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ABSTRACT 

The Induction motor has been widely used in industry and is considered as 

the best candidate for electrical vehicle (EV) applications due to its advantages such 

as: simple design, ruggedness, and easy maintenance. However, the precise control of 

induction motor is not easy to achieve, because it is a complicated nonlinear system, 

the electric rotor variables are not measurable directly, and the physical parameters 

could change in different operating conditions. So the control of an induction motor 

becomes a critical issue, especially for the EV applications in which both fast 

transient responses and excellent steady state speed performance are required. 

 

Three induction motor control algorithms (field orientation control, 

conventional direct torque control, and stator flux orientated sensorless direct torque 

control) are introduced in this thesis and a specific comparison is given among three 

of them. The main focus of this work is to design an induction motor control system 

using the three algorithms mentioned above, to analyze the performances of different 

control methods, and to validate these algorithms experimentally, comparing the 

simulation and experimental results. 
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CHAPTER  I.  INTRODUCTION 

1.1 Background 

The development of internal combustion engine vehicles is one of the greatest 

achievements in the automotive industry for the past a few centuries. Automobiles 

have made great contributions to the growth of modern technology, economy, even 

cultures by satisfying many of the needs for mobility in our daily life. 

 

However, the large numbers of automobiles which are being used all around the world 

have caused serious problems for the environment and human life. Air pollution, 

global warming, and the rapid depletion of the earth’s petroleum resources are now 

problems of primary concern. The environmental issues and oil crisis compel people 

to develop clean, efficient vehicles solutions for urban transportation. 

 

In the past a few decades, lots of research and development activities related to the 

automotive industry started emphasizing the development of clean, low/zero emission, 

and high efficiency transportation. So electric vehicles (EVs), hybrid electric vehicles 

(HEVs), and fuel cell vehicles became popular again and have been typically 

proposed to replace conventional vehicles in the near future. The electric vehicle is 

the first consideration for its zero emissions feature [1, 2]. 

1.2 Power Plant Characteristics 

For vehicular applications, the ideal performance characteristic of a power plant is a 

constant power output over the full speed range. Consequently, the torque varies with 

speed hyperbolically as shown in Figure 1 [2, 3]. With this ideal profile, the maximum 

power of the power plant will be available at any vehicle speed, therefore yielding the 

optimal vehicle performance [2]. 
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Figure 1: Ideal performance characteristics for a vehicle traction power plant 

 

The most commonly used power plants for vehicles are no doubt the internal 

combustion engine. The typical characteristics of an internal combustion engine are 

shown in Figure 2[2]. Obviously, it is far from the ideal torque–speed profile curve. 

At the idle speed region, it operates in a smooth condition, but the maximum torque is 

achieved at an intermediate speed. With the speed further increasing, the torque 

decreases. 

 

Instead of occurring at the very beginning, the maximum power happens at a high 

speed. Beyond this speed, the engine power decreases. Furthermore, the internal 

combustion engine has a relatively flat torque–speed profile, as compared with an 

ideal power plant shown in Figure 2. Therefore, a multi-gear transmission is 

commonly employed to modify the torque-speed profile, as shown in Figure 3 [2]. 

 
Figure 2: Typical characteristics of a gasoline engine [2] 
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Figure 3: A multi-gear transmission vehicle gear ratio vs. speed [2] 

 

The electric motor is another candidate as a vehicle power plant, and becoming more 

and more important with the rapid development of electric and hybrid electric 

vehicles. 

 

Motors are the work horses of electric vehicles drive systems. An electric motor 

converts electrical energy from the energy storage unit to mechanical energy that 

drives the wheels of the vehicle. In the traditional vehicle case, the engine must ramp 

up before full torque can be provided [2]; however, in the case of electric motor, the 

full torque could be provided at low speed ranges [3]. This characteristic is very 

important; it gives the vehicle an excellent acceleration at the beginning. Also, other 

important characteristics of the motor include good control abilities, fault tolerance 

abilities, and high efficiency [4]. 

 

The speed–torque characteristics of electric motors are much closer to the ideal one, 

as shown in Figure 4 [2]. The speed starts from zero and generally increases to its 

base value. During this process, the voltage increases to its rated value as well, and 

the flux remains constant [3]. A constant torque is generated in this speed range from 

zero to base speed. Beyond the base speed, the voltage remains as a constant and the 

output power will also remain as a constant. Thus, the output torque declines 

hyperbolically with the increasing speed. Since the speed–torque profile of an electric 
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motor is close to the ideal one, people only need to use a single-gear or double-gear 

transmission to modify the vehicle performance to receive their desired design 

requirements [2]. 

 
Figure 4: Typical characteristics of an electric motor [2] 

1.3 Electric Motor 

The motor drives for EVs can be classified into two groups, as shown in Figure 5: 

 Commutator motors (also known as DC motors) 

 Commutatorless motors (known as AC motors) 

 
Figure 5: Classification of electric motor 

 

1.3.1 Permanent Magnet Synchronous Motor (PMSM) 

Instead of using the windings for the rotor, the PMSM’s rotor is made of magnetic 

materials. So the operating principle of a PMSM is quite different from an induction 
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motor. The magnetic flux in a PMSM is generated from the magnetic materials on 

rotor. And absence of rotor windings gives PMSMs some advantages such as high 

efficiency and higher power density [5]. 

 

On the other side, the absence of field windings makes the flux weakening capability 

of PMSM’s constrained, and eventually limits their speed ranges in the constant 

power region [6]. Also, the permanent magnet is very sensitive to the temperature, this 

will certainly lead to a demagnetization problem, and sometimes a special cooling 

system is necessary for a PMSM drive system. 

             

Figure 6: Permanent magnet synchronous motors [7] 

1.3.2 Switched Reluctance Motor 

The switched reluctance motor is an electric motor which runs by reluctance torques 

[8]. It is another potential candidate due to some important features such as rugged 

structure, high power density, and insensitivity to high temperatures [9]. 

 

The wound field coils are fixed on the stator, but the rotor has no magnets or coils 

attached. When the opposite poles of the stator get energized, the rotor will become 

aligned. In order to achieve a full rotation of the motor, the windings must be 

energised in the right sequence [8]. 

 

The disadvantages of switched reluctance motors are high torque ripples, acoustic 
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noise, and instabilities caused by the energising sequence [9-11]. 

 

       

Figure 7: Switched reluctance motors [12] 

1.3.3 Induction Motor 

The induction motor is a type of AC motor; it is called an induction motor because the 

working principles are based on electromagnetic induction. The energy is transformed 

through the rotating magnetic fields in induction motor. The three-phase currents in 

the stator side create an electromagnetic field which interacts with the electromagnetic 

field in the rotor bars, and then the resultant torque will be produced by the Lorentz’ 

law. Therefore, the electrical energy could be transformed into mechanical energy. 

 

Induction motors are the preferred choice for industrial applications due to their 

rugged structure, low price and easy maintenance [13]. 

       

Figure 8: Induction motors [14] 
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1.3.4 Comparison of Three AC Motors 

Table 1: Comparison among three AC motors [5-11] 

Item Induction Motor PM Motor SR Motor 

Power density Medium High Higher 

Overload capacity (%) 300-500 300 300-500 

Peak efficiency (%) 94-95 95-97 90 

Load efficiency (%) 90-92 85-97 78-86 

Range of speeds (r/min) 12K-20K 4K-10K More than 15K 

Reliability Good Better Good 

Volume Medium Small Small 

Mass Medium Light Light 

Control Performance Good Good Good 

Manufacturing costs Medium High Medium 

 

The PMSM is a popular candidate because of its high power density, high efficiency 

and compact volume. But the disadvantage is the magnetic materials used in the 

PMSM are really expensive, and they need to be well maintained for the reason of 

magnet corrosion or demagnetization. The SRM is another promising candidate for 

EV applications, because of its simple structure, fault tolerant operation, and wide 

speed range at constant power. However, the disadvantages of the SRM are its high 

torque ripples and low efficiency [11, 15]. As a result of these researches, the 

induction motor is considered as the best candidate for the most of EVs applications 

[3, 5]. Intelligent, reliable and commercialized control systems of AC induction 

motors are being developed based on power electronic devices and digital signal 

processing (DSP) technology. 
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1.4 Research Objectives and Thesis Outline 

Since an induction motor is a complicated nonlinear system, the electric rotor 

variables are not measurable directly, and the physical parameters of an induction 

motor are often imprecisely known. Meanwhile, the induction motor used in electric 

vehicle applications usually requires both fast transient responses and excellent steady 

state speed performance. All of these make the control of induction a challenging 

problem.  

 

Lots of research has been done in the area of controlling an induction motor, some 

control methods result in an excellent steady state performance (e.g. Field Orientation 

Control (FOC)), others provide a great dynamic response (e.g. Direct Torque Control 

(DTC)), and there are some algorithms aiming at coupling the advantages from both 

side (e.g. stator flux orientated sensorless DTC). But no one has given a specific 

comparison among three of them. Thus an elaborate comparison is very necessary. 

 

The main focus of this work is to design an induction motor control system using 

three algorithms mentioned above: FOC, DTC, and stator flux orientated sensorless 

DTC. The performances of different control algorithms will be analyzed, at the same 

time, these algorithms will be validated experimentally. Finally, the simulation results 

will be compared with experimental ones. 

 

Thus, the scope of work of this project can be outlined by the following steps: 

Step 1. Develop simulation models for each control algorithm. 

Step 2. Compare simulation results for each control algorithm. 

Step 3. Size the components for an induction motor control test bench and design 

peripheral circuits. 

Step 4. Validate the effectiveness of the controller experimentally 

Step 5. Compare simulation results with the experimental results. 
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This thesis is organized as follows: 

The literature review for this work is summarized in Chapter 2. Chapter 3 presents the 

induction motor modeling basics, including the modeling tools and the modeling 

equations. The theory and implementation of filed orientation control for an induction 

motor will be introduced in Chapter 4, and in Chapter 5, the Direct Torque Control 

and Stator flux oriented sensorless DTC will be presented. Chapter 6 will focuses on 

the simulation results analysis, and in Chapter 7, the hardware setup and experimental 

results will be presented. The overall conclusions and future work are presented in 

Chapter 8. 
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CHAPTER  II.  LITERATURE REVIEW 

2.1 Induction Motor Control Algorithms 

The most commonly used control methods for AC induction motors are field 

orientation control, and direct torque control. 

2.1.1 Field Oriented Control 

The vector control techniques started developing around 1970 [16]. A few types of 

vector control, such as rotor flux oriented, stator flux oriented and mutual flux 

oriented are published one after another. No matter what kind of vector control, they 

are all subjected to imitate a separately excited DC motor, in which the 

electromagnetic torque and magnetic field can be controlled separately. 

 

Field oriented control (FOC) has the capability of controlling both the field-producing 

and the torque-producing currents in a decoupled way [16]. For different applications, 

people might choose different flux orientation for some special demands. However, 

only the rotor flux oriented control achieves a complete decoupled system. 

 

The field oriented control refers in particular to the rotor flux oriented type of vector 

control. Furthermore, the field oriented control can be classified into indirect or direct 

field oriented control, depending on how to obtain the rotor flux orientation. 

 

The direct FOC obtains the orientation of the mutual flux by installing a hall-effect 

sensor inside the induction motor. However, using these type sensors is expensive and 

inconvenient, because special modifications need to be made in order to place the flux 

sensors. Furthermore, it is impossible to sense the rotor flux, so we have to sense the 

mutual flux directly and then calculate out the rotor flux information. 

 

On the other hand, the indirect FOC is based on estimating the rotor flux orientation. 
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By using the signals from the motor terminals such as three phase currents and rotor 

rotating speed, the rotor flux orientation can be estimated using motor state equations. 

Indirect FOC does not have the problems that direct FOC does, which makes it 

popular in most applications. 

2.1.2 Direct Torque Control 

Direct torque control (DTC) was introduced in Japan by Takahashi and Nagochi [17] 

and also in Germany by Depenbrock [18]. This control algorithm does not follow the 

well developed DC motor control strategies. Instead of doing the coordinate 

transformations to decouple the electromagnetic torque and magnetic field, it employs 

a bang-bang control by using the hysteresis-controller. The bang-bang control works 

perfectly with the semiconductor inverter. As the name indicates, the most important 

feature of direct torque control is that it controls the electromagnetic torque and stator 

flux directly. 

 

The typical DTC includes two hysteresis controllers [19]. Usually before 

implementing the hysteresis-controller, the actual stator flux is calculated from the 

stator voltages, and electromagnetic torque is calculated from the stator voltages and 

stator currents. 

 

Therefore, the DTC control method strongly depends on the stator variables. As the 

stator voltage changes, the stator flux follows rapidly while the rotor flux changes 

slowly. This will modify the angle between stator and rotor fluxes and consequently 

the electromagnetic torque will be increased or decreased. 

 

In the hysteresis-control section, a two-level stator flux hysteresis controller and a 

three-level torque hysteresis controller are commonly employed in the DTC scheme. 

One of the two flags will be generated from the stator flux hysteresis controller, when 

the actual stator flux is compared with its reference. On the other side, one of the three 
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flags will come out from the torque hysteresis controller. Furthermore, a sector 

number in which the stator flux vector lies need to be calculated out. 

 

Using flux flag, torque flag, and flux sector number together as inputs, a voltage 

lookup table is then employed here. The appropriate voltage vector for the inverter is 

selected from the lookup table based on whether a need to increase or decrease the 

torque and stator flux. DTC attracts many researchers because of its fast torque 

response and simple control method [19, 20]. 

2.2 Comparison of Induction Motor Control Algorithms 

An objective comparison between FOC and DTC is actually difficult to make since 

each author has his/her own specific demands and predilections. The most distinct 

differences can be given as: the orientation of FOC is usually on rotor flux while that 

of DTC is always on stator flux. Another difference is that two current controllers are 

necessary for FOC but which are replaced by a switching table in DTC. 

 

The presence of a current controller could be an advantage of regulating the currents 

fluctuations. In practical operations, however, it is a limiting factor in terms of the 

transient performance. On the other hand, the two separate hysteresis controllers for 

flux and torque in DTC are able to immediately apply the maximum voltage to the 

motor which results in a better torque response. 

 

Generally speaking, DTC provides a better dynamic torque response while FOC 

provides a better steady state behavior. But for vehicular applications, both steady 

state and dynamic performance are important to the system. 

 

So it is obvious to imagine that if there is a control method which combines the 

advantages of FOC and DTC together, then both steady state and dynamic 

performance could be achieved. Actually, some research has been done in the field of 
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combining FOC and DTC to improve both the steady state as well as dynamic 

performance, [21-25]. 

 

One of the developed methods is stator flux orientated sensorless direct torque control. 

This control method is based on direct torque control, so the torque and flux responses 

can be guaranteed. At the same time the stator flux orientation technique is applied to 

predict the rotor speed. The flux orientation is a necessary part in FOC and because of 

this FOC achieves the decoupled currents and shows an excellent speed behavior. 

Thus, a DTC scheme with the flux orientation technique will surely provide a well 

regulated speed performance. In addition, the speed sensor can be eliminated from the 

system, since the rotor speed can be estimated instead of being measured. The 

absence of the speed sensor, either optical encoder or hall-effect speed sensor will 

definitely improve the ruggedness and reduces the cost of the entire system. 
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CHAPTER  III.  INDUCTION MOTOR MODELING 

3.1 Induction Motor Basics 

Three phase induction motors are rugged, cheap to produce and easy to maintain. 

They can run at a nearly constant speed from zero to full load. The design of an 

induction motor is relatively simple and consists of two main parts, a stationary stator 

and a rotating rotor. There are two main classes of the induction motor differing in the 

way their rotors are wound: the wound induction motor and the squirrel cage 

induction motor. 

 

The motor discussed in this thesis is a three phase squirrel cage induction motor. The 

rotor of a squirrel cage induction motor consists of aluminum bars which are short 

circuited by connecting them to two end rings so that rotor generates the induction 

current and magnetic field by itself. This makes the AC induction motor a robust, 

rugged and inexpensive candidate for motor drive systems [26]. 

 

The structure of a squirrel cage induction motor is shown in Figure 9. In an induction 

motor, the alternating currents feed from three phase terminals and flow through the 

stator windings, producing a rotating stator flux in the motor [26]. The rotating speed 

of this magnetic field is defined as synchronous speed, and related to the number of 

poles of the induction motor and the frequency of power source. 

120                                           (3.1)e
sync

fn rpm
P

=
 

where fe is the power source frequency, P is the number of poles and nsync is the 

synchronous speed in revolutions per minute. 

 

The rotating magnetic field from the stator will induce a voltage in the rotor bars, 

since the rotor bars are short-circuited, a large circulating current will be generated in 

the rotor bars. This induced rotor current will then interact with the rotating magnetic 
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field. Because of Lorentz’s law, a tangential electromagnetic force will be generated 

on the rotor bars, and the sum of forces on each rotor bar produces a torque that 

eventually drives the rotor in the direction of the rotating field. 

 
Figure 9: Squirrel cage induction motor cross section [14] 

 

When the rotating magnetic field is first generated, the rotor is still in its rest 

condition. However, the rotor will accelerate rapidly in order to keep up with the 

rotating stator flux. As the rotor speed increases, the rotor bars are not cut as much by 

the rotating field, so the voltage in the rotor bars decreases. If the rotor speed equals to 

the flux speed, the rotor bars will no longer be cut by the field and the rotor will start 

to slow down [26]. This is why induction motors are also called asynchronous motors 

because the rotor speed will never equal the synchronous speed. The difference 

between the stator and rotor speed is defined as the slip speed: 

                                              (3.2)slip sync mn n n= −  

where nslip is the slip speed 

      nsyncis the speed of the rotating magnetic field 

      nm is the mechanical shaft speed of the motor 

Also, a slip ratio can be defined as: 

                                                  (3.3)sync m

sync

n n
s

n
−

=  

Notice that, if the rotor runs at synchronous speed 
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                         s = 0                                    (3.4) 

          if the rotor stops moving 

                         s = 1                                    (3.5) 

3.2 Space Vectors 

By using space vectors in the induction motor modeling, all the complex state 

variables can be efficiently defined [27]. Variables such as the three phase voltages, 

currents and fluxes of induction motors can be analyzed and described easily and 

conveniently. 

 

The three phase axes are defined by the vectors: 0je
o

, 120je
o

and 240je
o

. The stator 

windings and stator current space vector in the complex plane are shown in below. 

 

Figure 10: Current space vectors 

The space vector of the stator current si can be described by: 

0 120 240                         (3.6)j j j
s as bs csi i e i e i e= ⋅ + ⋅ + ⋅

o o o

 

where subscript s refers to the stator of the induction motor, a, b, and c are the three 

phase axes. 

 

Furthermore, the rotor current can be described by: 

0 120 240                         (3.7)j j j
r ar br cri i e i e i e= ⋅ + ⋅ + ⋅

o o o
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where subscript r refers to the rotor of the induction motor. 

3.3 The Coordinate Transformation of Space Vectors 

The modeling, analysis and control design of induction can be significantly simplified 

by using coordinate transformations. A three-phase variable can be transferred into a 

two-phase variables [28]; also a stationary variable can be transferred into a rotational 

one [29]. This transformation usually includes the following two steps: 

 The Clarke transformation 

 The Park transformation 

3.3.1 Clarke Transformation 

The Clarke transformation transfers a three-phase system into a two-phase system. 

Take the currents, for example: 

2 1 1
3 3 3                            (3.8)

3 30
3 3

a

b

c

i
i

i
i

i

α

β

⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎛ ⎞ ⎜ ⎟
⎜ ⎟= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ −⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
Figure 11: Clarke transformation of three-phase currents 

In this thesis, ( , , ) ( , )a b c α β⇒   is used to represent the Clarke transformation. 

3.3.2 Park Transformation 

The Park transformation transfers a stationary system into a rotational system: 
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cos sin
                          (3.9)

sin cos
d

q

i i
ii
α

β

θ θ
θ θ

⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

Figure 12: Park transformation of two-phase currents 

Here ( , ) ( , )d qα β ⇒   is used to represent the Park transformation. 

3.4 Modeling Equations 

The induction motor modeling usually contains three parts: flux equations, voltage 

equations and torque equations [27]. 

3.4.1 Flux Equations 

There are three kinds of fluxes: stator flux, rotor flux and mutual flux. The stator flux 

and rotor flux vectors can be expressed in terms of stator current si and rotor current

ri , given below:  

                                   (3.10)s s s m rL I L IΨ = +  

                                   (3.11)r r r m sL I L IΨ = +  

where sL and rL are the stator inductance and the rotor inductance, respectively; mL is 

the mutual inductance between the stator and rotor windings. 

3.4.2 Voltage Equations 

As we mentioned above, the voltage equations of induction motors can be described 



19 

in different coordinate frames. Three kinds of coordinate frames are commonly used 

to describe the induction motors [27]. They are: 

 Stationary frame; 

 Synchronous rotating frame; 

 Field orientation synchronous frame. 

3.4.2.1 Voltage Equations in Stationary Frame 

The induction motor usually has three sets of stator windings, and the rotor can be 

considered as three sets of windings as well [27]. Both stator and rotor can be 

represented by inductance and resistance in an equivalent-circuit. Using the Clarke 

transformation, the three-phase induction motor model can be expressed as an 

equivalent two-phase model [27]. The equivalent circuits in the stationary frame of 

the induction motor are shown in Figure 13 and 14: 

 
Figure 13: Alpha component of the induction motor equivalent-circuit 

 

Figure 14: Beta component of the induction motor equivalent-circuit 
 

Based on the Kirchhoff’s voltage law (KVL), the stator and rotor voltage equations 

can be expressed as: 

                                   (3.12)s s s su i R pα α αψ= +  
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                                   (3.13)s s s su i R pβ β βψ= +  

0                               (3.14)r r r r ri R pα α βψ ωψ= + +  

0                               (3.15)r r r r ri R pβ β αψ ωψ= + −
 

where r rβωψ and r rαωψ are rotating velocity emf and p is the differential operator. 

 

Substituting eq. 3.10 and 3.11 into eq. 3.12 and eq. 3.13, the stator voltage equations 

can be rewritten: 

( )                               (3.16)s s s s m ru R L p i L piα α α= + +  

( )                               (3.17)s s s s m ru R L p i L piβ β β= + +  

Also, the rotor voltage equations can be rewritten as: 

0 ( )                          (3.18)m s r r r r m s r r rL pi R i p i L i L iα α β βω ω= + + + +  

0 ( )                          (3.19)m s r r r r m s r r rL pi R i p i L i L iβ β α αω ω= + + − −  

The relationship of voltages and currents can be given in matrix form from the four 

voltage equations: 

( ) 0 0
0 ( ) 0

 (3.20)
( )0

( )0

ss s ms

ss s ms

rm r m r r r r

rm r m r r r r

iR L p L pu
iR L p L pu
iL p L R L p L
iL L p L R L p

αα

ββ

α

β

ω ω
ω ω

+ ⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ + ⎜ ⎟⎜ ⎟⎜ ⎟ = ⋅⎜ ⎟⎜ ⎟⎜ ⎟ +
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

where rω   is rotor speed. 

3.4.2.2 Voltage Equations in Synchronous Rotating Frame 

This is a rotary frame and the rotating speed is eω . Using the Park transformation, eq. 

3.12, and 3.13 can be expressed in the d-q synchronous rotating reference frame, so 

the stator voltage equations can be rewritten as: 

                               (3.21)ds ds s ds e qsu i R pψ ωψ= + −  
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                               (3.22)qs qs s qs e dsu i R pψ ωψ= + +
 

The last terms in eq. 3.21 and eq. 3.22 can be defined as speed emf as they are directly 

related with the synchronous speed of the motor. When 0eω = , these equations turn 

back to stationary forms. 

 

Similarly, the rotor voltage equations can be derived from eq. 3.14 and eq. 3.15. At 

this time, the rotor speed is rω , and since the d-q axes are fixed with the rotor, the 

relative speed with respect of synchronously rotating frame is e rω ω− . Therefore, in 

the synchronous rotating frame, the rotor voltage equations should be rewritten as: 

0 ( )                                 (3.23)dr r dr r e qri R pψ ω ω ψ= + + −  

0 ( )                                 (3.24)qr r qr r e dri R pψ ω ω ψ= + − −  

The stator voltage equations can be rewritten as: 

( )                  (3.25)ds ds s s s e qs m e dr m qru i R L p L i L i L piω ω= + − − +  

( )                  (3.26)qs qs s s s e ds m e dr m qru i R L p L i L i L piω ω= + + + +  

The rotor voltage equations can be rewritten as: 

0 ( ) ( ) ( )           (3.27)m ds e r m qs r r dr r e r qrL pi L i R L p i L iω ω ω ω= − − + + − −  

0 ( ) ( ) ( )           (3.28)m qs e r m ds r r qr r e r drL pi L i R L p i L iω ω ω ω= + − + + + −  

Equations 3.25 – 3.28 also can be expressed in a matrix form as: 

( )
( )

(3.29)
( ) ( ) ( )0

( ) ( ) ( )0

dss s s e m m eds

qss e s s m e mqs

drm m e r r r r e r

qrm e r m r e r r r

iR L p L L p Lu
iL R L p L L pu
iL p L R L p L
iL L p L R L p

ω ω
ω ω

ω ω ω ω
ω ω ω ω

+ − − ⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ + ⎜ ⎟⎜ ⎟⎜ ⎟ = ⋅⎜ ⎟⎜ ⎟⎜ ⎟ − − + − −
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

3.4.3 Torque Equations 

A torque is produced as a result of the interaction of stator magnetic field and rotor 
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magnetic field [30], so one can have: 

0                                         (3.30)e r sT K B B= ×  

where Te is the induced torque and Br and Bs are the magnetic flux densities of the 

rotor and the stator respectively. 

 

Also, the electromagnetic torque is produced by the interaction of current and 

magnetic field. Using two current quantities (stator current and rotor current) and 

three fluxes (stator flux, mutual flux and rotor flux), the torque can be expressed in six 

different forms [31]: 

1                                         (3.31)e s rT K I= Ψ ×  

2                                        (3.32)e m rT K I= Ψ ×  

3                                         (3.33)e r rT K I= Ψ ×  

4                                         (3.34)e s sT K I= Ψ ×  

5                                         (3.35)e m sT K I= Ψ ×  

6                                         (3.36)e r sT K I= Ψ ×  

where 1 6~K K   are the torque coefficients. In fact, these six expressions are all 

identical. 

 

Also, the system motion equation is given by: 

                                        (3.37)e L
p

J dT T
n dt

ω
= + ⋅  

where LT  is the load torque, ω is the rotor rotating speed, and pn  is the poles 

numbers, and J  is rotor’s moment of inertia. 
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3.5 Inverter Control and Pulse Width Modulation Technology 

3.5.1 Inverter Control 

The induction motor can be connected directly to a standard fixed frequency, fixed 

voltage three phase power source. Under these conditions, the motor speed and slip 

will only be determined by the load torque. With no load, the slip is small so the rotor 

speed is close to synchronous speed. Using a variable frequency inverter in the 

induction motor driving system, both the magnitude and frequency of the voltage 

inputs can be adjusted based on certain control method. 

 

A three phase inverter has three sets of power switches, and various supporting 

components such as capacitors to smooth switching voltages. Two switches account 

for one phase of the motor and appear in a leg of the inverter. By turning on and off 

the switches, the current flow into the motor will be generated and controlled. 

However, two switches in a leg are never turned on at the same time; otherwise this 

leg would be short circuited. Thus, eight combinations of switching state exist in a 

three phase inverter. In electromechanical systems, the losses in the power switches 

also become a concern, the switching frequency is typically controlled from 10 KHz 

to 20 KHz so switching losses can be minimized. [32-34] 

3.5.2 Pulse Width Modulation (PWM) Technology 

The average value of voltage fed to the load could be controlled by turning the switch 

between on and off at a very fast pace. The longer the switch is on as opposed to off, 

the higher the average value of the voltage output [35]. 

 

The main advantage of PWM technique is that power loss in the switching devices is 

very low. By adjusting the pulse width, the voltage output can be efficiently controlled 

[35]. 
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Figure 17: Three-phase voltage source inverter 
 

The six transistors in the inverter can form 8 switch variables, 6 of them are nonzero 

vectors and 2 of them are zero vectors [37]. 

 

The relationship between the switching variable vector [S1, S3, S5]T and the phase 

voltage [Van Vbn Vcn]T, and the line to line voltage [Vab Vbc Vca]T can be expressed 

below:  

1

3

5

2 1 1
1 2 1                              (2.1)

3
1 1 2

an
dc

bn

cn

V S
VV S

V S

− −⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 

1

3

5

1 1 0
0 1 1                               (2.2)
1 0 1

ab

bc dc

ca

V S
V V S
V S

−⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠  

 

According to eq. 2.1 and eq. 2.2, the eight voltage vectors, switching vectors and the 

output line to neutral voltage can be summarized in the given table: 
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Table 2: Voltage vectors table [38] 

Voltage 

vectors 

Switching vectors Line to neutral voltage (Vdc) 

S1 S2 S3 Van Vbn Vcn 

V0 0 0 0 0 0 0 

V1 1 0 0 2/3 -1/3 -1/3 

V2 1 1 0 1/3 1/3 -2/3 

V3 0 1 0 -1/3 2/3 -1/3 

V4 0 1 1 -2/3 1/3 1/3 

V5 0 0 1 -1/3 -1/3 2/3 

V6 1 0 1 1/3 -2/3 1/3 

V7 1 1 1 0 0 0 

 

Also, these eight vectors could be plotted out in the Alfa-beta plane as shown below: 

 

Figure 18: Voltage source inverter output vectors in the Alfa-beta plane [39] 

 

The SVPWM output voltage waveforms are shown below, the first one is a 

saddle-shaped wave which represents the phase voltage, and the second one is the line 

to line output voltage. 
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Figure 19: Phase voltage of SVPWM 

 

Figure 20: Line to line voltage of SVPWM 
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CHAPTER  IV.  THEORY OF FIELD ORIENTATION 

CONTROL 

4.1 Philosophy of Field Orientation Control 

Field orientation control is introduced by Hasse and Blaschke [16], and is a milestone 

in AC motor control field. It is also commonly known as vector control because it 

controls both the magnitude and direction of the variables. The distinguishing 

characteristic of field orientation control is to decouple the torque and flux. This 

method imitates the separately-excited DC motor which operates with separated 

torque and flux. Since the high order and nonlinear system nature make AC induction 

motors hard to control precisely, following this well developed DC motor control 

technique became a popular trend. 

 

In order to describe the basic concept of field orientation control, we need to finish the 

third coordinate transformation: from synchronous rotating frame to rotor flux 

oriented reference frame [27]. 

 

This transformation is done to fix the d-axis of the synchronous rotating frame with 

the rotor flux direction of AC induction motor. Since the d-axis is aligned with the 

rotor flux direction, the flux d and q components can be rewritten as: 

                                  (4.1)dr r r dr m dsL i L iψ ψ= = +  

0                                       (4.2)qr r qr m qsL i L iψ = = +  

Substituting eq. 4.1 and 4.2 into eq. 3.27 and eq. 3.28 to simplify the rotor voltage 

equations, one can have: 

0 ( )                                    (4.3)m ds r r drL pi R L p i= + +  

0 ( ) ( )                        (4.4)e r m ds e r r dr r qrL i L i R iω ω ω ω= − + − +  

Combining the stator eq. 3.25 and eq.3.26 with eq. 4.3 and 4.4, the rotor flux oriented 
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voltage equations can be rewritten in matrix form as: 

( )
( )

 (4.5)
0 ( ) 00

( ) 0 ( )0

dss s s e m m eds

qss e s s m e mqs

drm r r

qrm e r r e r r

iR L p L L p Lu
iL R L p L L pu
iL p R L p
iL L R

ω ω
ω ω

ω ω ω ω

+ − − ⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ + ⎜ ⎟⎜ ⎟⎜ ⎟ = ⋅⎜ ⎟⎜ ⎟⎜ ⎟ +
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

In the matrix equation, the difference between the synchronous speed     and rotor 

speed rω  is the motor slip speed slω . 

                                              (4.6)sl e rω ω ω= −
 

From the torque equation 6e r sT K Iψ= × , one can have: 

6 ( )                                (4.7)e qs dr ds qrT K i iψ ψ= −  

Substituting the rotor flux eq. 4.2 0qrψ =  into eq. 4.7, one has: 

6                                              (4.8)e qs drT K i ψ= ⋅  

Eq. 4.8 shows another important feature: when the flux level drψ is a constant, the 

electromagnetic torque is determined by qsi , which is completely decoupled form dsi . 

 

From eq. 4.1 and eq. 4.2, one can have: 

                                             (4.9)m qs
qr

r

L i
i

L
−

=  

   
                                       (4.10)dr m ds

dr
r

L ii
L

ψ −
=  

From the rotor voltage equation 4.3, and flux eq. 4.2 one can have: 

0                                       (4.11)r dr drR i pψ= +  

Substituting eq. 4.10 into eq. 4.11, one can have: 

0 ( )                       (4.12)dr m ds
r dr

r

L iR p
L

ψ ψ−
= +  

(1 )                                (4.13)r dr m dsT p L iψ+ =  

eω
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Consider eq. 4.13 as a transfer function G(p), and substitute it into eq. 4.8  

6e qs drT K i ψ= ⋅  one can finally have the torque equation as: 

6                             (4.14)
(1 )

m ds
e qs

r

L iT K i
T p

= ⋅ ⋅
+

 

 

Figure 21: The transfer function G(p) 

 

Figure 22: The electromagnetic torque is directly controlled by two decoupled currents 

 

In field orientation control, there are two kinds of coordinate transformations: three 

phase to two phase (Clarke transformation), and stationary to rotation (Park 

transformation). To accomplish the rotating transformation, the flux angle eθ  must 

be known precisely [27]. 
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Figure 23: The rotating angle between the stationary and rotational frames 

 

There are two basic ways to obtain the angle information: one is direct measurement, 

another is indirect estimation. Therefore, we end up having two types of field 

orientation control: Direct Field Orientation Control (DFOC) and Indirect Field 

Orientation Control (IFOC) [27]. 

4.2 Direct Field Orientation Control (DFOC) 

Direct field orientation control was first proposed by F. Blaschke [16]. In order to 

capture the flux information of the motor, flux sensors, such as hall flux sensors, can 

be used to measure the mutual magnetic fields mΨ . Mount the flux sensors inside of 

the motor; and thus, two components mαΨ  and mβΨ  of the mutual magnetic fields 

can be detected. 

 

Based on the motor flux equations: 

                                  (4.15)r r r m sL I L IΨ = +  

                                 (4.16)m m r m sL I L IΨ = +  

The rotor flux can be expressed by eliminating rotor current Ir: 

( )                          (4.17)r
r m r m s

m

L L L I
L

Ψ = Ψ − −  

Use the measured mutual flux component mαΨ   and mβΨ   the rotor components in 
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two axes can be obtained as: 

( )                          (4.18)r
r m r m s

m

L L L i
Lα α αψ ψ= − −  

( )                          (4.19)r
r m r m s

m

L L L i
Lβ β βψ ψ= − −  

The rotor flux magnitude and angle can be further expressed as: 

2 2                                   (4.20)r r rα βψ ψ ψ= +  

2 2
cos                                (4.21)r

e

r r

α

α β

ψθ
ψ ψ

=
+

 

Figure 24 shows the calculation process of rotor flux by using hall sensors: 

 
Figure 24: The calculation of flux magnitude and angle [40] 

 

 

Figure 25: DFOC system diagram 
 

It is not convenient to install a hall affect flux sensor inside the motor, and it is not 
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practical for most industrial applications. Also, it will definitely decrease the 

reliability of the drive system [41]. A preferable approach is to use the flux observer to 

estimate or calculate the rotor flux to implement the field orientation control. 

4.3 Indirect Field Orientation Control (IFOC) 

Indirect field orientation control (IFOC) was proposed by K. Hasse [42]. Instead of 

using the flux sensors, IFOC calculates the rotor flux angle from some intermediate 

variables, such as the slip speed slω and rotor speed rω : 

From the eq. 4.6 sl e rω ω ω= − , one can have: 

( )                            (4.22)e e sl rdt dtθ ω ω ω= = +∫ ∫  

Since     is fixed with respect to the d-axis of rotating frame, the flux components 

in q axis can be expressed as follows: 

0 ( )                                (4.23)r qr e r drR i ω ω ψ= + −  

Substitute eq. 4.9 into eq. 4.23: 

0 ( ) ( )                          (4.24)m qs
r e r dr

r

L i
R

L
ω ω ψ

−
= + −  

And finally, we end up having: 

( )                                (4.25)m sq
sl e r

r dr

L i
T

ω ω ω
ψ

= − =  

From eq. 4.13 (1 )r dr m dsT p L iψ+ = , the slip speed can be further expressed as: 

(1 )                                    (4.26)qsr
sl

r ds

iT p
T i

ω +
=  

On the other hand, the rotor speed rω is measured from a speed sensor attached on the 

motor shaft, by combining these two speeds, we can calculate out the flux angle from 

eq. 4.22. This is the basic concept of IFOC. 

 

In a field orientation control system, the motor currents are measured from the any 

rΨ
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two of the three terminals, transformed by two coordinate conversions, and regulated 

by two separated PI current controllers. 

 

Figure 26 shows the indirect field orientation control system based on the calculation 

of slip speed. 

 

Figure 26: The system diagram of IFOC 
 

IFOC is very sensitive to motor parameters (rotor time constant rT ) [43].  Therefore, 

rT must be precisely known in order to realize decoupled control of torque and flux. 

When rT
 
is not set correctly, the controller is said to be detuned, and the performance 

will be degraded. Hence rotor time constant estimations or online adaptive 

identifications have been studied extensively in IFOC [43-47]. Significant efforts 

have been made towards an efficient and accurate identification of rotor time constant 

and to overcome the detuning effect [48-50]. 

4.4 Implement of IFOC 

First of all, three phase stator currents ai , bi , and ci  are transformed into two phase 

currents iα  and iβ   using Clarke transformation. 
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Figure 27: Three phase stator currents in FOC 

 

Figure 28: Two phase currents after Clarke transformation in FOC 
 

Two phase currents are then being transferred into a synchronous rotating frame from 

the previous stationary frame. For FOC we discuss in this thesis, the d-axis in the 

synchronous frame is aligned with the rotor flux direction, so the complete decouple 

between two phase currents can be achieved. The decoupled currents are shown below: 

on the one hand, current qsI  is required for generating the electromagnetic torque, so 

it is proportional to the torque command. Current dsI
  is responsible for generating 

the rotor flux in induction motor, so after a very short period time at the beginning, 

the current dsI  should remain as a constant. The FOC does not control the flux in the 

motor, so during the starting period, the rotor flux gradually increases from zero to the 

rated value, and then maintains around this value. This phenomenon is shown in 

Figure 31 below. 
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Figure 29: Torque response based on the requirement 

 

 

Figure 30: Decoupled current Iqs which is responsible for generating torque 
 

 
Figure 31: Rotor flux trajectory in FOC 
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Figure 32: Decoupled current Ids which is responsible for generating flux 

4.5 FOC Summary 

The main features of FOC are summarized as follows: 

 The torque and flux control are decoupled; 

 A modulator which converts the voltage command outputs of the current 

regulator into switching states of the inverter is needed in the system; 

 Two coordinate frame transformations are required; 

 No direct torque feedback control occurs; torque control is indirect. 

But for DFOC and IFOC, they have some different features: 

◊ DFOC: 

 The information of the rotor, the stator or the mutual flux is required. Usually, it 

is measured by hall-affect sensors inside the motor; 

 Closed loop control of flux amplitude is possible, but might not be required. 

◊ IFOC: 

 The information of rotor, stator or mutual flux is not necessary; 

 The actual rotor flux amplitude is controlled by the reference value; 

 The rotor flux position (rotor flux angle) needs to be estimated. 
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CHAPTER  V.  THEORY OF CONVENTIONAL DIRECT 

TORQUE CONTROL AND STATOR FLUX ORIENTATED 

SENSORLESS DIRECT TORQUE CONTROL 

5.1 Control Strategy of Conventional Direct Torque Control 

Direct torque control of the AC induction motor is relatively newer than field 

orientation control. This technique was first published in the mid-1980’s, by 

Depenbrock and Takahashi [18, 17]. It is believed to have nearly comparable 

performance of field orientation control [51]. The distinguishing characteristic of the 

direct torque control is that torque and flux are controlled directly; but in field 

orientation control, the stator currents (both d and q axes) are controlled directly. 

 
Figure 33: Equivalent- circuit of induction motor in the stationary frame 

 

From the equivalent-circuit in the stationary frame of induction motor, one can have: 

                                   (5.1)s
s s s

d u R i
dt
Ψ

= −  

From the equation 6.1, if the voltage drop on the stator resistor is neglected, one can 

derive that the change of the stator flux vector over a given time period is equal to the 

voltage vector applied on stator: 

0

( )                                        (5.2)
t

s st u dtΨ = ∫  

On the other hand, when the AC induction motor is working, it could be noticed that 

the stator flux can be changed rapidly by applying the voltage vectors on the stator 
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while the rotor flux will not respond as quickly as enough [52]. So the position and 

the angle between the stator and rotor flux will be changed immediately. 

 

Since we have the torque equation: 

0 sin                                      (5.3)e s rT K θ= Ψ ⋅ Ψ
 

Assume that the rotor flux moves as its original direction and magnitude slowly while 

the stator flux is changing rapidly by applying voltage vectors on the stator. From 

equation 5.3, it is noticed that the electromagnetic torque can be controlled by the 

angle between the rotor and flux vectors, and the magnitude of stator flux. 

 

Figure 34: Stator flux and Rotor flux in stationary frame [53] 

Because the voltage source inverter consists of six transistors, and eventually it could 

form 8 switch variables, 6 of them are nonzero vectors and 2 of them are zero vectors. 

The possible voltage space vectors from the inverter and the corresponding stator flux 

changes are shown below: 

 

Figure 35: Eight possible voltage vectors formed by a voltage source inverter 
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Figure 36: The corresponding stator flux changes 

 

It also can be noticed that if a zero voltage vector is applied on the stator over a given 

time period, the angle between the rotor and stator flux vectors will decrease. By 

applying a zero voltage vector, the stator flux vector will stay as it is fixed, but the 

rotor flux will not be affected, and it keeps rotating as original. This indicates that the 

torque generated by the induction motor will be decreasing while a zero vector is 

being applied. 

 

A tangential and a radial incremental variation in the stator flux could be yielded by 

applying one of the six possible voltage vectors. The tangential variation determines 

the change of the torque, since the torque of the motor, from equation 5.3, is 

proportional to the angle between the rotor and stator flux. On the other side, the 

radial variation of flux determines the change of the stator flux magnitude. Thus both 

torque and flux control will be achieved, by manipulating the stator flux vector in one 

of the six possible directions [54]. 

5.2 Flux Control and Torque Control 

Direct torque control system includes two parts: flux direct control, and torque direct 

control. 

5.2.1 Stator Flux Control 

Using the voltage model flux observer, the stator flux can be estimated as: 
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0

( ) ( )                                   (5.4)
t

s s s st u R i dtΨ = −∫  

It can be seen that the flux and torque are calculated from the motor terminal voltages 

and currents. 

 

The flux hysteresis-controller 

Regulate the flux by using a two-level digital output hysteresis-controller and the 

relations are given below: 

1             for                              (5.5)gS EΨ Ψ= Δ ≥ +Ψ  

1           for                              (5.6)gS EΨ Ψ= − Δ ≤ −Ψ  

 

Figure 37: The two-level hysteresis controller for stator flux 
 

where 2 gΨ  is the band width of the flux hysteresis-controller. The actual stator flux 

sΨ is constrained within the hysteresis band and it rotates in an anti-clockwise 

direction while following the command flux in a Z-shaped path [55]. 
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Figure 38: Stator flux trajectory 

5.2.2 Electromagnetic Torque Control 

The electromagnetic torque can be obtained by following equations: 

6                                         (5.7)e r sT K I= Ψ ×  

6 ( )                           (5.8)e s s s sT K i iα β β αψ ψ= −  

The torque hysteresis-controller 

The torque is also regulated by a hysteresis-controller. The difference is that it has 

three levels of digital outputs as follows: 

1             for                              (5.9)Te T gS E T= Δ ≥ +  

1            for                          (5.10)Te T gS E T= − Δ ≤ −  

0            for       0                         (5.11)Te TS E= Δ =  

 

Figure 39: The three-level hysteresis-controller for electromagnetic torque 
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5.3 Voltage Vector Lookup Table 

The voltage vector table receives three input signals, they are: SΨ , ST and S(K). 

SΨ and ST are digital outputs from the flux hysteresis-controller and torque 

hysteresis-controller. S(K) is sector number in which the flux vector sΨ lies. There are 

six sectors (each has a / 3π  angle width), as shown in Figure 38. From the lookup 

table, the appropriate voltage vector for the inverter is then selected based on whether 

there needs to increase or decrease the torque and stator flux. 

 
Table 3: Voltage vector lookup table [56] 

SPsi STe S(1) S(2) S(3) S(4) S(5) S(6) 

1 1 V2 V3 V4 V5 V6 V1 

0 V0 V7 V0 V7 V0 V7 

-1 V6 V1 V2 V3 V4 V5 

-1 1 V3 V4 V5 V6 V1 V2 

0 V7 V0 V7 V0 V7 V0 

-1 V5 V6 V1 V2 V3 V4 

 

 
Figure 40: Block diagram of Conventional DTC 
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5.4 Stator Flux Orientated Sensorless Direct Torque Control 

Both FOC and conventional DTC control techniques have been explained in the 

previous sections, to summarize it, the conventional DTC provides a better dynamic 

torque response while the FOC provides a better steady state behavior. 

 

But for vehicular applications, both steady state and dynamic performance are 

important to the system designer. For example, some driving conditions may desire a 

less strict torque regulation but require a well controlled speed performance. Like 

cruising mode, it runs for a long period of time at constant speed but requires very 

little dynamic response. On the contrary, another type of driving condition requires 

excellent dynamic response, but steady state speed performance could be less 

important. 

 

The stator flux orientated sensorless DTC is based on conventional direct torque 

control, so the torque and flux performance can be guaranteed. At the same time the 

stator flux orientation technique is applied to predict the rotor speed. The flux 

orientation is a necessary part in FOC and because of this FOC achieves the 

decoupled currents and shows an excellent speed behavior. Thus, a DTC scheme with 

the flux orientation technique will provide a well regulated speed performance. At the 

same time, speed sensor can be eliminated from the system, because the rotor speed 

can be estimated instead of being measured. The absence of the speed sensor, either 

optical encoder or hall-effect speed sensor will definitely improve the ruggedness and 

reduces the cost of the entire system. [57-59] 

 

The relationship between rotor flux and stator flux can be given below, for both d and 

q components: 

2

                                 (5.12)r
dr ds ds

m m

L l i
L L

ψ ψ= −
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2

                                 (5.13)r
qr qs qs

m m

L l i
L L

ψ ψ= −
 

2 2                                         (5.14)r s ml L L L= −  

Next the stator flux is fixed with the synchronous rotating frame, since the d-axis is 

aligned with the stator flux direction, the flux d and q components can be rewritten as: 

                                              (5.15)ds sψ ψ=
 

0                                                (5.16)qsψ =  

Substitute these into the equation above, we can have: 

2

                                 (5.17)r
dr s ds

m m

L l i
L L

ψ ψ= −  

2

                                            (5.18)qr qs
m

l i
L

ψ = − , 

Then the rotor flux can be calculated out: 

2 2                                          (5.19)r dr qrψ ψ ψ= +  

arctan                                          (5.20)qr
er

dr

ψ
θ

ψ
=  

And the synchronous can also be calculated out: 

2 2

arctan
       (5.21)

qr qr dr
dr qr

er dr
e

dr qr

d dd
d dt dt
dt dt

ψ ψ ψψ ψθ ψω
ψ ψ

−
= = =

+
 

From the conventional DTC theory, the stator flux is given as: 

( )                               (5.22)s s s su R i dtψ = −∫  

From the frequency characteristic, vector sΨ  is always perpendicular to vector

s s su R i− . And since su and si can be measured from the terminals of induction 

motor, it is possible to acquire the phase angle of vector s s su R i− , so that the phase 

angle of sΨ  can be determined. 
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If m s s su u R i= − , the phase angle arctan( )s s s
m

s s s

u R i
u R i
β β

α α

θ
−

=
−

is shown in the 

following figure: 

 
Figure 41: The relationship between stator flux and stator voltage vector 

 

Thus the phase angle of stator flux sΨ  can be given as: 

                                         (5.23)
2s m
πθ θ= −

 

And then use this angle sθ  in the park transformation. On the other hand, from the 

theory of FOC, the slip speed is given as: 

(1 )                                          (5.24)qsr
sl

r ds

iT p
T i

ω +
=

 

Thus, using the speed relationship which has been defined in the induction motor 

modeling section, the rotor speed is give: 

                                         (5.25)r e slω ω ω= −  

Substitute the slip speed slω and synchronous speed eω : 

2 2

(1 )                      (5.26)
qr dr

dr qr
qsr

r
dr qr r ds

d d
iT pdt dt

T i

ψ ψψ ψ
ω

ψ ψ

− +
= −

+
 

This equation gives the method of estimating rotor speed, after this, the estimated 

rotor speed will be compared with the reference value and then fed into a PI 

controller. 
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Figure 42: Block diagram of SFO-Sensorless DTC 

 

By using this Stator flux orientated sensorless direct torque control method, the rotor 

speed, torque and stator flux will be regulated in an entire control system. 

5.5 Implement of DTC 

For DTC we also need to do the Clarke transformation first. So the figures below 

show the three phase currents are being transformed into two phase currents. 

 

Figure 43: Three phase stator currents in conventional DTC 
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Figure 44: Two phase currents after Clarke transformation in conventional DTC 
 

The most significant characteristic of DTC is that hysteresis torque regulator and 

hysteresis flux regulator are being applied in the system to control torque and flux 

directly. So generally speaking, if the regulators are well tuned, the torque response 

and flux response should be restricted in their boundaries respectively. 

 

Figure 45: Torque response with command in conventional DTC 
 

The boundary of torque hysteresis controller is set from -0.5 Nm to 0.5 Nm, so from 

the figure above, we can see that the torque response is well regulated. 
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Figure 46: Circular stator flux trajectory in conventional DTC 
 

At the same time, the boundary of flux hysteresis controller is set from -0.005 Wb to 

0.005 Wb. At the starting stage, the flux takes a few steps to reach the rated value, and 

then, it is clear to see that the flux response is well restricted in its boundary. This is 

the most significant difference between FOC and DTC. 

5.6 DTC Summary 

Conventional DTC attracts many researchers because of its fast torque response and 

simple control method [19, 20]. The main features of conventional DTC are 

summarized as follows [60]: 

 There is direct feedback control of torque and stator flux magnitude; 

 No feed back current control; 

 Flux observer only uses one motor parameter (Rs); 

 No vector rotating transformation (Park Transformation); 

 There are ripples in flux and torque because of the hysteresis band control. 
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CHAPTER  VI.  SIMULATION RESULTS 

6.1 Overview 

Simulations for both steady state and dynamic condition were carried out to validate 

the theories in the previous chapters. It is very necessary to test the feasibility of 

control strategies using simulation before practicing them in hardware. Thus, 

simulation models of FOC, conventional DTC and Sensorless DTC were built 

respectively. A 5-hp induction motor is used, and the parameters of this motor are 

given in the table below. Simulations scripts were written using MATLAB M-script, 

and simulation models were built using Simulink toolboxes and blocks. 

 
Table 4: Induction motor parameters for simulation 

Nominal power (W) 14920 Rotor resistance (ohm) 0.1645 

Voltage (line-line) (V) 460 Rotor inductance (H) 0.002891 

Frequency (Hz) 60 Mutual inductance (H) 0.1062 

Stator resistance (ohm) 0.2761 Inertia (J(kg*m^2)) 0.1 

Stator inductance (H) 0.002891 Polar number 2 

6.2 Simulation Results 

Both steady state and dynamic performance are important to the system design 

engineers no matter what controller is being used. So for any given application, 

evaluation of the system performance should be considered in both aspects. 

6.2.1 Scenario 1: Cruise Mode (Torque verses constant speed) 

First of all, it is important to analyze the starting performance. During this starting 

period, the electric motor needs to produce a relatively high torque in a very short 

time to accelerate itself. The investigation here is focused on speed response time, 

fluctuations as well as three phase currents of induction motor. 
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Then, when the vehicle is running at a constant speed for example in cruise mode, the 

load on the motor can vary abruptly because of the change of the road conditions. At 

this kind of state, the vehicle also needs a precise average torque and stable response 

from the electric motor. Therefore, the investigation is focused on torque fluctuations 

and current ripples. 

 

In the scenario 1, the speed command and torque command are given below: 

 

Figure 47: Speed command vs. time in Scenario 1 

 

Figure 48: Torque command vs. time in Scenario 1 

 

A ramp signal is used to simulate the vehicle starting behavior, after the motor rotor 

speed reaches the target value of 400 rpm, it was kept as a constant. At the same time, 

when the motor was started from standstill with a ramp load torque from 0 to 5 Nm to 

the steady state speed of 400 rpm. And then, during the constant speed period, the 
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load was changed to 20 Nm at the time t = 0.3s, and changed again to 15 Nm at t = 

0.5s. 

 

The speed response of FOC, conventional DTC and Sensorless DTC: 

 
Figure 49: Speed response of FOC in Scenario 1 

 
Figure 50: Speed response of conventional DTC in Scenario 1 
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Figure 51: Speed response of SFO-Sensorless DTC in Scenario 1 

 

Generally speaking, for FOC, conventional DTC and sensorless DTC, the speed of any 

of them is well regulated; there is no spike in speed response curves. It can be seen 

that as the load torque is suddenly changed, there is a small speed dip, but then it is 

restored quickly. 

 

From the zoomed in pictures of speed response, we can see that at the time t = 0.1s, 

the speed response of FOC follows the command very closely, the overshoot is almost 

0, for DTC, the overshoot at t = 0.1s is about 5 rpm, and for sensorlees DTC, the error 

is less than 1 rpm. At the time t = 0.3s when the torque changes, the change of FOC 

speed response is about 2 rpm while the DTC’s is around 6 rpm and sensorless DTC’s 

is around 3 rpm. From this analysis we can summarize up that FOC has the best speed 

following characteristic among three of them, and sensorless DTC has a better one than 

the conventional DTC. 

 

The torque response of FOC, conventional DTC and Sensorless DTC: 
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Figure 52: Torque response of FOC in Scenario 1 

 

Figure 53: Torque response of conventional DTC in Scenario 1 

 

Figure 54: Torque response of SFO-Sensorless DTC in Scenario 1 
 

For the torque responses, at the first stage, a large torque is generated to accelerate the 

motor. After reaching the target speed, the torque output follows the command closely. 

In DTC family, either conventional DTC or sensorless DTC, the torque is controlled 

by a hysteresis controller. By properly adjusting the positive band and negative band 

of this hysteresis controller, a satisfied torque response will be achieved. From the 
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simulation result shown above, it is clear to see that the torque response is decent and 

fast. 

 

From the zoomed picture of torque response, it is clear to see that the torque 

fluctuations of FOC are restrained within +2 and -2 (Nm) with respect to the torque 

command. On the other hand, it is noticed that the torque ripples of conventional DTC 

are restrained in -1 and +1 (Nm) with respect of the command value. 

 

Three phase currents response of FOC, conventional DTC and SFO-Sensorless DTC: 

 

Figure 55: Currents response of FOC in Scenario 1 

 

Figure 56: Currents response of conventional DTC in Scenario 1 
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Figure 57: Currents response of SFO-Sensorless DTC in Scenario 1 

 

Figure 55 shows the three phase currents of induction motor using the FOC. Since the 

FOC is aim at controlling decoupled currents qsI and dsI of the system, so generally 

speaking, the currents are well regulated. It can be seen that, at the starting stage, 

three phase currents are constrained within -200 to +200 Amps. After that, the 

magnitude of the current is kept around 100 Amps. 
 

Figure 56 shows the three phase currents of the induction motor by using 

conventional DTC, because in this control method, there is no current regulator, so the 

performance of current at the starting stage is not as good as that in FOC. Obviously 

to see, the current shape at the starting stage is not well controlled, after about 0.1 

second later the currents come back to normal as soon as the motor reaches the steady 

state. Same phenomena are seen in Figure 57 for sensorless DTC. 

6.2.2 Scenario 2: City Driving Mode (Torque verses varying speed) 

Unlike the cruise mode, in this scenario, instead of keeping the speed as a constant all 

the time, it is more realistic to use different demands for the city driving mode; the 

speed of the motor is changing with time. 

 

In this scenario, the speed command and torque command are given below: 
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Figure 58: Speed command vs. time in Scenario 2 

 
Figure 59: Torque command vs. time in Scenario 2 

 

A ramp signal is also used here to simulate the vehicle starting behavior, after the 

motor rotor speed reaches the target value of 400 rpm, a sinusoidal speed command is 

applied, the speed is increased from 400 to 800 rpm, and then, a negative ramp is 

applied to reduce the speed from 800 to 500 rpm. A torque ramp is used at the 

beginning for a very short time, after that it was kept as a constant value at 20 Nm. 

 

The speed response of FOC, conventional DTC and SFO-Sensorless DTC: 
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Figure 60: Speed response of FOC in Scenario 2 

 

Figure 61: Speed response of conventional DTC in Scenario 2 

 

Figure 62: Speed response of SFO-Sensorless DTC in Scenario 2 

 

Figure 60-62 show the speed simulation result for FOC, conventional DTC and 

sensorless DTC, generally speaking, the speed is well controlled, there is no spike in 

the entire curve, and from the zoomed in pictures, we can see that both the overshoot 
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and the steady error in each control algorithm are small enough. So in scenario 2, all 

the control methods have really good speed response. 

The torque response of FOC, conventional DTC and Sensorless DTC: 

 
Figure 63: Torque response of FOC in Scenario 2 

 

Figure 64: Torque response of conventional DTC in Scenario 2 

 

Figure 65: Torque response of SFO-Sensorless DTC in Scenario 2 
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The corresponding torque response is shown above, from t = 0s to t = 0.1s, this is the 

starting stage, a large constant torque is required, from t = 0.15s to t = 0.35, the motor 

speed is increasing sinusoidally, a torque larger than the command is needed to 

accelerate the motor, from t = 0.45 to t = 0.6, a torque smaller than the command is 

generated, since the motor needs to decrease the speed. The same conclusion as the 

previous will be obtained that conventional DTC and sensorless DTC have a better 

torque performance and less fluctuation than that of FOC. 

 

Three phase currents response of FOC, conventional DTC and Sensorless DTC: 

 

Figure 66: Currents response of FOC in Scenario 2 
 

 

Figure 67: Currents response of conventional DTC in Scenario 2 
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Figure 68: Currents response of SFO-Sensorless DTC in Scenario 2 
 

For the current responses, the same conclusions can be achieved that FOC provides 
the best current performance. 
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CHAPTER  VII.  EXPERIMENTAL 

7.1 Overview 

Experiments are significant step in engineering study. It has been proved from the 

simulation results that induction motors operated with FOC will have good steady 

state and operated with conventional DTC will have good dynamic performance if 

properly tuned. To further prove feasibility and verify the theoretical analysis, 

experiments were carried out under different conditions to test the control strategies. 

In this chapter, a detailed experimental setup procedure will be introduced. Steady 

state performance data and dynamic experiments results will be analyzed and 

presented. 

7.2 Experiment Setup and Hardware Components 

This experiment requires high quality complex equipments. Besides integrating the 

electrical motor with flywheel, inverter, digital signal processor, measurement 

instruments and peripheral circuits need to be carefully tuned. The test bench 

implemented in this research is explained by the schematic in Figure 69. 

 

Figure 69: Hardware schematic diagram of induction motor control system 
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7.2.1 AC Induction Motor and Flywheel 

A 15-hp induction motor is used for experimental verification. The nominal DC main 

bus voltage is 60V and the nominal current is 100 Amps at the maximum speed of 

6000 rpm. A flywheel is connected to the motor in the test bench as an inertia 

dynamometer due to its simplicity and ease of implementation. By knowing the 

geometry and mass of this flywheel, it is possible to calculate the torque required to 

accelerate the flywheel. Thus, this flywheel could be used as a load and to simulate 

the dynamic torque for the system. 

7.2.2 Intelligent Power Module (IPM) 

To actuate the induction motor, a standardized, research grade inverter and some 

necessary peripherals were used in the system to test the control algorithms. The 

inverter is an IGBT-based design (rated at 600V and 150A per phase), with current 

and voltage sensing. It has a 7-pack Powerex IGBT and is called intelligent Power 

Module (IPM). The IPM module contains circuitry for shutting down the switching 

signals in the event of an over current or over temperature condition. The integration 

of the electrical bus between switches as well as the internal gate drivers makes the 

IPM an extremely reliable switching solution. 

 

A peripheral circuit is necessary for driving the IPM. Switching signals fed to IPM 

require 15V to turn on and 0v to turn off. Fault signals are generated by the IPM at the 

same voltage levels. An interface board was designed for the IPM to optically isolate 

the switching signals for each phase and the output fault signals. At the same time the 

interface board was designed to connect the DSP developing board with the IPM 

module. 

7.2.3 Digital Signal Processor (DSP) 

The control unit in this system was performed by using a commercialized developing 
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board for which the main processor is a Texas Instruments Digital Signal Processor 

(DSP). It is designed specifically for multiphase motor applications using 

PWM/SVPWM techniques. The advantage of this module lies in its programming 

flexibility and high efficiency. 

 

The computer communicates with the DSP through a USB connection attached to an 

emulator; and the emulator is connected to the DSP through a JTAG port. The DSP 

software development platform is provided by Texas Instruments Code Composer 

Studio integrated development environment, which supports the ANSI-C language 

code standard. 

7.2.4 Current Sensor, Voltage Sensor, and Speed Sensor 

Two currents, phase A and B are sampled with the built-in analog to digital converter 

on the Texas Instruments DSP. A measurement of the DC bus is sampled with a third 

A/D conversion. A peripheral circuit was constructed for the current samples with two 

200 Amps current sensors and four Texas Instruments low noise operational 

amplifiers. The current signal is offset and scaled for DSP interface. The operational 

amplifiers were selected based on the requirement of the DSP for a low impedance 

signal to result in accurate A/D conversions. On the other hand, another peripheral 

circuit was designed to process the DC bus voltage for measurement using a voltage 

sensor. This circuit isolates the bus from the DSP and scales the signal to the 0-3V 

range accepted by the DSP. Finally, a power supply was built for the current sampling 

board providing 15V, 0V, and -15V. 

 

Speed measurements were obtained from the built in optical encoder. The optical 

encoder's disc is made of plastic with transparent and opaque areas. A light source and 

photo detector array reads the optical pattern which result from the disc's position at 

any one time. Two output signals are generated from the optical encoder and usually 

two output wave forms are 90 degrees out of phase, which indicates the rotational 
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direction. The signals can be read by QEP module on DSP, so that the angular speed 

of the motor shaft can be calculated in software easily. 

7.3 Experimental Results 

The experiments are focusing on investigating the current response, torque response 

and flux response in order to validate and evaluate the dynamic performance and 

steady performance of FOC and DTC. 

 

This figure shows the three phase currents when the induction motor running at a 

constant speed in a stable condition. It can be seen that the current is well shaped. 

 
Figure 70: Experimental three phase stator currents in FOC 

And next, three phase currents are transferred into two phase using the Clarke 

transformation. 

 
Figure 71: Experimental two phase currents in FOC 

0 0.5 1 1.5 2

-100

-50

0

50

100

Time (s)

C
ur

re
nt

s 
(A

)

Three phase currents ABC vs. time

0 0.5 1 1.5 2
-100

-50

0

50

100

Time (s)

C
ur

re
nt

s 
(A

)

Two phase currents Alpha & Beta vs. time



66 

To completely decoupled the flux and torque in induction motor, stator currents which 

have been shown above, still need to be transferred from synchronous rotating frame 

to flux oriented rotating frame. So the Park transformation is applied here, and 

decoupled current dsI  and qsI  are shown below.  

 
Figure 72: Experimental decoupled current Ids vs. time 

From the decoupled current dsI , we can see that it fluctuates from approximately 

80A to 110A, which means the rotor flux is fluctuating a little bit when the motor is 

operating, since the magnitude of original three phase currents is 100A, so the 

fluctuation of this decoupled current is considered as reasonable. 

 

On the other hand, another decoupled current qsI  is shown below: 

 
Figure 73: Experimental decoupled current Iqs vs. time 
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theoretically the decoupled current qsI  should be around zero. From the figure of 

qsI  it is clear to see that the current remains around 0 while the motor is operating. 

 

After decoupling the stator currents into dsI  and qsI , two PI controllers are 

employed to regulate the currents with respect to reference values. The outputs of the 

current PI controller are then fed into the SVPWM generating module in the program; 

accordingly, desired PWM voltage signals will be generated. The figure below shows 

the SVPWM phase voltage output waveform. 

 
Figure 74: Experimental SVPWM phase voltage waveform 

 

The following figures are the experimental results for DTC. The zero load condition is 
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Figure 75: Experimental torque response for DTC 
 

Because hysteresis controller is used in the DTC method for regulating the torque, as 

the results shown in the figure indicates that the torque fluctuations are restricted in 

the -5 and -5 Nm boundary. 

 

Figure 76: Experimental stator flux trajectory in DTC 
 

In DTC method, the stator flux is also controlled by a hysteresis controller, so that the 
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boundaries are -0.01 and 0.01. It is clearly to see that most of time the stator flux is 

well controlled inside the designed range. 

7.4  Comparison  Between  Simulation  Results  and  Experimental 

Results 

It is very necessary to compare the simulation results with the experimental ones. For 

one thing we can prove that the experimental process and results are trustable, for 

another, the simulation modules can be testified as correct. 

 

The decoupled current dsI  and qsI  in FOC 

 

Figure 77: Decoupled current Ids in experiment 

 

Figure 78: Decoupled current Ids in simulation 
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As we can see from the above Figure 77 and 78, in the simulation, the decoupled 

current dsI  is kept around 100 A with a fluctuation from 99 to 100 Amps, meanwhile, 

in the experimental result, the decoupled current dsI  is maintained around 100Amps 

with a fluctuation from 80 to 100 Amps. So generally speaking, the experimental 

results match the simulation ones. 

 

For another decoupled current qsI , the comparison is shown as follows: 

 
Figure 79: Decoupled current Iqs in experiment 

 

Figure 80: Decoupled current Iqs in simulation 
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experimental results are coinciding with simulation results. 

 

The stator flux comparison in DTC 

 
Figure 81: DTC stator flux trajectory in experiment 

 
Figure 82: DTC stator flux trajectory in simulation 

From these two figures we can see that the hysteresis controller for stator flux in both 

simulation and experiments is working fine.  
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Figure 83: DTC torque response in experiment 

 

Figure 84: DTC torque response in simulation 
 

Under the zero load condition, the hysteresis controller for torque in both simulation 
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CHAPTER  VIII.  CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

The results from the simulations have clearly shown that FOC has the best steady 

performance and best speed following characteristic while conventional DTC and 

sensorless DTC have a better dynamic performance. At the same time, stator flux 

oriented sensorless DTC combines the advantages of FOC and conventional DTC, 

and results in a control method which maintains a good dynamic response as well as a 

decent steady state performance. 

 

In two simulation scenarios, the induction motor is operated in a cruise mode and a 

city driving mode, the investigation is focused on the speed response, fluctuations and 

the stator currents of the induction motor. In addition to that, the load added on the 

motor is altered twice when the motor is running at the constant speed in cruise mode, 

so the investigation is also focused on torque response and fluctuations.  

 

Generally speaking, satisfied speed responses are obtained from FOC, conventional 

DTC and sensorless DTC. The results have clearly shown that as the load torque is 

suddenly changed, there is a small speed dip, but it is restored quickly. For the torque 

response, in DTC family, no matter conventional DTC or sensorless DTC, the torque 

is controlled by a hysteresis controller, so that a better torque performance with less 

fluctuation is shown in both conventional DTC and sensorless DTC. Because in the 

conventional DTC and sensorless DTC there is no current regulator, so the 

performance of stator currents at the starting stage is not as good as that in FOC.  

8.2 Recommendation and future work 

In this thesis, three control methods of an induction motor: FOC, conventional DTC 

and stator flux orientated DTC are introduced and compared in simulations, but only 

FOC and conventional DTC have been validated in the hardware experiments. The 
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last one stator flux oriented sensorless DTC has not been fulfilled in experiments yet. 

It is very necessary to test this control method in hardware as well, in order to prove 

the conclusions obtained from simulations results are consistent with experimental 

results.On the other hand, due to the limited time, some experiments such as speed 

following test and load varying driving test are not finished yet. It is also very 

necessary to complete these experiments to compare three control algorithms in some 

more realistic hardware conditions. 

 

During both simulation and experiment, it is clearly noticed that the starting behaviors 

of an induction motor is very important for the entire system. Because of a large 

torque is needed to accelerate the motor at the very beginning, a relatively large stator 

current will be generated accordingly. In the hardware experiments this large current 

is physical provided by the IPM inverter and have to go through the semiconductor 

circuits inside the IPM. If the current at the starting stage goes too large, the IPM and 

some other peripheral power devices may have the risk to be damaged. Therefore, 

how to regulate the currents and together with other variables in the induction motor 

at the very beginning is a critical issue. More studies need to be done regarding this 

topic to improve the hardware system reliability and dynamic performance. 

 

The efficiency of three control methods needs to be further investigated. In this thesis, 

the speed response, torque response and stator currents response are discussed 

thoroughly, but the efficiency analysis is not included. It is also very necessary to 

evaluate the efficiency of each control method and present a specific comparison. 

 

At last, some parts of the experimental setup still need to be improved. The 

parameters of the induction motor used in this test bench still need to be estimated. 

Some parameters are not precisely known and some parameters may vary with 

different operating conditions. Compensations regarding the motor parameters need to 

be further considered in the software program. 
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