplier A. Fang et al. [76] 

showed that the tensile strength of a dual phase steel decreases with increasing tempering 

temperature, while both the uniform and total elongations increase. It is possible that in order 

to achieve finished steel with both the desired strength and elongation, that producer A 

subjected their steel to a tempering treatment after intercritical annealing. The chemical 

composition results discussed in Section 5.2.1 also seem to support this fact. Rashid [22] 

commented that the extent of autotempering is lower in water quenched dual phase steels and 

that ductility is usually improved in these steels at the expense of strength by a short tempering 

treatment below 500 °C. The lack of alloying elements in the DP600 and DP780 of producer A 

indicates that they were probably subjected to water quenching. It therefore seems likely that 

they were made to undergo tempering after quenching in order to obtain the required strengths 

and elongations. 

 

5.2.3 Correlation of Mechanical and Microstructural Properties 

In order to characterize the effects of microstructural differences on the mechanical properties 

of the commercial dual phase steels, plots were generated to determine levels of correlation. 

From the review presented in Section 2.1.4, it is known that martensite volume fraction is 

generally considered to be the most important parameter influencing the mechanical properties 

of dual phase steels. For the steels examined in this work, Figures 5.12 and 5.13 plot strength 

and elongation against martensite volume fraction.  
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Figure 5.12: Comparison of yield/tensile strength vs. martensite volume fraction 

 

 

Figure 5.13: Comparison of uniform/total elongation vs. martensite volume fraction 

 

As expected, the general trend shows that as the martensite volume fraction is increased both 

yield and tensile strength increase, while uniform and total elongation decrease. When a linear 

regression is performed on each data set, it becomes apparent that the correlation between 

strength and martensite volume fraction is quite good, while the correlation between 

elongation and martensite volume fraction is not. It seems to match the findings of both 

Mazinani et al. [31] and Korzekwa et al. [35] who showed that strength was a linear function of 

martensite volume fraction while elongation was not. Mazinani et al. commented that the 

strength of a dual phase steel was only affected by the volume of martensite in the 
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microstructure and fairly insensitive to changes in the morphology of that martensite. 

Elongation on the other hand was directly affected by both the shape and distribution of the 

martensite, with banded microstructures being the most detrimental to performance. As such, it 

is apparent that the commercial steels tested in this work exhibit differences that are related to 

their microstructure. By observation of the microstructure, it should be possible to determine 

why the differences in elongation values arise. 

 

5.2.4 Martensite Banding 

As discussed in Section 2.1.3, the presence of banding in intercritically annealed dual phase 

steels is a result of the hot band microstructure used in its creation. This banding is due to the 

segregation of alloying elements during the production of the hot band sheet. It has been 

established that manganese is the most important element in determining the level of banding 

in steel, and has been confirmed based on the observations of the current commercial steels. 

Figure 5.14 plots the level of martensite banding, given by the anisotropy index calculated in 

Section 4.5, against the manganese content for each steel. 

 

 

Figure 5.14: Anisotropy index vs. manganese content 

 

The linear correlation confirms that level of banding in dual phase steels is influenced by 

manganese content.  Inspection of the graph also reveals some interesting findings about the 
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level of banding in each steel grade. The amount of banding in the DP780 steels is actually 

greater than that observed in the DP980 steels. While the DP980 steels contain greater amounts 

of martensite, this martensite is less banded and more evenly distributed throughout the 

microstructure. The reason for this distribution can likely be explained by the amounts of 

manganese producers must add to assist in the heat treatment of the steels. Because the DP980 

steels contain additional carbon compared to the DP780 steels, they do not require as much 

manganese to sufficiently lower the critical cooling rate of the steel. The DP600 outlier on the 

chart corresponds to steel 3 which has been discussed in detail in Section 5.2.1. As a 

consequence of the additional manganese and alloying elements required for heat treatment, 

the final dual phase steel displays significant banding. 

 

The effect of martensite banding on the deformation and fracture behaviour of dual phase 

steels has been investigated by several researchers. The presence of martensite banding has 

been shown to influence the locations at which the nucleation of voids occurs. Melander [77] 

has shown that the fracture strain of a material is influenced by the randomness of the 

distribution of voids in ductile fracture. Instead of being random and uniform, Szewczyk et al. 

[70] demonstrated that voids become concentrated along the martensite bands causing failure 

to occur sooner than if the martensite particles were more uniformly distributed. 

 

The level of banding in each of the commercial DP600 steels was more closely investigated in 

order to determine its effect. The fracture surface micrographs obtained from tensile tests can 

be seen in Figure 5.15. It is evident that both the level and type of martensite banding can be 

observed at the fracture surface. As expected, steel 3, which has the highest anisotropy index 

value, clearly shows the most severe impact of banding. The fracture surface contains many 

parallel striations characteristic of void nucleation. In addition, there are several areas where it 

appears void coalescence and growth has occurred along a martensite band. As a consequence, 

steel 3 displayed the worst uniform elongation of the DP600 steels tested. The level of banding 

in steel 2 does not appear to be adequately described by the anisotropy index. While the 

quantitative value for banding is low, observation of the actual band morphology, seen in Figure 

5.16, illustrates that the banding consists of just one single large martensite band through the 
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centre of the microstructure. This large band is very apparent on the fracture surface in Figure 

5.15. It is likely that the majority of voids nucleated and grew at this location, resulting in the 

large depression seen on the fracture surface. 

 

  

 

Figure 5.15: Tensile test fracture surfaces of (a) steel 1, (b) steel 2, and (c) steel 3 

 

(a) (b) 

(c) 
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Figure 5.16: Optical micrograph of transverse plane in steel 2 

 

Figure 5.17 shows a comparison of the cross sections of the tensile fractures for steel 1 and steel 

3. It can be seen that the number and distribution of voids is different for each steel. The voids 

in steel 1, which is a very lightly banded material, are very random in nature. Close to the 

fracture surface there is no apparent favourable orientation as they are quite uniformly 

distributed. The void pattern in steel 3 on the other hand is clearly indicative of the effects of 

martensite banding. The voids in the vicinity of the fracture surface show a distinct linear 

orientation following the martensite bands along the rolling direction. 

 

 

Figure 5.17: Fracture cross sections of (a) steel 1 and (b) steel 3 

 

When the values of uniform elongation for the three DP600 steels are compared, it is apparent 

that the level of banding in the steel has a definite and sizeable impact on the mechanical 

(a) (b) 
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properties. Steel 1, which showed very little sign of martensite banding, had a uniform 

elongation of 16.2% while the banded steels 2 and 3 had uniform elongations of 13.8% and 

13.4%, respectively. It is likely that, if steel 2 and steel 3 were formed into tubes and made to 

undergo bending, their performance would be worse than the results obtained for the tubes 

made from steel 1. Martensite banding was observed to influence the formability in tube 

bending; therefore it is expected that by using more severely banded steel tubes, tube bending 

performance will be less consistent and reliable. 

 

5.2.5 Martensite Carbon Content 

As discussed in Section 2.1.4, the strengths of the individual phases within a dual phase steel 

directly influence the behaviour of the composite material. In order to evaluate the strength of 

the martensite phase within dual phase steel, it is important to determine its carbon content. 

Martensite carbon content can be calculated utilizing the methodology of Speich and Miller [32]. 

Taking a mass balance for a dual phase steel yields Equation 5.6. 

 

                                  (5.6) 

 

By utilizing the assumptions that the density of each phase is the same and that the carbon 

content in ferrite is negligible, this equation can be reduced to Equation 5.7. 

 

                   (5.7) 

 

where |%C|m is the carbon content of the martensite, |%C|a is the carbon content of the alloy, 

and vm is the martensite volume fraction. 

 

The validity of these assumptions has been tested by El-Sesy et al. [20]. Their results, shown in 

Figure 5.18, show that carbon content values calculated using Equation 5.7 match closely the 

actual carbon content measured using electron probe microanalysis. 
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Figure 5.18: Martensite carbon content as measured by El-Sesy et al. [20] 

 

Following this methodology, martensite carbon content values for each commercial steel have 

been calculated in Table 5.6. Upon inspection, it is observed that, with the exception of steel 3, 

the carbon content of the martensite decreases as the strength grade increases. This 

observation implies that although the higher strength grades of dual phase steels have higher 

overall strengths, the martensite phase in these steels is actually weaker. 

 

 
DP600 DP780 DP980 

ID# 1 2 3 4 5 6 7 

MVF (%) 14.1 16.2 18.5 21.2 26.2 34.6 38.1 

C (%) 0.1 0.12 0.09 0.11 0.15 0.16 0.16 

Martensite C (%) 0.71 0.74 0.49 0.52 0.57 0.46 0.42 

Table 5.6: Martensite carbon content calculated for each steel 

 

The effects of a lower carbon content martensite have been examined by several researchers. 

Avramovic-Cingara et al. [44] commented that a lower carbon martensite is likely to deform 

more compatibly with the ferrite matrix, while a higher carbon martensite can lead to 

decohesion at the phase interfaces. High carbon martensite, according to Mairea et al. [41], 

reduces the overall ductility of the steel. Chawla et al. [69] found that a softer martensite phase 

allows larger post necking strains after uniform elongation. It is a likely explanation for the large 
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post uniform strains exhibited by steel 3. The substantially lower carbon content of the 

martensite in this steel increases its capacity to deal with imposed deformation, allowing for less 

void nucleation and growth by the separation of the ferrite/martensite interfaces. 

 

5.3  Measurement of Individual Phase Hardness 

Although researchers have investigated the effects of martensite strength on the deformation 

behaviour of dual phase steels, their knowledge of the true strength of the martensite phase has 

been limited. The primary method for determining martensite strength has been through the 

use of bulk martensitic steel samples which contain the same carbon content as that calculated 

for the martensite phase within the dual phase steel. While this may provide an acceptable 

approximation, a more desirable method would be to directly measure the strength of the 

individual phases within dual phase steel, foregoing the use of analogue samples.  

 

5.3.1 Micro Indentation 

In an initial attempt to measure the hardness of both the ferrite and martensite phases within 

dual phase steel, micro hardness testing was performed. Using both Vickers and Knoop 

indenters with loads of 10 grams, indentations were made on several of the commercial dual 

phase steels.  A micrograph illustrating a series of Vickers indentations performed on steel 1 can 

be seen in Figure 5.19. It is apparent based on this micrograph that the indentations are too 

large to adequately describe the hardness of the ferrite and martensite separately. The 

indentations shown in Figure 5.19 are over 10 m in size; they are larger than the mean ferrite 

grain size and consequently also much larger than the martensite particles. They are also not 

well defined, making the calculation of meaningful hardness values impossible. Similar results 

were also obtained for the Knoop indentations. The narrow indentations did not provide 

sufficient detail at low loads to obtain valid hardness results.  
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Figure 5.19: Vickers micro indentations attempted on individual phases 

 

It has been claimed by El-Sesy et al. [20] that they were able to obtain individual phase hardness 

measurements using micro indentation equipment. Based on the present work on commercial 

steels, this claim seems doubtful. Although they did not present micrographs of their steels, it is 

unlikely that the size of their martensite particles was large enough to be adequately described 

by the Vickers micro indenter. The experience in the present work matches much more closely 

the work of Szewczyk et al. [70], who found that micro indentations were too large to 

characterize martensite particles, and that the hardness values obtained for ferrite grains 

reflected their constrained hardness with influences from the grain boundaries. The current 

work supports the conclusion that micro hardness techniques are not on a scale small enough to 

adequately characterize individual phases, and therefore smaller scale techniques such as nano 

indentation are required. 

 

5.3.2 Nano Indentation 

Traditionally, the use of nano indentation has been primarily focussed on thin films and hard 

surface coatings. Nano indentation on multiphase steels has not been widespread, and 

therefore the techniques by which to carry it out have not been well described in literature. As 
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such, procedures both to prepare the samples, as well as operate the nano indentation 

equipment had to be developed for the current work using a trial and error process. 

 

In order to identify the specific phases in which each indentation was being placed, initial 

samples were etched with 2% Nital to reveal their microstructure. The intent was to indent the 

etched sample in several locations, and then observe those indentations using a scanning 

electron microscope. This technique was attempted on one sample from each strength grade, 

and in all cases turned out to yield very poor results. Hardness values obtained from the 

indentations showed very little distinction between the ferrite and martensite phases. 

Additionally, the reduced modulus values were found to range from 50 GPa to over 400 GPa, 

indicating that the results were clearly flawed.  Problems also arose with indentations being 

absent from locations in which they were thought to be indented. Figure 5.20 shows a 

micrograph of a six by six grid of nano indentations placed on the etched surface of the DP980. 

While several indentations are clearly visible, many more are absent. Although data was 

obtained for the loading and unloading of the indenter, the lack of visible indentations on the 

surface of the material further confirms the invalidity of this technique. 

 

 

Figure 5.20: Nano indentations on DP980 
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As mentioned in Section 2.3.1, the small size of the nano indenter tip makes it very sensitive to 

the surface roughness of the sample being indented. As the indenter is lowered towards the 

sample surface, any contact with a raised peak can generate invalid results. This may explain 

why the results on the etched samples were poor. The etching process preferentially removes 

material from the sample surface in order to differentiate the phases. It is possible that the 

effects of the etching produced a surface that was incompatible with the nano indenter and 

thus generated bad results. Given that data was collected for the missing indentations in Figure 

5.20, it is likely that the indenter made contact with the material surface; however, this contact 

was not sufficient to generate a good indentation. 

 

In order to test this hypothesis, samples from each steel grade were treated by polishing only, 

with no subsequent etching. These unetched samples were then indented with the same series 

of indentations that had been placed on the etched samples. The results obtained from the 

unetched samples were considerably different than those on the etched samples, and pointed 

to the possibility of identifying the phase in which the indentation was placed strictly by 

interpreting the hardness value. An example of two load-displacement curves for indentations 

obtained from the unetched DP600 can be seen in Figure 5.21. The values calculated for both 

the hardness and reduced modulus can be found in this figure. While the elastic modulus values 

are nearly equal, the hardness values are distinctly different. Elastic modulus is a function of the 

atomic bonds within a material, and therefore fairly independent of crystallography. Although 

considerably harder, martensite has the same elastic modulus as ferrite [10]. It therefore stands 

to reason that the indentations made in Figure 5.21 are in fact good indentations which have 

managed to make contact with separate phases within the dual phase microstructure. By strictly 

observing the hardness values, while making sure that the elastic modulus values are consistent, 

it appears to be possible to characterize the individual phases within a dual phase steel without 

requiring microscopic observation of the indentations.  
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Figure 5.21: Load vs. depth curves for DP600 

 

5.3.3 Comparison of Hardness Values 

Given the data presented for martensite carbon content in Table 5.6 in Section 5.2.5, it was 

implied that for the commercial dual phase steels tested that the strength of the martensite 

phase decreased as the strength grade of the steel increased. In order to experimentally confirm 

this, and to further enhance the understanding of the nano indentation technique on dual phase 

steels, indentations were performed on each steel grade offered by supplier A. These 

indentations were placed in eight by eight grid patterns located within 30 m by 30 m squares. 

Results from these indentations can be found in Figure 4.16, Figure 4.18, and Figure 4.20. 

Observation of the histograms displaying the measured reduced modulus values illustrate that 

for all three steels, the modulus values were normally distributed around a peak of 180 GPa. 

Using the relationship shown in Equation 2.8, it can be shown to correspond quite closely with 

the accepted elastic modulus value for steel of 200 GPa. Observation of the histograms 

displaying the measured hardness values reveals several unique features. For the sake of clarity, 

these histograms have been formatted and combined in Figure 5.22.  
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Inspection of Figure 5.22 reveals several interesting and important features. First, each curve 

possesses one major peak located at 3.5 GPa followed by one or more peaks at higher hardness 

values. The major peak represents indentations within the ferrite phase of the steel, while the 

subsequent peaks represent indentations within the martensite phase. Given that all three 

steels are produced by the same supplier, and are from the same carbon-manganese family, it is 

not surprising that the ferrite phase in each steel possesses the same hardness. It is expected 

that the dislocation densities within the ferrite phase of each steel are similar. Additionally, 

none of the three steels contain precipitate forming elements which would presumably cause 

the ferrite peak to shift to higher hardness values. 

 

 

Figure 5.22: Comparison of nano hardness distributions for different steel grades 

 

The relative heights of the ferrite and martensite peaks are indicative of the volume fractions of 

the two phases within the microstructure. As the strength grade of the steel is increased, 

martensite volume fraction is increased. As a result, the height of the martensite peak increases, 

indicating more indentations are landing in the martensite phase, while the height of the ferrite 

peak decreases by a corresponding amount. 
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The prediction regarding the strength of the martensite phase in each steel grade can be 

confirmed from the curves in Figure 5.22. It was shown that for the steels from producer A, the 

carbon content of the martensite for the DP600, DP780, and DP980 was 0.71%, 0.52%, and 

0.46%, respectively.  When looking at the location of the martensite peaks in Figure 5.22, it can 

be seen that as the strength grade of the steel is increased, the martensite peak is shifted 

towards lower hardness values. This observation confirms the predicted trend towards softer 

martensite as the strength grade of the steel is increased. Taking an average of the hardness 

values over the range of martensite indentations yields average martensite hardness values of 

6.2 GPa for DP600, 5.0 GPa for DP780 and 4.7 GPa for DP980.  

 

As previously mentioned, there is a paucity of research presently available describing the nano 

indentation process on dual phase steels. As such, there is little data for comparison with the 

present values for ferrite and martensite hardness. Hernandez et al. [78] used nano indentation 

to measure the hardness of spot welded DP980 steel. They found ferrite hardness to be in the 3 

GPa range, while their martensite ranged from 6 to 8 GPa. Chen et al. [79] indented 780 MPa 

TRIP steel and found ferrite hardness ranging from 2.6 to 3.1 GPa while martensite hardness 

was 5.5 GPa. Fernemont et al. [80] indented TRIP steels with varying silicon contents and found 

ferrite hardness to be 4.8 GPa while their martensite hardness was extremely high at 16.7 GPa.  

 

A direct comparison of nano hardness values for each phase between the different groups of 

researchers is not particularly useful. The first problem arises from the fact that the indenter 

loadings used by each researcher are not constant. As described in Section 2.3.1, the 

indentation size effect can come into play at small loads; it is therefore only truly valid to 

directly compare testing done with the same loads. Additional problems also arise due to the 

unique chemistries and thermal histories of each material, both of which can directly impact the 

hardness of each phase. The comparison of hardness values between different types of 

multiphase steels means that variations in these parameters will likely be large. 

 

From the values presented above, it is interesting to note that the ferrite hardness values are 

much more similar between the steels presented from literature and those tested in the present 
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work. Ferrite is less sensitive to changes in alloy carbon content and thermal treatment; 

therefore it is no surprise that the values across all of the different works are similar. The 

hardness of martensite on the other hand is quite sensitive to both alloy chemistry and thermal 

treatments. For example, it is known that during even short tempering treatments, carbon 

within the martensite is able to segregate to dislocations or twin boundaries, lowering its 

hardness [23]. As described in Section 5.2.2, indications of tempering were observed in both 

DP600 and DP780 from producer A. It is unknown to what degree the hardness of the 

martensite within these steels was affected; however, it is a clear illustration of the challenges 

associated with comparing hardness values across different steels. 
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Chapter 6: 

Conclusions, Recommendations, and Contributions to the Field 

 

The following chapter summarizes the conclusions made from the current work, and proposes 

several ideas for future research directions. Finally, a brief synopsis is given describing the 

unique contributions this research has provided to the overall body of knowledge on dual phase 

steels. 

 

6.1 Conclusions 

Based on the experiments performed and the observations carried out during this work, the 

following conclusions can be made: 

 

1. The rotary draw mandrel bending results for dual phase steel tubes show that bending 

success is stochastic in nature. For a given steel strength grade and bend ratio, the tube may be 

successfully bent some of the time, and fail others. There appears to be a minimum bend ratio 

to which each steel grade can reliably be bent. These were found to be 2.0 for DP600 and 3.1 for 

DP780 and DP980. As the bend ratio was decreased, the reliability of the bending process also 

decreased. 

 

2. Bending success appears to be affected by the same microstructural factors that affect 

samples in uniaxial tension: primarily inclusions and martensite banding in the extrados of the 

bent tube. Large numbers of inclusions and the presence of martensite banding are detrimental 

to tube bending performance. 

 

3. Differences exist in both the mechanical properties and the microstructures of dual phase 

steels from different suppliers falling under the same strength grade. The microstructural 

differences appear to affect elongation more than strength. Strength is primarily dictated by 

martensite volume fraction, while elongation is reduced given the presence of martensite 
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banding. Suggestions regarding steels from specific steel producers have been provided to Vari-

Form. 

 

4. It is possible to investigate and characterize the individual phases within commercial dual 

phase steels using nano indentation. Elastic modulus measured via nano indentation is similar 

across both ferrite and martensite phases, while hardness is distinctly different. 

 

5. For all three steel strength grades, average ferrite hardness was found to be 3.5 GPa. Average 

martensite hardness was found to be 6.2 GPa for DP600, 5.0 GPa for DP780 and 4.7 GPa for 

DP980. These values confirmed the trend predicted based on the values calculated for 

martensite carbon content. 

 

6.2 Recommendations for Future Work 

The following recommendations are made for future work which can build on and enhance the 

work performed in this study: 

 

1. Use measured tube bending strains to validate FEA model of dual phase steels undergoing 

rotary draw mandrel bending. 

 

2. Extend comparison of commercial materials to include additional testing methods such as 

hole expansion, dome stretching and stretch bending. These methods will provide a more 

complete picture of the ability of each steel to undergo commonly encountered industrial 

forming processes. 

 

3. Acquire dual phase steels of each strength grade from additional producers. It will allow 

further development of a comparative database of commercial steels.  

 

3. Perform nano indentation testing on more dual phase steels and compare the hardness 

values of ferrite and martensite for each of them.  
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4. Attempt to utilize multiple nano indentations within single ferrite grains and martensite 

particles to develop an understanding of their localized heterogeneities. 

 

6.3 Unique Contributions to the Field 

Although dual phase steels have been well researched over the past five decades, the current 

work contributes to advances in understanding of these steels in two fashions. First, knowledge 

of microstructural behaviour of dual phase steels undergoing tube bending and hydroforming 

has been obtained. Many of the same factors that affect material performance in uniaxial 

tension were found to affect performance in tube bending. As such, past and future research of 

dual phase steels utilizing tensile testing can be applied to provide enhancements to tube 

bending and hydroforming performance. Secondly, with the use of commercially available nano 

indentation equipment, it was shown that the ferrite and martensite phases in dual phase steels 

of different strength grades were not identical. The hardness of the martensite phase widely 

varied based on the carbon content and martensite volume fraction of the steel. The 

development of techniques to characterize dual phase steels on a sub-micron scale allows for 

further advances in the understanding of their micromechanical behaviour in the future. 
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