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ABSTRACT 

The governing partial differential equations of fluid motion are usually 

numerically approximated using one of the three classical methods: Finite Difference 

(FD), Finite Volume (FV) or Finite Element (FE). In this thesis, a new cell-centred FD 

(CCFD) formulation is developed, in which the governing fluid flow equations are 

differenced over all the cell centres instead of grid points. The nodes (grid points) are 

then updated by averaging the property from all the cell centres that share that node. This 

feature, which is motivated by development of the FV method, allows the application of 

the proposed FD numerical formulation on unstructured grids. Several test cases are 

investigated here to illustrate this approach. To verify the results, the analytical solution 

for the test case is used if available. Otherwise, the numerical solution is compared to the 

traditional FD solution. 
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CHAPTER I 

INTRODUCTION 

 

Finding practical solutions to the governing equations of fluid mechanics is one of 

the most challenging problems in engineering. These equations, in most cases, form a set 

of coupled non-linear partial differential equations (PDEs). In Computational Fluid 

Dynamics (CFD), the equations of fluid motion are usually approximated by algebraic 

expressions using one of several well-established numerical techniques. Currently, the 

most popular discretization methodologies in CFD are the Finite Difference (FD), Finite 

Volume (FV) and Finite Element (FE) methods. 

The CFD field was dominated by the FD method in its early years. The 

underlying mathematics that forms the foundation of the FD method is relatively simple. 

This allowed researchers to carry out thorough analyses, such as stability and 

convergence studies, of the algorithms they were developing. Finite difference methods 

were initially developed for rectangular domains, and CFD researchers found themselves 

restricted to flow problems that could be approximated and modeled accordingly. For 

example, full-potential transonic flow over an airfoil could not be solved because the 

flow domain is non-rectangular. However, under the assumption of a thin airfoil which 

creates only small disturbances to the uniform free stream flow, researchers formulated 

the so-called transonic small-disturbance theory [1] and were able to obtain good 

numerical solutions that assisted engineers to design efficient airfoils for wing cross-

sections. During the 1970’s, several researchers developed very sophisticated numerical 

grid generation techniques which served as an important enabling technology for CFD 
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simulations [2-4]. However, research is about pushing the envelop, and CFD researchers 

soon began to place higher demands for the applications of their computer codes, in terms 

of both the physics that could be modeled and the geometrical complexity of the flow 

region. In particular, implementation of the FD formulation is restricted to structured grid 

systems, i.e. those grid systems that can be organized in such a way that an underlying 

logical connection between nodes can be defined. This is a serious limitation in modern-

day CFD simulations, since most industrial applications of CFD involve highly 

complicated geometric structures and passages which cannot be easily or accurately 

represented by a structured grid system. Although multiblock methods have been 

developed to alleviate this problem with the application of the FD method, some issues 

still persist, such as complicated computer coding, loss of accuracy across block 

interfaces and the inability to design a highly automated numerical grid generation 

process. 

In view of the limitation of the FD method to structured grids, extensive research 

on building new Finite Volume (FV) formulations was started in the late 1970’s. 

Researchers in solid mechanics had been using the Finite Element (FE) method for many 

years and, in the course of their work, had developed fairly sophisticated mesh generation 

techniques. These mesh systems are referred to as unstructured since there is no logical 

connection between nodes in the mesh. Although more difficult to manage in terms of 

computer logic and storage requirements, unstructured meshes are very popular because 

of their capability to accurately represent highly complex domains. Furthermore, 

unstructured mesh generation has become highly automated, requiring much less human-

computer interaction than structured grid generation. Primarily due to these features, the 
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FV approach, which can be implemented on either structured or unstructured meshes, has 

now become central to most of today's commercial CFD codes, such as CFX/ANSYS, 

FLUENT and STARCD, as well as many research codes. However, the FV formulation 

still faces many difficulties, such as those associated with grid arrangement [5]. The 

pressure-velocity coupling and the correct place to store their values (cell face or cell 

centre or a mix of both) constitutes a problem that continues to attract research in FV [6]. 

Also, high order FV methods cannot easily be formulated or implemented. 

A new FD approach is presented in this thesis, which has the flexibility to be 

applied on an unstructured mesh. The governing equations are differenced over all the 

cell centres (control volume centres) instead of the grid points as would typically be done 

in a conventional FD approach, and hence the name Cell-Centred Finite Difference 

(CCFD). The nodes are then updated by averaging the property from all the cell centres 

that share that node.  

Several simple test cases are investigated in this thesis to illustrate the 

development and application of this new method. The numerical results are compared 

with analytical solutions if available and/or traditional FD solutions. Even in many 

simple instances the analytical solution is not available, perhaps being restricted due to 

the boundary condition type. For example, an elliptic equation subject to Dirichlet 

boundary conditions (i.e. boundary values are specified) may have an analytical solution. 

However, the same equation subject to a Neumann boundary condition (i.e. normal 

derivative of the variable is specified) may not have an analytical solution. At the same 

time, the traditional FD solution may be cumbersome when the mesh topology is not a 

uniform distribution of the nodes with uniform spacings. In this case, a transformation is 
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needed to map the clustered grid points in the physical domain to a set of equally spaced 

grid points in the computational domain. 

When the solution domain can be discretized to a structured grid with uniform 

spacing, as shown in Fig. 1.1a, traditional FD is more efficient than either FV or FE, i.e. 

it is more stable and needs less resources. However, for curvilinear coordinates or 

unequally spaced grid lines, as in Fig. 1.1b, the physical domain must be transformed to a 

computational domain, where the PDEs are solved after also being transformed. In the 

case of complex geometries and when hanging nodes exist (e.g. interior nodes that have 

three cells around it instead of four), as illustrated in Fig. 1.1c, the traditional FD method 

must be designed as a multiblock scheme. The traditional FD method cannot handle a 

mesh topology such as the one shown in Fig. 1.1d, while FV and FE have the ability to 

handle all the mesh topologies shown in Fig. 1.1. 

The overall objective of this thesis research is to develop a finite difference based 

scheme for solving partial differential equations which can be implemented on both 

structured and unstructured mesh systems. The CCFD method developed in this research 

is designed to be applicable to any physical problem that can be mathematically modeled 

by PDEs with associated initial and/or boundary conditions. At each step in the 

development, a simple question is asked: “Does this assumption, or derivation, or 

decision restrict the general applicability of the method?”. Although this thesis 

concentrates on the development of the CCFD method for 2-dimensional problems, it is 

anticipated that, in future research, this method will be extended to 3-dimensional 

simulations.  
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      (a)            (b) 

 

      (c)            (d) 

Figure 1.1: Different types of mesh topologies; (a) structured uniform mesh, (b) 
structured clustered mesh, (c) unstructured mesh with hanging nodes, (d) hybrid mesh 
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CHAPTER II 

REVIEW OF LITERATURE 

2.1 Introduction 

  There is a vast body of literature that discusses issues regarding the numerical 

solution of partial differential equations. Likewise, the literature on the numerical 

simulation of fluid flows is extensive. Although there has been much research in these 

fields, most of it does not directly impact on the research presented in this thesis. Rather, 

some fundamental ideas developed over many decades of research have informed the 

formulation of the Cell-Centred Finite Difference (CCFD) method. In this chapter, some 

specific literature that is relevant to the research in this thesis is reviewed. 

 

2.2 Classical Numerical Schemes in CFD 

Peiro and Sherwin [7] have presented the fundamental concepts of the FD, FV 

and FE methods. They point out that the integral formulation (i.e. FV and FE 

formulations) of the governing equations is more advantageous since it handles Neumann 

boundary conditions and discontinuous source terms in a more natural way. Moreover, 

the integral form deals with complex geometries better than the differential form (i.e. FD) 

as it doesn't rely on the type of the mesh, i.e. the mesh can be structured, unstructured or 

hybrid. The rules for assignment of weighting functions and the similarity between FV 

and FE discretization strategies are explained by Mattiussi [8]. Onata and Idelsohn [9] 

showed that a system of equations equivalent to FV can be derived from FE by setting 

weighting functions equal to unity inside the cell and zero outside the cell. 
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The fundamental concepts of FV and details of FD formulas are explained by 

Hoffmann and Chiang [10, 11], Smith [12], and in many other CFD textbooks. The main 

differences between the three classical numerical schemes include the following points. 

FD and FV generate the discretized equation at any node based on the corresponding 

values at neighbouring nodes. In the FE method, the discretized equation of each element 

is independent of the other elements. In FE, incorporating different types of boundaries 

(i.e. Dirichlet and Neumann) is simpler, because it will only effect the element equations. 

On the other hand, FD and FV formulations need to be modified for derivative 

boundaries. In FD and FV the coupling between the discretized equation setup and its 

solution is based on the cell type, while in FE, adding new cell types will only change the 

local cell equations and the final solution procedure through the global matrices doesn't 

need to be modified. In the CCFD formulation developed in this thesis, each cell is 

considered in much the same fashion as in the FE method. The effect of cell type and its 

geometrical details is translated into constant coefficients in the FD equation for that 

individual cell. However, unlike FE, in CCFD the global matrices do not need to be 

assembled, and the cell-centre values of adjacent cells are linked through the updating 

procedure of the physical mesh nodes. This part of the procedure is closer to techniques 

commonly used in FV formulations. 

Gottlieb and Orzag [13] and Saleh [14] explain another method to solve 

differential equations through approximating the unknown functions by using Fourier 

series or a series of Chebyshev polynomials, which is known as the Spectral Method. 

Other methods, referred to as meshless methods, have also been in development over the 

past few years [15]. The main difference between the spectral method and the FD, FV 
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and FE methods is that the series is valid throughout the domain, whereas the solution is 

local in the mesh-based methods. Similarly, as implied by the name, meshless methods 

do not require a grid on which to discretize the governing equations. 

 

2.3 Locating Variables and Related Issues in FV Method 

As described by Patankar [16], who is regarded as one of the primary authors of 

the Finite Volume method, if pressure and velocity components of an incompressible 

fluid flow are stored in the same location (i.e. non-staggered or collocated grid), an 

oscillatory or "checkerboard" pressure field may occur. To avoid this problem, 

researchers developed the idea of a staggered grid, in which each of the flow variables is 

calculated and stored at a different node in the mesh [16]. In this type of grid system, the 

pressure-velocity coupling is usually handled through some variation of the SIMPLE 

algorithm [16], or by formulating a Poisson equation for pressure that simultaneously 

ensures that mass is conserved [10]. Generally speaking, staggered grids will be 

structured, so it is also possible to employ this type of grid system in a FD formulation. In 

a recent research conducted by Barron and Zogheib [17], a new numerical algorithm was 

developed for solving 2D incompressible flow equations on a staggered curvilinear grid 

by replacing some weaknesses in FD with equivalent strong parts of FV, especially the 

velocity-pressure coupling. One of the significant advantages of the FD approach in [17] 

is that it avoids the need to calculate fluxes at the cell faces, which is central to all FV 

formulations. 

On the other hand, the non-staggered grid has the advantages of easy 

programming and easier incorporation of boundary conditions [18]. To achieve the 
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advantages associated with calculating all variables at the same location, researchers have 

devised schemes to solve the resulting non-realistic pressure fields. Rhie and Chow [19] 

performed a numerical study on 2D, incompressible, steady flow. They developed a 

“momentum interpolation” scheme on an ordinary (non-staggered) grid to suppress the 

pressure oscillations by adding a pressure gradient term into the pressure interpolation. 

Reggio and Camarero [20] developed a scheme that employs upwind differencing for the 

velocity gradients and downwind differencing for the pressure gradients to prevent the 

odd-even pressure field. In another research, Thiart [21] presented a differencing scheme 

that accounts for the effect of pressure on the velocity gradients. Peric et al. [5] and 

Demirdzic et al. [22] did a comparison between a staggered and a collocated grid 

arrangement for three test cases, and they indicated the advantages of a collocated 

scheme in terms of convergence speed and the ability to extend the implementation to 

non-orthogonal grids. Versteeg and Malalasekera [23] have also explained the issues 

related with the FV formulation on a curvilinear body-fitted structured grid, and the need 

for special correction expressions for the diffusion and convection fluxes in an 

unstructured grid. They have presented a special pressure-velocity coupling on a 

collocated grid which avoids the checkerboard pressure effect. They emphasize on the 

pressure interpolation practice developed in [19] and its success in collocated curvilinear 

body-fitted and unstructured grids. Majumdar [24] demonstrated the dependency of the 

momentum interpolation scheme on the under-relaxation factor, and proposed a new 

scheme for calculating the velocity value at cell faces which preserves a convergent 

solution, independent of the under-relaxation factor and without significant increases in 

computational time. 
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To maintain the advantageous features of a collocated grid, in this thesis a FD 

scheme is developed that locates or stores all the variables at the same location, the cell 

centre. A combination of the non-staggered FV philosophy with robust FD 

approximations is observed, and since it is a purely FD formulation, there is no need for 

approximating the fluxes across cell faces. 

Other endeavors to develop a FD formulation similar to the CCFD formulation, at 

least in terms of confining the flow variables to the cell centre, can be seen in the MHD 

(Magneto-Hydro-Dynamics) field, as presented by Livne et al. [25], Stone and Mihalas 

[26], Gardiner and Stone [27], Mignone et al. [28] and Spekreijse [29]. Spekreijse [29] 

uses differencing stencils comprised of four cells, and shows that a nine-point 2D upwind 

stencil changes into a five-point block stencil. Other than the fact that these works are 

“cell-centred”, they shared very little common features with the current CCFD method 

developed in this thesis. 

 

2.4 Model Equation 

Several benchmark test cases for incompressible flows can be found in the 

literature (eg. cf. [30] and [31]). New types of FV formulations are verified using these 

benchmark problems [32, 33]. In recent research, a detailed comparison between node-

centred and cell-centred FV formulations was conducted by Diskin et al. [6]. Using the 

Poisson equation as their model equation, six second-order schemes were developed for 

six typical regular and irregular grids. They found that grid skewness plays a critical role 

in determining accuracy and stability of FV solutions, and that accuracies of both 

schemes (node-centred and cell-centred) are comparable at the same degree of freedom. 
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Maintaining a stable solution with a higher order of accuracy has always been one of the 

main objectives of new numerical methodologies. Sakai and Watabe [34] have proposed 

a new trial to increase the accuracy of numerical fluxes in the case of advection-diffusion 

equations. This further supports the conflicting issues in CFD and the motivation to re-

assess the entire CFD approach. 

 

2.5 Accelerating the Solution 

The process of solving a physical engineering problem starts with defining the 

PDEs that model the problem. Then the PDEs are discretized, and the resulting algebraic 

equations, which can be assembled into a matrix equation, are solved over a discrete set 

of mesh points. For this purpose, direct and indirect/iterative methods are used. Iterative 

methods are more common in CFD because the matrices are very large and often have a 

well-defined sparse structure, and since iterative methods need less computational 

resources. It is well-known that using a so-called relaxation factor ߱ improves the 

convergence rate [10]. The effect of relaxation can be thought of as the addition of only a 

portion of the residuals, which is the difference in value between two successive 

iterations, to the calculated value for any node. In another words, it squeezes the gap 

between the initial and final solution faster. This influence is maximum at the first 

iterations and reduces as the solution approaches its final state within the pre-defined 

convergence criterion. There are no general directions for calculating the optimum ߱ 

value. Although ߱௢௣௧ can be calculated for some applications, it will be limited to 

specific details like domain geometry and boundary type. Based on the relaxation 

parameter value, the iterative solution can be classified as under-relaxed (0 ൏ ߱ ൏ 1), 
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over-relaxed (1 ൏ ߱ ൏ 2ሻ or the basic Gauss-Seidel (߱ ൌ 1). In most cases the value of 

߱௢௣௧ increases with finer meshes. Versteeg and Malalasekera [23] state that ߱௢௣௧ is mesh 

dependent and no guidelines exist for exact value computation. Attempts to set up a 

numerical formulation that doesn't rely on a relaxation parameter have been conducted, 

like the work of Majumdar [24]. However, current CFD simulations still rely heavily on 

the idea that relaxation can provide accurate and stable solutions over a wide range of 

applications. 

 

2.6 Thesis Objectives 

In this thesis, the CCFD approach reveals new vistas for research across the whole 

scope of CFD. A new FD scheme is presented for structured grid systems, with the 

flexibility to be extended to unstructured grids. As in all fundamental research in CFD, to 

introduce a new differencing scheme, a single PDE is used, e.g. [31]. The 2D Laplace 

equation is considered as the model equation in this study, 

 
߲ଶ׎
ଶݔ߲

൅
߲ଶ׎
ଶݕ߲

ൌ 0  (2.1)

with Dirichlet and/or Neumann boundary conditions. To develop and explain the method, 

the mesh is initially constructed with rectangular cells of uniform size. The FD scheme is 

derived from the differential form of the conservation laws. 

The thesis is organized as follows. The basic formulation of the CCFD method is 

described in Chapter III. Many of the critical aspects of any useful numerical method are 

explored in this chapter to ensure that the CCFD methodology meets the demands of a 

reliable, flexible, accurate and viable CFD code. Various tests are performed, using 

model equation (2.1) with Dirichlet boundary conditions. Further verifications are carried 
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out in Chapter IV, where the CCFD method is applied to a Poisson equation with 

Dirichlet boundary conditions, a Laplace equation with Neumann boundary conditions, 

and a model convection-diffusion equation with Dirichlet conditions. The CCFD method 

is then applied to a benchmark incompressible fluid flow problem, that is, the flow over a 

backward-facing step, in Chapter V. Chapter VI includes the conclusions from this 

research and suggests some avenues for further developments and future studies with the 

CCFD method. 
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CHAPTER III 

DESIGN AND METHODOLOGY 

3.1 The CCFD Scheme 

Consider an arbitrary polygonal cell in 2D bounded by the line segments joining 

nodes N1, N2, N3, N4 and N5, surrounded by neighbouring cells as shown in Fig. 3.1.  

Figure 3.1: An arbitrary mesh topology 

The coordinates of nodes N1,…,N5 with respect to a fixed global Cartesian 

coordinate system Oxy are assumed to be known. An arrangement of nodes such as 

shown in Fig. 3.1 does not allow for a traditional FD formulation of the governing PDE 

since there is no orderly pattern to the placement of nodes. Traditional FD methods 

requires that all nodes (grid points) lie at the intersection of lines ݔ ൌ ݕ ௜ andݔ ൌ   .௝ݕ

On the other hand, the FV and FE methods can be implemented on polygonal 

cells. For these methods, the governing PDE is first reformulated as an integral equation 

by performing a double integration of the PDE over the region contained within the cell. 

In the cell-centred FV method, the double integral is then converted into a line integral 

around the boundary of the cell using Green's theorem. This line integral is written as the 

0 

y 

x 

cc

cc

N5

N4

N3
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sum of line integrals along the straight lines joining the nodes, i.e. along the faces (or 

edges) of the cell. For example, consider the line integral along the face joining nodes N1 

and N2. To evaluate the integral exactly we need to know the variation of ׎ (or perhaps 

 ௬) along the face. Since this variation is unknown (otherwise we would already׎ ௫ or׎

know the solution to the original PDE), it must be approximated. A simple approximation 

would be to take ׎ to be constant along the face, with value as the average of ׎ at the two 

end nodes N1 and N2. Alternatively, we could approximate ׎ using the cell-centre values 

of the two cells sharing the face joining N1 and N2. Applying this procedure to all cells in 

the domain, one can formulate a system of algebraic equations for the values of ׎ at all 

cell centres. This system is then solved, either by direct or iterative matrix solvers. If 

nodal values are required, e.g. at node N1, it can be obtained by taking a distance 

weighted average of cell-centre values for all cells sharing node N1. 

In the FE method, the integrand is approximated over the cell, and then the double 

integration is performed exactly. The approximation will involve the unknown values of 

 .at the nodes of the cell, and must be a function which is integrable over the cell area ׎

Assembling the equations obtained from each cell will lead to an algebraic system of 

equations for the unknown nodal values. 

In the CCFD method, the PDE is applied at the centre of each cell, and the partial 

derivatives in the PDE are approximated by finite differences. To accomplish this, a finite 

difference stencil is placed inside the cell, with the centre of the stencil located at the 

centroid of the cell, as illustrated in Fig. 3.2. The arms of the stencil are positioned to be 

parallel to the global Cartesian coordinate axes. The end points of the stencil lie at the 

intersection of the stencil arms with the faces of the cell. These intersection points are 
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denoted by w, e, n and s. Standard finite difference formulae require uniform spacing 

between grid points, or, in the present context, that the distance from s to cc equals that 

from cc to n. Clearly, for an arbitrary cell topology, this will not be the case.  

Figure 3.2: A finite difference stencil in an arbitrary pentagonal cell 

 One option would be to use finite difference approximations that account for 

variable grid spacing, but this degrades the accuracy of the approximation. A better 

approach, which preserves the accuracy of the standard formulae, is to map the non-

uniform stencil to a uniform one, as demonstrated in Fig. 3.3.  

Figure 3.3: Mapping the physical stencil to a uniform computational stencil 

,௦ݔ  ௦ݕ
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The line segment joining w to e is mapped to െ1 ൑ ߦ ൑ 1, with cc mapped to 

ߦ ൌ 0. Similarly, the stencil arm joining s to n is mapped to െ1 ൑ ߟ ൑ 1, with cc mapped 

to ߟ ൌ 0. These mappings can be expressed as quadratic functions: 

ݔ  ൌ ܽଶߦଶ ൅ ܽଵߦ ൅ ܽ଴ 
(3.1)

ݕ  ൌ ܾଶߟଶ ൅ ܾଵߟ ൅ ܾ଴ 

Denoting the coordinates (with respect to the global system) of w by (ݔ௪,  ,(௪ݕ

coordinates of e by (ݔ௘,  ௘), etc., it can be shown that the coefficients in (3.1) are givenݕ

by: 

 ܽ଴ ൌ ௖௖ ,   ܽଵݔ ൌ
ଵ

ଶ
ሺݔ௘ െ ௪ሻ ,   ܽଶݔ ൌ

ଵ

ଶ
ሺݔ௘ ൅ ௪ሻݔ െ  ௖௖ݔ

(3.2)
 ܾ଴ ൌ ௖௖ ,   ܾଵݕ ൌ

ଵ

ଶ
ሺݕ௡ െ ௦ሻ ,   ܾଶݕ ൌ

ଵ

ଶ
ሺݕ௡ ൅ ௦ሻݕ െ  ௖௖ݕ

Standard finite difference formulae can be used in the (ߟ ,ߦ) system, in which 

Δߦ ൌ 1, Δߟ ൌ 1. To apply these standard approximations, the governing PDE must also 

be transformed to the (ߟ ,ߦ) coordinates. Using chain rules, we get, for example, 

׎߲ 
ݔ߲

ൌ
׎߲
ߦ߲

ߦ݀
ݔ݀

ൌ
1
Ԣݔ
׎߲
ߦ߲

 

(3.3)
 ߲ଶ׎

ଶݔ߲
 ൌ

1
Ԣݔ
߲
ߦ߲
൬
1
Ԣݔ
׎߲
ߦ߲
൰ ൌ

1
Ԣଶݔ

߲ଶ׎
ଶߦ߲

െ
ᇱᇱݔ

Ԣଷݔ
׎߲
ߦ߲

 

and similarly for 
డ׎

డ௬
 , 

డమ׎

డ௬మ
 and higher order derivatives. In these expressions the metrics 

are given by ݔԢ ൌ ௗ௫

ௗక
ൌ 2ܽଶߦ ൅ ܽଵ and ݔԢԢ ൌ ௗమ௫

ௗకమ
ൌ 2ܽଶ. Since the partial derivatives are 

locally approximated at the cell centre, x', x'', y' and y'' are evaluated at ߦ ൌ 0, ߟ ൌ 0. 

Therefore, ݔᇱ ൌ  ܽଵ, ᇱᇱݔ ൌ 2ܽଶ,  ݕᇱ ൌ  ܾଵ and  ݕᇱᇱ ൌ 2ܾଶ. Using eqn. (3.2), the metrics 

can be evaluated in terms of the coordinates of w, e, n, s and cc, i.e. 



 

  18 

Ԣݔ  ൌ ଵ

ଶ
ሺݔ௘ െ ԢԢݔ   , ௪ሻݔ ൌ ሺݔ௘ ൅ ௪ሻݔ െ  ௖௖ݔ2

(3.4)
Ԣݕ  ൌ ଵ

ଶ
ሺݕ௡ െ ԢԢݕ   , ௦ሻݕ ൌ ሺݕ௡ ൅ ௦ሻݕ െ  ௖௖ݕ2

Note that the values of the metrics are cell specific. The governing PDE is not globally 

transformed under eqn. (3.1). It is uniquely transformed for each individual cell. 

To illustrate the fundamental concepts of the CCFD method, consider the Laplace 

equation: 

׎ଶ׏  ൌ 0 (3.5)

Using transformation (3.1) and the relationships (3.3), the Laplace equation in the ߟ ,ߦ 

coordinates becomes: 

 1
Ԣଶݔ

߲ଶ׎
ଶߦ߲

൅
1
Ԣଶݕ

߲ଶ׎
ଶߟ߲

െ
ᇱᇱݔ

Ԣଷݔ
׎߲
ߦ߲

െ
ᇱᇱݕ

Ԣଷݕ
׎߲
ߟ߲

ൌ 0 (3.6)

where x', x'', y' and y'' are given by eqn. (3.4). Now, suppose three-point central 

differencing is used to approximate the derivatives in eqn. (3.6), i.e. 

 ߲ଶ׎
ଶߦ߲

 ൎ ௘׎  െ ௖௖׎2 ൅ ௪׎ ,
׎߲
ߦ߲

ൎ
1
2
ሺ׎௘ െ  ௪ሻ׎

(3.7)
 ߲ଶ׎

ଶߟ߲
 ൎ ௡׎  െ ௖௖׎2 ൅ ௦׎ ,

׎߲
ߟ߲

ൎ
1
2
ሺ׎௡ െ  ௦ሻ׎

Applying the approximations (3.7) to the eqn. (3.6), the resulting finite difference 

equation can be written as, 

 ܽ௖௖׎௖௖ ൌ ܽ௪׎௪ ൅ ܽ௘׎௘ ൅ ܽ௦׎௦ ൅ ܽ௡׎௡ 

(3.8)
where 

ܽ௖௖ ൌ
1

ሺݔ௘ െ ௪ሻଶݔ
൅

1
ሺݕ௡ െ ௦ሻଶݕ
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ܽ௪ ൌ
௘ݔ െ ௖௖ݔ
ሺݔ௘ െ ௪ሻଷݔ

, ܽ௘ ൌ
௖௖ݔ െ ௪ݔ
ሺݔ௘ െ ௪ሻଷݔ

 

ܽ௦ ൌ
௡ݕ െ ௖௖ݕ
ሺݕ௡ െ ௦ሻଷݕ

, ܽ௡ ൌ
௖௖ݕ െ ௦ݕ
ሺݕ௡ െ ௦ሻଷݕ

 

Following procedures similar to those used in the FV method, the values of  ׎௪, 

 ௡ can be approximated in terms of cell nodal values and neighbouring cell׎ ௦ and׎ ,௘׎

centroid values. Equations for the nodal values can be constructed using the distance 

weighted average of cell-centre values for all cells sharing the node. Assembling the 

resulting equations at all cell centroids and all nodes leads to a system of linear algebraic 

equations which can be solved by standard numerical procedures. 

In this thesis, rather than assemble the large matrix system, we use an iterative 

approach. An initial guess for ׎ at all cell centroids and nodes is made. A particular node 

P is selected and all cells sharing that node are identified. Then, for each of these cells, 

 ௡ are evaluated based on the initial guess. Equation (3.8) is used to׎ ௦ and׎ ,௘׎ ,௪׎

update the value of ׎௖௖ for each of the cells. The value of ׎ at the selected node P is then 

updated using  

 

௉׎ ൌ
∑ ௖௖௜׎

௖௖௜ܮ
ேು
௜ୀଵ

∑ 1
௖௖௜ܮ

ேು
௜ୀଵ

 (3.9)

where ௉ܰ is the number of cells sharing node P, cc1, ... , ܿܿே௣ are the centroids of these 

cells and ܮ௖௖௜ is the distance from centroid ܿܿ௜ to the node P.  

The next node is selected and the above procedure is followed to update the nodal 

value, until all nodes in the mesh have been updated, completing the first iteration. The 

procedure is repeated until a prescribed convergence criterion is satisfied. 
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3.2 A Simple Test Problem 

A simple test problem is chosen to demonstrate how the CCFD method is 

implemented. Consider the solution of the Laplace equation (3.5) on a square domain 

with four square cells, as shown in Fig. 3.4. The domain size is 1 unit by 1 unit, with 

equal grid spacing (∆x = ∆y). Dirichlet conditions are applied, with all boundaries set to 

be zero except for the left boundary, which is taken to have the value 1. 

 
Figure 3.4: Simple domain with 4 identical cells 

 

3.2.1 Solution procedure 

In this example, the only node to be evaluated is the domain central node (P). The 

general procedure is as follows: 

a. find the cells that share the current node (i.e. node P) 

b. for each one of these cells; 

i. calculate the cc coordinates, and the coordinates of w, s, e and n 

intersections. 

ii. calculate ׎e by distance weighted averaging between the two centres of the 

cells that share the edge containing e (e.g. cc1 and cc2 in Fig. 3.4). 
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Similarly, evaluate ׎n, ׎w and ׎s. If the intersection lies on a boundary, use 

the corresponding boundary value. 

iii. evaluate ׎cc from the discretized FD form of the model equation. Second 

order central differencing is used, leading to eqn. (3.8). 

c. update node P by a distance weighted averaging from all adjacent cell centres, 

using eqn. (3.9). 

The calculations start with an initial guess at P and all the cell centres, which are 

then updated iteratively until the convergence criterion is satisfied. 

For the domain shown in Fig. 3.4, using the CCFD formulation with successive 

over-relaxation and a relative difference between iterates of 10E-9, ׎P was found to be 

0.25 after 7 iterations (߱ = 1.413). This is in excellent agreement with the exact 

analytical value of 0.25. The analytical solution for this test problem can be found in 

many resources, and is given by: 

 

 

,ݔሺ׎ ሻݕ ൌ lim
௄՜ஶ

൮
௅׎4
ߨ

෍
݄݊݅ݏ ൬

ߨ݊
ܪ ሺܮ െ ሻ൰ݔ ݊݅ݏ ሺ

ߨ݊
ܪ ሻݕ

݊ ܪߨሺ݄݊݊݅ݏ ሻܮ

௄

௡ୀ௢ௗௗ

൲ (3.10) 

  

where ׎L is the left boundary value, L and H are the length and the height of the domain, 

K is the number of terms in the summation and (x, y) are the Cartesian coordinates of any 

internal point in the domain (not necessarily a node). 

For each cell in the CCFD formulation, the property value of the north, east, south 

and west intersections must be carefully calculated. The intersection may coincide on a 

node, in which case the nodal value is assigned to the intersection, whether the node is a 
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boundary or an internal one. This may occur in an unstructured grid with triangular cells, 

or a hybrid mesh (see Fig. 3.5f). Alternatively, the intersection may lie on a boundary 

face (a face is a line that joins two nodes). In this case the boundary value is directly 

assigned to the intersection, e.g. ׎w = 1 for cell number one in Fig. 3.4. This means that 

the second part of Step b of the solution procedure is only applied when the intersection 

lies on an internal face, and is modified otherwise as explained above. 

For square cells, instead of using the two adjacent cell centres, the intersection 

values can also be calculated by a distance weighted average between the two nodes 

forming the face on which the intersection lies. In this case, the differencing stencil 

incorporates the property values at the corners of the cell. This is equivalent to a nine-

point formula of FV and FE which is derived in [8]. In other words, the CCFD scheme 

uses four "corner" values, while the traditional FD formulation does not. Other methods 

of calculating the intersection values are explained in section 3.4 of this chapter. 

3.2.2 Mesh refinement and solution relaxation 

With the same domain size and boundary conditions mentioned above in section 

3.2, several types of (uniform) grid refinements and cell arrangements have been tested, 

without clustering. The grid arrangements and results for the domain central node value 

are shown in Figs. 3.5a-f. For cell aspect ratio (ߚ = ∆x/∆y) not equal to 1, i.e. non-square 

cells, the accuracy of the solution is reduced for coarse grids. This decrease in accuracy is 

also observed with traditional FD solutions for the same grids. Figures 3.5a and 3.5d 

show the results of refinement in the x-direction, corresponding to cell aspect ratios less 

than 1, i.e,  0.5 = ߚ and 0.25, respectively. In both cases, the value of ׎P is less than the 

exact value of 0.25. This is due to the fact that, for these coarse grids, the solution is too 



 

  23 

heavily influenced by the boundary conditions on the right, bottom and top of the domain 

(all zeros). The non-zero value on the left boundary, which drives the solution away from 

zero, only influences the solution through one node on the left boundary. The exact 

solution can be recovered by inserting additional nodes on the left boundary, as shown in 

Fig. 3.5c. The reverse occurs when the cell aspect ratio is taken greater than 1, as 

illustrated in Figs. 3.5b and 3.5e, where the non-zero left boundary dominates the 

solution. However, with CCFD, for any value of ߚ, grid refinement improves the 

solution. Some typical results are tabulated in Table 3.1. M and N are the number of grid 

points in the x- and y-directions, respectively. 

For a hybrid mesh (a mix of two different cell types in one domain), as shown in 

Fig. 3.5f, ׎P was found to be 0.2518. It should be mentioned here that eqns. (3.8) and 

(3.9) are solved for the property value at the cell centres and nodes respectively. This 

case provides a counterexample to the widely-held argument (cf., e.g. [6]), that the 

bottleneck of the FD formulation is that it cannot handle an unstructured mesh system 

over a complex geometry, because it requires a topologically square network of lines to 

discretize the PDEs. In fact, the present CCFD scheme is able to handle an arbitrary 

unstructured mesh made up of triangular cells or a hybrid mesh comprised of both 

quadrilateral and triangular cells. 
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௣׎ ൌ 0.2518 

P 

(a) (b) (c) 

(d) (e) (f) 

Figure 3.5: Different types of grid arrangement: (a) 5x3 grid, (b) 3x5 grid, (c) 5x5 grid, 
(d) 9x3 grid, (e) 3x9 grid, (f) hybrid grid 

 

 

Table 3.1: Central node values for different aspect ratios and mesh refinements 

β MxN фP iter
0.25 9x3 0.2310 63
0.25 49x13 0.2494 551
0.5 5x3 0.2353 20
0.5 25x13 0.2495 175
1 3x3 0.2500 7
1 13x13 0.2500 94
2 3x5 0.2647 16
2 13x25 0.2505 281
4 3x9 0.2690 63
4 13x49 0.2506 955  
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Table 3.1 indicates that a finer mesh recovers the loss in accuracy created by non-

square cells, although more computation time will be associated with the higher number 

of cells. In this case, an accelerated solution will be desired for the iterative solver. 

Hoffmann and Chiang [10] state that introducing a relaxation factor ߱ into the discrete 

form of the FD approximation of the PDE should accelerate the solution (i.e. reduce the 

number of iterations), provided that 1 ≤ ߱ ≤ 2. In the current research, several grids (with 

rectangular cells) have been tested with a relaxed form of the CCFD scheme, which is 

expressed as: 

 ߮௖௖௡ାଵ ൌ ߮௖௖௡ ൅ ߱ሺ ෤߮௖௖௡ାଵ െ ߮௖௖௡ ሻ (3.11) 

 

where n+1 and n are the current and the previous iteration indices respectively, and the 

tilda indicates the cell-centre value calculated from eqn. (3.8). 

CCFD results for two grid systems are shown in Fig. 3.6, illustrating the 

relationship between the number of iterations required for convergence and the value of 

the relaxation factor. The optimum value for the relaxation factor was found to be 2.56 

and 1.99 for 25x25 and 13x49 grid sizes respectively. 
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(b) 

 
(c) 

Figure 3.6: Effect of relaxation factor for CCFD scheme, (a) 25x25 grid, (b) 13x49 grid, 
(c) 49x13 grid 

 

3.3 Solution of Test Problem 

3.3.1 Uniform grid  

A 25x25 grid has been selected to check many of the important aspects of the 

iterative numerical solution (optimum relaxation factor, number of iterations, average 

absolute error, etc.). A comparison between the exact analytical solution (eqn. (3.10)), the 

CCFD solution and a traditional FD point successive over-relaxation (PSOR) solution is 
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shown in Fig. 3.7. A relative difference between iterations is used for the convergence 

criterion, with tolerance less than or equal to 10E-9 at each node, for both the CCFD and 

PSOR solutions. The equations used for the PSOR scheme can be found in [10] (p.164, 

eqns. (5-18) through (5-20)). The optimum relaxation factor for the PSOR scheme was 

found to be 1.769, which made the solution converge after 86 iterations, while the 

optimum relaxation factor for the CCFD scheme was found to be 2.56 (in a tested range 

of 1.0 to 2.7) with 340 iterations to converge (see Fig. 3.6a). For most of the grid sizes 

that were tested, choosing ߱ beyond this range (1.0 to 2.7) leads to a sudden large 

increase in the number of iterations, as seen in Fig. 3.6c, or even divergence in some 

cases.  

In the FV method, under-relaxation is normally used to control the oscillations in 

an iterative solution of this problem. Majumdar [24] proposed a FV formulation for 

calculating the velocity value at cell faces which preserves a convergent solution, 

independent of the under-relaxation factor and without significant increases in 

computational time. In another word, trials were made to untie available FV formulations 

with the classical relaxation bounds, i.e. (0 < ߱ < 1). Such a decoupling may be possible 

in the CCFD method, but has not been explored in this thesis. 

The average absolute error (for both CCFD and PSOR) over all the interior nodes 

is the difference between the numerical and exact analytical solution. However the 

“accuracy” of the exact solution itself, which is calculated from eqn. (3.10), depends on 

the number of terms (K) that are included in the summation. Figures 3.7d and 3.7e show 

the effect of a high or low number of terms. This leads to variations in the average error 

of CCFD and PSOR. Table 3.2 shows the decrease in the average error as we increase the 
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number of terms in the exact solution (i.e. in eq. (3.10)) without any modification to the 

grid. Naturally, the higher number of terms (K) in a relatively fine mesh (e.g. 49x49) is 

associated with increasing the processing time. However, most importantly, this example 

demonstrates that the CCFD method provides a solution with the same level of accuracy 

as the traditional FD method. 

Table 3.2: Average absolute error for a 25x25 grid for different number of terms (K) in 
the infinite series solution 

K CCFD  PSOR 

7  0.00215 0.00215

11  0.00098 0.00098

33  0.00041 0.00041
 

 

  
(a)               (b) 
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(c)  (d) 

 

(e) 
Figure 3.7: Comparison of exact analytical, PSOR and CCFD schemes for a 25x25 

uniform grid: (a) grid, (b) CCFD solution, (c) PSOR solution, (d) exact solution (K = 33), 
(e) exact solution (K = 7) 

 
The effect of grid refinement on the solution accuracy is shown Fig. 3.8. Three structured 

grids are used for this purpose. 

 

Abs. 
Err. 

 

Rel. 
Err. 

 

 
  (a) (b) (c) 

Figure 3.8: Effect of grid refinement on error distribution: (a) 5x5 grid, (b) 21x21 grid, 
(c) 49x49 grid 
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3.3.2 Clustered grid 

To explore the effect of clustering grid lines toward different directions, first 

some simple cases of clustering are considered on coarse grids, then finer grids are 

considered. Again, the same domain size and boundary conditions mentioned in section 

3.2 will be utilized. Figures 3.9a and 3.9b show the addition of nodes toward the bottom 

and the left boundaries, respectively. One may expect that adding nodes close to the left 

boundary would make the results more accurate, but this is not the case for coarse grids. 

To understand the reason for this, note that in Fig. 3.9a, two nodes lay on the left 

boundary, which is the non-zero boundary, and four nodes fall on the other three zero 

boundaries, giving a ratio of two to four, and a reasonably accurate solution ׎P = 0.2570. 

On the other hand, in Fig. 3.9b the same ratio of nodes is one to five, and the solution ׎P 

= 0.2230 is considerably less accurate. Comparing Fig. 3.9b and 3.9c makes the scope 

more clear, where the ratio of non-zero to zero boundary nodes is changed from 1 by 5 to 

3 by 7, which brings the value of ׎P from 0.2230 to 0.2522. In another word, the number 

of nodes on any boundary reflects the effect of that boundary on interior nodes, implying 

that the number of grid points in each direction must be chosen so that all boundaries 

sufficiently influence the interior solution. However, this significant effect is true for 

coarse grids, and may or may not have the same impact in fine or dense grids.  

With the grid clustered toward the left boundary, as shown in Figs. 3.10a and 

3.10b, the CCFD method shows a close match with the analytical solution (see Figs. 

3.10c and 3.10d). Two types of clustering procedures were used to design these grid 

systems, i) a logarithmic clustering function (Fig. 3.10a), and ii) a clustering scale factor 
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(Fig. 3.10b). Packing the grid to the left boundary using a scale factor α means that the 

ratio of adjacent cell lengths is α, i.e. ∆xi-1 = α∆xi. 

(a) (b) (c) 
 

(d) 

 

Figure 3.9: Clustered grids toward different boundaries: (a) bottom clustered, (b) left 
clustered, (c) left clustered and grid refined, (d) bottom and left clustered 

 

The grid in Fig. 3.10b, which exhibits tight packing at the left boundary, was 

generated with α = 0.8. For some of these types of grids, the cell aspect ratio gets 

extremely small (β < 0.00014 for the 49x25 grid in Fig. 3.10b). Although most other 

numerical solution schemes have difficulty dealing with small (or large) aspect ratios, it 

is interesting to observe that the CCFD scheme can handle this extremely small aspect 

ratio, and produces a highly accurate solution. In this example, clustering also leads to an 

increase in the number of iterations for the CCFD scheme, from 340 iterations for the 

uniform grid with ߱௢௣௧ = 2.56, to 372 iterations for the clustered grid with the same 

relaxation factor. 

P 

௣׎ ൌ 0.2570 

P 

௣׎ ൌ 0.2522
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௣׎ ൌ 0.2384
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(a)       (b) 

 

(c)       (d) 

Figure 3.10: Clustering effect: (a) 25x25 clustered grid, (b) 49x25 clustered grid, (c) 
CCFD solution, (d) exact analytical solution (K = 33) 

 

3.4 Alternative Methods to Calculate Intersection Values 

 There are other methods to calculate the property value at the four intersections (n, 

s, e and w) from cell centres and/or nodes. All of the ones discussed below involve 

distance weighted averaging from the face end nodes and/or cell centres to the 
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intersection. We illustrate these procedures by considering the evaluation of the east (e) 

intersection point in a cell. 

3.4.1 Two cell centres 

 

Figure 3.11: Two cell centres scheme 
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where   ܮ ൌ   ௖௖ݔ| െ 1ܮ     ௘|   andݔ ൌ   ௖௖ଵݔ| െ  .|௘ݔ

3.4.2 Two end points (nodes) of the face 

 

Figure 3.12: Two end nodes of the face scheme 
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3.4.3 Two end nodes of the face and the cell centre 

 

Figure 3.13: Two end nodes of the face and the cell centre scheme 
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where  ܮ ൌ   ௖௖ݔ| െ 1ܮ  ,|௘ݔ ൌ   ௘ݕ| െ 2ܮ      ேଵ|     andݕ ൌ   ௘ݕ| െ  .|ேଶݕ

3.4.4 Control volume  

In this case, we construct a control volume from the two face end points (nodes), the 

current cell centre and the centre of the cell adjacent to the east face. 

 

Figure 3.14: Control volume scheme 
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where   ܮ ൌ   ௖௖ݔ| െ 1ܮ    ,|௘ݔ ൌ   ௘ݕ| െ 2ܮ    ,|ேଵݕ ൌ   ௘ݕ| െ                     ேଶ|  andݕ

3ܮ ൌ   ௖௖ଵݔ| െ  .|௘ݔ

3.4.5 Four vertices of the cell 

 

Figure 3.15: Four vertices scheme 
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Schemes 3.4.2, 3.4.3 and 3.4.5 are more relevant to the core of the CCFD 

formulation, starting from the name CCFD, i.e. all the necessary information for the 

numerical evaluation of the calculated property at the cell centre comes from the current 

cell nodes and/or centre. This feature adheres to an important principle in the 

development of the CCFD method, to treat an unstructured mesh with its simplest 

formulation. In this context, simplest refers to two significant issues in the numerical 

solution of PDEs that govern physical processes. First, these schemes give more 
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flexibility to CCFD to handle an arbitrary number of cells and types that may share a 

single node. Also, it allows the CCFD method to handle cells that possess a number of 

nodes greater than its physical nodes at the cell vertices. These are commonly referred to 

as hanging nodes and occur on the two layers of cells that lay on the interface of a non-

conformal mesh, as illustrated in Fig. 3.16. 

 

Figure 3.16: Node distribution along the vertical interface of a non-conformal mesh 
 

Secondly, these schemes permit easier programming because no information from 

neighbour cells is needed. In the cases where data is needed from out of the cell, like the 

two cell centres method, the neighbouring cells should be identified. This can be done out 

of the solver part of the program, i.e. in the geometry part, in which case more computer 

memory is claimed. Alternatively, if it is kept within the PDE solver, then extensive 

processing time is required with larger meshes. The extra processing time originates from 

the searching process for the second cell that shares the same couple of nodes with the 

current cell, which must be repeated for every iteration of the solution process. To 
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imagine the size of searching, consider a structured grid of square cells with 49 by 49 

nodes. Then, 

No. of internal nodes = (49-2) X (49-2) = 2209 

No. of cells to be evaluated = (No. of internal nodes) X (No. of cells adjacent to each 

node)                                    = 2209 X 4 = 8836 

No. of searches = (No. of cells to be evaluated) X (No. of intersections for each cell) 

    = 8836 X 4 = 35344 

To illustrate this further, see Fig. 3.17 which shows the exponential increase in the 

number of searches as the number of internal mesh points increase. 

  

Figure 3.17: Number of searches for one iteration 
 

A grid of 13x13 nodes was selected to compare the results of these five methods for 

evaluating the intersections values. The boundary value problem described in section 3.2 

has been solved using each of these five schemes. For comparison to the exact solution, 
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three horizontal rows of grid points (nodes) are selected. These three rows are: the second 

row of nodes from the lower boundary (y = 0.08333), in the middle of the domain (y = 

0.5), and the second row of nodes from the top boundary (y = 0.91667). Property values 

from the left to the right boundary along these three rakes are shown in Fig. 3.18. For a 

uniform grid, corresponding to the data presented in Fig. 3.18, these graphs show that all 

five schemes have good accuracy (compared with the exact solution). However, further 

simulation tests have shown that, for grid systems with high and low cell aspect ratios, 

the two cell centres, two nodes and control volume schemes were more accurate than the 

other two schemes. As for convergence speed, the two cell centres scheme was always 

the fastest (i.e. converged with less number of iterations) compared with rest of the 

schemes. For this reason, the two cell centres scheme will be used to calculate the 

intersection values for all the problems in Chapter IV and Chapter V. 
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(b) 

 

(c) 

Figure 3.18: Comparison of five methods used to calculate the intersection values for a 
uniform 13x13 grid. Solution along horizontal lines: (a) y=0.08333, (b) y=0.5, (c) 

y=0.91667 
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CHAPTER IV 

ANALYSIS OF FURTHER VERIFICATION TESTS 
 

4.1 Introduction 

In this chapter the CCFD method is implemented on three additional test 

problems that have been investigated by other researchers using other numerical 

methodologies. These three test cases are meant to explore the extendibility of the 

proposed CCFD scheme to other types of PDEs and boundary conditions. The 

investigations that have been reported in Chapter III are not all repeated for each 

problem. However, some aspects will be summarized in tables and/or presented in 

contour plots. 

4.2 Poisson's Equation with Dirichlet Boundaries 

Winslow [35] used Poisson's equation to test and explain a new numerical scheme 

over a triangle mesh. Therefore, to further test the CCFD method, a boundary value 

problem for the Poisson equation has been selected from [36]. The domain is a 1 unit x 

0.5 unit rectangle, subject to a variable Dirichlet condition at the bottom boundary, and 

constant Dirichlet conditions on the rest of the boundaries. The PDE to be solved is 

 ߲ଶ׎
ଶݔ߲

൅
߲ଶ׎
ଶݕ߲

ൌ െ൫2 ൅ ሺ1ݔଶߨ െ ݏ݋ሻ൯ܿݔ ሺݕߨሻ  (4.1)

with solution domain and boundary conditions as illustrated in Fig. 4.1. This boundary 

value problem has an exact analytical solution which is also provided in [36], given by 

,ݔሺ׎  ሻݕ ൌ ሺ1ݔ െ ሻݔ ሻݕߨሺݏ݋ܿ (4.2)
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Figure 4.1: Poisson BVP 
 

All the parameters and solution aspects investigated for the first test case in 

sections 3.2 and 3.3 can also be applied to this case. However, only the effects of grid 

refinement and relaxation factor are shown in Table 4.1. This problem has an exact 

analytical solution given by eqn. (4.2) and therefore both CCFD and PSOR (traditional 

FD method) solutions can be compared to the analytical solution. The last two pairs of 

columns in Table 4.1, absolute maximum error and relative maximum error, show that for 

all the tested grids, CCFD is more accurate than the traditional PSOR. As for the number 

of iterations, with the same convergence criterion, CCFD needs more iterations to 

converge.  

Table 4.1: Effect of different grid sizes and relaxation factors for the Poisson equation 
test problem 

MxN 
Num. of Iter. Omega Opt AbsMaxErr RelMaxErr 

CCFD PSOR CCFD PSOR CCFD PSOR CCFD PSOR 

5x3 12 8 1.575 1.033 0.04930 0.07856 0.4161 0.8562

5x5 17 14 1.825 1.172 0.04822 0.07922 0.4706 1.1841

9x5 23 19 2.075 1.267 0.04248 0.07980 0.4368 1.3560

9x9 54 28 2.200 1.447 0.04297 0.08051 0.4492 1.4653

17x9 67 37 2.450 1.533 0.04111 0.08067 0.4526 1.5987

17x17 193 56 2.200 1.674 0.04155 0.08187 0.4555 1.6282

்׎ ൌ 0

௅׎ ൌ 0  ோ׎ ൌ 0 
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CCFD   

PSOR   

Exact   

AbErCC   

AbErSOR   

  (a)     (b) 

Figure 4.2: CCFD solution, PSOR solution, exact analytical solution, absolute error of 
CCFD and absolute error of PSOR, (a) 17x9 grid, and (b) 17x17 grid 

 

Solution contours for two grid arrangements, 17x9 and 17x17, are shown in Fig. 

4.2. Both grids demonstrate that the CCFD scheme generates solutions with a higher 
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degree of accuracy than the traditional FD method. This conclusion is typical of other 

grid arrangements applied to this BVP. 

 

4.3 A Combination of Dirichlet and Neumann Boundaries 

A worked example from [37] has been selected to further verify the CCFD 

scheme. In this example, the governing PDE is the Laplace equation and the solution 

domain has a derivative (Neumann) condition at the bottom boundary, while the rest of 

the boundaries are Dirichlet. Since there is no analytical solution available for this 

particular example, the CCFD solution will be compared with the PSOR (traditional FD) 

solution. Figure 4.3 shows the problem domain and boundary conditions. 

Figure 4.3: Combination of Dirichlet and Neumann boundaries 
 

The domain is a 4 x 4 square. To handle the derivative condition along the lower 

boundary, a second-order forward differencing has been used to approximate ׎s for the 

layer of cells attached to the bottom boundary, i.e., 
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or ׎௦ ൌ
1
3
൭4׎௖௖ െ ௡׎ െ

ௌ׎߲
ݕ߲

ሺݕ௡ െ  ௦ሻ൱ݕ (4.4)

The new calculated value of ׎s from eqn. (4.4) is used in eqn. (3.8), which approximates 

 :௖௖ using a second-order central differencing. Recall eqn. (3.8)׎

 ܽ௖௖׎௖௖ ൌ ܽ௪׎௪ ൅ ܽ௘׎௘ ൅ ܽ௦׎௦ ൅ ܽ௡׎௡  (4.5)

Substituting eqn. (4.4) in (4.5), and re-arranging the equation for ׎௖௖, the resulting finite 

difference equation can be written as, 
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ܽ௦ݕ߂
ௌ׎߲
ݕ߲

3
൲  (4.6)

where the coefficients acc, aw, ae, an and as are given by eqn. (3,8). Equation (4.6) is 

solved for the cells attached to the bottom Neumann boundary. A typical Neumann 

boundary cell is shown in Fig. 4.4. 

Figure 4.4: Typical cell adjacent to bottom Neumann boundary 
 

The solution procedure for all the interior nodes is exactly the same as explained 

in section 3.2.1. After the solution is converged, the property value at the Neumann 

boundary nodes should be evaluated. For this evaluation, three different schemes have 
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been tested to approximate the nodal values, using two cell centre values that share that 

node, left-cell east value and the node on top, or simply two nodes inside. All three 

schemes are shown in Fig. 4.5. The last two methods are second-order forward 

differencing, while the first uses a weighted averaging from adjacent cell centre values. 

(a)     (b)    (c) 

Figure 4.5: Three different methods for calculating Neumann nodes: (a) two cell centre 
method, (b) 2nd-order forward differencing within the cell, (c) 2nd-order forward 

differencing with two nodes 
 
 

To compare these three methods, consider a 5x5 grid. Figure 4.6 shows the three 

bottom boundary nodes which are calculated with three different approximation schemes, 

using the converged or updated values for the interior locations. Both the two cell centre 

and two node methods show close results to the traditional FD formulation solved by the 

Gauss-Seidel (GS) method. However, the two node method is easier to compute and 

more logical or closer to the traditional FD scheme. Therefore, it will be used in any 

subsequent calculations where a Neumann boundary exists. 
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Figure 4.6: Results for three Neumann boundary nodes in a 5x5 grid, comparison of 
results between GS and three approximation methods 

 

Different grids with uniform rectangular cells have been tested. They all show good 

agreement between the CCFD results and the traditional FD results. The absolute 

difference between CCFD and the traditional FD results, averaged by the number of 

interior nodes, reduces by refining the grid, as shown in Table 4.2. Figure 4.7 presents 

two grids with their corresponding results. 

 

Table 4.2 : Average absolute difference between CCFD solution and traditional GS 
solution for different grid sizes 
MxN AveAbsDifCCFD_GS
5x5 0.36909 
9x9 0.40683 

17x17 0.24465 
9x17 0.22978 
9x33 0.11958 
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  Grid    CCFD    GS 

 

Absolute Diff. CCFD vs. GS      Relative Diff. CCFD vs. GS 

(a) 

 

    Grid    CCFD    GS 
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Absolute Diff. CCFD vs. GS      Relative Diff. CCFD vs. GS 

(b) 

Figure 4.7: Grid, CCFD solution, GS solution, absolute and relative differences for 
CCFD vs. GS, (a) 25x25 grid, (b) 21x41 grid 

 

From the two grids shown in Fig. 4.7 it was found that the maximum difference 

between CCFD and GS decreases from 0.85 for the 25x25 grid to 0.5 for the 21x41 grid. 

Similarly, the maximum relative difference drops from 0.02 to 0.013. This suggests that 

clustering the grid, particularly towards the bottom boundary, may improve the solution. 

4.3.1 Grid clustering 

Two non-uniform grids, 21x41 and 25x25, were selected to study the effect of 

grid clustering on the final solution, and also to check the limits of the CCFD scheme 

with highly clustered grids close to Neumann boundaries. Since the Dirichlet boundary 

values at the left, right and top boundaries are different, clustering grid lines toward all 

boundaries should yield better results. Figures 4.8a and 4.8b show both grids and the 

corresponding solution contours.  It is important to note that the traditional FD method is 

not straightforward to apply here, because it requires a grid transformation to a uniformly 

spaced grid system to maintain the accuracy of the scheme.  
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   (a)     (b) 

Figure 4.8: Clustered grid toward all boundaries: (a) 25x25 grid and its solution, (b) 
21x41 grid and its solution 

 

To check the CCFD bounds with clustering close to only Neumann boundaries, 

the 21x41 grid is used with a range of different clustering scale factors, i.e. α equal to 

0.99, 0.97, 0.95, 0.92, 0.90, 0.87, 0.85, 0.82 and 0.8. The 0.99 factor generates almost a 

uniform grid, which doesn't show much change in the solution contours. However, for 

smaller values of the scale factor, like α = 0.82, the solution contours tend to have sharper 

edges in the upper half of the domain, because only four rows (out of 41 rows) of grid 

points cover that region, i.e. the grid is really coarse in that part of the domain. Figure 4.9 

shows the grids and their solution contours for scale factors 0.9 and 0.82. 
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   (a)     (b) 

Figure 4.9: Clustered 21x41 grid toward the Neumann boundary: (a) α = 0.99 grid and its 
solution, (b) α = 0.82 grid and its solution 

 

The computation time increases rapidly with decreasing value of the clustering 

scale factor. The number of iterations jumps from a couple hundred for α = 0.99 to more 

than ten thousand iterations for α = 0.82. The conclusion drawn from this numerical 

experiment is that excessive clustering close to Neumann boundaries does not necessarily 

improve the final CCFD solution and, in fact, it increases the processing time or may 

even cause divergence. 
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4.4 Convection-Diffusion PDE 

A boundary value problem from [38] is selected to test the CCFD scheme to 

simulate a PDE that includes both convection and diffusion terms. The domain is a unit 

square, subject to Dirichlet boundaries all around. The boundary values are zero, except 

for the left boundary which has a non-zero parabolic profile. The problem is described by 

 
߲ଶ׎
ଶݔ߲

൅
߲ଶ׎
ଶݕ߲

ൌ ܲ ߠݏ݋ܿ
׎߲
ݔ߲

൅ ܲ ߠ݊݅ݏ
׎߲
ݕ߲

  (4.7)

with boundary conditions, 

 
,ݔሺ׎ 0ሻ ൌ 0, ,ݔሺ׎ 1ሻ ൌ 0,

,ሺ0׎ ሻݕ ൌ ሺ1ݕ4 െ ,ሻݕ ,ሺ1׎ ሻݕ ൌ 0, 

0 ൑ ݔ ൑ 1 

0 ൑ ݕ ൑ 1 

This problem represents the convection of ׎ by a fluid moving with a uniform 

velocity at an angle ߠ to the x-axis, where ׎ is also allowed to diffuse with a constant 

diffusion coefficient. This problem has an exact solution, given by [38] 

,ݔሺ׎  ሻݕ ൌ ݁௉ሺ௫ ௖௢௦ఏା௬ ௦௜௡ௗఏሻ/ଶ ෍ܤ௡ ௡ሺ1ߪሺ݄݊݅ݏ െ ሻሻݔ
ஶ

௡ୀଵ

 ሻݕߨሺ݊݊݅ݏ (4.8)

where ߪ௡ଶ ൌ ݊ଶߨଶ ൅ ܲଶ/4 

and ܤ௡ ൌ
8

௡ሻߪሺ݄݊݅ݏ
න ሺ1ݕ െ 1ሻ݁ିሺ௉ ௦௜௡ఏ ௬ሻ/ଶ݊݅ݏሺ݊ݕߨሻ ݀ݕ
ଵ

଴
 

For this problem, the CCFD method uses second-order accurate central 

differencing to approximate the diffusion terms ׎௫௫ and ׎௬௬, and first-order accurate 

upwind differencing for the convective terms ׎௫ and ׎௬. Because the direction of flow is 

constant, i.e. the convective velocity always has positive components, the convective 

terms will be backward differenced at all cell centres. 

In [38], numerical results calculated by UDS (upwind differencing scheme), CDS 

(central differencing scheme) and SCHOS (single cell high order scheme) are tabulated in 
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terms of the maximum absolute difference with the exact solution. For purposes of 

comparison, CCFD results will be based on the same input values for P, grid size and 

flow angle. However, to show the capabilities of the current scheme, only a 17x17 grid at 

two angles, 0 and 8/ߨ, are considered. The results are shown in Table 4.3. 

Table 4.3: Comparison of accuracy of CCFD results with other numerical schemes for the 
convection-diffusion PDE with P = 40 

 UDS CDS SCHOS CCFD ߠ

0 0.1604 0.1532 0.01323 0.3681 

 0.41 0.01019 0.1286 0.2268 8/ߨ

 

To further verify the CCFD formulation, and since Reference [38] doesn't provide 

information for other values of P or ߠ, CCFD solutions will be compared with the 

traditional FD method and the exact solution. For large angles, such as 45 = ߠo, and high 

P values such as P = 500, the exact solution represented by the infinite series (4.8) seems 

to be not accurate, or even not realistic, as seen in Tables 4.4 and 4.5. This is likely due to 

convergence difficulties with the infinite series [39]. In this case, the CCFD results 

should be directly compared with the traditional FD results. 

Table 4.4: Absolute maximum difference between CCFD and exact analytical solution 

 P=10 P=500 ߠ

0o 0.209 0.0768 

10o 0.211 exact failed 

22.5o 0.202 exact failed 

45o 0.173 exact failed 
 
 
As illustrated in Tables 4.4 and 4.5, for high P values, even with small flow 

angles, the exact analytical equation does not present a correct solution. It should be 

mentioned that, even with low values of P and ߠ, the analytical solution assigns non- 
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Table 4.5: CCFD, GS and analytical solution contours for different values of P and θ 

P ߠ CCFD GS Exact 

40 0o 

10 

10o 

  

22.5o 

500 

10o 

45o 
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realistic values to the interior nodes when a large number of terms are taken in the infinite 

series (eqn. (4.8)). In another words, for each of the evaluated cases, the appropriate 

number of terms in the series must be determined by trial and error. 

4.5 Summary of Results 

 The examples in this chapter have been chosen as test problems to represent 

important aspects of the numerical solution of boundary value problems, and determine 

the capability of the CCFD scheme to deal with these aspects. The results of this 

investigation provide verification that the CCFD method can simulate diffusion and 

convection-diffusion phenomena with Dirichlet and Neumann boundary conditions. The 

lessons learned in this study will serve as guidelines for the simulation of fluid flow 

considered in the next chapter. 
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CHAPTER V 

INCOMPRESSIBLE FLOW OVER A BACKWARD-FACING STEP 

5.1 Introduction 

A well-known benchmark CFD problem, the steady incompressible laminar flow 

over a backward-facing step, will be investigated in this chapter using the CCFD 

approach. This is an important test case for any numerical scheme since, even though the 

geometry is simple, the flow physics is complex. In particular, the flow detaches at the 

sharp corner of the step, forms a large recirculating region behind the step, and then 

reattaches to the lower wall further downstream. As the flow Reynolds number increases, 

the reattachment point moves further away from the step and small separation pockets 

begin to form along the upper wall. 

Armaly et al. [40] has conducted experiments on flow over the backward-facing 

step and shown that the laminar flow transitions to turbulent flow at a Reynolds number 

of around 1200. He has also demonstrated that, at the higher Reynolds numbers in the 

laminar regime between 400 and 1200, the adverse pressure gradient along the upper wall 

is sufficiently strong to promote the development of a secondary recirculation zone 

attached to the upper wall, which suppresses the growth of the lower eddy. Measurements 

and numerical predictions begin to deviate from each other at a Reynolds number of 

about 400. According to Armaly et al. [40], these deviations are due to the fact that the 

flow is inherently 3-dimensional for Reynolds number greater than 400, while the 

numerical simulations are all based on 2-dimensional models. 

In this chapter, the flow over a backward-facing step is modeled using the 

vorticity-streamfunction formulation of the steady incompressible Navier-Stokes 
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equations. This formulation has been used by many researchers to test their numerical 

algorithms, primarily because it eliminates the problems associated with velocity-

pressure coupling and the lack of a physical boundary condition for pressure on the walls.  

 

5.2 The Governing Equations 

Mathematically, vorticity is defined as the curl of the velocity field. In fluid 

mechanics, vorticity is the tendency of fluid elements to spin. Vorticity can be related to 

the amount of circulation in a fluid or, at a fluid point, it is twice the angular velocity. In 

vector form it can be written as 

 ሬ߱ሬԦ ൌ ׏ XሬܸሬሬԦ (5.1)

where ሬܸԦ ൌ ሺݑ,  .ሻ is the velocity vectorݒ

In a 2-dimensional flow, only the component of vorticity in the direction normal to the 

plane of flow is non-zero, given by 

 ߱ ൌ
ݒ߲
ݔ߲

െ
ݑ߲
ݕ߲

 (5.2)

Now, consider the 2D steady incompressible Navier-Stokes equations in the 

dimensional, nonconservative form, 

continuity eqn. 
ݑ߲
ݔ߲

൅
ݒ߲
ݕ߲

ൌ 0 (5.3)

x-momentum eqn. ݑ
ݑ߲
ݔ߲

൅ ݒ
ݑ߲
ݕ߲

ൌ
െ1
ߩ
݌߲
ݔ߲

൅ ߥ ቆ
߲ଶݑ
ଶݔ߲

൅
߲ଶݑ
ଶݕ߲

ቇ (5.4)

y-momentum eqn. ݑ
ݒ߲
ݔ߲

൅ ݒ
ݒ߲
ݕ߲

ൌ
െ1
ߩ
݌߲
ݕ߲

൅ ߥ ቆ
߲ଶݒ
ଶݔ߲

൅
߲ଶݒ
ଶݕ߲

ቇ  (5.5)
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The pressure term in the momentum equations can be eliminated by cross-differentiation, 

i.e. differentiate eqn. (5.4) with respect to y and eqn. (5.5) with respect to x. Subtracting 

the resulting equations and substituting eqn. (5.2) and (5.3) yields an elliptic PDE known 

as the vorticity transport equation, 

vorticity eqn. ݑ
߲߱
ݔ߲

൅ ݒ
߲߱
ݕ߲

ൌ ߥ ቆ
߲ଶ߱
ଶݔ߲

൅
߲ଶ߱
ଶݕ߲

ቇ (5.6)

The details of this derivation can be founded in many CFD textbooks. 

For 2D steady flows, the streamfunction ߰ can be introduced, which ensures 

conservation of mass by satisfying the continuity equation. It is especially convenient 

since it can be used to plot streamlines. The streamlines should hold constant values of 

streamfunction ߰, and the difference between any two streamfunction values gives the 

volumetric flow rate between the two streamlines corresponding to those values of the 

streamfunction. In Cartesian coordinates, the velocity components of an incompressible 

flow can be written in terms of streamfunction as 

ݑ  ൌ డట

డ௬
ݒ     ,   ൌ െడట

డ௫
 (5.7)

Direct substitution of (5.7) into (5.2) yields 

 
߲ଶ߰
ଶݔ߲

൅
߲ଶ߰
ଶݕ߲

ൌ െ߱ (5.8)

Equation (5.8) is known as the streamfunction equation and is classified as an elliptic 

(Poisson) PDE. 

Developers of numerical algorithms for CFD often use the vorticity-

streamfunction formulation. The main advantage of this formulation is that the pressure 

doesn't appear in either equation, which is due to introducing the new dependent 



 

  58 

variables ߰ and ߱. This leads to recasting the steady Navier-Stokes equations into two 

elliptic equations, which can be solved sequentially by any iterative scheme to provide 

the velocity field. If the pressure field is desired, then a Poisson equation for pressure can 

be formulated and solved subsequently. A major drawback of this formulation is the 

difficulty to extend it to three dimensions. Also, in this formulation, the vorticity at the 

boundaries needs to be numerically calculated due to the lack of physical boundary 

conditions on vorticity. 

5.3 Discretization of the Governing Equations 

Going back to the essence of the CCFD scheme, which is approximation of the 

PDE at the cell centre, demands the visualization of the differencing stencil in a typical 

interior cell. For this purpose two model quadrilateral cells are shown in Fig. 5.1, one for 

vorticity and another for streamfunction. Both cells are in the (ߟ ,ߦ) coordinates (Δߦ = Δߟ 

= 1), which takes care of any arbitrary cell shape, as explained in the first section of 

Chapter III. Therefore, the discretized FD equations will be valid for any cell within the 

physical domain, regardless of cell type or location. 

(a)     (b) 

Figure 5.1: Differencing stencil for (a) vorticity, (b) streamfunction 
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߱௡

߱௘߱௪ 
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First, the velocity components u and v need to be evaluated at the cell centre. 

Using eqn. (5.7) along with eqn. (3.3) (chain rule) and eqn. (3.7) (second-order central 

differencing for the derivatives) yields, 

௖௖ݑ  ൎ
1
Ԣݕ2

ሺ߰݊ െ  ሻݏ߰

(5.9)

௖௖ݒ  ൎ െ
1
Ԣݔ2

ሺ߰௘ െ ߰௪ሻ

where x' and y' are geometrical quantities given by eqn. (3.4). 

For the vorticity transport equation (5.6), the convection terms 
డఠ

డ௫
 and 

డఠ

డ௬
 are 

approximated with upwind differencing. That is, the differencing is either backward or 

forward, based on the direction of the flow, i.e. the signs of the velocity components u 

and v. An upwind scheme simulates the physics of the problem more properly, because it 

uses a solution-sensitive FD stencil. Numerically, upwind schemes add artificial viscosity 

to the discretized PDE, which damps out oscillations and makes the solution more stable. 

In this study, first-order upwinding is employed. After mapping the convection 

derivatives to the (ߟ ,ߦ) coordinates, one can combine both backward and forward 

approximations into a single upwinding equation [10]. For example,  

 
߲߱
ߦ߲

ൎ ሺ1 െ ߳௫ሻ
߱௘െ߱௖௖
2Δߦ

൅ ሺ1 ൅ ߳௫ሻ
߱௖௖െ߱௪
2Δߦ

 (5.10)

where the value of ߳௫ is based on the sign of u-velocity. If u is positive, ߳௫ is set to 1 and 

backward differencing is employed. If u is negative, ߳௫ is set to -1 and forward 

differencing is employed. This means that eqn. (5.10) maintains the selective direction of 

differencing. A similar expression can written for  
డఠ

డఎ
. Collecting the results thus far, the 

convection terms in the discretized form of eqn. (5.6) can be expressed as 
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ݑ 
߲߱
ݔ߲

ൎ
௖௖ݑ
Ԣݔ2

ൣሺ1 െ ߳௫ሻሺ߱௘െ߱௖௖ሻ ൅ ሺ1 ൅ ߳௫ሻሺ߱௖௖െ߱௪ሻ൧ 

(5.11)

ݒ 
߲߱
ݕ߲

ൎ
௖௖ݒ
Ԣݕ2

ൣሺ1 െ ߳௬ሻሺ߱௡െ߱௖௖ሻ ൅ ሺ1 ൅ ߳௬ሻሺ߱௖௖െ߱௦ሻ൧ 

The diffusion terms in the vorticity transport equation (5.6), ie. ׏ଶ߱, are 

discretized similar to the Laplace equation (3.5). The resultant finite difference equation 

for the vorticity can be written similar to eqn. (3.8). However, the coefficients now 

include both convection and diffusion terms. After simplification, the vorticity transport 

equation can be approximated as,  

 ܽ௖௖௏௢௥߱௖௖ ൌ ܽ௪௏௢௥߱௪ ൅ ܽ௘௏௢௥߱௘ ൅ ܽ௦௏௢௥߱௦ ൅ ܽ௡௏௢௥߱௡ 

(5.12)

where 
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and the coefficients ܽ௪, ܽ௘, ܽ௦ and ܽ௡ are given by eqn. (3.8). 

Discretization of the streamfunction equation (5.8) is quite similar to the 

derivations in eqns. (3.5) through (3.8), except that the right hand side is െ߱௖௖ instead of 

zero. Therefore, eqn. (3.8) can be recast for the streamfunction as, 

 ܽ௖௖ௌ௧௥߰ܿܿ ൌ ܽ௪ௌ௧௥߰௪ ൅ ܽ௘ௌ௧௥߰௘ ൅ ܽ௦ௌ௧௥߰௦ ൅ ܽ௡ௌ௧௥߰௡ െ ቀ
െ߱ܿܿ

8
ቁ (5.13)
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௘ݔ െ ௖௖ݔ
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ሺݔ௘ െ ௪ሻଷݔ

 

ܽ௦ܵݎݐ ൌ
௡ݕ െ ௖௖ݕ
ሺݕ௡ െ ௦ሻଷݕ

, ܽ௡ܵݎݐ ൌ
௖௖ݕ െ ௦ݕ
ሺݕ௡ െ ௦ሻଷݕ

 

 

5.4 Problem Geometry and Boundary Conditions 

A typical backward-facing step is shown in Fig. 5.2. 

Figure 5.2: Backward-facing step domain and boundary conditions on primitive variables 
 

Boundary conditions for the velocity components u and v: 

 inflow: parabolic flow, ݑ ൌ ,ሻݕሺݑ ݒ ൌ 0.  

 outflow: fully developed with Neumann boundary condition. 

 step, bottom wall and top wall: no-slip stationary wall. 

At the inlet, the volumetric flow rate can be defined as 

 ሶܳ ൌ ሺܪ െ ݄ሻݑ௔௩௘ (5.14)

where H and h are the height of the channel and the step respectively, as illustrated in 

Fig. 5.2, and ݑ௔௩௘ is the average inlet u-velocity. The flow rate can be written in terms of 

Reynolds number as 

H

h 
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inflow 
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 ሶܳ ൌ ߥ ܴ݁ (5.15)

 From eqn. (5.14) and (5.15), 

௔௩௘ݑ  ൌ
ߥ ܴ݁

ሺܪ െ ݄ሻ
 (5.16)

This ݑ௔௩௘ can be used in the fully developed parabolic profile at the inlet, which can then 

be written as 

௜௡௟௘௧ݑ  ൌ
6 ௔௩௘ݑ
ሺܪ െ ݄ሻଶ

ሺݕ െ ݄ሻሺܪ െ ሻ (5.17)ݕ

where y is the y-coordinate of any point at the inlet. If the channel length is long enough 

downstream, then the flow should return to the fully developed profile, given by,  

௢௨௧௟௘௧ݑ  ൌ
6 ሺܪ െ ݄ሻݑ௔௩௘

ଷܪ ݕ ሺܪ െ ሻ (5.18)ݕ

5.4.1 Boundary conditions for streamfunction 

For the streamfunction at the inlet, v = 0 and ݑ ൌ ߰௬, or, 

 ߰௬ ൌ
6 ௔௩௘ݑ
ሺܪ െ ݄ሻଶ

ሺݕ െ ݄ሻሺܪ െ ሻ (5.19)ݕ

Integrating (5.19) from h to y yields, 
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ቈെ݄ݕܪ ൅
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ଷݕ

3
቉ ൅

ܪ௔௩௘݄ଶሺ3ݑ െ ݄ሻ
ሺܪ െ ݄ሻଶ

 (5.20)

where ߰௛ is the streamfunction value along the step and the bottom wall, and can be 

assigned any value. For the top wall, ߰ு needs to be calculated. This can be done by 

integrating (5.19) from h to H, which reduces eqn. (5.20) to 

 ߰ு ൌ ߰௛ ൅ ሺܪ െ ݄ሻݑ௔௩௘ (5.21)

If we take ߰௛ = 0, H = 1 and h = H/2, then, 

 ߰ு ൌ ௔௩௘ (5.22)ݑ0.5
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 ߰௜௡௟௘௧ ൌ ௔௩௘ሺ2.5ݑ െ ݕ12 ൅ ଶݕ18 െ  ଷሻݕ8 (5.23)

 

For Re = 50, the u-velocity and streamfunction profiles at the inlet are shown in Fig. 5.3. 

 

Figure 5.3: Velocity and streamfunction inlet profiles for Re = 50 
 

At the outlet, since it is a Neumann boundary, the streamfunction value is 

numerically calculated using backward differencing to the inner nodes and/or cells. 

Figure 5.4 shows a summary of the streamfunction boundary conditions. 

 

Figure 5.4: Streamfunction boundary conditions 
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5.4.2 Boundary conditions for vorticity 

The vorticity is numerically evaluated at all boundaries by using vorticity 

definition, given by eqn. (5.2). At the inlet, ݑ௬ can be evaluated by differentiating the 

exact velocity profile at the inlet, eqn. (5.18), and ݒ௫ can be approximated using a first-

order forward differencing to the inner cell centre or node. Since the CCFD scheme uses 

intersection points at the boundaries rather than the physical boundary nodes, therefore 

vorticity at the cell centres adjacent to the inlet will be used to calculate ݒ௫ for the inlet 

and the step. For H = 1 and h = 0.5, the resulting vorticity at the inlet for the west 

intersections can be written as, 

 ߱௜௡௟௘௧ ൌ ௔௩௘ሺെ3ݑ12 ൅ ሻݕ4 ൅
௖௖ݒ
Δݔ

 (5.24)

Recall that all walls are no-slip stationary walls, i.e. u = v = 0 on the walls. Along the 

step, ݑ௬ = 0, therefore eqn. (5.2) reduces to ߱ ൌ  ௫, which can be handled similar to theݒ

inlet case, i.e., 

 ߱௦௧௘௣ ൌ
௖௖ݒ
Δݔ

 (5.25)

For the top and bottom walls, ݒ௫ = 0, and ߱ ൌ െݑ௬. Then, for the north (top wall) and 

south (bottom wall) intersections, the vorticity is approximated by the cell-centre value of 

the cell adjacent to the boundary, 

 ߱௧௢௣ ൌ
௖௖ݑ
Δݕ

, ߱௕௢௧௧௢௠ ൌ െ
௖௖ݑ
Δݕ

 (5.26)

At the outlet Neumann boundary, the vorticity is numerically calculated using backward 

differencing to the inner nodes and/or cells. Figure 5.5 shows a summary of the vorticity 

boundary conditions. 
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Figure 5.5: Vorticity boundary conditions 

5.5 Solution Procedure and Results 

The solution procedure starts with initializing ߰ and ߱ at all cell centres. Then, for an 

individual cell: 

a) compute ߰ and ߱ at the intersections e, w, n, s. 

b) compute ݑ௖௖ and ݒ௖௖ from eqn. (5.9). 

c) compute ߱௖௖ from eqn. (5.12). 

d) compute ߰௖௖ from eqn. (5.13). 

The above steps are repeated for all the cells around each node, and the nodal value is 

updated using eqn. (3.9). The same procedures are performed for all the interior nodes, 

completing the first iteration. Then the whole process is repeated until the convergence 

criterion is satisfied. 

Results for Re = 50, 100 and 200 are compared with the experimental results of 

Armaly et al. [40], and the numerical results of Barton [41] and Zogheib and Barron [42]. 

All grids are structured with quadrilateral cells, with H = 1 and h = 0.5. The length of the 

channel (L) is extended with higher Reynolds numbers to ensure a fully developed 

profile. CCFD results are based on a relative difference ((߰௡௘௪ െ ߰௢௟ௗ)/ ߰௡௘௪) < 10-6. 
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One of the key parameters to compare results, which is reported by both numerical and 

physical experimentalists, is the reattachment length, shown by Xr in Fig. 5.6. 

 

Figure 5.6: Reattachment length Xr 

 

Table 5.1 and Fig. 5.7 show the results of the CCFD scheme along with other 

numerical and experimental results. The comparison of CCFD accuracy with other 

numerical schemes, for example Zogheib and Barron FOU[42] (which uses first-order 

upwind), and the experiments reported by Armaly et al. [40], demonstrate that the current 

scheme performs as well as other numerical schemes. Table 5.2 shows the ratio of 

reattachment length of these numerical schemes to the experimental lengths reported by 

Armaly et al. [40]. 

Table 5.1: Reattachment lengths for CCFD scheme compared to experimental data and 
other numerical methods 

Re 50 100 200 
Armaly et al. [40] 1.16 1.7 2.6 

Barton[41] 1.8 2.6 
Zogheib & Barron 

(FOU) [42] 
0.99 1.6 2.5 

Zogheib & Barron 
(SOU) [42] 

1.02 1.7 2.7 

CCFD 0.93 1.5 2.4 
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Figure 5.7: Reattachment length Xr as a function of Reynolds number 
 

Table 5.2: Comparing the accuracy of the CCFD scheme 
Re 50 100 200 

Zogheib & Barron 
(FOU) [42] 

0.8534 0.9412 0.9615 

CCFD  0.8017 0.8824 0.9231 
 

To confirm that the results improve with finer grids, a series of mesh refinements 

were performed for Re = 50. As illustrated in Fig. 5.8, after several refinements Xr 

improves slower or is less affected by further refinements. In another words, the CCFD 

scheme tends to become grid independent after a certain degree of numerical accuracy. 
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Figure 5.8: CCFD grid sensitivity for Re = 50 
 

 

Table 5.3: Details of the grid refinement cases simulated by CCFD 
Re MxN Length num. cell /1000 Xr 
50 121x31 3.75 3.6 0.817 
50 201x51 3.75 10 0.860 
50 211x81 3.75 16.8 0.903 
50 231x101 3.75 23 0.914 
50 251x101 3.75 25 0.917 
50 251x121 3.75 30 0.922 
50 301x121 3.75 36 0.927 
50 351x121 3.75 42 0.929 
50 451x121 3.75 54 0.934 

100 121x31 5 3.6 1.249 
100 211x81 5 16.8 1.440 
100 251x101 5 25 1.468 
100 451x101 5 45 1.498 
200 151x31 7.5 4.5 1.918 
200 501x101 7.5 50 2.414 
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Table 5.3 includes reattachment lengths for the tested grid sizes and channel 

lengths for Re = 50, 100 and 200. The CCFD results listed in Table 5.1 are highlighted 

for reference (Re = 50, 100, 200). Further grid refinement is necessary for Re = 300 and 

400 to capture the Xr more accurately. 

 

 (a) 

 

(b) 

 

(c) 

Figure 5.9: Streamlines for: (a) Re = 50, (b) Re = 100, (c) Re = 200 
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The domain lengths listed in Table 5.3 are determined based on the ratio of the 

computed maximum u-velocity at the outlet to the exact maximum velocity at the outlet, 

which is calculated from eqn. (5.18). By ensuring this ratio close to one, the 

computational domain can be considered long enough to have fully developed outflow. 

For example, for Re = 100 and 200 these ratios were 0.9925 and 0.9996 respectively. 

Figure 5.9 shows the streamlines for each Reynolds number. 

 

5.6 Summary 

A system of coupled, nonlinear PDEs, modeling incompressible steady flow over 

a backward-facing step, has been solved with the CCFD method. The simulation results 

for low Reynolds numbers are in good agreement with the other numerical schemes 

and/or experimental results. It is expected that finer grids will capture the flow field more 

accurately for higher Reynolds number. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

A Cell-Centred Finite Difference (CCFD) method has been developed and 

initially applied to solve a model elliptic equation to investigate various important aspects 

of any new CFD algorithm. By comparing the CCFD results with analytical solution 

and/or traditional FD schemes, the proposed methodology shows good behaviour with 

grid refinement (even for high/low cell aspect ratios). Also, more accurate results are 

captured by clustering grid lines at regions where high gradients are expected. However, 

intensive clustering close to Neumann boundaries is not desirable due to the increase in 

computational time without significant accuracy improvement. Similar to most of the 

CFD codes, the CCFD method can be accelerated by introducing a relaxation factor, 

which should be larger with finer grids. The reported bounds of relaxation are based on 

numerical experiments. To verify these bounds, a stability analysis should be carried out. 

Five schemes are explored for the evaluation of intersection points. The two cell centres 

scheme was more reliable for all tested grid arrangements, besides being the fastest.  

Four different cases have been tested, which are all single PDEs. Comparison 

between the available analytical solution and the CCFD approach demonstrates the 

validity of this method.  

A final challenging test for the CCFD method was to solve a benchmark fluid 

flow problem, the 2D steady incompressible laminar flow over a backward-facing step. 

This problem involves extension of the CCFD algorithm to solve a system of coupled 

nonlinear PDE's. The preliminary simulation results confirm that the current 
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methodology is as good as equivalent numerical schemes (with similar degrees of 

accuracy). 

6.2 Current Code Capabilities and Programming Issues 

A code has been written in C/C++ language for the CCFD approach. The current 

version is able to read grid files with (.dat) or (.txt) extension. It is also able to build a 

structured grid (in a uniform domain) made of rectangular cells, refine the grid and/or 

cluster it in both x-direction and y-direction.  The code can handle Neumann boundaries 

and Dirichlet boundaries, both constant and variable.  

Programming issues can be divided into two parts: first are those related to 

storage requirements, and second are those related to the core of the geometry section of 

the CCFD scheme. Both parts are directly related to each other. The CCFD scheme uses a 

unique sorting of grid information, e.g. finding the cells that share each node and finding 

each pair of cells that share each face. This information is plugged instantly into the 

calling function from their allocation address in computer memory rather than being 

searched for through all the memory. However, this facilitating feature is accompanied 

with quick memory increase when the grid information is stored all together in a couple 

of multi-dimensional arrays, e.g. Array[365][24][60][60] needs 4Gb of memory. A neat 

programming architecture can break this array into three 2D arrays (Array[ ][ ]) that may 

do the same job of the 4D array and use just 200Mb of memory. Also, by constructing 

subroutines that will do specific calculations whenever needed, the memory requirement 

can be reduced. Inside these subroutines the required variables and arrays are declared to 

execute the appropriate equations for the specific problem being considered. This feature 

is not recommended in C/C++ reference textbooks, since it may lead to the use of one 
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variable in two different and simultaneous tasks, while the programmer has forgotten that 

this will overwrite the original values of these variables, causing a fatal or non-fatal logic 

error. Hence, in order to develop a good quality code and a good performance code, one 

of these goals is achieved at the expense of the other. With limited memory resources and 

the increasing number of calculation points (i.e. internal nodes), the programmer needs to 

decide his/her programming goals to do the job efficiently. 

6.3 Future Work 

This new method is applied in boundary cells in exactly the same manner as in 

interior cells and therefore there are no difficulties with the differencing formulas close to 

the boundaries. To extend this research, a more robust formulation can be implemented 

on unstructured grids, which should be rather straightforward. Since the FD 

approximation of the governing equation is totally constrained within the cell, 

differencing formulas with higher order accuracy can easily be applied. This method 

should also be implemented with the primitive variable formulation of the Navier-Stokes 

equations. Further extension of the methodology to 3-dimensional fluid flows and 

unsteady flows is needed. 

The current version of the computer code (i.e. the C/C++ code) can also be improved in 

many aspects, such as parallel processing, building a graphical user interface (GUI), use 

of macros, …, etc. 
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