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ABSTRACT

Nowadays, big data systems (e.g., Hadoop and Spark) are being widely adopted by many domains

for offering effective data solutions, such as manufacturing, healthcare, education, and media. A

common problem about big data systems is called anomaly, e.g., a status deviated from normal exe-

cution, which decreases the performance of computation or kills running programs. It is becoming

a necessity to detect anomalies and analyze their causes. An effective and economical approach is

to analyze system logs. Big data systems produce numerous unstructured logs that contain buried

valuable information. However manually detecting anomalies from system logs is a tedious and

daunting task.

This dissertation proposes four approaches that can accurately and automatically analyze anoma-

lies from big data system logs without extra monitoring overhead. Moreover, to detect abnormal

tasks in Spark logs and analyze root causes, we design a utility to conduct fault injection and col-

lect logs from multiple compute nodes. (1) Our first method is a statistical-based approach that

can locate those abnormal tasks and calculate the weights of factors for analyzing the root causes.

In the experiment, four potential root causes are considered, i.e., CPU, memory, network, and

disk I/O. The experimental results show that the proposed approach is accurate in detecting ab-

normal tasks as well as finding the root causes. (2) To give a more reasonable probability result

and avoid ad-hoc factor weights calculating, we propose a neural network approach to analyze root

causes of abnormal tasks. We leverage General Regression Neural Network (GRNN) to identify

root causes for abnormal tasks. The likelihood of reported root causes is presented to users ac-

cording to the weighted factors by GRNN. (3) To further improve anomaly detection by avoiding

feature extraction, we propose a novel approach by leveraging Convolutional Neural Networks

(CNN). Our proposed model can automatically learn event relationships in system logs and detect

anomaly with high accuracy. Our deep neural network consists of logkey2vec embeddings,
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three 1D convolutional layers, a dropout layer, and max pooling. According to our experiment, our

CNN-based approach has better accuracy compared to other approaches using Long Short-Term

Memory (LSTM) and Multilayer Perceptron (MLP) on detecting anomaly in Hadoop Distributed

File System (HDFS) logs. (4) To analyze system logs more accurately, we extend our CNN-based

approach with two attention schemes to detect anomalies in system logs. The proposed two at-

tention schemes focus on different features from CNN’s output. We evaluate our approaches with

several benchmarks, and the attention-based CNN model shows the best performance among all

state-of-the-art methods.
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CHAPTER 1: INTRODUCTION

Big data system plays an increasingly important role along with the rapid growth of massive data

size. Several parallel computing frameworks have been widely used in real-world applications

such as Dryad [31], Hadoop [1], and Spark [2]. When these big data systems process numerous

data in parallel on distributed file systems [65, 23, 11, 59], they also produce massive logs. In

order to scrutinize problems in big data systems and improve their performance, these logs can

be leveraged to mine crucial information for performance tuning. Log-based anomaly detection is

one of common approaches to improve security and performance.

When anomalies happen, programs could be terminated or impacted, and the performance of com-

putation will be decreased. System logs will record all execution histories of programs. However,

analyzing these logs is very challenging. It is very hard to analyze their root causes by only using

system logs, because the logs are numerous and various. For example, Hadoop and Spark applica-

tions often demand long execution duration, thus huge size of logs will be generated [55, 56, 47].

Furthermore, each system may employ its own logging framework such as log4j [22] and self4j [3];

hence log formats could be diverse. Human-based manual detection methods are time-consuming

with low accuracy. To identify anomalies from different logging frameworks, it requires that users

are very familiar with the whole systems. Moreover, some unexpected events happening during

the program execution might cause big performance degradation, or failures, even some worst

scenarios such as programs keep quit, and stragglers happened without error message. Those sce-

narios are hard to be detected manually, even for system experts. Therefore, to effectively detect

anomalies from such huge and unstructured logs is a big challenge for system operators.

In this dissertation, we propose four approaches that can accurately and automatically analyze

anomalies from big data system logs. Moreover, to detect abnormal tasks in Spark logs and analyze
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root causes, we design a utility to conduct fault injection and collect logs from multiple compute

nodes.

• Our first method is a statistical approach that can locate those abnormal tasks and calculate

the weights of factors for analyzing root causes. In the experiment, four potential root causes

are considered, i.e., CPU, memory, network, and disk I/O. The experimental results show that

the proposed approach is accurate in detecting abnormal tasks as well as finding root causes.

• To give a more reasonable probability result and avoid ad-hoc factor weight calculation, we

propose a neural network approach to analyze root causes of abnormal tasks. We leverage

General Regression Neural Network (GRNN) to identify root causes for abnormal tasks.

• To further improve anomaly detection by avoiding feature extraction, we propose a novel

approach by leveraging Convolutional Neural Networks (CNN). Our proposed model can

automatically learn event relationships in system logs and detect anomalies with high accu-

racy. Our deep neural network consists of logkey2vec embeddings, three 1D convolutional

layers, a dropout layer, and max pooling. According to our experiment, our CNN-based ap-

proach has better accuracy compared to other approaches using Long Short-Term Memory

(LSTM) and Multilayer Perceptron (MLP) on detecting anomalies in Hadoop Distributed

File System (HDFS) logs.

• To analyze system logs more accurately, we extend our CNN-based approach with two at-

tention schemes to detect anomalies in system logs. The proposed two attention schemes

focus on different features from CNN’s output. We evaluate our approaches with several

benchmarks, the attention-based CNN model shows the best performance among all state-

of-the-art methods. Additionally, we use an internal attention scheme to create adversarial

examples for evaluating the robustness of neural network approaches for log analysis.

2



1.1 Big Data Systems and Logs
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Figure 1.1: Spark framework and log files

Apache Hadoop [1] is a popular big data computing platform by leveraging MapReduce computing

framework that splits input data sets into independent chunks in parallel. The framework sorts the

outputs of maps, which are then fed to reduce tasks. The framework takes care of scheduling tasks,

monitoring them and re-executes the failed tasks. Typically, both input and output of jobs are

stored on a file system called Hadoop distributed file system (HDFS) [9], which is a distributed,

scalable, and portable file-system written in Java for the Hadoop framework. Hadoop ecosystem

consists of a few components such as HDFS, PIG, ZOOKEEPER, and YARN.

Beside of the above, Apache Spark [2] is a fast and general engine for large-scale data processing.

In order to achieve scalability and fault tolerance, Spark introduces resilient distributed dataset

(RDD), which represents a read-only collection of objects partitioned across a set of machines that

can be rebuilt if a partition is lost. As shown in Figure 1.1, Spark cluster consists of one master

node and several slave nodes, named as workers, which may contain one or more executors. When
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a Spark application is submitted, the master will request computing resources from the resource

manager based on the requirement of the application. When the resource is ready, Spark scheduler

distributes tasks to all executors to run in parallel. During this process, the master node will moni-

tor the status of executors and collect results from worker nodes. When an application is submitted

to Spark, the cluster manager will allocate compute resources according to the requirement of the

application, then Spark scheduler distributes tasks to executors, and tasks will be executed in par-

allel. During this process, Spark driver node will monitor the status of executors and collect tasks

results from worker nodes. In order to parallelize a job, Spark scheduler divides an application

into a series of stages based on data dependence [66]. The tasks within a stage do not have data

dependence and usually execute the same function.

Spark and Hadoop both use “log4j”, a Java logging framework, as its logging framework. Spark

users can customize “log4j” by changing configuration parameters, such as log level, log pattern,

and log direction. In our experiment, we use the default configurations in “log4j”. As shown in Fig-

ure 1.2, each line of Spark execution log contains four types of information: timestamp with ISO

format, logging level (INFO, WARNING, or ERROR), related class (which class prints out this

message) and message content. A message content contains two main kinds of information: con-

stant keywords (Finished task in stage TID in ms on), and variables (1.0 1.0

47 14075..).

During the execution of a Spark application, JVM monitors memory usage and outputs its status

to GC logs when garbage collection is invoked. GC logs report two kinds of memory usage: heap

space and young generation space, where young generation space is a part of heap memory space

to store new objects. Figure 1.3 shows an example of Spark JVM GC log, where “Allocation

Failure” invokes this GC operation, and “PSYoungGen” shows the usage of young generation

memory space. In “95744K->9080K(111616K)”, the first numeric is the young space before this

GC happens, the second one is the young space after this GC, and the last one is the total young
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memory space. Similarly, “95744K->9088K(367104K)” illustrates heap memory instead of young

generation space.

17/02/22 21:04:02.259 INFO
TaskSetManager: Starting task 12.0 in stage 1.0 (TID 58, 10.190.128.101, partition 12, ANY, 5900 bytes)
17/02/22 21:04:02.259 INFO
CoarseGrainedSchedulerBackend$DriverEndpoint: Launching task 58 on executor id: 1 hostname: 10.190.128.101.
17/02/22 21:04:02.276 INFO
TaskSetManager: Finished task 1.0 in stage 1.0 (TID 47) in 14075 ms on 10.190.128.101 (1/384)

Figure 1.2: An example of Spark execution log.

GC (Allocation Failure)
PSYoungGen: 95744K->9080K(111616K)
95744K->9088K(367104K), 0.0087250 secs] [Times: user=0.03, sys=0.01, real=0.01 secs]

Figure 1.3: An example of Spark garbage collection (GC) log.

1.2 Anomaly Tasks

Anomaly could be identified as an abnormal execution of a program. It could be a task straggler,

error, and even some programming warning. For root cause analysis, we only consider four kinds

of resource failures, i.e., CUP, DISK, IO, and Networks.

A log entry (logline) is considered as anomaly if it contains abnormal key words (e.g. “error”,

“warning”) or shows significant unexpected order in context, such as a Spark executor restarts re-

peatedly before it stops working. Classical anomaly detection has been studied for many years.

Various algorithms and methods have been developed, such as basic keyword searching, regula-

tion expression matching, traditional statistical and machine learning approaches. It may incor-

rectly identify anomalies and report false positives when searching anomalies with key words, or
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matching with regular expression.

Hence, some techniques such as Support Vector Machine (SVM) and Principal Component Anal-

ysis (PCA) are often used to reduce the complexity of feature set to be analyzed and improve

accuracy. However, the hidden relationships in extracted feature set are still very difficult to be an-

alyzed by these aforementioned approaches, which often require more sophisticated approaches.

However, those features may be produced by ad-hoc and it would mislead the approach to learn

knowledge from the wrong rules. Anomaly logs are not only output with critical levels or some

keywords (error, warning) but also be printed out with different execution paths without special

keyword.

In recent years, deep learning approaches are leveraged in the log analysis domain to improve

automation and accuracy. For instance, Long Short Term Memory (LSTM) and Recurrent Neural

Network (RNN) are used by [17, 10] to detect anomalies with high accuracy to avoid ad-hoc feature

extraction. Within all deep learning methods, Convolutional Neural Network (CNNs) could be

the most famous and widely used approach, which has obtained great achievements in computer

vision. Due to convolution layers, the CNN-based approach can learn the hidden relationships with

higher accuracy than other deep learning methods.

1.3 Contributions

The main contributions of this dissertation are our four anomaly detection approaches. This disser-

tation mainly focuses on analyzing logs of big data systems, but the techniques can also be applied

to other systems.

• Our offline approaches can accurately locate where and when abnormal tasks happen based

on analyzing only Spark logs. Those approaches detect root causes of abnormal tasks ac-
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cording to Spark logs without any monitoring data, thus it does not have any monitoring

overhead.

• Our offline approaches provides an easy way for users to deeply understand Spark logs and

tune Spark performance, and it gives a reasonable probability results for root cause analysis.

• We propose a CNN-based approach for anomaly detection of HDFS logs.

• We propose two attention schemes to improve the accuracy of log-based anomaly detection

of HDFS logs.

• A new embedding method called logkey2vec is designed to learn how to map logkeys to

vectors.

• We propose an efficient attention-based optimization method to manipulate discrete text

structure according to its embedding representation.

• We investigate the robustness of a classifier trained with adversarial examples by studying

its effectiveness to attack the networks.

1.4 Organization

This dissertation describes four approaches that can accurately analyze anomalies from big data

system logs without extra monitoring overhead. Chapter 2 surveys the related work about anomaly

detection for logs. Chapter 3 illustrates the statistical methodology to detect abnormal tasks in

Spark logs and analyze root causes. Chapter 4 proposes a GRNN neural network based approach

for detecting abnormal tasks and analyze root causes from Spark logs. Chapter 5 presents CNN

based anomalies detection from HDFS logs. Chapter 6 applies two attention schemes on CNN

based approach for log analysis from HDFS logs. Chapter 7 proposes a white-box adversarial
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attack on CNN for anomalies detection. Finally, Chapter 8 summarizes this dissertation and future

work.

8



CHAPTER 2: LITERATURE REVIEW

In this chapter, we first review related work of log processing, and then classify the related work

of log-based anomaly detection into three categories: statistical approaches, traditional machine

learning approaches, and neural network-based approaches.

2.1 Log Processing Approaches

17/02/22 21:04:02.259 INFO TaskSetManager: Starting task 12.0 in stage 1.0 (TID 58, 10.190.128.101, partition 12, ANY, 5900 bytes)
.....
17/02/22 21:04:02.276 INFO TaskSetManager: Finished task 1.0 in stage 1.0 (TID 47) in 14075 ms on 10.190.128.101 (1/384)

Figure 2.1: Spark system log example

Big data system logs are unstructured data printed in time sequence. Normally, each log entry (line)

can be divided into two different parts: constant and variable. The constant part is the messages

printed directly by statements in the source code. Log keys can be extracted from these constant

parts, where log keys are the common constant messages in all similar log entries. For example,

as shown in Figure 2.1, the log key is “Starting task in stage TID partition bytes” in the log entry

“Starting task 12.0 in stage 1.0 (TID 58, 10.190.128.101, partition 12, ANY, 5900 bytes)”. The

other part is remaining after removing constant parts in log entries, which may contain variable

keywords such as “12.0 1.0 58 10.190.128.101, 12, ANY, 5900”.

Detecting anomalies from system logs (such as Spark logs) requires log analysis, i.e., analyzing

root causes [44] using effective methods. Usually, log analysis consists of four main phases:

1. Parse unstructured raw logs into structure data by log parser techniques. There are two

kinds of log parsing approaches [25]: heuristic and clustering. The clustering methods first
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conduct clustering based on distances result of logs, then create a log template from each

cluster. The heuristic methods count every word’s appearance in these log entries and select

frequently appeared words to be log events according to the predefined rules.

2. Extract log related features from parsed data. Different approaches may use different fea-

ture extraction methods (such as rule-based approach or execution path approach). There

are several common window-based approaches for extracting different features such as ses-

sion window, sliding window, and fixed window. Specifically, a session window is used for

grouping log entries with the same session ID. A sliding window is used to slide forward in

a certain step in the data and extract features with some overlaps. A fixed size of window

can also be used to extract features.

3. Detect anomalies with extracted features, which are introduced in details in Subsection 2.3.

4. Fix problems based on detected anomalies. There are many different ways to help fix prob-

lems based on detected anomalies, such as root cause analysis, anomalies visualization. For

example, [61] leverages a decision tree to visualize the anomalies, and [44] uses linear

regression to compute the probability of abnormal tasks.

2.2 Root Cause Categories

There are several categories of the root causes for the abnormal performances. Ananthanarayanan

etal. [6] identify three categories of root causes for Map-Reduce outliers: the key role cause is ma-

chine characteristics (resource problems), the other two causes are network and data skew problem.

Ibidunmoye et al. [30] depict that four root causes may cause bottlenecks, which are system re-

source, workload size, platform problems, and application (buggy codes). Garbageman et al. [20]

analyzes around 20-day cloud center data and summarizes that the most common root cause in
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cloud center of abnormal occurrence is server resource utilization, and data skew problems only

take 3% of total root causes. According to the above studies on a real-world experiment, the pri-

mary root causes of abnormal tasks are machine resources, which include CPU, memory, network,

and disk I/O. Moreover, the mentioned resource root causes mainly impact the performance of

CPS computation layers. Therefore, in our work, we consider only the four main root causes and

ignore data skew and ineffective code problems.

2.3 Anomaly Detection Approaches

.

Statistical and machine learning techniques are promising approaches in the root cause analysis and

anomaly detection. in the parallel computing area, solving the performance degradation problem

caused by abnormal executions is one of the critical tasks in log analysis. Basically, it is used

for detecting target patterns that differ from normal execution behaviors. Existing approaches in

anomaly detection mainly use three kinds of techniques: statistical method, traditional machine

learning, and deep learning approach. The first two are considered to be traditional log analysis

approaches.

2.3.1 Statistical Log Analysis Approaches

As one kind of common approaches for log analysis, statistical methods can analyze logs without

training or learning stages, instead, they use rule-based and static analysis methods for classifi-

cation such as Principal Component Analysis (PCA) and Factor Analysis (FA). Tan et al. [58]

introduce a pure off-line state machine tool called SALSA, which simulates data flows and control

flows in big data systems with a statistical method, and leverages Hadoop’s historical execution
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logs. Similarly, Aguilera et al. [5] uses two kinds of statistical methods on distributed historical

logs and monitoring data to discover causal paths (workflow). Moreover, Xu et al. [61] extract

two kinds of log variable vectors by using a syntax tree (AST) to parse the system source code,

then analyze extracted patterns from the vectors by leveraging PCA. Safyallah et al. [53] lever-

age a log-based approach to analyze frequent and common sequence execution traces in order to

detect anomalies. Fu et al. [18] use a rule-based methods to identify the log keys and detect

anomalies in distributed system logs. He et al. [25] propose a guideline for log-based anomaly de-

tection by evaluating six kinds of supervised and unsupervised approaches. A log-based statistical

approach for detecting abnormal tasks and analyzing root causes from Spark logs is proposed in

our prior work [44]. Also, statistical approaches have online detection strategy, which is invoked

during the executions of applications. For example, both Spark and Hadoop provide online “spec-

ulation” [63], which is a built-in component for detecting stragglers statistically. Although it can

detect stragglers during runtime, it does not offer the root causes. In addition, the speculation is

often inaccurate, i.e., it may raise too many false alarms [32]. Chen et al. [12] propose a

tool called Pinpoint that monitors the execution and uses log traces to identify the fault modules

in J2EE applications via standard data mining approaches. A stream-based mining algorithm for

online anomalies prediction is presented by Gu et al. [21]. Ananthanarayanan et al. [6] design

a task monitoring tool called Manrti, which can cut outliers and restart tasks in real time accord-

ing to its monitoring strategy. Chen et al. [13] propose a self-adaptive tool called SAMR, which

adds weights for calculating each task duration according to historical data analysis. Aguilera et

al. [5] propose two statistical methods to discover causal paths in distributed systems by analyzing

historical log and monitoring data from the traces of applications. The most closely related work

to our approach is BigRoots [67], which detects stragglers by Spark speculation and analyzes the

root causes by extracted features. It leverages experience rule to extract features for each task from

application logs and monitoring data. However, the threshold in Spark speculation is not proper

to detect abnormal tasks. In addition, BigRoots considers only the features for each individual
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task, which can not capture the status change of the cluster, thus such a rule-based method is very

limited.

2.3.2 Classical Machine Learning Approaches

In order to avoid the ad-hoc feature extraction in statistical methods for anomaly detection from

logs, machine learning approaches have been investigated. Support Vector Machine (SVM) and

Hidden Markov Model (HMM) are common and effective supervised machine learning approaches

for anomaly detection and failure prediction. Fulp et al. [19] parse system logs by using a sliding

window and use SVM to predict anomaly. Liang et al. [41] leverage SVM, RIPPER (a rule-based

classifier), and a customized Nearest Neighbor to build up to three classifiers for failure prediction.

Lou et al. [43] apply a Bayesian learning approach on system logs to extract a constructed graph.

Although classical machine learning methods could avoid ad-hoc feature extraction with better

performance, they are more time-consuming when handling large training sets. Xu et al. [61] use

an automatic log parser to parse the source code and combine PCA to detect an anomaly, which is

based on the abstract syntax tree (AST) to analyze source code and uses machine learning to train

data. Qi et al. [51] leverage Classification and Regression Tree (CART) to analyze straggler root

causes by using Spark event logs and monitoring data (hardware metrics such as CPU status, disk

read/write rate and network send/receive rate) which collected by synchronous sampling tool.

Some machine learning approaches are also leveraged in predicting system faults using logs and

monitoring data, which are similar to the root cause analysis problem. Fulpet al. [19] leverage a

sliding window to parse system logs and predict failures using SVM. Yadwadkaret al. [62] pro-

pose an offline approach that works with resource usage data collected from the monitoring tool

Ganglia [49]. It leverages Hidden Markov Models (HMM), which is a linear machine learning

approach. Moreover, there are some off-line approaches that analyze both log files and monitoring
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data to identify abnormal events.

2.3.3 Deep Learning Approaches

Deep learning [15] approaches have achieved great success in various fields especially computer

vision. Basically, In a regular fully connected network (FC), all neurons in the current layer are in

fully connected with those in the previous layer, and back-propagation [52] is used for computing

the error gradient. Nevertheless, the FC is not suitable for calculating high-dimension datasets

such as images. To solve this problem, CNN can capture local semantic relationships instead of

global information. Log analysis also benefits from deep neural network models. As a special

recurrent neural network (RNN), Long Short Term Memory LSTM is widely used in the NLP

domain. Recently, researchers have begun to leverage LSTM to analyze logs. Brown et al. [10]

present an unsupervised LSTM and attention-based LSTM to discover hidden relationships in

system logs. Du et al. [17] propose an LSTM-based approach named DeepLog, which uses

LSTM as its training model to detect anomalies among log execution paths. In previous work [46],

we detect abnormal tasks and analyze root causes from Spark logs by using a General Regression

Neural Network (GRNN), which is a simple and fast neural network to avoid the ad-hoc weight

calculation for classifications. To Compare with our statistical approach [44], our GRNN-based

approach achieves better accuracy and offers reasonable portability results.

CNN has been widely employed in computer vision and derives many famous networks such as

AlexNet [37], GoogLeNet [57], and many others. Recently, Deep Resnet [24] is proposed for

image classification and achieves comparable results with manually labeled recognition perfor-

mance. In NLP domain, Kim et al. [35] present an effective CNN model that can directly classify

distributed embedding of words. Jason et al. [34] apply a CNN model on discrete embeddings with

good performance.
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Inspired by the human recognition system, attention mechanism is leveraged to continually im-

prove performance of DNN by focusing on relevant features. When humans try to recognize

objects, they usually first focus on partial information (relevant features), then entire events could

be recognized and processed. The attention model is first proposed in NLP to cope with tasks and

visual captioning. In the NLP area, attention-based DNN could pay attention to relevant words

or sentences instead of using whole feature sets. For example, Bahdanau et al. [7] propose soft

attention aiming at automatically capturing soft alignments between source words and target words

in machine translation.

In computer vision, attention could extract proposal regions in each picture by calculating the

weighted average of each feature. Li et al. [40] propose an end-to-end video LSTM that leverages

the soft attention for video classification. Long et al. [42] propose an attention mechanism named

Keyless Attention with better effectiveness and efficiency. In log analysis, Das et al. [14] propose

an unsupervised attention-based LSTM approach for anomaly detection on network log.
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CHAPTER 3: ABNORMAL DETECTION AND ROOT CAUSE

ANALYSIS FOR SPARK

3.1 Introduction

With rapid growth of data size and diversification of workload types, big data computing platforms

increasingly play more important roles in solving real-world problems [27, 26]. Several widely

used frameworks include Hadoop [1], Spark [2], Storm and Flink. Among them, Apache Spark

might be the popular one due to its fast and general programming model for large-scale data pro-

cessing, where Resilient Distributed Dataset (RDD) [64] are used to hold input and intermediate

data generated during the computation stages. RDDs are divided into different blocks, called par-

titions, with almost equal size among different compute nodes. Apache Spark uses pipeline to

distribute various operations that work on a single partition of RDD. In order to serialize the exe-

cution of tasks, Spark introduces stage. All tasks in the same stage execute the same operation in

parallel.

Compute nodes may suffer from severe interferences from other software (such as operating sys-

tems or other processes) or hardware, which leads to abnormal problems. For instance, a task

could become an abnormal task or straggler when encountering a significant delay in comparison

with other tasks in the same stage. In Spark, there is a mechanism named speculation to detect this

scenario, where slow tasks will be re-submitted. Spark performs speculative execution of tasks till

a specified fraction (defined by spark.speculation.quantile, which is 75% by default)

of tasks must be completed, then it checks whether or not the running tasks run slower than the me-

dian of all successfully completed tasks in a stage. A task is a straggler if its current execution time

is slower than the median by a given ratio (which is defined by speculation.multiplier,
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1.5x by default). This chapter proposes a new approach compared with Spark Speculation. In our

method, we consider whole Spark stages and abnormal tasks happening in all life span could be

detected. In addition, Spark’s report could be inaccurate because Spark uses only fixed amount of

finished task durations to speculate the unfinished tasks.

When abnormal tasks (including stragglers) happen, the performance of Spark applications could

be degraded. However, it is very difficult for users to detect and analyze the root causes. First,

Spark log files are tedious and difficult to read, and there is no straight-forward way to tell whether

abnormal tasks happen or not, even though stragglers can be reported when speculation is enabled.

Second, when an abnormal scenario happens, there is not enough information about the error

in log files so that it is difficult for users to see the concreted reasons that lead to the straggler

problem. Third, even online tools can monitor the usage and status of system resource such as

CPU, memory, disk, and network, these tools do not directly cooperate with Spark, and users still

need many efforts to scrutinize root causes based on their reporting. In addition, these monitoring

tools usually carry overhead and may slow down Spark’s performance. Abnormal tasks could be

caused by many reasons, where most of them are resource contentions [20] by CPU, memory, disk,

and network. Our motivation is to help users find the root causes of abnormal tasks by analyzing

only Spark logs.

This chapter proposes an off-line approach to detect abnormal tasks and analyze the root causes [44].

Our method is based on a statistical spatial-temporal analysis for Spark logs, which consists of

Spark execution logs and Spark garbage collection logs. There are four steps to detect the root

causes. (1) We parse Spark log files according to keywords, such as task duration, data location,

timestamp, task finish time, and generate a structured log data file. This step will eliminate all

irrelevant messages and values. (2) We extract the related feature set directly from structured log

files based on our experimental study. (3) We detect abnormal tasks from the log data by analyzing

all relevant features. Specifically, we calculate the mean and standard deviation of all tasks in each
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stage, then determine abnormal tasks for each stage. (4) We generate factor combination criteria

for each potential root cause based on analyzing their weighted factor in training datasets. Thus,

our approach can effectively determine the proper root causes for given abnormal tasks.

3.2 Methodology

Spark log does not show abnormal tasks directly, thus users cannot locate abnormal tasks by simply

searching keywords. This motivates us to design an automatic approach to help users detect the

abnormals and analyze the root causes.

3.2.1 Approach Overview

https://spark.apache.org/docs/0.9.1/h
ardware-provisioning.html

Abnormal
Location
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Figure 3.1: Workflow of abnormal detection and root cause analysis.

The workflow of our approach for abnormal detection and root cause analysis is shown in Figure

4.6.

1. Log preprocessing: We collect all Spark logs, including execution logs and Spark GC logs,

18



from the driver node and all worker nodes. Then, we eliminate noisy data and reformat logs

into more structured data.

2. Feature extraction: Based on Spark scheduling and potential abnormal task happening con-

ditions, we screen execution-related, memory-related, CPU-related data to generate two ma-

trices: execution log matrix and GC matrix. The details are illustrated in Section 3.2.2.

3. Abnormal detection: We implement a statistical analysis approach based on the analysis of

four kinds of features, including task duration, timestamps, GC time, and other task-related

features, to determine the degree of abnormal tasks and locate their happening. The details

are discussed in Section 3.2.3.

4. Root cause detection: Instead of qualitatively deciding the exact root causes that lead to the

abnormals, we quantitatively measure the degree of abnormals by a weighted combination

of certain specific cause-related factors. The details are sh in Section 3.2.5.

3.2.2 Feature Execution

According to Spark scheduling strategy, we define and classify all features into three categories,

namely, execution-related, memory-related, and CPU-related, which are shown in Table 4.4. For

example, the execution-related features can be extracted from Spark execution logs, including task

ID, task duration, task finished time, task started time, stage ID, and job’s duration. Spark GC log

records all JVM memory usage, from which we can extract memory-related features such as heap

usage, young space usage, as well as features related system CPU usage such as system time and

user time. These feature sets extracted from Spark execution log and GC log are shown in Table

4.4.
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3.2.3 Abnormal Detection
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Figure 3.2: Abnormal detection under CPU interference in the experiment of WordCount: (a) Ab-
normal detection result in Stage-1. (b) Abnormal detection result in Stage-2. (c) Spark execution
log features for abnormal detection in the whole execution. (d) Spark GC log features for abnormal
detection in the whole execution.

Adopting Spark speculation may bring false negatives in the process of abnormal detection. Hence,

we provide a more robust approach to locate where stragglers happen and how long they take. We

will also consider about special scenarios, for example, different stages are executed in sequence

or in parallel.

One basic justification of abnormal tasks is that the running time of abnormal tasks is relatively

longer than the normal ones. [20] uses “mean” and “median” to decide the threshold. However,

in order to seek a more reasonable anomaly detection strategy, we consider not only the mean
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or median task running time, but also the distribution of the whole data, namely the standard

deviation. In this way, we can get a macro-awareness on the task’s execution time, and then based

on the distribution of data, a more reasonable threshold can be set to differentiate abnormals from

the normal ones. The abnormal detection mainly includes the following two issues.

1. Comparing task running time on different nodes

We compare task execution time on different nodes in the same stage. Let T taski,j,k denote the

execution time of task k in stage i on node j. Let avg stagei denote the average execution time of

all tasks, which belong to different nodes but in the same stage i.

avg stagei =
1

J∑
j=1

Kj

(
J∑
j=1

Kj∑
k=1

T taski,j,k) (3.1)

where J and Kj are the total number of nodes and the number of tasks in node j, respectively.

Similarly, the standard deviation of task execution in stage j of all nodes is denoted as std stagei.

Abnormal tasks are determined by the following conditions:

GBKsongtaskk


abnormal T taskk > avg stagei + k ∗ std stagei

normal otherwise
(3.2)

where k is a factor that controls the threshold for abnormal detection. In this work, we set it to 1.5

by default for fair compare with Spark provided speculator.

Figure 6.3 (c) shows abnormal detection process in Wordcount under CPU interference. Figure

6.3 (a) and (b) are two stages inside the whole application. Moreover, inside each of the stage,
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purple-dot line is the abnormal threshold determined by Eq. (3.1), and the black dot-line indicates

the threshold calculated by Spark speculation. For all tasks within a certain stage, the execution

time above that threshold are detected as abnormals; otherwise, they are normals. Figure 6.3 (d)

displays memory occupation along the execution of its corresponding working stages.

2. Locating abnormal happening

After all tasks are properly classified into “normal” and “abnormal”, the whole time line are labeled

as a vector with binary number (e.g., 0 or 1, which denote normal and abnormal, respectively). To

smooth the outliers (for example, 1 appears in many continuous 0) inside each vector, which could

be an abrupt change but not consistent abnormal base, we then empirically set a sliding window

with size of 5 to flit this vector. If the sum of numbers inside the window is larger than 2, the

number in the center of the window will be set to 1, otherwise 0.

The next step is to locate the start and end time of this abnormal task. Note that, as Spark logs

record the task finishing time but not the start time, so we locate the abnormal task’s start time

as the recorded task finishing time minus its execution time. Moreover, for abnormal detection in

each stage, the tasks are classified into two sets. One is for the initial tasks whose start time stamps

are the begin of each stage, as these tasks often have more overhead (such as loading code and Java

jar packets), and the execution time usually operates much longer than its followings. Another set

consists of the rest tasks. Our experiments show that this classification inside each stage can lead

to a much accurate abnormal threshold. In this way, our abnormal detection method can not only

detect whether abnormals happen, but also locate where and when they happen.
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Table 3.1: Extracted Spark Feature Sets

Related Name Meaning
Time stamp Event happening time
Task duration A task’s running duration time
Stage ID The ID number of each stage
Host ID The Node ID number
Executor ID The ID number of each executor running in per-worker
Task ID The unique ID number of each task
Job duration A job duration(an application has many jobs)
Stage execution time A stage running duration time
Application duration An application running duration time (after submitted)
Data require location The location of task required data
Heap space Total Heap memory usage
Before GC Young space Young space memory usage before clearing Young space
After Young GC space Young space memory usage after clearing Young space
Before Heap GC space Total Heap memory usage before GC
After Heap GC space Total Heap memory usage after GC
Full GC time Full GC execution time
GC time Minor GC execution time
GC category The time spend on one full GC operation
user time CPU time spent outside kernel execution
sys time CPU time spent insides kernel execution
real time Total elapsed time of the GC operation

3.2.4 Factors Used for Root Cause Analysis

After abnormals are located, we analyze their root causes inside that certain area. For different root

causes, we use different features in Spark log matrix and GC matrix to determine criteria to decide

the root causes. Specifically, for each root cause analysis, we use the combination of weighted

factors to define the degree of probability of each root cause. In all normal cases the factor should

equal to 1, and if an abnormal tends to any root cause, the factor will become much bigger than 1.

The factors are denoted as a,b,c,d,e,f ,g for weight calculating. All of the indexes which are used

in our factors’ definition are listed here: j,J ,i,I ,k,K,n,N , inside which, j indicates the jth node,

J is set of nodes; i is the index of stage, I is a set of stages; k denotes a task, K is a task set; n
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stands for a GC record, N is GC records set. All factors used to determine root causes are listed as

below.

1. Degree of Abnormal Ratio (DAR)
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Figure 3.3: CPU interference injected after 20s application was submitted, and continuously im-
pacts 80s

Eq. (3.3) indicates the degree of abnormal ratio in a certain stage.

a =
kj′

1
J−1

((
J∑
j=1

kj)−kj′)
(3.3)

where kj indicates the number of tasks in node j, and J is the total number of nodes in the cluster.

Here, we assume that node j′ is abnormal.

2. Degree of Abnormal Duration (DAD)

The average task running time should also be considered, as the abnormal nodes often record
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longer task running time.

b =
avg nodej′

1
J−1

((
J∑
j=1

avg nodej)−avg nodej′)
(3.4)

where avg nodej is defined as:

avg nodej =
1

Kj

(

Kj∑
k=1

T taski,j,k) (3.5)

3. Degree of CPU Occupation (DCO)

This factor c shown in Eq. (3.6) is used for expressing the ratio between the wall-clock time

and the real CPU time. In the normal multiple-core environment, “realTime” is often less than

“sysTime+UserTime”, because GC is usually invoked in multi-threading way. However, if the

“realTime” is bigger than “sysTime+UserTime”, it may indicate that the system is very busy. We

choose a Max value across nodes as the final factor.

c = max
j∈J

(avg
j∈J

(
realT imei,j

sysT imei,j + userT imei,j
)) (3.6)

4. Memory Changing Rate (MCR)

Eq. (3.7) indicates the gradient of GC curve. Under CPU, memory, and Disk interference, the

interfered node’s GC curve will change slower than the normal nodes’ GC curve, as shown in

Figure 3.4. k stable and k end are the gradients of the connected lines between start position

(the corresponding memory usage at abnormal starting time) to the stable memory usage position

and the start position to the abnormal memory end position (both the abnormal start and end time
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are obtained in the previous section) respectively. The reason we conduct this equation is that the

interfered node uses less memory than normal nodes under interference. In this way, we use the

maximum value of k stable in the whole cluster (k stable of normal node) to divide the minimums

k end in the whole cluster (interfered node) to get the value of this factor.

d =
max
j∈J

(k stablej)

min
j′∈J

(k end j′ )
(3.7)
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Figure 3.4: CPU interference is injected after WordCount has run for 30s, and continuously impacts
120s.

5. Degree of Task Delay (DTD)

For network interference, the task execution time will be affected when data transmission is de-

layed. Moreover, a Spark node often accesses data from other nodes, which leads to network

interference propagation. Based on these facts, if network interference happens inside the cluster,

the whole nodes will be affected, as shown in Figure 3.5, which is the location of our detected
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interference. Let a be a factor that describes the degree of interference.

e = exp(J ∗
J∏
j=1

abn probj) (3.8)

Where abn probj indicates the ratio of abnormal that we detect for each node j inside that area.

The reason that we use the product of abnormal ratio other than the sum of them is that only

when all nodes are with a portion of abnormal should we identify them with a potential of network

interference, or if sum is used, we cannot detect this joint probability. Meanwhile, the exponential

is to make sure that the final factor e is no less than 1. In this way, the phenomenon of error

propagation will be detected and quantified, which can only be shown in the cluster with network

interference injection.

s

ms

Figure 3.5: Network interference is injected after WordCount has been executed for 30s, and
continuously impacts for 160s.

6. Degree of Memory Changing (DMC)

As network bandwidth is limited or the network speed slows down, when one node get affected by

27



that interference, the task will wait for their data transformation from other nodes. Hence, CPU

will wait, and data transfer rate becomes low. As shown in Figure 3.6.

f =
max
j∈J
{max
n∈N

[e−|mj,n| ∗ (xj,n − xj,n−1)]}

min
j∈J
{max
n∈N

[e−|mj,n| ∗ (xj,n − xj,n−1)]}

where,mj,n =
yj,n − yj,n−1

xj,n − xj,n−1

(3.9)

where mj,n indicates the gradient of memory changing in nth task on node j. Eq. (3.9) is to find

the longest horizontal line that presents the conditions under which tasks’ progress become tardy (,

CPU is relatively idle and memory is kept the same). We first calculate the max value of gradient

for each GC point, denoted as m. To identify the longest horizontal line in each node, we make

a trade-off between its gradient and the corresponding horizontal length. To determine a relative

value that presents the degree of abnormal out of normal, we finally compare the max and min

among nodes with their max “horizontal factor” (e−|mj,n| ∗ (xj,n − xj,n)), where e is to ensure that

the whole factor of b not less than 1).
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Figure 3.6: Network interference is injected after WordCount has been executed for 30s, and
continuously impacts for 120s.
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7. Degree of Loading Delay (DLD)

Considering that the initial task at the beginning of each stage always have a higher overhead to

load data blocks compared to the rest tasks. As shown in Figure 3.7. To only focus on that area,

the factor of g is proposed to measure its abnormality. Similar to factor f , instead of taking all the

tasks inside the detected stage into consideration, here, the first task of each node is used to replace

the “avg nodej”in Eq. (3.4). Formally, the equation is modified as Eq. (3.10) shows.

g =
T taski,j′,1

avg
j∈J

(T taski,j,1)
, where j′ /∈ J (3.10)
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Figure 3.7: Disk interference is injected after WordCount has run for 20s, and continuously impacts
80s

3.2.5 Root Cause Analysis

As shown in Table 4.2, each root cause is determined by a combination of factors with specific

weights.
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The nodes with CPU interference often have a relatively lower computation capacity, which leads

to less tasks allocated and longer execution time for tasks on it. Factors a and b are used to test if

the interference is CPU or not, because CPU interference can reduce the number of scheduled tasks

and increase the abnormal tasks’ execution time. Factor c indicates the degree of CPU occupation,

and CPU interference will slow down of the performance compared to normal cases. Factor d is

used to measure memory changing rate, because CPU interference may lead memory change to

become slowly than other regular nodes.

For the network-related interferences, because of its propagation, the original interfered node will

often recover earlier. So our approach is to detect the first recovered node as the initial network-

interfered node, and the degree b quantitatively describes the interference. When network interfer-

ence occurs, tasks are usually waiting for data delivery (factor e), the memory monitored by GC

log f is usually unchanged.

For the memory-related interferences, when memory interference is injected into the cluster, we

can even detect a relatively lower CPU usage than other normal nodes. Considering this, the task

numbers (factor a) and task duration (factor b) are also added to determine such root causes with

certain weights. Moreover, the memory interference will impact memory usage, and the factor d

should be considered for this root cause detection.

To determine disk interferences, we introduce the factor g to measure the degree of disk inter-

ference. The task set scheduled at the beginning of each stage could be affected by disk I/O.

Therefore, these initial tasks on disk I/O interfered nodes behave differently from other nodes’

initial tasks beginning tasks (factor g), CPU will become busy, and memory usage is different with

other nodes’. Therefore, The memory changing rate (factor c) and CPU Occupation (factor d) are

also used to determine such root causes.

After deciding the combination of factors for each root cause, we give them weights to determine
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root causes accurately as Eq. (3.11) shows. Here, all weights are between 0 and 1, and the sum

of them for each root cause is 1. To decide the values of weights, we use classical liner regression

on training sets that we obtained from experiments on WordCount, Kmeans, and PageRank, which

are discussed in more details in Section 4.5.

CPU = 0.3 ∗ a+ 0.3 ∗ b+ 0.2 ∗ c+ 0.2 ∗ d

Memory = 0.25 ∗ a+ 0.25 ∗ b+ 0.5 ∗ d

Network = 0.1 ∗ b+ 0.4 ∗ e+ 0.5 ∗ f

Disk = 0.2 ∗ c+ 0.2 ∗ d+ 0.6 ∗ g

(3.11)

Then, Eq. (3.12) is proposed to calculate the final probability that the abnormal belongs to each of

the root causes.

probability = 1− 1

factor
(3.12)

Table 3.2: Factor for each root causes

Factor type CPU Mem Network Disk
a DAR

√ √

b DAD
√ √ √

c DCO
√ √

d MCR
√ √ √

e DTD
√

f DMC
√

g DLD
√
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3.3 Experiments

In this section, we present the experimental results on our abnormal detection and the root cause

analysis in three Spark applications, e.g., WordCount, Kmeans, and PageRank which are provided

by sparkbench [38].

3.3.1 Experimental Setup

To evaluate the performance of our proposed approach, we build an Apache Spark Standalone

Cluster with four compute nodes, in which each compute node has a hardware configuration with

Intel Xeon CPU E5-2620 v3 @ 2.40GHz, 16GB main memory, 1 Gbps Ethernet, and CentOS 6.6

with kernel 2.6. Apache Spark is v2.0.2.

3.3.2 Interference Injection

1. CPU: We spawn a bunch of processes to compete with Apache Spark jobs for computing

resources, which triggers straggler problems in consequence of limited CPU resource.

2. Memory: We run a program that requests a significant amount of memory to compete with

Apache Spark jobs. Thus, Garbage Collection will be frequently invoked to reclaim free

space.

3. Disk: We simulate disk I/O contention using “dd” command to conduct massive disk I/O

operations to compete with Apache Spark jobs.

4. Network: We simulate a scenario where network latency has a great impact on Spark. Specif-

ically, we use “tc” command to limit bandwidth between two computing nodes.
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3.3.3 Experimental Result Analysis & Evaluation

Table 3.3: Root causes diagnosis result

Benchmark Interference CPU Memory Network Disk

Wordcount

CPU 86.5 35.0 20.0 60.0
Memory 61.2 62.6 20.4 36.0
Network 51.5 32.5 85.0 32.4

Disk 60.2 40.5 26.2 82.5
Normal 8.5 3.5 5.2 10.3

Kmeans

CPU 86.0 53.1 24.5 42.3
Memory 60.5 53.5 35.6 30.5
Network 43.5 35.2 87.2 42.5

Disk 76.5 53.2 46.2 82.3
Normal 8.6 2.3 3.6 9.6

PageRank

CPU 83.2 43.3 24.3 52.5
Memory 65.4 67.6 26.5 45.0
Network 53.5 46.8 85.8 51.0

Disk 60.3 53.6 25.5 75.6
Normal 9.1 4.5 3.6 10.2

We conduct experiments on three benchmarks, WordCount in Spark package, Kmeans and Page

Rank in SparkBench [38]. We run each of the benchmarks 20 times with simulated interference

injection.

Table 3.3 summarizes the probability results of our root cause detection approach. For the first

step, totally 320 abnormal cases are created, out of which 38 are detected as normal (accuracy:

88.125%). Among these mis-classified cases, 29 are from memory fault injection and the rest 9

are from disk IO. Meanwhile, additional 60 normal cases are also put into our approach for root

cause detection, and no one is reported as abnormal. We also check the normal cases’ abnormal

factors to demonstrate the effectiveness of our approach. In all three benchmarks, the impact of

CPU interference is significant, and tasks under CPU interference can be detected as abnormal

with high probability. For memory interference, its probability is not significant because memory
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interference has less direct effect on Spark tasks, not like root causes. Injecting significant memory

interference into one node will cause the whole application crash because the executers of Spark

will fail if without enough memory. For network interference, the results show that the proposed

approach gives a high probability. Lastly, disk interference shows a high probability in disk root

causes. Worth mentioning here, for all different root causes, the detected probability of CPU are

always high, because all root causes will eventually affect the efficiency of CPU.

3.3.4 Discussion

Our approach is only tested on clusters with injecting interference on a single node. In order to

show considerable effect, the interference will last a while. Additionally, as our approach is based

on the task analysis inside each stage, it requires the target application with a certain amount of

task partitions for each stage. Furthermore, our approach would be less suitable for analyzing

user’s log with different Garbage Collectors such as G1, CMS, and the new version of Spark log

with different Spark schedulers.

3.4 Conclusion

This chapter proposes a novel statistical-based approach for Spark log analysis, and it identifies

abnormal tasks by combining both Spark log and Spark GC log, and then analyze the root causes

by weighted factors without using additional system monitoring information. Different with other

Spark related methods, our approach is a pure off-line method and only leverage Spark log to

analyze abnormal tasks. Furthermore, we prefer using probabilistic output to determine the degree

and category of abnormality, rather than considering the problem of classifications of positive and

negative samples that CART did. Our approach achieves a reasonable probabilistic results than the
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speculated straggler detection in Spark. Moreover, our approach can also identify the root causes

of abnormal tasks with probability. Experimental results demonstrate that the proposed approach

can accurately locate abnormals and find their root causes in different applications.
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CHAPTER 4: GRNN-BASED NEURAL NETWORK APPROACH

4.1 Introduction

This chapter extends our previous work [44], which presents a statistical rule-based approach for

log analysis and offers a reasonable result to explain its root causes probabilities [46]. However,

it can not give a satisfying result with higher precision for its classifying. Since the relationship

between factors is not simply linearly correlated, and we also changed old factor MCR to a new fac-

tor MCS with AUC calculation instead of gradients calculation and add it to our factor sets. From

this point, a GRNN-based approach is proposed for root cause analysis to consider non-linearly

correlated relationship of new factor set, and avoid human ad-hoc choosing and classification.

In this chapter, we leverage General Regression Neural Network (GRNN) to identify root causes

for abnormal tasks. The likelihoods of reported root causes are presented to users according to the

weighted factors by GRNN. We named our detection tool as LADRA, which means Log-based

Abnormal Detection and Root causes analysis. LADRA is an off-line tool that can accurately

analyze abnormality without extra monitoring overhead. Four potential root causes, e.g., CPU,

memory, network, and disk I/O, are considered. We have tested LADRA atop of three Spark

benchmarks by injecting some aforementioned root causes. Experimental results show that our

proposed approach is more accurate in the root cause analysis than other existing methods.

GRNN is a simple and efficient network with fast computing speed, because GRNN’s transfer

function (pattern layer) is a kind of Gaussian function, and it could achieve local approximation

with fast speed without any backpropagation training operations. Due to the fact that classical

neural networks, especially deep neural networks, require much more effort to tune hyperparame-

ters, which has been proved to be not proper to fit small datasets, just like our Spark log. Hence,
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we choose GRNN in our design. Thanks to its flexible structure, which can automatically set the

number of nerve cells in the pattern layer.

In brief, the BP (Back Propagation) based deep learning algorithms may be vulnerable to the

over-fitting problem especially when the dataset is small, which is just the characteristic of our

dataset. Traditional data fitting algorithms usually assume that the data obey a certain distribution

in advance, which can drastically affect the final result. As a non-parameter neural network model

for data fitting, with its high efficiency and accuracy, GRNN is fully capable of dealing with our

current problem. In addition, the experimental results demonstrate the effectiveness of GRNN

compared with other attempts we have tried.

As a non-parameter neural network model for data fitting, with its high efficiency and accuracy,

GRNN is fully capable of dealing with our current problem. In addition, the experimental results

demonstrate the effectiveness of GRNN compared with other attempts we have tried. A represen-

tation of the GRNN architecture for our implementation of root cause identification is shown in

Figure 4.6. Our model consists of four layers: input layer, pattern layer, summation layer, and out-

put layer. According to our data structure, the input layer consists of 7 neurons, which indicates the

dimension of our extracted input feature vector (xa, xb... xg). The pattern layer is a fully connected

layer, which consists of neurons with the same size as input data, and followed by the summation

layer. At the end, the output layer of GRNN gives a prediction result on the probability for each

root cause. We use softmax function to convert the output into a normalized one for more intuitive

comparison.

This chapter proposes a new neural network-based model to automatically calculate the probability

of each root cause. We use a one-pass training neural network, GRNN, to create a smooth transition

and more accurate results.

Although Spark logs are informative, they lack direct information about the root cause of ab-
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normal tasks. Thus, simple keyword-based log search is ineffective for diagnosing the abnormal

tasks, which motivates us to design an automatic approach to help users detect abnormal tasks

and analyze their root causes. An overview of our tool is depicted in Figure 4.1, which contains

five primary components: log preprocessing, feature extraction, abnormal task detection, factor

extraction, and root cause analysis.

1. Log preprocessing: Spark log contains a large amount of information. In order to extract

useful information for analysis, we first collect all Spark logs, including execution logs and

JVM GC logs, from the driver node and all worker nodes. Then, we use a parser to eliminate

noisy and trivial logs, and convert them into structured data.

2. Feature extraction: Based on the Spark scheduling and abnormal task occurring conditions,

we quantify the data locality feature with a binary number format. Then, we screen struc-

tured logs and select three kinds of feature datasets: execution-related, memory-related, and

system-related. Finally, we store them into two numerical matrices: execution log matrix

and GC matrix.

3. Abnormal detection: We implement a statistical abnormal detection algorithm to detect

where and when the abnormal tasks happen based on the analysis of execution-related feature

sets. This detection method determines the threshold by calculating the standard deviation

of task duration and uses it to detect abnormal tasks in each stage from Spark logs, which is

introduced in Section 4.2.

4. Abnormal factor extraction: According to our empirical case study, we combine special

features to synthesize two kinds of factors, the speed factor and the degree factor, which

describe the status of each node in the whole cluster. Section 4.3 introduced these factors

used by our root cause analysis method.
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5. Root cause analysis: We propose a General Regression Neural Network (GRNN) based

approach for our root-cause analysis, in which probability results can be calculated more

accurately than our previous statistical work. Our experiments show that the GRNN-based

approach has more accurate results than existing approaches, which are introduced in detail

in Section 4.4.
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Figure 4.1: The workflow of LADRA

4.2 Log Feature Extraction and Abnormal Task detection

4.2.1 Log Feature Extraction

When an abnormal task happens, it usually does not cast any warnings or error messages. As Spark

does not directly reveal any information about abnormal tasks, it is a very challenging problem to

detect these problems. Our approach starts from understanding the Spark scheduling strategy, then

extracts features associated with CPU, memory, network, and disk I/O to build a feature matrix,
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which reflects the whole cluster’s status. These features can be classified into three categories:

execution-related, memory-related, and system-related, as shown in Table 4.4.

The execution-related features are extracted from Spark execution logs, including (1) the ID num-

ber of each task, stage, executor, job, and host, (2) the duration of each task, stage, and job, (3) the

whole application execution time, (4) the timestamp for each event, and (5) data locality. Spark

GC logs represent JVM memory usage of each executor in workers, from which we can extract

memory-related features such as heap usage, young space usage before GC, young space usage

after GC. In addition, system related features can be also extracted from GC logs, such as real

time, system time, and user time.

Table 4.1: Extracted features for abnormal task detection

Feature Category Feature Name
Execution related Task ID Job ID Task duration

Stage ID Job duration Data locality
Host ID Stage duration Timestamp

Executor ID Application exe-
cution time

GC time After young GC After Heap GC
Memory related Full GC time Before young GC Before Heap GC

Heap space GC category
System related Real time CPU time User time

4.3 Factor Extraction

To look for the root causes of abnormal tasks, we introduce abnormal factors, which are the synthe-

sis of features based on the empirical study on the 22 features in Spark log matrix and GC matrix.

Those factors are normalized features that present status change of the whole cluster, not only for

assessing individual components, such as task and stage, but also a series of abnormal tasks, which

may be generated by continuous interference affecting the cluster.
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In normal cases, each factor should be close to 1; otherwise, it implies an abnormal case. In our

factors’ definition, j denotes the jth node, J presents a set of nodes; i indicates the index of stage,

I is a set of stages; k denotes a task, K is a task set; n stands for a GC record, N is a GC record

set. All factors used to determine root causes are listed as below.
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Figure 4.2: Task duration variation in CPU interference injected after Sorting application has been
submitted for 60s, and continuously impacts for 120s.

Degree of Abnormal Ratio (DAR) describes the degree of imbalanced scheduling of victim nodes,

due to the fact that the victim nodes will be scheduled with fewer tasks than other normal nodes.

For example, as shown in Figure 4.2, CPU interference can cause fewer tasks (red dots) to be

scheduled at a victim node (node1) than normal nodes. Eq. (4.1) illustrates the degree of abnormal

ratio in a certain stage. Therefore, the factor DAR implies that the number of tasks in intra-node

on a certain stage can be used for abnormal detection.

DAR =

1
J−1

((
J∑
j=1

kj)−kj′)

kj′
(4.1)

where kj denotes the number of tasks on node j, and J is the total number of nodes in the cluster.
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Here, we assume that node j′ is abnormal.

Degree of Abnormal Duration (DAD) is used to measure the average task duration, as the abnor-

mal nodes often record longer task duration.

DAD =
avg nodej′

1
J−1

((
J∑
j=1

avg nodej)−avg nodej′)
(4.2)

where avg nodej is defined as:

avg nodej =
1

Kj

(

Kj∑
k=1

T taski,j,k) (4.3)

Degree of CPU Occupation (DCO) describes the degree of CPU occupation by calculating the

ratio between the wall-clock time and the real CPU time. In the normal multiple-core environment,

“realTime” is often less than “sysTime+userTime”, because GC is usually invoked in a multi-

threading way. However, if the “realTime” is bigger than “sysTime+userTime”, it may indicate

that the system is quite busy due to CPU or disk I/O contentions. We choose a max value across

nodes as the final factor.

DCO = max(avg
j∈J

(
realT imei,j

sysT imei,j + userT imei,j
)) (4.4)

Memory Change Speed (MCS) indicates the speed of memory usage change according to GC

curve. Due to the fact that under CPU, memory, and disk I/O interference, the victim node’s GC

curve will vary slower than the normal nodes’ GC curve, as shown in Figure 4.3. starta and

stablea are the points of the start position (the corresponding memory usage at abnormal starting

time) and the stable memory usage position, respectively. startb and stablea are the start and
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end positions of abnormal memory, respectively, which are obtained by analyzing logs introduced

before. The intuition is that the interfered node gradually uses less memory than normal nodes

under interference, as shown in Figure 4.3. Hence, we use the area under GC curve a in the whole

cluster (starta of normal node) to calculate this factor, as shown in Eq. (4.5).

MCS =

∫ stablea
start

f(xa)dxa∫ stableb
start

f(xb)dxb
(4.5)
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Figure 4.3: Memory usage variation in CPU interference injected after WordCount application has
been submitted for 20s, and continuously impacts for 120s.

Abnormal Recovery Speed (ARS) measures the speed of abnormal task’s recovery. Since one

Spark node often accesses data from other nodes, it can leads to network interference propagation.

It is both inter-node and intra-node problem. We can detect network interference happening inside

cluster, as shown in Figure 4.4, which is the location of our detected interference and shows that

task duration will be affected by delayed data transmission. We leverage Eq. (4.6) to calculate

this factor, where abn probj indicates the ratio of the abnormals that we detect for each node j

inside that area. The reason that we use the product of abnormal ratio other than the sum of them
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is that only when all nodes are with a portion of abnormal, we identify them with a potential of

network interference; if their sum is used, we cannot detect this joint probability. Meanwhile,

the exponential is to make sure this factor is no less than 1. Hence, the phenomenon of error

propagation will be detected and quantified by calculating this factor.

ARS = exp(J ∗
J∏
j=1

abn probj) (4.6)
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Figure 4.4: Task duration variation in Network interference injected after WordCount has been
executed for 100s, and continuously impacts for 160s.

Degree of Memory Change (DMC) describes how much of memory usage changed during the

execution in each node. In fact, when network bandwidth is limited, or the network speed slows

down, the victim node gets affected by that interference, and tasks will wait for their data transfor-

mation from other nodes. Hence, the tasks will pause or work very slowly, and data transfer rate

becomes low, as shown in Figure 4.5. We leverage Eq. (4.7) to find the longest horizontal line that

presents the conditions under which tasks’ progress become tardy (e.g., CPU is relatively idle
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and memory remains the same). In Eq. (4.7), mj,n indicates the gradient of memory changing in

the nth task on node j. First, the max value of gradient is calculated for each GC point, denoted as

m. Second, we make a trade-off between its gradient and the corresponding horizontal length to

identify the longest horizontal line in each node. Then, to determine a relative value that presents

the degree of abnormal out of normal, we finally compare the max and min among nodes with

their max “horizontal factor” (e−|mj,n| ∗ (xj,n − xj,n−1)), where e is to ensure that the whole factor

of b not less than 1.

DMC =
max
j∈J
{max
n∈N

[e−|mj,n| ∗ (xj,n − xj,n−1)]}

min
j∈J
{max
n∈N

[e−|mj,n| ∗ (xj,n − xj,n−1)]}
(4.7)

where mj,n =
yj,n−yj,n−1

xj,n−xj,n−1
.

Degree of Loading Delay (DLD) measures how much difference of loading duration on cluster

nodes. Note that the initial task at the beginning of each stage always has a higher overhead to

load data compared with the rest tasks. Similar to the factor DMC, instead of taking all tasks

inside the detected stage into consideration, here, the first task of each node is used to replace the

“avg nodej”.

Instead of taking all the tasks inside the detected stage into consideration, here, the first task of

each node is used to replace the “avg nodej” in Eq. (4.2). Formally, the equation is modified as

Eq. (4.8) shows.

DLD =
T taski,j′,1

avg
j∈J

(T taski,j,1)
where, j′ /∈ J (4.8)
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Figure 4.5: Memory usage variation in Network interference injected after Wordcount has been
executed for 30s, and continuously impacts for 160s.

4.4 Root Cause Analysis

The statistical rule based approach offers a reasonable result to explain its root causes probabil-

ities. However it can not give a satisfied result with higher precision for its classifying. Since

the relationship between factors is not simply linearly correlated, and we also changed old factor

MCR to a new factor MCS with AUC calculation instead of gradients calculation and add it to

our factor sets. From this point, a GRNN-based approach is proposed for root cause analysis to

consider non-linearly correlated relationship of new factor set, and avoid human ad-hoc choosing

and classification.
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4.4.1 GRNN Approach

We propose a new neural network based model to automatically calculate the probability of each

root cause. We use a one-pass training neural network, GRNN, to create a smooth transition and

more accurate results.

GRNN is a simple and efficient network with fast computing speed, because GRNNs transfer func-

tion (pattern layer) is a kind of Gaussian function, and it could achieve local approximation with

fast speed without any back propagation training operations. As due to the fact that classical neural

networks, especially deep neural networks, require much more efforts to tune hyper-parameters,

which has been proved to be not proper to fit small datasets, just like our Spark log. Hence, we

choose GRNN in our design. Thanks to its flexible structure, which can automatically set the

number of nerve cells in the pattern layer. In brief, the BP (Back Propagation) based deep learn-

ing algorithms may be vulnerable to the over-fitting problem especially when the dataset is small,

which is just the characteristic of our dataset. Traditional data fitting algorithms usually assumes

that the data obey a certain distribution in advance, which can drastically affect the final result.

As a non-parameter neural network model for data fitting, with its high efficiency and accuracy,

GRNN is fully capable of dealing with our current problem. In addition, the experimental results

demonstrate the effectiveness of GRNN compared with other attempts we have tried.

As a non-parameter neural network model for data fitting, with its high efficiency and accuracy,

GRNN is fully capable of dealing with our current problem. In addition, the experimental results

demonstrate the effectiveness of GRNN compared with other attempts we have tried. A represen-

tation of the GRNN architecture for our implementation of root cause identification is shown in

Figure 4.6. Our model consists of four layers: input layer, pattern layer, summation layer, and out-

put layer. According to our data structure, the input layer consists of 7 neurons, which indicates the

dimension of our extracted input feature vector (xa,xb...xg). The pattern layer is a fully connected
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layer, which consists of neurons with the same size as input data, and followed by the summation

layer. At the end, the output layer of GRNN gives a prediction result on the probability for each

root cause. We use softmax function to convert the output into a normalized one for more intuitive

comparison.

The transfer function Fi in pattern layer is defined in (4.9), X denotes the input data, σ represents

as a smooth parameter, which is set to 0.5 according to our experimental attempts. The hyper-

parameter of σ is used to control the smoothness of the model. When the value is relatively

large, it is equivalent to increasing the variance in the Gaussian density distribution, which makes

the transition between different categories smoother. While the problem is that the classification

boundary will be blurred. Conversely, when a smaller value is assigned to this hyper-parameter,

the ability to fit real data of the model will be stronger but the generalization turns out to be

relatively weak. In the following, summation layer is added, which contains two kinds of neurons:

S-summation neuron (S) and D-summation neuron (SD), as defined in (4.10), respectively. SD

neurons are used to calculate the arithmetic summation of pattern layer’s output. The remaining S

neurons weight summation for the output of pattern layer. The i denotes ith number of input data,

j denotes the jth dimension of output, and Sj denotes the jth S neuron output. Then, the w denotes

weight in hidden layer. The label (output layer) here is a 5-dimension one-hot vector with one

indicating normal log and the rest four are injections. y indicates yj indicates the jth output item

the output as defined in (4.11). Due to probability representation of root cause, after the output

layer of GRNN, we add a softmax layer to convert the sum of 5-dimensional output to be 1.

Fi = exp (
−(X−Xi)

T(X−Xi)

2σ2
), whereX = [xa,xb...xg]T (4.9)

48



Summations

 SD =
∑n

i=1(Fi), where i = 1 : n

Sj =
∑n

i=1(wijFi), where j = 1, 2, 3, 4, 5
(4.10)

where n is equal to input data set size.

yj =
Sj
SD

,where j = 1, 2, 3, 4, 5 (4.11)

To sum up, GRNN can select a dominant weight for each of our factors, and provide the root cause

probability results with high accuracy.
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Figure 4.6: The architecture of our GRNN-based model for root-cause analysis.
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4.5 Experiments

We evaluate LADRA on four widely used benchmarks and focus on the following two questions:

(1) Can the abnormal tasks be detected? (2) What accuracy can LADRA’s root cause analysis

achieve? In the experiment, we conduct a series of interference injections to simulate various

scenarios that lead to abnormal tasks.

4.5.1 Setup

Table 4.2: Related factors for each root cause

Factor CPU Mem Network Disk
DAR

√ √

DAD
√ √ √

DCO
√ √

MCS
√ √ √

ARS
√

DMC
√

DLD
√

Table 4.3: Benchmark resource intensity

CPU Memory Network Disk I/O
WordCount

√ √ √

Sorting
√ √ √

K-Means
√ √

PageRank
√ √

Clusters: We set up an Apache Spark standalone cluster with one master node (labeled by m1) and

six slave nodes (labeled by n1,n2,n3,n4,n5,n6) based on Amazon EC2 cloud resource. Each node

is configured with type of “r3.xlarge” (24 virtual cores and 30GB of memory) and Ubuntu 16.04.9.
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We conduct a bunch of experiments atop of Apache Spark 2.2.0 with JDK 1.8.0, Scala-2.11.11,

and Hadoop-2.7.4 packages. Given that an AWS instance is configured with EBS by default, it is

difficult for us to inject disk I/O interference. Hence, we set up a 90G ephemeral disk for each

instance and deploy a HDFS to store data.

Workload: In fact, some Spark applications may consume resources more intensively. According

to previous studies on Spark performance [54], we choose four benchmarks built on Hibench [28]

and one real-world CPS application in our experiments: WordCount, Sorting, PageRank, K-means,

which cover the domain of statistical batch application, machine learning program, and iterative

application. WordCount and Sorting are one-pass programs, K-means and PageRank are itera-

tive programs. We characterize the benchmarks by resource intensive type and program type for

underpinning our approach’s scalability. The resource intensity of each benchmark is shown in

Table 4.3. The characteristics of four benchmarks are listed as follows.

• WordCount is a one-pass program for counting how many times a word appears. We lever-

age RandomTextWriter in Hibench to generate 80G datasets as our workload and store it

in HDFS. It is CPU-bound and disk-bound during map stage, then network-bound during

reduce stage.

• Sorting is also a one-pass program that encounters heavy shuffle. The input data is generated

by RandomTextWriter in Hibench. Sorting is disk-bound in sampling stage and CPU-bound

in map stage, and its reduce stage is network-bound.

• K-means is an iterative clustering machine learning algorithm.The workload is generated by

the k-means generator in Hibench, and is composed of 80 million points and 12 columns

(dimensions). It is CPU-bound and network-bound during map stage.

• PageRank is an iterative ranking algorithm for graph computing. In order to analyze root
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causes of abnormal tasks with PageRank, we use Hibench PageRank as the testing workload,

and generate eighty thousand vertices by Hibench’s generator as input datasets. It is CPU-

bound in each iteration’s map stage, and network bound in each reduce stage.

A CPS K-means is a real-world CPS application in civil engineering that we developed

before. The workload data size is 18 GB and collected by sensors installed at a classroom

building. Those sensors measure real time temperature and humidity from each classroom.

The collected data set is leveraged for detecting outlier temperature and humidity. To solve

this real-world problem with effective approaches, we implemented a K-means algorithm on

Spark for pre-clustering and grouping sensor data into sub-clusters and decide the outliers.

4.5.2 LADRA Interference Framework

In order to induce abnormal tasks in the real execution for experiment, we design an interference

framework that can inject four major resource (CPU, memory, disk I/O, and network) interference

to mimic various abnormal scenarios. In order to simplify experiment, we apply all interference

injection techniques only on node n1 for all test cases. In addition, for each injection, it will be

launched during a time interval of 10 seconds and 60 seconds after the first spark job is initiated,

and continue for 120 seconds to 300 seconds. Finally, when a test case is over, we recover all

involved computing nodes to normal state by terminating all interference injections. Specifically,

the following interference injections are used in our experiments:

• CPU interference: CPU Hog is simulated via spawning a bunch of processes at the same time

to compete with Apache Spark processes. This injection causes CPU resource contention in

consequence of limited CPU resource.
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• Memory interference: Memory resource scarcity is simulated via running a program that

requests a significant amount of memory in a certain time to compete with Apache Spark

jobs, then we hold on this certain of memory space for a while. Thus, Garbage Collection

will be frequently invoked to reclaim free space.

• Disk interference: Disk Hog (contention) is simulated via leveraging “dd” command to

continuously read data and write them back to the ephemeral disk to compete with Apache

Spark jobs. It impacts both write and read speed. After the interference is done, we clear the

generated files and system cache space.

• Network interference: Network scenario is simulated when network latency has a great im-

pact on Spark. Specifically, we use “tc” command to limit bandwidth between two comput-

ing nodes with specific duration. In this way, the data transmission rate will be slowed down

for a while.

Table 4.4: Extracted features for abnormal task detection

Feature Cate-
gory

Feature Name

Task ID Job ID Task duration
Stage ID Job duration Data locality

Execution
related

Host ID Stage duration Timestamp

Executor ID Application
execution time

GC time After young
GC

After Heap
GC

Memory related Full GC time Before young
GC

Before Heap
GC

Heap space GC category
System related Real time CPU time User time
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4.5.3 Abnormal Task Detection

Table 4.5: LADRA’s abnormal task detection compares with Spark speculation’s approach in four
intensive benchmarks, where TPR = True Positive Rate, FPR = False Positive Rate.

LADRA Spark speculation
TPR FPR TPR FPR

WordCount 0.96 0.06 0.94 0.8
Sorting 0.96 0.16 0.96 0.7

K-Means 0.7 0.1 0.2 0.7
CPS K-Means 0.7 0.1 0.2 0.7

PageRank 0.6 0.517 0.9 0.48

5.37 5.372 5.374 5.376 5.378 5.38 5.382 5.384
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Figure 4.7: Abnormal task detection for K-means without interference injection.

To evaluate LARDA, we compare LADRA’s detection with the Spark speculation. Each bench-

mark is executed 50 times without any interference injection, and 50 times under the circumstances

of abnormal tasks. After that, we calculate the True Positive Rate (TPR) and False Positive Rate

(FPR) results by counting the correct rate of each job classification as shown in Eq. (4.12) and

Eq. (4.13). The comparison result is shown in Table 4.5.
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As a build-in straggler detector, Spark speculation brings False Positive (FP) and True Negative

(TN) problems in abnormal task detection. We compare LADRA with Spark speculation in details.

For instance, Figure 4.7 shows one stage in a normal K-means execution, x-axis and y-axis present

stage duration and task duration, respectively, and no abnormal tasks are detected by LADRA

(purple higher horizontal dash dotted line). However, Spark speculation (black lower horizontal

dash dotted line) detects stragglers (area above the speculation line and beside red dotted vertical

line) after 75% tasks (red dotted vertical line) finish. In this way, Spark speculation may delay the

normal execution, as it will reschedule the stragglers to other executors. Moreover, Spark specu-

lation will cause true negative problems as shown in Figure 4.2, because it only checks the 25%

slowest tasks. As shown in Table 4.5, LADRA has a better accuracy in abnormal task detection

than Spark speculation for all benchmarks. However, LADRA has lower accuracy on K-Means

and PageRank than WordCount and Sorting. We find that under normal execution, most tasks in

the map stage or sampling stage of K-Means and PageRank have an unexpected longer duration,

because these benchmarks have many iteration stages, and tasks in those stages have data skew

and cross-rack traffic fetching problems. LADRA cannot detect data skew problem within normal

detection results. Too many such kinds of tasks with unexpected duration will cause LADRA to

report false positives.

TPR =
TP

(TP + FN)
(4.12)

FPR =
FP

(TP + TN)
(4.13)
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Table 4.6: Root cause analysis result of LADRA’s GRNN approach, TPR = True Positive Rate, P
= Precision

WordCount Sorting K-Means CPS K-Means PageRank
TPR P TPR P TPR P TPR P TPR P

CPU 1.000 1.000 1.000 0.940 0.857 0.835 0.866 0.837 0.951 0.826
Disk I/O 0.450 0.420 0.679 0.894 0.423 0.692 0.533 0.666 0.540 0.847
Network 1.000 0.955 1.000 0.853 0.679 0.730 0.700 0.750 0.688 0.564
Normal 0.919 0.837 0.965 0.924 0.733 0.686 0.732 0.632 0.602 0.640

4.5.4 LADRA’s Root Cause Analysis Result

To test the accuracy of LADRA’s GRNN approach for root cause analysis, we use cross validation

strategy with 1/3 for test data and 2/3 for train data each time. Data in normal cases is also used in

our training for improving the accuracy. In order to demonstrate the effectiveness of our approach,

we run the GRNN 100 times and get the final accuracy result. We calculate the Precision (P) and

True Positive Rate (TPR) for each detected root cause type by Eq. (5.4) and Eq. (4.12).

P =
TP

(TP + FP )
(4.14)

We abandon memory root cause analysis in our experiments for three reasons. First, injecting

significant memory interference into one node may cause the whole application to crash, as ex-

ecutors of Spark will fail if without enough memory. For instance, injected memory interference

in PageRank benchmark not only causes Out-of-Memory (OOM) failures, but also makes execu-

tor keep quitting (executors are continuously restarted and fail). Secondly, memory interference

does not work for non memory-intensive benchmarks. For instance, WordCount is not a memory-

intensive program, and it will not evoke abnormal tasks, even injecting significant memory in-

terference. Thirdly, memory interference could also consume CPU resources, and may mislead
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GRNN’s classifying.

Table 4.6 summarizes the total P and TPR results of LADRA’s root cause analysis for four bench-

marks. There are two issues to be noted. (1) LADRA has the highest CPU analysis precision

(1.000 in CPU root cause analysis for WordCount) and higher network analysis precision (0.9545

in network root cause analysis for WordCount) results than disk I/O (0.4200 in disk I/O root cause

analysis for WordCount) for three reasons. First, all four benchmarks are CPU-intensive, and

require large CPU resource for computing (map and sampling stages), and network resource to

transfer data (reduce stages). Secondly, abnormal tasks have longer duration after CPU interfer-

ence is injected, and the impact of network injection is significant (CPU stays idle). Thus, the

synthesized factors demonstrate their effectiveness. Thirdly, as disk hog is injected by leveraging

a bunch of processes to read and write disk, it consumes not only disk I/O but also a certain of

CPU resources. Therefore, disk I/O injections may be wrongly classified into other root causes

(, CPU, network, or normal). (2) As shown by Table 4.6, LADRA is more precise on one-pass

benchmarks than iterative benchmarks, such as K-means and PageRank. The TPR of k-means and

PageRank’s disk I/O is lower than the other two benchmarks. It is because that PageRank and k-

means are not disk I/O-intensive benchmarks, if the intermediate data is small enough to be caught

in memory, it will not use disk space. Therefore, the disk interference does not impact too much for

these benchmarks that have small size intermediate data. Moreover, wrong classification of other

root causes in k-means and PageRank also impacts LADRA’s normal root cause classification, it

causes more FP problems, or less TP. So the normal cases in k-means and PageRank also have

lower precision and TPR. To compare with the same approach with different data size in different

domains, two K-means experiments are performed on our LADRA. One uses a generated dataset

by Hibench [28], and the other one uses the dataset produced by a real-world CPS application.

We keep all the hyper-parameter setting to be identical. Theoretically, due to the workload data

distribution is different, the Spark platform will give a weakly different but similar result since data
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itself is not a critical role, as shown in our experiment.

To sum up, LADRA can analyze root causes via Spark log with high precision and TPR for one-

pass applications. However, there may be a few of limitations for LADRA to analyze root causes by

only using Spark logs. Although Spark logs contain full information, but not so rich as monitoring

data.

It might be not possible to analyze all kinds of root causes by only leveraging log files. Some

root causes such as code failures, resource usages, and network failures, may rely on monitoring

tools. LADRA’s goal is to mine useful information and leverage limited log information to analyze

resource root causes without extra overhead.

4.6 Conclusion

This chapter presents LADRA, an off-line log-based root cause analysis tool to accurately detect

abnormal tasks for big data platforms. LADRA can identify abnormal tasks by analyzing ex-

tracted features from Spark logs, which is more accurate than Spark’s speculation-based straggler

detection method. In addition, LADRA is capable of analyzing the root causes precisely using

a GRNN-based method without additional monitoring. The experimental results using realistic

benchmarks demonstrate that the proposed approach can accurately locate abnormalities and re-

port their root causes. According to our experiment results, we can effectively detect the resource

abnormal and analyze root causes in Spark applications.
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CHAPTER 5: CONVOLUTIONAL NEURAL NETWORK FOR

DETECTING ANOMALIES

5.1 Introduction

A log entry (log line) is considered anomaly if it contains abnormal key words (“error”, “warning”)

or shows significant unexpected order in context, for example, a Spark executor restarts repeatedly

before it stops working. Classical anomaly detection has been studied for many years. Various

algorithms and methods have been developed, such as basic key word searching, regulation expres-

sion matching, traditional statistical and machine learning approaches. It may incorrectly identify

the anomalies and report false positives when searching anomalies with key words, or matching

with regular expression.

Hence, some techniques such as Support Vector Machine (SVM) and Principal Component Anal-

ysis (PCA) [60] are often used to reduce the complexity of feature set to be analyzed and improve

accuracy. However, the hidden relationships in extracted feature set are still very difficult to be an-

alyzed by these aforementioned approaches, which often require more sophisticated approaches.

In recent years, deep learning approaches are leveraged in the log analysis domain to improve au-

tomation and accuracy. For instance, Long Short Term Memory (LSTM) and Recurrent Neural

Network (RNN) are used by [10, 17] to detect anomalies with a high accuracy to avoid ad-hoc fea-

ture extraction. Within all deep learning methods, Convolutional Neural Networks (CNNs) could

be the most famous and widely used approach, which has obtained great achievements in computer

vision. Due to the convolution layers, CNN-based approach can learn the hidden relationships with

higher accuracy than other deep learning methods.
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This chapter proposes a Convolutional Neural Networks [45] approach for anomaly detection from

HDFS logs.

5.2 Methodology

In this section, we present our two-fold method. We first introduce our log processing, and then

detail our CNN-based approach and MLP-based approach as the baseline.

5.2.1 Log Processing

The purpose of our log processing is to generate structural input for our CNN model. As the system

log consists of multiple identifiers (defined by [61]), an identifier is an object and has a certain exe-

cution path. For example, block ID is an identifier token in HDFS log, and block a is an actual

identifier and the execution path of block a is a sequence that consists of three related log keys

(e.g., Receiving block, PacketResponder for block terminating, Deleting

block file). Initially, a log template parser is used to find the frequent log constants, named

log key. Then, we use another parser to analyze and filter the raw logs into structured data consist-

ing of log keys (exclude useless information like timestamp of specific logs). Next, we encode each

of the parsed log key with a unique number (, HDFS log has 29 log keys mapped to 29 numbers).

Specifically, we count how many unique log keys in the whole data sets, and map each unique

log key (parsed log entries) into a unique number. Finally, we leverage a session windows [25]

to regroup those log keys to different sessions (group). After sorting those log keys (numbers)

with execution order, we get a structured sessions. Thus, each session (group) includes one unique

identifier and a series of related log keys (numbers), such as a session: 5 5 11 ... 26 26

in HDFS log belongs to one block (an identifier). Considering each vector represents an execution
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path which may vary based on environment settings (different orders), also each path may have

different lengths. For example, some abnormal blocks in HDFS log will be killed after just being

started, so this block only contains few log keys, which has a short length of vector. Hence, we

pad 0 at the end of shorter vectors, and clip longer vectors to make each vector in the log files with

the same length.

5.2.2 CNN-based Model
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Figure 5.1: Architecture of our CNN-based anomaly detection model.

Neural network is a biologically-inspired approach for pattern recognition [8]. In regular fully

connected networks, each neuron is fully connected to all neurons in the previous layer and Back-

Propagation [52] is utilized to compute the error gradient [16]. However, it is not scaled well

for high-dimension data such as images (, images are of size 32 × 32 × 3 in CIFAR-10 [36]).

Inspired by receptive fields of cat’s visual cortex [29], Convolutional Neural Network (CNN) has

been proposed to capture local semantic information instead of global information and defeat the

over-fitting issues in regular neural networks.

Basically, convolution is the core operation applied in the convolutional layers and it extracts
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features from local receptive fields on feature maps of previous layer. An activation function (,

Sigmoid, ReLU (Rectified Linear Units), Tanh) is performed as a non-linear transformation. Fol-

lowing [33], as shown in Eq. 5.1, the value of a unit at position (m,n) in the jth feature map of the

ith layer can be denoted as vm,nij :

vmnij = σ

(
bij +

∑
N

Pi−1∑
p=0

Qi−1∑
q=0

wpqij v
(x+p)(y+q)
(i−1)N

)
(5.1)

where bij denotes a bias function of this feature map, N indexes over the set of feature maps in

the (i− 1)th layer, Pi is the height of kernel and Qi is the width of kernel, and wpqij is the value of

parameter.

As mentioned as before, Kim et al. [35] first propose a simple and effective CNN model based on

word2vec [50] and vanilla CNN for sentence classification with static and non-static channels

and get preeminent results in natural language processing.

Due to the fact that log file is also one special kind of text, log analysis can also benefit from the

advances of NLP techniques. However, log analysis is different from the general NLP. The long

span relationship widely exists in nature language context, such as a long sentence with complex

structures. But logs only contain small amount of log keys. Moreover, the goal of anomaly detec-

tion is to look for unexpected execution path (log key sequences), which is a binary classification,

whereas NLP tries to classify sentences into multiple categories. During the experiment result, we

found that CNN can achieve better accuracy rather than other approaches for log-based anomaly

detection, such as MLP and LSTM.

As shown in Figure 5.1, in the embedding layer, we create a trainable matrix, e.g., 29 × 128

codebook, to map each log key in a session into a vector. For example, in embedding process,

the log key 5 in session group 5 5 11 ... 26 26 will be encoded to 0.6312, 0.7192,

62



... 0.9887, and the whole session will be encoded as a matrix. We name this embedding

process as logkey2vec. Different from word embedding that uses word as fine-grained unit

such as word2vec, each log key will produce log embeddings based on the 29 × 128 codebook.

The logkey2vec is a trainable layer optimized with gradient decent during the training of Neural

Network. The codebook is used for mapping 1D vector to 2D matrix as CNN input, which is a

more comprehensive mapping to enhance the relationships hidden behind logs.

The next part in CNN is convolutional layers, which convolute over the embedded log vectors

with three one-layer convolutions (filters) in same time. According to our experimental study, we

adopt three convolutional layers in parallel for CNN training after encoding layer, with size of 3

× 128, 4×128, 5×128, respectively, as shown in Eq.5.1, where P = 3, 4, 5, and Q = 128. The

activation function σ is Leaky Rectified Linear Unit (leaky ReLU or LReLU) shown in Eq. 5.2,

due to that leaky ReLU can avoid over-fitting and solve the dead ReLU problem by setting first

part of ReLU to non-zero (a small positive gradient). The dead ReLU problem means that some

of neurons in the network may never be activated, hence, the parameters will never be updated.

The causes of dead ReLU have two aspects. The first one is improper parameter initialization, and

the second one is high learning rate setting which may lead to parameter updating too large. After

three independent convolutional operations, a max-pooling layer is applied to concatenate output

of the convolutional layers. While, for Leaky ReLU, as the gradient in all its domain will not be

0, it will feed back a informative update for each iteration. The max-pooling layer can also reduce

over-fitting effectively by filtering out the weak related features, and leaving the strongest related

features for next layer. Moreover, a dropout function is applied as a regularization in the second-

to-last layer to prevent over-fitting. Finally, a softmax function is added in the output layer. The

softmax function is shown in Eq. 5.3. Moreover, the parameter setting detail of CNN base model
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for each layer is shown in Table 5.1.

σ(x)


x if x ≥ 0

0.1x if x < 0

(5.2)

where x denotes the input before activator.

Si =
eai∑T

k=1(eak)
(5.3)

where ai denotes the ith number of input, i = 1 to 2, T =2 in our implementation.

Table 5.1: network details and specific parameters in our CNN model

Layer Output

Input: vectorized log, size: 1 x 50 --

Embedding with code book size: 29 x 128 
Embedded log matrix

size: 50 x 128 x1

Conv 1: [3,128,1,128], strides=[1, 1], padding="VALID“
Leaky ReLU, max pool [1,48,1,1], strides=[1, 1]

48 x 1 x 128
1 x 1 x 128 

Conv 2: [4,128,1,128], strides=[1, 1], padding="VALID“
Leaky ReLU, max pool [1,47,1,1], strides=[1, 1]

47 x 1 x 128
1 x 1 x 128 

Conv 3: [5,128,1,128], strides=[1, 1], padding="VALID“
Leaky ReLU, max pool [1,46,1,1], strides=[1, 1]

46 x 1 x 128
1 x 1 x 128 

Concatenate Conv 1, Conv 2, Conv 3, dropout 0.5 1 x 384

FC:  [384,2] 2

softmax
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Figure 5.2: Architecture of our MLP-based anomaly detection model.

Table 5.2: Network details and parameters in our MLP model

Layer Output

Input: vectorized log, size: 1 x 50 --

Embedding with code book size: 29 x 128 
Embedded log matrix

size: 50 x 128 x1

Avg pool [1,50,1,1], strides=[1, 1], flatten

Dropout 128

FC: [128*128], leaky ReLU

Dropout 128

FC: [128*64], leaky ReLU 64

FC: [64*32], leaky ReLU 32

FC: [32*2] 2

softmax

5.2.3 MLP-based Model

According to our empirical study, parameter tuning is very challenging for LSTM, it is difficult to

train such a complicated model because of gradient vanish/exploding issues existing in Recurrent

Neural Networks like LSTM. As a result, the accuracy for anomaly detection may decrease. Hence,

we decide to use a simple and clear network with easy adjustable parameters as our baseline to
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compare with CNN in order to prove its efficacy. Therefore, we design a Multilayer Perceptron

(MLP) as our baseline model and also train it on logkey2vec of HDFS logs. Before Deep

Neural Network (DNN), MLP is one way feed-forward layered network which can be built up

with three main layers (input layer, the hidden layers, and the output layer). Basically, the input

layer sent weighted inputs to front hidden layer to learn the relationship and sent middle data to

next hidden layer. Then, the classification results are sent from last hidden layers to output layer.

It consists of three components: input layer, hidden layers and output layer. Each hidden layer is

activated with a non-linear function. BP is often utilized to update the weights of MLP. More than

one hidden layers are designed to increase/decrease the complication of models. The output layer

could be different depending on the objective function.

The workflow of our MLP model for log-based anomaly detection is shown in Figure 5.2. The

input embedding stage is the same as CNN’s logkey2vec, and it encodes vectors using the

same codebook. The parameters of MLP model for each layer are shown in Table 5.2, the hidden

layers are three fully-connected layers without any convolutional layers, and the number of MLP

hidden neurons for each fully connected (FC) layer is 128, 64, and 32, respectively. Following

the CNN model, LReLU is also used as MLP’s activation function. The output of FC layer is

concatenated to a vector by an average-pooling layer.

5.3 Evaluation

In this section, we first introduce the experiment setup, and then evaluate the accuracy of the CNN-

based approach for detecting anomalies in HDFS data sets.
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5.3.1 Experiment Setup and Dataset

Our CNN-based approach is implemented in TensorFlow [4]. We compare the accuracy of our

approach with other deep learning methods in log-based anomaly detection using HDFS log, a

widely used benchmark dataset employed by other approaches [61, 17].

The HDFS log is a dataset generated from running over 200 days experiment in Amazon EC2. The

data was first published by Xu et al. [61], and analyzed by many approaches such as SVM, PCA,

logistic, and LSTM based anomaly detection. The raw log file is 1.55 GB and contains 11,197,954

log entries. Moreover, HDFS log records the states of each HDFS block during job execution time,

and includes 29 unique log keys. Furthermore, the raw data is always parsed with session windows,

and each line consists of unique blockId with related log keys in the parsed format. We leverage

the parsed and labeled ground truth data, which is the same as [17]. It contains normal training set

(4,855 parsed sessions), normal testing set (553,366 parsed sessions), abnormal training set (1,638

parsed sessions) and abnormal testing set (15,200 parsed sessions).

5.3.2 Results

We first assume that CNN model can achieve a better accuracy which compare to other compar-

isons. To prove this point, we evaluate CNN with our MLP baseline model and LSTM model on

HDFS logs.

Due to the fact that both CNN and MLP are supervised approaches, and both require training

before testing, Hence, we first train the CNN model with training data set, and leverage testing set

to evaluate our model. For training detail, we use normal training set from [17], and select 1% of

abnormal testing data set as abnormal training set. Here, the remained 99% abnormal testing set

combines with normal testing set as total testing set. It is the same amount which we described in
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above subsection. Finally, we compare to the CNN and MLP training results with LSTM which is

presented at [17].

Those models are evaluated by the metrics listed blow: True positive (TP) represents the number

of real anomalies that are correctly detected as anomalies by our approach. True negative (TN)

represents the normal cases that are correctly identified as normal case. False positive (FP) presents

the normal scenarios that are incorrectly identified as anomalies. False negative (FN) represents

the abnormal log cases that are identified as normal. Based on the four metrics, we calculate

the Precision (P), Recall, and F1-measure for each tested approaches. Precision is calculated by

Eq. (5.4), which represents the correctly detected anomalies percentage in reported anomalies.

Recall is calculated by Eq. (5.5), which shows the detected true anomalies in all real anomalies.

F1-measure is calculated by Eq. (5.6), which represents the harmonic average of the P and recall.

P =
TP

(TP + FP )
(5.4)

Recall =
TP

(TP + FN)
(5.5)

F1-measure =
2P ·Recall

(P +Recall)
(5.6)

To compare the accuracy of our CNN model with LSTM and our MLP baseline model, we list all

the evaluation metrics results in Table 6.1. Our CNN achieves better results on all the metrics than

the other two models.

Figure 6.3 compares the accuracy, precision, recall, and F1-measure of our CNN and MLP based

approaches in each epoch of the training using HDFS logs. The red line is our CNN-based ap-
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proach, and the blue line is the fully connected MLP-based approach without convolution layers.

Figure 6.3 (a) shows that CNN has the higher accuracy. Although both CNN and MLP can achieve

high accuracy finally, MLP starts with lower accuracy and slowly converges to high accuracy after

85 epochs. Figure 6.3 (b) presents that the precision curves of both models have some fluctuations;

however, the curve of CNN model is much more stable than MLP. Moreover, CNN could converge

in high precision after few epochs, and MLP converges after 100 epochs. Figure 6.3 (c) shows the

recall of both models. The recall value of MLP starts at 0 and converges to 98.7 in 20 epochs, and

CNN’s recall is around 0.9 at the beginning, which is much higher than MLP’s recall. Figure 6.3

(d) shows F1-measure of both models, where CNN could reach to a high accuracy in few epochs,

but MLP converges till 90 epochs. All the evaluation metrics show that the MLP model converges

slowly and is more time-consuming than the CNN model on the training of HDFS logs.

To evaluate if the embedding layer could impact the accuracy, we design an extra experiment by

eliminating the embedding layer inside our MLP model. After MLP model trains with a series

of log key vector directly without embedding process, we get the results with accuracy of 0.997,

precision of 0.9732, recall of 0.95044 and F1-measure of 0.961726. Compared with the results

shown in Table 6.1, it demonstrates that the embedding process could cause big difference in the

efficiency MLP for HDFS log classification. It is because that the embedding layer leverages

codebook to encode vector into matrix, and this processing could learn comprehensive semantic

representation of log.

Table 5.3: The comparison of different models on HDFS log.

Model Accuracy (%) Precision Recall F1-measure
CNN 99.9±856e-05 97.7±068e-05 99.3±0035 98.5±0014
MLP 99.89±588e-05 98.12±918e-05 98.04±0036 98.08±0018

LSTM [17] — 95 95 96
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CNN model
MLP model
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Figure 5.3: Accuracy procedure of CNN-based approach and MLP-based approach on HDFS logs
(a)Accuracy. (b) Precision. (c) Recall. (d) F1-measure.

5.4 Discussion

This section discusses potential reasons why our CNN-based approach could achieve better accu-

racy than MLP, and LSTM. Furthermore, the reasons of embedding layers using is discussed.

5.4.1 CNN vs. MLP

The experiments show that MLP and CNN models have different accuracy because of two reasons.

First, due to the fact that after the first embedding layer, the related log keys arer sorted, and

our CNN model could use multiple filters to mine more buried relationships which hided among

log keys. Secondly, the learning process of weights is a two-dimensional convolution operation,

hence it considers the correlation between the horizontal embedding, and the longitudinal entries

in logs. Although the MLP approach is quite effective, semantic information can not be leveraged

by training stage.
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5.4.2 CNN vs. LSTM

LSTM has more advantages than other neural network methods for solving NLP sequence clas-

sification problems because LSTM has one kind of units called memory cells to store context

information. The context stored in the previous cells could be used for next memory cells. LSTM

performance will be impacted by three factors when it is employed for anomaly detection. First of

all, word2vec embedding is required in NLP task for word separation, and the log analysis needs

an embedding for log key separation, such as logkey2vec. Secondly, log can be considered as

one kind of execution flows consisting of many log entries (log keys). Moreover, those log entries

could present short time sequence relationship. However, one log entry may have weak relation-

ships with far distanced log entry from it. For example, there are two states in HDFS log, the one

is a start state called Receiving block, and the other one is an end state called Deleting block file.

Thirdly, due to the fact that the network structure of LSTM is more complex and thus the tuning

work for LSTM’s parameters is more difficult. Hence, to achieve a good performance is still a

challenging task for LSTM.

5.5 Conclusion

This chapter presents a novel Neural Network based approach to detect anomaly from system logs.

A CNN-based approach is implemented with different filters for convoluing with embedded log

vectors. The width of filter is equal to the length of a group of log entries. A max-overtime pool-

ing is applied for picking up the maximum value. Multiple convolutions layers are employed for

computing. Then, we add a fully connected softmax layer to produce the probability distribu-

tion results. We also implement a MLP-based model that consists of three hidden layers without

any convolutional kernels. Our experimental results demonstrate that the CNN-based method can

achieve a higher and faster detection accuracy than MLP and LSTM on big data system logs
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(HDFS logs). Moreover, our CNN model is a general method that can parse log directly and does

not require any system or application specific knowledge.
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CHAPTER 6: DETECTING ANOMALIES WITH ATTENTION-BASED

CONVOLUTINGAL NEURAL NETWORK

6.1 Introduction

This chapter extends our previous work [45], which presents a novel approach to detect anomalies

from system logs by using vanilla CNN to explore complex latent relationships effectively. In the

proposed vanilla CNN model, firstly, we design an embedding method named logkey2vec to

embed log keys into feature vectors, which are then fed into convolutional layers, where the width

of filter equals to the length of embedding. Secondly, we apply a max-overtime pooling layer to

select the maximum value of all the features. Finally, a fully connected softmax layer is applied to

calculate the probability distribution results. We train the CNN model with labeled HDFS logs.

In this chapter, we implement a novel attention-based CNN, where the attention mechanism is ap-

plied to the vanilla CNN to improve the accuracy. Due to the fact that partial important log keys or

CNN filter-extracted features may have more relevant impact, our attention mechanism focuses on

using those features instead of whole CNN output. For log analysis, the relevant log patterns need

more attention than the unimportant log entries. We propose two attention schemes that focus on

different features from CNNs output. We compare our attention-based CNN approach with sev-

eral other deep learning approaches, the attention-based CNN model shows the best performance

among comparison methods.

73



6.2 Attention-based CNN Approaches

Our previous approach detects anomaly by using logkey2vec and Convolutional Neural Net-

work, but due to the fact that complex relationships exist between log lines, the attention-based

model is able to find more reasonable features. As we stated before, the anomaly detection with

system log should learn non ad-hoc features, hence, the most significant extension in this paper is

that two proposed attention schemes that can learn the hidden relationships among log lines.

To further improve accuracy for abnormal detection through CNN model, we adopt attention mech-

anism to filter out less relevant features among inner output of the model.

Our attention model employs three attention schemes, namely logkey attention, and filter attention.

This model is similar to the CNN model but extended with different attention layers to filter more

related features by modifying the position of attention mechanism in the whole network structure.

All of the attention schemes have the same embedding and convolution parts as our vanilla CNN

models.

6.2.1 Logkey Attention Scheme

In our vanilla CNN model, max pooling is added to the output of convolutional layer to obtain

the maximum value features. However, the related logkey features directly produced by CNN

may be ignored by max-pooling, and those logkeys could bring more accurate results. The logkey

attention scheme consists of three attention layers. Let Am∗n denote the matrix after convolutional

operation, where m and n are the dimensions of A. Formally, given A, we first segment it into

a sequence of vectors a1, a2...an , where ai indicates the ith row of A, our implementation of

attention mechanism computes an output vector c given by a weighted scaling of vectors ai.
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The attention input vector ai and output vector c are presented by:

c =
N∑
i=1

λiai (6.1)

The attention weight of each input i is computed by:

ei = wTai (6.2)

λi =
exp(ei)∑n
j=1 exp(ej)

(6.3)

where w is a learnable parameter using back propagation by comparing the ground truth and the

predicted results. Let Λ1∗n denote the matrix of attention weights λ, where 1 and n are the dimen-

sions of Λ. Let E1∗n denote the set of e, where 1 and n are the dimensions of E.
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Figure 6.1: Architecture of our logkey attention scheme
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6.2.2 CNN Filter Attention Scheme

Similar to our first attention mechanism, we further propose the second attention CNN model

named CNN Filter attention scheme. The difference from our first model is that we perform

attention operation after maxpooling operation other than replacing it, and the workflow of our

CNN filter attention is shown in Figure 6.2. Actually, for our previous simple embedding-based

CNN model, three independent CNN layers after maxpooling (three vectors with length of 128)

are concatenated into a single vector, and then operate attention operation through attentionOut-

put,attentionOutput2,attention. Typically, for this kind of attention mechanism, we try to find the

relative importance among these three extracted features.
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Figure 6.2: Architecture of our CNN filter attention scheme

6.3 Evaluation

In this section, firstly, we show the setup experiment and dataset. Secondly, we evaluate the accu-

racy of proposed attention-based CNN method for HDFS log anomaly detection.
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6.3.1 Experimental Setup and Dataset

We implement our proposed approaches with TensorFlow [4]. The dataset we used for evalu-

ation of the accuracy of proposed attention-based approach is HDFS log, a widely used public

dataset [61, 17]. This dataset is first published by Xu et al. [61], and it is generated from an over

200 days running experiment on Amazon EC2, which mainly records the states of each HDFS

block during job execution time. The size of raw data is 1.55 GB and it contains 11,197,954 log

entries, 29 unique log keys. It has been analyzed by few statistical approaches and deep learn-

ing method including offline PCA-based method [61], online PCA-based method [60], Invariant

Mining-based method [43], and LSTM-based anomaly detection method [17].

The preprocessing of the HDFS raw data is usually parsed with session windows, and each line

consists of unique blockId with related log keys in the parsed format. The parsed and labeled

ground truth data is leveraged in our experiment as same as [17]. This dataset contains abnormal

training set (1,638 parsed sessions), abnormal testing set (15,200 parsed sessions), normal training

set (4,855 parsed sessions), and normal testing set (553,366 parsed sessions).
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6.3.2 Results

CNN model
CNN Filter attention

MLP model
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CNN Filter attention
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Figure 6.3: Performance Comparison of the attention-based CNN approach, CNN-based approach

and MLP-based approach on HDFS logs with respect to (a) accuracy, (b) precision, (c) recall, and

(d) F1-measure.

We compare our proposed attention-based models with six representative approaches including

three deep learning methods (CNN model, our MLP model [45], LSTM [17]), and three non deep

learning approaches (Principal Component Analysis (PCA) [17], Invariant Mining (IM) [17], N-

gram [17]). As shown in our previous work [45], a Multilayer Perceptron (MLP) is designed as

our baseline model which uses a simple and clear network with easily adjustable parameters to
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compare with CNN and LSTM in order to prove its efficacy. The MLP model is also trained on

logkey2vec of HDFS logs, it uses the same input embedding stage as CNN’s and the same

codebook for vector encoding.

Table 6.1 shows the evaluation results with respect to “accuracy”, “precision (P)”, “recall”, and

“F1-measure (F1)”. As shown in Table 6.1, our attention-based CNN model (CNN filter attention

scheme) outperforms the LSTM [17] by 2.89% in F1-measure, 4.76% in recall, 3.04% in precision.

In addition, it outperforms the best non deep learning approach N-gram [17] by 4.89% in F1-

measure, 3.76% in recall, 5.70% in precision.

Figure 6.3 presents the comparison results of the precision, accuracy, recall, and F1-measure of our

proposed attention-based CNN model, basic CNN model and MLP-based approach in each epoch

of the training using HDFS logs. As the CNN filter attention scheme has the best performance, it

is used to compare with others.

Figure 6.3 (a) shows that the attention-based CNN has the best performance in accuracy measure-

ment, and both attention-based and vanilla CNN models achieve good accuracy in a few epochs.

Although all three models can achieve high accuracy finally, MLP converges much slower. Fig-

ure 6.3 (b) shows that the precision curves of those models have some fluctuations; however, the

attention-based and vanilla CNN models are more stable than MLP. Moreover, both CNN-based

models converge in high precision after a few epochs, while the attention-based CNN achieves the

highest precision. MLP converges after 100 epochs. Figure 6.3 (c) shows the recall measurements

of all models. The recall value of MLP converges to 98.04% in 70 epochs. The average recalls

of the attention-based and vanilla CNN is around 0.8 at the beginning, which is much higher than

MLP. Moreover, the attention-based CNN model (CNN filter attention scheme) gets higher recall

than the vanilla CNN. Figure 6.3 (d) shows the F1-measure measurements of all models, where the

attention-based and vanilla CNN models reach to high accuracy in the first few epochs, but MLP
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converges till 90 epochs. All the evaluation metrics show that the attention-based CNN model

(CNN filter attention scheme) achieves better performance than vanilla CNN and MLP, where the

MLP model converges slower than the others.

To access whether the embedding layer (logkey2vec) can improve the accuracy or not, an addi-

tional experiment is designed by excluding the embedding layer in our MLP model. The accuracy,

precision, recall, and F-measure without embedding is 99.7%, 97.32%, 95.04%, and 96.17%, re-

spectively. The comparable results are shown in Table 6.1, the embedding process causes a big

difference in the performance. Due to the fact that codebook is used by embedding layer to encode

vector into matrix, we believe that comprehensive semantic representation among HDFS logs can

be learned by embedding processing.

Table 6.1: The comparison of different models on HDFS log.

Approach acc(%) P(%) Recall(%) F1(%)
LSTM [17] - - 95 95 96
PCA [17] - - 98 67 79

BaseLine IM [17] - - 88 95 91
N-gram [17] - - 92 96 94

MLP [45] 99.89 98.12 98.04 98.08
CNN 99.9 97.7 99.3 98.5

Logkey 99.8 97.91 99.33 98.62
Attention CNN Filter 99.93 98.04 99.76 98.89

6.4 Discussion

This section discusses potential reasons why the attention-based CNN model could achieve better

accuracy, and two different attention schemes and the significance of logkey2vec embedding

are analyzed.
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6.4.1 Logkey Attention vs. CNN Filter Attention

Since max-pooling layer will ignore some related features, the proposed log key attention is de-

signed to extract logkey related features (codebook) on CNN output directly. In other words, the

logkey attention will identify important logkeys in the whole codebook. The CNN filter attention

considers which CNN tunnel (3,4,5) will produce more valuable features. In HDFS dataset, the

CNN filter attention filters better features and achieves more accurate results.

6.4.2 Attention-based CNN vs. Vanilla CNN

The major difference between the attention-based CNN approach and our prior CNN model [45]

is that the attention model focuses on more reasonable relevant features rather than the features

extracted by max pooling. Moreover, the attention features belong to a subset of whole features.

Hence, the attention-based approach reduces the timing and complexity of learning relationships

between features and improves accuracy.

Considering about deploying CNN to log analysis, the network training includes logkey2vec

embedding layer, and it coverts the vectors inside the two-D matrix. Each row of the matrix

indicates a log key encoding, and each column of the matrix presents the number of log keys that

exists in the log file. The CNN model will think over the contents of each log, then leverages

multiple CNN filters to control the “memory length” with more flexible. This training operation

is more effective than recurrent-based neural networks. In the proposed CNN-based detection

model, there are only 29 unique log keys, also the length of the log is quite stable. In this way, the

embedding is more effective but without dropping useful information. Compare with LSTM, our

CNN-based model is a suitable approach for anomaly detection from system logs.
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6.5 Conclusion

In this chapter, an attention-based deep neural network approach is proposed to detect anomalies

from HDFS logs. Our approach includes the logkey2vec embedding, an attention-based CNN

model with two different attention schemes. Our model does not require any expert knowledge and

could provide a high accuracy without the overhead. An MLP-based model and a vanilla CNN-

based model are implemented as the experimental baselines. The experimental results demonstrate

that the CNN filter attention scheme achieves higher accuracy than the basic CNN, MLP, and

LSTM on HDFS logs.
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CHAPTER 7: WHITE BOX ADVERSARIAL ATTACKS ON NEURAL

NETWORKS FOR ANOMALY DETECTION

7.1 Introduction

Deep Neural Network (DNN) is being adopted in the log analysis domain for higher accuracy

and better automation. For instance, Long Short Term Memory (LSTM) and Recurrent Neural

Network (RNN) are used by [10, 17] to detect anomalies with high accuracy to avoid ad-hoc

feature extraction. Within all deep learning methods, Convolutional Neural Network (CNN) is one

of the most famous and widely used approaches. Due to its convolutional layers, the CNN-based

approach can learn spatial relationships with high accuracy. Recently, another important technique,

attention mechanism, has achieved dramatic improvements in many applications. Moreover, those

methods could reach high accurate results for anomaly detection. However, the network’s results

may not be as stable as our thoughts. To the best of our knowledge, there is no work to test the

robustness of neural networks for log analysis so far.

Various adversarial examples could be leveraged to attack target networks [39]. The white-box

and black-box are two popular approaches for adversarial attacking. Due to the fact that a white-

box attacker knows all information of the target networks, which include input data, output data,

parameters, even activation function, and loss function. Fast Gradient Sign Method (FGSM) is

one common white-box approach that was first proposed in the computer vision domain [48]. It

leverages the gradients of testing data to generate adversarial examples. In this chapter, a white-

box adversary attacking is proposed to against our previous attention-based CNN anomaly detector,

and this work is in submission. We first generate adversarial examples according to the attention

weights, and vulnerable logkeys. Then, we leverage three different attack strategies to attack CNN-
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based neural networks for anomaly detection.

7.2 Target Models and Dataset

HDFS dataset and CNN-based model described in Chapter 4 are our target dataset and model.

The network is trained with HDFS dataset, which contains 200 days Hadoop logs on Amazon

EC2. The data was first published by Xu et al. [61], and analyzed by many approaches such as

SVM [19], PCA [61], and LSTM [17] based anomaly detection. The raw log file is 1.55 GB

and contains 11,197,954 log entries. Moreover, HDFS log records the states of each HDFS block

during job execution time and includes 29 unique log keys. Furthermore, the raw data is always

parsed with session windows, and each line consists of unique blockIDs with related log keys

in the parsed format. We leverage the parsed and labeled ground truth data, which is the same

as [17]. It contains normal training set (4,855 parsed sessions), a normal testing set (553,366

parsed sessions), an abnormal training set (1,638 parsed sessions) and an abnormal testing set

(15,200 parsed sessions).

7.3 Methodology

As mentioned before, white-box attacking will leverage all information of the target network. By

using the inner attention weights, network could check whether the model actually focuses on

relevant logkeys. Inspired by this, our adversarial attack examples are generated by leveraging

the internal attention mechanism of target neural networks. We perform a logkey level white-box

adversarial attack by using the models’ internal attention weight distributions to locate vulnerable

logkeys and attack them. Our attacking approach is twofold. Firstly, we calculate maximum

attention weights and identify the related logkeys. Secondly, according to the proposed strategies,
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we can modify the vulnerable logkeys and create test set for attacking.

7.3.1 Identifying the Vulnerable Logkeys

To attack the target neural network, we need to identify which and how many log key will con-

tribute sinificantly to the classification. Hence, we mainly reuse the attention calculation of logkey

attention scheme inside the target network to locate vulnerable logkeys. The attention weight cal-

culation is described in Chapter 4. Inside the target model, the CNN outputs are used for attention

weight calculation. An attention input vector ai and output vector c is presented by:

c =
N∑
i=1

λiai (7.1)

The attention weight of each input i is computed by:

ei = wTai (7.2)

λi =
exp(ei)∑n
j=1 exp(ej)

(7.3)

where w is a learnable parameter using back propagation by comparing the ground truth and the

predicted results. Let Λ1∗n denote the matrix of attention weights λ, where 1 and n are the dimen-

sions of Λ. Let E1∗n denote the set of e, where 1 and n are the dimensions of E.

Hence, to identify the vulnerable logkey inputs, we calculate the maximum value of attention

weights λ in testing each batch and locate the vulnerable logkey inputs by analyzing different

CNN filter sizes. However, three CNN filters have different sizes (3,4,5), there should be three
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groups of vulnerable logkeys. To identify which filter could locate better valuable logkeys, we

leverage statistical analysis to calculate the mode, average, and standard deviation of the biases

(distances) between different groups of maximum attention weights position, which are produced

by different sizes of CNN filters (3, 4, 5). We define the position of filter 3 is center, and collect

data by running ten times of the attention-based CNN, and the average result is shown in Table 7.1.

Then, we find that the area scanned by a small size filter (size = 3) is the average public area

under three different filters. Hence, we leverage the suitable CNN filter (size = 3) to locate three

vulnerable logkeys which is shown as Figure 7.1.

Table 7.1: Biases between different filters (filter 3 is center)

Measurement filter 3 and filter 4 filter 3 and filter 5 filter 4 to filter 5
Mod 2 -3 -5
Avg 2 -2 -4

Stdev 1.38 1.92 2.19

Figure 7.1: Suitable filter decision
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7.3.2 Attacking Strategies
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Figure 7.2: Architecture of similarity replacement strategy

After identifying three vulnerable logkeys, we design and apply three different systematic adversar-

ial attack strategies for anomaly detection neural network, e.g., exchanging positions, similarity

replacement, and removing. For exchanging positions, we exchange those three positions of three

logkeys to make a new sequence. For removing strategy, we just simply delete the vulnerable

logkeys. For similarity replacement, we calculate the similarities of vulnerable logkeys with other

logkeys by measuring the Euclidean distances and replace them with the closest one. The simi-

larity replacement strategy is meaningful. The similarity value function of logkey replacement is

shown as Eq. 7.4.

min
∆xi

(max
λi

(λi)f(∆xi)) (7.4)

where the ∆x presents the distance of vulnerable logkey x and replaced logkey x′.
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The workflow of our adversarial attack approach with similarity replacement strategy is shown in

Figure 7.2. The distance between each vulnerable logkey and other logkey will be calculated in

each logline of test set. Then, the adversarial attack examples will be created by using the shortest

Euclid distance logkeys instead of original vulnerable logkeys.

7.4 Experiments

This section presents a series of experiments of the proposed three attacking strategies. Our exper-

iment is conducted on a sever with 4 GPUs, and our code is implemented in TensorFlow [4]. We

generate our adversarial examples based on our attention-based CNN model.

To evaluate whether the three strategies decrease accuracy, three different strategies are evaluated

by their test set on the same attention-based neural network model. The full normal test set is

leveraged for this experiment as a normal situation without any attacks. After the first normal test

finishes, we run different test sets produced by three strategies. We show our experimental eval-

uation results with respect to accuracy, precision (P), recall, and F1-measure (F1). For no attack

model (normal cases), we get the state-of-art results, the accuracy is 99.8688, precision is 96.86,

recall is 98.72, F1-measure is 97.78. Then, we first remove the fault classification test dataset

and evaluate our three attack strategies based on the correct classification test dataset. Table 7.3

shows that the removing strategy brings some decreases than exchanging positions, and a similar-

ity replacement attacking strategy shows a huge decrease by 34% in F1-measure, 60% in recall,

71% in precision, 66% in accuracy. Moreover, we evaluate our attacking with attack success rate

(ASR) which presents the percentage of adversarial examples that leveraged to be classified as the

target correct class. The highest ASR of our similarity replacement strategy is 66% for correct

classification.
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Table 7.2: The comparison of different attack strategies for correct classification

Strategy Accuracy(%) Precision (%) F1 (%) Recall (%)
Exchanging Positions 99.9 99.99 99.99 99.97

Removing 88.946 1 66.41 79.81
Similarity Replacement 33.98 28.37 65.97 39.67

Table 7.3: ASR of three attack strategies

Strategy ASR (%)
Exchanging Positions 0.1

Removing 11
Similarity Replacement 66

7.5 Discussion

This section discusses potential reasons why the similarity replacement strategy could achieve a

more effective result, all three strategies and the significance of vulnerable logkeys are analyzed.

For exchanging position strategy, it seems not working at all. Because the logging framework

records different log events in time sequence, usually in normal execution, the same log events

could be printed in a different order, such as 2, 4, 9, 12 and 12, 4, 2, 9, also logkey 2 and logkey 4

always be printed in pair. Even the order of those logkeys changes, those patterns always remain

normal cases. Hence, the position exchanging may not decrease accuracy effectively. For removing

strategy, it achieves some attacking success rate. During this attacking, vulnerable logkeys will be

removed from the normal test set. In other word, this operation will create a new sequence of

inputs without vulnerable logkeys. Because of that, the location of the lesion may have been

cleared, the negative classification will be misled by this strategy. Moreover, the precision does

not decrease, it means the negative data could be classified as correct data because some of the

vulnerable logkeys in negative data are deleted. In this way, we propose a similarity replacement

89



strategy for attacking target networks more effective. For similarity replacement strategy, the major

difference between similarity replacement and the other two strategies is that the replaced logkeys

could be highly similar in semantic meaning, which means the replacement may replace the most

likely two logkeys. It will not change too much information such as removing. According to our

data analysis, logkey 6 and logkey 26 are calculated as two similar logkeys, logkey 6 presents

“Served block (*) to (*)” and logkey 12 presents “BLOK NameSystemȧddSTOREBlock:block

update” in the original dataset. Therefore, vulnerable logkeys are replaced, and the classification

will be fooled. Moreover, it is hard to detect the meaning difference by users. As we know,

the attention-based log analysis neural networks leverage vulnerable features to detect anomalies

instead of using whole feature sets. Our similarity replacement already modifies the most important

vulnerable logkeys in the whole test set. Hence, it could reach the highest ASR, and has a large

effect on the average performance of target neural networks.

7.6 Conclusion

In this chapter, a white-box adversarial attack approach is proposed to attack attention-based neural

networks for anomaly detection. Our approach leverages the internal network attention to create

adversarial examples and applies three adversarial attack strategies on target neural networks. To

prove the brittleness of attention-based models, we find that vulnerable logkeys are sensitive to our

adversarial perturbation by using similarity replacement strategy.
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CHAPTER 8: CONCLUSION

This dissertation presents four novel approaches to detect anomalies from big data system logs.

First, a statistical rule-based approach is applied to Spark logs for detecting abnormal tasks and

analyzing root causes. Secondly, a GRNN-based approach is leveraged to learn a set of features

weights and avoid ad-hoc weight calculations for abnormal task detection. Thirdly, we implement

a CNN-based approach with different filters for convoluting with embedded log vectors. The width

of the filter is equal to the length of a group of log entries. A max-overtime pooling is applied for

picking up the maximum value. Moreover, multiple convolutions layers are employed for comput-

ing. Then, we add a fully connected softmax layer to produce the probability distribution results.

We also implement an MLP-based model that consists of three hidden layers without any convo-

lutional kernels. Our experimental results demonstrate that the CNN-based method can achieve

higher and faster detection accuracy than MLP and LSTM on big data system logs (HDFS logs).

Moreover, our CNN model is a general method that can parse log directly and does not require any

system or application-specific knowledge. Fourthly, we add two attention schemes on our previous

CNN-based approach to improving accuracy for anomaly detection on the HDFS dataset. Finally,

we leverage the internal attention mechanism to generate adversarial attack examples to prove the

robustness of our CNN-based approaches for anomalies detection.

For future work, more complex system logs will be considered for training and testing. Further-

more, we plan to design an automatic log analyzer that can leverage deep learning approaches to

detect anomalies and classify root causes into multiple classes.

Our research has the following impacts on research and society. First, our research could auto-

matically address detection issues and save a lot of human resources by analyzing logs. Secondly,

we can help people better understand their log files and make the logs more valuable. Thirdly,
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our approach can offer high accuracy to detect the anomalies with the lower misclassification rate.

Fourthly, we use AI-powered approaches to make detection methods smarter.
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