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Abstract 

Structural health monitoring (SHM) is a process of implementing a damage detection 

strategy for a mechanical system. Wind turbine machinery stands to benefit from SHM 

significantly as the ability to detect early stages of damage before serious malfunction or 

collapse reduces the overall operating costs of wind power projects. Vibration analysis of 

dynamic structural response is an approach to SHM that has been successfully applied to 

mechanical and civil systems and shows promise for wind turbine application due to 

availability of instruments, ease of installation, and overall affordability. This study 

presents the development of vibration based wind turbine structural health monitoring 

through experimental analysis of an operating wind turbine. A database of acquired 

vibration response signals detailing over 3 hours of turbine operation was assembled and 

a Daubachies 6th order wavelet was used to perform a 12 level discrete wavelet 

decomposition such that general trends and patterns within the signals could be 

identified. After determining response behavior of a healthy turbine, a novel vibration 

based SHM scheme is developed based on findings from experimental work. Specific 

interest has been paid to monitoring yaw and braking systems as they have been 

identified as problematic. With further development this vibration scheme can be applied 

by wind farm operators to reduce downtime and failure frequency of utility scale wind 

turbines.   
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Chapter 1 
 
 

Introduction 
 
 
 
 
 
 
1.1 Motivation 

 

Wind turbines are an environmentally benign and renewable energy generation 

alternative [1]. Through the utilization of energy present in moving atmospheric air, an 

electric generator can be operated to provide electricity for remote application or 

integration within a utility grid. Such renewable energy can be used on a large scale to 

reduce the carbon dioxide emissions for a given area where wind turbines are used. Wind 

turbine technologies have undergone rapid growth throughout the world as social interest 

in environmental responsibility and renewable energy has increased. This increase in 

social interest has resulted in economic demand for wind turbines and wind turbine 

farms. In Canada, an average of over 30% industry growth has been reported over the 

past five years [2]. Wind farm arrays have been constructed throughout the Canadian 

provinces with the majority of them within Southern Ontario. On a global scale, rapid 

industry growth has been met by wind turbine manufacturers who have increased the 

scale and power capacity of turbines through advances in rotor and tower design. Wind 

turbines of power capacity greater than 2.0 MW have been extensively used throughout 

Europe and are now being used in recent wind farm development throughout Canada and 

the United States.  
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Despite the rapid advancement in wind turbine design resulting in overall larger turbines, 

the demand for wind energy continues to increase. The Canadian Wind Energy 

Association [CanWEA] has outlined a strategy to increase total installed wind energy 

capacity in Canada to 55,000 MW by 2025 [3]. Considering the current level of wind 

energy utilization throughout Canada, with 85 wind farms and a generating capacity of 

2246 MW, the proposed goal would require notable extensive increases in the number of 

wind farms and potentially, turbine sizes.  

 

The operators of a recently constructed wind farm in southwestern Ontario have 

graciously allowed a University of Windsor research team to complete testing on a fully 

operational 2.3 MW wind turbine. This limited access has allowed researchers to conduct 

an investigation into the vibration response of the utility scale turbine and more 

importantly how that response can be used to evaluate the structural and operational 

conditions of the turbine.  

 

1.2 Scope of Study  

 

The research in this study is presented in a series of three research papers considered for 

publication in various engineering journals. The first paper, now submitted to the journal 

of Wind Engineering, discusses results and analysis from turbine that took place on June 

11th and August 6th 2009. Vibration response to turbine start up and operation was 

acquired and processed with discrete wavelet transform.  
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The second paper, to be submitted to the journal of Wind Energy, studies six full 

operation response signals obtained on the October 22, 2009 test day and analyzes them 

with discrete wavelet decomposition and root mean squared amplitude analysis. Detailed 

study and quantification of forced yaw events and turbine shutdown is performed and 

trends identified and discussed.  

 

The third paper presents the development and outline of a structural health monitoring 

(SHM) scheme that can utilize the now obtained and quantified vibration response of the 

turbine. A novel combination of discrete wavelet decomposition and Auto Regressive 

(AR) analysis has been utilized to assemble an approach to SHM for application on utility 

scale wind turbines. The approach has been named the WARD (Wavelet Auto Regressive 

Diagnosis) algorithm. 

 

Considering the three papers as a series on the subject of structural health monitoring for 

utility scale wind turbines, the overall objectives have been summarized into the three 

points below.   

• Obtain vibration response of wind turbine through field testing on three dates 

• Characterize healthy turbine behavior and response for tests considered through 

12 level discrete wavelet analysis of obtained signals 

• Propose a novel structural health monitoring scheme using wavelet analysis and 

auto regressive coefficients devised to utilize characterized response in order to 

evaluate future structural conditions.  
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Chapter 2 
 
 

Vibration Analysis of 2.3 MW Wind Turbine Operation Using the 
Discrete Wavelet Transform 

 
 
 
 
 

2.1 Introduction 

 

Wind turbines are an environmentally benign and renewable energy generation 

alternative [1]. Through the utilization of energy present in flowing atmospheric air, an 

electric generator can be operated providing electricity for remote application or 

integration within a utility grid. Such renewable energy can be used on a large scale to 

markedly reduce the carbon dioxide emissions for a given area where wind turbines are 

used. Wind turbine technologies have undergone rapid growth throughout the world as 

social interest in environmental responsibility and renewable energy has increased. This 

increase in social interest has manifested itself in economic demand for wind turbines and 

wind turbine farms. In Canada, an average of over 30% industry growth has been 

reported over the past five years [2]. Wind farm arrays have been constructed throughout 

the Canadian provinces with the majority of them within Southern Ontario. On a global 

scale, rapid industry growth has been met by wind turbine manufacturers who have 

increased the scale and power capacity of turbines through advances in rotor and tower 

design. Wind turbines of power capacity greater than 2.0 MW have been extensively used 

throughout Europe and are now being used in recent wind farm development throughout 
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Canada and the United States. Turbines of this power capacity typically have towers and 

rotors that average 80 meters in height and 92 meters in diameter, respectively.  

 

Despite the rapid advancement in wind turbine design resulting in overall larger turbines, 

the demand for wind energy continues to increase. The Canadian Wind Energy 

Association [CanWEA] has outlined a strategy to increase total installed wind energy 

capacity in Canada to 55,000 MW by 2025 [3]. Considering the current level of wind 

energy utilization throughout Canada, with 85 wind farms and a generating capacity of 

2246 MW, the proposed goal would require notable extensive increases in the number of 

wind farms and potentially, turbine sizes.  

 

Several challenges present themselves when considering the widespread use of large-

scale wind turbines. Hahn et al. [4] stated that issues of reliability become a serious 

concern for turbines of large scale and power capacity as inspection and maintenance are 

challenging due to turbine size. Also, it has been shown that the natural vibration 

frequency of the structure decreases with increased cell mass or tower height [5]. This is 

significant as a lower natural frequency could potentially result in dynamic magnification 

of vibration energy as the natural frequency approaches the rotational frequency of the 

rotor. The lifetime of the turbine is critically important in determining the cost 

effectiveness of a wind farm project.  Due to the high demand and relative novelty of 

commercial wind turbine units, up-front capital costs tend to run very high. If these large 

scale turbines prove to be less reliable than initially projected, with extensive downtimes 

or increased maintenance, extensive wind farm operations may prove to be uneconomical 
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considering a wind farm project life. This would stand as a significant roadblock to the 

proliferation of wind generation’s contribution to long-term energy sustainability. 

 

The reliability and lifecycle performance of a wind turbine is strongly dependant on the 

aerodynamic environment in which the turbine operates. Wind speed has been identified 

as being of primary influence on turbine reliability by Tavner et al. [6]. Throughout its 

operation a turbine may experience severe operating environments such as storms which 

introduce precipitation, temperature extremes and high speed gusts. Studies of the effects 

of these events have revealed that high speed wind events such as storms and gusts will 

influence static loading of the turbine, consuming disproportionate amounts of fatigue life 

for main components [6]. Modeling of gusts has been performed in the determination of 

the momentary extreme load conditions that turbine components may face [7]. These 

extreme weather loading conditions are detrimental to the overall lifetime performance of 

the turbine and fatigue patterns may be altered. The immediate performance of the 

turbine may appear normal but when larger temporal scales of months, seasons and years 

are considered, turbine performance could be significantly hindered; with possible 

catastrophic failure as a worst case scenario.   

 

Given the importance of identifying unsafe operating conditions and detecting damage 

before accelerated fatigue or catastrophic failure, some research has been focused on 

analyzing the structural condition of a turbine based on a measureable response. When 

historic response data is compared against current response data to assess the structural 

condition of the turbine the process is known as structural health monitoring (SHM). One 

7 
 



such measureable response that has been used extensively for SHM is vibration response 

as acquired through an accelerometer. Vibration based analysis and damage detection 

began in the late 1970s and early 1980s by researchers in aerospace and offshore oil 

industries [8]. This seminal research utilized modal parameters to compare the response 

of damaged and undamaged parts. More recently, SHM has been applied to civil 

structures such as buildings and bridges. SHM has been performed on span bridges with 

promising results [9] and extensive bridge monitoring techniques have been developed by 

Wong [10].  

 

Beyond civil structures, SHM has been applied to rotating machinery. Farrar and 

Doebling [11] stated that vibration analysis is most successfully employed on rotating 

machinery due to the presence of operating frequencies within a vibration signal. These 

detectable frequencies are used to define healthy response of the machinery such that 

damaged states can be determined. Fault detection and identification using vibration 

signals for rotating machinery has been considered by Wegerich [12] and it has been 

argued that the successful application of vibration monitoring depends largely on 

techniques used in processing vibration signals [13].  

 

A comprehensive review of vibration based condition monitoring by Carden and Fanning 

[8] has identified several methods for vibration signal analysis including natural 

frequency based methods, mode shape based methods, operational deflection shape based 

methods, frequency response function based methods, statistical methods and wavelet 

analysis based methods. For the present study of SHM applied to wind turbines, the 
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system characteristics must be considered before the most appropriate methods can be 

identified.  

 

A wind turbine is a dynamic system of complex and non-linear nature. Due to constantly 

changing environmental conditions, particularly the wind speed, the response of the 

turbine is in constant state of flux. This intermittency presents specific challenges to wind 

turbine structural health monitoring as several established techniques such as natural 

frequency based methods, modal analysis and frequency response function based 

methods are dependent on certain response characteristics remaining steady. These 

methods may be appropriate for certain civil applications where dynamics effects are 

limited, but for complex wind turbine machinery the dynamic effects may be very 

dominant. In order to limit dynamic behavior of the system a number of structural health 

monitoring applications for wind turbines have involved the analysis of the turbine in a 

stationary state [14]. These methods require the turbine be shutdown for the testing 

period, resulting in lost revenue for the wind farm operator. As wind farm arrays grow 

larger the costs associated with stationary SHM could become very high. In order to 

prevent lost revenue and decrease turbine downtime, an optimal SHM scheme ought to 

analyze vibration response of fully operating turbine taking into account the dynamic 

aspects of turbine operation. Pitchford et al. state that through utilization of piezoceramic 

patches a wind turbine component could be excited by vibration generated in the patch 

and the response to this input monitored to determine the structural state [15]. This 

technique is considered active SHM due to the excitation required. Active SHM is not 

appropriate in operational analysis where the turbine’s operation is the excitation force 
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from which a response is measured. Thus dynamic, passive analysis techniques using 

piezoelectric accelerometers are more suited.  

 

With the goal of full scale structural health monitoring in mind, the authors first followed 

the direction of Farrar and Doebling who have suggested that damage detection is a 

problem of statistical recognition [11]. Statistic based SHM has been outlined by Sohn 

and Farrar [16] using Auto Regressive (AR) and Auto Regressive with erroneous input 

(ARX) coefficients. This technique was considered by authors, this study demonstrated 

the successful damage detection of damage modeled through anomalous mass addition 

for various steady state wind speeds [17]. Vibration signals were analyzed with AR 

coefficients and leveraged through the use of a healthy state database.  

 

A healthy state database is an archive of system behaviors obtained during healthy 

operating conditions. When the real time structural condition of a structure is surveyed, 

the historic behavior is considered as a standard by which to judge the newly acquired 

data. For the first SHM study performed by authors the healthy state database was 

constructed for several periods of steady state wind speed. This form of analysis was 

effective in identifying anomalies for constant wind speeds. The present method under 

development seeks the capacity to better process signals from a strongly transient 

environment.  
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2.1.1 Wavelet Analysis 

In order to account for the environmental variability and the constantly evolving vibration 

response of the turbine, wavelet analysis has been considered. Wavelet analysis involves 

the evaluation of a signal with respect to a mother wavelet [18].  The wavelet transform 

coefficient parameter (WT) can be calculated to measure the frequency content of a 

signal in a certain frequency band within a certain time interval as calculated by the 

below equation [19]. 

( ) ∫
∞

∞−
⎟
⎠
⎞

⎜
⎝
⎛ −

Ψ= dt
a

bttxaabWT )(, 2
1

 (1)  

where a is scaling factor which determines frequency content, b is translation parameter,  

t is time, and Ψ (t) is the complex conjugate of wavelet Ψ. The process of wavelet 

analysis allows for the decomposition of a signal into a set of frequency channels [18]. 

Equation 1 represents the continuous wavelet transform (CWT) which offers the 

possibility of detailed analysis of vibration transients.  Due to the finite length of each 

wavelet, the wavelet transform allows for the periodicity-based comparison of events 

with differing durations. A challenge with the CWT is the computation demands of its 

execution. Since all scales of the mother wavelet are compared to the signal extensive 

and time consuming calculations are required. One way to address this challenge of 

computational demand is to utilize the discrete wavelet transform (DWT) as expressed by 

[19].  

∫
∞

∞−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
Ψ= dtkttxkWT j

j
jjj

2
2)(2)2,2( 2

1

 (2) 

This extracts wavelet scales from the CWT on a two dimensional grid (a, b) with dyadic 

scales a=2j and b=k2j. This transform allows for a full range of frequency resolution while 
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limiting the computational load for calculations thus making it well suited for wind 

turbine application where large amounts of data must be handled. A DWT breaks up a 

signal into decomposition levels related to wavelet scale. In performing the DWT, 

wavelet scales between levels are not individually extracted for analysis but frequency 

content of the signal between levels will be reflected in the decomposition levels of the 

transform.  

Various applications of wavelet based vibration analysis have been performed by many 

researchers.  One promising application has been on a helicopter gearbox by Wang and 

McFadden [20]. This study analyzed the transient vibration signals for detection of a 

cracked gear using wavelet scales and it was proven that, unlike time-frequency 

distributions used for other vibration analysis techniques, wavelet analysis can 

successfully represent both large and small scale variations in vibration. Wavelet analysis 

has also been applied to rotating components such as bearings with encouraging results 

[19]. In these applications of wavelet analysis the general behavior of the vibrating 

components was understood such that component-specific damage detection could be 

performed with effective wavelet bandwidths and speed of dilation to ensure that wavelet 

scales cover the frequency band of specific interest such that redundancy in computation 

is limited. The mother wavelet selected for the subsequent analysis is the Daubachies 6th 

order wavelet chosen for its success it with fault detection on rotor applications [21]. For 

these applications the operational response of the rotor was used to assess its condition 

and the effectiveness of the Daubachies 6th order wavelet was demonstrated.  This 

wavelet is depicted in Figure 2-1. Wavelet scale, decomposition level and frequency are 

related by the following equation [22]. 
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Δ•
=

a
F

F c
a  (3) 

Where a is the scale, Δ is sampling period, Fc is center frequency of wavelet and Fa is the 

pseudo frequency corresponding to the scale in Hz. A 12 level decompositions method 

has been chosen for analysis of operations signals allowing for a highly detailed analysis 

of the low frequency content of the signals. Table 1 displays the level, scale and pseudo 

frequencies for the following analysis. Pseudo frequency will simply be referred to as 

frequency for the vibration analysis. 

  

Currently, the vibration behavior of commercial wind turbines is yet to be entirely 

understood both due to the proprietary nature of commercial turbine design and operation 

and the novelty of the technology. The authors seek to expand the knowledge base of 

turbine vibration with the subsequent vibration analysis. In order for optimal structural 

health monitoring techniques to be developed and tested, the overall behavior of the 

turbines must be understood. This will be accomplished through the analysis of several 

sets of vibration signals for a given turbine, identifying key signal traits and patterns. 

Another unique aspect of the present vibration analysis is the utilization of the wind 

turbine mast as a conduit for response. The potential to measure nacelle or foundation 

sourced responses from a limited number of or single turbine-mounted accelerometer 

would be very desirable in a structural health monitoring context. The effectiveness of 

this technique will ultimately have to be evaluated based on the quality and clarity of 

response features within the signal.  
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Table 2- 1:  Level, scale, frequency relationship for decomposition 

  
Level     Scale     Pseudo Frequency [Hz] 
1     2    181.8182 
2     4    90.9091 
3     8    45.4545 
4     16    22.7273 
5     32    11.3636 
6     64    5.6818 
7     128    2.840 
8     256    1.4205 
9     512    0.7102 
10     1024    0.3551 
11     2048    0.1776 
12     4096    0.0888 
 

 

Figure 2-1: Daubachies 6 wavelet. Amplitude vs. Length (dimensionless). 

 

2.2 Vibration Analysis Experiment  

Vibration signals were acquired for a 2.3 MW wind turbine operating as part of a wind 

farm array in Ontario, Canada. Details for the acquired samples and turbine tested are 

presented in Table 2-2. Turbine specifications were obtained from the manufacturer. 

Figure 2-2 depicts the test turbine.  

Table 2-2: Instrument and Turbine Specifications 

  
Instrument Specifications   Turbine Specifications 
Sampling rate   500 Hz  Turbine Rating  2.3 MW  
Accelerometer   Piezoelectric Rotor Diameter  93 m 
Accelerometer sensitivity   10.2 mV/g Tower Height  80 m  
Accelerometer location signal 1 50 m   Rotor Speed  6 – 16 rpm 
Accelerometer location signal 2 17 m   Generator Speed  1500 rpm 
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The piezoelectric accelerometer (PCB 352C34) was mounted to the inside surface of the 

turbine tower at 17 and then 50 meters. The data acquisition system was configured to 

acquire continuous samples throughout the operation period at the specified sampling 

rate. The turbine was started by the operator while the vibration rig was left to measure 

vibration signals conducted through the tower. These initial signals represent a potential 

“healthy” baseline by which future signals may be evaluated against.  The vibration 

signals available for analysis are shown in Figure 2-3. These plots represent the first 17 

minutes of operation of each signal.  

 

 

Figure 2-2: Turbine test sample. 
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Figure 2-3: Operational raw vibration signal 1 (left frame), operational raw 

vibration signal 2 (right frame). 

 

Inspection of the signal plots reveal that the vibration signals obtained begin with low 

amplitude events which correspond with the turbines start-up sequence. The start up of 

this machine involves the release of the mechanical brake on the main shaft and the pitch 

control of the blades; which must articulate from the stalled angle of attack. Depending 

on both the direction of the wind and the orientation of the parked turbine the yaw 

mechanism may be initiated to rotate the turbine into the wind.  Each of the signals 

displays unique characteristics during this pivotal start-up stage. In order to aid in the 

analysis of the signal the start up segment of each signal has been extracted for detailed 

analysis as presented in the following section.  

 

Following the start up sequence the signal notably increases in amplitude indicating the 

operation of the spinning rotor. This high amplitude vibration is maintained throughout 

the remainder of the signal until the turbine shut down sequence was initiated by the 

turbine operator. This segment of operation will be considered steady state operation as a 

means of distinction from start up or shut down signal segments.  Data segments have 
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been taken from the turbine steady state operation for detailed analysis and signal feature 

extraction. The shut down behavior of the turbine is to be considered in a following 

study.  Before the relative properties of the signals can be assessed it is essential to note 

the different environments in which these signals were obtained. The test environment 

specifications are presented in Table 2-3. Environmental data was acquired from a 

weather station located approximately 32.5 km from the wind farm array. Wind speed 

data was acquired from a cup anemometer mounted to the nacelle of the turbine.  

 

Table 2-3: Signal environmental specifications 
  
     Signal 1   Signal 2 
Test Date    June 11, 2009  August 6, 2009  
Accelerometer Location   50 m   17 m 
Average Wind Speed   8.1 m/s   5.5 m/s    
Temperature      16 C   20 C 
Relative Humidity   75%   56%   
Precipitation    0   light rain 
 
 

The relative behavior measured during the sampled periods can be investigated with the 

two obtained signals. The vibration analysis seeks to identify common traits between the 

two signals. Through the comparison of traits and evident trends the turbine response can 

be considered relative to environmental conditions and the methodology for obtained 

signals can be assessed relative to accelerometer positions. Once the nature of response 

data is understood further, investigation into the correlation between environmental 

phenomena and turbine response can be made involving high frequency wind velocity 

data.  
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2.3 Signal Feature Extraction from Wind Turbine Operation 

2.3.1 Start Up Analysis 

Start up segments were extracted from the original signal such that a more detailed 

analysis could be performed. The signals represent 128 seconds of the turbine startup 

sequence and extend briefly into the early full operation signal. By creating these 

segments the vibration response of the turbine can be assessed and potential trends 

identified for quantification. The 12 level DWT was calculated for each signal and is 

presented in Figure 2-4. For all the following figures, plots pertaining to signal 1 will be 

in the left column and plots for signal 2 will be in the right column.  

 

Figure 2-4:  DWT of start up signal 1 (left frame). DWT of start up signal 2 (right 

frame). 

 

For the DWT plots the areas of highest coefficient values are colour mapped in black. 

These areas indicate large magnitudes of signal energy within the corresponding 

decomposition level. Both signals contain high signal energies towards the end of the 

signal at low decomposition levels 10 through 12 as can be seen in the top right corner of 

each plot. The details of this low frequency activity are assessed by considering the signal 
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decompositions for each given level. Figure 2-5 depicts the original start-up signals along 

with the level 12 and 11 decompositions, revealing the low frequency trends. 

Figure 2-5: Start up raw vibration signals with level 12 and Level 11 

decompositions. Signal Amplitude (m/s2) vs. Time (seconds). 

  

From these figures several characteristics of the turbine’s start up behavior can be 

assessed. The 12th level decomposition of each signal reveals the ramping of signal 

amplitude corresponding to the start up of the turbine. The turbine manufacturer specifies 

the operation range of the turbine to be 6-16 revolutions per minute which corresponds to 

the 0.1-0.267 Hz frequency band. During the start up phase of turbine operation the rotor 

must begin from rest and accelerate into its outlined operation range. This corresponds to 

low frequency motion in the range of 0-0.1 Hz. The 12th level decomposition 

corresponds to the frequency range of 0-0.088 Hz, and inspection of this level reveals a 

trend that is likely driven by the low frequency spinning of the rotor before full operation 

speed has been reached.  
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Beyond the low frequency trends presented above, a more localized analysis was 

performed on a specific feature that was present in each signal. The DWT of Figure 2-4 

was used as a tool to identify sections within the temporal domain of the signal which 

contain distinct high energy events. The DWT allows localization in both temporal and 

frequency domains. Thus a feature can be extracted based on both the segment of time 

that contains the signal feature and also the decomposition level that reveals the feature 

for a given wavelet scale. These sections could be further identified from DWT plots by 

the decomposition level which displays the highest wavelet coefficient values. The 

features extracted with this method can be described as a clear amplified vibration that 

grows slowly and dissipates quickly after reaching maximum amplitude. For Signal 1, the 

start up sequence contained one of these features at 64.3 through 78.6 seconds of the start 

up signal. The feature was present twice in succession in Signal 2 at 17.7 through 74.8 

seconds of the start up signal. These features have been extracted and are presented in 

Figure 2-6 for detailed analysis. The DWT of each signal reveals noteworthy behavior as 

depicted in Figure 2-7. 
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Figure 2-6: Start up features of raw signal with corresponding decomposition level. 

Signal Amplitude (m/s2) vs. Time (seconds) 

 
 

 

Figure 2-7: DWT of signal 1 start up feature (left frame). DWT of signal 2 start up 

feature (right frame). 

 
 
From the above DWT plots the short term evolution of the vibration signal can be seen 

with respect to the DWT decomposition levels. For the above DWT plots the scale of the 

coefficients color map has been adjusted such that the colour mapping would reflect the 

coefficients relative to the feature. The behavior during this segment is complex but 

features can be extracted for comparison. Each feature takes place late in the start-up 
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stage within a minute of the energy ramp-up as evident from the global start up analysis.  

Considering the physical phenomenon occurring during this interval the feature may be 

due to the activation of yaw mechanisms or pitch control motors. Further research is 

required to correlate and distinguish vibration features with start up phenomena to a 

higher level of certainty. The presence of these common features is promising, calling for 

further quantification and study as a more comprehensive dataset becomes available. This 

start up feature may be defined as distinct turbine behavior which can used for structural 

health monitoring. It is of interest to note that each feature consists of large low 

frequency events which introduce energy into channels of higher frequency. This cascade 

is evident in the shape of the DWTs. 

 

2.3.2 Steady State Analysis 

Several performance characteristics for which spectral targeting may prove effective are 

evident from rotor and generator speeds.  These rotational frequencies are present and 

detectable within vibration response signals and thus will serve as the frequency bands of 

interest for preliminary analysis. The first frequency considered is the rotor rotational 

frequency produced by the dynamic motion of the 60 tonne rotor assembly. As noted 

above, the turbine manufacturer specifies the operating range to be 6-16 rpm. This 

corresponds to a frequency band of 0.1-0.267 Hz. The second frequency considered is the 

frequency of the induction generator used to convert rotational energy into electricity. 

The synchronous speed of the generator is 1500 rpm thus the frequency of interest is in 

range of 25 Hz. Figure 2-8 depicts typical DWT plots for the steady state signals.  
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Figure 2-8: DWT steady state signal 1 (left frame). DWT steady state signal 2 (right 

frame). 

 

From Figure 2-8 several key trends can be identified.  The level 11 and 12 

decompositions each reveal low frequency periodicity for the operation signals. Signal 1 

exhibits higher periodicity in the 11th decomposition level while signal 2 exhibits it in 

level 12. These decomposition levels are related to the rotational frequency of the turbine 

rotor and indicate the periodic variation of energy in that frequency range. The period of 

this variation can be extracted from these plots by measuring the time between peaks. 
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Figure 2-9: Raw vibration signals with Level 12, 11, and 3 decompositions. Signal 

Amplitude (m/s2) vs. Time (seconds). 

 
 

Considering periodicity, the first signal is more intermittent than the second signal with 

the longest between peaks period of 65.2 seconds. The second signal is much more 

constant in its periodic trends and the average period between peaks is 41.2 seconds with 

a max of 44.1 seconds. Of particular interest in Figure 2-9 is the presence of these low 

frequencies at comparable magnitudes despite the relative difference in overall magnitude 

for the original raw vibration signal which is significantly influenced by proximity to the 

nacelle.  
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In order to zoom-in on behavior on magnitude with the operation of the generator the 

level 3 decomposition of each signal has been calculated and is illustrated in Figure 2-9. 

The time scale has been modified such that the waveform can be seen. This 

decomposition level relates to the frequency band of 22.72-45.45 Hz which includes the 

25 Hz synchronous speed of the induction generator. It is important to note that the 

generator will not exactly operate at 25 Hz and the difference between operating speed 

and synchronous speed is referred to as slip.  The presence of this slip makes spectral 

targeting of the generator a challenge from this preliminary stand-point when the overall 

behavior of the generator has yet to be fully understood. Further research including the 

isolation of vibration sources from turbine nacelle is called for to further understand 

behavior and response of the generator.   

 

2.4 Conclusions 

In summary, vibration signals obtained for a 2.3 MW wind turbine during two operating 

conditions have been analyzed through wavelet analysis. The two unique signals could be 

representative of potential baseline for turbine behavior and response; which could be 

further developed and utilized for structural health monitoring application. The following 

outcomes were realized. 

 

• Analysis of start up signals revealed the low frequency ramping up of energy on 

the order of the rotor rotational frequency. Signal 1, obtained higher on the 

turbine tower, had a higher overall vibration magnitude than signal 2.  Although 

the average wind speed was higher for the first signal, the amplitude of response 
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is significantly greater; verifying the intuitive notion that the nacelle is the 

significant source of vibration for the system and accelerometers located closer to 

this source will measure stronger signals. This phenomenon may be utilized to 

analyze different aspects of turbine response with accelerometers mounted closer 

to the nacelle capturing high vibration levels from the generator and control 

mechanisms; while accelerometers mounted further from the nacelle, closer to the 

foundation would capture global structural movement.  

 

• The time and frequency localization property of the DWT was used to identify 

high energy events within the turbine start up signal. A localized analysis of these 

areas revealed distinct vibration features common to each signal. These features 

correspond to a physical event that is a part of the start up sequence of the turbine 

such as yaw motion. Further research into the exact correlation between the 

response and event is called for.  

 

• Steady state operation signals were dominated by low frequency trends which 

become clear upon consideration of level 11 and level 12 wavelet decomposition 

plots. These plots reveal that periodic trends are much more consistent for signal 2 

obtained lower on the turbine mast. The average period of this motion was 41.2 

seconds.  

 

• The presence of distinct trends within steady state operation signals is promising 

as it confirms that the turbine tower may be utilized as a conduit for turbine 
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response. This is significant as this convenient mounting location reduces the time 

and effort necessary for installation. Further, and most notably, this opens the 

possibility of significantly reducing the number of sensors required to purchase, 

install, and monitor in a comprehensive SHM routine. Subsequently making 

vibration analysis based SHM an attractive feature for implementation in wind 

farm maintenance regiments.  

 

• With further development the presented method of vibration analysis can be used 

as part of a structural health monitoring scheme which may be able to prevent 

catastrophic turbine failures and reduce both downtime and maintenance of large 

scale wind turbines.  Ideally, this would work to make wind energy more feasible 

and accessible in the short term and allow for more sustainable growth of the 

wind energy industry in the long term.  
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Chapter 3 
 
 

2.3 MW Wind Turbine Vibration Response to Yaw Motion and Shut 
Down Events 

 
 
 
 
 

3.1 Introduction 

In recent years wind energy technology has gained considerable attention from the public 

and private industry sectors. With this attention has come investment and opportunity for 

those committed to developing this renewable energy. Many countries including the 

United States and Canada have outlined goals for drastically increasing wind energy 

generation in order to reduce the requirement for imported or non-renewable energy such 

as oil and coal. The United States Department of Energy has outlined a goal of increasing 

American wind energy penetration to 20% of total usage by the year 2030 [1,2]. This 

goal calls for a threefold increase in annual installations. The Canadian Wind Energy 

Association (CANWEA) has too outlined a goal of 20% penetration by the year 2025; 

requiring an increase of 50,000 MW of wind energy generating capacity [3]. In each case 

the vast proportion of wind energy capacity will be met through the installation of utility-

scale wind turbines rated at greater than 1MW. Turbines of this scale currently consist of 

towers ranging in hub height from 50 to >100 m. Several challenges must be met to 

achieve this planned North American growth.  

 

 

 

30 
 



Turbine Reliability 

One such issue is the reliability of turbines of this size. A comprehensive survey of 

failures in wind power systems within Germany, Finland and Sweden for the time period 

of 1997-2005 revealed that larger turbines have a higher annual failure rate than smaller 

turbines [4]. The study also revealed that for turbines rated above 1 MW, the failure rate 

increases each operational year. These points become of greater concern from a social 

perspective as a country’s utility grid becomes more dependent on wind energy for 

significant proportions of its total power. Wind turbine fleets must prove as reliable as 

traditional energy sources such that a secure and balanced grid based on significant 

proportions of renewable energy can be obtained. To address this concern of reliability 

many researchers have devised condition monitoring techniques often referred to as 

Structural Health Monitoring (SHM) schemes. A SHM system is a process of 

implementing a damage detection strategy for a mechanical system [5]. There are 

currently many approaches to SHM; which vary based on application, equipment 

required, and algorithm utilized for data processing.  One such approach utilizes modal 

analysis which employs dynamic information from a structure along with varying degrees 

of statistical processing to assess a structural condition. This method has been utilized 

successfully for many different mechanical and civil systems including bearings [6], 

rotors [7], bridges [8] etc. When considering the structural health monitoring of wind 

power systems the modal approach has many attractive qualities. Vibration sensors 

typically used for modal analysis are relatively inexpensive and readily available when 

compared to other techniques requiring acoustic emission, thermal imaging or ultrasonic 

equipment. The technique is also considered straightforward to implement on a given 
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structure making it suitable for the complex tower structure of a wind turbine. Studies 

into the reliability of European wind energy systems have determined that reliability data 

contains periodicity [9] and modal analysis can be utilized to access and quantify these 

trends. Despite the attractive qualities many researchers have criticized the method based 

on several criteria including inaccessibility to turbine response datasets [10], 

inconvenient and extensive sensor arrangement, and unavailability of undamaged turbine 

structural response data [11].  

 

The present authors have taken several key steps to addressing the above issues such that 

modal based structural health monitoring can be applied on utility scale wind turbines 

located throughout Ontario, Canada, and abroad. The first step was to secure a strong 

relationship with existing wind farm operators and developers such that undamaged 

turbine structural response datasets could be obtained. This was made possible by a wind 

energy developer looking to invest in the long-term reliability of their wind turbine fleets. 

This process of developing a working business/research relationship with a private wind 

energy developer began in January 2007. Since the commissioning of the wind farm the 

operator corporation has allowed and facilitated select testing of turbines within their 

farm. This limited access to an operating wind turbine has opened the doors to novel 

vibration analysis. Before full scale testing could commence, an initial SHM procedure 

was developed in the laboratory. The statistics based scheme proved successful in 

detecting damage sustained by a simplified wind turbine model during wind tunnel 

testing [12]. Following lab experiments researchers sought more information from the 

frequency content of turbine vibration signals. Considering the non-stationary nature of 
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wind turbine vibration signals, traditional frequency transforms such as the Fast Fourier 

Transform were not suited for this use in this structural health monitoring application. 

This has led researchers to consider wavelet methods in order to better account for the 

transient nature of operational turbine vibration response.  

 

Wavelet Analysis 

Wavelet analysis involves the evaluation of a signal based on a wavelet of discrete 

length. The length of the wavelet, often referred to as scale, is related to frequency 

through a defined relationship. A wavelet analysis can be executed in several different 

ways and the method of particular interest in this study is the discrete wavelet 

transformation. This technique decomposes a signal into multiple frequency levels and 

determines correlation coefficient values based on the comparison between the shapes of 

the signal waveform and the wavelet. Table 3-1 depicts the relevant frequencies and 

scales utilized for the 12 level discrete wavelet transform for a Daubachies 6th order 

wavelet. The Daubachies 6th order wavelet has proven successful in damage detection for 

non-stationary signals emitted from a rotor [7] and thus it has been chosen for this 

analysis.  

 

A twelve level discrete wavelet transform has been selected for its suitability in the  

analysis of the low frequency range of the signal. Low frequencies are of particular 

interest in this analysis of commercial scale wind turbines. Table 3-2 illustrates the 

relevant operating frequencies for select major turbine components.    
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Table 3-1:  Level, Scale, Frequency Relationship for Decomposition 

Level    Scale    Frequency Window [Hz] 
12   4096   (0-0.089) 
11   2048   (0.089-0.18) 
10   1024   (0.18-0.36) 
9   512   (0.36-0.71) 
8   256   (0.71-2.84) 
7   128   (2.84-5.68) 
6   64   (5.68-11.36) 
5   32   (11.36-22.73) 
4   16   (22.73-45.45) 
3   8   (45.45-90.91) 
2   4   (90.91-181.83) 
1   2   (181.83+) 
 
 
 
Table 3-2:   Operating Frequencies for Select Major Turbine Components.  

 
Component   RPM   Frequency [Hz]  DWT Level  
Rotor Rotation   6 – 16    0.1 – 0.267  11 – 10 
Low Speed Shaft   6 – 16   0.1 – 0.267  11 – 10 
Generator Speed   540 –1500  9 – 25   6 – 4 
High Speed Shaft   540 – 1500  9 – 25   6 – 4 
Blade Passing    18 – 48    0.3 – 0.8   10 – 8 
   

 

It should be noted that although the RPM range for rotor rotation begins at 6 RPM and 

the appropriate shaft speeds are harmonics of this frequency, the turbine primarily 

operates at its rated speed of 16 RPM. Therefore the DWT level location can be known 

for cases where a range spans more than a single level. With wavelet-based spectral 

targeting of turbine components, and access to an operating turbine with which to test this 

method the authors proceed to demonstrate how a database of quantified turbine 

undamaged response can be compiled. 
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Wavelet methods were first utilized to analyze the start up and steady state operation 

segments of two signals obtained from the wind turbine earlier in the project. The results 

of this study were presented in a recently submitted manuscript. The proceeding sections 

present the results of a more in detailed experiment completed on a 2.3 MW wind turbine 

for a variety of operational events. It is the intention of the authors that the data presented 

and discussed may be further used by other researchers to aid in the advancement of 

vibration based SHM techniques for wind turbines. The objectives of this investigation 

are to obtain vibration response signals from the turbine tower, relate the obtained 

response signals to environmental, operational and experimental conditions, and identify 

trends within signals that may characterize healthy turbine response.  

 

3.2 Vibration Testing 

Vibration testing of a 2.3 MW commercial wind turbine took place on October 22, 2009. 

Throughout the day six tests were executed involving the operation of the turbine and the 

recording of the subsequent vibration response of the structure. The turbine utilized for 

this investigation (as depicted in Figure 3-1) is typical of utility-scale used throughout the 

world. There are currently more that 500 of these turbines installed in the United States 

and many in other countries including Canada (174) and France (30) [13]. The popularity 

of this turbine serves to further emphasize the value of the present work as a database of 

its healthy response can be used by researchers and wind farm operators around the world 

to diagnose, troubleshoot and evaluate the fatigue of their specific turbine. Relevant 

turbine specifications are defined in Table 3-3. 
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Figure 3-1:  Turbine (foreground) Examined in Study.  
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Figure 3-2: Researcher Ascending Turbine to Prepare Testing Instrumentation. 
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Table 3-3:  Turbine Specifications 

Parameter    Value   Parameter  Value 
 
Hub Height   80 m   Rotor Mass  60 tonne 
Rotor Diameter  93 m   Nacelle Mass  82 tonne 
Generator Type  Synchronous  Tower Mass  162 tonne  
Synchronous Speed  1500 RPM  
Max Rotor Speed  16 RPM 
 
 
Response was obtained through a piezoelectric accelerometer (PCB 352C34) mounted on 

the inside surface of the turbine tower at a specified height. It is to be noted that the 

present study utilizes standard turbine operation as the excitation from which response is 

derived. Methods utilizing these innate excitation techniques have considerable 

advantages over other techniques such as externally delivered forced vibration provided 

by an impact hammer, electrodynamic shaker, or laser pulse as analysis can be performed 

under service conditions and require no artificial exciters [14]. Several forms of innate 

excitation are relevant when applying vibration analysis techniques to a wind turbine 

including ambient excitation, static yaw motion, start up, operation and shut down. Each 

of these system excitations provides a unique and potentially valuable structural response 

as the nature of the response can be considered relative to the turbine components which 

introduce the mechanical excitation into the turbine system. The executed study has 

considered and obtained response to the aforementioned natural excitations.  

  

Figure 3-2 illustrates a researcher ascending the turbine during the installation of the 

accelerometer sensors. The height variable is of particular interest due to the possible 

localization property it may exhibit. This could be significant for the potential isolation of 

specific turbine component monitoring such as foundation, tower, yaw bearing, generator 
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and gear train based on sensor location. The three heights of 17m, 50m, and 80m were 

considered for this study and two operation tests were executed at each height. This 

method of measuring response from the turbine tower has many advantages when 

considering modal testing. The turbine tower is a highly accessible and convenient point 

of measurement that allows for rapid installation and set up as the turbine nacelle need 

not be entered and no disassembly of turbine components is required. The turbine tower 

itself is composed of multiple sections with flanged ends that are bolted together during 

assembly. These bolts must be tightened as part of standard turbine maintenance 

procedure. Tower mounted accelerometers may provide indications of loose bolt 

connections between tower sections and this would be very advantageous as preventable 

fatigue to turbine components may be averted. In previous structural health monitoring 

approaches vast arrays of sensors are required, the proposed method has the potential to 

do away with these arrays through the utilization of wavelet decomposition.   

 

Signals from the sensor were transmitted to a pc-based data acquisition system for 

storage and processing. The acquisition interface was set to record samples at the 

specified sampling rate of 500 Hz throughout the test duration. This sampling rate was 

selected because it allows for the timely processing of obtained data. When applying a 

wavelet transform the computation time is highly dependant on the number of samples 

recorded for each second of operation. In order for real time structural health monitoring 

to be realized the transform needs to be completed in a shorter time period than the 

dataset length. This means that for a thirty second sample the computation must be 

executed in less than thirty seconds such that the next sample can be evaluated without 
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delay and the system can keep up with acquired data. Also, the major turbine components 

considered for this study have fundamental harmonic frequencies below 50 Hz and thus 

the accuracy of data within this range is ensured by sampling at ten times this value. As 

turbine response becomes better understood (and computer processing speeds increase) 

higher sampling rates can be used to target smaller components such as individual 

bearings and gears which operate at higher level harmonics of the fundamental operating 

frequency.   

 

Several environmental and operational parameters were recorded during the tests in order 

to aid in the study of the parametric relationships between relevant 

environment/operation variables and recorded events. The turbine data acquisition system 

was utilized to obtain this supplementary data. Rotor mean speed, generator mean speed, 

maximum wind speed and mean wind speed were tracked throughout the test day and are 

displayed in Figure 3-3. Raw data has been processed into ten minute averages by the 

wind farm SCADA system.  
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Figure 3-3: Wind Speed and Rotor RPM for Test Day. 

 

Each of the six test periods are identified on the figure and the associated characteristic 

parameters will be used to understand the vibration response within the context of wind 

and operating speeds. Time periods where the maximum rotor speed is zero correspond to 

periods where the turbine was parked while the technician ascended the tower to change 

the location of the accelerometer sensor.  
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3.3 Vibration Event Mapping 

In order to help facilitate the positive identification of the operation of a variety of turbine 

sub-components within vibration signals collected only in the turbine tower, control level 

event maps were recorded to overlay on vibration signals to establish temporal 

correlation of vibration signals and operation control signals. Some of the specific turbine 

mechanisms that were tracked from the SCADA interface included forced yaw events, 

periods of rotor speed acceleration, pitch articulation, start up and shut down. The raw 

vibration operation figure for Test 2 is typical of other obtained signals and is displayed 

in Figure 3-4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: Raw Vibration Operation Signal for Test 2 
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In this figure the start up, operation, and shut down response is displayed and a sense can 

be developed for the general shape and magnitudes of the response signals. After 

correlating the time stamp from vibration signals with the time of each event, event maps 

could be constructed. Timestamp and event data for Test 2 are shown in Table 3-4. 

Figure 3-5 displays the detailed vibration event map for Test 2 with indicators for the 

location of the event timestamps.  

 

Table 3-4.  Observed Events and Associated Times for Test 2 
 
Event    Time [s] Event    Time [s] 
 
Yaw initiated  71.3  Yaw stopped  87.3 
Turbine start  131.3  Blade pitch  147.3  
Breaker Switch 211.1     
    
 

 
 
Figure 3-5  Start Up Event Map for Wind Turbine Start Up Test 2.   
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From Figure 3-5 the various events can be observed and the vibration responses 

identified. The first aspect of the figure to be considered is the base level vibration before 

any turbine motion has been initiated. This can be considered ambient signal excitation 

and can be observed in the first 50 seconds of the above figure before the yaw test occurs.  

This ambient excitation level is low relative to the magnitudes of full operation but 

should be considered for lower magnitude excitations such as yaw motion and thus it is 

further discussed in the yaw analysis presented below.   

 

Following the base excitation level the first event to take place in this operation sequence 

was a yaw test. This yaw movement was intentionally initiated as part of the yaw motion 

analysis of the turbine. The vibration response of the turbine to yaw motion begins with a 

peak in vibration followed by a sustained vibration level and then a second peak. After 

completing the forced yaw event the turbine was set to complete a standard start up 

sequence. The initialization of this start up is located on the above plot and is followed by 

a local peak in vibration. By considering the standard start up sequence for this particular 

turbine it has been determined that this first peak following initialization of start up is 

caused by the release of the mechanical brake on the high speed shaft of the rotor. 

Immediately following the disengagement of the brake is blade pitch articulation as 

indicated by the turbine controller. During this time the response signal has two periods 

of gradual amplification followed by rapid dissipation. It was noted during the vibration 

event mapping procedure that the turbine had not yet reached any significant rotational 

frequency and the instantaneous rotational frequency is noted as 0.8 RPM. These features 

have appeared in historic response signals and were the subject of analysis in a previous 
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recently submitted manuscript. Following the pitch articulation the turbine did accelerate 

into normal rotational operation and a dramatic increase of vibration amplitude occurs at 

the 220 second mark. During the event mapping procedure it was noted that immediately 

before the turbine reached full operation a breaker switch had been hit allowing for grid 

electricity to enter the turbine generator charging the induction rotor and allowing for 

electricity to be harnessed from the motion of the spinning rotor. This charge applied to 

the induction rotor corresponds to a drastic increase in vibration amplitude which is 

sustained until the shut down sequence of the turbine is initiated. This charge point is 

indicated in the event plot and is in fact a critical point within the response signals. The 

drastic increase in vibration beyond the charge point is the result of turbine’s process of 

converting kinetic to electrical energy through electrical load applied to the induction 

generator. The turbine rotor is in fact spinning before the charge is applied and thus it has 

been observed that simple dynamic motion of the rotor introduces low amounts of 

vibration when considered relative to levels during the power producing segment of the 

signal.  

 

This vibration signal as portrayed in Figure 3-5 and Figure 3-6 is significant as it 

represents what we have defined as the healthy response of the wind turbine and offers 

insight into the typical dynamics of turbine operation. At this point, the question of “what 

is healthy?” should be raised. Ideally, we would have had a thoroughly comprehensive 

inspection of the machine the morning we began the tests to ensure its health. We were 

satisfied that it met the fully-operational criteria required for it to run that day (i.e. there 

were no known unhealthy conditions present). The preferable scenario involves 
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monitoring vibration signals from successful commissioning onwards throughout the life 

of the turbine.  In this study; we start at roughly the 2 year old mark and establish these 

response signals as a healthy baseline.  Though, it should be noted that theoretically these 

signals will inherently contain nearly two years of aging. 

 

 The raw signal in its entirety has been stored in a growing database of turbine response 

signals amassed in this research program such that it may be utilized and leveraged when 

the most suitable structural health monitoring scheme is developed.  Certain events of 

interest are to be extracted from the full signals for detailed study including static yaw 

movements and dynamic shut down sequences. The analyses of these events are 

presented in the proceeding sections. 

 

3.4 Study of Static Turbine Yaw Response 

The yaw motion of the turbine under investigation is similar to a variety of utility scale 

turbines with active yaw systems in that yaw motion is controlled automatically during 

operation. The system actively works to rotate the turbine rotor into the wind through an 

elaborate drive mechanism. This mechanism is made up of an externally geared slew ring 

bearing driven by eight electrical gear motors.  The brake for the system is passive and 

friction based.  

 

The yaw motion of the turbine is of interest, as a 15 year study in Germany has shown 

that yaw bearings have a high failure rate second only to wind blade tip break [15]. This 

study also showed that the yaw system accounted for 8% of all unforeseen malfunctions. 
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Results from a 4 year survey of Swedish wind power plant downtimes and failures 

showed that failures in the yaw system accounted for 6.7% of total failures and the 

average downtime per failure was 259.4 hours [4]. Yaw system failures were the second 

most time consuming component malfunction which speaks to the complexity of yaw 

system diagnosis utilizing available methods.   

 

By utilizing the constructed event maps seven yaw samples were extracted from the test 

signals. These yaw events were captured for the stationary turbine rotor and will be used 

to derive the influence of yaw motion on the structure of the turbine. Figure 3-6 displays 

the raw vibration signals for the seven yaw samples.    
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These samples underwent wavelet decomposition as discussed and presented in the 

introduction. In an effort to further characterize trends from the vibrations signals the 

RMS amplitude of vibration has been calculated for each original signal and each 

subsequent decomposition level. With this technique the amplitude of vibration for the 

healthy yaw events can be examined with respect to environmental variables and spatial 

location of the sourced sensor. Table 3-5 displays the RMS values for respective 

decomposition levels. 

 

Table 3-5.  Yaw Signal RMS for Decomposition 

Yaw Event  T1Y1 T2Y1 T3Y1 T3Y2 T5Y1 T6Y1 T6Y2 
 

Original RMS (m/s2) 0.267 0.152 0.526 0.607 1.014 0. 615 0.766 
1   0.229 0.130 0.397 0.504 0.813 0.474 0.588 
2   0.203 0.114 0.319 0.433 0.655 0.343 0.448 
3   0.184 0.107 0.255 0.381 0.530 0.246 0.327 
4   0.179 0.105 0.235 0.358 0.465 0.198 0.282 
5   0.177 0.104 0.217 0.339 0.413 0.150 0.247 
6   0.176 0.103 0.198 0.317 0.376 0.111 0.213 
7   0.172 0.100 0.174 0.283 0.338 0.099 0.180 
8   0.169 0.096 0.115 0.114 0.176 0.080 0.137 
9   0.167 0.095 0.110 0.099 0.118 0.069 0.101 
10   0.167 0.097 0.110 0.094 0.103 0.067 0.086 
11   0.166 0.097 0.113 0.093 0.103 0.065 0.073 
12   0.165 0.102 0.114 0.103 0.088 0.063 0.076 
Location (m)  17 17 50 50 80 80 80 
Mean Wind Speed (m/s) 7.2 7.8 6.9 6.9 7.7 6.5 6.5  
 
 

When this data is arranged graphically several key trends become evident. Several 

different plots can be assembled displaying the various relationships in the above dataset.  

 

The first figure to be considered will be stationary in time. Figure 7 displays the direct 

relationship between RMS and decomposition level in a 3 dimensional representation. 
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Figure 3-7.  Yaw Motion RMS Decomposition. RMS Acceleration (m/s2) vs. 

Decomposition Level for Seven Yaw Samples.  

 

From this figure it is clear that there is an inverse relationship between acceleration 

magnitudes and decomposition level. As suggested by the figure, the degree to which this 

relationship holds depends on the height from which the signal was acquired. In order to 

further investigate this trend a 3 axis plot has been constructed and presented in Figure 8. 

This figure displays the three-dimensional relationship between height within the turbine, 

decomposition level, and RMS acceleration.  
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Figure 3-8. Yaw Motion RMS Decomposition for 3 Heights. Height (m), RMS (m/s2), 

Absolute and Relative values. 

 

From this figure it can be seen that the relationship between RMS and decomposition 

level is highly dependant on the location of the sourced signal. When the sensor was low 
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on the turbine mast the relationship was typically constant across the decomposition 

range. This was indicated by both the absolute and relative values that remain relatively 

constant throughout the frequency range. When the sensor was higher on the turbine mast 

the relationship is less linear and more parabolic with greater spread between maximum 

and minimum values. When considering the percent difference plot a drastic peak in 

sensitivity is apparent between the 7th and 8th decomposition levels for signals obtained at 

the 50 and 80 meter locations.  This suggests that there may be significant physical 

phenomena existing in this frequency range that is most easily detected by sensors 

mounted nearest to the nacelle. Also, zero crossings occur at the high decomposition 

levels 10-12. This suggests the presence of meaningful data in this frequency range that 

characterizes healthy turbine response.  

 

Another important parametric relationship that should be considered when analyzing the 

acquired yaw signals is the aerodynamic environment in which the yaw motions took 

place. This has been expressed by average wind speeds for each test and the plot for this 

data is depicted in Figure 3-9. Wind direction was not considered in this study in the 

quantification of ambient wind excitation. 
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Figure 3-9.  Mean Wind Speed (m/s), RMS (m/s2), Decomposition Level Relationship. 

 

Figure 3-9 works to demonstrate that sensor height is of greater influence on the overall 

vibration signal than wind speed for the range of wind speeds considered.  The signal 

with the highest average wind speed of 7.8 m/s obtained at 17m had significantly lower 

vibration levels than a signal with a wind speed of 6.5 m/s obtained at a height of 80m.  

 

Beyond simply considering the RMS values for each decomposition level it is of greater 

interest to display the evolution of each decomposition level with respect to time. These 

plots reveal the evolution of the signals’ frequency content sub-banded for each of the 

decomposition levels. In order to determine areas of high energy activity both in 
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frequency and temporal domains, wavelet coefficient plots are considered. Plots for 

Test1Yaw1 and Test2Yaw1 have been produced below in Figure 3-10.  

 

 

Figure 3-10.  Wavelet Coefficient plots for Test1Yaw1 (left frame) and Test2Yaw1 

(right frame). Decomposition Level vs. Time (seconds).  

 

Certain features become apparent upon considering these obtained yaw events. One such 

feature is the relation between the vibration amplitude at the beginning and ends of 

signals. The coefficient plot for Test1Yaw1 exhibits high energy behavior at the 

beginning and end of signals at high decomposition levels (as depicted by the darkest 

shading at the highest decomposition levels). These high decomposition levels 

correspond to low frequency phenomena. Another feature of note is an intermittent 

excitation at the 9 through 7 decomposition levels which occurs early in the signals. 

These features have been circled in Figure 3-10.  To demonstrate this feature, 

decomposition plots have been constructed. Figure 3-11 displays decomposition plots for 

the yaw signal Test1Yaw 1 and Test1Yaw2. Decomposition levels 9 through 7 have been 

extracted for Test1Yaw1. Levels 7 through 5 have been extracted for Test2Yaw1. 
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Figure 3-11.  Test1Yaw1 (Top 4 frames), Test2Yaw1 (bottom 4 frames) Signals with 

Decompositions. Acceleration (m/s^2) vs. Time (seconds). 
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These figures are useful in observing the specific frequencies most excited by the 

observed yaw motion. For Test1Yaw1 the raw vibration signals displayed significant 

vibration amplitudes before and after the yaw event occurs. These waveforms are most 

evident in decomposition level 7. This corresponds with the observed sensitivity of the 7th 

decomposition level from the relative RMS values. This suggests that the frequency band 

of this level is especially excited by global turbine sway. It has been determined that 

vibration levels experienced before the yaw motion was initiated and after the yaw was 

stopped are the result of the only excitation occurring at these points; ambient excitation. 

Ambient excitation is caused by the fluid structure interaction between the stationary 

turbine and the wind and is dependent on the direction of the prevailing wind with respect 

to rotor position.  

 

For the Test2Yaw1 signal a peak in the original signal at 7 seconds corresponds to 

excitation at the 6th decomposition level. This early peak was observed for several of the 

yaw samples.  Also, the signal begins with low vibration levels but exhibits large 

amplitude behavior similar to that experienced by Test1Yaw1 at the end of its time series. 

This suggests that the elevated vibration amplitudes are the result of ambient excitation 

that occurs at higher degrees for certain yaw positions relative to prevailing wind 

direction. For this case the turbine started in a position with low relative ambient 

vibration and rotated into a position with a higher excitation level. This case of 

significant ambient excitation was most distinctly evident in signals obtained from the 17 

and 50 m sensor positions while yaw motion at sensed from the 80 m position was 

dominated by higher frequencies  
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3.5 Study of Dynamic Turbine Shut Down Response 

The obtained operation signals contain shut down segments during which the turbine was 

ordered to stop from the maintenance deck control unit. The turbine shut down sequences 

used by the wind farm operations can be classified as “soft” or “hard” stops based on the 

conditions under which they occur.  

 

In ordinary wind levels while all systems are running soundly the aerodynamic braking is 

applied first. The pitch angles of the blades are articulated such that the blades go into a 

stalled state and are no longer producing relevant lift forces. As the rotor decelerates and 

the majority of rotational energy has been dissipated aerodynamically, mechanical 

braking is applied. The mechanical braking system is hydraulically actuated and consists 

of a dual caliper disc brake located on the high speed shaft. The braking force is 

controlled through a diaphragm in the hydraulic system that affords varying degrees of 

fluid pressure. After aerodynamic braking is applied the braking force is slowly increased 

as the rotor slows to a stop.  

 

In elevated wind conditions such as storms or gale force winds, a hard stop sequence is 

issued and blades are immediately articulated into stall while full braking force is applied. 

This hard stop braking sequence is of interest to wind farm operators because it has been 

qualitatively observed that these stops result in high levels of deflection and turbine 

vibration. The effects of these stops on the overall structural health of the turbine are of 

particular importance in determining the optimal course of action during elevated winds.  
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The high speed shut down procedures during storms have been problematic within the 

global wind energy industry as many catastrophic failures have occurred in this way 

around the world. The Caithness Windfarm Information Forum has reported 70 structural 

turbine failures around the world that have been confirmed by wind turbine operators 

between the years 2000 and 2009 [16]. The structural failure data has shown a trend of 

increased failure frequency with every passing year. For these cases the relevant loading 

conditions of the turbine are to be considered and it has been identified that critical flap 

wise and edgewise loads are at a maximum during high speed shut down procedures [17]. 

An undesirable worst-case scenario for a wind turbine is if a braking mechanism were to 

fail in a high wind condition.  

 

To understand the conditions of a high speed shut down and the effect it has on turbine 

structural and mechanical components; the conditions of a standard low speed shut down 

should first be quantified and understood. To this effect, the shut down response of the 

turbine was captured during operation testing. Six shut down segments were extracted 

from full signals such that detailed analysis could be performed. Figure 3-12 displays 

obtained vibration signals for shut down segments. 
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The command to shut down the turbine was initiated at the 5 second mark for each of the 

plots above as indicated by the arrows. It is of interest to note that for five of the six 

samples the turbine had stopped within 45 seconds of the shut down command (as 

represented by the end of the displayed signal). It was observed and noted on the test day 

that Test 5 exhibited a prolonged braking period. This is reflected in the vibration signal 

which indicates a total of 95 seconds between shut down command and the stationary 

turbine state. This is of interest as it represents a deviation from the perceived normal 

shut down behavior. An ideal structural health monitoring scheme would identify stops 

such as this one and bring it to the wind farm engineer’s attention.  

 

Wavelet decomposition was applied to the shut down signals and the RMS acceleration 

calculated for each corresponding decomposition level. Table 3-6 displays the data for 

RMS decomposition. This data can be displayed graphically to aid in interpretation as 

depicted in Figure 3-13. 

 

 

 

 

 

 

 

 

 

60 
 



Table 3-6:  Shut down signal RMS for decomposition 

Shut Down Event  Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  
 

Original RMS (m/s2) 1.332 1.277 3.528 3.446 15.02 9.535  
1   0.953 0.906 2.678 2.578 11.95 7.393  
2   0.702 0.676 2.065 1.973 9.091 5.853  
3   0.497 0.505 1.691 1.498 7.637 4.908  
4   0.388 0.377 1.467 1.198 6.450 4.344  
5   0.330 0.306 1.357 1.021 5.717 4.014  
6   0.286 0.278 1.296 0.914 5.275 3.832  
7   0.258 0.245 1.164 0.839 5.101 3.758  
8   0.221 0.174 0.894 0.703 5.025 3.665 
9   0.155 0.150 0.874 0.550 4.952 3.400  
10   0.148 0.142 0.964 0.541 4.986 3.343  
11   0.147 0.130 0.920 0.471 4.908 3.383  
12   0.120 0.128 0.887 0.352 4.351 3.217  
Location (m)  17 17 50 50 80 80  
Mean Wind Speed (m/s) 7.2 7.8 6.9 6.9 7.7 6.5   
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13.  RMS Acceleration vs. Decomposition Level for Shut Down Segments.  
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From this figure several aspects of turbine shut down become apparent which were 

otherwise undefined by existing literature. The most distinct feature of the shut down 

signals is the drastic decrease in vibration magnitude that occurs when grid charge is 

removed from the induction rotor. Another aspect of interest is the overall shutdown 

RMS which is highly dependent on the total time required for the shutdown. This 

suggests that longer shut down times impart higher levels of loading and subsequent 

vibration due to this loading. The exact cause of the extended shutdown is unknown but 

literature suggests that it may be the result of an extreme gust or significant change in 

wind direction. Extreme gusts and direction changes have been identified as resulting in 

large loads and increased levels of turbine fatigue [18] and thus there is value in 

evaluating turbine response during these conditions. Another possibility is that a brief 

delay occurred within the electric control unit resulting in a gap between the time the stop 

command was issued and the time the controller issued signals to pitch the blades and 

apply mechanical braking.  The definitive cause of this extended shut down is of interest 

to wind farm engineers and operators, as once identified the operators can work to 

prevent these high loading situations from taking place.  

 

RMS values can be plotted relative to their sensor height such that the relationship 

between height and vibration level can be examined. Figure 3-14 displays the absolute 

and relative values for the RMS decomposition of shut down.   
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Figure 3-14.  Height (m), RMS (m/s2), Decomposition Level Relationship for Shutdown. 

Absolute Values (Top frame), Relative Values (bottom frame). 
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These plots demonstrate the value of the multiple sensor locations used for the analysis. 

The top frame plot of absolute RMS values depicts the relationship between frequency 

and RMS for the considered dataset. An inverse relationship between decomposition 

level and RMS is evident and the signals from the sensor mounted at 80m have the most 

pronounced inverse correlation. The low RMS trends at high decomposition levels 

containing low frequency signal content are hard to examine by simply considering 

absolute values and thus relative values have been calculated as depicted in the bottom 

frame. This plot displays various peaks in percent difference between RMS values at the 

seventh and eighth decomposition levels.  This drastic change in frequency content 

between the 0.71-2.84 Hz and 2.84-5.68 Hz frequency windows suggests the presence of 

unique phenomena occurring at this level. Also, zero crossings occur at high 

decomposition levels that are not experienced at the lower levels.  In order to observe the 

changes in frequency content within the signal through the shutdown coefficient plots 

have been produced. Figure 3-15 displays typical coefficient plots for shut down.  
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Figure 3-15.  Wavelet Coefficient Plots for Shut Down 1 (left frame) and Shut Down 2 

(right frame). Decomposition Level vs. Time (seconds).  

 

These plots are of interest as they indicate that high energy activity at low decomposition 

levels (high frequency) dissipates rapidly at a distinct point in time during the shut down 

sequence. For Shut Down 1 this occurs at the 23 second mark which corresponds to the 

time when the charge on the induction rotor has been discontinued as revealed by the 

drastic change in overall vibration magnitude indicated in Figure 12.  This removal of 

rotor charge corresponds to drastic drop in coefficient values for the first six 

decomposition levels. A similar point is apparent in the plot for Shut Down 5 at the 83 

second mark but with a distinct difference being that all decomposition levels experience 

the drastic drop in coefficient values. This difference can be associated to the relative 

sensor height for each signal as the sensor located higher up is more dominated by high 

frequency excitation that vanishes when grid charge is removed.   
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3.6 Conclusions  

For this study the healthy state response of a 2.3 MW wind turbine has been obtained, 

analyzed and discussed. Event mapping techniques have been used to correlate response 

signals with operational events and environmental parameters. Wavelet analysis has been 

applied to break obtained signals down into frequency components that offer clearer 

insight into behavior and response. RMS vibration amplitudes were calculated for each 

frequency level such that the relationship between vibration magnitude, sensor height, 

and frequency could be examined. The outlined procedure and analysis can be used as a 

diagnostic tool to provide researchers, wind farm operators and engineers with a unique 

glimpse into a turbine’s dynamic structural response. The following conclusions have 

been drawn from the work presented in this study. These include: 

 

1. The 2.3 MW wind turbine observed provided unique and distinct response patterns 

for each of the excitations considered namely ambient excitation, yaw motion, start 

up, operation, and shut down. An ideal SHM scheme may take advantage of these 

innate means of excitation.  

2. The most significant change in response during turbine operation occurs when charge 

is applied to the turbine’s induction generator. This charge results in a drastic increase 

in high frequency vibration levels which are sustained until charge is removed during 

shut down sequence.   

3. RMS vibration magnitude of a response signal is a function of both sensor height and 

wind speed. Sensor height was found to be the variable of greatest influence for the 

wind velocity range examined.  

66 
 



4. Turbine vibration response to yaw motion has been identified and presented. It was 

observed to impart high levels of response at the seventh decomposition level which 

corresponds to a frequency window of (2.84-5.68) Hz. The waveforms depicted may 

be used by researchers and engineers alike to assess and potentially diagnose the yaw 

system of another 2.3 MW wind turbine. 

5. Ambient excitation was found to be a significant factor that must be considered for 

yaw analysis. It was observed that ambient excitation could in fact be of greater 

magnitude than mechanical yaw excitation for certain yaw positions relative to the 

prevailing wind direction. This point was here depicted for two yaw tests but was 

observed for the entire yaw dataset. 

6. Turbine vibration response to a soft stop sequence has been obtained, presented, and 

quantified for six shut down samples. The duration of turbine shut down from 

command to full stop was found vary between 40 and 50 seconds for 5 of the 6 

samples considered. An outlying shut down lasted 90 seconds and displayed elevated 

vibration levels. The quantified response can be used to provide insight into high 

vibration levels experienced during hard stop shut down sequences.  

7. Coefficient plots of shutdown reveal that higher frequency (5.6 Hz+) excitation 

rapidly dissipates upon removal of charge on the induction rotor for signals obtained 

at the 17 and 50 meter locations. Low frequency activity (0-5.6Hz) persists beyond 

this point. Shut down signals obtained at 80 meters did not display this distinct 

change as clearly.  

8. Percentage differences of RMS values within the decomposition range for yaw and 

shutdown suggest a peak in response sensitivity in the seventh decomposition level. 
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The degree to which this sensitivity holds depends on the nature of excitation and 

sensor location. During shut down when mechanical excitation from the nacelle is 

high this sensitivity was evident in sensors mounted at 17 and 50m. During yaw 

motion when mechanical excitation from the nacelle was low this sensitivity was 

most evident in sensors mounted at 50 and 80m. This suggests the value of utilizing 

multiple sensors.  

 

3.7  Next Steps  

Considering the results of this study the authors have determined the next steps necessary 

to develop the proposed method of SHM for wind turbines such that it may be used to 

benefit the wind energy industry. Steps are listed as follows: 

 

1. Expand database of response signals through further testing. A system has been 

assembled for permanent installation on the turbine specimen such that continuous 

vibration response is obtained for analysis. This will be engaged to more broadly 

define the general healthy response and evaluate the aging process of the turbine.  

2. Integrate analysis techniques into wind farm’s SCADA systems such that response 

can be analyzed by wind farm engineers and operators remotely from wind farm 

central control center. 

3. Investigate the correlation and relationships between signals obtained simultaneously 

from sensors at various heights. This would provide a measure of turbine structural 

connectivity that can be potentially used as a damage sensitive feature in a SHM 

scheme 
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4. Develop appropriate structural health monitoring scheme to process and leverage 

response data. The developed method should evaluate response based on wavelet 

decomposition levels which have been effective in evaluating intermittent and non-

stationary nature of wind turbine response.  
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Chapter 4 
 
 

Structural Health Monitoring for Utility Scale Wind Turbines using 
WARD Algorithm and Wind WARDEN Reliability Program 

 
 

 
 

4.1 Introduction  
 

Structural health monitoring (SHM) is a process of implementing a damage detection 

strategy for a mechanical system [1]. Wind turbine machinery stands to benefit from 

SHM significantly as the ability to detect early stages of damage before serious 

malfunction or collapse occurs would reduce the overall operating costs of wind power 

projects.  Many researchers in the fields of engineering and applied mathematics have 

taken to developing SHM schemes for wind turbines and these approaches can be 

categorized by several different characteristics. Despite a wide array of possible 

methodologies for execution, three general functions for SHM can be defined. These 

functions are early warning, problem identification, and continuous monitoring [2]. Wind 

turbine manufacturers, wind farm operators and wind energy developers stand to realize 

many potential benefits if the appropriate SHM scheme should be developed and become 

available. Some potential benefits include the avoidance of premature breakdown, 

reduced maintenance costs, remote diagnosis, and improvement of capacity factor [3]. 

Also, wind turbine manufacturers could benefit through the use of obtained structural 

health response to optimize current designs and improve future generations of turbines.  
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This study presents a novel wind turbine structural health monitoring scheme designed to 

carry out the all three of the SHM functions in one elegant systematic procedure. The 

algorithm used to execute the response analysis has been dubbed the wavelet auto 

regression diagnosis (WARD) algorithm. The scheme has been developed using vibration 

response signals acquired from a fully commissioned and operational 2.3 MW wind 

turbine. These response signals have been utilized to develop a system that can be readily 

applied by wind farms around the world which utilize the same turbine model. There are 

currently more that 500 of these turbines installed in the United States. Other countries 

using this turbine include Canada (174), France (30) and Denmark (3) [4]. Assuming an 

installed cost estimation of 2.0 million dollars per turbine, the proposed SHM scheme can 

be utilized to protect and monitor more than 1.37 billion dollars worth of installed 

equipment in North America alone.  

 

The presented research has developed through many stages and several studies have been 

written documenting the project. Interested parties are directed to refer to these 

documents for background on the current research.  The first study involved wind tunnel 

testing of a wind turbine model and the subsequent analysis of vibration signals emitted 

from this aerodynamically excited system [5]. This initial lab study was completed in 

preparation for full scale testing which occurred on three test dates where turbine access 

was granted. Figure 4-1 displays the turbine test specimen that was examined for field 

testing. Figure 4-2 displays a researcher viewing obtained data from the turbine 

maintenance deck.  These field tests resulted in over three hours of valuable response 

data that has been studied and analyzed using the mathematical processing tool known as 
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the discrete wavelet transform. Essential wavelet analysis theory and details of how it can 

be used as a tool for vibration analysis have been presented in [5]. Following this study 

the identification of turbine response to yaw motion and shut down was completed 

through an event mapping procedure and the analysis of these response signals has been 

adapted for the article 2.3 MW Wind Turbine Vibration Response to Yaw and Shut Down 

Events.  

 

The response signals amassed throughout the project are significant as they represent a 

baseline for healthy turbine response. The specific turbine used for the analysis has been 

deemed of sound and healthy structural condition by both wind farm operators, who have 

been using the turbine continuously since its commissioning date and the turbine 

manufacturer who validate turbine performance through contractual output guarantee. 

The manufactures guarantee typically applies for the first three years of turbine operation, 

during which the manufacturer is responsible for turbine maintenance. The examined 

turbine specimen was covered by the guarantee at time of testing.  

 

The following sections present and discuss the developed SHM scheme and various 

aspects of its design. The intention of this article is to present an overview of the 

developed scheme along with an outline of how data signals are managed and processed 

as part of the WARD algorithm.  Several particulars with regards to optimal algorithm 

execution are to be the subject of future studies and will depend on the user preferences.  
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This system layout has been presented for the sake of progressing towards practical and 

value added structural health monitoring that would be viewed by wind farm owners as a 

welcome supplement to existing turbine instrumentation and monitoring. The benefits of 

such a system would extend beyond an individual turbine, array, or wind farm and have 

positive effects on the energy industry as a whole as it progresses to higher and higher 

levels of wind energy penetration at which turbine reliability is critical. 
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Figure 4-1: 2.3 MW wind turbine used for study 

 

Figure 4-2:  Researcher Kyle Bassett viewing obtained data from turbine maintenance 

deck 
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4.2 Vibration Response Analysis with WARD Algorithm 
 
 
4.2.1 – System Overview  
 
The developed SHM scheme utilizes vibration signals as the response phenomena for 

analysis. Vibration response is obtained through three piezoelectric accelerometers (PCB 

352C34) mounted to the turbine tower at specified positions. The signals emitted from 

the accelerometers are transmitted to a PC-based data acquisition system which obtains 

samples at the defined sampling rate. The sampling rate has been set to 500 Hz for the 

present study. This sampling rate has been selected due to its computational efficiency 

within the SHM scheme. The dominant operating frequencies of interest for major 

turbine components are below the 50 Hz level and thus accuracy is achieved by sampling 

at ten times this rate. It should be noted that the proposed scheme is easily adapted to 

high frequency sampling procedures when higher computation speeds exist and smaller 

components which operate at high harmonics of the fundamental are to be diagnosed.  

 

After obtaining the raw vibration response the signal proceeds through several stages of 

analysis and processing. During this processing the signal undergoes a discrete wavelet 

transformation which breaks it down into several frequency levels. These frequency 

levels are related to individual turbine components by referring to the relevant operating 

frequencies for these components and considering the level which contains these 

frequencies. After wavelet processing, response levels are compared to historic turbine 

behavior with a healthy state database. A healthy state database is an adaptive database of 

turbine response signals obtained during a known healthy structural state (such is the 

condition of turbine response obtained during field testing).  It serves as the reference by 
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which future conditions are evaluated. The evolution of typical turbine behavior over 

time is captured and reflected in healthy state database statistics. A diagram of the overall 

system process is depicted in Figure 4-3. Each block of the SHM process will be 

discussed in detail in the following sections. 
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Figure 4-3: Structural health monitoring system overview  
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4.2.2 – Controlled Input Conditions 

Many forms of input excitation conditions have been considered by many researchers 

with varying results. Traditional methods involve introducing a forced vibration into the 

structure through a device such as an impact hammer or electrodynamic shaker [6].  

These methods have proven effective in determining a structures frequency response 

function [7] but do not allow for analysis of the structures operational behavior. One 

investigation into SHM for wind turbine blades utilized a quasi-static load induced by a 

pulse generator [8].  These input types, categorized as artificial excitations, are non-ideal 

when considering a wind turbine system as impact, shaker, and quasi static load tests 

must be executed with a stationary turbine, lending itself to lost revenue due to turbine 

downtime. Also the equipment costs associated with artificial excitation may be very 

high and must be considered in addition to costs associated with transporting this 

equipment to a turbines often remote location.  

 

The developed SHM scheme presents an improvement upon artificial structural excitation 

as the system is designed to analyze five standard inputs that each demonstrate different 

aspects of turbine behavior. These inputs are considered natural excitation as they require 

no additional equipment and utilize standard turbine operation as the system input. These 

inputs for the proposed SHM scheme include  

• Ambient Excitation 

• Static Yaw 

• Start Up 

• Operation 
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• Shut Down 

The first input, ambient excitation, occurs as the parked turbine sways and moves due to 

the wind passing over it.  This is the lowest level of excitation possible and offers a 

glimpse into the most structurally isolated turbine condition. This response is without 

influence from operational machinery. An ambient signal of 15 seconds is recorded and 

used for analysis. 

 

The second standard input, static yaw, involves the rotation of the turbine rotor about its 

vertical axis while the rotor is in the parked position. The SHM scheme is designed to 

accept a turbine response signal to a yaw of 15 degrees in the clockwise direction with 

respect to the prevailing wind direction. This standard input is used to diagnose 

components of the yaw system such as the slew ring, eight drive motors, and the 

electronic yaw control program.  

 

The third input, start up, begins when a start up command is issued by the turbine 

operator.  The turbine will then undergo a sequence of events including the release of 

locks on blade pitch motors, articulation of the blades, release of mechanical lock on 

rotor shaft, acceleration of the turbine rotor, and activation of grid charge to the 

generator. The scheme is designed to accept a start up signal beginning with the start up 

command issued by the operator and ending when grid charge has been applied to the 

generator. It has been noted in previous turbine vibration studies that the most significant 

feature of operational turbine response occurs when the grid charge is applied to the 

generators rotor, resulting in a drastic increase in high frequency vibration. The start up 

79 
 



system input provides a unique look into the structural response of the turbine before this 

high frequency vibration occurs. This input will be used to diagnose the conditions of 

pitch motors, mechanical brakes, the control software executing the start up and the 

turbine rotor.  

 

The fourth input, operation, represents the condition most commonly experienced by the 

turbine throughout its life. During operation the turbine is operating at its rated RPM and 

producing power. Vibration levels are high and excitation is significant in the high 

frequency range (+5.6Hz).  Operational strain response for a vertical axis wind turbine 

(VAWT) test bed was obtained and analyzed by James et al. [9] who displayed the 

potential for the technique in determining certain modal features. Operational response 

from the 2.3 MW wind turbine used for this study was first presented and discussed in the 

paper Vibration Analysis of 2.3 MW Wind Turbine using the Discrete Wavelet Transform. 

It was noted that operation signals displayed operationally influenced periodicity with an 

average period of 41 seconds. For this reason the developed scheme will accept 2 minutes 

of turbine operational response randomly sampled from operation segments. This 

sampling length may be modified as longer term trends become of interest in the future. 

Figure 4 depicts a standard operational response signal.  
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Figure 4-4:  Raw vibration response signal obtained for two minutes. Acceleration (m/s2) 

vs. Time (seconds). 

 

From Figure 4-4 the low frequency periodicity is once again evident for a response signal 

obtained on an alternate test date. The developed scheme seeks to summarize this 

periodic behavior and quantify it such that it can be compared to the response baseline 

determined by the healthy state database. 

 

The final input, shut down, occurs when a shut down command is issued by the turbine 

operator and involves the articulation of blades into a stalled angle and the application of 

a mechanical brake. The standard signal will begin at the point that the shut down 

command was issued and end when the rotor speed has reached 0 RPM.  
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4.2.3 – Response 

An array of different response signals have been considered by researchers in the search 

for practical and cost effective SHM routines. Certain schemes have utilized laser 

vibrometer [6], strain [9], acoustic emission [10] response signals with some positive 

results. Acoustic emission based methods have shown promise but have  considerable 

challenges due to the cost and complexity associated with each sensor requiring a 

preamplifier as well as the challenge of converting data to digital form using high 

sampling rate A/D converters [10]. A recently published condition monitoring scheme for 

turbine drive trains utilizes generator output signals as an operational response [11].  

 

For the proposed scheme response to the standard inputs is obtained through multiple 

tower mounted accelerometers. Currently the scheme is based the three sensors mounted 

on the tower at the heights of 17, 50, and 80m.  These heights have proven themselves 

responsive to the considered inputs and the relationships between signals obtained at 

various heights has been examined and presented in the previous study. Accelerometers 

have been selected as the choice response sensor for the scheme upon considering the 

high availability and low cost of the equipment. Equipment costs for the SHM system are 

presented in Table 4-1. 
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Table 4-1:  Approximate Equipment Costs for SHM System 

Component   Quantity  Per Unit Cost ($)  Total ($) 

Accelerometer   3  650    1950  
Signal Cable    3  200    600 
Data Acquisition System  1  500    500 
Processing Computer  1  1000    1000 
System Total          4050   

   

Table 4-1 demonstrates that the proposed SHM solution can be implemented to an 

existing wind turbine for less than five thousand dollars. This equipment cost is 

practically negligible when considering the value of the machine on which it is 

implemented. Considering a turbine value of 2.0 million dollars the SHM equipment 

costs account for less than 0.2 % of the initial turbine cost.  Traditionally, vibration based 

SHM techniques have been criticized due primarily to the unavailability of response 

signals for healthy turbines. Considering the access granted to authors by the wind farm 

research partner this issue has been addressed and a considerable database has been under 

construction so that signals may be available to future researchers addressing the wind 

turbine SHM challenge.  

 

Each accelerometer mounted at its particular height provides unique information of the 

turbine and its various systems. It has been determined that accelerometers mounted 

nearest to the turbine nacelle will pick up highest levels of vibration from nacelle 

vibration sources such as the generator and braking systems. Accelerometers located 

closer to the turbine foundation have exhibited response to turbine sway which is 

indicative of tower condition.  A typical response signal to yaw input is depicted in 

Figure 4-5.            
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Figure 4-5:  Turbine response to yaw motion. Obtained from accelerometer mounted at 

50m. Acceleration (m/s2) vs. Time (seconds). 

 
It should be noted that although the response signals from each tower mounted 

accelerometer provides valuable information when considered separately the correlation 

and relationships between these simultaneously obtained signals offer another damage 

sensitive feature that is to be further investigated in the future. 

 

The standard SCADA (supervisory control and data acquisition) system is to be 

integrated into the process as it measures many vital operational and environmental 

parameters including average wind speed, max wind speed, rotor rpm, and generator 

speed. These systems are standard equipment on the particular turbine of this study and 

are in fact installed on each and every turbine in the studied wind farm. The use of an 

alternate ultrasonic anemometer mounted at hub height 2 rotor diameters away from the 

tower has been integrated as a welcome improvement in wind speed measurement 

precision. Figure 4-6 depicts the Meteorological tower installed at the appropriate 
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location for the test turbine. The data stream from ultrasonic anemometer is to be 

integrated into the standard data transmission protocol used for the turbine SCADA.  

 

 

Rotor 
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Tower
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Foundation 

Figure 4-6: 2.3 MW wind turbine with MET tower.  

 

The operational parameters are recorded by the SCADA for each input period and stored 

in an information matrix that will be paired with its associated response signal. The 

response signal and information matrix then proceed to the processing sub-program.   
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4.2.4 – Processing Sub-Program 

After response signals have been obtained for an input event of interest the data proceeds 

to the processing sub-program which transforms data into a more meaningful and useful 

form.  A discrete wavelet transform occurs which breaks a response signal down into 

various frequency components that display a clear picture of turbine response. A twelve 

level discrete wavelet transform is executed using a Daubachies 6th order wavelet and 

select frequency levels are extracted for the structural information they contain. The 

DWT can be expressed in the form [12] 
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where a is scaling factor which determines frequency content, b is translation parameter,  

t is time, and Ψ (t) is the complex conjugate of wavelet Ψ. This extracts coefficients on a 

two dimensional grid for further processing into decomposition levels. 

 

While a SHM scheme could be developed considering the entire decomposition range it 

is best to eliminate unnecessary calculations for the sake of computational efficiency. The 

decomposition levels used for this system have been selected based on the mechanical 

operating frequencies they contain as well as historic sensitivities exhibited in previous 

studies. Table 4-2 displays the frequencies levels for extraction and the features of each 

level.  
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Table 4-2: Extracted decomposition levels, frequencies, selection criteria 

Decomposition Level Frequency Window [Hz] Selection criteria  

 12   (0-0.089)    Lowest frequency components of signal 
 11   (0.089-0.18)    Fundamental rotor rotation for start up 
 10   (0.18-0.36)    Fundamental harmonic rotor rotation 
 7   (2.84-5.68)    Displayed high sensitivity to global motion 
 4   (22.73-45.45)    Fundamental generator harmonic  
 

Root Mean Squared (RMS) vibration magnitude is calculated for the original signal and 

these select frequency levels. These RMS values serve as an indicator of the overall 

vibration level characteristic for each signal and corresponding decomposition. For a new 

response signal x, the RMS is calculated with the following equation.  

P
tx

N RMS

2)(
=  (2) 

Where x(t) is the response signal, and P is the length of the response signal. After RMS 

values have been calculated the program proceeds to the behavior analysis stage. 
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4.2.5 – Behavior Analysis Sub-Program 

Analysis of the obtained signals continues beyond magnitude evaluation to consider the 

time series behavior of the signal. After RMS values have been calculated for each signal 

and decomposition level an auto regressive (AR) model is calculated for each data series. 

Signals and levels are first normalized using a standard score expressed by the following 

equation.  

x

xxz
σ
μ−

=
 (3) 

Where z is the standard score, μx is the data series mean, σx is the data series standard 

deviation and x is the data series. The auto regressive model serves to describe the 

evolution of the response signal with respect to time. An AR model can be expressed in 

the following equation [13].  

∑
=

+−=
p

j
xAR tejtxNtx

1

)()()(   (4) 

where x(t) is original signal, NAR are the coefficients, e is error and p is the order selected 

for the model. The order selected for the scheme has been set to 30 based on work by 

Box et al. [13] and the previous study completed in [5].  This auto regressive model is 

used to summarize time series behavior of the signal with 30 characteristic coefficients 

which allow for the timely handing and comparison of signals. These coefficients will be 

stored in a 1 dimensional matrix.  At this point a signal will move onto the diagnostic sub 

program where it is evaluated based on its comparison to historic healthy state response 

data.  
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4.2.6 – Diagnosis Sub-Program 

The first stage of damage detection and turbine diagnosis is based on results from the 

processing sub program which returns select wavelet decomposition levels and the 

associated RMS values for the response signal. The structural condition of the response 

signal will be evaluated based on the difference between the calculated RMS value and 

the average of historic RMS values stored in the healthy state database.  For diagnosis of 

the turbines structural state, historic response information must be available and stored in 

a healthy state database. The multiple alert and warning criteria are based on the 

difference between characteristic parameters of response for unknown (new) and known 

(historic) structural conditions. These characteristic parameters for known structural state 

are stored in the Healthy state database.  The following section will address details of this 

database so for now it is to be taken as granted for sake of understanding the diagnostic 

procedure. This evaluation is completed for each wavelet level and is executed with the 

following equation.  

avermsrmsrms HND −=   (5) 

where Drms is the difference, Nrms is the RMS value for the response signal under 

evaluation, and Haverms is the average RMS value for all processed signals in the healthy 

state database. A criterion has been defined such that an alert will be issued when a newly 

acquired signal exceeds a threshold indicating that a deviation from normal turbine 

behavior is being experienced. The threshold is a function of healthy state database size, 

and a program defined learning curve, L.  

)(LHT avermsrms =  (6) 
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This parameter L, allows for unsupervised learning of the SHM program. Values for the 

learning curve are established such that the SHM scheme can increase in damage 

detection sensitivity as the healthy state response of the turbine becomes better 

understood from a statistical point of view as the database size increases.   Figure 4-7 

displays the learning curve for a SHM scheme throughout its first 700 healthy state 

database samples.  

 

Figure 4-7: Sample learning curve for SHM program. Threshold value vs. Healthy State 

Database size, M.  

 

This learning variable L defines the maximum deviation allowed expressed as a 

percentage of the healthy state average accepted without an alert. When the SHM 

procedure is first implemented on a turbine the threshold variables are necessarily high. 

This allows for the system to begin learning standard turbine behavior without issuing 

unnecessary alarms due to limited HSD size. As the HSD grows in size M increases and 
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the program adjusts thresholds to reflect the defined normal behavior. Alerts will be 

issued depending on the value of a binary condition variable defined as follows 

( rms
rms

TD
TDrmsC <

≥= ,1
,0  (7) 

If the C value is ever found to be 0 for any of the examined wavelet levels a deviation 

from historic response is being experienced and an alert is issued to wind turbine 

operators so attention can be paid to the turbine. This alert can take the form of a visual 

cue on a controller screen, or audible alarm sounded at the wind farm control center.  A 

condition report is printed along with the alarm stating the wavelet levels that exhibited 

the anomalous response. This serves to satisfy the problem identification feature as the 

wavelet level is associated to the turbine components that operate within its frequency 

range. Of course the nature of the inputs themselves provides a degree of damage 

localization as the components functioning during the input are to be considered.   Table 

4-3 displays components that function during each input. 

 

Table 4-3:  Input conditions with associated active components for damage localization 

Input    Active Components 

Ambient Excitation Tower sway, mechanical brake 
Yaw Motion  Yaw gear motors, Control programs,  
Start Up   Turbine rotor, Pitch motors, control programs 
Operation   Induction rotor, Generator, turbine rotor, control programs  
Shut Down   Turbine rotor, pitch motors, braking system 
 

 

 

 

91 
 



Following a condition diagnosis based on RMS values the system proceeds to consider 

the results from the behavior sub-program for each response signal in order to evaluate 

turbine condition based on behavior. Euclidean Distance is calculated between the AR 

coefficients of the new response signal and the healthy state AR model. Figure 4-8 

displays calculated AR Coefficient values for seven historic yaw inputs stored in the 

current healthy state database.   

 

 

Figure 4-8:  Historic response to Yaw input 

 

From this figure the similarity in AR coefficients is evident for several yaw input 

response signals obtained at various heights and under various wind conditions. It is due 

to this similarity that effective thresholds can be set and the unsupervised learning occur, 

converging onto the healthy state behavior of the turbine for a given input.   
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In order to evaluate response based on time series behavior a distance calculation is 

executed with the following equation.  

2
30

1

)( aveARiAR
i

AR HND
i
−=∑

=
 (8) 

where NAR is an array containing the 30 coefficient values calculated for the new 

response signal, HaveAR is  an array of average coefficient values from the healthy state 

database (HSD). This distance is evaluated based on a second damage sensitive criteria 

that calculates the distance between the healthy state average and the historic response 

model that is closest in wind speed to the obtained response.  

)2(LDT wsaveAR −=  (9) 

A second condition variable is calculated 

( ARAR
ARAR

TD
TDARC ≤

≥= ,1
,0  (10) 

If this behavioral condition variable is found to be 0 an alert is issued which serves as an 

early warning to behavior that is deviating from historically recorded response. This alert 

is issued before anomalous loading occurs and thus informs an operator that detrimental 

operation conditions may exist that will lead to accelerated fatigue of the turbine 

components. The cause of this strange behavior may be the result of load intensive 

weather conditions or the early stages of component fatigue or damage.  The warning is 

issued with a printed report of the wavelet levels that violated the diagnosis conditions.  

Correlations to turbine components in Table 4-3 are once again considered for 

identification of possible faulting components.  
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After both condition parameters are calculated and neither are found to be 0 for all of the 

wavelet levels in the scheme then the response signal will be deemed of healthy nature 

and is added to the healthy state database along with the appropriate information matrix. 

For a healthy state database size M, the newly validated response signal is stored as entry 

M+1. After the response signal has been cycled through the SHM program the functions 

of damage detection (via RMS) and damage localization (via wavelet decomposition) 

have been completed. To expand beyond immediate behavior and evaluate the turbines 

evolution on the scale of seasons, months and years descriptive statistics of the HSD are 

to be considered. The behavior model serves the function or offering early warning to 

damaged states that will result in elevated vibration levels.  

 

4.2.7 – Database Adaptation  

The healthy state database is a dynamic dataset that will evolve and change as new 

response signals are obtained and processed as part of the SHM procedure. Currently the 

HSD contains 3 hours of standard turbine operation. This will expand rapidly as the SHM 

scheme is permanently implemented on the structure and baseline data is acquired. It is 

through the healthy state database that long term trends of turbine behavior and evolution 

are assessed. Mathematically speaking the database will take the form of a M x X matrix 

with individual healthy samples stored in the columns. For programming sake the first 

few rows can be considered headers containing environmental parameters including 

average wind speed and an index parameter.  The healthy state database takes the form 

expressed by the equation below.  
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 (11) 

It should be noted that as the HSD grows to include thousands of data entries it may be 

beneficial from a computational standpoint to arrange the HSD according to a seasonal or 

yearly index. This would reduce computational demands during response evaluation. In 

this case the healthy state response would be recalculated for each season and this would 

be used as the starting point for the HSD for subsequent operation years.  Beyond its use 

for evaluating a new response signal the HSD has purpose in determining the long-term 

evolution of the turbine system. As materials age and fatigue occurs the normal turbine 

response evolves to reflect these changes. The rate at which normal response changes 

with respect to time can be considered by researchers when predictions of turbine life are 

to be made.  Interested parties may find it beneficial to implement alerts based on the rate 

of change of healthy state database information.  

 

4.2.8 – Standard Diagnosis Procedure 

The SHM scheme based on the WARD algorithm is executed on a turbine of interest in 

six steps which are to be iterated during each new operation day. When executed in this 

fashion the system will rapidly adapt to learn healthy response for each of the five 

designated inputs providing a considerable mass of condition data on which to address 

future behavior. The procedure is as follows 
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Step 1- Set initial conditions.   

• Turbine is in parked position facing prevailing wind direction 

Step 2- Ambient response analysis 

• Response to ambient excitation is recorded for 15 seconds.  

• Signal processed with WARD algorithm  

• WARD will return RMS and AR condition variables. If alerts issued stop procedure 

and examine turbine referencing the printed diagnosis report 

Step 3- Yaw Analysis 

• Turbine yaw command issued for 15 degree yaw  

• Signal processed with WARD algorithm  

• WARD will return RMS and AR conditions. If alerts issued stop procedure and 

examine turbine referencing the printed diagnosis report 

Step 4 – Start up Analysis 

• Start up command issued  

• Turbine starts and accelerates to operating speed and grid charge is applied 

• Signal processed with WARD algorithm 

• Start up condition report issued 

• If no alerts, turbine continues to operate as normal 

Step 5 – Operation Analysis 

• Turbine proceeds to operate as normal  

• 2 minute response samples extracted from data stream twice an hour 

• Turbine conditions returned following each sample. If alerts issued stop procedure 

and examine turbine referencing the printed diagnosis report. 
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Step 6 – Shut down Analysis 

• When time comes for turbine to be shut down response obtained 

• Response signal spans shut down duration from command to instant generator 

speed is zero 

• Signal processed with WARD algorithm  

• Condition reports issued. If alerts issued stop procedure and examine turbine 

referencing the printed diagnosis report. 

• Iterate through to Step 1 when turbine is to be start up again 

 

4.3 Scheme Application 

As of the date of this publication damage has not been experienced by the turbine under 

study. This is favorable from the owners and operators standpoint but this may not 

always be the case as the machine ages. In fact there may be few maintenance issues 

experienced within Canadian and North American wind farms over the next 3-5 years 

due primarily to youth of the installed turbines. This does not undermine the importance 

of gathering baseline structural data. Historic reliability data sourced from the European 

wind energy industry supports this conclusion. A survey of downtimes and failures 

within the Danish and German wind power industries suggests of utility scale turbines 

(>1MW) having an increase in failure frequency each operational year [14]. When 

considering this failure model with the proposed SHM scheme a proportional relationship 

exists between damage sensitivity and likelihood of turbine failure. This is a favorable 

relationship which suggests the value of assembling a database of turbine response 
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beginning early in the turbines life as the assembled database will become of greater 

value as turbines fatigue.  

 

Although a turbine damage state has not yet been captured, a shut down analysis 

completed contained an anomalous dataset which has been identified by the WARD 

algorithm as a deviation from normal behavior.  Figure 4-9 displays the anomalous 

signal.  

 

 

Figure 4-9: Anomalous Shut down signal. Acceleration (m/s2) vs. Time (seconds). 

 

When considering the time series behavior of the response signal a clear deviation from 

normal response was found in the 4th decomposition level corresponding to the turbines 
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generator frequency.  Figure 4-10 displays the auto regressive coefficient values for this 

anomaly.  

 

Figure 4-10:  Auto Regressive Coefficients for Shut down Anomaly relative to healthy 

state behavior. Coefficient value vs. Coefficient order. 

 

This figure illustrates the distinct difference in time series behaviors between the healthy 

state signals and the anomalous response. This deviation resulted in a DAR   value that 

violated the healthy condition criteria set in the WARD algorithm.  This anomaly cannot 

be classified as damage but was found to result in elevated levels of vibration which 

could in turn result in increased rates of fatigue during this period. Conditions such as 

these are to be identified to the wind turbine operator so that the cause of these conditions 

can be investigated and prevented. 
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This preliminary application has demonstrated the schemes ability to identify situations 

and operating conditions that may lead to increase turbine fatigue. Despite a limited 

healthy state dataset the programs value as a diagnostic tool can be realized from the first 

day of SHM analysis. This value will increase as the turbine ages and problems and 

maintenance issues are to be dealt with.  

 

From a nation’s infrastructure planning point of view the proposed scheme has 

considerable value as it will aid in determining the condition of turbines as they reach the 

end of their design life. Important decisions are to be made at the turbine’s design life end 

as the owners must decide if the turbine is of sound condition to continue operation with 

reasonable levels of maintenance and up keep or if it would be more cost effective to 

remove and replace the aged turbine.  

 

4.4 Implementation Recommendations 

 

4.4.1 – Wind WARDEN Reliability Assessment Program  

It seems logical that the presented WARD algorithm for wind turbine SHM be expanded 

and applied to multiple turbines such that a wavelet auto regressive diagnostic energy 

network (WARDEN) is formed. This network would present a means to connect multiple 

turbines together such that communication and information sharing can occur resulting in 

a net benefit for the network. With a Wind WARDEN program comparisons can be made 

between response obtained from turbines located in different turbine arrays, wind farms, 

and geographical areas. This allows for an individual turbine’s operation to be understood 
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in the context of a population of healthy turbines. This will work to improve the WARD 

algorithm by drastically reducing the learning time required for the system to determine 

healthy state behavior. This healthy state behavior would be thoroughly understood and 

available via the WARDEN program when a new turbine is installed and integrated into 

the North American utility grid. A network such as this one proposed would offer a new 

level of insight into the life cycle evolution of utility scale wind turbines for wind turbine 

manufacturers, owners, operators and policy makers.   

 

Much of the infrastructure necessary to construct such a network currently exists in the 

forms of SCADA protocols and internet connections. It may simply be a matter of 

transferring healthy state database matrices onto an appropriate server from which it may 

be extracted and accessed by other wind farm operators. One concern with this approach 

is the issue of data ownership. This issue may be irrelevant when sharing information at 

the inter-corporate level but beyond this point the data may be best controlled by a public 

entity such as a government’s Ministry of Natural Resources.     

 

4.5 Conclusions  

For this study a potential solution to issues of wind turbine reliability has been proposed 

in the form of a novel vibration based SHM scheme. The scheme has been developed and 

preliminarily applied to a fully functioning 2.3 MW wind turbine. The turbine used for 

testing and development is extensively used throughout the global wind energy industry 

and due to the flexibility of the processing algorithm the scheme can be adapted to any 

existing wind turbine model, on which accelerometers may be tower mounted. The 
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WARD algorithm presented may also be used to evaluate other response phenomena 

obtained in the form of time series data. Highlights of the proposed scheme include 

• Minimal downtime required for installation of response sensors as the nacelle need 

not be entered nor components disassembled 

• Natural excitation techniques eliminate the need for external exciters which 

increase complexity and cost of system implementation 

• System utilizes highly available and cost effective accelerometer sensors that 

contribute to the practicality and attractiveness of the technique 

• Computationally effective transforms allow for real time monitoring of turbine 

condition as it operates in a transient environment 

• Multiple alert criteria allow for identification of damaged states as well as 

conditions that result in deviation from normal behavior which may lead to damaged 

states 

• Adaptive thresholding based on the amount of healthy response data available 

allows for unsupervised learning of the turbines normal behavior. This also makes it 

possible for the system to be implemented on a turbine for which no historic data 

exists.  

• Program may be used to evaluate turbine condition following (and potentially 

during) earthquakes and extreme weather 

• Operation response data is amassed throughout turbine life which aids in decision 

making at the end of a turbines design life.  

• The WARD scheme can be expanded to tie many turbines into a reliability network 

currently referred to as the Wind WARDEN 
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• Network integration would allow turbines to be assessed within greater context of 

turbine response 

• Network approach used to extend benefits to entire utility grid such that a net 

increase in reliability be achieved for the wind farm, company, province, or country 

that adapts the network 
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Chapter 5 
 
 

Conclusions and Suggestions for Future Work 
 

 

5.1 Summary 

Vibration based structural health monitoring has been examined and developed for a full 

scale 2.3 MW wind turbine.  Vibration testing of the turbine was completed on three test 

days resulting in a dataset of historic turbine response. These response signals represent 

healthy turbine behavior and provide a baseline for condition evaluation in a SHM 

program. In Chapter 2, two of these response signals were processed using the discrete 

wavelet transform which revealed features and characteristics of the signals. Start up 

analysis revealed ramping of low frequency energy on scale with the rotor rotational 

frequency. Steady state analysis uncovered low frequency periodicity. Following this 

study additional datasets were examined in Chapter 3 and an event mapping procedure 

completed which allowed for vibration features to be correlated with physical turbine 

motion such as yaw articulation and shut down. It was found the yaw response was 

influenced by ambient excitation from wind flows affecting the parked turbine. Shut 

down analysis was performed to quantify typical shut down behavior and an anomalous 

dataset was found that exhibited higher loading and extended shut down duration when 

compared to the other signals. The seventh decomposition level containing the 2.84-5.68 

Hz frequency range exhibited high sensitivity to changes in response. Finally, the 

approach to vibration analysis used for Chapters 2 and 3 was synthesized into a SHM 

scheme using the WARD algorithm that could be used as a diagnostic tool for wind 
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turbines in Canada and abroad. The algorithm was applied to the obtained datasets and 

was effective in alerting the user to the anomalous shut down. It has been proposed that 

the WARD algorithm and SHM scheme be applied to multiple turbines so each turbine 

could be assessed relative to a population of healthy turbines resulting in a better 

understanding of dynamic turbine response.  

 

5.2 Recommendations for Future Work 

The dynamic structural response of wind turbine machinery is only beginning to be fully 

understood as researchers are gaining access to utility scale turbines for testing. Further 

research into the occurrence and cause of damage is called for. These aspects will reveal 

themselves once a SHM program, such as the one developed and presented in this Thesis, 

is fully and permanently implemented on an operating wind turbine. Once implemented, 

the obtained healthy state response data should be analyzed and stored for reference when 

turbines face maintenance issues.  

Efforts may be directed to further understanding the shut down dynamics of the turbine as 

this aspect of response has been historically problematic. Response to a hard stop 

sequence is to be obtained and comparisons made between soft and hard stop dynamics. 

Finite element analysis may be employed by researchers in this area in order to pin point 

locations where critical loadings occur. Also, the relationship between simultaneously 

captured response signals should be investigated for its potential as a damage sensitive 

feature.  
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