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ABSTRACT

This dissertation focuses on information recovery under two general types of sensing con-

straints and hardware limitations that arise in practical data acquisition systems. We study

the effects of these practical limitations in the context of signal recovery problems from

interferometric measurements such as for optical mode analysis.

The first constraint stems from the limited number of degrees of freedom of an informa-

tion gathering system, which gives rise to highly constrained sensing structures. In contrast

to prior work on compressive signal recovery which relies for the most part on introducing

additional hardware components to emulate randomization, we establish performance guar-

antees for successful signal recovery from a reduced number of measurements even with the

constrained interferometer structure obviating the need for non-native components. Also,

we propose control policies to guide the collection of informative measurements given prior

knowledge about the constrained sensing structure. In addition, we devise a sequential

implementation with a stopping rule, shown to reduce the sample complexity for a target

performance in reconstruction.

The second limitation considered is due to physical hardware constraints, such as the finite

spatial resolution of the used components and their finite aperture size. Such limitations

introduce non-linearities in the underlying measurement model. We first develop a more ac-

curate measurement model with structured noise representing a known non-linear function

of the input signal, obtained by leveraging side information about the sampling structure.

Then, we devise iterative denoising algorithms shown to enhance the quality of sparse re-

covery in the presence of physical constraints by iteratively estimating and eliminating the

non-linear term from the measurements. We also develop a class of clipping-cognizant re-
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construction algorithms for modal reconstruction from interferometric measurements that

compensate for clipping effects due to the finite aperture size of the used components and

show they yield significant gains over schemes oblivious to such effects.
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CHAPTER 1: INTRODUCTION

Inverse problems wherein one aims to solve for unknown input signals or model parameters

from collected data are prevalent in image and signal processing [1], optical tomography [2],

computer vision and machine learning [3, 4], just to name a few. Despite noteworthy efforts

to develop theory and algorithms for the inverse problems and information recovery, much of

the existing work have assumed ideal acquisition systems. The effects of sensing constraints

and physical hardware limitations on performance, however, have been largely unexplored.

For example, while much work was devoted to leveraging structural information inherent

to signals and light beams (e.g., sparsity [5], total variation [6], etc.) through the use of

regularizers and studying its implications on data acquisition (e.g., recovering signals from

a reduced number of measurements [7]), very little is known about the interplay of sensing

and hardware limitations and signal reconstruction1.

Among such limitations are the limited number of degrees of freedom of actual data ac-

quisition and sampling (imaging )systems [9, 10, 14], and physical constraints imposed by

imperfect hardware components forming the sensing structure, such as the finite aperture

size of the hardware components in optical and imaging applications [15], and their finite

spatial resolution (e.g., Spatial Light Modulators (SLMs), optical detectors, and Digital Mi-

cromirror Devices (DMDs)) [7, 16, 17, 18], to name a few. Below, we elaborate on some of

the most common limitations in practical inverse problems, and explain how they adversely

affect the performance of information recovery.

1In this chapter, we partially use the material published in Signal Processing, 2019 [8], Optics express,
2015 [9], Optics Express, 2018 [10], Journal of the Optical Society of America A (JOSA A), 2018 [11], Allerton
Conference on Communication, Control, and Computing, 2016 [12], and Annual Conference on Information
Sciences and Systems (CISS), 2017 [13].

1



Limited number of degrees of freedom: The number of degrees of freedom of a given

data acquisition/sensing system sets a limit on its information capacity. For example, in

interferometry-based holography and optical imaging [19, 20, 21], the swept delay in the

reference arm of a two-path interferometer is the sole degree of freedom at hand. As a

result, successful recovery typically necessitates a large sample complexity due to the limited

informational content of the highly-correlated measurements.

This motivated the use of additional hardware components such as introducing optical masks

along the path of the optical field in optical imaging and spectroscopy [7, 16, 22, 18, 23], and

quantum state tomography [24, 25]. For example, in compressive signal and image recovery

problems in which Compressive Sensing (CS) recovery algorithms are adopted to reconstruct

a sparse signal of interest from measurements collected by a data acquisition system with a

limited number of degrees of freedom, one may introduce additional (non-native) hardware

components to emulate randomization. This is the underlying idea of the single-pixel camera

[7, 20] where a time-varying random mask is used to acquire random projections of a scene

instead of directly collecting the pixels/voxels using a large size detector. Random masks

in the form of a DMD (an array of millions of individually addressable and tiltable mirror-

pixels) are also utilized in optical encryption for secure communication in optical networks

to compress the encrypted data prior to transmission [26, 27].

While the extra degrees of freedom afforded by the randomization pattern that these masks

map on the field can boost the acquisition system’s capability, the design of such masks –

which are non-native to such systems – is neither cost- nor overhead-free. Moreover, since

such masks block a large portion of the light field through sampling, they tend to reduce the

effective signal-to-noise ratio (SNR) [28, 29].

Finite spatial resolution: Another important limitation stems from the finite spatial
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resolution of cameras and optical detectors. For instance, the non-vanishing pixel size of

the random masks used to either collect measurements [7] or illuminate an object [16] in

imaging applications contributes to the spatial resolution of the formed images. The use of

finer pixels to step-up resolution comes at the expense of higher-dimensionality [30], thereby

trading-off spatial resolution for computational/design cost, as well as potential degradation

in signal reconstruction following from the curse of dimensionality phenomenon [30].

In dealing with this limitation one may adopt super-resolution techniques, in which one

aims to recover missing information about an object or light beam due to various practical

restrictions (such as the optical diffraction limit [31] and the non-zero detector pixel size in

optical imaging) by leveraging prior information about the input signal [32] . For example,

in super-resolution techniques used for imaging, the non-redundant information of several

images and frames are combined to improve the resolution of one image [33]. However,

most of the super-resolution techniques necessitates to adopt more detectors (cameras) and

hardware components which comes at the expense of more cost and computational analysis.

Aperture finiteness: The Finite-aperture size of hardware components used to implement

a sampling system introduces non-linearities into the measurement model due to the ensuing

clipping in the spatial domain [15]. For example in optical applications, when the light field

expands due to spatial diffraction upon propagation, it gets clipped given the finite aperture

size of lenses, SLMs, masks, etc. [15, 28], leading to undesired loss of information in the tail

of the beam profile beyond the aperture size.

Hardware imperfection effects, such as the signal clipping stemming from the finite aperture

size of the used components, and the limited spatial resolution of SLMs and detectors due

to their non-vanishing pixel size, can also degrade the quality of the recovered information

in optical imaging systems in which an active light source is used to illuminate a sample
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object [19, 34]. In such systems, a sample object, such as a living tissue, is illuminated by

a reference light beam and then the information of interest regarding the object is acquired

by analyzing the reflected, scattered, or diffused version of the illumination light field. The

properties of the illumination light field and its behavior in the scattering media tightly

depend on the hardware setup generating it. Any destructive effect stemming from imperfect

hardware components, such as the clipping effect, can drastically change the properties of

the illumination filed, which, in turn, affects the quality of image recovery. For example, one

may adopt the spatial-temporal diffraction-free light beams (ST-beams) proposed in [35, 36]

to illuminate a sample object in an imaging problem. The limited size of the gratings and

the SLM used to generate such beams can change the propagation distance of such light

fields in a sample object such as a retina.

Scope and contributions

To collect more informative measurements and improve the performance of signal recon-

struction under practical constraints, most of the above-mentioned solutions existing in the

literature focus on hardware modifications and introduce new hardware components to the

sampling structure, which incurs extra cost and complexity. In contrast, in this disserta-

tion we keep the native sampling system unchanged and focus our attention on designing

efficient sampling strategies by judiciously leveraging the available degrees of freedom and

devising appropriate compressive recovery algorithms to obtain a more accurate solution for

the inverse problem under practical sensing and physical constraints.

We focus here on interferometry problems, however, the sampling strategies, reconstruction

algorithms and analysis machinery developed in this thesis are generally applicable to a wide

range of practical signal recovery problems. In an interferometry problem, measurements are
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interferograms generated by directing the input signal or light field into two different paths,

namely the arms of the interferometer, and superposing their output signals. Interferometry

is a very effective tool in many information recovery applications ranging from optical modal

analysis [37], and imaging [38, 39], to wireless communications and radio interferometry

applications [40, 41]. We provide a comprehensive description for different interferometry

systems and their functionality later in the next chapter.

The contributions of this dissertation can be summarized as follows:

Unifying basis analysis framework. We first develop a unifying framework for signal

reconstruction from interferometric measurements. Based on this framework, the problem of

signal recovery from interferograms amounts to basis analysis in a Hilbert space. We lever-

age a generalized interferometry approach proposed to access the modal contents of a light

beam in an optical modal analysis problem [15, 42] to enable the analysis and reconstruction

of signals encountered in a broader range of applications of interferometry, of which optical

modal analysis is a special case. There are two sources of generality for the basis analysis

framework developed herein. First, it is applicable whether the sought-after information

pertains to the input signal or to a sample object placed in the second arm of the interfer-

ometer. Modal analysis is an example of the former case and Optical Coherence Tomography

(OCT) [43] an example of the latter (See Chapter 3). Therefore, we account for scenarios

where the input beam passes through the second arm of the interferometer unchanged, as

well as scenarios where the beam interacts with a sample object of interest. Second, our

approach extends to scenarios where we may have no control over the relative delay of the

two paths of the interferometer. This arises for example in the context of node localization

in wireless networks. In all cases, we show that the information of interest is embedded in

the coefficients of the expansion of the output signals of the interferometer arms in some

relevant basis. Therefore, information recovery reduces to a problem of basis analysis in an
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appropriate function space, where one can adopt a reconstruction algorithm to reveal the

expansion coefficients of the interferometer signals from the interferometric measurements.

Compressive reconstruction under sensing constraints. Despite noteworthy efforts

to develop performance guarantees for sparse recovery, the focus has been mostly on systems

that take (noise-like) unstructured measurements in the form of a series of inner products

against random vectors. From a practical standpoint, the relevance of such results is some-

what limited since we are not always at liberty to choose the type of measurements used

for acquisition. However, we show both analytically and experimentally that the class of

problems considered is amenable to compressive reconstruction whereby significant gains in

sample and computational complexities can be achieved given prevalent sparse representa-

tions of the signals of interest in given bases.

This is an important distinction from prior work leveraging compressive sensing (CS)-based

techniques in practical applications where compression gains are realized at the price of in-

troducing new hardware components into the sampling setup – typically in the form of a

sequence of designed random masks in optical applications. Here, we show that the linear

transformation of the underlying measurement model satisfies sufficient conditions for a suc-

cessful reconstruction such as the Restricted Isometry Property (RIP) [30], and the isotropy

and incoherence properties [44], most notably under the sensing constraints set by the limited

degrees of freedom of the interferometer. Hence, our contribution along this dimension aligns

with, and complements, ongoing efforts to establish performance guarantees with structured

systems, albeit these have been primarily focused on Fourier samples or Radon slices for

magnetic resonance and tomographic imaging [45].

Controlled sampling policies. Beside the limited number of degrees of freedom of prac-

tical data acquisition systems, unknown statistical model of the sampling error or noise sets

6



another limitation on the quality of the reconstructed information. In such scenarios, we

need more sophisticated sampling strategies, instead of random sampling methods, to collect

the most informative measurements. Therefore, We leverage the side-information about the

constrained sensing structure to guide the collection of informative measurements through

design of efficient control policies. These policies maximize the measurement incoherence to

further reduce the sample complexity for a target quality in reconstruction. We first develop

two controlled sampling strategies which can be applied in a wide range of applications of

CS under sensing constraints, where the linear transformation is a matrix with structured

rows. Then, we show how these sampling strategies can be adopted in the interferometry

problems to improve the quality of reconstruction.

Compressive recovery with structured noise. Sensing systems implemented by imper-

fect hardware components, such as optical detectors or cameras with finite spatial resolution

or aperture size, set another limitation on the quality of signal recovery. Such limitations

introduce non-linearities in the underlying measurement model. We first develop a more ac-

curate measurement model with structured noise representing a known non-linear function

of the sparse signal obtained by leveraging side information about the physical sampling

structure. Then, we devise two iterative denoising algorithms, namely, Orthogonal Match-

ing Pursuit with Structured Noise (OMPSN), and Subspace Pursuit with Structured Noise

(SPSN) that are shown to enhance the quality of sparse recovery in presence of physical

constraints by iteratively estimating and eliminating the non-linear term from the mea-

surements. Numerical and simulation results demonstrate that the proposed algorithms

outperform standard algorithms in detecting the support and estimating the sparse vector,

given the non-linear function describing the structured noise.

Generalized interferometry under finite-aperture effects. Interferometric modal

analysis under clipping effects is a practical information recovery problem whose performance
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can be significantly improved by modeling such effects as a structured noise described by a

non-linear function. We first show that the aperture finiteness of the hardware components

has the most destructive effect on the recovery performance in the optical modal analysis

problem. We then develop a clipping-cognizant measurement model capturing the finite

aperture size using clipping Linear Canonical Transforms (LCTs). This model is used to

represent the hardware implementation of the interferometer as a cascade of regular and

clipping LCTs, and calculate the non-linear function describing the structured noise in the

measurement model imposed by hardwares with finite aperture size. We also develop itera-

tive modal reconstruction schemes leveraging the clipping-cognizant measurement model to

compensate for the clipping effects.

Effect of imperfect hardware on the properties of spatial-temporal beams (ST-

beams). Spatial-temporal diffraction-free beams, newly introduced in [35, 36], are provably

able to propagate for large distances with no or small diffraction. This favorable property

makes them attractive candidates in active data acquisition systems, in which the scattered

field of an active light source is used to recover information about objects of interest. First,

we briefly overview the theory of ST beams, list some of their properties, and describe the

hardware setup used to generate them. Then, we explain how imperfect hardware com-

ponents (such as limited-size gratings) can affect the properties of such beams and their

behavior in scattering environments. We will model all of these unwanted effects as a pa-

rameter in the light field equation called spectrum uncertainty, and explain how it affects our

ability to access the sought-after information in a practical inverse problem with an active

light source.
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CHAPTER 2: PRELIMINARIES

In this chapter1, we provide a brief background on interferometry as an effective sampling

strategy in many applications ranging from optical imaging and tomography [43] to radio

interferometry and localization in wireless networks [40]. We also briefly go over the under-

lying idea of compressive sensing theory and list few compressive recovery algorithms used

in this dissertation.

Interferometry

Interferometry is a measurement strategy that is widely used across all the physical sciences,

with applications ranging from astronomy and radio interferometry [46, 47, 48, 49, 50],

to remote sensing and Interferometric Synthetic Aperture Radar (InSAR) [51, 52], optics

and photonics [53, 54], signal processing and communications [40, 55], optical encryption

[27], and bio-imaging [19, 38]. Underlying the utility of interferometry in all these fields is

the fundamental principle of superposition of linear waves, which applies to optical, radio-

frequency, and acoustic waves, among other physical realizations. By judiciously superposing

two versions of a wave, their interference may reveal sought-after information, typically about

a sample or a medium that one of the waves scattered from. The interferometer in which

the superposition takes place may be an instrument implemented using electrical and optical

components (e.g., a Michelson interferometer in Optical Coherence Tomography (OCT) [19]),

or simply a physical medium (e.g., the atmosphere in the case of localization in wireless sensor

networks [40, 41]).

1In this chapter, we partially use the material published in Signal Processing, 2019 [8], Optics express,
2015 [9], and Optics Express, 2018 [10].
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Common to all such problems are interferometric measurements, so-called interferograms,

obtained by acquiring the energy of the superposition of the two waves or signals while

some parameter is swept [56, 53]. The interferogram typically assumes values related to the

auto-correlation and cross-correlation of the signals in the interferometer, which depend on

the characteristics of its arms (e.g., their physical lengths in temporal interferometry). For

example, in time domain OCT, one can acquire several interferometric measurements by

sweeping the time delay in one of the interferometer arms [43].

Some applications:

Optical coherence tomography: OCT is a non-invasive and contact-free optical imaging

method which provides high-resolution depth and transversal images from different layers

of a sample object [19], and is a heavily used bio-imaging technique in ophthalmology to

capture high resolution cross-sectional images of the retina [57]. In OCT, a low-coherence

source emits a light beam that scatters off a sample object such as living tissue as shown in

Fig. 2.1(a). The scattered light is then combined with a delayed version of the input beam

to reveal the depth information of the object [43]. In this example, the path which has the

sample object corresponds to the second arm of the interferometer whose reflectivity indices

at the different layers are of interest. In the proposed framework, we show that the reflectivity

indices appear in expansion coefficients related to the interferometric measurements.

Sensor localization: A second example pertains to localization in wireless sensor networks.

As shown in Fig. 2.1(c), to determine position, a node receives two signals with two different

frequencies from two adjacent anchor nodes. By synchronizing the receiver and transmit-

ters, the delay of each path defines the distance between the nodes. Hence, the position

information is embedded in the energy of samples of the combined signal [40].
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Optical modal analysis: Another example is that of optical modal analysis [54, 37, 9], in

which measurements collected using an optical interferometer – such as the Mach—Zehnder

interferometer of Fig. 2.1(b) – are used to reveal the modal content of an optical beam.

Optical beams offer the potential for carrying a high-information content by exploiting the

large-dimensional space spanned by its physical degrees of freedom (DoFs). The spatial

DoF has attracted particular interest with recent advances in the synthesis and analysis

of beams having complex spatial profiles [37]. Indeed, spatial multiplexing for high-speed

communications in free space [58] and in multimode fibers [59] has brought to the fore the

importance of accurate and rapid modal analysis in a desired basis [60], such as the that of

orbital angular momentum (OAM) modes [61].

Figure 2.1: (a) Schematic of the OCT implementation using a Michelson interferometer.
(b) Two-dimensional modal analysis using the generalized interferometry approach based on
Hermite-Gaussian modes. (c) Topology of a wireless sensor network used for node localiza-
tion.

We recently proposed an interferometric procedure that allows – in principle – for an optical

beam to be analyzed in terms of a complete and orthogonal – but otherwise arbitrary –

modal basis [54, 37]. We call this approach henceforth ‘generalized interferometry’. Such a
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strategy exploits a two-path interferometer (such as a Mach-Zhender interferometer, MZI),

but replaces the usual optical delay with a ‘generalized phase operator’ (GPO) – a unitary

spatial transformation parameterized by a continuous real number that plays the role of a

‘generalized delay’ in modal space. The GPO is in fact an optical transformation whose

eigenfunctions are the functional elements of the modal basis of interest. Indeed, the GPO

generalizes to an arbitrary basis the notion of temporal delay. The GPO delay parameter

in the generalized interferometer is swept, an interferogram is recorded, and its Fourier

transform reveals the beam’s modal content. In the case of discrete modal bases, the GPO

is a fractional optical transform; e.g., the fractional Fourier transform (frFT) [62, 63] or

fractional Hankel transform (frHT) [64, 65] for Hermite-Gaussian (HG) or radial Laguerre-

Gaussian (LG) modes, respectively. In practice, measurements are acquired by sampling the

GPO delay – the order of the associated fractional transform – at the Nyquist rate to avoid

aliasing in modal analysis. This requires collecting a large number of samples and implies

more latency, which may be intolerable for delay-sensitive applications. In the next chapter,

we elaborate on the generalized interferometry approach proposed.

Compressive sensing

Sparse signals are often vectors in a high-dimensional space with only few non-zero elements

– known as the support of the signal. An N×1 vector x with at most s non-zero elements is

called ‘s-sparse’. Based on the CS theory, the sparse signal x can be successfully recovered

in a space of ambient dimension N from only M�N linear measurements,

y = Ax (2.1)

provided that the M×N sensing matrix A satisfies some sufficient conditions [66, 67].
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When the number of interferometric measurements M is smaller than the ambient dimension

N , i.e., M�N , signal recovery is equivalent to solving an under-determined system of linear

equations, which is generally an ill-posed problem since it has less equations than unknowns.

However, searching for a solution is feasible if the signal is sparse. In particular, we can

search for the most sparse solution that minimizes the `0-norm, ‖x‖0, of the sought-after

vector x, subject to the data constraint, i.e.,

min ‖x‖0 subject to y = Ax, (2.2)

where ‖x‖0 is equal to the number of non-zero entries of x [68]. Nonetheless, the problem in

Eq. (2.2) is generally NP-hard as it involves a combinatorial search over all s-sparse vectors.

The complexity can be significantly reduced using a convex relaxation of Eq. (2.2)

min ‖x‖1 subject to y = Ax, (2.3)

where ‖x‖1 =
∑N

n=1 |xn| is the `1-norm of x. This `1-minimization, known as the Basis

Pursuit (BP), can be reduced to a simpler Linear Programming (LP) problem, then solved

using an appropriate technique such as the Primal-Dual Interior-Point Method for Convex

Objectives (PDCO) [69].

It is recognized that (2.3) can successfully recover a sparse vector x ∈ RN from M � N

measurements provided the sensing matrix A satisfies some conditions [30]. For example,

it has been established that an s-sparse vector (with at most s non-zero elements) can

be reconstructed using (2.3) if A satisfies the Restricted Isometry Property (RIP), which

requires that (1 − δ)‖x̂‖2
2≤‖Ax̂‖2

2≤ (1 + δ)‖x̂‖2
2 for any x̂ ∈ Σ2s, where Σ2s := {x ∈ RN :

‖x‖0 ≤ 2s} is the set of all 2s-sparse vectors in RN for the restricted isometry constant

0 < δ<
√

2− 1.
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In a noisy setting, the interferometric measurements can be modeled as, y = Ax + z, where

z is an additive N×1 noise vector. In this case, a denoising recovery algorithm such as the

Dantzig selector [70],

minimize ‖x‖1

subject to ‖AT(Ax− y)‖∞≤η σ,
(2.4)

can be utilized to enhance the fidelity of reconstruction given the RIP, where σ2 is the variance

of the entries of z and η is a parameter used to control the performance of reconstruction.

Beside BP and Dantzig selector, there exist other reconstruction algorithms such as Matching

Pursuit (MP) [71] and Subspace Pursuit [72] which could also be applied to recover the sparse

vector of interest.

RIP is a strong sufficient condition which may not be satisfied in the practical applications

in which the structure of the sensing matrix is imposed by a real data acquisition system.

In these cases, sparse recovery can be shown to be successful using mentioned recovery

algorithms provided that the sensing matrix A obeys the weaker isotropy and incoherence

conditions [44], defined as follows:

Definition 1. (Isotropy [44]) If the vector g denotes a row of a random matrix G drawn

from a probability distribution F , then F is said to satisfy the isotropy property if E[gHg] = I,

where E[.] is the expectation and I the identity matrix.

Definition 2. (Incoherence [44]) The distribution F of g = [gn] ∈ CN , is said to be inco-

herent with incoherence parameter µ(F ) if max
n=1,2,...,N

|gn|2 ≤ µ, where µ is the smallest number

for which this inequality holds.

The smaller the incoherence parameter µ of the sensing matrix, the less the number of

measurements required for (2.3) to yield successful reconstruction [44, Theorem 1.1]. It
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was also shown that algorithms such as LASSO [73] and the Dantzig selector [70] yield

stable recovery from noisy measurements under the isotropy and incoherence conditions [44,

Theorems 1.2 and 1.3].

Henceforth, we refer to the matrix A as isotropic and incoherent if the distribution F of

its rows (specified by the generalized delay parameter) obeys the isotropy and incoherence

properties.
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CHAPTER 3: A UNIFYING MODEL FOR THE

INTERFEROMETRIC MEASUREMENTS: HILBERT SPACE

ANALYSIS

In this chapter1, we develop a unifying model for interferometry shown to be applicable to

a wide range of problems. We show that the information of interest is embedded in the

expansion coefficients of the interferometer signals in an appropriate Hilbert space. For

example, in temporal interferometry this space is the span of the set of complex harmonics.

We show here how this concept generalizes to other bases enabling interferometry in a variety

of bases related to any degree (or degrees) of freedom of the wave. In this framework, the

interferometric measurements are shown to admit an explicit structured linear representation

in basis coefficients of interest.

We first provide preliminary background on temporal interferometry, and summarize the

main result of [37, 15] on generalized optical modal analysis wherein the techniques developed

are generalized to arbitrary non-temporal DoFs. Subsequently, we present representative

applications of interferometry and demonstrate the universality of the proposed approach.

Interferogram model in temporal interferometry

A generic interferometric configuration is depicted schematically in Fig. 3.1. An input signal

or optical field ψ(t), where t corresponds to time, is divided into two paths (or interferometer

arms), whereupon two new versions ψ1(t; τ) and ψ2(t) are created and combined to produce a

superposed signal, ψs(t; τ) = ψ1(t; τ)+ψ2(t). The first arm (referred to as the ‘reference’ arm)

1In this chapter, we use the material published in Signal Processing, 2019 [8].
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has an impulse response h1(t; τ)=δ(t− τ) where τ is a temporal delay, and the second arm

(the ‘sample’ arm) has an impulse response h2(t). An ‘interferogram’ is traced by scanning

over the values of τ and recording the energy of the superposed signal I(τ) = 〈|ψs(t; τ)|2〉,

where 〈·〉 corresponds to an integration over time. The interferogram is thus given by

I(τ)=I1 + I2+2|I12(τ)| cos(θ12(τ)). (3.1)

The first two terms on the right hand side of (3.1), i.e. I1 , 〈ψ1(t; τ)ψ∗1(t; τ)〉 and I2 ,

〈ψ2(t)ψ∗2(t)〉, represent the auto-correlation of the signals produced in each arm of the in-

terferometer (the total energy of the signal in each arm), whereas the third term, I12(τ) ,

〈ψ1(t; τ)ψ∗2(t)〉, captures their cross-correlation, and θ12(τ) is the phase of I12(τ). Interfero-

metric measurements are collected by sampling the delay τ , and the sought-after information

about the input signal or the sample is typically embedded in the cross-correlation term.

When the impulse response of the sample arm h2(t) = δ(t), the Fourier transform (FT) of

the interferogram in (3.1) reveals the power spectrum. Although (3.1) provides a general

model for interferometry that is commonly used, it does not show explicitly how the corre-

lation term relates to the information of interest, whether this information pertains to the

input signal or to the ‘sample’.

ψ(t) ψs(t;τ) I(τ)

h1(t;τ)

+

ψ1(t;τ)

ψ2(t)

h2(t)

Figure 3.1: Schematic for a general two-path interferometer. The output signal of the
reference arm is defined by the temporal delay τ .
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Temporal interferometry as a basis analysis problem

We expand the input signal ψ(t) in terms of harmonics or complex exponentials {ejωt}, where

ω is the angular frequency (i.e., the Fourier basis), such that ψ(t) = 1
2π

∫ +∞
−∞ Ψ(ω)ejωtdω,

where Ψ(ω) is the Fourier transform (FT). Hereon, we focus our attention on discrete bases

by the mere fact that the data collected and the information retrieved is always represented

discretely. In this case, the input signal is represented as ψ(t) =
∑∞

n=1 cne
jωnt using the

orthogonal discrete harmonics {ejωnt} for some complex coefficients cn, n = 1, 2, . . .. Because

of the discrete basis, the signal is periodic in time, so that all integrals over time extend over

this period. The delay introduces a phase factor e−jωnτ to the coefficient cn that is linear in

τ and the modal ‘index’ ωn,

ψ1(t; τ) = ψ(t− τ) =
∞∑
n=1

cne
jωnte−jωnτ . (3.2)

This fact will be utilized subsequently when introducing the notion of a ‘generalized delay’

[37, 15] for non-temporal degrees of freedom.

Modeling the sample arm of the interferometer as a linear time-invariant system h2(t), its

output will be,

ψ2(t)=
∞∑
n=1

dne
jωnt, (3.3)

where dn=cnH2(ωn), n=1, 2, . . ., and H2 is the Fourier transform of h2. From (3.1) and the

orthogonality of the complex harmonics, the interferogram becomes

I(τ)=
∞∑
n=1

|cn|2+
∞∑
n=1

|dn|2+2
∞∑
n=1

|cn||dn| cos(ωnτ+θn), (3.4)

where θn is the phase of cnd
∗
n. As the first two terms do not depend on τ , we define the
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interferometric measurements as,

y(τ) ,
1

2

{
I(τ)−

∞∑
n=1

(
|cn|2 + |dn|2

)}

=
∞∑
n=1

|cn||dn| cos(ωnτ + θn).

(3.5)

To collect M interferometric measurements, we sample M values τm, m= 1, . . . ,M , of the

delay τ .

ω2

τ

+ + +

δ(t-τ)

δ(t)

I(τ)
δ(t-τR)

h2(t)

t0+τR

τR

I(τR)
δ(t-d1/c)

δ(t-d2/c)

ω1

t0

t0+d1/c

t0+d2/c

I(T1)

I(T2)

(a) (b) (c)

t0

t0

t0

+τt0

+τ1t0 +τ2t0 +τ3t0

t0

Figure 3.2: (a) Block diagram of the interferometry-based modal analysis. (b) Block diagram

of OCT where the reference arm is modeled by a delay block, and the sample arm is modeled

by an LTI system.(c) Block diagram of an interferometric based localization technique.

In the framework of temporal interferometry described here and in all subsequent modal-

ities, only a finite number of coefficients cn and dn are of interest or even accessible by

the acquisition systems. We thus introduce at this point a finite dimensionality N for the

harmonic basis, {ejωnt}Nn=1. Considering (3.5), we therefore obtain a linear model for the

interferometric measurements in the time domain

y = Ax, (3.6)
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where the M×1 measurement vector y contains the interferometric measurements y(τm),

the 2N×1 information vector x=[xT
1 xT

2 ]T consists of the two vectors x1 =[|cn||dn| cos(θn)]

and x2 = [|cn||dn| sin(θn)], and the M ×2N matrix A = [A1 A2] is a block matrix with

A1 =[cos(ωnτm)], and A2 =[− sin(ωnτm)], with m=1, 2, . . . ,M and n=1, 2, . . . , N .

The goal here is to recover some properties of the input signal (the coefficients cn) or of the

sample (the coefficients dn) from the interferogram. The interferogram model (3.6) offers an

immediate advantage. We have reduced every problem of temporal interferometry with the

configuration in Fig. 3.1 to one of basis analysis. This is a unifying problem-independent

framework in which the interferometric measurements admit a linear representation in terms

of a matrix A of known structure, which enables more efficient approaches to information

recovery.

To this point, we used temporal interferometry to analyze a signal or an optical field into its

time-frequency harmonics. Instead, signals or optical fields can also be analyzed in different

bases with spatial degrees of freedom, in Cartesian or polar coordinate systems, for example.

Generalized interferometry: Hilbert space analysis

In the previous section, we proposed a unifying model for temporal two-path interferometry.

In this modality, we have shown that the desired information (the input signal or the sample)

appears in the harmonic expansion coefficients of a linear measurement model. It turns out

that the framework developed can be generalized to arbitrary degrees of freedom of the input

signal beyond the temporal, such as the spatial parameters. Underlying this generalization

is the notion of ‘generalized delay’, which replaces the standard temporal delay τ to allow

for analysis in arbitrary bases for the other degrees of freedom.
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In temporal interferometry, we have represented the input signal as a finite discrete super-

position of time-frequency complex exponentials. The delayed output signal of the reference

arm in (3.2) is obtained by passing the input signal through a temporal delay modeled as

an LTI system with an impulse response h1(t; τ) = δ(t − τ). Equivalently, applying a de-

lay amounts to applying a linear phase factor e−jωnτ , n = 1, 2, ..., N to the basis harmonics

ejωnt, n = 1, 2, ..., N . In other words, the harmonics ejωnt are the eigenfunctions of the delay

system h1(t; τ) with eigenvalues λn = e−jωnτ .

In moving to other degrees of freedom but maintaining the overall interferometric structure,

we must replace the temporal delay with an appropriate ‘generalized delay’. The signal in this

case is an element in a Hilbert space spanned by an orthonormal basis {φn(x)} with respect

to an arbitrary variable x ∈ R (e.g. space, angle, etc). As before, we represent the input

signal or light field ψ(x) as a superposition of the basis elements, ψ(x)=
∑N

n=1 cnφn(x), where

the cn’s are the basis coefficients. In this setting, we take the generalized delay α (potentially

multi-dimensional) – represented by an impulse response h1(x;α) – to be the unitary linear

system whose impact on the signal is analogous to that of the temporal delay in (3.2). In

other words, the eigenfunctions of the transformation h1(x;α) must be the Hilbert-space

basis {φn(x)} with eigenvalues of the form e−jnα. We refer to α hereon as the generalized

delay parameter. With these features taken into consideration, the delay operator in the

Hilbert-space basis takes on a diagonal representation,

h1(x, x′;α) =
N∑
n=1

e−jnαφn(x)φ∗n(x′). (3.7)

The structure of this operator has several salutary properties that justify calling it a general-

ized delay. It is additive in the delay parameter
∫
dx′h1(x, x′;α)h1(x′, x′′; β) = h1(x, x′′;α+β);

its inverse is the same operator but with a delay parameter −α; and h1(x, x′; 0) is the iden-
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tity. It has been shown that this structure corresponds in general to fractional transforms.

For example, when the basis {φn(x)} is that of Hermite-Gaussian function, h1 corresponds to

the fractional Fourier transform (frFT) [62, 74]; when the basis is that of Laguerre-Gaussian

functions, h1 corresponds to a fractional Hankel transform, etc [64, 37].

As such, the response of this ‘delay’ to the input φn(x) is
∫ +∞
−∞ φn(x′)h1(x, x′;α)dx′ will be

e−jnαφn(x). Thus, a signal ψ(x) after being ‘delayed’ takes the form

ψ1(x;α)=

∫ +∞

−∞
ψ(x)h1(x, x′;α)dx′=

N∑
n=1

cne
−jnαφn(x). (3.8)

This idea underlies our approach to conduct interferometry in arbitrary bases related to

other degrees of freedom. As pointed out earlier, we focus on signals in finite-dimensional

Hilbert spaces since in practice only few basis elements contribute to the actual signal or

can be accessed.

The sample arm is modeled as an LTI system h2(x) that maps the input signal to an output

ψ2(x) =
N∑
n=1

dnφn(x), (3.9)

where dn, n = 1, 2, ..., N are new basis coefficients. In temporal interferometry, the signal

energies are acquired by time-averaging for each setting of the temporal delay τ . Here, in

generalized interferometry, the signal energy is obtained by averaging over the degree of

freedom x for each setting of the delay α. Accordingly, the interferogram generated is

I(α) = I1 + I2 + 2
N∑
n=1

|cn||dn| cos
(
nα + θn

)
, (3.10)

which is analogous to (3.4), and I1 and I2 represent the energy in each arm.
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A number M of interferometric measurements are collected by sampling the delay param-

eter αm, m = 1, 2, ...,M . Therefore, similar to (3.5), we obtain a linear model for the

interferometric measurements where,

y(αm) , 1
2
(I(αm)− I1 − I2)

=
N∑
n=1

|cn||dn| cos
(
nαm + θn

)
, m = 1, 2, ...,M.

(3.11)

Thus (3.11) can also be cast in vector form as

y = Ax, (3.12)

where the definitions and dimensions of the information coefficient vector x, the measurement

vector y, and the matrix A are identical to those in (3.6) after replacing the temporal

delay samples τm with the sampled generalized delay parameter αm. Similar to temporal

interferometry, the measurement model in (3.11) enables us to retrieve information about

the input signal or the sample embedded in the coefficients cn and dn.

Remarkably, the result in (3.12) shows that the proposed framework is in fact basis-neutral.

This is clear from the fact that x, y, and A have no traces of the basis functions {φn(x)},

which is a consequence of the diagonal representation of the generalized delay in this basis.

Therefore, any analysis based on (3.12) is independent of the underlying basis and applies

equally to all. Based on this unifying model, the information of interest embedded in the

expansion coefficients of the interferometer signals in an appropriate Hilbert space can be

simply reconstructed by taking a FT of the collected interferograms.

Remark 1. Our approach extends naturally to signals or fields described by multiple degrees
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of freedom, in which case interferometry can be performed in higher dimensions by intro-

ducing several generalized delays, one for each degree of freedom – an example is shown in

Fig. 2.1(b). In such cases, multi-dimensional interferograms are produced by sampling the

corresponding delay parameters.

Remark 2. The applicability of this two-path interferometry framework is by no means

restricted to deterministic (periodic) signals, but applies naturally to stochastic signals as

well, by virtue of the linearity inherent in the superposition of fields at the output. The only

modification required would be replacing the time-average by an expectation over random field

realizations. In the case of ergodic stochastic signals, this expectation can be carried out by

averaging over a period of time larger than the ‘coherence time’ that is proportional to the

inverse of the bandwidth of the power spectral density, as known from the Wiener-Khinchtine

theorem [75].

Examples and representative applications

• Interferometry-based optical modal analysis: This example concerns analyzing an

optical field into its constituent modes via the interferometric configuration in Fig. 3.2(a).

The goal is to reconstruct the modal energies |cn|2, n = 1, . . . , N of an optical field represented

in a finite basis as ψ(x) =
∑N

n=1 cnφn(x). In optical spectroscopy, where x is the time variable

t, the goal is to analyze a pulsed field into its temporal modes. Hence, ψ(t) enters a two-

path optical interferometer such as a Mach-Zehnder interferometer (MZI), and a delay τ

is swept. The input field passes through the sample arm without undergoing any change

where h2(t) = δ(t), thus ψ2(t) = ψ(t). Normalizing the energy to unity
∑N

n=1 |cn|2 = 1, the

interferometric measurements are y(τm) =
∑N

n=1 |cn|2 cos(ωnτm), m = 1, 2, ...,M . Hence,

given these M measurements, the M×1 measurement vector y with entries y(τm) fits the
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linear model in (3.12) for a modal coefficient vector x = [|c1|2|c2|2 . . . |cN |2]T and an M×N

matrix A=[cos(ωnτm)]. Revealing the spectrum of the optical field thus amounts to solving

a system of linear equations.

As a case study for optical modal analysis in an arbitrary domain, we show how to leverage

the proposed interferometry framework to decompose an optical field in the Hilbert space

spanned by the Hermite-Gaussian (HG) beams, which are natural modes of laser resonators

[76]. Consider an optical field ψ(x) consisting of a superposition of HG modes. To analyze

the field into its constituent modes, the reference arm should include a frFT of order α since

the HG modes are eigenfunctions of the frFT with eigenvalues e−jnα [63]. The kernel of an

frFT system of order α is,

h1(x, x′;α)∝exp

{
jπ

2
(x2 cotα+x′2 cotα−2xx′ cscα)

}
, (3.13)

whose optical implementation makes use of two cylindrical lenses, and three Spatial Light

Modulators (SLMs) as the phase operator components [37, 15]; here x and x′ are appropri-

ately normalized spatial coordinates. Figure 3.3 depicts an actual implementation of a frFT

filter using a three-SLM configuration used to analyze an input beam into its HG modes.

We refer the reader to [15] for further details.

The output from the frFT is superposed with the output of the sample arm ψ(x) to acquire

the interferometric measurements. Considering (3.11), the interferogram can again be cast

as y = Ax, where xT = [|c1|2|c2|2...|cN |2], and A = [cos(nαm)], n = 1, 2, ..., N , and m =

1, 2, ...,M . Thus, we have shown that optical modal analysis where we seek to recover

information about the input signal is a special case of the unifying framework proposed.

Specifically, in the modal analysis example dn = cn (θn = 0) for n = 1, 2, ..., N , A = A1, and

x = x1 in (3.12).
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R

Figure 3.3: Schematic of a frFT filter implemented using SLMs that act as quadratic phase
operators.

• Time-Domain OCT (TD-OCT): OCT makes use of a low-coherence (large-bandwidth)

optical source in a two-path interferometer, as illustrated in Fig. 2.1(a). If the spectrum of

this source is s(ω), we discretize it and obtain the coefficients cn=s(ωn). A layered sample is

placed in the sample arm, a delay is swept in the reference arm, and the time-averaged energy

of the superposed signal is recorded for each delay to reconstruct the layered sample. Hence,

this is an example of interferometry where we seek to recover information about the sample

impulse response h2(t) (see Fig. 3.2(b)). We model the (typically reflective) layered sample

by a linear time invariant impulse response h2(t)=
∑L

`=1 r`δ(t−T`), which is parametrized by

the round-trip time T` for the field to travel from the `th sample layer to the sample surface,

and r` is the field reflectivity of the `th layer. Accordingly, the output from the sample arm

is characterized by the coefficients dn = cn
∑L

`=1 r`e
−jωnT` , n = 1, 2, . . . , N . Assuming that

the source is well-characterized (i.e., the coefficients cn are known), then our linear model

retrieves the coefficients dn.

• Localization in wireless networks: A related example is that of localization in wireless

sensor networks shown in Fig. 2.1(c). Consider two anchor nodes each transmitting a sinusoid

with distinct frequencies ω1 and ω2. The transmitted signals ψk(t) = ake
jωkt, k = 1, 2,

superpose at the receiver to produce the signal ψs(t)=ψ1(t− d1/c) + ψ2(t− d2/c), where d1
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and d2 are the distances between the receiver and the anchor nodes, and c is the speed of

light in vacuum (a schematic of this system is shown in Fig. 3.2(c)). In contrast to standard

interferometry, in this case we have no control over the relative delay of the two paths.

Instead, the received signal is sampled at different time instants to recover the distances.

Although this problem cannot be viewed as one of basis analysis, by sampling M points

corresponding to sampling instances Tm,m = 1, . . . ,M , we obtain linear measurements

y = A′x, where x =

[
|a1||a2| cos(ω2d2−ω1d1

c
) |a1||a2| sin(ω2d2−ω1d1

c
)

]T
and the matrix A′ has

dimensions M×2, with the entries in each row being cos((ω1−ω2)Tm) and − sin((ω1−ω2)Tm).

This can be easily generalized to multiple receiving nodes.

• Radio Interferometry: In this application, an array of radio telescopes is used to mea-

sure the spatial coherence of the electric fields to obtain a clear image of the sky brightness

[47, 48]. The field intensity I(x, y) = E(x, y)×E∗(x, y), x and y being the space coordinates

and E the complex electric field, is recovered from samples of the coherence function called

visibilities [50]. This configuration is a special case of the generalized interferometer consid-

ered herein in the sense that the complex exponentials (forming a basis) are eigenfunctions of

the existing time delay operator due to free-space propagation between the astronomical ob-

jects and the radio telescopes, with the field intensity obtained as the expansion coefficients

in this basis.

27



CHAPTER 4: SIGNAL RECONSTRUCTION FROM

INTERFEROMETRIC MEASUREMENTS UNDER SENSING

CONSTRAINTS

Based on the generalized framework introduced in the previous chapter which works for

arbitrary basis, an FT of the interferometric measurements can be used to recover the the

information of interest. However, we established that the interferogram relates to the Hilbert

space coefficients via a linear operator (of known structure) defined by the parameters of

the interferometer. Based on this linear model in this chapter1, we show that signal recon-

struction from interferometric measurements is amenable to compressive data acquisition.

Specifically, reconstruction can be carried out using a reduced number of measurements

despite the constrained structure of matrix A provided x admits some additional struc-

ture. This is particularly useful for scenarios where measurements are costly, as well as

in delay-sensitive applications. We seek reconstruction of x from M � N interferometric

measurements corresponding to M settings of the interferometric delay parameter α.

We point out two fundamental differences between our approach and prior work employ-

ing compressive techniques. First, the vast majority of prior work on compressive sensing

presumes one has full control over the design of the sensing matrix – for example, in op-

tics, by introducing designed random masks along the path of an optical field in an imaging

system [7, 24, 77]. In sharp contrast, the matrix A in our interferometric formulation is

imposed through the structure of the interferometer itself. Therefore, compression has to be

carried out under sensing constraints set by the limited degrees of freedom of the sensing

system. It is not clear at the outset whether performance guarantees on reconstruction can

1In this chapter, we use the material published in Signal Processing, 2019 [8].
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be established given the special structure of the constrained matrix A. Second, previous

work on using compressive sensing in optical interferometry has mostly focused on reducing

the number of measurements used for recovery/reconstruction, but not on compressive data

acquisition. For example, in the context of OCT, the approach in [38, 78] selects a random

subset of many interferometric measurements collected using a CCD array detector. This

amounts to using fewer measurements in the recovery of depth information and discarding

measurements already collected by the physical sensing system. By contrast, our approach

directly uses the degrees of freedom inherent to the sensing system (by assigning some ran-

dom values to the generalized phase α) to reduce the data acquired in the first place for

subsequent recovery.

Constrained sensing

Sub-Gaussian random sensing matrices satisfy the RIP with high probability for M ≈

O(s logN), which motivated their use in several CS applications. However, in practice

one may not have full control over the design of the sensing matrix A as it is normally

determined by the structure of the data acquisition system (DAQ). Here, we show that CS

can be exploited in ‘native’ interferometry, that is, without modifying the underlying inter-

ferometer structure nor introducing additional components. Recalling that the rows of the

sensing matrix A have the α-dependent structure am = [am1 am2], m = 1, 2, ...,M where

aT
m1 = [cos(nαm)], aT

m2 = [− sin(nαm)], A has only few degrees of freedom corresponding

to the settings of the delay parameter α. Next section of this chapter focuses on signal

reconstruction based on compressive interferometric measurements of the form (3.12) and

establishing performance guarantees thereof.
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Guarantees with randomized delays

Collecting informative interferometric measurements (3.12), and in turn achieving better

performance in reconstruction, is premised on selecting appropriate values for the generalized

delay parameter α. We consider sensing matrices generated by drawing generalized delays

from random distributions.

Throughout this section, we consider normalized interferometric measurements y = Âx,

where Â =
√

2/MA and A the original matrix defined in (3.12). Our next theorem estab-

lishes that the matrix Â is RIP provided the generalized delay parameters are selected from

an appropriate distribution.

Theorem 1. If the generalized delay parameters αm, m = 1, 2, . . . ,M , of the matrix A in

(3.12) are chosen independently at random from the uniform distribution U [0, 2π], then there

exist positive constants c1, c2 such that Â :=
√

2/MA satisfies the RIP with respect to all

s-sparse vectors with any s≤c1M/ log(2N/s), and an RIP constant 0< δ< 1 with probability

greater than 1− 2e−c2M , where c2≤c0(δ/2)− c1[1 + (1 + log(12/δ))/ log(2N/s)].

Proof. Following the procedure in [79], it suffices to show that Â satisfies the concentration

inequality P{|‖Âx‖2 − ‖x‖2| ≥ ε‖x‖2} ≤ 2e−Mc0(ε), 0 < ε < 1 for all x ∈ Σs under the

condition in the statement of Theorem 1. Since the M realizations αm,m = 1, . . . ,M , are

selected independently from a random uniform distribution U [0, 2π], ‖Âx‖2 can be written as

a sum of M i.i.d. random variables ‖Âx‖2 =
∑M

m=1 |〈âm,x〉|2, ∀x∈Σs, where 〈., .〉 denotes

the inner product of its two vectors argument. Assuming a fixed but arbitrary vector x0 ∈ Σs,

each random variable Zm, |< âm,x0> |2 can be bounded as Zm, |< âm,x0> |2≤‖âm‖2 ·

‖x0‖2 ≤ 2s
M
‖x0‖2, m = 1, 2, . . . ,M , using the Cauchy-Schwarz inequality [80]. Hence, the

random variable ‖Âx0‖2 is a summation of M bounded random variables Zm∈ [0, 2s
M
‖x0‖2].
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Accordingly, using Hoeffding’s inequality [81] we have P{|‖Âx0‖2 − E‖Âx0‖2| ≥ ε‖x0‖2} ≤

2e
− 2ε2‖x0‖

4

4s2
M
‖x0‖4 = 2e−M

ε2

2s2 , 0 < ε < 1. Given the distribution of α, E‖Âx‖2 = ‖x‖2 for all

x ∈ Σs. Thus, we can rewrite this probability bound as, P{|‖Âx‖2 − ‖x‖2| ≥ ε‖x‖2} ≤

2e−Mc0(ε), 0 < ε < 1, ∀ x∈Σs, where c0(ε) = ε2/2s2. Hence, it follows from [79, Theorem

5.2] that the matrix Â is RIP with respect to all x∈Σs with RIP constant 0< δ <1, with

probability greater than 1−2e−c2M , where c2≤c0(δ/2)−c1[1+(1+log(12/δ))/ log(2N/s)].

Based on Theorem 1, Â satisfies the RIP with higher probability as the number of measure-

ments M increases. The next corollary identifies an asymptotic regime where the sensing

matrix satisfies the RIP with probability 1.

Corollary 1. The sensing matrix Â defined in Theorem 1 satisfies the RIP with a con-

stant 0 < δ < 1 for all s-sparse vectors with probability 1, if N,M → ∞ and M =

ω
(

s
c0(δ/2)

log(24eN
δs

)
)

2.

Proof. The proof follows directly from the fact that c2 is always a positive constant, so

limM→∞−c2M = −∞ given the asymptotic order of M in the statement of the corollary.

Therefore, the probability 1− 2e−c2M→1.

The results of Theorem 1 and Corollary 1 are general in that they apply to every problem

in interferometry with the measurement model in (3.12). We have already established the

generality of the framework that gave rise to (3.12), which was also shown to be basis-

neutral. As a direct application of this result, the following corollary establishes that the

matrix arising in optical modal analysis, where A = A1, and x = x1, is also RIP.

2The notation f(n) = ω(g(n)) means that f(n) dominates g(n) asymptotically, i.e., limn→∞
f(n)
g(n) =∞.
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Corollary 2. Given 0< δ <1 and s≤c1M/ log(N/s), the sensing matrix Â = [
√

2/M cos(nαm)]

arising in the (generalized) optical modal analysis example (which consists of only the co-

sine terms), is RIP with respect to all s-sparse vectors in RN with probability greater than

1− 2e−c2M , where c2≤c0(δ/2)− c1[1 + (1 + log(12/δ))/ log(N/s)].

The proof follows directly from Theorem 1.

Theorem 1 established a lower bound on the probability that Â is RIP, which goes asymptoti-

cally to 1 per Corollary 1. In non-asymptotic regimes and when the number of measurements

is not sufficiently large, this bound can be fairly far from 1. It turns out that the constrained

matrix A also satisfies some weaker sufficient conditions for recoverability when the gener-

alized delay parameters are drawn uniformly at random. We establish that the ensemble of

sensing matrices corresponding to α’s drawn from a uniform distribution U [0, 2π] is isotropic

and incoherent [44], therefore an arbitrary fixed sparse vector x can be reconstructed from

compressive measurements with high probability [44].

We can readily state the following lemma which establishes sufficient conditions for successful

reconstruction from interferometric measurements based on the generalized interferometry

framework.

Lemma 1. Suppose M interferometric measurements are acquired by selecting the gen-

eralized delay parameters αm,m = 1, 2, . . . ,M , from a uniform distribution U [0, 2π]. If

M ≥ 2L0(1 + β)s log(2N) for a positive constant L0 and any β > 0, the `1-norm minimiza-

tion in (2.3) yields the s-sparse vector x ∈ RN from the normalized measurements y = Âx

with probability at least 1− 5
2N
− e−β.

Proof. Based on [44, Theorem 1.1], we only need to show that
√
M Â is incoherent and

isotropic under the conditions in the statement of Lemma 1. It is easy to see that for the
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matrix Â, maxn=1,2,...,2N |âm,n|2 ≤ 2/M , as the cosine and sine terms are bounded below and

above by −1 and 1, respectively. So, the matrix
√
M Â is incoherent with parameter µ = 2.

Also, if αm ∼ U [0, 2π], then E[âHmâm] = (1/M) I, therefore
√
M Â is isotropic. Accordingly,

Lemma 1 follows from [44, Theorem 1.1].

We also consider the noisy case y = Âx + z, where z ∼ N (0, σ2I) and x an arbitrary vector

(not necessarily sparse). The following lemma provides a sufficient condition on the number

of measurements for stable recovery.

Lemma 2. Consider the same setting in the statement of Lemma 1. For any β > 0, if the

number of noisy measurements M ≥ L0.(1 + β).2.s log(2N), then the LASSO algorithm [73]

with parameter λLASSO = 10
√

log(2N) yields a vector x̄ satisfying

‖x̄− x‖2 ≤ min
1≤s̄≤s

ζ(s̄), (4.1)

where ζ(s̄),L(1 + γ)
(
‖x−xs̄‖1√

s̄
+ σ
√
s̄ log(2N)

)
with probability at least 1− 6/(2N)− 6e−β,

where L is a positive constant, γ =

√
(1+β)2s̄ log(2N) logM log2 s̄

M
, and xs is the s-sparse approx-

imation of x obtained by keeping the s largest entries of x and setting all other entries to

zero.

Proof. Similar to the proof of Lemma 1, Lemma 2 follows from the incoherence and isotropy

of
√
M Â and the results of Theorem 1.2 and 1.3 in [44].

Instead of LASSO, we can use the Dantzig selector [70] to recover the sparse vector in noise.

In this case, the performance bound in (4.1) is still valid by replacing γ with γ2 [44].
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Simulation and experimental results

In this section, we study two different examples to evaluate the performance of the pro-

posed approach to signal reconstruction from interferometric measurements under sensing

constraints. First, we consider the optical modal analysis problem with one and two spatial

degrees of freedom (1D and 2D optical modal analysis). Second, we reconstruct information

regarding a layered sample object placed in one arm of the interferometer in TD-OCT.

Optical modal analysis

Analyzing a light beam based on HG modes: As discussed earlier, the HG modes are

the eigenfunctions of an frFT of order α with eigenvalues e−jnα, n = 1, 2, ..., N . To analyze

an optical beam in a Hilbert space spanned by the HG modes, we collect M interferometric

measurements by selecting M different frFT orders αm, m = 1, 2, ...,M , then apply a CS

reconstruction method to reveal the modal content of the beam (the modal energies). In

this case, y = Ax, where the M×N matrix A = [cos(nαm)] and xT = [|c1|2|c2|2...|cN |2]

is s-sparse. The frFT orders αm, m = 1, 2, ...,M , specifying the rows of A are i.i.d. and

drawn from a uniform distribution U [0, 2π], thus A is isotropic and incoherent. In this

experiment, N = 64 and s = 4 (modes HG25, HG32, HG38, and HG60, where HGn is nth

Hermite-Gaussian mode). In presence of noise, y = Ax+z, where the noise z ∼ N (0, σ2I) is

white and Gaussian, and SNR , 10 log(x
HE[AHA]x

σ2 ), where E[.] denotes the expectation over

the distribution of αm parametrizing A. To evaluate the quality of reconstruction, the scaled

recovery error is defined as e , ‖x−x̄‖22
‖x‖22

. We use the BP and the Dantzig selector algorithms

to reconstruct the modal coefficients in noise-free and noisy environments, respectively.

We first assume an ideal implementation for the frFT of different orders. Accordingly, for
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order αm, the output beam is ψ1(x;αm) =
∑N

n=1 cnφn(x)e−jnαm , where αm, m = 1, 2, ...,M

are selected independently and identically from the uniform distribution U [0, 2π].

Based on the generalized framework introduced in the previous chapter which works for ar-

bitrary basis, an FT of the interferometric measurements can be used to recover the modal

energies of the input beam. Since the largest mode order is N = 64, sampling uniformly at

the Nyquist rate amounts to collecting 2N = 128 measurements by selecting the orders of

the frFT uniformly and deterministically between 0 and 2π. In this case, x̄ = |Fy|, where

F is a 2N×2N DFT matrix. While in the FT approach M = 2N = 128 interferometric

measurements are needed for successful recovery, Fig. 4.1 shows that the modal content

can be retrieved with significantly less measurements with the CS approach. Despite the

constrained structure of A, from only M = 25 measurements the CS approach yields per-

formance comparable to that of FT whilst achieving substantial savings in data acquisition

time.
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Figure 4.1: (a) Comparing the CS approach with M = 25 to the FT approach with 2N = 128

measurements in the noise-free case, (b) comparison at SNR= 15dB, (c) reconstruction error

of the CS approach versus M for different SNRs.
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We investigate the recovery/reconstruction performance by calculating the reconstruction

error for a different number of measurements in both noise-free and noisy settings. Fig.

4.1(c) shows the decay of the reconstruction error with M using the compressive approach.

Here, we also report on results from an actual laboratory experiment implementing the frFT

filter. Producing exact HG modes is practically infeasible. Instead, we obtain approximate

modes shown in the insets of Fig. 4.2. Obviously, such beams are not perfectly orthogonal,

hence will have non-vanishing mutual projections. As such, even if a single mode is active,

there will be non-zero coefficients for the adjacent modes.

R

1 3 5 7 9

Figure 4.2: Comparing the reconstruction performance of the CS approach to that of the FT

from experimental measurements. (a) Using approximate HG1 mode. (b) Using approximate

HG2 mode. (c) Evaluating the performance of the CS approach in the experiment using

approximate HG1, HG2, and HG3 in terms of reconstruction error versus the number of

interferometric measurements.

In Fig. 4.2(a) and (b), we compare the performance of the CS approach to that of FT for an
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optical beam consisting of HG1 and another of HG2, where HG1 and HG2 are the first and

second Hermite-Gaussian modes, respectively. The FT approach uses 128 interferometric

measurements collected uniformly by choosing the generalized delays between 0 to 2π. In

the CS approach, only M = 25 random measurements are used.

We also investigate the reconstruction error based on the experimental results. As shown in

Fig. 4.2(c), efficient reconstruction requires about M = 25 measurements. This corresponds

to 25 settings of the frFT order for the CS approach versus 128 for FT.

Multi-dimensional interferometry: The proposed interferometry framework can be ex-

tended to problems with more than one degree of freedom where several generalized delay

systems are used corresponding to different degrees of freedom. In this example, we consider

a signal E(x, y) =
∑

nm cnmφn(x)ηm(y), where {φn(x)} and {ηm(y)} are two sets of HG basis

elements and cnm are real and positive expansion coefficients.

We implement two generalized delays, namely two cascaded frFT systems of orders α1 and α2.

For N = 100 basis elements, we examine the performance of our approach in reconstructing

signals formed by the superposition of a small number s of basis elements. Rows (a) and

(b) of Fig. 4.3 display the 2D signals and the reconstructed coefficient(s) for s = 1 and

s = 4, respectively. Our approach is shown to yield accurate reconstruction of the expansion

coefficients from a small number of interferometric measurements M = 50, a saving of 75%

in sample complexity compared to directly taking a FT of the resulting interferogram. This

example underscores the ability of the proposed approach to handle spatially-multiplexed

signals commonly used, for example, in high-speed communications.

Orbital Angular Momentum (OAM) beams (modes) {φn(x) = ejnx}, n = 1, 2..., N form

another orthonormal spatial basis in which the degree of freedom x is the angle measured

in the transverse plane perpendicular to the direction of propagation (instead of time). To
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analyze an optical beam into its OAM modes, the authors in [54, 37] use a rotator in one

arm of an MZI interferometer. This is tantamount to replacing the delay element with an

operator h1(x, x′; θ) = δ(x − x′ − θ) with spatial rotation θ for which the OAM modes are

indeed eigenfunctions. Other examples of modal bases include the radial Laguerre-Gaussian

(LG) modes {L|`|p (x)}p with order p and parameter `, and the one-dimensional Hermite-

Gaussian (HG) modes {φn(x)}n.

Original Reconstructed Basis Coefficients

0
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1
0(a)
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y

Figure 4.3: Reconstruction of 2D HG signals (described by two spatial degrees of freedom)

from compressive interferometric measurements. (a) (left) Original signal HG57 = φ5(x)η7(y)

i.e, (m,n) = (5, 7), (middle) reconstructed signal and (right) reconstructed coefficient c57.

(b) (left) Original 2D signal formed by the superposition of the, s = 4, 2D HG basis elements

(1, 2), (2, 1), (6, 1), (9, 4), (middle) reconstructed signal, and (right) reconstructed coefficients.

We present another multi-dimensional modal analysis example in which the input signal is

represented as a superposition of LG-OAM modes with radial and angular degrees of freedom,

respectively. In this example, we consider the input signal E(x, y) =
∑

np cnpφn(x)L
|`|
p (y),

where {φn(x)} and {L|`|p (y)} are OAM and LG basis elements, respectively. As seen in Fig.

4.4(a), the incident beam is formed from s = 4 active LG-OAM modes (3,3), (4,5), (5,1),
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(6,2). Since the interferometric measurements follow the derived linear model, we use CS

recovery algorithms to reveal the modal content of the optical beam. Figure 4.4(c) shows

the reconstruction error versus the number of interferometric measurements.
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Figure 4.4: Multi-dimensional modal analysis based on LG-OAM modes. (a) Active modal

coefficients. (b) Intensity of the beam. (c) Reconstruction error versus number of interfero-

metric measurements.

Modal analysis with larger number of modes: To evaluate the performance of the

proposed compressive recovery approach with a larger number of potential and active modes,

we analyze a light beam with N = 128, and s = 10 or s = 15. We use BP to reconstruct the

modal content in the noise-free scenario and the Dantzig selector in a noisy scenario with

SNR= 20dB. Figure 4.5 shows the decrease in the reconstruction error as we increase the

number of measurements using the compressive interferometry approach for both sparsity

levels for the noise-free and noisy scenarios, underscoring the applicability of the proposed

approach to problems of larger size.
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Figure 4.5: Evaluating the performance of the compressive approach for ambient dimension
N = 128, and number of non-zero elements s = 10, s = 15.

Information recovery in TD-OCT

Here, we present an example of TD-OCT in which we seek to recover the reflectivity and

depth information of L different layers of a sample object within our unifying interferometry

framework. The desired information here is in the basis coefficients dn, n = 1, 2, ..., N , which

can be retrieved by solving the system of linear equations in (3.12). In this experiment, we

first consider a sample object with L = 10 layers. By solving (3.12), we reconstruct the 20×1

vector x depicted in Fig. 4.6(a), which is shown to match the ground truth. Subsequently,

the reflectivity of the layers and their depths are correctly reconstructed from the retrieved

coefficients dn as displayed in Fig. 4.6(b).
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Figure 4.6: Reconstructing the depth information of a sample object in TD-OCT using the

unifying interferometry framework. (a) Entries of the reconstructed vector x in (3.12). (b)

Reconstructed reflectivity and depth information for the layers of the sample object. (c)

Reconstructing the reflectivity indices of a sample object with L = 100 layers and s =

5 reflective layers from compressed interferometric measurements using BP and Dantzig

selector, Noise-free case. (d) Noisy setting with SNR = 20 dB.

We consider a second example of OCT where the sample object has L = 100 layers among

which only s = 5 unknown layers have non-zero reflectivity. The sparsity of the vector

of reflectivity indices enables recovery from few measurements. The reflectivity coefficients

are successfully retrieved using Basis Pursuit and the Dantzig selector from M = 60 inter-

ferometric measurements as shown in Fig. 4.6(c) and (d) for noise-free and noisy settings

(SNR = 20 dB). We remark that recovery using BP or the Dantzing selector is by no

means exclusive. Since the established RIP, and isotropy and incoherence conditions are

fairly strong criteria, they can generally guarantee successful reconstruction using other al-

gorithms such as LASSO [73]. Depending on the ambient dimension and the sparsity rate,
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more accurate recovery may also be achievable by directly minimizing the `0-norm using

techniques such as in [82]. Optimizing over the choice of reconstruction algorithms, however,

is not the main focus of our work.
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CHAPTER 5: CONTROLLED AND SEQUENTIAL SAMPLING

Introduction

In the previous chapter, we have shown both theoretically and experimentally that the sparse

signal of interest can be successfully reconstructed from the interferometric measurements

collected by selecting a random set of generalized delays from an appropriate distribution.

We established that despite the limited number of degrees of freedom of the sampling sys-

tem, the resulting structured and random sensing matrix satisfies some sufficient conditions

for a successful recovery. However, the unknown statistical model of the sampling error

or noise capturing the imperfect functionality of sensing systems is another prohibit factor

in reconstructing the sparse vector under the sensing constraints in a noisy environment.

When prior knowledge about the noise distribution or its variance is at our disposal, stan-

dard de-noising reconstruction algorithms such as LASSO [73] and the Dantzig selector [70]

can provably stably recover a sparse signal from noisy measurements under some sufficient

conditions on the sensing matrix [67, 44]. In this chapter1, we consider reconstruction under

sensing constraints when the noise statistics are completely unknown.

To account for the aforementioned limitations of sensing systems, we seek efficient means

to collect informative measurements. In other words, we focus on improving the quality

of the sensing matrix (hence the quality of measurements) through proper control of the

degrees of freedom of the sensing system rather than searching for more effective reconstruc-

tion algorithms. To this end, we propose two controlled sampling algorithms for collecting

informative measurements under constrained sensing structures. It is shown that the pro-

1In this chapter, we use the material presented in Allerton Conference on Communication, Control, and
Computing, 2016 [12].
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posed algorithms yield notable reductions in the required number of measurements while

dispensing with the usual de-noising requirements.

Despite these gains in sample complexity, the number of measurements has to be chosen

based on a worst case analysis if collected in a batch in order to meet a pre-determined

performance requirement. To address this issue, we develop a sequential approach in which

the controller stops collecting measurements as soon as there is enough confidence about the

performance of reconstruction. The stopping rule leverages a reconstruction error estimator

from [83]. Given a target performance in reconstruction, it is shown that the sequential

controlled approach yields substantial gains in sample complexity. The proposed algorithms

are remarkably general in the sense that they can be adopted to improve the quality of

reconstruction in wide range of practical applications beyond the specific interferometry

problem studied in the previous chapter.

In this chapter, we first propose two controlled sampling strategies along with a sequential

approach to select the sampling parameters of an arbitrary data acquisition system whose

corresponding sensing matrix is structured. We then show how the proposed controlled sam-

pling algorithms can be adopted to improve the quality of reconstruction in an interferometry

problem.

Problem Setup

We consider reconstructing a sparse vector from compressive noisy measurements under

sensing constraints. The measurements follow the linear model,

y = Ax + n, (5.1)
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where y is an M × 1 vector of compressive measurements, x an N × 1 sparse vector with at

most s non-zero elements, and n an M × 1 noise vector. Traditionally, the sensing matrix A

is designed from sub-Gaussian random ensembles, under which reconstruction is guaranteed

with high probability. Instead, we consider reconstruction with a constrained sensing matrix

A and a sampling noise vector n with unknown statistics. The constrained sensing system

defines the structure of the sensing matrix. In particular, we assume that the sensing matrix

A takes the form,

A =



a1

a2

...

aM


=



f(α1)

f(α2)

...

f(αM)


, (5.2)

where f(.) is a fixed vector function defined by the structure of the sampling system, and

ai, i = 1, 2, . . . ,M are the rows of the sensing matrix. The parameters αi, i = 1, 2, . . . ,M

are sampling variables, which could be selected deterministically or randomly according to

a given distribution representing the degrees of freedom of the sensing system. As such, the

sampling variable α is the only degree of freedom for setting the rows of the sensing matrix.

As shown for the specific problem of interferometry in the previous chapter, the sampling

variables can be drawn randomly from an appropriate distribution such that the sensing

matrix A would satisfy the isotropic property [44], i.e. E[aHi ai] = I, where aHi is the

Hermitian (conjugate transpose) of the ith row of the sensing matrix, and I an N × N

identity matrix.
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Detector 

Input Beam 

Figure 5.1: Two-arm interferometer used for modal analysis.

In contrast to the standard assumption about the noise being white (often Gaussian) with

known variance, herein we further consider a setting where the sampling noise n has unknown

statistics. As such, the common de-noising reconstruction algorithms may not be suitable

to recover the sparse or compressible signal even if A is isotropic.

Instead, we model (5.1) as a compressible vector recovery problem,

y = A(x + n′) , Aβ, (5.3)

where n = An′ and β is a compressible vector for a sufficiently high signal to noise ratio

(SNR). In the next section, we develop two algorithms to choose the sampling variables αi

in a controlled manner to guarantee accurate reconstruction. Then, we devise a sequential

algorithm for data acquisition thereby reducing the required number of measurements.

Controlled sampling

Figure 5.2 shows a randomized approach in which the sampling variables are chosen at

random from a given distribution. While the intended vector β = x + n′ is compressible,

stable recovery is not guaranteed even if the distribution satisfies the isotropic property

due to the lack of knowledge about the noise model. Therefore, we develop control policies
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for choosing the degrees of freedom αi, i = 1, 2, . . . ,M corresponding to M measurements,

aiming at improving the quality of the sensing matrix A wherefore stable reconstruction can

be achieved if the SNR is sufficiently high, i.e., when β is compressible.

Fig. 5.3 illustrates our proposed controlled approach for choosing the sampling variables.

We propose two control policies in which the sampling variables are selected successively

such that some measure of information gain is maximized in every step. In Algorithm 1, the

newly selected value of α minimizes the projection of the corresponding row f(α) on the row

space of the previously formed rows of A. In Algorithm 2, the sampling variables are selected

so as to successively maximize the minimum singular value of the matrix formed from the

previous rows and the newly added row. The process is continued until M measurements are

collected. A terminal reconstruction algorithm recovers the sparse vector x from the noisy

measurements. The two algorithms are detailed in the tables of Algorithm 1 and 2. The

degree of freedom α is generally selected from some dictionary, which could be continuous

or discrete. The `×N matrix A` is the matrix formed from the first ` rows.

Terminal 

reconstruction 

Buffer 

Random 

Sampling Sys. 

Input Signal    

  

 

Figure 5.2: Collecting measurements at random.

As shown in Algorithm 1, the `th value α` is selected as

α` = arg min
α∈A

projR(A`−1)f(α)

to minimize the projection onto the row space of A`−1. In Algorithm 2, α` is selected to
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Figure 5.3: Controlled approach for collecting measurements.

Algorithm 1 Minimizing row space projection
Input:
vector function f(.), dictionary A of sampling variables
Initialization:
` = 2, A`−1 = a1 = f(α1), α1 ∈ A
While ` ≤M
α` = arg minα∈A projR(A`−1)f(α), where projR(A`−1) denotes the projection onto the row space

of A`−1

A` =

[
A`−1

f(α`))

]
` = `+ 1
end While
Output:
{α`}M`=1, A := AM .

maximize the minimum singular value of A`, i.e.,

α` = arg max
α∈A

λmin


A`−1

f(α)


 , (5.4)

where λmin(G) is the minimum singular value of a matrix G.

While the proposed controlled sampling approach helps collect informative measurements

under sensing constraints, determining the required number of measurements for successful
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Figure 5.4: Sequential approach to collect the minimum number of measurements.

recovery could be quite challenging. If the number of measurements M is decided prior to

data acquisition, M will have to be chosen based on worst case analysis to ensure a target

performance in reconstruction, which could in turn lead to an excessive number of measure-

ments. Reducing the sample complexity can be quite beneficial especially in delay-intolerant

applications or settings in which data collection is costly. To this end, we propose a sequen-

tial approach for data acquisition, in which the controller stops collecting measurements as

soon as there is enough confidence that the collected measurements would yield the desired

performance. The sequential test consists of a control policy (according to Algorithm 1 or

Algorithm 2 Maximizing singular values
Input:
vector function f(.), dictionary A of sampling variables
Initialization:
` = 2, A`−1 = a1 = f(α1), α1 ∈ A
While ` ≤M

α` = arg maxα∈A λmin

([
A`−1

f(α)

])
A` =

[
A`−1

f(α`))

]
` = `+ 1
end While
Output:
{α`}M`=1, A := AM .
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2), a stopping rule and a terminal approach for reconstruction.

Sequential Approach

We develop a sequential approach thereby reducing the number of measurements acquired to

reconstruct the unknown sparse vector given a target reconstruction performance. At each

time step κ, the controller verifies if the collected measurements are sufficient to meet the

desired performance based on a stopping rule described in this section. If deemed insufficient,

the controller collects a new measurement. If the stopping criterion is met, a terminal

reconstruction algorithm is adopted to recover the sparse vector. Next, we describe the

main steps of the proposed sequential approach.

Primary reconstruction: Suppose a new measurement is collected at time κ by adopt-

ing one of the control policies described in the previous Section. An estimate β̂
κ

of the

compressible vector is obtained using the current and the previous measurements. At this

stage, we verify if the current estimate is satisfactory according to the criterion defined by

the following stopping rule.

Stopping rule: The stopping rule uses an estimate of the reconstruction error by adopting

an estimation procedure from [84], and a predefined value for maximum the number of

iterations, κmax. To get an estimate of the error, T extra measurements yi = aiβ, i =

1, 2, . . . , T are collected at random. These measurements could be collected once and used

for the rest of the procedure. We estimate the second moment of Z = Y − Ŷ , where

ŷi = aiβ̂
κ−1

, i = 1, 2, ..., T , are based on the estimate β̂
κ−1

, and viewed as realizations of

the random variable Ŷ . The estimate of the second moment is used as a stopping criterion,

i.e., we stop either when E[Z2] < γ, for a predefined threshold γ, or κ = κmax. The
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following lemma establishes that the second moment of Z provides an upper bound on the

reconstruction error. Note that the randomness in Z depends on the distribution of the

degree of freedom α of the sensing system.

Lemma 3. If the sampling variable α is generated from a distribution satisfying E[a(α)Ta(α)] =

I, with E[a(α)] = 0, then E[Z2(α)] = E[(Y − Ŷ )2] provides an upper bound on the recon-

struction error of the sparse vector x, i.e.,

‖x− x̂‖2 ≤ E[Z(α)2]. (5.5)

Proof. The proof follows directly from the assumption of the lemma. We calculate the second

moment of Z(α) as,

E[Z(α)2] = E[(Y (α)− Ŷ (α))2]

= E[(a(α)(x− x̂) + (n− n̂))2]

= (x− x̂)E[a(α)Ta(α)](x− x̂)T + E[n2] + |n̂|2.

(5.6)

Since E[a(α)Ta(α)] = I, then

E[Z(α)2] = ‖x− x̂‖2 + c, (5.7)

where c is an unknown positive constant that depends on the noise.

At each iteration, we estimate E[Z(α)2] as,

E[Z(α)2] ∼=
1

T

T∑
i=1

z2(αi). (5.8)

If the number of measurements used for estimation, T , is sufficient, the estimated metric in
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(5.8) provides a reliable upper bound for the error.

Terminal Reconstruction Algorithm

If the upper bound in (5.8) is less than a predefined threshold γ at time κ, or κ = κmax,

we stop collecting new measurements and reconstruct the compressible vector as β̂ = β̂
κ−1

,

where β̂
κ−1

is the reconstructed compressible vector using κ − 1 measurements. Hence, we

stop collecting extra measurements as soon as the stopping rule is satisfied thereby reducing

the sample complexity.

Controlled sampling in generalized interferometry

Based on the proposed interferometry framework introduced in Chapters 3 and 4, a signal

recovery problem from interferometric measurements amounts to a basis analysis problem in

which the information of interest is embedded in the expansion coefficients of the interferom-

eter signals in an appropriate space. It was shown in (3.11) that the acquired interferometric

measurements are linearly related to these space coefficients through the M×2N matrix

A = [A1 A2], where A1 = [cos(ωnαm)], and A2 = [− sin(ωnαm)], with m= 1, 2, . . . ,M and

n= 1, 2, . . . , N . Comparing this matrix to the general model in (5.2), the vector function

f(α) in the specific problem of interferometry takes the form of,

f(α)=[cos(ω1α) cos(ω2α) . . . cos(ωNα) sin(ω1α) sin(ω2α) . . . sin(ωNα)]. (5.9)
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Hence, instead of a random selection, the generalized delay parameter α can be chosen via the

proposed controlled sampling strategies discussed in this chapter, where the noise statistical

model is unknown. It is shown through the numerical and experimental results presented

in the next section that the quality of information recovery improves by collecting more

informative measurements in the proposed controlled manner. As an example, we consider

the problem of optical modal analysis in which each row of the sensing matrix would be,

f(α)=[cos(ω1α) cos(ω2α) . . . cos(ωNα)]. (5.10)

Numerical and experimental Results

To demonstrate the performance of the proposed algorithms, we provide numerical and ex-

perimental results for the problem of optical modal analysis as a specif application following

the unifying model for the generalized interferometry problems described in Chapter 3. The

goal is to reconstruct the modal content of a light beam from compressive interferometric

measurements collected under the physical hardware constraints of the two-path interferom-

eter. The light beam has the form E(t) =
∑N

i=1 ciψi(t), where t represents time (e.g. for

spectral harmonics) or position (e.g. for spatial modes), ψi(x) an orthonormal modal basis,

ci, i = 1, 2, ..., N the modal coefficients, and N the number of possible modes. The beam is

assumed to be s-sparse in this modal basis, i.e., at most s coefficients are non-zero.

We consider the measurement model as y = Ax+n, where x is an N ×1 vector with entries

xi = |c2
i |, i = 1, . . . , N , y a vector of interferometric measurements, and the rows of the

sensing matrix A given by (5.10). In this experiment, we simulate the sampling noise using
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white Gaussian noise n ∼ N (0, σ2I), where σ2 is an unknown noise variance. The SNR of

the samples is then defined as SNR , 10 log(x
HE[AHA]x

σ2 ).

For this simulation, the maximum possible number of modes is N = 64. We also assume

that the input light beam has unit energy and at most s = 4 active modes.With random

sampling, we select the α values uniformly between 0 to 2π. In this case, the sensing matrix

A satisfies the isotropy property. We use the Basis Pursuit algorithm for reconstruction,

albeit different algorithms could also be used.

As discussed in this chapter, sampling in a controlled manner using the proposed policies

maximizes the incoherence between the rows of the sensing matrix, which holds promise to

achieve additional reduction in the number of measurements for a target performance. In

Fig. 5.5, we show the reconstruction error in a modal analysis problem using HG modes from

an actual laboratory experiment. The input light field consists of non-vanishing projections

on 4 modes and SNR= 20dB. The results show that the controlled approach has a smaller

sample complexity compared to the random approach.

54



Number of measurements

5 10 15 20 25 30 35 40

1

2

0

R
e
co

n
st

ru
ct

io
n
 e

rr
o

r

Random sampling

Controlled sampling, 
minimizing projections

Controlled sampling,
maximizing singular values

Figure 5.5: Reconstruction error versus M for random and controlled sampling approaches.

Next, we investigate the gains of the sequential approach. T extra measurements are col-

lected uniformly at random to estimate the error bound used for stopping. To assess the

performance of the proposed sequential approach with control, we conduct 1000 runs of

modal analysis. In each run, measurements are collected sequentially until either the target

reconstruction error requirement eβ = 0.04 is met, or the maximum number of iterations

κmax = 40 is reached. The latter is obtained based on the number of measurements in the

worst case required to achieve the target reconstruction error. For this purpose, we use

T = 8 and T = 30 measurements to estimate the error bound with γ = 0.01, and γ = 0.02,

respectively. Figure 5.6 shows histograms of the number of collected measurements, i.e., a

distribution of the stopping time, with the controlled and randomized approaches for a fixed

reconstruction error of 0.04. The controlled approach exhibits a better distribution of stop-

ping times, i.e., the reconstruction error requirement is met with less measurements. It can
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also be seen that the performance of the sequential approach does not change significantly

with T = 8 and T = 30 measurements.
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Figure 5.6: The histograms of the required number of measurements for a fixed recovery
performance of eβ = 0.04 and SNR = 20 dB, (a) T = 8, γ = 0.01. (b) T = 30, γ = 0.02.

Since the error bound is less tight for smaller values of T , the stopping threshold can be

gauged to ensure favorable recovery. As such, the stopping threshold γ is generally set

to a value smaller than the target for smaller values of T . Calibration can be used to

set better values for the threshold γ. Due to inevitable inaccuracies in the error estimate,

occasionally the target performance may not be met. We compare the percentage of times

the target performance is unrealized in sequential and batch approaches. We use the singular

value based control policy, and set T = 8 and γ = 0.01. The average required number of

measurements in 1000 runs are 26, 20, 17, 16 and 15 for SNRs 17 dB, 20 dB, 24 dB, 27 dB

and 30 dB, respectively. We perform the simulation in batch using the same average values

plus T = 8 more measurements used for estimating the error, and calculate the percentage

of time the target recovery performance is violated. Figure 5.7 shows the percentage of

violation for both the sequential and batch approaches. With the same average number of
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measurements, the sequential approach provides a significant improvement over the batch

approach.
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Figure 5.7: Comparing the percentage of time the target performance is violated for both the
sequential and batch approaches at different SNRs with singular value based control policy.
Here, T = 8, γ = 0.01

Figure 5.8 demonstrates the savings in the required number of measurements by using the

sequential approach for a target reconstruction error of eβ = 0.04 and a tolerable violation

of 1% based on 1000 runs. In the batch approach, the number of measurements has to

be set based on a worst case, i.e., the maximum number of measurements for which the

target reconstruction error and a percentage of time that this error is violated are satisfied.

Adopting the sequential approach is shown to yield savings in sample complexity. This

simulation also accounts for the extra T measurements required for error estimation (here

T = 8).
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Figure 5.8: Comparing the average number of measurements for error estimation and re-
construction for the sequential and batch approaches based on 1000 runs. The target re-
construction error and the allowable violation probability are 0.04 and 0.01, respectively. In
the sequential approach, the threshold of the stopping rule is γ = 0.01 and the number of
measurements collected for estimating the error is T = 8.
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CHAPTER 6: COMPRESSIVE RECOVERY WITH

STRUCTURED NOISE

Introduction

In the previous chapters, we showed how the sensing constraints imposed by the limited

number of degrees of freedom of a practical sampling system affect the perfromance of sig-

nal reconstruction. In this chapter1, we focus our attention on another limitation due to

imperfect hardware components used to implement the sampling system. Referring to the

optical modal analysis example, the limited aperture sizes of SLMs and lenses can be shown

to introduce nonlinear terms in the measurement model, whose effects will be comprehen-

sively studied in the next chapter. Other examples include reconstruction of MR images

from k-space measurements collected through imperfect hardware [85], and signal recovery

from quantized measurements acquired through Analog to Digital Converters (ADCs) [86].

Motivated by these examples, we model the imperfections of sampling systems using struc-

tured noise. In contrast to related work on sensing with structured noise, which primarily

focused on the sparsity property of such noise [87], we consider a known nonlinear function

of the sparse vector with a bounded `2-norm as our additive structured noise. Quantized

measurements acquired through an ADC, and interferograms produced by interferometers

with limited-aperture SLMs and lenses are examples of measurements that fit this model.

Approximating the measurement model in presence of the physical constraints through a

known nonlinear function of the sparse vector, we propose two novel iterative reconstruction

1In this chapter, we use the material presented in Annual Conference on Information Sciences and Systems
(CISS), 2017 [13].
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algorithms, namely, Orthogonal Matching Pursuit with Structured Noise (OMPSN), and

Subspace Pursuit with Structured Noise (SPSN) to remedy the effect of such constraints.

The proposed algorithms adopt the main ideas underlying SP and OMP in that the support

of the sparse vector is detected then an estimate of the sparse vector is updated at each

iteration, albeit they iteratively estimate and remove the non-linear term from the mea-

surements, which makes them more suitable in non-ideal sampling settings. Our numerical

results demonstrate that the proposed algorithms outperform the standard OMP and SP

algorithms in detecting the support, as well as estimating the sparse vector from inaccurate

measurements collected under practical sensing constraints. Hence, our approach to tackle

the non-linearity is to estimate and remove its effect on the measurements given side informa-

tion about the underlying sensing system. Alternatively, one could also resort to non-linear

recovery algorithms specifically designed for CS with non-linear models such as the Iterative

Hard Thresholding (IHT) based algorithm proposed in [88]. However, such algorithms incur

higher computational complexity as shown in the results section. In particular, we show

that the proposed algorithms attain better performance in reconstruction than IHT based

algorithms in fewer iterations.

Problem Statement

In CS we intend to recover an N×1 s-sparse vector x with at most s non-zero elements

supported on set T from M�N linear compressive measurements

y = Ax, (6.1)

where A is an M ×N sensing matrix. Adopting appropriate reconstruction algorithms,

recovery is guaranteed if A satisfies some sufficient conditions such as the Restricted Isom-
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etry Property (RIP) [30, 89]. However, under practical sensing constraints (e.g. hardware

imperfections) the linear model in (6.1) is usually invalid. In such cases, the compressive

measurements are better represented as,

y = h(x), (6.2)

where h(.) is any (non-linear) vector function from RN to RM . In many applications such

as with quantized measurements [86], the model in (6.2) can be reduced to

y ≈ Ax + f(x), (6.3)

with acceptable accuracy for a known (generally nonlinear) function f(.) from RN to RM

with bounded `2-norm, i.e., ‖f(x)‖2
‖x‖2 ≤ε, ∀ x∈Σs. Here, Σs is the set of all s-sparse vectors in

RN . Given that f(.) is known, the nonlinear part amounts to structured noise n, f(x).

Example: To clarify this source of error, consider the optical modal analysis example in

which we seek to analyze a light beam ψ(t) in a Hilbert space spanned by an orthonormal

basis {φi(t)}Ni=1} (e.g. corresponding to spatial modes) as ψ(t) =
∑N

i=1 ciφi(t), where ci, i =

1, 2, ..., N are positive and real modal coefficients with
∑N

i=1 |ci|2 = 1. Applying different

phase shifts αm ∈ A and superposing the output beams of the interferometer produces

intensity measurements

I(αm) = 1 +
N∑
i=1

|ci|2ai(αm), αm∈A, (6.4)

where |A| = M �N , and ai(.), i = 1, 2, ..., N are functions defined by the setup [54, 37].

Commonly, most of the energy of the beam is contained in few modes, hence the vector x with

entries |ci|2, i = 1, 2, ..., N is naturally sparse. As a result, the interferometric measurements
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admit a linear model

y,I− 1 = Ax, (6.5)

and CS reconstruction algorithms can be applied to reveal the modal content, x [9, 90]. Here,

1 is an M×1 vector of all ones, and I, [z(α1)z(α2)...z(αM)]T . In this system, the M×N

sensing matrix A, [ai(αm)]m,i, m = 1, 2, ...,M, i = 1, 2, ..., N .

The linear model in (6.5) is ideal in that it does not account for practical hardware limita-

tions. For example, we can show that clipping effects from the limited aperture sizes of the

lenses and SLMs give rise to measurements of the form

y = Āx + Bg(x)︸ ︷︷ ︸
f(x)

, (6.6)

where Ā is a modified sensing matrix, B an M×N(N −1) matrix, and g(x) an N(N −1)×1

vector with entries
√
xixj, for i 6= j, i = 1, 2, ..., N, j = 1, 2, ..., N [75]. Given the known

interferometer structure, the function f(x) can be approximated and treated as structured

noise.

Iterative denoising algorithms

In recovering a sparse vector from incomplete or noisy measurements, the iterative recon-

struction algorithms leverage some side information about the noise, such as an upper bound

on its `2-norm, to establish new stopping rules, but not to improve the recovery procedure.

For example, instead of stopping after s iterations, [91] devises a new stopping rule for the

OMP algorithm by incorporating side information about the upper bound of the noise en-

ergy. In sharp contrast, in the following we propose two iterative denoising algorithms – as
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variants for the OMP and SP algorithms – that leverage side information about the sampling

system structure, thus the known function f(.), for sparse recovery.

OMP with Structured Noise (OMPSN)

The proposed greedy algorithm, termed OMP with Structured Noise (OMPSN), seeks to

find a sparse solution from linear and incomplete measurements y of the form (6.3) by lever-

aging side information about the sampling system. Similar to OMP, we adopt a maximum

correlation criterion to iteratively detect the support of the sparse vector. An approximated

support set Λ is updated at each iteration, then the sparse vector x′ supported on Λ is

estimated via the `2-norm minimization,

x′ = arg min
x:supp(x)⊆Λ

‖y −Ax‖2. (6.7)

Approximating the structured noise as n′ = f(x′), we update the measurements by subtract-

ing the estimated noise from the collected measurements as,

yu = y − n′. (6.8)

Subsequently, the residual vector yr is calculated for the next iteration using yu as the

measurement vector and Λ as an approximation of the actual support T (see Algorithm 3).

The same procedure is repeated for s iterations to estimate the support of x. At each iteration

the measurements are refined so that the model approaches the linear model y = Ax. In

Algorithm 3, A†Λ , (AH
Λ AΛ)−1AH

Λ , where the matrix AΛ and vector x′Λ are the columns of

A and entries of x′ indexed by Λ, respectively.

To visualize the operation of OMPSN, Fig. 6.1 illustrates the progression of the algorithm
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in the case where the support is correctly identified over the iterations, i.e. Λ⊆ T . If the

acquisition system was ideal (i.e., f(x) = 0), the measurement vector y would lie in the span

of the columns of AT and the `2-norm minimization (6.7) would yield the exact solution. But

if f(x) is non-zero, the performance of sparse recovery is improved by continuously updating

the measurement vector y as in (6.8) to obtain yu which lies closer to the column space of

AΛ, so that eventually yu≈Ax.

Performance of OMPSN: For brevity, we defer the full analysis of OMPSN to an extended

version of this work and provide some insight in the sequel. In the noiseless case, OMP was

shown to detect the exact support of an s-sparse vector from compressive measurements

in s iterations if A satisfies the RIP with a sufficiently small parameter [92]. With noisy

measurements y = Ax + n, where ‖n‖2 ≤ ε, OMP can be modified by incorporating side

information about the norm of the noise component to stop when ‖yr‖2 ≤ ε, rather than

using s iterations.

The analysis leverages Theorem 1 in [91], which established that the modified OMP algorithm

with the new stopping rule yields the correct support if A satisfies the Mutual Incoherence

Property (MIP) [93] with µ < 1
2s−1

, and |xi| ≥ 2ε
1−(2s−1)µ

, ∀ i ∈ supp(x), where µ is the

mutual incoherence defined as µ,maxi6=j |aHi aj|, i = 1, 2, ..., N, j = 1, 2, ..., N, and aHi is the

conjugate transpose of the ith column of A. If ‖f(x)‖2
‖x‖2 ≤ε for ε sufficiently small (equivalently

when the Signal to Noise Ratio, SNR , 10 log
‖Ax‖22
‖f(x)‖22

is sufficiently large), and the conditions

of [91, Theorem 1] hold, OMPSN correctly identifies the first element of the support and

estimates the corresponding entry of x. As we correctly identify more elements of the support,

we refine our estimates of x, and in turn of the structured noise. Since the measurements

are progressively updated, we obtain cleaner measurements, yu = Ax + n̂, with ‖n̂‖2
‖x‖2 ≤ ε̂ for

which ε̂≤ε, so the condition |xi|≥ 2ε̂
1−(2s−1)µ

is satisfied even for smaller entries of x. As ε̂→0

with more iterations, OMPSN can accurately recover x in s iterations with high probability.
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Figure 6.1: Recovering a 2-sparse vector using OMPSN. At each iteration one element of the

support is detected and more accurate measurements yu are calculated.

Algorithm 3 Orthogonal Matching Pursuit with Structured Noise (OMPSN)

Input:
A, y, s, function f(.)
Initialization:
yu = y, yr = y, Λ = ∅, ` = 0.
While ` < s
Λ = Λ

⋃
{ argmax
i∈{1,2,...,N}

|aHi yr|}

x′Λ = A†Λyu, x′Λc = 0

n′ = f(x′) // estimating the structured noise
yu = y − n′ // update step
yr = yu −AΛA†Λyu // calculating residual

` = `+ 1
end While
Output:
x̂ = x′.
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SP with Structured Noise (SPSN)

We develop a second algorithm termed (SPSN) as a variant of SP [72] in the presence of

structured noise. We briefly describe the main steps and report on performance results in

Section 6. Similar to OMPSN, SPSN is also an iterative greedy algorithm that seeks a sparse

solution from inaccurate measurements (6.3). The main distinction is that the compressive

measurements are used to detect the entire support set, T̂ , at every iteration. Subsequently,

we perform the following steps at each iteration to approximate the structured noise and

mitigate the imperfections of non-ideal acquisition systems: (i) Estimate the sparse vector:

x̃T̂ = A†
T̂
yu, x̃T̂ c = 0; (ii) Approximate the noise given the knowledge of f(.): ñ=f(x̃); (iii)

Update the measurements: yu = y− ñ; (iv) Calculate the residual: yr = yu−ATA†Tyu; (v)

Start a new iteration with updated measurements yu.

The analysis of SPSN leverages a result in [72], which established that in the presence

of additive noise with bounded `2-norm, SP reconstructs an s-sparse vector with bounded

error if A satisfies the RIP of order 3s with parameter δ < 0.083. This sufficient condition

implies a primary condition under which the SPSN recovers the sparse signal from inaccurate

measurements with tolerable error.

Simulation and numerical results

To examine the performance of the proposed algorithms, we consider three examples with

imperfect sampling structures. In all examples, the reconstruction error is defined as ‖x−x̂‖2‖x‖2 ,

where x̂ is the estimated sparse vector. The results are obtained by averaging over 1000

independent runs.
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Algorithm 4 Subspace pursuit with structured noise
Input:
A, y, s, function f(.)
Initialization:
yu = y.
T̂={Indices of s biggest absolute values of AHyu }
yr = yu −AT̂A†

T̂
yu

While yr 6= 0
T ′ = T̂

⋃
{Indices of s biggest absolute values of AHyr}

x′ = A†T ′yu
T̃={Indices of s biggest absolute values of x′ }
x̃T̂ = A†

T̃
yu, x̃T̂ c = 0

ñ=f(x̃) // estimating the structured noise
yu=y − ñ // Update step
ỹr=yu −AT̃A†

T̃
yu // Calculating residual

If ‖ỹr‖2 > ‖yr‖2

Terminate iteration.
else
yr = ỹr
T̂ = T̃
end If
end While
Output:
x̂=x̃.

Polynomial Model

We aim to recover a 5-sparse vector x ∈ R100 from M = 40 measurements modeled as (6.3),

where f(x) = Bg(x). Here, g(x) is an N×1 polynomial function with the ith entry,

gi(x) = x2
mi

+ x3
ni

+ x4
ki

+ x5
li
, mi 6=ni 6=ki 6= li. (6.9)

Normalizing g(x), the entries of the M×N matrix B are drawn from a Gaussian distribution

N (0, σ2), so SNR , 10 log10
‖Ax‖22/M

σ2 . The entries of A and the non-zero elements of x are

drawn from a Gaussian distribution. The polynomial model (6.9) provides a general example
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for dense structured noise – not necessarily sparse corrupting noise.

In Fig. 6.2, we compare the reconstruction error of the proposed algorithms with that of

OMP and SP for different SNRs. The proposed algorithms are shown to outperform regular

OMP and SP for most SNRs.

To recover the support of x, we can alternatively use the IHT-based algorithm of [88] designed

to extract information from non-linear measurements. In this approach, the measurements

y = A(x), where A(.) is a general non-linear function, are linearly approximated by an affine

Taylor series expansion at point x̂ as y ≈ Âx̂x. Subsequently, this approximation is used in

an iterative process to recover the sparse vector x as,

xn+1 = Ps(xn + µÂT
xn(y −A(xn))), (6.10)

where xn is the vector recovered at the nth iteration, Ps the projection operator on the set

of s-sparse vectors Σs, and µ the step size. Adapting this algorithm to our measurement

model, the iterations in (6.10) reduce to

xn+1 = Ps(xn + µAT
xn(y −Axn − f(xn))). (6.11)
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Figure 6.2: Reconstruction error of denoising and regular iterative algorithms versus SNR

with the polynomial noise model, N = 100,M = 40, s = 5.

In Fig. 6.3, we compare the performance of our proposed approaches and the IHT-based

technique with the polynomial model. As shown in Fig. 6.3-(a), OMPSN and SPSN achieve

a lower reconstruction error than IHT at decent SNRs. We also note that OMSPN and SPSN

have lower computational complexity as they require no more than s = 5 iterations versus 30

iterations for IHT to achieve the shown performance with similar complexity per iteration.

In Fig. 6.3-(b), we compare the performance of the three algorithms while fixing the number

of iterations, i. e., s = 5. As shown, the proposed algorithms achieve a substantially smaller

reconstruction error than the IHT-based non-linear approach.
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Figure 6.3: Comparing the performance of the proposed OMPSN and SPSN algorithms to
the IHT-based approach in [88]. (a) OMPSN and SPSN use s = 5 iterations, versus 30
iterations for IHT, (b) performance with a fixed number of iterations (5 iterations).

Optical Interferometry Model

We consider the optical interferometry model (6.6) of Section 6. The sparse vector is gener-

ated as before with N = 100 and s = 5. For simplicity, the entries of Â and B are drawn

from a Gaussian distribution. Fig. 6.4 (a) demonstrates that the proposed algorithms are

more successful at estimating the sparse vector x than OMP and SP. Fig.6.4 (b) shows the

percentage of support misdetections computed as the ratio of the number of incorrect indices

and s. OMPSN, and SPSN are shown to outperform the regular OMP and SP algorithms.
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Figure 6.4: Performance of the proposed denoising algorithms and regular OMP and SP,
(a) reconstruction error, (b) percentage of misdetections of the support versus SNR for the
optical interferometry model (6.6), N = 100,M = 40, s = 5.

Image Reconstruction

In this example we seek to reconstruct a sparse image from inaccurate measurements con-

taminated by structured noise following the same model in (6.6). Here, x is a 400×1 sparse

vector of intensity measurements of a 20×20 pixels image. The number of pixels with non-

zero intensity s, and the number of collected measurements M are 29, and 250, respectively.

The noise function g(x) is defined as in the previous example. At SNR= 5dB, OMPSN and

SPSN are better at detecting the support than OMP and SP as shown in Fig. 6.5 (a). Also,

the proposed algorithms estimate the nonzero elements of x more accurately at SNR= 10dB

as shown in Fig. 6.5 (b).
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Figure 6.5: Performance of algorithms at SNR=5dB, SNR=10dB, N = 400,M = 250, and
s = 29, with the noise model in (6.6).
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CHAPTER 7: OPTICAL MODAL ANALYSIS UNDER

CLIPPING EFFECTS

Introduction

In the previous chapter, we studied the effect of imperfect hardware components used to

implement the data acquisition systems on the quality of information recovery. As shown

and discussed, these effects can be modeled as a structured noise in the measurement model.

To overcome the adverse effects of such physical constraints in the signal recovery problems,

we introduced two de-noising recovery algorithms in which the measurements are gradually

refined over several iterations and the information of interest is simultaneously reconstructed.

Clipping effects due to the finite-aperture size of the hardware components, the limited

spatial phase resolution along the transverse direction due to the non-vanishing pixel size,

and the phase granularity due to the finiteness of the number of phase quantization levels of

devices such as optical detectors and SLMs are examples of undesired physical effects which

can introduce non-linearities in the measurement model. Among such limitations, aperture-

finiteness of the hardware components has the most destructive effect in many signal recovery

problems such as optical modal analysis.

This chapter1 takes a principled approach to analyzing the effects that the finite aperture

size and the ensuing beam clipping have on the ability to perform optical modal analysis in

generalized interferometry. We also leverage the results of the analysis to devise a class of

clipping-cognizant reconstruction algorithms to compensate for such effects, shown to yield

1In this chapter, we use the material published in Journal of the Optical Society of America A (JOSA
A), 2018 [11].
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significant gains over schemes oblivious to such effects. To the best of our knowledge, this is

the first work to provide a rigorous analysis of the interplay of finite aperture size on signal

reconstruction and to provide clipping-cognizant solutions thereof. Next, we summarize the

main technical contributions of this work.

•We develop a clipping-cognizant measurement model capturing the finite aperture size using

clipping Linear Canonical Transforms (LCTs). Details regarding the response of clipping

LCTs are provided in Appendix A.

•We analyze the response of a generalized delay system modeled as a cascade of regular and

clipping LCTs. Appendix B provides an analysis of the output field for different combinations

of LCTs.

•We develop iterative modal reconstruction schemes leveraging the clipping-cognizant mea-

surement model to compensate for the clipping effects.

It is important to note that our work is different from, and should not be confused with,

a large body of work on super-resolution techniques, in which one aims to recover missing

information about an object or light beam due to various practical restrictions (such as

the optical diffraction limit [31] and the non-zero detector pixel size in optical imaging) by

leveraging prior information about the input signal [32]. For example, in super-resolution

techniques used for imaging, the non-redundant information of several images and frames

are combined to improve the resolution of one image [33]. In this paper, we do not seek to

recover information missing due to finite-aperture size. Rather, we exploit a derived (through

rigorous analysis) clipping-cognizant measurement model to ensure that information relevant

to the modal content of a light beam (and intrinsic to the interferometric measurements)

is not disregarded in the reconstruction phase as in traditional models that overlook finite-
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aperture effects.

We also remark that while our focus is on optical modal analysis using interferometry, the

analysis and machinery developed herein can be quite useful in other contexts, therefore

could inspire further research on reconstruction algorithms that account for important and

practical hardware limitations.

Optical modal analysis: Ideal setting

We briefly restate the problem of optical modal analysis based on the generalized interfer-

ometry framework and analysis provided in Chapter 2, and Chapter 3, where we showed

that a signal or optical field of interest can be analyzed in any arbitrary Hilbert space. More

formally, consider an input beam, ψ(x) =
∑N

n=1 cnφn(x), in a Hilbert space spanned by a

discrete orthonormal basis {φn(x)}, with arbitrary degree of freedom x (e.g., spatial, an-

gular, temporal), where cn, n = 1, 2, . . . , N , are the modal coefficients. Replacing the time

delay in the reference arm with a generalized operator h(x, x′;α) :=
∑N

n=1 e
−inαφn(x)φ∗n(x′)

for which {φn(x)} are eigenfunctions, the output beam will be,

ψ(x;α) =
N∑
n=1

cn e
−inαφn(x), (7.1)

where α is a generalized delay parameter, and e−inα the eigenvalue corresponding to φn(x).

Combining the output of the reference arm and the input beam, we record an interferogram

I(α).

Based on the general model established in (3.12), the interferometric measurements take the

form of,

y = Ax, (7.2)
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where y = [y(α1) y(α2) . . . y(αM)]T is an M×1 measurement vector with entries, y(αm) :=

I(αm)−2
2

, for M chosen settings αm, m = 1, 2, ...,M , of the generalized delay parameter,

x = [|c1|2 |c2|2 . . . |cN |2]T the N×1 vector of modal weights, and A an M×N matrix with

entries cos(nαm), n = 1, 2, ..., N, m = 1, 2...,M , mapping the coefficient vector x to an

RM -dimensional measurement space. Our prior work exploited this alternative representa-

tion for the interferogram model to achieve compression gains in sample complexity and

establish analytical performance guarantees for generalized modal analysis from compressive

interferometric measurements sampled at sub-Nyquist rates [9, 8].

Finite-aperture effect

The previous section focused on optical modal analysis using generalized interferometry

in an idealistic setting. In practice, however, the quality of the measurements collected will

inevitably depend on the limitations of the hardware used and the underlying physical system

constraints – hence, the actual interferogram will deviate from the idealistic model in (7.2),

which could adversely affect the performance of modal reconstruction. For example, in [15]

we have reported on the degradation in the quality of interferograms recorded experimentally

originating from clipping effects due to the finite-aperture size of the SLMs, the limited spatial

phase resolution along the transverse direction due to their non-vanishing pixel size, and the

phase granularity due to the finiteness of the number of phase quantization levels.

Our experimental investigations have further revealed that the clipping of the beams at the

output of the SLMs beyond their aperture size limits has the most consequential effect on the

quality of interferograms and, in turn, on modal reconstruction. For illustration, consider the

example in Fig. 7.1, which shows the output interferogram of the generalized interferometer

in Fig. 3.3 for an input beam consisting of the second Hermite Gaussian mode HG2, but this
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time taking the finite-aperture and non-vanishing pixel size of the SLMs into consideration.

In theory, we expect the interferogram to exhibit a peak at α = 0. However, in both

simulations and experiments, we see an apparent drop at α = 0 when the size of the SLMs

is 16mm and the pixel size is 10µm (Fig. 7.1(a)). This is because the configuration shown

no longer realizes the intended (ideal) frFT for which the HG mode is an eigenfunction. The

observed drop is retained even if we use a finer pixel size of 5µm as shown in Fig. 7.1(b).

The peak, however, is extant if we increase the SLM size to 60mm as per Fig. 7.1(c).

Motivated by that, this paper seeks to develop a thorough mathematical analysis of the

impact of the finite-aperture size on the interferograms, and, leveraging the results of this

analysis, propose a new paradigm for reconstruction that alleviates the ensuing degradation

in mode recovery.
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Figure 7.1: The effect of spatial aperture and pixel size on the quality of the interferograms.

(a) SLM size of 16mm and pixel size of 10µm. (b) SLM size of 16mm and pixel size of 5µm.

(c) SLM size of 60mm and pixel size of 10µm [15].
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R

Figure 7.2: Progression of a beam obtained as the superposition of HG1,HG2,HG4 modes

as it propagates, diffracts and gets clipped by the SLMs of the frFT filter. The SLM width

is w = 5mm.

Clipping-cognizant measurement model

Many of the components used to implement an optical setup can be modeled as spacial

cases of a Linear Canonical Transform (LCT) characterized by four parameters defining the

parameter matrix M =

a b

c d

 with unit determinant, i.e., ad− bc = 1, as,

ψM(u) = TM{ψ(x)}(u) =

∫ ∞
−∞

ψ(x)hM(x, u)dx, (7.3)

where,

hM(x, u) =

√
1

j2πb
exp(

j

2b
(ax2 − 2xu+ du2)) (7.4)

for b 6= 0, and

ψM(u) = TM{ψ(x)}(u) =
√
d exp(j

cdu2

2
)ψ(du) (7.5)

for b = 0 [94, 95, 96]. The notation TM{ψ(.)} denotes the LCT operator with parameter

matrix M acting on input ψ(.), and u represents the degree of freedom in the LCT domain.
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Optical lenses, SLMs, and some of the commonly used linear operators such as Fourier

transform, Fresnel integration and fractional Fourier transform are special cases of an LCT

with different parameter matrices. For example, Fresnel integration used to approximate the

short-range free-space diffraction in an optical setup is an LCT with M =

1 λl
2π

0 1

, where

λ is the field wavelength and l is the free-space length.

To model an optical component with finite-aperture size w, we propose a clipping LCT,

TMw {.}(u), whose output for an incident beam ψ(x) is equal to that of an ideal LCT

acting on ψ(x) multiplied by a rectangular function of width w, i.e., TMw {ψ(x)}(u) =

TM{ψ(x)Π( x
w

)}(u). Leveraging the product property of the LCT, which describes the LCT

of a product of two functions (see Appendix A), TMw {ψ(x)}(u) gives,

ψM(u;w) =
w

2π|b|
e
jd
2b
u2
(

(ψM(u)e
−jd
2b

u2

) ∗ sinc
(wu

2πb

))
, (7.6)

where ∗ denotes convolution for b 6= 0 and,

ψM(u;w) =
√
d exp

(
i
cd

2
u2

)
ψ(du)Π

(
du

w

)
, (7.7)

for b = 0.

As mentioned earlier, the generalized delay operator is practically implemented using a

cascade of optical components. For example, an frFT system analyzing the content of HG

beams is realized using three SLMs separated by distances of 2f (see Fig. 3.3), where f is

the focal distance of the lenses in the second arm of the interferometer. By the additivity

property of LCTs [95], we can show that this system is equivalent to a cascade of five LCTs

with parameter matrices Mi =

1 0

ci 1

 , i = 1, 2, 3 (corresponding to an SLM with the
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phase ci), and M =

1 λf
π

0 1

 (modeling the Fresnel diffraction in free-space) as seen in the

schematic of Fig.3.3. We model the SLMs using clipping LCTs given their finite-aperture

size leading to the beam clipping illustrated in Fig.7.2.

In general, the fractional transform in the reference arm of the interferometer in any degree of

freedom can be modeled as a cascade of regular and clipping LCTs. However, it is important

to note that the Hilbert space basis elements {φn(x)} are no longer eigenfunctions of this

transformation owing to the present clipping effect. We obtain a closed-form expression for

the output of any combination of clipping and regular LCTs (see Lemma 2 to Lemma 5 in

Appendix B). Accordingly, the output of the generalized delay for an input basis element

φn(x), is L{φn(x)} = e−inαφ̂n(x;α,w), n = 1, 2, ..., N , where w is a model parameter vector

whose entries are the aperture sizes of the optical components (e.g., the widths wi, i = 1, 2, 3,

of the three SLMs in the frFT realization). As an example, following from Lemma 4 in

Appendix B, the response of the frFT system of order α implemented using finite-aperture

SLMs to HGn, the nth mode φn(x), is

φ̂n(x;α,w) =
w1w2| cscα|

(λl)2

[(
exp

(
−j π cscα

λl
x2
)

×
(
φn(x) exp

(
−j π cotα

λl
x2

)
∗ sinc

(w1x cscα

λl

)))
∗ sinc

(w2x

λl

) ]
× Π

(
x

w3

)
exp

(
j
π(cscα + cotα)

λl
x2

)
.

(7.8)

Accordingly, the output of the reference arm is,

ψ(x;α,w) = L

{
N∑
n=1

cnφn(x)

}
=

N∑
n=1

cne
−inαφ̂n(x;α,w). (7.9)
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Hence, the interferogram as function of α is

I(α; w) =< |ψ(x)|2 > + < |ψ(x;α,w)|2 >

+ < ψ(x)ψ∗(x;α,w) > + < ψ(x;α,w)ψ∗(x) >,

(7.10)

where the superscript ∗ denotes the conjugate operator. The first term on the RHS of (7.10)

is the input energy which is unity. The second term is the output energy of the reference

arm, hereon denoted by eo(α,w). From (7.9), the remaining terms on the RHS of (7.10) can

be expanded as,

2Re{
N∑
n=1

|cn|2einα
∫ +∞

−∞
φ̂n(x;α,w)φ∗n(x)dx}

+
N∑
n=1

N∑
n′=1
n′ 6=n

cnc
∗
n′(e

−inα
∫ +∞

−∞
φ̂n(x;α,w)φ∗n′(x) dx

+ ein
′α

∫ +∞

−∞
φn(x)φ̂∗n′(x;α,w) dx) ,

(7.11)

where Re{.} denotes the real part. Defining gnn′(α; w) :=
∫ +∞
−∞ φ̂n(x;α,w)φ∗n′(x) dx, the

interferogram takes the form,

I(α; w) = 1 + eo(α,w)

+ 2
N∑
n=1

|cn|2|gnn(α; w)| cos(nα + ∠gnn(α; w))

+
N∑
n=1

N∑
n′=1
n′ 6=n

cnc
∗
n′(e

−inαgnn′(α; w) + ein
′αg∗n′n(α; w)).

(7.12)

Defining the interferometric measurements y(α,w) := 1
2
(I(α,w) − 1 − eo(α,w)), the mea-
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surement model can be written in matrix form as

y = Āx + Bx̄, (7.13)

where y, [y(α1,w), y(α2,w), . . . , y(αM ,w)]T, the M×N matrix Ā, [|gnn(α; w)| cos(nα +

∠gnn(α; w))], theM×N(N−1) matrix B, 1
2
[gnm(αi; wi)+g

∗
mn(αi; wi)], and x̄, [c1d

∗
2, c1d

∗
3, . . .

, c1d
∗
N , c2d

∗
1, c2d

∗
3, . . . , cNd

∗
N−1]T is an N(N − 1)×1 vector showing the interaction between

the different modes. Since φ̂n(x;α,w), n = 1, 2, ..., N , can be accurately calculated as in

the frFT example of (7.8) from the lemmas derived in Appendix B, the sensing matrix Ā,

and the coefficient matrix B in (7.13) are entirely accessible for modal recovery. To account

for noise potentially contaminating the measurements, we also incorporate an additive white

Gaussian noise term z whose entries have variance σ2 to obtain the final measurement model

y = Āx + Bx̄ + z . (7.14)

Next, we develop a class of algorithms that are shown to bring about performance gains

in modal reconstruction in presence of finite aperture effects by leveraging the clipping-

cognizant model derived in (7.14).

Reconstruction methods

The previous analysis has revealed that the effect of aperture finiteness on the interferometric

measurements is manifested in the sensing matrix Ā, the coefficient matrix B, and the

output energy eo(α; w) of the reference arm. Therefore, a reconstruction method that takes

advantage of prior information about these terms given the measurement model derived in

(7.14) should yield more reliable recovery.
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In an idealistic setting in which the measurement model is given by (7.2), a FT of interfero-

metric measurements acquired by sampling the generalized delay α at Nyquist rate suffices

to retrieve the modal energies, i.e., x̂ = |Fy|, where F is the discrete Fourier transform

matrix, and x̂ contains the modal energies |cn|2, n = 1, 2, . . . , N of the input beam. Since

in many modal analysis problems a large portion of the beam energy is carried by a small

set of modes, i.e., the coefficient vector x is sparse, we devise sparse recovery algorithms to

retrieve the modal content of optical beams in presence of clipping under the linear model

in (7.14).

Our first method ignores the third term on the RHS of (7.12). In this case, the interferometric

measurements are approximated by

y≈Āx + z, (7.15)

where Ā is defined after (7.14). Under this assumption, we can readily use a denoising

recovery algorithm such as the Dantzig selector [70] to recover the modal content, which

solves

minimize ‖x̂‖1

subject to ‖ĀT(Āx̂− y)‖∞≤η σ,
(7.16)

where η is a tuning parameter used to control the performance of reconstruction. We remark

that although this method ignores terms derived in (7.12) pertinent to the present clipping, it

still partially accounts for clipping captured in the definition of Ā in (7.14) which is different

from the ideal A in (7.2).

Nevertheless, seeking to further enhance the quality of reconstruction, our second method

takes the effect of the term Bx̄ into consideration, hereon referred to as interference or noise
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Algorithm 5 Iterative reconstruction algorithm
Input:
y, A, B, σ
Initialization:
γ = 0, σ′ ← σ
x̂ ← Solving Dantzig Selector with constraint:
‖ĀT(Āx̂− y)‖∞≤η σ′

While ` < L
x̄ ← Estimating x̄ from x̂

γ(`) =

√∑N(N−1)
i=1 |x̄i|2‖bi‖2

M
// Estimating an upper bound on the standard deviation

σ′ ← σ′ + γ // Updating the constraint
x̂ ← Updating the estimate of x (solution of Dantzig selector)
if |γ(`)− γ(`− 1)| ≤ ζ, stop iterations
` = `+ 1
end While
Output:
x = x̂.

factor. To this end, one possibility is to estimate x̄, then subtract Bx̄ from the acquired

measurements. However, this poses two main challenges. First, the vector x is unknown.

Second, the relation between x and x̄ is not one-to-one, which makes it impossible to accu-

rately estimate x̄ and exactly compute the term Bx̄ to eliminate it from the measurements

even if x is known. As such, we propose an iterative reconstruction algorithm detailed in

Algorithm 5, which uses the Dantzig selector as a core recovery procedure.

Algorithm 5 is initiated with an estimate of x obtained by solving (7.16). Then, an approxi-

mate upper bound on the standard deviation of Bx̄ is calculated as, γ =

√∑N(N−1)
i=1 |x̄i|2‖bi‖2

M
,

where |x̄i| is the ith element of an approximate |x̄|, and ‖bi‖ the `2-norm of the ith column

of B. The magnitudes of the entries of x̄ are obtained from the approximate vector x cal-

culated in the previous iteration. This upper bound is used to update the constraint in the

Dantzig selector to η (σ+ γ) to improve reconstruction in the next iteration. The algorithm

terminates when the difference between the γ’s in two consecutive iterations falls below a

threshold ζ, or when the number of iterations reaches a predefined maximum value L.
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Numerical results

To study the effect of finite-aperture on the interferometry-based modal analysis problem,

we consider the example of analyzing a light beam into its HG modes. For data generation,

the interferometer is implemented using three SLMs of the same aperture size w, and the

free-space propagation between the SLMs is modeled using Fresnel integration (see Fig. 3.3).

The fidelity of this generative model has been confirmed by the agreement of the data with

actual experimental measurements in [15]. In this example, the potential number of modes

N = 64, and the beam energy is carried by s = 4 modes. To recover the modal energies

in the inverse problem, we leverage the derived measurement model (7.14). Here, we define

SNR , 10 log
(

E[I(α;w)2]
σ2

)
, where E[.] stands for the expectation w.r.t. the distribution of

the generalized delay α (here sampled from a uniform distribution U(0, 2π)) and I(α,w)

the interferogram in (7.12). We evaluate the recovery error as e , ‖x−x̂‖22
‖x‖22

, where x̂ is the

reconstructed version of the sparse vector x.

To validate the derived measurement model and further underscore the importance of ac-

counting for the finite aperture effects, Fig. 7.3 displays the normalized distance, ‖I −

Î‖2/‖I‖2, between the true measurements I (obtained from the generative forward model)

and the predicted measurements Î for a range of increasingly refined measurement mod-

els. The green curve with square markers in Fig. 7.3 shows the normalized distance for

the idealistic model (7.2), which completely ignores the clipping effect. The black curve

with circle markers is for a model that only captures the output energy term eo(w) =

[eo(α1,w), eo(α2,w), . . . , eo(αM ,w)]T in (7.12) in accounting for the clipping, but otherwise

ignores all other terms. The solid (red) curve further considers the modified sensing matrix

Ā as per (7.15), thus yields smaller error. Finally, the dotted blue curve corresponds to

the most comprehensive model in (7.14), where all the clipping-related terms are accounted
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for, i.e., the modified matrix Ā, the coefficient matrix B, and the output energy of the frFT

system eo(w). Fig. 7.3 indicates that the model in (7.14) well captures the effect of the finite

aperture. Consequently, it is expected that more accurate recovery of the modal content of

the input beam can be achieved by leveraging this model.

Ignoring the clipping effect

Considering eo(w)

Considering eo(w), and Ā

Considering eo(w), Ā, and B
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Figure 7.3: Measurement model error in presence of clipping effect.

Next, we investigate the reconstruction performance with clipping-cognizant recovery. Fig.

7.4 shows the reconstruction error of the FT-based reconstruction versus the SLM size.

Rather than the FT of 1
2
I(w) − 1, we reconstruct the sparse vector x̂ = |F(1

2
{I(w) − 1 −

eo(w)})|, where I(w) = [I(α1,w), I(α2,w), . . . , I(αM ,w)]T and 1 is a vector of all ones.

Therefore, we provide a first level of compensating for the clipping effect by accounting for

the the output energy term eo(w). As shown in Fig.7.4, considering the clipping effect (red

curve) reduces the reconstruction error and improves the quality of modal recovery.
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Figure 7.4: FT-based modal recovery and considering the clipping effect, reconstruction error

versus SLM size.

Figs. 7.5 (a) and 7.5 (b) show the reconstruction error of the proposed modal analysis

approach versus the SLM size while adopting the CS-based recovery algorithms. As shown,

accounting for the output energy of the frFT system and the modified sensing matrix Ā as

per measurement model (7.15) greatly improves the quality of recovery over the idealistic

model in (7.2), where the finite-aperture effect is ignored.
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Figure 7.5: Comparing reconstruction performance of the CS based approach with consid-

ering the clipping terms eo(w), and Ā to that of the case in which the clipping effect is

ignored. (a) SNR=20dB. (b) SNR=30dB. (c) Comparing the reconstruction error of the

iterative algorithm to that of the regular CS based algorithm where the term Bx̄ is ignored,

SNR=30dB.

To further improve the quality of reconstruction, we consider the more comprehensive mea-

surement model in (7.14), which also incorporates the derived Bx̄ and uses the proposed

iterative recovery algorithm described in Algorithm 5. Fig. 7.5 (c) shows that Algorithm 5

yields further improvement in recovering the modal content of the incident light beam. Fig.

C.8 shows a significant improvement in the recovery of the modal energies using Algorithm

5 versus a Dantzig selector that ignores the clipping effect.
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CHAPTER 8: THE EFFECT OF HARDWARE LIMITATIONS

ON THE PROPERTIES OF SPATIAL-TEMPORAL LIGHT

BEAMS

Introduction

In the previous chapters, we studied the effect of hardware limitations and sensing constraints

of the data acquisition systems on the performance of signal reconstruction. In this Chapter,

we study such limitations one step before collecting measurements, where a reference light

field is generated to illuminate a sample object in the active imaging systems [19]. In such

data acquisition systems, measurements are samples of the scattered, diffused, or reflected

light field [34]. Spatial-temporal diffraction-free beams, newly introduced in [35, 36], are

provably able to propagate for large distances with no or small diffraction. This favorable

property makes them attractive candidates in active data acquisition systems, in which the

scattered field of an active light source is used to recover information about objects of interest.

Theory of ST-beams

In general, a one dimensional polychromatic light filed can be written as a superposition of

plane waves as,

E(x, z; t) =

∫ ∫
F (kx, ω)eikxxeikzze−iωtdωdkx, (8.1)

where x and z determine the location along the transverse, and the propagation axes, re-

spectively, and t stands for the time. Temporal frequency is represented by ω, and spatial

frequencies along x and y directions are shown by kx and kz, receptively. Here, F (kx, ω) is
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the spectrum of the light field which is the Fourier transform of the field at z = 0. For a

separable and regular Gaussian light beam, this spectrum can take the form of,

F (kx, ω) = F1(kx).F2(ω), (8.2)

where F1(kx) and F2(ω) can be two independent Gaussian functions of kx, ω, respectively.

Based on the theory of spatial-temporal light beams introduced in [35], one can generate

diffraction-free beams by introducing a correlation between the spatio-temporal degrees of

freedom of the beam. As such, only one spatial frequency kx is assigned to one temporal

frequency ω via an appropriate class of one to one functions [36]. Based on the theory of

ST-beams, these one-to-one functions can be conic sections created by intersecting the light

cone and the spectral planes with the angle θ with respect to the kz axis as shown in Fig. 8.1.

The green curve in this Figure is a trajectory in the spectrum domain relating the temporal

and spatial degrees of freedom of the beam as a hyperbola, parabola, or ellipse, depending

on the intersection angle. The spectrum of an ideal ST-beam can then be formulated as,

F (kx, ω) = F1(kx).δ(ω − g(kx)). (8.3)

Where, δ(.) is Dirac delta function, and g(.) is a conic function providing a one-to-one

relation between |kx|, and ω. This conic function is acquired by intersecting the light cone

kz =
√

(ω/c)2 − k2
x), and the spectral plane ω

c
= β + (kz − β) tan θ which forms a conic

equation as,
(ω
c
− β

1+tan θ
)2

β2 tan2 θ
(1+tan θ)2

− k2
x

β2(tan θ−1)
1+tan θ

= 1, (8.4)

where β is a constant and c is the speed of light in free space. Figure 8.2 shows two examples

of the ST-beams generated by intersecting the light cone with the spectral planes with
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θ = π/3, and θ = π/6, which form Hyperbola and elliptical trajectories, respectively. As

seen in Fig. 8.2 (c) and (f) the profile of the beams almost remain unchanged after 20mm

traveling along the z axis.

Figure 8.1: Intersection of the light cone and a spectral plane.

ST-beams behavior after hitting a blocker

Diffraction-free nature of ST-beams makes them a potential candidate for optical imaging

applications in which a light filed, used to illuminate the sample object, should travel into

a scattering medium such as a living tissue [43]. As the energy of the ST-beams remains

focused during the propagation, they can penetrate more deeply in a sample object. To

study how the ST-beams behaves in the scattering environments, and figure out how the

information about such environments is embedded in the scattered filed, we examine their

behavior in presence of a one dimensional optical blocker as a very simple model for the

scattering environments.

Figure 8.3 shows the behavior of a ST-beam, where the intersection angle θ = π/6 and
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Figure 8.2: Spectrum of a ST-beam with the intersection angle θ = π/3, (e) its intensity at
z = 0mm, (f) z = 20mm.(d) Spectrum of a ST-beam with the intersection angle θ = π/6,
(e) its intensity at z = 0mm, (f) z = 20mm.

π/3. As seen, the scattered beam pattern is different when the light beam hits blockers

with different sizes. This shows that the information regarding the width of the blocker

is embedded in the profile of the scattered light beam. These Figures also reveals another

property of the ST beams. As see, the scattered light field starts to be focused again after

traveling some distance from the blocker. This property of the ST-beams is called self-healing.
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Figure 8.3: Intensity of the light field (
∫
|E(x, z; t)|2dt, and |E(x, z; t = 0)|2) along the

propagation axis, where row (a) shows the results for a ST-beam with θ = π/6, and band-

width ∆λ = 0.17nm, and row (b) represents the results for a ST-beam with θ = π/3, and

bandwidth ∆λ = 0.29nm.

We can analytically show these two properties of the ST-beams by deriving the light field

equation after hitting the blocker. To this end, we consider a specific case of the ST-beams

where the intersection angle θ = π/2. Considering general plane wave expansion (8.1), the

light field equation before the blocker takes the form of,

Ei(x, z; t) = eiβz
∫
F (kx)e

ikxxe−ig(kx)tdkx, (8.5)

93



where, g(kx) = c
√

(k2
x + β2). Modeling the blocker as an optical component with the trans-

mittance 1− Π( x
L

), the scattered light field would be,

Eo(x, z; t)=2πeiβz
∫
F (kx)e

ikxxe−ig(kx)tdkx

− L
∫ ∫

F1(g−1(ω)) sinc(
L(1− g−1(ω))

2π
)eikzzeikxxe−iωt,

(8.6)

where, g−1(ω) =
√

(ω/c)2 − β2. In the right hand side of (8.6), the first term is a same copy of

the input beam which shows the self-healing property of the ST-beams, and the second term

is a diffractive field containing information about the blocker. Hence, off-axis measurements

can be considered as observations in an inverse problem in which the information of the

scattering object is of interest.

The hardware setup used to generate ST-beams and its limitations

Figure 8.4 shows a schematic for the practical setup used to generate the ST-beams [36].

As seen in this Figure, a polychromatic pulsed plane wave is passed through a diffraction

grating by which the beam temporal frequencies, ω’s, are decomposed spatially in y direction.

Then, a spatial phase modulator such as a SLM is used to assign an appropriate kx to each

wavelength. The slope of the phase of the SLM at each x, and y is defined based on the

intersection angle θ, and considering the one-to-one relation between ω’s and kx’s defined by

(8.4). After passing through the SLM, the light fields with wavelengths are again combined

using another grating to form a ST-beam.
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Hardware limitations

To generate an ideal ST-beam, the optical setup shown in Fig. 8.4 [36] should be implemented

using ideal components, so that only one spectral frequency kx is assigned to a temporal

frequency ω. Hence, the first grating should perfectly separate all wavelengths of the beam

spatially in y direction to guarantee that only one wavelength is present at each location

along the y-axis. In addition, the pixel size of the SLM, and the number of its quantization

levels should ideally goes to zero and infinitely, respectively. Among these limitations, the

finite width of the grating has the most destructive effect on the quality of the generated

ST-beams. The limited size of the first diffraction grating results in each wavelength to

spread along the y-axis and overlap with the adjacent wavelengths.

Figure 8.4: The hardware setup used to generate ST-beams (Figure from [36], p. 735).
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(c)(a)

(b)

Figure 8.5: (a) Schematic of the first half of the hardware setup. (b) Mathematical model

of the gratings. (c) The beam intensity right before the SLM, where the input plane wave

contains three different wavelengths.

To show the effect of the limited-size grating on the properties of a ST-beam, we model the

grating as a train of rectangular functions along y-axis as shown in Schematic 8.5 (b), and

calculate the beam equation right before the SLM. Assuming the input light field to be a

monochromatic plane wave with wavelength λ hitting the grating at the input angle φi, the

grating output filed in y direction takes the form of,

E(y;λ) =
+∞∑

n=−∞

cn exp(
i2πny

w
).Π(

y

Ly
) exp(i

2π

λ
y sinφi), (8.7)

where, w and Ly are the width of a rectangular functions and the width of the grating in

y direction, respectively, and cn’s are the Fourier series coefficients of the train rectangular

function modeling the gratings. After passing through the first free space–Lens–free space

system acting as a weighted and scaled Fourier transform, the light wave equation right
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before the SLM would be proportional to,

Eo(y;λ)∝sinc(
yLy cosφc

λf
− nLy

w
− Ly sinφi

λ
), (8.8)

where, f is the focal length of the cylindrical lens, and φc is the grating output angle. Figure

8.5 (c) shows the beam before the SLM for three different wavelengths. As seen, the profile

of the beams along the y-axis takes the form of sinc functions with non-zero width. This

means that several spatial frequencies are assigned to a single wavelength which violates the

key underlying idea behind generating the ST-beams. This unwanted effect stemming from

finite width of the grating Ly is modeled as an spectrum uncertainty δλ in the spectrum of

the ST-beams.

For an ideal ST-beam, we assumed that F (kx, ω) = F1(kx)δ(ω − g(kx)), where g(kx) holds

a one-to-one relation between |ω| and kx. Considering the effect of the grating with limited

size, we need to replace the ideal delta function with a more realistic function whose width is

determined by the spectrum uncertainty δλ. As a candidate, we can use a Gaussian function

whose center is at g(kx), and its width is a known function of spectrum uncertainty δλ. So,

the spectrum of a practical ST-beam can be modeled as,

F (kx, ω) = F1(kx) exp(
(2πc
ω
− 2πc

g(kx)
)2

h(δλ)
), (8.9)

where, h(.) is a known function.
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The effect of spectrum uncertainty on the properties of ST-beams

Group velocity: Defining the group velocity of a light beam as vg = dω
dkz

, the group velocity

of an ideal ST-beam based on the plane equation ω
c

= β + (kz − β) tan θ would be,

vg = c tan θ, (8.10)

which could be bigger or less than the speed of light in free space c (superluminal, or

subluminal, respectively). However, our calculations show that the speed of the ST-beams

is highly constrained by the spectrum uncertainty.

Figure 8.6: Group delay as a function of spectrum uncertainty and the propagation distance.
Row (a) shows the results for the intersection angle θ = 5π/6, and row (b) represents the
results for θ = 2π/3.

Figure 8.6 shows the group delay of the ST-beams with θ = 5π/6, and θ = 2π/3 as a function
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of the propagation distance and spectrum uncertainty. As seen, higher spectrum uncertainty

forces the ST-beams to converge to c in shorter distances from the source. The theory behind

this behavior has been explained in [97].

Propagation and tail lengths: Being diffraction-free is the main motivation to generate

ST-beams. However, this property is significantly affected by the spectrum uncertainty

stemming from the hardware limitations discussed earlier. As seen in Fig. 8.7, increasing

the spectrum uncertainty results in the beam to diffract faster and travel a shorter distance.

The same results have been shown in 8.8 in terms of the traveling distance and the tail-length

of the beam versus the amount of spectrum uncertainty. This Figure shows that we can play

with the spectrum uncertainty to control the propagation distance and the beam width.
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Figure 8.7: (a) Inset shows a schematic for the plane-cone intersection with angle θ with
respect to kz axis. This Figure shows the spectrum of a ST beam with the spectrum un-
certainty δλ = 5pm, (b) δλ = 35pm, and (c) δλ = 70pm. (d)-(f) Intensity of the light
beam

∫
|E(x, z; t)|2dt where δλ = 5pm, 35pm, and 70pm, respectively. The bandwidth

∆λ = 0.5nm, initial FWHM x0 = 5µm, and θ = π/2.
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center as δλ is large. Inset shows the initial beam intensity for δλ = 5pm, 55pm, and 70pm.

Hardware limitations and its effect on information recovery performance

As seen, hardware limitations have undeniable effects on different properties of ST-beams.

Assuming that one uses this class of diffraction-free beams for imaging and sampling ap-

plications, such physical constraints can affect the quality of information recovery as well.

Most of these effects are destructive which can be captured in the measurement model and

compensated via appropriate recovery algorithms. However as observed in the previous sec-

tion, we can also look at these limitations as extra degrees of freedom to control the beam

properties.
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APPENDIX A: PRODUCT PROPERTY OF LCTS
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Lemma 4. Let s(x) and g(x) be two signals or light beams1. The LCT of their product,

ψ(x) = s(x) · g(x), with real parameter matrix M =

a b

c d

 is given by,

TM{ψ(x)}(u) = ψM(u)

=
1

2π|b|
ei

d
2b
u2

[
(
sM(u)e−i

d
2b
u2) ∗ gFT (

u

2πb
)]

=
1

2π|b|
ei

d
2b
u2

[
(
gM(u)e−i

d
2b
u2) ∗ sFT (

u

2πb
)],

(A.1)

for b 6= 0 and,

TM{ψ(x)}(u) =
√
dei

cd
2
u2

s(du)g(du) (A.2)

for b = 0. Here, sM(u) (gM(u)) and sFT (u) (gFT (u)) are the LCT and Fourier transform of

s(x) (g(x)), respectively.

Proof. The proof of (A.2) follows directly from the definition of LCTs with b = 0. To prove

(A.1), we follow the same procedure used in [98] to establish the product property of the

fractional Fourier Transform. We start by the definition of LCTs as,

TM{s(x) · g(x)}(u) =

∫ ∞
−∞

(s(x) · g(x))

×
√

1

i2πb
exp

( i
2b

(ax2 − 2xu+ du2)
)
dx.

(A.3)

Replacing s(x) with the Inverse Linear Canonical Transform (ILCT) of its LCT, sM(û), with

1In this Appendix, we use the material published in Journal of the Optical Society of America A (JOSA
A), 2018 [11].
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parameter matrix

 d −b

−c a

, we have,

TM{ψ(x)}(u) = ψM(u)

=

∫ ∞
−∞

(
g(x)×

√
1

i2πb
exp

( i
2b

(ax2 − 2xu+ du2)
)

×
∫ ∞
−∞

sM(û)

√
−1

i2πb
exp

(−i
2b

(dû2 − 2xû+ ax2)
)
dû
)
dx

=
exp( id

2b
u2)

2π|b|

∫ ∞
−∞

sM(û) exp(
−id
2b

û2)

× (

∫ ∞
−∞

g(x) exp(
−i
2πb

2πx(u− û))dx)dû.

(A.4)

Here, the degree of freedom in the LCT domain of s(x) is denoted û. As seen, the integral

with respect to x is actually the Fourier Transform of g(x), where the variable in the Fourier

domain is replaced by (u−û)
2πb

. Therefore, the LCT is,

ψM(u) =
exp( id

2b
u2)

2π|b|

×
∫ ∞
−∞

sM(û) exp(
−id
2b

û2)gFT (
u− û
2πb

)dû

=
exp( id

2b
u2)

2π|b|
[(sM(u) exp(

−id
2b

u2)) ∗ gFT (
u

2πb
)].

(A.5)

The last equation in (A.5) provides the LCT of the product of two signals in closed-form.

Alternatively, this closed-form expression can be written as,

ψM(u) =
e( id

2b
u2)

2π|b|
[(gM(u)e(−id

2b
u2)) ∗ sFT (

u

2πb
)], (A.6)

by switching the roles of s(t) and g(t) in (A.4) and replacing g(t) with the ILCT of gM(û).

This shows the commutative property for the LCT of a product.
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This property is used to define the output signal of a clipping LCT, where the clipping effect

is modeled as the multiplication of the input beam with a rectangular function.
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APPENDIX B: OUTPUT OF A CASCADE OF CLIPPING

LCTS

105



To analyze the output beam of different combinations of regular and clipping LCTs, we first

establish the clipping additivity property1. Based on this property, the output beam of a

system consisting of a regular LCT with parameter matrix M1 and a clipping LCT of width

w with parameter matrix M2 for the input beam ψ(x) is equal to the output beam of a

clipping LCT with width w and parameter matrix M2M1 as,

TM2
{
TM1
w {ψ(x)}(u1)

}
(u2) = TM2M1

w {ψ(x)}(u2), (B.1)

where M1 =

a1 b1

c1 d1

, M2 =

a2 b2

c2 d2

 and b1 6= 0, b2 6= 0. This property follows from the

definitions of regular and clipping LCTs.

In the proposed basis analysis approach, the generalized phase operator system can be im-

plemented using a cascade of optical components modeled as regular and clipping LCTs.

Next, we establish several lemmas to capture the clipping effect at the output of systems

implemented by clipping LCTs. First, we introduce some additional notation. For ` =

1, 2, . . . , L, we define ML` ,MLML−1 . . .M` =

aL` bL`

cL` dL`

 , and MLL ,ML, where M` =

a` b`

c` d`

. We also define the recursive operator equations,

κn
{
ψ(x); {ML`}`, {w`}`

}
(u) = exp

(
i
( dLn

2bLn
−

dL(n+1)

2bL(n+1)

)
u2

)
×
[
κn−1

{
ψ(x); {ML`}`, {w`}`

}
(u) ∗ sinc(

wnu

2πbLn
)
]
, n = 2, 3, . . . , L

(B.2)

1In this Appendix, we use the material published in Journal of the Optical Society of America A (JOSA
A), 2018 [11].
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where,

κ1

{
ψ(x); {ML`}`, {w`}`

}
(u) = exp

(
i
( dL1

2bL1

− dL2

2bL2

)
u2

)
×
(
TML1{ψ(x)}(u) exp

(
− i dL1

2bL1

u2
)
∗ sinc

( w1u

2πbL1

))
,

(B.3)

and {.}` is a set indexed by ` = 1, 2, ..., L.

1. The next lemma calculates the output of a system formed by a cascade of L clipping

LCTs with b` 6= 0, ` = 1, 2, . . . , L.

Lemma 5. Let ψ(x) be the input beam of L clipping LCTs with M` =

a` b`

c` d`

 , ` =

1, ..., L and b` 6= 0. Then, the output of this cascade system is given by,

ψo(u) =

(
L∏
`=1

w`
2π|bL`|

)

×κL
{
ψ(x); {ML`}`, {w`}`

}
(u), ` = 1, 2, . . . , L,

(B.4)

where TML1{.}(u) is the linear system equivalent to the cascade of L regular LCTs and

κL is defined through the recursion in (B.2) and (B.3).

Proof. The proof of Lemma 5 follows directly from the definition of clipping LCTs and

the clipping additivity property in (B.1).

2. The following lemma calculates the output of a sequence of L chirp multiplications and

scaling systems – equivalently LCTs with zero b parameter – with finite-aperture size

(e.g., useful in modeling lenses).

107



Lemma 6. Let ψ(x) be the signal or light beam input to a cascade of L clipping LCTs

with parameter matrices M` =

a` 0

c` d`

 , ` = 1, . . . , L. Then, the output signal ψo(u)

is given by,

ψo(u) = TMLML−1...M2M1{ψ(x)}(u)

× Π

(
u

min{ w1

|dL1|
, w2

|dL2|
, ..., wL|dL|}

)
.

(B.5)

Proof. From the definition of the clipping LCT with b` = 0, for ` = 1, 2, . . . , L, we

have,

ψo(u) = TML
wL

{
TML−1
wL−1

{
. . .
{
TM1
w1
{ψ(x)}

}}}
(u)

=
√
dLdL−1 . . . d3d2d1 exp

(
i
dLdL−1 . . . d3d2d1

2
u2

× (
cL

dL−1dL−2 . . . d3d2d1

+
cL−1dL

dL−2 . . . d3d2d1

+ . . .

+
c2dLdL−1 . . . d3

d1

+ c1dLdL−1 . . . d3d2)
)

× ψ(dLdL−1 . . . d3d2d1u)

× Π

(
u

min{ w1

|dLdL−1...d3d2d1| ,
w2

|dLdL−1...d3d2| , . . . ,
wL
|dL|
}

)
.

(B.6)

Accordingly, the result of Lemma 6 follows by observing that the terms on the RHS

of (B.6) multiplying the rectangular function are the output of a regular LCT with
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parameter matrix,

MLML−1...M1 = 1
dLdL−1...d2d1

0

cL
dL−1...d1

+ cL−1dL
dL−2...d1

+ . . .+ c1dLdL−1 . . . d2 dL . . . d2d1


,

aL1 bL1

cL1 dL1

 ,
(B.7)

where dL` = dLdL−1 . . . d` for ` 6= L.

3. Similar to the previous cases, the following lemma computes the output a sequence of

clipping LCTs with M` =

a` b`

c` d`

 , ` = 1, . . . , L, however, in this case the system

is formed by interleaving both types of clipping LCTs, such that the LCTs with odd

and even orders have zero and non-zero parameter b, respectively. We remark that

this case is commonly encountered in various applications. For example, a sequence of

lenses in an optical setup act as chirp multiplications (equivalent to LCTs with zero

b parameter), while the free-space propagation between the lenses can be modeled as

Fresnel diffractions (LCTs with non-zero b parameter).

Lemma 7. Let ψ(x) be the input to a sequence of L clipping LCTs with parameter

matrices M` =

a` b`

c` d`

 , ` = 1, . . . , L, where b2`′ 6= 0 and b2`′−1 = 0, `′ = 1, 2, . . . , L
2

,

and L an even integer. Then, the output is given by,

ψo(u) =

 L
2∏

`′=1

w′`′

2π|b′L
2
`′
|


×κL

2

{
ψ(x); {M ′

L
2
`′
}`′ , {w′`′}`′

}
(u), `′ = 1, 2, . . . ,

L

2
,

(B.8)
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where w′`′ = min
{
w2`′ ,

w2`′−1

|d2`′−1|

}
, M ′

L
2
`′
,M ′

L
2

M ′
L
2
−1
. . .M ′

`′ =

a′L2 `′ b′L
2
`′

c′L
2
`′

d′L
2
`′

, and M ′
`′ =

a′`′ b′`′

c′`′ d′`′

,M2`′M2`′−1, `′ = 1, 2, . . . , L
2

, and κL
2

is defined through the recursion in

(B.2) and (B.3).

Proof. To prove (B.8), the cascade of clipping LCTs is viewed as a sequence of two-

LCT blocks with parameter matrices M2`′−1 and M2`′ , wherein b2`′−1 = 0 and b2`′ 6= 0.

Accordingly, the output of each block for arbitrary input ψ(x) is,

TM2`′
w2`′

{
T
M2`′−1
w2`′−1

{ψ(x)}(v)
}

(u) =

∫ √
d2`′−1 e

i
c2`′−1d2`′−1

2
v2

× ψ(d2`′−1v)Π
(d2`′−1v

w2`′−1

)
× hM2`′ (v, u)Π

( v

w2`′

)
dv

=

∫
TM2`′−1{ψ(x)}(v)hM2`′ (v, u)Π

( v

min{w2`′ ,
w2`′−1

|d2`′−1|
}

)
dv

= T
M2`′M2`′−1

min{w2`′ ,
w2`′−1
|d2`′−1|

}
{ψ(x)}(u),

(B.9)

where hM2`′ (v, u) is the kernel of a regular LCT with the parameter matrix M2`′ . Since

the overall b parameter of each two-LCT block is non-zero, the result of Lemma 5 is

invoked to obtain the output of the cascade system.

4. The final combination is similar to the previous case as a cascade of both types of

LCTs but with the difference that the LCTs with the non-zero parameter b are placed

in the odd orders.

Lemma 8. Consider a similar setup as in the statement of Lemma 7, but with b2`′−1 6=
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0 and b2`′ = 0, `′ = 1, 2, . . . , L
2

. The output of the cascade system is given by,

ψo(u) =

 L
2∏

`′=1

w′`′

2π|b′L
2
`′
|

× κL
2

{
ψ(x); {M ′

L
2
`′
}`′ , {w′`′}`′

}
(u)

× Π
(dLu
wL

)
, `′ = 1, 2, . . . ,

L

2
,

(B.10)

where w′1 = w1, w′`′ = min{w2`′−1,
w2`′−2

|d2`′−2|
} for `′ = 2, 3, . . . , L

2
and κL

2
is defined through

the recursion in (B.2) and (B.3).

Proof. Again, we view the cascade system as a sequence of two-LCT blocks with b2`′−1 6= 0

and b2`′ = 0 for `′ = 1, 2, . . . , L
2
. Therefore,

TM2`′
w2`′

{
T
M2`′−1
w2`′−1

{ψ(x)}
}

(u) =
√
d2`′ exp

(
i
c2`′d2`′

2
u2
)

×
∫
ψ(x)hM2`′−1(x, d2`′u)Π

( x

w2`′−1

)
dx× Π

(d2`′u

w2`′

)
= T

M2`′M2`′−1
w2`′−1

{ψ(x)}(u)Π
(d2`′u

w2`′

)
, `′ = 1, 2, . . . ,

L

2
.

(B.11)

This represents the output of a clipping LCT with a non-zero b parameter multiplied by

a rectangular function of width
w2`′
|d2`′ |

. Since the b parameter of M2`′M2`′−1 is non-zero, we

invoke Lemma 5 to obtain the output of the entire system as,

ψo(u) = T
MLML−1

min{wL−1,
wL−2
|dL−2|

}

{
T
ML−2ML−3

min{wL−3,
wL−4
|dL−4|

}

{
...
{
TM2M1
w1

{ψ(x)}
}}}

(u)

× Π
(dLu
wL

)
.

(B.12)

Similar to the previous case, the expression in (B.12) amounts to the output of a sequence

of L
2

LCTs multiplying the rectangular function Π(dLu
wL

).
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Figure C.1: Reprint permission request email for the signal processing article.
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Figure C.2: First response to the reprint permission request email for the signal processing
article.
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Figure C.3: Elsevier reprint permission page.
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Figure C.4: Second response to the reprint permission request email for the signal processing
article.
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Figure C.5: Reprint permission request email for the IEEE papers.
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Figure C.6: Response to the reprint permission request email for the IEEE papers.
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Figure C.7: Reprint permission request email for the OSA articles.
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Figure C.8: Response to the reprint permission request email for the OSA articles.
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