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ABSTRACT 

AlSi alloy engines have been used to reduce fuel consumption and CO2 emission. The 

wear resistance of AlSi surface is thought to originate from the high hardness of the 

silicon surface formed by the primary Si particles (inclusions). The mechanical strength 

of the Al/Si interface and fracture toughness of Si particles in Al matrix are the primary 

factors determining the strength on the load bearing formation.  

 

In this work, a hybrid method to characterize the fracture and interface debonding of Si 

particles in an AlSi alloy has been developed, which combining a nanoindentation 

experiment and a finite element analysis. The dependence of indentation response on the 

interface strength and Si particle fracture was systematically studied from the threshold 

stress for the sink-in of the Si particles. An indentation map showing the Al/Si interface 

debonding, Si particle fracture and Al matrix plastic deformation has been constructed. 
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CHAPTER 1 INTRODUCTION 

 

To reduce fuel consumption and CO2 emission, it is becoming increasingly important to 

reduce vehicle weight. For such an objective, AlSi alloys such as Al 356 and Al 390 [1] 

have been commercially used to produce engine blocks due to their high strength over 

weight ratio. The engine block cylinder works under mechanical and thermal cyclic 

stresses in relative motion with piston rings. Therefore good wear resistance is a critical 

property to engine block life. 

 

Wear is a complex surface/interface process in which several physical and chemical 

reactions take place depending on materials, tribological conditions such as different 

testing geometry, sliding load and sliding speed as well as the environment etc. Sliding 

wear under dry (unlubricated) state produces large plastic strain near the worn surface. 

Not only does the material removal may occur on both the wear surface and the 

counterface, but large subsurface strains and plastic deformation gradients can also be 

generated in the subsurface below the worn surfaces[2-5]. Studies have been carried out 

under unlubricated conditions to investigate adhesion at the surface, formation of 

protective mechanical mixed layers in the near surface, severe plastic flow in the 

subsurface. The high shear and compressive stress in association with frictional heating 

during wear processes, could induce several events in the worn surface and subsurface, 

such as work hardening[2], recrystallization (static or dynamic) [3, 4], deformation 

texture [5], strain-induced phase transformation [6] and delamination [7].  

 

For AlSi alloys, the near surface plastic flow was found to cause fragmentation of silicon 

particles [8-12]. Fragmentations of the particles near the surface have also been found to 

be the source of crack nucleation and propagation under traction [13, 14]. Delamination 

[7, 15] wear has been the one of consequences of such activities of the subsurface layers 

(10-100m) below the contact interface. Such deformation induces significant stresses 

within and between the grains/inclusions in the polycrystalline materials. These stresses 

in turn lead to relative movements between the grains/inclusions, as well as their fracture.  

The overall result is a dynamic change of the subsurface structure of the materials in 
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contact.  The change of the structure leads to change of the tribological properties of the 

material, which are of primary importance for its performance.  Several authors have 

experimentally investigated the subsurface layer deformation [7, 15-19] in Al alloys. 

Alpas et al. [7] have demonstrated that there is an exponential relationship between 

accumulated strain and depth below the worn surface.  Similar result has been obtained 

by Perrin and Rainforth [19] for Al-Cu and Al-Si alloys.  However, despite the intensive 

research in this area, the mechanism of crack formation and delamination leading to local 

structure refinement is still under studying.  

 

Since more than two sliding components are involved in a sliding system, a mutual 

transfer and mechanical mixing of materials from the counterparts are often observed in 

the worn surface. After the transfer occurs and mechanically mixed layer is formed, wear 

behavior of the material is altered due to the distinct features of the mixed layers as 

compared to the original material. Therefore, problems associated with friction and wear 

are complicated, and many of them are still open to investigations with respect to a deep 

understanding of wear mechanisms of materials. 

 

Wear phenomenon and wear mechanisms involved in the wear process could be further 

complicated for multiphase materials owing to the addition of secondary particles. Under 

certain conditions (load, sliding velocity etc.), wear of a metal matrix composite can be 

treated as three-body abrasive system (the Metal Matrix Composite, sliding counterface 

and the fragmented particles) as the hard particles are forced away from the matrix and 

get settled in the wear track during wear. There have been a number of investigations and 

reviews [20-23] concerning the wear behavior of Metal Matrix Composites (MMCs) in 

which an improved wear resistance has been reported. However, wear mechanisms of 

these multiphase materials are still being investigated due to complications resulting from 

the addition of the reinforcing phases, especially on microstructural features of the top 

worn surfaces and microstructural evolutions along the depth below the worn surfaces. In 

Al alloys and Al based metal matrix composites, for example, formation of a 

mechanically mixed layer (MML) is generally found, which is reported to be comprised 

of materials from the sliding surface and the counterpart [24-26]. Depending on different 
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experimental conditions under which wear tests were conducted, there are differences of 

the formation mechanism of the MML between different observations. Some researchers 

reported that the mixed layer was mainly comprised of oxides [25], and others found little 

or no oxide in the mixed layer [27]. Clearly, there is no uniform wear mechanism 

applicable for different applications.  

 

To improve the wear and scuffing resistance, liner-less engine blocks made of a 

hypereutectic and near-eutectic AlSi alloy typically require a chemical surface 

preparation that results in the hard Si particles are exposed on the surface to bear the load, 

prevent adhesion to the Al matrix, and resist damage [28]. The topography of the AlSi 

alloys surfaces has triggered the idea that the silicon particles form a load bearing surface 

over which the counter surfaces are sliding. Therefore the wear resistance of AlSi surface 

is thought to originate from the high hardness of the silicon surface formed by the 

primary Si particles (inclusions). Recently, microstructural characteristics of sliding wear 

behavior were carried out with lubrication to study the origin of wear resistance under 

ultra-mild wear in AlSi alloys for engine cylinder bore surfaces [29-33]. Unlike 

conventional mass-loss-based wear conditions under high load, the piston-cylinder block 

assembly in automotive engines must operate under the conditions of ultra-mild wear 

(UMW) which with a wear rate not exceed a few nanometers for each running hour [34]. 

For instance, the wear rate of a piston-cylinder block assembly with lubrication working 

in a fired engine dynamometer was measured on-line using radionuclide-technique (RNT) 

and was below 20 nm/h for all operating conditions, at partial load well below 10 nm/h 

[33]. However, sink-in and fracture of Si particles were still observed in such studies 

under UMW. The experimental observations [18, 35-37] have collectively showed that 

the vicinity of the inclusion/matrix interface is usually the starting point of the cracks and 

the interface decohesion observed in the AlSi alloys. Therefore the interface strength of 

Al/Si plays a key role for in sink-in mechanism and needed to be studied. The fracture 

mechanism of Si particles is also important for forming a mechanically mixed layer. 

 

Al/Si interfaces can be found in AlSi composites in many different forms. AlSi alloy is 

considered as an “in-situ composite”, since the Si particle reinforced Al composite is 
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formed during casting process. The typical microstructure is the eutectic Si particles with 

size ~10m surrounded by large Al grain as large as hundreds of microns. The applied 

far-field loading initiates severe plastic deformation in the Al matrix around the Si 

particles, which leads to formation of voids in the close vicinity of the matrix/inclusion 

interface. In turn, these voids have twofold effect on the evolution of the local 

microstructure: first, the presence of the voids induces high stress concentration within 

the stiffer Si particles [38-40]; and second, they initiate new crack nucleation inside the 

Al matrix. As a result, the Si particles fracture, facilitating matrix cracks coalescence and 

eventually causing the ultimate failure of the alloy [35-40]. These failure mechanisms are 

directly related to the strength of the Al/Si interface. 

 

As the second phase particles fracture and debond, finite element calculations can be used 

to obtain the evolution of local stress and strain distributions with respect to the far field 

loading. Previous finite element studies have used cohesive zone approaches to study for 

example, inclusion debonding in ductile materials [41-43], dynamic crack propagation in 

brittle materials [44] and various other crack growth problems [45, 46]. However these 

studies focused on the influences of particle fracture under far field loading without 

considering the local particle fracture mechanism. For UMW applications, local 

debonding behavior of Al/Si interface and Si particle fracture near the surface are of our 

interests. 

 

The present investigation was carried out with a primary objective of a deeper 

understanding of wear of two phase AlSi alloys in terms of their microstructural 

characteristics. In particular, the interface strength of Al/Si and facture mechanism of the 

primary Si particles were targeted for the investigation. Microstructural characterization 

of the studied materials were mainly conducted by using nanoindentation, scanning 

electron microscopy (SEM), scanning probe microscopy (SPM), serial sectioning and 

other physical and metallurgical methods. After that, FEM simulations were used to 

verify the analytical interface strength derived from molecular dynamics simulation [40] 

and investigate the fracture mechanism of Si particles and plastic deformation of Al 

matrix. 
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The thesis is divided into six chapters. In Chapter Two, the relevant literature is reviewed 

which is followed by materials and methodology in Chapter Three. The Al/Si interface 

strength under nanoindentation and microstructural characterization are presented and 

discussed in Chapter Four. Chapter Five is dedicated to FEM analysis of Si inclusion/Al 

matrix system. Finally, a summary of the thesis and future work are given in Chapter Six. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Wear 

2.1.1 Definition and Mechanisms of Wear 

In general, wear may be defined as damage to a solid surface caused by the removal or 

displacement of material by the mechanical action of a contacting solid, liquid, or gas. 

Wear process generally involves progressive loss of materials from at least one of the 

contacting components and loose wear debris may be generated. Wear process can also 

take place without removal of materials, and only material displacement and plastic 

deformation occur in the surface and subsurface during the wear process accompanying 

some changes in shape and/or properties [47]. 

 

Wear has been classified in various ways. It is common to classify types of wear in terms 

of different relative motions such as sliding wear, rolling wear, impact wear and 

lubricated/unlubricated (dry) wear and so on (Fig. 2.1) [48]. These processes act on the 

surfaces in the relative motion either independently or cooperatively, for example, 

abrasion in a corrosive medium. Another possibility is to classify wear on the basis of the 

fundamental mechanism that is operating as shown in Fig. 2.2 [49]. Unfortunately, this 

approach is complicated by the fact that more than one mechanism may be operating at 

the same time and by the fact that those developing wear classification schemes have 

come from different backgrounds and experiences with wear. Therefore wear 

mechanisms could be different under different conditions. To date, many wear 

mechanisms have been proposed to address the wear phenomenon, and it seems almost 

impossible that a single wear mechanism can be expected to be responsible for wear of 

materials.  

 

Following an initial suggestion by Tabor [50], Lim and Ashby [51] constructed the first 

wear mechanism maps which show the wear rate and the dominant wear regimes 

including delamination, mild and severe oxidation, melting and seizure wear, in dry 

sliding wear system of steels. The diagram can be constructed empirically (ie., from 

experimental data alone) and by modeling (by theoretical analysis calibrated to 
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experiments). They obtained the wear rate mechanism map for a steel by using the 

oxidation wear theory together with thermal analysis of sliding contact, as shown in Fig. 

2.3. 

 

Fig. 2.1 Categories of wear classified by the type of relative motion [48]. 

Fig. 2.2 Categories of wear classified by the fundamental mechanisms [49]. 
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In Fig. 2.3, contours of constant normalized wear rates are superimposed on fields 

showing the regimes of dominances of different wear mechanisms. There are 

discontinuities in the contours where they cross the field boundaries into the regimes of 

severe oxidation wear and melting wear. The wear rates given in parentheses are the 

values when mild wear takes place and the shaded area indicates a transition between 

mild and severe wear. A review of the development of mostly sliding wear maps for 

metals, ceramics, metal-matrix composites and polymers has been given by Lim [52]. 

These maps describing the wear of coatings, tool wear, fretting wear, erosion and time-

dependent wear transitions are then introduced.  

  

Following the same methodology used in constructing the maps for steels, a wear-

mechanism map (Fig. 2.4) for the unlubricated sliding of aluminium and aluminium 

alloys on steel was later proposed by Liu et al. [53]. This map is a considerable 

improvement over the earlier empirical wear map for the same group of alloys presented 

by Antoniou and Subramanian [54]. New model equations based on a different state-of-

stress criterion suitable for aluminium alloys have been developed by Liu et al. and found 

to match well with reported experimental wear data (marks in Fig. 2.4) on aluminium 

alloys. 

Fig. 2.3 The wear mechanism map for a steel sliding pair 
using a pin-on-disk configuration [51]. 
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2.1.2 Stress Distribution 

The conditions of sliding wear, especially in dry (unlubricated) state, produce large 

plastic strains at and near the wear surface. Not only does the material removal occur on 

both the wear surface and the counterface, but large subsurface strains and plastic 

deformations can also be generated near the worn surfaces [47, 55-58]. Several 

researchers have emphasized the contribution of surface strains and plastic deformation 

to wear, either developing and modifying [55] or challenging [59] the adhesive theory. 

Moore and Douthwaite [55] studied the worn surface focusing on large plastic strains 

observed at considerable distances from the wear surface, and they suggested that 

because of strain hardening, an extensive region below the worn surface was also 

deformed plastically and a large part of the energy expended in the sliding wear might be 

Fig. 2.4 A wear mechanism map in aluminium alloys [53]. 
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expected to be absorbed by the plastic deformation. Many investigations [3, 25, 55, 58, 

60] have discussed plastic shear strain as a function of depth in the worn surface in a 

number of ways, such as measurement of deviation of plastic flow from being normal to 

the worn surface by using a marker technique [55, 58], and microhardness depth profile 

obtained on the cross section of the worn surface. 

 

2.1.3 Transfer and Mechanical Mixture of Materials 

Transfer of materials from one sliding surface to another occurs in a sliding system either 

in lubricated or unlubricated conditions. A number of investigations have dealt with the 

mechanically mixed or alloyed layer generated by sliding wear in the extreme wear 

surface [61-66] using SEM and EDS techniques. Since the mixed layer is located on 

the top surface and may directly contribute to the formation of wear debris, it is important 

to understand the formation mechanisms and characteristics of mixing layers. 

 

Antoniou and Borland [27] and Subramanian [67] have discussed the characteristics of 

mechanical mixing in sliding wear system of AlSi binary alloys. Based on their 

experiment conducted in a pin-on-disk dry sliding condition at a sliding speed 0.1 m/s, 

applied pressure range of 0.1-5 MPa, they found that there were two processes which 

were important in mechanical mixing or alloying: (i) debris removal from the wearing 

interface and (ii) debris particles reprocessing at the wearing surface. The wear surfaces 

were protected by the formation of the mixed layer and thus resulted in a lower wear rate. 

They also found that the formation of the mixed layer was a product of a certain 

combination of the normal loads and sliding speed, i.e., high load and low speed. There 

was no mechanical mixing either at high loads or at high speeds. Li and  Tandon [68] 

have investigated mechanically mixed layer of Al–Si alloys sliding against a tool steel 

using scanning electron microscopy and transmission electron microscopy with energy 

dispersive spectroscopy and X-ray mapping. They found that the mixed layers and wear 

debris had similar microstructural features and were comprised of mixtures of ultrafine 

grained structures, in which the constituents vary depending on the sliding loads. At a 

low load, the ultrafine structures mainly consisted of the original base materials, i.e., α-Al 

solid solution and α-Fe from the steel. With an increase in sliding load, the ultrafine 
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structures were incorporated with Fe-Al(Si) intermetallic compounds and aluminum 

oxides. 

 

Alpas and Zhang [24], Feng and Tandon [63] and others [25] have found similar 

mechanical mixing layer in the sliding wear of the MMCs. Not only did the mechanical 

mixing layer occur in the matrix, but the reinforced particles were fragmented and 

redistributed in the mixed layer as well. Similarly, the occurrence of the mixed layer was 

mainly dependent on the normal load and sliding speed. In MMCs, incorporation of the 

reinforced particles is considered as an enhancement to the formation of the mixed layer 

during sliding wear [63]. The abrasive action of the hard particles resulted in debris 

fragments and some loose debris deposited on the contact surface of the composite. As a 

result, an oxidized mixed layer was formed by an association of strain and friction 

heating during the sliding Wear. 

 
The mechanically mixed layer was also found in the bore surface of an AlSi alloy engine 

block with lubricant by Dienwiebel et al [33]. The engine block had been operated in a 

fired engine dynamometer test of 250 h over the full speed and torque range of the engine 

using a commercially available, fully formulated engine oil. Wear debris from various 

sources were embedded and mixed into the soft aluminium matrix. There they led to an 

increase of the shear strength of the mixed layer. 

 

2.1.4 Metal Matrix Composites 

Modern composite materials are referred to as advanced materials in which two or more 

components are combined on a macroscopic and/or microscopic scale. These materials 

can be tailored to take advantage of the desirable properties and minimize the undesirable 

properties of their constituents. Consequently, composite materials often exhibit some 

qualities that their constituents do no possess individually. Metal Matrix Composites 

(MMCs) are comprised of a metal matrix and reinforcements such as fiber, whisker and 

particulate ceramics which are incorporated in the matrix in order to provide 

enhancement in properties such as strength, stiffness, and temperature-dependent strength, 
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wear resistance, as well as modifications of the thermal expansion and electrical 

conductivity. 

 

The modulus of the MMCs is found to be always significantly increased by addition of 

reinforcement. The volume fraction of reinforcement is the dominant factor in increasing 

the modulus of elasticity. For a given fraction of reinforcement, the modulus tends to be 

isotropic with nearly equal values obtained from tests in the longitudinal and transverse 

directions. Moreover, the modulus appears to be insensitive to the type of reinforcement 

used. The modulus is also independent of the matrix alloy, but heat treatment may have a 

slight effect upon it. The yield strength or ultimate tensile stress (UTS) of the MMCs is 

generally found to be higher as compared to the base alloys. The strengthening 

mechanisms of the particulate reinforced MMCs have been studied by a number of 

investigators [69-72].  

 

The ability to transfer stress from the matrix to the reinforcing particles is also critical to 

the strengthening of the MMCs. As a composite is loaded, the matrix in the vicinity of the 

stronger reinforcing particles is able to transfer a portion of the load to the particles [73]. 

This effect can be seen from the fact that an increase in elastic modulus is found in 

composites compared to the unreinforced alloys. The load transfer, however, is dependent 

upon a stronger interfacial bond between the reinforcement and the matrix. To a large 

extent, an increase in the mechanical properties the MMCs is determined by the structure 

and properties of the interface. Therefore, a number of studies have been conducted on 

microstructures and properties of the interface including interface reaction [10, 74, 75], 

crystallographic relationships and interface precipitation [76].  

 

2.1.5 Wear of Al alloys and Al Based MMCs 

Deformation structures are complex in the worn surface, which could get further 

complicated during the sliding wear of ductile composite metallic materials reinforced 

with hard second phase particles owing to the presence of the hard particles. In research 

reported by Reddy et al. [77] three distinct wear regimes were identified as a function of 
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applied load in AlSi alloys. These wear regimes are discussed below and presented in Fig. 

2.5:  

 Mild wear. At low loads, the worn surface was characterized by the formation of 

an iron-rich compacted debris layer. Wear debris formed in this regime was a 

result of abrasion and cracking of this protective layer with a significant 

proportion of this debris again added to the compacted layer.  

 Severe wear. As load increased, a delamination type wear mechanism was 

operative in which sub-surface deformation and cracking caused fragmentation of 

the Si particles and removal of the iron-rich protective layer resulting in a high 

wear rate. 

 Seizure wear. In this wear regime, near surface temperatures were high enough to 

lower the shear strength in the sub-surface layer and promoted extensive material 

transfer from the wearing alloy to the steel counterface. 

 
 

 

Fig. 2.5 Schematic diagram of the following wear processes in 
Al-Si alloys: (a) mild wear, (b) severe wear and (c) seizure [77]. 
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Wear behavior of the Al composites at elevated temperatures is also an important issue 

since many high temperature tribological applications of these composites are found, for 

example, some engine components. Only limited investigations of the influence of 

ambient temperature on wear performance have been reported [78-81]. Martin et al [79] 

and Martinez et a1 [78] studied wear behavior of an Al-Si/SiCp composite and an 

eutectic Al-Si alloy at ambient and elevated temperatures (20 °C to 200 °C ). They 

reported that at low temperatures the wear behavior was controlled by the eutectic Si or 

SiC particulate, and at high temperatures, on the other hand, the wear behavior was 

controlled by the matrix which underwent large plastic deformations. Both materials 

experienced a transition temperature at which wear mechanisms changed from mild to 

severe wear with an increase in temperature, and the transition temperature was increased 

by the addition of SiC particles. Therefore, they concluded that the main effect of the SiC 

reinforcement on the sliding wear at high temperatures was to delay the transition from 

mild to severe wear by about 50 °C. Similarly, Wilson and Alpas [80] investigated the 

effect of ambient temperature on wear performance of A356 Al and 6061 Al composites 

in comparison with their base alloys. They found that the reinforcements increased the 

transition of wear mechanisms from mild wear to severe wear into high temperature and 

the increase could be 100-200°C higher than that in the unreinforced alloys. They 

attributed the increase to formation of protective transfer layers of comminuted 

reinforcing particles and transferred steel debris from slider counterfaces. 

 

2.2 Ultra Mild Wear in Aluminium Alloys 

To optimize the power-to-weight ratio, aluminum alloys are used to replace traditional 

cast iron cylinder liners and cylinders. The chemistry and microstructure of such alloys, 

from the above consideration, should minimize wear of cylinder surface under realistic 

pressure and velocity conditions. In order to achieve this objective, it is of great 

importance to understand the mechanism of wear under these conditions. The levels of 

wear rates of piston–cylinder bore assemblies which normally run under lubricated 

conditions, should not exceed a few nanometers per hour (or approximately 0.1Å per 

cycle) [34]. Such wear with low wear rates are defined as Ultra Mild Wear (UMW). The 

research of lubricated sliding of aluminium alloys under UMW is quite limited. Das et al 
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[31] investigated pin-on-disk sliding on a 13% Si AlSi alloy under lubricated condition in 

the 1~100 MPa mean contact pressure range and 0.2 m/s sliding speed. They found two 

transition in wear rate, at 10 MPa and 70 MPa and the wear rate in the 1~10 MPa regime 

was found to be very small and within the measuring instrument resolution and also 

insensitive to contact pressure (Fig. 2.6). The regime is designated as UMW. 

Microscopic observation of subsurface damage in slid samples indicated that elastic state 

prevails in the steady-state UMW regime. In the mild wear regime, there was an initiation 

of plastic flow. With the higher load, plasticity dominated in the severe wear regime. 

Noticeable, after a run-in process, a mechanically mixed layer of ~1 µm has been 

occasionally formed at the surface. Voids at the Al/Si interface within 2~3 µm of the 

surface and fractured Si particles were observed as shown in Fig. 2.7. There is also 

further refinement of the Al subgrain size with respect to the run-in sample. 

Fig. 2.6 (a) Steady-state wear rate as a function of mean contact pressure 
indicating three wear regimes: ultra mild wear, mild wear, and severe wear. 

(b) Expanded view to show mild wear regime more explicitly [31]. 
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Chen and Alpas [32] reported UMW mechanisms in a Al-25% Si alloy consist of three 

stages as shown in Fig. 2.8.  

 

In UMW I, wear at the top surfaces of silicon particles occurred along with particle 

fracture and particle sinking-in (Fig. 2.9). Damage was limited to the silicon particles. 

During UMW I, the aluminum matrix remained protected. In UMW II, the aluminum was 

no longer sheltered and measurable quantities of material loss occurred, which is a period 

Fig. 2.8 Variation of volumetric loss with sliding cycles showing the three 
stages of UMW in Al–25% Si [32]. 

Fig. 2.7 FIB images of an UMW sample (mean contact pressure=0.32 MPa): (a) 
one area of the subsurface which shows mechanically mixed layer, (b) one area of 
the subsurface that shows voids at the Al-Si interface when silicon is unfractured 

and in the cleaved gap in fractured silicon particles [31]. 
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of rapid wear (or run-in). UMW II was not persistent, and eventually the rate of damage 

decreased. This decrease was coincident with the formation of an oil residue layer (Fig. 

2.9d) on the contact surface as well as the formation of a subsurface structure consisting 

of ultra-fine aluminum grains. This is the regime depicted in Fig. 2.8 as UMW III. 

Similar to the study of Das, voids and fracture Si particles plus the refinement of Al 

grains were observed as presented in Fig 2.10. 

 

 

 

 

 

 

 

Fig. 2.9 Worn surface morphologies of Al–25% Si showing aluminium pile-
up and Si fracture [32]. 
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Dienwiebel et al [33] invested wear resistance of a AlSi alloy in an internal combustion 

engine. Surface analyses of the bore surface of an AlSi17Cu4Mg engine block has been 

carried out after operating in a fired engine dynamometer test of approx 250 h over the 

full speed and torque range of the engine. The wear rate was measured on-line using 

radionuclide-technique (RNT) and was below 20 nm/h for all operating conditions, at 

partial load well below 10nm/h. The wear rate is acceptable to achieve a typical service 

life. Although Si particles protruded 700~800 nm above Al matrix at initial stage, 

radioactive wear particles mainly aluminium were detected by RNT in the engine oil at 

the very beginning of operation. After a short running-in, Si particles and Al matrix were 

at the same height level. Dienwiebel et al. proposed a new energetic wear model for the 

system of piston ring/hypereutectic AlSi cylinder bore. Based on the fact that the Al 

matrix is strongly modified during running-in, a friction induced wear particle dispersion 

strengthening process is made responsible for the enhancement of the wear resistance of 

the aluminium (Fig. 2.11). Due to the dissipated energy during sliding, wear particles 

from various sources such as fracture Si particles are embedded and mixed into the soft 

Fig. 2.10 Cross-sectional SEM image of the wear track of Al–25% Si 
showing (a) the oil residue layer on the contact surface, where damage to Si 
and at Al/Si;(b) ultra-fine aluminum grains around the silicon particle [32]. 
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aluminium matrix. There they lead to an increase of the shear strength of the material. 

Dienwiebel et al. suggested that the initial protrusion of Si primary particles is necessary 

to direct the energy input into the Si grains in order to initiate a sintering process with Si 

wear particles and to separate the piston ring from the initial nascent Al surface. After 

running-in Si particles are not necessary to provide the load-bearing capacity. Again, 

many voids are present under Si wear particles as shown in Fig. 2.12. 

 

 

 

Fig. 2.11 Schematic of a friction induced wear particle dispersion 
strengthening wear model [33].  

Fig. 2.12 Cross section of the worn Al matrix using focused ion beam milling. 
Small Si particles (dark grey) are found embedded into the aluminium matrix 

during operation since their surface is entirely oxidized (due to charging effects 
the oxide layer appears as a white rim at the surface) [33]. 
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The observation of microstructure of near surface regime of AlSi by Dienwiebel, Das and 

Chen reveal that the Al/Si interface strength and fracture of Si particles play key roles on 

wear properties in the UMW regime. However, the interface strength and particle fracture 

mechanism are far from clear and further studies are needed. 

 

2.3 Molecular Dynamics Study of Al/Si interface strength 

The interface plays an important role in controlling deformation and fracture. Previous 

Modified Embedded Atom Method (MEAM) simulations on AlSi interfaces [82-84] are 

mainly focused on interface decohesion under tensile load and provided insightful but 

somewhat limited results. For example, Gall et al. [82] determined the traction-

displacement relationship of the AlSi interface for fixed orientation ([100]Al[100]Si) under 

tensile loading. However, such studies have not considered the effects of different 

crystals orientation and dislocations on the strength of the interface. In order to develop 

an accurate cohesive zone model, a more thorough study of the effects mentioned above 

has been carried out by Noreyan et al [40]. Noreyan et al developed an atomic level 

model of contact interface between the matrix (Al) and the inclusion (Si) with shear 

loading. The atomic level model was based on molecular dynamics (MD) simulation 

using the Modified Embedded Atom Method (MEAM) potential [85] and the Verlet 

integration algorithm [86]. In addition, the effect of different orientations of the Al and Si 

crystals and local temperature has been considered. Fig. 2.13 shows the atomic structure 

of the typical simulation cell and the settings for the applied shear loading. Simulation 

results are given in Fig. 2.14 and the applied threshold stress of Al/Si interface using 

molecular dynamic simulations is between 318 MPa and 1.172 GPa (Table 2.1). 
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Fig. 2.14 Snapshots of simulations cells after shearing for a) 
Si(001)<100> ||Al(001)<100> for applied strain rate of 1 Å/ps, b) 

Si(001)<100>||Al(001)<110> applied force of 0.02 eV/Å, c) 
Al(001)<100>||Al(001)<100> for applied force of 0.05 eV/Å, d) 

Al(001)<100>||Al(001)<110> for applied force of 0.002 eV/Å. All the 
highlighted atoms were aligned before sliding [40]. 

Al 
 
 
 
Si 

Fig. 2.13 Simulation cell for Al(111)/Si(111) interface: In shear loading 
simulations, the workpiece is divided into three zones for Al and Si, and 

the external forces/strains are applied to atoms in moving zone [40]. 

Al 
 
 
 
Si 
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Interface 
Applied threshold force for 

initiating sliding at interface eV/ Å 
(N) 

Applied 
threshold 

stress (GPa) 

Al/Si Tensile 
strength 
(GPa) 

Si(001)<100>||Al(001)<100> 0.0005 0.015  (~2.48  10-11) 0.041.172  6.4 

Si(001)<100>||Al(001)<110> 0.0005 0.0145  (~2.3210-11) 0.0391.136  - 

Si(001)<100>||Al(111)< 1 1 0> 0.0005 0.0075   (~1.2 10-11) 0.044 0.657   5.6 

Si(111)<1 1 0>||Al(111)< 1 1 0> 0005.00035.0   (~5.6   10-12) 0.0450.318  7.2 

Table 2.1. Threshold forces and critical shear stresses of Al/Si interface [40]. 

 

2.4 Fracture Toughness 

Fracture toughness is a property which describes the ability of a material containing a 

flaw to resist fracture. Flaws may appear as cracks, voids, metallurgical inclusions, weld 

defects, design discontinuities or their combinations. There are three modes of fracture as 

illustrated in Fig. 2.15a. 

 

In this project, only Mode I fracture of Si particles is considered. The fracture toughness 

is expressed as, 

ICK Y a      (2.1) 

(a)                                                            (b) 
Fig. 2.15 Three modes of fracture. (a) Three modes, (b) Mode I. 
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where KIC is Mode I fracture toughness, σ is applied stress, a is crack depth, Y is a 

geometric constant, generally Y=1. 

 

Fracture toughness of the MMCs is considered as the work of fracture, i.e., the 

dissipation of elastic energy imposed in the specimen by the externally applied load per 

unit of new crack surface formed. As a crack grows rapidly through the particulate 

reinforced composite, many events occur that are potentially related to the fracture 

toughness, and each of these either makes it easier or harder for the crack to extend. The 

events were summarized by Davidson [87] as shown in Fig. 2.16. These main 

mechanisms associated with fracture of the MMCs with respect to the above aspects. As 

we can see from Fig. 2.5, the energy dissipated around a propagating crack tip of a SiC 

particle in a MMC is satisfactory with the elastic energy consideration regarding the 

fracture toughness, but a crack tip in the ductile matrix is readily associated with plastic 

deformation. 

 

 

 

2.5 Instrumented Nanoindentation Technique 

To experimentally verify the above mentioned numerical simulation model by Noreyan et 

al., nano indentation tests are designed to carry out in AlSi alloys. Instrumented 

Fig. 2.16 Schematic illustration of events of fracture of MMCs reinforced with 
particulate. (1) deformation within plastic zone; (2) formation of voids along 
fracture surface; (3) fracture of SiC particles along crack path; (4) interfacial 

separation between matrix and SiC; (5) fracture of SiC within the plastic zone; (6) 
tortuous fracture path increase fracture surface area; (7) matrix cracks near, but not 

continuous with, the main crack [87]. 
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indentation technique has become popular as it provides a continuous record of the 

variation of indentation load, P, as a function of the depth of penetration, h, into the 

indented specimen, from which mechanical properties such as hardness, elastic modulus, 

yield strength and strain hardening exponent can be estimated [88, 89]. In an 

instrumented indentation test, the indenter is driven into a specific site of the material to 

be tested by applying an increased normal load [Fig. 2.17a]. Upon reaching a prescribed 

value, the normal load is removed. The position of the indenter relative to the sample 

surface is precisely monitored. For each loading/unloading cycle, the applied load is 

recorded against the corresponding position of the indenter [Fig. 2.17b]. The resulted 

load/depth curve provides data specific to the mechanical nature of the material under 

examination. Well established models can be used to obtain the hardness and modulus of 

the material [90]. 

  

(a) (b) 

Fig. 2.17 Indentation for hardness and modulus measurements [90]. (a) Illustration of 
instrumented indentation test; (b) typical result. 

 

In this project, the Oliver-Pharr method [91] was applied to acquire hardness and elastic 

modulus. Fig. 2.17(b) schematically shows an indentation load-depth curve with a sharp 

indenter. The indentation load increases at a constant rate and leads to a nonlinear 

increase of the penetration depth. hmax is the maximum depth at the maximum load Pmax. 

The curve follows the Kick’s law, i.e., P = Ch2, where C is the indentation curvature. 

Kick’s Law is not valid in the rate-dependent cases as the loading rate, and thus the 

material strength, varies during the impact. When the material response is rate-sensitive, 

C is not a constant and instead varies with the loading rate. With a sharp indenter, the 

loading process is always elastic-plastic, while the unloading is basically elastic. 
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Hardness and some other material properties can be obtained from the load-depth curve. 

Hardness is normally defined as the mean contact pressure [91] and is given as, 

 max

p

P
H

A
  (2.2) 

where Ap is the projected contact area at the maximum load (Fig. 2.18). For a perfect 

Berkovich indenter, Ap = 24.56h 2
c . 

 

Elastic modulus can also be determined by an indentation test. According to Oliver-Pharr 

method [91], the indentation modulus, E, can be calculated from the slope of the tangent 

of the unloading curve using a linear fit to the initial unloading data, i.e., 
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where Ei is the elastic modulus of the indenter (1141 GPa for diamond), νi is the 

Poisson’s ratio of the indenter (0.07 for diamond) and νs is the Poisson’s ratio of the 

tested sample. The reduced modulus, Er, is given by, 
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where S = dP/dh is experimentally measured stiffness of the upper portion of the 

unloading curve and β is a correction factor. For Berkovich indenter, β=1.034. 

 

Fig. 2.18 Schematic representation of the indentation process. hc is the 
contact depth, hs is the depth of the surface at the perimeter of contact and 

a is the radius of the contact circle defined by the indenter. 
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Pile-up and sink-in are the distinctive features in indentation experiments. The material 

around the contact area tends to deform upwards (pile-up) or downwards (sink-in) along 

the direction of the load (Fig. 2.19). 

 

 

Fig. 2.19 Schematic illustrations of (a) pile-up and (b) sink-in around a sharp indenter 
[89]. 

 

Alcala et al [92] found that the deformation of pile-up or sink-in is correlated with the 

uniaxial strain hardening exponent. If the strain hardening exponent n > 0.2, sink-in is 

dominant. Das et al [93] and Xu and Rowcliffe [94] found that no pile-up occurs for 

materials with n > 0.3. Giannakopoulos et al [95] interpreted the deformation mode with 

computation results. They found that the pile-up or sink-in in a material around the 

indenter is primarily affected by the plastic properties of the material. Plastically 

displaced material tends to flow up to the faces of the indenter in a low-strain-hardening 

alloy due to the incompressibility of plastic deformation. The result is a “barrel-shaped” 

impression due to pile-up around the sharp polygonal indenter. On the other hand, for 

high-strain-hardening materials, the plastically deformed region is pushed out from the 

indenter with the imprint sinking below the initial surface level. The result is a “pin-

cushionlike” impression around the sharp indenter. Methods, which are properly account 

for pile-up and sink-in around the indenter, are essential for the interpretation of the 
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plastic properties of materials by recourse to instrumented indentation. It also influences 

hardness measurements as the true contact area between the indenter and the specimen 

increases in the case where pile-up predominates, and decreases in the event that sink-in 

occurs. For Al and its alloys, the strain hardening exponent is < 0.242 [96]. 

 

2.6 Fracture Toughness Measurement through Nanoindentation 

Micro/Nano Indentation technique is widely used for measuring the elastic modulus and 

the hardness of small volumes of material and thin films. The fracture toughness KC , a 

measure of materials resistance against crack propagation, is a critical parameter 

investigated with micro/nano-indentation. Fracture toughness can be readily measured in 

brittle materials by inducing cracks at the corners of the indentation, a method known as 

indentation microfracture [97-102]. Indentation of brittle materials with a Vickers or 

Berkovich indenter often produces crack systems that generate from the indentation 

corners, as shown in Fig. 2.20 and Fig. 2.21. The sizes of the resultant cracks that develop 

about the residual impression are generally measured or the resultant strengths of such 

indented samples are determined from which the fracture toughness is calculated. It has 

been usual to employ a Vickers diamond pyramid indenter at loads greater than 1 N for 

such purposes. Different from Vickers indenter, the Berkovich geometry does not allow a 

halfpenny crack to join two corners and pass through the centre of the indent. Another 

difference is that the number of cracks of Vickers is 4 and Berkovich is 3. Dukino and 

Swain [103] compared the load dependence of the radial crack size with Vickers and 

Berkovich indenters They found that the expression developed by Laugier [98] is the best 

to describe the radial crack for Berkovich as shown in Fig. 2.21a. They also found that 

the Berkovich indenter gave more consistent toughness values at lower loads (<5N) than 

a Vickers indenter. They also suggested that the extent of radial cracks was slightly larger 

(of a ratio (1.073)2/3) for the Berkovich than for the Vickers indenter due to the different 

crack numbers. Therefore the fracture toughness equation for Palmqvist crack extension 

as proposed by Laugier may be written 

1/ 2 2 /3
C 3/ 2

( ) ( )
a E P

k x
l H c

     (2.5) 



 28

where 0.015x  for Vickers indenter [101], 0.015 1.073 0.0161x    for Berkovich 

indenter. 

 

 
 
Literature reviews have been conducted on basic wear mechanisms and an emphasis on 

the wear properties of AlSi alloys. However, the underline mechanism of wear resistance 

of AlSi alloys is far from clear and need further investigation. In the following chapters, a 

system study has been carried out to study the surface damages in AlSi alloys which may 

occur during wear tests. For this reason, experimental and theoretical approaches such as 

molecular dynamics study and indentation technique have also been introduced for 

characterizing surface damages at micro scale. 

 
 

(a)                                                                (b) 
Fig. 2.21 Cross-section view of (a) radial or Palmqvist (Berkovich 
indenter) and (b) halfpenny crack systems (Vickers indenter) [98]. 

(a)                                                                (b) 
Fig. 2.20 Illustration of indentation crack geometry: (a) Berkovich and (b) 

Vickers impressions [98]. 
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CHAPTER 3 MATERIALS AND METHODOLOGY 
 

3.1 Materials 

A hypereutectic Al-Si alloy with 17wt%Si is selected as a model system in which the 

primary Si particles are metallurgically formed during a die cast process and have a 

similar volume (~20,000 m2) but irregular shapes and characteristic microstructure 

shown in Fig. 3.1. Energy dispersive X-ray spectroscopy (EDS) spectrum of Al matrix 

and Si particles are given in Fig. 3.2. All figures and illustrations in this chapter are 

extracted from experimental results. 

 

 

 

(a)                                                   (b) 
Fig. 3.1 Microstructures of the alloy: (a) optical and (b) secondary-electron 
SEM image of etched surface. Notice Al in dark grey, intermetallics in light 

grey and a primary silicon particle with a Berkovich indent. 
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(a) Al matrix                                                  (b) Si particles 
Fig. 3.2 EDS spectrum of (a) Al matrix and (b) Si particles. 
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The sample surfaces were finished by mechanical grinding using 4000 grit SiC grinding 

paper and polishing using 0.1 µm alumina suspension. After cleaned with ethanol and 

acetone, the surface was examined using a Hysitron Ubi 1 Nanomechanical Test 

Instrument, which is a nano indentation/scrach tester with SPM imaging capability. The 

roughness Ra of silicon particles was around 3 nm while the surrounded area was below 

10 nm. The silicon particles protruded about 40 nm from the matrix as shown in Fig. 3.3. 

The hardness of matrix was HV 76.6 (751 MPa).  

 

 

3.2 Methodology 

To study the debonding strength of Al/Si interface and fracture mechanism of Si particles 

in Al matrix, nanoindentation, SEM and SPM imaging, a serial sectioning method, first 

derivative analysis of load-displacement curves and FEM simulation were employed. The 

first derivative of load-displacement curves combined with SPM imaging was utilized to 

obtain the yield and debonding strength of Si particle under indentation in the inclusion-

matrix system. The serial sectioning method was applied to acquire 2D images of the 

microstructure as a basis for reconstructing 3D solids for FEM modeling. 3D structure of 

Si particles and threshold stresses will be used as input for FEM analysis to verify the 

abovementioned atomistic simulation. Fracture of Si particles was statistically 

investigated. 

 

 

Fig. 3.3 SPM image of protruding Si particles.
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3.2.1 Nanoindentation* 

Instrumented indentation is a technique used to characterize local mechanical properties 

of solid materials by recording load and displacement data throughout the indentation 

experiment. Standard techniques such as the Oliver and Pharr method [91] are used to 

obtain hardness, elastic modulus and other mechanical properties. For many materials, 

discrete phenomena such as phase transformation, dislocation nucleation or cracking take 

place during indentation testing, showing up as discontinuous events in the load-

displacement curve. For silicon, the responses during indentation are pop-in, elbowing 

and pop-out (Fig. 3.4.). These responses on the loading/unloading curves are considered 

to be related to the density change of silicon caused by the high pressure induced phase 

transformations. In loading, diamond cubic silicon transforms to the denser phase and 

thus the pop-in appears due to a sudden volume reduction [104, 105]. In contrast, in 

unloading the transition is to a lower density structure associated with a volume 

expansion, and consequently elbowing (continual decrease in slope of unloading curve) 

and pop-out occur [106, 107]. However, these pop-in events in silicon induced by phase 

transformation have been seen for spherical indentations, but have never been reported 

for indentations created by sharp indenters. Regarding dislocation nucleation under 

indentation, the critical shear stress for the generation of dislocations in silicon is higher 

than that for the inset of phase transitions, no dislocations could be found to generate 

pop-in [108]. The influence of indenter angle on the nanoindentation cracking behavior 

of single crystal Si and Ge was systematically explored with a series of triangular 

pyramidal indenters with different centerline-to-face angles in the range [109]. Pop-in 

events only occurred with a very sharp cube-corner indentation (centerline-to-face angle 

was 35.3º) in Ge sample at 50 mN which was deemed to correspond to chipping and 

material removal. Therefore, sharp Berkovich indenter (centerline-to-face angle is 65.3º) 

was chosen in this work to avoid unwanted discrete events for determining the debonding 

strength of Al/Si interface. 

* In collaboration with Dr. Qi Yang at Structures, Materials and Propulsion Laboratory of Institute of 
Aerospace Research, Ottawa, Ontario 
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Fig. 3.4 Typical discrete events during spherical indentation. 

In this work, nanoindentations were made on randomly selected 60 Si particles with sharp 

Berkovich diamond pyramid using a CSM Nano Hardness Tester as shown in Fig. 3.5a. 

The average size of these Si particles was 15.1 µm. Indentations were performed under 

load control and with a loading/unloading rate of 600 mN/min and the maximal load of 

300 mN as shown in Fig. 3.5b. 

 

 

After indentation, secondary electron SEM images were taken for each indented Si 

particle to obtain surface topography and backscattered electron SEM images were used 

to measure the indentation crack length of Si particles. The debonding was checked by 
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Fig. 3.5 Indentation setup (a) and load controlled loading rate (b). 
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backscattered electron SEM and measured as the sink-in depth of Si particles over Al 

matrix using Hysitron UBI 1 SPM. 

 

3.2.2 Numerical Derivative Analysis of Load-Displacement Loading Curves 

The load-displacement curve is used to derive mechanical properties such as Young’s 

modulus and the hardness from the unloading curve [91], as well as the yield stress and 

strain hardening from the loading curve using FEM analysis [110-112]. However, 

discrete events such as pop-in and pop-out cannot be analyzed by conventional 

techniques that require load-displacement data to form continuous curves during loading 

and unloading of the experiment. Consequently, it is necessary to develop quantitative 

methods to determine the discrete events and whatever mechanism it is due to. Derivative 

calculation method has been used to characterize such events by Juliano et al [113], 

Malzbender and de With [114]. Juliano et al investigated transient event during loading 

and elbowing/pop-out during unloading in both thin film and bulk material by first 

derivative calculation. Malzbender and de With incorporated more dependencies to see 

the point at which fracture of coatings begins. They have used plots of P/h2 vs. h2 and 

∂P/∂(h2) vs. h2 for Berkovich indentation to more clearly see these event points. In this 

work, first derivative of load-displacement curves has been used to investigate discrete 

events such as debonding of Al/Si interface and matrix yield strength in two phase 

materials. However, due to inherent sampling and control mode of instrumented 

indentation, noise is inevitable in practice and the first derivative of load is considerably 

wavy as shown in Fig. 3.6. Without appropriate fitting procedure, the usefulness of 

derivative analysis is limited within the scope near discrete events. 
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Fig. 3.6 Typical dP/dh curve upon loading without fitting. 

 

In this work, a subsection polynomial fitting was used to derivate the slope of load-

displacement loading curve. First, the first derivative of load-time was plotted as Fig. 3.7. 

The stable loading portion has been extracted for the derivation analysis. The extracted 

loading load-displacement data was then divided into continuous intervals, in which the 

curve was monotone.  
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Fig. 3.7 Stable loading portion of indentation. 
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Each interval was polynomial fitted to the following model: 

2 3
0 0 2 3 ... n

ny x x x x               (3.1) 

where 2~ (0, )N  , βi are the coefficients and ε is the error term. Parameters are 

estimated using a weighted least-square method. This method minimizes the sum of the 

squares of the deviations between the theoretical curve and the experimental points for a 

range of independent variables. After fitting, the model can be evaluated by plotting 

residuals. It is worth noting that the higher order terms in polynomial equation have the 

greatest effect on the dependent variable. Consequently, models with high order terms 

(higher than 4) are extremely sensitive to the precision of coefficient values, where small 

differences in the coefficient values can result in a larges differences in the computed y 

value. For example, different orders polynomial fit are carried out for the same load-

displacement curve. Although the regular residual of fitted load-displacement curves are 

all small (Fig. 3.8a), the first derivative of fitted curves show different trends (Fig. 3.8b). 

Among them, dp/dh curves of 3rd and 5th order polynomial fittings are better than 9th 

order. 
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Generally speaking, any continuous function can be fitted to a higher order polynomial 

model.  However, higher order terms may not always have much practical significance. 

In this work, the order of polynomial fitting was not higher than 5. After fitting, the first 

derivative of load-displacement was calculated and analyzed. 

3.2.3 Serial Sectioning 

To capture the three dimensional microstructure, a few techniques are available such as 

non-destructive X-ray tomography [115], four–dimensional X-ray diffraction microscopy 

[116], and destructive serial sectioning including dimpling, machining, polishing or 

microtomy. A detailed comparison of serial sectioning techniques was given by Spowart 

[117]. Although automated serial sectioning [118, 119] increases sectioning rate and the 

consistency between the metallographic images produced from each section, manual 

polishing coupled with the use of optical fiducial marks was employed in this work due 

to inherent flexibility and relatively low cost of equipment. The basic concept of this 

serial sectioning process was to cyclically polish material to generate a series of 

microstructure sections. These sections were then segmented and assembled into a 3D 

solid using computer software. The basic steps of were as follows:  

 Sample preparation  

 Fiducial marking by indentation 

 Polishing  

 Imaging and image segmentation  

 Serial section stacking and visualization  

Fig. 3.9 shows a flow chart of the serial sectioning process. The material was sectioned 

and indented by a Vickers micro-hardness tester to create fiducial marks. Systematic 

polishing and imaging of the sample surface generated series of microstructure sections. 

Measurement of changes in the fiducial mark depth was used to determine the distance 

between sections. As shown in Fig. 3.10, the small indent in (b) was indented before 

polishing. The big one was indented after polishing. The difference in size and position of 

these two indents were used to calibrate particle section orientation and calculate distance 



 37

of sections. Using the 2D sections, a 3D solid was constructed using computer software. 

This solid was then used in modeling of deformation of the material using FEM analysis. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Flow chart of serial sectioning process. 

 

                 

(a)                                                            (b) 

Fig. 3.10 Fiducial marks made by Vickers indenter. 
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CHAPTER 4 RESULTS AND DISCUSSION 

 

4.1 Classification and Identification of Indentations on Si Particles 

After the indentations were made, a systemic classification and identification process has 

been performed to identify the indentation response of the particle/matrix system at micro 

scale following the workflow in Fig. 4.1: 

 

Fig. 4.1 Identifying indentation response of particle/matrix system at micro scale. 

 

There were four classifications made to distinguish the indentation behavior of Si 

particles inside Al matrix. These cases are (1) interface unchanged, (2) interface 
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debonding, (3) interface debonding and particle fracture, and (4) particle fracture. 

Indentations with local/global debonding without fracture are our interest for studying the 

Al/Si interface strength. Fracturing of Si particles during indentation can be used to 

investigate wear property of AlSi alloys. 

 

Step I: 

Backscattered electron SEM imaging provides elemental composition variation as well as 

surface topography. Backscattered electrons are produced by the elastic interactions 

between the sample and the incident electron beam. These high energy electrons can 

escape from much deeper than secondary electrons, so surface topography is not as 

accurately as secondary electron imaging. However, the efficiency of production of 

backscattered electrons is proportional to the sample material's mean atomic number, 

which results in image contrast as a function of composition. Higher atomic number 

material appears brighter than low atomic number material. Profiting from this feature, 

backscattered electron imaging is particularly effective on detecting interface debonding 

where interstice between two materials shows dark color (Fig. 4.2a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

After roughly distinguished by backscattered electron SEM imaging, particles with 

unchanged interface and particles with debonding interface were identified by SPM 

(a) Backscattered electron image                    (b)Secondary electron image 
 

Fig. 4.2 Backscattered electron (a) and secondary electron (b) SEM 
image of a Si particle in Al matrix. Local interface debonding is visible 

in backscattered electron image and confirmed by SPM. 
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technique. Particles with debonding interface were further classified by serial sectioning 

and pop-out phenomenon in load-displacement curve. Fig. 4.3 demonstrates a particle 

without any deformation at Al/Si interface and a fracture particle. 

 

 

 

 

 

 

 

 

 

             

 

 

Step II: 

Si particles with partial or overall debonding were evaluated by load-displacement curve, 

backscattered electron imaging and images from serial sectioning. Typical cases are listed 

in Fig. 4.4. It was found that if there was a crack at the edge of the particle in SEM image, 

the particle was likely to fracture (Fig. 4.4c-d). The percentage of fracture particles with 

edge crack was 68.8%. Pop-out phenomenon of load-displacement curve was also used to 

determine whether a particle was broken or not. If a particle fractures, the high stress 

induced by indentation is released before the phase transformation in Si can take place 

and therefore pop-out is not observed. 

  

After completing the serial sectioning, 3D reconstruction was performed and all kinds of 

indentations on Si particles were grouped and presented in Fig. 4.5. In the case of a 

particle with global interface debonding, the whole particle sinks into the matrix with or 

without internal fracture. In contrast a particle with local interface debonding is 

predominantly tilted as a result of a partial sink-in of a portion of the particle under the 

(a) Particle with unchanged interface                      (b) Particle fracture 
Fig. 4.3 Backscattered electron imaging of a particle with interface 

unchanged and a fracture particle. 
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indenter force. These phenomena significantly affect the mechanical properties at micro 

scale. A further verification on the classification has been done in next step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.5 Reconstruction of Si particles: (1) interface unchanged; (2a) local 
debonding; (2b) global debonding; (3a) local debonding and fracture; (3b) 

global debonding and fracture; (4a) and (4b) are fracture particles. 

(a) Polished 3.53 µm (b) Polished 6.32 µm (c) Polished 4.94 µm (d) Polished 6.32 µm
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Fig. 4.4 Determining interface debonding and particle fracture: (a) local debonding 
without fracture; (b) globe debonding without fracture; (c) local debonding and 
fracture; (d) globe debonding and fracture. Debonding depths were measured by 
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Step III: 

Classification and Identification of Indentations on Si Particles were verified by 

indentation hardness and Young’s modulus derived using Oliver and Pharr method. 

Following Eqns 2.1~2.3, Young’s modulus and hardness distribution of indented Si 

particles are shown in Fig. 4.6. 

 

It can be noticed from Fig. 4.6, both average Young’s modulus and hardness for particles 

with unchanged interface are close to bulk Si. For fracture particles, average Young’s 

modulus is around 70 GPa, which is consistent with bulk Al materials. However, 

hardness of fracture particles is higher than of bulk Al. This may be explained by 

considering the definition of indentation Young’s modulus, which is based on the slope 

of unloading starting portion where elastic deformation dominates. Because broken Si 

does not contribute to the elastic recovery, only the underneath matrix interacts with the 

load-controlled indenter, thus the Young’s modulus measured is mainly the Al matrix 

modulus. For hardness measurement, due to the work of hard Si particles before 

fracturing, the final indent in Al matrix is smaller than in single phase matrix. Therefore 

the projected contact area is smaller and the hardness is higher than in bulk Al. Fig. 4.6 

also shows an overall trend that the more deformation modes, the higher deformation 

degree and the lower Young’s modulus and hardness. This trend is consistent with the 

indentation classification made in last two steps. 
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4.2 First Derivative Analysis of Load-Displacement Curves 

Berkovich indenter was applied in this work to study the interfacial strength of Al/Si and 

indentation mechanism. The discrete events such as pop-in during loading are deemed to 

be irrelevant to phase transformation, crack or dislocation nucleation, etc. Indentations 

have been sorted and two main deformation mechanisms have been outlined, namely, 

interface debonding and particle fracture. To study the threshold of these two 

deformations, first derivative analysis was employed. Except that particles without 

debonding, pop-in phenomenon occurred during almost all the other indentations. Typical 

load-displacement cases of indentations on Si particles are presented in Fig. 4.7 

corresponding to the SEM and 3D structure shown in Fig. 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.1 Unchanged Interface  

A load-displacement curve of Case 1 is plotted in Fig. 4.8. Both the load-displacement 

and load-dP/dh are monotone. Hainsworth et al. [120] illustrated that for geometrically 

self-similar indenter tips, such as Berkovich, conical or pyramidal, the indentation load P 

and the indentation depth h were experimentally determined for single phase materials 
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Fig. 4.7 Typical load-displacement curves of indentations on Si particles. 
(1) Interface unchanged; (2a) local debonding; (2b) global debonding: 
(3a) local debonding and fracture; (3b) global debonding and fracture; 

(4a) particle fracture at corner; (4b) particle fracture at centre.  
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during loading by the expression P = Khn , where K is a material-dependent constant, n 

falls somewhere between about 1.5 and 2. The power of dP/dh is 0.5~1 and accords with 

the power of the experimental dp/dh curve of Case 1. Thus the behavior of particles with 

unchanged interface under indentation can be considered as being the same as the bulk Si 

material. This judgment has been verified by indentation hardness and Young’s modulus 

of such particles. 

 

4.2.2 Interface Debonding 

Pop-in events occurred in both local and global debonding cases (Fig. 4.9). The pop-in 

excursions derived from indentation curves fit well with the profile difference at Al/Si 

interface gained from SPM imaging (Fig. 4.4(2a) and 4.4(2b)). Indentations in these two 

cases exhibited the same behavior respectively. Therefore, the pop-in excursions can be 

used to estimate the interface debonding quantitatively. In contrast to the local debonding 

curve (Case 2a), the global debonding dp/dh curve (Case 2b) reaches a peak before pop-

in appears. The stress at this point, calculated as the load over maximal section area of the 
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Si particle, is 470 MPa. Similar peaks were found in global debonding and fracture cases 

such as 438 MPa in Case 3b (Fig. 4.10), the average stress of this kind of peak is 460 

MPa. The cause of such peaks during loading are not well understood at this time, but we 

may suggest at this point that the matrix surrounding the Si particle yields first, followed 

by interface debonding when indentation load is high enough to break the Al/Si interface. 

The first derivative of load displacement curve of Case 2a shows similar trend as of 

unchanged interface particle. Before the abrupt drop induced by partial debonding, the 

slope of load over displacement increases almost monotonously. Because the indention is 

made near the edge of the particle, the median cracks increase with the increase of the 

indentation load until one or two median cracks reach the boundary of the particle. The 

portion of the particle between the radial cracks tilt and partially sinks-in under the 

compressive pressure of the indenter. As a result a pop-in is observed in the load-

displacement curves. Since in this case, only portion of the particle contributes to the 

debonding, no global matrix yield is involved and therefore no peak is observed in the 

dP/dh curve. 
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4.2.3 Interface Debonding and Fracture 

The dP/dh behavior of global interface debonding (Case 3b) with fracture is similar to 

global debonding without fracture (Case 2b), featuring a yield peak of 438 MPa and a 

large pop-in excursion of 262 nm. However, due to relatively smaller size and volume, 

the particle fractured after global debonding. As to local debonding and fracture Case 3a, 

it seems that fracturing occurred first at 278 MPa and followed by local debonding to 

generate a pop-in excursion of about 140 nm. The stress of the first pop-in, 278 MPa, is 

defined as fracture stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4 Particle Fracture 

For fractured particles, there are no distinct pop-in events as shown in Fig. 4.11. It 

suggests that particle fracturing is a gradual process with accumulation of small pop-in 

segments. Particle fracturing is much more complicated than debonding. There is no clear 
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trend in the overall scope of the dP/dh curve. The threshold stress for fracture initiating 

was calculated for the following statistics study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Statistics of fracture particles 

An important factor for wear resistance of MMC is the particle morphology. Both the 

size and morphology of the silicon particles affected the wear resistance [121-123]. 

Particle morphology can be characterized in three ways (i) size, (ii) aspect ratio, and (iii) 

circularity values of the particles. Dighe and Gokhale [122] observed that debonded Si 

particles are on the average larger than non-debonded particles in a cast AlSiMg alloy. 

The fracture is found to be governed by the "tail end" (i.e., extremum) of the Si particles 

size distribution, and not by the over all population of Si particles (i.e., not by average 

microstructure). Elmadagli et al [123] investigated microstructural elements including Si 

weight percentage, Si particle morphology, Si particle size, alloy hardness of AlSi alloys 

on the wear behaviour of AlSi alloys. The Si particle morphology and size influenced the 

wear coefficients in mild wear as well as the transition loads between two mild wear 

phases. For instance, decreasing particle size reduced the wear coefficients and increased 

the transition loads. However, the values used in such studies are usually area based, i.e., 

limited in 2D field. In this work, Si particle morphology is both 2D and 3D valued using 

Fig. 4.11 Typical load-displacement and dP/dh curve of 
fracture particles. 
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fracture stress induced by nanoindentation. 3D size, aspect ratio and sphericity are 

obtained from 3D reconstruction. As shown in Fig. 4.12, size effect in 2D and 3D are 

largely different. The high fracture stresses appear in the small 2D size and large 3D size 

area. The fracture stress vs. 2D aspect ratio and circularity seem to be dispersed. On the 

contrary, 3D aspect ratio, defined as particle height over equivalent diameter of maximal 

section, is in direct ratio to fracture stress, which means the particle that has a spherical 

structure will sustain a higher fracture stress. This trend is also confirmed by the 

relationship of 3D sphericity vs. fracture hardness. To sum up, 3D particle morphology 

produces more information than of 2D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.12 Comparison of 2D and 3D particle morphology. Definitions are given 
in Table 4.1.
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Table 4.1. Definition of Particle Morphology in 2D & 3D. 

 

4.4 Fracture Toughness 

In this project, the 2D size of Si particles require of the loads in order to produce small 

cracks, shorter than minimal size of 10 µm, within the Si particle. However, to study the 

interface strength, indentation load must be high enough to break the Al/Si interface. As a 

result, four kinds of particles are classified in Section 4.1. To obtain accurate fracture 

toughness of Si particles in Al matrix, only particles without fracture and interface 

debonding (Case 1) are proper for the work. Among 60 indented Si particles, only 4 of 

them have identifiable indentation cracks that no one reaches the particle boundary. 

Backscattered electron images of these 4 indentations were taken to measure the length of 

cracks. The average fracture toughness calculated using Eq. 2.4 is 1.31 MPa/m1/2 with 

0.0161x  for Berkovich indenter. To our knowledge, this fracture toughness for Si 

primary particles in AlSi alloys has not been reported before. Laugier expression and 

other expressions are applied mostly to bulk materials, without restrictions on the load 

applied or the crack length. In order to assess the KC by Laugier expression with short 

crack length, it is necessary to compare the KC with well reported ones including both 

short cracks and large cracks. A comparison between short and large crack testing 

method is given in Fig. 4.13. Xin et al [124], Brede et al [125], Chen et al [126] and 

Casellas et al [127] investigated indentation fracture toughness on singlecrystal Si in the 

(100) plane. Among them, Casellas et al studied the fracture toughness with a small load 

of 0.2 N to get short cracks and used a modified Laugier expression the same as 

 Size Aspect Ratio Circularity/Sphericity

 
2D (Area based) 

Diameter of the 
sphere that has the 
same surface area 
as a given particle. 

width/length 2

4 (area)

(perimeter)
S


  

 
 

3D (Volume 
based) 

Diameter of the 
sphere that has 

same volume as a 
given particle 

h/Dmax 

 

h is particle height, 
Dmax is equivalent 

diameter of the 
maximal section 

1 2

3 3(6 )p

p
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A


   

Vp is volume of the 
particle, Ap is surface 
area of the particle. 
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described in Section 2.5.  It is obvious that for bulk Si materials, KC is consistent for both 

short and large crack cases. 

 

Considering the anisotropy in KC, Ericson et al studied fracture toughness of single 

crystal Si with different crystal orientations and found KC of Si is between 0.83~0.95 

MPam1/2 [128]. In this project, KC of Si particles in Al matrix is much higher than of bulk 

Si materials. It is well know that materials with high fracture toughness are capable of 

absorbing more energy than materials with low toughness before fracturing. For brittle 

materials such as Si, the plastic deformation is little and the ability of energy absorption 

is low. Plastic deformations induced by indentation in Si bulk materials mainly are 

Berkovich indents and radial cracks. When indentation is made on a Si particle in Al 

matrix, Si particle may sink to some extent into the ductile Al matrix (KC > 14 MPam1/2) 

and part of the energy is transfer into Al matrix and induces elastic deformation in 

surrounding Al matrix. This elastic deformation in Al matrix leads to a difference Δh in 

indentation depth which decreases crack length in Si particle. Therefore, considering the 

Eqn. 2.4, the KC of Si particles is higher than of bulk materials. After indentation, Si 

particle recovers to its original position. The elastic motion of Si particle in Al matrix has 

been proved in FEM analysis. 

Fig. 4.13 Comparison between KC obtained with short and large 
crack testing methods. 
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4.5 Pile-up of Indentations 

Both indentations of Si particle and Al matrix under Berkovich indenter show pile-up 

which are consistent with their single crystal counterparts [129]. Fig. 4.15 presents an 

AFM image of indentation on a Si particle and the section profile. Indentation pile-up for 

Al matrix is plotted in Fig. 4.16. As reviewed in Chapter 2, this pile-up can be explained 

by the plastic properties of low-strain-hardening materials, i.e., the plastically displaced 

material under the faces of the indenter tends to flow up due to the incompressibility of 

plastic deformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Al Matrix

Si Particle

Elastic Region 

Bulk Si

Δh 

Fig. 4.14 A schematic of indented Si particle in Al matrix at maximal load.

Fig. 4.16 Indentation pile-up of Al matrix. Indentation load 
was 5 mN. 

Fig. 4.15 Indentation pile-up of Si particles in Al matrix. 
Indentation load was 300 mN. 
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4.6 Wear Model during Break-in 

Based on above discussions, an energetic wear model for the hypereutectic AlSi during 

break-in is proposed. In the early stage of UMW, the contact pressures and the local 

energy dissipation is highest on the raised Si particles. Si particles elastically sink into the 

Al matrix without interface debonding when the applied stress does not exceed a 

threshold value, in this project, around 450 MPa for 300 mN load. Considering the drop 

of strengths of Al alloys at high temperature, for example, the tensile yield strength of Al 

390 after T6 temper is 365 MPa at 38 °C and is 305 MPa at 150 °C [130], the feasibility 

of Si particle sinking under loading is higher. The result of the elastic sinking is twofold. 

On the one hand, the elastic sinking of Si particles can reduce the impact of wear load 

and thus protect the material surface. On the other hand, if the raised height of Si particles 

and hardness, strength of the matrix are not well controlled, Si particles may sink too 

much that the matrix exposes to the sliding counterpart, wear becomes severe.  

 

Fracture of Si particles also plays a key role in the early stage of wear. Even large 

particles will crack if the 3D shape of the particle is highly irregular. This leads to 

increased local wear on these spots. The released Si wear debris then, are embedded into 

the relatively soft Al matrix. This mechanism could be described as friction induced 

dispersion hardening. Orowan type strengthening is applicable for this kind of 

mechanism and the new formed layer has higher shear stress after break-in. 

 

From above discussion, we may suggest that Si particles do not have to bear the load 

after break-in as supposed to. However, Si particles may act as micro bumpers if 

morphology of the Si particles and matrix properties are rightly designed to avoid 

unfavorable fracture, crack and debonding. Therefore, the interface strength of randomly 

distributed Si particles with different crystal orientations and the matrix is a key in wear 

properties of AlSi alloys. 
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CHAPTER 5  FINITE ELEMENT ANALYSIS OF 

INSTRUMENTED INDENTATIONS 

 

This chapter presents finite element analysis of instrumented nanoindentations of Si 

inclusions/Al matrix system. The indentation processes are simulated with the ABAQUS 

finite element (FE) software package. Debonding of Al/Si interface, fracture mechanism 

of Si particles and plastic deformation of Al matrix are discussed with their effects on 

wear behavior. Based on the simulation, an indentation map for Si particles in Al matrix 

is developed. 

 

5.1 Structural Model 

The indentation process is complex, so simplifications and assumptions have to be made 

to achieve low numerical cost but sufficient accuracy. For instance, we assume the 

surface of the specimen as ideally smooth, whereas in reality a certain roughness may be 

present as well as e.g. a thin layer of oxidized material. The indentation process is 

considered to be quasistatic and the method of indentation control is also considered. All 

indentation experiments were carried out under load-controlled conditions because a real 

indentation experiment is hard to execute under displacement-controlled conditions up to 

a maximal displacement. Therefore, load-controlled condition is applied in the simulation. 

 

For the experiments, diamond Berkovich indenter was applied in all indentation tests.  

The Berkovich geometry is not axisymmetric. Due to low numerical cost in the 

simulation of the experiment, a conical rigid indenter with a half angle of 70.3º as given 

in Fig. 5.1, which has the same projected area-depth function as the standard Berkovich 

indenter, is used for simulation to build the axisymmetric model. The radius of the tip of 

the indenter is chosen to be 0.2 µm [131]. The size of the Al matrix is chosen so that the 

boundaries of the matrix do not influence the results. The half plane of Al matrix is 

defined as 100 µm in both width and height. The nodes at the bottom of the Al matrix are 

fixed in all directions and the center line is fixed horizontally. The applied boundary 

conditions are depicted in Fig. 5.1.  



 54

\  

Si particle is defined as a cylinder with a round edge of 3 µm in radius. Between Si 

particle and Al matrix, a cohesive layer of 0.05 µm in thickness is set to act as the 

bonding interface of Al/Si. The cohesive behavior is defined directly in terms of a 

traction-separation law which can be used to model the delamination at interfaces in 

composites directly in terms of traction versus separation. It also allows specification of 

material data such as the fracture energy as a function of the ratio of normal to shear 

deformation at the interface. The cohesive behavior assumes a linear elastic traction-

separation law prior to damage which means the initial response of the cohesive element 

is linear until a damage initiation criterion is met, and then material damage can occur 

according to a user-defined damage evolution law. Normally a maximum nominal stress 

criterion is used with a damage evolution based on fracture energy. The damage 

evolution law describes the rate at which the material stiffness is degraded once the 

corresponding initiation criterion is reached. However, for Al/Si system, the fracture 

energy has not been reported or studied neither experimentally nor theoretically. If the 

damage initiation criterion is specified without a corresponding damage evolution model, 

Abaqus will evaluate the damage initiation criterion for output purposes only; there is no 

effect on the response of the cohesive element (i.e., no damage will occur) [132]. 

Fig. 5.1 Structural model and boundary conditions. 

70.3º
Indenter 

Si Particle Al Matrix 

Cohesive layer 
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Therefore, the damage evolution is not set in this project and the shear stress of interface 

is used to be compared with the atomic simulation results as given in Section 2.3. 

 

For the indenter/Si particle interaction, the standard Lagrange method is used to handle 

surface-to-surface contact. The contact surfaces are thereby treated with the master-slave 

concept. Therein the master, in our case the indenter, is trying to penetrate into the half-

space Si particle which is defined as the slave. The nodes of the slave are not allowed to 

penetrate into the master’s surface. The implementation of contact in ABAQUS is done 

by adding a contact term with a Lagrangian multiplier to the potential. Applying a 

variation to the potential, this term contributes to the stiffness matrix. ABAQUS offers 

the possibility to consider Coulomb’s friction with the coefficient of friction μ as a 

parameter. However, Zhang and Mahdi [133] demonstrated that calculations with 

different friction coefficients show that the effect of interface friction is negligible in 

terms of the indentation load-displacement relationship and the stress and strain 

distributions with a certain distance away from the contact surface. The friction has a 

large effect on the stresses in the neighborhood of the indentation interface, particularly 

near the contact boundary. In this project, the research focus on the Al/Si interface, 

plastic deformation of Al matrix and fracture of Si particles determine that the local stress 

near contact boundary is not important. Therefore, the friction between the indenter tip 

and the specimen surface is assumed to be zero. 

 

5.2 Materials 

The indenter is assumed to be much harder than Si particle and Al matrix. Therefore it 

was modeled as a rigid body. The Al matrix is an elastic-plastic work hardening material. 

To study the influence of matrix, two Al matrixes with different yield strengths and work 

hardening behaviors are applied in this project. The compressive stress-strain relationship 

of a soft and a hard matrix are taken from T4 and T6 curves as shown in Fig.5.3 [134]. 

The plasticity used in Abaqus is in the form of true stress vs. plastic strain which can be 

transformed from the nominal stress vs. strain relationship in Fig.5.2 [132]. Elastic 

modulus of Al is 70 GPa. After transformation, the plasticity of Al matrix is presented in 

Fig. 5.3. 



 56

 

 

As to Si, indentation behavior includes yielding, indentation crack and phase 

transformation as briefly reviewed in Chapter 3. Some necessary mechanical properties 

used in the simulation for Si are Young’s modulus, E = 150 GPa; Poisson’s ratio, ν = 

0.28; and yield strength, σY = 7 GPa. After yielding, stress in Si is assumed to remain as 7 

GPa. 

 

Fig. 5.3 True stress vs. plastic strain of Al matrix.  
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Fig. 5.2 Compressive stress vs. strain curves in different heat treatment: 
(i) annealed (O), (ii) naturally aged (T4) and (iii) peak-aged (T6) [134]. 
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5.3 Element Type and Mesh 

For the application in contact problems second-order (quadratic shape functions) 

elements do not apply very well, often yielding to convergence problems, so only first-

order (linear shape functions) elements are used. That is also the reason why 

quadrilateral-dominated elements are chosen, since first-order triangular elements are too 

stiff and exhibit slow convergence with mesh refinement. Reduced integrated elements 

are chosen to effectively eliminate volumetric locking with nearly incompressible 

material. Therefore, for both the Al matrix and Si particle, 4-node bilinear axisymmetric 

quadrilateral, reduced integration and hourglass control element type (CAX4R) is chosen. 

While for cohesive layer, a 4-node axisymmetric quadrilateral cohesive element 

(COHAX4) is the only suitable option for simulation [132]. A typical mesh of a 10 µm Si 

particle in Al matrix is given in Fig. 5.4. The minimal mesh size is 0.05 µm. 

 

 

5.4 Verification of Materials, Element Type and Mesh 

5.4.1 Verification in Al matrix 

The developed FEA model is verified by comparing the simulated load-displacement 

curves with those obtained from experiments. Supplementary nanoindentation tests have 

been performed by directly applying Berkovich indenter on the Al matrix using Hysitron 

Ubi 1 Indentation. FEM simulations using both soft and hard matrixes are then carried 

out. Simulation results and experimental curves are compared in Fig. 5.5. It appears that 

hard matrix shows better consistency with experimental tests. However, the surface of 

Fig. 5.4 Mesh of the Si particle/Al matrix with the indenter. 
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matrix (depth < 0.5 µm) may be harder than inner part due to surface oxidation and work 

hardening induced by mechanical polishing. Therefore soft matrix is used for FEM 

analysis. This judgment is verified in the following sections. 

 

5.4.2 Verification of Experimental Cases  

Simulations of some typical cases are carried out to study the Al/Si interface debonding 

behavior. FEM simulations have been performed with both soft and hard matrixes. The 

shape of Si particle is generalized to be a cylinder with the dimensions listed in Table 5.1. 

The radius of the cylinder is obtained from the average cross section area, 

Volume

Height
R





     (5.1) 

 

Case/Particle No. Volume (µm3) Height (µm) Radius (µm) 

1/I-AB-9 17719.57 29.14 14 

2b/I-AB-10 5396.59 19.4 9.4 

3b/I-AB-3 3231.11 19.54 7.3 

Table 5.1 Dimension of simplified model of typical Si particles for FEM simulation. 

 

Fig.5.5 Comparison of FEA and experimental results for Al matrix. Solid 
lines are experimental curves. 
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5.4.2.1 Case 1 Si Particle – Unchanged Interface 

Simulation load-displacement curves are compared with the experimental curve in Fig. 

5.6.  The elastic deformation in surrounding Al matrix of both soft and hard matrixes are 

small even at highest indentation load (the vertical displacement of Si bottom is 

calculated as 53 nm for both soft and hard matrixes at 300 mN load) when the Si particle 

is big enough. Hence the Al matrix does little contribute to the indentation output and 

results in the overlapping of these two curves. The maximal indentation depth of FEM is 

smaller than of the experiment, while the residual depth, i.e. inelastic deformation, is 

almost the same as of the experiment. Considering the shift of pop-out and elbow, the 

difference in maximal indentation depths is owing to phase transformation of Si during 

loading and unloading. The difference is around 200 nm at 300 mN. Thus we can 

conclude that simulated load-displacement curve accords well with the experiment. 

 

 

 

5.4.2.2 Case 2b Si Particle – Global Debonding 

Fig. 5.7 compares load-displacement curves and dP/dh obtained from experiments and 

FEM model. In Fig. 5.7a, the difference in maximal indentation depth between soft 

matrix and experimental curves is 330 nm. The difference in residual depth Rh  between 

Fig. 5.6 Comparison of FEM and experimental results for a Case 1 Si particle. 

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300  Experimental
 FEM-Soft Matrix
 FEM-Hard Matrix

Lo
ad

 (
m

N
)

Displacement (nm)

Elbow
Pop-out



 60

soft matrix and experimental is around 160 nm. Hence the shift of Si phase 

transformation is around 170 nm, which is close to Case 1. Al matrix appears to yield 

near indentation depth of 1000 nm for soft matrix and experiment test. The peak in Fig. 

5.7b (185 mN) indicating matrix yielding is found near the FEM calculated peak around 

201 mN. In Fig. 5.8a, the surrounding Al matrix is plastically deformed severely. While 

for hard matrix, the dP/dh is monotone and FEM calculation verifies that there is no 

plastic deformation in Al matrix during the whole procedure. 

 

The difference in residual depth Rh  may contain the Si particle sinking induced by 

plastic deformation of Al matrix (50 nm in Fig. 5.8b) plus debonding of Al/Si interface. 

However, the maximal shear stress at Al/Si interface near surface (the first element of 

cohesive layer in Fig. 5.8b and Fig. 5.8c) is 207 MPa < 318 MPa (Table 2.1). Therefore, 

interface debonding does not seem to occur or only part of the interface debonds. On the 

other hand, Si particles are irregular in nature in this project and the stress distribution is 

much more complicated than the simplified FEM model. As to the traction-separation 

model, damage evolution is also unclear at present stage. To study interface debonding, 

more investigations are needed both experimentally and theoretically.   
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Fig. 5.7 Comparison of FEM and experimental results for a Case 2b Si 
particle: (a) load-displacement curves, (b) dP/dh curves upon loading.  
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Fig. 5.8 FEM calculation of plastic deformation of surrounding Al matrix: 
(a) local view of Al matrix at maximal load; (b) local view of Al/Si interface 

near surface after unloading, the depth difference between Si and Al is 
around 50 nm; (c) shear stress of the first element in cohesive layer. 
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5.4.2.3 Case 3b Si Particle – Global Debonding with Fracture 

A Si particle with global debonding and fracture is studied using the soft matrix with 

abovementioned conditions. Similar to Case 2b, yielding of Al matrix also occurs during 

loading as presented in Fig. 5.9b. Both the displacement and load show good consistency 

in FEM and experimental curves. Noticeably, no pop-out occurs during unloading while a 

small elbow at the end of unloading suggests that Si phase transformation may happen at 

the beginning of loading before fracturing. In view of the shift of elbow, load-

displacement curve by FEM simulation is in good accordance with the experimental 

counterpart.  

 

Fig. 5.9a appears that the experimental indentation undergoes matrix yielding and 

interface debonding. This can be explained with FEM results. Before Al matrix yielding, 

i.e., P < 102 mN, the interface shear stress is lower than 27 MPa. Along with matrix 

yielding, the interface shear stress increases with the indentation load till it reaches the 

threshold for debonding, 843 MPa at 252 mN in this case. The shear stress 843 MPa is in 

the range from 318 MPa to 1172 MPa (Table 2.1). Thus interface debonding occurs and 

Si particle sinks 262 nm. After that, Si particle may partially fracture due to the small 

radius and make a further displacement.  

 

For other cases of Si particles such as local debonding and fracture with local debonding, 

due to the irregularity of these particles, it is difficult to generate a general model to 

fulfill the FEM simulation. Fracture cases are discussed in next section. To sum up, soft 

matrix is appropriate for FEM simulation and the results from the FEA model are in close 

agreement with the experimental results. 
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Fig. 5.9 Comparison of FEM and experimental results for a Case 3b Si 
particle: (a) load-displacement curves, (b) dP/dh curves upon loading. 
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Fig. 5.10 FEM calculation of plastic deformation of surrounding Al matrix: (a) 
local view after unloading; (b) local view of Al/Si interface near surface after 

unloading, the depth difference between Si and Al is around 1120 nm; (c) 
shear stress of the first element in cohesive layer. 
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5.5  Al/Si Interface Debonding 

5.5.1 Debonding Contour Plot 

To acquire an overall understanding of the debonding behavior, the interface shear stress 

of different size and shape of Si particles has been computed. The height of Si particles 

for simulation is from 5 µm to 60 µm; radius of particles is 7.3 µm to 25 µm as listed in 

Table 5.2. For radius smaller than 7.3 µm, due to the high stress under sharp indenter, it 

is difficult to get convergence in FEM simulation and thus the lower limit of radius is 7.3 

µm. The maximal shear stresses of the first element of cohesive layer are given as the 

interface shear stress in Table 5.2. The mark “F” means that before indentation load 

reaches 300 mN, the particle fractures first (Section 5.6) and then will not be considered 

in this section. A contour plot of the interface shear stress is drawn in Fig. 5.11. Below 

the contour line of 318 MPa, the calculated interface shear stress is smaller than 318 MPa. 

The dimension of particles without debonding (Case 1), and particles with global 

debonding (Case 2b & 3b) from experiments are superposed on the contour plot. Other 

cases such as local debonding with fracture are not presented in Fig. 5.11. 

 

The global debonding Si particles are located below contour line of 318 MPa in the 

contour plot, which means the debonding shear stress is in a good agreement with the 

atomic simulation by Noreyan et al [40]. For hard matrix, interface shear stress is lower 

than of soft matrix when height is smaller than 25 µm and two particles above the 

contour line will not debond in hard matrix.  

 

5.5.2 Influence of Morphology of Particles on Debonding Behavior 

The relationship between morphology of Si particles and calculated interface shear stress 

is given in Fig. 5.12. The interface shear stress tends to be higher for particles with 

smaller size, lower aspect ratio and higher sphericity for both soft and hard matrixes.  
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Fig. 5.11 A contour plot of Al/Si interface debonding. The z-axis denotes 
interface shear stress in Table 5.2.  Solid marks are Si particle with global 

debonding (Case 2b & 3b). Circular dots are particles without 
sinking/debonding (Case 1). 

318MPa318MPa318MPa318MPa318MPa

318MPa318MPa318MPa318MPa318MPa

10 20 30 40 50 60
5

10

15

20

25
 Interface Unchanged
 Globe Debonding

R
a
d
iu

s 
(

m
)

Height (m)

FEM-Soft Matrix

FEM-Hard Matrix



 69 

Fig. 5.12 The relationship between particle morphology and interface shear 
stress. (a) 3D size, (b) 3D aspect ratio and (c) sphericity.  

(a) 

(c) 

(b) 

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

500

1000

1500

2000

2500

 FEM-Soft Matrix
 FEM-Hard Matrix

In
te

rf
ac

e 
S

h
ea

r 
S

tr
e
ss

 (
M

P
a
)

Sphericity

0 1 2 3 4

0

500

1000

1500

2000

2500

 FEM-Soft Matrix
 FEM-Hard Matrix

In
te

rf
ac

e 
S

h
ea

r 
S

tr
e
ss

 (
M

P
a
)

Aspect Ratio

5 10 15 20 25 30

0

500

1000

1500

2000

2500

 FEM-Soft Matrix
 FEM-Hard Matrix

In
te

rf
a
ce

 S
h
ea

r 
S

tr
e
ss

 (
M

P
a
)

Size (m)



 70

5.6  Si Particle Fracture 

5.6.1 Fracture Model of Si Particles 

For Case 4 Si particles which are totally broken, the following fracture toughness model 

shown in Fig. 5.13 is proposed to determine whether the particle fractures or not by 

applying Eq. 2.1. The radial crack depth is in the same order of the indentation 

impression as shown in Fig 5.13b [103]. For mode I loading, KIC is 0.9 MPa m  for 

Silicon. Here we take the indentation depth as the crack length a. A variable 

ICK Y a    is introduced:   is tensile stress at the centre bottom of the particle as 

shown in Fig 5.13b and a is the crack length. The distance between the indent and the 

bottom of the particle is more than 5 times larger than a. Therefore,   can be taken as a 

far field stress. If ICK  > 0.9 MPa m  during the indentation loading procedure, we 

assume that fracture of Si particle occurs. 

 

Fig. 5.13 Proposed fracture mechanism of Si particles under indentation. (a) 
Griffith fracture model; (b) proposed Berkovich fracture model; (c) calculation of 

crack depth of Si particle in Al matrix, where dashed lines are of particle and 
indenter at 300 mN load. The crack depth a is the displacement of indenter hindenter 

deducted by the displacement of the whole particle hSi. 
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5.6.2 Fracture Contour Plot 

First, tensile stress σ at the bottom of centre line, the displacement of indenter hindenter and 

displacement of the particle hSi during loading are computed. Next, tensile stress σ and 

crack depth indenter Sia h h   are used to calculate ICK Y a   , as presented in Fig. 

5.14. After that, load at ICK   = 0.9 MPa m  is derived and defined as fracture load and is 

used to calculate fracture stress. Fracture stress is defined as the fracture load over the 

section area of the Si particle under an indenter. 

 

Fig. 5.14 Fracture toughness FEM calculation: (a) tensile stress 

and crack depth; (b) ICK Y a   . The height and radius of 

the simulated Si particle are 10 µm. 
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After abovementioned calculations are finished for all different particles, a fracture 

contour plot is plotted with the height, radius and fracture load as demonstrated in Fig. 

5.15. To the left of the contour line of 300 mN, ICK > 0.9 MPa m  and Si particles in 

this area will fracture with a load up to 300 mN. The experimental broken particles and 

interface unchanged particles are plotted as dots by their height and radius. Fig. 5.15 

demonstrates that experimental fractured Si particles locate to the left of the contour line. 

With the experimental verification, the proposed fracture mechanism of Si particles in Al 

matrix has been proved to be a successful model and may be used to study other 

inclusion/matrix systems. 

 

 

5.6.3 Influence of Morphology of Particles on Fracture Behavior 

Whether a Si particle fractures or not under loading is determined by its dimension as 

shown in Fig. 5.15. For fracture particles, it is necessary to study when fracture happens 

and how particle morphology affects its fracture behavior. As discussed in Chapter 4, 

particle morphology makes a great contribution to fracture stress as shown in Fig. 4.12. 

Fig. 5.15 A contour plot for fracture of Si particles. The z-axis denotes fracture 
load in Table 5.2.  Solid marks are experimental fracture Si particles (Case 4) 

and circular dots are unchanged particles (Case 1).  
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In this section, FEM analysis has been done to study the morphology effect further. 

During the FEM simulation of indentation loading, the relationship between particle 

morphology and fracture stress is investigated and shown in Fig. 5.16.  Obviously, Si 

particles in hard matrix show higher resistance to fracture than in soft matrix in the fewer 

fracture particle quantity and higher fracture stress. Similar to experimental results, the 

3D size effect on fracture stress from FEM calculation is not explicit. On the contrary, 

FEM data of 3D aspect ratio and sphericity of Si particles accord well with experimental 

data and both exhibit a distinct tendency, i.e., the higher the 3D aspect ratio/sphericity, 

the higher stress needed to break the particle. However, due to the random distribution 

and orientation of Si particles in Al matrix, 3D aspect ratio is not a controllable parameter 

except that the aspect ratio of all Si particles is always 1, i.e., all particles are roughly 

round. The impossibility of such assumption means that the importance of the particle 

sphericity to resist-fracture ability is greater than the 3D aspect ratio. 

 

Fracture loads of different simulation particles against particle height are also plotted in 

Fig. 5.17. The fracture load is found to be in direct ratio to the height of Si particles. The 

experimental fracture load is smaller than of the FEM results. This may be due to the 

irregular shape of Si particles and the difficulty of making indentation at the center line of 

the particle. 
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(a) 

(b) 

Fig. 5.16 The relationship between particle morphology and fracture 
behavior: (a) fracture stress vs. 3D size; (b) fracture stress vs. 3D 

aspect ratio; (c) fracture stress vs. sphericity. 
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3 

 

5.7 Plastic Deformation in Al Matrix 

As reviewed in Chapter 2, plastic deformation can cause fragmentation of silicon 

particles and subsurface delamination.  The overall result is a dynamic change of the 

tribological properties of the material, which are of primary importance for its 

performance.  Several authors have experimentally investigated the subsurface layer 

deformation in Al alloys. However, despite the intensive research in this area, the 

mechanism of plastic deformation induced crack formation and delamination leading to 

local structure is still under studying. In this section, plastic deformation in Al matrix 

around Si particle under indentation and its relationship to particle morphology factors 

are investigated. 

 

5.7.1 Plastic Deformation Contour Plot 

In this project, only plastic deformation of Al matrix is studied.  The energy dissipated by 

rate-independent and rate-dependent plastic deformation (ALLPD) is used to obtain the 

threshold load for plastic deformation in Al matrix. A typical plastic energy versus load 

curve is shown in Fig. 5.18. The plastic energy in Al matrix is zero until indentation load 

reaches a threshold load of 127 mN. If indentation load is higher than the threshold load, 

plastic deformation occurs. Here we name the threshold load as plastic load. Accordingly, 

Fig. 5.17 FEM computed fracture load vs. particle shape. 



 76

the plastic load over the section area of Si particle under indenter is defined as plastic 

stress. The plastic loads of different simulated particles are listed in Table 5.2. Noticeable, 

for fractured Si particles, the plastic load is always smaller than fracture load which 

means plastic deformation in Al matrix occurs before Si particle fracturing.  

. 

 

The plastic load has been derived from the plastic energy curve with a maximal load of 

300 mN for different particles. A contour plot of the plastic load is drawn in Fig. 5.19. 

Experimental fracture Si particles (Case 4) and interface unchanged particles (Case 1) are 

superposed in the plot. The top right areas outlined by contours are non-plastic 

deformation area. Fig. 5.19 demonstrates that plastic deformation in soft Al matrix is 

higher than in hard matrix. For example, plastic deformation occurs in soft matrix for 

most Case 1 particles. To the contrary, plastic deformation does not exist in hard matrix 

for most Case 1 particles. For smaller fractured particles such as Case 4, plastic 

deformation in both soft and hard matrixes occurs before the Si particle fracturing. 

 

Fig. 5.18 Plastic energy in Al matrix from FEM computation. 
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5.7.2 Influence of Morphology of Particles on Plastic Deformation in Al Matrix 

The relationship between particle morphology and plastic deformation in Al matrix is 

presented in Fig. 5.20. Apparently, the plastic stress of hard matrix is higher than soft 

matrix. It seems that harder matrix can hold higher load before plastic deformation occurs. 

Fig. 5.20 appears that the 3D size effect on plastic stress does not have a distinct trend. 

The fracture stress increases sharply with the increase of 3D aspect ratio and reaches a 

platform at the ratio around 1 as shown in Fig. 5.20b. Considering the definition of 3D 

aspect ratio (h/D) in Table 4.1, the plate like particles is easily plastically deformed. With 

the increase of 3D aspect ratio, the shapes of particles change from plate like to roughly 

round and gradually needle like. However, there is no sharp difference in plastic stress 

between roughly round particles and needle like particles. The plastic stress also seems to 

be sensitive to the sphericity of Si particles as shown in Fig. 5.20c. The plastic stress 

shows a general growth over particle sphericity. To sum up, high sphericity of Si particle 

is desired and low 3D aspect ratio should be avoided to resist plastic deformation. 

Fig. 5.19 A contour plot of plastic deformation in Al matrix. The z-axis 
denotes plastic load in Table 5.2.  Solid marks are experimental fracture Si 

particles (Case 4) and circular dots are unchanged particles (Case 1). 
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Fig. 5.20 The relationship between particle morphology and plastic 
deformation in Al matrix: (a) 3d size, (b) 3d aspect ratio, (c) sphericity. 
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5.8 Summary 

In above sections, FEM analyses have been done for instrumented indentation at Si 

particles in Al matrix. Interface strength, fracture of Si particles and plastic deformation 

of Al matrix have been investigated based on the morphology of Si particles and matrix 

heat treatments. An indentation map is constructed with axes of particle height and radius 

to display all the deformations under loading as shown in Fig.5.21. For example, for a Si 

particle with 10 µm in both height and radius, during the loading procedure, plastic 

deformation in Al matrix occurs first at 56.3 mN then the particle fractures at 140.2 mN 

(Table 5.2). From the indentation map, we can see that this particle is located in all the 

three undesired areas. To avoid such damages under load of 300 mN, the particle size 

should be located in the top right area outline by the plastic deformation contour line of 

the soft matrix, for instance, 50 µm in height and 20 µm in radius according to the map. 

On the other hand, to reduce the influence of the irregular shape of real Si particles, 

higher sphericity is preferred, i.e., the Si particles should be round, rather than plate like, 

needle like or sharp edged. In addition, harder matrix can offer better resistance to 

interface debonding, particle fracture and matrix plastic deformation. 

 

Fig. 5.21 An indentation map shows the Al/Si interface debonding, Si particle 
fracture and Al matrix plastic deformation. Maximal indentation load is 300 mN. 
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A deficiency for using the map to analyze UMW behavior is that the load is quasi-

statistical along one direction. Further research is needed on the dynamic behavior such 

as sliding test, formation of MML, fatigue test, etc. However, the accordance between 

experimental results and FEM analysis show that this approach answers some questions 

such as inclusion fracture mechanism and interface debonding behavior of two phase 

materials. This methodology can also contribute to analyzing other MMC materials. For 

example, sharp wear debris or abrasive particles can act as moving indenters and 

therefore the fracture behavior of particles (inclusions) in matrix can be determined both 

statically and dynamically with FEM study. This understanding is helpful to study wear 

properties of the material. Furthermore, it is possible that the morphology of particles 

(inclusions) and the property of matrix can be designed intentionally with this method to 

obtain high wear resistance. In a word, AlSi alloys with high sphericity Si particles and 

hard Al matrix will have high wear resistance. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

 

Al/Si interface strength and fracture of primary Si particles in an AlSi alloy have been 

investigated at micro scale using a combination of nanoindentation, serial sectioning, 

numerical derivative analysis and finite element method. The indentation tests were 

carried on with a fixed 300 mN maximal load and a Berkovich pyramid indenter. Based 

on the test results and FEM analysis, the following conclusions and future works are 

drawn. 

 

6.1 Conclusions 

Nanoindentations were performed on primary Si particles in a soft Al matrix. Indentation 

behavior such as interface debonding, Si particle fracture and the mixing of interface 

debonding and particle fracture were characterized by SEM/SPM, first derivative analysis 

of load-displacement curves and 3D structure of the particles from a serial sectioning 

technique. Based on this classification, how a particle reacts under indentation, such as 

break, sink, and tilt or keeps the original status in a particle/matrix system was 

successfully and effectively determined. The underlying mechanism can then be used to 

analyze sliding wear mechanism of AlSi alloys. 

 

First derivative analysis was used to study the overall range of load-displacement loading 

curve for the first time. By applying a subsection polynomial fitting, characteristic events, 

such as cracking, debonding, matrix yielding were successfully extracted from 

indentation load-displacement curves. With this new approach, micro/nano investigations 

in mechanical and metallurgy properties are feasible in particle/matrix systems and 

MMCs. 

 

Through the serial sectioning method, 3D information of Si particles was obtained. 3D 

morphology results of cracked Si particles showed that particles with high sphericity can 

hold higher load. Accompanying with indentation results, 3D structure can be utilized for 

studying wear resistance and mechanical properties of MMCs. 
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Indentation fracture toughness was calculated for the undamaged Si particles. The 

fracture toughness of these undamaged Si particles was almost 30% higher than its bulk 

material counterpart. According to the analysis, Si particles sink to some extent under 

applied load and recover to their original positions elastically. The recoverable sink-in of 

Si particles was observed in FEM simulation. 

 

The Al/Si interface strength, fracture mechanism of Si particles and plastic deformation 

in Al matrix have been studied mainly from a morphology point of view using finite 

element method. A facture model of particle in matrix based on Mode I fracture 

toughness was proposed and verified with experimental data successfully. It was also 

found that higher sphericity of Si particles and harder Al matrix are favorable to the 

resistance to interface debonding, fracture of Si particles and plastic deformation in Al 

matrix.  

 

6.2 Future Work 

Sliding wear experiments such as pin-on-disk are recommended to be performed to study 

the interface failure, fracture of Si particles, morphology of the Si particles, and different 

matrixes in a dynamic circumstance. FEM simulation in interface debonding is still need 

improving because the damage evolution criterion is unclear and will be continually 

investigated. Dynamic FEM simulation for wear mechanism of inclusion/matrix system 

may be another research interest. By these approaches, the wear mechanism of the two 

phase AlSi alloys can be understood in a greater detail. To sum up, the methodology used 

in this work not only can be carried out in MMCs, but also offer a promising approach to 

study multi phase materials at micro scale. 
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