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ABSTRACT

Sidewall curl is a type of springback deformation resulting from successive bending-
unbending when a sheet metal is drawn over a die radius or through a drawbead.
In this study, the sidewall curl in stamped AHSS parts (TRIP780 and DP980) was
predicted using four models from LS-DYNA material library: 24, 36, 37, 125 and a
UMAT in ABAQUS based on the Yoshida-Uemori model. Various material charac-
terization tests were analyzed to identify the input parameters. Plane-strain channel
sections were drawn in a specialized die with adjustable drawbeads and various die
entry radii and compared with simulation results. By increasing drawbead penetra-
tion, the springback angle decreased but the sidewall curl increased in the channel
sections. For simulations in LS-DYNA, MAT37 with increased integration points
predicted the most accurate results. The YU model in ABAQUS showed less than
8% error compared to the predicted sidewall curl for channel sections with shallow

drawbeads.
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CHAPTER 1

Introduction

1.1 Overview

The ongoing need for vehicle weight reduction and safety improvement has re-
sulted in the use of advanced high strength steels (AHSS) such as Dual Phase
(DP) and TRansformation Induced Plasticity (TRIP) sheet metals (along with alu-
minum). The advanced performance of these steels in ductility and strain hardening
characteristics provides an opportunity to stamp complex geometries and improve
performance of automotive body in crash, ductility and strength while reducing the
overall weight. This increased formability of AHSS materials is their main advantage
over conventional HSS. However, specific material characteristics have increased the
challenges encountered when forming parts made from such steels.

One of the main challenges in industrial sheet metal forming processes is to
satisfy design specifications without causing defects such as splits, wrinkling, skid
lines, surface distortion and springback. From these, the springback deformation
is unavoidable for all sheet metals because this type of elastic recovery appears
naturally as a result of the unbalanced stresses that develop in the part as well as
through-thickness just after its removal from the die. Along with the increase in
strength and formability of sheet metals, the occurrence of severe distortions like
springback and side-wall curl also increases. These complex deformations are the
most significant factors that change the shape of parts after forming and make it
difficult to achieve the required dimensional accuracy for the final product. This

can lead to a product in which loss of dimensional accuracy causes difficulties to
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join the part in a sub-assembly or even a loss of function in downstream operations.
Therefore tooling revisions during die design phase are required in order to provide
formed parts of close tolerances. This necessitates accurate prediction of springback
and sidewall curl specially for parts made of advanced high strength sheet metals.

Spring back is an undesirable change in shape that results from non-uniform
deformation across a sheet metal when it is formed, while sidewall curl results from
successive bending and straightening which occurs when the sheet metal is drawn
over a die radius or through drawbead. Although springback is the more general
term when referring to discrepancy between the shape of the fully formed part when
it is still in the closed die and the unconstrained shape of a part, side-wall curl is a
concern to manufacturers when forming certain groups of automotive parts such as
rails and drawn parts, because of the difficulty to join non-flat surfaces.

Nowadays computer aided simulation tools based on finite element method are
regularly employed in the design of stamping dies for sheet metal parts in the auto-
motive industry. These computer tools allow the design engineer to investigate the
process and material parameters controlling the material flow over the die surfaces.
Nevertheless, the reliability of predicted formability and the accuracy of the esti-
mated deformed geometry for a given stamped part depend on the computational
modeling approach that is selected. Equally important is how fast the results can

be obtained and implemented in the design stage (CPU time).

1.2 Sidewall curl and springback

Once a deformed sheet-metal part is removed from the dies in which it was
formed, the elastic component of strain is recovered. The discrepancy between the
fully loaded shape at the end of the forming stage and the unloaded configuration is
called springback. A complex form of springback in sheet forming occurs when the
sheet undergoes both bending and unbending deformations. The inside surface of the

sheet will incur more tendency to compressive stresses while the outer more tendency
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to tension. This phenomenon takes place when the sheet first makes contact with the
tool surface (bending) and then leaves the tool surface and partially or completely
loses its curvature (unbending) [43], and is referred to as “sidewall curl”. In such
a bending and unbending situation, the deformation histories for both sides of the
material are unlikely to be the same, resulting in curling.

Therefore sidewall curl is the curvature created in the sidewalls of a channel.
Sidewall curl can cause difficulties when assembling mating parts such as rails and
channel sections, since assembly requires tight tolerances for efficient spot welding.
In channel forming, sidewall curl is superimposed on the more common type of
springback which is sidewall opening. As shown in Fig.1.1.a, b & ¢, wall opening
refers to the change in the angle between the two sides of a bend line compared to
the as-formed angle whereas in wall curl a straight sidewall becomes curved. During
forming, the sidewall is subjected to plastic bending under tension as it is drawn
over a die or punch radius or through a draw bead [22]. The primary cause is uneven
stress distribution or stress gradient through the thickness of the sheet metal. This
stress is generated during the bending and unbending process.

Fig.1.2 describes the origins of this phenomenon when sheet metal is drawn over
the die radius (a bending-unbending process). The deformation in side A changes
from tension (A;) during bending to compression (As) during unbending while the
deformation in side B changes from compression (Bj) to tension (Bs) during bending
and unbending. As the sheet pulls over the die radius into the sidewall, side A is in
compression and side B is in tension although both sides may have similar amount
of strains. Once the punch is retracted (unloading), side A tends to be stretched
and side B to be compressed due to elastic recovery. This difference in springback
between sides A and B would lead to a non-uniform stress distribution which is the
source of sidewall curl.

For higher strength metals, the magnitude and difference in elastic recovery

between sides A and B will be greater which will result in greater sidewall curl. The
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Figure 1.1: Different types of sidewall springback: a)wall opening, b)wall curl, [1]

STRESS

Figure 1.2: Origin and Mechanism of Sidewall curl, [1]

strength of the deformed metal depends not only on the as-received yield strength,

but also on the work hardening capacity, which is one of the key differences between
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conventional HSS and AHSS. In general, springback and sidewall curl experienced
in AHSS parts is greater than what is seen in mild steel or HSLA (although not as

great as aluminum) with higher strength-to-modulus ratios (Fig.1.3).

F 3
o R
Hish Sirength $tesl
Elastic strain of mild stesl 1 ) P
Elastic strain of hich atrenpthostes] ) ! L

Figure 1.3: Elastic recovery comparison between AHSS and MS during unloading, [1]

1.3 Springback of Advanced High Strength Steels

Automotive steels can be classified in several different ways. One way is a metal-
lurgical designation. Common designations include low-strength steels (interstitial-
free and mild steels); conventional HSS (carbon-manganese, bake hardenable, high-
strength interstitial-free, and high-strength, low-alloy steels); and the newer types of
AHSS (dual phase, transformation-induced plasticity, complex phase, and marten-
sitic steels). Additional higher strength steels for the automotive market include
ferritic-bainitic, twinning-induced plasticity, hot-formed, and post-forming heat-
treated steels (Fig.1.4).

Advanced high strength steels (AHSS) are defined as grades of steel with tensile
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Figure 1.4: Schematic of AHSS steels compared to conventional HSS and mild steels, [1]

strength higher than 500 MPa and complex microstructures such as bainite, marten-
site, retained austenite, etc. and exclude the classical HSLA steels. The principal
difference between conventional HSS and AHSS is their microstructure. Conven-
tional HSS are single phase ferritic steels. AHSS are primarily multi-phase steels,
which contain ferrite, martensite, bainite, and/or retained austenite in quantities
sufficient to produce unique mechanical properties. Some types of AHSS have a
higher strain hardening capacity resulting in a strength-ductility balance superior
to conventional steels. Other types have ultra-high yield and tensile strengths and
show a bake hardening behaviour.

The microstructure of DP steels is composed of ferrite and martensite, while the
microstructure of TRIP steels is a matrix of ferrite, in which martensite and/or bai-
nite and more than 5% retained austenite exist. DP steel has good formability due to
high volume fraction of ferrite with high ductility and has good spot weldability due
to the small amount of alloying elements. TRIP steel has extremely high elongation
and n-values relative to DP grades providing opportunities for accommodating com-
plex part geometries at strength levels not possible with the equivalent DP strength,
but present greater challenges in weldability due to higher alloying content than DP
grades. A comparison between three types of steels with approximately similar yield

strength can be seen in Fig.1.5, where TRIP has a lower initial work hardening rate



1.3. Springback of Advanced High Strength Steels 7

than DP, but the hardening rate persists at higher strains whereas that of DP begins
to diminish.
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Figure 1.5: TRIP350/600 with a greater elongation than DP350/600 and HSLA350/450,
[1]

The terminology of World AutoSteel organization was used here for identification
of steel grades, i.e. by metallurgical type, minimum yield strength (in MPa), and
minimum tensile strength (in MPa).

The introduction of AHSS materials have created additional challenges to the
springback problem. Many reports state that springback and sidewall curl are much
greater for AHSS than for traditional HSS. However, a better description would be
that the springback of AHSS is different from springback of HSS steels and knowl-
edge of different mechanical properties and material models is required. An example
of this difference is shown in Fig.1.6 where two channels were made sequentially in
a draw die with a post on a pad to attain part print for HSLA 350/450 steel. The
strain distributions between the two parts were very close with almost identical
lengths of line. However the stress distributions were very different because of the
mechanical property differences between DP and HSLA steels.

The difference in strain hardening between conventional HSS and AHSS explains
how the relationship between angular change and sidewall curl can alter part be-
haviour. Fig.1.7 shows the crossover of the true stress - strain curves when the two

steels are specified by equal tensile strengths. The AHSS have lower yield strengths
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Figure 1.6: Two channels made sequential in the same die, [1]

than traditional HSS for equal tensile strengths. At lower strain levels usually en-
countered in angular change at the punch radius, AHSS have a lower level of stress

and therefore less springback.

DP,TRIP

N

-j"’ — . —

[
Side Wall Curl

Precipitation
hardened conv. HSS

True Stress

—_— -~

I
Angular Change

True Strain

Figure 1.7: Elastic recovery comparison between AHSS and MS during unloading, [1]

Sidewall curl is a higher strain event because of the bending and unbending of
the steel going over the die radius and possible drawbeads. For the two stress-strain
curves shown in Fig.1.7, the AHSS reaches a higher stress level with increased elastic

stresses. Therefore the sidewall curl is greater for AHSS as also compared in Fig.1.8.
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Figure 1.8: The AHSS have greater sidewall curl for equal tensile strength steels, [1]

These phenomena are dependent on many factors, such as part geometry, tool-
ing design, process parameters and material properties. However, the high work-
hardening rate of DP and TRIP steels causes higher increase in the strength of the
deformed steel for the same amount of strain. Therefore any differences in tool
build, die and press deflection, location of pressure pins and other inputs to the part

can cause varying amounts of springback - even for completely symmetrical parts.

1.4 Prediction and Compensation

As stated, forming of a part creates elastic stresses unless the forming is per-
formed at a higher temperature range where stresses are relieved before the part
leaves the die. Therefore some form of springback correction is required to bring
the part back to design intent. Several approaches have been proposed to control
springback.

The first approach is to apply an additional process that changes undesirable
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elastic stresses to less damaging elastic stresses. One example is a post-stretch
operation that reduces sidewall curl by changing the tensile-to-compressive elastic
stress gradient through the thickness of the sidewall to all tensile elastic stresses
through the thickness. Another example is over-forming panels and channels so that
the release of elastic stresses brings the part dimension back to design specifications
instead of becoming undersized. However, the maximum tension in the sheet is
limited by the fracture strength of the sheet material. Moreover this stretch-forming
technique is generally not sufficient to eliminate springback. Some studies also
suggest using a variable blank holder force during the punch trajectory. In this
method, the blank holder force is low from the beginning until almost the end of
the forming process and then it is increased at the end of the process such that a
large tensile stress is applied to the sheet material.

A second approach is to modify the process and/or tooling to reduce the level
of elastic stresses actually imparted to the part during the forming operation. An
example would be to reduce sidewall curl by replacing sheet metal flowing through
draw beads and over a die radius with a simple 90 degree bending operation.

A third approach for correcting springback problems is to modify the product
design to resist the release of elastic stresses. Mechanical stiffeners are added to the

part design to lock in the elastic stresses to maintain desired part shape.

Most of these approaches are applicable to all higher strength steels, however
the very high flow stresses encountered with AHSS make springback correction high
on the priority list [1]. In order to successfully manufacture a sheet metal part from
AHSS material with the desired shape and performance, an extensive knowledge
about the influence of various parameters is needed. Nowadays, to establish this
knowledge base, experimental try-outs and numerical simulations are used. Com-
puter simulation, based on the finite element (FE) method, is a powerful tool that

gives the possibility to observe effects of changing process parameters prior to the
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actual tool manufacturing. However, the key to success is to use material models
which can describe the behaviour of such materials sufficiently accurate to quanti-
tatively predict springback/sidewall curl during the design phase. Assuming that
springback can be predicted accurately, a “backward” analysis is still required to

work from these results back to an optimized die design (Fig.1.9).

—
Tool Design

Figure 1.9: Design process schematic, [4]

‘l

Product /

1.5 Objective and outline of thesis

The main objective of the current study was to evaluate the applicability of
different material models which are already developed for FE solvers like ABAQUS
and LS-DYNA (DYNAFORM) for stamping parts made of advanced high strength
steels like TRIP780 and DP980. For evaluation purposes, a channel draw die with
adjustable penetration drawbead inserts and several die entry radii - previously pre-
sented as Benchmark #3 (BM3) at the NUMISHEET 2005 International Conference
[27] - was used to form U-shaped channel sections that exhibit various levels of side-
wall curl. The severe deformation in the drawbead and over the die radius provided
a cyclic loading scenario as a combination of bending, unbending and reversed bend-
ing on the benchmark. The complex contact condition also presented a challenge
for evaluation of the contact model.

Numerical simulations of the channel draw process were carried out using dif-
ferent material models to determine how accurately they can predict the sidewall

curl for both grades of AHSS materials, i.e. TRIP780 and DP980. The input pa-
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rameters for these constitutive models were separately determined for both grades
of steel through a series of laboratory experiments and subsequent analysis.

The present thesis is composed of five chapters. The first chapter provides a
brief introduction to the general terms used in this study as well as its organization.
A review of the literature related to the prediction of springback phenomena in gen-
eral and sidewall curl in particular are presented in the second chapter along with
detailed explanations about the candidate material models for the AHSS panels,
i.e. TRIP780 and DP980. Chapter three covers the experimental studies performed
for the material characterization tests as well as channel draw forming experiments.
Numerical analysis of these experiments are explained in chapter four. Final discus-

sions and conclusions of this study are given in chapter five.
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CHAPTER 2

Material Models

2.1 Introduction

Metal forming researchers have investigated the prediction and compensation of
springback and sidewall curl since the early 1980’s. Different approaches such as
analytical, semi-analytical and finite element methods have been extensively em-
ployed in these studies to quantitatively analyze the problem. FEM is a relatively
time-consuming method whereas analytical solutions can instantaneously provide
a description of the deformation mechanism based on a theoretical model. How-
ever, analytical solutions are limited to simple applications and often only provide
qualitative estimation of springback.

It has been shown that many process variables such as friction, temperature,
variations in the thickness and mechanical properties of the incoming sheet metals
along with numerical parameters such as material model, element type and size,
integration algorithms, contact definition and convergence criteria, etc. affect the
accuracy and validity of the solution. Moreover, complex strain histories and highly
nonlinear deformation of the material during the forming process add to the difficulty
of predicting springback /sidewall curl. Therefore, it is important to critically review
related studies before selecting the appropriate solution method for the problem.

Results of the most recent studies on analytical and numerical solutions for
springback and sidewall curl problem are summarized in the rest of this chapter.
Special attention is given to the constitutive material models used to describe the

deformation behaviour of sheet metals, and in particular to models for cyclic loading
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and unloading of AHSS material which are necessary to accurately predict sidewall
curl. The most widely used approach is to carry out computer simulations that rely
on advanced material models to compute the stress distribution in the part and the

final geometry of the part after unloading.

2.2 Literature review

2.2.1 Early studies

Davies (1984, [15]) proposed a simple experimental apparatus to examine the
sidewall curl that occurred in low-carbon, HSLA 50 and 80 (with ultimate strengths
of 450 and 620 MPa), and DP-80 (850 MPa ultimate strength) steels. He found
that by imposing a plastic deformation, the curl can be eliminated as a result of
the removal of the nonuniform distribution of residual stresses. Hayashi and Tagagi
(1984, [29]) performed a series of experiments to investigate the effects of process
parameters on the formation of sidewall curl for high-strength steels. They also tried
to explain the deformation behaviour by stress/strain paths of different areas of the
blank. Liu (1988, [37]) obtained quantitative relationships between restraining force
and shape deviations, such as springback and side wall curl, in flanged channels
made of AKDQ and high strength streets. It was observed that shape deviation is
greatly reduced if the applied restraining force is beyond the yield strength of the
material. However, due to the restriction of die entrance and punch corners, this
condition cannot be readily achieved in the conventional bead system as sidewall
fracture intervenes. Therefore an intermediate restraining process was proposed to
form high quality flanged channels in one single operation through displacement
control, once the properties of the material are known.

In another study, Ayres (1984, [2]) investigated a process developed by GM re-
search fellows, known as ‘SHAPESET’, to reduce curl springback for a variety of
high-strength steel. In the SHAPESET process, the steel is first bent to shape

without drawbeads and without tension, which creates severe sidewall curl. This
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sidewall curl is then removed in a second strike or stretch operation with draw-
beads. Ayres’s study showed that SHAPESET can reduce sidewall curl springback
in straight rails made of dual phase steels (580, 670 MPa ultimate strength), by a
factor of ten, because a greater wall load could be applied without splitting. Al-
though the SHAPESET process was claimed not to be sensitive to the strength level
of steel, in a recent work at Auto/Steel Partnership, Michigan, Bzdok (2005, [5])
reported that DP600 MPa and lower strength steels were the only materials that
could be stretched with a two-break lockstep in the SHAPESET process. Higher-
strength materials (DP780 and DP980) required a four-break lock step for effective

stretch results, as shown in Fig.2.1.

Figure 2.1: Effect of stretching in SHAPESET process, [5]

A simple theory for side-wall curl, was proposed by Thompson and Ellen (1985,
[51]), which is based on the springback of a strip subjected to bending and straight-
ening, and saturates the strain-hardened plastic moment in the strip. Kim and
Thomson (1989, [33]) conducted a thorough literature review on both springback
and side-wall curl up to that time. Later, the finite element method was employed
by Tang (1987, [49]) for plane strain and axisymmetric parts without considering
the contact problem and compared with experimental results. Taylor et al. (1995,

[50]) used ABAQUS implicit and explicit finite-element modules to simulate NUMI-
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FORM’93 benchmark problems and compared the results.

Chu (1991, [12]) analyzed the effects of restraining force on the springback and
side-wall curl using an isotropic-kinematic hardening rule, and the significance of in-
dividual parameters on general springback phenomena was clearly identified. Pour-
boghrat and Chu (1995, [43]) made use of moment-curvature relationships derived
for sheets undergoing plane-strain stretching, bending and unbending deformations,
and employed the membrane finite element solutions to calculate the springback and

side-wall curl in 2-D draw bending operations (Fig.2.2).

Blank Holder

Figure 2.2: A schematic diagram of the 2-D draw bending operation, [43]

2.2.2 Analytical solutions

Cao and Buranathiti (2004, [6]) developed an analytical model for springback
prediction of a straight flanging process (Fig.2.3), by calculating the bending mo-
ment under plane-strain conditions. They used the model to predict springback for a

few HSS materials and compared the predicted results reported by other researchers.
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Figure 2.3: Schematic of straight flanging process, [6]

Chen and Tseng (2005, [10]) proposed a theoretical model for prediction of side-
wall curl occurring in the forming of a flanged channel subjected to bending, slid-
ing, and unbending. By numerically solving the governing equations, the amount of
sidewall curl was calculated from the stress distribution through the sheet thickness
and validated by experimental and finite element simulations. Lee et. al. (2007,
[35]) developed a semi-analytic hybrid method to predict springback in a 2D draw
bend test under plane strain conditions which superposed bending effects onto a
membrane element formulation (Fig.2.4). This method was also shown to be use-
ful for analyzing the effects of various process parameters such as the amount of
bending curvature, normalized back force and friction, as well as material prop-
erty effects such as hardening behaviour including the Bauschinger effect and yield
surface shapes. Good agreement was reported for a dual phase steel compared to
sprungback shapes. Springback was found to decrease by increasing 7 restraining

force and friction between sheet and tools.
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Figure 2.4: (a) Geometry of the draw bend test with, (b) deformed shape before and after
springback, [35]

An analytical model of elasto-plastic bending under tension followed by elastic
springback was proposed by Wagoner and Li (2007, [52]) to address the controver-
sial problem of the number of through-thickness integration points (NIP) for shell
elements. Using this model, guidelines for choosing NIP to assure a specified spring-
back accuracy, varying with ?, sheet tension and the required confidence limit, were
presented. The relative springback error was shown to oscillate and in some cases
even more than 51 integration points were required. Zhang et al. (2007, [62]) de-
veloped an analytical model to predict springback and sidewall curl in sheets bent
in a U-die under plane-strain conditions (NUMISHEET 93 benchmark). They used
Hill’s 1948 yield function and took into account the effects of deformation history
(by using three hardening rules: kinematic, isotropic and combined hardening), the
evolution of sheet thickness and the shifting of the neutral surface.

In another study, Yi et al. (2008, [55]) developed an analytical model based on
differential strains after relief from the maximum bending stress for six different de-

formation patterns. They used each deformation pattern to estimate springback by
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the residual differential strains between outer and inner surfaces after elastic recov-
ery, while other analytical models were based on elastic unloading from a bending
moment. Such residual differential strain model only required the stress state on
the outer and inner surfaces rather than through the whole thickness of the sheet
metal. Moon and others (2008, [41]) developed a model based on the moment-
curvature relationship during stretch-bend sheet forming operations and verified it
with the sidewall curl experimentally measured after deformation of a strip subject
to bending-under-tension.

A review of the aforementioned studies showed that although the use of analytical
models is advantageous because of their simplicity, the application of these models

is limited to simple geometries.

2.2.3 Numerical studies

Many researchers have used finite element analysis to numerically simulate side-
wall curl during sheet metal forming operations. Such FE analyses consist of two
main steps. Firstly, an explicit incremental or implicit incremental-iterative FE
method is applied in order to simulate the forming process that includes the blank
and the tooling. Secondly, the springback deformation is simulated with the static
implicit FE approach based on the formed geometry along with the forming stress
distribution as the baseline input. The accuracy of such simulations depends not
only on the forming conditions (friction, tool and binder geometry), but also on the
numerical parameters such as element type, in-plane mesh size and the number of
through-thickness integration-points, as well as the constitutive model that governs
the behaviour of the deformable sheet [25].

Yang and Lee (1998, [54]) used the Taguchi method to study numerical factors
affecting springback of a mild steel after the U-bending draw test in which drawbeads
were not used (Numisheet’93). Through an ANOVA study, the mesh size was found

to have the strongest effect on the accuracy of springback prediction with respect to



2.2. Literature review 20

damping and penalty parameters and punch velocity. Samuel (2000, [45]) proposed
a numerical model based on the “updated Lagrangian” formulation to calculate
springback and sidewall curl in a plane-strain stretch/draw sheet forming using the
MARC FE package. Both the experimental data and the theoretical 2D model
suggested that in draw bending, sidewall curl decreases with the die radius but also
depends greatly on blank-holder force.

Al Azraq (2006, [3]) studied a simple channel profile after springback using the
AUTOFORM incremental code for DP600 and TRIP800 materials. The springback
was shown to increase with angular variation of the channels but for profiles with the
same angle, TRIP 800 showed more vertical displacement than DP 600. Chung et.
al. (2005, [13]) formulated a modified Chaboche-type combined Isotropic-Kinematic
hardening law which accounted for the Bauschinger effect and transient behaviour,
using Y1d2000-2d under plane stress condition. Comparisons of simulations and
experiments were in good agreement for the unconstrained cylindrical bending, 2-D
draw bending and the modified industrial part (the double-S rail) for two Aluminum

sheets and DP steel (Fig.2.5a, b, ¢).
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Figure 2.5: Schematics of (a)cylindrical bending test, (b)2-D draw bending test, (c¢)double-
S rail, [13]

The influence of low-strain deformation behaviour on curl and springback in
advanced high strength steels was assessed by Matlock et. al. (2007, [39]) using a
bending-under-tension test apparatus. A non-linear relationship was found between
curl height and back tension, though it might be approximated as linear for industrial
purposes. The curl also depended on the low-strain deformation characteristics of
the material. The TRIP590 material had less curl compared to a dual-phase steel
of similar initial thickness and tensile strength at back tensions ranging from 15 to
45% of the sheet tensile strength.

Later, Aydin (2008, [31]|) implemented the Yoshida-Uemori (YU) material model
in LS-DYNA user material interface and used it for analysis of channel draw tests
with various die radii for several grades of high strength steels. In order to detect

the springbhack accuracy of this model, the results were evaluated with LS-DYNA
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standard material models like Mat36 and Mat103. This study showed that the
YU model is the most reliable and also the most expensive model to detect the
springback of high strength steels. Also it was not possible to obtain a unique
set of parameters from different characterization tests (for example from tension-
compression or bending-unbending).

Firat (2008, [21]) presented a rate dependent anisotropic plasticity model ac-
counting for the Bauschinger effect that was used in a FE analysis of the Nu-
misheet’93 U-channel benchmark as well as an automotive part made of HSLA 350.
Comparison of FE results using both an isotropic hardening model and his proposed
model showed similar strain and thickness predictions but significant differences in
residual stresses and final part geometry.

Recently, Taherizadeh et. al. (2009, [48]) predicted the springback of Numisheet
2005 Benchmark#3 with different material models using the commercial finite ele-
ment code ABAQUS and four different drawbead penetrations for AKDQ-DP600-
HSLA50-AA6022/T43. Later Ghaei and Green (2010, [26]) used the return mapping
procedure to implement the YU two surface model in ABAQUS for arbitrary yield
functions. As an example, Y1d2000-2d and Hill48 yield functions were developed
in the subroutines and were used to simulate springback of the Numisheet BM3
U-channel for the same material types studied by Taherizadeh. A comparison of
the experimental and predicted channel sidewall profiles showed that the YU model
improves the springback prediction compared to the isotropic hardening model or

the combined isotropic-nonlinear kinematic hardening model.

2.2.4 Constitutive material models

It has often been observed that the FE springback/sidewall curl predictions are
not be always accurate and the shape distortions estimated for some industrial ap-
plications have been notably erroneous. The inaccuracy of springback prediction

becomes even more significant when it comes to high strength steels. An inves-
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tigation of the FE springback predictions for the representative conditions in the
previous studies indicated that the discrepancies cannot be explained on the basis
of variability of the input parameters or numerical factors alone and the plasticity
models employed in the FE analyses significantly influence the predicted deforma-
tion [24] & [21].

It is well known that a phenomenological plasticity model is composed of : a
yield condition, a plastic work hardening law and a model of degradation of elastic
stiffness due to plastic straining. In classical plasticity, the yield function represents
a convex yield surface in stress space, which limits the elastic range of materials.
The proper measurements and descriptions of the initial yield stress surface and its
evolution are essential for the constitutive law in plasticity. Since the yield surface
and, especially, its evolution are difficult to measure experimentally, the isotropic
hardening of the initial yield surface is often assumed in the classical plasticity.
Under this assumption, the initial yield surface expands radially (or proportionally)
in stress space during plastic deformation. This assumption is reasonably effective to
predict plastic deformations, especially when the deformation of material elements

is approximately monotonous and proportional (Fig.2.6).
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Figure 2.6: Isotropic hardening: the yield surface expands with plastic deformation, ac-
cording to the work hardening described by the uniaxial stress-strain curve, [16]
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For isotropic hardening, the yield function equation can be written as:

f(o,p) =0 —0oy(p) =0, (2.1)

where & is the effective stress, p is the accumulated effective plastic strain, and o, (p)
is the yield stress. Many functions could be written for o, (p), for instance one might

be:

ay(p) = oyo + R(p),

in which oy is the initial yield stress and R(p) is the isotropic hardening function

which is commonly expressed as:

R(p) =b(Q — R)p

where b and Q are material constants, creating an exponential shape to the uniaxial
stress-strain curve which saturates at large plastic strains. The initial condition

R(0) = 0, gives:

R(p) =Q(1 —e") (2.2)

Therefore in isotropic hardening () is the saturated value of R and the saturation
stress is (0,0 + @). Constant b determines the rate at which saturation is achieved
(Fig.2.6).

If material elements undergo non-monotonous deformations, such isotropic hard-
ening might not be so effective, even though deformations are approximately propor-
tional. When sheet parts are removed from tools after forming, material elements
experience elastic unloading and springback. During this reverse loading, material
elements usually demonstrate the Bauschinger effect, which can be described as a

translation of the yield surface. The Bauschinger effect is normally associated with



2.2. Literature review 25

conditions where the yield strength of a metal decreases when the direction of strain
is changed. It is a general phenomenon found in many polycrystalline metals. When
the yield surface is assumed to expand uniformly in isotropic hardening, the yield
stress in the reverse loading is predicted to be equal to that in forward loading, but
this is not often the case. Therefore, isotropic hardening is not able to describe the

Bauschinger effect in reverse loading.

; o)
(a) O I/_fgad point 1 (b)
Initial yield surface £
‘\\ i /—\)
R
N f
A 3
e »0 » &7
/ 1
// \\\
’ Load point (2)

Figure 2.7: Kinematic hardening showing (a) the translation, and (b) the resulting stress-
strain curve with shifted yield stress in compression, [16]

Assuming the initial yield surface to translates in stress space without changing
its shape and size during plastic deformation is another way to model the evolution
of the yield surface; this is called kinematic hardening. In order to reproduce the
Bauschinger effect, a linear kinematic hardening model was first proposed by Prager
(1956) and later modified by Ziegler (1959). Assuming kinematic hardening, the

yield surface equation can be written as:

flo —a)—0,=0, (2.3)

where a, called the backstress tensor, is a variable in the stress space and determines
the location of the centre of the yield surface. As shown in Fig.2.7, the elastic
region predicted by kinematic hardening, when unloading starts at point (1) and

the material deforms elastically until point (2), is smaller than what is predicted
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by isotropic hardening. The evolution of the backstress tensor can be defined by
various functions. Prager proposed a linear kinematic hardening rule:
2

doo = —cde
3

where ¢ is a material constant. Ziegler modified Prager’s rule according to the

following equation:

da = du(o — a), where du > 0.

and dp also depends on the material. Classical isotropic hardening and Prager’s or
Ziegler’s linear kinematic hardening models provide a reasonable description of the
hardening properties of materials, for the case of proportional loading where the
load is increasing monotonically and no unloading occurs.

In order to describe the expansion and translation of the yield surface during
plastic deformation, the combination of isotropic (Fig.2.8) and kinematic harden-
ing (Fig.2.9) is also commonly used. The combined isotropic-kinematic hardening

constitutive law based on the modified Chaboche model [13] is given by:

flo —a) — 745 =0, (2.4)

where a is the back stress for the kinematic hardening and 7,5, is the effective
stress related to the isotropic hardening. In the Chaboche model, the back stress
increment is composed of two terms, da = da; — dag to differentiate the transient
hardening behaviour during loading and reverse loading.

Recent experiments in cyclic loading have revealed that the material responses
under this loading condition are much more complex than under monotonic loading
and cannot be described by the aforementioned isotropic, kinematic or combined
hardening rules. The following phenomena have been observed during cyclic plastic

deformation of sheet metals (mild steels and dual phase steels) [25]:
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Figure 2.8: Schematics of the isotropic hardening. Left: in the deviatoric plane; right: the
stress vs. plastic strain response, [8]
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Figure 2.9: Schematics of the linear kinematic hardening. Left: in the deviatoric plane;
right: the stress vs plastic strain response, [8]

e Transient Bauschinger behaviour characterized by early re-yielding and a

smooth elastic-plastic transition

e Abnormal shapes of reverse stress-strain curves due to work-hardening stag-

nation caused by dissolution of dislocation cell walls during reverse loading.
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e Decrease of elastic modulus during unloading as the plastic strain increases

and finally saturates to a particular value after large plastic strains

e Permanent softening appears after rapid changes of work-hardening rate in

reverse plastic deformation.

Therefore in order to perform an accurate simulation of such a sheet metal forming
process, it is necessary to have an appropriate constitutive model, which can consider
the phenomena that occur during cyclic loading and unloading of such sheet metals

(Fig.2.10).
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Figure 2.10: Schematic showing the stress-strain response with and without Bauschinger
effect during forward and reverse loading paths, [21]

Within the last half-century some models have been proposed to meet the chal-
lenge. The most important ones are the multisurface model proposed by Mroz
(1967), the two-surface model by Dafalias and Popov (1976), the nonlinear kine-
matic hardening model initiated by Armstrong and Fredrick (1966) and then devel-
oped further by Chaboche (1977) and the Endochronic theory proposed by Valant
(1971) and developed further by Watanabe and Atluir (1986) [32].
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Armstrong and Frederick [23] proposed the nonlinear kinematic hardening model

in order to capture the transient behaviour curve during reverse loading;:

2
da = gcdep — ~yaudp, (2.5)

where ¢ and ~ are two material constants, and p is the accumulated effective plas-
tic strain. Later, Chaboche (1986, [9]) modified the Armstrong-Frederick nonlinear
kinematic model to better reproduce the transient behaviour and ratcheting in fa-
tigue. Ratcheting is a very important factor in the design of components subject to
cyclic loading in the inelastic domain. The amount of plastic strain can accumulate
continuously with an increasing number of cycles and may eventually cause mate-
rial failure. For better modeling of cyclic deformations, Yoshida et al. (2002, [60])
developed two constitutive models called IHH-NKH and IH+NLK-+LK. The first
model used a combined isotropic-nonlinear kinematic hardening and in the second
model, a linear term was added to the Armstrong-Frederick model for evolution of
backstress in LK. However they concluded that neither the IH4+NLK model nor the
TH+NLK+LK model could accurately describe all the phenomena observed in cyclic
experiments [57].

In parallel to modifying the nonlinear kinematic hardening models, two-surface
plasticity models also attracted a lot of attention because both the transient and
long-term behaviour of the material could be fairly well described by these models.
In two-surface models, the evolution of the inner surface is usually defined such
that it describes the transient response of the material and the evolution of the
bounding surface is usually responsible for describing the long-term response of the
material. Among these models, the two-surface model developed by Yoshida and
Uemori (2002) is of more interest in the current study and will be used for the
analysis of sidewall curl for the channel draw operation in AHSS materials.

An assessment of recent plasticity models indicates that various methods exist

to quantitatively describe the deformation of sheet metals. But as the capabilities
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of material model improve, the number of material parameters necessary to describe
the deformation also increases, and this inevitably leads to more complex material
characterization tests and more sophisticated mathematical techniques to determine
these parameters [21]. This may be an undesirable situation from an industrial per-
spective, since the simple tension test is usually the only available material data
during the tooling design phase and is also the industry standard for the identifi-
cation of sheet metal properties. However once the parameters are identified, more

accurate results can be expected from improved material models.

2.2.5 Identification of material parameters

As discussed, many purely phenomenological hardening laws have been proposed
in the literature with the purpose of describing the cyclic behaviour of metal sheets.
The complexity of these models can vary considerably with respect to the number of
material parameters and strain history variables. The material parameters involved
have to be determined from some kind of cyclic loading experiment.

In theory, the most simple and straightforward test is a tension/compression test
of a sheet strip. In practice, however, such a test is very difficult to perform, due
to the tendency of the strip to buckle in compression. In spite of these difficulties,
some successful attempts to perform cyclic tension/compression tests have been re-
ported in the literature. Bulk compression tests (Abel and Ham, 1966; Bate and
Wilson, 1986) and in-plane compression tests (Ramberg and Miller, 1946; Tan et
al.,1994; Yoshida et al., 2002) provided more uniform strain distribution with appro-
priate length-to-thickness ratio. But large strain was not easy to obtain due to the
specimen’s tendency to buckle under compression. Yoshida et al. [60] successfully
bonded a few thin sheets of metal to provide support for the sheet during uniaxial
compression.

Kuwabara (1995, [34]) used fork-shaped dies to reduce the unsupported area dur-

ing uniaxial tension-compression tests. Normal forces were provided by the weight
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of the die itself. However there were unavoidable uncovered areas of the sample
between each pair of ‘fingers’ of the die which were prone to buckling. Wagoner
et al. (2005, [53]) used solid flat plates as buckling constraints and applied normal
pressure through a hydraulic clamping system. But the problem remained with gaps
between the die and clamps of the tensile machine.

Recently, Cao et al. (2009, [7]) developed a fixture to perform uniaxial tension-
compression tests on modified “dog-bone” specimens with single or double sided
fins. Experiments were done for DP600 and AA6111-T4 sheet samples and material
parameters were determined for a combined isotropic-kinematic hardening law based
on the Chaboche model as well as for a modified two surface model based on Dafalias-
Popov and Krieg models.

Cyclic simple shear tests have also attracted the attention of some researchers as
the specimen is not compressed during these tests. Miyauchi (1984, [30]), Genevois
(1992, [42]), Rauch (1998, [44]) and Barlat et al. (2003, [20]) have successfully used
the simple shear test for reverse loading at large strains.

Another kind of test that frequently has been used for the determination of
material hardening parameters is some kind of bending test [63], [40], [56]. The
advantage of this kind of test is that it is simple to perform, and standard test
equipments can be used. However, a bending test will involve inhomogeneous stress
and strain distributions in the sheet specimen, and the stress-strain response cannot
be directly determined from the experiment. This means that the material param-
eters have to be determined by an inverse approach. Usually, the experiments are
simulated by FEA, and the material parameters are identified by means of some
optimization technique.

The optimization methods for determining the parameters in a material model
are usually based on an inverse approach in which an appropriate algorithm allows
the minimization between experimental observable variables and simulated ones.

Here, the optimization variables x are the material parameters and the purpose is
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to find a vector x that minimizes the objective function:
L . .
F(z)=> s'F'(x),Aj <ax; < Bj,(j=1,2,..,N) (2.6)
i=1

where L is the total number of deformation cycles, A; and B; are the lower and
upper limits of the searching area for a material parameter z;, and F*(x) is the
dimensionless function defined as the square of the difference in stress between the
experimental data, and the corresponding calculated results for an assumed set of
material parameters . For the minimization of the objective function different
techniques are used by researchers. Yoshida (1998, [56]) used an iterative multi-
point approximation concept by minimizing the difference between the test results
and the results obtained by numerical simulation of the same test. This approach
was verified by comparing simulated stress-strain curves using constitutive model
incorporating identified parameters with experimental cyclic bending curves. The
same method was later used for identification of Chaboche model parameters for an
aluminum clad stainless steel sheet (2003, [61]) and also for determining parameters
in the YU model from cyclic tension-compression tests for mild and high strength
steels (2002, [57]).

Collin et. al. (2009, [14]) used an inverse approach coded in a software called
‘SidoLo’ which allows the minimization between experiments and simulations with
a decrease direction algorithm to determine the Chaboche model parameters from
monotonic and cyclic tensile tests. The parameters were then used in a FE code to
simulate cyclic indentation experiments.

In a recent study, Eggertsen and Mattiasson (2010, [17]) used an inverse ap-
proach for determining different hardening parameters, using simulations of three-
point cyclic bending tests by means of the explicit FE-code LS-DYNA [38]. The
identification of the hardening parameters was performed by means of the optimiza-
tion code LS-OPT [47] and a Response Surface Methodology (RSM). The RSM

is especially advantageous for problems in which gradients to the objective func-
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tion are difficult to calculate, such as in highly nonlinear problems of parameter
identification.

Although using optimization tools like LS-OPT or SiDoLo facilitates the deter-
mination of material parameters, it should be pointed out that different experiments
as well as the same experiment performed with varying conditions can result in dif-
ferent parameter sets which may affect the predictability of the material model
specially for springback/sidewall curl in AHSS [31].

The methods for identification of the YU model parameters from cyclic tension-
compression experiments are discussed after a brief explanation of the model itself.
Later, several other material models that are implemented in commercial finite

element codes are described and compared with YU model.

2.3 Yoshida-Uemori two-surface plasticity model

As mentioned before, advanced models of material equations are required for
more accurate simulation of sheet metal forming and subsequent springback. Cyclic
loading is a very common type of loading in sheet metal forming processes as the ma-
terial flows over the punch radius, die radius or through a drawbead. The Yoshida-
Uemori (YU) model [57] is one of the most sophisticated and comprehensive phe-
nomenological models and is capable of reproducing the transient Bauschinger effect,
permanent softening and work-hardening stagnation in large elasto-plastic deforma-

tions, as shown in Fig.2.11.
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Figure 2.11: Stress-strain response of a mild steel in a forward and reverse loading and
the cyclic phenomena, [58]

The YU model assumes kinematic hardening of the yield surface within the
bounding surface and mixed isotropic-kinematic hardening of the bounding surface
itself. The evolution of the yield surface is defined by superposition of two kinematic
hardening laws and therefore it is possible to assume that a total of three surfaces
are defined in the plane stress space. The additional surface controls the permanent
softening and the work hardening stagnation.

The inner surface, or yield surface, determines the elastic domain of the material
in stress space. It is assumed that this surface can only translate in stress space,
i.e. it undergoes a pure kinematic hardening. This is a valid assumption since
experimental stress-strain responses under reverse deformation show that the re-
yielding starts at a very early stage of stress reversal. Therefore, kinematic hardening
of the yield surface describes the transient Bauschinger deformation characterized
by early re-yielding and subsequent rapid change of work-hardening rate, which is
mainly due to the motion of less stable dislocations, such as piled-up dislocations.
The bounding surface, on the other hand, can translate as well as expand, i.e. mixed

hardening prevails (Fig.2.12).
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A Bounding surface

Figure 2.12: Schematic illustration of the two-surface model, [58]

The size of the yield surface is thus constant, and we have o;5, = Y, where Y is

the initial, uniaxial yield stress. The yield function can, thus, be written as:

f=dlc—a)—Y =0 (2.7)

The bounding surface is described by the following equation:

F=5(c—B)—(B+R) =0 (2.8)

where 3 locates the centre of the bounding surface, B is its initial size, and R
represents its isotropic hardening. The relative motion of the yield surface with

respect to the bounding surface is expressed by:

a*=a—-0 (2.9)

The relative kinematic motion «* is a function of the difference between the

sizes of the two surfaces and is defined such that the inner surface never passes
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the outer surface. Therefore, the yield surface never passes through the bounding
surface. This fact makes the numerical implementation of the YU model much easier
compared to other two-surface models.

The evolutions of a* and 3 are given by the equations:

a*=C [W(a —a) - a*} ép (2.10a)
b=k [Bfm(o—ﬂ)—ﬁ} e (2.100)

where &P is the effective plastic strain rate, and C' is a material constant that controls
the rate of the kinematic hardening. Eq.2.10a indicates that the yield surface moves
in such a way that the current stress point existing on the yield surface is approaching
the corresponding point on the bounding surface. Under a uniaxial stress state, this
equation is simplified to:

&*=c(B+R-Y) (2.11)

. a* .
& —sgn(a )\ gy 1€

To describe the global work-hardening, which is associated with the formation of

stable dislocation structures, for the bounding surface, the evolution of R is assumed

to be:

R(E") = k(Ryar — R(Z"))EP (2.12)

where Rgq is the saturated value of the isotropic hardening stress R at infinitely
large plastic strain, and k is a material parameter that controls the rate of isotropic
hardening. The meaning of various parameters in the above equations is explained
graphically in Fig.2.13. It should be noted that in uniaxial tension, the bounding

surface is explicitly expressed by Eq.2.13.
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Figure 2.13: Definition of the parameters in the Yoshida-Uemori hardening model - For-
ward Bounding, [18]

ol = B+ Rt B = B+ (Ruag + ) (1- ) (2.13)

bound

It should be emphasized that the mentioned formulas are the original form of
the Yoshida-Uemori model. Further modifications were later made to this model in
order to be able to reproduce more exactly the experimental hardening curves from

a uniaxial tensile test, in which:

B=Y (2.14)

Y + R(E°) + B(eP) = H(2P) (2.15)

where H(P) is the experimental plastic hardening curve [18].

The experimentally obtained stress-strain curves on a mild steel exhibit apparent
work-hardening stagnation in a certain period of reverse deformation starting from
the reverse re-yielding. This phenomenon is also related to the cyclic strain-range,
as well as the mean-strain. It is mainly caused by the dissolution of dislocation cell

walls performed during forward deformation and the formation of new dislocation
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microstructures during reverse deformation [28|, [11]. To model work-hardening
stagnation as well as permanent softening during reverse deformations, Yoshida and
Uemori introduced an additional surface g, (shown in Fig.2.14), in the stress space

defined by:

Figure 2.14: Schematic illustration of stagnation surface: a) non-isotropic hardening (R =
0); b) isotropic hardening takes place (R > 0), [59]

go=0(B—q)—1r=0, (2.16)

where r denotes the size of g, and ¢ its centre. The center of the bounding surface,
defined by g, is forced to always be situated inside, or on the boundary of g,. The
purpose of this additional surface is to govern the evolution of the parameter R, such
that R only evolves when g is situated on the boundary of g,. Therefore, isotropic
hardening of the bounding surface takes place if the centre of the bounding surface

is located on the boundary of g,. The evolution of r was assumed to be:

— )T PS .
W, whenR > 0 (2.17a)
,

i =0, whenR = 0 (2.17b)

F=h
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where (0 < h <1) is a material parameter that determines the rate of expansion of

surface g, and P is:

1 2 000
P=-

300

Sym 30

3

Larger values of h lead to a rapid expansion of the non-IH surface, and as a result,
less cyclic hardening takes place. Since the non-IH (work-hardening stagnation)
appears during reverse deformation after prestrain, the initial value of r may be

assumed to be very small.

2.3.1 Degradation of elastic stiffness during unloading

The amount of springback during unloading depends to a great extent on the
elastic stiffness of the material. In classic elastic-plastic theory, the unloading of a
material after plastic deformation is assumed to be linearly elastic with the stiff-
ness equal to Young’s modulus. However, several experimental investigations have
revealed that this is an incorrect assumption. Levy et al. (2006, [36]) reported
that the apparent unloading modulus is smaller than the initial elastic modulus and
experimentally obtained the variation of unloading modulus as a function of plastic
strain for AKDQ and DP600 sheet materials. Eggertsen and Mattiasson (2010, [19])
studied and discussed this phenomenon extensively. Their study confirmed earlier
investigations from the literature that the unloading path is not linear and nor is
the reloading path. Both the unloading and the reloading paths are slightly curved,
and deviate from linearity around an imaginary “mean” line, representing the secant

to the curves (Fig.2.16). Moreover, the slope of this secant is strongly affected by
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the amount of plastic strain.This is mainly due to very early re-yielding and the
Bauschinger effect and strongly affected by the amount of plastic strain. More pre-
cisely, the magnitude of the unloading modulus is decreasing with increasing plastic
strain.

Such a prestrain dependency of Young’s modulus would much influence the
springback behaviour especially when sheets are subjected to a large deformation
during press forming. However, for practical modeling, instead of instantaneous
Young’s modulus, Yoshida introduced a term called ‘average Young’s modulus’,
Eq,, as an average slope of the unloading stress-strain curve calculated from each

of following stress ranges (Fig.2.15) :

1. 0.75009 < 0 <£0.950¢,
2. 0.5009 < 0 < 0.950¢,
3. 0.2509 < 0 < 0.950¢,

4. 0 <o <0.950.

Since the stress-strain response just after the beginning of unloading was highly
nonlinear, which would be due to the viscosity of the steels, 0.9509 was chosen as
the starting point for determination of the average Young’s modulus, rather than

the stress reversal point, og.

The variation of the unloading modulus with plastic strain was expressed with

an analytical function by Yoshida et al. [58] :

Ey = Eo— (Eo — Esat). (1 - e—ﬁ-s“’) (2.18)

where Ej is the initial Young modulus, Es,; is a value that the unloading modulus
saturates towards, and £ is a material parameter. The notation F, represents the
slope of the secant to the non-linear unloading path and the variable E; in Fig.2.16
is the slope just at the beginning of the unloading or reloading path. Instead of F,,,

it would be more practical to use E,, as explained before. The parameters Fyq
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Figure 2.15: An example of unloading stress-strain response for the high strength steel
sheet. The average Young’s modulus E,, is defined as an average slope of the unloading

stress-strain curve in a certain stress range, as shown by broken lines, [60]

Stress

Figure 2.16: A schematic illustration of the stress-strain relationship of an unload-
ing/reloading cycle, [19]

and £ are determined from experimental uniaxial tension data at various pre-strain

levels until the saturated values can be observed at sufficiently large prestrain levels.
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2.3.2 Identify the YU Hardening parameters from cyclic tests

The original YU hardening model contains seven material parameters (Y, C, B,
Rsqat, b, k, h). In order to obtain these unknown parameters from experimental
cyclic tests, tension-compression in particular, one of two methods can be used: the
systematic method and the optimization method. In the systematic method, the

cyclic stress-strain curve is used to calculate the parameters as follows (Fig.2.17):

U 1
£
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Figure 2.17: Schematic illustration of stress-strain response during forward and reverse
deformation, [60]

e The radius of the yield surface Y is determined as the elastic limit.

e From a forward-reverse stress-strain curve, the lines of forward and reverse
bounds can be drawn as schematically illustrated in Fig.2.18.b (lines (b)-(c)
for forward deformation and (j)-(f)-(g) for reverse deformation). The forward
bounding stress curve is used in the first cycle to fit the experimental curve

to Eq.2.13. Therefore, parameters B, (Rsq: + b) and k will be found.

It should be mentioned that the stress offset op, defined as the difference in

the flow stress between forward and reverse deformations, is a measure of the
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Bauschinger effect. op can be divided into two parts,namely the ‘transient

softening’, o

(t)

and the ‘permanent softening’, o

(p)

which appears after the

transient period. In the reverse deformation, the transient softening is the

difference between the reverse stress-strain curve and the extrapolated curve

of the region of permanent softening.

e In order to find b, it is required to find o

B

(p)

o which is equal to the difference

between the experimental yield stress and predicted yield stress by isotropic

hardening model at the beginning of reverse loading (at £, = 0, as shown

in Fig.2.18a). From Eq.2.10b, the amount of softening at the beginning of

reverse loading is given by:

_..P
o) = 28, = 2b (1 —e ’“o) : (2.19)
(8]
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Figure 2.18: Schematic illustrations of the motion of: (a) the yield surface; and (b) the
bounding surface under a uniaxial forward-reverse deformation [57]
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where [g denotes the kinematic hardening of the bounding surface at the
stress reversal point, and e} is the plastic prestrain at the beginning of reverse
loading. From Eq.2.19, the parameter b is obtained. Since (Rgq:+b) is already
known from the previous step, Rsq: is also determined.

Refering to the definition of ag) and ag), the determination of the dividing

point ‘e’; Fig.2.18a includes a certain ambiguity, however it should not affect

the relationship between the transient and permanent softening vs. €P, as the

rate of work-hardening at this point is so small with respect to the transient

softening. The initial value of transient softening when reverse re-yielding
) _

just starts (at e? = 0 which is indicated as Opy = 2a in Fig.2.18a, increases

with the plastic prestrain.

Alternatively, it is possible to find parameter b from the reverse bounding

surface in the region of work-hardening stagnation:

Thouna = —(B + Ro) + 7, (2.200)
Ro = Ruus (1 _ e—ke’é) , (2.20D)
Blrev) = p [—1 + 2e k" e_k(ag%p)} . (2.20c)

Parameter C is identified from the stress-strain curve of the transient Bauschinger
deformation. From Eq.2.10a, for reverse deformation after large forward pre-

strain:

(1+in2) — |O;‘ +1n (1 + sgn(as) |O;*‘] (2.21)

2
C =~

A

. [0 . . .
Since ag) = a+ Qx, — s given as a function of the transient stress offset Jg)
a

as:
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() ()
. _Op _ o[ %B _1lw_ ()
o
It is then possible to plot &, vs. % for various values of C' and compare
o

B0
them with experimental data to find the best value for C.

e Parameter h should be identified either from the experimental magnitude of
the plastic strain in which work-hardening stagnation takes place and cyclic
hardening characteristics, or from numerical simulation so as to obtain the

best-fit curves to the corresponding experimental data.

Instead of the above scheme which has certain amount of ambiguity, it is possible
to identify the YU set of parameters simultaneously by using an optimization method
introduced in the previous section (Eq.2.6). More details for implementing this

methodology will be explained in the next chapters.

2.4 LS-DYNA material models for sheet metal forming

The numerical simulations in this investigation were performed with the commer-
cial software LS-DYNA for explicit simulations of forming and implicit simulations
of springback. LS-DYNA accepts a wide range of material models and equations of
state, each with its unique number of stress-strain history variables. Approximately
150 material models are implemented, and space has been allotted for up to 10
user-specified models [38]. From these models, more attention is placed on several
material types that are conventionally used in DYNAFORM, a pre/post processor
with LS-DYNA solver engine, which is extensively used for simulation of industrial
sheet metal forming processes. An analogy will be presented between these models

and the constitutive models explained in the beginning of this chapter.

e Mat 18: Power Law Isotropic Plasticity This model provides elasto-

plastic behaviour with isotropic hardening. The yield stress, oy, is a function
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of plastic strain and obeys the equation:

oy = Ke" = K (gyp + )"

where €y, is the elastic strain to yield and P is the effective plastic logarithmic

strain.

Mat 24: Piecewise Linear Plasticity defines elasto-plastic material with
a user-defined stress vs. strain curve and strain rate dependency. It can also

model failure.

Mat 36: 3 Parameter Barlat was developed by Barlat and Lian [1989]
for modeling the forming of anisotropic sheet materials under plane stress
conditions. This model allows the use of the Lankford parameters to define

the material anisotropy. The yield condition can be written as:

flo,ep) = oepf(o11,022,012) — oy (gp) <0

where

a m . a m . C m\1/m
Ueff(0117022,012)=(§\K1+K2| +§|K1—K2| +§!2K2\ >

(2.23a)

K :%’m (2.23b)
o1 —hop® |,

KQ = # +p 012 (223C)

and the hardening of the yield surface is either linear, exponential or deter-
mined by a load curve. In the above, the stress components 011,022 and o192
are with respect to the material coordinate system and e, denotes the effective

plastic strain. The material parameters a, c, h and p can be determined from
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the Lankford parameters Ry, R45 and Rgp (the ratios of instantaneous width

to thickness change for each of the directions 0°,45° and 90° with respect to

aw
<o IW

the sheet rolling direction R = ‘ffT T with W and T as functions of width
de

and thickness strain): )

Ry Rgo
a=2(1—4/———-— 2.24a
c=2—a (2.24b)

Ry 1+ Rgo
h= 2.24c¢
\/1 + Ro  Roo ( )

The anisotropy parameter p can be calculated implicitly by an iterative search

for the root of the following function:

m
2moy’

9(p) = (ag(g) N 85‘(0)) oas
O oy

—1—Rys

For FCC materials m=8 is recommended and for BCC materials m=6 may be

used.

e Mat 37: Transversely Anisotropic Elastic Plastic is a fully iterative
plasticity model for simulation of anisotropic sheet metal forming only with
shell elements. Hill 1948 yield function with isotropic hardening and trans-
verse anisotropy can be considered as well as optional definition of stress
vs. plastic strain curve. The decrease in Young’s modulus w.r.t. effec-
tive plastic strain can be accommodated with a curve of scale factors or by
defining the parameters in the empirical function proposed by Yoshida, Eq.
refeq:unloadingelasticmodulus. Considering Cartesian reference axes parallel

to the planes of anisotropic symmetry, the Hill [1948] yield function of can be
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written as:

F(092—033)° +G(033—011)° + H (011 — 092)? +2L0%3 +2MO’§1 +2No?y—1 =0,
(2.25)
where 011, 092 and o33 are the tensile normal stresses and 012, 093 and o3; are

the shear stresses. The anisotropy counstants F, G, H, L, M and N are related

to the yield stress as in Eq.2.26.
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where each o;; is the measured yield stress value when o;; is applied as the

only nonzero stress component; ¢° is the user-defined reference yield stress

0
specified for the metal plasticity definition; and 70 = %.
For the special case of plane stress, where o33 = 0, the anisotropy input

parameter R is defined as the ratio of the in-plane plastic strain rate to the

out-of-plane plastic strain rate:

b
R— S22
b
€33

Using the plane stress assumption and the definition of R, the yield function

can be written as:
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flo) = \/0%1 + 03, — 1%3{011022 + 221]%_:_;0%2, (2.27)

e Mat 125: Kinematic Hardening Transversely Anisotropic combines
Yoshida non-linear kinematic hardening rule with Mat37. This theory needs
two surfaces to describe the hardening behaviour: the yield surface and the
bounding surface. In the forming process, the yield surface does not change in
size but its center translates with deformation; the bounding surface changes
both in size and location. This model also allows for a change of Young’s

modulus as explained in Mat 37.

It should be mentioned here that Mat 125 was implemented in LS-DYNA
based on the general publications of YU model. However it has been observed
that springback results using this model are not consistent with predictions
using other software. Therefore, it appears that the YU model was incorrectly

implemented in the current version of LS-DYNA (version 971, edition R5.1.1)

Material models 24, 36, 37 and 125 will be used for the numerical analysis
of the channel draw process in order to identify how accurately they can predict
the springback and sidewall curl of the channel sections made of AHSS materials.
Further details of implementation and modeling will be explained in subsequent

chapters.
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CHAPTER 3

Experimental study

3.1 Introduction

A channel forming process - previously presented as Benchmark #3 in Numisheet
2005 conference - was used in the current research in order to assess the capability
of various material models to predict sidewall curl, as well as the effect of several
geometrical parameters such as die entry radius and drawbead penetration for high
strength steels. Two grades of steel, DP980 and TRIP780, were used to draw channel
sections in the presence of drawbeads and with various die entry radii in a draw die
specially designed for this type of research. The experimental work to produce
these channels is described hereafter. This will provide the necessary information
for numerical simulating the channel drawing process.

As DP980 and TRIP780 materials have variable properties with respect to the
rolling direction, a series of characterization tests were also performed to identify
their respective mechanical properties. Furthermore, the procedure for identifying
specific material parameters for the constitutive models introduced in the second
chapter, will be explained in this chapter. Results of various characterization tests

for each of the study materials will also be presented.

3.2 Description of the channel draw process

Numisheet channel draw benchmark was provided by General Motors Corpo-

ration, Research & Development Institute IRDI and the US National Institute of
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Standards and Technology (NIST) along with the US Steel Corporation for the Nu-
misheet 2005 conference in Detroit, MI. The draw die was made by the Auto/Steel
Partnership (A/SP) to form straight channel sections. The draw die was installed
at a local stamping plant (NARMCO) in a Williams/White hydraulic 600-ton press
with a stroke of 1310 mm, for the analysis of different grades of advanced high
strength steel sheets and in order to understand the effects of different forming pa-
rameters on the springback and sidewall curl of the channels (Fig. 3.1 ). The draw
die was constructed in such a way that the material in the channel sidewalls was
formed over a drawbead and a die entry radius, thus work hardening the sheet by
cyclic bending and unbending in the drawbead and over the die radius. Blanks were
sheared to a width of 254 mm so that the channel sidewalls would be stretched in

plane strain.
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Figure 3.1: A/SP die installed in a hydraulic press

A schematic of the draw die in its open position is shown in Fig. 3.2 . This tool
consists of an upper moving die section, a floating binder mounted on six cylinders
pressurized by Nitrogen and a fixed lower punch. The upper die is equipped with
changeable inserts on each side that provide different die entry radii as well as
different inboard and outboard penetrations for the drawbeads. In this project no
outboard drawbeads were used and flat blocks were inserted in their locations. Lower
female drawbead inserts were mounted on the binder such that they would mate
with the upper B and C male drawbead inserts. The female inserts could provide

space for single or double beads to deform the sheet metal as well (Fig.3.3).
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Upper Die

Kiss blocks
Drawbead )

Floating Binder

(a) (b)

Figure 3.3: (a) schematic view of the die with changeable inserts with various die entry
radius and inboard drawbeads (B, C) and outboard beads (A,D); (b)dimensional parameters
of die drawbead block and kiss block on the binder shown in open position

Motion of the upper die and binder was restricted by four rigid blocks positioned
under the binder for about 20 mm of the whole stroke. Also for safety considerations
and ensuring repeatable total stroke, blocks with a total height of 1074 mm were set
on two sides of the tool to restrict the movement of the press ram during the stroke.

There were also four shimmable kiss blocks located on the top surface of the binder
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which were used to maintain a constant gap between the binder and the upper die.
This kiss gap was adjusted for each material thickness to maintain a clearance of
approximately 30% more than the stock thickness. The symmetry of the tool was
checked by multiple measurements of the drawbead height, kiss blocks heights with
respect to the binder surface and dimensions with respect to the center of symmetry

as shown in Fig.3.4.

Binder : : Runch ; I' Binder
E ; ! ! ‘ 1 of 4 Kiss Blocks ]
N R Ry
O i Yoas 1 O
T Rolling
BN - . i Sl e r((H)) X-axis >
l - i // - .
@) it BL Hy O
Symmetry Lines and |} ! i LN
Coordinate Axes o i ' Drawbead Channel

Figure 3.4: Nlustration of symmetry in the channel draw process

From the set of available drawbeads, round beads with a 4mm radius were se-
lected for the single bead trials. These drawbeads and the die entry blocks were
polished with very fine sandpaper (180 - 320 grit). They were then heat-treated
to a hardness of 50 HRC. Shims were added to their back plates to increase the
drawbead penetration and to produce channels with a variety of adjustable param-
eters. A brief description of these parameters is provided here before identifying the

selected cases for each material type:

e Clearance: The binder clearance is the distance measured vertically between
the binder surface and the upper die surface when the upper die is in contact

with the kiss blocks.
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This vertical clearance between the binder and the upper die was equivalent
to the sheet thickness plus the kiss gap. This parameter could be measured
with solder imprints by closing the die without a sheet metal blank. The same

clearance was applied to all sides.

Kiss gap: Vertical distance (air gap) between the binder and the upper die
NOT including the thickness of the sheet material. “Kiss” blocks that were

located on each corner of the floating binder maintained the kiss gap.
Kiss gap = Clearance - Material Thickness

Male bead height: The height of a male bead is the vertical distance that
the bead protrudes from the surface of the upper insert that is flush with the
upper die face. The penetration of the drawbead is then calculated from the

measured male bead height as:
(average) Penetration = (average) Height - Kiss gap

Penetration: The penetration of a drawbead was defined according to the

following:

e 0% penetration: when the male bead is in contact with the sheet material

but the sheet is not subject to any bending (Fig.3.5).

Sheet material _ I | Upper Insert
1 —— with Male Bead

) ("

. .
Lower Female
Insert

Figure 3.5: Drawbead at 0% penetration
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e 100% penetration: when the centres of curvature for the radii of both

male and female beads lie on the same horizontal line (Fig.3.6).

Upper Insert
with Male Bead

Lower Female
Insert
Sheet material —

Figure 3.6: Drawbead at 100% penetration

Ave.Penetration x 100
Upper Bead Radius + Female Insert Radius + Material Thk

Penetration%=

Based on these definitions, a set of geometrical and process parameters for the
study materials were selected and tested during a set of pre-trial experiments. The
general dimensional parameters of the tools and blanks were as summarized in Table
3.1 and selected drawbead configurations are presented in Table 3.2.

The pre-trial tests showed that with the high strength materials, deeper draw-
beads would require much more force input from the press and also resulted in
scoring of the channel sidewalls. Therefore only the specific cases which are de-
scribed in Table 3.2 were selected for the actual experiments. Another set of tests
were also performed for each material type using inserts with a die entry radius of
12, 6 and 3 mm but without any male drawbeads. Other parameters of the latter

experiments were similar to the conditions with beads.



3.2. Description of the channel draw process 57
Table 3.1: Geometrical dimensions for channel draw process

‘ Component ‘ Description ‘ Symbol ‘ value(mm) ‘
. Width of Die Cavit Wy 257.8
Upper Die = s Radius : DER 12.0
Punch Width of Punch W, 224.0
Radius of Punch Profile R, 12.0
Binder Width of Binder 1074.0
Kiss block gap B, See Table 3.2
Bead position w.r.t. cavity center line B, 31.05
Male bead height Dy See Table 3.2
Drawbead Radius of bead Ry 4.0
Width of female bead W, 10.8
Radius of female bead R, 4.0
Width Bw 254
Blank 996 (DP980)
Length Br 565 (TRIP780)

Table 3.2: Adjustable parameters of drawbeads and kiss blocks for each configuration

Material ~ Thickness Clearance Adjusted kiss  Actual bead Dy Symbol
(mm) (mm) gap (mm)  penetration% (mm)

20 2.2 DPSB
25 2.7  DPMB

DP980 1.5 1.85 0.36 7 10 DPDB
100 9.5 -
20 2.2 TPSB
25 2.7 TPMB

TRIP780 1.2 1.5 0.30 0 10 TPDB
100 9.2 -

After setting up each configuration, sample tryouts were carried out using ordi-

nary draw quality steel sheet before the actual tests were done. A total of 5 channel

sections were produced for each case of the experiments, while recording the punch

force, binder displacement and cylinder pressures using a data acquisition system.

A brief explanation of the data acquisition hardware and setup of the measurement

sensors is given in next section. Before the actual experiments for each material

type, the blanks cut to the required dimensions were clean, marked in the middle of
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the length to coincide with the center of the punch and positioned in the dimensional
margins drawn on the binder. The blanks were fully lubricated on both sides with
standard mill oil used for drawing purposes. Two of the blanks were electro-etched
with a circle grid (as shown in Fig.3.7), at appropriate distances from the middle
of the blank in order to measure the strains in the sidewalls and to compare these

with the results predicted by numerical simulation.

Figure 3.7: Electroetching a grid of circles of 0.1(in) diameter onto one side of a blank

Upon opening of the die after forming was finished, the formed channel was
removed from the tools and set free to springback to its final shape as shown in
Fig.3.8. The channel sidewalls were then 3D measured for each case using a 5-axis
milling device with recording capabilities. The IGS files of the measurement data

were then created and transferred for final comparison.
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Figure 3.8: Sample of channels produced for various drawbead configurations

3.2.1 Data acquistion system

In order to measure the force exerted on the punch during the forming stage
as well as the displacement of the binder (which is equivalent to the relative punch
displacement), several sensors were installed in the A/SP die and connected to
a desktop computer with a data acquistion card. The acquisition software was

developed in LabView 7.1 and was calibrated for the current project (Fig.3.9).
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6 DIX

Figure 3.9: Front panel of the data acquisition software

A total of six channels were used from a National Instrument data card (SCB-68)
to convert the analog data to digital info which were then recorded by the software.
The punch force data were read from four OMEGA load cells (LC305-10K: 0-10,000
1b) situated on the four corners of the lower shoe on which the punch was attached. A
BALLUFF linear potentiometer (BIW1-A/M300-S115) was installed on the binder
to record its vertical displacement during forming of the channels. Brackets for
holding this sensor were attached to the lower die block to ensure its pure vertical
movement while this LVDT recorded required data of the forming stroke. An AST
pressure transducer (AST4700A05000P5D000 at 0-10V) was connected via a pres-
sure regulator and a connection box to the Nitrogen filled cylinders supporting the
binder (Fig.3.10). A 24V-DC power supply was also used to actuate the position

and pressure sensors.
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(®)

Figure 3.10: Sensors used for the data acquisition: a)OMEGA Load cell, b) AST pressure

transducer connected to a junction box, and ¢)BALLUF linear potentiometer

Known weights were placed on top of individual load cells and the output signal
was then calibrated. After installing them under the lower die shoe, gain and bias
were finely adjusted. Before each trial, the calibration and data range output of the
sensor signals were checked in the measurement configuration module of LabView.
The analog output of the load cells was collected by a high performance DP41-S
display panel from OMEGA which was also scaled for appropriate monitoring.

Analysis of the first series of experimental data showed that the 10,000 Ib load
cells were not capable of recording the punch force during forming of DP980 ma-
terial. Therefore a second series of the experiments were conducted after replacing
the 10,000 Ib load cells with four sensors rated at 20,000 Ib loading capacity. The
software and the display panel were then adjusted for the new load cells with appro-
priate scaling factors. A summary of both series of experimental results is provided

here but the second set will be used for comparison with the simulation data in the
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next chapter.

3.3 Experimental results of channel draw for DP980 and
TRIP780

The experimental results from the channel draw trials for each of the configu-
rations mentioned in Table 3.2 are explained in this section. These results include:
punch force vs. displacement curves recorded by the data acquisition system; ge-
ometrical parameters derived from the sidewall profile as well as measurements of
wall thickness and residual strain distributions. A set of user defined Matlab codes

were developed for data interpretation and to produce appropriate results.

3.3.1 Punch force vs. displacement curves

The total punch force exerted on a blank was the sum of the force data recorded
by the four load cells at each corner of the punch. The vertical displacement of the
punch with respect to the blank was also identical to the displacement recorded by
the LVDT as the blank remained in contact with the binder throughout the forming
stage. Graphs for channels made from TRIP780 with shallow(20%), medium (25%)
and deep (40%) bead penetrations are shown in Fig.3.11. Results for DP980 with
approximately similar bead configurations are shown in Fig.3.12. It should be noted
that a constant kiss gap was maintained for each condition as mentioned in Table
3.2 . As shown, the signals from the load cells saturated during the forming of
DP980 channel sections. Also a drop in the punch force for deeper penetrations
of drawbeads for DP980 is observed which showed non-uniform forming process
of these cases. Therefore a subsequent series of experiments were performed for
channels with shallow beads for DP980, and the average punch force results that
were obtained with load cells with a greater capacity (20,000 Ibf each), are shown
in Fig.3.13.
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Figure 3.11: Experimental punch force-displacement curves for TRIP780 channels drawn
with various drawbead penetrations: a)TPSB (20%), b)TPMB (25%), ¢)TPDB (40%)
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Figure 3.12: Experimental punch force-displacement curves for DP980 channels drawn
with various drawbead penetrations: a)DPSB (20%), b)DPMB (25%), ¢)DPDB (37%)
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Figure 3.13: Experimental punch force-displacement curve for DP980 channels drawn with
a shallow bead penetration (20%)
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TRIP 780 DP980
Figure 3.14: Channels drawn with various die entry radii and without drawbeads

For studying the effect of the die entry radius, a series of tests were performed
such that the upper die inserts without drawbeads but with varying die entry radii
were used (Fig.3.14). A summary of the specifications for these conditions are given
in Table 3.3 and the resultant punch force curves are shown in Figs.3.16 and 3.17.
Results of TRIP780 were also compared for channels made of blanks cut both par-

allel as well as perpendicular to the rolling direction (i.e. Rolling and Transverse
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directions). Further comparison of rolling induced anisotropy on the required form-
ing force was also performed with shallow bead penetrations of TRIP780 material

and results were compared in Fig.3.15.

Table 3.3: Specifications of channel draw conditions with different die entry radius and no

drawbeads

Material Type adjusted kiss Die Entry Radius  Symbol

gap (mm) [DER] - (mm)

12 DPNBI12
DP980 1.85 6 DPNB6
3 DPNB3
12 TPNBI12
TRIP780 1.5 6 TPNB6
3 TPNB3
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Figure 3.15: Comparison of punch force-displacement curves for TRIP780 channels drawn
with shallow bead penetration (20%) when blanks are cut parallel to the rolling and the
transverse directions
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Figure 3.17: Experimental punch force-displacement curves for DP980 channels drawn
with various die entry radii: a)DPNB12, b)DPNB6, ¢)DPNB3

3.3.2 Channel sidewall profiles

After the parts were fully formed and taken out of the die, their sidewall profiles
were 3D measured with onsite milling machine with measuring capabilities with
maximum error of + 0.1 mm. For comparison between channels formed under
various conditions, specific features of sidewall curl and springback can be identified:
sidewall opening angle, radius of curvature and flange tip angle as defined in Fig.3.18.

Repeatability of the experimental results can be observed by comparing the profiles
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for each configuration. Figs.3.19 and 3.20 illustrate the sidewall profiles for channels
made of DP980 and TRIP780, respectively.

An important observation was made when the sidewalls of channels formed with
and without drawbeads were compared. As shown in Fig.3.21, introduction of draw-
beads has a major impact on the sidewall curl for both types of materials. The
variability in results for DP980 with deeper bead penetrations was due to the fact
that these channels were not formed to full depth and therefore were not included

for comparison.

‘ Flange
tip
Curl ™ angle

Radius Sidewall |

opening|

angle "

Figure 3.18: Geometrical measures of sidewall curl for channel profile

It can be generally observed that when drawbeads were used, the wall opening
angle decreased. It was also observed that channel profiles for TRIP780 with blanks
cut parallel and perpendicular to rolling direction, were approximately the same
profile within the accuracy of the CMM measurements. Therefore planar anisotropy
did not have a significant effect on the final shape of sidewall profiles (Fig.3.22). This
was valid both for channels made with and without beads. Due to the shortage of

available material, this comparison was not made for DP980.



3.3. Experimental results of channel draw for DP980 and TRIP780 70

300
260+
2B A
240+
—_ o
£ 20
E
= 200+
180+
160+
140+
120 ; ! . . . 30 . . L ) .
a &0 100 150 200 250 300 i} =0 100 150 200 250
x{mm) x{mm)
(a) (b)
300 : . T
280
260 |
[ s 18
240
= 2k
E
= om}
180 +
1801
140+
120
0
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Figure 3.20: Sidewall profiles of DP980 channels drawn with various drawbead penetra-
tions: a)DPSB (20%), b)DPMB (25%), c)DPDB (37%)
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Figure 3.21: Comparison of sidewall profiles for channels drawn with and without draw-
beads: a)TRIP780, b)DP980
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In this study, the sidewall opening angle, the radius of curvature and the flange
tip angle were calculated for each experimental sidewall profile. It should be men-
tioned that the radius of curvature was approximated for the portion of the sidewall
that lies below the die impact line by calculating the best fit of a circular profile,
using a Matlab code. Average results of three repeats for each condition of the
channel draw experiments are summarized in Table 3.4 . The maximum values of
standard deviation of the measurements were 0.96°, 1.64° and 1.91 mm for the wall
angle, the tip angle and the curl radius, respectively. It can be concluded that draw-
beads introduce more curl (i.e. decrease wall radius) for both TRIP780 and DP980,
but reduce the wall opening angle. Although results for DP980 with the deep bead
penetration were not included (as the channels were not formed in a quasi-static
condition near the end of the stroke), it is evident that TRIP780 has less sidewall
curl and less wall angle than DP980. This is clearly observed for conditions without

drawbeads as shown in Figs.3.23.

Table 3.4: Geometrical measures of channel draw experiments for various drawbead pen-
etrations

TRIP780 DP980
Condition Radius | Wall Flange | Radius | Wall Flange
() angle(°) | angle(®) | (mm) angle(®) | angle(°)
1(\11;)ER3)beads 114 16.7 128 94 27.4 164
TSERG)beadS 120 20 117 107 25 132
TSERH?GMS 20 . o . - -
(S;()a%‘;w beads | 1513 | 16.9 103 104 21 124
ggﬁ;?m beads | 16 15.9 100 100 24 17
](313371’0) beads | 4, 14.1 98 N.A. N.A. N.A.
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Figure 3.22: Sidewall profiles of channels made from TRIP780 blanks sheared in the rolling
and transverse directions: a) with shallow bead penetration (20%) and b) no drawbeads
and DER=12mm
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Figure 3.23: Comparison of sidewall profiles for channels drawn with various die entry radii
and without drawbeads: a) DP980 with DER=12,6,3 mm, b)TRIP780 with DER=12,6,3
mm, ¢)TRIP780 in rolling and transverse and DP980 with DER=3mm, d)TRIP780 in
rolling and transverse and DP980 with DER=12mm

3.3.3 Thickness reduction and strain distribution

After forming channel sections, principal strain measurements were carried out
in the channel sidewalls. The major and minor strains were measured in the central
part of the RHS channel sidewall (area A in Fig.3.24). These surface strains were
measured with a flexible stanless steel ruler over a gauge length of 63 mm for greater

accuracy, and the experimental measurement error was £ 0.5 mm.
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Figure 3.24: Location of surface strain measurements on the channel sidewalls

The thickness strains were measured in several locations uniformly distributed
across areas A, B and C of the channel sidewalls (Fig.3.24) using a Krautkramer
(CL5) ultrasonic thickness gauge (as shown in Fig.3.25) with a measuring resolution
of 0.001 mm. For uniform referencing of these locations, a guide line was marked 20
c¢m from middle of the blank before deformation. An average of three measurements
were done for thickness and principal strain and results were summarized in Table
3.5. Before measuring thickness with the CL5, the instrument and connected probe
were calibrated using the zeroing block devised on the instrument, which is of known

thickness.

Figure 3.25: Thickness measurment of channel sections using an ultrasonic thickness device

The following observations can be made from the results in Table 3.5:

e Minor strains for all cases were close to 0 (within —0.5% < &5 < 0.5%),

therefore plane strain deformation prevails the forming conditions.
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e Major strains were almost zero (< 0.8%)when no drawbeads were used. This

confirms that drawbeads increase the major strain in the channel draw.

e When drawbeads were used, differences in thickness strains between areas A
& C were observed and maximum sidewall thickness reduction of 8.8% was
measured for deep bead penetration for channels made of TRIP780. For chan-
nels without drawbeads maximum thickness reduction was 1.25% of nominal

stock (for TRIP780 with thickness of 1.2 mm).

Table 3.5: Principal strains and thickness of blanks measured in channel sidewalls. Accu-
racy of measurement was £0.01% strain.

TRIP780-Rolling

Maj.or Mln.o ‘ Thickness strain (%)

strain strain

% % area C area A
NBI12 0.8 0 -0.85 -1.25
NB6 0.8 0 -0.7 -1.0
NB3 0.8 0 -0.75 -1.1
SB(20%) 4 -1.6 -1.0 -5.8
MB(25%) 6.5 -0.4 -0.8 -7.3
DB(40%) 9.8 -0.4 -0.5 -8.8

TRIP780-Transverse
NB12 0.5 0 -0.6 -1.0
NB6 0.4 0 -0.7 -0.8
NB3 0.5 0 -1.1 -0.8
SB(20%) 4 -1.5 -1.7 -3.9
DP980

NB12 0.8 0. -0.1 -0.6
NB6 0.81 0 -0.4 -0.6
NB3 0.81 0 -0.5 -0.5
SB(20%) 2.4 -0.4 -0.8 -3.4

3.4 Material characterization and mechanical properties

The experimental procedures and tests used to determine the mechanical prop-

erties of the materials included in this study are discussed in this section. As men-
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tioned before, TRIP780 with 1.2mm thickness and DP980 with 1.5mm were used to
produce channel sections. In order to characterize the mechanical and anisotropy
properties of as-received sheets, specimens were cut at different angles to the rolling
direction (0°, 45° and 90°) and sets of uniaxial tension and tension compression

tests were conducted.

3.4.1 Uniaxial tension tests

The tensile specimens were designed according to ASTM-ES8 standard as shown
in Fig.3.26 and machined by wire EDM. The tests were conducted to determine

the stress-strain curves as well as anisotropy parameters with respect to the rolling

direction.
L -
— B —1 i A "l r—- B —
~ ¥ ~ T [
g e ——" i Hi s
—— J—
/ ik
G

Figure 3.26: Specimen for uniaxial tension test designed according to ASTM-E8: G=50,
W=12.5, R=12.5 (mm)

Two sets of uniaxial tension experiments were performed at separate facilities
and results were compared. A group of tests were conducted in an INSTRON 8562
machine at the University of Windsor on samples cut in rolling, transverse and
diagonal directions. Extensions were measured by means of a 25.4 mm gauge exten-
someter along with the applied force at a constant cross-head velocity to maintain

quasi-static conditions for the experiments. Recorded data were manipulated in
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order to calculate the engineering stress-strain data using:

_F _Li— Lo
Oeng = Ioaeeng = TO

where F; was the instantaneous tensile load, Ay the initial gauge cross-sectional area
and Lo, L; were the initial and instantaneous gauge length, respectively. True values
of stresses and strains were then calculated considering constant volume assumption

during plastic deformation, as:
0 = Oeng(1 + €eng), e = In(1 + €cng)

Results of tensile tests for TRIP780 and DP980 are shown in Fig.3.27. It was
observed that the stress-strain curves obtained from different orientations of the
specimens are almost identical. Specimens showed consistency in their response
for each orientation with respect to the rolling direction. It can be observed that
the 45° specimens experience lower stresses than the 0° and 90° test specimens.
Moreover, there was no significant difference between the behaviours of the latter
two directions. These results were observed for DP980 as well as TRIP780.

The yield stress of the specimens were obtained from the stress - strain curves
at a strain offset of 0.002. It was then used to determine the true stress - plastic

strain curve required for simulation models using:

where oy is the yield stress and F is the initial elastic modulus, assumed to be 207
GPa for both types of steels. The elastic modulus was also estimated by a linear
fit to the beginning portions of the uniaxial test results between stresses of 0 and
200 MPa. The tangential modulus that was measured by this method ranged from
195 to 208 GPa for DP980 and 192 to 210 for TRIP780. The uniaxial curves were

then averaged to a final flow curve up to the maximum strength for each material
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type and compared with results from other sources. The second series of tensile
tests were performed at US Steel, Automotive Center Laboratory, MI, in which
anigotropy ratios were also measured. As mentioned in Chapter 2, at a given angle
¢ to the rolling direction, the anisotropy of the sheet is characterized by the plastic

strain ratio, r-value, and is defined as:

—EW _ln(%)

T = g
P T ertew  In(E)+in(3Y)

It is common to describe an average r-value, R, (Hertzberg, 1995) obtained
from three directions 0° (parallel), 45° (diagonal) and 90° (transverse) to the rolling

direction that describes the normal anisotropy and is defined as:

_ 2

B 0 + 27145 + T90 (3.1)
4

Also AR, defined as a measure of the tendency of the sheet to draw in nonuniformly
and form ears in the flange of deep-drawn cylindrical parts in the direction of the

higher r-value was calculated by:

o + T90 — 2745

AR = 5

(3.2)

Results from uniaxial tensile tests performed at USS are summarized in Table
3.6 . It can be seen that the effect of orientation on the yield stress is relatively small.
Therefore an average value of the yield stress can be used to characterize these two
sheet steels. Also the plasticity curves obtained from tensile tests on samples in the
rolling direction were compared with those performed at University of Windsor, as
well as the power law 0 = K ", as shown in Figs.3.28 and 3.29. The consistency
between the results was reasonably good, therefore an average curve from the uni-
axial test results was used to obtain a best fit of the power law function for each

grade of steel, and these were used as input data in the numerical simulations.
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Figure 3.27: Uniaxial tension test data obtained at the University of Windsor: a) TRIP780

and b)DP980
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Table 3.6: Summary of mechanical properties measured by tensile tests at USSteel, R, T,
D stand for the Rolling, transverse and diagonal directions of the blank, ASTM A370 and
E8 test method with 50.8 mm gauge length; r-value based on ASTM E517; n-value based

on ASTM E646

Ylid Tengile n- Strain
Material 1D Thickness K r, AR
Strgth Strgth  value range
Type 0.2 % (MPa) (MPa) for n, K
(mm) (MPa)
R 1.499 638. 1088.  0.104 1542  2.0-8.1% 0.96
DP980 T 1.483 689. 1082.  0.112 1595 2.0 - 5.4% 0.56
D 1.501 641. 1069.  0.114 1573 2.0-6.3% 0.79
Avg (R+2D+T)/4  1.496 652. 1077.  0.111 1571 0.78/-0.03
R 1.176 451. 794. 0.202 1348  10.0-18.0% 0.65
TRIP780 1 1.166 462. 808. 0.180 1320  10.0- 16.9% 0.89
D 1.176 443. 779. 0.191 1295 10.0-17.7% 1.00
Avg (R+2D+T)/4 1.173 449. 790. 0.191 1315 0.89/-0.23
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Figure 3.28: Plasticity curves for TRIP780 from uniaxial tests performed at University of
Windsor, USSteel and a power law curve
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Figure 3.29: Plasticity curves for DP980 from uniaxial tests performed at University of
Windsor, USSteel and a power law curve

3.4.2 Unloading elastic modulus

A series of uniaxial tests were performed on samples taken parallel to the rolling
direction in order to study the evolution of the unloading elastic modulus of TRIP780
and DP980 sheet metals. Specimens were prepared according to the ASTM ES8
standard, and tests were performed at the Colorado School of Mines. A series of
specimens were strained to 1.5%, 2.5%, 3.5% and 4.5 % before they were unloaded,
as it was expected from previous studies [36] that the unloading modulus follow an
exponential decay function with saturation between 3 to 4% initial strain for high
strength steels (such as DP600). For each material, tests were repeated three times
for each of the prestrain levels. Representative engineering stress-strain curves of

one set of the tests are shown in Figs.3.31.
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Figure 3.30: Engineering stress-strain curves for unloading elastic modulus of a)TRIP780

and b)DP980, performed at the Colorado School of Mines

Several user-developed Matlab functions were used to estimate the loading and
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unloading elastic modulus of the experiments according to the criteria defined in
Chapter 2, section 2.3.1. A sample of the output graphs for nominal engineering
prestrain level of 4.5% for each material type is shown in Fig.3.31. Analysis of the
average unloading modulus revealed a non-linear decrease with respect to prestrain
levels with considerable scatter in the results. In order to minimize the effect of
scattering, effective values for each level of pre-strain was calculated as in Table
3.7. The average data for each material type was fitted to the decaying function,

Eq.2.18. The parameters of the best fit to this equation for each material type are

summarized in Table 3.8.
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Figure 3.31: Sample calculation of elastic modulus from stress-strain curves: a) Initial
elastic modulus of TRIP780, b)unloading elastic modulus of TRIP780, c)Initial elastic
modulus of DP980, d)unloading elastic modulus of DP980.
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Table 3.7: Average experimental results for Unloading Elastic Modulus, calculated from

prestrained specimens up to 4.5% strain, obtained from the Colorado School of Mines

Average
Nominal plastic pre- Unloading Unlos.xdlng
train level train Stress level | Elastic
Sratil 1evel | strain €o (MPa) Modulus
(GPa)
1.5% 0.010 888.5 199.5
2.5% 0.019 1009.9 193.3
bPos0 3.5% 0.028 1061.2 185.3
4.5% 0.038 1083.5 181.2
1.5% 0.012 527.7 211.7
2.5% 0.021 587.8 200.0
TRIPT780 3.5% 0.031 634.7 198.2
4.5% 0.040 677.2 190.4

Table 3.8: Identified parameters for decay formula of unloading elastic modulus for pre-

strains up to 4.5%

EO Esat . 2

(GPa) (GPa) ¢ Fit R RMSE
TRIP780 210.7 160.3 16.58 | 0.768 3.978
DP980 200 158 11.27 | 0.894 1.712

However, it should be mentioned that prestrain levels in the aforementioned ex-
periments were not sufficient to identify the saturated value for the unloading elastic
moduli. It is expected to observe even more decrease in the unloading modulus even
up to strains of 0.1. It is anticipated that the limited amount of ferrite in DP980 and
the transformation from austenite to martensite in the TRIP steel are responsible
for the difference with other high strength steel grades such as DP600. From a met-
allurgical perspective, it was thought that the saturation is related to the amount
of deformed ferrite. Once a critical amount of strain is reached, the ability of the
dislocations in the ferrite to relax upon unloading becomes more or less constant,
leading to a fixed amount of decrease in the unloading modulus. It should be men-
tioned that the tests were done at sufficiently slow rates that adiabatic heating and

the time dependency of the unloading modulus should not affect the results.



3.4. Material characterization and mechanical properties 88

In order to identify the difference in the behaviour of TRIP780 and DP980,
another set of experiments was performed on specimens prepared in similar fashion.
For each material a single specimen was loaded and unloaded in multiple cycles up
to higher strain levels than 4.5% as shown in Figs.3.32 with a detailed graph showing
how the slope of the secant line to the nonlinear unloading path was calculated. By
fitting the data points of unloading elastic modulus vs. effective plastic strain to the
analytical function proposed by Yoshida (Eq.2.18), saturated values for unloading
elastic modulus and the decaying coefficient were identified for each material type,
as shown in Fig.3.33. The identified parameters are summarized in Table 3.9. The
coefficients of determination, R?, for both fitted curves to the unloading data are
positive values of 0.66 and 0.68 for TRIP780 and DP980, respectively. These values
suggest that the goodness of the fit is not as strong as could be expected. This is also
evident from the deviation of the data points from the fitted curve and the decrease
in the unloading modulus even at higher plastic strains. However, the confidence
intervals are not wide and reasonably near the estimated values of the saturated
unloading moduli of the materials. Further studies in this regard have shown a
linear relationship between the unloading modulus and the strength of the material
just before the unloading for both TRIP780 and DP980. However this relation is
not yet implemented in a material model. Therefore, the identified parameters from

Table 3.9 were used in the simulation part of the current study.
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Figure 3.32: Multiple loading and unloading cycles performed at the Colorado School of
Mines to estimate saturated unloading elastic modulus: a)TRIP780, b)DP980
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Table 3.9: Identified parameters for decay formula of unloading elastic modulus with
prestrain 12% for TRIP780 and 9% for DP980

B B 95%  Confidence
0 sat . 2 .
& Fit R interval Egut
(GPa) (GPa) (GPa)
TRIP780 | 207 132.7 46.1 | 0.665 (124.8, 140.6)
DPIR0 207 157.8 57.5 | 0.682 (151.6, 163.9)

In a recent study presented by Kuwabara at the ESAFORM conference in

Belfast, 2011, the unloading modulus data for DP980 saturated at an effective strain

around 0.1. The equation provided was :

E(MPa) = 153.934 4 53.918 % ¢(~57-4p)

(3.3)

The values reported in Eq.3.3 are in good agreement with the parameters found
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in the current study. The identified unloading parameters from Table 3.9 are used

for the parameters optimization study in the subsequent chapter.

3.4.3 Cyclic Tension and Compression tests

Different tension and compression tests were performed at USSteel on tensile
samples of DP980 and TRIP780 in order to identify material hardening parameters.

These tests included :

e 3 single cycle tension and compression test starting in tension and then, at a

certain strain level, reversing to compression until the strain reaches zero;

e 3 single full cycle tension and compression test starting at tension and then,
at a certain strain level, reversing to compression until the compression strain
reaches the same amount of positive strain in tension and at this compression

strain level, re-loading in tension until the net strain reaches zero

e a multiple cycle tension and compression test repeating a single cycle tension

and compression test several times.

For each material type, all of the tests were repeated twice. Results of the single
and multiple cycles until zero strains (type 1 and 3) were identical. Therefore
results of complete single cycle as well as multiple cycles are shown in Figs.3.34 and
3.35. Strain memory as well as prestrained tension and compression tests were not

performed.
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Figure 3.34: Cyclic tension - compression tests of TRIP780: a) Single cycle, b) Multiple

cycles
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Figure 3.35: Cyclic tension - compression tests of DP980: a) Single cycle, b) Multiple
cycles
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The graphs clearly show the repeatability of the tests results. Different regions
of cyclic loading can be distinguished as discussed in Chapter 2. For DP980, the
region of permanent softening is evident after the transient stage, but for TRIP780
the transient region extends well into the compressive zone. An average of the cyclic
stress-strain data was used to determine the parameters required in the constitutive

models which is explained in Chapter 4.

3.4.4 Friction coefficient

Specimens of each material type in form of square plates (760 mm by 760 mm)
were used for friction tests at Arcelor Mittal Dofasco R&D centre in Hamilton, ON.
Tests were conducted perpendicular to the sheet rolling direction (i.e. transverse)
using a drawbead simulator.

All of the test specimens exhibited good surface quality (free of mechanical
interference - scratches, gouges, heavy dirt, etc.). The drawbeads were cleaned with
mineral oil, wiped dry with a lint free tissue, and lubricated with the wealth oil
prior to testing. The depth of penetration for the male Roller and Fixed bead was
reduced by around 50%. Five repeat tests were done for each material type to
permit conditioning of the beads which were not used to characterize the frictional
performance of the material. The next five tests were used as the “steady state”
components of the test matrix. An average value of 0.097 and 0.102 were determined

for TRIP780 and DP980, respectively.
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CHAPTER 4

Numerical Analysis

4.1 Introduction

LS-DYNA explicit/implicit solver (version 971) was used in this study to simu-
late the forming and springback stages of a channel draw process. Three-dimensional
shell models for each drawbead configuration of TRIP780 and DP980 were created
using a phyton script in ABAQUS 6.9. Geometrical parameters for channels with
and without drawbeads as well as the explicit simulation variables required to setup
the forming step in ABAQUS, were defined as the input parameters in this script.
Therefore, a variety of models can be created in a short time. Different constitutive
models from LS-DYNA library - explained in chapter 2- were used in the simu-
lations. Modeling parameters such as the number of integration points, element
formulations, contact types and properties were also analyzed. For selective cases,
simulations in LS-DYNA were compared with results from ABAQUS and a user-
defined subroutine of the YU material model. Input parameters for the material
models were determined using the experimental results from tensile tests and cyclic
tension-compression tests. The optimization method used to identify the hardening
parameters from tension-compression tests, is explained and compared with results
reported by other studies for TRIP780 and DP980. Various results from both the
forming and subsequent springback stages of the simulations were obtained and com-
pared with the experimental values in order to identify the ability of each modeling

technique to predict sidewall curl results of the channels.
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4.2 Determination of Constitutive Material Parameters

For material models with isotropic hardening, plasticity curves of TRIP780 and
DP980 (Fig.3.27) were used as the stress-strain curves. Other numerical parameters
such as the yield strength, r-value and elastic modulus were assigned from Table 3.6
and the initial elastic modulus of steel is 207 GPa.

The systematic approach that was explained in Chapter 2, was used in order
to determine the preliminary hardening parameters for the YU material model in
LS-DYNA. A user-developed Matlab code helped to estimate these parameters from
the tension-compression graphs of TRIP780 and DP980 as shown in Figs.4.1 and

4.2. The estimated parameters are summarized in Table 4.1.

Table 4.1: Intermediate YU model parameters from systematic analysis of tension com-
pression test

Re-yield stress

Material B Ret +b k (MPa) 750 b Raut
DP980 909.3 272.5 36 -203.4 155.1 92.3 180.2
TRIP780 429.8 862.7 8 -151.9 49.2 71.6 791.1

Tension-compression tests were then simulated in LS-DYNA by a single plane
stress shell element model. This model consisted of a square element with a 1-mm
side. The bottom side was fixed in the Y-direction and the left bottom corner fixed
both in X- and Y directions, while the top side was extended and then compressed
0.1 mm in each stage in the Y-direction. Element formulation 2 (Belytschko-Tsay)
with one integration point through the thickness was used to mesh the part. The

schematic of this model is shown in Fig.4.3.
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4.2. Determination of Constitutive Material Parameters 98

?ED T T T T T

Experimental Data

PN S FRERESEERY Bounding Line g
== =Bed Baunding Surface #

Bal

True Stress (MPa)

500

450

4DD 1 1 1 1 1
] 0.01 0.2 0.03 (.04 .05 0.08

True Plastic Strain

(a)

EDD T T T T T

RO0 '+ Expenmental Data -
oo Revarge Elastic Relaxatian
ATk = —=Reverse Bounding Fit -

200+ -

200+

400

True Stress (MPa)

B0 ) ; |

_IDDJ:I | | 1 1 1
I 0.m .02 0.03 0.04 0.05 0.06

True Plastic Strain
(b)

Figure 4.2: Fitting surfaces to experimental tension-compression data of TRIP780:
a)forward bounding, b)reverse bounding




4.2. Determination of Constitutive Material Parameters 99

A S A O

Y

I R BB R B A B
X

Figure 4.3: Schematic representation of the finite element model for tension compression
test

The base simulations with the preliminary set of material parameters from Tables
3.6, 3.8 and 4.1 were assigned to material type 125 (YU model) for TRIP780 and
DP980 as well as an isotropic hardening model (Mat 24). The predicted stress vs.
strain outputs were then compared with the experimental test results in Fig.4.4. Tt
was observed that the simulation results for an isotropic hardening model could not
capture the response of the materials during cyclic loading particularly during the
compression cycle. The YU simulations did not correlate well with the experimental
values and therefore an optimization of the parameters was required to obtain a more

accurate description of the cyclic behaviour.

In order to optimize the YU model parameters, the developed models in LS-
DYNA with Mat125 were used in a Metamodel-based optimization project with LS-
OPT 4.2 software. A sequential strategy with domain reduction (SRSM) method
was used assuming normal distribution of the model variables. Linear order polyno-
mial meta-model with D-Optimal selection of simulation points and default number
of 11 iterations per case along with radial basis function for approximation of his-
tories were incorporated to compare the cross-plot of Y-stress vs. Y-strain of the

middle surface of the element with the experimental values of a single cycle tension-
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compression test for TRIP780 and DP980. For comparison of the experimental and
simulation curves a special function ‘MeanSqErr’ has been frequently used to com-
pute the mean square error for the discrepancy between the output curve and the

target curve:

p=1 5p

It is constructed so that G, p = 1... P are the values on the target curve G and
fp(x) the corresponding components of the computed curve f. f,(x) are represented
internally by the response surface values. x is the design vector. Recently, it has
been argued that the mean square error function is suitable for ordinate-based curve
matching. However a major difficulty is that steep parts of the target curve are
difficult to incorporate in the matching. These kinds of problems present a strong
case for incorporating the abscissa into the curve-matching metric. In our case,
cyclic material models (hysteric curves) with more than one possible y-value for
some of the x-values present more difficulty as they can not be quantified because
of the non-uniqueness of the ordinate values of the computed curve with respect
to the target curve. A logical approach to comparison of the two curves is to map
one of the curves onto the other using Frechet distance. The analogy is that of a
dog walking along one curve and the dog’s owner walking along the other connected
by a leash. Both walk continuously and monotonically along the curve from the
start point to the end point and can vary their velocities. The Frechet distance
is the length of the shortest leash that is sufficient for transversing both curves in
this manner. In version 4.2 of LS-OPT software, this method is implemented by
mapping the points of one curve onto the second curve and computing the volume
(area) between the two curves. When both curves are normalized, this typically
yields a mismatch error with values much less than 1 for two reasonably matching
curves [47].

Therefore, the curve mapping method was used as the weighted objective for
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optimizing YU parameters in material type 125 for cyclic tension-compression tests
of TRIP780 and DP980. Results of the optimization are shown in Fig. 4.5 and the
identified parameters are summarized in Table 4.2. However, it should be taken into
consideration that the prediction errors not only come from the variance error due
to the intrinsic noise and unreliabilities in the measurement of the dependent vari-
ables but also from the systematic (bias) error due to model mis-specification. To be
genuinely useful, a fitting procedure should provide the means to assess whether or
not the model is appropriate and to test the goodness-of-fit against some statistical

standard.

Table 4.2: Optimized YU model parameters for LS-DYNA with material type 125

Material Y c B Rsat b k h Ey E, £
(MPa) (MPa) (MPa) (MPa) (GPa) (GPa)

DP980 670.7  156.3 9093 161.7 1212 36.5 0.05 207 157.8  57.5

TRIP780 452.2 205.5 489.8 5876 178.7 10.06 0.03 207 132.7  46.1

The correlation matrices between Mat 125 parameters and the mapping error of
the network response for each of the sheet metals are shown in Fig.4.6. A strong
positive correlation was found between the response error and Rg4t, b and k parame-
ters while a negative correlation was observed with h, for both material types. Mean
square error was also compared against the curve mapping error. The correlation
coeflicient is a measure of how well the variation in the output is explained by the
targets. Outliers can greatly affect the magnitudes of correlation coefficients. Of

course, the larger the sample size, the smaller is the impact of several outliers.
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Figure 4.6: Correlation matrices between Mat125 parameters and curve mapping error
response for: a)TRIP780, b)DP980

It should be mentioned that the optimized parameters found for DP980 sheets,
were somewhat different from the values reported in another study. Shi et al. [46]
identified parameters for both the original and modified YU models for a group of
AHSS materials through similar tension-compression tests . The parameters for the
original YU model for two grades of steel sheets similar to those used in our study

are summarized in Table 4.3 . It was reported that the DP980 material exhibited
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a pure kinematic hardening behaviour of the boundary surface where R, = 0 and
both the original and modified YU models yielded equivalent parameters. Also, it
was observed that the impact of kinematic hardening components of the boundary
surface become more important for AHSS than for conventional steels. However the
reported yield strengths are not near the expected values and the unloading modu-
lus parameters were not reported. For our current study, the optimized parameters
found with LS-DYNA were used for subsequent analysis of the channel draw form-
ing process, but for selective cases a comparison was performed in which parameters

from Table 4.3 were used with ABAQUS solver.

Table 4.3: Original YU parameters reported in another study [46]
Material Y c B Rut b k h
(MPa) (MPa) (MPa) (MPa)
DP980 399.1 2754 822.2 0.0 405.1  44.0 0.02
DP780 291.6 460.7 465.1 52.5 4447 56.5 0.95

4.3 Finite element model of channel draw

A user-defined phyton script was developed to create FE models for various
channel draw configurations mentioned in Tables 3.2 and 3.3. Using specific input
parameters for die entry radius (DER), drawbead penetrations and other geomet-
rical parameters from Table 3.1, the script can create a 3D finite element model
of all the tooling and the sheet metal, define material models, assign section and
coordinate system definitions, mesh the part with required mesh size and prepare
a two-step explicit forming analysis with appropriate output requests. Considering
the symmetry of the problem, only a quarter of the channel was modeled. The
shell element type S4R was selected to mesh the blank and due to its large width,
only a small portion of the blank was modeled with appropriate symmetry bound-

ary conditions to ensure plane strain deformation. Another set of scripts were also
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developed to create 2D and 3D solid models, but are not reported in this study.
Previous studies have indicated that both solid and shell elements with sufficiently
fine mesh would produce the same springback profile for the channel draw process

|25].

In these FE models, all the tools, die, punch and binder were modeled as rigid
bodies. The forming simulation was defined in two steps; first, the drawbeads and
the die part were moved on to the panel up to a constant clearance and then draw-
ing was simulated by movement of the punch while the die and binder remain fixed
relative to the punch. Once the forming stage was completed, the part with its
stress-strain state was transferred to an implicit springback analysis in which spe-
cific nodes of the part were constrained in order to eliminate the rigid body motion
of the part and allow it to naturally springback to its final shape, just as when the

part is removed from the tools.

The parts created by the script file in ABAQUS were then exported in IGES
format to prepare the required surfaces for the models in LS-DYNA. An initial mesh
size of 2.5 mm was used for tools and a mesh size of 3 mm for the blank, as shown
in Fig.4.7. Mesh adaptivity was used for all the models up to 4 levels with 5 degrees
of adaptive error tolerance relative to the surrounding elements for each element
of the blank to be refined. The recommended one-pass with look-forward active

parameters were also considered for the adaptive re-meshing.
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Figure 4.7: Finite element model of the channel draw forming in LS-DYNA

Shell elements were used to model the blank with element formulation 2 (Belytschko-
Tsay) and 9 integration points through the thickness. Quadrilateral element type
2 was used due to its efficiency, although it requires one-point integration, does
not pass the patch test and performs poorly on warped geometries. Therefore a
comparison was also made when full integration elements were used. The problem
with reduced integration and kinematic modes were resolved partially by hourglass
control, which leads to satisfactory results in most situations. The shear correction
factor was set equal to % which is valid for isotropic materials but not for sandwich
and laminated shells. The shell formulations in LS-DYNA, with the exception of
BCIZ triangular shells and DK fully integrated linear quadrilateral/triangular shell
elements (formulations 3 and 18, respectively), are based on a first order shear de-
formation theory that yields constant transverse shear strains which violates the
condition of zero traction on the top and bottom surfaces of the shell. The shear

correction factor is an attempt to compensate for this error.

For treating the interaction between tools and the blank, three contact interfaces
with algorithm type “FORMING ONE_ WAY SURFACE TO_ SURFACE” were
defined in which the blank was the slave part set and tools were the master, using
the standard formulation of the penalty method. Viscous damping coefficient was

set as 20% of the critical in order to avoid undesirable oscillations in contact dur-
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ing forming simulations and was applied perpendicular to the contacting surfaces.
Suitable velocity curves in the Y-direction were defined for the forming steps with
prescribed rigid body motions as well as a load curve for the binder force. One way
contact types allow for compensation loads to be transferred between the slave nodes
and the master segments. Tangential loads are also transmitted if relative sliding
occurs when contact friction is active. The one-way term in one-way contact is used
to indicate that only the user-specified slave nodes are checked for penetration of
the master segments. One-way contacts may be appropriate when the master side is
a rigid body, e.g., a punch or die in a metal stamping simulation. A situation where
one-way contact may be appropriate for deformable bodies is where a relatively fine
mesh (slave) encounters a relatively smooth, coarse mesh (master). Orientation is
automatic with forming contacts. The rigid tooling surface can be constructed from
disjoint element patches where contiguous nodal points are sometimes merged out,
but not always. These patches are not assumed to be consistently oriented; conse-
quently, during initialization, the reorientation of these disjoint element patches is
performed. Forming contact tracks the nodal points of the blank as they move be-
tween the disjoint element patches of the tooling surface. Penalty forces are used to
limit penetrations. Generally the ONE_WAY SURFACE TO_ SURFACE option
is recommended since the penetration of master nodes through the slave surface is
considered in adaptive re-meshing. Without this feature, adaptive re-meshing may
fail to adequately refine the mesh of the blank to capture sharp details in the master

surface, and the master surface will protrude through the blank.

The friction between the blank and the tools was modeled as a constant coeffi-
cient of static friction identified from the friction test results. It should be mentioned
that there are still major uncertainties in the description of friction-contact phenom-
ena in simulation of sheet metal forming processes. Simulation calculations show

that a small change in the friction-contact situation can have a significant effect
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on the springback. However, the coefficient of friction is an experimental factor
over which relatively minimal control is available in FE simulations. Researchers
often use a coefficient value that best simulates the blank-tool interaction. For the
channel draw process, a constant kiss gap of around 30% of the sheet thickness was
maintained throughout the forming stage (Table 3.2), therefore the effect of friction
was expected to have a minor effect on springback in this problem. Besides, punch
velocity and binder pressure were kept constant during the forming and no depen-
dency could be assumed between friction and relative velocity and pressure. Since
only a limited area of the blank was in contact with the die radius and draw beads
when present, and the contact area did not change significantly during the drawing
stage, it was reasonable to assume a steady state kind of problem for the forming
phase. The experimental punch force results shown in chapter 3, also confirm that
the forming stage was nearly a quasi-static process. This suggests that a constant
friction coefficient is valid for this problem. However, different values were used in
the simulations to investigate the sensitivity of the predicted profiles to the coeffi-
cient of friction. This analysis showed that a higher value of the friction coefficient
than the experimental results, best simulates the channel forming and springback
stages when no drawbeads are used. For channels formed with drawbeads, friction

coefficient had minimal effect on the results.

After the forming stage was completed, all the contact pairs defined between
the blank and tools were removed allowing the channel to deform freely to its final

sprungback shape.

As mentioned before, the models in ABAQUS were created using a user-defined
script. Material models with isotropic hardening as well as the YU model accom-
panied by a user subroutine (UMAT) from a previous study [25] were compared

for selected cases. For the user subroutine of the YU model, two sets of parameters
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should be identified: @) the anisotropic coefficients, b) the YU hardening parameters.

YU model parameters were identified as described here. Anisotropic yield be-
haviour was modeled through the use of yield stress ratios, R;; which are defined
with respect to a reference yield stress, 0¥ , such that if o;; is applied as the only
non-zero stress, the corresponding yield stress is equal to Rijao. A local orientation
must be used to define the direction of anisotropy. The Anisotropic parameters for
the materials in the current study were determined from Hill’s 1948 yield function
as mentioned in Eq. 2.25 as F, G, H, I, M and N. Their definition from Fq.2.26

could be rewritten as:

(0?1 1 1 1,1 1 1
Pt = )= 5 + o~ )
2 052 0'?%3 0'%1 2 R%Q R§3 R%l
(09?1 1 1 1,1 1 1
G="0 (g + 5~ ) =5+ — )
2 U%S 0%1 032 2 R§3 R% R%2

(09?2 1 1 1 1,1 1 1

H="" (4 = ) =5+ 7 — ),
2 ‘7%1 ‘7%2 ‘732,3 2 R%l R%Q R%s (4.2)
I = §(L0)2 __3
N 2 0923 N 2R%3’
2 013 2R%,
N = 3 LO 2 = 732 .

where each o;; is the measured yield stress when o;; is applied as the only non-

zero stress component; 0¥ is the user-defined reference yield stress specified for the
0
o

metal plasticity definition; and 7° = —. These anisotropic yield stress ratios are

V3

calculated as :

o1
Ru = —,
o

022

012 _ 013
o0 7

033
Rz = Rip = o

Ros = S0

In a general 3D stress space, all six coefficients are used whereas in the case of sheet

metal forming applications, as in the current U-channel forming process, the plane
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stress assumption is generally adopted and Hill’s 1948 yield criterion simplifies to:

1
f(Uij) = \/2[(G + H)O’%l — 2HO'110’22 + (H + F)0'22 + 2N7'122] - 1, (44)

In practice, it is more convenient to find the anisotropic material data given in terms
of ratios of width strain to thickness strain (Lankford’s r-values). Mathematical
relationships are then necessary to convert the strain ratios to stress ratios that can
be input into ABAQUS. Considering z and y to be respectively the “rolling” and
“transverse” directions in the plane of the sheet and z as the thickness direction, the
ratio of width-to-thickness strains is calculated from simple tension tests performed
on standard specimens. For a tension test in the x-direction, Lankford’s r-value is
defined as:
_dexp H

T dess G

Tx

Similarly, for a simple tension test performed in the y-direction in the plane of the
sheet,

- d€11 o H

r, = —— —
Y d533 F
rz, Ty are usually reffered to as ro, rgp. For a more general case where the tension

test is performed on a sample at an angle o with respect to the rolling direction,

Lankford’s r-value is:

deqyz  H 4+ (2N — F — G — 4H)sin%acos®a
’]”a = =

dess Fsin?a + Geos?a

For a commonly performed tension test in 45° with respect to the rolling direction,

the r-value would be calculated as:

d€11 2N — (F + G)

- dess - 2(F+G)

745

It is now possible to derive the equations for calculating anisotropy parameters for
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orthotropic materials in plane stress deformations:

a (1—|—7‘0)T‘907
1
G = ,
(1—|—TQ) (4.5)
H= "0
(1+T0)7
1 1 To
N = — 1+ —).
(1 +To)(2 Fras)(1+ 7”90)

Using Eq.4.5 and 4.2 and selecting direction I to be the reference, stress ratios will
be calculated for plane stress case as in equations 4.6. Tables 4.4 and 4.5 summarize
the values for Hill’s anisotropic parameters and stress ratios of TRIP780 and DP980

respectively, using r-values from Table 3.6.

R = 1.0,
Ry — 1 _ 7"90(7“0 + 1)
2 VF+H  \rolreo+1)
Raa — 1 B T‘90(T’0 + 1)
33 VFEF+ G (ro + 790) ’ (4.6)
3
Ryp = oN
R13 =1 07
Ro3 =1.0

Table 4.4: Coefficients for Hill’s 1948 yield function
Material F G H N
TRIP780 0.44 0.61 0.39 1.57

DP980  0.87 0.51 0.49 1.79
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Table 4.5: Stress anisotropic ratios for channel model in ABAQUS
Material R11 R12 R22 R33
TRIP780 1.00 0.98 1.09 0.98
DP980  1.00 092 0.86 0.85

When using shell elements in ABAQUS (and LS-DYNA), which are based on
first-order transverse shear flexible theory with constant through thickness shear
strains, transverse shear, correction factors should be used to compensate for this
assumption. For a homogeneous shell made of a linear, orthotropic elastic material,
where the strong material direction aligns with the element’s local 1-direction, the

transverse shear stiffness should be:

5

5

= 6G§3t,andK{§ =K =0.

where G5 and GL; are the material’s shear modulus in the out-of-plane direction.

The correction factor % results from matching the transverse shear energy to that

for a three-dimensional structure in pure bending. For our study, the shear modulus

was defined as:
FE

G:2(1+y)

and the values of the transverse shear stifflness were calculated as in Table 4.6.

N
Table 4.6: Transverse shear stiffness for channel model in ABAQUS, (%)

Material thickness Ky Ko Koo
TRIP780 1.2 79000 0 79000
DP980 1.5 101000 0 101000
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4.4 Results of channel forming simulations

Simulation results from FE models developed in LS-DYNA for each configura-
tion of the channel draw are presented in this section. Comparison with related

experimental results are also made.

4.4.1 Punch Force vs. Displacement curves

Punch force results were calculated from the contact forces of forming simulations
of channels. For the cases with drawbeads, sufficient stretch was available to form the
sidewalls. As shown in Figs.4.8 and 4.9, the punch force is overestimated by material
models 24, 36 and 37 (with isotropic hardening [IH]) and underestimated by Mat
125 model for both TRIP780 and DP980 when drawbeads are used. Overestimation
of IH models could be attributed to the failure of such hardening to capture the
Bauschinger effect, and therefore the material response is over-predicted during

cyclic loading.
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Figure 4.8: Comparison of predicted and experimental punch force results for DP980 with
various material models
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Figure 4.9: Comparison of predicted and experimental punch force results for TRIP780
with various material models and different drawbead penetrations:
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However, more accurate results were expected for the YU model (Mat 125). Re-
sults of YU model in ABAQUS were compared against LS-DYNA results in Fig.4.10
which demonstrate better conformity of the converged punch force. Data set from
ABAQUS was smoothed using curve fitting tool of Matlab. The smoothing was
performed by using a piecewise polynomial computed from parameter p which was

set to 0.8 and the resulting R? of the fit was 0.997.

Punch Force(kM)

Expariment - Rolllng
—+— Experimeént - Transverse
—+— ABACUS- YL model ]
—— —DynaMat 125

I i 1
0 =t 100 150 200 250
Displacement(mm)

Figure 4.10: Comparison of experimental and predicted punch force results for TRIP780
with shallow beads using the YU model in ABAQUS and LS-DYNA

In order to identify the problem with simulations of Mat 125, energy balance of
the simulations were checked and compared with those from other material models.
As shown in Fig.4.11, energy levels of the simulations with Mat 125 demonstrate a
mismatch between the total energy and the external work delivered to the system.

For every correct simulation in LS-DYNA the energy levels should balance according

to Eq.4.7:
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Ekin + Eint + Esi + Erw + Edamp + Ehg = E]?:zn + Ezont + Wemt (47)

Total Energy: Eiotar

where suffixes on the left hand side represent Kinetic, Internal, Sliding interface
(including Friction), rigid wall, damping and hourglass energies which should bal-
ance with the sum of initial values plus the external work on the right hand side.
No rigid wall, damping and hourglass energies were present in the aforementioned

simulations. The energy ratio is thus defined as:

e o Eiota
ratio — 150 117
EO 1 + We:):t

tota
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Figure 4.11: Energy balance for TPSB case with various material models: a)Mat24,
b)Mat36, ¢)Mat37, d)Mat125

As can be seen in Fig.4.12, energy ratio for simulation with material type 125 fell
well below unit and leveled off near 0.8 which confirmed the mismatch between total
energy and the external work. In other words, part of the external work transferred
to the system was not converted to increase in internal energy nor dissipated by the
sliding. Such a situation is referred to as ‘artificial absorption’ of the energy. It could
result from many sources, however in this case the only difference between multiple
simulations was the material model. The energy balance equation was validated

for other material types with the same mesh, contact definition and other model
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parameters, as explained before.
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Figure 4.12: Energy ratio for TPSB case with various material models: a)Mat24, b)Mat36,
¢)Mat37, d)Mat125

Fig.4.13 shows the energy balance for YU model implemented in ABAQUS for
the same TPSB configuration. It can be seen that the energy levels are comparable

to the levels obtain in correct simulations by material models 24, 36 and 37 in

LS-DYNA.
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Also results for energy balance and ratio for DPSB case were checked with various
material types, shown in Figs.4.14 and 4.15 which confirm that the problem with Mat
125 is not related to numerical parameters. To further investigate this problem, sim-
ulations for DPSB and Mat125 were altered by changing element formulation from
2 to 16 (Fully integrated shell elements), increasing the number of integration points
from 9 to 19, 29 and 49, eliminating mass scaling and mesh adaptivity while refining
meshes of blank and tools to an approximate size of 0.5, using other contact types
‘FORMING SURFACE TO SURFACE’, ‘SURFACE TO _ SURFACE’ and sev-
eral values of friction coefficient (0.0, 0.07, 0.125, 0.15, 0.2, 0.25). Simulation results
for the both shell and solid elements of the single element model were also checked.
However the energy balance problem persisted for all of these simulation with mate-
rial type 125. This problem was reported to LSTC representative and was confirmed
to be an issue that should be rectified. This problem leads to erroneous stress-strain
results in the final stage of the forming which would be transferred to the implicit
scheme for springback calculation. It is evident that the absorbed internal plastic

energy is not at the same level as predicted by other material types.
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Figure 4.14: Energy balance for DPSB case with various material models: a)Mat24,
b)Mat36, c)Mat37, d)Mat125

For the cases without drawbeads as shown in Fig.4.16, punch forces were under-
predicted by Mat125 compared to the other material models which in turn failed to
capture correct results either in LS- DYNA. This deviation from the experimental
results was observed for all material models and for both DP980 and TRIP780
channels with the predefined contact parameters. The beginning portion of the

curves conformed with the experimental data as the impact of the punch formed
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the blank. After this initial step, the normal force that was exerted on the blank
by the die was limited to a small contact area of the die radius region. With the
default values of static coefficient of friction, the stretching force was not sufficient
to maintain the required tension in the blank during the forming stage. When
the movement of the blank was observed during the forming simulation, it became
evident that the blank was under-constrained along its length. In this case, it
was possible to calibrate the friction coefficient of the contact algorithms so that
the predicted punch force correlated with the experimental results. A study with
various friction coefficients was performed with material model 24, as shown in
Fig.4.17. This suggests that friction forces at the contact interface between the
blank and die radius would be more prominent in cases where no draw beads were
present. A friction coefficient equal to 0.19 best conformed with the experimental

data.



4.4. Results of channel forming simulations 123

1.004 1.004
1.002 1.002
.'g u"/‘-—ﬁ_é A ___A__J.’f—o{ "g /.JI— A A __A____,/A.’i.—
T 4 = 1
4 i
i w
0.998 0.998
0.996 0.996
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
Time Time
(a) (b)
1.002 o3
A gy | A I N
L{"/_ 08 o A A
o g | /
® T
2 ¢
Ui w0 0.7
0.998 A /
|
0.6
0.996
. . L L 05 . . . . .
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.06
Time Time
(¢) (d)

Figure 4.15: Energy ratio for DPSB case with various material models: a)Mat24, b)Mat36,
c¢)Mat37, d)Mat125



4.4. Results of channel forming simulations

124

ED T T T T
W Bup-R
——Fup-T
e | Sim-Mat24
——— Sim-Matab
——Simi-Mata7
] —— —Sim-Mati25 | 2%
ol
£ s
o .
2
o
w 15F _. = .
S Eal o A P
5 7 SR e, =]
& gl ~ = e ey
10 )7 ) ' A
¥ e
= Fiy
Fﬂl. P/
5 | ) E
I ] 1 ]
a &0 100 150 200
Displacement{mm)
(a)
T T T T T
45
401
35+
£ a
LT
S o5f
L 3
i f
3 —
a 15 rv‘i,f
B +  Experirent
10 & _
it * Sim-Mat3b
U —%— Sim:Mat37
———Sim-Mat125
GI 1 1 | 1
0 &0 100 160 200

Displacement{mm)

(b)

Figure 4.16: Comparison of predicted and experimental punch forces for channels without

draw beads and with DER=12mm: a) TRIP780, b)DP980



4.4. Results of channel forming simulations

125

Punch Force(kN)

Punch Force(kN)

35

[}
[}

bl
LTy

20

5

.
o |

L

]
=

&

f=
=

K]
=

i i | i
a a0 10a 140 200

wo ExpR
—+—Eip-T
—— Fric=0.125
Fric=0.19
— —Frig=0.2
—+— Fric=0.25

Displacement(mm)

(a)

e ——

«  Experiment
———Fric=0.125 i
Fric=0.12
—+—Fric=0.18

—=— Fric=0:2
—#— Fric=0.25

100 - 1ED 200
Displacement{mm)

(b)

Figure 4.17: Comparison of predicted and experimental punch forces for cases without
beads, DER=12mm and Mat 24 for various coefficients of friction: a) TRIP780, b)DP980



4.4. Results of channel forming simulations 126

4.4.2 Channel sidewall profiles

The final geometry of the parts after springback is an important measure for
comparison between different models. Sidewall opening angle, flange tip angle and
curl radius as defined in Fig.3.18 provide appropriate measures for comparing U-
channels parts. However it should be noted that for such open channel geometries a
fairly small angular difference coupled with different sidewall curvatures may bring
about a relatively large change in the overall dimensions of the channel. Moreover
they do not provide a single criteria for comparison. For this sake, an area inte-
gration method, used in previous studies, was also further developed as a measure
to estimate the error between simulated and experimental sidewall curl results. For
more elaborate parts or surfaces a cross correlation method might be more appro-

priate.

Simulation

------- Experiment

Figure 4.18: Schematic illustration of sidewall comparison between simulated and experi-
mental curves

The error between simulated and experimental channel profiles was quantified

by computing the area under the curves of both profiles drawn on a 2D diagram, as
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shown in Fig. 4.18. As the experimental and simulated profiles might not necessarily
have one-to-one analogy, an interpolated profile was constructed on each of the
curves on their common range for more accurate comparison using a Matlab code.
The difference between each point ' on experimental curve can be obtained with
respect to its counterpart point C” on the simulated curve. Simulated curves were
constructed from nodal coordinates read from the final geometry of the channels
after springback. Therefore, the error at each point was calculated as do from

difference in both X- and Y- directions:

bc=vV(Xo— X )2+ (Yo — Yo )2,

The sum of errors over the common portion of the sidewall curves was calculated
by line integral method. By dividing the sum of errors by the area under the
experimental curve from point A to B, the normalized error between corresponding

experimental and simulated sidewall profiles can be calculated:

Area between curves, integral of d¢

Sidewall error(% ) =

~ Area under experimental curve from A to B

(4.8)

Results of channel sidewall comparison for various configurations are shown in
Figs.4.19 and 4.20 for channels with shallow beads and in Figs.4.21 and 4.22 for
cases without drawbeads and a die entry radius of 12 mm. It can be seen that
although material model 125 (YU) was expected to produce more accurate results,
it fails to predict sidewall curl correctly, most probably from an incorrect integration
scheme as the results on energy balances were explained before. However for material
model 37, with increasing through-thickness integration points as well as changing
element formulation to type 16 which is a fully integrated element type, the error
in predicting sidewall curvatures was substantially reduced for shallow bead cases.
Sidewall profiles of cases without drawbeads are less accurate in visual terms, mainly

due to insufficient stretch force on the blank as explained previously.
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The comparison between simulation results and experimental profiles, can also
be considered by estimating the wall opening and flange tip angles as well as a
best fitted arc to the sidewall, similar to the study of experimental data in Chapter
3. Results of these geometrical measures were estimated with a developed Matlab
function and are summarized in Tables 4.7 and 4.8 for various conditions. It should
be mentioned that only simulation results for which the implicit springback solution
converged were reported here. It can be seen that the results for no bead conditions
are more erroneous than those with the beads.

The effect of friction coefficient was investigated by conducting several simula-
tions for no bead conditions of TPIP780 with DER 12 and the results are shown
in Fig.4.23. It can be seen that the relative error on sidewall curvatures decreases

when higher values of friction coefficient are used.

Table 4.7: Geometrical measures for channel sidewall profiles with shallow beads, predicted
with LS-DYNA

Channel LS-DYNA Element NIP Sidewall opening Curl fitted Flange tip

condition Mat. Type Formulation angle® radius, mm angle®
Experimental 16.9 121.3 103
results
24 2 9 14.9 146.2 84.1
36 2 9 12.9 148.1 84.6
36 16 19 13.9 138.7 79.8
TPSB 37 2 9 13.6 163.3 80.0
37 16 19 20.0 117.6 99.3
125 2 9 12.0 247.2 43.8
Experimental 94 117 100
results
36 2 9 18.5 174.7 78.7
36 16 19 5.8 164.4 78.5
37 2 9 18.1 191.7 73.5
DPSB 37 16 19 234 139.4 86.2
125 2 9 21.8 259.7 60.1

125 16 51 20.6 141.0 84.9
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Table 4.8: Geometrical measures for channel sidewall profiles without beads and DER=12
mm, predicted with LS-DYNA

Channel LS-DYNA Element NIP Sidewall opening  Curl fitted Flange tip

condition Mat.Type Formulation angle® radius, mm angle®
Experimental 91 107 126
results

24 2 9 23.1 131.3 88.2

36 16 19 24.4 150.2 81.4

37 2 9 16.0 157.9 78.6
TPNBI2 37 16 19 26.8 147.6 81.6

37 16 25 23.6 138.4 87.6

125 16 9 24.7 198.1 67.3
Experimental 98 199 117
results

24 2 9 22.6 153.6 89.5
DPNB12 37 2 9 29.9 208.9 92.7

125 2 9 28.1 314.4 50.6




4.4. Results of channel forming simulations 134

300

+  Expernmental Tﬁ" +
= g TE
L -
{0 I .
B 048 +
0.25
4 Mo-DT2MS S gl I
I I | i T |
50 100 150 206 250 300

X, mm

(a)

0125 0.19 0.2 0.25 Neo-DTZMS

(b)

Figure 4.23: Simulated sidewall profiles for TPNB12 condition: a)with various friction
coefficients, b)sidewall error(Eq.4.8)



4.4. Results of channel forming simulations 135

4.4.3 Thickness reduction and strain distribution

Shell thickness reduction and effective plastic and total strain values were ob-
tained for each simulation in LS-DYNA. For TPSB and DPSB conditions, results
of thickness reduction with material type 37, element formulation 16 and 19 inte-
gration points are shown in Fig.4.26, as a representative demonstration. Plastic
strain distributions for the same simulations are displayed in Fig.4.27. It is notable
that maximum values of thickness reduction and plastic strains for conditions with
drawbeads, happened on sidewall of the channels after the impact of drawbeads.
Strains along the width of channels were checked to ensure they are smaller than
strains along width and through the thickness of the blank, confirming the plane

stress condition of the simulations.

Thickness reduction and strain outputs of simulations for channels with and
without beads and various models were summarized in Table 4.9. It should be
noted that in order to compare simulation results with experimental values, maxi-
mum and minimum strains should be used instead of the plastic strains. As shown
for a representative case of the forming simulations in Fig.4.24, maximum principal
strains on lower, upper and mid surfaces of a shell element - which passes through
the drawbead, over the die radius and ends up in the sidewall - converges to an
average strain value, while the effective plastic strain is the accumulated result of
the entire strain history. Minimum principal strains for the same element are also
shown in Fig.4.25 and these converge to a value which is approximately the negative
value of the maximum strain. The abrupt change that is obsevered in the strain
history on the lower surface of this element (curve C), is due to the element pass-
ing through the drawbead region. But it can be seen that the strain levels on the
upper and lower surfaces converged to the strain at the mid-plane. The simulation
results that were reported in Table 4.9 showed an acceptable conformity with the

experimental data summarized in Table 3.5.
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Table 4.9: Summary of maximum values of thickness reduction and plastic strains predicted

in the channel sidewalls

Channel LS-DYNA Element NIP Max. Thickness Major sidewall
condition Mat.Type Formulation reduction (%) strain (%)
Experimental 58 40
results
24 2 9 4.6 4.0
36 2 9 4.5 4.1
36 16 19 4.4 4.1
TPSB 37 2 9 4.3 3.9
37 16 19 4.7 4.2
125 2 9 4.5 2.5
Experimental 3.4 9.4
results
24 2 9 5.4 4.8
36 16 19 5.8 4.2
37 2 9 5.1 4.9
DPSB 37 16 19 4.8 3.6
125 2 9 2.1 3.4
125 16 51 3.2 3.4
Experimental 1.95 0.8
results
24 2 9 1 0.08
36 2 9 0.6 0.06
TPNBI2 37 2 9 0.5 0.06
125 2 9 0.4 0.04
Experimental 0.6 0.8
results
24 2 9 0.9 0.09
DPNB12 37 2 9 0.5 0.8
125 2 9 1 0.01
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Finally, the shell thickness reduction and effective plastic strain distributions for

TPSB and DPSB cases simulated with Mat37 model are shown in Figs.4.26 and

4.27, respectively.
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CHAPTER 5

Final Discussions and Conclusions

In the previous chapters, various experimental results of the channel draw form-
ing were presented and then compared with predicted results in LS-DYNA. Different
material models were used to simulate the forming and springback of the U-channel
sections made from advanced high strength materials TRIP780 and DP980. Also
specific material characterization tests were performed on these two grades of AHSS.

Neither the TRIP780 nor the DP980 material showed any work-hardening stag-
nation during cyclic tension-compression tests, however, both sheet materials ex-
hibited significant transient work-hardening during reverse loading. Both materials
also showed significant Bauschinger effect although it was less significant for DP980
material, as the yield stress during reverse loading was closer to that in forward
loading than TRIP780. The isotropic hardening model (IH) which is implemented
in material types 24, 36 and 37 of LS-DYNA, is not able to accurately describe
the cyclic behaviour of either materials. Although this prediction can be improved
when numerical parameters are finely tuned with Nelder-Mead simplex optimization
method, as shown in Fig.5.1, but it still cannot predict the reverse loading or the

re-loading behaviours.
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hardening law

The combined isotropic-linear kinematic hardening model (which is also available
in LS-DYNA as material model 3, MAT PLASTIC KINEMATIC ) is also not able
to accurately predict the cyclic behaviour of the two sheet steels as it can be seen in

Fig.5.2. However, the cyclic behaviour of TRIP780 and DP980 is very well predicted

with the YU model (Mat125), as shown in Fig.4.5.
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Since the YU model is able to predict the actual cyclic behaviour of these sheet
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material, it was expected that it would also accurately predict the actual forming and
springback of the channel section. However, the miscalculation of energy balances
and probably the stress state with the YU model (Mat 125) limits its applicability.
This is because of the incorrect implementation of the YU model in LS-DYNA
solver (version 971 edition R5.1.1). To show this, the energy balance and punch
force results predicted with the YU model in ABAQUS were examined in Chapter 4
and did not exhibit such error for a similar representative case (TPSB), in Figs.4.10
and 4.11.

Further comparison can be made from the results of simulations in ABAQUS
with those from LS-DYNA. Fig.5.3 compares the predicted channel sidewall profiles
for the TPSB case carried out with both ABAQUS and LS-DYNA. The YU material
model, with the parameters in Table 4.3, was used to obtain these results. As can
be seen, more accurate prediction of the channel profile is achieved by YU model in
ABAQUS than LS-DYNA. A similar result is also observed for the DPSB case. In
terms of the sidewall curvature, less than 8% error was calculated for the simulation
results with ABAQUS compared to the experimental results. Another interesting
result is the over-prediction of the channel profiles with the YU model with respect
to the experimental values in ABAQUS. This is most probably due to the fact that
the material parameters reported by Shi et. al [46] were not optimized for the
DP980 material used in the current study. It is intended to continue this aspect
of the research using an optimization code for ABAQUS, and also when the bug is

fixed for Mat125 in LS-DYNA.
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Figure 5.3: Channel sidewall profiles predicted with the YU model in ABAQUS and LS-
DYNA and compared with the experimental results for: a)TRIP780 (TPSB), b)DP980
(DPSB)
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Also, the thickness of the sheet metal for various points along the channel section
was obtained from the simulations in ABAQUS as shown in Fig.5.4. They are
in good agreement with experimental measurements reported in Table 3.5, by 2

and 3% thickness reduction for TRIP780 and DP980 channels with shallow beads,

respectively.
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Figure 5.4: Prediction of the thickness along the channel section predicted with the YU
model in ABAQUS for: a)TRIP780 (TPSB), b)DP980 (DPSB)

As a summary of the work done in this study, a U-channel draw process (BM3 of

Numisheet 2005) was simulated with the FE code LS-DYNA and material models
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24, 36, 37 and 125 for TRIP780 and DP980 sheet materials. Experimental channel
sections were drawn with various drawbead penetrations and without drawbeads
but with different die entry radii. Based on the numerical studies of Chapter 4 and
comparisons with the experimental results in Chapter 3, the following conclusions

can be drawn for this study:

1. For advanced high strength steels such as TRIP780 and DP980, parameters of
the constitutive model have a great impact on the convergence of the spring-
back simulations. Without appropriate parameters, it is likely that the implicit

springback simulation will not converge to an appropriate solution.

2. From the material models in the LS-DYNA library, Mat 125 (YU) failed to
predict accurate sprungback and sidewall curl results. The stress and strain
distributions and various energy levels predicted with this material model
show significant deviation from what is predicted by other material models.

These results were also different from results predicted with the YU model

implemented in ABAQUS used-defined model.

3. Mat 37 (transverse anisotropy constitutive model) with increased number of
integration points (up to 19) yielded more accurate results than other material
models in the LS-DYNA library which were used to predict the sidewall curl

of channels made of TRIP780 and DP9&0.

4. The severity of sidewall curl increased when no drawbeads were used and also

when a tighter die entry radius was used for both TRIP780 and DP980.

5. When drawbeads were used in the channel draw process, springback (wall
opening angle) decreased but sidewall curl increased in the channel sections

for both TRIP780 and DP980.

6. By comparison of the sprungback channel sidewall profiles of TRIP780 when

the blanks were taken parallel and perpendicular to the sheet rolling direction,
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10.

11.

it was concluded that in-plane anisotropy did not have a significant effect on
the final sidewall curl. Tensile test results for samples cut at different angles

with respect to the rolling direction also did not show significant variations.

. Channels made of TRIP780 show less sidewall curl and less springback angle

than those made of DP980.

. The unloading elastic modulus of TRIP780 and DP980 was determined for a

range of strain up to 0.1. Although the results were fitted to the empirical
decaying function of plastic strains, the decreasing trend is expected to con-
tinue even beyond this strain level. Further investigations are in progress in

this regard.

The YU model implemented in ABAQUS with a user defined subroutine pro-
duced less than 8% error in predicting sidewall curl for channels made of
TRIP780 and DP980 with the shallow drawbead configuration. Similar re-
sults are expected with LS-DYNA once the implementation of this constitutive

model is corrected in the solver or a user-defined material model is developed

for Yoshida in LS-DYNA.

The coefficient of friction had an important effect in predicting punch force
results of the forming stage when no drawbeads were present in the model.
When drawbeads were used, the tension force on the blank was mainly pro-

duced in the drawbead region and the friction coefficient had a minor effect.

The amount of predicted sidewall curl and springback depended on the mate-
rial constants which were obtained by fitting the simulated stress-strain curves
to the experimental data. Therefore an optimization method was required to
minimize the fitting error and globally determine the best set of parameters. It
is worth noting various sets of material parameters are expected from different
types of cyclic tests, and this may affect the accuracy of the results. Further

investigation is required in this regard.
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APPENDIX A

Simulation of B-pillar

The forming and springback of an industrial auto body part known as B-pillar
made of DP980 sheet steel with a thickness of 1.5 mm was simulated with LS-
DYNA. The FE model of the forming process was created and analyzed here, using
the findings from the current study. Material model 37 with 19 integration points
through the thickness and fully integrated element formulation (type 16) was used.
The upper and lower tools were created with zero offset as shown in Fig.A.1. Two
“FORMING ONE_ WAY SURFACE TO_ SURFACE” contact algorithms with a
friction coefficient of 0.1 were defined between the blank and the upper and lower
tools. A prescribed rigid motion boundary condition in the form of a velocity curve
was assigned to the upper tool to form the part in one step until the complete closure
of the die. Adaptive meshing and other control parameters were assigned similar
to the channel forming simulations. The deformed part after the forming stage was
submitted to an implicit springback solution by fixing three points to eliminate the
rigid body motion of the part. The result of the forming stage is shown Fig.A.2
and the result of the springback stage is shown in Fig.A.3 which showed very little
springback or twist in the part. More investigation for the improvement of the

analysis is in progress.
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