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ABSTRACT

Vibrothermography, also known as Sonic IR and Thermosonics, is an NDE technique for

finding cracks and flaws based on vibration-induced frictional rubbing of unbonded surfaces.

The vibration is usually generated by a piezoelectric stack transducer which transduces electri-

cal energy into large amplitude mechanical vibrations. The purpose of this study is to develop

an understanding of the excitation process for vibrothermography so that optimal parameters

and transducers for the testing can be selected. The amplitude and impedance transfer charac-

teristics of the transducer system control the vibration of the sample. Within a linear contact

(no tip chatter) model, the interaction between the transducer system and the specimen can

be characterized using the theory of linear time-invariant (LTI) systems and electro-mechanical

Norton equivalence.

This work presents quantitative measurements of the performance of piezoelectric stack

transducers in a vibrothermography excitation system and the effect of transducer perfor-

mance and specimen characteristics on the induced vibration in the specimen. We show that

with compliant coupling, the specimen vibration is directly proportional to the transducer open

circuit velocity and that the system resonances generated because of metal-metal contact of

specimen and transducer are disconnected by adding a couplant between specimen and trans-

ducer. We then give suggestions for transducer and couplant selection for vibrothermography

and suggest methods to flatten the velocity spectrum of the transducer.

We extend our analysis to high amplitude transducer behavior and elaborate on the effect

of power amplifier saturation on the transducer behavior. The saturation effect negates the

effect of adding an external inductance to flatten the transducer velocity spectrum. Finally,

preliminary results are reported on the effect of transducer degradation phenomenon.
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CHAPTER 1. INTRODUCTION

Vibrothermography is a nondestructive evaluation(NDE) technique for finding cracks and

delaminations in materials by vibration induced crack heating. When a specimen is vibrated

at high amplitudes and if it has a defect (eg: cracks, delaminations), the two contacting sur-

faces of the defect rub against each other and heat is generated locally because of the friction

between these two rubbing surfaces. This method is also called Sonic IR, Thermosonics and

Vibroacoustics. Vibrothermography was first developed by Henekke et al. during early 1980s

[1]. Several research groups have been investigating this method ever since. This technique

has shown substantial promise as an alternative to Fluorescent Penetrant Inspection (FPI) for

turbine components. Unlike FPI, vibrothermography does not involve chemicals and it can

detect cracks even under a thermal barrier coating. However, the underlying physics of this

method is not completely understood and the current practices do not yet yield the desired

level of repeatability.

Defect detection in vibrothermography depends on several factors like crack size[2], dynamic

stress[2], excitation frequency[3, 4], loading mode[5], crack closure [6] etc. A key prerequisite for

studying some of these factors is consistent and repeatable vibration generation. High enough

amplitude vibrations should be coupled into the specimen so that adequate dynamic stress levels

for crack detection are reached. On the other hand, excessively high amplitude vibrations might

run the risk of damaging the specimen [7]. In this thesis, we analyze the excitation system we

use here at Iowa State University (ISU)’s Center for Nondestructive Evaluation (CNDE) and

give recommendations on optimizing the transducer parameters to achieve successful defect

detection and maximum transducer efficiency.

The most common excitation source used for vibrothermography is an ultrasonic welder.

These devices are widely used in plastics and packaging industry. An ultrasonic welder consists
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of a piezoelectric transducer(converter) with a booster that acts as a mounting point, an acous-

tic horn to amplify and efficiently couple the energy into the specimen, and a power source that

drives the system. The transducer assembly is finely tuned to resonate at a single narrowband

frequency. The operating parameters for ultrasonic welders are operating frequency and power

levels desired. The specimen to be inspected is attached to the tip of the horn with a soft

coupling material between the tip and the contact surface and vibrated at high amplitude to

cause vibrothermographic heating[8]. Because the contact of the transducer tip and specimen

is often nonlinear, different harmonics and sub-harmonics can be generated which often excite

one or more natural resonances of the specimen. It is the high amplitude vibrations at these

resonances that tend to make any defects heat up. The generation of unusual subharmonics of-

ten needed to match resonance is characteristic of non linear acoustic chaos[9]. The generation

of acoustic chaos is inherently non-repeatable and may result in poor reproducibility of overall

testing. However, the generation of acoustic chaos is reported to be vital in defect detection

with this type of excitation and enhances the defect heating[9]. The downside, however with

this type of excitation is that because it is non-repeatable, it is not very useful for developing

conclusions pertaining to the underlying physics.

As an alternative, we use a broadband excitation system at ISU’s CNDE that, instead of

exciting the specimen at a single welder operating frequency and relying on acoustic chaos

generation, can operate at a wide bandwidth, thus making it possible to explicitly excite the

specimen at specimen’s natural frequency[10]. This excitation system consists of a high power

broadband piezo stack transducer operated along with a power amplifier. Because of their rel-

atively wide bandwidth, these transducers can be tuned electronically to excite the specimen

explicity at its resonance frequencies and therefore it is possible to achieve high vibration am-

plitude and hence better crack heating at the specimen resonances [1]. For certain geometries,

the specimen vibration can be analyzed using elementary flexural wave theory[11] and therefore

quantitative results comparing dynamic stress to crack heating can be obtained. The selection

parameters for these transducers are stack length, stack diameter, preload and manufacturer.

Stack length determines natural resonances of the transducer. Stack diameter determines the

stiffness of transducer. Longer transducers have smaller resonance frequencies and higher stroke
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Figure 1.1 A picture of the vibrothermography set up used at Iowa State University’s Center
for Nondestructive evaluation.

lengths than shorter ones. Thicker transducers have more stiffness and can be used with heavier

loads. Fig. 1.1 shows a picture of the vibrothermography system we use at ISU’s CNDE.

In this thesis, in the remainder of the introduction, we explain the excitation system we

use for vibrothermography. In chapter 2, we explain the characterization of the broadband

piezoelectric stack transducers in the context of vibrothermography and suggest parameters for

transducer selection to optimize the overall efficiency of vibration generation and the transducer

system. We first discuss the small signal linear analysis of the transducer and derive results on

transducer-specimen interaction and the role played by the couplant. We then suggest criteria

for selection in terms of the transducer parameters (stack length and stack diameter) and how

to improve the usable bandwidth of these transducers.

In chapter 3, we extend our analysis to the high amplitude vibrations and the phenomenon

of power amplifier saturation. Some power amplifiers (like McIntosh MC1201) saturate before

the short term damage threshold of the transducer is reached. This constrains the operational

limits of the transducer. On the other hand, very high amplitude operation of transducers

results in long term degradation of the piezo stack. With prolonged use at high amplitude
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excitations, the transducer spectrum changes as the transducer degrades. We shall discuss

briefly, this phenomenon before concluding the study.

1.1 Hardware Description

The hardware for a vibrothermography experiment consists of an excitation system for

generating mechanical vibrations in the specimen and a measurement system to measure the

specimen vibrations and the heat generated. We use high power piezoelectric broadband trans-

ducers for mechanical vibration generation at ISU’s Center for nondestructive evaluation. The

principle behind the functioning of these piezoelectric stack transducers is the ‘Piezoelectric

effect’, a property whereby materials deform mechanically in response to an electric field and

in turn produce an electric potential when deformed mechanically. A piezo stack transducer

has a stack of disk-like piezoelectric elements housed in a stainless steel casing, often with a

compressive preload. When a voltage is applied across the ends of the transducer, the stack

deforms axially generating a stroke like motion. So, one can think of these transducers as

‘moving capacitors’. In this study, we used 10 transducers of different geometries from two

manufacturers, Piezomechanik gmbh and Physik Instrumente Inc, 5 from each. We name these

‘MMddll’, where MM is the manufacturer (PM for piezomechanik, PI for Physik Instrumente),

dd is the stack diameter (16,25,35 ) in mm and ll is the stack length (20,40,60) in mm and use

this naming for the rest of this thesis. The details of these transducers are given in table 1.1.

Fig. 1.2 shows pictures of two of the transducers (PI2533 and PM2540) we used for this study.

The high power Piezomechanik transducers used for this study are specified for voltage range

of -200 to 1000V while the Physik Instrumente transducers are specified for a voltage range

of 0 to 1000V. We use a Tabor ww5061 waveform generator to generate the customized AC

waveforms for exciting the transducer. The excitation signal is fed to the arbitrary waveform

generator via a network interface. A McIntosh MC1201 (maximum rated power of 1.2KW)

audio power amplifier amplifies the generated waveform and a custom built +/- 500V DC bias

generator adds a 500V bias to this amplified waveform. The DC bias is for the transducer to

keep the voltage with in the 0 to 1000V or -200 to 1000V manufacturer specifications of the

transducer. The voltage and current across the transducer are measured with custom built
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Figure 1.2 Picture showing close up of two of the transducers used for this study. On the left
is a Physik Instrumente transducer (PI2533) with stack length 33 mm and stack
diameter 25 mm and on the right is a Piezomechanik transducer (PM2540) with
stack length 40 mm and stack diameter 25 mm.

voltage and current sensors. Fig. 1.3 shows the schematic diagram of the vibrothermography

excitation system we use at the ISU’s Center for NDE. A Polytec Laser doppler vibrometer

measures the velocity of generated vibrations. A microphone can be used in place of the

vibrometer for lower cost vibration measurement. A Flir SC6000 infrared camera captures the

infrared images during the test. These images are post processed to detect any defects in the

specimen. A trigger generator module was developed at ISU’s CNDE that generates trigger

signals for waveform generator, infrared camera and the data acquisition card. A DAS4020 data

acquisition card is used for aquiring the various waveforms. An EDT PCI image acquisition

card captures the frames from the infrared camera.

We use a software package called ‘Dataguzzler’, a custom built laboratory data acquisi-

tion software as the computer interface for performing various experiments. Dataguzzler has

modules that control different hardware equipments via command line interface. Dataguzzler

has capabilities to capture, store and process the data in real time. Apart from the basic

features like background subtraction, Fourier analysis and basic math operations, it also has

some advanced image processing capabilities.

All the calculations and data analysis were performed in the Python programming language.
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Figure 1.3 Schematic of the excitation system used for Vibrothermography. The arbitrary
waveform generator generates the desired waveform, which the power amplifier
amplifies. A +/- 500V DC bias generator adds a bias voltage to the amplified
waveform to meet the transducer manufacturing specifications. The current and
voltage sensors measure the respective quantities and are displayed on dataguzzler
interface via data acquisition card.
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CHAPTER 2. SMALL SIGNAL TRANSDUCER ANALYSIS

The principal component of any excitation system for vibrothermography is a transducer

to generate mechanical vibrations. Usually, high power piezoelectric transducers are used

for vibration generation. As the name suggests, these transducers are made of piezoelectric

materials. The underlying principle of this type of transducer is ‘Piezoelectric effect’, which

is an interaction between electrical and mechanical systems. The direct piezoelectric effect is

when electric polarization is produced by mechanical stress. Closely related to it is its converse

effect, whereby a crystal becomes strained when an electric field is applied. Both effects are

manifestations of the same fundamental property of the crystal[12]. Some commonly used

piezoelectric materials in transducers are Lead zirconate titanate (PZT), Barium titanate, etc.

The broadband piezoelectric stack transducers we used for this study are made of PZT disks

stacked together with a compressive preload.

It is important to analyze the transducer characteristics to understand the role played by

excitation sources in vibrothermography, In this chapter, we model the broadband piezoelectric

stack transducer as a linear system and characterize its behavior based on three parameters,

open circuit velocity, mobility and immovable object force. Using these parameters, we ex-

plain the behavior of specimen, the interaction between transducer-specimen system and the

role played by the so called ‘couplant’ used in vibrothermography. We then give criteria for

transducer selection and recommendations for improving the transducer response.

2.1 Transducer as a LTI two port model

Although inherently non linear at high excitation amplitudes, piezoelectric materials behave

linearly and can be modeled as a linear system at sufficiently low amplitudes. We model the
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piezo stack transducer as an electromechanical LTI (Linear Time Invariant) two port network,

the input port of which is electrical and output port, mechanical[12]. The control variables are

current and voltage on the electrical end and force and velocity on mechanical end. This type of

model can be characterized by four network parameters; two of which correspond to impedances

and the other two correspond to electromechanical coupling coefficients. To map the mechanical

quantities with their electrical analogs, we follow a mobility analogy, in which force maps to

current and velocity maps to voltage[13]. The reason for using mobility analogy for our analysis

is that the mechanical force balance,
∑

i Fi = 0 at a node is analogous to Kirchoff’s Current Law

(KCL) in electrical circuits,
∑

i Ii = 0 at a node and so, the mechanical circuit reads intuitively.

We can think of force as ‘mechanical current’ and velocity as ‘mechanical voltage’. Fig 2.1 shows

a schematic representation of the electromechanical two port model of the transducer, power

amplifier and the specimen. The parameter A represents the electrical admittance (CurrentV oltage )

of the transducer when the transducer tip is immobile, represented as an impedance 1
A in

parallel with a current source B. The parameter D is the mechanical impedance ( Force
V elocity ) of

the transducer tip when the voltage across transducer tip is zero and is represented in terms

of mobility, 1
D in parallel with a force source, C. The parameters B and C are the controlled

current or force sources. For some experiments, we will need to include the power amplifier

and specimen characteristics as well in the model as illustrated in fig. 2.1. The power amplifier

is modeled as a controlled voltage source with gain g and impedance Zpa. The specimen is

modeled as a mechanical load with mobility Ms. The complete system model that includes the

power amplifier, transducer and the specimen is shown in fig. 2.2. With these definitions, the

equations governing the power amplifier-transducer-specimen model are:

I1 = AV1 +BV2 (2.1)

I2 = CV1 +DV2 (2.2)

V1 = gVs − (Zpa + Z)I1 (2.3)

I2 =
1
Ms

V2 (2.4)

In the above equations, V1 is the voltage across the tranducer terminals, I1 is the current in

the transducer, V2 is the output velocity, I2 is the force on the transducer, Vs is the generated
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Figure 2.1 Complete electromechanical model of Piezoelectric transducer along with power
amplifier and specimen.

Power Amplifier

Resistor/Inductor

Specim
en

Transducer

A       B

C         D

Z

sM

Z pa

I1
2I

gVs

Figure 2.2 Schematic showing all the parameters of the complete Electromechanical model
including power amplifier, transducer and specimen.
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excitation voltage, Z is the external series resistance (or inductance), Ms is the specimen

mobility and A,B,C,D are the four network parameters.

The voltage, V1 and current, I1 are measured with the sensors in the system while a laser

vibrometer measures the velocity. Therefore V1, V2 and I1 are directly measurable. The trans-

ducer force, I2 is not directly measurable. We will run experiments measuring V1, I1 and V2

in order to evaluate the seven system characteristics: The four transducer parameters A,B,C

and D, the two power amplifier parameters g and Zpa, and the specimen mobility, Ms. In

order to evaluate these parameters, we performed tests under different external conditions. We

added a known mass 1 m (mobility Ms= 1
jωm) in place of the specimen and a known series re-

sistor, R between power amplifier and transducer. With this set up, we excited the transducer

with a frequency sweep and measured V1, V2 and I1. We did multiple(6-9) tests with enough

combinations of masses and resistors to get an overdetermined system of equations with more

equations than unknowns. We solved this system of equations using least squares for the seven

system characteristics across the frequency range 3Khz to 25Khz. We used a matched filter

denoising algorithm to eliminate the quantization noise from all the measured waveforms. The

algorithm is discussed in detail in the appendix.

2.2 Simplified transducer model

The complete electromechanical model solved above depends on seven parameters (power

amplifier, two port parameters and specimen) and requires many measurements. We use a

simplified equivalent called ‘Norton Equivalent circuit’ to represent the entire system of power

amplifier and transducer2. In circuit terminology, a Norton circuit consists of a current source

and a parallel source impedance, or in our mechanical model, a force source and a parallel

mobility as shown in fig. 2.3(b). This is the simplified representation of the schematic in fig.

2.3(a). Thus, we can define the transducer in terms of any two of the following quantities:
1Tungsten blocks were used to approximate point masses in place of specimens for the testing. The high

density of tungsten allows it to approximate a point mass better than other materials for higher frequencies.
2An equivalent representation, called Thevenin Equivalent circuit consists of a voltage source and a series

source impedance
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Figure 2.3 Norton equivalent representation of piezo stack transducer with and without a load
attached to it. The circuit on the bottom left shows the transducer with no load
attached to it, while the one on bottom right shows the transducer with a specimen
attached to the tip.

1.Immovable Object Force (also known as Blocking force)

2.Transdcer Mobility

3.Transducer Open circuit velocity

Immovable Object Force, Ft is the force on the transducer tip when an immovable ob-

ject is attached to it. This is the open circuit velocity divided by the mobility of transducer.

It will be calculated by first measuring the open circuit velocity and transducer mobility. The

immovable object force is given by: Ft = Voc
Mt

.

Transducer Mobility, Mt is defined as velocity of the transducer per unit applied force.
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The transducer mobility can be calculated using open circuit velocity of transducer and the

velocity of a known point mass (in our case, a tungsten block) attached to the transducer tip

by applying KCL (Kirchoff’s Current Law) along the Norton equivalent cirucit in fig. 2.3(c).

The mobility calculated is given by:

Mt =
Voc

(jωm)vm
− 1
jωm

(2.5)

where m is the known point mass, Voc is the transducer open circuit velocity, vm is the velocity

of the point mass.

The transducer mobility can also be calculated from the parameters we solved from the model.

From fig. 2.2, the transducer mobility, as seen by the specimen with the power amplifier

attached and operating is given in equation 2.6.

Mt =
V2

I2
=

1

D − BCZpa
1+AZpa

(2.6)

Open Circuit Velocity, Voc is the velocity of the transducer tip when no load is attached

to it. This is measured by exciting the transducer and pointing a laser vibrometer at the

vibrating tip. Since it is easier to measure Voc directly, we used this to calculate transducer

mobility and immovable object force. If a Thevenin equivalent is used for the analysis instead,

this would be the primary parameter in it (as a velocity source).

Fig. 2.4 shows the plots of mobility and immovable object force of two different transducers

calculated from above for different frequencies. The transducer has high open circuit velocity

at its resonance frequencies. However, the immovable object force of transducer is relatively

flat compared to the rest of the parameters (open circuit velocity, mobility). This is the reason

we have decided to model the transducer as a force source.

2.3 Specimen characterization

Specimen characteristics can be easily calculated using the Norton circuit description. When

a specimen is attached to the transducer and vibrated, its velocity, vs is measured using a
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Figure 2.4 Transducer characteristics calculated from the Norton equivalent model. The top
left plot shows mobility of the transducer PM1620. The top right plot shows the
immovable object force of the same transducer. Bottom left plot shows mobility
of the transducer PM2540. The bottom right plot shows the immovable object
force of this transducer. The immovable object force of transducers is relatively
flat compared to the mobility.



15

5000 10000 15000 20000
Frequency(Hz)

0.00

0.05

0.10

0.15

0.20

0.25
Ve

lo
ci
ty
(m

m
/s
/H
z)

(a)

5000 10000 15000 20000
Frequency(Hz)

0

2

4

6

8

10

12

14

16

M
ob

ili
ty
(m

m
/s
/N
)

(b)

Figure 2.5 Specimen characteristics calculated from the Norton equivalent model of the trans-
ducer with no coupling (metal-metal contact). Plot on the left shows the velocity
spectrum of the specimen measured by a Laser Doppler Vibrometer. Plot on the
right shows the calculated value of specimen mobility from the model. Clearly, the
peaks in velocity profile do not match those in the mobility profile which represent
the natural resonances of specimen. This is because of the transducer-specimen
system resonances. Adding a couplant breaks these system resonances.

vibrometer. With the previously measured Voc and Mt, the specimen mobility can be calculated

from the equivalent circuit by applying KCL (Kirchoff’s Current Law) along the circuit of fig

3(c), i.e., by solving equation 2.7 and using the fact that FtMt = Voc,

vs = Ft
MtMs

Mt +Ms
= Voc

Ms

Mt +Ms
(2.7)

The specimen mobility is calculated using equation 2.7 as Ms = MtVs
Voc−Vs . The plots of velocity

and mobility for a rectangular bar specimen, with no coupling medium are shown in fig. 2.5.

Figure 2.5(a) shows the measured specimen velocity and 2.5(b) shows the specimen mobility

calculated form velocity and transducer characteristics. The mobility peaks are the natural

resonances of the specimen. Note that the natural resonances seen in fig. 2.5(b) do not line

up with the velocity peaks in fig. 2.5(a). The velocity peaks (maximum measured motion) are

observed not at the specimen resonant frequencies, but instead at other frequencies that are res-

onances of the transducer-specimen system. This is because the specimen and transducer

interact to form combined system resonances which are different with each transducer. Depend-
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ing on which transducer is used, the specimen velocities vary greatly. The system resonances

also depend very strongly on details of mounting. So as to make a repeatable measurement,

it is extremely critical to disconnect the specimen resonances from the system resonances. We

have observed that adding a coupling medium breaks these system resonances and makes the

specimen vibrate at its natural resonances.

2.4 Couplant behavior and characterization

In vibrothermography, a couplant is often used between transducer tip and specimen. The

reason for this has not been completely understood to date, except that practitioners have

discovered that couplant made tests more reproducible and reduced the risk of surface damage

to the specimen. Common choices for couplant are layers of card stock, teflon tape, paper

and plastic sheet. As discussed above, when we use a layer of card stock as couplant between

transducer tip and specimen, it breaks the system resonances, so the specimen vibrates at its

own natural resonances and not at system resonances.

This effect is better demonstrated in fig. 2.6. Figures 2.6(a) and 2.6(b) show specimen

velocities using different transducers with and without a couplant respectively. The spectra are

similar and the resonant frequencies are almost identical for all transducers when a couplant

is used. Without a couplant, in the spectra of fig. 2.6(b), the resonant frequencies are all

completely different. From these figures, it is clear that using a couplant eliminates the system

resonances.

To model the effect of couplant, We modified the Norton model to represent the couplant as

an elastic spring (stiffness kc ) between transducer tip and specimen. The mobility of the spring

is jω
kc

[13]. This modified Norton circuit is shown in fig. 2.7. The specimen mobility, calculated

by applying KCL (Kirchoff’s Current Law) in the circuit of fig. 2.7 is Ms =
vs(Mt+Ms+

jω
kc

)

FtMt
.

Using this mobility and the fact that FtMt = Voc, the specimen velocity, vs is calculated as:

vs =
VocMs

Mt +Ms + jω
k

(2.8)

The resonances occur when the denominator in equation 2.8 approaches zero. In this

equation, the transducer and specimen mobilities Mt and Ms are complex and possibly negative
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Figure 2.6 Effect of adding a couplant on specimen behavior. The top left plots show the
velocity response of a rectangular bar specimen with four different transducers with
metal-metal contact. The resonances in the specimen velocity are not repeatable.
The top right plots show the same but with a couplant in between transducer tip
and the specimen. In this case, the system resonances are broken and we only see
the specimen resonances which are very repeatable across transducers. The plot on
the bottom shows the reason for this behavior. If the compliance of the couplant
is small enough to dominate, the system resonances are eliminated.
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Figure 2.7 Norton equivalent mechanical model of transducer with specimen attached as the
load with a couplant between transducer tip and specimen. The couplant, in this
context acts like a spring whose electromechanical analogue is an inductor.
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Figure 2.8 Velocity spectra of a rectangular bar specimen measured at high amplitude exci-
tation using three different transducers and one layer of card stock as a couplant.
The peaks in velocity spectrum are all identical irrespective of the transducer used.
This demonstrates the fact that using a couplant breaks system resonances even
at high amplitude excitations.
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while the couplant stiffness jω
k is always positive imaginary. So, the system resonances are

effectively eliminated when jω
kc

is so big that it dominates Ms and Mt:

jω

kc
�Ms +Mt

or equivalently,

kc �
jω

Mt +Ms
(2.9)

The physical meaning of the condition in equation 2.9 is that a sufficiently compliant cou-

plant completely separates the system resonances from the specimen resonances. When this

happens, the specimen velocity can be approximated from equation 2.8 by:

vs ≈
kc
jω
VocMs (2.10)

When the condition in equation 2.9 holds, the specimen velocity depends on the product

of transducer open circuit velocity and specimen mobility and not on the combined mobility

of specimen and transducer (Ms +Mt). In the plot shown in fig. 2.6(c), the horizontal line in

green shows the stiffness of the couplant we used. For the case of a single layer of card stock

couplant we used for this test, the kc from static measurement was found to be approximately

10000 KN/m. From this plot, we verified that the condition in equation 2.9 indeed holds for

the experiment shown in figures 2.6(a) and 2.6(b). The couplant compliance can be increased

by increasing the thickness of the stock. However, specimen velocity decreases as couplant

becomes more compliant. Hence, a couplant whose compliance is just small enough to eliminate

the system resonances but does not heavily damp the specimen motion is ideal to use in

vibrothermography.

We have also observed that at high amplitude excitation where the system is not completely

linear, the couplant still breaks the system resonances. Plots in fig. 2.8 show the velocity spectra

of a rectangular bar specimen when excited at high amplitude frequency sweep. The velocity

peaks in the spectra are the same irrespective of the transducer used. This clearly illustrates

that adding a couplant breaks the system resonances and makes the test more repeatable.
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2.5 Transducer selection criteria

The key parameter for transducer selection is transducer open circuit velocity, Voc. This is

because, with a couplant, the specimen velocity, vs ≈ ( kcjωMs)Voc and is therefore proportional

to Voc. A transducer with large open circuit velocities at or near the specimen resonances gives

maximum specimen motion(vs). The ideal choice for a transducer would be to use one with flat

open circuit velocity spectrum. However, transducer velocity has its own natural resonances

and nulls in response as well. These resonances depend on the geometry of the piezo stack

inside the tranducer, and vary even between nominally identical transducers as shown in fig.

2.9. Transducers with longer piezo stacks generally have lower main resonance frequencies.

Transducers with large diameter piezo stacks are stiffer (i.e., lower Mt) because the larger cross

sectional area gives more volume of piezo stack to deform. In part because of their higher

capacitance, the source velocity of large diameter stacks is generally lower than small diameter

piezo stack transducers for the same excitation amplitude.

To see the variation of open circuit velocity with stack geometry, we calculated the Norton

parameters of all ten transducers and grouped them based on their stack diameters of 16, 25

and 35mm with lengths of 20, 40 and 60 mm each. We then plotted all these three sets of

velocities in fig. 2.9. The open circuit velocities (Voc) of large diameter stack transducers are

much smaller than the small diameter ones but they are more uniform in frequency. Apart

from this, however, we could not conclude much from these plots.

2.6 Techniques to flatten transducer velocity

As can be seen in fig. 2.9, the transducer open circuit velocity is not uniform at all frequen-

cies. With a uniform Voc, the dependence of specimen motion on transducer velocity decreases

(equation 2.10) and test becomes independent of the transducer used. To flatten the velocity re-

sponse, we have to compensate for the effect of transducer resonances on the spectrum. Since

the mechanical resonances are determined by transducer geometry, these cannot be directly

modified except by changing geometry. Aside from the design difficulties, such a technique

would tend to shift the resonant frequencies, not eliminate or dampen them. In contrast, elec-
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Figure 2.9 Source velocity, Voc plots of all different transducers with our McIntosh power
amplifier (Zpa ≈ 3Ω and g = -180). Transducers of same stack diameter and
lengths of 20, 40 and 60mm are grouped together. The transducers on top left
have 16mm diameter while the ones on right and bottom plots have 25mm and
35mm respectively.
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Figure 2.10 Normalized velocity, current and voltage of the transducer PM1660 with a fre-
quency sweep excitation. The plot in blue shows the normalized transducer veloc-
ity, the plot in green shows the normalized current and the plot in red shows the
normalized transducer voltage. These plots demonstrate that the transducer open
circuit velocity is correlated with the current and not voltage and that adding
electrical resonances helps flatten the velocity.

trical behavior can be adjusted by adding passive components such as an inductor. When the

transducer is excited with a frequency sweep, we observed that the transducer open circuit

velocity correlates primarily with the current as opposed to transducer voltage as illustrated in

fig. 2.10. The plot in blue shows the normalized open circuit velocity of transducer, the plot

in green shows the normalized current and the plot in red shows the voltage for the transducer

PM1660. The correlation between velocity and current is true for all other transducers tested.

So, a modified current might result in an improved flatter velocity spectrum. We attempted to

do this in two ways:

1. by introducing electrical resonances and

2. by changing the voltage excitation waveform to get a flatter source velocity.
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2.6.1 Introducing electrical resonances with an inductor

An electrical resonance can be created by adding an inductor (inductance L) in series with

the transducer. The inductor, combined with the inherent capacitance of the transducer forms

an “ LC tank circuit ”[14]. This schematic is shown in fig. 2.2 where energy resonates between

magnetic storage in the inductor and electrical storage in the capacitance of the transducer.

The resonance frequency, fr is given by:

fr =
1

2π
√
LCt

(2.11)

In equation 2.11, Ct can be estimated from a frequency domain curve fit of the quantity

V1
I1

= 1
jωCt

, V1 and I1 are the voltage and current in the transducer measured electrically. For a

known Ct and required resonance frequency fr, the value of L can be calculated using equation

2.11. In this case, we added a 1.6mH air core toroidal inductor to the transducer PM3520

(Ct = 835nF) to generate an electrical resonance at around 14Khz. The inductance of an air

core toroidal inductor of cross section area Acs and mean radius R is given by[15] :

L =
µ0N

2Acs
2πR

(2.12)

The number of turns to achieve this inductance is calculated from:

N =

√
L2πR
µ0Acs

(2.13)

The wire gauge of copper winding should be chosen so that the internal resistance of coil is

negligible compared to the electrical impedances of power amplifier and transducer. Fig. 2.11

shows how the added inductor helps to flatten the open circuit velocity (Voc). The plot in

blue shows the transducer velocity without inductor and the plot in green shows the same with

the inductor added in series. The transducer has a mechanical resonance at around 22Khz.

The inductance was chosen to generate an electrical resonance at around 14Khz so that the

combined velocity gets increased around 14 Khz(electrical resonance) and attenuated at 22 Khz

(mechanical resonance), giving a flatter Voc. The reason to use aircore inductors is because they

are linear and do not saturate unlike ferrite core inductors. For the plots in fig. 2.11, we used

a 1.6mH air core toroidal inductor of 550 turns using an AWG 19 copper wire.
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Figure 2.11 Velocity spectrum of the transducer PM3520 for excitation with and without an
inductor. The plot in blue shows the transducer velocity without an inductor and
the plot in green shows the same with an inductor in series. Adding an inductor in
series generates an electrical resonance that compensates for mechanical resonance
and flattens the overall response.

Adding an inductor increases the transducer voltage near the electrical resonance frequency.

It can even push the transducer voltage well beyond the output voltage of the power amp, as

shown in fig. 2.12. The transducer voltage at 14 Khz with inductor is much higher than without

the inductor. Since the transducer is specified to operate in 0-1000V or -200 to 1000V, one

should be careful not to exceed these limits while adding inductor to the system.

For a transducer with small stack length and large stack diameter, the mechanical resonances

are at high frequencies. By choosing an appropriate inductor as we did for fig. 2.11, it is possible

to create an electrical resonance at a slightly lower frequency than the mechanical resonance

to make the spectrum more uniform through a large frequency range. So, transducers with

this stack geometry can be used effectively for a large range of high frequency inspections.

So we recommend large diameter and shorter piezo stack transducers (such as PM3520) for

higher frequency work and large diameter, and longer stack transducers (such as PM3560) for

low frequency work, when combined with the proposed alternative amplifier discussed in the

sections that follow.
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Figure 2.12 Voltage across the transdudcer PM3520 for excitation with and without an in-
ductor. The plot in blue shows the power amplifier output voltage without an
inductor, the plot in green shows the same when an inductor is added in series,
and the plot in red shows the transducer voltage for the case of a series inductor.
Note that when there is no inductor present, the power amplifier voltage and
transducer voltage are the same.

2.6.2 Customizing the excitation waveform

Our other approach to flatten the transducer velocity is to predetermine the desired open

circuit velocity (Voc) in frequency domain and then calculate the voltage excitation waveform

(Vs) that generates this velocity from the model. In the circuit of fig. 2.2, when there is no

specimen attached and no external resistor (or inductor) is present, the force on transducer tip,

I2=0, velocity V2 = Voc and Z=0.

The transducer two port equations (eqns 2.1 and 2.2) are then modified and written in matrix

form as follows:

Voc

B
D

 =

 1 −A
I2
I1

= 0 −C


I1
V1

 (2.14)

We calculate the excitation voltage, vs that generates the desired Voc in frequency. Unfor-

tunately, for this calculation we need the values of the parameters A,B,C and D. However,

instead of having to do multiple tests (as discussed in the section 2.1), the parameters A,B,C,D
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for this calculation can be estimated in a simpler way with two tests if the characteristics of

power amplifier (g and zpa) are known: One with a specimen of known mobility attached to the

transducer (current I1=I11, voltage V1=V11, specimen velocity V2=vm) and the other without

a specimen attached (current I1=I11, voltage V1=V11, tip velocity V2=V meas
oc ). The transducer

mobility, Mt is calculated from the data collected in these tests using equation 2.5. The other

parameters are then calculated as:

D =
1
Mt

C = −DV
meas
oc

V11

A =
I11

V11

B ≈ −C (2.15)

Once the parameters are calculated, the excitation voltage waveform that generates the required

Voc is given by:

Vs =
1
g

[
Zpa 1

]1 −A

0 C


−1  B

−D

Voc (2.16)

When an inductor (inductance L) is included in the circuit of fig. 2.2, the external

impedance Z is equal to jωL instead of zero and the simulated excitation voltage becomes

Vs =
1
g

[
Zpa + jωL 1

]1 −A

0 C


−1  B

−D

V2 (2.17)

These techniques can help flatten the velocity spectrum, but the resonant behavior of trans-

ducer is inherent and cannot be completely eliminated without unreasonably limiting the output

velocity.
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CHAPTER 3. HIGH AMPLITUDE BEHAVIOR OF TRANSDUCER

So far, the emphasis has been on the small signal analysis of the transducer. However,

real life vibrothermography tests are performed at much higher amplitudes so as to provide

enough energy to generate detectable heating. So, we extend our analysis to include the effect

of high amplitude excitation on transducer and power amplifier behavior. At high amplitude

excitation, the system is limited by the power amplifier. Commonly used transistor based

power amplifiers are constrained by the voltage limits defined by the breakdown voltage of Si

(about 200V). In these power amplifiers, once the maximum gain limit is reached, the amplified

signal gets clipped and the higher order harmonics dominate the spectum. Our MC1201 power

amplifier, on the other hand has a protective circuit called ‘power guard’ that turns down

the gain once a threshold for current is occurred and this makes it a current limiting power

amplifier. It has a huge volume of output transformers that allow it to generate higher voltages.

The MC1201 is expensive for this reason.

3.1 Effect of power amplifier saturation

At low excitation amplitude, the current flow in the system is small and no constraints

regarding power amplifier or transducer are imposed on the system. Our McIntosh power

amplifier seems to limit the current at approximately 9A maximum independent of voltage. As

the excitation voltage increases from low to high amplitudes, so does the current flow. Once the

threshold limit of 9A is reached, increasing the excitation voltage does not affect the current

because a protection circuit called ‘power guard’ turns down the gain and prevents further

increase in the current. Transducers whose piezo stacks have diameter and longer length (eg:

PM3560) have larger capacitance and stiffness compared to transducers with smaller volume
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Figure 3.1 Open circuit velocity of the transducer PM1620 for different excitation voltages.
As the excitation voltage increases, the higher order resonances shift towards lower
frequencies as shown by the dotted lines. The legend in the figure shows the max-
imum AC voltage applied across the transducer. At the 236V excitation voltage,
the magnitude of harmonics is comparable to that of the fundamental, which as a
result distorts the spectrum.

stacks. Due to this reason, large amounts of current are required to generate motion in these

transducers. As a result, the current threshold often occurs before the stacks achieve desired

velocity (and therefore dynamic stresses) for defect detection.

As the excitation amplitude increases, the inherent non linearity of PZT starts to dominate

the transducer behavior[16]. As a result of this, the higher order transducer resonances steadily

shift towards lower frequencies and harmonics start increasing in amplitude. This phenomenon

is shown in fig. 3.1.

Since the transducer velocity primarily correlates with current, and the current in the

transducer cannot be further increased after saturation occurs, the velocity does not increase

either. Fig. 3.2 illustrates the saturation behavior of the power amplifier for two different

input voltages (fig 3.2(a) is at 0.8V and fig. 3.2(b) at 1.8V). As the power amplifier saturates,

the protection circuit turns down the gain so that the current does not exceed its maximum

value. Unfortunately, this current saturation effect nullifies the possible benefit of adding an

inductor. This is because at an electrical resonance, the current in the transducer becomes

large, immediately saturating the power amplifier.

We expect that with a power amplifier that is not strictly current limited, or by using a
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Figure 3.2 Frequency spectra of current and voltage across the transducer PM2530 when
power amplifier saturates for different input voltages. The plots in blue show trans-
ducer current and the plots in red show transducer voltage. The power amplifier
input voltage is 0.8V for the plots on left and 1.8V for the plots on the right. The
maximum magnitude in the current specta of both plots is same despite a much
higher input voltage in the figure on right.
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Figure 3.3 Comparison of normalized transducer open circuit velocity Voc, with and with-
out an inductor when using a transformer-less power amplifier and our McIntosh
MC1201 power amplifier. The plots on the left show the measured transducer
velocity using our McIntosh power amplifier for the transducer PM3520 and the
plots on right show the simulated velocity using a transformer-less power amplifier.
We hypothesize that using a transformer-less power amplifier might help flatten
the transducer open circuit velocity.
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current amplifier instead of a voltage amplifier, there would be an improvement by adding an

inductor. We hypothesize the use of a high voltage transformer-less power amplifier such as

Yamaha T5n, which is rated to drive a 2Ω load over 20Hz-20KHz and predict its performance

based on our model. Fig. 3.3 compares the transducer open circuit velocity using the hypothe-

sized model and our MC1201 power amplifier. The plots in fig. 3.3(a) show measured velocity

using our MC1201 power amplifier. The plots in fig. 3.3(b) show simulated velocity using a

transformer-less power amplifier. With a power amplifier that has no current saturation issues,

adding an inductor will make the spectrum of short piezo stack transducers more uniform over

a frequency range from 10KHz-25KHz. We would expect similar broad uniformity over lower

frequencies for longer piezo stack transducers.

3.2 Transducer degradation

In our experience using broadband transducers for vibrothermography, we have noticed that

the stress levels achieved with a transducer that has been in service seem to degrade over time

and usage. To investigate the long term reliability of the broadband piezo stack transducers, we

tried to analyze the useful life of the transducer. For this study, we used an off the shelf PI2533

transducer and tested its long term behavior at high amplitudes. We excited the transducer

with a 10KHz sinusoidal input with a peak to peak voltage of 350V with no specimen attached

and monitored the open circuit velocity at each trigger. The transducer was allowed to cool

between successive triggers so that the effect of the piezo stack heating up (due to successive

high amplitude excitations) on the test is minimized. To keep track of how the overall spectrum

of transducer changes as it degrades, we excited the transducer with a low amplitude frequency

sweep (from 100 Hz to 20 Khz at 17V peak to peak voltage) periodically after every 10 bursts

and a high amplitude frequency sweep (from 100 Hz to 20 Khz at 175V peak to peak voltage)

after every 100 low amplitude sweeps1. The excitation voltages for the high amplitude tests

are chosen so that they are close to the normal voltage levels required for vibrothermographic

testing without saturating the power amplifier. The transducer velocity, current and voltage
1Note that the peak to peak voltages are centered about the 500V external DC voltage provided by the bias

generator
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Figure 3.4 Small signal spectrum of the transducer PI2533 after 2, 1532, 3279, 5466 and
6391 triggers in increasing order of grayscale. The higher resonance frequencies
are shifted across the triggers, but the magnitude of the spectrum did not change
significantly.

waveforms of all the tests were separately saved for each type of excitation for post processing.

All the tests were automated by a python script that issued commands to dataguzzler from

within the script and saves the data after each trigger. The test was stopped after a total of

6397 triggers (5800 tone bursts, 585 low amplitude sweeps and 12 high amplitude sweeps).

The data sets for burst excitation, low amplitude sweep and high amplitude sweep were

analyzed separately. The velocity spectrum for all the sweep tests has been calculated from the

data. Fig. 3.4 shows the magnitude of low amplitude spectrum of the transducer at various

stages of testing. The spectrum of the tranducer remained almost unchanged upto a frequency

of about 8 Khz. At frequencies above 8 Khz, even though the magnitude of the spectrum did

not follow a clear trend, the resonance frequencies have shifted across all the 6400 triggers.

Fig. 3.5(a) shows the plots of the transducer high amplitude spectrum as the test progressed.

Unlike the small signal spectrum, in the high amplitude spectrum, there is intereference be-

tween the fundamental component and higher order harmonics because of which the spectrum

does not look as clean as the low amplitude spectrum. To overcome this interference effect,

we separated the harmonics and the fundamental component using a matched filter algorithm

and plotted them separately as shown in fig. 3.5. The filtering method is discussed in detail in

appendix. Fig. 3.5(a) shows the raw spectrum of the transducer as calculated from the Fourier
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(c) second harmonic
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Figure 3.5 High amplitude spectrum of the transducer PI2533 calculated after 3, 915, 2265,
3878 and 5709 triggers with decreasing gray scale levels. The plot on the top left
shows the complete raw spectrum without any filtering. The plot on top right
shows the fundamental component of the spectrum and the plot on bottom left
shows the 2nd harmonic. The plot on bottom right shows the residuals after sub-
tracting the fundamental and second harmonic from the raw spectrum. Legend
shows the trigger number of the corresponding test. Unlike the small signal spec-
trum, the high amplitude spectrum has changed considerably across the triggers.
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Figure 3.6 rms value of velocity of all the tone burst excitations of the tranducer PI2533.

Transform without any filtering. Figs. 3.5(b) and 3.5(c) show the fundamental and 2nd har-

monics of the spectrum respectively. Fig. 3.5(d) shows the residual obtained after subtracting

the fundamental and 2nd harmonic from the original spectrum. This contains various higher

order harmonics and sub-harmonics that were filtered out. The fundamental component of the

spectrum remained almost unchanged upto about 8 Khz. At higher frequencies, however, the

spectrum magnitude has changed siginificantly across all the 6400 triggers. This conclusion was

not obvious in the raw spectrum because of the interference between fundamental and harmonic

components. Even the resonance frequencies have shifted considerably. Some of the originally

wider high frequency resonance peaks started to shrink in width and the higher order reso-

nance frequencies shifted towards lower frequencies with more triggers. We hypothesize that

this might be an indication of the piezo stack degrading, because when the stack degrades, its

stiffness changes and therefore the resonances change too. Note that the change in spectrum

across the triggers is purely a transducer phenomenon (and not a result of power amplifier

possibly saturating) as the test was performed under the threshold limits of power amplifier.

As a second verification for the above trend, the root mean square (RMS) value of the veloc-

ity waveforms for burst excitation was calculated as a measure of the velocity amplitude. This

value is plotted with the trigger ID as shown in fig. 3.6. From the plot, one can conclude that

in general, the overall RMS value of the velocity decreases over the 6400 triggers. The fact that

the resonance frequencies shifted around as the test progressed (as seen in fig. 3.5(a)) might
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be an explanation for the local variations in the velocity. The outlier in the data at trigger

number 900 was caused by a sensing failure in laser vibrometer. We were not able to come to a

meaningful conclusion regarding the outliers at trigger number 3800 and 5800. However, they

seem to occur right after a high amplitude sweep test is performed. So, we hypothesize that

the hysteresis generated by switching from high frequency sweep to low frequency sweep could

be related. Some conclusions for this particular transducer made from this study are given in

table 3.1:

Table 3.1 Conclusions from the high amplitude life time testing of transducer PI2533 across
all the 6400 triggers

Low frequency(upto
8Khz)

High frequency(above
8Khz)

Small signal
transducer behavior remained
mostly unchanged

resonance frequencies shifted
but magnitude did not change
significantly

High amplitude

transducer behavior remained
mostly unchanged, although
the lowest order resonance
shifted slightly

spectrum magnitude de-
creased and resonances
shifted towards lower frequen-
cies
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CHAPTER 4. CONCLUSION

In this study, we modeled the excitation system for vibrothermography including power

amplifier, transducer and specimen. Using this model, we addressed questions such as how to

select transducers for vibrothermography, transducer-specimen interaction, how using a cou-

plant can break non-repeatable system resonances, type of power amplifier to use and the

techniques to flatten the transducer velocity spectrum.

The three important characteristics of a transducer are its open circuit velocity, mobility

and immovable object force. The key transducer parameter that governs the specimen behavior

is transducer open circuit velocity, Voc. The specimen motion is proportional to the transducer’s

open circuit velocity when the coupling between them is compliant enough. So, it is desirable

to choose a transducer with flatter velocity spectrum so as to reduce the dependence of the

specimen motion on transducer being used. Transducers with larger diameters have relatively

flatter velocity spectra as compared to that of smaller diameter transducers. From our analysis,

the geometry of PM3520 is the best balance between flatness, output velocity and power han-

dling capability, especially when combined with an inductor and high voltage transformerless

power amplifier. An additional advantage of large transducers is that despite the high cost,

they are inherently more robust. However, with a current limited power amplifier, transducers

with huge volume of piezo stacks such as PM3560 have high capacitance and make the power

amplifier saturate before the desired vibrational levels have reached. We hypothesized the use

of a high voltage transformer-less power amplifier such as Yamaha T5n and used it in our

model to predict its performance at high amplitude excitation. We predicted that there would

be an improvement in the transducer performance when this type of power amplifier is used

with an inductor in series with the transducer. At high amplitude excitation, the transducer

behavior becomes increasingly non linear and the higher order resonance frequencies gradually
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shift to the left. We observed that the velocity spectrum of transducer changes considerably

as the piezo stack degrades. Even though the low amplitude behavior does not change signifi-

cantly, the high amplitude spectrum decreases in magnitude as the transducer wears. At high

amplitudes, the interference of higher order harmonics with the fundamental component of the

spectrum makes the spectrum look non-repeatable.

In summary, specimen motion in vibrothermography is proportional to the transducer veloc-

ity (with sufficient coupling) and the effect of transducer on overall inspection can be minimized

by making the transducer spectrum uniform over a wide bandwidth. This can be achieved by

adding an inductor in series with the transducer. The high amplitude behavior of transducer

velocity changes significantly with time and usage; resonance peaks shrink in width and the

resonances shift towards lower frequencies.
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APPENDIX. MATCHED FILTER BASED ALGORITHM APPLIED TO

LINEAR CHIRP EXCITATION TO ELIMINATE NOISE AND

SEPARATE HARMONICS IN THE SPECTRUM

The transducer behavior becomes nonlinear at high amplitude excitations and various har-

monics and sub-harmonics of the excitation frequency appear in the spectrum. For high am-

plitude tests, we use a matched filter based algorithm to separate the higher order harmonics

from the original spectrum. At small signal excitation, the transducer behavior is linear and no

harmonics appear, but the signal contains quantization noise arising from the data acquisition

process. This algorithm can also be used as a denoising filter to reduce the quantization noise.

The algorithm was developed by Ricky Reusser at the ISU CNDE.

In this appendix, we discuss the case when the excitation signal is a linear chirp signal.

We use this type of excitation for evaluating the transducer spectrum across a wide frequency

range. The transducer is excited with a linear chirp signal of duration 1.0 second with frequency

linearly varying from fmin to fmax. The mathematical definition of linear chirp signal is given

in equation .1.

r(t) = cos(2π(

f(t).t︷ ︸︸ ︷
1
2
mt2 + fmint)) (.1)

the instantaneous frequency f(t) is given by:

f(t) =
d(f(t).t)

dt
= mt+ fmin

where the slope m is calculated as fmax−fmin
tmax−tmin . The instantaneous frequency can be calculated

using the slope m, and initial frequency fmin as:

f(t) = fmin +mt (.2)
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To the extent that the system is linear, the transducer output waveforms (velocity and

current) should have the same instantaneous frequency as the input excitation signal (voltage).

For small signal excitation, this is true, except for the quantization noise originated from data

acquisition (or other noise/nonlinearity sources). This high frequency noise can be reduced by

using the original excitation waveform (linear chirp) as a reference signal for a matched filter.

We use this method for denoising various waveforms for small signal analysis.

At high amplitude excitation, since the transducer behavior is nonlinear, the instantaneous

frequency in the output waveforms is not just the original excitation frequency but also its

multiples (harmonics) and fractions (sub-harmonics). To extract a particular harmonic com-

ponent, matched filter is applied with a reference signal whose instantaneous frequency varies

as that of the desired component.

A matched filter cross-correlates a known reference signal with an unknown measured signal

to detect the presence of the reference signal in the unknown signal. Matched filters are

commonly used in radar, in which a known signal is sent out, and the reflected signal is

examined for common elements of the outgoing signal. Mathematically, a cross-correlation is

equivalent to convolving the unknown signal with a conjugated time-reversed version of the

reference signal. The resulting correlation coefficients are the measure of similarity between

both signals as a function of lag (time shift). If the two signals are exactly the same, the

maximum cross correlation coefficient of 1 occurs at zero lag. If the unknown signal is a shifted

version of the reference signal, the maximum value occurs at a lag corresponding to the relative

shift. In a linear chirp signal, every frequency within the sweep range has a characteristic time

(the duration of the presence of the frequency in the signal). Within this characteristic time,

the filter extracts from the measured signal the component of the corresponding frequency.

If that particular frequency component exists in the measured signal but not in within its

characteristic time, it is still not detected.

This implementation first cross-correlates the reference signal with the measured signal.

Due to the wide bandwidth of the frequency sweeps, the components of the measured signal

present in the reference signal appear as a band-limited δ-function at zero lag position. A

window function is applied to eliminate the unmatched components contained in the sidelobes.
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Deconvolution of the windowed function with the original reference signal reconstructs a filtered

version of the original signal. To extract the fundamental component, the original excitation

waveform is used as a reference signal. Doubling the argument of the cosine function of the

reference signal in equation .1 extracts the second harmonic. This is because, for second

harmonic generation, the reference signal is the square of the original reference signal. Thus

the instantaneous frequency is twice that of original reference signal. This is shown in equation

.3. For third harmonic, the argument is thrice that of the original reference signal and so on.

r1(t) = cos2

(
2π(

1
2
mt2 + fmint)

)
︸ ︷︷ ︸

θ

(.3)

cos2θ =
1
2

+
1
2

cos 2θ (.4)

Apart from harmonic separation, matched filter can also be used as a denoising filter to

eliminate the quantization noise from the spectrum. Since the transducer behavior for small

signal excitation is linear, it has no higher order harmonics and sub-harmonics. So the high

frequency noise can be eliminated by using the original linear chirp excitation waveform as the

reference signal for the matched filter and remove any additional frequencies present apart from

the input frequencies. We use this method for denoising various waveforms in our small signal

analysis.

The mathematical implementation of the algoritm in both time and frequency domain is

explained in the table .1
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