
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2019

Training Neural Networks Through the Integration of Evolution Training Neural Networks Through the Integration of Evolution

and Gradient Descent and Gradient Descent

Gregory Morse
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

STARS Citation STARS Citation
Morse, Gregory, "Training Neural Networks Through the Integration of Evolution and Gradient Descent"
(2019). Electronic Theses and Dissertations. 6714.
https://stars.library.ucf.edu/etd/6714

This Doctoral
Dissertation (Open
Access) is brought
to you for free and
open access by
STARS. It has been
accepted for
inclusion in
Electronic Theses
and Dissertations by
an authorized
administrator of
STARS. For more
information, please
contact
lee.dotson@ucf.edu.

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F6714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
https://stars.library.ucf.edu/etd/6714?utm_source=stars.library.ucf.edu%2Fetd%2F6714&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

TRAINING NEURAL NETWORKS THROUGH THE INTEGRATION OF EVOLUTION AND
GRADIENT DESCENT

by

GREGORY MORSE
B.S. Wichita State University, 2007

M.S. University of Central Florida, 2016

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Fall Term
2019

Major Professor: Kenneth O. Stanley

c© 2019 Gregory Morse

ii

ABSTRACT

Neural networks have achieved widespread adoption due to both their applicability to a wide range

of problems and their success relative to other machine learning algorithms. The training of neu-

ral networks is achieved through any of several paradigms, most prominently gradient-based ap-

proaches (including deep learning), but also through up-and-coming approaches like neuroevolu-

tion. However, while both of these neural network training paradigms have seen major improve-

ments over the past decade, little work has been invested in developing algorithms that incorporate

the advances from both deep learning and neuroevolution. This dissertation introduces two new

algorithms that are steps towards the integration of gradient descent and neuroevolution for train-

ing neural networks. The first is (1) the Limited Evaluation Evolutionary Algorithm (LEEA),

which implements a novel form of evolution where individuals are partially evaluated, allowing

rapid learning and enabling the evolutionary algorithm to behave more like gradient descent. This

conception provides a critical stepping stone to future algorithms that more tightly couple evolu-

tionary and gradient descent components. The second major algorithm (2) is Divergent Discrim-

inative Feature Accumulation (DDFA), which combines a neuroevolution phase, where features

are collected in an unsupervised manner, with a gradient descent phase for fine tuning of the

neural network weights. The neuroevolution phase of DDFA utilizes an indirect encoding and

novelty search, which are sophisticated neuroevolution components rarely incorporated into gra-

dient descent-based systems. Further contributions of this work that build on DDFA include (3)

an empirical analysis to identify an effective distance function for novelty search in high dimen-

sions and (4) the extension of DDFA for the purpose of discovering convolutional features. The

results of these DDFA experiments together show that DDFA discovers features that are effective

as a starting point for gradient descent, with significant improvement over gradient descent alone.

Additionally, the method of collecting features in an unsupervised manner allows DDFA to be ap-

iii

plied to domains with abundant unlabeled data and relatively sparse labeled data. This ability is

highlighted in the STL-10 domain, where DDFA is shown to make effective use of unlabeled data.

iv

This work is dedicated to Evelyn. May the future hold an endless bounty of wonder as you

explore the mysteries of the universe.

v

ACKNOWLEDGMENTS

I would first like to offer my heartfelt appreciation to my advisor, Dr. Kenneth O. Stanley, who

has provided a model of what a scientific researcher should be. From the generation and devel-

opment of ideas to the application thereof, and the effective explanation both through writing and

public presentation, Dr. Stanley has offered guidance at every step. Along with his enthusiasm for

discovery, his neverending drive to improve an idea and promulgate it effectively played a critical

role in the creation of this dissertation.

I would also like to give special thanks to my mother and father, who encouraged my interest in

both computers and science from a young age. I would also like to share my appreciation for my

wife, Jennifer, whose love and support were crucial to the completion of this work. And thank you

to Bill and Marlene Hyde, whose encouragement led me to pursuing my graduate degree at UCF.

I am also grateful to my other committee members, Dr. Mubarak Shah, Dr. R. Paul Wiegand, and

Dr. Annie S. Wu, whose feedback has helped improve the quality of this dissertation.

I would like to extend my gratitude to all of the members of the EPlex lab that I had the pleasure

of working with throughout the years. From the many discussions and brainstorming sessions we

had to the collaborative projects we worked on, my peers were instrumental in my personal and

professional development.

Finally, I would like to thank all those who support and maintain the Stokes cluster at the UCF

Advanced Research Computing Center. Without the computational resources of Stokes, this dis-

sertation would not have been possible.

vi

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF TABLES . xi

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: BACKGROUND . 6

Artificial Neural Networks . 6

Gradient Descent . 7

Convolutional Neural Networks . 9

Evolutionary Algorithms and Neuroevolution . 11

Hybrid Algorithms . 14

CHAPTER 3: NEW APPROACH: LEEA . 16

Limited Evaluation Evolutionary Algorithm . 16

Approach . 17

Experiment . 19

Results . 23

vii

Synthesis . 26

CHAPTER 4: NEW APPROACH: DDFA . 29

Divergent Discriminative Feature Accumulation . 29

Approach . 30

Experiment . 33

Results . 36

Synthesis . 38

CHAPTER 5: DDFA DISTANCE FUNCTION . 40

Euclidean Distance . 43

Alternative Distance Functions . 43

Weighted Euclidean Distance . 43

Cosine Distance . 44

Manhattan Distance . 45

Fractional Norm Distance . 47

Component Neighbor Distance . 47

QMNIST Domain . 49

Experiment . 49

viii

Results . 52

Synthesis . 55

CHAPTER 6: CONVOLUTIONAL DDFA . 58

Approach . 58

STL-10 Domain . 61

Experiment . 64

Results . 68

QMNIST . 68

STL-10 . 70

Effective Utilization of Unlabeled Data . 75

Network Architecture and Wide Networks . 76

Synthesis . 78

CHAPTER 7: DISCUSSION . 79

CHAPTER 8: CONCLUSION . 85

LIST OF REFERENCES . 87

ix

LIST OF FIGURES

Figure 3.1: LEEA Results . 26

Figure 4.1: DDFA Collected Features . 37

Figure 5.1: Distance Function Performance . 53

Figure 6.1: STL-10 Training Images . 63

Figure 6.2: Convolutional DDFA on QMNIST . 69

Figure 6.3: Convolutional DDFA on STL-10 . 71

Figure 6.4: Convolutional Features with Euclidean Distance 73

Figure 6.5: Convolutional Features with Fractional Norm Distance 74

Figure 6.6: Utilization of Unlabeled Data in DDFA . 76

Figure 6.7: Effect of Network Width on Performance 77

x

LIST OF TABLES

Table 3.1: LEEA Results . 25

Table 4.1: Initial DDFA Results . 36

xi

CHAPTER 1: INTRODUCTION

The past decade has seen an explosion in the application of neural networks to a range of artificial

intelligence domains [19, 57, 75, 101, 104]. This widespread adoption can be credited primarily

to the rise of deep learning, which allows neural networks of many layers to be trained effectively.

This deep architecture allows simple features discovered in the lower layers to be composed into

more complex features, leading to a hierarchy of increasingly complex features. This hierarchy is

thought to be at the core of what makes deep neural networks so powerful. Because of its success

across a wide range of domains, deep learning has come to dominate neural network research in

recent years. However, despite its success, deep learning depends upon some form of gradient

descent, which makes it vulnerable to theoretical pitfalls such as local optima and empirically

observed anomalies such as fooling [83]. Furthermore, the application of deep learning is greatly

constrained by its requirement of abundant labeled training data. For example, ImageNet [26],

which is the most commonly used image processing domain in deep learning, contains over a

million labeled images for training. However, few real world problems contain such an abundance

of labeled data, and generating labeled data may be cost prohibitive.

Other neural network training paradigms have seen advances in recent years. Among these is

neuroevolution, in which neural networks are trained with an algorithm that borrows from the

process of biological evolution. Neuroevolution has seen several important advances in the past

decade [63, 90, 111], including competitive performance to deep learning in some reinforcement

learning (RL) domains [17, 87]. More importantly, because it does not require an abundance

of labeled training data, or even any labeled data at all, neuroevolution is broadly applicable to

almost any problem, making it popular on domains where it is difficult to apply an algorithm with

the limitations that come with deep learning [17, 19, 65, 95].

1

While deep learning and neuroevolution are most often viewed as competing neural network train-

ing paradigms that are perhaps each suited to only certain problems, there is a small but growing

array of hybrid algorithms that combine aspects of both paradigms to exploit the strengths of each

[5, 12, 53, 67, 72, 92, 94]. However, these hybrid algorithms typically adopt a very simple evo-

lutionary algorithm, ignoring the major advances in neuroevolution over the past decade. These

hybrids also tend to treat evolution and gradient descent as distinctly separate processes, with lit-

tle interaction between the two paradigms. The primary goal of this dissertation is to provide an

example of how the more sophisticated developments in neuroevolution can be combined with gra-

dient descent to form an algorithm that exploits the strengths of both paradigms. Secondarily, this

work provides a new algorithm that allows neuroevolution to behave more like gradient descent,

permitting the two paradigms to be combined in a more interactive manner.

In its first contribution, this dissertation presents a new variation of the traditional evolutionary

algorithm (EA), named Limited Evaluation Evolutionary Algorithm (LEEA), that allows EAs to

behave more like their gradient descent cousins. The key insight introduced by LEEA is that

individuals in the population do not need to be evaluated against the entire training set to determine

their fitness. Instead, they can be evaluated against a small subset of the training set (as few as two

examples) and that information, along with fitness information from their ancestors, can provide a

useful estimate of their fitness. This reduction greatly speeds up training, particularly on domains

with a large amount of training data. More importantly, the process of limited evaluation mirrors

an aspect of stochastic gradient descent called mini-batch training, where a network is trained

against a small subset of the training set at a time. By providing an analogous method of training

in EAs, LEEA provides the ability to combine EAs with gradient descent in a more tightly coupled

relationship.

The second and most extensive contribution of this dissertation is the development of a new kind of

hybrid algorithm, named Divergent Discriminative Feature Accumulation (DDFA), that combines

2

the strengths of gradient descent and two of the more powerful tools available in neuroevolution:

indirect encoding [111] and novelty search [63]. DDFA contains an unsupervised feature collection

phase, in which candidate features are encoded by Compositional Pattern Producing Networks

(CPPNs) [38], which are a type of indirect neural network encoding. CPPNs tend to produce

patterns with regularities such as symmetry and repetition with variation, which can be useful

when looking for image features. The CPPN-generated candidate features are evolved with novelty

search providing the evolutionary pressure, which allows DDFA to discover a set of features that

discriminate across the training set in diverse ways. Once enough novel features are discovered,

they are composed into a fully-connected neural network and trained in a more traditional way

with stochastic gradient descent (SGD).

The third major contribution is an analysis of the distance function in DDFA, which is a critical

component of the novelty search algorithm that drives the evolution and discovery of new features.

While the traditional choice for comparing individuals in novelty search is Euclidean distance, the

analysis performed here reveals other distance functions to be more suited to this task, due in large

part to the high dimensionality of the behavior vectors that are produced by the feature evaluation

process in DDFA. The implications of this investigation extend beyond DDFA back to novelty

search in general, where these insights can potentially improve the application of novelty search

across a diverse range of applications.

The fourth and final contribution of this dissertation is the application of DDFA to the discovery

of convolutional features, unlocking the potential to apply DDFA to some of the most advanced

architectures in use today. This work applies DDFA first to the discovery of convolutional features

on the MNIST handwritten digit recognition domain. Although MNIST is not a cutting-edge visual

recognition domain, it acts as a launching pad for the initial development of DDFA, which requires

significant computational resources to tune hyperparameters of the system. To then demonstrate

its potential, DDFA is applied to the STL-10 domain [16], which is a subset of ImageNet with a

3

limited amount of labeled training data and a larger sample of unlabeled data. This domain was

designed for testing semi-supervised algorithms such as DDFA, and this contribution finally shows

that DDFA can successfully exploit the unlabeled data to generate convolutional features that pro-

vide a helpful starting point for gradient descent. This discovery implies that not only can DDFA

provide a potential benefit to gradient descent on domains where gradient descent already does

well, but DDFA can also allow gradient descent to be applied to new domains where it currently

struggles due to a limitation on available labeled training data. Furthermore, an experiment on this

domain reveals that DDFA can also provide better exploitation of a wider network than gradient

descent alone can efficiently train, providing another avenue of opportunity for the training of wide

networks.

DDFA is an important contribution for several reasons. First, the feature discovery technique pro-

vides a performance improvement over random initialization even when all of the training data

is labeled, as is shown by experiments on the MNIST domain. Furthermore, the non-convergent

nature of novelty search may assist gradient descent in avoiding local optima. Finally, the un-

supervised nature of feature discovery allows it take advantage of unlabeled data, which is often

far more abundant than labeled data. This capability, as is shown in multiple experiments on the

STL-10 domain, potentially can assist in applying gradient descent to to many problems where an

abundant amount of labeled data is unavailable.

Taken as a whole, the contributions in this dissertation are focused on expanding the possibilities

for combining neuroevolution and gradient descent for training neural networks. While LEEA

provides an important stepping stone towards the development of such hybrid algorithms, DDFA

provides an example of an algorithm that combines some of the more sophisticated neuroevolution

tools with gradient descent, exploiting the strengths of both paradigms. This example could open

the door to many new hybrid algorithms that combine the best aspects of these two popular neural

network training paradigms.

4

The dissertation continues in Chapter 2 with background into gradient descent and neuroevolution

and a review of previous attempts to combine the two training paradigms. Chapter 3 introduces

the LEEA algorithm and Chapter 4 introduces the DDFA algorithm, both including experimen-

tal results. From there, Chapter 5 contains a discussion and experiments related to the distance

function used by the novelty search component of DDFA and Chapter 6 details the approach and

experiments related to learning convolutional features within DDFA. The implications of the work

as a whole are discussed in Chapter 7, followed by the conclusion in Chapter 8.

5

CHAPTER 2: BACKGROUND

This chapter reviews foundational material to the LEEA and DDFA algorithms introduced in later

chapters. First is a brief introduction to neural networks, followed by an introduction of convo-

lutional neural networks. Next is a review of the neural network training paradigms contained

within DDFA: gradient descent and neuroevolution. Finally, the chapter ends with a review of the

literature on hybrid algorithms that combine gradient descent with neuroevolution.

Artificial Neural Networks

Artificial neural networks (ANNs) are computational models inspired by the biological neural

networks found in animals, including humans. ANNs are composed of a layer of input neurons,

one or more layers of hidden neurons, and a layer of output neurons, where each layer is typically

connected to adjacent layers. Each neuron is loosely modeled upon the activity of biological

neurons, and information in feedforward networks flows from the input layer to the output layer.

Due to the ability of any ANN with at least one hidden layer to model nonlinear processes, ANNs

have been successfully applied to a wide array of problems, including visual recognition [57],

speech recognition [101], robotic control [19], board games [104], and video games [75].

Many algorithms have been developed for training ANNs; early work focused on biologically plau-

sible learning methods such as Hebbian learning [49], which is based on neural plasticity. How-

ever, Hebbian learning had limited success and applicability and was quickly supplanted by less

biologically plausible methods such as perceptron learning [96]. Since then several other learn-

ing algorithms have been applied to ANNs, such as evolutionary algorithms [4, 24], expectation-

maximization [82], particle swarm optimization [29], and simulated annealing [14], but the basic

6

method of gradient descent [98], which the perceptron learning rule is based upon, has dominated

the field of ANNs for decades. In that time, gradient decent has grown from a simple algorithm

for training perceptrons to the algorithm of choice for training deep neural networks in the field of

deep learning.

Gradient Descent

Gradient descent (GD) is an optimization algorithm for finding the minimum of a function by

moving in the negative direction of the gradient of the error at each step. The perceptron learning

rule was the first implementation of this approach for optimizing simple ANNs and is defined by

the equation

wi(t+ 1) = wi(t) + (dj − yj(t))xj,i, (2.1)

for all weights, where wi is the i-th weight, dj is the desired output of the j-th training exam-

ple, yj(t) is the actual output of the perceptron, and xj,i is the i-th input value for the j-th training

example. While the perceptron learning rule was an important step forward for ANN learning algo-

rithms, it came with significant limitations. While Minsky and Papert [74] showed that perceptrons

are guaranteed to converge when the classes are linearly separable, the absence of a hidden layer

hinders perceptrons from converging when the classes are not linearly separable, such as with

the XOR problem. Without a better alternative for training ANNs, research into ANN training

stagnated for over a decade.

The revival of ANN research in the 1980s was due in large part to a new GD-based technique called

backpropagation (BP) [59, 86, 97, 118]. Put simply, BP is the method of propagating the error

backwards through a neural network, permitting the use of gradient descent across any arbitrary

7

number of layers. With at least one hidden layer, neural networks are able to compute functions

that are not linearly separable, such as XOR. In fact, it has been shown that a neural network

with just a single hidden layer is sufficient to approximate any continuous function [20]. BP was

described generally and theoretically in many forms throughout the 1970s, but the first ANN-

specific application of BP was described by Werbos [118]. BP was extended and popularized by

further work in the mid 1980s by Parker [86], LeCun [59], and Rumelhart et al. [97].

Over the decades since its inception, BP saw increasing success that largely followed the trajectory

of increasing computational power, which is particularly helpful for deep ANNs, and increased ac-

cess to labeled training data. Various algorithmic improvements have also expanded the power of

BP’s ability to train ANNs. The most commonly used form of gradient descent through backprop-

agation is called stochastic gradient descent (SGD), in which the ANN is evaluated and the weights

updated after only a small number of training examples. SGD enables even large networks to be

trained relatively quickly, and with increases in computational power, very large networks can now

be trained. Because of this, the training of ANNs with many hidden layers, known as deep learn-

ing, has seen an enormous rise in popularity and success [11, 50, 58, 71]. A key unifying principle

in deep learning is that an ANN with multiple hidden layers can encode increasingly complex

features across its layers. Other substantial improvements in deep learning include convolution,

which is explained in more detail in the next section, and long short-term memory units (LSTMs),

which are recurrent network structures that give ANNs a type of memory [51]. These advances in

ANN training, which still rely on GD to learn the network weights, have led to substantive records

being broken in many areas of machine learning [15, 47, 58, 104], including unsupervised feature

learning [8].

The success of a principle as simple as SGD in achieving record-breaking performance is perhaps

surprising. After all, in a space of many dimensions, SGD should be susceptible to local optima,

and unlike an evolutionary algorithm, all its eggs are essentially in a single basket because it

8

works in effect with a population of one. Yet it turns out empirically that SGD is penetrating

farther towards optimality in networks of thousands or millions of weights than any other approach.

Attempting in part to explain this phenomenon, Dauphin et al. [23] make the intriguing argument

that in fact very high-dimensional ANN weight spaces provide so many possible escape routes

from any given point that local optima are actually highly unlikely. Instead, they suggest that

the real stumbling blocks for SGD are saddle points, or areas of long, gradual error plateaus.

This insight has both helped to explain why SGD might not get stuck, and also to improve it to

move faster along such saddle points in the search space. There are also variants of SGD such as

RMSProp [116] that help to extricate it from similar situations.

In fact, the smooth application of SGD in deep learning remains a work in progress. Many tricks

have been developed to improve its performance, such as the introduction of rectified linear units

(ReLUs) for activation functions, which improves the passing of the gradient from layer to layer

over sigmoidal units [81]. Yet even then, researchers continue to observe challenges with finding

the right parameters to make such structures learn smoothly, leading to complicated work-arounds

like interpolating between different architectures over the course of learning [2] and the highway

networks architecture of Srivastava et al. [107] that in effect turns some neurons on and off over the

course of learning, which is reminiscent of evolutionary algorithms that learn structure like NEAT

[108]. Thus there remains ample room for new approaches.

Convolutional Neural Networks

Convolutional neural networks (CNNs) are a special type of neural network that enforce a type of

local connectivity to achieve translation invariance. Translation invariance allows CNNs to detect

the presence of a feature regardless of where it shows up in the input space and without duplication

of network structure. CNNs draw inspiration from biology, where it was observed by Hubel and

9

Wiesel [55] that the visual cortex contains what are described as simple cells, which respond to

edges of particular orientations in a specific location of the field of vision, and complex cells,

which respond to edges of a particular orientation regardless of where they show up in the field

of vision. Inspired by this work, Fukushima [37] developed a model named Neocognition, which

is regarded as the first implementation of the principles of translation invariance within neural

networks. It was over a decade after this first implementation before the increasing computational

power of computers and the development of backpropagation allowed CNNs to develop into their

current form [60, 62].

Like a more traditional fully connected neural network, CNNs consist of an input layer, one or

more hidden layers, and an output layer. However, the first several hidden layers of a CNN will

typically be a special type of layer called a convolutional layer where rather than being connected to

all neurons of the previous layer, the neurons are connected in a special, locality-specific manner to

the previous layer. A convolutional layer consists of a set of filters or kernels that have a relatively

small receptive field. Each feature is evaluated against the input and a shift in location produces

multiple outputs that are composed into what is often called a feature map. This feature map,

which provides location information for each feature, then acts as the input for the next layer in

the neural network. The process of shifting, or convolving, the filters across the input data can take

place in multiple dimensions, which allows this process to be applied to domains such as image

recognition, where data is typically two dimensional. This process of convolving filters across the

input data is what allows convolutional layers to detect features regardless of where they occur

in the input. In addition, the process of convolution, with its creation of feature maps, exploits

geometric information within the data, which is typically lost in a fully-connected network.

CNNs have seen a rise in popularity, with nearly ubiquitous use on visual recognition tasks and

widespread use in other areas such as natural language processing [126], time series prediction

[30], and board games [103]. However, while convolution has become a critical component of

10

deep learning, convolution is only an architectural change and not tied to the learning algorithm

behind deep learning, gradient descent. The door thus remains open for other neural network

training paradigms to exploit the power of convolution.

Evolutionary Algorithms and Neuroevolution

Evolutionary algorithms (EAs) are a broad class of nature-inspired algorithms based upon Dar-

win’s theory of evolution. While in nature populations of organisms adapt to their environment

through survival of the fittest and genetic inheritance with recombination and mutation, EAs apply

operations inspired by those in nature to populations of candidate solutions to a given problem. For

example, the concept of survival of the fittest in biological evolution is implemented by a fitness

function in an EA. Each candidate solution is evaluated on how well it solves the problem, yielding

its fitness, and its likelihood of being propagated into the future through reproduction is linked to

this fitness. In this way, less desirable solutions are discarded while the EA is free to explore areas

nearby the most desirable previously discovered solutions. This form of search space exploration

differs significantly from gradient descent. While gradient descent starts in a single location in

the search space and climbs to the nearest peak, EAs simultaneously explore multiple parts of the

search space, making them potentially less susceptible to deception of local optima.

The way in which candidates encode their solution to the problem is known as the problem repre-

sentation. While simple representations such as integer or binary strings are available, EAs may

also be applied to more complex representations such as ANNs. The application of EAs to opti-

mizing ANNs is called neuroevolution (NE) by its practitioners [33, 108]. While EAs predate the

advent of backpropagation by well over a decade [35, 52], the field of neuroevolution only began in

the 1980s (e.g. Montana and Davis [76]), at a time when backpropagation was already on the rise

[98]. Interest in neuroevolution picked up in the 1990s, during which a wide variety of approaches

11

were introduced [124]. In these early years, many researchers focused on the intriguing idea that

evolution might in fact exceed the capabilities of backpropagation.

In fact, a number of early studies showcase neuroevolution through a variety of EAs matching

[120] or even outperforming backpropagation in classification problems [40, 76, 89]. In these early

years enthusiasm was high in part because the future potential of evolving topology along with

connection weights seemed to provide a potential advantage for neuroevolution. As Mühlenbein

[80] put it, “We conjecture that the next generation of neural networks will be genetic neural

networks which evolve their structure.” Many researchers echoed this enthusiasm [13, 21]. Others

touted the potential for combining topology evolution with backpropagation [6, 119].

However, as computational capabilities increased over the ensuing decade, researchers began to

recognize that the apparent advantages of neuroevolution on relatively simple, low-dimensional

problems (i.e. requiring relatively small networks) with small amounts of data might be eclipsed

as the amount of data and size the ANNs increases. For example, even before deep learning really

began to showcase the power of gradient descent with big data, Mandischer [70] begins to articulate

the more negative outlook (focusing on Evolution Strategies, or ESs, which are a kind of EA): “We

will see that ESs can only compete with gradient-based search in the case of small problems and

that ESs are good for training neural networks with a non-differentiable activation function.”

As gradient descent techniques increasingly dominated the world of classification, especially af-

ter the advent of deep learning [10, 50], a significant shift in attention away from classification

took hold in the neuroevolution literature. Researchers began to focus on types of problems where

gradient descent is more challenging to apply, such as reinforcement learning problems requiring

recurrent connections and specialized architectures [3, 34, 43, 77]. As the focus in neuroevolu-

tion largely shifted towards reinforcement learning and away from classification, a new generation

of neuroevolution algorithms such as NEAT [108, 110], HyperNEAT [39, 111], and a modified

12

CMA-ES [56] gained popularity in part by focusing on the daunting challenge of finding the right

architecture for complicated control and decision-making problems, for which gradient-based ap-

proaches provide less convenient options. Thus the aspiration of EAs to compete directly with

SGD in training ANNs for state-of-the-art classification and supervised learning gradually became

only a memory.

Nevertheless, neuroevolution enjoys several advantages over gradient descent that make it both ap-

plicable to a broader range of problems and less susceptible to the classic gradient descent pitfalls

of local optima and saddle points [23]. For instance, the fitness function contained within EAs

is inherently more expressive than the error function in gradient descent. This difference allows

neuroevolution to be applied easily to problems where a gradient is difficult or impossible to com-

pute, such as in unsupervised and reinforcement learning domains. Recent work from OpenAI

has shown that evolution can perform just as well as the more standard gradient-based approaches

at training networks of high dimensionality on several reinforcement learning benchmarks [100].

Furthermore, the flexibility provided by the fitness function allows EAs to be applied to problems

with multiple objectives [25].

Another seemingly small but revolutionary modification to the fitness function was the discovery

of novelty search [63], which rewards individuals for novel behavior rather than raw ability at

a given task. This subtle change to the selection process transforms an EA from a convergent

process into a divergent one. Put simply, novelty search encourages behavioral diversity within

the population with little regard for the final goal, which frequently leads to better solutions than

through the search for raw performance with a traditional fitness function in a variety of domains

[42, 64, 78]. In addition to improving performance on traditional objective goals, novelty search

has also been instrumental in the development of the new field of quality diversity [90], which

focuses on producing a behaviorally diverse set of high-quality solutions in a single run.

13

Other advantages that neuroevolution enjoys over gradient descent include topological evolution

such as in NEAT, indirect encodings such as HyperNEAT, which encourage the discovery of repet-

itive neural structures, and genetic diversity techniques, which promote exploration of the search

space and prevent premature convergence. These approaches provide capabilities that are unavail-

able to GD-based approaches.

Hybrid Algorithms

Many neural network researchers, having recognized that both gradient descent and neuroevolution

provide their own benefits, have attempted to create algorithms that exploit both paradigms. While

neuroevolution can provide capabilities that are necessary to overcome obstacles within a particular

domain, the primary drive behind attempts to hybridize neuroevolution and gradient descent comes

from the hope of improving performance at a task that gradient descent already performs well on.

One of the more common approaches to hybridization involves exploiting evolution for topological

discovery while gradient descent adjusts the weights [5, 6, 27, 72, 73, 91, 102, 119, 122]. While this

approach to hybridization has seen some impressive results [93], this approach comes with a high

computational cost involved in performing gradient descent across all members of a population.

Because of this computational bottleneck, few of these approaches extend beyond a few dozen

generations, which is too few for evolution to fully explore the topology space. However, all of

these approaches may yet benefit from the increased parallelism in modern compute clusters.

Another common approach to hybridization is to execute gradient descent and neuroevolution in

separate phases such that the two have very little interaction. In the more common variant of

this approach, neuroevolution is performed first and the champion is then fine-tuned with gradient

14

descent [85, 94, 115]. Less commonly, multiple runs of gradient descent are performed to produce

a population of individuals that act as a starting point for neuroevolution [12, 69].

Other novel hybrid algorithms include recent work from DeepMind that performs learning with

gradient descent and employs an EA to determine the best parts of the network to reuse for transfer

learning [32] and a differentiable type of indirect encoding where the topology is evolved while

the weights are discovered through gradient descent [31].

While many researchers have recognized that neuroevolution can provide important tools to aug-

ment gradient descent, the full set of tools developed by the neuroevolution community over the

past two decades has not been fully exploited. In short, the vast majority of hybridization work

has been focused on only two relatively simple methods of combining these potentially complex

algorithms. More importantly, there has been little to no research in exploiting recent advances

in neuroevolution such as indirect encodings and novelty search for augmenting gradient descent.

The work in this dissertation aims to fill some of these gaps by combining these recent advances

in neuroevolution with gradient descent to more fully exploit the power of both paradigms.

15

CHAPTER 3: NEW APPROACH: LEEA

Hybridizations between evolution and SGD naturally raise the question of whether evolution can

mimic some aspects of SGD under the right conditions as well. If the algorithmic gap between

evolution and SGD could be bridged, it could open new possibilities for hybridizing these two

neural network training paradigms. This chapter explores this question with an algorithm that

obtains parity with SGD on lower-dimensional networks.

Limited Evaluation Evolutionary Algorithm

Of all gradient descent algorithms, stochastic gradient descent (SGD) is the most successful, pow-

ering the last decade of advances in deep learning. A key property of SGD is that the gradient

does not have to be calculated for the network over the entire training set. Instead, the gradi-

ent can be calculated for a single or very few training examples at a time, which greatly reduces

computational cost compared to training on all training examples at once and reduces the chance

of becoming stuck in local optima. Interestingly, this ability to adjust weights after very few ex-

amples is not necessarily exclusive to gradient descent. Rather, it can in principle apply to any

algorithm that traditionally evaluates its solutions against an entire training set, such as EAs. With

this in mind, Ken Stanley and I created the limited evaluation evolutionary algorithm, or LEEA,

which runs evolution against a very few number of training examples in each generation. Through

a few simple modifications to a generic EA, LEEA is able to compete with stochastic gradient

descent (SGD) on multiple benchmark problems on networks with over 1, 000 weights. Moreover,

because LEEA transforms the EA into an algorithm that more closely resembles SGD, it opens the

possibility of integrating evolution and SGD in ways that were not possible previously.

16

Approach

LEEA implements the core idea from SGD of limited evaluation for the first time in a very simple

traditional generational EA. Instead of evaluating the population against the entire training set each

generation, the population is evaluated against only a limited number of training examples each

generation. This lean approach to evaluation greatly relieves the computational load, particularly

on large training sets, allowing much more rapid network training.

However, one potential weakness of LEEA is that performance on a single example may not corre-

spond to performance across all examples. In SGD, this problem of deceptive examples is tempered

by the learning rate and the fact that the population of in effect one individual is never “replaced”

by a defective mutant, which prevents the network from shifting too far towards a globally poor

configuration during any given evaluation. In contrast, an EA does not inherently contain such

safeguards against such deceptive training examples. For example, in the EA, a species well suited

to only the present example could displace one that had mastered all the examples before. Two

strategies in LEEA mitigate this problem. The first is simple: the population is evaluated against

more than one example per generation, though still very few. This strategy reduces the potential

damage caused to the population by a single deceptive training example.

It should be noted that while the technique of evaluating the population against a small set of

examples each generation may appear to be analogous to a technique employed by SGD called

“mini-batching” [18], its motivation in LEEA is different. SGD employs mini-batches primarily to

better utilize parallel computational resources, while LEEA employs these mini-batches for more

stable population dynamics.

The way the examples are selected for each mini-batch naturally can influence the effectiveness of

the algorithm. For instance, if all of the examples selected for a given mini-batch happen to have a

17

similar expected output, then even degenerate networks that output a constant value may achieve a

high fitness. Instead, if the examples are selected so that they have a diversity of expected outputs,

then networks will only be highly rewarded when they can also produce a diversity of outputs that

match the expected values. As an example, consider the case of applying this approach to the

MNIST handwritten digit domain. If a single mini-batch contains only images in the class ”1”,

then a network that always classifies an image as ”1” without regard to the input would achieve a

high fitness on this mini-batch. However, if the mini-batch contains one image of each class, then

networks will only achieve a high fitness through a more complex behavior that can discriminate

between the different inputs. This mini-batching approach thereby prevents degenerate networks

from ever achieving a high fitness and rewards networks that exhibit heterogeneous behavior.

Even with carefully selected mini-batches, LEEA might still lose individuals who are relatively

fit in a global sense, but weak on the examples encountered during any single mini-batch. This

danger is particularly acute during early evolution, when the best individuals may only succeed on

a small percentage of all examples. To further combat this complication, the second key strategy in

LEEA is that fitness is calculated based on both the performance on the current mini-batch and the

performance of the individual’s ancestors against their mini-batches. As long as each step of evo-

lution is not changing the behavior of each network in a radical way, this fitness inheritance builds

up for those individuals who are more likely to be more globally fit than their peers, regardless of

how they performed on the current mini-batch. It is important to note that this form of fitness in-

heritance is inspired by, though differs from, previous approaches to fitness inheritance that aimed

to avoid directly evaluating a portion of the population [36, 106]. To implement fitness inheritance

in LEEA, the fitness for individuals produced by sexual reproduction and asexual reproduction,

respectively, is given by

f ′ =
fp1 + fp2

2
(1− d) + f, and (3.1)

18

f ′ = fp1(1− d) + f, (3.2)

where f ′ is the individual’s modified fitness, f is the fitness of the individual against the current

mini-batch, fpn is the fitness of parent n, and d is a constant decay value.

The introduction of output-diverse mini-batching and fitness inheritance enables LEEA to take ad-

vantage of the computational benefits of SGD within the framework of evolutionary computation.

Other than these two strategies, LEEA is just a simple generational EA with a mutation power

decay (which is analogous to learning rate decay in SGD):

Algorithm 1 LEEA
1: while gen < maxGenerations do
2: select mini-batch of training examples
3: evaluate population
4: modify fitnesses based on fitness inheritance
5: select parent(s) from a truncated list with roulette wheel selection
6: create offspring – sexual reproduction with uniform crossover (without mutation) or asex-

ual reproduction with uniformly distributed mutation
7: reduce maximum mutation power by multiplying by decay constant
8: gen = gen+ 1
9: end while

This algorithm contains only the bare essentials required for a more traditional EA to work, along

with the modifications necessary to combat the complications caused by limited evaluations per

generation.

Experiment

To assess the effectiveness of LEEA as an alternative to more traditional neural network opti-

mization methods, performance is tested in three domains against a traditional generational EA

(TGEA), SGD, and RMSProp, which is a popular variant of gradient descent based on the idea

19

that following shallow gradients can often be as useful as following steep ones [116]. While many

evolutionary-based approaches exist, the traditional generational EA was chosen as it provides

the closest analog to LEEA, allowing this experiment to more easily disentangle the question of

whether the limited evaluation process in LEEA provides a benefit. The TGEA works like LEEA,

but with all training examples evaluated in each generation (instead of a mini-batch), and no fitness

inheritance mechanism. In RMSProp, the enhancement to SGD, the current gradient information

is divided by a running average of recent gradients. This technique allows the algorithm to escape

from plateaus with tiny gradients more quickly. All three domains are chosen because they can

benefit from a neural network of moderate dimensionality, i.e. over 1,000 connection weights that

must be optimized. In general it is not a common view that a simple EA is suited to optimizing so

many parameters in a neural network as effectively as SGD. Therefore these experiments demand

an unusual ability for EAs that is rarely contemplated in deep learning literature.

Sample data from each domain is divided into a training set, a validation set, and a test set. All

algorithms evaluate performance against the validation set to test for over-fitting. The evolution-

based algorithms additionally require this validation performance data to determine which indi-

vidual from the population is selected for evaluation against the test set. All reported results are

thus based on performance against the test set and for evolution the individual tested is the one that

performed best against the validation set.

The first domain, with 800 training examples, is a function approximation task, where the function

is given by the equation

f(x, y) =
sin(5x(3y + 1)) + 1

2
. (3.3)

20

Preliminary tests indicate that the surface generated by this function is sufficiently difficult to

approximate that networks with over 1,000 connections have an advantage over smaller networks,

thus making a good test for the effective use of high dimensions.

The second domain is a time series prediction task with 1,200 training examples where the time

series is generated using the Mackey-Glass chaotic time series equation

dx

dt
= β

xr
1 + xrn

− γx, γ, β, n > 0 (3.4)

where γ = 1, β = 2, r = 2, n = 9.65, x0 = 1.1, and x1 = 1.2. The prediction for time t is based

on values at t−6, t−12, t−18, and t−24. This task has been employed to test neural networks in

the past [54], and is also sufficiently complex to potentially benefit from over 1,000 connections.

The third domain is the California housing dataset, which is a housing value prediction task with

10,000 training examples also previously given to neural networks [54, 68]. This task contains ob-

servations of housing data where each observation consists of eight input attributes for a particular

block of housing (median income, median house age, etc.) and one output for the median house

value.

All learning algorithms train with the same network topology, which contains two hidden layers

with 50 nodes in the first layer and 20 nodes in the second layer, as well as a single output. Be-

cause of differences in the number of inputs, the resultant networks have 1,170, 1,270, and 1,470

connections for the first, second, and third domains, respectively (networks include also a bias

node). LEEA and TGEA are both evolved using a direct encoding (i.e. one floating-point gene per

connection in the network) with no ability to change the network topology.

To evaluate the effectiveness of each algorithm, they are exposed to the same total number of

examples during training. That way, the number of generations given to TGEA equals the number

21

of epochs given to SGD and RMSProp, while LEEA is given a proportionately higher number of

generations (which of course still means the same number of evaluations) than TGEA based on

the ratio of total training examples to the number of examples evaluated per generation. Because

the EAs must evaluate all members of their population, on a single processor their execution time

becomes greater proportionally to the population size. However, parallelization can potentially

benefit EAs to a greater degree because each such evaluation is independent. As the capacity for

parallelization increases, the instrumental issue thus shifts from population size to the ability to

effectively learn from each training example, which is why performance is measured here based

on the number of examples evaluated.

Parameters for all algorithms were selected through a parameter sweep on the first domain. There

were two key differences found between the ideal parameters of LEEA compared to TGEA. For

LEEA, the ideal starting mutation power (the maximum size of a weight mutation) is 0.03, com-

pared to 0.1 for TGEA. This difference reflects that it is better to take smaller steps when evaluating

individuals on a small set of training examples. In addition, while TGEA performs best with fit-

ness sharing-based speciation [41] in the spirit of NEAT [108] based on genetic similarity (which

maintains diversity), LEEA performs best without any speciation. This observation makes sense

because the changing mini-batch in each generation is a force for diversity on its own.

Parameters in common between LEEA and TGEA are population size (1,000), mutation power

decay (0.99), mutation rate (0.04), mutation type (uniform), selection proportion (0.4), and sexual

reproduction proportion (0.5). Selection proportion refers to the ratio of individuals (sorted by

fitness) that are eligible for reproduction.

Ideal mini-batch size in LEEA was determined experimentally to be 2. In all three domains,

there is no notion of output classes, but rather a single real number output in the range {0, 1}.

To apply the idea of diversity in mini-batches, the output range is divided into two equally sized

22

sections, and examples selected so that each mini-batch contains one example for both sections

of the range. A new mini-batch is randomly generated at the beginning of each generation (while

ensuring the diversity of the expected outputs). The ideal fitness inheritance decay rate for LEEA

was determined experimentally to be d = 0.2.

SGD and RMSProp were implemented as online learning (i.e. one example at a time). Mini-

batching with these methods is not included in the comparison because there is not a consensus

on an empirical advantage for mini-batching on a per-epoch basis, and some have even suggested

perhaps a slight disadvantage [121]. Therefore, the online case serves as a more transparent base-

line that avoids introducing any confounding factors that might come with mini-batching. The

training examples are reshuffled at the start of each epoch. The initial learning rate for SGD and

RMSProp is 0.3 and 0.001, respectively. The learning rate is decayed exponentially by 0.0001 per

epoch for both SGD and RMSProp. RMSProp maintains a queue of 250 recent magnitudes for

each parameter for calculating the per-parameter learning rate.

All neurons in every setup are sigmoidal based on the function f(x) = 1
1+e−x . That way, all

methods are compared in equivalent conditions. Of course it is known that other functions like

rectified linear units [81] can sometimes help deep networks under SGD, but the aim here is to

establish how these methods behave under equivalent controlled conditions to get a sense of their

relative capabilities in general.

Results

Table 3.1 shows testing results for each algorithm on each domain. Overall test performance in

the table is measured as the root mean square error (RMSE) of the individual who performs best

against the validation set across the run, where individuals are tested against the validation set at

23

regular intervals based on the number of training examples in the domain (every 4,000 samples

for function approximation, every 6,000 samples for the time series, and every 30,000 samples for

California Housing). The individual tested in the evolutionary runs is the one who performs best

on validation from the population at the current generation. It is important to note that overall, each

algorithm experiences precisely the same number of examples before each validation check, so the

amount of training data experienced is always equivalent. Test performance is averaged over 10

runs for each algorithm/domain combination. Some results did not exhibit a normal distribution, so

significance between results is calculated with the Mann-Whitney U test. On the function approxi-

mation domain, LEEA’s performance is not statistically significantly different from RMSProp, but

it performs slightly though significantly worse than SGD (p < 0.01) and significantly better than

TGEA (p < 0.01). On the time series domain, though LEEA performs best by a small margin,

there is no statistical difference between LEEA, SGD, and RMSProp, and all three algorithms

perform significantly better than TGEA (p < 0.01). On the California housing domain, LEEA

performs slightly though significantly worse than SGD and RMSProp (p < 0.01) and significantly

better than TGEA (p < 0.01). As a whole, comparing results between LEEA and TGEA in all

the domains confirms that EA performance can be significantly enhanced by evaluating a limited

number of examples per generation. They also show that differences between LEEA, SGD, and

RMSProp range from very small to insignificant, with LEEA even performing best (though in-

significantly) in one domain, supporting the conclusion that LEEA is a viable option for training

neural networks.

24

Table 3.1: LEEA Testing Results. This table shows the root mean squared error with standard

deviation for each algorithm on each domain.

Function Approximation Time Series California Housing

TGEA 0.1643± 0.0121 0.2068± 0.0107 0.1216± 0.0013

LEEA 0.0711± 0.0116 0.1080 ± 0.0340 0.1147± 0.0020

SGD 0.0539 ± 0.0087 0.1336± 0.0380 0.1097± 0.0016

RMSProp 0.0636± 0.0138 0.1227± 0.0410 0.1092 ± 0.0007

To provide further insight into these results, Figure 3.1 shows average testing accuracy across

whole runs, with the x-axis normalized such that all algorithms are evaluated against an equal num-

ber of training examples on the same problem at the same point along x. For the evolution-based

algorithms, the whole population is evaluated against the validation set at each measurement in-

terval and the individual with the best validation performance is selected for testing. While TGEA

learns more slowly and converges to a less optimal solution than SGD and RMSProp, LEEA ex-

hibits a qualitatively similar training curve to these conventional deep learning training algorithms.

This observation provides further evidence that LEEA offers an evolution-based alternative for

training complex neural networks that is potentially competitive with the state of the art.

25

0.1

0.15

0.2

0.25

R
M

S
E

LEEA

RMSProp

TGEA

LEEA

RMSProp

0

0.05

0 1000 2000 3000 4000

Training examples (x1000)

LEEA

SGD

LEEA

SGD

(a) Function approximation

0

0.05

0.1

0.15

0.2

0.25

0 1500 3000 4500 6000

R
M

S
E

Training examples (x1000)

LEEA
RMSProp

SGD

TGEA

(b) Time series

0.1

0.12

0.14

0.16

0.18

0.2

0 3000 6000 9000 12000 15000

R
M

S
E

Training examples (x1000)

LEEA

RMSProp
SGD

TGEA

(c) California housing

Figure 3.1: Average root mean square error on the test set over time. The average performance

over total training examples seen so far as measured against the test set is displayed for each

algorithm on the (a) function approximation, (b) time series, and (c) California housing domains.

The main result is that the performance of LEEA closely matches that of SGD and RMSProp.

Synthesis

The results suggest that a simple EA with limited evaluations in each generation (LEEA) can opti-

mize neural networks of over 1,000 dimensions about as effectively and in about the same number

of iterations as gradient descent algorithms that currently dominate the field of deep learning.

26

While these results do not prove that such EAs will continue to work well on the neural networks

of millions or more weights that now feature in the most cutting-edge results in deep learning

[46], they are an intriguing hint that the potential for EAs in this area may be greater than previ-

ously believed. At the least it suggests that investigation of such algorithms on larger networks is

warranted.

The core question on much larger networks is whether somehow the gradient over the high number

of dimensions becomes too hard to approximate for the EA. For example, if such high-dimensional

optimization requires effectively sampling changes along nearly every dimension, the EA popu-

lation might fail to sample densely enough. Yet if it is true that there are many paths to near-

optimality as has been argued even in deep learning literature [23], it may not ultimately be essen-

tial to sample even a large proportion of the possible paths. In fact, sparse sampling could be a

winning trade-off as the price to gain diversity, which conventional SGD lacks. In any case, only

further empirical investigation on more complex domains such as MNIST can settle this question.

The potential for EAs to offer an alternative to SGD for training neural networks is compelling

because EAs are a genuinely different paradigm for specifying a search problem. That is, the

real payoff of such a novel option is not that it might perform better in some scenario, but that it

allows researchers to approach problems in entirely different ways and capitalize on different forms

of regularization, thereby greatly expanding the toolbox available to neural network researchers.

Furthermore, EAs offer options unavailable to SGD like diversity maintenance [79], the evolution

of topology [108], and indirect encoding [39, 109]. These can all act as powerful regularizers

different from those in SGD. Problems facing SGD in backpropagation like vanishing gradients

through multiple layers or through recurrence also would not even exist for neuroevolution through

EAs, perhaps enabling radically different architectures to be learned than the ones designed for

SGD like LSTMs [51], or even autoencoders [8].

27

Another interesting possibility is that LEEA may not simply be a potential competitor or replace-

ment to SGD, but that it may enable a bridging between the two different learning paradigms.

LEEA’s algorithmic similarities to SGD allow entirely new ways of integrating the algorithms in

order to exploit the strengths that each has to offer. In this way, LEEA may in the future of-

fer complementary paths to hybridization in addition to DDFA, which is the central focus of this

dissertation.

28

CHAPTER 4: NEW APPROACH: DDFA

This chapter introduces the core idea that forms the foundation for the rest of this dissertation

through its subsequent extensions.

Divergent Discriminative Feature Accumulation

Divergent Discriminative Feature Accumulation (DDFA) is a hybrid algorithm developed by Paul

Szerlip, Justin Pugh, Ken Stanley, and myself that leverages the strengths of both gradient descent

and neuroevolution [114]. DDFA takes advantage of the ability of Compositional Pattern Pro-

ducing Networks (CPPNs) to produce regular patterns to generate simple features. These simple

features are evaluated by novelty search in order to discover features that discriminate in a novel

way across the training set. These unique neuroevolution tools permit DDFA to perform this fea-

ture accumulation in an unsupervised manner and add new features indefinitely, which means it

does not depend on a fixed hidden-layer size. Because novelty search is based on how each fea-

ture discriminates across the training set, DDFA features are inherently discriminative from the

start even though they are trained without knowledge of the ultimate classification problem. In

this way, DDFA provides the first unsupervised and discriminative technique for generating fea-

tures. These accumulated features are then composed into a neural network that is optimized using

stochastic gradient descent. Results confirm that indeed DDFA is a powerful technique for learning

useful features.

29

Approach

Unsupervised pretraining in deep learning has historically focused on generative approaches such

as autoencoders and RBMs [11, 50] that attempt to reconstruct training examples by first translat-

ing them into a basis of features different from the inputs, and then from those features regenerating

the inputs. Of course, one potential problem with this approach is that there is no assurance that

the learned features actually align with any particular classification or discrimination problem for

which they might be used in the future. Yet this conventional approach to learning features also

raises some interesting deeper questions. For example, is there any other way to extract meaningful

features and thereby learn representations from a set of examples without explicit supervision?

There are some well-known simple alternatives, though they are not usually characterized as

feature-learning algorithms. For example clustering algorithms such as k-means or Gaussian mix-

ture models in effect extract structure from data that can then assist in classification; in fact at least

one study has shown that such clustering algorithms can yield features as effective or more so for

classification than autoencoders or RBMs [16]. This result highlights that reconstruction is not the

only effective incentive for extracting useful structure from the world.

More recently, a new algorithm called generative adversarial nets (GANs) was introduced that

generates realistic unlabeled training data to augment the data set for semi-supervised training

of neural networks [44]. GANs work by generating data through a generative neural network

whose goal is to fool the classification neural network into believing that the generated data comes

from the actual data set. The data generated by GANs look remarkably similar to the data from

the training set, requiring the classification network to learn a richer set of features during the

adversarial process and has led to new records on reduced-data versions of multiple data sets [99].

30

The approach introduced here also goes beyond simple clustering by emphasizing the general

ability to learn diverse distinctions. That is, while one can learn how to describe the world, one can

also learn how different aspects of the world relate to each other. Importantly, there is no single

correct view of such relations. Rather, a rich set of learned relationships can support drawing

important distinctions later. For example, in one view palm trees and regular trees share properties

that distinguish them from other plants. However, in another view, palm trees are in fact distinct

from regular trees. Both such views can be useful in understanding nature, and one can hold both

simultaneously with no contradiction. When an appropriate question comes up, such as which

plants are tall and decorative, the feature tall becomes available because it was learned to help

make such general distinctions about the world in the past.

The idea in DDFA is to continually accumulate such distinctions systematically through novelty

search, thereby building an increasingly rich repertoire of features that help divide and relate ob-

servations of the world. Why should accumulating a diverse set of features provide an advantage

over optimization-based approaches? One reason is that searching for diversity is not susceptible

in the same way to local optima: while e.g. an autoencoder or direct optimization on a classi-

fier can converge to a local optimum, in contrast DDFA features are independently rewarded for

diverging from other features, preventing such premature convergence. In addition, in principle,

to discriminate one class from another a classifier must possess knowledge of every feature that

might distinguish the two classes; DDFA is explicitly seeking all such possible distinctions while

the objective of learning features that reconstruct the input in e.g. an autoencoder is not. Intuitively,

DDFA can be interpreted as a formalization of divergent thinking, wherein the thinker achieves a

novel insight by exploring many perspectives simultaneously and without prejudice.

More formally, suppose there are n training examples {x(1), ..., x(n)}; whether or not they are

labeled will not matter because feature learning will be unsupervised. Suppose also that any single

feature detector hi (i.e. a single hidden node that detects a particular feature) outputs a real number

31

whose intensity represents the degree to which that feature is present in the input. It follows that hi

will assign a real number h(t)i to every example x(t) depending on the degree to which x(t) contains

the feature of interest for hi. The output of hi for all features x(t) where t = 1, . . . , n thereby forms

a vector {h(1)i , . . . , h
(n)
i } that can be interpreted as the signature of feature detector hi across the

entire training set. In effect the aim is to continually discover new such signatures.

This problem of continually discovering novel signatures is naturally captured by novelty search,

which can be set up explicitly to evolve feature detectors hi, each of which takes a training example

as input and returns a single output. The signature {h(1)i , ..., h
(n)
i } of hi over all training examples

is then its behavior characterization (BC) for novelty search. The novelty of the signature is

then measured by comparing it to the k-nearest signatures in the novelty archive and the current

population. The sparseness ρ at point b is given by

ρ(x) =
1

k

k∑
i=0

dist(b, µi), (4.1)

where µi is the ith-nearest neighbor of bwith respect to the distance metric dist, which is a domain-

dependent measure of behavioral difference between two individuals in the search space. Candi-

dates from more sparse regions of this behavioral search space then receive higher novelty scores,

which lead to a higher chance of reproduction. Those features whose sparseness ρ (i.e. novelty)

exceeds a minimum threshold ρmin are stored in the growing novel feature collection for later clas-

sifier training. In summary, DDFA continually collects features that classify the examples in the

training set differently from features that came before, thereby accumulating increasingly diverse

means for distinguishing training examples from each other.

A likely source of confusion is the question of whether DDFA is a kind of exhaustive search over

signatures, which would not tend to discover useful features in a reasonable runtime. After all, the

number of theoretically possible distinctions is exponential in the number of training examples.

32

However, a critical facet of HyperNEAT-based neuroevolution, which DDFA is based upon is that

the complexity of features (and hence distinctions) tends to increase over the run [63]. As a result,

the initial features discovered encompass simple principles (e.g. is the left side of the image dark?)

that gradually increase in complexity. For this reason, the most arbitrary and incoherent features

(e.g. are there 17 particular dots at specific non-contiguous coordinates in the image?) are possible

to discover only late in the search. Furthermore, because the novelty signature is measured over the

training set, features that make broad separations relevant to the training set itself are more likely to

be discovered early. In effect, over the course of a DDFA run, the feature discoveries increasingly

shift from simple principles to intricate minutia. Somewhere along this road are likely diminishing

returns, well before all possible signatures are discovered. Empirical results reported here support

this point.

Interestingly, because DDFA does not depend on the minimization of error, in principle it can

continue to collect features virtually indefinitely, but in practice at some point its features are fed

into a classifier that is trained from the collected discriminative features.

Experiment

The key question addressed in this chapter is whether a divergent discriminative feature accumula-

tor can learn useful features, which means they should aid in effective generalization on the test set.

If that is possible, the implication is that DDFA is a viable alternative to other kinds of unsupervised

pretraining. To investigate this question DDFA is trained and tested on the MNIST handwritten

digit recognition dataset [61], which consists of 60,000 training images and 10,000 test images.

Therefore, the signature of each candidate feature discovered by DDFA during training is a vector

of 60,000 real values. While MNIST is not considered a challenging image recognition domain, it

33

serves as a useful tool in the creation of DDFA, as the relatively low resolution and smaller training

set simplify the process of initial development and hyperparameter tuning.

Because the structure of networks produced by HyperNEAT can include as many hidden layers

as the user chooses, the question arises how many hidden layers should be allowed in individual

features hi learned by HyperNEAT. This consideration is substantive because in principle DDFA

can learn arbitrarily-deep individual features all at once, which is unlike e.g. the layer-by-layer

training of a deep stack of autoencoders. However, the explicit choice was made in this introduc-

tory experiment to limit DDFA to single-layer features (i.e. without hidden nodes) to disentangle

the key question of whether the DDFA process represents a useful principle from other questions

of representation such as the implications of greater depth. Therefore, feature quality is addressed

straightforwardly in this study by observing the quality of classifier produced based only on single-

layer DDFA features. As a result, the final classifier ANN has just two layers: the layer of collected

features and the ten-unit output layer for classifying MNIST digits.

The single-layer DDFA approach with novelty search and HyperNEAT is difficult to align directly

with common deep learning approaches in part because of its lack of permutation invariance even

though it is not convolutional in any sense (thereby lacking the representational power of such

networks), and its lack of depth in this initial test. Thus to get a fair sense of whether DDFA

learns useful features it is most illuminating to contrast it with the leading result on an equiva-

lently shallow two-layer architecture (which are rare in recent years) that similarly avoided special

preprocessing like elastic distortions or deskewing. In particular, Simard et al. [105] obtained one

of the best such results of 1.6% test error performance. Thus a significant improvement on that

result would suggest that DDFA generates useful features that help to stretch the capacity of such

a shallow network to generalize. DDFA’s further ability to approach the performance of conven-

tional vanilla deep networks, such as the original 1.2% result from Hinton et al. [50] on a four-layer

34

network pretrained by a RBM, would hint at DDFA’s potential utility in the future for pretraining

deeper networks.

During the course of evolution, features are selected for reproduction based on their signature’s

novelty score (sparseness ρ) calculated as the sum of the distances to the k-nearest neighbors

(k = 20), where neighbors include other members of the population as well as the historical

novelty archive. At the end of each generation, each individual in the population (size = 100) has

a 1% chance of being added to the novelty archive, resulting in an average of 1 individual added

to the novelty archive on each generation. Separately, a list of individuals called the feature list is

maintained. At the end of each generation, each member of the population is scored against the

current feature list by finding the distance to the nearest neighbor (k = 1), where neighbors are

members of the feature list. Those individuals that score above a threshold ρmin = 2,000 are added

to the feature list. In effect, the feature list is constructed in such a way that all collected features

have signatures that differ by at least ρmin from all others in the collection. This threshold-based

collection process protects against collecting redundant features. A simple variant of HyperNEAT

called HyperNEAT-LEO [117] was the main neuroevolution engine. HyperNEAT-LEO, which

reduces connectivity in the substrate by removing connections based on the value of an additional

CPPN output, was selected for its ability to produce feature detectors that focus on subsections of

the input space. The HyperNEAT setup and parameters can be easily reproduced in full because

they are simply the default parameters of the SharpNEAT 2.0 publicly-available package (Green

2003–2014).

To observe the effect of collecting different numbers of features, DDFA was run separately until

both 1,500 and 3,000 features were collected. After collection concludes, a set of ten classification

nodes is added on top of the collected features, and simple backpropagation training commences.

The training and validation procedure mirrors that followed by Hinton et al. [50]: first training

is run on 50,000 examples for 1,000 epochs to find the network that performs best on a 10,000-

35

example validation set. Then training shifts to the full 60,000-example set, which is trained until

it reaches the same training error as in the best validation epoch. The resulting network is finally

tested on the full 10,000-example test set. The entire process of collecting feature and training the

network was performed five times for each feature collection size.

Results

The main results are shown in Table 4.1. DDFA was able to achieve average test errors of 1.36%

and 1.20% from collections of 1,500 and 3,000 features, respectively, which are both well below

the 1.6% error of the similar shallow network trained without preprocessing from Simard et al.

[105]. In fact, the average for the 3,000-feature network matches the 1.2% error of the significantly

deeper network of Hinton et al. [50], and the best run from DDFA beat the best network from

Hinton et al. [50] with an error of 1.16%. This result shows that shallow networks can generalize

surprisingly well by finding sufficiently high-quality feature sets, even despite a lack of exposure to

distortions during training. It also appears that more collected features lead to better generalization,

at least at these sizes. It took an average of 338 and 676 generations of feature collection to

obtain the 1,500 and 3,000 features, respectively. Collecting 3,000 features took about 36 hours of

computation on 12 3.0 GHz cores.

Table 4.1: MNIST Testing Results. This table shows the average error and standard deviation for
DDFA and the controls over five runs.

Features DDFA Test Error Random CPPNs Random Weights Random Weights
- Sparse

1,500 0.0136± 0.0008 0.0156± 0.0006 0.0208± 0.0006 0.0178± 0.0012
3,000 0.0120± 0.0003 0.0153± 0.0005 0.0180± 0.0009 0.0176± 0.0013

Figure 4.1 shows a typical set of features collected by DDFA. Interestingly, unlike the bottom

layer of deep learning networks that typically exhibit various line-orientation detectors, DDFA

36

also collects more complex features because newer features of increasing complexity evolve from

older features and these features are full-field and non-convolutional.

Figure 4.1: Example of collected features. Each square is a weight pattern for an actual feature

discovered by DDFA in which white is negative and black is positive. As these examples show,

features range from simple line orientation detectors reminiscent of those found in the lower levels

of conventional deep networks (towards left) to more complex shapes (towards right).

To rule out the possibility that the reason for the testing performance is simply the HyperNEAT-

based encoding of features, a random CPPNs control was also run. It follows an identical pro-

cedure for training and testing, except that novelty scores and adding to the feature list during

the feature accumulation phase are decided randomly, which means the final collection in effect

contained random features with a range of CPPN complexity similar to the normal run. To further

investigate the value of the HyperNEAT representation, an additional random weights control

was tested whose weights were assigned from a uniform random distribution, bypassing Hyper-

NEAT entirely. Finally, a control that initializes weights based on a technique known as sparse

initialization was tested. This final control is an example of one of the more successful initializa-

tion heuristics, and acts as a good benchmark to compare DDFA against. As the results in Table

4.1 show, the CPPN encoding in HyperNEAT provides a surprisingly good basis for training even

when the features are entirely randomly-generated. However, they are still inferior (p < 0.001)

to the features collected by DDFA. As shown in the last column, without HyperNEAT, testing

performance with a collection of random features is unsurprisingly poor. In sum these controls

show that the pretraining in DDFA is essential to priming the later classifier for the best possible

performance.

37

Also of interest is the seeming ability for DDFA to continue improving performance as the number

of features increases. While SGD was unable to improve performance from 1, 500 to 3, 000 features

when initialized with sparse initialization, and the same is true for random CPPNs, the DDFA

runs show a significant improvement (p < 0.01 by Student’s t-test). This observation raises the

intriguing possibility that DDFA could provide a path forward for training very wide networks.

Synthesis

This chapter introduced a new hybrid algorithm named DDFA that combined an unsupervised fea-

ture discovery process through neuroevolution with gradient descent for training neural networks.

DDFA was successfully applied to the MNIST domain, providing gradient descent with a set of

starting features in the first layer that discriminate across the training set in diverse ways. These

features provide a starting point that allows gradient descent to generalize better across the test set

compared to randomly initialized features. While MNIST is not considered a challenging domain

since the rise of deep learning, it nevertheless provided a useful test bed for laying the foundation

of DDFA. The relatively simple domain allowed focus to remain on disentangling the issues that

arise from developing a new type of feature discovery algorithm.

Furthermore, the unsupervised nature of the feature discovery process in DDFA deserves special

attention. This capacity allows DDFA to discover features from unlabeled data, which is often in

greater supply than labeled data. One of the challenges in applying deep learning is the need for

abundant labeled training data. While other approaches to unsupervised pretraining have typically

focused on generative models, such as RBMs and GANs, DDFA provides a discriminative model

for unsupervised pretraining. Therefore, if DDFA can learn features from unlabeled data that deep

learning can then exploit, it could assist in the application of deep learning to a wider range of

domains.

38

The implications of this work extend beyond the development of a new algorithm. While DDFA

has shown that neuroevolution techniques can provide a powerful set of tools for discovering neural

network features, and the unsupervised nature of DDFA is potentially very useful on its own, the

more interesting aspect of DDFA is that it combines the strengths of neuroevolution with those

of gradient descent. In this way, DDFA treats these two traditionally rival approaches to neural

network training as complementary. This hybridization paves the way for the possibility of a new

class of algorithms that exploits both neuroevolution and gradient descent.

39

CHAPTER 5: DDFA DISTANCE FUNCTION

A critical component of the feature discovery process in DDFA is the novelty search algorithm,

which was introduced in Chapter 2 and discussed in more detail in Chapter 4. For novelty search to

function, the distance of an individual to its k-nearest neighbors must be determined. To this end,

DDFA requires a function to compute how different an individual is compared to other individuals

in the population and an archive of individuals discovered in previous generations. Because be-

haviors are typically represented as vectors, this comparison is traditionally made with a distance

function that operates on vectors.

The introductory conception of DDFA in the previous chapter chooses Euclidean distance for the

distance function. While this distance function is the intuitive choice due to our everyday expe-

rience with distances in two and three dimensions, there are challenges with applying Euclidean

distance to machine learning problems. First, Euclidean distance tends to focus on dimensions

where there are large differences while ignoring those where it is more difficult to draw a distinc-

tion. For instance, if an image contains relatively little information, such as a number “1” drawn

as a simple straight line, it will be difficult for features to produce much variability on this image.

Therefore, this dimension in the behavior vector may be largely irrelevant to the Euclidean distance

function, where larger contributions are given more attention. Second, Euclidean distance tends to

draw distinctions on pairs of points that are aligned in the same direction, but differ by magnitude.

To understand why this is a problem, consider a natural language problem where a document is

vectorized by counting the frequency of each word in the dictionary. The phrase ”Bob likes ice

cream.” would be represented by the vector [..., 1, ..., 1, ..., 1, ..., 1, ...] and the phrase ”Bob like ice

cream. Bob likes ice cream.” would be represented by the vector [..., 2, ..., 2, ..., 2, ..., 2, ...]. While

the second phrase doesn’t present any new information, the Euclidean distance between the vectors

is non-zero. In fact, the distance between these vectors is just as large as the distance of the first

40

phrase to the origin. To address these two specific problems with Euclidean distance, two distance

functions, which are simple variants of Euclidean distance, are examined in this chapter: Weighted

Euclidean distance and cosine distance.

A broader problem also exists with Euclidean distance due to the large size of behavior vectors in

DDFA, which have one dimension for each image in the training set. One of the more challenging

aspects to selecting an appropriate distance function is the difficulty in visualizing spaces with

more than the three dimensions we deal with in our daily lives. Many of our intuitive notions break

down in high dimensions, which makes it more difficult to understand what a distance function is

actually measuring in such a space. When explaining these strange phenomena, Domingos [28]

notes:

This is only one instance of a more general problem with high dimensions: our in-

tuitions, which come from a three-dimensional world, often do not apply in high-

dimensional ones. In high dimensions, most of the mass of a multivariate Gaussian

distribution is not near the mean, but in an increasingly distant “shell around it; and

most of the volume of a high-dimensional orange is in the skin, not the pulp. If a con-

stant number of examples is distributed uniformly in a high-dimensional hypercube,

beyond some dimensionality most examples are closer to a face of the hypercube than

to their nearest neighbor. And if we approximate a hypersphere by inscribing it in a

hypercube, in high dimensions almost all the volume of the hypercube is outside the

hypersphere. This is bad news for machine learning, where shapes of one type are

often approximated by shapes of another.

These strange phenomena are collectively referred to as the curse of dimensionality, a term coined

by Richard E. Bellman [7]. This problem is particularly acute for DDFA, where the behavior vector

may be tens or hundreds of thousands of dimensions. To address the curse of dimensionality in

41

DDFA, two distance functions that are targeted at this problem are examined: Manhattan distance

and fractional norm distance.

Beyond the ability to meaningfully determine distances between individual vectors in such high-

dimensional space, there are also practical considerations when selecting a distance function. The

distance functions discussed thus far, including Euclidean, are bivariate, meaning they operate on

pairs of vectors. Because novelty search compares each individual to the rest of the population

as as well as an archive of previously discovered individuals, the novelty score calculation has a

computational complexity ofO(n2+nm) where n is the population size and m is the archive size.

As the archive size grows over the course of evolution, the demands of the novelty calculation

can come to dominate and in fact the novelty calculation comes to dominate the feature discovery

process as a whole. Because of this effect, a non-bivariate distance function, named Component

Neighbor Distance, and designed for efficient novelty calculation is also examined.

While algorithms exist that approximate the nearest neighbor search, such as locality sensitive

hashing [22], the goal of this chapter is an accurate evaluation of each distance function. To that

end, only exact methods are applied to the bivariate distance functions.

This chapter explores three hypotheses: (1) Selecting a distance function that addresses specific

shortcomings of Euclidean distance will lead to a better set of features for the task of classification.

(2) Selecting a distance function that more accurately represents distances in high dimensions will

lead to a better set of features for the task of classification. (3) A less accurate, but computationally

simpler distance function, can be devised to aid in the application of DDFA to larger problems and

larger networks.

To test these hypotheses, several possible distance functions are analyzed from a theoretical per-

spective and then tested empirically to determine their suitability for DDFA.

42

Euclidean Distance

One of the most widely used distance functions by novelty search practitioners is Euclidean dis-

tance, also known as the L2 norm, which is given by the equation

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2, (5.1)

where p and q are vectors. This distance function seems like a natural choice due to its traditional

application to 2-D and 3-D spatial distance problems, and in fact it was the distance function of

choice for the initial work on DDFA in the previous chapter. However, while Euclidean may

provide a good metric in lower dimensions, it has specific problems when applied to this domain,

as mentioned in the introduction to this chapter, and it struggles to discriminate between the nearest

and furthest neighbor in very high dimensions and therefore fails to provide a helpful measure of

distance [1].

Alternative Distance Functions

In response to the challenges with Euclidean distance, this section explores several possible alter-

native distance functions from a theoretical perspective.

Weighted Euclidean Distance

Weighted Euclidean distance is meant to address the issue discussed previously where Euclidean

distance will tend to focus on dimensions where it is easier to draw large distinctions, while ignor-

ing dimensions where the differences are more subtle. This distance metric is simply Euclidean

distance where each component’s contribution to the distance is weighted in some way, and is

43

given by the equation

d(p, q) =

√√√√ n∑
i=1

wi(pi − qi)2, (5.2)

where wi is a weight vector. Because the goal is to produce novel behaviors, the weight contribu-

tion for each component is calculated as the inverse of the range of values that have been observed

along that dimension, as given by the equation

wi =
1

(pimax − pimin
)
, (5.3)

where pimax and pimin
are the maximum and minimum values observed for this component, re-

spectively. In simpler terms, images where little variance in feature behavior has been observed

are given more importance when calculating feature distance. While this distance function still re-

lies upon Euclidean distance and will encounter the curse of dimensionality, the weight component

may still provide pressure towards the discovery of features that discriminate well on images where

previous features have failed to provide a meaningful distinction. One possible concern regarding

this equation is that once a single high and low value are discovered for a given component, that

component will no longer be given any additional weight, even if the remaining values for that

component are the same. To address this concern, a simple heuristic is added where the top n

and bottom n values for that component are averaged to compute the minimum and maximum.

Preliminary experiments set the value of n to 5.

Cosine Distance

Cosine similarity is a popular measure of similarity in multiple areas of machine learning [66,

84, 125], and is meant to address the problem where vectors that lie along the same axis, but are

44

different lengths, produce a non-zero distance in Euclidean space. Cosine similarity is calculated

as the cosine of the angle between two vectors, as given by the equation

s(p, q) =
p · q
‖p‖‖q‖

. (5.4)

Because novelty search requires a measure of distance between two vectors and cosine similarity

provides a measure of similarity, which is in essence the inverse of distance, a conversion function

is applied, given by the equation

d(p, q) =
1− s(p, q)

2
. (5.5)

It should be noted that cosine distance is actually equivalent to Euclidean distance when the vectors

are normalized. This distance function has an advantage over Euclidean distance in that vectors

that align along the same axis, but that are different lengths, will have a cosine distance of 0, while

their Euclidean distance may be high. Because the features discovered by DDFA are composed

into a neural network with a successive layer, and the weights in that successive layer are adjusted

through learning, the magnitude of the behavior vector is a less important consideration than the

direction of the vector. Cosine distance therefore potentially focuses on the more important aspect

of the behavior vector. However, cosine distance is not a cure for the curse of dimensionality, and

in theory suffers nearly as much as Euclidean distance.

Manhattan Distance

Manhattan distance is the first distance function in this work that aims to address the curse of

dimensionality. It is defined as the distance between two points as measured along the axes, and is

45

given by the equation

d(p, q) =
n∑

i=1

|pi − qi|. (5.6)

Manhattan distance derives its name from the distance it takes to travel between two points in

Manhattan, where the streets are laid out in a grid pattern. While it isn’t intuitively clear that this

distance metric is better than Euclidean distance in high dimensions, analysis of the behavior of

randomly selected points in high dimensional space shows this to be the case.

Aggarwal et al. [1] provide both a theoretical and empirical analysis of Lk norms in high dimen-

sional space. Recall that the L2 norm is Euclidean distance, since the component differences are

squared. Manhattan distance is therefore the L1 norm, and in fact an infinite number of Lk norms

exist. In their work, Aggarwal et al. [1] investigate the behavior of Lk norms on a set of randomly

placed points in high dimensional space. If Dmaxkd represents the distance from the origin of the

furthest point andDmink
d represents the distance from the origin of the nearest point, where k is the

norm and d is the number of dimensions in the space, then then as d increases, Dmaxkd −Dmink
d

increases at a rate of d1/k−1/2. Therefore, for values of k > 2, this expression converges to 0, mean-

ing the distance metric no longer provides any meaningful contrast between the furthest point and

nearest point. For Euclidean distance, where k = 2, this expression is bounded by constants and

for Manhattan distance, where k = 1, this expression diverges to∞, which means it provides much

better contrast between points than Euclidean distance. This counterintuitive idea that Manhattan

distance provides a better notion of distance in high dimensions is then shown empirically by sev-

eral classifications tasks with k-means clustering. In every domain that it was tested, Manhattan

was superior to Euclidean distance at representing distances in high dimensions.

46

Fractional Norm Distance

Based on the observation that for the Lk norm, lower numbers provide more contrast, Aggarwal

et al. [1] also explored the possibility of going beyond the L1 norm (Manhattan distance) with

fractional norms. Fractional norms, which are defined as an Lk norm where 0 < k < 1, were

shown empirically to be even more effective at representing distances than the L1 norm, with a

range of 0.1 < k < 0.5 being ideal. For this work, k was selected in the middle of this range at

0.25, giving the equation

d(p, q) = (
n∑

i=1

|pi − qi|1/4)4. (5.7)

Aggarwal et al. [1] also showed empirically that fractional norm distance is more robust to noisy

data, which makes intuitive sense when considering that taking a fractional power of the distance

minimizes the effect of outliers in the data. While the domains on which DDFA is tested in this

work are not noisy, noise is still an important consideration if DDFA is to be successfully applied

to a broader range of domains.

Component Neighbor Distance

The distance functions discussed to this point are all examples of bivariate distance functions,

where distance is calculated between pairs of individuals. As mentioned earlier in this chapter, the

high-dimensional nature of the behavior vectors in DDFA leads to high demands on computation

for bivariate distance functions. Not only do these demands increase as the behavior vector expands

based on the size of the training set, but if a larger set of features is desired, evolution may need

to be extended to collect enough interesting features. To aid in the application of DDFA to larger

networks or larger training sets, a non-bivariate distance function, called Component Neighbor

47

Distance (CND), has been developed. Based on the principle that the desired outcome of DDFA

is a set of features that provide a wide range of output values for all given inputs, the components

within the behavior vector are decoupled from each other and considered separate values. The

equation describing this decoupling is

d(p,Q) =
n∑

i=1

|pi −Qinearest |, (5.8)

where p is the target vector,Q is a collection of vectors, andQinearest represents the closest neighbor

to p on the i − th component. In this way, CND ignores the global direction of the vector and

instead considers only the distance of each component to its nearest neighbor. While it intuitively

seems that this loss in direction information may hinder the discovery of effective features, it also

reduces the computational burden of novelty search. As mentioned earlier in this chapter, bivariate

distance metrics all have a computational complexity of O(n2 + nm). When component values

are stored as sorted lists, CND has a computational complexity of O(nlog(m)). Furthermore, the

behavior space of each component can be discretized into bins, further reducing the computational

complexity to O(n). This discretization requires a slight modification to the distance function,

which is described by the equation

d(p,Q) =
n∑

i=1

1

Qbin(pi)
, (5.9)

where Qbin(pi) corresponds to the bin that pi maps to. Preliminary experiments revealed no loss

in performance when the behavior space is discretized in this way. In its entirety, CND offers a far

faster method for calculating novelty, which allows DDFA to be applied to larger training sets or

when a larger set of features is required.

48

QMNIST Domain

To assess the empirical performance of the candidate distance functions, DDFA is applied to a

variant of the MNIST domain, called QMNIST [123]. One of the criticisms of the MNIST dataset

is that it contains too few images in the test set. Through the process of model testing and selection

by researchers, it becomes possible to overfit the test set. A larger test set helps alleviate this issue

and to this end, QMNIST was created by reconstructing digits from the original NIST dataset

that MNIST was derived from. QMNIST contains 60, 000 test images instead of 10, 000, and

while Yadav and Bottou [123] observe that previously published models that they tested did not

appear to overfit the test set, QMNIST is chosen here to assist in preventing any possible test set

overfitting.

While MNIST and QMNIST are no longer considered challenging image recognition domains,

they serve as a useful tool in this work as the intricacies of the DDFA feature discovery process are

disentangled. With relatively low resolution (28 x 28) grayscale images and a smaller training set,

the process of hyperparameter tuning is less computationally cumbersome, which is an important

consideration with a complex neuroevolution system like DDFA. Once the fundamentals of how

of the feature discovery process are understood, DDFA can be more readily applied to more com-

plex domains. This approach mirrors the development of deep learning, which started on simpler

domains like MNIST [50].

Experiment

Novelty search drives the selection of features within the evolutionary process in DDFA, and the

distance function plays a crucial role in that process. The experiments here are designed to give a

better understanding of the effect of the distance function on the quality of the discovered features,

49

as determined by their ability to aid gradient descent in training a network to effectively generalize

over the test set.

While CPPNs can encode features of any arbitrary depth or complexity, the choice was made

here to restrict the feature substrate produced by the CPPN to only a single layer that is fully

connected to the input. This simple setup mirrors the initial work on DDFA in the previous chapter

to give focus to the primary question of what effect the distance function has on feature discovery

in DDFA. The final network architecture from the previous chapter is also re-used, with 3, 000

features selected from the DDFA archive and composed into a fully-connected network with a

single hidden layer.

During evolution, features are selected for reproduction based on their novelty score, which for

bivariate distance functions is calculated as the sum of the distance to the k-nearest neighbors

(k = 20), where the neighbors include both the population and the historical novelty archive. With

bivariate distance functions, individuals have a small chance (1.5%) of being added to the archive

at the end of each generation. For Component Neighbor Distance (CND), only the target bin for

each component is considered in the distance calculation and a cutoff, c, is added so that once a bin

is sufficiently explored, it will no longer contribute to the novelty score. Preliminary experiments

showed a value of 10 for c is beneficial compared to no cutoff. Because the size of the archive has

no effect on the computational complexity for CND, all individuals are added to the archive at the

end of each generation. The population size was increased to 144 to make better use of parallel

computational resources and all runs were executed for 1, 000 generations.

At the end of evolution, every individual that was discovered has a chance to be selected by an

iterative tournament selection process given by Algorithm 2. This algorithm iteratively evaluates

a random set of features from the full collection of all features produced during evolution. In each

iteration, it selects the feature from this set that is maximally distant from its nearest neighbor in

50

the set of features that have already been selected. In effect, this algorithm is a simple heuristic that

produces a final set of selected features that are relatively distant, covering a significant portion of

the discovered feature behavior space.

Algorithm 2 DDFA Selection Algorithm
1: S = select 1 feature at random

2: while count(selectedFeatures) < 3000 do

3: T = select tsize features from the collection

4: for all t ∈ T do

5: tmin ← find nearest neighbor in S

6: end for

7: S.add(select t where tmin = max(Tmin))

8: end while

In the experiments in this chapter, tsize is set to 16. Note that for Component Neighbor Distance,

there is no concept of nearest neighbor and instead each tournament member is evaluated in the

same way as they were during evolution, with the list of selected features acting as the novelty

archive. This selection algorithm differs from the previous chapter as it was observed that the

threshold-based selection algorithm that was previously implemented has a bias towards features

discovered early in the run and the threshold requires frequent adjustment to exploit the entire

feature collection. Additionally, the tournament selection approach implemented here does a better

job at maximizing the average distance between the features, which more directly addresses the

primary question of this chapter: Which distance function(s) provide the best measure of feature

quality, as measured by their ability to serve as an effective starting point for gradient descent?

Finally, with threshold-based feature selection, the first several features are typically unhelpful as

they are only added due to showing up early in a vast feature space. While this property does

51

not appear to hinder performance to a great degree when collecting 3, 000 features, the problem

becomes more acute in the work in the next chapter, when fewer features are selected overall.

Once DDFA has generated the required set of features, they are composed into a fully connected

network that is then trained with SGD in PyTorch. PyTorch parameters are set to a mini-batch size

of 64, learning rate of 0.1 and momentum of 0.5. The training and validation procedure mirrors

that from the previous chapter, where a validation run is first conducted with a subset of training

examples set aside for testing. The training error that corresponds to the best test error during

this validation run then serves as a stopping point during the training run over the full training set.

Once this stopping point is reached during the full run, the network is tested against the standard

test set. This process of collecting features, performing a validation run of SGD, and performing

the final run of SGD is executed ten times for each distance metric. In addition, a set of ten runs

is conducted on a network with identical topology and randomly initialized weights and another

set of ten runs is conducted on a network with identical topology and initialized with random

CPPNs, where the process for generating the random CPPNs mirrors that of the previous chapter.

This control is necessary to rule out the possibility that regularities generated by CPPNs are the

only component that contributes to the improvement in performance of DDFA over the random

control. In other words, an improvement in performance over the random CPPN control indicates

that novelty search is contributing to the feature discovery process.

Results

Results of the distance function experiment are shown in Figure 5.1. Taken as a whole, the results

largely mirror the results from the previous chapter. The random CPPN control is significantly

better (p < 0.001 by Student’s t-test) than the random initialization control and all DDFA distance

functions are significantly better (p < 0.001) than the random CPPN control. Another observation

52

of the results as a whole is the general rise in error rate for all DDFA variants, and to a lesser degree,

the randomly initialized and random CPPN controls, as compared to the results from the previous

chapter. This rise is due in large part to the change in domain to QMNIST, which is slightly more

challenging than its predecessor. However, the increased error in the results here align well with

previously observed increased error rates on QMNIST by a wide range of models [123].

Figure 5.1: Average testing error on the QMNIST test set by distance function. The average

testing error (over 10 runs) on the QMNIST test set is shown for each distance function, and error

bars represent standard error. Two controls are included where the weights are initialized randomly

and where the weights are initialized by random CPPNs. The primary result shown here is that the

distance functions that were chosen for their ability to handle high dimensions, Manhattan distance

and fractional norm distance, perform significantly better than Euclidean distance.

53

The results of the individual distance functions are compared against Euclidean distance and can

be divided into three groups based on whether they perform better, worse, or equal to Euclidean

distance. Fractional norm and Manhattan distance perform significantly better (p < 0.05) than

Euclidean distance, weighted Euclidean and cosine distance show no significant difference from

Euclidean distance, and Component Neighbor Distance is significantly worse (p < 0.05) than

Euclidean distance.

These results make clear that the primary issue impacting the performance of the distance function

is the curse of dimensionality. The distance functions that were designed to improve upon specific

limitations of Euclidean distance without addressing the dimensionality issue, weighted Euclidean

and cosine, failed to deliver any improvement over Euclidean distance. Meanwhile, the distance

functions that were selected for their ability to address the curse of dimensionality, fractional norm

and Manhattan, do provide improved performance over Euclidean distance.

In addition, while Component Neighbor Distance fell behind the rest of the distance metrics, it is

important to note that it was still significantly better (p < 0.001) than the random CPPN control,

which makes it suitable for problems where bivariate distance functions may be unusable due to

computational constraints. For example, when compared against Euclidean distance, Component

Neighbor Distance takes about half the time to calculate novelty in the early generations, when the

novelty archive is empty. Even more striking are the results as the novelty archive fills through-

out evolution. While the novelty calculation for Component Neighbor Distance remains constant

due to the bin-based approach, the computation increases linearly with the size of the novelty

archive for bivariate distance functions. In the last few generations of experiments performed on

the QMNIST domain, Euclidean distance takes around 50 times longer to calculate than Compo-

nent Neighbor Distance. Therefore, while Component Neighbor Distance may not be the ideal

choice in distance function from a feature quality standpoint, it does provide an avenue to discov-

ering moderately useful features on domains where computation is the primary consideration.

54

Synthesis

The results of this chapter provide an important insight into the factors that affect the performance

of DDFA. One of the core principles behind DDFA is that a set of features that discriminates

across the training set in a diverse way provides a beneficial starting point for gradient descent.

This chapter helps address the question of how that diversity is measured. The distance function

within novelty search provides a mathematical description of diversity, and the results from this

chapter show that the distance function is an important consideration when applying DDFA. Work

on the initial development of DDFA in the previous chapter applied Euclidean distance, as it is the

most common and intuitive distance function, to novelty search within DDFA. However, Euclidean

distance suffers from several problems that led to the investigation of alternative distance functions

in this chapter.

The first hypothesis of this chapter was that two specific issues with Euclidean distance could

be remedied directly through modifications to the distance function, leading to improved test set

performance. Weighted Euclidean distance was introduced as a solution to the problem where

Euclidean distance would tend to favor components of the behavior vector that have a lot of vari-

ability. In terms of application to a visual domain, Euclidean distance gives a larger contribution

to those images where a large range of values could be produced easily. Cosine distance was in-

troduced as a solution to the problem where Euclidean distance would results in a non-zero, and

sometimes large, distance between two behavior vectors that lie on the same axis, but have different

magnitudes. Empirical results showed no improvement with these two distance metrics, suggest-

ing that these perceived shortcomings are not sufficiently acute to prevent Euclidean distance from

discovering useful features. Therefore, the first hypothesis was not confirmed.

The second hypothesis of this chapter was that selecting a distance function that addresses the

problem of the curse of dimensionality would lead to improved test set performance. Manhattan

55

distance and fractional norm distance were selected to test this hypothesis, as Aggarwal et al. [1]

had found these distance functions to best represent distances in high dimensions. Empirical results

here confirmed that this is indeed the case, with both distance functions significantly outperforming

Euclidean distance. This result further supports the idea that an accurate measure of distance is an

important factor in the performance of DDFA, and confirms the second hypothesis.

The third hypothesis of this chapter was that there exists a more computationally efficient means to

measure distance with enough efficacy to provide useful starting features for gradient descent. To

this end, Component Neighbor Distance was introduced, which reduces the computational com-

plexity of the novelty calculation fromO(n2 +nm) toO(n), while still providing better empirical

results than either randomly initialized weights or randomly generated CPPNs. The ability for

Component Neighbor Distance to provide features that performed significantly better than random

CPPNs confirms the third hypothesis, and opens the door to application of DDFA to larger domains

or larger networks.

Taken as a whole, these results highlight the importance of the distance function on the quality of

features produced by the novelty search algorithm that is at the heart of DDFA. Empirical results

show that the most important factor in the discovery of high-quality features is the accurate measure

of distance in high dimensions.

Furthermore, while understanding the impact of the distance function on high dimensional behav-

ior vectors is important in the context of this work, it also provides an important lesson for the

proper application of novelty search within the larger neuroevolution community. While behav-

ior vectors in this dissertation are larger than typically encountered due to the domains that it is

applied to, the curse of dimensionality could potentially cause similar complications on domains

with smaller behavior vectors where neuroevolution researchers often apply novelty search. Ad-

ditionally, neuroevolution researchers may artificially limit the size of their behavior vectors due

56

to problems encountered as dimensionality increases. Therefore, the results from this chapter can

serve as a guide for selecting an appropriate distance function for these researchers, and provide a

pathway towards more descriptive behavior vectors.

57

CHAPTER 6: CONVOLUTIONAL DDFA

As discussed in Chapter 2, convolution is an important component to the application of deep learn-

ing across a wide range of machine learning domains. The concept of a convolutional feature, more

commonly referred to as a convolutional filter in the literature, is fundamentally different from the

fully-connected features that DDFA has been applied to discovering in previous chapters. A con-

volutional feature is typically much smaller in size than the input data, often in the range of 3× 3

to 11×11 in image recognition domains [48, 57, 93, 113]. These features are convolved across the

image to produce a feature map that in essence indicates the relative presence of a feature at each

point in the image. These unique properties of convolutional features present special challenges to

the application of DDFA, which are explored in this chapter. The hypothesis here is that DDFA

can discover convolutional features that provide a better starting point for gradient descent, lead-

ing to better test performance. This chapter gives a discussion of the theoretical considerations in

applying DDFA to convolutional features and includes experiments that provide empirical support

to the hypothesis, suggesting that DDFA may be applied to convolutional neural networks.

Approach

The basic application of DDFA to the discovery of convolutional features is similar to the applica-

tion of DDFA to fully-connected features, with two small differences. First, the size of the input

layer in the HyperNEAT substrate is reduced. Rather than an input layer that equals the size of each

image in the domain, only a small section, 5× 5 or 9× 9, acts as the input layer for the substrate.

The output of the substrate remains the same, with a single output neuron. The convolutional fea-

ture is then convolved across the image to produce a feature map, which contains a behavior vector

component for each location in the image. This feature map is converted to a single vector, whose

58

size is given by the equation

Vsize = (n−m+ 1)2, (6.1)

where the domain images are of size n × n and the convolutional features are of size m × m.

Therefore, while the full behavior vector in non-convolutional DDFA contains a single component

for each input image, the behavior vector in convolutional DDFA contains many components for

each image.

The increase in the size of the behavior vector introduces the first complication in applying DDFA

to convolutional features. For instance, the behavior vector for convolutional DDFA on the QM-

NIST domain is 576 times larger than the behavior vector in the previous chapter. This major

expansion presents an obvious computational challenge, while also exacerbating the problem of

the curse of dimensionality. This complication, introduced by the nature of convolutional features,

is not unique to the DDFA process. Deep learning faces similar computational hurdles due to the

nature of convolution, and two of the techniques developed to handle this problem in deep learning

can be borrowed to simplify the evaluation of the behavior vector in DDFA.

The first technique commonly employed for reducing the dimensionality of the output of a con-

volutional layer is called striding, which refers to the process of only applying the convolutional

features at regular intervals in both the x and y dimensions of the input space. For instance, a stride

of 3 will skip every second and third location in both the x and y dimensions, therefore reducing

the number of elements in the feature map by a factor of 9. While striding introduces the theoreti-

cal concern that a feature in the image will be missed by a convolutional filter that would normally

pick up on that feature, the widespread application of striding indicates that this concern does not

present a practical problem.

59

The second technique for reducing the dimensionality of the output of a convolutional layer is

called pooling, which refers to the process of down sampling feature map components to reduce

dimensionality. The most common methods of pooling are max-pooling and mean-pooling, where

the maximum or mean of a set of feature map components is passed along, therefore reducing

the dimensionality of the convolutional layer output by a factor of n × n for a pool size of n.

Pooling in deep learning is typically implemented as a special network layer, which is necessary

in order to propagate error back to the convolutional layer for updating the weights. Preliminary

experiments with DDFA showed no improvement when basic types of pooling were implemented,

and therefore pooling was not included in any experiments in this dissertation. However, pooling

offers a potential bounty of future extensions. Because the purpose of pooling in DDFA is for

reducing the size of the behavior vector, there is no reason why it must be restricted to the basic

forms of pooling available in deep learning, where the requirement of error propagation imposes

its own limitations. For example, pooling could be performed across much larger portions of the

image, with the behavior vector components corresponding to various statistics about the feature

location(s), intensity, or frequency. In fact, there are very few restrictions on the way this pooling

could occur, so long as there is a way to meaningfully compare the behavior vectors.

A second complication related to the convolutional process is the relative dullness of the majority

of image sections where convolutional features are applied. For instance, on the QMNIST domain,

almost 20% of image sections contain nearly zero variance. Not only will DDFA have difficulty

discovering features that discriminate well across these uninteresting image sections, but intuitively

it would seem that any features that can discriminate on such image sections would be arbitrary in

nature.

To address the problem of uninteresting image sections, a simple heuristic is applied where image

sections in the data set are discarded if their variance is below an arbitrary threshold, thereby

focusing search on only those portions of the image where a significant amount of variance is

60

observed. In this way, novelty search can focus its efforts on the more interesting parts of the

image. This heuristic, while primarily designed to address the issue of dull image sections, also

helps address the previously discussed computational problem by reducing the effective number of

behavior vector components generated for each image.

Finally, due to the increase in complexity that convolutional features present, the total number of

features selected for composition into a neural network are reduced in this chapter as compared to

the fully-connected features from the previous chapters.

STL-10 Domain

To assess the ability of DDFA to produce convolutional features that serve as an effective starting

point, DDFA is applied first to the QMNIST domain that was introduced in the previous chapter.

In addition, DDFA is applied to a second domain that is more challenging than QMNIST and was

designed for algorithms that perform unsupervised pre-training such as DDFA.

STL-10 is a subset of the ImageNet domain, containing 10 classes of color images in the training

and test sets. Each class contains only 500 images in the training set and 800 images in the test set.

Additionally, 100,000 unlabeled images that are drawn from a wider distribution of related classes

are included. For example, the training and test set contain classes for airplanes, ships, and trucks,

while the unlabeled set also contains images of trains and buses. Each image is 96×96 pixels with

three color channels (red, green, blue). This relatively high-dimensional input space was designed

to make the benchmark more challenging to encourage the development of scalable unsupervised

feature learning methods.

This domain was chosen to test DDFA as the relative sparsity of training data and abundance of

unlabeled data provides a good benchmark to test whether the unsupervised feature discovery pro-

61

cess of DDFA is generating features that are effective at describing the domain. In experiments

in this chapter, the images are converted to grayscale prior to both feature discovery and training

through gradient descent. This conversion disentagles the question of whether DDFA can effec-

tively discover features in a semisupervised domain from the issues that arise from applying this

new algorithm to a multi-channel input space. Examples of the images found in the STL-10 data

set are shown in figure 6.1.

62

Figure 6.1: Examples of training images from the STL-10 data set. STL-10 is taken from

ImageNet and contains 10 classes of vehicles and animals in the training and testing sets. The

images are 96×96 pixels with red, green, and blue color channels. Color images are shown above,

while their grayscale conversion, which is used by DDFA, are shown below.

63

Experiment

Convolution has been a critical component of cutting-edge neural networks across a variety of

domains. The primary goal of this chapter is to evaluate the ability of DDFA to generate convolu-

tional features that serve as a good starting point for gradient descent, allowing DDFA to contribute

to the further improvement of these cutting-edge systems.

As with work in previous chapters, the choice was made to apply DDFA first to a relatively simple

network architecture so as to avoid complications that can arise from attempting to apply a new

technique immediately to a deeper architecture. This choice focuses attention on the ability of

DDFA to produce quality convolutional features in the first layer. Therefore, the final classifier

neural network has four layers: a convolutional layer with its associated pooling layer, a layer that

is fully connected to the pooling layer, and the final output layer with ten units, which is fully

connected to the previous fully-connected layer.

The convolutional feature size was chosen based on both the most commonly observed filter size

from other works as well as preliminary tests [48, 57, 93, 113]. The convolutional feature size

is 5 × 5 for QMNIST and 9 × 9 for STL-10, with a stride of 1 for QMNIST and 3 for STL-10.

The images were padded, resulting in feature maps of size 28 × 28 for QMNIST and 32 × 32

for STL-10. The number of convolutional features in the convolutional layer and features in the

fully-connected layer are chosen based on the point where expanding the network provides no

significant improvement for gradient descent alone. For the QMNIST domain, the convolutional

layer consists of 128 features and the fully connected layer consists of 256 neurons. For STL-

10, the convolutional layer has 256 features and the fully-connected layer has 512 neurons. The

pooling layer during gradient descent is 2× 2 for QMNIST and 4× 4 for STL-10. All six distance

functions tested in the previous chapter are included here. The population size remains at 144 and,

due to computational limitations, all runs were executed for only 400 generations. The variance

64

cutoff, which removes image sections with relatively little variance, was set for both domain so

that only the top 10% of image sections, as measured by variance, is included in the data set.

Because the number of features selected to form the final network is greatly reduced from previous

experiments due to the increase in complexity introduced by convolutional features, both in the size

of the behavior vector and the size of the final network, more care must be taken in this selection

process. First, the tournament size is increased to 128 to improve the odds of finding features

that are suitably distant from each other. One complication in the feature selection process arises

due to the fact that the first feature is selected entirely at random, which causes the selection of

the subsequent features to be somewhat arbitrary, though this effect should diminish as the set of

selected features grows. This complication could potentially lead to a significant fraction of the

network containing unhelpful features. To address this issue, the selection algorithm was modified

to include a pruning process where less novel features are pruned and new features are inserted.

This process is described by Algorithm 3. In experiments in this work, pruneCount is set to 32.

65

Algorithm 3 Convolutional DDFA Selection Algorithm
1: S = select 1 feature at random

2: while count(S) < fCount do

3: T = select tsize features from the collection

4: for all t ∈ T do

5: tmin ← find nearest neighbor in S

6: end for

7: S.add(select t where tmin = max(Tmin))

8: if count(selectedFeatures) == fCount&pruned < pruneCount then

9: calculate novelty of all features in S

10: S.remove(lowestNovelty)

11: pruned← pruned+ 1

12: end if

13: end while

Once the required number of features has been selected, they are composed into a network that is

again trained with PyTorch. The PyTorch hyperparameters for experiments in this chapter are iden-

tical to the hyperparameters used in all experiments in the previous chapter. The testing protocol

for QMNIST is identical to the previous chapter, while the protocol for STL-10 requires ten-fold

cross validation. For the experiments on the applicability of DDFA to convolutional features, ten

runs were executed for each distance metric, with an additional set of ten runs each on randomly

initialized networks and networks initialized by randomly generated CPPNs.

An additional experiment is performed on the STL-10 domain to answer the question of whether

DDFA has the ability to take advantage of the abundance of available unlabeled training data. To

address this question, an experiment is performed where DDFA is applied to only the labeled train-

66

ing data. The parameters of this experiment match the initial experiment on the STL-10 domain,

with fractional norm selected as the distance function. By comparing results of this experiment to

results from the initial experiment on STL-10, where DDFA is applied to the larger set of unla-

beled data, we can determine whether DDFA is effectively utilizing the availability of a large set

of unlabeled data. This is an important experiment because one of the primary goals of an unsu-

pervised training algorithm such as DDFA is the opportunity to apply it to domains where labeled

data is limited. A successful exploitation of unlabeled data would therefore allow deep learning to

be applied to domains that are currently out of reach due to the unavailability of sufficient labeled

data.

Recall that from the results in Chapter 4, it was hinted that DDFA’s ability to produce a diverse

set of features may allow it to continue improving the performance of the final classifier even as

the number of features grows beyond the point where gradient descent alone no longer sees an

improvement from additional features. To test this hypothesis, a final experiment is performed

on the STL-10 domain with a variable number of convolutional features. In each test, the size

of the fully-connected hidden layer is set to 2n where n is the number of convolutional features.

All parameters except for the network topology match the initial experiment on STL-10. Due to

computational considerations in selecting a large number of features, cosine distance was selected

as the distance function for this experiment. While fractional norm has been shown to perform

the best in this domain, computers are less efficient at calculating roots than other operations,

leading to a difference of about 3x in selection time between cosine and fractional norm distance.

This difference becomes an important consideration when selecting a large number of features.

For example, selecting 1, 024 convolutional features with cosine distance takes about 48 hours

with 8 cores. Because fractional norm provides a better measure of distance in high dimensions

than cosine distance, if cosine distance can effectively be applied to wider networks, it would be

expected that fractional norm distance could be as well. If the hypothesis that DDFA can effectively

67

utilize a larger number of features than gradient descent alone is true, then this could add a new tool

in the search for increasingly complex neural networks. While much of deep learning community

has focused its efforts on increasing network complexity through an increase in network depth,

DDFA may provide an additional tool for increasing network complexity through the expansion of

network width.

Results

This section includes an analysis of the results from the four experiments detailed in the previous

section. The first two experiments are designed to analyze DDFA’s ability to discover effective

convolutional features, while the third and fourth experiments address specific questions related to

the applicability of DDFA to unsupervised data and wide networks.

QMNIST

Results of the experiment to apply DDFA to convolutional features in the QMNIST domain are

shown in Figure 6.2. Overall, the results with a convolutional network follow the same general

pattern as with a fully-connected network. The random CPPN control is significantly better (p <

0.001) than the randomly initialized control and all DDFA distance functions are significantly

better (p < 0.01) than the random CPPN control. The grouping of distance functions has changed,

with only fractional norm distance showing a significant improvement (p < 0.05) over Euclidean

distance, and no distance function is significantly worse than Euclidean.

68

Figure 6.2: Average testing error on the QMNIST test set by distance function with convo-

lutional features. The average testing error (over 10 runs) on the QMNIST test set is shown for

each distance function, and error bars represent standard error. Two controls are included where

the weights are initialized randomly and where the weights are initialized by random CPPNs. The

primary result is that DDFA can discover a set of effective convolutional features that when used

as a starting point for gradient descent, lead to improved performance as measured by performance

on the QMNIST test set. In addition, the fractional norm distance function performed significantly

better than Euclidean distance, adding further evidence that it is a better choice in distance function.

These results add empirical evidence to support the conclusions from the previous chapter. The

most effective distance function, fractional norm distance, was originally selected for its ability

69

to give a useful measure of distance in high dimensions. More importantly, the results here con-

firm that DDFA can effectively discover convolutional features that form an effective basis for a

convolutional neural network, as measured by test performance.

STL-10

Figure 6.3 displays the results of the experiment to apply DDFA to convolutional features in the

STL-10 domain. These results mirror the results on the QMNIST domain, with the random CPPN

control significantly (p < 0.01) outperforming the randomly initialized control and all DDFA

distance functions significantly (p < 0.01) outperforming the random CPPN control. Furthermore,

the grouping of distance functions remain the same, with only fractional norm distance showing

a significant improvement (p < 0.05) over Euclidean distance, and no distance function function

performing significantly worse than Euclidean.

70

Figure 6.3: Average testing error on the STL-10 test set by distance function with convolu-

tional features. The average testing error (over 10 runs) on the STL-10 test set is shown for each

distance function, and error bars represent standard error. Two controls are included where the

weights are initialized randomly and where the weights are initialized by random CPPNs. The

primary result is confirmation that DDFA can produce an effective set of convolutional features.

In addition, the fractional norm distance function performed significantly better than Euclidean

distance, adding further evidence that it is a better choice in distance function.

To qualitatively evaluate the convolutional features produced by DDFA, Figures 6.4 and 6.5 pro-

vide a visualization for the entire set of a features selected by a single run of DDFA on the STL-10

domain with the Euclidean and fractional norm distance functions. Each small image section repre-

71

sents a single convolutional feature, with green and red representing connections with positive and

negative weights, respectively, where higher brightness representing higher magnitude of weight.

The gray areas of the features indicate a weight of zero, meaning the connection was removed by

HyperNEAT-LEO, which was introduced in Chapter 4. As a whole, these feature sets show that

DDFA discovers a diverse set of edge detectors of various orientations, widths, and intensities. A

comparison of the two sets of features provides further insight into the performance of the two

distance metrics. The features produced with the fractional norm distance metric appear smoother,

with fewer extreme values, and contain fewer zero-valued weights. While the runs with Euclidean

distance produced an average of approximately 34% non-zero weights, the runs with fractional

norm produced an average of approximately 42% non-zero weights. Furthermore, if an arbitrary

measure is defined where a feature is considered interesting if it contains at least 3 positive weights

and 3 negative weights or at least 9 non-zero weights overall, then the set of features produced

by Euclidean distance contains about 78% interesting features while fractional norm contains 90%

interesting features. These results imply that one reason Euclidean distance is less effective is due

to its tendency to produce features that focus on smaller sections of the input space rather than

larger structures.

The results from this section add additional empirical evidence to support the conclusions from the

previous chapter, as well as supporting the hypothesis that DDFA can effectively discover convo-

lutional features for application to convolutional neural networks. Due to the widespread success

of convolutional neural networks across a wide range of domains, the successful application of

DDFA to the discovery of convolutional features represents a critical step in the future application

of DDFA to state-of-the-art deep neural networks. Furthermore, this result shows that DDFA has

some flexibility in the ways that it can be applied, and is not restricted to a single type of feature

or architecture.

72

Figure 6.4: Convolutional features discovered by DDFA on the STL-10 domain with Eu-

clidean distance. The full feature set of a single run with the Euclidean distance function on the

STL-10 domain is depicted. Each small image represents a single convolutional feature, with green

and red representing connections with positive and negative weights, respectively, with higher

brightness representing higher magnitude of weight. Gray represents areas where weights are

zero. The feature set contains edge detectors with a variety of orientations and intensities.

73

Figure 6.5: Convolutional features discovered by DDFA on the STL-10 domain with fractional

norm distance. The full feature set of a single run with the fractional norm distance function is de-

picted. Each small image represents a single convolutional feature, with green, red, and gray repre-

senting connections with positive, negative, and zero weights, respectively, with higher brightness

representing higher magnitude of weight. The features are similar to those discovered with the

Euclidean distance metric, but they appear smoother and contain less area with zero weight.

74

Effective Utilization of Unlabeled Data

Results of the experiment to determine whether DDFA effectively utilizes large amounts of un-

labeled training data are shown in Figure 6.6. These results show a significant improvement

(p < 0.05) when unlabeled data is included in the feature discovery process, indicating that DDFA

utilizes this additional data. Another interesting observation is that even without the unlabeled

data, DDFA significantly (p < 0.001) outperforms gradient descent alone. This result raises the

possibility that DDFA could serve as a tool in the application of deep learning to a wider range of

domains where abundant labeled data is unavailable, whether unlabeled data is present or not.

75

Figure 6.6: Average testing error on the STL-10 test set with unlabeled data and training

data. The average testing error (over 10 runs) on the STL-10 test set is shown where DDFA is

supplied with only the training set and where it is supplied with the larger unlabeled data set, as

well as the control where weights are randomly initialized. Error bars represent standard error.

This result shows that DDFA effectively utilizes the unlabeled data to form a better set of features

as measured by the performance of gradient descent when it is applied to these features.

Network Architecture and Wide Networks

Figure 6.7 shows results from the experiment to determine the utility of DDFA across a range of

network size. While gradient descent fails to realize any significant improvement after a first layer

size of 256 convolutional features, DDFA continues to see significant improvement (p < 0.05) up

76

to 512 convolutional features. This result implies that DDFA may permit wider architectures than

are typically employed in deep learning.

Figure 6.7: Average testing error on the STL-10 test set by number of convolutional features.

The average testing error (over 10 runs) on the STL-10 test set is shown across a range of convolu-

tional layer sizes for randomly initialized features and features initialized by DDFA, and error bars

represent standard error. As the number of convolutional features increases beyond 256, gradient

descent alone fails to realize any improvement, while DDFA achieves its best performance at 512

features.

77

Synthesis

The results of this chapter provide evidence to support the hypothesis that DDFA can be applied to

the discovery of convolutional features that can form the basis for a convolutional neural network.

DDFA was able to successfully improve performance of convolutional neural networks on both the

QMNIST and STL-10 domains, suggesting that DDFA can be applied to a wider range of image

recognition domains.

Furthermore, an experiment on the STL-10 domain provides evidence that DDFA can exploit un-

labeled data to further improve the set of features that it produces. This result is important because

it implies that not only can DDFA be applied to aid gradient descent on domains where gradient

descent alone already performs well, but that DDFA can further the application of gradient descent

and deep learning to domains where training data is too limited for gradient descent to be success-

fully applied on its own. Many real-world problems are of this type, where labeled training data

is expensive to obtain or otherwise unavailable. While approaches to unsupervised pretraining

have often focused on generative models, such as RBMs [11, 50] and GANs [44], DDFA pro-

vides a discriminative model for unsupervised pretraining. DDFA therefore provides an example

of how neuroevolution can serve a role in expanding the reach of deep learning into a wide array

of real-world applications.

Finally, an additional experiment on the STL-10 domain provides evidence that DDFA may allow

wider networks to be trained than gradient descent alone. The diversity of the feature set seems

to permit gradient descent to more effectively generalize with a wider network when the features

are initialized by DDFA. This result has important implications for deep learning, where the focus

has been primarily on the increase in depth, which has its own associated challenges and pitfalls.

Tools to increase network width, such as DDFA, may therefore provide a new avenue to increasing

network complexity that is complimentary with the increase in depth.

78

CHAPTER 7: DISCUSSION

This dissertation as a whole has focused on the development of algorithms that combine neuroevo-

lution and gradient descent for the purpose of training neural networks.

While LEEA shows that evolutionary algorithms can effectively train neural networks of moderate

complexity, the more important distinction is in the way that it achieves that goal. By reducing

the number of training examples required to evaluate an individual, LEEA provides an analog to

stochastic gradient descent (SGD) within neuroevolution that allows the two to be combined in

ways that were previously impossible due to computational considerations. For example, suppose

a researcher wants to create an algorithm that includes neuroevolution for topological search with

gradient descent for learning the weights of each individual in the population, and they want these

phases to alternate so that weights are learned at the same time as topology. Without LEEA, the

neuroevolution phase would include evaluating individuals against the entire training set. Mean-

while, the gradient descent phase could evaluate a single training example, such as with SGD, or

a small number of training examples with mini-batching. Either way, the limiting factor in the

ability of the algorithm to execute many generations is the neuroevolution phase that must eval-

uate against the entire training set. With LEEA, the time taken by the neuroevolution phase can

be greatly reduced, enabling the algorithm to execute many more generations than it could pre-

viously. This capability allows for a much tighter coupling of the neuroevolution and gradient

descent components than was previously possible.

The most extensive work in this dissertation is the development of a novel hybrid algorithm

(DDFA) that combines some of the more sophisticated tools of neuroevolution with the power of a

convolutional neural network trained through stochastic gradient descent. DDFA was first applied

to a relatively simple benchmark visual problem, MNIST, where gradient descent already performs

79

well, and with a relatively simple network architecture. This simplified first application of DDFA

provided a useful tool as the difficulties in applying a new and relatively complex neuroevolution

approach were resolved. This approach then allowed the initial development of DDFA to focus on

the questions that arise from the application of neuroevolution to the discovery of features without

the complications that arise from more extensive data sets and complex neural network topologies.

This initial work showed that even on a domain where gradient descent performs well on its own,

DDFA is effective at providing a set of starting features that improve performance as measured by

the ability of the network to generalize to the test set.

One of the more complicated issues that arose from DDFA was the distance function that provides

novelty search with an explicit measure of the novelty of an individual feature. The traditional

choice for distance function in novelty search, Euclidean distance, was discovered to be faulty

for application to the large behavior vectors produced by DDFA. A study of alternate distance

functions produced two new distance measures, fractional norm distance and component neighbor

distance, that each provide significant improvements over Euclidean distance. Component behav-

ior distance provides a much less computationally burdensome distance metric, which aids in the

application of DDFA to larger domains and larger networks. Fractional norm distance was found

to provide a better sense of distance in high dimensions, which leads to the discovery of a better set

of features. This discovery has implications beyond future applications of DDFA. The neuroevolu-

tion community as a whole is often working with behavior vectors with high dimensions, and the

discovery that fractional norm distance can provide a better measure of distance in this space may

aid researchers as they apply novelty search.

With the fundamentals of DDFA established, DDFA was applied to the discovery of convolutional

features. As convolution has become a critical tool for applying neural networks to a wide array

of more challenging domains, this was an important step in the development of DDFA. The basic

approach to applying DDFA to convolutional features is fairly simple. Rather than a HyperNEAT

80

substrate that connects the entire input space to a single output, as with fully-connected features,

the HyperNEAT substrate connects a small patch (5× 5 or 9× 9) to a single output. This substrate

is then convolved across the image, producing a feature map rather than a single output. While

this process introduced new computational challenges, this work provided solutions to these chal-

lenges, resulting in convolution being successfully applied to the MNIST domain. In addition to

showing that DDFA was effective at discovering convolutional features in the MNIST domain, this

work showed how DDFA could be applied to the more challenging STL-10 domain, which con-

tains relatively high resolution images of real-world objects. The successful application of DDFA

to STL-10 shows that it could be applied to a potentially broader range of problems.

One of the main challenges to applying deep learning is that it requires a large set of labeled data

to learn from. One of the most important aspects of DDFA is that feature discovery is done in an

unsupervised way, which means training data need not be labeled for DDFA to extract features

from it. This allows DDFA to be applied to any set of data, regardless of whether it is labeled.

An experiment on the STL-10 domain, which provides a large set of unlabeled data along with a

small set of labeled data, showed that not only does DDFA provide an improvement over gradient

descent when applied to only the labeled training data, but that it further improves performance

when applied to the unlabeled data. These results show that DDFA provides an avenue to expand

the reach of deep learning to domains where sufficient labeled training data is unavailable.

Because DDFA produces a set of features that discriminate across the feature set in novel ways,

they could have other interesting properties when applied to neural networks. One of these prop-

erties that was identified in this work is the ability for gradient descent to effectively exploit a

larger set of DDFA features than it can with randomly generated features. While deep learning has

primarily focused on increasing network complexity through the increase in depth, this discovery

provides a tool for increasing network complexity through width as well.

81

While the experiments in this dissertation applied DDFA to discovering features in the first layer

only, there is no obvious reason that the principle of features that discriminate in novel ways could

not be applied beyond the first layer. While such an extension of DDFA to deeper layers could

provide an important new tool for deep learning, it does come with its own set of challenges.

First, because features beyond the first layer are compositions of features in the previous layer,

those conglomerations of features do not have a geometric relationship with each other in the same

way that the input space does (though each individual feature map found through convolution

of course does have its own geometry). This difference makes the application of CPPNs, which

exploit the problem geometry, more complicated. One potential solution to this problem is to

eschew geometry in these deeper layers, at least between different features, and instead encode

individuals with a direct encoding like NEAT. NEAT could even decide which of the prior layer

features to include, based perhaps on the concept of co-occurrence. For example, if a round feature

is observed at a location frequently with a smaller round feature inside it, that observation may

indicate the presence of a higher-level feature such as an eye. Note that the loss of geometry does

not undermine the search for features that discriminate in novel ways driven by novelty search.

Therefore, DDFA can still retain much of its power even as the search for features is applied to

successive layers. Additionally, because the feature maps produced by convolutional layers do

contain geometric information, HyperNEAT could still be applied to the convolutional layers of a

deep network. The application of DDFA across all layers of a deep network presents challenges,

but if successful, it could have a tremendous impact on the application of deep learning on both

tasks where deep learning already performs well, and on tasks where deep learning cannot be

applied currently due to limitations of labeled data.

It is important to recognize that significantly more than performance is at stake in the dissemination

of alternative unsupervised training techniques based on new principles. Deep learning faces sev-

eral fundamental challenges that are not only about testing performance. For example, results from

82

Szegedy et al. [112] show that very small yet anomalous perturbations of training images that are

imperceptible to the human eye can fool several different kinds of deep networks that nevertheless

ominously score well on the test set. The implications of these anomalies are not yet understood.

At the same time, as Bengio [9] points out, local descent on its own will not ultimately be enough

to tackle the most challenging problems, suggesting the need for radical new kinds of optimization

that are more global. These kinds of considerations suggest that simply scoring well on a test set

in the short run may not necessarily foreshadow continuing success for the field in the long run,

highlighting the need for new approaches.

By showing that unsupervised discriminative learning can be effective, DDFA brings several in-

triguing corollaries. Among those, it is possible to conceive training methods that act as continual

feature accumulators that do not require a fixed “hidden layer size.” Furthermore, it is possible

to learn useful features without any kind of error minimization (which is even used in conven-

tional unsupervised techniques). Relatedly, an interesting question is whether anomalous results

are sometimes a side effect of the very idea that all useful knowledge ultimately must come from

minimizing error. The divergent dynamics of novelty search also mean that the search is inherently

more global than local descent for the very reason that it is continually diverging, thereby offering

a hint of how more expansive feature sets can be collected.

The importance of the capacity to learn from unlabeled data cannot be understated. Unsupervised

learning is widespread in the process of human learning, as vast quantities of labeled data are

rarely available. As infants, we observe relationships in our sensory input, such as shapes and

colors, and automatically classify objects based on their similarity, developing a kind of mental

language referred to as Mentalese by Pinker [88]. Only later do we then learn the spoken language

labels for these mental categories that were developed without any explicitly defined labels. This

capacity is why children do not need to be told the correct label for thousands of pictures of cats.

Once they are shown a small number of cats, they automatically understand the concept of a cat

83

due to the unsupervised learning that has taken place since the moment they opened their eyes.

They can then quickly attach a label based on the language they are taught. In this way, DDDFA

introduces a process that is much more aligned with how children learn to classify objects.

Finally, this work should be viewed at a higher level as more than only a new algorithm that

provides a better solution for unsupervised pretraining. It also aims to serve as an example and help

open the door to other novel hybrid algorithms containing neuroevolution and gradient descent.

The majority of work done on such hybrid algorithms has utilized only the simplest tools from

the neuroevolution toolkit, often implementing simple neuroevolution algorithms that have been

around for decades. Major neuroevolution advances of the past decade, such as indirect encodings

and novelty search, have not yet been fully exploited in hybrid algorithms, leading these algorithms

to be less effective than they possibly could be. Therefore this dissertation shows that these tools

can serve a critical role, encouraging neural network researchers to fully exploit the rich set of

tools provided by neuroevolution.

84

CHAPTER 8: CONCLUSION

This dissertation introduced two new neural network training algorithms, the Limited Evaluation

Evolutionary Algorithm (LEEA) and Divergent Discriminative Feature Accumulation (DDFA).

These two new algorithms were conceived to promote the integration of gradient descent and

neuroevolution in hybrid neural network training algorithms, and they each achieve this goal in

a different way. While LEEA introduces a variation on the standard evolutionary algorithm that

permits the integration with stochastic gradient descent, DDFA gives an example of an effective

integration of the two neural network training paradigms.

Four primary contributions summarize the overall achievement of this work:

(1) LEEA provides a modification to the standard evolutionary algorithm that allows individuals

to be evaluated against only a small batch of training examples in each generation rather than

the entire training set. This limited evaluation, which is made possible by a process called fitness

inheritance, permits EAs to behave in a similar manner to mini-batch learning in stochastic gradient

descent, which is a critical component of deep learning. While LEEA shows that evolution alone

can effectively train moderately complex neural networks, it is more important to observe that

by introducing an analog to mini-batch learning within neuroevolution, LEEA has created new

opportunities for the development of new types of hybrid algorithms where neuroevolution and

gradient descent are more tightly coupled than before.

(2) DDFA is an example of a hybrid gradient-neuroevolution algorithm that incorporates two of

the more sophisticated tools available to neuroevolution, indirect encoding and novelty search.

This contribution was further augmented by (3) investigating the impact of the distance function

on the quality of the features generated by DDFA and (4) applying DDFA to the discovery of

convolutional features. Not only was DDFA shown experimentally to provide starting features

85

that achieve better results on supervised tasks where gradient descent already does well, but it was

also shown experimentally that the unsupervised nature of the feature discovery process allows

the algorithm to be applied on domains where labeled data is less abundant. This capability could

potentially expand the reach of deep learning to a wider range of domains in the future

Taken as a whole, these contributions serve as an example of how recent advances in neuroevo-

lution can be leveraged to augment deep learning and paves the way for expanding the reach of

algorithms that exploit the power of both neuroevolution and deep learning.

86

LIST OF REFERENCES

[1] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance

metrics in high dimensional space. In International conference on database theory, pages

420–434. Springer, 2001.

[2] D. Almeida and N. Sauder. GradNets: Dynamic interpolation between neural architectures.

ArXiv e-prints, abs/1511.06827, 2015.

[3] P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm that constructs

recurrent neural networks. IEEE Transactions on Neural Networks, 5(1):54–65, 1994.

[4] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of evolutionary computation. CRC

Press, 1997.

[5] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures using

reinforcement learning. ArXiv e-prints, abs/1611.02167, 2016. URL http://arxiv.

org/abs/1611.02167.

[6] R. K. Belew, J. McInerney, and N. N. Schraudolph. Evolving networks: Using the genetic

algorithm with connectionist learning. In Artificial Life II: Proceedings of the Workshop on

Artificial Life, 1990.

[7] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[8] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learn-

ing, 2(1):1–127, 2009.

[9] Y. Bengio. Deep learning of representations: Looking forward. In Statistical Language and

Speech Processing, pages 1–37. Springer, 2013.

87

http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1611.02167

[10] Y. Bengio and Y. LeCun. Scaling learning algorithms towards ai. Large-Scale Kernel Ma-

chines, 34, 2007.

[11] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep

networks. In Advances in Neural Information Processing Systems 19 (NIPS), Cambridge,

MA, 2007. MIT Press.

[12] I. Bertini, M. De Felice, and S. Pizzuti. Combining back-propagation and genetic algorithms

to train neural networks for start-up time modeling in combined cycle power plants. In

Proceedings of the European Symposium on Artificial Neural Networks (ESANN), 2010.

[13] H. Braun and J. Weisbrod. Evolving neural feedforward networks. In Artificial Neural Nets

and Genetic Algorithms, pages 25–32. Springer, 1993.

[14] L. Chen and K. Aihara. Chaotic simulated annealing by a neural network model with tran-

sient chaos. Neural networks, 8(6):915–930, 1995.

[15] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber. Multi-column deep neural network for

traffic sign classification. Neural Networks, 32:333–338, 2012.

[16] A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer networks in unsupervised

feature learning. In International Conference on Artificial Intelligence and Statistics, pages

215–223, 2011.

[17] E. Conti, V. Madhavan, F. Petroski Such, J. Lehman, K. O. Stanley, and J. Clune. Improv-

ing exploration in evolution strategies for deep reinforcement learning via a population of

novelty-seeking agents. arXiv preprint arXiv:1712.06560, 2017.

[18] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better mini-batch algorithms via ac-

celerated gradient methods. In Advances in neural information processing systems, pages

1647–1655, 2011.

88

[19] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals.

Nature, 521:503–507, 2015. doi: 10.1038/nature14422.

[20] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals, and Systems, 2(4):303–314, 1989.

[21] D. Dasgupta and D. McGregor. Designing application-specific neural networks using the

structured genetic algorithm. In Proceedings of the International Conference on Combina-

tions of Genetic Algorithms and Neural Networks, pages 87–96, 1992.

[22] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme

based on p-stable distributions. In Proceedings of the twentieth annual symposium on Com-

putational geometry, pages 253–262. ACM, 2004.

[23] Y. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and

attacking the saddle point problem in high-dimensional non-convex optimization. ArXiv

e-prints, abs/1406.2572, 2014.

[24] K. A. De Jong. Evolutionary Computation: A Unified Perspective. MIT Press, Cambridge,

MA, 2002.

[25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic al-

gorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern

recognition, pages 248–255. Ieee, 2009.

[27] T. Desell. Large scale evolution of convolutional neural networks using volunteer comput-

ing. ArXiv e-prints, abs/1703.05422, 2017. URL http://arxiv.org/abs/1703.

05422.

89

http://arxiv.org/abs/1703.05422
http://arxiv.org/abs/1703.05422

[28] P. M. Domingos. A few useful things to know about machine learning. Commun. acm, 55

(10):78–87, 2012.

[29] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Micro Machine

and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on,

pages 39–43. IEEE, 1995.

[30] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Deep learning for time

series classification: a review. Data Mining and Knowledge Discovery, 33(4):917–963,

2019.

[31] C. Fernando, D. Banarse, M. Reynolds, F. Besse, D. Pfau, M. Jaderberg, M. Lanctot, and

D. Wierstra. Convolution by evolution. ArXiv e-prints, abs/1606.02580, 2016. URL http:

//arxiv.org/abs/1606.02580.

[32] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and D. Wier-

stra. Pathnet: Evolution channels gradient descent in super neural networks. ArXiv e-prints,

abs/1701.08734, 2017. URL http://arxiv.org/abs/1701.08734.

[33] D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution: from architectures to learning.

Evolutionary Intelligence, 1:47–62, 2008.

[34] D. B. Fogel. Blondie24: Playing at the Edge of AI. 2001.

[35] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial intelligence through simulated evolu-

tion. John Wiley and Sons, Hoboken, NJ, 1966.

[36] L. G. Fonseca, A. C. Lemonge, and H. J. Barbosa. A study on fitness inheritance for

enhanced efficiency in real-coded genetic algorithms. In Proceedings of the 2012 IEEE

Congress on Evolutionary Computation (CEC), pages 1–8. IEEE, 2012.

90

http://arxiv.org/abs/1606.02580
http://arxiv.org/abs/1606.02580
http://arxiv.org/abs/1701.08734

[37] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202,

1980.

[38] J. Gauci and K. O. Stanley. Generating large-scale neural networks through discovering

geometric regularities. In Proceedings of the Genetic and Evolutionary Computation Con-

ference (GECCO 2007), New York, NY, 2007. ACM Press.

[39] J. Gauci and K. O. Stanley. Autonomous evolution of topographic regularities in artificial

neural networks. Neural Computation, 22(7):1860–1898, 2010.

[40] C. Goerick and T. Rodemann. Evolution strategies: An alternative to gradient-based learn-

ing. In Proceedings of the International Conference on Engineering Applications of Neural

Networks, volume 1, pages 479–482. Citeseer, 1996.

[41] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function

optimization. In Genetic algorithms and their applications: Proceedings of the Second

International Conference on Genetic Algorithms, pages 41–49. Hillsdale, NJ: Lawrence

Erlbaum, 1987.

[42] J. Gomes, P. Urbano, and A. L. Christensen. Evolution of swarm robotics systems with

novelty search. Swarm Intelligence, pages 1–30, 2013.

[43] F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior. Adap-

tive Behavior, 5:317–342, 1997.

[44] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio. Generative adversarial nets. In Advances in neural information processing

systems, pages 2672–2680, 2014.

91

[45] C. Green. SharpNEAT homepage. http://sharpneat.sourceforge.net/, 2003–

2015.

[46] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv

preprint arXiv:1512.03385, 2015.

[47] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. In Proceedings of the IEEE international

conference on computer vision, pages 1026–1034, 2015.

[48] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778, 2016.

[49] D. O. Hebb. The organization of behavior: A neuropsychological theory. New York: Wiley,

1949.

[50] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets.

Neural Computation, 18(7):1527–1554, 2006.

[51] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):

1735–1780, 1997.

[52] J. H. Holland. Adaptation in natural and artificial systems. University of Michigan Press,

Ann Arbor, MI, 1975.

[53] R. Houthooft, R. Y. Chen, P. Isola, B. C. Stadie, F. Wolski, J. Ho, and P. Abbeel. Evolved

policy gradients. arXiv preprint arXiv:1802.04821, 2018.

[54] G.-B. Huang, P. Saratchandran, and N. Sundararajan. A generalized growing and pruning

RBF (GGAP-RBF) neural network for function approximation. Neural Networks, IEEE

Transactions on, 16(1):57–67, 2005.

92

http://sharpneat.sourceforge.net/

[55] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional archi-

tecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154, 1962.

[56] C. Igel. Neuroevolution for reinforcement learning using evolution strategies. In R. Sarker,

R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, editors, Proceed-

ings of the 2003 Congress on Evolutionary Computation, pages 2588–2595, Piscataway, NJ,

2003. IEEE Press.

[57] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-

lutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

[58] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, and A. Ng. Building

high-level features using large scale unsupervised learning. In International Conference in

Machine Learning (ICML-2012), 2012.

[59] Y. LeCun. Une procédure d’apprentissage pour réseau à seuil assymétrique. In Cognitiva

85: A la Frontière de l’Intelligence Artificielle des Sciences de la Connaissance des Neuro-

sciences, pages 599–604, Paris, 1985. CESTA.

[60] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time-series. In

M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks. MIT Press, 1995.

[61] Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1998.

[62] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[63] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search for

novelty alone. Evolutionary Computation, 19(2):189–223.

93

[64] J. Lehman, K. O. Stanley, and R. Mikkulainen. Effective diversity maintenance in decep-

tive domains. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2013), New York, NY, 2013. ACM Press.

[65] J. Lehman, J. Chen, J. Clune, and K. O. Stanley. Safe mutations for deep and recurrent

neural networks through output gradients. arXiv preprint arXiv:1712.06563, 2017.

[66] B. Li and L. Han. Distance weighted cosine similarity measure for text classification. In

International Conference on Intelligent Data Engineering and Automated Learning, pages

611–618. Springer, 2013.

[67] J. Liang, E. Meyerson, and R. Miikkulainen. Evolutionary architecture search for deep

multitask networks. arXiv preprint arXiv:1803.03745, 2018.

[68] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan. A fast and accurate

online sequential learning algorithm for feedforward networks. Neural Networks, IEEE

Transactions on, 17(6):1411–1423, 2006.

[69] G. D. Magoulas, V. P. Plagianakos, and M. N. Vrahatis. Neural network-based colonoscopic

diagnosis using on-line learning and differential evolution. Applied Soft Computing, 4(4):

369–379, 2004.

[70] M. Mandischer. A comparison of evolution strategies and backpropagation for neural net-

work training. Neurocomputing, 42(1):87–117, 2002.

[71] R. Marc’Aurelio, L. Boureau, and Y. LeCun. Sparse feature learning for deep belief net-

works. In Advances in Neural Information Processing Systems 20 (NIPS), pages 1185–1192,

Cambridge, MA, 2007. MIT Press.

94

[72] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,

H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat. Evolving deep neural networks. ArXiv

e-prints, abs/1703.00548, 2017. URL http://arxiv.org/abs/1703.00548.

[73] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,

H. Shahrzad, A. Navruzyan, N. Duffy, et al. Evolving deep neural networks. In Artificial

Intelligence in the Age of Neural Networks and Brain Computing, pages 293–312. Elsevier,

2019.

[74] M. Minsky and S. Papert. Perceptrons. MIT Press, 1969.

[75] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-

miller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,

2013.

[76] D. J. Montana and L. Davis. Training feedforward neural networks using genetic algorithms.

pages 762–767, 1989.

[77] D. E. Moriarty and R. Miikkulainen. Forming neural networks through efficient and adaptive

co-evolution. Evolutionary Computation, 5:373–399, 1997.

[78] G. Morse, S. Risi, C. R. Snyder, and K. O. Stanley. Single-unit pattern generators for

quadruped locomotion. In Proceedings of the Genetic and Evolutionary Computation Con-

ference (GECCO-2013), New York, NY, USA, 2013. ACM.

[79] J.-B. Mouret and S. Doncieux. Encouraging behavioral diversity in evolutionary robotics:

An empirical study. Evolutionary computation, 20(1):91–133, 2012.

[80] H. Mühlenbein. Limitations of multi-layer perceptron networks – steps towards genetic

neural networks. Parallel Computing, 14(3):249–260, 1990.

95

http://arxiv.org/abs/1703.00548

[81] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In

Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages

807–814, 2010.

[82] S.-K. Ng and G. J. McLachlan. Using the em algorithm to train neural networks: miscon-

ceptions and a new algorithm for multiclass classification. IEEE transactions on neural

networks, 15(3):738–749, 2004.

[83] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confi-

dence predictions for unrecognizable images. 2015.

[84] H. V. Nguyen and L. Bai. Cosine similarity metric learning for face verification. In Asian

conference on computer vision, pages 709–720. Springer, 2010.

[85] V. P. Pallavi and V. Vaithiyanathan. Combined artificial neural network and genetic algo-

rithm for cloud classification. International Journal of Engineering and Technology, 5(2):

787–794, 2013.

[86] D. B. Parker. Learning-logic. Invention Report S81-64, File 1, Office of Technology Li-

censing, Stanford University, Palo Alto, CA, 1985.

[87] F. Petroski Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep

neuroevolution: Genetic algorithms are a competitive alternative for training deep neural

networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

[88] S. Pinker. The language instinct: How the mind creates language. Penguin UK, 2003.

[89] V. W. Porto, D. B. Fogel, and L. J. Fogel. Alternative neural network training methods.

IEEE Intelligent Systems, (3):16–22, 1995.

[90] J. K. Pugh, L. B. Soros, and K. O. Stanley. Quality diversity: A new frontier for evolutionary

computation. Frontiers in Robotics and AI, 3:40, 2016.

96

[91] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and A. Kurakin.

Large-scale evolution of image classifiers. ArXiv e-prints, abs/1703.01041, 2017. URL

http://arxiv.org/abs/1703.01041.

[92] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier

architecture search. arXiv preprint arXiv:1802.01548, 2018.

[93] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classi-

fier architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 4780–4789, 2019.

[94] M. Requena-Prez, A. Albero-Ortiz, J. Monz-Cabrera, and A. Daz-Morcillo. Combined

use of genetic algorithms and gradient descent optmization methods for accurate inverse

permittivity measurement. IEEE Transactions On Microwave Theory And Techniques, 54

(2):615–624, 2006.

[95] S. Risi and J. Togelius. Neuroevolution in games: State of the art and open challenges. IEEE

Transactions on Computational Intelligence and AI in Games, 9(1):25–41, 2017.

[96] F. Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65:386–408, 1958. URL

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&

db=pubmed&dopt=abstract&list_uids=13602029.

[97] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general framework for parallel

distributed processing. pages 45–76. 1986.

[98] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by

error propagation. In Parallel Distributed Processing, pages 318–362. 1986.

97

http://arxiv.org/abs/1703.01041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=13602029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=13602029

[99] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved

techniques for training gans. In Advances in Neural Information Processing Systems, pages

2234–2242, 2016.

[100] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable

alternative to reinforcement learning. ArXiv e-prints, abs/1703.03864, 2017. URL http:

//arxiv.org/abs/1703.03864.

[101] F. Seide, G. Li, and D. Yu. Conversational speech transcription using context-dependent

deep neural networks. In Twelfth Annual Conference of the International Speech Communi-

cation Association, 2011.

[102] M. J. Shafiee, E. Barshan, and A. Wong. Evolution in groups: A deeper look at synaptic

cluster driven evolution of deep neural networks. ArXiv e-prints, abs/1703.02081, 2017.

URL http://arxiv.org/abs/1703.02081.

[103] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go

with deep neural networks and tree search. nature, 529(7587):484, 2016.

[104] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.

Nature, 550(7676):354, 2017.

[105] P. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks

applied to visual document analysis. In International Conference on Document Analysis

and Recogntion (ICDAR), volume 3, pages 958–962, 2003.

[106] R. E. Smith, B. A. Dike, and S. A. Stegmann. Fitness inheritance in genetic algorithms. In

Proceedings of the 1995 ACM Symposium on Applied Computing, SAC ’95, 1995.

98

http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.02081

[107] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. ArXiv e-prints,

abs/1505.00387, 2015.

[108] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topolo-

gies. Evolutionary Computation, 10:99–127, 2002.

[109] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 9

(2):93–130, 2003.

[110] K. O. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary com-

plexification. Journal of Artificial Intelligence Research (JAIR), 21:63–100, 2004.

[111] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based indirect encoding for

evolving large-scale neural networks. Artificial Life, 15(2):185–212, 2009.

[112] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus.

Intriguing properties of neural networks. ArXiv e-prints, abs/1312.6199, 2013.

[113] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[114] P. A. Szerlip, G. Morse, J. K. Pugh, and K. O. Stanley. Unsupervised feature learning

through divergent discriminative feature accumulation. In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence (AAAI-2015), Menlo Park, CA, 2015. AAAI

Press.

[115] K. Theofilatos, G. Beligiannis, and S. Likothanassis. Combining evolutionary and stochas-

tic gradient techniques for system identification. Journal of Computational and Applied

Mathematics, 227(1):147–160, 2009.

99

[116] T. Tieleman and G. Hinton. Lecture 6.5-RMSprop: Divide the gradient by a running average

of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.

[117] P. Verbancsics and K. O. Stanley. Constraining connectivity to encourage modularity in

HyperNEAT. In GECCO ’11: Proceedings of the 13th annual conference on Genetic and

evolutionary computation, pages 1483–1490, Dublin, Ireland, 12-16 July 2011. ACM. ISBN

978-1-4503-0557-0. doi: doi:10.1145/2001576.2001776.

[118] P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In System modeling

and optimization, pages 762–770, Heidelberg, Germany, 1982. Springer.

[119] D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural networks: Opti-

mizing connections and connectivity. Parallel Computing, 14:347–361, 1990.

[120] W. Wienholt. Minimizing the system error in feedforward neural networks with evolution

strategy. In ICANN 93, pages 490–493. Springer, 1993.

[121] D. R. Wilson and T. R. Martinez. The general inefficiency of batch training for gradient

descent learning. Neural Networks, 16(10):1429–1451, 2003.

[122] L. Xie and A. Yuille. Genetic cnn. ArXiv e-prints, abs/1703.01513, 2017. URL http:

//arxiv.org/abs/1703.01513.

[123] C. Yadav and L. Bottou. Cold case: The lost mnist digits. arXiv preprint arXiv:1905.10498,

2019.

[124] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447,

1999.

[125] J. Ye. Improved cosine similarity measures of simplified neutrosophic sets for medical

diagnoses. Artificial intelligence in medicine, 63(3):171–179, 2015.

100

http://arxiv.org/abs/1703.01513
http://arxiv.org/abs/1703.01513

[126] W. Yin, K. Kann, M. Yu, and H. Schütze. Comparative study of cnn and rnn for natural

language processing. arXiv preprint arXiv:1702.01923, 2017.

101

	Training Neural Networks Through the Integration of Evolution and Gradient Descent
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: BACKGROUND
	Artificial Neural Networks
	Gradient Descent
	Convolutional Neural Networks
	Evolutionary Algorithms and Neuroevolution
	Hybrid Algorithms

	CHAPTER 3: NEW APPROACH: LEEA
	Limited Evaluation Evolutionary Algorithm
	Approach
	Experiment
	Results
	Synthesis

	CHAPTER 4: NEW APPROACH: DDFA
	Divergent Discriminative Feature Accumulation
	Approach
	Experiment
	Results
	Synthesis

	CHAPTER 5: DDFA DISTANCE FUNCTION
	Euclidean Distance
	Alternative Distance Functions
	Weighted Euclidean Distance
	Cosine Distance
	Manhattan Distance
	Fractional Norm Distance
	Component Neighbor Distance

	QMNIST Domain
	Experiment
	Results
	Synthesis

	CHAPTER 6: CONVOLUTIONAL DDFA
	Approach
	STL-10 Domain
	Experiment
	Results
	QMNIST
	STL-10
	Effective Utilization of Unlabeled Data
	Network Architecture and Wide Networks

	Synthesis

	CHAPTER 7: DISCUSSION
	CHAPTER 8: CONCLUSION
	LIST OF REFERENCES

