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ABSTRACT 

 

Bio-fuels such as E85 (85% ethanol and 15% gasoline) are clean and cost effective 

alternative fuel sources. Their effects on the tribological performance of the IC Al-Si 

engine alloy needs to be investigated. This study explores the ultra mild wear (UMW) 

mechanisms of an Al-12.6%Si alloy operating under a mixture of E85 fuel and motor oil 

(5W30) blended at a 1:1 ratio and only engine oil using boundary lubricated condition. 

Wear tests were conducted at room temperature using a pin-on-disk configuration and 

52100 steel balls counterface.  They show that samples lubricated with only engine oil 

and an engine oil E85 blend exhibited similar UMW characteristics. Lower wear rates 

were obtained when the engine oil was mixed with E85 fuel. Although the oil residue 

layer is of reduced thickness it is tribologically effective due to the formation of a 

protective tribochemical film by the alcohol. 
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CHAPTER I INTRODUCTION 

The automotive industry has invested a large amount of resources in an attempt to 

improve modern passenger car emission standards through the reduction in the overall 

mass of the vehicle, improvement of energy conserving engine oils and improvement of 

bio-fuel technology for cleaner alternative fuels [1-2].  Another key area of focus has 

been on the elimination of cast iron cylinder liner and on the introduction of alternative 

aluminum based engine blocks.  The technology was first attempted in the Chevrolet 

Vega, which offered a hypereutectic Al-18.5% Si alloy; however, large production costs 

and manufacturing issues forced the technology to be delayed [3].  Since then, 

advancements in casting technology and alloy development, coating technology, and 

manufacturing methods have allowed for cost effective ways for the linerless technology 

to be implemented once again. 

The microstructure on the aluminum-silicon cylinder interface consists of silicon 

particles, which protruds above the aluminum matrix, and various inter-metallic phases.  

The concept of the linerless engine is that the harder silicon particles support the applied 

contact load from the piston rings while protecting the aluminum matrix.   It is expected 

that under normal operating conditions, the engine should not experience more than a few 

nanometers of material removal per hour [4-5]. 

The progression of engine wear has been studied through post-mortem 

characterization of engine cylinder walls that followed dynamometer tests and various 

bench tests that incorporated operating temperatures, various oil additive interactions, and 

different loading configurations.  It has been shown that the regime, which accurately 
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characterizes the low material removal observed in normal engine operations corresponds 

to the ultra-mild-wear (UMW) regime, which is less than 10
-4

 mm
3
/m [6].     

Chen and Alpas [7] and Dey et al. [5] observed wear of Al-18.5% Si alloy under 

lubricated sliding conditions under 0.5N and 5N respectively in order to understand the 

wear mechanism associated with Al-Si alloy.  At 0.5 N loads, silicon particles began to 

fracture and sink into the matrix, supporting the direct load.  Damage was limited to only 

a few scratch marks on top of silicon particles and it was concluded that the matrix did 

not sustain any damage.  When loads were increased to 5N, a second stage was identified 

when the matrix became exposed to the counterface resulting in wear characterized as 

mild wear. Chen et al. [4] later characterized the wear behaviour of Al-Si alloys near the 

eutectic composition.  The mechanism of UMW was identified as consisting of three 

stages.  UMW I stage occurs during the period when silicon particles begin to fracture 

and sink into the matrix, allowing for aluminum to pile up.  The second stage UMW II 

occurs over the period where the exposed aluminum matrix is removed resulting in rapid 

wear.  The third stage UMW III occurs when a decrease in wear occurs due to the 

formation of a smooth and stable surface featuring a zinc based oil residue layer 

supported by an underlying structure of sliding deformation induced ultra-fine aluminum 

grains.  Meng et al. [8] characterized the oil residue layer (ORL), which develops due to 

sliding at room temperatures under boundary lubrication with engine oil.  The authors 

observed the formation of a thin ORL supported by the ultra fine aluminum grains that 

correlated the reduction in wear rates to the formation of the ORL.  The layer consisted of 

a mixture of aluminum oxide and amorphous carbon as the main components, whereas 

constituents of the synthetic oil such as Zn, S, C, and Ca, become incorporated within the 
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layer. It was observed that increasing the sliding cycles increased the thickness of the 

layer.  

Nicholls et al. [9] researched the formation of the tribofilm produced from zinc 

dialkyl dithiophosphate (ZDDP) on Al-Si alloys.  The authors identified species of 

phosphide, unreacted-ZDDP, linkage isomer, and polyphosphate which develop on the 

wear track due to combined mechanical and chemical reactions from sliding contact 

under boundary lubrication.  Pereira et al. [10] concluded that ZDDP resultant film 

formation under boundary lubrication consisted of zinc phosphates, zinc sulphides, and 

sulphates.    

 In recent years the demand for alternative fuels such as ethanol based fuels has 

resulted in vast amount of research into the combustion properties of ethanol/gasoline 

blends and the formulation of ethanol/gasoline mixes.  However the impact of ethanol on 

the engine lubrication is limited.  It is important to consider the effect of ethanol on 

engine lubrication since it differs from gasoline.  Ethanol has a high latent heat of 

vaporization and a high boiling point (78
o
C), making it possible for ethanol to find its 

way into the lubrication reservoir [11].  The high latent heat of vaporization makes cold 

start conditions particularly an area of concern and it has been shown that during cold 

start conditions extended cranking times are required leading to a high level of fuel 

dilution.  If engine operating temperatures are below the boiling point of ethanol, the 

alcohol will not evaporate from the oil reservoir.  Tung and Gao [12] studied the effects 

of 2% engine oils and 98% ethanol blended fuel mixtures (E85) under boundary 

lubricated wear conditions on cast iron liners and stated that fuels with higher acidity (4 
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pH vs. 6 pH) resulted in severe metal-to-metal contacts between piston rings and cylinder 

liner.  Schwartz [13] investigated the effects of methanol fuel on engine oils pertaining to 

cast iron engine cylinder wear and concluded that the addition of methanol to engine oil 

caused no significant increase in the wear volume; however, stated that upper cylinder 

wear might be attributed to the ability of methanol to transport the additives away at the 

initial contact regions (upper cylinder).  Hu et al. [14] explored the effects of alcohol as 

an impurity on ZDDP additives and concluded that alcohol decreased the degradation 

temperature from 215
o
C to 145

o
C, and increased the extreme-pressure properties, which 

allowed the load-carrying capacity to be improved, a combined effect which lead to an 

improved wear resistant lubricating oil.   

In addition, concerning the wear resistance for aluminum alloys, using alcohols, 

diols, and amines, particularly implemented for cold rolling procedures, has been shown 

to reduce wear on aluminum alloys by forming a chemical film that separates the 

contacting bodies and thereby reduces wear [15].  Wan et al. [16], studied the effect of 

diol compounds on the friction and wear of aluminum alloys, attributed the mechanism of 

wear to tribochemical products which form on the surface between the diols and 

aluminum.  The authors stated that differences in the structure of the diols can govern the 

ability of the diols to provide adequate wear resistance.  Diols form bidentate bonds on 

the sliding surface, which acts as a protective film responsible for reducing friction and 

wear.  Igari et al. [17] found similar film generation on top of the aluminum surface with 

aliphatic diols and glycols as lubricants on the wear of aluminum.  Hu et al. [18] studied 

the tribological properties of alcohols as lubricating additives on aluminum and 

concluded that the antiwear mechanism is due to the chemi-adsorption of alcohols and 
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the formation of protective film on the contacting surface.  The authors also stated that an 

increase in the hydroxyl group number of the alcohol improves the molecular polarity, 

consequently forming a more stable film.  Hu et al. [19] offered evidence for the chemi-

adsorption of amines onto the surface of the contacting body through FTIR analysis and 

suggested the formation of aluminum and amine protective film.  Kubo et al. [20] used 

deuterium substituted ethanol during boundary lubricated wear and concluded that a 

tribochemical film (chromium ethoxide) does in fact occur during sliding contact with 

ethanol.   

The lack of research in the area of linerless aluminum-silicon engine alloys under 

boundary lubricated sliding conditions with contaminated engine oil has prompted the 

need for an in-depth study.  The objective of this study is to perform pin-on-disk wear 

tests under 2N loads to observe the wear behaviour of Al-12.6% Si under boundary 

lubrication in order to understand the effects of alcohol on the lubricating properties of 

the engine oil. 

This thesis is organized into seven chapters.  Chapter 1 is an introduction to the 

objective and organization of this thesis.  Chapter 2 is a review of topics pertaining to 

the overall understanding of this thesis.   Information has been provided to cover the alloy 

development, the different regimes of wear which are governed by its respective 

mechanisms, information of engine oil technology, and alternative fuel technology.  

Chapter 3 covers the details pertaining to the testing procedures and methodology used 

throughout this thesis.  Chapter 4 is an accumulation of the observations and results 

from testing.  This chapter details observations, calculations, and analyses in order to 
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determine the mechanism of wear.  Chapter 5 discusses in detail the progression of wear 

and the mechanisms which were observed during wear tests.   Chapter 6 presents the 

conclusions of this research based on all the observations.  
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CHAPTER II REVIEW OF THE LITERATURE 

 

2.1 Introduction 

 The first section of this chapter reviews the principles of the internal combustion 

engine followed by properties of the specific engine alloy.  A review on the 

implementation of linerless engine alloy has also been provided along with the different 

alloys used for linerless engine technology.  The review continues on to the wear 

behaviour under dry lubricated conditions followed by a summary of the regimes and the 

wear mechanism and a review of lubricated sliding wear mechanisms.  The review also 

covers the topic of engine oils and engine oil additives followed by a description of the 

contact mechanics in which they work.  The final section of the review covers ethanol 

fuels and the effects on engine cylinder wear.   

2.2 Internal combustion engine 

The principle of internal combustion (IC), which is based on spark ignited petrol 

fuel or compression sparked diesel fuel, has had a global impact.  In IC engines, chemical 

energy is transformed into mechanical energy and this technology is employed in 

motorcycles, scooters, mopeds, vans, trucks, buses, agricultural vehicles, construction 

vehicles, trains, boats, and ships [1].  The IC engine became a popular tool for its 

performance, reliability, and versatility; however, the process is far from efficient.  Much 

of the energy from combustion is lost to thermal and frictional losses [1].  The typical IC 

engine configuration contains components such as rockers, valve springs, piston rings, an 

oil filter, journal bearings, an oil pump and oil, camshafts, valves, pistons, a cylinder 

block, con rod, crankshaft, and oil sump as shown in Figure 2- 2.   
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 A study by Andersson [21] on the performance of a medium size passenger car, 

showed that from combustion, roughly 12% of the energy is used to drive the wheels of 

the car, and roughly 15% of the energy is lost through mechanical losses (friction).  The 

author was able to estimate that if even 10% of the friction were to be reduced, a 1.5% 

increase in fuel consumption would be possible.  When considering only the mechanical 

losses from an IC engine system, the components which contribute to mechanical loss 

through friction are displayed on a pie chart as shown in Figure 2- 2.  Of these 

components, the skirt friction, piston rings, and bearings total roughly 66% of the total 

friction loss, and the valve train, crankshaft, transmission, and gears add to roughly 34% 

of the overall energy loss.   

Improving the engine tribology performance through effective lubrication and 

design can greatly reduce fuel consumption, increase engine power output, reduce oil 

consumption, reduce harmful exhaust emissions, improve durability, reliably, and engine 

life, and reduce the maintenance required with longer service intervals.   

2.2.1 Piston assembly 

 The piston assembly is the heart of the IC engine, where the proper amount of fuel 

and air mix together to create combustion.  The piston assembly includes a series of 

metallic rings which serves to create an effective gas seal between the combustion 

chamber and the crankcase.  The rings form a seal by closely conforming to the piston 

and the cylinder wall.  The second function of the rings is to transfer heat from the 

pistons to the cylinder walls, which are in turn cooled by the circulating coolant and 

limits the amount of oil that is mixed into the combustion chamber.  Shown in Figure 2- 3 

is a schematic of the piston assembly.  The grooves in the piston hold the piston rings in 
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place, while the piston skirt transmits the transverse loads from the piston to the cylinder 

walls.  The top two piston rings are called the compression rings.  The firing pressure 

pushes the rings outward conforming to the cylinder walls.  These rings form the major 

gas seal and encounter the highest loads and temperatures because they are the closest to 

the combustion chamber.  The top compression ring is typically coated with molybdenum 

for wear resistance purposes [1].  The second compression ring limits the upward oil flow 

in addition to providing a secondary gas seal.  The bottom ring is the oil control ring, 

which limits the amount of oil transported from the crankcase to the combustion 

chamber.    

The design and function of the piston assembly varies between manufacturers; 

however, the principal functions are quite similar.  In order to provide appropriate wear 

resistance for piston rings and the cylinder wall, a variety of coatings and energy efficient 

lubricants can be employed.  It is important to take into consideration the large variations 

in load, speed, temperature, and lubricant availability during the design of the piston 

assembly and coatings.  The most common base materials for piston rings typically range 

from gray cast iron, malleable/nodular iron, carbides/malleable iron, and steels.  Rings 

can be coated with chromium plating, flame sprayed molybdenum, diamond like carbon 

coatings (DLC), and nitrided stainless steel (NSS) in order to enhance wear resistance [1, 

22].  Pistons were originally made from grey cast iron but have been replaced by 

aluminum for several reasons.  Lighter alloys reduce the overall engine mass and 

reciprocating mass, which reduces engine vibration.  The higher thermal conductivity of 

the aluminum helps transfer heat but must be designed for adequate clearance due to 

thermal expansion [2].   Cylinder bores are typically made from cast iron inserts, which 
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are incorporated into the engine block casting process.  Recent development of single 

engine blocks from new light weight materials such as the aluminum silicon alloy and 

new thin film coatings for piston rings have allowed for the elimination of the heavy cast 

iron inserts [3-4, 7, 23-27].  The process of achieving a cylinder wall adequate for 

withstanding the combustion and necessary wear resistance will be discussed in the 

following sections.   

2.2.2 Aluminum silicon alloy 

Aluminum-silicon (Al-Si) alloys are among the most commercially used alloys 

desired for its wide applications.  However Al-Si alloy have a poor resistance to wear in 

comparison to iron alloys.  The challenge remains to find a cost effective way to make 

Al-Si alloys strong enough for engine application and importantly cost effective for high 

volume manufacturing.  Such methods include the low-carbon thermal spray deposition 

process and surface etching to expose silicon particles [4, 7, 23, 26-27].   

Aluminum-silicon alloys can be divided into three categories: eutectic, 

hypoeutectic, and hypereutectic alloys.  Silicon as an alloy has the ability to reduce the 

thermal expansion coefficient, and increase corrosion and wear resistance [28].  The 

simple eutectic system consists of aluminum in the form of face center cubic and silicon 

in the form of diamond cubic structures.  Murray and McAlister [29] compiled data from 

various publications to produce an Al-Si alloy phase diagram as shown in Figure 2- 4.   

Initially, solidification of the alloy occurs as the primary aluminum forms and grows in 

dendrite formation and/or the silicon phase forms and grows in angular primary particles 

[28].  Hypoeutectic alloys consist of 5-10% Si, whereas eutectic alloy consists of 11-13% 

Si, and hypereutectic alloy consists of 14-20% Si.  A strong agreement on the eutectic 
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temperature at 557 +/- 1
o
C and the eutectic composition at 12.2 +/-0.1 wt.% Si has been 

established based on a compilation of hundreds of experimental works and discussions 

[29].   

2.2.3 Alloying elements for aluminum castings 

Alloying elements are specifically chosen to achieve a desired property or to 

control the effects of impurities. Commonly utilized alloying elements for aluminum are 

copper, magnesium, manganese, zinc, and iron [28].  Elements such as copper, zinc, and 

magnesium are known to improve the hardenability of the alloy.  Copper improves the 

tensile strength, machinability, and thermal conductivity of the alloy at the expense of 

reduction in ductility and corrosion resistance.  Alloying elements are beneficial during 

the casting process by controlling the porosity content.  Some alloying elements can 

influence the freezing range of the Al-Si melt, inherently influencing the porosity 

formation or aiding the formation of dendritic intermetallics during solidification, which 

in turn allows the porosity to form along intermetallic dendrites.  An investigation into an 

Al-9 wt.% Si-3 wt.% Cu alloy illustrated that during solidification,  pores did in fact 

nucleate along the sides of the β-Al5FeSi needles [28].  However, an Al-Si-Mg alloy 

containing Sr showed that copper content over 0.2% increased the dispersed 

microporosity.  The increase in copper content lead to an increase in the volume fraction 

of porosity in the casting.  Iron content is typically found around 1.5-2.0%.  Iron can 

induce Al-Fe-Si phase formation, which helps to prevent the die from sticking to the 

casting.  Magnesium can be used to increase the hardness of the alloy through 

precipitation hardening by forming Mg2Si phases throughout the matrix.   Manganese has 

been found to modify the Al-Fe-Si phase, improving the ductility and shrinkage 
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properties in the alloy.  Nickel has been found to be beneficial for high temperature 

applications by improving Si modification process and promoting primary Si 

precipitation in eutectic Al-Si alloys.  Alloying elements such as sodium, phosphorus, 

titanium, and boron can affect the silicon phase morphology and have an influence on the 

grain refinement.  Increasing the grain refiners increases the number of nucleation sites, 

leading to a decrease in both the volume fraction and size of pores, which in turn 

increases the overall homogeneity of the casting.  Adding phosphorus to an Al- 9 wt.% 

Si- 3 wt.% Cu alloy displayed remarkable reduction in the porosity content [28].   

Silicon particles have been shown to provide excellent wear resistance.  

Increasing the silicon content has been shown to increase the wear resistance of the alloy.   

Hypereutectic alloys have been implemented without cast iron linear inserts by preparing 

the Al-Si surface in order to allow the harder silicon particles to stand above the 

aluminum matrix, sustaining the loads [4, 7, 23, 30].  Alloys such as the Al-14%, Si- 2%, 

Cu-0.5%, as well as Mg-0.5% and Mn-0.05%, and Zr with -0.05% strontium have been 

found to have excellent machinability, high temperature capability, and wear and 

corrosion resistant properties, all of which are desired for linerless engine applications 

[28].   

2.2.4 Alternatives to engine cylinder liners 

Elimination of the cast iron liner with a homogeneous engine block will reduce 

the weight and improve engine performance through better heat transfer, while still 

maintaining the durability and performance.  The aim is to achieve wear and scuffing 

resistance similar to or better than cast iron liners. The first linerless engine was 

manufactured by General Motors Corporation and was implemented in the Chevrolet 
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Vega engine as a light weight, durable, fuel efficient, and reliable engine [3, 31].  The 

engine was designed so that the pistons slide directly on the aluminum bore with no 

liners.  The surface of the aluminum bore was first mechanically honed, followed by an 

electro-chemical treatment to expose the silicon particles above the aluminum matrix.  

The harder silicon particles provided the wear resistant layer capable of withstanding the 

conditions during combustion.  With the elimination of the cast iron liners, the overall 

size of the engine became smaller and lighter for roughly the same production cost.  Five 

different alloys were cast and tested.  The base hypereutectic Al-Si alloy (A390) 

consisted of 16-18% Si, 4-5% Cu, 0.45-0.65% Mg, 0.5% Fe, 0.1% Mn, 0.1% Zn, and 

0.2% Ti.  It was found that the high concentration of silicon content offered comparable 

wear resistance as cast iron liners but posed difficulty under cold start conditions were 

insufficient lubrication lead to scuffing damage.  

Riahi et al. [30] investigated the scuffing resistance of two eutectic Al-Si alloys 

(12.0 wt.% Si) in order to better understand the morphology of second phase particles and 

the optimal conditions which are needed for linerless engine application.  Alloy A and B 

consisted of the same silicon percentages and alloying elements; however, alloy B 

consisted of a higher nickel content resulting in a higher number of second phase 

particles with a needle like morphology.  The author correlated the time required for 

scuffing to initiate with the duration of etching time and stated that between 5 to 7 

minutes of etching resulted in the best conditions for scuffing resistance, and prolonged 

etching past 7 minutes resulted in a weakening of the particles/matrix bonding due to 

excessive dissolution of the matrix as shown in Figure 2- 5.  The ideal etching conditions 

expose the harder particles, which act as the load bearing elements and prevent the 
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counterface from coming into direct contact with the soft aluminum matrix.  The 

fracturing of the silicon particles occurs due to the development of tensile stresses at the 

root of the silicon particles which anchors the particles to the matrix and results in the 

removal of relatively large fragments when they fracture.  The edges of the particles also 

fracture and fragment when they come into contact with the counterface.  The fractured 

pieces act as third body abrasive elements and in turn plough the matrix.  Alloy B, which 

contained a higher concentration of nickel, resulted in a large number of hard phases per 

unit area with a needle like morphology, decreasing the scuffing resistance of the alloy.  

Larger needle like particles fracture more in comparison to smaller round particles found 

in Alloy A.   

Das et al. [32] also confirmed similar results of the effects of surface etching by 

conducting lubricated wear tests on near-eutectic Al-Si alloy (10 wt.% Si) after etching 

the surface.  The authors concluded that when the surface is etched, and the silicon 

particles are exposed, plastic deformation initiates at higher loads than what is observed 

under unetched conditions.  Etching the surface reduces the peak contact pressure on the 

alloy and thus reduces plastic deformation.  In order to understand the scuffing 

mechanism, an overall investigation of the mechanical, thermal, physical, and chemical 

interactions among the contacting bodies, the environment, the lubricant, and other 

species at the sliding interface must be considered.  Scuffing has been associated with the 

breakdown in the lubrication film, and this has been supported by researchers.  

Researchers have also argued that a critical temperature criterion should be considered 

for the onset of scuffing to occur.  The critical temperature is affected by material 

properties, engine operation conditions, and physical/chemical interactions between the 
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two contacting bodies.  Studies by Wang et al. [33] investigated the wear behaviour of 

various piston ring coatings against cylinder bore in order to evaluate the scuffing 

mechanism.  During testing, the authors describe the onset of scuffing when a sharp 

increase in coefficient of friction (COF) was noticed, indicating increase in metal to metal 

contact.  Friction curves typically follow three stages: the break-in stage where the COF 

increases with the normal load, followed by a steady stage where it stabilizes.  The final 

stage occurs during failure where the COF increases sharply and is associated with 

scuffing.  At the onset of contact, the peaks of the machining marks are first to come into 

contact and begins to flatten due to wear, increasing the contact area.  The oil film is able 

to partially support the load and operates under a mixed lubricated regime.  If the loads 

are increased and temperatures start to rise, the boundary lubrication regime is achieved.  

During scuffing, the two surfaces directly contact each other under starved lubricated 

condition.  In order to better classify scuffing, the authors adopted the following 

statement: ―Scuffing is a sudden departure from proper functioning of lubricated sliding 

pairs, resulting in a progression toward catastrophic surface failure.‖  The newly 

developed engine alloy cylinder bore exhibited promising scuffing resistance; however, 

the scuffing resistance is affected by surface porosity.  Higher porosity levels result in 

lower scuffing resistance.  Surface hardness and substantial intermetallic phases, along 

with eutectic silicon phase, also provide additional wear resistance and beneficial tribo-

chemical reactions.   
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2.3 Behaviour of aluminum silicon alloys in dry sliding conditions 

2.3.1 Wear regimes in Al-Si alloys 

Before understanding the wear mechanisms involved during the contact of two 

surfaces, it is important to identify which type of wear regimes exist with Al-Si alloys.  

The fundamental work was first published by Lim and Ashby [34] who developed an 

empirical wear map to summarize the wear rates and wear mechanisms for steel-on-steel 

contact under dry sliding as shown in Figure 2- 6.  The authors reported on regimes of 

ultra-mild wear, delamination wear, mild-oxidation wear, severe-oxidation wear, melt 

wear, and seizure.    

When observing the wear behaviour of Al-Si alloys, it is evident that different 

regimes can be achieved based on varying sliding conditions.  Liu et al. [35] compiled 

various experimental results to develop a physical model similar to what was initially 

developed by Lim and Ashby [34].  Improving on the models, an empirical wear map for 

Al-Si alloy was generated as shown in Figure 2- 7. The importance of this particular map 

allows for a broad observation of the different wear regimes and mechanisms which exist 

for a given condition.  It is essential to realize that within each regime, the dominant wear 

mechanism is different and can be changed by varying parameters such as speed, load, 

and atmospheric conditions.  Based on these novel ideas and methodology, Zhang and 

Alpas [36] investigated the working mechanism of delamination wear by conducting dry 

sliding wear tests on Al-7% Si alloy; this is particularly important in order to determine 

the stress and strain distributions as a function of sliding distance  and applied normal 

loads.  The authors concluded that both the magnitude of the strains and the depth of the 

deformed zones increase with sliding distance and applied load.  Using the Voce 
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equation, strain hardening of the material was calculated and illustrated to show that 

towards the contacting surface, hardening capacity of the material was exhausted and 

exponentially decreased when moved further away from the surface.  Void nucleation 

sites initiated at Al-Si interfaces and linked together to form subsurface cracks below the 

surface as shown in Figure 2- 8.  When the subsurface cracks reach the surface, 

delamination of the material occurred.  Zhang and Alpas [37] proceeded to study the 

transition point from one regime to another on Al-Si (6061) by changing the load, sliding 

velocity, and sliding distance, allowing them to understand how each condition effects 

the transition point.  The authors reported that wear rates were mild at low loads and 

increased gradually until the material experienced a transition from mild to severe wear 

as indicated by a sharp increase in the slope of the wear rate versus load curve as shown 

in Figure 2- 9.  It was evident when observing the wear debris and wear scar that severe 

wear generated massive surface damage, larger scale aluminum transfer to the 

counterface, and the generation of coarse debris.  Transition from mild to severe wear 

was observed when the bulk surface temperature Tb exceeded a critical temperature limit 

when the load or sliding speeds were increased.  The temperature increase affects the 

hardness of the matrix, which was made evident by the recrystallization of the matrix.  

This implied that the transition point was not a single influencing factor but a 

combination of systems acting together.   

The most commonly reported wear regimes for an Al-Si system contacting with a 

steel counterface are the mild wear (MW) and severe wear (SW).  Mild wear occurs 

under low loads resulting in wear rate between 10
-4

 and 10
-3

 mm
3
/m.  Severe wear occurs 

under higher loads, higher temperatures and high sliding velocity producing wear rates of 
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>10
-2

 mm3/m.  Figure 2- 10 shows a wear rate versus load map for an Al-Si binary 

system and various Al-Si systems with Cu, Fe, and Ni as the alloying elements [38].  The 

binary Al-Si system contains a transition point at 30N where the regimes change from 

mild wear to severe wear.  This transition signals a change in the mechanisms.  Alloying 

with 2% Cu increased the transition point from 30N to 80N, similarly when Ni and Fe 

were added the transition point only increased slightly.   

Yen and Ishihara [39] and Goto et al. [40] postulated that testing conditions such 

as humidity, atmosphere, and counterface materials were factors which can all change the 

tribological properties of any system under observation.  An important observation was 

made by Elmadagli et al. [41] when studying the sliding behaviour of Al-18.5%Si, Al-8% 

Si, and Al-25% Si in a controlled dry environment containing 5% relative humidity.  The 

authors reported that the transition from mild to severe wear exists for all the alloys 

tested; however, two new sub-regions of wear were observed.   Evidence for the ultra-

mild wear (UMW) regime was provided with wear rates below 10
-5

 mm
3
/m.  The state of 

UMW was achieved when loads of 10N were used during contact with 52100 stainless 

steel counterface in an argon atmosphere.  When the counterface was changed to a 

diamond like carbon (DLC)-coated steel counterface running in dry air (RH 5%) 

atmosphere, the same condition of UMW was achieved.   

2.3.2 Wear mechanisms in Al-Si alloys 

The characterization of wear regimes can only be completed by understanding the 

mechanisms that induce damage.  Following a physical modelling approach first outlined 

by Lim and Ashby [34] for steels, Liu et al. [35] combined their experimental data with 

data collected from the literature to develop the wear map for aluminum alloys as shown 
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in Figure 2- 7.  The authors identified different wear regimes, which were each obtained 

by varying both the contact pressure and sliding velocity, and proposed a mechanism for 

each regime. As an example, at relatively low speeds and loads, the heat generated by the 

asperity contact leads to oxide formation on the aluminum surface.  The layer is thin and 

can deform elastically contributing to very low wear rates which the author considers 

ultra-mild wear.  Increasing the load causes adhesion to occur between the two materials 

in contact and removal of the surface oxide in the form of laminar particles ranging in 

size from 50 to 200μm.  Delamination wear involves plastic shearing of the metal.  

Subsurface nucleation of cracks propagates to the surface resulting in particle-like wear 

debris generation also observed by Zhang and Alpas [36].   

Li and Tandon [42]  investigated the sliding wear behaviour of Al-Si alloys 

against tool steel and reported that a mechanically mixed layer (MML) formed comprised 

of elements from both sliding materials.   Initial contact occurred between asperities on 

the microscopic scale leading to high compressive pressures and large shear strains in the 

asperities, which further progressed to a large number of dislocations in cells and 

elongated subgrains.  The formation of the early fragments from the contacting surfaces 

mix together and in turn, compact and smear under the applied loads.  These mixed and 

compacted materials progressively accumulate and as a result, transfer layers are created.  

The formation of the MML provides a layer of protection and can act similar to a solid 

lubricant.  Under low loads, the MML consisted mainly of α-Al and α-Fe, whereas under 

high loads, intermetallic compounds of FeAl and α-Al2O3 exist.  The formation and 

removal of the MML will inherently control the amount of wear as a result of dry sliding.   
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Work by Li et al. [43] explored the properties of tribolayers as a result of sliding 

wear under different atmospheric conditions in order to relate the content of oxygen to 

the mechanical nature of the tribolayer.  The authors found that the layer which formed in 

air was richer in oxygen (32.5 wt.%) and iron (24.8 wt.%) than the layer which formed in 

argon (13.3 wt.% of oxygen and 1.2 wt.% iron).  Under both conditions of sliding, the 

development of ultra-fine aluminum grains occurred, which was attributed to severe 

plastic deformation.  The microstructure of the layer under air was more brittle due to the 

high amount of oxide which leads to more fracture (800 ± 100 kg/mm
2
).  Under the argon 

atmosphere the lower quantity of oxygen resulted in a less brittle and softer layer 

delaying fracture of the layer (400 ± kg/mm
2
). The morphology of the two layers is 

shown in Figure 2- 12 where the layer in argon was almost featureless.  The layer under 

air was more brittle with networks of cracks.      

Reddy et al. [44] reviewed the conditions necessary to induce seizure on Al-Si 

alloys under dry sliding conditions.  The authors stated that the mechanism of seizure of 

Al-Si alloys is related to the bulk shear stress of the material, where the frictional forces 

and the resistance to shear are the controlling factors.  Friction forces are determined by 

the hardness of the alloy, whereas the resistance to shear is inversely proportional to the 

hardness.  At higher sliding speeds the frictional forces increase the temperature which 

reduces hardness and the resistance to shear.  This was also observed by Zhang and Alpas 

[37] who investigated the effects of applied load and sliding velocity in aluminum alloys 

to further understand the transition from mild to severe wear.  No single wear mechanism 

can be attributed as the rate controlling mechanism throughout the mild wear regime.  It 

was found that low loads and velocities produced sub-microscopic aluminum and iron 
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particle debris which initially detach from the contact surfaces.  This mechanically mixed 

phase predominantly consisted of aluminum oxide.  The hardened aluminum oxide then 

facilitates the detachment of iron from the steel counterface to produce the iron debris.  

This debris deposits on the surface and from time to time spalls off, contributing to wear.  

Increasing the loads or sliding speeds would inherently increase surface temperatures to a 

critical point near the transition area, softening the material.  Subsurface crack initiation 

and propagation are attributed to the detachment of the layers.  It was also concluded that 

the wear resistance of aluminum alloys can also be increased through reinforced 

misconstrues such as SiC particles or Al2O3 which increase transition loads.   

Wilson and Alpas [45] correlated the effect of applied load and velocity on Al356 

Al-Si alloy with 7.0 wt.% Si and A356 alloy with a 20% SiC composite.  It was found 

that the transition onset for both alloys was achieved when a critical surface temperature 

(0.4Tmelting) was reached.  They observed that in the severe wear regime, the specimen 

generally experienced an initial period of mild mixed oxidation type wear prior to the 

onset of seizure by extensive plastic deformation and material transfer to the counterface.  

At higher loads and high sliding speeds, immediate seizure was noticed.  Alloys 

containing 20% Si showed that similarly a transition point from mild to severe wear 

existed depending on applied load and sliding speed.  However this material was able to 

withstand higher loads before showing signs of severe wear.  Increasing the load and 

sliding speed resulted in higher wear but was not severe enough to induce seizure.   
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2.4 Behaviour of aluminum silicon alloys under lubricated conditions 

2.4.1 Lubrication regime and its properties 

Hydrodynamic lubrication occurs when the sliding surfaces are separated by a 

thick film of lubricant.  Due to the relative motion of the surfaces, internal viscous forces 

are created.  The pressures which are hydrodynamically created support the normal loads.  

In hydrodynamic lubrication, the friction is caused by the shearing of the fluid because 

the fluid completely isolates both surfaces, and the asperities do not come into contact.  

Equilibrium is achieved under the condition in which the load and hydrodynamic 

pressures equal each other.  Lowering the sliding speeds and increasing the load will 

increase the local pressure on the film and in turn increase the film viscosity resulting in 

asperities that come into contact and progress into elastohydrodynamic lubrication. 

Under a mixed lubrication or elastohydrodynamic lubrication, the load carrying 

becomes a combined effect of hydrodynamic pressure and the contact pressures between 

asperities.  In the event that the sliding velocity of the moving surfaces decreases or if an 

increase in the normal load or an increase in the lubricant temperature occurs, a decrease 

in viscosity will result.  Any one of these condition may prevent the formation of 

hydrodynamic lubrication film to occur.  In this regime, the defining characteristics are 

the fluid viscosity, the viscosity-pressure coefficient, and the elastic coefficient of the 

solid surface. 

Under extreme loads or low sliding speeds, the regime enters boundary 

lubrication which can be characterized by three points: (i) the friction surfaces which 

contact at the asperities, (ii) the hydrodynamic effects of lubricating oil or rheological 

characteristics of bulk which do not significantly influence the tribological 
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characteristics, and (iii) interaction in the contact between friction surfaces and between 

friction surfaces and the lubricant (including additives) that dominate the tribological 

characteristics. 

The nature of the contact can be modelled by representing it as a sphere and a flat 

plate.  An equation can be derived in order to determine the minimum lubricant film 

thickness (hmin) at the contact point based on the radius of the sphere (R), the viscosity 

constants of the lubricating fluid (ηo and α), the sliding velocity (U), the applied normal 

load (W), and the reduced surface modulus as described by Hertzian theory (E*): 

                                        
                           (2.1) 

By representing a ratio (λ) of fluid film thickness over the r.m.s surface roughness 

(r*), a relationship to measure the potential for asperity contact to occur can be created.  

When the ratio of λ>3 is achieved, a full fluid film will separate the two surfaces through 

hydrodynamic lubrication.  When the ratio falls between 1< λ <3, partial contact between 

asperities occur and the regime can be considered as elasto hydrodynamic lubrication 

(EHL).  If the ratio λ<1 occurs, the fluid film does not develop and boundary lubrication 

occurs. 

2.4.2 Lubrication additives and engine oils 

Modern engine oils are manufactured by blending base oils with a wide range of 

additives.  Base oils are comprised of different hydrocarbons generally classified into 

three paraffinic groups in which the naphthenes have long side chains; naphthenic which 

have short side chains; and a combination of both [46].   Lubricant additives can be either 
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organic or organo-metallic chemicals which are added in order to improve the lubricating 

capacity and durability of base oils.  Various additives are used in order to achieve a 

specific quality in the oil such as improving the wear and friction characteristics, 

improving the oxidation resistance, prevention of corrosion, and controlling the 

contamination due to combustion products. Among the additives, the most common anti-

wear additive is zinc dialkyldithiophosphate (ZDDP).  ZDDP additive is used mainly for 

its antioxidant and antiwear properties.  As an antioxidant, ZZDPs undergo a series of 

molecular processes which forces them to form organo-substituted phosphates, 

thiophosphates, and phosphorus acids which are incorporated into the antiwear films [47-

48].  The decomposition route of ZDDP can depend on many factors such as (but not 

limited to) temperature and the chemical environment.  The overall decomposition 

ultimately proceeds to the formation of antiwear film precursors which include 

phosphorus, oxygen, sulphur, and zinc.  The details of the ZDDP film formation will be 

explained in later chapters; however, the overall process occurs by first reacting with the 

metal surface or from the film precursor products.  The initial layer serves as a bonding 

layer between the metal substrate and the bulk antiwear film.  The film thickness can vary 

up to 100 nm depending on the sliding conditions and environment in which they 

interact.   

Detergents can include calcium and magnesium sulphonates, phenates, and 

salicylates [47].  They exist in the form of basic, neutral, or over-based and act to keep 

the oil insoluble contaminants and degradation products in suspension and to neutralize 

acids.  The variation in the structure of the detergent can influence the effectiveness to 

neutralize acids.  The neutral structure is simple divalent metal usually calcium or 
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magnesium bonded to an alkyl substituted suffonate, phenate or salicylate anion.  More 

effective detergent packages such as the basic or the overbased packages contain an 

increased number of divalent metals and metal carbonate particles.  These become 

extremely useful for preventing damage from acids created from by-products of 

combustion.  Detergents can also be considered as antiwear additives; however, they are 

far less superior to ZDDP, and typically friction forces are higher.  Detergent products 

can also absorb onto the metal surface even without rubbing, although in the presence of 

mechanical stress, a coherent film forms as a compacted amorphous metal carbonate film 

known to sustain contact pressures on the order of 100 MPa [47].  Dispersants are 

primarily used to suspend oil insoluble contaminants and degradation products.  They are 

more effective under low temperature environments.   

2.4.3 Antiwear film formation 

The formation of antiwear films is crucial in reducing wear, and it has been 

shown to be a combined effect of many conditions including sliding conditions (hardness, 

roughness, load, temperature, sliding speed) and chemical environment [4, 7, 9, 23, 49-

52].  The most widely studied antiwear additive is ZDDP.  The structure of ZDDP is 

shown in Figure 2- 13.  The structure contains four sulphur atoms arranged equivalently 

in a tetrahedron around zinc.  ZDDP has the ability to form either a thermal film under 

high temperatures or a tribofilm under mechanical stresses [48, 51].  When ZDDP is 

heated above 100
o
C, a transparent, solid, reaction film forms on the metal surface.  The 

rate of thermal film formation increases with temperature and can reach up to 200 nm in 

thickness on steel surfaces [48].  Wear tests on thermally formed films showed that they 

are resistant to wear and can survive for a number of hours when rubbed in base oils [48].  
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The thermal film appears to develop as separate islands to form a mound-like structure 

which develops into smooth structures.   

Heuberger et al. [51] employed x-ray photoelectron spectroscopy (XPS) analysis 

to study the effect of temperature on ZDDP tribofilm composition using the ball-on-disk 

setup with an AISI 52100 steel ball.  The authors demonstrated that the temperature has a 

significant influence on film formation for both thermal films and tribofilms, which are 

formed under stress.  Low temperature thermal and tribofilms were calculated to be very 

thin (1-2 nm), and upon increasing the temperature to 180
o
C the thermal film grew to 

about 2-4 nm thick and the tribofilms grew to greater than 6 nm thick.  The thickness of 

the films increased with increasing temperature.  At room temperature the films mainly 

consisted of adsorbed dialkyldithiophosphate and at intermediate temperatures changed 

to short-chain zinc phosphate and to a cross-linked polyphosphate at 180
o
C.   

An extensive study into the chemical composition of tribofilms were conducted 

by Nicholls et al. [9] on Al-Si alloys using X-ray absorption near edge structure 

(XANES) analysis.  Films were generated on A319/A319, A319/52100, 52100/A319, 

A6061/A6061, A6061/52100, and 52100/A6061 systems, and the results from the P K-

edge spectrum are shown in Figure 2- 14.  The first four spectra show unreacted ZDDP, 

Zn Phosphide (Zn3P2), Zinc polyphosphate (Zn4P6O19), and the standard film, 

respectively.  The standard film was considered as the intended target for an ideal film 

because this film was shown to have the lowest wear.  In spectra A for the A319/A319 

system, three peaks were detected on the surface, which were a combination of 

unreacted-ZDDP and species of phosphide and phosphide.  When steel was introduced 
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into the A319/52100 and 52100/A319 systems, only polyphosphate films resembling the 

standard film was noticed.  For the A6061/A6061 system, peaks from unreacted ZDDP 

and polyphosphate peaks were detected.  Under the A6061/52100 system, unreacted 

ZDDP and phosphide species were noticed.  The standard film was not detected until the 

52100/A6061 was used.  It was noted that when unreacted-ZDDP and phosphide were 

detected, large amounts of wear occurred.   The authors also showed the development of 

the film as a function of rubbing time, shown in Figure 2- 15.  It was observed that under 

the A319/A319 system, species of unreacted-ZDDP and polyphosphate were detected.  

The formation of phosphide species were also detected but decreased as the sliding time 

increased.  When steel was introduced into the system, after 5 minutes of sliding, fully 

formed polyphosephate species were detected.  Based on observations made the authors 

concluded that in order to form a good and sustainable film, four conditions must be met: 

(i) the temperature in the contact zone between the rubbing couple must be high enough 

to transform ZDDP to form an antiwear film, (ii) the hardness and yield strength of the 

couple must be similar to sustain the film, (iii)  the antiwear film must be glassy and have 

yield strength less than the surfaces in contact, and (iv) a third body abrasive must not be 

present in the contact zone.   

Grossiord et al. [52] explored the tribochemical interactions between antiwear 

zinc dithiophosphate (Zndtp), friction modifier molybdenum dithiocarbamate (Modtc), 

and over based detergent calcium borate (OBC) lubricant additives.  The author reported 

that under rubbing stresses, the tribofilms which are generated provide good wear 

resistance and acceptable surface friction values.  XPS analysis was then used in order to 

determine the composition of the elements from additives and showed that the films 
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consist of C, O, P, B, S, Mo, Zn, and Ca.  A combination of the binary or ternary systems 

results in similar wear behaviour with slight variations in the film formation and friction 

forces.   The thermal film which is generated under room temperature consisted of 

absorbed dialkyldithiophosphate molecules on the iron oxy-hydroxide, together with zinc 

oxide.  When mechanical stresses were applied to generate the tribofilm, it consisted of 

zinc orthophosphate Zn3(PO4)2, zinc sulphate, zinc oxide, and zinc/iron sulphides.  When 

temperatures were increased to 60
o
C, both thermal and tribofilms were similar to the film 

generated at room temperature but consisted of higher amounts of zinc orthophosphate.  

At temperatures of 90-110
o
C, the thermal film consisted of a mixture of zinc 

orthophosphate and zinc pyrophosphate together with zinc oxide and sulphur.  The 

tribofilm at this temperature resulted in film with more zinc phosphate but less zinc 

sulphate.   

2.4.4 Wear behaviour of Al-Si alloys under boundary lubricated conditions 

The regime which accurately portrays the action of the piston ring and the Al-Si 

interface is found to be ultra mild wear regime. The development of the linerless Al-Si 

alloy has evolved from many stages based on bench tests and dynamometer tests [3, 28, 

30, 53-54].  Chen et al.[23] began to first observe the consequence of matrix hardness on 

Al-11%Si and Al-12% alloy.  The two alloys had similar silicon morphologies; however, 

the hardness of the Al-11% Si was higher than that of Al-12% alloy.  Operating under 

boundary lubrication, using only 0.5 N loads, the author calculated contact pressures for 

both alloys, stating that a harder matrix would impede wear.  Under ultra mild wear, Al-

11% Si exhibited less damage than the softer Al-12% Si, which lead to the conclusion 

that the matrix hardness was determined to be a controlling factor for wear loss.    
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Chen et al. [4] extended the investigation into the micromechanisms and the 

mechanics of ultra-mild wear on hypereutectic Al-Si alloys by performing wear tests 

using 0.5, 1, and 2 N loads under boundary-lubricated conditions.  At low loads of 0.5 N, 

small numbers of fractured silicon particles were observed within the wear track.  It was 

concluded that the damage mechanism included: (i) wear of the top surfaces of silicon 

particles, (ii) fracture of some silicon particles, and (iii) a reduction of particle height 

without visible damage to aluminum.  When observing the wear mechanism at 1 N load, 

the addition of local damage to the aluminum adjacent to the silicon particles became 

apparent.  Through SEM analysis, Si particles inside the wear track became partially 

embedded in the aluminum matrix as shown in Figure 2- 16.  Si particle sink-in is 

accompanied by the formation of aluminum pile-up around these particles.  Pile-up 

occurs in order to accommodate the displacement caused by the rigid particle indentation 

into the plastically deforming matrix.  When silicon particle damage occurs due to the 

sink-in process, direct contact between aluminum and the counterface materializes which 

leads to the formation of scratch marks on the aluminum matrix; however, no mass loss 

can be detected.  The 1 N load wear mechanism consist of the following: (i) particle 

fracture and fragmentation, (ii) particle sinking-in and embedding into the aluminum 

matrix, (iii) development of aluminum  pile-up adjacent to the sunken-in particles, and 

(iv) slight wear damage on the aluminum in the form of surface scratches, but with no 

measureable material loss.   

Observation of the 2 N track showed that silicon particles appear to be fully 

embedded into the aluminum matrix.  Almost all silicon particles were fractured.  The 

continuous scratch marks that appeared on the aluminum surface were identified as an 
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important contact damage feature.  The wear track was covered with a solid tribolayer 

with a glassy appearance after sliding as shown in Figure 2- 17.  This layer forms during 

the course of sliding, and XPS analysis showed that it consisted of a mixture of carbon 

and other constituents which include Ca, S, and Zn that originated from the synthetic oil.  

Electron energy‐loss spectroscopy (EELS) showed that the carbon in the oil residue layer 

had an amorphous structure; it also identified the aluminum oxide as one of the main 

constituents of the layer.   

The microstructure directly below the oil layer showed the formation of a 

deformation microstructure consisting of ultra-fine aluminum grains.  After the fracture 

and sinking-in of silicon particles, wear of aluminum matrix became evident. This tended 

to stabilize when an oil residue layer was established.  The UMW mechanism consisted 

of the following: (i) initially, wear to the top surfaces of silicon particles occurred along 

with particle fracture and particle sinking-in.  This is referred to as UMW I, where the 

damage was limited to the silicon particles and the aluminum matrix remained protected.  

(ii) The aluminum was no longer sheltered, and measurable quantities of material loss 

occurred in UMW II.  (iii) The UMW II stage was not persistent, and the rate of damage 

decreased due to the formation of the oil residue layer on the contact surface as well as 

the formation of a subsurface structure consisting of ultrafine aluminum grains entering 

UMW III stage [4].   

Comparison of 11% Si and 25% Si microstructures revealed that the estimated 

maximum contact pressure applied to the particles in 11% Si was about 1.6 times higher 

compared to 25% Si, primarily because of the smaller area density of silicon on the 
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contact surfaces [7].  The larger pressure exerted on the silicon particles combined with 

the lower matrix hardness caused the silicon particles to exhibit a greater decrease in 

height.  The oil residue layer was approximately 150 nm thick.  The formation of ultra 

fine aluminum grains can be attributed to the generation of large subsurface strains when 

aluminum comes into sliding contact with the counterface during the UMW II stage.  

Under the contact surfaces, a hydrostatic stress field exists that facilitates the 

development of large strains without allowing subsurface voids or cracks.  Once an ultra 

fine subsurface microstructure is established during the sliding process, it is conceivable 

that the hardened subsurface will help to sustain the oil residue layer above it, and these 

newly generated surfaces appear to be effective in restraining the extension of high wear 

rate in the UMW II stage to high sliding cycles.  Similar results were also achieved by 

Dey et al. [5] 

Meng et al. [8] further characterized the protective tribolayer development by 

employing ion beam and cross-section transmission electron microscopy (TEM) 

techniques on Al-11% Si alloys under boundary sliding conditions.  The author stated 

that after the course of sliding, the stabilization of wear rates were due to the 

development of a protective thin oil residue layer supported by ultra fine aluminum 

grains.  The formation of ultra fine aluminum grains are a result of large hydrostatic 

pressure fields which were calculated, based on Bridgman’s method, to be around 3-5 

GPa of hydrostatic pressure and plastic strain on the order of 5-7.  The protective oil layer 

consisted of aluminum oxide and amorphous carbon as the main component; whereas, 

components of the oil additives such as Zn, S, Mo, and Ca become incorporated into the 
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layer.  The evolution of the film was observed to grow thicker up to 110 nm as the 

number of laps increased.   

Slattery et al. [24-25, 55] studied the evolution of wear on Al-Si engine alloy after 

high load, high speed, and high temperature durability dynamometer tests.  The author 

found that the development of wear resistance was due to a combining effect of oil 

deposits, silicon particle exposure, and ultrafine aluminum grains.  The silicon particles 

experience fracture and reduce to roughly 0.6-0.7μm in height and prevent direct metal-

to-metal contact between the piston ring and the matrix.  The surface was covered with a 

rich layer of amorphous oil residue consisting of P, S, Zn, Ca, C, and O.  The exposed 

silicon particles do in fact support the majority of the loads, whereas the aluminum 

underneath transform into ultra fine grains in order to accommodate the loads and 

pressure.     

2.5 Measurements and surface profiling 

2.5.1 Surface profiling 

In order to understand contact mechanics, the measure of surface roughness is a 

crucial subject to cover.  Methods such as electron microscopy, optical microscopy, 

stylus profilometry, and recently atomic force microscope (AFM) can all be utilized in 

order to study the topographic features of the surface.  The measure of surface roughness 

is typically represented by the average roughness (Ra) which is defined as the arithmetic 

mean deviation of the surface height from the mean line through the profile.  The mean 

line is defined so that equal areas of the profile lie above and below this line as shown in 

Figure 2- 18 [56].  The average roughness can be represented by the equation below; 
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               (2.2) 

where y is the height of the surface above the mean line at a distance x from the origin 

along the overall length L.   

2.5.2 Contact between surfaces 

When two surfaces come into relative contact with one another, contact will 

initially occur at the highest points known to be asperities.  When the load increases, the 

surfaces move closer to each other resulting in an increase in the area of surfaces in 

contact.  Since the asperities isolate the rest of the surfaces, they are inherently 

responsible for supporting the normal load.  If the surfaces slide against each other, the 

points of the asperities then control the frictional forces.   

The asperity can be considered as a blunt object, modelled as perfectly smooth 

protuberances of spherical, conical, or pyramidal shapes.  If a spherical asperity is 

pressed against a plane with a load of w, the contact is a circular area of radius a, which 

can be modelled through a Hertz derived equation as illustrated in Figure 2- 19 [56],   

                               
   

  
             (2.3) 

The radius of the asperity is considered to be r, and E is the elastic modulus depending on 

E1, E2, and the Poisson’s ratios v1, v2.   

The value of Young’s modulus E is then calculated using the following equation: 
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The area of contact can be modelled as: 

                                                              
  

 
          (2.5) 

When considering a purely elastic case, the area of contact is proportional to w
2/3

.  If 

considering a plastic deformation case, the analysis can be considered depending on two 

conditions.  The first condition assumes that the sphere is rigid, and plastic flow is 

confined to the plane.  The second condition assumes that the plane does not deform, and 

plastic flow occurs only in the sphere.  If the sphere is rigid, the maximum shear stress 

beneath the indenter occurs at a depth of about 0.47a, where a is the radius of the contact 

circle.  Plastic flow occurs once the yield criterion is satisfied.  Plastic deformation 

initiates at a mean contact pressure of 1.1Y.  Y is the uniaxial yield stress of the material.  

The mean pressure over the contact area will reach 3Y.  It does not matter which 

component yields, but the mean pressure over the contact area will always be of the order 

of three times the uniaxial yield stress of the softer material.   

2.5.3 Simple theory of multiple asperity contact 

The problem is approached by considering the contact between a single rough 

surface and a rigid frictionless plane.  The rough surface will have an array of spherical 

asperities of constant radius and height and each asperity will deform independently of all 

the others.  Each asperity will bear the same fraction of the applied load.  The total real 

area of contact will be related to the total load exactly the same way as an individual 

asperity.  If elastic case is considered, then  

          
 

       (2.6) 
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If considered as plastic behaviour, 

              (2.7) 

 

2.5.4 Statistical theories of multiple asperity contact 

It is assumed that all the asperities have spherical surfaces of the same radius r, 

and that they will deform elastically under load according to Hertz’s equations.  The load 

w, can be predicted by: 

       
 

 
                  (2.8) 

The height is statistically distributed.  Figure 2- 20 can be used to illustrate the use 

of this equation.  The height above the reference plane is z, the separation between the 

reference plane and the flat surface is d.  If d is less than z, elastic deformation is 

considered.  This consideration is on the basis of purely elastic contact.  For plastic flow 

considerations, the plastic index is given by: 

       
 

 
 
  

 
                   (2.9) 

Where H is the indentation hardness, E is the elastic modulus, and σ
*
 is the 

standard deviation of the distribution of the asperity height.  If the index is less than 0.6, 

plastic flow at the asperities would be caused only by extremely high normal pressures.  

If the index is greater than 1, most asperities will deform plastically under even the 

lightest loads.   
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2.6 Ethanol fuels and effects on engine oil contamination 

2.6.1 Ethanol and fuels 

The use of alternative fuels and alternative fuel vehicle development has seen a 

steady increase as a way to lessen the dependency on imported oil [57].  Early 

automakers such as Henry Ford saw the potential of ethanol because of its availability; he 

considered that it could be the world’s primary fuel source.  According to the US 

department of Energy, studies have shown that by 2030 ethanol and other bio fuels can 

replace 30% or more of the US demand [58].  Roughly two-thirds of the US petroleum 

demand is in the transportation sector.  In order to meet the demand of the economy, 

about sixty percent of the petroleum is imported from foreign nations.  Ethanol on the 

other hand can be manufactured on domestic soil and alleviate the need to import [59].  

Ethanol is a clear, colourless liquid derived from various plant matters making it a 

renewable source of energy.  The composition of ethanol contains the hydroxyl group (-

OH) bonded with carbon atoms to form C2H5OH.  The availability of corn in the US has 

made it the most used material to derive ethanol from; whereas, in Brazil, ethanol is 

derived from sugar canes.  Ethanol is a high-octane fuel which delivers a higher 

compression ratio.  Pure ethanol can replace gasoline on modified engines; however, up 

to 20% may be added to fuel in order to be used on unmodified engines [57].   Ethanol is 

produced from starches found in grains, which are converted to sugar and fermented.  A 

second method of deriving ethanol is through hydrolysis of cellulose which is found in 

plant-based materials; this allows for a wide range of materials to be used such as corn 

stalks, wheat stalks, other agricultural or forestry waste, and municipal waste.  The 

process to produce fuel ethanol is similar to the process to produce beverage ethanol.  In 

order for ethanol to be sold as fuel, a denaturing process occurs where hydrocarbons such 
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as gasoline are added in order to make it unfit for drinking [58].    Ethanol has a higher 

heat of evaporation, roughly twice the amount as that of gasoline, making it difficult for 

vaporization under cold temperatures.  To ensure proper operation in cold temperatures, 

15% of hydrocarbons are added, which is commonly found throughout America.  Unlike 

gasoline, ethanol also contains a very narrow temperature range where it vaporizes.  The 

blending of fuel ethanol is standardized through ASTM, following specific guidelines 

which take into consideration a variety of concerns such as geographical location and 

temperatures. 

2.6.2 Ethanol fuels and engine wear 

Researchers have debated that alcohol fuelled vehicles can contribute to a higher 

cylinder bore wear and that increased oil consumption results in a loss of performance 

[22, 60].  Marbach et al.[61] conducted several engine tests in order to study the wear 

rates of alcohol fuels and published that fuels such as neat methanol can result in an 

overall increase in engine wear during low temperature operations.  When anhydrous 

ethanol and blends of fuel were tested, no apparent increase in engine wear was noticed.  

The use of alcohol fuels decreased the overall engine deposits on the cylinder walls in 

comparison to unleaded gasoline.  In addition the accumulation of water was greater in 

the lubrications for alcohol fuelled engines in comparison to gasoline fuelled engines.  

Methanol fuelled engine wear was attributed to the formation of formic acid reacting with 

the iron cylinder to produce iron formate; this was not evidenced in ethanol fuelled 

engines.  The authors concluded that further study was necessary in order to determine 

exactly the mechanism of engine wear with alcohol as a fuel.    
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Tung and Gao [22, 60] investigated the tribological properties of various piston 

ring coatings in a blend of energy-conserving oils and ethanol fuels.  Wear tests were 

conducted on a high frequency reciprocating friction machine using a cast iron liner 

against piston rings coated with nitride stainless steel (NSS), chromium nitride (CrN), 

and diamond like coating (DLC).  Fuel and engine oil were delivered through two pumps 

at a controlled rate in order to have a mixture roughly around 98% fuel and 2% oil.  

Friction development with running time data were compiled for a fully submerged 

lubrication condition using only engine oil as shown in Figure 2- 21.  After a short period 

of “breaking-in”, a protective film is formed, and this stabilizes the friction and wear 

loss. Under the blended fuel -oil conditions the CrN and NSS coated rings never reach a 

stable coefficient of friction. Only DLC coated rings stabilize as shown in Figure 2- 22.  

The stabilizing of DLC coated rings can be attributed to the self lubricating properties in 

the carbon base boating.  The authors also investigated the effects of different acidity in 

the fuels by conducting wear tests with two fuels of pH value of 4 and 6.  It was 

concluded that the friction coefficient in the more acidic fuel (pH 4) was much higher 

than that in fuel which was more neutral (pH 6) possibly due to severe acidic corrosion.  

When a superficial film was detected, a drop in the COF occurred; however, the film was 

seen to destruct and then to replenish.  Wear under the higher acidic fuel was observed to 

have severe metal-to-metal contact resulting in more wear.  A starved lubricating 

condition with only E85 fuel as lubrication resulted in limited lubricity, and the more 

acidic fuel was seen to have less lubricity than the neutral fuel.   

Hu et al. [14, 62] looked into the possible effects of residue alcohols, such as 2-

ethylhexanol (C8H18O), which may be carried over from the manufacturing of ZDDP.  
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The authors reported, firstly, that in the presence of alcohol in ZDDP, the thermal 

decomposition temperature of ZDDP reduced from 215
o
C to 150

o
C.  It was also found 

that when small amounts of alcohol were added to ZDDP (up to 5 wt.%), the load-

carrying capacity of the oil with ZDDP increased; however, further addition of alcohol 

only decreased the values as shown in Figure 2- 23.  This positive effect was also 

evidenced when the wear scar diameter initially decreased as alcohol was added to 

ZDDP; however, further addition of alcohol past 5 wt.% showed the wear scar to increase 

as shown in Figure 2- 24.  The authors concluded that the hydroxyl group (-OH), which is 

a polar group in the alcohol, can easily adhere to the frictional surface to create a 

protective film, which in turn increases the wear resistance of the lubricating oil under 

lower load and at slower speeds.   The alkyl group in the alcohol and ZDDP may also 

help create synergism between the two and formulate good boundary conditions for 

adhesion to the surface.   The layer development can be attributed to the decrease in 

thermal stability of ZDDP, and in the course of temperature increase from friction, may 

lead to early decomposition species of ZDDP, precursors for film formation.   

Hu and Lie [19] investigated the mechanism of alcohols for lubrication of 

aluminum by conducting wear tests on 2024Al against steel counterface, lubricated with 

liquid paraffin (CnH2n+2) containing alcohols.  The paraffins included n-butanol, 

ethandiol, 1,3-butanediol, 1,4 butanediol, and propanetriol.  The wear scar width, as a 

function of applied load for 3 wt.% addition of alcohol to base oil, was plotted and shown 

in Figure 2- 25.  It is clear that different alcohols provide different antiwear abilities.  

With n-butanol, the system failed at a maximum load of 600 N, whereas with ethandiol, 

the failure load increased to 1000 N.  Propanetriol showed to contain the best antiwear 
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ability by reaching failure load of 1600 N.  The authors stated that based on Hotton’s and 

Wan’s bidentate bonding hypothesis, the antiwear and load-carrying capacities can be 

attributed to the alkyl chain length which form aluminum diol complexes.  The diol 

complex variations can also influence the antiwear ability.  For example, the 1,3-diol 

complex was shown to be more chemically stable than corresponding 1,4-diol or 2,3-diol, 

resulting in better antiwear behaviour.  It was also found that when the hydroxyl group 

number increased, the molecular polarity improved, consequently forming a more stable 

chem-adsorbed film.  Figure 2- 26 is a schematic diagram of a possible chemical film 

formation which acts as the primary mechanism for antiwear by alcohols.   

Igari et al. [17]  and Wan et al. [16] also found similar results when investigating 

the effect of molecular structure of diols as lubricants on the wear of aluminum alloys.  

The authors found that the amount of wear rapidly decreased when methyl groups were 

added to diol as shown in Figure 2- 27.  The authors stated that the functional groups, 

such as OH groups, help adhere the molecule firmly to the surface to provide good 

lubrication.  A schematic of the layer formation for 1,4 Butanediol, 1,2-Butanediol and 

2,3-Butanediol is shown in Figure 2- 28.  The latter two films show better wear 

protection due to a double layer instead of a single layer.   

2.7 Summary 

 The previous chapter provided some of the necessary information regarding the 

alloy, the effect of changing certain test conditions such as load, atmosphere, lubrication, 

coatings and the behaviour of bio-fuels.  The combined effects of load, lubrication, alloy 

composition, morphology, temperature, sliding speed and counterface relating to the 

tribological behaviour of an alloy can only be obtained though bench tests and 
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characterization.  The following chapter will outline the setup, calculations and 

characterization techniques in order to understand the progression of wear on Al-12.6% 

Si alloy under boundary lubricated conditions.   
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Figure 2- 1: Components typically found in an internal combustion (IC) engine.  [1] 

 

 

Figure 2- 2: Distribution of energy consumption in a light-duty vehicle.  [1] 
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Figure 2- 3: Piston assembly and piston ring function from an internal combustion engine. [1] 

 

 

Figure 2- 4: Phase diagram for Al-Si alloys. [29] 
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Figure 2- 5: Effects of etching time on the sliding distance to scuffing in Alloy A and B.  The best 

condition for scuffing resistance was achieved between 5-7 minutes.  Prolonged sliding past 7 minutes 

resulted in weakening of silicon particles/matrix bonding due to excessive dissolution of matrix. [30] 

 

Figure 2- 6: Wear map for steel-on-steel during dry sliding. [34] 
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Figure 2- 7: Wear map of aluminum alloy outlining the boundaries for each wear mechanism. [35] 

 

Figure 2- 8: Void and crack nucleation around the silicon particles under the contact surface.  [36] 
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Figure 2- 9: Wear rate versus applied loads at different sliding velocities for Al 6061 alloy: (○) 0.2 m s 
-1

 (●)0.4 m s 
-1 

(▼▼▼)0.8 m s 
-1 

(▼)1.2 m s 
-1 

(□)2.0 m s 
-1 

(■)5.0 m s 
-1

.  [37] 

 

Figure 2- 10: Wear rate versus load for four Al-Si alloy systems. [38] 
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Figure 2- 11: Wear rates on Al-Si alloy under various loads in a controlled environment. [41] 

 

 
 

Figure 2- 12: SEM-BSE images of the tribolayer morphology: Wear in argon (a) and (b); wear in air 

(c) and (d). [43] 
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Figure 2- 13: Equilibrium between dimeric and monomeric ZDDP forms.  [48] 

 

 

 

Figure 2- 14: The P K-edge spectra of model compounds, the standard film and those obtained from 

the wear scars of the systems listed. [9] 
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Figure 2- 15: Formation of antiwear film as a function of time on aluminum and steel system using 

ZDDP additives.  [9] 

 

 

Figure 2- 16: Back scattered SEM image at 1.0 N of the worn surface of Al-25% Si after sliding for 

5x 10
4
 cycles.   Silicon particles fracture and sink-into the matrix forming pile-up.  [4] 
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Figure 2- 17: Secondary SEM image at 2 N load on the worn surface of Al-25% Si after sliding for 6 

x 10
5
 cycles.  The formation of a solid tribolayer occurred consisting of an oil residue layer rich in C, 

Ca, S, Zn and Aluminum oxide.  [4] 

 

Figure 2- 18: A surface profile where surface height y, relative to the mean line plotted against the 

distance. [56] 

 
Figure 2- 19: Elastic deformation of a sphere of radius r, pressed against a plant surface under load 

W.  Radius of the contact circle is a.  [56] 

 

Figure 2- 20: Model for contact between a rough surface and a smooth rigid plane. [56] 
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Figure 2- 21: Variation of friction coefficient for ring coatings sliding against cast iron liners in 5W30 

mineral oil at 80N and 125 C. [12] 

 

(a)                                    (b) 

 

      (c) 

 

Figure 2- 22: Friction curves for ring coatings run against cast iron liner segments in a blend of E85 

fuel and 5W30 engine oil. (a) NSS. (b) DLC coated.  (c) CrN.  [12] 
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Figure 2- 23: Effects of alcohol content on the load-carrying capacity of ZDDP. [14] 

 

 

Figure 2- 24: Wear scar diameter of ZDDP for various alcohol contents.  [14] 
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Figure 2- 25: Wear scar width of aluminum block as a function of applied load with the lubrication 

of base oil containing 3 wt.% alcohols.  [18-19] 

 

 

Figure 2- 26: The schematic diagram of alcohols chem.-adsorption and interaction with aluminum 

during friction process. [18] 
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Figure 2- 27: Wear as a function of the number of methyl groups added to 1,3-propanediol. [17] 

 

 

Figure 2- 28: The antiwear layer formation on friction surfaces. [17] 
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CHAPTER III MATERIALS AND EXPERIMENTAL PROCEDURES 

 

3.1 Introduction 

 This chapter outlines all the information regarding the materials used for testing 

and the procedures used in order to study the alloy in the UMW regime.  Section 3.2 

describes the alloy used for the experiments.  Section 3.3 describes the microstructure of 

the specific alloy followed by a description of the procedure for the sample surface 

preparation in section 3.4.  Information of the surface morphology has been given in 

section 3.5, followed by a description of the testing equipment and parameters used for 

testing in section 3.6.  Section 3.7 describes the properties of the counterface material 

used during testing.  Section 3.8 describes the calculation for determining the lubrication 

regime, followed by an outline for quantifying the amount of volume loss after each wear 

tests in section 3.9.  The final section 3.10 of this chapter describes the equipment used 

in order to characterize the worn surfaces.   

3.2 Eutectic Al-Si alloy 

The alloy used in this research was a eutectic Al-Si alloy with 12.6% silicon 

content, and was cut from a sand casted block.  The sample was then subjected to a heat 

treatment (T-7) consisting of a solution treatment at 490
o
C for 6 hours, then a quench in 

forced air to less than 90
o
C, cooling at between 80 and 100

o
C/min, and followed by aging 

at 240
o
C for 4 hours.  The samples were provided by General Motors Research and 

Development Centre located in Warren, Michigan, USA.  XPS analysis was conducted to 

determine the exact chemical composition and can be found in Table 3- 1.  The hardness 

of the alloy was determined using a Brinell hardness tester (Buehler Micromet II- Model 
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1600-9000) and was measured to be 93.0 ± 1.0 using a tungsten carbide indenter at 500 

Kg load [6].  The matrix hardness was measured at 1.65 ± 0.05 GPa using a Berkovich 

indenter at room temperature.     

3.3 Microstructure of the Al-Si alloy tested 

Samples for microstructure observations were prepared by conventional 

mechanical grinding and polishing techniques.  The samples were wet ground using 180, 

240, 400, 600, 1200 and 2400 SiC emery paper successively.  After the grinding process, 

samples were polished using 3, 1, and 0.1 μm diamond suspensions.  Samples were then 

etched using 10% NaOH for 5 seconds to reveal the microstructure.  Quantitative 

microstructual measurements were conducted to measure the silicon particle length and 

width.  An scanning electron microscopy (SEM) image representing an average area from 

the surface of the sample was used in order to quantify the morphology of the cast as 

shown in Figure 3- 1.  The particle length was determined by measuring the distance 

parallel to the longest side; whereas, the width was determined by measuring 

perpendicular to the length of the particle.  Histograms were generated to represent 

particle length and width with respect to the frequency of occurrence as shown in Figure 

3- 2.  Average silicon particle length, measured from 200 particles, was measured to be 

21.11 ± 17.59 μm, whereas average particle width was measured to be 4.33 ± 2.88 μm.  

The aspect ratio, which is defined as the average particle length over the average particle 

width, was determined to be 4.9.  The area density, defined as the total area, of silicon 

particles over the entire area was calculated to be 0.3.   
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3.4 Sample surface preparation for testing 

The samples were mechanically wet ground using 180, 240, 400, 600, 1200, and 

2400 SiC emery paper successively.  Following the grinding procedure, the samples were 

polished using 3, 1 and 0.1μm diamond suspensions.  In order to accurately model the 

surface of the linerless engine, the surface is chemically etching using a 10% NaOH 

solution for roughly 180 seconds based on the procedure outlined by Riahi et al. [30].  

The etching process allows the aluminum matrix to dissolve while leaving the silicon 

particles elevated above the matrix level.  Excess or early etching resulted in a decrease 

in the scuffing resistance of the alloy.  After the etching procedure, the samples were 

ultrasonically cleaned in ethanol for 60 seconds to remove any debris.   

3.5 Surface morphology 

The surface of the sample was analyzed using a 3D white light optical 

profilometer (WYKO NT-1100), working in the vertical scanning interferometer (VSI) 

mode.  The resultant surface scan data is statistically analyzed by creating a histogram of 

the number of points which were detected for each corresponding height.  The unfitted 

histogram data can be deconvoluted to create two Gaussian curves to represent the 

aluminum matrix height and silicon particle height, as shown in Figure 3- 3, representing 

an etched surface before testing.  The histogram data shows two distinctive peaks; the 

first peak represents the aluminum matrix level, and the second peak represents the 

exposed silicon particles.     

3.6 Tribometer 

Sliding wear tests were conducted on a pin-on-disc type wear tester (CSM 

tribometer, Switzerland).  The samples were securely fixed at the centre to the sample 
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holder.  The sample holder was then secured to the test cup.  A lid was screwed on in 

order to prevent any overflow of lubrication during testing.  The sample was initially 

flooded with lubricant before each test.  A peristaltic pump was used to constantly deliver 

lubrication to the testing surface through a thin hose at a controlled rate of 0.04 ml/min as 

shown in Figure 3- 4.  The wear track diameter, sliding speed and load were all fixed at 3 

mm, 5 cm/s, and 2 N, respectively.  The number of sliding cycles was changed 

respectively to understand the progression of wear.  The temperature of the test 

environment was constant at room temperature.  The summary of the testing parameters 

is listed in Table 3- 2.     

3.7 Counterface material 

The counterface material chosen for this research was a 6 mm diameter AISI 5200 

grade steel ball.  The chemical composition can be found in Table 3- 3.  Before each test, 

the balls were secured inside the ball holder and polished using a 1μm diamond 

suspension and then cleaned ultrasonically using acetone for 60 seconds.  The ball holder 

was rotated evenly in a circular motion during polishing in order to avoid flattening.  

Shown in Figure 3- 5 is a WYKO image obtained after polishing of the counterface ball.  

3.8 Lubrication condition 

 To determine the lubrication regime for the sliding wear tests, the ratio of (λ) 

minimum lubrication thickness (hmin) over the r.m.s surface roughness (r*) of the 

contacting bodies was calculated based on the following equation respectively [5]: 

                                              
                                (3.1) 

                                  
       

                          (3.2) 
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Where R is the radius of the counterface ball, U is the sliding speed, W is the normal load 

applied, and α and ηo represent the viscosity properties of the lubricating fluid.  The 

constant α is a relationship dependent on the viscosity constant ηo estimated from the 

relationship: 

                                                                                       (3.3) 

To calculate the composite elastic modulus (E*) of the contacting body, the following 

equation is then used: 

              
 

  
  

           
 

      
 

           
  

      
                                          (3.4) 

where EAl-Si is the elastic modulus of Al-Si and is calculated using:  

                                                                                           (3.5) 

where wSi is the weight fraction of the silicon phase in the alloy, and vAl-Si is the Poisson’s 

ratio of Al-Si which is calculated using: 

                                                                                           (3.6) 

rparticle and rball are the r.m.s roughness of the silicon particles and the steel ball.   

Table 3- 4 and Table 3- 5 show the values used for the calculation of r* and hmin for just 

ethanol and synthetic Mobile 1 engine oil (5W30) at 25
o
C respectively.  In order to 

determine the viscosity parameters for the blended condition, the Refutas method [63] 

can be employed to calculate the viscosity blending index (VBI) for each fluid by the 

following equation: 
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                                                                                              (3.7) 

Where ν is the kinematic viscosity measured in centistokes (cSt).  Based on the two 

blended fluids, the VBN number of the blend can be estimated using the following 

equation: 

                                                                                                (3.8) 

Where X is the mass fraction of each component in the blend.  The final step is to 

determine the kinematic viscosity of the blend by the following equation: 

                                              
               

      
                                     (3.9) 

Based on the above calculation, the kinematic viscosity of the blended fluid was 

estimated to be 6.59 cSt.  This value was then used to calculate the hmin of the blended 

fluids as shown in Table 3- 6.  The ratio of hmin over r* for just ethanol, 5W30 and the 

blend of 5W30/E85 was determined to be 0.012, 0.27 and 0.043 respectively.  Because 

the ratio was below 1 for all cases, it can be concluded that boundary lubrication regime 

was achieved at the start of each test.  

3.9 Quantitative measurement of volumetric wear loss  

The material removed from the surface was quantified based on optical 

interference method instead of conventional electronic balance because the amount of 

material removed was too small to be detected.  The optical interference method involves 

obtaining eight optical profilometry images around the wear track after each sample has 

been washed with hexane as illustrated in the schematic shown in Figure 3- 6.  It has been 

shown that the pressure needed to initiate indentation of the silicon particle is roughly 

2.89 times greater than the yield strength of the aluminum matrix [5-6, 49].  Since 
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embedding of the silicon particle is evident, it can be suggested that the exerted pressure 

on top of silicon particles exceeds the minimum pressure.  Embedding silicon particles 

displace the matrix adjacent to the particles causing the formation of pileup.  

Continuation of sliding contact results in a transition point where the embedding silicon 

particles and the aluminum reach the same height (UMW II), exposing the matrix to the 

counterface.  The counterface at this point begins to deform the surface and can be 

characterized by the formation of long grooves and scratches as the counterface ploughs 

the surface.  This is illustrated in Figure 3- 7 (a) with a 2-D surface profile of the wear 

track at 10
6
 sliding cycles with only 5W30 lubrication.  This image illustrates a typical 

wear track showing the location of Si particles and the aluminum ridges (R) along the 

profile line A-A’.  Shown in Figure 3- 7 (b) is the corresponding 3-D optical profilometry 

image of the area indicating the location of the profile line A-A’ along with the Si 

particles and the aluminum ridges (R). The area indicated by the gray region is the 

material which would ideally be located between the grooves which can then be 

quantified as the material which has been removed.  In order to quantify the amount of 

material removed, it is first necessary to determine a reference level in order to calculate 

the area.  The reference level can be determined by observing the height distribution data, 

which is a statistical average of the number of points corresponding to the surface 

elevation along the entire area.  The unfitted data can be evaluated by fitting Gaussian 

peaks as shown in Figure 3- 7 (c), as an example showing a section of the wear track at 

10
6
 sliding cycles with 5W30 lubrication fitted with three Gaussian peaks.  The first peak 

represents the deepest points inside the wear track, followed by the unaffected matrix 

level.  The third peak represents the piled up aluminum or reduced height of the silicon 
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particles adjacent to the wear track.   The reference level is considered as the average 

highest points of the grooves inside the wear track, ideally located between the base 

matrix level and the reduced silicon particle height.  This can be determined using the 

optical profilometry image analysis software (Vision 3.43).  The error associated with 

locating the reference level was calculated by quantifying the volume loss based on the 

reference level located at the piled-up aluminum height and then quantifying the volume 

loss based on the reference level at the base matrix height.  The change in the quantified 

volume was within ± 4% for each measurement.  The area which falls below the 

reference level can be deemed as damage to the matrix.  The unaffected areas to the left 

and right of the wear track was eliminated in order to minimize measurement errors.  The 

advantage of employing such method increases the repeatability and reduces any operator 

induced errors.  To calculate the total volumetric wear loss, the following equation was 

employed where the averaged area which is determined as the amount of material 

removed multiplied by the circumference of the wear track: 

                  (3.10) 

Where Rw represents the radius of the wear track (1.5mm) and At represents the average 

area of the 24 measurements.  From each of the eight images, a total of three 

measurements are used in order to represent the overall wear track.  Refer to Appendix A 

for calculations.     

3.10 Worn surface characterization 

 The characterization of the worn surface included a number of techniques and 

equipment.  The features on the surface of the wear track were observed using a scanning 
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electron microscope (JEOL 5800/EDAX) equipped with an energy dispersive 

spectroscopy (EDS).  An optical microscope (Keyence VHK 600K) was also employed 

to observe the surface features of the wear track.  In order to characterize the chemical 

composition of the wear track, a multi-functional X-ray photoelectron spectrometer 

(XPS- PHI-5702) was employed using a pass energy of 29.35 eV, an excitation source of 

Mg-Kα radiation (hv = 1253.6 eV), and a take-off angle of 35
o
.  The chamber pressure 

was held constant at 3x10
-8

 Torr.  The binding energy of contaminated carbon (C1s: 

284.8 eV) was used as a basis of reference.   

Samples for FIB were prepared using the H-bar method, where a thin plate 

incorporating a section of the wear track was cut by a diamond saw with dimensions of 

15 mm long, 1.5 mm wide and 5.5mm.  The plate is then polished using SiC abrasive 

paper until the thickness of 30 μm is achieved.  The sample is then cut to a semicircular 

geometry with a 1.5 mm radius as shown in Figure 3- 8.  The sample is than thinned to 

the appropriate thickness using FIB milling by removing material from each parallel side 

of the sample.  TEM observations were performed using a Philips EM 430 analytical 

TEM equipped with an Optical/AAT windowless X-ray energy dispersive spectrometer 

(EDS) operated at 300 kV.  High resolution TEM and weak beam electron diffraction 

investigations were conducted using JOEL JEM-2100F field emission electron 

microscope.  FTIR analysis was analysed in reflectance mode using a Continuum infrared 

microscope fitted with a Reflachromat (TM) 15X objective.   Spot size of 100 microns x 

100 microns were examined from both inside and outside the wear track, and each 

spectrum was collected by signal averaging one hundred spectra.  Penetration depth 

varies based on the order of the wavelength, ranging from 2.5 to 25 μm [64].   
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Table 3- 1:  Chemical composition in wt. % of the GM-396 Al-Si alloy used in research. 

 

 

Table 3- 2: Summary of the testing parameters.  

 

 

Table 3- 3:  Counterface material chemical composition. 

 

 

Table 3- 4: Parameters used to estimate the film thickness (hmin) and r* for just ethanol. 

 

 

Table 3- 5: Parameters used to estimate the film thickness (hmin) and r* for synthetic 5W30 engine oil.   

 

% Si % Cu % FE % Mn % Mg % Ni % Ti % Si Bal.

12.6 0.87 0.37 0.79 0.26 1 0.11 0.02 Al

Load: 2 N

Sliding Speed: 5 cm/s

Temperature: 24 °C

Engine oil 5W30

Ethanol

Counterface: 52100 steel ball (6 mm)

Engine oil/fuel mixture (E58/5W30) 

mixture at a 1:1 ratio

Test Parameters

Lubrication:

% C % Mn % Si % Cr Bal.

0.98-1.1 0.25-0.45 0.15-0.30 1.30-1.60 Fe

R (m) ηo (cSt) α U (m/s)
rparticles 

(μm)
Rball (μm)

EAl 

(GPa)
ESi (GPa)

0.003 1.54 7.81E-09 0.05 0.01 0.086 70 107

ESteel 

(GPa)
wsi Vsteel

EAl-Si 

(GPa)
νAl-Si E* (GPa) r* (μm) hmin (μm)

210 0.12 0.33 74.4 0.33 61.8 0.08 0.001

R (m) ηo (cSt) α U (m/s)
rparticles 

(μm)
Rball (μm)

EAl 

(GPa)
ESi (GPa)

0.003 65 2.35E-08 0.05 0.01 0.086 70 107

ESteel 

(GPa)
wsi Vsteel

EAl-Si 

(GPa)
νAl-Si E* (GPa) r* (μm) hmin (μm)

210 0.12 0.33 74.4 0.33 61.8 0.08 0.023
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Table 3- 6: Parameters used to estimate the film thickness (hmin) and r* for blend of 5W30/E85.   

 

 

Figure 3- 1: Secondary electron micrograph of a typical microstructure of the Al-12.6% Si.   

 

 

Figure 3- 2:  Histogram showing the particle length and width distribution for Al-12.6% Si.   

 

R (m) ηo (cSt) α U (m/s)
rparticles 

(μm)
Rball (μm)

EAl 

(GPa)
ESi (GPa)

0.003 0.59 3.90E-09 0.05 0.01 0.086 70 107

ESteel 

(GPa)
wsi Vsteel

EAl-Si 

(GPa)
νAl-Si E* (GPa) r* (μm) hmin (μm)

210 0.12 0.33 74.4 0.33 61.8 0.08 0.037
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Figure 3- 3:  3-D optical surface profile of the etched surface of Al-12.6% Si.  The first peak 

represents the aluminum surface while the second peak represents the exposed silicon particles.   

 

 

Figure 3- 4: Setup used for pin on disk wear tests. 
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Figure 3- 5:  WYKO image of the surface of counterface ball after polishing with 1 μm diamond 

suspension.   

 

 

Figure 3- 6:  Schematic drawing of the wear track where eight images are obtained along the wear 

track for calculation of volumetric wear loss.   
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Figure 3- 7: (a) Cross-sectional profile line along A-A’ showing the area considered to be damage due 

to wear by the formation of groves at 10
6
 sliding cycles with 5W30 lubrication.  Matching locations of 

Si particles and aluminum ridges (R).  (b) 3-D surface profilometry image at 10
6
 sliding cycles with 

5W30 lubrication, showing the location of line profile indicated by A-A’ and the location of Si 

particles and aluminum ridges (R).  (c)  Corresponding height histogram of the surface after wear 

test at 10
6
 sliding cycles with 5W30 lubrication.  

 

Pile-up Grooves 

(a) 

(b) 

(c) 

Aluminum 

matrix 
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Figure 3- 8: Schematic of H-bar cross section technique used in order to prepare TEM samples.  [8] 
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CHAPTER IV RESULTS AND OBSERVATIONS 

 

4.1 Introduction 

 For the experiments described in Chapter 3, the progression of wear in the ultra 

mild wear (UMW) regime has been characterized through a combination of optical 

profilometry and scanning electron microscopy in this chapter.  The chemical analysis of 

the tribolayer has been characterized through a combination of EDS, XPS, and FTIR 

analysis.  The development of boundary lubricated wear with only 5W30 lubrication will 

be presented in section 4.2, followed by the development of wear under boundary 

lubrication with a mixture of E85 fuel plus 5W30 engine oil in section 4.3.  The chemical 

characterization through XPS is presented in section 4.4.  Subsurface damage 

characterization will be presented in section 4.5, followed by FTIR analysis in section 

4.6.  Section 4.7 characterizes the wear with only ethanol as lubrication.  Section 4.8 

discusses the coefficient of friction data correlated to the surface roughness of the wear 

tracks.   

4.2 5W30 

4.2.1 Volume loss with sliding cycles 

Figure 4- 1 shows the volume loss of Al- 12.6% Si with sliding cycles under a 2N 

load under boundary lubrication with 5W30 engine oil at room temperature.  Three stages 

of ultra mild wear (UMW) were identified.  UMW I exists from 10
3
 sliding cycles until 

10
4
 sliding cycles.  No volume loss was detected.  Transition to UMW II occurs at 10

4 

sliding cycles until 5x10
4
 sliding cycles, characterized by rapid volume loss until 

transition to UMW III occurs where volume loss stabilizes.  UMW III starts from 5x10
4 

sliding cycles until 1.5x10
6
 sliding cycles.   
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4.2.2 Surface damage evolution 

Shown in Figure 4- 2 is an SEM micrograph of particles located inside the wear 

track at 10
3
 sliding cycles.  The instant that sliding contact initiates, the load is directly 

supported by the silicon particles, and cracking and fracturing of the silicon particles can 

be evidenced.  More fracture is evidenced in needle like particles; whereas, the smaller 

particles appear to be intact.  The start of pile-up formation can be evidenced due to the 

elevated matrix adjacent to the particle.  Shown in Figure 4- 3 (a) is a 3-D optical 

profilometry image of the wear track at 10
3
 sliding cycles showing the raised matrix 

around the silicon particle in the direction of sliding.  The corresponding 3-D optical 

profilometry image of the flattened counterface is shown in Figure 4- 3 (b).  The 

formation of the grooves can be observed corresponding the wear track.  Shown in Figure 

4- 4 is an SEM micrograph at 5x10
3
 sliding cycles showing evidence of pile-up 

formation.  The formation of pile-up occurs greater in the direction of sliding.  At each 

progressive stage in the UMW I, an increase in the amount of pile formation can be 

evidenced due to the sinking-in of the silicon particles.   As the sliding continues, the 

sinking-in particles and raided matrix (pile-up) reach the same elevation.  In the UMW I 

stage, contact is only limited to the elevated silicon particles, whereas the matrix remains 

undamaged resulting in no material loss.  Transition to the UMW II stage results in 

contact between the piled-up matrix and the counterface, resulting in wear loss in the 

form of material removal.    

The UMW II stage progresses from 10
4
 until 5x10

4
 sliding cycles.  Shown in 

Figure 4- 5 is an SEM micrograph of the wear track at 2.5x10
4
 sliding cycles.  Contact 

between the counterface and the matrix can be evidenced.  The piled up aluminum begins 

to smear in the direction of sliding; however, some of the matrix in the middle of the 
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wear track still appears to be unaffected.  Shown in Figure 4- 6 is the wear track at 5x10
4
 

sliding cycles.  Found on top of silicon particles and nickel-iron particles are what appear 

to be pockets of oil residue (OR) consisting of Zn, S, P, O, C, and Al is evidenced 

through EDS analysis.  Pockets of OR are more prominent towards the edges of the wear 

track, whereas within the centre of the wear track, the OR layer appears to be smeared 

across the harder particles.   

Transition to the UMW III stage was accompanied by the stabilization of wear 

rates.  Shown in Figure 4- 7 is an SEM image and EDS analysis of the wear track in the 

area highlighted.  What appears on top of iron-nickel phases and silicon particles are 

pockets of OR.  Pockets of OR consists of elements of Zn, S, C, and O.  Analysis of the 

aluminum matrix showed trace amounts of oil additive elements including Ca.  OR 

appears to be incorporated with the smeared aluminum.  Wear tracks in the UMW III 

region appear uniform throughout the entire wear track as shown in the optical 

profilometry image at 3x10
5
 sliding cycles in Figure 4- 8 (a).  The corresponding optical 

profilometry image of the counterface is shown in Figure 4- 8 (b).  The removal of 

material can be associated with the formation of grooves due to the damage sustained on 

the counterface and the ploughing of the matrix from the fractured silicon particles.    

4.3 5W30/E85 

4.3.1 Volume loss with sliding cycles 

Shown in Figure 4- 9 is the volumetric wear for Al-12.6% Si for various sliding 

cycles at 2N load under boundary lubrication with a mixture of E85 plus 5W30 engine oil 

at room temperature.  The region of UMW I ranges from 10
3
 sliding cycles till 10

4
 sliding 

cycles, where no detectable volume loss occurred.  Transition from UMW I to UMW II 

occurs at 10
4
 sliding cycles and progresses until 3x10

5
 sliding cycles where large 
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amounts of volume loss occurs.  Stabilization of wear loss occurs as UMW III is 

obtained.   

4.3.2 Surface damage evolution 

Shown in Figure 4- 10 is an SEM image of the wear track at 5x10
3
 sliding cycles 

from the UMW I regime.  Silicon particle fracture and formation of pile-up occurs.  

Large amounts of particle fracture and debris were present throughout the wear track.  

Shown in Figure 4- 11 is a comparative SEM and WYKO image of a particle where the 

formation of pileup can clearly be evidenced. No evidence can be found for the formation 

of any oil residue layers.     

Shown in Figure 4- 12 is a tilted (54
o
) SEM micrograph of the wear track at 10

4 

sliding cycles.  The transition to the UMW II stage can be evidenced past this point due 

to the formation of grooves along the wear track.  The grooves are responsible for the 

removal of material from the wear surface.  The grooves form due to the damage to the 

counterface from the hard silicon particle.  In addition, the fractured silicon particles act 

as third body abrasives which plough the surface and remove the material.  The formation 

of grooves can be evidenced from the optical profilometry image of the wear track at 10
4
 

sliding cycles as shown in Figure 4- 13 (a) and the corresponding optical profilometry 

image of the counterface shown in Figure 4- 13 (b).     

Shown in Figure 4- 14 is a comparative secondary electron and backscatter 

micrograph of the flattened matrix at 5x10
4
 sliding cycles (UMW II).  The formation of 

grooves are harder to identify through the SEM micrographs; however, the use of optical 

profilometry image shows the formation of grooves as shown in Figure 4- 15 (a) at 5x10
4
 

sliding cycles.  The damage to the corresponding counterface can be seen in the optical 

profilometry image shown in Figure 4- 15 (b).  Semi-quantitative EDS analysis was 
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conducted on the surface of the counterface at 5x10
4
 (UMW II) sliding cycles as shown 

in Figure 4- 16.  EDS analysis showed concentrations of Fe, C, O, Ca and Si.  The 

detection of Si suggests embedding of silicon fragments onto the counterface during 

sliding wear.  Mainly iron oxide was detected on the surface.        

The transition to the UMW III stage occurs as the wear rates stabilize.  Shown in 

Figure 4- 17 is an SEM micrograph of the wear track at 10
6
 sliding cycles, tilted at 54

o
.  

The wear track appears non uniform.  The formation of an oil residue layer can be 

evidenced through EDS analysis on the top elevated sections of the track where elements 

such as Zn, P, S, Can and C was detected as shown in Figure 4- 18.   

4.4 XPS characterization 

The chemical composition of the resultant tribolayer for wear track lubricated 

with only 5W30 or a mixture of E85 plus 5W30 at 3x10
5
 and 10

6
 has been analyzed 

through XPS and is shown in Figure 4- 19 A-D.  The tribolayer consists of Zn, O, C, Ca, 

S, Si and Al.  Figure 4- 20 shows a comparative elemental composition analysis of the 

wear track at 3x10
5
 sliding cycles and 10

6
 sliding cycles for both lubricated conditions.  

Wear tracks which develop under the mixed lubricated conditions show a richer 

concentration of additives in comparison to just engine oil lubricated wear tracks.  An 

increase in the number of sliding cycles, results in an increase in the quantity of additives 

detected on the surface.  The presence of these additives confirms the development of an 

oil residue layer.  Scans on the wear track for zinc and sulphur rich film on the tribolayer 

under mixed lubricated condition at 3x10
5
 sliding cycles were also investigated to 

determine the type of film development.  Binding energy for zinc compound was detected 

at 1021.71eV correlating to zinc oxide (ZnO) as shown in Figure 4- 21.  Binding energy 

for sulphur at 168.61eV correlated to sulphate film formation as shown in Figure 4- 22.  
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Depth profiling inside the wear track at 10
6
 sliding cycles for both lubricated conditions 

shows very similar results for Zn, Ca, Al, and Si as shown in Figure 4- 23; however, a 

higher concentration of carbon was detected for the mixed lubricated conditions in 

comparison to just engine oil as shown in Figure 4- 24.  Additionally, a lower 

concentration of oxygen was also evidenced as shown in Figure 4- 24, for mixed 

lubricated condition.      

4.5 Subsurface characterization of the tribolayer 

Shown in Figure 4- 25 is the cross-section of a wear track at 3x10
5 

sliding cycles 

from the mixed lubricated test (E85 plus 5W30) prepared using the FIB milling 

technique.  This overview section shows an area of the wear track identifying sunk-in 

silicon particles and deformed aluminum.  Shown in Figure 4- 26 is the heavily deformed 

aluminum adjacent to a silicon particle.  Ultra fine aluminum grains can be seen roughly 

100-200 nm in size supporting an oil residue layer which appears to extend up to 120 nm 

below the contact surface. The aluminum grains below the heavily deformed aluminum 

and ultra fine aluminum grains appear to be larger in size, ranging from sizes greater than 

300 nm.  A discontinuous oil residue layer can be identified onto of the aluminum matrix, 

highlighted in the red box.  The zoomed in TEM micrograph accompanied by the semi-

quantitative chemical analysis (EDS) is shown in Figure 4- 27, where C, O, and Ca can 

be found.  The depth of the oil residue layer was measured to be roughly 120 nm below 

the contact surface.  Shown in Figure 4- 28 is sunk-in silicon particle at the same level as 

the adjacent aluminum.  Due to the sliding contact from the counterface, the silicon 

particle appears to contain large dislocations and twin structures.  Close examination of 

the interface using a fast Fourier transform (FFT) revealed a layer of amorphous structure 

and crystalline silicon structure as shown in Figure 4- 29.  Shown in Figure 4- 30 is the 
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electron diffraction pattern at the interface where crystalline silicon and amorphous 

structure was identified.  A zone axis of [     was indexed for the crystalline silicon 

particle.   

4.6 Tribolayer characterization using FTIR 

The chemical characteristic of the tribolayer was investigated employing FTIR 

scans inside the wear tracks.  Shown in Figure 4- 31 (a), is the adsorption spectrum inside 

the wear track at 10
6
 sliding cycles with a mixed E85/5W30 lubrication.  Adsorption 

band characteristics from the stretching of the hydroxyl group located at 3400 cm
-1 

suggests that –OH groups form hydrogen bonds most probably belonging to alcohol.  

Doublets due to the stretching of the C-H bonds were identified at 2926, 2862 and 1410 

cm
-1

 belonging to aliphatic hydrocarbons.   Adsorption peaks located at 1622, 1578, 

1134, and 1052 cm
-1

 corresponds to the stretching of C-O bond.  Shown in Figure 4- 31 

(b) is the adsorption spectrum inside the wear track at 10
6
 sliding cycles with only 5W30 

lubrication.  No evidence can be identified belonging to the adsorption of alcohol layers 

because no alcohol was present during the wear test.  Shown in Figure 4- 31 (c) is the 

adsorption band inside the wear tack with only ethanol lubrication.  Due to the formation 

of large oxides no evidence of adsorption of alcohol was present.  

4.7 Ethanol only wear tests 

Wear tests using only ethanol as lubricant was also conducted in order to 

understand the behaviour of the alloy in the absence of engine oil.  Figure 4- 32 shows 

the volume wear rates for two tests with only ethanol lubrication indicating high volume 

wear.  Shown in Figure 4- 33 is a 3D optical profilometry image of the resultant wear 

track at 10
5
 sliding cycles.  The formation of a deep and wide wear track is evidenced.  

Shown in Figure 4- 34 is a secondary electron micrograph of the wear track at 10
4
 sliding 
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cycles.  A high concentration of oxygen was detected using semi-quantitative EDS on the 

surface of the wear track suggesting the formation of aluminum oxide and iron oxide as 

shown in Figure 4- 35.  Surface oxide layers form as scales and detach from the matrix, 

acting as third body abrasives during sliding wear, resulting in high wear rates.  Shown in 

Figure 4- 36 is the corresponding second electron micrograph and a semi-quantitative 

EDS analysis on the surface of the counterface at 10
5
 sliding cycles.  The formation of 

iron oxide and Si fragments were detected.      

4.8 Coefficient of friction 

Shown in Figure 4- 37 and Figure 4- 38 are the coefficient of friction (COF) data 

plotted versus the number of sliding cycles.  The surface roughness of the corresponding 

wear track has been provided in order to correlate the behaviours.  A decreasing trend in 

the COF values can be evidenced for both lubricated conditions.  At the start of sliding, 

boundary lubricated regime was achieved resulting in high COF values.  As the number 

of sliding cycles increased, the contact regime changed from boundary lubricated 

conditions to either mixed or hydrodynamic lubrication and in turn decreasing the COF 

values.  The decrease in COF values can also be correlated to the formation of a stable 

protective oil residue layer which can act to separate the contacting surfaces.  The 

roughness of the wear track showed a comparable behaviour to the COF, where a rougher 

wear track correlates to an increase in the COF value and vice versa.  Higher COF values 

were also evidenced for mixed lubricated conditions in comparison to engine oil.    
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Figure 4- 1: Plot of volumetric wear with sliding cycles for Al-12.6% Si.  Boundary lubrication was 

achieved using 5W30 lubrication using 2N load at room temperature.   

 

 

Figure 4- 2: Secondary electron micrograph at 10
3 
sliding cycles using 2 N load and 5W30 lubrication 

at room temperature.  Damage limited to silicon particles through fracture.  Evidence of pile-up 

formation can be noticed.   
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Figure 4- 3: (a) Optical profilometry image of the wear track at 10
3
 sliding cycles with 2 N load under 

5W30 boundary lubricated conditions.  The formation of pileup can be evidenced adjacent to the 

silicon particles which support the load.  (b) Corresponding optical profilometry image of the 

counterface surface. 

 

 

Figure 4- 4: Secondary electron micrograph at 5x10
3 
sliding cycles (UMW I) using 2 N load and 

5W30 lubrication at room temperature.  The sinking in of the particles results in the formation of 

pile along the direction of sliding.     
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Figure 4- 5: Secondary electron micrograph at 2.5x10
4 
sliding cycles (UMW II) using 2 N load and 

5W30 lubrication at room temperature.  Aluminum matrix makes contact with counterface resulting 

in material removal.      

S.D 
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Figure 4- 6: Secondary electron micrograph at 5x10
4 
sliding cycles (UMW II) using 2 N load and 

5W30 lubrication at room temperature.  AOF # 1 shows the formation of pockets of oil residues on 

top of nickel iron particles towards the edge of the wear track.  AOF # 2 shows smeared oil residue 

layer towards the center of the wear track.        
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Figure 4- 7: Secondary electron micrograph at 3x10
5 
sliding cycles (UMW III) using 2 N load and 

5W30 lubrication at room temperature.  AOF # 1 shows pockets of oil residue on top of silicon 

particles in the wear track.          
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Figure 4- 8: (a) Optical profilometry image of the wear track at 3x10
5
 sliding cycles with 2 N load 

under 5W30 boundary lubricated conditions.  Wear track appears uniform.  Formation of grooves 

results in the removal of material. (b) Corresponding optical profilometry image of the counterface 

surface. 
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Figure 4- 9: Plot of volume loss with sliding cycles for Al-12.6% Si.  Boundary lubrication was 

achieved using a mixture of 5W30/E85 lubrication using 2N load. 

 

 

Figure 4- 10:  Secondary electron micrograph at 5x10
3 
sliding cycles using 2 N load and E85 plus 

5W30 lubrication at room temperature.  Damage limited to silicon particles through fracture.  

Evidence of pile-up formation can be noticed.   
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Figure 4- 11: Secondary electron micrograph and WYKO image at 5x10

3 
sliding cycles using 2 N load 

and a mixture of E85/5W30 lubrication at room temperature.  Formation of pileup area in the wear 

track can be identified by the elevated matrix surrounding the particles. 

 

 

Figure 4- 12:  Secondary electron micrograph at 10
4 
sliding cycles (UMW I) using 2 N load and a 

mixture of E85/5W30 lubrication at room temperature.  The formation of grooves along the wear 

track signifies the initiation of material removal from the surface.       
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Figure 4- 13: (a) Optical profilometry image of the wear track at 10
4
 sliding cycles with 2 N load 

using a mixture of E85/5W30 lubricated conditions.   Formation of grooves results in the removal of 

material. (b) Corresponding optical profilometry image of the counterface surface.  

 

 

Figure 4- 14: Secondary electron micrograph and backscatter micrograph at 5x10
4 
sliding cycles 

(UMW II) with a 2 N load using a mixture of E85/5W30 lubricated conditions.  The flattening of the 

matrix can be evidenced resulting in the formation of a compacted layer.       
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Figure 4- 15: (a) Optical profilometry image of the wear track at 5x10
4
 sliding cycles with 2 N load 

using a mixture of E85/5W30 lubricated conditions.  Flattening of the matrix can be evidenced also 

the formation of grooves leading to the removal of material. (b) Corresponding optical profilometry 

image of the counterface.  

 

 

Figure 4- 16: Counterface at 5x10
4
 (UMW II) sliding cycles with a mixture of E85/5W30 lubrication.  

Semi-quantitative chemical analysis suggests the formation of iron oxide and embedding of silicon 

fragments. 
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Figure 4- 17: Secondary electron micrograph at 10
6
 sliding cycles (UMW III) using 2 N load and a 

mixture of E85/5W30 lubrication at room temperature.   

 

 

Figure 4- 18:  EDS analysis inside the wear track at 10
6
 sliding cycles (UMW III) using 2 N load and 

a mixture of E85/5W30 lubrication at room temperature.  Traces of oil residue layer can be 

evidenced through the detection of Zn, P, S, Ca and C.     
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Figure 4- 19: XPS chemical composition of the tribolayer developed under 2N load; (A) 3x10
5
 sliding 

cycles using E85/5W30 mixed lubrication.  (B) 10
6
 sliding cycles using E85/5W30 mixed lubrication. 

(C) 3x10
5
 sliding cycles using 5W30 lubrication.  (D) 10

6
 sliding cycles using 5W30 lubrication. 
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Figure 4- 20:  Comparison of the chemical composition of the tribolayer using XPS to illustrate the 

differences in the concentration of elements compromising the oil residue layer.   

 

 

Figure 4- 21: XPS scans inside the wear track at 3x10
5
 sliding cycles with a mixture of E85/5W30 

lubrication.  Binding energy for ZnO film formation at 1021.71 eV was detected.   
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Figure 4- 22: XPS scans inside the wear track at 3x10
5
 sliding cycles with a mixture of E85/5W30 

lubrication.  Binding energy for sulphate film formation at 168.61 eV was detected. 
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Figure 4- 23: XPS scan for zinc, calcium, aluminum, and silicon atomic % as a function of time inside 

wear track at 10
6
 sliding cycles for both lubricated conditions. 

 

 

Figure 4- 24:  XPS scan for carbon and oxygen atomic % as a function of time inside wear track at 

10
6
 sliding cycles for both lubricated conditions.   
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Figure 4- 25:  Cross-sectional TEM micrograph of the wear track at 3x10
5 
sliding cycles under 

mixture of E85/5W30 lubrication.   

 

 

 

Figure 4- 26: Cross-sectional TEM micrograph of the heavily deformed aluminum featuring a nano-

crystalline structure (100-200nm) supporting a thin oil residue layer near a silicon particle at 3x10
5
 

sliding cycles under mixed E85 plus 5W30 boundary lubrication. 
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Figure 4- 27: TEM micrograph (a) zoomed in section outlined in Figure 4- 26, of the aluminum 

matrix featuring a discontinuous oil residue layer and EDS analysis location, (b) a plot of element 

concentration (at. %) vs. distance from the contact surface up to 120 nm illustrating the chemical 

composition of the oil residue. 

 

 

Figure 4- 28: Cross-sectional TEM micrograph of a silicon particle inside the wear track at 3x10
5
 

sliding cycles under a mixture of E85/5W30 lubrication.  The formation of twin structures and 

dislocations can be evidenced due to the sliding contact from counterface.   
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Figure 4- 29: HRTEM micrograph of the amorphous layer on top of the crystalline silicon particle.  

The formation of an amorphous layer can be evidenced on top of crystalline structure. 

 

 

Figure 4- 30: Electron diffraction pattern at the silicon interface.  Zone axis of [ 14] was indexed.  
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Figure 4- 31: FTIR analysis inside the wear track at 10
6
 sliding cycles under 2N boundary lubrication 

with (a) E85/5W30 lubrication where adsorption of alcohol bands can be identified.  (b) 5W30 

lubricated wear tracks were no alcohol layers can be identified.  (c) Lubricated with only ethanol 

were large oxide formation occurred.  No film formation was evidenced with only ethanol.   

 

 

Figure 4- 32: Volumetric wear loss of Al-12.6% against sliding cycles with only ethanol lubrication, 

5W30 lubrication and a mixture of 5W30/E85 at room temperature in boundary lubrication using 2N 

load with a sliding speed of 5 cm/s.   

 

(c) Ethanol 

 

(c) 

 

(c) 

 

(c) 



 

99 

 

 

Figure 4- 33: 3D profilometry image of the wear track at 10
5
 sliding cycles with ethanol lubrication. 

 

 

Figure 4- 34: Secondary electron micrograph inside the wear track at 10
4
 sliding cycles with ethanol 

lubrication.   
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Figure 4- 35: EDS analysis inside wear track at 10
5
 sliding cycles with only ethanol lubrication.  

Formation of aluminum oxide was evident. 

 

 

Figure 4- 36:  Semi-quantitative EDS analysis on the worn surface of the counterface at 10
5
 sliding 

cycles with only ethanol lubrication.  Mainly iron oxide and Si fragments were detected.   
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Figure 4- 37: Coefficient of friction values and surface roughness (Ra) inside the wear track 

lubricated with a mixture of E85/5W30 as a function of sliding cycles.  Surface roughness measured 

from 8 different locations.   

 

 

Figure 4- 38: Coefficient of friction values and surface roughness (Ra) inside the wear track 

lubricated with 5W30 as a function of sliding cycles. Surface roughness measured from 8 different 

locations. 
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CHAPTER V DISCUSSION 

 

5.1 Introduction 

This chapter discusses the wear mechanism for boundary lubricated conditions.  

The first section describes the mechanism of wear with only 5W30 lubrication.  The 

second section describes the wear mechanism with E85 plus 5W30 lubrication.   

5.2 Wear mechanism with engine oil 

 The wear mechanism of the Al-Si engine alloy under boundary lubrication with 

5W30 can be characterized by three stages of ultra mild wear (UMW).  Each progressive 

stage plays an important role in the overall development of the wear mechanism.  In the 

first stage of UMW I, the contact between the counterface and the Al-Si alloy is limited 

to the top of silicon particles which protrude above the aluminum matrix.  It is reasonable 

to suggest that the entire load is supported by the silicon particles because the silicon 

particles begin to crack and fracture leaving the matrix relatively undamaged [4, 6].  In 

addition, the silicon particles begin to embed into the matrix and can be evidenced by the 

formation of pileup, which occurs in order to accommodate the displacement caused by 

the semi-rigid particle indentation into the plastically deforming matrix.  The progression 

of sliding results in a point where the embedding silicon particles and the piled-up matrix 

reach the same height.  This signals the transition to the UMW II stage.  The counterface 

and the matrix make contact, and deformed aluminum can be evidenced along the sliding 

direction.  The material removal occurs due to the formation of grooves throughout the 

wear track.  Formation of the oil residue layer can be evidenced in this regime.  Round 

pockets of oil residue develop on top of hard silicon particles and on iron nickel phases.  

The formation of these pockets on the top of the harder particles can be attributed to the 
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resistance to deformation which they posses, which is a severe contrast to the softer 

aluminum matrix.  Rounder pockets of oil residue are easily visible towards the edges of 

the wear track where less deformed aluminum smears over the pockets of oil residue due 

to the sliding of the counterface.  Towards the centre of the wear track, the pockets of oil 

residue are less visible and can only be detected through EDS.  The oil residue layer 

consists of Zn, S, Ca, C, and O as evidenced through XPS scans.  Wear tracks appear to 

be uniform and consistent.  The stabilization of the wear rates can be attributed to the 

formation of a stable oil residue layer.  Similar observations have been reported by 

authors confirming the progression of wear in the UMW regime [4, 6, 9, 51].   

5.3 Wear mechanism with 5W30 plus E85 

Wear tests using a mixture of E85/5W30 on the Al-12.6 wt.% Si alloy provided 

the necessary wear resistance during sliding contact with a steel counterface.  The wear 

resistance of the Al-12.6 wt.% Si alloy in the presence of E85/5W30 mixture can be 

discussed in terms of combined mechanical and chemical mechanisms.  Three stages of 

UMW were observed.  UMW I stage occurs over the period where the contact is limited 

to only silicon particles.  Fracturing and embedding of the silicon particle into the soft 

aluminum matrix occurs.  The embedding of the silicon particle forces the aluminum to 

pile-up adjacent to the embedding particle.  Since the wear damage is only limited to 

silicon particles the aluminum matrix remains unaffected contributing to zero volume 

loss.  Transition to the UMW II stage is accompanied by an increase in the volume wear.  

The piled-up aluminum and the embedding silicon particles reach the same height, 

exposing the aluminum to the counterface.  Damage to the matrix occurs in the form of 

long grooves and scratches.  The development of a protective oil residue film due to the 

interaction of engine oil additives were confirmed through semi-quantitative chemical 
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(EDS) analysis and quantitative XPS.  Wear tracks which were lubricated with only 

engine oil showed the formation of concentrated pockets of oil residue which develop on 

top of the harder silicon and iron-nickel particles.  When E85 was added to the engine oil, 

the formation of the pockets of oil residue was less evident.  The absence of pockets of 

oil residue may be due to the thinning of the engine oil and the dilution of the engine oil. 

The addition of E85 in engine oil did not significantly affect the development of 

the protective oil residue layer.  Quantitative XPS chemical analysis on the surface of the 

mixed lubricated wear track produced a richer concentration of elements (Zn, S, and Ca) 

due to the engine oil additive.  Engine oil additives such as ZDDP under pressure and 

elevated temperatures form stable protective oil residue films, rich in Zn, S, P, C, and Ca 

[4, 9, 51].  ZDDP additives also function as effective oxidation inhibitors by generating 

products which themselves act as effective oxidation inhibitors [48].  If ZDDP is mixed 

with large peroxides or by-products of combustion, the main ability of ZDDP as an 

effective antiwear agent is reduced resulting in reactions products such as dithiphosphate 

mono- and disulphides and either ZnSO4 or ZnO.  Andersson [65] observed through 

Raman spectroscopy on pure ZDDP crystals that when mixed with alcohol 

(ethanol/methanol), ZDDP decomposes into various molecules and by-products.  It is 

reasonable to suggest that due to the presence of large amounts of alcohol in the engine 

oil, the ZDDP additives were effective in reducing the amount of oxidation development 

resulting in ZnO film formation and a rich deposit of Zn, S, and Ca as evidenced through 

the quantitative XPS analysis on the surface of the wear track.   

The prevention of oxide layer formation through the development of a protective 

oil residue layer is an essential stage in preventing high wear rates.  Wear tests in the 
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presence of only ethanol resulted in aluminum and iron oxide formation, resulted in high 

wear rates, unacceptable for linerless Al-Si engine operation.   

Upon transition to the UMW III stage, the stabilization of the volume wear can be 

noticed.  The stabilization of the wear rates can be attributed to the formation of a 

protective tribofilm.  Dey et al. [6] and Meng et al. [8] who investigated the effect of 

tribofilm formation on Al-12.6 wt.% Si alloy lubricated with engine oil at room 

temperature concluded that a continuous tribofilm with a thickness of 40-80 nm can be 

expected in the UMW III stage under similar wear conditions.  Subsurface 

characterization of the wear track which developed under the mixed lubricated condition 

at 3x10
5
 (UMW III) sliding cycles showed discontinuous oil residue film development.   

 Even though a discontinuous oil residue film was evidenced, low volume wear 

rates were still observed.  This may be explained by observing the chemical reactions 

which occur during sliding contact.  Hydrocarbons and alcohols have the ability to 

chemically adsorb and even react with metal surface which are often activated and 

accelerated by friction [66].  The negative-ion-radical action mechanism (NIRAM) can 

be used to further illustrate the interaction of alcohol during boundary lubrication.  

During the course of friction between two contacting bodies’ particularly asperities, low-

energy electrons are emitted creating positively charged spots on the contacting surface.  

The emitted low energy electrons (1-4 eV) react with the alcohol molecule to form 

negative ions and radicals.  The negatively charged ions subsequently react with the 

positively charged spots to form protective antiwear tribochemical films responsible for 

maintaining low wear rates. 

During the course of sliding, when the aluminum matrix became exposed to the 

counterface in UMW II, the exposed aluminum became positively charged, allowing for 
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the negatively charged alcohol ion to bond to the surface.  Evidence for the chemically 

adsorbed/reacted tribochemical film was presented in the form of FTIR scans.  The 

vibration of the O-H, C-H, and C-O bands suggests that these films existed inside the 

wear track.  These adsorption bands were not evidenced with only engine oil lubrication 

and with only ethanol lubrication.  Ethanol provided only limited lubricity, resulting in 

oxide layer formation (aluminum oxide and iron oxide) and prevented the formation of 

any protective tribochemical films.  When E85 was mixed with engine oil, the formation 

of protective oil reside layers prevented oxide formation and allowed for the protective 

tribochemical film to be formed.  Shown in Figure 5- 1 is a schematic of the proposed 

tribochemical film which occurs due to the sliding contact on Al-Si alloys.  When the 

counterface passes over these films, it can be assumed that smearing of the aluminum 

over these films is possible over time, allowing the films to be developed in layers.  

Quantitative XPS depth characterization showed a rich concentration of carbon as a 

function of depth on wear tracks lubricated with E85 plus engine oil in comparison to just 

engine oil, suggesting that the protective carbon-rich tribochemical film became 

incorporated into the wear track.  In addition, TEM characterization showed a thin layer 

of smeared aluminum on top of silicon particles, suggesting that the tribochemical film 

formation could also occur on top of the silicon particles.   

The UMW mechanism for Al-12.6 wt.%Si alloy lubricated with 5W30 plus E85 

can be summarized with a schematic diagram as shown in Figure 5- 2.  During UMW-I 

the damage was limited to only silicon particles which fracture and embed into the 

matrix.  Formation of pileup occurs.  Embedding of the particle continuous the pileup 

material and the embedding silicon particles reach the same height, exposing the 

aluminum matrix to the counterface in UMW II.  Protective tribochemical film due to 
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alcohol develops on top of exposed aluminum, providing a thin wear resistant layer.  Oil 

additive layer develops onto of harder silicon and nickel-iron particles, proving an 

additional layer of support.  Once a stable oil residue layer in conjunction with an alcohol 

adsorbed tribochemical layer forms on top of a sliding induced ultra fine aluminum 

grains, a reduction in the wear rate was observing, resulting in UMW III (Figure 5-2 b). 
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Figure 5- 1: Schematic of the possible tribochemical film formation on top of aluminum due to 

alcohol interaction. 

 

 

(a) Etched surface   

 

(b) UMW III  

Figure 5- 2: Schematic diagram showing the UMW mechanism in Al-12.6 wt.% Si alloy using E85 

plus 5W30 lubrication. (a) etched surface; (b) UMW III 
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CHAPTER VI CONCLUSIONS 

 

1.  Al-12.6% Si engine alloy was used in order to determine the damage in the 

UMW regime by first chemically etching the surface with 10% NaOH.  The 

prepared surface is to represent the surface of a linerless Al-Si engine.  Wear tests 

were conducted under boundary lubrication condition with only synthetic engine 

oil (5W30) or a contaminated engine oil conditions with a 1:1 mixture of 

synthetic engine oil (5W30) and E85 (85% ethanol and 15% regular gasoline) 

fuel. 

2.  Damage which was sustained on the surface of the Al-12.6% Si alloy after wear 

tests were quantified and characterized in order to determine the damage 

mechanism in the UMW regime. 

3. Wear tests under both lubricated conditions showed similar UMW characteristics; 

however, lower wear rates were obtained when engine oil was mixed with E85 

fuel. 

4. The formation of the oil residue layer was evidenced for both lubricated 

conditions.  The alcohol may act to prevent the formation of a thick oil residue 

layer; however, proved to be beneficial by forming tribochemical film due to the 

alcohol, resulting in less wear. 

5. Polar attraction between the hydroxyl group (- OH) in the alcohol and the 

lubricating surface provided a suitable condition for an alcohol adsorbed layer to 

form which may provide an extra layer of wear resistance on the Al-Si alloy. 

6. Wear tests with only ethanol resulted in mild wear conditions and the formation 

of aluminum oxide. 
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7. Addition of E85 in engine oil resulted in a slight increase in COF values in 

comparison to only engine oil.   

8. Addition of E85 into engine oil does not result in any excess wear or any 

corrosive damage.  
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SUGGESTIONS FOR FUTURE RESEARCH 

 

The complex mechanism of wear on the Al-12.6 wt.% Si alloy with E85 and engine oil 

lubrication was investigated focusing mainly on the effect of ethanol addition.  

Preliminary evidence was presented for the formation of a protective tribochemical film 

due to alcohol.  The following suggestions have been recommended in order to better 

understand the interaction of alcohol during boundary lubricated conditions: 

1. Chemical analysis employing ToF-SIMS can give insight into the structure of the 

tribochemical film on the Al-Si surface. 

2. The effect of E85 on the wear behaviour of only engine oil additive packages 

should be investigated. 

3. The wear behaviour of engine oil contaminated with water should be investigated 

since high concentration of water formulation has been suggested following 

engine oil analysis on bio-fuelled vehicles. 

4. Wear mechanism should be correlated with linerless Al-Si engine following field 

tested conditions.     

5. The stability of the oil residue layer and the tribochemical layer should be 

investigated.   

6. The counterface material should be investigated in order to quantify the amount of 

volume loss and characterize the damage progression.   
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APPENDIX A 

APPENDIX A:  Volume wear rate calculations. 

Volume wear loss for each sample is quantified by obtaining three profilometry data from 

one WYKO image, indicated as profilometry line 1 (Column A&B), 2 (Column G&H), 

and 3(Column M&N).  The left (low) and right (high) side of the wear track was used to 

quantify only the volume loss from within the wear track.  The cut-off point is 

determined based on height distribution data.  Column C, D, and E are used to verify that 

the data is within the wear track and does not exceed the cut-off point.  Similarly column 

I, J, K, O, P, and Q are used for profilometry line 2 and 3.  Column F is used to calculate 

the area of material removed.  The sum of column F is the area used to calculate the 

volume wear loss.  A total of 24 profilometry data is used to average the area of material 

removed. 
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