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ABSTRACT 

A number of technologies rely on the conversion of short laser pulses from one spectral 

domain to another. Efficient frequency conversion is currently obtained in ordered nonlinear 

optical materials and requires a periodic spatial modulation of their nonlinear coefficient which 

results in a narrow bandwidth. One can trade off efficiency for more spectral bandwidth by relaxing 

the strict phase-matching conditions and achieve nonlinear interaction in carefully engineered 

disordered crystalline aggregates, in a so-called random quasi-phase-matching (rQPM) process. In 

this dissertation, we examine appropriate fabrication pathways for (1-x)Pb(Mg1/3Nb2/3)O3-

xPbTiO3 (PMN-PT) and ZnSe transparent ceramics for applications in the mid-IR. The main 

challenge associated with the fabrication of high transparency PMN-PT ceramics is to avoid the 

parasitic pyrochlore phase. The most effective method to suppress the formation of this undesired 

phase is to use magnesium niobate (MgNb2O6) as the starting material. We have found that, 

contrary to commercially available lead oxide powders, nanopowders synthesized in our lab by 

the combustion method help improve the densification of ceramics and their overall optical quality. 

The effects of dopants on the microstructure evolution and phase-purity control in PMN-PT 

ceramics are also investigated and show that La3+ helps control grain-growth and get a pure 

perovskite phase, thereby improving the samples transparency. With large second order 

susceptibility coefficients and wide transmission window from 0.45 to 21 µm, polycrystalline zinc 

selenide is also an ideal candidate material for accessing the MWIR spectrum through rQPM 

nonlinear interaction. We have investigated non-stoichiometric heat-treatment conditions 

necessary to develop adequate microstructure for rQPM from commercial CVD-grown ZnSe 

ceramics. We have been able to demonstrate the world’s first optical parametric oscillation (OPO) 
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based on rQPM in ZnSe transparent ceramic, enabling broadband frequency combs spanning 3-

7.5 µm.  

Key Words: χ(2)  interaction, Transparent Ceramic, PMN-PT, ZnSe, Sintering Additive, Non-

stoichiometry, Grain-growth. 
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CHAPTER ONE: INTRODUCTION 

1.1 Transparent Ceramics 

Transparent optical ceramics (TOCs) are used in various optical applications, including 

laser gain-media [1, 2], high-strength windows [3, 4], scintillators [5], electro-optical devices [6], 

transparent envelopes for high pressure sodium street lamps and compact optics with high 

refractive index [7, 8]. Their fabrication methods enable large size and complex shapes and the 

control of dopants and microstructure for enhanced functionalities.  

However, transparent ceramics of high optical quality are still challenging to fabricate. The 

elimination of scattering centers (pores and secondary phases) (Figure 1) requires effective 

sintering techniques and highly pure phases and raw materials. Over the past 60 years, various 

processes have been developed to improve the optical quality of TOCs. These include the 

fabrication of fine and unagglomerated powders through wet chemical synthesis [9-11] and 

sintering techniques, such as high uniaxial pressing (HP), high isostatic pressing (HIP), vacuum 

sintering [12-14] and spark plasma sintering (SPS) [15-19].  
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Figure 1. Scattering sources in ceramics including (a) porosities within the grains, (b) porosities 

at the grain boundaries, (c) grain boundaries and (d) second phases. 

In recent years, these developments have enabled better control of TOC’s physical 

attributes such as microstructure and transmission spectrum making them attractive for nonlinear 

optics (NLO).  

1.2 Nonlinear Optics 

1.2.1 Introduction to Nonlinear Optics 

Nonlinear Optics is a branch of optics that studies the behavior of light in nonlinear 

materials. Typically, only laser light can change the optical properties of a material system because 

of very high intensity (atomic electric field, 108 V/m). Figure 2 shows an example of frequency 

conversion from near-infrared to mid-infrared through a nonlinear crystal. In order to explain the 

physics in Figure 2, Figure 3 shows the energy diagram of linear and nonlinear optics. In linear 

optics, the emitted light has the same energy as the input light and thus has the same waves. 
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However, in nonlinear optics, the excited photons can be excited to higher energy level under high 

intensity light. The emitted light has a higher energy than the input light and new waves are created.  

 

Figure 2. An illustration of frequency conversion from near-infrared to mid-infrared through a 

nonlinear crystal [20]. 

 

Figure 3. Energy level diagrams of linear and nonlinear optics [21]. 

In the case of linear optics, the polarization depends linearly on the electric field and can 

be described by the relationship 

𝑃(ω) = 𝜀0𝜒
(1)(ω;ω)𝛦(𝜔)                                                 (1) 
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where 𝜀0 is the permittivity of free space and 𝜒(1) is the linear susceptibility. In nonlinear optics, 

the polarization can be expressed as a power series in the field strength 𝛦(𝜔) 

 𝑃(ω) = 𝜀0𝜒
(1)𝐸(ω)+ 𝜀0𝜒

(2)𝐸2(ω)+𝜀0𝜒
(3)𝐸3(ω)+∙∙∙∙ 

                                   = 𝑃(1)(ω) + 𝑃(2)(ω) + 𝑃(3)(ω) +∙∙∙∙                                     (2)                                  

𝜒(2) and 𝜒(3) are second-order and third-order nonlinear optical susceptibilities, respectively. The 

beams from these high order terms are named as 2nd and 3rd harmonic beams, with a frequency of 

twice and triple of the incident beam. In this dissertation, we are only interested in the second-

order nonlinearity response, which can be written as follows:  

𝑃(2)(ω) = 𝜀0∑ ∑ 𝐾(𝜔3; 𝜔1, 𝜔2)𝜒𝑖𝑗𝑘
(2)(𝜔3; 𝜔1, 𝜔2)(𝐸𝜔1)𝑗𝜔𝑗,𝑘 (𝐸𝜔2)𝑘                (3) 

where the indices 𝑖, 𝑗, 𝑘 denote the Cartesian components of the electric fields. The fundamental 

input beams and second-order harmonic frequency are 𝜔1, 𝜔2,  𝜔3 ( 𝜔3 = 𝜔1 + 𝜔2) respectively. 

The coefficient 𝐾(𝜔3; 𝜔1, 𝜔2) takes into account the fact that frequencies of the input beams can 

be equal in some processes and depends on the nonlinear optical interactions [22]. Based on 

Neumann’s principle, in order to have non-zero second-order response, crystals should lack 

inversion symmetry. Crystal classes where the inversion symmetry is missing are called non-

centrosymmetric, which will be discussed in more details in section 1.3.   
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1.2.2 Nonlinear Optical Processes 

In order to quantitatively analyze the polarization, we will briefly describe a number of 

nonlinear optical processes in this section. The rule for calculating 𝐾(𝜔3; 𝜔1, 𝜔2) was defined by 

Butcher and Cotter [23] and 𝐾(𝜔3; 𝜔1, 𝜔2) values for some second-order processes are given in 

Table 1. Figure 4 shows the geometry of some nonlinear optical processes. The process of second-

harmonic generation (SHG) can double the frequency of the input beam. When there are two beams 

at different frequencies, we can get a signal at the sum or the difference of these two frequencies 

through sum-frequency generation (SFG) and difference-frequency generation (DFG). In this 

section, we only discuss second-harmonic generation and optical parametric oscillation (OPO) in 

details.  

 

Figure 4. Geometry of (a) second-harmonic generation, (b) sum-frequency generation, (c) 

difference-frequency generation and (d) optical parametric oscillator.  
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Table 1 𝐾(𝜔3; 𝜔1, 𝜔2) values for second-order nonlinear processes. 

Process Energy conservation Susceptibility 𝑲(𝝎𝟑; 𝝎𝟏, 𝝎𝟐) 

Second-Harmonic 

Generation (SHG) 
𝜔3 = 2𝜔1 𝜒𝑖𝑗𝑘

(2)(𝜔3; 𝜔1, 𝜔1) 1/2 

Sum-Frequency 

Generation (SFG) 
𝜔3 = 𝜔1 + 𝜔2 𝜒𝑖𝑗𝑘

(2)(𝜔3; 𝜔1, 𝜔2) 1 

Difference-

Frequency 

Generation (DFG) 

𝜔3 = 𝜔1 − 𝜔2 𝜒𝑖𝑗𝑘
(2)(𝜔3; 𝜔1, −𝜔2) 1 

1.2.2.1 Second-Harmonic Generation 

The SHG process is illustrated schematically in Figure 4 (a). The nonlinear polarization is 

given as 

𝑃(2)(𝑡) = 𝜀0𝜒
(2)(𝜔3; 𝜔1, 𝜔1)𝐸

2                                               (4) 

Second-harmonic generation can be considered as an interaction in which photons 

exchange between the various frequency components of the field. Two photons of frequency 𝜔1 

are destroyed and a photon of frequency 2𝜔1  is created at the same time. Under proper 

experimental conditions, the conversion can be efficient so that nearly all power at frequency 𝜔1 

can be converted to the second-harmonic frequency 2𝜔1. In this dissertation, we will use SHG to 

characterize the second-order properties in samples. 
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1.2.2.2 Optical Parametric Oscillation 

The OPO process is illustrated schematically in Figure 4 (d). When we put the nonlinear 

crystal into a cavity, this device is known as optical parametric oscillation. The frequency of OPO 

is tunable because we can generate any frequency 𝜔2 that is smaller than 𝜔1. We can control the 

output frequency of an OPO by changing the phase-matching condition. The frequency 𝜔1 is 

called the pump frequency. The desired output frequency is called the signal frequency (𝜔2) while 

the other unwanted frequency is called the idler frequency (𝜔3). We are going to use OPO to 

generate broadband spectrum based on our materials.  

1.2.3 Wave Equation for Nonlinear Optical Media 

After generating new frequency beams through the nonlinear process, there will be a phase 

mismatching problem between the interacting waves along the propagation direction. In this 

section, we will quantitatively analyze the wave equation for the propagation of light through a 

nonlinear optical medium. Let’s start with Maxwell’s equations: 

∇ ∙ 𝐷 = 𝜌 

∇ ∙ 𝐵 = 0 

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
 

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡
+ 𝐽                                                           (5) 
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We made the assumptions: (1) the space contains no free charges (  𝜌 = 0  ) and no free 

currents (   𝐽 = 0   ); (2) the material is nonmagnetic (   𝐵 = 𝜇0𝐻   ), where 𝜇0 is the permeability 

of free space and 𝐻 is the magnetizing field. In order to express the nonlinearity in the material, 

the displacement field D can be described by 𝐷 = 𝜀0𝐸 + 𝑃, where ε0 is the permittivity of free 

space. For convenience, we replace the 𝜇0 by 1/𝜀0𝑐
2. The general form of the wave equation along 

the propagation direction can be expressed by 

∇ × ∇ × E +
1

𝑐2
𝜕2

𝜕𝑡2
𝐸 = −

1

𝜀0𝑐2
𝜕2𝑃

𝜕𝑡2
                                         (6)   

We take the sum-frequency generation as an example and get the solution to the wave 

equation for a plane wave at frequency 𝜔3 along the z direction 

𝐸3(𝑧, 𝑡) = 𝐴3𝑒
𝑖(𝑘3𝑧−𝜔3𝑡) + 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒                               (7) 

where 𝑘3 =
𝑛3𝜔3

𝑐
, 𝑛3

2 = 𝜀(1)(𝜔3) , 𝜀
(1)  stands for the permittivity which is dimensionless and 

different for each material. 𝐴3 is the amplitude of the wave, which is a constant. However, when 

𝐴3  is too large, 𝐴3  will become a function of z and the solution still works. After several 

approximations, the wave equation becomes  

𝑑𝐴3

𝑑𝑧
=
2𝑖𝑑𝑒𝑓𝑓𝜔3

2

𝑘3𝑐2
𝐴1𝐴2𝑒

𝑖Δ𝑘𝑧                                                   (8) 

In the case of negative uniaxial crystal of 3m, the effective value  

𝑑𝑒𝑓𝑓= 𝑑31 sin 𝜃 − 𝑑22 cos 𝜃 sin 3∅                                         (9) 
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where 𝜃  is the angle between the propagation vector and the crystalline z axis and ∅  is the 

azimuthal angle between the propagation vector and the xz crystalline plane.  

We have introduced the quantity  

Δ𝑘 = 𝑘1 + 𝑘2 − 𝑘3                                                          (10) 

This is the wavevector mismatch. 𝑘1, 𝑘2, 𝑘3 are the wavenumbers of the beam at frequency 𝜔1, 𝜔2 

and 𝜔3. After integrating from z=0 to z=L, we can get the amplitude of the sum-frequency (𝜔3) 

field at the exit plane: 

𝐴3(𝐿) =
2𝑖𝑑𝑒𝑓𝑓𝜔3

2𝐴1𝐴2

𝑘3𝑐2
∫ 𝑒𝑖Δ𝑘𝑧
𝐿

0
=
2𝑖𝑑𝑒𝑓𝑓𝜔3

2𝐴1𝐴2

𝑘3𝑐2
(
𝑒𝑖Δ𝑘𝐿−1

𝑖Δ𝑘
)                          (11) 

The intensity of the 𝜔3 can be described by  

𝐼3 =
8𝑛3𝜀0𝑑𝑒𝑓𝑓

2 𝜔3
4|𝐴1|

2|𝐴2|
2

𝑘3
2𝑐3

|
𝑒𝑖Δ𝑘𝐿−1

Δ𝑘
|
2

=
8𝑑𝑒𝑓𝑓
2 𝜔3

2𝐼1𝐼2

𝑛1𝑛2𝑛3𝜀0𝑐2
𝐿2𝑠𝑖𝑛𝑐2(

Δ𝑘𝐿

2
)                   (12) 

From equation 12, we can see that intensity is proportional to the factor 𝑠𝑖𝑛𝑐2(Δ𝑘𝐿/2), 

which is plotted in Figure 5. In order to get perfect phase-matching which means the highest 

intensity, we have to keep Δ𝑘 = 0. The coherence length, which means the propagation distance 

over which the intensity maintains a specific value, is defined as 𝐿𝑐𝑜ℎ = 𝜋/Δ𝑘  when Δ𝑘𝐿/2= 𝜋/2 

in Figure 5.  
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Figure 5. Phase mismatch factor function [24]. 

1.2.4 Phase-Matching 

Phase mismatching will lead to a small conversion efficiency. As discussed in last section, 

in order to keep phase-matching, we have to keep Δ𝑘 = 0. We take the SHG as an example and 

get the equation 

2
𝑛(𝜔1)𝜔1

𝑐
=
𝑛(𝜔2)𝜔2

𝑐
                                                       (13) 

where 𝜔1 is the fundamental beam and 𝜔2 is the second-harmonic beam. This means we have to 

keep the refractive index at 𝜔1 equals to the refractive index at 2𝜔1. This is impossible because 

the refractive index of materials increases as the frequency in normal dispersion. There are several 

ways to achieve phase-matching. We are going to talk some general methods like birefringence 

phase-matching, quasi-phase-matching and random quasi-phase-matching.  
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1.2.4.1 Phase-Matching using Birefringent Crystals 

As noted in the prior section, phase-matching is very important in improving the nonlinear 

conversion efficiency. This can be achieved in birefringent crystals using the two (ordinary, 𝑛𝑜 

and extraordinary, 𝑛𝑒) refractive indices of the material (Figure 6). In the case of SHG, the ordinary 

refractive index at 2ω can be equal to the extraordinary refractive index at ω.  

 

Figure 6. Schematic of birefringence [21].  

 

Figure 7. Phase matching of second-harmonic generation by using birefringent crystals [21]. 
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1.2.4.2 Quasi-Phase-Matching 

Another method for solving the phase-matching condition consists in the quasi-phase-

matching method. The schematic of the concept is illustrated in Figure 8 in which the orientation 

of the crystals is flipped every coherence length by periodically stacking or poling crystalline 

domains.  

 

Figure 8. Schematic of (a) a homogeneous single crystal and (b) of a periodically-poled material. 

From Figure 9, we can see that each time the electric field is about to decrease, the flipping 

of the crystalline orientation compensates for a nonzero wavevector mismatch, making the electric 

field grow continuously. In quasi-phase-matching, the intensity of the second order conversion 

signal is much higher than the wavevector mismatch and is comparable to the perfect phase-

matching condition. The electric field is proportional to the number of grains and intensity is 

quadratically proportional with number of grains.  
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Figure 9. The electric field amplitude for wavevector mismatch, quasi-phase-matching and 

perfect phase-matching conditions [24]. 

There are many different ways to fabricate quasi-phase-matched structures. The very early 

one was proposed by Armstrong et al. in 1962 [25], who suggested slicing nonlinear optical 

materials into thin films and rotating the layers by 180 degrees. While feasible, this method is 

cumbersome and limited to the use of thick layers. An alternative approach, reported by Yamada 

et al. in 1993 [26], is to use an electric field to invert the orientation of domains in ferroelectric 

materials such as lithium niobate (LiNbO3).  

In the past three decades, the development of QPM techniques involving periodically-

poled, diffusion bonded [27, 28] or epitaxially-grown materials, such as periodically-poled 

LiNbO3 (PPLN) [29-31], orientation-patterned GaAs (OP-GaAs) [32, 33] or GaP (OP-GaP) [34-

36], have been extensively studied. The inversion of the sign of the nonlinear coefficient eliminates 

destructive interferences and allows the generated intensity to grow quadratically with the sample 
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thickness. However, the techniques used to periodically flip the crystalline orientation remain 

fairly elaborate [37-39]. 

1.2.4.3 Random Quasi-Phase-Matching 

A third alternative is to use transparent polycrystalline aggregates (ceramics). Despite the 

lack of long range order, these materials can serve as efficient nonlinear frequency converters by 

way of the random quasi-phase-matching (rQPM) process [40-46]. In these ceramics, the 

randomly-oriented crystallites all contribute to the nonlinear conversion process but with random 

phases and yet, the total contribution to the generated field is nonzero. Nonlinear conversion 

efficiency is maximized when the average grain-size of the ceramic is equal to the coherence length 

for the wavelengths of interest [47, 48]. The main feature of rQPM is frequency conversion 

depends linearly on the thickness of the sample. Although random quasi-phase-matching is less 

efficient than a phase-matched or quasi-phase-matched process, the difference is lessened in the 

femtosecond regime where short samples (<1 mm) are used. In addition, disordered polycrystalline 

media show a significant enhancement in spectral acceptance and tolerance to both propagation 

angle and temperature when compared to ordered crystals.  
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Figure 10. Three-wave mixing mechanisms in single-crystal, powder, quasi-phase-matching 

materials and polycrystalline materials. 

In 2004, Baudrier-Raybaut et al. [42] found that the interaction of random phases in highly 

transparent polycrystalline materials can be an effective way to achieve efficient phase-matching 

in isotropic materials. Figure 10 shows the three-wave mixing mechanisms in single-crystal, 

powder, QPM materials and polycrystalline materials. In single-crystal, there is a phase-lag every 

coherence length which leads to a small conversion efficiency. In fully disordered materials, such 

as powders, each particle generates independent electric field and scatters the light in random 

directions. In polycrystalline materials, the randomly-oriented crystallites all contribute to the 

nonlinear conversion process but with random phases. The electric field is proportional to the 

square root of number of grains and intensity is linearly proportional to the number of grains. The 

concept of random quasi-phase-matching was experimentally demonstrated in a DFG experiment. 

As predicted, the difference frequency generation signal is linearly proportional to the sample 

thickness. For comparison, the DFG signal in ZnSe single crystal is also shown in Figure 11 and 

shows a periodically oscillation every coherence length.  
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Figure 11. Normalized DFG intensity as a function of sample thickness. 

In order to discuss the effect of grain size on the second-order nonlinear conversion 

efficiency, ZnSe ceramics with different average grain size were fabricated, from 30 microns to 

100 microns. The average grain size of original ZnSe is 30 microns and the coherence length was 

calculated as 79 microns depends on the wavelength of input beams used in difference frequency 

generation experiment.  Figure 12 shows the theoretical and experimental values of the normalized 

DFG efficiency for samples with different average grain size. From Figure 12, we can see that the 

nonlinear conversion efficiency is higher when the average grain size is close to coherence length, 

which is in good agreement with the theory.  
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Figure 12. Normalized DFG efficiency as a function of average grain size. The coherence length 

is 78 𝜇𝑚 [42]. 

Baudrier-Raybaut’s study is the first paper talking about the rQPM in ZnSe polycrystalline 

transparent ceramics and experientially proves the main feature of rQPM, which is that the 

conversion efficiency is proportional to the sample thickness.   

1.3 Nonlinear Transparent Ceramics 

As discussed before, NLO materials should be non-centrosymmetric in order to have non-

zero second-order susceptibilities. There are 21 non-centrosymmetric crystal symmetry classes out 

of 32 crystallographic point groups (Table 2). Table 3 lists some common nonlinear crystals with 

their crystallographic class. On the other hand, because rQPM in TOCs requires randomly oriented 

grains, the material must be optically isotropic to prevent Fresnel losses at the grain-boundaries. 

These requirements can be satisfied using either a pseudo-cubic or a cubic structure of non-
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centrosymmetric point groups. Pseudo-cubic, it is defined by the approximate equality of the unit 

cell parameters a≈b≈c and the interaxial angles α≈β≈γ≈90°.  For this reason, we have 

selected PMN-PT (point group 3m) and ZnSe (point group 4̅3𝑚) as the pseudo-cubic and cubic 

test materials, respectively. PMN-PT is a well-known electro-optic (EO) material with nearly 100 

times higher performance than LiNbO3 at room temperature whereas the nonlinear properties are 

not characterized [49]. On the other hand, ZnSe has the broadest infrared transparency among all 

nonlinear optical materials and high second order nonlinearity and low group velocity dispersion.  

Table 2 Crystallographic point-group symmetry (non-centrosymmetric point groups are shown in 

red). 

Symmetry Class Point Group 

Triclinic 1     �̅� 

Monoclinic 2     m     2/m  

Orthorhombic 222     mm2     mmm  

Tetragonal 4     �̅�     4/m     422     4mm     �̅�2m     4/mmm 

Trigonal (Rhombohedral) 3     �̅�     32     3m     �̅�m 

Hexagonal 6     �̅�     6/m     622     6mm     �̅�2m     6/mmm 

Cubic 23     m�̅�     432     �̅�3m     m�̅�m 
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Table 3 Non-centrosymmetric point groups with examples of nonlinear crystals. 

Symmetry Class Point Symmetry Group Nonlinear Crystals 

 
Triclinic 1  

 

Monoclinic 
2 BiBO 

m BaGa4Se7 

 

Orthorhombic 
222  

mm2 
KTP, KTA, RTP, RTA, KNbO3, AgGaGeSe2, 

LBO, BaGa4S7, MgBaF4 

 

 

Tetragonal 

4  

�̅�  

422  

4mm  

�̅�2m 
KDP, CLBO, ZnGeP2, CdSiP2, AgGaS2, 

AgGaSe2 

 

Trigonal 

(Rhombohedral) 

3  

32 α-Quartz, Te, YAB 

3m LiNbO3, LiTaO3, BBO 

 

 

Hexagonal 

6  

�̅�  

622  

6mm CdSe, CdS, GaN 

�̅�2m GaSe 

 

Cubic 

23  

432  

�̅�3m GaAs, GaP, GaSb, InAs, InP, InSb, CdTe 
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1.4 Summary and Dissertation Outline 

Non-centrosymmetric pseudo-cubic or cubic TOCs can be used as nonlinear media using 

the rQPM scheme. These materials would allow a significant enhancement in spectral and angular 

acceptances and a better tolerance in both propagation angle and temperature, which are essential 

in converting femtosecond laser pulses. In addition, nonlinear transparent ceramics would enable 

the generation of broader spectral bandwidth. This is in contrast to the QPM scheme whereby the 

periodic inversion of the nonlinear coefficient leads to a narrower bandwidth of efficiently 

converted frequencies. Despite a lower conversion efficiency, TOCs also have the advantage of 

being easier to fabricate and scale. However, matching the grain-size to the coherence length is 

crucial to the rQPM efficiency. The objective of this thesis is to analyze the conditions for 

grain-size control in two test TOCs: PMN-PT and ZnSe that have potential rQPM 

applications. In the case of PMN-PT, We have studied:  

1) the fabrication of phase-pure ceramics, 

2) the densification of transparent ceramics, and 

3) the role of sintering additives in controlling the microstructure. 

In the case of ZnSe and based on Baudrier-Raybaut’s results, we have investigated:  

1) an improved grain-growth method, 

2) the effect of grain-size distribution on second order conversion efficiency, and  

3) the possibility of generating broadband frequency spectra and converting short 

pulse by a nonlinear process.  
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This dissertation is divided into seven chapters. In Chapter two, the fabrication process of 

transparent PMN-PT ceramics is detailed.  We also describe a novel combustion synthesis process 

to fabricate lead oxide nanopowders.  

Chapter three presents the results of our study on the effect of sintering additives on the 

microstructure and phase-purity control in PMN-PT ceramics.  

Chapter four summarizes simulation result on the second-order nonlinear susceptibility 

in pseudo-cubic PMN-PT.  

Chapter five explores the non-stoichiometric grain-growth in CVDed ZnSe. In this work, 

solid-state grain-coarsening was used to fabricate ZnSe ceramics with the desired grain-size. The 

effect of these grain-size distributions on the efficiency of second-harmonic generation process by 

random quasi-phase-matching is analyzed theoretically. 

Chapter six presents the rQPM SHG results obtained on our processed ZnSe ceramics and 

our ZnSe OPO, based on random quasi-phase-matching. 

Finally, Chapter seven summarizes our results and offers suggestions to further study. 
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CHAPTER TWO: FABRICATION OF TRANSPARENT CERAMICS OF 

PMN-PT 

2.1 PMN-PT Transparent Ceramics  

(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 belongs to the family of perovskite structure materials 

with the formula ABO3 with a unit cell shown in Figure 13. The large Pb2+ cation occupies the A 

site at the corner of the unit cell whereas the small cations such as Mg2+,Nb5+,Ti4+ occupy the B 

site at the center of the unit cell. The oxygen ions are located at the center of the faces. The 

coordination number for the A sites is 12 and the coordination number for the B sites is 6. There 

are four A sites and two B sites cations directly bonded to each oxygen ion. 

 

Figure 13. The perovskite structure ABO3. 

Figure 14 shows the phase diagram of (1-x)PMN-xPT. It has a rhombohedral structure 

(R3m) for x < 0.3 below T=400°C. In this region, solid solutions exhibit a relaxor behavior. For 

x > 0.38, solid solutions have a tetragonal structure (P4mm) and show a ferroelectric behavior. 

Between the rhombohedral and tetragonal phase domains, a variety of coexisting phases 

rhombohedral, tetragonal, but also orthorhombic and monoclinic symmetry defines the 
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morphotropic phase boundary (MPB) [50-52]. Giant piezoelectricity was reported in the MPB 

composition [53-55]. When the lead oxide concentration, x, is between 0.22<x<0.28 (highlighted 

in the red in Figure 14), PMN-PT exhibits a pseudo-cubic structure (α≈β≈γ≈89°56′) of interest 

for our study. In this dissertation, we focus the composition x=0.25. 

 

Figure 14. Phase diagram of PMN-PT [56]. 

PMN-PT ceramics have long been synthesized and studied, along with many other 

compositional analogs (such as PIN-PMN-PT, PZN-PT, PSN-PT, PYN-PT, PIN-PT where 

Z=Zr4+, I=In3+, S=Sc3+, Y=Yb3+) for high performance dielectrics and piezoelectrics, which have 

been reported by G.H. Haertling [15, 57] and W. Cao [58]. PMN-PT can be used as capacitors, 

sensors and electro-optical devices due to their high dielectric permittivity, high piezoelectricity, 

strong photo-refractive effect and high electro-optical coefficient. In the 1970s, PLZT ceramics 
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were fabricated using both pressure-assisted and pressure-less sintering techniques and exhibited 

at most 60% transmission in the visible for 0.5 mm-thick samples. More recently, optically 

transparent PMN-PT ceramics have now being sold as fast (sub-s) electro-optical modulators 

(OptiCeramicsTM, Boston Applied Technologies, Inc., BATI) [49]. However, as we discussed 

before, grain-size control is very important in the rQPM process and the commercial materials do 

not provide a sufficient range of sizes. Assuming, SHG pumped at 4 µm, an approximate refractive 

index of n=2.43 at 4 µm and n=2.45 at 2 µm, we estimate that a useful grain-size of G=100 µm 

would be necessary. For this reason, we have investigated our own fabrication process to get 

transparent PMN-PT with controlled microstructure.  

 

Figure 15. PMN-PT ceramics from Boston Applied Technologies, Inc. [49]. 

2.2 Ceramic Synthesis Routes 

The optical transmission of the final ceramics is highly sensitive to the quality of the 

starting powders and sintering protocols. Soft mechano-chemical syntheses [59], sol-gel 

approaches [60], chemical co-precipitation methods [61], or “B-site precursor” methods [62] have 
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been reported to synthesize PMN-PT powders, but ceramics of this material have conventionally 

been prepared using reactive solid-state sintering [63-65]. The main challenge associated with the 

fabrication of high-quality PMN-PT is to avoid the parasitic pyrochlore phase (A2B2O7, A and B 

metals). This pyrochlore phase not only decreases the dielectric and piezoelectric properties of the 

materials [66] but also degrades the optical transmission [49]. The reason of the formation of 

pyrochlore is the stereochemical activity of the 6s2 lone pair of Pb2+ tends to accommodate itself 

into an anion site and hence favors the formation of pyrochlore structure [67, 68]. In order to 

suppress this undesired pyrochlore phase, various methods have been proposed. The most effective  

method is to use MgNb2O6 (columbite) as the starting material [69, 70], which shows a similar 

octahedral structure with perovskite and helps form the PMN-PT perovskite pure phase at a lower 

temperature.  

2.2.1 Powder Synthesis 

Due to their high surface energy, powders with smaller particle sizes possess enhanced 

sinterability. It is therefore desirable to start with fine ceramic powders in order to produce pore-

free ceramics. Very fine powders however, have a strong tendency to aggregate and pack 

inefficiently, leaving the green ceramics with macroscopic pores. Because of their size, these voids 

cannot be eliminated completely during sintering and powder compacts do not sinter to full 

density. For this reason, it is often preferred to sinter powders tens to hundreds of nanometers in 

size. Those powders can be synthesized via different routes, the most direct of which is a solid-

state synthesis method. Concurrently to this method, we have also explored two other routes, which 
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provide better atomic scale homogeneity: the co-precipitation and the combustion synthesis 

methods. 

2.2.1.1 Solid-State Synthesis 

Commercially available lead oxide (PbO), magnesium niobate (MgNb2O6), and titanium 

oxide (TiO2) powders were chosen for this synthesis. This pathway involving MgNb2O6 has been 

shown to lower the temperature for PMN-PT perovskite phase formation and prevent the formation 

of parasitic pyrochlore phase [71-73]. The different oxide powders were mixed by ball-milling in 

ethanol with zirconia ball as the grinding medium. Fine, pure and highly dispersed MgNb2O6 and 

TiO2 powders are commercially available and relatively cheap, while PbO powder is only available 

in micron size and irregular shape as shown in Figure 16. The reaction is carried out at 850°C in 

an oxygen atmosphere to produce pure perovskite PMN-PT powders. 

 

Figure 16. SEM images of raw oxide powders used in the solid-state synthesis method [74]. 
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2.2.1.2 Co-precipitation Synthesis 

In the co-precipitation method, Pb2+, Mg2+, Nb5+ and Ti4+ cations are dissolved in water 

from the salts Pb(CH3COO)2•3H2O, Mg(NO3)2•6H2O, C10H5NbO20•5H2O and C12H28O4Ti 

respectively and precipitated by raising the pH with a base. When optimized, this ensures a good 

chemical homogeneity of the precipitate at the atomic scale. Nitric acid was used to adjust the pH 

of the starting solution and prevent the hydrolysis of Nb5+ and Ti4+ complexes. Ammonium 

hydroxide was used to increase the pH and precipitate the cations. We successfully produced 

powders with primary particle size smaller than 30 nm. However, this process leads to strong 

particle aggregation occurs during the calcination stage (Figure 17). XRD data reveals that, without 

the participation of MgNb2O6, it is difficult to form the perovskite phase by calcination at 

temperature below 800°C. The difficulty here is that the precipitating pH values of the various ions 

are widely different. Ti4+ starts to precipitate at pH=2, Nb5+ starts to precipitate at pH=4, Pb2+ starts 

to precipitate at pH=8 and Mg2+ starts to precipitate at pH=12. Hence, cations precipitate 

successively, which makes it difficult to get the perovskite phase, even in the presence of 

complexing agent such as EDTA.  
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Figure 17. SEM and XRD images of co-precipitated PMN-PT powder. 

 

Figure 18. Precipitate PH value for cations. 

2.2.1.3 Combustion Synthesis 

In the combustion route, a clear precursor solution is prepared using the same method as 

for the co-precipitation procedure, except that glycine is added to the mixture. This solution is 

evaporated and the residue is ignited by further heating, glycine serving as a reducing fuel for the 

oxidizing nitrates during the combustion. The flame temperature is controlled by the ratio of 

glycine to nitrate. After combustion, the reaction products are collected in the form of a fine 

powdery soot. We found that, because of the large amount of nitric acid added to the solution in 
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order to maintain all cations in solution, it is difficult to regulate the ratio of the two reactants and 

control the flame temperature. As shown in Figure 19, the reaction products primarily contain the 

perovskite phase and some pyrochlore impurity. Post heat-treatment is hardly effective in 

converting the pyrochlore phase back to the perovskite.  

 

Figure 19. XRD image of the combustion synthesized PMN-PT powder. 

2.2.2 Sintering Studies on Solid-State Synthesized PMN-PT Ceramic Powders 

The standard procedure for producing ceramics includes ball-milling of the precursor 

oxides with 3 mm zirconia balls followed by sieving on a 200 mesh size sieve, a solid-state reaction 

to form pure perovskite PMN-PT, and a second ball-milling and sieving operation to remove 

agglomerates. The powder is then compacted and shaped by cold pressing at 200 MPa in an 
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isostatic press, pre-sintered, and finally hot-pressed. In the present work, 18 mm-diameter by 3 

mm-thick pellets of PMN-PT powder (75PMN-25PT, 5 wt% excess PbO) were formed by cold-

isostatic pressing and were subsequently sintered under various conditions. Consolidation method 

such as hot-press, conventional and two-step sintering was used for the densification and grain 

growth study. 

2.2.2.1 Effect of the Sintering Atmosphere 

Green-body samples were sintered in a tube furnace at different temperatures under oxygen 

atmosphere. The heating rate was 5°C/min and the dwell sintering time 4 h. 1000°C tube furnace 

pre-sintered ceramic were then placed in a graphite mold and sintered for 4 h in a graphite heating 

element hot-press furnace, with nitrogen atmosphere and 5°C per minute heating rate. Figure 20 

shows the density of these PMN-PT ceramics after sintering. Upon inspection of Figure 20 and of 

the microstructures of those ceramics (such as Figure 21), we were able to conclude that the heating 

rate of 5°C/min for pressure-less sintering was too fast to obtain complete densification. At that 

rate, the grains grow faster than the rate at which the pores are eliminated, thus, the pores detach 

from the grain boundaries and become trapped inside the grains. Such intra-granular porosity is 

almost impossible to diffuse out and the ceramic stops densifying. At 1100 °C, the densification 

was hindered while the evaporation of lead continued. 
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Figure 20. Densification of tube-furnace sintered and graphite hot-press sintered PMN-PT 

ceramics. 

Soon after, we showed that a heating rate of 2.5°C/min is better suited for complete 

densification. Slower heating rate than 2.5°C/min did not result in enhanced density and lead to 

PbO loss by evaporation as per Eq. 14 below. Secondly, the density of the ceramic sintered at 

1000°C decreased by 20% after hot-pressing at 1100°C in N2 atmosphere and became strongly 

colored. This exemplifies the importance of the sintering atmosphere, as inert/reducing 

atmospheres promote the evaporation of PbO, the swelling of ceramics and the formation of color 

centers, as illustrated in Eq. 15: 
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    Pb3(MgNb2)O9 (s) → Pb3-x(MgNb2)O9-x (s) + PbO (g)                           (14) 

              PbO (s) → PbO (g) → Pb (g) + 1/2 O2 (g)                                   (15) 

 

Figure 21. SEM image of a PMN-PT ceramic sintered at 950°C, 5°C/min showing remaining 

porosity (red circles). 

As stated above, this material requires a high oxygen partial pressure in order to prevent 

PbO loss by volatilization. For these reasons, we have designed a dedicated hot-press capable of 

developing 100 MPa at a maximum temperature of 1200oC in pure oxygen. This system is based 

on a floor-stand hydraulic press and on a commercial muffle box furnace with silicon carbide 

heating elements and a pressure molding set (Figure 22).  
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Figure 22. Photos of the hot-press with oxygen gas supply line in the back side of the furnace. 

2.2.2.2 Characterization of Solid-State synthesized PMN-PT ceramics 

SEM images of the microstructure surface of transparent PMN-PT ceramics still show 

intergranular and intragranular porosity. EDS mapping of the L transition of Pb (shown in blue 

color) indicates that the phase is chemically homogeneous at the sub-micron scale (Figure 23). 

 

Figure 23. SEM and EDS of ceramics after hot-pressing. 
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The transmittance and photoluminescence of solid-state synthesized PMNPT transparent 

ceramic were measured. The samples were 2 mm thick, and as seen in Figure 24(a), the printed-

paper under the ceramic samples can clearly be seen although the measured transmittance is still 

low (~30% at 1.5 μm). Some small residual porosity still exists in the samples and contributes to 

scattering losses. In Figure 24(b), the luminescence from the transparent ceramic excited at 405 

nm is broad and strong, consistent with a charge transfer mechanism between a Pb2+ ion capturing 

a hole and a Ti4+ ion capturing an electron followed by charge recombination. 

 

Figure 24. (a) Transmittance curve and inset photo of a 2mm thick PMN-PT ceramic; b) 

Photoluminescence of the ceramic under 405 nm laser excitation. 

2.2.3 Novel Synthesis Approach Using Fine Lead Oxide Powders 

The solid-state synthesized PMN-PT is translucent and the fabrication process is not 

optimal yet. Besides the sintering techniques, we can deal with raw materials to improve the 

transmittance. Fine, pure and highly dispersed MgNb2O6 and TiO2 powders are commercially 

available and relatively cheap, while commercial PbO powder is only available in micron size and 
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irregular shape, which is not suitable to fabricate high-quality optical ceramics. There are several 

methods have been used to fabricate lead oxide nanoparticles like direct chemical synthesis [75], 

sonochemical method [76] and sol-gel pyrolysis method [77]. Among these available methods, 

combustion synthesis can produce uniform and ultrafine powders (normally less than 100 nm), 

which help reduce the sintering temperature [78-81]. The powder properties are highly dependent 

on the nature of fuel and of the fuel-to-oxidant ratio. The effects of different fuels and fuel-to-

oxidant ratios on the powder properties have been extensively investigated by Chavan and Tyagi 

[82]and Bedekar [83] for many oxides. It is necessary to carefully control the fuel-to-oxidant ratio 

for getting the desired product [84]. The choice of the fuel is essentially determined by its ability 

to chelate metallic ions in solution. For example, the amino-acid glycine is a powerful complexing 

agent for a number of metallic ions [85] and has successfully been used to synthesize complex 

chromites [86], manganites [87], zirconates [88], ferrites, and oxide ceramics powders [89] 

because of its carboxylic acid function and amino group. In this work1, we use glycine as the fuel 

and reductive agent while use nitrate as the oxidant. We fabricated lead oxide nanopowders by the 

glycine-nitrate process (GNP) and PMN-PT transparent ceramics by solid-state sintering based on 

the combustion synthesized lead oxide powders [90]. 

                                                 

1These results have been published in Chen, X., Chen, S., Clequin, P. M., Shoulders, W. T., & Gaume, R. (2015). 

Combustion synthesis of lead oxide nanopowders for the preparation of PMN–PT transparent ceramics. Ceramics 

International, 41(1), 755-760. 
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2.2.3.1 Experimental Procedure 

In the combustion process, lead acetate trihydrate (99.999%, Aldrich) was used as the 

cation source. Glycine (≥99%, Aldrich) was used as a fuel and reductive agent while nitric acid 

(70%, Aldrich) was used as oxidant. We selected five different glycine-to-nitrate molar ratios (0.2, 

0.5, 0.9, 1.3, 1.7) based on preliminary experiments. The required amount of Pb(CH3COO)2·3H2O 

was dissolved in a quartz crucible with 50 ml of water. Solutions with different glycine-to-nitrate 

ratios were stirred for 20 mins and then heated on a hot-plate.  Two-color optical pyrometer (Ircon, 

UX 70P) was used to measure the flame temperatures during combustion. After combustion, the 

powders were calcined at 420°C in oxygen atmosphere for 4 h, to remove trace of organic 

compounds and oxidized any metallic lead that may have formed. The temperature of 420°C is 

selected because it is under the melting points of lead oxides (888°C for PbO and 500°C for Pb3O4) 

and above that of lead (327°C). It was found that after calcination, the powder still contains lead 

and a subsequent heat treatment at 340oC was found effective to form lead ball which can then be 

removed from the oxide powder by sieving. Ball milling was used to deagglomerate the powders: 

a ratio of 8 g of grinding balls (ZrO2) and 1g of ethanol per gram of powder was used for 20 h at 

250 rpm. This mixture was dried in a vacuum oven at 60°C for 24 h and then sieved. 

2.2.3.2 Results and Discussion 

Auto-ignition of the lead acetate, glycine and nitric acid solution results in a voluminous 

ash. In order to fabricate PMN-PT ceramics with right stoichiometry, it is necessary to know the 

stoichiometry of the lead oxide produced by the combustion process. Hence, the powders were 

calcined at 420°C in an oxygen atmosphere for 4 h after combustion and try to shift the valence 
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state of lead to Pb2+. Table 4 shows the reaction temperature, powder composition and yield as a 

function of the glycine-to-nitrate ratio. When glycine and nitrate are same amount, the reaction 

temperature is the highest and the yield is the lowest, which can be explained that more 

volatilization happened at high temperature. Phase composition can be determined by the X-ray 

diffraction pattern which is shown in Figure 25. In the following analysis, we only consider the 

powder obtained with 1.7 G/N ratio because the yield is much larger than powders achieved with 

other ratios. Table 5 shows the result of quantitative X-ray diffraction analysis on this powder. For 

the powder with 1.7 glycine-to-nitrate ratio, the yield is 87% and the phase composition is a 

combination of 73% PbO and 27% Pb3O4. Figure 26 shows the SEM images of lead oxide powders 

obtained with different glycine-to-nitrate ratios. The particles are highly agglomerated and the 

morphology of the particles vary from platelet-like at low G/N values (<0.9) while for higher G/N 

ratios, the particles are spherical with an average particle size of 60 nm. 

Table 4 Effect of the glycine-to-nitrate ratio on powder composition. 

 
(Note: A very quick reaction was observed for the combustion process with 0.9 glycine-to-nitrate ratio and 

temperature cannot be measured with sufficient accuracy using two-color optical pyrometer.) 
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Table 5 Quantitative analysis the powder with 1.7 glycine-to-nitrate ratio. 

Glycine: Nitrate Powder Composition Yield (%) 

1.7 73%PbO+27%Pb3O4 87% 

 

 

Figure 25. Powder X-ray diffraction of the powders with different glycine-to-nitrate ratios. 
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Figure 26. SEM of powders obtained with different glycine-to-nitrate ratios (a) 0.2; (b) 0.5; (c) 

0.9; (d) 1.3; (e) 1.7. 

As we can see, the lead oxide powder obtained with 1.7 G/N ratio is a combination of two 

different phases. To address this problem, we proceeded to a second calcination in order to oxidize 

all the lead and obtain single phase Pb3O4. For this second calcination, we use the same temperature 

as the first one but with a shorter time. We only increase the temperature to 420°C (about 

10°C/min) slowly, and keep at 420°C for about 1 h. This calcination takes place under oxygen 

flow. Figure 27 shows the XRD of lead oxide powder before and after second calcination.  
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Figure 27. Powder X-ray diffraction of lead oxide powder before and after second calcination. 

After second calcination, we got pure Pb3O4 phase nanopowders and the particle size does 

not show measurable coarsening and stay within 200 nm (Figure 28). We can also see a big color 

difference between these two powders since PbO has a yellow/pale red color and Pb3O4 has an 

intense orange color (Figure 29).  
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Figure 28. SEM images of lead oxide powder before and after second calcination. 

 
Figure 29. Photos of lead oxide powder before and after second calcination. 

2.2.4 Fabrication of Transparent PMN-PT ceramics 

Based on the discussion in section 2.2.3, we fabricated lead oxide nanopowders by 

combustion process with a 1.7 glycine-to-nitrate ratio. Then we fabricated PMN-PT transparent 

ceramics with composition 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 doped with 3 at.% La. Magnesium 

niobate (H. C. Starck), titanium oxide (≥99.5%, Aldrich), lanthanum oxide (99.99%, Alfa Aesar) 

and combustion synthesized/commercial lead oxide were used as starting powders. An additional 
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3 mol % lead oxide were added to compensate the evaporation of lead oxide during sintering. 

These mixing powders were ball-milled for 20 h and pressed into pellets by uniaxial press and then 

followed by cold-isostatic pressing (CIP) at 200 MPa. The densification rate of the PMN-PT green-

body fabricated with combustion synthesized lead oxide was measured by the Thermo-Mechanical 

Analysis (TMA) (Setaram, Dilatometry-System evolution) (Figure 30). We found that the 

densification is three times higher than that of a PMN-PT green body made with commercial lead 

oxide. PMN-PT ceramics were sintered in a tube furnace at 800°C for 4 h and followed by a dwell 

at 1150 °C for 4 h in an oxygen atmosphere. X-ray diffraction pattern of the ceramic shows a pure 

perovskite phase after reactive sintering (Figure 31). In order to check the microstructures, we 

polished the samples with alumina polishing slurry and thermal etched at 800°C for 30 mins. 

Figure 32 compares the microstructures of PMN-PT ceramics made with combustion synthesized 

lead oxide and commercial lead oxide. The grain size of ceramic made with combustion 

synthesized lead oxide is 3 µm, which is smaller than that of ceramic made with commercial lead 

oxide (9 µm). The former is also fully densified while the latter still has some intergranular and 

intragranular porosities, which degrade the transparency of the ceramic as we can see in Figure 33. 

In conclusion, lead oxide powders synthesized by combustion method have smaller particle size 

than commercial powders, which help promote the densification of green-bodies and improve the 

transparency of PMN-PT ceramics. 
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Figure 30. Thermo-Mechanical Analysis of PMN-PT green body made from combustion-synthesized 

lead oxide. 

 
Figure 31. X-ray diffraction of PMN-PT ceramic made from combustion-synthesized lead oxide. 
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Figure 32. SEM images of PMN-PT ceramics made from (a) combustion-synthesized lead oxide 

and (b) commercial lead oxide. 

 

Figure 33. Photographs of PMN-PT ceramics made from (a&b) combustion-synthesized lead 

oxide; (c&d) and from commercial lead oxide. 

2.3 Comparison between In-house and Commercial Samples 

In order to check the difference between home-made PMN-PT and commercially available 

PMN-PT, we carried out a direct comparison of physical properties and optical performance. We 

were provided a transparent PMN-PT sample from Boston Applied Technologies, Inc. (BATI) 
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with unspecified composition, which has better transmittance than our home-made sample. In 

order to improve the performance of our sample, we performed comparative characterizations 

including energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Raman 

spectroscopy on these two samples.  

2.3.1 Energy Dispersive X-ray Spectroscopy 

The results of comparative elemental quantification by EDS suggest that the amount of 

lead in the commercial sample is less than that of our (UCF) sample. Extra lead may form a liquid 

phase at grain boundary during sintering, which influences the grain growth and densification. The 

formulas of those two samples are slightly different. By varying the composition in the PMN-PT 

material system, the interaxial angle of rhombohedral structure may be different and leads to 

different second-order nonlinearity.  

Table 6 EDS results obtained on BATI and UCF samples. 

 O 

(at. %) 

Mg 

(at. %) 

Nb 

(at. %) 

Ti 

(at. %) 

Pb 

(at. %) 

Corresponding 

formula 

BATI 60.96 5.00 11.89 4.09 18.06 0.78PMN-0.22PT 

UCF 60.00 5.00 10.00 5.00 20.00 0.75PMN-0.25PT 

2.3.2 X-ray Diffraction Analysis 

With the assistance of sensitive X-ray optics on PANalytical Empyrean XRD system, small 

changes in lattice spacing can be measured for a better understanding of structural property 
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differences between samples. From the strain data in Figure 34, it is clear that two UCF samples 

are experiencing enlarged lattice spacing and a large amount of residual tensile stress, whereas the 

sample obtained from BATI possesses slightly decreased lattice spacing and compressive stress. 

The presence of residual stress in our samples might result in stress-induced birefringence and 

degrade the optical transmission. Figure 35 shows the lattice spacing shift between BATI and UCF 

samples. However, both ion doping and residual stress can cause the variation of lattice spacing. 

Considering that ion radius of 12-fold coordinated Pb2+ and La3+ are 1.49Å and 1.06Å respectively, 

a decrease of lattice spacing is expected as is the case in BATI sample. Therefore, we can make 

the conclusion that, there is no or negligible residual stress in BATI’s sample, while there are 

residual tensile stress with values larger than we have calculated in our samples.  

 

Figure 34. Strain data of BATI and UCF sample. 
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Figure 35. Shift of lattice spacing of BATI and UCF sample. 

2.3.3 Raman Spectroscopy 

Raman spectroscopy (Figure 36) reveals relatively broad overlapping bands, which are 

typical for perovskite relaxor ferroelectric materials. The excitation wavelength is 515 nm. The 

Raman spectra shows similar result with previous work on 0.81PMN–0.19PT [91]. There are three 

bands centered near 780, 580 and 270 cm-1, which corresponds to Nb-O-Mg stretching mode, 

oxygen bending vibration and B-site ion against O stretching vibration inside the octahedral, 

respectively.  
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Figure 36. Raman spectroscopy of BATI and UCF sample. 
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CHAPTER THREE: EFFECT OF DOPANTS ON THE PHASE-PURITY 

AND MICROSTRUCTURE CONTROL IN PMN-PT CERAMICS 

In general, dopants present in sufficient quantities can have a dramatic effect on the 

microstructure and crystal chemistry, and directly influence the properties, like dielectric, 

ferroelectric, piezoelectric and electro-optics properties [92, 93]. Dopants can enhance sinterability 

and suppress abnormal grain growth, which help fabricate ceramics with high density and 

controlled grain size. Dopants in PMN-PT raise an interesting situation for they can behave as 

charge donors or acceptors, depending on the site they occupied. In 1989, Zhilun [94] reported that 

ceramics with excess PbO in PZT-PNN family could be sintered at 900°C, which is lower than the 

normal sintering temperature 1200°C and the properties are improved [95]. They concluded that 

low-melting frits will form a liquid phase during early and middle stage of sintering, which 

promotes densification. However, the additives may enter the lattice during the final stage of 

sintering, which will modify the properties. In a system containing the PMN composition, too high 

sintering temperature and too long sintering time will lead to a second phase because of the 

evaporation of PbO. The second phase (pyrochlore) degrades the dielectric properties and also the 

transparency of the ceramics. Thus, excess PbO helps inhibit the formation of pyrochlore phase. 

The sintering aid lanthanum (La3+), which is widely used in the fabrication of transparent PMN-

PT ceramics, promotes the overall transparency by aiding the densification and by promoting the 

formation of the pure perovskite phase [96-98]. However, the mechanism by which lanthanum 

controls grain growth and favors full densification is not fully known. In this chapter, we are going 

to address this question by comparing the effect of various dopants on phase and microstructure 

evolution in 0.75PMN-0.25PT ceramics [99]. Ionic radius and valence are two aspects that may 
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influence the potency of dopants to promote densification and ultimately improve the transparency 

of ceramics. In order to illustrate the effect of radius on grain growth control and site occupation, 

Gd3+ and Y3+ were chosen to compare with La3+ because both of them have the same valence as 

La3+. Ba2+ was considered based on previous work in PLZT transparent ceramics, which have same 

structure with PMN-PT [100]. 0.75PMN-0.25PT ceramics with different dopants were sintered at 

different temperature. The influence of dopants on the phase purity, densification behavior and 

microstructure evolution were investigated2.  

3.1 Experimental Procedure 

Lead oxide (PbO, 99.9%, Alfa Aesar), magnesium niobium oxide columbite (MgNb2O6, 

99.9%, H.C. Starck) and titanium oxide (TiO2, ≥99.5%, Aldrich) powders were used as starting 

materials for the preparation of 0.75PMN-0.25PT ceramic samples. 3 mol% dopants were added 

in the form of lead oxide, barium oxide (99.99%, Aldrich), lanthanum oxide (99.99%, Alfa Aesar), 

yttrium oxide (99.9%, Alfa Aesar) or gadolinium oxide (99.99%, Alfa Aesar). An additional 3 

mol% lead oxide was added to compensate the evaporation during the sintering. The powders were 

mixed with ethanol and ball-milled with zirconia balls for 20 h. After ball-milling, the slurry was 

dried at 80°C in an oven and the powders were sieved through a 200-mesh screen. Pellets were 

pressed into shape by uniaxial press and followed by cold-isostatically pressed at 200 MPa. The 

green-bodies were pre-sintered at 850°C for 2 h, and followed by sintering at different 

                                                 

2These results have been published in Chen, X., Chen, S., Bruner, A., & Gaume, R. (2018). Effects of dopants on the 

microstructure and phase-purity control in PMN-PT ceramics. Ceramics International, 44(15), 17909-17913. 
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temperatures (850, 950, 1050, 1150, and 1250°C) for 4 h in pure oxygen. Archimedes’ method 

was used to measure the densities of the samples and deionized water was used as the immersion 

medium. X-ray diffraction (PANalytical Empyrean) was used to check the phase composition of 

the ceramics while their microstructures were observed by scanning electron microscopy (Zeiss, 

Ultra-55). The grain sizes were measured by the linear intercept method (more than 200 grains 

counted) using ImageJ (National Institute of Health) from the SEM images. The SEM 

microstructures were obtained on unpolished ceramics in order to prevent damage and the 

contamination by abrasives of porous samples.  

3.2 Results and Discussion 

3.2.1 Transient Liquid-Phase Sintering 

X-ray diffraction is used to check the phase content of 0.75PMN-0.25PT ceramics with 

different dopants at different sintering temperatures (Figure 37). A platinum foil was placed on the 

top of samples and used as an internal standard. X-ray analysis was performed after considering 

the correction of the instrument shift. Ba-doped samples show the same phenomenon as the Pb-

doped samples at different sintering temperatures. La-doped PMN-PT is peculiar as pure 

perovskite phase regardless of the sintering temperature. All samples except La-doped samples 

show a liquid phase in the intermediate stage because of the excess PbO [101, 102]. The capillary 

force induced by the liquid phase on the solid particles contributes to densification and this may 

be the reason why densification proceeds at a lower temperature with these dopants (Figure 38). 

On the other hand, the slow densification rate of La-doped samples helps maintain an open porosity 

network and favors the outgassing of the initial excess of PbO, which contributes to the formation 
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of phase pure PMN-PT at a temperature as low as 850oC. At 1150oC, PMN-PT perovskite phase 

is the only remaining phase for all samples. However, excessive evaporation of lead results in 

perovskite decomposition and the formation of columbite, as in the case of Y-doped PMN-PT 

samples at 1250oC. At 1250oC, the final relative densities of all samples are greater than 98%. 
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Figure 37．X-ray diffraction of 0.75PMN-0.25PT ceramics doped with (a) Pb2+, (b) Ba2+, (c) 

La3+,  (d) Y3+ and (e) Gd3+. 
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Figure 38. Densification of 0.75PMN-0.25PT ceramics with different dopants as a function of 

sintering temperature. 

3.2.2 Microstructure Evolution 

It is well known that the presence of a liquid phase will influence the microstructure, not 

only the size but also the shape of the grains. Figure 39 shows the microstructures of ceramics with 

different dopants at different sintering temperatures. As what we see in the SEM images, all 

samples except the La-doped samples produce faceted grains. Ba2+ and Pb2+-doped samples exhibit 

same microstructure evolution between 850 and 1250°C. In the case of Y3+ and Gd3+ doping, 

faceted grains appear at 1050°C. This implies that, for these dopants samples, nonstationary grain-
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growth governs the development of the microstructure. Nonstationary grain growth happens under 

the condition:  

𝜎𝑠

ℎ
> 𝛾𝑠𝑙                                                               (16) 

Step free energy, s, which is the energy per unit length of the edge of a nucleus formed on a flat 

surface. h stands for the step height and  sl  is the solid-liquid interfacial energy [103]. However, 

La-doped PMN-PT did not present a liquid phase during sintering compared with other doped 

samples. One potential explanation is that the solid-vapor interfacial energy for La-doped samples, 

which is larger than the solid-liquid interfacial energy under good wetting condition, dominates 

the ratio of step free-energy to step height (Figure 40). So the condition for non-stationary grain 

growth is not satisfied in La-doped samples. This helps produce a uniform grain-size distribution 

and eventually enhance the transparency of the samples.  
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Figure 39. SEM of 0.75PMN-0.25PT ceramics with different dopants sintered at different 

temperatures. 

 

Figure 40. Contact angle for a liquid droplet on a solid surface in good wetting condition. 
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3.2.3 Dopant Site Occupation Considerations 

Besides the presence of liquid phase, grain growth is also influenced by the charge 

compensation mechanisms resulting from specific dopant site occupation. The dopants’ valence 

state and their site occupation with influence the oxygen vacancy concentration and thereby the 

grain boundary mobilities. At room temperature, 0.75PMN-0.25PT crystallizes into a ABO3 

rhombohedral perovskite structure. Pb2+ occupies the  A site and Mg2+, Nb5+, Ti4+ occupy the B 

site [104]. The rhombohedral structure is considered as a pseudo-cubic structure [105]. In an ideal 

cubic perovskite, the ionic radii satisfy the relation:  𝑟𝐴 + 𝑟𝑂 = √2(𝑟𝐵 + 𝑟𝑂)  [106]. The 

Goldschmidt tolerance factor for perovskite structure can be calculated by  

𝑡 =
𝑟𝐴+𝑟𝑂

√2(𝑟𝐵+𝑟𝑂)
                                                           (17) 

Using the radii of Pb2+, O2- and weighted average B-site radius for 0.75PMN-0.25PT, the 

ideal tolerance factor of 0.75PMN-0.25PT is t=0.997. The site occupation behavior cannot solely 

be determined by the tolerance factor but one should also consider the strain and distribution 

effects [107, 108]. However, when compare between similar ions, the tolerance factor can help 

show a useful trend [109]. Here, we define 𝑡𝐴 and 𝑡𝐵 as the tolerance factors of a perovskite unit 

cell for a 3 at% cationic substitution on the A and B sites respectively, taking into account the 

coordination number.   

𝑡𝐴 =
0.03𝑟+0.97×𝑟𝑃𝑏+𝑟𝑂

√2(𝑟𝐵+𝑟𝑂)
                                                        (18) 

𝑡𝐵 =
𝑟𝐴+𝑟𝑂

√2(0.97×𝑟𝐵+0.03𝑟+𝑟𝑂)
                                                     (19) 
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where r stands for the radius of the substituting cation. We assumed that the local strain is similar 

in A and B site.  If the incorporation into one site results in a tolerance factor much closer to 1 than 

the incorporation into the other site, then the dopants prefer to take the first site. Figure 41 shows 

the tolerance factors 𝑡𝐴 and 𝑡𝐵 for all lanthanide (Ln3+) ions, which ranges from 0.848 to 1.061 Å 

for Lu3+ and La3+, respectively. The crossover point corresponds to a radius of 1 Å.  It is clear that 

large ions (r(RVI
3+) > 1Å) prefer to occupy the A site and small ions (r(RVI

3+) < 1Å) prefer to 

occupy the B site.  

Table 7 Ionic radii of the dopants. 

Dopants 
Ionic Radii (Å) 

rCN-VI rCN-XII 

Ba2+ 1.360 1.600 

Pb2+ 1.180 1.490 

La3+ 1.061 1.320 

Gd3+ 0.938 1.246 

Y3+ 0.892 1.220 
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Figure 41. The tolerance factors 𝑡𝐴 and 𝑡𝐵 as a function of ionic radius. 

For these two cases, we consider the following two alternative reactions:  

𝑀2𝑂3
4𝐴𝐵𝑂3
→    2𝑀𝐴

• + 𝑂𝑖
′′ + 2𝐴𝑂                                              (20) 

𝑀2𝑂3
4𝐴𝐵𝑂3
→    2𝑀𝐵

′ + 𝑉𝑂
•• + 2𝐵𝑂2                                            (21) 

A stands for Pb2+, B stands for the effective (Mg1/4Nb1/2Ti1/4)
4+ site and M stands for 

the dopant ions. For ionic radii r > 1 Å, the ion (La3+) prefer to occupy the A-site while Y3+ and 

Gd3+ tend to occupy the B-site because of smaller ionic radii. As lanthanum goes into the A-site, 

pre-existing oxygen vacancies are consumed, which leads to a lower oxygen vacancy 
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concentration compared to Gd3+-doped and Y3+-doped samples. This lower oxygen vacancy 

concentration will decrease the diffusion rates and grain-boundary mobilities, as supported by our 

grain-growth data (Figure 42) and similar work on La-doped PMN-PT [110]. 

 

Figure 42. Grain growth of 0.75PMN-0.25PT ceramics with different dopants sintered at 

different temperatures. 

3.3 Conclusion 

In this chapter, we showed the phase and microstructure evolution of PMN-PT ceramics 

with different dopants during sintering.  La-doped PMN-PT samples do not form a liquid phase 

during sintering which helps the formation of a pure perovskite phase and unimodal rounded 
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grains while samples with other dopants exhibit faceted grains. We found that the preferential 

A-site occupancy of La3+ due to its larger ionic radius lowers the oxygen vacancy concentration. 

As a result, grain growth of La-doping is suppressed compared to samples doped with the 

smaller Y3+ and Gd3+ ions.  
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CHAPTER FOUR: SECOND-ORDER NONLINEAR SUSCEPTIBILITY IN 

PSEUDO-CUBIC PMN-PT 

We have selected PMN-PT for our nonlinear optics study and successfully fabricated 

PMN-PT transparent ceramics. In this chapter, we are going to simulate the second-order nonlinear 

susceptibility in pseudo-cubic PMN-PT before doing experiment. The variations of the inverse of 

dielectric tensor (-1)ij of a ferroelectric material are given, to a first-order with respect to the 

external electric field, by: 

∆(𝜀−1)𝑖𝑗 = ∑ 𝑟𝑖𝑗𝑘𝐸𝑘𝑘                                                             (22) 

where rijk are the electro-optic (EO) tensor coefficients and Ek is the components of electric field. 

If one assumes the Born-Oppenheimer approximation, the EO tensor can be expressed as a sum of 

three separate contributions: an electronic, ionic and piezoelectric one. The electronic term is due 

to the interaction of the electric field with valence electrons. This term can be linked to the 

nonlinear susceptibility since (2)
ijk represents the second-order term in the expansion of the 

induced polarization with respect to the field, i.e. the first-order change of the linear dielectric 

susceptibility ij. Hence, using the fact that (-1)ikkj=ij and expressing the variation of the inverse 

of the permittivity tensor: 

∆(ε−1)ij = −∑ (ε−1)ik∆εkl(ε
−1)ljk,l                                         (23) 

we have: 

𝑟𝑖𝑗𝑘
𝑒𝑙 = −2∑ (ε−1)im𝜒𝑚𝑙𝑘

(2) (ε−1)ljm,l                                           (24) 
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which, in the frame of the principal axes of the crystal, becomes: 

𝜒𝑖𝑗𝑘
(2)
= −

1

2
𝑛𝑖
2𝑛𝑗
2𝑟𝑖𝑗𝑘
𝑒𝑙                                                        (25) 

Here, ni are the refractive indices along the principal axes. This relationship shows that, at 

least in part, the SHG nonlinear susceptibility of a ferroelectric material is related to its high-

frequency EO coefficients (UV-VIS-NIR). However, in most ferroelectrics, the main contribution 

to rijk comes from a lower-frequency ionic component (far infrared). This term comes from the 

relaxation of the atomic positions due to the applied electric field Ek and the variations of the 

dielectric tensor coefficients ij. It is usually expressed as a contribution of all transverse optic 

modes m at q=0: 

𝑟𝑖𝑗𝑘
𝑖𝑜𝑛 = −

1

√𝑉

1

𝑛𝑖
2𝑛𝑗
2∑

𝛼𝑖𝑗
𝑚pmk

𝜔𝑚
2m                                                  (26) 

where V is the volume of the unit cell, m is the Raman susceptibility of mode m, and pmk the 

dipole moment induced by mode m: 

pmk = ∑ 𝑍ℎ
∗𝑢𝑚(𝑘′, ℎ)k′                                                     (27) 

Here, Z* and um indicate the effective charge and the atomic displacement of atom h, 

respectively.  

The piezoelectric contribution, due to the relaxation of the unit cell dimensions, can be 

expressed as:  

r𝑖𝑗𝑘
𝑝𝑖𝑒𝑧𝑜 = ∑ 𝜋𝑖𝑗𝑚𝑙𝑑𝑘𝑚𝑙m,l                                                    (28) 
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where ijml are the elasto-optic coefficients and dkml are the piezoelectric strain coefficients. 

Naturally, this contribution depends on the state of stress of the ferroelectric crystal - a condition 

that would need proper averaging (Reuss, Voigt, Hill) in a polycrystalline ceramic- but it is 

assumed that such unit cell relaxation is negligible at optical frequencies. 

To further characterize the potential nonlinear SHG response of PMN-PT in relation to its 

ferroelectricity, we have used the Laudau-Devonshire expansion of the volumic free-energy. 

Following Ishibashi and Orihara [111] and using Landau-Khalatnikov (LK) equations to describe 

the nonlinear dynamics of charges and its effect on the dielectric response, we have expressed the 

NLO coefficients for the low-symmetry (rhombohedral ferroelectric FE). Naturally, all χ(2) 

processes vanish in the paraelectric (PE) high-symmetry (cubic) phase because of inversion 

symmetry [112] and only third-order NL susceptibility coefficients remain above Tc. However, 

χ(2)-processes are non-zero in the FE phase because a spontaneous polarization P0 breaks the 

inversion symmetry.  

Our starting point is the expression of the free energy per unit volume in terms of the 

polarization components: 

F =
α

2ε0
PiPi +

β1

4ε0
2 (PiPi)

2 +
β2

2ε03
(Px
2Py
2 + Py

2Pz
2 + Pz

2Px
2) + ⋯                 (29) 

where the polarizability is α = a(𝑇 − 𝑇0) in which, for a second-order phase transition, 𝑇0 = 𝑇𝐶. 

When bulk FE material is exposed to a high intensity incident IR radiation, we should add an 

electric field term to the free energy, FE = F − 𝐄 ∙ 𝐏, where E is the electric field come from the 

incident IR radiation. The LK equation for the polarization vector P is:  
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ÔPi = −
∂F

∂Pi
+ Ei                                                         (30) 

In the PE phase, we have P=0. Using the Taylor series expansion: 

Pi = Pi
(1)
+ Pi

(2)
+ Pi

(3)
= ε0χil

(1)
El + ε0χilm

(2)
ElEm + ε0χilmn

(3)
ElEmEn               (31) 

We can write the NLO coefficients by comparing to the Taylor expansion of fi(P):  

fi(P) = fil(0)Pl +
1

2
film(0)PlPm +

1

6
filmn(0)PlPmPn                            (32) 

According to the equations above, we can get a general form for χ(2): 

χilm
(2) (−(ω1 +ω2);ω1, ω2) =

ε0
2

2
film
0 χi(ω1 +ω2) × χl(ω1)χm(ω2)                 (33) 

For rhombohedral symmetry, all non-vanishing, nonlinear-susceptibility tensor elements 

are given by Table 8.  
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Table 8 Non-vanishing second-order NLO tensor elements for the rhombohedral ferroelectric 

phase [113]. 

 

Table 8 makes use of the following notations: 

�̂�𝑛 = 𝛩(𝑛𝜔) − 𝑝                                                       (34) 

𝛩(𝜔) =
−𝑖𝛾𝜔−𝑚𝜔2

𝑁𝑒2
                                                     (35) 

𝑝 =
𝛼

𝜀0
+
𝑃0
2

𝜀0
2 (3𝛽1 + 2𝛽2)                                                (36) 

𝑞 =
2𝛽2

𝜀0
2 𝑃0

2                                                              (37) 

𝑢 =
2𝛽2

𝜀0
2 𝑃0                                                              (38) 
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𝑣 =
6𝛽1

𝜀0
2 𝑃0                                                             (39) 

𝑃0 = √
−𝜀0𝛼

𝛽1+2𝛽2
                                                           (40) 

σ(ω) =
𝑞

𝜀0[�̂�1(�̂�1−𝑞)−2𝑞2]
                                                  (41) 

s(ω) =
(�̂�1−𝑞)

𝜀0[�̂�1(�̂�1−𝑞)−2𝑞2]
                                                   (42) 

ℎ1 = 𝜎
2 + 2𝑠𝜎; ℎ2 = 𝑠

2 + 3𝜎2 + 2𝑠𝜎; ℎ3 = 𝜎
2 + 4𝑠𝜎                  (43) 

Here the only material-derived parameters are the temperature-dependent polarizability, , 

the nonlinear polarizability coefficients 1, and 2, the concentration of dipoles, N (dependent on 

the known crystal structure), their reduced mass, m and their relaxation coefficient, . We must 

stress that the use of this particular formalism and LK operator expression for () is meant to 

describe the behavior of non-relaxor type ferroelectric materials (such as PbTiO3) but may be 

somewhat approximate in the case of PMN-PT. Nevertheless, we can hope to estimate, at least 

semi-quantitatively, the magnitude of the complex-valued (2) coefficients of the rhombohedral FE 

phase of PMN-PT as a function of frequency (from =0 to the soft-mode frequency =0, 

with𝜔0
2 = 𝑁𝑒2

𝑎𝑇0

𝜀0𝑚
) and as a function of temperature (from T=0 to T=TC). Using a Curie 

temperature of Tc=155°C for 0.75PMN-0.25PT and parameters estimated from [114], we obtained 

the results shown in Figures 43-45. 
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Figure 43. SHG nonlinear susceptibility coefficient 𝜒𝑥𝑥𝑦
(2) (−2𝜔;𝜔,𝜔) versus frequency at 

T=50oC. (Real part is in red and imaginary part in blue). 

 

Figure 44. SHG nonlinear susceptibility coefficient 𝜒𝑥𝑥𝑦
(2) (−2𝜔;𝜔,𝜔) versus frequency at 

T=134oC. (Real part is in red and imaginary part in blue). 
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Figure 45. Effect of temperature on the SHG nonlinear susceptibility coefficient 

𝜒𝑥𝑥𝑦
(2) (−2𝜔;𝜔,𝜔) at a frequency of 2 THz. (Real part is in red and imaginary part in blue). 

From the simulation result, we found the second-order nonlinear susceptibility in this 

material is maximized in the Terahertz range. After comparing the (2) value with other common 

nonlinear materials [115], we found the second-order susceptibility of PMN-PT is very small 

(Table 9). One explanation is that rhombohedral PMN-PT is too close to the cubic structure (α≈

β≈γ≈89°56′), which does not provide enough departure from centrosymmetry.  
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Table 9 Second-order susceptibility value for well-known nonlinear crystals. 

Nonlinear Crystal 

 

(2) (pm/V) 

 

Frequency (THz) 

LiNbO3 152.4 2 

GaAs 46.1 2 

GaP 21.7 2 

PMN-PT 2×10-4 1.7 
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CHAPTER FIVE: NON-STOICHIOMETRIC GRAIN-GROWTH IN ZnSe 

CERAMICS FOR (2) INTERACTION 

As we discussed in Chapter one, despite the lack of long range order, ZnSe ceramics can 

serve as efficient nonlinear frequency converters by way of the (rQPM) process. The commercially 

available low-loss (bulk absorption coefficient at 10.6 µm is less than 0.0005 cm-1) polycrystalline 

ZnSe infrared optics was produced by chemical vapor deposition (CVD). Chemical vapor 

deposition (CVD) is a widely used material-processing technology [116-118]. The schematic of a 

ZnS CVD system, similar to the one use for ZnSe synthesis, is shown in Figure 46. The ZnSe CVD 

process involves the reaction of zinc vapor with hydrogen selenide gas in a higher-temperature 

deposition zone according to:  

Zn(g) + H2Se(g)
Ar
⇒ ZnSe(s) + H2(g)                                   (44) 

 

Figure 46. Schematic of a ZnS CVD system [119]. 

CVDed ZnSe is used in a broad range of applications, including optical components for 

high resolution Forward Looking Infrared (FLIR) thermal imaging equipment. Its low losses and 
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high resistance to thermal shock have made this material unique to high power CO2 laser system. 

Figure 47 is the transmission of commercial CVDed ZnSe. The typical grain-size of commercial 

CVDed ZnSe is in the range of 50-70 µm.  

 

Figure 47. Transmission of commercial CVD Zinc Selenide (II-VI corp.) [120]. 

This chapter investigates heat-treatment conditions necessary to develop adequate 

microstructures for rQPM in CVD-grown ZnSe ceramics. Non-stoichiometric grain growth of 

CVD-grown ceramics limits contamination from impurities compared to melt- or solution-grown 

crystals and hot-pressed ceramics. It also prevents the formation of scattering centers due to stress-

induced birefringence and the presence of hexagonal ZnSe when carried out below the sphalerite-

wurtzite transition temperature at 1425°C. It also improves grain growth kinetics because the off 

stoichiometry will form Schottky or Frenkel point-defects and then increase the vacancy 

concentration, which promote the grain boundary mobility and grain growth speed. This study 

builds upon the previous work by Terashima et al. [121-123] and Triboulet et al. [124-128] in 
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which heat-treatments were performed on CVD-grown ZnSe for the production of single-crystals. 

Here, the effects of the heat-treatment atmosphere [129] on the average grain-size and grain-size 

distribution are more specifically investigated and the experimentally-determined grain-size 

distributions are used to predict the rQPM efficiency of second-harmonic (SH) generation in this 

material3.  

5.1 Experimental Procedure 

Polycrystalline coupons of CVD-grown ZnSe (II-VI Inc., USA) with an average grain size 

of 75 µm were used as the starting material. Cubic samples measuring 5x5x5 mm3 were diced from 

these coupons and all faces were mechanically polished so that grain-growth would not be 

suppressed [130]. Samples were annealed at 850 or 1000°C for 6 to 168 h in a vacuum, or in a 

saturated vapor pressure of zinc or selenium vapor. These vapors were produced by either placing 

fine zinc shots (Atomergic Chemetals Corp.) or selenium granules (United Mineral & Chemical 

Corp.) in a small boat next to the sample before sealing the quartz ampoule in which the treatment 

was performed. Ampoules were sealed off at a pressure of 3.4x10-6 atm. The microstructure of 

polished ZnSe was inspected by polarized optical microscopy after a 15 min chemical etch in a 30 

mol% NaOH solution held at 95°C. The grain-size was determined by the line intercept method 

using the Image J software (National Institutes of Health). Grain-size distributions were obtained 

using a minimum of 1000 grains. Laser scattering tomography was used to check the precipitate 

                                                 

3 This work has been submitted to Chen, X. and Gaume, R.. Non-Stoichiometric grain-growth in ZnSe ceramics for 

χ(2) interaction. Optical Materials Express, 2018. 

https://www.linkedin.com/company/united-mineral-&-chemical-corp.
https://www.linkedin.com/company/united-mineral-&-chemical-corp.
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after solid-state grain-coarsening [131-133].  Optical transmission was measured using an 

ultraviolet–visible–near infrared (UV–VIS–NIR) spectrometer (Cary 500, Varian Inc., CA, USA) 

and the mid-infrared transmission spectra were acquired on a FT-IR spectrophotometer 

(Nicolet 6700，Thermo Scientific).  

 

Figure 48. Quartz ampoule used in the experiment. 

5.2 Results and Discussion 

5.2.1 Starting Materials Characterization  

These samples have 70% transmittance in the range 1.5 µm to 14 µm, which is in 

compliance with the transmittance data provided by the vendor (Figure 49). The X-ray diffraction 

pattern shows that the crystal structure of ZnSe is cubic zincblende and that no significant texture 

is present (Figure 50).  
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Figure 49. Transmittance spectra of starting CVD polycrystalline ZnSe. 

 

Figure 50. X-ray diffraction of purchased ZnSe. 
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5.2.2 Grain-Coarsening Kinetics in CVD-grown ZnSe 

Figure 51 shows the microstructures of ZnSe ceramics obtained before and after annealing 

under vacuum, Zn and Se vapors. As noticed previously [121, 128], annealing in selenium vapor 

leads to the development of a coarser microstructure than in zinc vapor or vacuum. Twining is 

present in all cases, even in the starting material. There is no significant difference in the amount 

of twins before and after grain-coarsening.  

 

Figure 51. Sample microstructures: (a) before annealing, (b) after annealing in Se vapor 

at 850°C for 168 h, (c) after annealing in Zn vapor at 850°C for 168 h, (d) after annealing in 

vacuum at 850°C for 168 h. Note the change of scale for figure (b). 
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The average grain-size as a function of the annealing time for the different temperature and 

atmosphere conditions is represented in Figure 52. The error bars represent the 95% confidence 

interval for the population mean, calculated according to:  

�̅� ± 𝑡(α, 𝑁 − 1) ∗
𝑠𝑥

√𝑁
                                                       (45) 

where �̅� is the mean value and 𝑠𝑥 is the standard deviation of the sampled data set. With a grain 

population N=1000, the significance level is  α=(1-0.95)/2. The grain-growth kinetics is expected 

to follow a typical grain-growth model [134]: 

𝑑𝑚(𝑡) − 𝑑𝑚(0) = 𝑘 ∙ 𝑡                                                     (46) 

where d(t) is the average grain-size at time t, k a temperature-dependent factor and m the grain-

growth exponent, with a value between 2 and 4, typically. The fit to Eq. 46 yields m=3 for a heat-

treatment in Se vapor at 850°C, and m=6 in the cases of Zn vapor or vacuum at the same 

temperature. In addition, it was found that the grain-growth exponent in Se atmosphere remained 

constant at 1000°C. After 168 h, crystallites as large as 1.5 mm can be obtained at 1000°C in 

selenium vapor. Vapor transport equilibration affects the sample stoichiometry thereby affecting 

the diffusion rate of species and the mobility of grain-boundaries. Large grain-growth exponent in 

vacuum and zinc vapor atmosphere suggest the presence of low-solubility precipitates that pin the 

grain-boundaries. This fact is supported by the high density of scattering centers revealed by laser 

scattering tomography in those latter samples (Figure 53). Figure 54 shows the experimental 

determined phase diagram of ZnSe. Focus on the red square data, we can see that the solid-

solubility of Zn (~10-5 mol of Zn per mole of ZnSe) is ten times lower than that of Se (~10-4 mol 
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of Zn per mole of ZnSe) in zincblende ZnSe at 850°C [135]. Based on the data from Figure 51(b), 

one can calculate the activation energy for grain-growth using: 

𝑘 = 𝑘0exp (−
𝐸𝑎

𝑅𝑇
)                                                               (47) 

where 𝑘0 is the pre-exponential constant of the diffusion coefficient, Ea is the activation energy 

for grain-growth, T  is the absolute temperature and R is the perfect gas constant. Using the grain-

size data over the temperature range, an Arrhenius plot of Figure 55 shows a mean activation 

energy value of 𝐸𝑎̅̅ ̅=19.7 kJ/mol, similar to that reported by Triboulet et al. [128]. The coefficient 

of variation (CV) for the activation energy, defined as the standard deviation divided by the mean, 

is 7%, showing consistency within this data set. As the annealing time increases, the offset of the 

Arrhenius plot, ln(k0), progressively converges towards a single value suggesting that diffusion-

driven grain-boundary mobility reaches an equilibrium across the entire sample size for long 

annealing times.  

 

Figure 52. Grain-size as a function of annealing time (a) at 850°C in different 

atmospheres and (b) at 850°C and 1000°C in Se atmosphere. d0= 75 µm. 
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Figure 53. Laser scattering tomography images of (a) original CVD-grown ZnSe ceramic 

and ZnSe ceramic samples annealed at 850°C for 168 h (b) in selenium; (c) in vacuum and (d) in 

zinc vapor. 

 

Figure 54. ZnSe homogeneity region [135].  
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Figure 55. Arrhenius plot for ZnSe grain-growth kinetics and (b) ln(k0) as a function of 

annealing time in Se vapor. 

To analyze the effect of heat-treatment conditions on the grain-size distribution, we 

performed a comparison between heat-treated samples with the same average grain-size. This 

average grain-size was chosen to be 100 µm, i.e. a size optimized for MWIR random quasi-phase 

matched second harmonic generation at an incident wavelength of 4.7 µm and SH at 2.35 µm. In 

selenium atmosphere, 100 µm average grain-size is obtained after annealing at 850°C for 12 h. 

Conversely, a 168 h-long heat-treatment is necessary under vacuum or zinc atmosphere at the same 

temperature. Grain-size histograms (Figure 56) were built using Freedman-Diaconis rule to 

determine the binning size for a data set of N=1000 grains, according to: 

𝑏𝑖𝑛 𝑠𝑖𝑧𝑒 = 2 ∗ 
𝐼𝑅𝑄

√𝑁
3                                                           (48) 

where IRQ is the interquartile range of the data. These size histograms can be fitted to a lognormal 

distribution [136]: 
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𝑓(𝑑) =
1

𝛽𝑑√2𝜋
∗ exp (−

(ln𝑑−α)2

2𝛽2
)                                      (49) 

where d is the lognormally-distributed grain size. α and  are the mean and standard deviation of 

the logarithm of the grain size, respectively. The mean μ and standard deviation σ of the grain-size 

are respectively defined by: 

μ = exp (α +
𝛽2

2
)                                                        (50) 

𝜎2 = exp(2α + β2) [exp(𝛽2) − 1]                                        (51) 

Figure 56 shows that, regardless of the stoichiometry shift, the size-distribution remains 

lognormal with a similar standard deviation value. Therefore, the excess of selenium only favors 

a faster grain-growth compared to stoichiometric and zinc-rich ZnSe.  
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Figure 56. Grain-size distributions of a) original CVD-grown ZnSe ceramics; and of 

annealed ceramics with comparable average grain-sizes (100 µm) after treatment at 850°C under 

b) Se vapor for 12 h, c) Zn vapor for 168 h and d) vacuum for 168 h. The mean grain-size value 

and its standard deviation are indicated for each fit. 
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It is worth noting that the off-stoichiometry defects introduced by the heat-treatment in the 

presence of selenium deteriorate the transmittance of the samples in the near-infrared (Figure 57). 

However, the color centers can be removed by a subsequent post-treatment at 700°C for 2 h in a 

vacuum. This short heat-treatment does not affect the average grain-size nor its distribution, and 

restores the transmittance to the level of the original CVD material. 

 

Figure 57. Transmittance spectra of the starting CVD polycrystalline ZnSe, a 12h-

annealed sample in selenium vapor and of a 12h-annealed sample in selenium vapor further 

treated at 700°C for 2 h in a vacuum.. 

5.2.3 Effect of Grain-Size Distribution on SHG Efficiency 

Random quasi-phase-matched second harmonic generation can be simply modeled using a 

one-dimensional (1D) layered structure along which light propagates and composed of grains with 
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random crystalline orientations and thicknesses (Figure 58). The refractive index and dispersion 

are assumed to be the same for all grains. One can show that, within the rth grain, the electric field 

amplitude at frequency 2ω generated by the fundamental field is [47]: 

𝐸2𝜔,𝑟 = −
𝜔𝜒𝑟

(2)

𝑛2𝜔𝑐∆𝑘
𝐸𝜔

2 ∫ 𝑒𝑖∆𝑘𝑧𝑑𝑧
𝑍𝑟

𝑍𝑟−1
= −

𝜔𝜒𝑟
(2)

𝑛2𝜔𝑐∆𝑘
𝐸𝜔

2(𝑒𝑖∆𝑘𝑋𝑟 − 1)𝑒𝑖∆𝑘 ∑ 𝑋𝑗
𝑟−1
𝑗=1             (52) 

where c is the speed of light, 𝑛2𝜔 the refractive index at angular frequency 2𝜔, 𝐸𝜔 the electric 

field at the fundamental frequency, ∆𝑘 = 𝑘2𝜔 − 2𝑘𝜔 the phase mismatch,  𝑋𝑟 the size of the rth 

grain and 𝜒𝑟
(2)

 the effective nonlinear optical coefficient of grain r given its particular orientation.  

 

Figure 58. Random quasi-phase-matching in a polycrystalline medium. Each block 

represents a crystallite with random thickness and crystallographic orientation. Light propagates 

through the thickness of this one-dimensional layered structure. 

The random orientation of the grains means that the normalized component of the nonlinear 

polarization in the direction of the incident electric field ranges from 1 to -1. In order to numerically 

implement this, we used a random number generation algorithm so that 𝜒𝑟
(2)

 = cos( 𝜋𝑦𝑟) 𝜒
(2) by 
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sampling 𝑦𝑟 uniformly in the interval [0, 1] [137]. After propagation through R crystallites, the 

amplitude of the electric field at 2ω can be deduced from Equation 52:  

𝐸2𝜔 = −
𝜔𝜒(2)

𝑛2𝜔𝑐∆𝑘
𝐸2(𝜔)(∑ cos(𝜋𝑦𝑝)

𝑅
𝑝=1 (𝑒𝑖∆𝑘𝑋𝑝 − 1)𝑒

𝑖∆𝑘 ∑ 𝑋𝑗
𝑝−1
𝑗=1 )                 (53) 

and the relative conversion efficiency is: 

𝐼2𝜔

𝐼𝜔
=
𝑛2𝜔|𝐸2𝜔|

2

𝑛𝜔|𝐸𝜔|2
=
𝜔2(𝜒(2)𝐸𝜔)

2

𝑛𝜔𝑛2𝜔𝑐2∆𝑘2
(∑ cos (𝜋𝑦𝑝)(𝑒

𝑖∆𝑘𝑋𝑝 − 1)𝑅
𝑝=1 𝑒

𝑖∆𝑘∑ 𝑋𝑗
𝑝−1
𝑗=1 )2           (54) 

For a given average grain-size, the effect of size-distribution on the conversion efficiency 

can be best analyzed through a Monte Carlo simulation [47]. Figure 59 shows the simulation results 

for a SHG process in polycrystalline ZnSe pumped at 4.7 µm wavelength at which the coherence 

length is 100 µm. In this figure, three cases are compared: (i) an ideal sample with a monodisperse 

grain-size of 100 µm, (ii) a sample having undergone grain-growth in selenium vapor with a size-

distribution given by Fig. 56b (=102 m and =30 m) and (iii) the original CVD-grown ZnSe 

with 75 µm average grain-size (Fig. 56a). As expected, the conversion efficiency scales linearly 

with the number of grains, and the narrow grain-size distribution yields a higher conversion 

efficiency. The conversion efficiency of a selenium-treated sample reaches 83% of that of an ideal 

monodisperse microstructure and performs 62% better than an untreated CVD-grown ceramic. 
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Figure 59. Monte Carlo simulations of the normalized SH intensity as a function of 

number of grains for varied ZnSe ceramics (see text for details). 

5.3 Conclusion 

Solid-state grain-coarsening treatments of CVD polycrystalline ZnSe can be used to match 

the grain-size of this nonlinear material to the coherence length of a mid-IR pump. We have shown 

that the use of non-stoichiometric grain-growth heat-treatments allow for the control of the speed 

of the process and of the final grain-size distribution. When exposed to selenium vapor at 850°C, 

a faster homogeneous grain-growth could be obtained compared to treatments in a Zn vapor 

or a vacuum. We have quantified the effect of grain-size distribution in the process of random 

quasi-phase-matching and shown that the conversion efficiency scales linearly with the number of 
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grains and a narrow grain-size distribution yields a higher conversion efficiency. Our Monte-Carlo 

simulations show that, for particular pumping conditions in the mid-infrared, the conversion 

efficiency of a selenium-treated sample could reach 83% of that of an ideal monodisperse 

microstructure and perform 62% better than an untreated CVD-grown ceramic.  
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CHAPTER SIX: CHARACTERIZATION OF NONLINEAR OPTICAL 

PROPERTIES OF ZnSe CERAMICS 

To characterize ZnSe ceramics from the viewpoint of random quasi-phase-matching [42, 

138, 139] and their suitability for acting as a nonlinear medium in an ultra-broadband subharmonic 

femtosecond OPO, we have built a nanosecond mid-IR laser setup. Since the final goal is to 

demonstrate a broadband frequency comb based on frequency division (subharmonic) process ω 

 ω/2 in a ring-cavity resonator, with ω corresponding to the pump 2.35 µm wavelength and ω/2 

corresponding to the 4.7 µm wavelength, we decided to characterize the samples from the 

viewpoint of the inverse process of second harmonic generation (SHG) first (ω  2ω with ω in 

the range of 3-5 µm, and 2ω at 1.5-2.5 µm).  Both processes are related to each other (through 

effective second-order nonlinearity in a three-wave mixing process) and hence the samples that 

are the best from the viewpoint of SHG would be the proper candidates for the subharmonic 

femtosecond OPO generation. An advantage of the SHG method, in addition to the fact that the 

process is straightforward, is that we can compare second-order nonlinear coefficient of randomly 

phase-matched ZnSe ceramics to that of known nonlinear materials. 

6.1 Second Harmonic Generation in ZnSe Ceramics 

6.1.1 Setup for Second Harmonic Generation 

For SHG characterization, we have built an optical parametric oscillator (OPO) based on 

periodically poled lithium niobate (PPLN) crystal, tunable over the range 2.8 -5 µm (Figure 60).  
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Figure 60. Optical parametric oscillator based on periodically poled lithium niobate 

(PPLN) crystal, tunable over the range 2.8 -5 µm. Left: OPO and the pump laser. Right: PPLN 

OPO including mirrors and the oven for PPLN crystal. 

The OPO is pumped by a 1064 nm Q-switched diode-pumped Nd:YAG laser (Spectra-

Physics Model T40-X30S) with a TEM00 transverse mode, 20-ns pulse duration, and 1.5-mJ pulse 

energy, operating at 100 Hz -1 kHz repetition rate. We used a simple flat-flat PPLN OPO. The 

front and rear OPO mirrors (M1 and M2 in Figure 61) have same characteristics and are 

transmissive for the pump and the idler waves, and highly reflective (98%) for the signal wave. 

The PPLN crystal is 20 mm long, 25 mm wide and 1 mm thick. The pump laser beam size inside 

the PPLN crystal is around 250 µm. After PPLN OPO, a 45º beam splitter (BS) is used to reject 

the OPO signal wave (1.35-1.7 µm), as well as the pump, and transmits only the OPO idler wave 

at 2.8-5 µm. An additional long pass filter is used to make sure that only a long wavelength 

component (> 2.5 µm) goes through. The beam is focused to a 60-µm spot with a CaF2 lens. A 

ZnSe sample is placed in the focus and scanned in the XY-plane at different rotation angles φ.  The 

SHG signal is measured using an InGaAs detector with a short-pass filter to block the fundamental 

wave at frequency ω.  
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Figure 61. Setup for characterization of ZnSe ceramic samples via SHG.  

6.1.2 Characterization of the Beam 

The tunable wavelength of the PPLN OPO was achieved by linear motion of the crystal 

across the beam at a certain crystal temperature (Figure 62). The PPLN OPO idler wave energy 

amounted to 50-100 µJ with the linewidth in the range 10-50 cm-1.  
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Figure 62. Wavelength tuning of PPLN OPO as a function of Y-position of the crystal.  

The propagation of Gaussian beam is shown in Figure 63.  Beam waist (𝑤0) is defined as 

the beam radius where beam width is the smallest. The beam radius varies as the distance from the 

waist because of the divergence. We defined the Rayleigh’s range (𝑧0) as the distance where the 

area of the beam is twice bigger than the area in the waist.  
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Figure 63. Propagation of the Gaussian beam. 

In laser application, the beam quality (𝑀2) is very important because it defines the smallest 

possible beam area in the focal point, which can be calculated by: 

𝑤0𝜃0 =
𝑤0
2

𝑧0
= 𝜃0

2𝑧0 = 𝑀
2 𝜆

𝜋
                                                    (55) 

 where 𝜃0 is a beam divergence. For perfect Gaussian beam, 𝑀2 equals to 1. However, in normal 

case, 𝑀2 is always greater than 1 because of nonhomogeneity and diffraction loses. We used the 

knife-edge method to determine the 𝑀2 parameter. The principle of knife-edge method is shown 

in Figure 64. We used a CaF2 lens with f=50 mm to focus the OPO beam. In this work, we picked 

up 5 different wavelengths (3.1 µm, 3.5 µm, 3.98 µm, 4.29 µm, 4.73 µm). The distance between 

the focus point and CaF2 lens, the pulse energy, beam waist 𝑤0 and 𝑀2 are shown in Figure 65. 

The beam quality parameter was calculated to be M2 ≈1.5. 
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Figure 64. Principle of knife-edge method. 

 

Figure 65. (a) The distance between the focus point and CaF2 lens; (b) pulse energy; (c) 

beam waist 𝑤0 and (d) beam quality 𝑀2 as a function of wavelength. 
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6.1.3 Results and Discussion 

The purchased ZnSe ceramic samples were cut and polished into plane-parallel slabs (5×5 

mm) with different thicknesses suitable for SHG experiments. Alumina powder dispersions were 

used as polishing agent. Polishing spec is very important when characterized the optical properties 

(Table 10). Zygo is used to check the polishing quality (Figure 66). The root mean square (RMS) 

value is only 0.005 µm.  

Table 10 Polishing standard specification. 

Polishing Surface 5x5 mm facets  

Flatness λ/8@632 nm 

Scratch/Dig 20/10 

Parallelism <30 arcsec 

Chamfer 0.1mm @450 

Clear Aperture 90% of the side 

Height Tolerance ±0.5 mm 

Width Tolerance ±0.5 mm 

Length Tolerance ±0.05 mm 
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Figure 66. Polishing finish from Zygo. 

6.1.3.1 Second-Harmonic Generation of ZnSe Samples with Different Thickness 

There are four samples with different thickness (0.5 mm, 1 mm, 2 mm and 5 mm) from the 

same origin (II-VI Inc., USA). Step motors (MFA-CC, Newport) were used to scan the whole 

ceramics samples. The step was set as 50 µm and pump wavelength we used here is 3.86 µm. The 

second harmonic generation signal are shown in Figure 67 and Table 11. Maximum value will be 

used in a broadband frequency comb based on frequency division (subharmonic) process. Here, 

we only use average value to characterize the second-order nonlinear optical properties of ZnSe 

ceramics (Figure 68). The main feature of the random quasi-phase-matching is proven 

experimentally that the frequency conversion is proportional to the sample thickness.  
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Figure 67. Second-harmonic generation scanning signal as a function of sample thickness. 
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Table 11 Maximum and average value of second harmonic generation signal. 

Thickness 

(mm) 

Maximum 

Signal (w) 

Average 

Signal (w) 

Standard 

Deviation 

0.5 

1 

2 

5 

0.1568 

0.18 

0.2611 

0.3156 

0.0721 

0.0782 

0.1589 

0.2376 

0.0219 

0.0245 

0.0354 

0.0328 

 

Figure 68. Average second-harmonic generation as a function of ZnSe ceramics 

thickness. 
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6.1.3.2 Second-Harmonic Generation of ZnSe Samples with Different Grain Size 

Based on Chapter 5, we studied non-stoichiometric grain-growth in CVD-grown ZnSe 

ceramics. Through this method, we fabricated four samples with same thickness (1.5 mm) but 

different grain-size in order to study the effect of grain size on the second-harmonic generation. 

The pump wavelength we used here is 4.7 µm and hence the coherence length is 100 µm. The 

second-harmonic generation signal were reported in Table 12 and Figure 69. When grain size close 

to coherence length (100 µm), the SHG signal is higher and when grain size is twice of the 

coherence length, the SHG signal is lower. This experiment confirmed the theory. When we 

change the crystal orientation at each coherence length, the electric field and intensity is the highest 

and. While, when we change crystal orientation every twice of the coherence length, the electric 

field and intensity is the lowest.  

Table 12 Conditions and second-harmonic generation signal of ZnSe ceramic samples. 
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Figure 69. Second-harmonic generation signal histogram. 

6.2 Optical Parametric Oscillation in ZnSe ceramics 

The OPO was pumped by a Kerr-lens locked Cr:ZnS laser. The center wavelength is 2.35 

µm, the pulse duration is 62 femtosecond and repetition rate is 79 MHz. The OPO cavity (Figure 

70) was composed of  an in-coupling dielectric mirror (M1) with a high transmission (>85%) for 

the 2.35 μm pump and a high reflection (>95%) for 3-8 μm, two gold-coated parabolic mirrors 

(M2 and M3) with a 30° off-axis angle and one gold-coated flat mirrors (M4). A 1.5 mm thick 

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10516/1051615/Optical-parametric-oscillation-in-a-random-poly-crystalline-medium/10.1117/12.2292765.full/conference-proceedings-of-spie/10516/1051615/Optical-parametric-oscillation-in-a-random-poly-crystalline-medium/10.1117/12.2292765.full#f4
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ZnSe ceramic was placed at Brewster angle between two parabolic mirrors. ZnSe wedge was used 

inside the cavity for variably outcoupling the OPO signal/idler waves4. 

 

Figure 70. Schematic of the Optical Parametric Oscillator. 

The OPO was operating in a doubly resonant frequency-divide-by-2 mode at degeneracy. 

We used a monochromator and a mercury cadmium telluride (MCT) detector to measure the output 

spectrum, which spanned 3–7.5 μm (at -40 dB level) and was centered at the 4.7 μm subharmonic 

of the pump (Figure 71) [44]. 

                                                 

4These results have been published in Ru, Q., Lee, N., Chen, X., Zhong, K., Tsoy, G., Mirov, M., Vasilyev, S., Mirov 

S.B. & Vodopyanov, K. L. (2017). Optical parametric oscillation in a random polycrystalline medium. Optica, 4(6), 

617-618.  
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Figure 71. Top: the OPO output spectrum showing a continuous spectral span of 3-7.5 

µm. Bottom: 2D spectrum. 

6.3 Conclusion 

We have experimentally proven the main feature of the random quasi-phase-matching, that 

is, the frequency conversion linearly depends on sample thickness. In random quasi-phase-

matching, nonlinear conversion efficiency is maximized when the average grain size of ceramics 

is close to the coherence length. We also demonstrate the first OPO based on random quasi-

phase-matching in ZnSe ceramics and produced an ultra-broadband spectrum spanning 3-

7.5 µm.  
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CHAPTER SEVEN: CONCLUSIONS 

There are a lot of technologies that rely on the conversion of short laser pulses from one 

spectral domain to another. Nonlinear optical (NLO) materials are key components in the 

conversion of ultrashort laser pulses by allowing all frequencies of a pulse to be converted 

simultaneously. The use of quasi phase-matching (QPM) materials results in a narrow bandwidth 

of efficiently converted frequencies and the fabrication of periodically-poled crystals is 

challenging. Optical ceramics with non-centrosymmetric point group, offer new options in 

widening the NLO spectral bandwidth. Despite the lack of long range order, these materials can 

serve as efficient nonlinear frequency converters by way of the random quasi-phase-matching 

(rQPM) process. Compared to ordered crystals, disordered polycrystalline materials show a 

significant enhancement in spectral and angular acceptances and a better tolerance to both 

propagation angle and temperature, which are essential in converting femtosecond pulse lasers. 

Additionally, these materials have good thermal and mechanical properties and their fabrication is 

scalable in size, making them highly suitable for high-energy applications. In this dissertation, we 

investigated the fabrication of transparent and microstructure-engineered ferroelectric ceramics of 

the PMN-PT composition. Solid-state grain-coarsening was used to fabricate ZnSe ceramics with 

a desired grain-size. We have characterized the nonlinear optical properties of ZnSe ceramics by 

second-harmonic-generation and demonstrated an OPO based on random quasi-phase-matching in 

transparent ZnSe ceramics.  

First, we have developed a novel glycine–nitrate combustion method to fabricate lead oxide 

nanopowders, which have smaller particle size than commercial powders. We have fabricated 

PMN-PT transparent ceramics with better transparency using these combustion synthesized lead 



 

103 

 

oxide powders, which helps improve the densification of green-bodies and the transparency of 

PMN–PT ceramics. 

We have investigated the phase and microstructure evolution of PMN-PT ceramics sintered 

with different dopants and found that, compared to other dopants, La-doped PMN-PT samples do 

not form a liquid phase during sintering and favor the formation of a pure perovskite phase with 

unimodal rounded grains. We found that the preferential A-site occupancy of La3+ resulting from 

its larger ionic radius lowers the oxygen vacancy concentration. As a result, grain growth of La-

doped PMN-PT is suppressed compared to samples doped with smaller ions such as Y3+ and Gd3+. 

Our simulation of the second-order nonlinear susceptibility in pseudo-cubic PMN-PT 

ceramics indicate that the second-order susceptibility is too small to be practical most likely 

because of the small departure from centrosymmetry.   

We have developed a solid-state non-stoichiometric coarsening treatment of CVD 

polycrystalline ZnSe to match the grain-size of this nonlinear material to the coherence length of 

a mid-IR pump. We have shown that the use of non-stoichiometric grain-growth heat-treatments 

provides an accelerated means to coarsen the microstructure and allow for the control of the speed 

of the process and of the final grain-size distribution. When exposed to selenium vapor at 850°C, 

a faster homogeneous grain-growth could be obtained compared to treatments in a Zn vapor or a 

vacuum. We have quantified the effect of grain-size distribution in the process of random quasi-

phase-matching and shown that the conversion efficiency scales linearly with the number of grains 

and a narrow grain-size distribution yields a higher conversion efficiency. Our Monte-Carlo 

simulations show that, for particular pumping conditions in the mid-infrared, the conversion 
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efficiency of a selenium-treated sample could reach 83% of that of an ideal monodisperse 

microstructure and perform 62% better than an untreated CVD-grown ceramic.  

Finally, we have proven using experimental method that nonlinear conversion efficiency 

is maximized when the average grain-size of the ceramic is equal to the coherence length for the 

wavelengths of interest. The main feature of rQPM is the linear dependency of the frequency 

conversion yield with sample thickness. We firstly demonstrate an OPO based on random quasi-

phase-matching in ZnSe ceramics and produced an ultra-broadband spectrum spanning 3-7.5 µm. 
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