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ABSTRACT 

Ceramics are ubiquitous in man-made and natural structures. Their mechanical properties 

highly depend on their composition, microstructure and level of defects in the bulk of the 

material, the latter affecting the integrity of the components; such is the case of boron-rich 

ceramics where large agglomerates create high stressed regions, or coral skeleton where porosity 

determines their strength against hydrodynamic forces present in the ocean tides. Therefore, 

studying the properties of ceramic materials using invasive and non-invasive methods helps in 

the understanding of the link between the properties and the performance of the structures. The 

aim of this research was to test the novel ceramic component ZrB2-30wt%SiB6 and Acropora 

cervicornis coral skeleton using non-conventional techniques that allow for the study of their 

mechanical properties and their behavior when exposed to external loads present in their 

environments of application. The first part of this study focuses on understanding the effects of 

adding SiB6 to enhance the mechanical properties of ZrB2 ceramics for their ultra-high 

temperature use. The second part will emphasize in the behavior of Acropora cervicornis coral 

skeleton when exposed to compressive forces and the effects porosity has on this structure when 

subjected to such loads. It was found that the SiB6 phase was not stable after sintering of the 

composite and large agglomerates were present in the surface of the material acting as stress 

concentrators, thus compromising the biaxial strength of the component that resulted to be 224.9 

MPa. It was also found that coral skeletons are highly susceptible to porosity which creates 

variability on the elastic modulus ranging from 60-1 GPa for simulated porosity of 0-90% 

respectively and a strength of 3.56 ± 0.31 GPa obtained through Vickers indentation. Finite 

element models were developed and validated against experimental results for the ZrB2-

30wt%SiB6 and Acropora cervicornis coral skeleton. 
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1. INTRODUCTION 

1.1. Motivation 

The following research involves the study of three subjects that are of great importance 

for the advancement of knowledge in the field of structural ceramics, that are brittle in nature, 

and the ways of studying their mechanical properties, including their strength and elastic 

modulus for cases when they are solid and porous, using invasive and non-invasive techniques. 

The first part of the research consists on the study of boron-rich ceramics used as refractory 

materials for ultra-high temperature applications and the properties of a novel composition that 

consists of ZrB2-30wt%SiB6; the second part of the research consists on the study of the 

compressive behavior of the staghorn coral Acropora cervicornis skeleton and the influence 

porosity has in its elastic modulus and fracture strength; and the third part of the research 

consists on the development of an in-Situ Raman spectrometer for the study of the real-time 

response of Raman active material when these are exposed to external loads. 

1.1.1. Boron-rich Ceramics 

Ceramics with boride structure have been used as refractory materials, especially ZrB2 

and HfB2, and have been extensively studied for their application in the aerospace industry for 

supersonic flight and atmosphere re-entry vehicles applications [
1,2

]. The outstanding mechanical 

properties of ZrB2 and HfB2 and their high thermal conductivity and melting points make them 

ideal materials for environments with high temperatures and corrosion [
2
]. Monolithic ZrB2 and 

HfB2 have a density of 6.12 g/cm
3
 and 11.21 g/cm

3
 respectively which makes ZrB2 more feasible 

for aerospace applications due to the lower mass per volume it exhibits [
3
]. The Young’s 

modulus and Poisson’s ratio for monolothic ZrB2 and HfB2 are 489 GPa and 480 GPa, and 0.11 

and 0.12, respectively [
2
]. For thermal conductivity and melting temperature for monolithic ZrB2 
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and HfB2, which are important properties for ultra-high temperature applications, it was found 

that the values were 60 W/mK and 104 W/mK, and 3245 °C and 3380 °C, respectively [
2
]. Even 

though these materials exhibit very good mechanical properties they have the disadvantage of 

being very brittle which compromises their use as structural materials. For this reason, additives 

have been added to create composite materials based on ZrB2 and HfB2 in order to keep the 

excellent mechanical properties at high temperatures these materials exhibit and, at the same 

time, improve the strength of the ceramics for their better use in structural applications [
2
]. One 

of the additives that is being widely studied is the SiC which is typically mixed with ZrB2 in a 

range of 10vol%-30vol%, improving the flexural strength of the ceramic from 275-629 MPa for 

monolithic ZrB2 to a maximum of approximately 1089 MPa for the ceramic composite of ZrB2-

SiC [
2
]. The flexural strength of the ceramics does not only depend on the additives used to 

improve the mechanical properties of the composite, but also on the sintering method used [
4
].  

1.1.2. Acropora cervicornis skeleton and the aragonite CaCO3 structure 

Other ceramic materials have been found to be of great importance due to their impact in 

nature and their contribution as structural base for living beings. One of these ceramics is found 

in the non-living part of coral reefs whose structure is mainly composed by an aragonite structure 

of CaCO3 [
5
]. Coral reefs are living organisms that can be found throughout the world. They are 

the most diverse ecosystem in the marine environment and constitute the largest biological 

structure on Earth [
6
]. Understanding the mechanical properties of the non-living component in 

them and the interaction with the environment that surrounds it is of great importance for 

advancements in the protection of coastlines and their ecosystem since coral reefs serve as 

physical barriers to waves generated by storms or tsunamis [
7,8

]. Another benefit from coral reefs 

is that they provide habitat for a great number of living organisms, such as the polyps who 
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populate the coral structures and bring them to life [
9
]. In the last few decades, coral reefs have 

been found to possess an ambiguous future due to anthropogenic forces that range from climate 

and water temperature change, and human activity [
10,11,12

]. Overfishing is another activity that 

has been harming the health and growth of coral reefs. Algae has been found to compete against 

coral reefs for space and survival on the oceans, and overfishing of the parrotfish is allowing for 

the uncontrolled growth of algae affecting the spread of coral reefs on the coasts and their 

existence [
13,14

]. Acropora cervicornis (Lamarck, 1816) was a coral reef that once populated the 

waters of the Caribbean sea and the Atlantic ocean reproducing by fragmentation of its branches 

and forming extensive thickets in shallow water of less than 30 m deep, providing habitat to 

many species that populate these waters [
15

], but lately it has been affected and its existence 

threatened by all these environmental changes and activities, reducing only to small isolated 

patches in the Dominican Republic, Florida, Puerto Rico, Jamaica and Honduras [
16

]. Figure 1 

shows an example of the staghorn coral Acropora cervicornis in its natural environment 

providing a habitat for a small school of fish. 
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Figure 1: Staghorn coral Acropora cervicornis in its natural habitat [
17

]. 

1.1.3. In-Situ Raman Spectrometer 

Raman spectroscopy is a well-known optical non-invasive technique that can be used for 

the quick characterization of materials and the phases present in them. Raman spectroscopy 

analyzes the energy frequencies in molecules, mainly the vibrational, rotational and low-

frequency modes [
18

]. The collection of this type of spectrum is done through the utilization of a 

laser that excites a Raman-active molecule which emits a radiation, of an inelastic nature, that 

passes through a monochromator and an elastic, or Rayleigh, radiation filter and is interpreted by 

a charge coupled device (CCD) detector allowing for the identification of the wavelength 

location, or Raman bands, and the intensity of the radiation from the molecules that conform the 

material. The locations of these Raman bands serve as a fingerprint for the characterization of 

Raman active materials and their shift or deformation serve as a tool for the study and 

quantification of any stress being applied to the sample. However, when a load is applied to a 

structural ceramic it is done on external equipment that does not allow for the collection of 
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Raman spectra to understand the instantaneous vibrational response of the material. Therefore, 

the development of an instrument that permits the collection of the real-time behavior of 

materials withstanding a mechanical load using the Raman spectroscopic technique is of great 

importance in order to understand the instantaneous changes in phases a material experiences 

when exposed to such loads and the distribution of stressed over the surface of the sample. 
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2. GOALS OF THE RESEARCH 

The goals of this research work are to investigate the biaxial strength and mechanical 

properties of brittle ceramic made from ZrB2- and HfB2-based ceramics, sintered using the spark 

plasma method, through the ring-on-ring technique and resonant ultrasound spectroscopy. The 

second part of the research work consists on the study of the uniaxial compression strength for 

right circular cylindrical specimens of Acropora cervicornis staghorn corals. The tests will be 

accompanied by Raman spectra mapping and the study of the strength of the skeleton in relation 

to its porosity that will serve as validation for the results and also as a tool to expand the field of 

investigation for the behavior of these materials under certain loads. The third part of the 

research will consist on the development of an in-Situ Raman spectrometer that will allow for the 

capturing of the real-time vibrational response of Raman active materials under mechanical 

loads. The samples studied were chosen due to their accessibility and their importance in the 

advancement of ultra-high temperature structural materials and the understanding of the 

mechanical properties of materials, such as CaCO3 in biological applications for the preservation 

of the coral reefs. 
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3. LITERATURE REVIEW 

Ceramics are exciting materials with ionic of covalent bonding between the atoms that 

determine their unique mechanical, electrical and structural properties, and can be implemented 

for a variety of different applications. While many ceramic materials are man-made their 

existence also occurs naturally. The characteristic features of ceramics, in comparison with other 

classes of materials, are the high hardness, high Young's modulus, high melting temperatures, 

and high specific strength, resulting from the type of atomic bonding present in the structure. The 

type of atomic bonding in a material also affects how it fractures, as is the case for ceramics that 

due to the type of bonding complete fracture occurs when all the bonds are pulled and broken 

apart by a stress high enough to overcome the theoretical strength of the material [
19

]. The stiffer 

and stronger bonds in a ceramic determine the material’s theoretical strength and its Young’s 

modulus, and thus, providing that the ideal ceramic is defect free, the theoretical strength can be 

approximated by the maximum stress (σmax) to be between E/5 to E/20 [
19

]. However, due to the 

imperfections found in ceramics and the number of defects present in their structure the actual 

strength is much lower and it is located between E/100 to E/1000, as in most cases the flaws 

present locally concentrate stresses that significantly waken the material [
20

]. The imperfections, 

in the form of flaws and defects, also concentrate stress and serve as the initial point where 

cracks start to propagate. These defects in ceramics are typically found in the form of small flaws 

characterized mainly for being large grains, pores, voids and cracks where fracture tend to 

originate [
19

], determining the strength of the ceramic sample which depends on the stress the 

largest defect can handle [
20,21,22,23

]. This characteristic does not allow for the strength to be 

described as a unique number, but as the result of a statistical distribution function that can 

determine the failure probability of a ceramic material undergoing a specific test. It is worth to 
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mention that in an ideal case where no defect is present on the sample tested, a failure probability 

of zero may exist [
19

]. The critical size for the failures that result after processing ceramics 

typically ranges between 100 μm and smaller lengths and are difficult to be detected by non-

destructive experimental techniques, thus compromising mechanical properties of the ceramic 

material, such as strength, brittleness, among others, creating a challenge for designers 

considering using these types of materials for structural purposes since they can fail 

instantaneously [
19

]. Usually, a variation in the strength of ceramic materials in the interval of 

±25-100% from the mean exists, exposing another difficulty in the selection of ceramic materials 

for structural purposes [
20

].  

 

Figure 2: Typical stress-strain curve for (a) brittle materials and (b) ductile materials 

It is well known that the application of stress to the material results in reversible elastic 

deformation followed by either fracture without reaching a yield point and plastic deformation, 

or fracture that is preceded by plastic deformation, behavior that is evidently different in ceramic 

materials since the strong atomic bonding that characterizes them makes them brittle and they 

fail without demonstrating any behavior of plastic deformation, therefore going from the elastic 
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region to complete failure [
24

]. Ceramics typically fail in a brittle manner, even when used for 

structural purposes. The strength of ceramic materials usually ranges between 10 to 50 GPa and 

it is proportional to the elastic modulus of it, however it is affected by the amount of defects 

present in the structure that causes failure below the theoretical level, therefore, decreasing the 

presence and size of defects improves the material resistance to failure by breakage.  [
19

]. 

 

Figure 3: Brittle failure of a silicon nitride valve by a rupture test. The fracture surface 

shows that the crack path is perpendicular to the loading [
19

]. 

 Fracture, in a brittle manner, is caused by the presence of flaws acting as stress 

concentrators in the body of the ceramic that result from processing or machining of the ceramic. 

The stress concentration generated by these flaws increases with the dimension of the defect, 

especially when their elongation is much longer than their width [
19

]. Mathematically, the stress 

concentration at the tip of the crack that behaves perpendicularly to the stress direction can be 

described as [
19

], 

                                                                               𝜎𝑛𝜎 = 1 + 2𝑐𝑏                                                                    ( 1 ) 
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where σ is the applied far field stress, σn is the stress at the tip of the crack length a, which is 

proportional to the major semiaxis c perpendicularly oriented to the stress direction, and b is the 

minor semiaxis proportional to the crack width. More precisely, this relationship can be 

described as [
19

], 

                                                                                 𝜎𝑛𝜎 ≈ 2√𝑐𝜌                                                                     ( 2 ) 

where ρ is the radius of the curvature of the crack tip. For such cases, the stress present at the 

crack tip goes to infinity when ρ is atomically sharp and approaches to zero. From Equation ( 2 ) 

it can be estimated that for an applied stress with magnitude σ = E/1000, the ratio between the 

major and minor semiaxis, c and b respectively, has to be equal 50 and the ratio between the 

crack length and the crack tip radius, c and ρ respectively, has to be greater or equal to 2500 in 

order to create a stress concentration with magnitude σn = E/10 which is equal to the theoretical 

strength at the tip notch [
19

]. 

At the crack tip, the stress field can be determined with a linear relationship that scales 

with a stress intensity factor K represented by [
25

], 

                                                                                  𝐾 = 𝜎𝑌√𝜋𝑎                                                                ( 3 ) 

where σ is the nominal stress in the cracked body, a is the crack length and Y is a dimensionless 

geometric correction factor approaching to one for cracks of small sizes relative to the 

component size typical for ceramics, such as Y = 1.12 for the straight through edge cracks [
19

]. 

When cracks are treated as elliptical holes with a tip radius of zero the stress component becomes 

infinite at the crack tip and goes over the theoretical strength of the ceramic component even at 

low loads and cracks with small dimensions (Eq. 2). Evidence has been found of cracks that do 
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not grow under an applied load indicating that certain conditions, described by Griffith, must be 

met for a crack to expand and propagate [
26

]. 

According to Griffith [
26

], only cracks with equal or larger sizes than the critical crack 

length, ac, grow, but smaller cracks maintain their sizes and remain stable. Crack growth is 

prompted when the growth reduces the total energy of the body since strength, σf, is proportional 

to 1∙(ac)
-1/2

. According to Griffith and Irwin [
19

] for crack propagation to occur the fracture 

criterion K ≥ Kc is necessary, where Kc is the fracture toughness defined also as the critical stress 

intensity factor defined by Kc = (E ∙ Gc)
1/2

, subsequently, Gc is the energy required to generate a 

new crack. Usually, the surface energy of a ceramic is approximately 1 J/m
2
 with fracture energy 

ranging between 10-3000 J/m
2
, which is a summation of the energy needed for the formation of 

two new surfaces (2γ) and any other process occurring during crack growth and propagation such 

as, the energy dissipation ahead of the crack tip on the crack bridges, among others [
19

]. 

 The tensile strength, σf, of a ceramic component is mathematically expressed by the stress 

at the moment of fracture as follows [
19

], 

                                                                                   𝜎𝑓 = 𝐾𝑐𝑌√𝜋𝑎𝑐                                                               ( 4 ) 

This relationship indicates that tensile strength is directly proportional to fracture 

toughness, Kc, and inversely proportional to the square root of the critical crack size of ac. The 

critical crack size ac is then expressed as [
19

], 

                                                                                    𝑎𝑐 = 1𝜋 ( 𝐾𝑐𝑌𝜎𝑓)2                                                         ( 5 ) 

Typically, for many ceramic materials the Kc / σf  ratio is in the order of 0.01 m
1/2

, and for 

the case when fractures initiates within the ceramic’s body, then the dimensionless correcting 
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factor Y = 2/π, yielding an ac of about 80 μm, which indicates that the critical size of flaws has a 

strong dependence on the processing conditions of the ceramics [
19

]. The starting point of a 

fracture within a ceramic body is typically affected by common flaws, such as agglomerates 

from secondary phases, large pores and grains, inclusions, voids, and regions with accumulated 

small pores [
27,28

]. For the outer surface of the ceramic, the origin of a fracture is favored by 

defects created by contact damages to the body, such as scratches, indents and breakage due to 

contact [
29

]. 

The first successful mathematical approach for fractures and the idea that the free energy 

of a body undergoing stress should decrease as cracks grow and propagate was defined by 

Griffith and expressed as follows [
21

], 

                                                                            𝑈 = (−𝜋𝑎2𝜎𝐸 ) + 4𝑐𝛾                                                      ( 6 ) 

where U is the free energy of the ceramic, a is the crack size, σ is the stress on the surface, γ 

surface energy, and E the elastic modulus of the material. Fracture in a material was determined 

to not be the separation of two crystal planes but the growth of the cracks that exist and are 

proper of the ceramic body [
21

]. Griffith described the fracture stress of a material to depend on 

the materials elastic modulus, E, and surface free energy, γ, on the crack size, a, expressed as 

follows,  

                                                                          𝜎𝑓 = √2𝐸𝛾𝜋𝑎                                                                           ( 7 ) 

This equation Eq. ( 7 ) is known as the Griffith equation [
21,23

]. 
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3.1. Boron-Rich Ceramics and Strength Measurement 

According to Munz and Fett [
24

], the strength of ceramics is determined by their 

resistance to tensile stresses since ceramic materials have a natural tendency to resist much 

higher compressive forces than tensile ones before failure. Therefore, simple uniaxial tensile 

tests are very useful as they exhibit homogeneous stress distribution and pure uniaxial stress 

state, thus is the easiest technique to determine tensile strength [
30,31,32

]. However, the tests are 

notoriously difficult to perform due to both misalignment that causes eccentricity of the load in 

the tested ceramic samples or breakage of the sample during clamping, increasing the difficulties 

and cost of performing such tests [
33

]. 

 To avoid the problems that arise when performing tensile testing in ceramics, different 

bending tests were designed and developed for samples with rectangular and circular cross-

sections [
34,35,36

]. Under a bending test, the sample can be loaded either in a three- or four-point 

bending manner, with four-point bending being a more preferred technique as the extended 

region of the sample with the constant bending moment exists between the inner rollers that 

supports the sample in two points. During four-point bending, a greater area of the sample is 

stressed when compared to three-point bending, therefore more defects and flaws are stressed 

compromising the strength of the ceramic sample and lowering its strength value [
24

]. 

 When loaded in compression, ceramics are able to tolerate much higher stresses than 

when loaded in tension [
22,37,38,39,40

]. The compression strength of a ceramic material is defined as 

the compressive force applied to the sample over the cross sectional area that is being loaded by 

the force and, similar to the tensile test, the stress distribution over the sample under a 

compression test exhibits a homogeneous behavior [
24

]. Many difficulties also accompany 

compressive tests on ceramic materials, showing most commonly misalignment issues that bring 
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eccentricity problems, misfit of the elastic constants of the material tested and the compression 

platens used to transfer the load, and the occurrence of stress singularity along the outer contact 

contour of the ceramic tested due to the misplacement of the sample on the cross-sectional area 

of the compression platens. In addition, another common complexity of the compression tests is 

the use of lubricating layers, such as graphite or soft metals, between the sample tested and the 

compression platens surfaces to reduce the possibility of load introduction through a single point 

on the specimen surface, therefore complicating the determination of the true value for the 

compressive strength of ceramics [
24

]. 

 Even though uniaxial compression and flexural tests provide reliable results and easiness 

of sample preparation, it is in seldom scenarios that ceramics are loaded in such a simple uniaxial 

way in real-life applications, making the results of these tests less accurate when determining the 

strength of ceramics in comparison to biaxial loading tests. Biaxial flexural strength tests depict a 

more accurate representation of the true behavior of the ceramics in common real-world 

applications by applying stress to the tested ceramic sample in a biaxial manner. Among the 

advantages of biaxial strength techniques the most significant are found to be the capacity to test 

a larger effective surface area that does not contain any edge finishing defects, easiness in the 

sample preparation for the tests, ability to test thin-sheet materials, and the equibiaxial 

distribution of stress on the sample that allows for a better detection of defects [
41

]. The biaxial 

flexural tests of brittle ceramic samples involve the use of a loading punch, which varies in 

geometry according to the test performed, over a ceramic a sample that is being supported by a 

fixed fixture that also varies depending on the type of test being performed. The main idea is to 

apply stress through several independent points on the surface of the ceramic, creating a state of 

biaxial stress distribution. Some of the most common biaxial testing techniques include the ring-
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on-ring, piston-on-three-balls, and ball-on-ring [
41,42,43

]. These tests produce biaxial stress in the 

sample through the bending induced by the loading punch that only contacts the ceramic piece in 

one point or a ring on the upper surface which, at the same time, is supported by a fixture that 

touches the lower surface of the ceramic in several points, typically containing the shape of a 

ring of points or three points defining a triangle. These configurations produce compressive 

stress on the face touching the loading punch and tensile stress on the face in contact with the 

supporting fixture, being the major stress accumulation located in the tensile surface enclosed in 

the region defined by the loading punch [
41,42,43

]. The maximum force recorded until sample 

breakage occurs during the biaxial test is then used to calculate the biaxial flexural strength of 

the material analyzed by following different relationships defined for each biaxial flexural test. 

Flexural strength testing techniques for ceramics involve a wide range of methods that 

provide an alternative way to measure the strength of ceramics without the difficulties found in 

tensile testing [
33

]. The flexural strength tests can be divided into two methods which depend on 

how the ceramic samples are loaded. They can be either uniaxially loaded or biaxially loaded. 

Both methods possess different advantages and disadvantages when compared to each other, 

being the most significant ones on how the samples are prepared, the defects on the geometry of 

the samples, optimum test geometry between the test piece aspect ratio and the material 

overhang, and limitation on the type of material geometry that can be analyzed [
41

]. Among the 

most common uniaxial loading testing methods found are the three-point and four-point bending, 

while for biaxial loading testing  some of the most popular methods are the ball-on-three-balls, 

ring-on-ring, and ball-on-ring. The following is a description of the different flexural testing 

methods, providing insights on the description of the geometry of the testing fixture and its 

relation to sample geometry as well as how the strength is determined for each case.  
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3.1.1. Processing Methods for Boron-Rich Solids 

Spark-plasma sintering is an advanced sintering technique used for the densification of 

ceramic materials. In spark-plasma sintering, indirect heating is applied to a die by an electrical 

field where the ceramic powder compacts through the applied heat and pressure created by a 

uniaxial load on the sample [
4
]. This technique favors the small grain growth during sintering due 

to the short time the whole process takes compared to other sintering methods such as hot 

pressing or hot isostatic pressing, allowing for finer and more homogeneous grains in the 

ceramic composite and, for ZrB2-based ceramics, refined microstructures can be obtained by 

short sintering cycles that spark-plasma offers [
4
]. Figure 4 shows an example of ZrB2-ceramic 

powders sintered using the spark-plasma sintering method at 1900°C 1900°C, with heating rate 

of 200°C/min with pressure of 50 MPa for two different dwelling times, one at 3 min and the 

other at 10 min. 

 

Figure 4: Spark-plasma sintering of ZrB2 ceramics at 1900°C, with heating rate of 

200°C/min with pressure of 50 MPa for a dwelling time of (A) 3 min and (B) 10 min [
4
]. 

When sintered by spark-plasma sintering, the behavior and grain growth of ZrB2 is 

affected by the parameters of sintering temperature, holding time, and heating rate that are 

involved with this process [
4
]. The hardness and toughness of ZrB2 and its composites were also 

found to improve when sintered by spark-plasma demonstrating that this technique is beneficial 
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for the processing of these ceramics [
2
]. A sintering plot for three different values of SiC in a 

ZrB2-SiC ceramic composites sample can be found in Figure 5. 

 

Figure 5: Sintering plot for three ceramic composites showing the pressure, temperature 

and shrinkage experienced during sintering [
44

]. 

3.1.2. Biaxial Strength Techniques 

Biaxial strength methods for the determination of the strength of ceramics have been 

intensively used due to the advantages they provide among other strength testing techniques and 

the capability of depicting a realistic testing environment for brittle materials which, most of the 

times, are loaded biaxially in structural applications [
42

]. Mostly, samples with a disc-shaped 

geometry are tested with biaxial strength techniques even though some techniques, such as ring-

on-ring, are capable of testing samples that are rectangular-shaped [
45

]. In simple uniaxial 

flexural tests, edge failures are undesirable features that are present and occur from the 

interaction of the sample and the testing fixture. These types of defects are eliminated by the use 

of biaxial flexural tests and, at the same time, these tests guarantee a more accurate measurement 

of the strength of the ceramic material [
46

]. Due to the increasing popularity of the biaxial 
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flexural methods, research has been conducted and many standards have been developed for 

different testing configurations of ceramic materials in order to validate their accuracy such as, 

ball-on-three-balls [
47

], the ball-on-ring [
42,48

], the piston-on-three-balls [
42

], and ring-on-ring 

[
42,49

]. Figure 6 shows a schematic of these tests and how the sample is placed on the testing 

fixture. It can be observed that a commonality exists among all tests in that the sample is always 

resting upon a surface that touches the supported surface of the ceramic on one point at a time, 

and the sample is loaded with a punch that makes contact with the upper surface in a similar 

manner. This configuration allows for tensile stresses to be generated on the bottom face of the 

ceramic that is in touch with the support, producing the greater stress accumulation within the 

region enclosed by the geometry of the loading punch used. The maximum stress has been 

modeled mathematically for the different test assemblies [
42,47

] and it is shown that maximum 

stress is dependent on the applied load, the Poisson ratio of the material, and the geometry of 

both, the testing fixture and the sample. Furthermore, biaxial flexural stress failure occurs on the 

region with the highest stress concentration and the stress distribution in the sample varies 

throughout the radius of the sample, being the highest at the center tensile surface and decreasing 

along the radial direction towards the edge of the ceramic. 
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Figure 6: Schematic of biaxial strength tests using (A) ball-on-three-balls, (B) ball-on-ring, 

(C) piston-on-three-ball, and (D) ring-on-ring. 

The ball-on-three-balls test is an innovative method to evaluate the biaxial strength of 

brittle ceramics. It consists on the test of sintered ceramic discs without any surface finish. The 

lower face of the specimen is in contact with the support region of the fixture, composed by three 

balls equidistantly located, and the upper face of the sample is loaded at its center with a fourth 

ball [
47

]. The ball-on-three-balls has a main advantage in that the samples do not require a 

specific surface finish, therefore making it useful for quality for control purposes in large scale 

production of ceramic components. In this test, the fracture load of the sample is measured and 

the maximum principal strength is considered to be a tensile stress concentrated in the center of 

the sample on the face opposite to the loaded surface [
47

]. The stress field in the disc-shaped 

ceramic sample is dependent to the load that is applied, sample geometry, the material’s Poisson 

ratio, the radius of the loading region and the circumference defined by the supporting balls. The 

elastic properties of the fixture’s balls and the elastic modulus of the ceramic material do not 
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contribute to the calculation of the maximum stress on the sample, which indicates that the stress 

field in the disc is independent from the non-linear changes in the loading process caused by the 

deformation of the loading and supporting balls in the fixture [
47

]. Figure 7 shows a schematic of 

the ball-on-three-balls set up and all the components that interact together in this test. 

 

Figure 7: Ball-on-three-balls test setup and interacting components [
50

]. 

 The maximum tensile stress is approximated by an equation developed by Shetty et al. 

[
42

] that explains the relationship of the material and the testing fixture as follows: 

                                 𝜎𝑚𝑎𝑥 = 3𝐹(1+𝜈)4𝜋𝑡2 ∙ [1 + 2 ∙ 𝑙𝑛 (𝑅𝑠𝑅𝐿) + 1−𝜈1+𝜈 ∙ (1 − 𝑅𝐿22𝑅𝑠2) ∙ 𝑅𝑠2𝑅2]                                  ( 8 ) 

where F is the applied load, ν is the Poisson’s ratio of the ceramic disc, t is the sample’s 

thickness, Rs is the supporting fixture radius, RL is the radius of the area under loading, and R is 

the sample’s radius. The radial, σr, and tangential, σt, stress components defined in a polar 

coordinate system where also defined by Shetty et al [
42

] as: 
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                              𝜎𝑟(𝑟) = 3𝐹(1+𝜈)4𝜋𝑡 ∙ [2 ∙ 𝑙𝑛 (𝑅𝑠𝑟 ) + 1−𝜈2(1+𝜈) ∙ 𝑅𝑠2−𝑟2𝑅𝑠2 ∙ 𝑅𝐿2𝑟2 ∙ 𝑅𝑠2𝑅2]                                       ( 9 ) 

                              𝜎𝑡(𝑟) = 3𝐹(1+𝜈)4𝜋𝑡 ∙ [2 ∙ 𝑙𝑛 (𝑅𝑠𝑟 ) + 1−𝜈2(1+𝜈) ∙ (4 − 𝑅𝐿2𝑟2) ∙ 𝑅𝑠2𝑅2]                                      ( 10 ) 

where r is the distance from the center of the face of the sample experiencing the tensile loading 

to the edge of the ceramic disc.  

 In the ball-on-three-ball biaxial strength test fracture initiates in the region of maximum 

stress located in the tensile surface under the loading ball in the center of the ceramic disc, where 

failure in a threefold symmetry predominates, although, depending on the stored elastic energy 

of the material, the number of fracture pieces resulting from the test may vary [
47

]. Figure 9 

shows an example of fractured Al2O3 ceramic by the ball-on-three-balls biaxial flexural test and 

the area where failure was originated. The maximum stress that promotes fracture on the sample 

is directly proportional to the applied load delivered through the loading ball and inversely 

proportional to the square of the ceramic disc thickness [
47

], with a mathematical relationship 

expressed by [
51

], 

                                                                      𝜎𝑚𝑎𝑥 = 𝑓(𝛼, 𝛽, 𝜈) 𝐹𝑡2                                                           ( 11 ) 

where F is the uniaxial load, f is the tensile stress dimensionless factor, α  is the thickness to 

sample disc radius ratio, β is the support fixture radius to sample disc radius ratio, and ν is the 

Poisson’s ratio of the material. 
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Figure 8: Different types of fracture patterns on as-sintered Al2O3 ceramic discs resulting 

from ball-on-three-ball biaxial test. The circled area indicates the origin of the fracture [
47

]. 

 The ball-on-three-balls is a technique that can also be utilized for the biaxial strength 

testing of brittle ceramic rectangular plate samples. In comparison to other biaxial strength 

methods for rectangular plates where samples have to be machined with high accuracy to avoid 

warping while testing, the ball-on-three-balls do not require such preparations allowing for an 

easier and faster test execution [
52

]. The loading scheme for rectangular samples is similar to the 

disc samples previously described and, similar to the disc-shaped ceramics, the number of 

fragments that result after the test increase with the fracture strength of the material [
52

]. 

 Finite element analysis of the ball-on-three-balls flexural strength test has provided 

insights on the behavior of materials undergoing this procedure and has served as a validation 

tool for the accuracy of this testing method. One of the first assumptions when modeling this test 

is the exclusion of the effects from friction due to the minimal changes it produces to the stress 

distribution on the sample and, due to the symmetry of the setup, the simulation of this test can 

be simplified to only one sixth of the total geometry of the fixture and the ceramic disc, 

providing more accurate results due to the simplification of the model [
47

]. Other parameters 

taken into consideration by Börger et al. [
47

] for the modeling and simulation of this biaxial 
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strength test was the use of brick elements with 8 and 20 nodes per element for the disc and 

supporting balls, respectively, with contacts between the sample and the balls defined as surface-

to-surface; all materials used for the ceramic disc and the balls were assumed to be homogeneous 

and isotropic, and only the elastic modulus and Poisson’s ratio for each material were defined. 

The simulation for the ball-on-three-balls and the stress distribution in the ceramic disc can be 

found in Figure 9. 

 

Figure 9: Stress distribution on a brittle ceramic sample ball-on-three-balls simulation of 

one-sixth if its total geometry. I indicates the region of compressive stresses by the loading 

ball [
47

]. 

From the finite element simulation, the stress distribution agrees with the mathematical 

model developed and the maximum tensile stress is found below the loading ball on the tensile 

surface of the disc, while the stress distribution happens in a threefold manner due to the three 

supporting balls. The radial, σr, and tangential, σφ, stresses distributions at 0° and 60° show a 

maximum value at the center of the ceramic disc, decreasing as the stress propagates to the edge 

of the disc. From Figure 10 it is found that under the loading region, the radial and tangential 

stresses at 0° and 60° are equal and they are also found in the contact area with the supporting 
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fixture. However, for the area outside the loading region, the radial stress decreases in a faster 

manner than the tangential stress for the direction where the supporting balls are located [
47

]. For 

the case when the supporting balls are smaller than the loading ball failure occurs at the support 

points instead of the loading region, making the results of the test invalid and , therefore, a setup 

that must be avoided [
47

]. 

 

Figure 10: Normalized radial and tangential stress distribution at (A) 0° and (B) 60° along 

the radial direction of the ceramic disc [
47

]. 

 The central alignment of the specimen for the ball-on-three-balls test is not significant for 

the acquisition of good results from this technique since this method is tolerant to the 

misalignment of samples from the center of the fixture and, for configurations where the support 
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balls are not fixed, friction can also be neglected since it contributes in approximately less than 

1% to the stress distribution on the ceramic disc [
53

]. The ceramic sample’s thickness and 

Poisson ratio are of major significance for the accuracy of the test and a relationship between the 

sample and testing fixture must be optimal for acceptable results [
47,53,54

].  

Another popular method for the study of the biaxial flexural strength of ceramic materials 

is by using the ring-on-ring configuration. Among the different biaxial flexural techniques, the 

ring-on-ring provides accurate results for both disc and plate-shaped samples and, compared to 

the ball-on-three-balls in which the stress field is found to be in a threefold manner, the stress 

distribution on the samples subjected to ring-on-ring test is circular and uniform throughout the 

tensile surface of the ceramic [
55,56

]. However, for the ring-on-ring test a flat and parallel surface 

geometry of the ceramic sample is required as well as relatively strict requirements for the 

diameter-to-thickness ratio of the disc which allows to control the amount of sample’s 

displacement, ensuring the disc will not flex excessively during testing and the direct 

proportionality between the applied load and the resulting biaxial stress can still be maintained 

[
57

]. Figure 11 shows the setup for the ring-on-ring test and all the elements of the testing fixture 

and how they interact together. The numerical stress analysis of glass plates tested in ring-on-

ring geometry showed that the stress magnifications at the loading ring are significant when the 

plate deflection exceeds one half of the specimen thickness [
57

].  In addition, the friction between 

the ceramic sample and loading and supporting rings exists but it is typically ignored in the 

analysis. Other techniques, such as ball-on-ring or ball-on-three-balls, have also been merited for 

biaxial testing of ceramics. In the ball-on-ring test the precise knowledge of stresses produced in 

the sample during loading, combined with an easy alignment of the sample for the test, gives 

significant advantages for the use of this method.  
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Figure 11: Ring-on-ring testing jig, its components and geometry of the rings and the 

sample. 

In the ball-on-three-balls test the additional advantage is also considered, when choosing 

the technique for biaxial tests the requirements for the flatness of ceramic sample are not such 

stringent as in the case of ring-on-ring or piston-on-three-balls, therefore, sintered samples can 

be tested without any additional surface preparation. These considerations are important for 

choosing a specific technique when testing for biaxial strength of ceramics because any 

deviations that can occur from the sample geometry relationships and parallelism, and its 

interaction with the testing fixture may introduce different stress distribution and percent errors 

that can directly affect the measurements, as is in the case of the ring-on-ring method [
58

]. In 

order to avoid these uncertainties and errors in the measurement of the biaxial strength, a jig for 

biaxial stress test has to be designed around the sample geometry. The guidelines for the ring-on-

ring fixture design and the sample’s dimensions can be found in the ASTM standard C-1499, 

where the relationships between sample’s geometry and jig dimensions are presented [
49

]. Due to 

the popularity and versatility of the ring-on-ring test its range of application varies from dental 
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material application, such as ceramic dental restorations [
59

], to the test of biaxial strength for 

LCD display panels [
56

] found in today’s televisions and cellphones. The ring-on-ring geometry 

of the biaxial testing jig was adopted for the test of orthopedic alumina and zirconia ceramics and 

also used in testing of glass [
41

] as well as ZrO2 based electrolyte ceramics and other different 

ceramic materials [
55

]. 

In the ring-on-ring test, the maximum stress occurs on the tensile surface of the ceramic 

material in contact with the supporting ring within the region enclosed by the loading ring. The 

maximum stress is calculated by following the governing rules of circular plate bending for a 

simply-supported plate developed by Timoshenko and Woinowsky-Kreiger [
60

]. Within the 

region enclosed by the loading ring in the tensile surface of the ceramic sample, the maximum 

stress as well as the radial and tangential stresses are equal and can be expressed as [
42,49,61,62

], 

                                       𝜎𝑚𝑎𝑥 = 3𝐹4𝜋𝑡2 [2(1 + 𝜈) 𝑙𝑛 (𝐷𝑆𝐷𝐿) + (1−𝜈)(𝐷𝑆2−𝐷𝐿2)𝐷2 ]                                         ( 12 ) 

where F is the applied uniaxial load, t is the thickness of the ceramic, ν is the Poisson ratio of the 

ceramic material, DS  is the diameter of the support ring, DL is the diameter of the load ring, and 

D is the diameter of the disc-shaped ceramic sample being tested. Equation (12) is only valid for 

small deflection of the plate in comparison with the thickness of the ceramic disc and it assumes 

that no deformation occurs in the middle of the plane of the plate [
61

]. For the region located 

outside of the surface bounded by the loading ring, the radial, σr, and tangential. σt, stresses for 

the ring-on-ring test can be calculated as [
42

], 

                       𝜎𝑟 = 3𝐹4𝜋𝑡2 [2(1 + 𝜈) ∙ 𝑙𝑛 (𝑅𝑆𝑟 ) + (1−𝜈)∙𝑅𝐿2∙(𝑅𝑆2−𝑟2)𝑅2∙𝑟2 ]  𝑓𝑜𝑟 𝑟 > 𝑅𝐿                               ( 13 ) 
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               𝜎𝑡 = 3𝐹4𝜋𝑡2 [2(1 + 𝜈) ∙ 𝑙𝑛 (𝑅𝑆𝑟 ) − (1−𝜈)∙𝑅𝐿2∙(𝑅𝑆2+𝑟2)𝑅2∙𝑟2 + 2(1 − 𝜈) ∙ 𝑅𝑆2𝑅2]  𝑓𝑜𝑟 𝑟 > 𝑅𝐿            ( 14 ) 

where RS is the supporting ring radius, RL is the loading ring radius, R is the ceramic sample disc 

radius, r is the radial length from the center of the ceramic disc to the edge of the sample, t  is the 

thickness of the ceramic disc, and ν is the Poisson ratio of the ceramic sample. 

In order to determine the plate deflection using the ring-on-ring technique, a relationship 

between the load force, the elastic modulus and Poisson ratio of the material, and the geometry 

of the testing fixture and the sample must be followed. A mathematical expression was 

developed and it is contained on the ASTM standard C1499 [
49

] as, 

                                            𝛿 = 3𝐹(1−𝜈2)8𝜋𝐸𝑡3 ∙ [𝐷𝑆2𝐷𝐿2 (1 + (1−𝜈)(𝐷𝑆2−𝐷𝐿2)2(1+𝜈)𝐷2 ) − (1 + 𝑙𝑛 (𝐷𝑆𝐷𝐿))]                      ( 15 ) 

where E is the elastic modulus of the ceramic material being tested. 

For disc-shaped ceramic materials tested by the ring-on-ring method at room temperature, 

four failure patterns are predominant and provide important information on the type of strength 

failure that took place during the test and the identification of edge initiated failure which would 

make the test invalid. Figure 12 shows a schematic on these typical failure patterns and what 

interpretation of the test can be obtained from them.  
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Figure 12: Typical types of failure on disc-shaped ceramic samples tested using the ring-on-

ring method [
49

]. 

 The plate thickness relative to the supporting ring diameter is of importance in the ring-

on-ring test since this ratio, along with the elastic modulus and strength of the ceramic sample, 

determine the deflection of the sample testes at failure [
63

]. The ideal ceramic plate thickness 

needs to be within the following relationship, 

                                                                       𝐷𝑆10 ≥ 𝑡 ≥ √2𝜎𝑓𝐷𝑆23𝐸                                                                 ( 16 ) 

where σf is the expected equibiaxial flexural strength of the ceramic sample, and E is the elastic 

modulus of the ceramic being tested. If the thickness of the ceramic disc is maintained within the 

range established by Equation ( 16 ), and when the deflection of the plate is not greater than half 

of the thickness of the ceramic plate tested (δ<t/2)  a linear dependence between the stress and 
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the load predominates [
49,63

], thus, for thin ceramic samples when large deflections arise (δ>t/2), 

a non-linear dependence between the stress and the load applied is generated and the finite 

element method is required for the accurate calculation of the maximum tensile stress of the thin 

ceramic disc [
55

]. The effects of plate thickness on the stress and load on the ring-on-ring test for 

a ceramic sample with E=300 GPa, ν=0.20, and geometry D=50 mm, t=2 mm were simulated 

and the results are found in Figure 13A and Figure 13B, where it can be observed that for 

displacements on the order of t/2 an error of approximately 6% is found, while for displacements 

on the order of t/4 an error of approximately 2% results [
63

]. Salem et al. [
63

] also recommends 

that the ceramic disc sample to be tested in the ring-on-ring setup should not be thicker than 

t=10∙DS since thick plates show a tendency to behave as if they were being loaded by a ball 

instead of a ring due to the ring ratio being small. Figure 13C shows the effect of plate thickness 

in the radial stress distribution on the ceramic plate. The breakage of thin ceramic plates by ring-

on-ring follows the principles that at low strength failure fewer broken pieces result, while at 

high strength failure a large number of smaller broken pieces are found [
55

]. Figure 14 shows an 

example of thin ceramic electrolytes broken through ring-on-ring exhibiting large displacements 

including a typical load versus time plot (Figure 14A), failure at low strength (Figure 14B and C) 

and failure at high strength (Figure 14D and E). 
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Figure 13: (A) Stress and (B) load as a function of deflection normalized to the plate 

thickness of the ceramic sample for the linear and non-linear solutions The ceramic 

simulated has properties of E=300 GPa, ν=0.20, and geometry D=50 mm, t=2 mm. For the 

load and support rings, E=230 GPa, ν= 0.30, DL=20 mm, and DS=40 mm. (C) Radial stress 

on the ceramic disc sample and the effect of plate thickness for a DL/DS=0.2 and DL=8 mm, 

DS=40 mm [
63

]. 
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Figure 14: (A) Typical load versus time plot for a ring-on-ring test on thin electrolyte 

ceramics. (B-C) Electrolyte broken through ring-on-ring at low strength which yielded a 

small number of broken pieces. (D-E) Electrolyte broken through ring-on-ring at high 

strength which yielded a large number of broken pieces [
55

]. 

 Not only the sample thickness affects the results of the ring-on-ring test, but also the 

relationship between the ceramic disc diameter and the supporting ring as well as the relationship 

between the loading and supporting rings are essential for the acquisition of reliable and accurate 

results. These relationships are as follows [
49

], 

                                                                          2 ∙ 𝑡 ≤ 𝐷 − 𝐷𝑆 ≤ 12                                                       ( 17 )                                                                                0.2 ≤ 𝐷𝐿𝐷𝑆 ≤ 0.5                                                            ( 18 ) 

 In order to verify the accuracy of the method and validate its results, the use of the finite 

element method is necessary since it provides a more insightful analysis on the behavior of the 

ceramic sample while undergoing biaxial deformation. Typically, the surface experiencing 

tensile stress is the one more closely analyzed since it is the one that withstands the greatest 

stress and initiates failure in the sample [
42,62,64

]. This technique can be used to study how the 

stress distribution inside the ceramic sample behaves for the radial and tangential directions and 

how the stress field in the ceramic spreads throughout the geometry of the plate. From the finite 



 

33 
 

element results, it is observed that the maximum stress on the ceramic disc occurs in the 

predicted tensile surface in the region enclosed by the load ring, while the radial and tangential 

stresses decrease as the distance to the center of the disc increases [
56,64

]. One important 

observation is that within the region enclosed by the load ring maximum stress occurs and radial 

and tangential stresses are equal but, as the deflection of the plate is greater than half the 

thickness of the sample the stress field is not uniform and the peak stress occurs below the 

contact region between the load ring and the sample [
56,63

]. This peak stress can also result when 

the contact stresses between the load ring and the sample are significantly large which can bias 

the failure towards the contact point and affect the determination of the strength of the material 

[
63

]. A typical ring-on-ring simulation on electrolyte samples can be found in Figure 15 where 

the circular distribution of the stress field can be seen and it can also be observed that the peak 

stress occurs in the contact region between the load ring and the sample, agreeing with the 

behavior explained by Salem et al. [
63

] for large displacements on samples with thickness in the 

order of t/2. The effect of plate thickness in the radial stress can be observed in Figure 16.  

 

Figure 15: Ring-on-ring FE simulation of a solid oxide fuel cell electrolyte showing the 

stress field distribution in the ceramic thin plate [
55

]. 
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Figure 16: Effect of plate thickness on the radial stress distribution of a ceramic sample 

with E=300 GPa, ν=0.20, D=50mm, and deflection t/4. For the rings, E=230GPa, ν=0.30, 
DL/DS=0.5, DS=40mm, DL=20mm [

63
]. 

The methods for the determination of biaxial flexural strength of ceramic samples have 

proven to be effective and depict a clearer picture of the strength of ceramics under more realistic 

conditions. One of the methods that have been widely used and studied is the piston-on-three-

balls [
42,65

], where a disc-shaped ceramic is supported by three balls positioned 120° apart from 

each other and is centrally loaded by a cylinder of hardened steel [
66

]. The advantages of this 

technique are that contact with the support is guaranteed even for warped samples due to the 

single contact point with each ball, and that the maximum theoretical stress follows the same 

mathematical model from Equation ( 8 ) [
42

]. The popularity of the piston-on-three-balls is such 

that it was even included as an ASTM standard with denomination F394-78 [
67

]. 

The ball-on-ring biaxial test is another method that is widely used for the determination 

of the biaxial flexural strength of brittle ceramics [
42,68,69,70

]. In this technique a ceramic sample is 
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centrally loaded by a ball while it is being supported by a ring creating biaxial stress in specimen 

[
42,68

]. As any other biaxial flexural strength technique, the maximum stress is found on the 

tensile surface in contact with the support ring within the region enclosed by the loading ball, 

and since the maximum equibiaxial stress as well as the radial and tangential stresses are 

independent from the number of support points [
68

], the ball-on-ring follows the same 

relationship established in Equations ( 8 ), ( 9 ) and ( 10 ) for the ball-on-three-balls [
42

]. 

Another method for biaxial flexural strength is the 3-balls-on-3-balls where a disc-shaped 

ceramic sample is supported on three balls located at 120° apart from each other, while the 

sample is loaded by three balls that define a circle of smaller radius than the supporting balls, at 

120° apart from each other and, from the supporting balls, they can be aligned or located at 60° 

apart from each other [
50

]. The maximum fracture stress of this technique as well as the 

geometrical relationships between the sample and the testing fixture was studied in depth by Fett 

et al. [
50

] and it was found that the effective surface tested resulted to be smaller than other 

biaxial flexural strength methods. 

3.1.3. Uniaxial Flexural Strength Techniques of Three- and Four-Point Bending 

Uniaxial flexural strength techniques have been widely used to determine the uniaxial 

tensile strength of brittle materials subjected to unidirectional loading. Flexural strength, or the 

ultimate strength of a sample under bending, can be measured, at certain extent, on the materials 

subjected to this type of load by the use of two widely known methods: three-point and four-

point bending [
71

]. These methods are applied to determine the flexural strength of different 

types of materials ranging from plastics, ceramics and metals and their popularity is such that 

they have been standardized by entities, such as ASTM with the designation of C1161 for testing 

of ceramics at ambient temperature [
34

], indicating that the results provided are reliable and can 



 

36 
 

be reproduced as long as the same conditions are maintained when testing materials. Even 

though these techniques provide acceptable results for the determination of the flexural strength 

of ceramics, their setup is easier than tensile tests for brittle materials but, due to the uniaxial 

nature of the test, the results are less accurate than the ones provided by biaxial flexural methods 

since in real-life applications ceramics are loaded biaxially [
42,47,71

]. 

Three- and four-point bending have been used as popular methods to determine the 

ultimate strength of beam-shaped material in bending. The principle from which these tests are 

based can be found in Timoshenko et al. [
60

] where it is described that due to the nature of the 

bending stress in which the samples are tested and assuming that the material is isotropic and 

homogeneous, the maximum stress is obtained from simple beam theory of a beam in flexure as 

[
71

], 

                                                                                𝜎𝑚𝑎𝑥 = 𝑀𝑐𝐼                                                                   ( 19 )                                                                                  𝜎𝑚𝑎𝑥 = 16𝐹∙𝑙𝜋𝐷3                                                               ( 20 ) 

where Equation ( 19 ) is for rectangular bar samples and Equation ( 20 ) is for cylindrical rod 

samples made from materials that are assumed to behave according to Hooke’s law. From these 

equations, M represents the applied moment on the sample, c is the distance from the neutral axis 

of bending to the outer surface of the rectangular bar, I is the moment of inertia of the cross 

section about the neutral axis of the bar, F is the load applied, l is the moment arm, and D is the 

diameter of the circular cross-section of the cylindrical rod. The value for the moment arm, l, 

varies according to the test being equal to 𝐿0/2  for the three-point bending and (𝐿0  −  𝐿𝑖)/2 for 

the four-point bending. These techniques assume that the moduli of elasticity in tension and 

compression are identical and the material is linearly elastic [
34

]. Figure 17 provides a schematic 

view of the three- and four-point bending techniques with the location of the loading points and 
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the geometry of the sample and the fixture. From these tests, the maximum stress is found to be 

located in the middle section of the sample right under the loading point for three-point bending, 

or in between the two loading points for four-point bending [
71

]. 

 

Figure 17: Flexure test done by (A) three-point bending, and (B) four-point bending. The 

location of the loading points relative to the span of the sample on the test is used to 

determine the method used [
71

]. 

From the simple beam theory and the use of Equations ( 21 ) and ( 22 ), the strength of a 

rectangular beam in three- and four-point bending can be found as follows [
34

], 

                                                                    𝜎𝑚𝑎𝑥,3−𝑝𝑜𝑖𝑛𝑡 = 32 ∙ 𝐹𝐿𝑏𝑑2                                                           ( 21 )                                                                     𝜎𝑚𝑎𝑥,4−𝑝𝑜𝑖𝑛𝑡 = 34 ∙ 𝐹𝐿𝑏𝑑2                                                           ( 22 ) 

where F is the force required to break the sample, L outer spam of the support bars, b is the width 

of the sample being tested, and d is the thickness of the sample being tested. The techniques of 

three- and four-point bending are prompt to several common mistakes that can result from 

extrinsic sources such as fixture or sample misalignments, user error in load measurements, or 

incorrect size and relationships between the sample and the testing fixture [
71

]. One common 
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source of error in uniaxial flexural strength testing comes from edge finishing defects from the 

sample and how they can alter the results for the strength of a material which, compared to the 

counterpart of biaxial testing where a larger effective surface area can be tested without the 

presence of these defects, it presents a major disadvantage [
41

]. Other common source of error 

can come from the load point friction between the sample and the fixture, the occurrence of 

eccentric loading, wedging, and the use of wrong spans between the loading and supporting 

points of the testing frame [
71

]. 

3.1.4. Uniaxial Compression 

Ceramics are very often subjected to compressive forces in real life applications, to the 

point where the study of their compressive strength was of importance and the methods to obtain 

it were standardize by agencies such as the ASTM in their standard designated as C1424 [
38

]. 

Ceramics have demonstrated to be 10 to 15 time stronger in compression than in tension which 

can lead to tensile failure when testing for compression if the setup is wrong resulting in 

erroneous measurement for compressive strength [
72

] For the uniaxial compression test, 

parallelism between the surfaces of the sample being tested and the compression plates of the 

machine used to load the specimen is required, as well as a sample that macroscopically exhibit 

isotropic, homogeneous, continuous behavior and a uniform geometry to avoid misalignment of 

the uniaxial compressive load through the center of the sample geometry, and with it, eccentric 

loading which can result in non-uniform compressive stress distribution on the sample and 

tensile failure from bending stresses [
38,72,73

]. Compressive stress is calculated using the equation 

for uniaxial force applied over a defined area [
72

], 

                                                                               𝜎𝑚𝑎𝑥,𝑐 = 𝐹𝐴                                                                    ( 23 ) 

with A for a circular cross-section being calculated as [
38

], 
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                                                                               𝐴 = 𝜋𝑑24                                                                          ( 24 ) 

where F is the force applied, and A is the cross-sectional area of the gage section under 

compression, and d is the diameter of the gage section. For the compression test, the geometry of 

the specimen can vary from the regular shape of contoured specimens with defined gage sections 

that possess minimal stress concentration at the transitions from the area in contact with the 

compression platens and the area with reduced diameter, and samples with the form of right 

circular cylinders [
38

]. Strain measurements can be performed during the compressive test by the 

use of optical instruments or by the means of strain gages, and be used to determine elastic 

constants in the linear region of the stress-strain curve that results from the compression test [
38

]. 

Figure 18 shows a typical setup of the compression test for the two specimen geometries defined. 

 

Figure 18: Typical setup for the compression test for (A) a contoured specimen, and (B) a 

right circular cylindrical specimen [
38

]. 
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The application of ceramics for structural purposes is of importance for the development 

of new technology and materials that can satisfy current needs. For such reason, the study of the 

mechanical properties of ceramics is necessary and the understanding of the behavior of these 

materials under certain load conditions found in real-life applications is of great interest. 

Different compositions of ceramics can be used as structural materials ranging from nitrides, 

oxides, carbides, borides and even ceramics that possess an aragonite structure. Materials such as 

Si3N4 have been researched intensively and they serve as structural materials for light-weight 

applications where high thermal shock resistance and fracture toughness are required [
74,75

]. 

Ceramics made from oxides such as ZrO2 and TiO2 have been used in the past to manufacture 

parts that operate in aggressive environments of temperature and corrosion and as catalyst 

material for solid electrolytes in fuel cells and environmental applications [
76,77

]. Other important 

structural materials that have been greatly studied are carbides with applications as refractory 

materials for applications on environments with high temperatures that require high hardness 

[
75

]. 

3.2. Ceramics of the Living: Case Study for CaCO3 and the Aragonite Structure of the 

Staghorn Coral Acropora cervicornis Skeleton 

On the past three decades, approximately 30% of the total worldwide coral population 

has declined and new coral diseases have appeared that seem to be affecting most of the coral 

species, including the Acropora cervicornis [
78

]. At the global scale, the disease that is harming 

most corals of the world is coral bleaching which is caused by the disruption of the symbiotic 

interaction between the coral and the endosymbiotic algae that inhabits it [
78

]. This disruption 

causes the coral to lose the algae and the photosynthetic pigments that exist in it resulting in the 

whitening or bleaching of the coral, causing the death of the coral reef and leaving behind the 
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inorganic component of CaCO3 aragonite structure of the coral skeleton [
79

]. An example of 

coral bleaching in an Acropora cervicornis sample can be seen in Figure 19. 

 

Figure 19: Bleaching of Acropora cervicornis coral [
80

]. 

Bleaching has been affecting different colonies of Acropora cervicornis where large 

fields of these corals can be found completely white with no other living beings surrounding the 

coral colony, indicating that these skeletons do not serve as habitats for other species once they 

are bleached and dead [
78,80

].  

The projection in the rise of the sea water level is also threatening the spread rate of coral 

reefs in the oceans. It has been found that there is a direct correlation between the development 

and growth of coral reef and the level in water of the sea around them [
81

]. The increase of water 
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depth around the coral reef promotes a change in its interaction with the environment by 

interfering with the hydrodynamic conditions and the wave loads corals experience [
82

].  

The increase in water temperature due to global warming and the acidity levels of the 

ocean waters constitutes another major problem that compromises the structural strength of coral 

skeletons. A direct correlation has been found between the rate of calcification of corals and how 

it is reduced when waters become warmer and more acid, thus leading to the formation of 

weaker skeletons and structures that are more prone to damage [
83,84,

].  

3.2.1. Structure and Reproduction of the Acropora cervicornis Coral Skeleton 

Most coral skeletons of the Acropora family are mainly formed by an aragonite structure 

made from calcium carbonate (CaCO3) with a density of 2.94 g/cm
3
 [

85
]. These corals are of the 

branching type, meaning that they grow by extending branches, called axial corallites, which for 

the Acropora cervicornis is of a staghorn-like shape, reason why it was given this name 

(Lamarck, 1816). This type of growth allows for a faster extension of the axial corallites and 

helps the coral to compete for space and light which is fundamental for its survival [
86

]. The 

reproduction of these living beings relies on the fragmentation of its skeleton and the health 

condition of its fragments, which are carried by the water currents away from the main structure, 

falling later to the bottom of the sea where they get fixed and start a new structure, increasing 

this way the size of the coral colony [
87,88

]. The fragments typically belong to newly formed 

branches, that when exposed to high hydrodynamic forces and high wave loads break due to be 

younger structures with weaker properties. The break load is highly dependent on the strength of 

the material which is greatly affected by the porosity of the structure, that, for a healthy colony 

of Acropora cerviconis it has been reported to be between 14-27% [
89

]. For the Acropora family, 

porosity varies in a wide range depending on the coral type, varying from 30% to 70% [
90

]. The 
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porosity in the coral skeleton is tied to the level of calcification during its formation which is 

affected in a negative manner by the acidity and warmness of the water where the coral develops. 

Madin et al. [
85

] reported a decrease by 21% in the calcification of corals which produced a 

decrease of 6% in the density of the specimens for a period of 16 years, therefore less CaCO3 

was found in the skeletons which produced a weaker structure on the branches analyzed. The 

skeleton of the Acropora family was determined to be a linearly elastic material with an elastic 

modulus ranging from 9-38 GPa, with tensile failure being the most typical failure form 

branching corals experience under the hydrodynamic forces and wave loads present in their 

natural environment [
90

]. A summary of many mechanical properties for different specimens of 

the Acropora family can be found in Table 1[
90

]. 

Table 1: Mechanical properties of different members of the Acropora family 

Specimen 
Density 

(g/cm
3
) 

Porosity 

(%) 

Compressive 

strength (MPa) 

Tensile 

Strength (MPa) 

Elastic Modulus 

(GPa) 

Acropora 

Palmatta 
- 30 21-80.8 - 8.7-38 

Acropora 

Reticulata 2.78-

2.87 
33-62 62-89.8 10.3-40.9 24.8-82.4 

Acropora 

Spp. 

Acropora 

intermedia 
2.42 12-40 28-99 8.84-12.7 55-77 

Little is known about the mechanical properties and behavior of coral reefs, which makes 

the research in this field very important and interesting since it can open the doors to significant 

discoveries that can contribute for the noble goal of saving these living organisms from the 

uncertain future that they are facing. 
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3.3. Raman Spectroscopy 

The analysis of material using this technique can be performed using several 

configurations that involve the scanning of points or an area on the surface of the material of 

interest that can be configured using a motorized XY-stage. The wavelength of the incident light 

is chosen according to the purpose of the analysis and it is adjusted for the type of sample being 

analyzed, being light on the blue/violet spectrum used when strong Raman scattering with a 

broader spectral window is required, and red light when the focus into a region composed by 

wavenumbers lower than 200 cm
-1

 is desired to be analyzed [
91

]. Figure 20 shows an example of 

a common Raman spectrometer instrument and configuration.  

 

Figure 20: Common Raman spectrometer configuration [
92

].  

3.3.1. Energy Modes and Raman Spectra 

The interaction between matter and light make the photons present in the latter to be 

absorbed, reflected, or scattered, creating vibrations in the molecules that compose the physical 

object [
92

]. Raman spectra are produced when there is an electronic transition in excited diatomic 
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molecules after these are energized by scattered photons coming from a source of light, ideally 

with a constant wavelength, as is found in lasers [
18

]. Figure 21 shows a diagram with the 

different transition energy levels in the diatomic molecule. Photons take the molecules they 

interact with to a higher energy state for a short period of time, coming back immediately to a 

ground energy level after they relaxed [
92

]. This phenomenon is also knows as elastic or Rayleigh 

scattering and it occurs in 99.99% of the scattering process, where the photons emitted by the 

molecule have the same energy level as the photons coming from the source of light. 

 

Figure 21: Energy levels of the diatomic molecule [
18

]. 
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Furthermore, it is found that in less typical occasions, the molecule relaxes to a different 

energy state, scattering photons with a dissimilar energy level as the ones coming from the 

source of light. This energy level can be higher or lower than the one coming from the incident 

light and it causes a measurable shift or change in the wavelength of the light, also known as 

inelastic or Raman scattering [
18,92

]. Moreover, inelastic scattering is divided into two types 

names Stokes and anti-Stokes, the former occurs when the photons stimulate a molecule from the 

ground level to a higher energy state, making the molecule have less energy than initially and 

shifting the scattered photons to a longer wavelength, also called as red-shift; the latter is found 

when a molecule is already at a higher energy state and it is downgraded to the ground state due 

to the transferring of energy from the molecule to the photon creating a shift to a lower 

wavelength, also called blue-shift [
92

]. Figure 22 shows a schematic illustrating the energy 

transition within a molecule when interacting with a light source. 

 

Figure 22: Energy transition in a molecule showing Rayleigh, Stokes, and anti-Stokes 

scattering [
92

]. 
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From two types of Raman scattering, Stokes are more common than anti-Stokes since due 

to the law of thermodynamics, at room temperature, a molecule is more likely to be found in its 

natural ground energy level rather than at an excited level. Determining whether a molecule is 

Raman active or not depends on the change of polarization present at the molecule which is 

determined by the measurement of distorted electron cloud around the nuclei of the molecule 

given by, 

                                                                                 𝜇 = 𝛼𝐸                                                                        ( 25 ) 

where 𝛼 is the polarization, 𝜇 is the electron dipole of the molecule and E is the 

interaction of the electron cloud with the emitted light [
92

]. The polarization of a molecule is 

related to the intensity of Raman radiation scattered, thus the greater the change in polarization 

the greater the intensity of the Raman spectra collected. 

3.3.2. Analysis of Materials Using the Raman Technique 

Materials can be analyzed by many means, but it is always preferred to use non-invasive 

methods that guarantee reliable results without compromising the integrity of the structure. By 

utilizing the Raman technique and understanding the behavior of the peaks generated by it many 

features of a material can be identified, such as external stresses, defects and grain boundaries, 

among others, as can be seen in Figure 23, which explains how the peaks shift, reduced their 

intensity or get narrower by different perturbations on the material. 
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Figure 23: Possible alteration of Raman peaks from many defects and external factors that 

ceramic materials may be exposed [
93

]. 

 Many modern Raman spectrometers come furnished with motorized stages that coupled 

with data acquisition software allow for the automatic collection of the Raman spectra 

corresponding to a surface area that can be mapped. The map is done by the systematic 

movement of the motorized stage guided by a local coordinate system defined by the data 

acquisition software, which outlines a grid on the surface of the material and collects the spectra 

on each point that are later analyzed as a bulk [
93

]. A graphical representation of the mapping 

process can be found on Figure 24. 
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Figure 24: Graphical representation of the Raman mapping process on the surface of a 

material [
93

]. 

An analysis of a material can be achieved by the accurate collection of Raman maps and 

the interpretation of the data provided by the peaks collected summarized in four major factors 

that involve the peak intensity, width, shift and area using fitting through mathematical methods. 

The vibrational response and shape of the Raman spectra collected will depend on several 

parameters in the material such as material defects (voids, agglomerates, and cracks), grain 

geometry, phase orientation and secondary phases, and external mechanical stresses induced to 

the material of interest [
93

]. Therefore, the objective lens of the microscope used for the 

collection of Raman spectra should be one that can focus on the level of details desired to be 

capture from the surface of the material. Thus, the numerical aperture of the lens is of great 

importance and can be calculated as follows [
93

], 

                                                                         𝑁𝐴 = 𝑛 ∙ 𝑠𝑖𝑛(𝜃𝑏𝑎𝑐𝑘)                                                        ( 26 ) 
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where n is the refractive index that belongs to the medium carrying the light between the sample 

surface and the objective lens, which for air is typically 1, and 𝜃𝑏𝑎𝑐𝑘 is the greatest collection 

angle that can be possibly achieves for the backscattered light. A graphical description of this 

phenomena and the acquisition of backscattered light by a Raman microscope can be found in 

Figure 25. The numerical aperture is also important because it determines the resolution of the 

map which is the smallest distance that can be acquired between two measured points and it is 

approximated by [
93

], 

                                                                                  𝑅~ 0.16𝜆𝑁𝐴                                                                      ( 27 ) 

where R  is the resolution of the microscope, 𝜆 is the wavelength of the observed light and NA is 

the numerical aperture of the objective lens. An image for a SCS-6 fiber analyzed with a Raman 

map having a resolution of 1µm
2
 pixels can be found in , which corresponds to a map made from 

the intensity of the bands from 1300-1600 cm
-1

 [
93

]. 
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Figure 25: Schematic of the objective lens in a Raman microscope and the process of 

collecting backscattered light for Raman analysis [
93

]. 

 

Figure 26: Image of a SCS-6 fiber showing an intensity  Raman map over the bands 

corresponding to the range of 1300-1600 cm
-1

 with a resolution of 1µm
2
 pixels [

93
]. 
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3.3.3. Raman Mapping on Micro-Indented Surfaces 

Micro-indentation is a common test used to determine several mechanical properties of 

materials such as elastic modulus, hardness, strength, among others. This type of mechanical 

testing is also used in tandem with Raman mapping to observe any phase transition in the 

material tested due to non-hydrostatic stresses generated by the load locally applied on the 

surface of the material by the indenter [
94,95

]. Since the indenter has an imperfect geometry at its 

loading tip and the pressure applied to the material varies along the indentation, different cracks 

on the corner of the indentation or material accumulation on the edges of the indentation may 

result that can captured and mapped using the Raman technique as can be seen in Figure 27 

where the intensity map for a ZnSc sample indented by a 50 g load was done. 

 

Figure 27: (A) Indentation of a ZnSc sample using a 50 g load; (B) Raman mao of the 

indentation made on the surface of the sample [
93

]. 

3.3.4. Raman spectra of CaCO3 

Calcium carbonate (CaCO3) presents three common crystalline structures in nature which 

are calcite, vaterite and aragonite, with rhombohedral, hexagonal and orthorhombic structures, 

being calcite and aragonite the most thermodynamically stable [
96

]. In nature, the occurrence of 

this mineral, mainly in the aragonite form, is widely found and it is common to several structural 
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components of the marine life such as coral reef skeletons, clams, pearls, among others, with 

crystal growth produced by biomineralization [
97,98

]. It has been found that aragonite structures 

have an orthorhombic unit cell with lattice parameters of a = 4.962 Ǻ, b = 7.969 Ǻ, and c = 

5.743 Ǻ and space group Pnma as can be seen in Figure 28. 

 

Figure 28: Unit cell for an orthorhombic aragonite structure containing four CO3ˉˉ units 

and four Ca
++

 ions [
96

]. 

 Aragonite presents many characteristic Raman modes, from which 23 distinct peaks have 

been identified by Frech et al. [
99

], being the most prominent found at 1086 cm
-1

. The mode 

found at this band belongs to the symmetric C-O stretching in the CO3ˉˉ units [
96

]. Figure 29 

shows typical polarized Raman spectra for the aragonite structure showing the most significant 

peak at 1086 cm
-1

. 
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Figure 29: Polarized Raman spectra for an aragonite crystal structure showing the most 

prominent peak at 1086 cm
-1

[
96

]. 
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4. DESIGN AND DEVELOPMENT OF THE RING-ON-RING FIXTURE FOR THE 

BIAXIAL FLEXURAL STRENGTH OF BRITTLE CERAMICS 

For the testing of biaxial strength of brittle ceramics at ambient temperature under 

monotonic loading, the ring-on-ring technique was chosen as the one which would be the most 

appropriate to test boride based ceramics with the shape of a disc. The jig developed consisted of 

a support ring, a load ring, a support of the load ring, and a sphere which is used for the 

specimen’s alignment located between the load ring support plate and the load ring itself (Figure 

30A).  Equation ( 12 ) was used to determine the biaxial strength of the ceramic sample tested. 

The design of the jig’s components was achieved by following the ASTM standard 

C1499 [
49

], which strictly depends on the geometry of the ceramic samples to be tested. The 

relationship contained in Equation ( 17 ) was used for the calculation of the diameter of the 

support ring. The pre-multiplier 2 to 12 used in the Equation ( 17 ) correlates with the surface 

finish of the ceramic sample with 12 used for the curved and not flat surfaces, which is the case 

when samples used in ring-on-ring test are as-sintered without any machining. The ring-on-ring 

testing jig was designed for boride ceramic samples with diameters in the range of 18 to 20.55 

mm and thickness varying from 1.0 mm to 1.5 mm, therefore the pre-multiplier was chosen as 3, 

which yielded a diameter of the support ring, DS, equal to 15.45 mm. After the calculation of the 

DS, the diameter of the load ring was determined using the relationship between the load and 

support ring in Equation ( 18 ). For the DL the pre-multiplier value was chosen as 0.35 due to the 

geometry of the sample to be tested and the relationship with DS. Thus, according to the 

Equation ( 18 ) the diameter of the load ring DL was calculated to be equal to 5.41 mm. The 

calculation of the ring tip radius was then done using the equation, 
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𝑡2 ≤ 𝑟 ≤ 3𝑡2                                                                         ( 28 ) 

where t is the sample thickness, mm; and the r is the load and support ring tip radius, mm. As 

the r dimension varied from 0.5t to 1.5t, Equation ( 35 ), a value of r = 1.58 mm was chosen. 

The dimensions for the bleed holes, the bleed slot and the heights of the load and support rings 

were determined using ASTM Standard load and support fixture designs for equibiaxial testing 

[
49

]. The size of the spherical ball located at the notched center of the top surface of the load ring 

was determined using the 𝐷𝑆/12 relationship. The depth of the notch resulted to be 1.05 mm 

with an opening that followed two lines separated at 120° from each other which made a circle 

on the top surface of the notch with a diameter of 3.64 mm. This notch was used as the location 

of the alignment ball for the load ring. The diameter of the metallic sphere used in the ring-on-

ring was of 5mm. The drawings for the developed load and support rings designed in 

Solidworks® (Dassault Systèmes, Vélizy-Villacoublay, France), are shown in Figure 30A. After 

the drawings of the ring-on-ring jig components were developed, a 3D printed prototype model 

was made (Figure 30B) using the 3D printer Stratasys® Dimension SST 1200es (Stratasys Ltd., 

Eden Prairie, Minnesota, USA), thus allowing to ensure that all dimensions are correct and fit 

the location of the screw attachments of the MTS Criterion® 43 universal testing machine (MTS 

Systems Corporation, Eden Prairie, Minnesota, USA) to be used for biaxial strength tests. After 

all dimensions were verified and prototyped, the model was installed and tested (Figure 30C), 

then the final version of the ring-on-ring jig was manufactured using 4140 steel which has a HRC 

larger than 40. The metallic jig was manufactured using a CNC Fadal® VMC-3016L machine 

(Fadal Engineering, Brea, California, USA) due to the high precision that was required for the 

inner and outer radii of the load and support rings, as well as for the parallelism necessary 

between the surfaces of the aforementioned components of the jig. The jig components as well 
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as its complete assembly in the MTS Criterion® universal testing machine are shown in Figure 

30D-F. 

The validation of the ring-on-ring test was made by using the finite element method 

where the experimental data obtained through the test was compared to the simulated results. 

The material tested to validate the accuracy of the ring-on-ring testing jig was a boride ceramic 

composite consisting of ZrB2-30wt%SiB6 sintered by spark-plasma since it was readily available 

for the experiment, and the geometry of the samples were appropriate for the biaxial flexural 

strength test since the dimensional relationship between the testing jig and the sample was 

maintained. The geometry of the three ceramic composite discs made from ZrB2-30wt%SiB6  

that were tested consisted of diameters and thickness ranging from 18 to 20.25 mm and 1.03 to 

1.42 mm respectively and a summary of their geometry can be found in Table 2. 

Table 2: Summary of the geometry for the samples used to validate the design of the ring-

on-ring jig for the determination of biaxial strength of ceramics. 

Sample Diameter (mm) Thickness (mm) 

1 18.64 1.42 

2 19.783 1.06 

3 20.25 1.37 

 

 The elastic properties of the material tested were obtained by the use of Resonant 

Ultrasound Spectroscopy from which the Poisson’s ratio and the Young’s modulus were 

obtained, serving for the calculation of the biaxial flexural strength of the material and also as 

input for the finite element simulation made for the validation of the test.  



 

58 
 

 

Figure 30: Ring-on-ring fixture designed for the biaxial flexural strength of ZrB2-based 

ceramics. (A) Schematic of the design. (B) 3D printed prototype of the ring-on-ring fixture 

and (C) placement on the universal testing machine. (D) Manufactured testing jig. (E) 

Universal testing machine with the ring-on-ring fixture installed. (F) Close-up view of the 

ring-on-ring fixture on the universal testing machine. 

4.1. Spark Plasma Sintering of ZrB2-30wt%SiB6 Ceramic Composite 

Spark Plasma Sintering technique (FCT HDP 25; FCT Systeme GmbH, Rauenstein, 

Germany) was used to sinter a ball milled ZrB2 (Grade B, H. C. Starck, Goslar, Germany) and 

SiB6 (98% pure, -200 mesh, Cerac Inc., USA) ceramic powders. The graphite die of 20mm in 

diameter was packed with the ZrB2-30wt%SiB6 mixed powder and heat up to the sintering 

temperature of 1750°C and the dwell time of 10 minutes. The heating rate of 185°C/min was 
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used to heat up the die to the sintering temperature. After dwell time the machine was switched 

off and natural cooling was initiated.  The temperature, pressure and shrinkage plots collected 

during SPS of ZrB2-30wt%SiB6 ceramic composite is shown in Figure 31. As one can see, the 

sintering temperature was 1750°C with the dwell time of 10 minutes followed by rapid cooling 

all the way until the die was cooled down to 400°C. From the sintering plot it can be observed 

when heating was first initiated, but before the pressure was applied, the powder packed in the 

graphite die expanded resulting in the appearance of positive shrinkage (Zone A in Figure 31). 

When pressure was applied from zero to 50MPa the powder was compacted and the significant 

negative shrinkage appeared (Zone B in Figure 31). However, this shrinkage was caused only by 

the applied pressure, as the temperature was still too low (919°C-1129°C) to cause the sintering 

of the ceramics, therefore, when the 50 MPa pressure was fully applied and remained constant, 

the further increase on the temperature upon heating caused almost no visible shrinkage in 

between 1129°C-1352°C temperature (Zone C-D in Figure 31) range, but upon further heating 

the shrinkage, because of sintering of the powder, was initiated. The most active shrinkage of the 

composite occurred in between 1352°C-1750°C (Zone C-D in Figure 31) and during the first 

minute of the dwell time (Zone E in Figure 31). By the end of the dwell time, the shrinkage 

ended and no further densification could occur (Zone E in Figure 31). Upon cooling, the 

shrinkage occurred due to thermal contraction as temperature decreased (Zone F in Figure 31), 

however when pressure decreased in Zone G of the plot, the material expanded causing the 

shrinkage to increase one more time, until it all naturally cooled down with the material 

shrinking without any applied pressure (Zone H in Figure 31). After sintering, 4.19 g/cm
3
 density 

of ZrB2-30wt%SiB6 ceramic composite disks was obtained. These ceramic disks were then 
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machined to the diameter of 18 mm and the thickness of 1.7 mm and one of the sides of the 

machined disks was polished to the mirror surface. 

 

Figure 31: The pressure, temperature, and shrinkage plot showing the sintering 

parameters of ZrB2-30wt%SiB6 ceramic composite by SPS. 

4.2. Phase Composition and Microstructure of ZrB2-30wt%SiB6 Ceramic Composite 

The X-ray diffraction patterns (Rigaku Miniflex 600 diffractometer, Rigaku, Tokyo, 

Japan) of ZrB2 and SiB6 powders used for processing of the composite and ZrB2-30wt%SiB6 

ceramic composite bulk material after SPS are shown in Figure 34. Pure single phase diffraction 

patterns were identified for ZrB2 and SiB6 powders. However, while ZrB2 was retained after SPS 

as a major phase of the composite, the SiB6 phase appeared not to be stable, as the peaks clearly 

belonging to SiB6 structure [
100

] were not identified by X-ray diffraction. The Si and B phases 

were tentatively found instead, indicating the disruption of SiB6 into two pure compounds. Also, 
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Si11B31 phase was also tentatively identified as an existing Si-B compound in the composite. A 

few weak X-ray peaks were tentatively assigned to two Zr-H hydrite phases, such as ZrH1.6 and 

ZrH1.9. Thus, the X-ray analysis identified that SiB6 phase is not a stable phase upon sintering by 

current assisted SPS technique and a separate study would be required to determine the phase 

composition of the ZrB6-SiB6 ceramic composite after sintering using SPS. However, the 

composite was still used as a model material to verify the performance of the developed ring-on-

ring fixture.  

The microstructure and grain size of ZrB2-30wt%SiB6 ceramic composite was analyzed 

using a Zeiss Axio Lab.A1 (Carl Zeiss AG, Oberkochen, Germany) microscope. The optical 

micrographs of the ZrB2-30wt%SiB6 ceramic composite are shown in Figure 33. As one can see 

from the optical micrographs of the ZrB2-30wt%SiB6 microstructure, while in some areas the 

distribution of the two phases is relatively homogeneous, in many other locations large 

agglomerations of Si/B phase could be seen. The grain size analysis using intersection method 

allowed estimating that the average grain size of ZrB2 phase was 2.25μm, while the average 

grain size of Si/B was 1.90μm. The grain size distributions of the phases along with their d10, d50, 

and d90 values are shown in Figure 33. Thus, as one can see from the micrographs and from the 

grain size analysis the structure is non-homogeneous, which would affect the mechanical 

performance of this composite. 
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Figure 32: X-ray diffraction patterns of (A) ZrB2 powder, (B) SiB6 powder, and (C) ZrB2-

30wt%SiB6 ceramic composite. 
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Figure 33: The grain size distribution of (A) ZrB2 primary phase and (B) Si/B secondary 

phase with two optical micrographs of the microstructure of the composite showed as 

inserts. 

4.3. Elastic Properties of ZrB2-30wt%SiB6 by RUS 

The elastic properties of ZrB2-30wt%SiB6 ceramic composite were measured by 

Resonant Ultrasound Spectroscopy (RUS) (RUSpec, Magnaflux Quasar Systems, Alburquerque, 

New Mexico) both at room and high temperatures in an Ar protective environment, where the 

Young’s, shear, and bulk moduli along with the Poisson’s ratio are shown in Figure 34. The 
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Young’s modulus at room temperature was equal to 452 GPa, and shear and bulk moduli were 

equal to 199 GPa and 210 GPa, respectively. The Poisson’s ratio was equal to 0.136 at room 

temperature [
Error! Bookmark not defined.

]. There is almost linear degradation of the elastic moduli with 

temperature increase where Young’s, shear and bulk moduli values are reported to be equal to 

418.52 GPa, 183.83 GPa, and 192.87 GPa at 1000°C, respectively. 

 

Figure 34: Elastic Properties for ZrB2-30wt%SiB6 measured by RUS. Young’s modulus 

( ), Poisson’s ratio ( ), shear ( ) and bulk ( ) moduli of ZrB2-30wt%SiB6 ceramic 

composite shown as a function of temperature. 
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4.4.Biaxial Strength through Ring-On-Ring for the Model Material ZrB2-30wt%SiB6 

Three ZrB2-30wt%SiB6 disks were loaded up to failure using the developed ring-on-ring 

jig. The collected load versus time plot were used to generate the biaxial stress versus time plot 

shown in Figure 35 where the load was converted into stress using Equation ( 12 ). The biaxial 

strength measured at room temperature for three samples tested was equal to 225.31 MPa, 

257.90 MPa, and 329.85 MPa, for samples 1, 2 and 3 respectively, which is rather below of the 

reported uniaxial bending strength of ZrB2 based ceramic composites, such as 674 ± 130 MPa of 

4-point bending strength of ZrB2-SiC [
89

] measured at room temperature or 564.72 ± 11.21 MPa 

of 3-point bending strength of ZrB2-15vol%SiC-15vol%MoSi2 [
101

]. While it is not possible to 

directly correlate the biaxial strength with the strength values obtained by 4- or 3-point bending 

techniques, it is still understood that the biaxial strength of ZrB2-30wt%SiB6 ceramic composite 

is rather low likely because of the decomposition of SiB6 into different phases during sintering. 

It is expected that ZrB2-30wt%SiB6 ceramic composites exhibit only elastic behaviour at room 

temperature, similar to other ZrB2 based ceramics, as there are not known mechanisms available 

to introduce the non-linear deformation to the sample tested. Therefore, the generalized Hooke’s 

law was applicable for the recalculation of the εx and εy strains related to the σx and σy applied 

stresses as Young’s modulus and Poisson’s ratio of the composite was measured by resonant 

ultrasound spectroscopy. The estimated stress-strain deformation plots of ZrB2-30wt%SiB6 

ceramic composite is also presented in Figure 35. 
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Figure 35: Biaxial stress-time plot (A), stress-strain deformation plot (B) and photograph 

of fractured sample (C) of ZrB2-30wt%SiB6 ceramic composite disk. 

4.5. Finite Element Analysis for the Ring-On-Ring Test Using the Model Material Of ZrB2-

30wt%SiB6 

A finite element analysis was performed for the ZrB2-30wt%SiB6 samples. It is known 

that Equation ( 12 ) was derived based on linear plate bending theory and the strength calculated 

is subjected to errors when non-linear geometry effect is significant. The purpose of this analysis 

was to assess the effect of geometric non-linear deformation in the calculation of strength as well 

as to validate the results from theory. The finite element software used was Simulia Abaqus® 

6.19 (Dassault Systèmes, Vélizy-Villacoublay, France). The simulation was run using units of 

kilograms (kg), millimetres (mm), seconds (s). All interacting parts in the simulation were 

created in Abaqus® and selected as deformable bodies. Considering the symmetry of the 

geometry, material properties and loading, a 2D axisymmetric model was created and analysed, 

thus, a finer mesh control was achieved and more accurate data was observed with minimum 

computational cost and time. The load- and support-ring were defined as homogeneous elastic 

using the properties of 4140 steel, while the sample was defined as isotropic linear elastic using 

the properties obtained experimentally by resonant ultrasound spectroscopy, performed by the 

undergraduate student Jessica Dieguez from UCF with the help of Dr. Miladin Radovic from 
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Texas A&M, for the ZrB2-30wt%SiB6 samples. The density used for the 4140 steel and the ZrB2-

30wt%SiB6 samples were 7.85 (10
-6

) kg/mm
3
 and 4.194 (10

-6
) kg/mm

3
, respectively, while the 

elastic modulus and the Poisson’s ratio of 4140 steel and the ZrB2-30wt%SiB6 ceramic 

composite were 200 GPa, 452 GPa, 0.290, and 0.136, respectively. The contacts between the 

load-ring and the sample and the support-ring and the sample were defined as surface-to-surface 

contacts. Taking into consideration that simulations have been made using frictionless contacts 

[
64

] because the coefficient of friction in ring-on-ring is very small [
49

], three runs were made 

with the same model containing different values for the coefficient of friction, varying from 

frictionless to 0.1. A static, general step was defined for the simulation with duration of 6 

seconds with initial step of 1 s, minimum of 1.00 (10
-5

) s, and maximum of 6 s. To simulate the 

behavior of the interacting elements of the ring-on-ring, the support-ring was fixed in its position 

by avoiding any displacement or rotation whatsoever; for the load-ring, only y-axis displacement 

was allowed. From the experimental data, the force measured right before the sample broke, 

654.82 N, was used to calculate uniform pressure over the load-ring top surface area. A pressure 

of 12.13 N/mm
2
 resulted and was applied. For the load- and support-ring, a regular mesh with 

size of 0.1 mm was used, while the sample was meshed with a size of 0.04 mm uniformly over 

the section, yielding 8155 elements in total for the ceramic disk section. For the load- and 

support-ring 4-node bilinear axisymmetric quadrilateral, reduced integration, hourglass 

controlled (CAX4R) were used, and for the sample, 8-node biquadratic axisymmetric 

quadrilateral (CAX8R) elements were used. From the simulation, it was determined that the 

maximum tensile biaxial stress occurs inside the load-ring, on the bottom of the disk, indicated 

by red area in Figure 36, with a value of 224.3 MPa, 227.3 MPa, and 230.3 MPa, for the runs 

with coefficient of friction equal to 0.1, 0.05, and frictionless, respectively, which are close to the 
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experimentally measured value of 225.31 MPa. The closest value was obtained with the run 

involving the coefficient of friction of 0.1, which yielded an error of 0.4482%. Figure 37 shows 

how the radial, σr, and tangential, σt, stresses on the tensile surface vary as a function of the 

radial distance for the simulation with coefficient of friction of 0.1. σr and σt are equal at the 

centre of the tensile surface of the disk sample in the region enclosed by the load ring 

represented by the area marked by A-B in Figure 37. Vepakomma et al. [
45

] and Hsueh et al. [
64

] 

show that in a ring-on-ring simulation, the variation of maximum principal stress along the radial 

direction of the tensile surface shows a peak that occurs in the region enclosed by the load ring 

indicating that the stress is no longer uniform. The same behaviour was found in the simulation 

developed in this paper where, in Figure 37, σr is larger than σt for a small region, peaking in the 

line marked by C, and decreasing rapidly as the radial length distances from the centre of the 

disk. The line marked by D in Figure 37 shows the inflection point of σt and how it decreases in 

intensity, not as rapidly as σr, when it is measured in distances further from the centre of the 

sample. The inflection of the curve for the distribution of σt aforementioned occurs in a radial 

distance right below the contact point between the load ring and the sample. The line marked by 

E in Figure 37 shows an outlier point that describes an abrupt drop in the stress distribution on 

the tensile surface of the sample. This drop is caused by compressive stresses that arise from the 

contact point between the support-ring and the sample, and it does not represent a critical 

condition since its value indicates this is not a failure point in the ring-on-ring test. 
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Figure 36: Finite element model of the ring-on-ring test using the sample material of ZrB2-

30wt%SiB6 indicating (A) mesh distribution and (B) maximum-principal stress 

distribution on the sample. 
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Figure 37: Tangential (σt) and radial (σr) stress distribution at the bottom tensile surface of 

the sample disk, shown in the upper portion of the figure, from the center to the edge of the 

disk, with coefficient of friction 0.1 and pressure of 12.13 N/mm
2
. 
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5. ACROPORA CERVICORNIS STAGHORN CORAL SKELETON COMPRESSION 

STRENGTH AND VICKERS HARDNESS 

Coral skeleton comprise the mayor inorganic structure found in a coral reef and, for the 

case of the critically endangered staghorn coral Acropora cervicornis, the skeleton is made by a 

CaCO3 aragonite structure [
79

] and it allows the coral to withstand the high forces caused by the 

crashing of waves in shallow areas or the oceanic currents.  

For the experiments performed in this research, one skeleton of dead Acropora cervicornis 

retrieved from Nova Southeastern University’s coral nursery off Broward County, FL, USA, was 

studied (Figure 38A). Algae and other debris were chemically removed by immersion in bleach, 

which is a standard method for preparing coral skeletons. The skeleton was cut using a diamond 

blade into 4 cylinders with a 2.25:1 to 3:1 height and diameter ratios, with dimensions 

approximate due to the irregular skeleton geometry. Skeleton cross-sections were ground and 

polished using P1000-P3000 SiC sand paper to achieve a mirror surface suitable for hardness 

measurements. Optical micrographs of cross-sectional surfaces were made using a Zeiss Axio 

Lab.A1 microscope (Carl Zeiss AG, Jena, Germany) and photographs of full cross-sectional 

surfaces were made using a Canon SX530 digital camera (Canon Inc., Tokyo, Japan). An A. 

cervicornis was analyzed by X-ray computed tomography at 9 mm voxel size (GE Phoenix 

Nanotom-M™, GE Sensing & Inspection Technologies GmbH, Hamburg, Germany). X-ray 

emission parameters were 90 kV and 140 µA and 1801 images were collected through a 360° 

rotation. Each positional 2D X-ray projection was collected as an average of 3 images. The 3D 

volume was produced by reconstruction with Phoenix datos software. The 3D rendered volume 

was analyzed and images/animations produced utilizing VG Studio Max software (v2.1) 

(Volume Graphics GmbH, Heidelberg, Germany). 



 

72 
 

Both top and bottom surfaces of the cylindrical skeletal samples were ground flat and 

parallel to obtain surfaces ready for uniaxial compression tests. Uniaxial compression tests were 

performed using a universal testing machine (Criterion® 43, MTS, Minnesota, USA) in 

displacement control mode using a 0.003 mm/s displacement rate. A Vickers hardness tester 

(Tukon 2100B, Wilson Instruments, Illinois, USA) was used to measure hardness with ten 

indentations made using a 50 g load with 15 s dwell time under load.  Raman spectroscopy of the 

skeleton was collected using a Renishaw® inVia Raman microscope (Renishaw, 

Gloucestershire, the UK). The microscope system used for the Raman spectra collection consists 

of a 532 nm Si solid laser with maximum power of 300 mW, a spectrograph with holographic 

notch filter attached to a Leica microscope (Leica Microsystems, Wetzlar, Germany) with a 

motorized XYZ-stage. The system was used to collect a 2D map of the surface of the sample 

with an area of 9.75 μm by 15.75 μm where 308 acquisition points at the step of 0.75 μm were 

obtained with a collection time of 10 s per point using an objective lens of 100x with working 

distance of 4.7 mm, which permitted to have a laser spot of approximately 1 μm. The map was 

carried at room temperature, and before its collection, the spectrometer was calibrated using a Si 

band at 520.3 cm
-1

. Autofocus was used for the collection of the map since it provides better 

focused results during the area mapping. To produce the maps, Renishaw WiRE® software was 

used with mixed Gaussian and Lorentzian function for peak fitting. The system was set to collect 

the map over half of a Vickers indentation on the bleached Acropora cervicronis sample surface 

with a total collection time of 1.25 h. 

The skeleton structure of Acropora cervicornis is very complex [
89,102,103,104

] and consists 

of needle-like aragonite crystals organized as the primary skeletal elements. The skeleton 

structure is highly porous but porosity and thus, permeability, decreases from the tip of the coral 
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towards its base. Cross-sections of the skeleton of Acropora cervicornis showed a highly 

symmetric structure and the higher-magnification optical micrograph revealed significant surface 

porosity (Figure 38B). From the computed tomography (CT) scan the pores within the body of 

the coral skeleton can be observed in more detail (Figure 39). Pores varied in size and shape, 

with major circle-like cavities presenting an average size of approximately 1 mm in diameter. 

Major and minor cavities were non-homogenously distributed along the coral. 

 

Figure 38: (A) Chemically-cleaned, dry skeleton of the critically-endangered coral, 

Acropora cervicornis from Nova Southeastern University’s coral nursery, Broward County, 

USA. (B) Representative optical micrograph of the dense part of its skeleton. 
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Figure 39: Computed tomography scan of the skeleton of the critically endangered coral, 

Acropora cervicornis, showing (A) cross-sectional top view; (B) longitudinal section parallel 

to the height of the sample at 0 mm from the center of the sample; (C) longitudinal section 

located 4 mm from the center of the sample. 

Figure 39A shows the top cross-section view of the corallite with the axial canal shown 

in the center of the cross-section. Also, as one can see from Figure 39A, both radial and 

circumaxial cavities are distributed along the cross-section. Figure 39B shows the axial canal of 

the corals along the center of the cross-section with both radial and circumaxial cavities caused 

by bioerosion [
105

]. Such erosion is responsible for removal of calcium carbonate by biological 

conditions. Figure 39C shows the radial corallites – the skeletal cup formed by an individual 

stony coral polyp in which the polyp sit and retract. The space between the radial corallites is 2-3 

mm with their diameter being between 0.8-1 mm. These corallites are separated with the 

coenotsteum - the layer of living material lying between the corallites (Lamarck, 1816). The 

classification and detailed description of Acropora cervicornis coral skeleton microstructure was 

published by Marfenin [
106

] which are the same as found in the corals analyzed in this research. 

5.1. Uniaxial Compressive Strength of Acropora cervicornis 

The stress-strain plot of the coral skeleton under uniaxial compression exhibited non-

linear loading with many step-ins (Figure 40), until at higher loads the sample completely 
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fractured. This response is indicative of a “gracious” failure, which apparently occurred due to 

the complex microstructure of the coral skeleton: cracks originated during loading had to deviate, 

branch and bifurcate to grow and move further as compressive loading increased. The major 

crack in the fractured skeleton (Figure 40A) grown parallel to the applied load. This is 

characteristic of compressive fracture in brittle materials such as ceramics and rocks [
107,108

]. 

Under uniaxial compression cracks grow parallel to the loading axis. The presence of sharp pores 

of different shape and size facilitates the initiation of fracture at several locations and with 

increase in load these cracks grow longer. However, when a crack reaches a nearby larger pore in 

its path, it stops to grow because the stress concentration accompanying the crack tip quickly 

reduces. The stress has to further increase substantially before the crack starts to grow again. 

This process of rapid crack growth and arrest results in sudden load drop in the stress-strain 

curve and then an increase with continued loading. After few cracks have grown sufficiently 

long, failure of the specimen into many fragments occurs.  
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Figure 40: Stress vs. strain deformation plot of the critically endangered staghorn coral, 

Acropora cervicornis, measured in uniaxial compression. Insert A is the photograph of the 

sample after fracture. Insert B is the CT scan of the fracture surface along the axial 

direction of the sample. 

The presence of numerous pores in the specimen not only retards the crack growth but 

also allows partial cracks to develop without causing complete fracture of the specimen as shown 

in Figure 40A. The intermittent crack growth in the presence of pores not only prevents 

catastrophic fracture typical of brittle materials, allowing for the “gracious” failure to occur. 

Finally, at peak load, many such intermittent crack growth events occur resulting in a saw-tooth 

stress-strain curve before complete load drop upon specimen failure.  



 

77 
 

The fracture surface of the coral skeleton shown in Figure 40B presents features of 

typical brittle failure of a porous ceramic structure [
28,109

]. Thus, it is obvious that the coral 

skeleton’s ability to resist cracking is important for its existence because it does not separate 

easily from its parent structure even after small cracks develop. 

5.2. Vickers Hardness of Acropora cervicornis 

The Vickers hardness of a chemically-cleaned skeleton measured at 13 different points of 

the sample’s polished surface was 3.56 ± 0.31 GPa, which is similar to the 3.31 GPa reported by 

Alvarez et al. [
110

]. Such hardness values are very typical for soft CaCO3 aragonite materials, yet 

are sufficient to withstand the hydraulic pressure caused by ocean wave impacts. Optical 

photographs of two Vickers impressions had almost no radial cracks originating from the corners 

of the impressions (Figure 41A).  

This behavior is once again attributed to the presence of numerous pores which reduce 

the stress intensity at the tip of the indentation imprint. Both the indentation and compression 

response are indicative of the skeleton’s complex microstructure and its ability to suppress crack 

propagation and growth. It is worth to notice that many of the impressions, such as the one 

shown in Figure 41B, developed the lateral cracks causing chipping and uplifting of the surfaces 

surrounding the impressions. 
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Figure 41: Optical micrographs of Vickers hardness impressions after 1 kg load in a 

chemically-cleaned skeleton of staghorn coral (Acropora cervicornis) reared in a nursery off 

Broward County, Florida, USA. (A) Indent with no chipping or lateral cracks; (B) indent 

with lateral cracks. 

5.3. Micro-Raman Spectroscopy of Acropora cervicornis 

Raman spectrum of Acropora cervicornis is shown in Figure 42A. As one can see from  

Figure 42A, the spectrum has 150 cm
-1

, 203 cm
-1

, 699 cm
-1

, and 1083 cm
-1

 peaks, which are all 

characteristic of the aragonite structure [
111,112

]. It would be interesting to see how CaCO3 

aragonite structure is responsive to the stress and therefore, one of the Raman active bands, 1083 

cm
-1

 with the strongest intensity was further selected to collect 2D Raman maps of the surface 

with the Vickers impression as such mapping allows to detect how the applied stress affects the 

vibrational response of the aragonite structure. The optical micrograph of the impression with the 

area selected for 2D Raman mapping and corresponding Raman micrographs of the 1083 cm
-1

 

peak’s intensity, peak’s position and peak’s FWHM are shown in Figure 42B. The contour of the 

Vickers impression can be clearly distinguished in all three maps. From the Raman maps, one 

can see that the peak intensity, peak position and FWHM are affected by the presence of the 

stresses introduced during the indentation event. The intensity of the peak is significantly 

decreased from 4500 – 5500 a. u. outside of the impression to 2000 – 2500 a. u. in the location of 
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the center of the impression where residual compressive stresses are the highest. The peak has 

significantly broaden from 4 cm
-1

 of FWHM outside of the impression to 7 cm
-1

 in the center of 

the impression, but the position of the peak changed non-significantly from 1083.1 cm
-1

 outside 

of the impression to 1083.7 cm 
-1

 in the center indicating the weak stress dependence of this 

peak. These results indicate that aragonite structure is indeed responsive to the applied stress, 

especially to the concentrated load, which might occur to the coral skeletons in the ocean when 

the different objects, such as marine debris, can impact corals during storm or other detrimental 

events. 

 

Figure 42: Raman spectrum of the skeleton of staghorn coral (Acropora cervicornis) 

showing the signature peak characteristic of an aragonite structure. (B) Optical 

micrograph and corresponding 2D maps of 1083 cm
-1

 Raman peak of (C) peak intensity, 

(D) peak position, and (E) peak width. The area of the mapping represented by the dashed 

line in (B) is  5. 5 x 9. 5 μm2
. 



 

80 
 

5.4. Flow-Field of the Coral Skeleton 

The flow-field of the coral skeleton sample at different instants of the motion during 

fluidic experiments is presented in Figure 43.  Figure 43A shows that after 1 s from the 

beginning of the motion, two counter-rotating vortices formed in the wake of the moving 

skeleton, still attached to it at that moment, which had yet to separate from the coral surface. 

These vortices resembled classical Kármán vortices that form in the wake of a bluff body[
113

].  

As the shape of the coral skeleton was approximated by a circular cylinder with significant 

surface roughness, this roughness element created a number of smaller scale vortices, which 

were dragged into the wake. Figure 43B shows that the vortices formed earlier during the motion 

got disintegrated, and small-scale vortices appeared in the wake. The surface roughness of the 

coral skeleton likely promoted these small-scale instabilities in the wake, which quickly ruptured 

the bigger, Kármán type vortices. This trend continued at the later stages of motion (Figure 43C 

and D), where smaller-scale vortices prevailed. 

 



 

81 
 

 

Figure 43: Contour plot of normalized vorticity (ωc/U∞) in the wake of the coral skeleton at 

different instants of the motion. c denotes the equivalent radius of the cross-section of the 

coral model, where PIV measurements were performed. The black portion denotes the 

masked-out part of the image to cover the shadow from the model.  (A) After acceleration 

was completed, two counter-rotating vortices formed in the wake similar to a bluff-body 

wake, which were yet to be shed; (B) Smaller scale vortices started to form in the wake and 

the two main vortices started to disintegrate, which continued further as shown in (C) and 

(D).   
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6. RELATIONSHIP BETWEEN POROSITY AND THE ELASTIC MODULUS IN THE 

ACROPORA CERVICORNIS CORAL SKELETON 

 The ability of reproduction for the Acropora cervicornis coral is directly related to the 

health and strength of the skeleton that conform it. To populate an area, these types of corals 

depend on the hydrodynamic forces and currents that surround them since the coral requires for a 

branch to be detached from the main body, then it travels by a current to an empty space where it 

gets fixed to the bottom of the seafloor and starts the growing process that will repeat itself until 

a colony is formed [
87,88

]. Since this cycle is being interrupted by human activity which is 

contributing to the increase of seawater level, and water temperature and acidity, the contribution 

to the repopulation of this coral specie is being held through coral nurseries in many parts of the 

coasts of the Atlantic Ocean and Caribbean Sea through the use of controlled reproduction 

techniques by the breakage of healthy coral stems [
16,85,90

]. In order to achieve the reproduction 

process, either naturally or artificially, helped by human beings the understanding of the 

mechanical strength of the Acropora cervicornis coral skeleton and how the porosity affects it is 

of importance. 

6.1. Microstructure Characterization and Porosity Measurement of the Coral Skeleton 

Porosity varies in the coral skeleton depending on the conditions of the water where the 

coral grew and the age of the skeleton, thus varying form the stem of the coral branch to the tip 

[
79

]. It has been demonstrated that the rate of mineralization in a coral skeleton is affected by the 

water temperature and the rate of growth by the height of the water column covering the coral 

[
90

]. Many efforts have been made to study the properties of coral skeletons and its 

microstructure using techniques such as scanning electron microscopy [
79

], ultrasound pulse 

velocity tomography, compression and tensile tests, three-point bending and computational fluid 
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dynamics [
90

] which have given a better understanding of the coral skeleton and its interaction 

with the environment that surrounds it. A study conducted by Baldock et al. [
90

] found that for 

different branches of Acropora cervocornis skeletons studied the density was 2.42 g/cm
3
, the 

porosity between 12-40%, the compressive strength was found to be 28-99 MPa, the tensile 

strength was measured as 8.84-12.7 MPa, and an elastic modulus of 55-77 GPa, all these being 

affected by a reduction in calcification due to the change of acidity in the waters the corals 

inhabit 

To obtain a better understanding on the microstructure and porosity of the skeleton of the 

Acropora cervicornis coral reefs a 3D computer model of one section of the coral was produced 

from the CT scans generated using a GE Phoenix Nanotom-M™ (GE Sensing & Inspection 

Technologies GmbH, Hamburg, Germany). The emission parameters for the X-ray used were set 

to 90 kV and 140 µA and 1801 collecting images through a 360° rotation with an average 

collection of 3 images of 2D X-ray projection. An example of the images used can be found in 

Figure 39A. The video provided by the CT scan was split into 501 images extracted by the 

development of a code that processes images and videos using the open source language 

Python
TM

 (Python Software Foundation, Delaware, USA) and the library OpenCV. The porosity 

was measured using optical techniques on the images that resulted from the CT scan and using 

the software imageJ (Public Domain, BSD-2 license) to apply a threshold that would make the 

images strictly black and white as seen on Figure 44. Two features were analyzed, the solid part 

of the coral captured by the CT scan (white area Figure 44A) and the holes and pores captured by 

the same instrument (white area Figure 44B) for all 501 images used. A Python
TM

 code was 

developed to account for the number of white pixels on the images measuring porosity by 

finding the ratio between the solid skeleton, achieved by adding the area of the pores as in Figure 
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44B  to the images that do not account for the pores, as in Figure 44A, and the skeleton with 

pores. The resultant porosity can be found in Figure 45. 

 

Figure 44: Threshold applied to the coral skeleton images to measure the porosity of the 

skeleton. (A) is the image accounting for the solid area and (B) is the image accounting for 

the area of the pores and holes. 

 

Figure 45: Measured porosity on the Acropora cervicornis coral skeleton on 500 slices 

extracted from the CT scan. 
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The average porosity with this technique was found to be around 25%, matching what 

has been previously reported in the literature [
89,90

].  

An experimental method was also used to estimate the porosity of the coral skeleton and 

it consisted in measuring the open porosity through the ratio of the pore volume (V0) to the total 

volume (Vt) of the skeleton by measuring the dry mass of the porous specimen (m1), the mass of 

the specimen impregnated by the fluid when it is submerged (m2), and the mass of the specimen 

suspended in the fluid (m3) calculated as follows [
114

], 

                                                                                 𝑉0 = 𝑚2−𝑚1𝜌𝑓                                     (29) 

                                                                                 𝑉𝑡 = 𝑚2−𝑚3𝜌𝑓               (30) 

where  𝜌𝑓 is the density of the fluid, in this case water. By the use of this technique, the porosity 

was found to be 44.73%.   

Since a difference in results existed between the porosity measured using optical-imaging 

technique and the results obtained through experimental methods a Scanning electron 

microscopy (SEM) was performed using a JEOL JSM-6480 SEM (JEOL Ltd., Tokyo, Japan) to 

measure the smallest features of the coral skeleton from which interesting observations were 

made. The SEM images can be found in Figure 46 where it can be observed how the skeleton is 

connected by branches that grow like a truss system perpendicular to the main cylinder that 

conform the structure of the coral making the skeleton more resistant to external stresses [
79

].  

By looking at the distribution of the branches, a square open cell was assumed to be the 

one that most resembles the structure of the skeleton which yielded a porosity of 49.89% by 
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using the Gibson & Ashby (G&A) approach and assuming to be uniformly distributed among the 

skeletal structure. 

 

Figure 46: SEM images of the Acropora cervicornis coral skeleton showing the small pores 

covering the coral surface and the features that compose connect the skeleton together. (A) 

shows the pores inside the skeleton and from the holes the connecting links can be 

observed. (B) shows a picture from the edge of the cross-section of the coral skeleton and 

the links that act similar to a truss system can be observed. (C) shows a picture from the 

side of the coral skeleton and it can be observed that conducting channels constitute a big 

part of the structure. (D) shows the arrangement of the material in the coral surface when 

they do not define a channel and the appearance of stalagmites can be seen. 

  

A B 

  D 
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A summary of the porosity found using the different methods can be found in Table 3. 

Table 3: Summary of the porosity obtained through three different measurement 

techniques. 

Method Porosity (%) 

CT-Scan and image analysis 25% 

Porosity through water impregnation 44.73% 

SEM and G&A 49.89% 

 

6.2. Analysis of the Elastic Modulus for the Acropora cervicornis Coral Skeleton 

A 3D volume mesh of the coral skeleton was developed by using the CT-scan video and 

dividing it into frames from which the parameters set by the CT-scan were kept and a separation 

distance between images of 9 μm needed to build the 3D model was obtained. Once the images 

were sorted, the software Mimics® (Materialise NV, Leuven, Belgium) was used to stack the 

pictures and build a solid computer-aided model that was later used for the creation of a 3D solid 

model to be used for the simulation of the coral skeleton using the finite element method. Figure 

47 shows an example on how the solid model was generated using the stack-up of images and 

the resultant solid generated by Mimics®. 

Figure 47: Steps involved in the generation of the 3D computer-aided model of the coral 

skeleton from the images provided by the CT scan video. 

    can image  tac -   of images 3D model generated 
by Mimics® 
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 After the 3D model was generated in Mimics® it was required to develop a volume mesh 

for the further analysis of the skeleton using the finite element method. For this purpose, the 

solid model was exported to Materialise 3-matic® (Materialise NV, Leuven, Belgium) on which 

the complexity of the structure was reduced and the model was smoothed for the generation of a 

volume mesh that was used for the finite element simulation. The model was composed by 4-

node linear tetrahedron elements and an example of it can be seen in Figure 48. 

Figure 48: Volume mesh for the coral skeleton generated using 500 slices from the CT scan. 

(A) shows the cross-section of the ZX-plane of the skeleton and the porosity within the 

structure. (B) shows the cross-section of the XY-plane. (C) shows the cross-section of the 

YZ-plane.  

 As can be seen in Figure 48 the small pores of the skeleton disappeared due to the 

smoothing of the model and the geometry of the elements used. Only the major defects were kept 

in the volume mesh, such as the inner channels of the skeleton, after the simplification of the 

model which gave the model a total porosity of approximately 20%, not resembling the true 

porosity of the skeleton. 

(A) (B) ( ) 



 

89 
 

Once the volume mesh of the coral skeleton was developed it was exported into 

Abaqus/CAE 2017® (Dassault Systèmes, Vélizy-Villacoublay, France) as an Abaqus input file 

(.inp) which is a document generated by 3-matic® in which it assigns numerically the 

coordinates for the geometry of each element in the volume mesh. The simulation was set-up 

initially using the elastic mechanical properties of solid CaCO3 since the structure of the skeleton 

is mainly formed by an aragonite structure [
89

]. The simulation was performed using linear 

geometry due to the fact that Acropora cervicornis coral skeleton can be assumed to be linearly 

elastic [
90

]. A combination of the experimental observations and the properties of CaCO3 were 

used to define the parameters of the simulation. The material properties used were density 𝜌 =2,930 𝑔/𝑐𝑚3, elastic modulus of pure aragonite 𝐸 = 86,572 𝑀𝑃𝑎, and Poisson’s ratio 𝜈 =0.209. The strain, with value 𝑒 = 1.2025%, was obtained from the experiment and was used to 

set the displacement of the model based on the number of slices used. The total running time for 

the simulation was 𝑡 = 73 𝑠 based on the experimental data and the a static step was defined 

with 1𝐸6 increments with initial time step at 1, a minimum of 1𝐸 − 10 and a maximum of 73. 

Since the 3D model of the skeleton was approximately 20% porous, the elastic modulus that 

resulted from it was high compared to the experimental and reported values, with a value of 

74.221 GPa.  

Another model was followed to obtain the elastic modulus of the coral skeleton by 

adjusting the modulus of the aragonite structure for different levels of porosity in the skeleton 

using the Gibson & Ashby approach [
115

]. These results were then validated by comparing the 

values obtained to the results found in the literature [
90,5

]. The Gibson & Ashby approach was 

adapted for a square open cell as can be seen in Figure 49, and the elastic modulus was estimated 

using the open porosity of 49.89% and the following equation, 
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                                                                                𝐸𝑝 = 𝐶1𝐸𝑚(1 − 𝑉𝑝)2
                                           (31)  

where 𝐸𝑝 is the adjusted elastic modulus, 𝐶1 is a constant proper from the geometry of the cell 

which is 1 for a square cell, 𝑉𝑝 is the porous volume of the structure. The results for the adjusted 

modulus of the structure for the porosity found using the ratio between the pore and total volume 

on equations (29) and (30) and porosity ranging from 0-100% can be found in Figure 50 where 

they are compared to the values for the elastic modulus found in the literature. 

 

Figure 49: Square open cell as assumed by the Gibson & Ashby approach under no stress 

(A) and under bending due to compression (B). 

 

 

(A) (B) 
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Figure 50: Elastic modulus for the Acropora cervicornis coral skeleton using the results 

obtained by the Gibson and Ashby approach for various levels of porosity. The values were 

compared to the elastic modulus found in the literature and the elastic modulus found 

using the finite element analysis simulation of the coral skeleton [
5,90,116

]. 
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7. DESIGN AND DEVELOPMENT OF AN IN-SITU RAMAN SPECTROMETER 

INSTRUMENT TO DETECT REAL-TIME RESPONSE OF MATERIALS UNDER 

PHYSICAL STRESS: INSTRUMENT DESCRIPTION 

Mechanical behavior of ceramic materials is important as it determines how materials 

respond and behave under the influence of external mechanical forces, which, in turn, defines the 

area of applications of ceramics. Properties like the strength and fracture toughness, when found 

to be high in ceramics, such as transformation toughened Y2O5 stabilized ZrO2 [
117

], determines 

the application of ceramics as knives blades or medical scalpels [
118

]. If ceramics are super-hard, 

such as cubic BN [
119

] they are used as dies and anvil cells for high pressure applications [
120

]. If 

ceramics have a high Young’s modulus and high hardness as for instance B4C [
121

], they can be 

used as protective materials against ballistic impact [
122

]. As most of the ceramic materials with a 

few exceptions, such as, for example, LaCoO3 or LaMnO3 based perovskites, behave elastically, 

not only their strength and fracture toughness could be determined, but their elastic moduli could 

also be obtained from the stress-strain deformation plots collected during mechanical tests, 

therefore the techniques for the measurement of mechanical properties of ceramics are of high 

importance. Other materials of interest that resembles ceramic behavior are simulants used to 

study the surface of extraterrestrial bodies such as asteroids, planets and moons. A particular 

simulant is one that includes the mineralogy of CI carbonaceous asteroids. Different techniques 

have been developed for the measurement of mechanical properties of ceramics, such as uniaxial 

compression or tension, three- or four-point bending, biaxial testing, among others [
123,124,125,42

]. 

 Mechanical properties as well as other physical properties of ceramics are directly 

dependent on the crystal structure and chemical composition of the material. Direct correlations 

have been found between the strength of the atomic bonds in the lattice and elastic constants as 
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well as melting temperature of ceramics [
21

]. Very often, the crystal structure of ceramics can 

undergo phase transformations, either due to change in the temperature or due to application of 

external stress [
126,127

]. Such changes in the crystal structure resulting in different transformations 

and different arrangement of the atoms in the lattice can bring dramatic changes in the 

mechanical behavior of the material. The phase change during loading could be very beneficial, 

as is the case of transformation toughening zirconia, or it could be very detrimental if it involves 

crack nucleation and propagation, or even the complete disintegration of the material as a result 

of the change of the crystal structure. For example, the change of the stiffness of LaCoO3 

perovskite was also detected [
128

]. It was measured that while pure LaCoO3 exhibited Young’s 

modulus equal to ~76 GPa at room temperature as calculated from the stress-strain deformation 

plots measured in 4-point bending, the value of the Young’s modulus increased to ~120 GPa at 

700-900 °C. Such increase in Young’s modulus in LaCoO3 with significant increase in 

temperature was very unusual, but no high temperature phase transition was detected by using 

high temperature X-ray or neutron diffraction that would help to explain such change in the 

stiffness. Thus, some other changes must occur in the structure of LaCoO3 upon heating, which 

went undetected, and, therefore, using different techniques, such as in-situ Raman spectroscopy 

might provide an answer as to why such significant stiffening occurred in LaCoO3 in 700-900 °C 

temperature range. 

 Besides of structural changes, the mechanical properties of ceramics are strongly affected 

by the presence of both bulk and surface defects that were introduced during the processing of 

the material. The defects, such as pores, agglomerates, and impurities act as stress concentrators 

which prompt instantaneous failure of brittle ceramics [
19

]. In addition, the presence of thermal 

residual stresses, which appear due to grain’s anisotropy or mismatch of the coefficients of 
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thermal expansion in ceramic composites are also detrimental and can define mechanical 

performance of ceramics [
129

]. The techniques, such as X-ray diffraction or Raman spectroscopy, 

which allow to detect and to characterize both the defects and thermal residual stresses, would 

help to better understand and control the mechanical behavior of ceramics. 

 In most occasions, the structural characterization of ceramics is performed either before 

or after mechanical testing, leaving the gap in the knowledge of structural changes that can occur 

during the loading of the sample. However, in many modern testing techniques the unique 

opportunity to perform in-situ structural characterization of the material under the applied stress 

becomes available. Such structural characterization of ceramics under stress can be performed 

using in-situ X-ray or neutron diffraction [
130,131

], in-situ scanning electron and transmission 

electron microscopy, SEM and TEM, respectively [
132,133

], or in-situ Raman spectroscopy [
134

]. 

All these techniques allow for a better understanding of the structural changes in ceramics during 

the mechanical loading, thus allowing for a better understanding of the material responses 

leading to different mechanical behavior and failures. While numerous approaches have already 

been used for such in-situ characterization, still significant improvement can be achieved, if 

either a better resolution or more distant methods would be implemented for such structural 

characterizations that were not available before. This chapter describes the development and 

assembly of an optical probe to perform in-situ Raman spectroscopy characterization on ceramic 

samples during uniaxial compressive loading. 

7.1. Instrument Description 

7.1.1. Hardware 

 The idea of coupling a universal testing machine with an in-situ Raman spectrometer via 

an optical probe using fiber optics came from the need of collecting real-time structural response 
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from Raman active ceramics when they undergo mechanical stress by externally applied load. 

For such system, the In-via® Raman spectrometer (Renishaw PLC, Gloucestershire, the UK) 

connected both to the optical microscope (Leica Microsystems GmbH, Wetzlar, Germany) and to 

the optical probe (Renishaw PLC, Gloucestershire, the UK) for the collection of backscattered 

light was used. A 532 nm Si solid laser with a maximum power of 300 mW was used for the 

excitation of ceramics. The XYZ movement of the optical probe was controlled by a Velmex 

stage which consisted of two Vexta stepping motors (Oriental Motor, Tokyo, Japan). One of 

these Vexta stepping motors provided control for the Y- and Z-axis motion, while the other was 

in charge of the motion along the X-axis. The two stepping motors were controlled by two VXM 

controllers (Velmex Inc., New York, USA) which provided 0.005 mm/step resolution in the X- 

and Y-directions and 0.0016 mm/step resolution in the Z-direction. Three objective lenses were 

available to be used for focusing of the optical probe on the surface of the ceramic sample. Both, 

50x objective lenses with working distance of 18 mm and two 20x objective lenses with 12 mm 

and 25 mm working distances were available for better focusing and collection of Raman signal 

from the surface of the ceramic sample. The ceramic characterized by Raman spectroscopy was 

fixed using a Criterion® universal testing machine (MTS Systems Corporation, Minnesota, 

USA) subjected to the applied uniaxial compressive stress. A schematic presentation of the 

experimental set-up is presented in Figure 51 and the real set up is shown in Figure 52. 
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Figure 51: Computer model of the set-up for the probe designed for in-situ Raman spectra 

of ceramic materials showing the spectrometer, the universal testing machine, the optical 

probe and the optical microscope. 

 

 

(A) 

(B) 
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Figure 52: Components used for the development of the Raman spectroscopic probe for in-

situ analysis of ceramic materials. 
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7.1.2. Software 

 For the full development of the instrument it was necessary to develop software that 

could make the XYZ-stage, the stepper motors and the Raman spectra processing software 

interact among themselves and make the process automatic. In order to achieve this goal, the 

process was divided into different steps that dealt with each fundamental part of the functionality 

of each component of the system and allowed them to work in synergy. The steps can be 

summarized as: (1) defining the collection area on the sample surface; (2) develop the code to 

move the XYZ-stage automatically using the stepper motor controllers following the collection 

area defined on the previous step; (3) allow for the Raman collection software to send a signal to 

the stepper motor controllers after each collected point to trigger the motion of the stage to the 

next collection point in the defined area. 

For the first step, collecting the data for a 2D Raman maps was done by dividing the 

sample’s image surface into a user-defined grid and scanning throughout the grid cells by 

moving the probe using the Velmex stage and the VXM stepping motors, collecting the Raman 

spectrum at each position.  

An automated system was created to move the probe along the grid, trigger the 

spectrometer on each cell of the grid, and acquire the data from the scan. Velmex stepper motors 

could be controlled using either the buttons on the hardware or through the computer software, 

COSMOS® provided by Velmex Inc. which provides a command line tool to send commands to 

the stepper motors and move the probe in XYZ directions for the desired amount, usually 0.05-

0.5 mm for the XY-movement of the stage that defines the plane desired to analyze. But 

COSMOS® did not satisfy the features that were needed to achieve the grid-based scan because 

it was not able to interact directly with WiRE® 3.4 ((Renishaw PLC, Gloucestershire, the UK). 
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Velmex Inc. also provided the drivers for stepper motors and program scripts for different 

programming languages to integrate Velmex stepper motors controller inside a third party 

created software. This feature allowed for the communication with the stepper motor inside the 

custom-made program and move the stepper motors arbitrary to the desired positions.  

The next step consisted in controlling the Raman Spectrometer from the automated data 

acquisition software. To control the In-via® Raman spectrometer, Renishaw PLC provided a 

software called WiRE® 3.4 which interacted with the spectrometer and collected the spectrum 

data. WiRE® 3.4 is proprietary software and does not provide the source code for the software. 

Therefore, access was not granted to the software code in order to modify it and create the 

required features for automatic grid scan. To solve the problem, a solution other than modifying 

the source code had to be found. WiRE® 3.4 had different modes for data acquisition. One of 

these data acquisition modes provided a tool that could be used to ask WiRE® 3.4 to collect X-

number of data collections and wait for a software inter-process call between each data 

collection. A software inter-process call is a programming concept to allow communication 

between two different software without accessing each other’s environment. Inter-process calls 

are usually handled by the operating system, but in some cases, programmers define their own 

protocols to send and receive calls on their software. The case with WiRE® 3.4 is the latter. The 

WiRE® 3.4 software documentation provided a few details on how the inter-process 

communication was implemented and how a Visual Basic script could be used to send and 

receive calls. Using this method, the number of data acquisitions was defined on WiRE® 3.4 and 

triggered the acquisitions from an external program. 

To create the automated data acquisition software, Visual Basic programming language 

was used since WiRE® 3.4 inter-process communication only supports this language. The 
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process of acquiring the data by our system started with calculating the grid size. If data 

acquisition wanted to be performed on a grid of m by n, the system would be acquiring data on n 

 m grid cells. Then it was needed to find the step size for the scan. The step size is the 

magnitude of the Velmex stepper motors movement between each scan, in other words, step size 

is the distance that the probe should move between each cell of the grid. Using m and n a new 

data acquisition could be created in WiRE® 3.4 to acquire data n  m times and wait for software 

trigger before each acquisition. Then the task was able to start on WiRE® 3.4. Since software 

trigger was used, the scan did not start until it received a trigger from external software.  

In the next step, the automation software was opened. The software started by scanning 

the COM ports and recognizing the connected Velmex device, then it turned it online by sending 

the online command. Once the device was online, the graphical user interface of the software 

was displayed. Different modes of data acquisitions were chosen and also the optical probe was 

able to be moved through the graphical user interface. To focus the laser on the object, the 

physical buttons on the stepper motors control became handy as it could be used to easily move 

the probe further or closer to the object to perform the focus process. Manual controls were used 

to move the probe precisely to the desired starting point. 

When the object was in focus and WiRE® 3.4 was waiting for software triggers, the m, n, 

and the step size information were entered in the software for a rectangular- or linear-shaped 

scan. After entering the parameters, the start button could be clicked to start the data acquisition. 

The automation software sent a trigger command to WiRE® 3.4, then it moved the probe in a 

snake pattern throughout the grid and each time it moved the probe, it sent a software trigger to 

WiRE® 3.4 to acquire the data. Thus, both hardware such as an optical probe supported on the 
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operational XYZ Velmex-stage and the software became operational and ready to use to perform 

mechanical testing of ceramic samples coupled with in-Situ Raman spectroscopy.  

7.2. Results from Different Ceramic Materials Analyzed with the Developed Raman Probe 

7.2.1. Asteroid Simulant 

An application of this newly developed instrumentation was used to analyize the strength 

properties of asteroid regolith simulant. The series of planetary regolith simulants was developed 

by the Center for Lunar and Asteroid Surface Science, in partnership with Deep Space Industries, 

to provide a high-fidelity material analog to the surface material found on extraterrestrial worlds 

such as asteroids, the Moon, and Mars. By replicating the mineralogy of these parent materials 

we can capture many of the physical and chemical properties of the surface material. 

Simulants are a valuable resource for the planetary science and engineering communities for 

mission design, spacecraft development, instrument testing, and modeling. 

Since smectite is the “cement” for these types of meteorites, we will test the effect of 

varying smectite content on the strength of the resulting mixture. For the smectite-enrichment 

testing 7 test cylinders were fabricated from the UCF/DSI simulant, CI-V3 based on the 

mineralogy of Orgueil-type CI Carbonaceous Chondrite [
135

]. This type of meteorite represents 

volatile-rich, very friable primitive asteroid material, thought to be likely analogs to the P and D 

asteroid spectral types [
136

]. They are of particular exploration interest as a potential source for 

water and carbon compounds, shielding material, and as a scientific window on the more 

primitive materials of the solar nebula. The base mineralogy of the simulant is shown in Table 4 

and Table 5 [
137

], while CI-V3 simulant maintains a smectite weight of 5% which acts as a 

cement to hold together what is essentially a conglomerate of dissimilar materials. To study the 

effects of varying smectite content on the compressive strength of the material the weight % of 
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smectite was increased in each successive sample to 7.5, 10, 12.5, 15, 17.5, and 20 wt. % 

smectite while maintaining the relative proportion of all other minerals. 

Table 4: Composition of the asteroid simulant 

Orgueil-type CI Carbonaceous Chondrite V3 

  Wt. % 

Olivine (Fo90) 7 

Pyrite 6.5 

Vermiculite 9 

Magnetite 13.5 

Mg Serpentine 48 

Smectite 5 

Epsomite 6 

Kerogen (Sub-bituminous coal) 5 

 

Table 5: Bulk chemistry of the asteroid 

Oxide Wt% 

SiO2 25.0 

TiO2 0.5 

Al2O3 3.1 

Cr2O3 0.2 

FeOT 25.8 

MgO 30.2 

CaO 3.0 

Na2O 6.4 

K2O 0.4 

P2O5 0.4 

SO3 4.9 

Cl 0.0 

Total 99.9 

 

This CI-V3 simulant is a close mineralogical match to CI carbonaceous chondrites with 

the following caveats.  The organic component of volatile rich carbonaceous chondrites contain 

polycyclic aromatic hydrocarbons (PAHs), some of which are known carcinogens and mutagens. 
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Our research suggests that rough chemical fidelity can be maintained by substituting much safer 

sub-bituminous coal as our organic analog. A second safety consideration is the choice of 

serpentine group materials. While most serpentine polymorphs are quite safe, we avoid fibrous 

chrysotile because of its asbestos content.  In the same vein, pyrite was substituted for troilite 

because of troilite’s tendency toward combustion and/or explosion in small particle sizes. The 

particle size was designed to peak at 70 microns, based on data from CI meteorites. For strength 

testing the material was cast into short cylinders called “pucks”. It was found that the bulk 

density of the CI carbonaceous asteroid simulant was mid-way between the CI Ivuna (1.95 

g/cm
3
) and the CI Orgueil (1.61 g/cm

3
) [

138,139
]; the grain density was higher than CI Ivuna and 

Orgueil by ~0.2 g/cm
3
 [

138,139
]; the porosity was consistent with the Orgueil and a slightly higher 

than Ivuna [
138,139

]. 

The cylinders were cast by wetting the simulant powder at a ratio of one gram (or 

milliliter) of de-ionized water for every 4 grams of simulant. The water was mixed until a 

frosting-like consistency is achieved and then the simulant mixture was transferred to a 25.4 cm 

diameter by 50.8 cm length mold for casting. Once cast the cylinders were oven dried at 50°C for 

24 hours.  

After casting and heat treatment the sample dimensions were on average 24.5 mm in 

diameter and 49.0 mm in length. The samples were then tested under mechanical uniaxial 

compression while the Raman response on a single point was being recorded. Figure 53 shows 

an image of one asteroid simulant sample with 10 wt. % smectite and the Raman response before 

and during compression. The Raman response of the sample showed a slight shift to the right of 

the Raman band corresponding to 1615.29 cm
-1

 accompanied by a decrease in the intensity of the 

response. This behavior is on the Raman response occurred due to the change of frequency of the 
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excited molecules in response to the influence of the compressive stresses in the sample [
134

]. 

The sample was exposed for 100 s using a 20x magnification lens and 10% of the total laser 

power to avoid any burning damage on the surface of the material and an overshoot reading. 

 

Figure 53: Set-up of the asteroid simulant sample with 10% smectite tested under 

compression with the Raman spectra analyzed by the optical probe designed. (A) Asteroid 

simulant sample loading set-up for the compression test. (B) Micrograph captured using a 

20x objective lens installed on the optical probe. (C) Raman spectra collected utilizing the 

in-Situ optical probe. 
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7.2.2. LaMnO3 Vibrational Response 

In order to validate the accuracy and effectiveness of the developed probe the vibrational 

response of a LaMnO3 sample was recorded. The sample was stressed at a compressive load of 4 

kN and the Raman spectra showing the behavior of the ceramic under this load was analyzed and 

compared to the vibrational response of the same sample with no load. Figure 54 shows the 

results obtained from the vibrational response of the LaMnO3 sample analyzed using the in-situ 

optical probe using a 20x objective lens exciting the sample with a 300 mW green light laser at 

10% power for 200 s of exposure time for a range of 50-1000 cm
-1

. 

From Figure 54 a reduction and broadening of the two major peaks identified, occurring 

in the bands of 489 cm
-1

 and 600 cm
-1

 can be observed product of the compression stress 

resulting from the 4 kN load as well as a slight shift of the two peaks towards the left side. From 

this image the concept of capturing in-situ Raman response can be proved and the functionality 

of the equipment can be validated. The type of load applied to the sample as well as the ability to 

increase the magnitude of it depends on the availability of the equipment and the type of load 

cell used. 
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Figure 54: Raman spectra collected using the in-situ optical probe for a LaMnO3 

rectangular sample showing its response for two loading cases: no load and under a 4kN 

load. (A) Set-up for the compression loading experiment and the collection of the Raman 

spectra. (B) Micrograph of the LaMnO3 sample obtained using a 20x objective lens 

installed on the optical probe. (C) Raman spectra for the no load (red) sample, and at two 

random points (blue and green) of the sample loaded at 4 kN collected with the in-situ 

optical probe. 
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7.2.3. Other Samples Tested 

The Raman spectra of other samples tested using the in-situ optical probe was collected 

in order to validate the accuracy of the instrument. To do this, the use of Acropora cervicornis 

coral skeleton and ZrO2 as model samples was done and the Raman spectra collected. For the 

Acropora cervicornis coral skeleton (Figure 55) the identification of the major peak at 1080 cm
-1

 

was used as a source of validation, and for the ZrO2 the comparison between the spectra 

collected using the microscope stage and the in-situ optical probe was done (Figure 56). 

 

Figure 55: Raman spectra of the Acropora cervicornis coral skeleton taken using the in-situ 

optical probe using a 300 mW green laser at 50% laser power with an exposure time of 10 s 

using a 20x objective lens collecting data for the bands between 60-1500 cm
-1
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Figure 56: ZrO2 Raman spectra obtained from the microscope stage (Black) and the 

designed in-situ Optical Probe (Red) using a 300 mW green laser at 50% laser power with 

an exposure time of 200 s using a 20x objective lens collecting data for the bands between 

50-2000 cm
-1

.
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8. CONCLUSIONS 

A ring-on-ring biaxial flexural strength fixture was developed in-house to test the biaxial 

strength of different disk-shaped ceramic components. This test was selected due to the 

simplicity in design and development of the jigs by following the ASTM C-1499 standard. A 

significant disadvantage of this method is the requirement for flat parallel samples that makes 

their preparation extensive and time consuming and not permitting for the testing of as-sintered 

samples. A model ceramic material composed of ZrB2-30wt%SiB6 sintered using SPS technique 

was used to validate the manufactured ring-on-ring fixture. The X-ray diffraction was used to 

obtain the phase composition of the model ZrB2-30wt%SiB6 ceramic composite while optical 

microscopy was used to calculate the grain size distribution. X-ray diffraction analysis showed 

that the ZrB2 phase was stable while the SiB6 phase was non-stable after sintering of the 

composite. The non-homogeneous phase distribution was measured by optical microscopy 

showing the appearance of large agglomerates/grains in ZrB2-30wt%SiB6 composite. The 

Resonant Ultrasound Spectroscopy was used to measure elastic properties of the composite both 

at room and high temperature in an Ar protective environment. The calculation of the biaxial 

strength was simplified by using simple-plate theory, which only depends on the Poisson’s ratio 

of the material being tested, as specified by the ASTM C1499 standard. The measured values of 

biaxial strength using ring-on-ring jig were compared to a model developed using the finite 

element method for the elastic region of the ceramic composite assuming a homogeneous 

material. This finite element analysis showed a close correlation to the experimental results from 

which it can be concluded that the jig designed was validated since the maximum absolute stress 

occurred in the tensile surface region of the ceramic disk enclosed by the load ring with a value 

of 224.9 MPa, decreasing gradually as the radius of the disk increases 
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The mechanical response of a skeleton of the coral Acropora cervicornis to uniaxial 

compressive loading and sharp Vickers indentation was studied. The results show that the 

skeleton structure can withstand the cyclic distributed forces of ocean waves and also, to a 

certain extent, resist highly-concentrated compressive forces. Skeletons of Acropora cervicornis 

have a unique and complex microstructure with substantial porosity, and pores have different 

shapes and orientations. Skeleton porosity and aragonite crystals' growth directions contribute to 

“gracious” failure, which extends the instantaneous catastrophic failure to higher loads and 

deformations. Cylindrical samples cut from the skeleton of a nursery-reared Acropora 

cervicornis exhibited maximum compressive stress of 18.98 ± 5.74 MPa and a micro-hardness of 

3.56 ± 0.31 GPa. The anisotropic pores serve as strengthening and toughening elements for the 

coral skeleton’s resistance to fracture in the harsh marine environment, thus contributing to its 

ability to resist cracking. Further load increase ultimately caused the skeleton to fail 

catastrophically, with a crack propagated and splitting into two or more non-uniform sections, 

with the formed fracture surfaces parallel to the applied compression load. In nature, Acropora 

cervicornis distributes applied stresses (e.g., when impacted by marine debris or kicked by a 

snorkeler) throughout its lattice-like skeleton and fails gradually, until the skeleton finally cracks 

along its longitudinal axis. However, a more common outcome is that shearing and torsional 

stresses would snap the skeleton before compression failure occurs. As shown by micro-Raman 

spectroscopy, the coral skeleton consisted of an aragonite structure rather sensitive to the applied 

compressive stress, resulting in a decrease of intensity and an increase in FWHM of the 1083 cm
-

1
 Raman peak. However, the position of the Raman active 1083 cm

-1
 peak was weakly sensitive 

to the applied compressive stress. Thus, Acropora cervicornis can also resist indentations in the 

natural environment, such as from grazers (except those with very powerful beaks or jaws, 



 

111 
 

including parrot fish and sea urchins). Measurements of the flow-field of the moving coral-

skeleton using PIV showed that its wake resembles that of a bluff body, and is characterized by 

the existence of vortex shedding. However, due to high surface roughness of the coral-skeleton, 

the larger scale vortices were not stable and soon disintegrated into smaller scale vortices. The 

hydrodynamic load acting on the coral structure is indeed linked to the strength of these vortical 

elements in the wake. 

The solid model of a coral skeleton was developed using graphical techniques that split 

the frames of a video collected using CT scan and with the use of Mimics® the volume mesh 

was generated. This model allowed for the study of the coral skeleton and its response under 

compressive load furthering understanding the complex microstructure of this organism. The 

elastic modulus of pure CaCO3 was modified accounting for the porosity of the coral skeleton 

measured using image processing techniques to tune the accuracy of the model and obtain 

realistic results from the simulation. 

An in-situ optical spectrometer for the vibrational response of Raman active material was 

developed to obtain the real-time response of ceramic materials subjected to different states of 

stress applied through a universal testing machine. The instrument is able to analyze materials by 

the exciting them with a green laser on a localized point that can be used individually or put 

together with other points and develop a map that can provide an image of the defects in the 

surface and sub-surface of the ceramic. This technique can be further developed to study the 

accumulation of stress the material is experiencing under the loading case it is exposed. The 

system consisted of an in-Via® Raman system coupled to a fiber optics cable that conducted the 

laser to the optical probe and allowed for the excitation of the material surface and the collection 

of the Raman radiation released by it, which was alter processed by the CCD and the software 
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Wire®. In order to collect maps and gain a good focus in the sample surface the stage had to 

move in the XYZ axes. This motion was achieved by the development of an in-house program 

that used the software Cosmos® as the controller of the stepping motors that triggered the 

motion of the screws controlling the stage. The generation of the maps was done using data 

analysis with the open source programming language Python
TM

 which permitted the 

manipulation of the information collected in every point of a map that were translated 

graphically and color coded to depict the variance in the parameters of the maps. 

. 
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APPENDIX A: BIAXIAL STRENGTH RESULTS FOR THE ZrB2-30wt%SiB6 BRITTLE 

CERAMICS  
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The biaxial flexural strength of three samples of ZrB2-30wt% SiB6 was obtained through 

the ring-on-ring test developed in-house. The elastic properties for the calculation of the 

maximum stress, as well as the stress-strain plot were found by resonant ultrasound spectroscopy 

at the University of Texas A&M. 

 

Figure A 1: Biaxial stress and stress-strain plot for three samples of ZrB2-30wt%SiB6. 
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APPENDIX B: VICKERS HARDNESS AND COMPRESSION TEST RESULTS OF 

BLEACHED ACROPORA CERVICORNIS CORAL SAMPLES 
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B.1. Vickers Hardness of Bleached Coral Samples 

The Vickers hardness was obtained using a load of 50 grams on 13 random points on the 

pristine polished surface of a bleached coral sample. 

Table B 1: Vickers hardness measurement on bleached coral sample 

Bleached Sample 

Indent Load (g) Measured Hardness (GPa) 

1 50 3.36 

2 50 3.26 

3 50 3.58 

4 50 3.31 

5 50 3.37 

6 50 3.53 

7 50 3.56 

8 50 3.54 

9 50 3.33 

10 50 3.55 

11 50 3.43 

12 50 4.40 

13 50 4.05 

Average 3.56 

Std. Dev. 0.31 
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B.2. Compression of Bleached Coral Samples 

Bleached coral samples were compressed at a constant rate of 0.03 mm/s until complete failure 

using an electromechanical universal testing machine MTS Criterion C43. The plot of four 

stress-time plot of four samples can be found in  

 

Figure B 2: Stress-time plot of four different bleached coral samples indicating different 

points of failure and showing a behavior of failure by stages. 
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