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ABSTRACT 

This thesis is about the design, development and integration of an in-situ compression stage which 

interfaces through the Leica optical microscope coupled with a Renishaw InVia micro-Raman 

spectrometer. This combined compression stage and Raman system will enable structural 

characterization of ceramics and ceramic composites. The in-situ compression stage incorporates 

a 440C stainless steel structural components, 6061 aluminum frame, a NEMA 23 stepper motor. 

Two load screws that allow to apply compressive loads up to 14,137 N, with negligible off axis 

loading, achieving target stresses of 500 MPa for samples of up to 6.00 mm in diameter. The 

system will be used in the future to study the structural changes in ceramics and ceramic 

composites, as well as to study thermal residual stress redistribution under applied compressive 

loads. A broad variety of Raman active ceramics, including the traditional structural ceramics 

3mol%Y2O3-ZrO2, B4C, SiC, Si3N4, as well as exotic materials such as LaCoO3 and other 

perovskites will be studied using this system. Calibration of the systems load cell was performed 

in the configured state using MTS universal testing machines. To ensure residual stresses from 

mounting the load cell did not invalidate the original calibration, the in-situ compression stage was 

tested once attached to the Renishaw Raman spectrometer using LaCoO3 ceramic samples. The 

Raman shift of certain peaks in LaCoO3 was detected indicative of the effect of the applied 

compressive stress on the ceramics understudy.  
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CHAPTER 1: INTRODUCTION 

As engineers we strive to potentially find new research findings which can advance human kind. 

That is why this research focuses on developing means of capturing previously non-accessible 

aspects of material behavior under realistic operational conditions. Ceramic materials are used for 

a variety of energy applications including solid oxide fuel cells, turbomachinery, oxygen 

separation, thermal protection, armor, and cutting tools. The ceramics used in these applications 

sometimes operate in harsh conditions and are require to endure a multitude of mechanical stresses. 

Advancements in mechanical testing have provided numerous testing techniques to classify 

mechanical properties of current and new ceramic compositions. These tests provide 

characterization of instantaneous and time dependent mechanical properties of advanced ceramic 

and ceramic composites. Measurements of mechanical properties, such as uniaxial and biaxial 

strength, stress-strain deformation behavior, fracture toughness, hardness, Young’s modulus, and 

Poisson’s ratio, are important for the future design of materials and devices based on them. 

Although these properties are important for proper design of components and mechanisms, and 

allow engineers to estimate the reliability, durability and lifetime of ceramic structures, few testing 

techniques allow simultaneous in-situ structural characterization of materials while simultaneously 

performing uniaxial compression testing at the same time. Therefore, the miniature compression 

testing device proposed in this research is of a high importance to advance the field of in-situ 

testing techniques. The miniature compression fixture will initially be used to compress cylindrical 

ceramics such as lanthanum cobaltite LaCoO3, yttria stabilized zirconia ZrO3+Y2O3 (ZrO2 + 

8mol% Y2O3 And ZrO2 + 3mol% Y2O3), boron carbide B4C, silicon nitride Si3N4, and silicon 
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carbide SiC along with many other new and unusual ceramics and ceramic composites. This thesis 

will aim to couple mechanical compression with structural characterization using an in-situ 

compression stage and Raman spectroscopy. 

Efforts 

A compression fixture was designed as a part of the proposed testing effort and will allow for 

structural characterization while performing mechanical testing. This compression fixture was 

developed to be mounted to a Renishaw InVia Raman spectrometer for simultaneous in-situ 

mechanical and structural characterization of Raman active ceramics. The compressive stage was 

designed to use an electromechanical system for compression, like the systems of many modern 

universal testing machines. As with many other electromechanical universal testing systems, the 

stage has a fixed support crosshead and a moving load crosshead. A load is applied using two 

rotating lead screw and the applied force is measured using a load cell.  

The primary reason for an in house-built compression stage is to allow the stage to be adapted to 

the geometry of the existing Raman spectroscopy microscope. The compression stage was 

designed in such a way that the microscope stage remains functionable allowing the sample being 

studied to still be in focus during compressive loading. In addition, microscope lenses of different 

magnification, and therefore size, needed to be able to reach within the required working distance 

of the samples surface during testing.  While multiple miniature tension-compression stages are 

available by well know scientific companies and appear to be extremely well built with control 

systems which perform many of the necessary functions, these stages would not be designed 

specifically for integration with the existing inVia Raman spectrometer system. There have been 
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at least two previous attempts to design such an in-situ compression stage by Senior Design groups 

of undergraduate students. The first group tried to design and develop a very sophisticated in-situ 

compression stage that even included a self-alignment feature which would guarantee proper 

alignment and centric loading during uniaxial compression experiments. Unfortunately, after 

assembly and testing of the first stage, it was realized that the self-alignment feature caused a 

significant degree of eccentricity which was always present upon loading and it was not possible 

to apply a centric load. The lessons learned by this senior design group was well documented 

allowing a second Senior Design group to design a new and improved version of the compression 

stage. This second group only produced a preliminary improved design of a new stage before they 

were moved to another project; therefore, this thesis work is a last and a successful attempt to build 

a uniaxial compression stage. 

Goals 

The goal of this thesis is to develop a high-performance in-situ compression stage coupled with an 

InVia Raman spectrometer for simultaneous testing of mechanical behavior of ceramics and 

collection of Raman spectra of ceramics while under compression. To achieve the goal and execute 

the development and design of a new stage, research was broken down into the objectives as 

follows.  

The first objective includes becoming familiar with the stages designed by past senior design 

students. The previous designs were thoroughly considered, and the previously designed stages’ 

building techniques understood. The idea of the new and improved design was entertained, which 

includes:  
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1. Creating an improved and updated new design in SolidWorks. 

2. Ensuring component tolerances are appropriate for the in-situ compression stage.  

The second objective involved modelling and calculating stress at critical section of the 

compression fixture to verify the design was adequate. The system was verified to ensure stresses 

are within the allowable range for the chosen for materials and large deformations—which could 

cause errors in testing results—would not occur. Calculations and finite element analysis were 

performed in critical locations. These model and calculations included: 

1. The load and support crossheads 

2. The ball screws 

3. The motor and transmission components 

The third objective involved machining and assembling of the miniature compression stage 

including: 

1. Manufacturing of the parts of the compression stage at the UCF machine shop. 

2. Assembling all components into a functioning device. 

Last, but not the least, the system was integrated with the Raman spectrometer and preliminary 

testing was performed to test the real-world functionality of the test fixture which will include: 

1. Programing the load cell and stepper motor. 

2. Attaching the compression stage to the microscope. 

3. Verification and evaluation of the developed stage. 
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Figure 1: Render of the final compression stage design and completed compression stage. 
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CHAPTER 2: LITERATURE REVIEW 

In order to contribute to advancing the field of ceramics forward it is important to understand the 

past work of other researchers. This section put the research performed by others and the research 

performed during this thesis into perspective. By reviewing other similar research, key concepts 

are defined and knowledge which helped shape the research efforts presented in subsequent 

chapters. 

Raman Spectroscopy Overview 

Spectroscopy, the study of light, involves the reflection, transmission, and scattering of light. 

Raman spectroscopy works by using a spectrometer which can pick up the tiny fraction of scattered 

light which change in wave length or color after contacting an object. This information can then 

be used to determine the vibrational modes of molecules. 

 

Figure 2: Fundamental photon-material interactions [1]. 
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A small amount of reflected light, one part in 10 million, has a change in frequency because of the 

interaction with molecular vibrations [1]. Energy which is lost during Raman scattering is called 

stokes energy and energy gained in the process is called anti-stokes energy. The energy gain and 

loss are related to the sample’s molecular vibration frequency. Measurements of the Raman spectra 

of Sc2O3-CeO2-ZrO2 ceramics are depicted by intensity of scattered light and frequency in figure 

3.  

 

Figure 3: Vibrational spectra of cubic and rhombohedral (β) Sc0.1Ce0.01ZrO2 ceramics; 

A, C – non-deformed polished surface, B, D – center of Vickers impression [2]. 
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Raman spectrometer systems consist of colored light sources, sometimes referred to as lasers, 

lenses which focus light on the sample and collect the subsequent scattered light, filters which 

purify the reflected and scattered light, diffraction grating or prism to split light into its constituent 

colors, and a detector which analysis the results. Raman spectroscopy can be used to analyze the 

scattered light by solid materials, such as ceramics, and characterize the materials structure. There 

are many advantages to Raman spectroscopy. First, structural characterization of the molecular 

motion of materials including ceramics can be performed without damaging the specimen. Also, 

many Raman spectroscopy tests have relatively easy setup procedures and short acquisition times 

which allows materials and components to be tested in a fast and efficient manner. The data 

collected during tests can then be used to provide chemical and structural information in an 

efficient manner [1]. It is possible other important material characteristics including residual 

stresses, impurities, and defects can also be uncovered. Likewise, Raman spectroscopy produces 

multiple challenges. One such challenge is photoluminescence, which can mask Raman 

information.  Additional challenges include chemical glassware masking Raman signals and 

identifying the optimal laser power which generates significant Raman scattering without 

producing structural or chemical modifications to the material.  

The specific Raman spectroscopy system, which is used to be coupled with the proposed 

compression stage is the Renishaw InVia Raman spectroscope (Wotton-under-Edge, United 

Kingdom). The Leica DMLM optical microscope is to be used as a base for the compression stage 

attached to it. It will also allow focusing of the ceramic sample by adjusting the compression 

fixture in the Z-direction. While performing Raman spectral acquisitions, a 532nm silicon laser 

with a maximum power of 100mW is used to excite the ceramic samples.  Long working distance 
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objective lenses will be used focus on the sample and include Olympus SLMPLN50X and 

Olympus LMPLFLN20X lenses.  

 

Figure 4: (A) Raman InVia spectrometer and (B) schematic of spectrometer [3]. 

Ceramics Material Overview 

This chapter focuses on the materials properties and Raman responses of ceramics which have 

been used and will be tested using the miniature compression fixture. The first tested using the 
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compression fixture was lanthanum cobaltite (LaCoO3). Other materials, such as yttria stabilized 

zirconia (ZrO3+Y2O3), boron carbide (B4C), Silicon Nitride (Si3N4), and Silicon Carbide (SiC), 

will be tested using the developed stage in the future research work. 

LaCoO3 is a perovskite with a rhombohedral crystal structure. This material has been shown to 

exhibit ferroelastic behavior, which was attributed to domain switching under stress application 

[4]. Lanthanum cobaltite uses include cathodes in oxides for solid oxide fuel cells, exhaust gas 

sensors in automobiles, catalysts, and membranes for oxygen separation and permeation processes 

[5] [6]. In the past, micro-Raman spectroscopy has been used to study LaCoO3 to evaluate the 

appearance of the residual surface tensile or compressive stresses induced during Vickers 

indentation testing [7]. 

 

Figure 5: Raman scattering of LaCoO3 perovskite at different laser intensities [7]. 
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Figure 6: Spectra of sintered (a) 3Y-TZP and (b) 8Y-FSZ. Solid line for original and dashed line 

for background subtracted spectrum [9]. 

Yttria stabilized zirconia with compositions of 3 mol% Y2O3-stabilized tetragonal zirconia 

polycrystals (3Y-TZPs) and 8 mol% Y2O3-stabilized cubic zirconia (8Y-CSZ) are an important 
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class of ceramic materials because of either transformation toughening occurring in 3Y-TZP or 

fast ionic conduction occurring in 8Y-CSZ [8] [9].  Uses of yittria stabilized zirconia include 

electrode materials in solid oxide fuel cells and oxygen separation membranes. Yttria stabilized 

zirconia has been studied in the past uses Raman spectroscopy and its typical spectra (figure 6). 

Boron carbide is a ceramic with a rhombohedral crystal structure which has a low theoretical 

density and high hardness [10] [11]. Examples of uses for boron carbide include armor because of 

its low density and high hardness and absorption of neutron for nuclear reactors because of its high 

neutron cross section for absorption [11]. In the past, Raman spectroscopy has been used to 

evaluate the micro-structure structure of boron carbide (figure 7).  

 

Figure 7: (a) Secondary electron image of a reaction bonded B4C microstructure revealing a 

core-rim structure (b) Raman spectra for the phases present: Si, SiC, B4C (core), and (B,Si,C) 

(rim)  [12]. 
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Silicon nitride has a cubic or hexagonal crystal structure and is used for cutting tools and high 

temperature applications such as rocket thrusters [13] [14] [15].  In the past, structural 

characterization of cubic silicon nitride has been performed using Raman spectroscopy (Figure 8).  

 

Figure 8: A typical Raman spectrum for the cubic spinel Si3N4 phase measured with 514.5 nm 

excitation at 295 K [16]. 

Silicon carbide is known to have a wide variety of poly types including cubic, hexagonal, and 

rhombohedral crystalline structures [17]. Uses of silicon carbide include armor, cutting tools, and 

thermal protection systems for space applications [18] [19]. Structural investigation of silicon 

carbide has also been performed in the past using micro-Raman spectroscopy (figure 9). 
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Figure 9: Comparison the of Raman spectra of 4H-SiC (B3PMA7) measured for different z 

positions [20]. 

In-situ Mechanical Testing and Structural Characterization 

In the past, researchers have made great progress coupling mechanical testing with structural 

characterization. The studies reviewed in this section use different mechanical testing techniques, 

structural characterization methods, and materials which demonstrates the importance of 

mechanical testing while performing structural characterization in a multitude of research areas.  

Key research projects were reviewed to understand conceptually similar studies and to put the 

work of this thesis into perspective.  

Nanomechanical testing was performed on Ni nanopillars using a Pico indenter equipped with a 

diamond flat-tipped punch tip [21]. This Bruker Hysteron PI 95 TEM picoindenter (Bruker, 

Billerica, MA) was used to perform unique loads by loading individual nanostructures while 

viewing the experiment using a transmission electron microscope.  
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Figure 10: Hysteron PI 95 TEM Pico indenter with close of loading tip [22]. 

In the past using traditional testing methods, the inability to see deformation of nanoparticles has 

been a major obstacle while determining mechanical properties. This problem was addressed by 

using a transmission electron microscope to simultaneously view the individual nanostructure 

while compressive forces were induced. 

 

Figure 11: (A) Dark-field TEM image of Ni nanopillar before compression, (B) and after 

compression [21]. 

High strength is exhibited by many nanoscale materials and this research helped to provide insight 

into the mechanisms which are involved with this phenomenon. It was observed that upon contact 
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with the picoindentor, the nanopillars yielded and as increased compressive strain was introduced, 

pre-existing defects disappeared resulting in essentially a dislocation free single crystal. This 

required large increases in compressive load to induce elastic behavior in the specimen. Individual 

frames recorder by the TEM allowed the instantaneous contact area to be measured. Large 

fluctuation was observed in the force vs. time graph of the experiment likely due to mechanical 

annealing, which created a stronger structure [21]. The data provide greater understanding into the 

phenomena responsible for the strain hardening or mechanical annealing observed in 

nanostructures.  

In another journal article researchers developed and tested an in-situ three-point bending device 

which can induce a constant bending stress while performing micro-Raman measurements to 

measure the vibrational responses of different ceramic materials such as ZrB2-SiC particulate 

ceramic composites [23]. The three-point bending devise was design for samples with dimensions 

between 3 mm x 4 mm x 45 mm and 2 mm x 2.5 mm x 35 mm and could induce a maximum load 

of 70 N resulting in a maximum stress of 100-360 MPa depending on sample size. Operation of 

the three-point bending devise is controlled via a stepper motor which drives two worm gears. The 

gear reduction created by the worm gears allows the devise to achieve higher torque and a lower 

loading rate. Circular motion is finally translated into linear displacement via parallel lead screws. 

A load cell is used to measure the mechanical force applied by the three-point bending test.  

Material characterization was performed using a commercially available Raman spectrometer with 

a 532 nm light source and holographic notch filters. Both the Raman spectrometer and the three-

point bending devise were calibrated prior to collecting data. First, the spectrometer was calibrated 

with calibrated with a Si standard using a Si peak position at 520*3 cm-1.  
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Figure 12: (a) schematic of loading ceramic bar in three point bending for collection of in situ 

scattered light, (b) photograph of in situ loading device and (c) loading device coupled with 

Leica optical microscope connected to InVia microRaman spectrometer [23]. 

The three-point bending fixtures load cell was calibrated by applying weights ranging from 10 to 

200 grams to the screw platform while the corresponding voltage was recorded. Then using 

materials with a known Youngs modulus, aluminum 2024 T3, the accuracy of the bending devise 

was checked by using an attached strain gage. Each sample was loaded and unloaded 5 times and 

the stress strain curves were collected.  
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Figure 13: Force applied versus voltage output for calibration of load cell and stress-strain 

deformation curves obtained by loading samples in the in situ loading device [23]. 

Finally, after the initial setup was performed, the dependence of peak position and stress could be 

tested using in-situ three-point bending devise. SiC bands are sensitive to stress changes, therefore, 

Raman peak intensities of SiC were used to study the effects of a bending load on the ZrB2 + 

10wt%SiC ceramic material. After placing the samples in the devise without a load, the spectra of 

the samples were calculated. Next, the spectrums were collected at multiple different loads ranging 

from 12.5 to 75 MPa. One peak was used to study because other peaks exhibited overlapping. All 

peak shifts transitioned to a lower wave number as bending stress was applied because of the 

tensile stress present in the material. Both linear and quadratic fits were performed and a 

relationship between peak position and applied stress was developed.  
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Figure 14: (A) Optical micrograph of ZrB2+10wt%SiC ceramic composite. (B) Raman 

spectrograph of 6H-SiC phase in ZrB2-10 wt-%SiC ceramic composites: peaks numbered 1, 2 

and 3 are modes of 6H-SiC and peak 4 is LO mode of 6H-SiC. (C) applied stress dependence of 

peak position of transverse optical and LO modes of 6H-SiC ceramics [23]. 

Raman mapping of ZrB2–SiC ceramic composites was performed by researchers using a 

commercially available Renishaw inVia micro-Raman spectrometer to perform micro stress 

analysis on ceramics [3]. Micro stress is caused by thermal residual stresses from sintering and has 

a significant effect on the material properties of ceramics. Using this technique, it is possible to 
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determine micro stresses within the ceramic sample by using the relationship between residual 

micro-stresses and Raman band frequencies. This paper explores the ideal parameters such as 

collection time, laser power, type of scan, and step resolution to produce micro-Raman 

spectrometer maps.  

 

Figure 15: (A) Optical image of ZrB2–SiC ceramic , (B)Spectrometer map, (C) SEM 

backscattered image of ZrB2-10 wt-%SiC, inset shows laser spot size taken using 6100 objective 

lens, (D) typical Raman spectra for SiC phase spot 1 of Spectrometer Map, and (E) typical 

Raman spectra for ZrB2 phase spot 2 of Spectrometer map [3]. 
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The best set points for exposure time and scan type were determined for ZrB2-10wt-%SiC. It was 

determined by the researchers that an exposure time of 30 seconds and a static or scan with a 

resolution of 0.5 um produced the highest quality results.  

In-situ compression of submicron structures and particles in a high-resolution SEM was performed 

by researchers after developing a device for in-situ compression which was coupled with a 

scanning electron microscope [24]. Measuring mechanical properties of nanoparticulate can be 

very difficult and currently there is no analytical approach or solution for complex stress fields in 

small particles. Therefore, experimentsal testing is the only way to characterize particle systems 

directly. Previous measurement techniques such as indention test create complex stress fields 

during loading. To solve problems of other tests, a more intuitive way was needed and little work 

has been performed working with compression of submicro sized particles. To solve this problem, 

the authors believed uniaxial loading of small structures using simple geometries in a scanning 

electron microscope (SEM) field would be adequate. Advantages of SEM include very high 

working distance, larger space, and easy sample preparation when compared to transmission 

electron microscopy. Likewise, one disadvantage is measurements are limited to regions near the 

surface.  Advances made in the field of micromechanics and electron microscopy also make using 

this technology in conjuction with uniaxial loading possible.  
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Figure 16: Schematic diagram (a) and a photographic image (b) of the in situ [24]. 

The compression device apparatus consisted of two main assemblies which are described as the 

upper and lower parts. The upper part carries out all movements and the lower part contains the 

load cell and sample support. The compression device is made from multiple materials. First the 

carrying frame is completely made from a standard aluminum alloy and steel spring with different 

spring constants were using for loading. Additonal materials used in the design included titiamium, 

brass and vacuum compatible polymers. One design challenge was making sure the device could 

fit inside the vacuum chanber of the SEM machine. Movement control of the system is performed 

using a closed loop piezoelectric tripod scanner and screw driven style stage. Course adjustment 

is provided via the stage. Via the stage, while fine adjustment is controlled via piezoelectric tripod 

scanner. The compression of the devise is controlled by a simple system which is comprised of 

interlocking steel foils, clamping jaws, and a titanium rod. This can produce a load from a spring 
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constant ranging from 30 N/m to 50000 N/m. Tension of the interlocked steel foils is adjusted by 

changing the relative positions of the clamping jaws on the titanium rod. Changing the spring 

constant of the load cell leads results in a change of force resolution. For calibration, the spring 

constant is determined prior to each experiment by moving the sample stage slightly and relating 

this to the masses and Eigen frequencies of the system.  

 

Figure 17: SEM image of the used diamond flat punch indenter (a) accompanied by an AFM 

image (b) characterizing the rms roughness of the plateau [24]. 
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A unique set of equations are used to processes the data which is recorded by the researchers. 

Force and deformation data are determined from the probe’s movement normal to the samples 

surface which is measured via a stain gage. The loading force normal to the samples is 

determined using the spring deflection related with the LVDT output voltage and the spring 

constant which is calculated using the equation 1. 

Equation 1: Load force normal to sample. 

F = D
∆Um

σ
          (1) 

The sample deformation is also calculated using equation 2. 

Equation 2: Sample deformation. 

δt = (∆Zm − ζ) −
∆Um

σ
        (2) 

The mechanical behavior of in-situ chondrocytes under compression was studied using an in-situ 

compression system in conjunction with a laser scanning microscope to investigate the effects of 

cartilage tissue lesions [25].  
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Figure 18: Schematic illustration of the in-situ compression system. The chondral block was 

compressed against a light-transmissible platen by a piezo-actuator. The vertical displacement 

was monitored by a displacement transducer [25]. 

Collagen fibers and proteoglycans provide tensile and compressive strength to joints. 

Chondrocytes are the healthy cells found in cartilage, were as, Lesions are areas of tissue which 

have suffered damage. Experimental and numerical approaches were used in this study to 

investigate the effects of cartilage tissue lesions on the mechanical behavior on in-situ 

chondrocytes. A loading fixture which was light-transmissible was designed and mounted onto the 

stage of a laser scanning microscope. 

In the experiment the tissue was compressed to 15% nominal stain. Also, a control set of tissue 

was not compressed. The data obtained using dual photo excitation microscopy was expressed 

using statistical analysis including the mean and standard error. The finite element model was 
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based off a pre-established two-scale model which had previously been used to study in-situ 

mechanical behavior of chondrocytes. 

 

Figure 19: Articular cartilage tissue and chondron mesh models [25]. 

The cartilage and bone joints were modelled two separate ways. First, tissue level or macroscale 

model was created. Then, a cell level or microscale model was created. Material properties of the 

macroscale property were assumed to be dependent on tissue thickness. The cartilage was assumed 

to be non-homogeneous and non-linear. The bone was modelled as biphasic, homogeneous and 

linear. The FE package used was Abaqus v6.12 and a 3D model was utilized. Deformation caused 

by compression during the physical test was displayed in the results, along with the results of the 

finite element analysis. Results of the compression test were recorded during three-time points and 

five normalized radial locations. Shear stress, axial strains, and fluid flow were recorded. The 

author noted that lesions experienced higher fluid flow and small tensile stresses while intact tissue 

experienced large axial compressive strains. Higher shear strain was also located near tissue 

lesions [25]. It was expected that the lesions tissue would deform more than intact tissue, but the 

opposite was found for the steady state conditions. A second experiment was also performed for 



27 

 

multiple compression-recovery cycles. When the samples were compressed multiple times, the 

cells deformed less each time due to residual deformation. Actual cell mechanics were more 

closely represented by the second test were smaller repeated cycles were performed. 

The numerical results also confirmed the experimental results. The FE model of cells was analyzed 

using the best-fit ellipsoid approach and four-point marker approach [25]. The best-fit ellipsoid 

approach was found to be unsatisfactory to estimate cell shear because of rigid body rotation. The 

four-point marker technique was successful for estimating the Green-Lagrange strain tensor [25]. 

The studies conducted in this research provide crucial insight to the mechanical response of 

lesioned joints and although more research needs to be performed, important findings were 

determined about the steady state and transition phase mechanics of the joints.  

 

Figure 20: Changes in cell morphology in the intact ECM or near tissue lesions during the tissue 

compression phase and the recovery phase [25]. 
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Other devices for in-situ testing of the mechanical properties of materials were developed and the 

results of their testing are presented in [26] [27] [28].  

Micro Mechanical Testing Devises 

In addition to the home made in-situ stages, commercially available micromechanical testing 

devices are also available  [29] [30] [31]. A brief overview is presented below and are based off 

the manufacturer website, specification sheets, and documentation. Also, journal articles or reports 

which use these devices are mentioned. 

The Kammrath and weiss tensile and compression module (figure 21) [29]. This micro tensile and 

compression test device is design for dynamic and static testing for use with scanning electron 

microscopes (SEM). This devise can perform cyclic testing and has a load range of 10uN to 5000N. 

This in-situ compression devise was used while performing EBSD analyses in Bunker application 

note #EBSD-02 [32]. 
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Figure 21: The Kammrath and weiss tensile and compression module [29]. 

Another high quality commercially available compression tester is the MTI instruments SEM 

series tensile Tester [30]. This stage is built for LM, SEM, and XRD structural testing. It can be 

used for tensile, compression, and cyclic testing. In this design the way the grips clamp the sample 

would not work for ceramic samples because of their brittle nature. The manufacturer offers 

multiple designs which have load frames with capacities between 450N and 9000N. 
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Figure 22: MTI instruments SEM series tensile Tester [30]. 

Finally, there is Deben compression & horizontal bending stage available on the market [31]. 

According to the manufacturer, this system is design for use with SEM, optical microscope, AFM 

or XRD system. This stage offers load cells from 2N to 200N and has multiple clamping options 

for three-point bending, four-point bending, tensile, and compression.  
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Figure 23: Deben compression & horizontal bending stage [31]. 

Senior Design Compression Stages 

In the past, at least two, University of Central Florida, senior design groups have design or 

developed compression stages with an intent to be used for in-situ Raman spectroscopy. The first 

Senior Design group successfully completed a working compression stage and performed testing 

on ceramic samples (figure 24). Unfortunately, a mechanism on the load crosshead which was 

designed to prevent eccentric loading by self-aligning the sample did not properly function and 

instead created eccentric loads. Also, to save weight, undersized ball screws were used in the 

student’s design. Nevertheless, Senior Design students’ stage had an outstanding design with a 

complex assembly which provided multiple lesson learned from their attempt. Lessons learned 

included the necessary use of properly sized ball screw, challenges with sample alignment, the 

importance of using materials which minimize deflections, and choosing a design which minimizes 

machining time. In the new design larger lead screws and ball nuts were used which were rated for 
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the required higher loads. Also, a larger gear reduction was implemented using a two-stage 

transmission to increase torque. The original sample alignment fixture was removed, and instead 

precise machining was used to ensure the sample under compression is well aligned and a 

compressive load was applied centrically. To minimize deflections, the load path is constrained 

between the 440C stainless steel crossheads and the ball screw system instead of the aluminum 

body.  

 

Figure 24: First compression stage designed produced by UCF senior design team. 

The second Senior Design group designed a new compression (figure 25) but was unable to 

complete the design due to their project being reassigned after the first semester. This second 

design also had some great feature which were included in the latest design presented in this thesis. 

These features include a modular aluminum stage frame which allows the stage frame to be 

machined out of four components requiring less material removal. It also includes I-beam style 

load and support crossheads which increase the moment of inertia, therefore decreasing crosshead 
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deflection, minimizing eccentric loading, and saving weight. A smaller and lighter stepper motor 

was also able to be used due to the large gear reduction. 

 

Figure 25: Second design of the compression stage which will be a basis of the redesign.   
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CHAPTER 3: DESIGN 

A miniature in-situ compression fixture was designed to be mounted on a Leica optical microscope 

and to be used to perform in-situ structural-mechanical testing in conjunction with an InVia micro-

Raman spectrometer. The design and calculations of the compression fixture are displayed in this 

section and include: the design criteria, important system analytical calculations, the design in 

CAD, finite element analysis, and design of the control system. 

Design criteria 

The micro compression fixture was designed with the ability to compress cylindrical ceramic 

specimen up to 12 mm in length and with a diameter up to 6 mm. The electrical mechanical loading 

system was designed to produce a load up to 14137 N in compression. The desired maximum 

compressive stress samples with a diameter of 6.00 mm of 500 MPa. It is also important that the 

load fixture is rigid, and the load and support platens which contact the specimen being tested must 

remain parallel to prevent eccentric loading. In the future, the simple design of the loading fixture 

could allow for samples of other geometries such as rectangular samples to be tested. Although 

the compression fixture was initially designed for cylindrical samples of 2.00 mm in diameter x 

4.00 mm in height and 6.00 mm in diameter x 12.00 mm height, the fixture was designed with the 

intent that samples with similar geometries could be tested with minor modification. The use of 

samples with different dimensions would require platens that accommodate the cross-sectional 

area and they would need to fit within the load and the support fixture. 
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Figure 26: LaCoO3 cylindrical ceramic sample used for testing with a diameter of 6.04mm. 

In order to perform mechanical testing and structural characterization, the stage was combined 

with a Leica DMLM optical microscope which focuses the light of the Raman InVia spectrometer 

via objective lenses of specified magnifications and working distances. Designing the compression 

stage to connect to the optical microscope posted its own set of challenges. Challenges included 

keeping the compression stage small enough to fit in the microscope stage area, the weight of the 

compression stage, and allowing adequate room for the Leica 50x lenses to focus on the samples. 
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Figure 27: Leica DMLM microscope with compression fixture attached and CAD model of 

microscope. 

In order to use the microscopes stage alignment mounting points, it was necessary to ensure the 

weight of the compression stage was minimized to mitigate significant misalignment or damage 

to the microscope’s components. Although Leica was unable to provide an exact weight 

requirement of their microscope, a representative of the company suggested keeping the load the 

microscope encountered under 4.5Kg to avoid damage. Therefore, early in the design process it 
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was determined that the stage needed to be under 4.5 kg or a mechanism which supports the 

microscope to reduce the strain induced on the focusing components needed to be developed. 

The design was also required to allow the microscope to focus on the sample. Because different 

magnification lenses have different diameters, lengths, and working distances these criteria proved 

to be challenging. In figure 28 the photograph of different sizes of magnification lenses (Figure 

30A-D) and an example of the 50x long working distance lenses fit check in SolidWorks are also 

presented (Figure 30F).  

 

Figure 28: Microscope lenses geometries and focusing fitment. 

Calculations 

Analytical calculations of key system components and subsystems were performed to ensure the 

compression fixture could meet design requirements and to provide a better understand of system 

kinematics. These calculations included sample loading, ball screw load analysis, torque, gear 

reduction, gear spacing, and advancement rate.  
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Sample loading 

The desired compressive force of the system was 14,137 N which would allow high strength 

ceramic specimens to be compressed to 500 MPa. Using the stress equation, the force required for 

samples with diameter of 2 mm and 6 mm was calculated and shown in table 1. The required force 

(F) was calculated using the stress equation, equation 3, using stress (𝜎) and cross-sectional area 

(𝐴𝑐). 

Equation 3: Required system force. 

F = σ • Ac          (3) 

Table 1: Load due to compressing the ceramic sample to the desired stress of 500 MPa. 

Sample Diameter Cross section Area 

(Ac) 

Total Load (F) 

2 mm 3.14 mm2 1,571 N 

6 mm 28.27 mm2 14,137 N 

 

The maximum stress of 500 MPa can be achieved with the system designed. Each of the systems 

two ball screws would be subjected to ~50% of the total load. The resulting loads calculated from 

a uniaxial stress of 500 MPa for samples with a cross sectional area of 2 mm and 6mm (table 1). 
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Figure 29: Sample load setup. 

Ball Screws 

It is important to gage if the ball screws are operating at a safe compressive force to ensure they 

will not buckle to deflect to a point which will compromise the compression fixtures performance. 

According to Thompson Linear (Thompson Linear Motion, Radford, USA), which produces ball 

screws, the critical buckling force (Fc) and safe compression force (Fs) are a function of root 

diameter (df), fixed end factor (Cs), and max unsupported length (L) area all important parameters 

for selection of the proper diameters of the ball screws as shown in equation 4 and 5 [33]. The 

manufacturer recommends a minimum safety factor of 0.8 when calculation the safe compression 

force. 
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Equation 4: Critical buckling force. 

FC =
CS•9.687•10

4•df
4

L2
         (4) 

Equation 5: Safe compression force. 

FS = FC • 0.8          (5) 

 

Figure 30: End fixity factor Cs [33]. 

Exceeding the recommended maximum compression force may result in buckling of the screw 

shaft [33]. Using a conservative approach that the ball screw is supported at both ends, the safe 

compressive force was calculated to be equal to 645 kN. Therefore, the ball screw is safe from 

buckling. It is assumed that as the travel length of the device is short, that any rotational excitations 

from the stepper motor will be below that of the fundamental natural frequencies within the stages 
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frame geometry. The critical speed of the ball screw was not taken into consideration. Vibrations 

were taken into consideration at all speeds and no large increases in vibration which would elude 

to natural frequencies occurring were witnessed. 

Torque 

The required torque of the stepper motor was calculated to produce a maximum clamping force of 

14,137 N. The torque, equation 6, required to produce the required clamping force was calculated 

using a simplified equation. The torque is a function of required force (F), lead (P), gear reduction 

(R), and efficiency (%eff). 

Equation 6: Required torque. 

T = .177F • P          (6) 

The required stepper motor torque was determined to be 2.5 N-m for each lead screw. A single 

Stepper motor drives both ball-screws the requiring an input without a gear reduction of 

approximately 5 N-m. The Anaheim automation stepper motor model number 24Y304S-LW8 

which is used in the system has a maximum bipolar torque output is 2.06 N-m. Therefore, a power 

transmission needed to be designed to reduce the required torque of the stepper motor.  

Gear Reduction 

To correctly size the stepper motor and gear box, the required torque of the gear box was 

calculated. The calculation is then used to determine the necessary gear reduction and stepper 

motor torque. First the terminology of lead screws and ball nuts must be understood. The lead of 

a lead screw or ball screw refers to the linear distance the ball nut will travel per rotation of the 
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ball screw. Lead screw assemblies work much like a typical screw, but use ball bearing, which 

rolls between the helical groves (Figure 31). The screw and nut only have contact between the ball 

bearing resulting in precise travel and low friction. Due to low friction, ball screws offer 

mechanical efficiencies and allow around 90% of the rotation motion to be translated into linear 

motion.  

 

Figure 31: A schematic presentation of a ball screw with a tangential ball return system [34]. 

The in-situ compression stage used an Anaheim automation high torque stepper motor to provide 

rotational power to a gear train, which interns lead screws providing linear motion. A compound 

gear train was designed to increase the power transmission of the stepper motor to the required 

level. The gear ratio of the gear train was calculated using the principles in equation 7 where 𝑇1 is 

the drive gear and 𝑇2 is the driven gear. 

Equation 7: Gear ratio. 
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𝑅𝑖𝑗 =
Tj

Ti
          (7) 

In the table below, the gear reduction of each stage of the gear train is shown. In order to exceed 

the required torque reduction a two-stage gear train was used and provided a final gear reduction 

of 1:16. 

Table 2: Gear reduction of compression stage transmission. 

 

Gear Spacing 

The module 1 gears used in the gear train have a 20-degree pressure angle. The required center 

distance needs to be calculated to determine the position of the gear shaft bearing and the stepper 

motor. Equation 8 was used to calculate the required center-to-center distance where 𝑝𝑑1 and 𝑝𝑑2 

and the pitch diameters of gear one and two, respectively.  
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Equation 8: Center-to-center distance. 

a =
pd1+pd2

2
          (8) 

The center to center distances was calculated to allow to proper gear clearance in the design. The 

schematic drawing used to understand center-to-center gear spacing, clearance, and gear 

terminology is shown in figure 32.  

 

Figure 32: Drawing of Center to Center Distance of spur gears [35]. 
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The required center distance between gears one and two is 24 mm. Likewise, the required center 

to center distance between gears three and four is 33.5mm. The calculations were performed using 

the manufacturer’s specified pitch diameter. 

Load Rate 

Understanding the advancement rate of the load crosshead versus the rotation of stepper motor is 

important to determine the correct rotation rate of stepper motor to achieve a desired load rate 

during testing. The ball screws used, have a lead (p) of 10mm. Therefore, for every rotation of the 

ball screw, the ball nut and crosshead attached advance 10mm. Due to the 16:1 gear reduction (R), 

the ball screws advance 0.625mm per rotation of the stepper motor. This advancement rate can be 

controlled by adjusting the frequency of the step clock input (f) which will be explained in greater 

detail in the system control section. For most loading conditions, a micro-step resolution of 50,000 

steps per revolution will be selected. Therefore, for every 50,000 step clock inputs, the motor will 

complete one revolution. The crosshead speed or load rate (�̇�), mm per minute, for different step 

clock inputs can be calculated using equation 9. 

Equation 9: Crosshead speed. 

�̇� = 0.00075 • 𝑓         (9) 

Using the crosshead speed, the strain rate of an experiment can be calculated by dividing the 

crosshead speed by the gauge length of the specimen. This information could be critical if it is 

desired to test samples at a specified load or strain rate.   
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CAD Design 

An initial complete redesign of the compression stage was performed in SolidWorks.  An in-depth 

design process was started by studying “Lesson learned” from past designs. This included 

misalignment issues, deflection of the components and their selection. This knowledge was 

leveraged when designing components such as the aluminum stage, crossheads, transmission, and 

ball screws in SolidWorks. Commercially available components were also modeled whenever the 

CAD files were unavailable. This allowed the complete compression stage to be designed and 

modeled insuring component fitment during assembly. 

One challenging aspect of the design was incorporating components which had already been 

purchased by the second senior design team even though their design was not finalized. Items 

which were already purchased included the ball screw material stock, ball nuts, the stepper motor, 

transmission gears, and transmission shaft material. To add to this challenge, several of the 

components available were improperly labelled in the material order documentation, were the 

incorrect size, or not used in the CAD model. For example, the gears purchased for the 

compression stage had a journal diameter of 25 mm and the recommended ball screw machined 

diameter was 20 mm. This lack of design documentation and insight made improving the original 

design almost as hard as starting from a fresh slate. 

A design review was performed including other engineering students and machinists at the UCF 

machine shop. This collaboration with experienced machinists helped streamline the design and 

manufacturing process. Also, reduced machine time and cost were additional benefits of directly 

working with the machinist at the UCF CECS machine shop. 
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The following major changes were performed. 

1. Constraining the lead screws using ¾-10 and ½-13 fasteners. 

2. Adding fasteners to required locations. 

3. Developing a way to constrain the stepper motor. 

4. Eliminating the curves on the stage plates to allow a standard key cutter to be using during 

machining. 

5. Including platen which would compress the sample. 

6. Changing thickness of the stage plates to match bearing thicknesses. 

7. Eliminating the complex curves on the sample support stage. 

8. Adding bushings for the transmission shafts and load crosshead to reduce wear and friction. 

9. Reconfiguring the gear system to reduce the footprint. 

10. Changing the geometry of the load crosshead to allow for the ballnuts to be mounted. 

11. Commercially available parts without models were re-drawn to improve model quality. 

The differences between the initial senior design and the final design which was produced are 

clearly displayed in figure 33. As listed above, fasteners were added to constrain the components 

and parts of the compression stage. The stepper motor was moved to allow it to be bolted to the 

aluminum plate instead of floating unconstrained. The motor plate and midplate were also 

redesigned including an upper area for the transmission shafts and associated bushing to be 

mounted. Ball screw journal diameters were adjusted to the appropriate manufacture 

recommended journal diameter and spherical ball bearing were used. The stage was simplified to 

allow ease of manufacturing and reduce machining time. Also, components such as the load cell 

and platens were added to allow the microscope lenses to reach the required working distance.  
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Although the original senior design team had multiple mistakes in their design, documentation, 

and component selection, as mentioned in the literature review, the senior design team did have 

many great engineering ideas. This included making the compression stage fixture out of multiple 

parts, using I-beams for the load and support crosshead, and the concept of the two-stage 

transmission.  

 

Figure 33: Initial compression stage design (left) and final compression stage design (right). 

In the following paragraphs the mechanical aspect of the electromechanical compression stage 

design. The terminology for subsystems is outlined in figure 34 which include; the ball screws, the 

support crosshead, the ceramic sample, the load crosshead, the ball screws, the gear train, and the 

stepper motor. The design of each of these subassembly and individual components are reviewed 

in the following sections. 
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Figure 34: Components of the compression stage fixture. 

The compression fixture was designed to minimize loading into the aluminum support fixture or 

backbone and instead constrain the primary load path to the ball nuts, support crosshead, and load 

crosshead. A simplified free body diagram can explain this concept. Torque is input into the ball 

screws via the large main gears spinning the lead screws. The ball screw and ball nuts apply force 

into the load crosshead advancing it by 10 mm per revolution compressing the sample. An equal 

force is exerted on the load crosshead and support crosshead because of the platens, ceramic 

sample, and load cell.  The force of the support crosshead travels through the inner ball bearing 

races (not shown) which are constrained by ¾-10 fasteners and thus are transmitted back to the 

ball screws themselves. 
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Figure 35: Compression fixture load system: Ball screws, load crosshead, support crosshead, 

gears, and stepper motor. 

Thompson 25mm Ball Screw and 25mm Ball Nut part numbers 7832786-P5 and 7832787 are used 

to drive the load crosshead and compress the sample.  The ball screw bearing journal diameter was 
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machined to 20 mm as recommended by the manufacturer. The 20 mm journal diameter was 

machined so that the ball nut would fit into all three bearing supports yet allowed the ball nut to 

advance all the way without hitting the end of the threads therefore eliminating the opportunity for 

the ball nut to run off the threaded portion. To ensure that the ball screw each side is secured a bolt 

which are a ¾-10 thread and ½-13 thread were used. The motor size fastener used in the design 

was ½-13 because of stepper motor clearance and because it is not in the load path of the 

compression crossheads. 

 

Figure 36: A photo of Thompson linear ball screw and ball nut, along with SolidWorks model of 

a ball screw [33]. 

The support-crosshead assembly includes a custom I-beam machined at the University of Central 

Florida Machine shop of 440C grade stainless steel (figure 37). Support crosshead is aligned on 

the ball screws using two bronze sleeve gears McMaster-Carr part number 6658k44. Also, an 

Omega LCGB-10K load cell is used to measure the compressive force of the system. 
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Figure 37: Support crosshead subassembly. 

Likewise, the load-crosshead assembly uses 440C stainless steel and was designed as an I-beam 

to increase the moment of inertia while decreasing weight. A load platen made of 4140 steel is 

press fit into the member. The load-crosshead is shown with the Thompson ball nuts attached, 

which are fastened using M5 socket head screws (figure 38). 

 

Figure 38: Load crosshead subassembly. 

The fixture backbone is constructed of four individual pieces of 6061 aluminum shown in figure 

39. McMaster-Carr, 20mm journal diameter heavy duty ball bearings are used to constrain the ball 
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screws. McMaster-Carr part number 6679K12 8 mm sleeve bearings were used for the 

transmission shafts. The four-piece construction was utilized because it allows easy assembly, can 

be machined from less expensive aluminum plate stock. This design also allows to reconfigure of 

the compression stage for different sample sizes and possibly tensile testing in the future.  

 

Figure 39: Compression stage CAD model and machined Assembly. 

The gear reduction transmission which utilizes 7 gears to produce a final gear reduction of 16:1. 

Module 1 gears were used and included; three 12 APW Wyatt part number 85032 gears, two 36 

tooth part number unknown gears, and two 64 tooth KHK module1 part number SUS1-64J20. The 

input and intermediate shafts were cut and machined from 8 mm shaft stock. A setscrew shaft 

coupler (not shown) Servo City part number 625185 is used to adapt the ¼” diameter stepper motor 

drive shift to the 8mm input shaft. 
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Figure 40: Transmission gears design and machined components. 

Microscope stage mounting fixture was machined from 6061 aluminum and is mounted to the 

Leica optical microscope using four M4 socket head screws. Using the microscopes focusing 

fixture as a z-axis reference, the mounting fixture was designed to allow the stage to be shifted in 

the x and y axes directions, which allowed for some adjustability of the focal point of the ceramic 

sample during focusing event.  

 

Figure 41: Compression stage mounting fixture. 
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Finite Element Analysis 

A finite element analysis using Siemens NX 11.0 was performed on the load crosshead and support 

crosshead to calculate the stresses and magnitude of deflection which is expected to occur. The 

cross-sectional area of the crossheads utilizes an I-beam shape to minimize weight and increase 

the moment of inertia, reducing the deflection. The load-crosshead and support-crosshead was 

machined from 440C stainless steel. ASTM A276 standard grade 440c stainless steel is a high 

carbon martensitic stainless steel, providing good corrosion resistance, extreme high strength, and 

hardness [36].  

Load Crosshead 

The compression stage load crosshead FEA model was developed using the following parameters. 

A 3D tetrahedral mesh with an element size of 2.54 mm was used for the ball nuts and I-beam. 

Also, a 3D tetrahedral mech with an element size of 1 mm for the load platen. For the boundary 

conditions, a fixed constraint was applied to the inner diameter of the ball screws. Also, surface-

to-surface contact constraints were implemented between the I-beam and the ball screws.  A force 

of 14137 N was applied to the load platen. 
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Figure 42: Finite element model of Load-crosshead and load platen. 

 

Figure 43: Compression stage load I-beam FEA deflection results. 
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Figure 44: Compression stage load I-beam FEA stress results. 

The load cross head also has surface-to-surface contact results because it was modelled as an 

assembly with the load screw ball nuts. 

 

Figure 45: Compression stage load I-beam FEA surface-to-surface contact stress. 
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Support Crosshead 

The compression stage support crosshead FEA model was developed using the following 

parameters. A 3D tetrahedral mesh with an element size of 2.54 mm. The boundary conditions 

were applied to the bottom rings where the I-beam would contact the compression stage frame. A 

force of 14137 N was applied to the circular area where a load cell is mounted to the I-beam. 

 

Figure 46: Finite element model of compression stage support crosshead. 

 

Figure 47: Compression stage support I-beam FEA deflection results. 
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Figure 48: Compression stage support I-beam FEA stress. 

Results 

The maximum stress of the load and support I-beams were 278 MPa and 186 MPa respectively. 

The material of the load and support I-beams, 440C stainless steel, has a minimum yield strength 

of 450 MPa and a minimum ultimate strength of 760 MPa [37]. Using this information, the margins 

of safety for the load I-Beam and support I-Beam were calculated using equations 10 and 11 and 

are presented in table 3. 

Equation 10: Margin of safety yield. 

𝑀𝑆𝑦𝑖𝑒𝑙𝑑 =
𝜎𝑦𝑖𝑒𝑙𝑑

𝜎𝑚𝑎𝑥
− 1         (10) 

Equation 11: Margin of safety ultimate. 

𝑀𝑆𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 =
𝜎𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒

𝜎𝑚𝑎𝑥
− 1        (11) 
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Table 3: Load and support I-beams margins of safety. 

Component 𝝈𝒎𝒂𝒙 𝑴𝑺𝒚𝒊𝒆𝒍𝒅 𝑴𝑺𝒖𝒍𝒕𝒊𝒎𝒂𝒕𝒆 

Load I-Beam 278 MPa 0.62 1.73 

Support I-Beam 186 MPa 1.42 3.09 

 

Although Margins of safety to yielding were relatively low, these stresses were concentrated in 

small regions near load platens and supports. Also, deflections were minimal and should not 

significantly affect experimental results. After completing the finite element analysis, it was 

determined the stress and deflection of the 440C stainless streel load-crosshead and support-

crosshead was acceptable. 

 

Figure 49: Finite element analysis max stress locations. 
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Manufacturing and Assembly 

After the compression stage was designed, the next step was to manufacture components which 

were not commercially available. Machining of these components was performed at the UCF 

College of Engineering and Computer Science (CECS) machine shop using a mixture of manual 

controlled machines and computer numerical control machines. Drawings produced using 

SolidWorks were used by the UCF machine shop machinists to machine the parts. For parts which 

were machined using CNC machines, the CAD files were also provided. Critical features were 

machined to a tolerance of 0.127 mm (±0.005). 

 

Figure 50: UCF machine shop vertical mill (left) and load cell alignment (right). 



62 

 

The components were assembled after bring machined. Some of these assemblies needed high 

accuracy alignment and were assembled using a three-axis end mill, edge finders, indicator, and 

gage pins. For example, the load cell platen needed to be centered between the ball screws in order 

to centrically load the ceramic sample. This was achieved by indicating the centers of the support 

crosshead bushings and then using a gage pin to roughly center the load cell and load platen. Next, 

an indicator was used to center the load cell to approximately 0.0254 mm (±0.001) shown in figure 

51. The gage pin was again used to apply a load to steady load cell and platen while the M4 bolts 

were secured. Last, the platen was indicated to ensure the load cell did not move while being 

secured.  

 

Figure 51: Compression fixture machining, assembly, and finished compression fixture. 
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General assembly was achieved by lubricating the parts with a light film of oil before sliding them 

into place. Press fit components were pressed into position using a manual press. For components 

where the press fit alignment was critical, like the load and support platens, components were first 

aligned using the three-axis mill and a gage pin to ensure they were straight and perpendicular. 

Then the pressing procedure was initiated using the mill before finishing the pressing using the 

manual press.  The ball nuts were assembled onto the ball screws using the procedural video on 

Thompson website [33]. The finished assembly of the compression stage is shown in figure 52. 

Overall, all the components had good dimensional tolerancing and were able to be assembled 

easily. Some components needed to be lightly machined and sanded in order to achieve the desired 

slip fitment.  

 

Figure 52: Final Compression stage assembly and components.  
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CHAPTER 4: CONTROL SYSTEM 

 

Figure 53: Control system components. 

LabVIEW and a National Instruments USB-6002 Data Acquisition device is used to send a step 

clock input to the stepper motor driver and receive voltage differentials from the omega stain gage 

and signal conditioner. A DC Power Supply model number S-350-48 is used to power the stepper 

motor driver. The MA860H high performance micro-stepping driver is used in conjunction with 

the Anaheim Automation model 24Y304S-LW8 high torque stepper motor to provide the required 

torque to the compression stage. The 24Y304S-LW8 is a single shaft motor capable of producing 
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2.06 N-m while only weighing 0.51 Kg. Force data is recorded using an Omega DMD4059 strain 

gage signal conditioner and an Omega LCGB-10K miniature compression load cell. 

Stepper Motor Control 

The stepper motor driver and the stepper motor are turned on and off by applying 5V to the ENA 

input of the stepper motor driver. This connection is attached to the DAQs 5V power output and 

ground. Therefore, the stepper motor is engaged when it is plugged into the computer. The analog 

output function of the DAQ is used to send a pulse width modulation (PWM) signal to provide the 

required step clock input to stepper motor driver. Likewise, the direction of the stepper motor is 

controlled using a simple switch. When the switch is on the motor revolves in one direction and it 

reverses when the switch is turned off. The driver uses an 8-bit DIP switch to set micro step 

resolution and for most loading applications this will be set to 50,000 steps per revolution. 

Therefore, the PWM pulse signal must signal 50,000 times for 1 revolution of the motor. The 

frequencies of the PWM signal is controlled in LabView, which will communicate into the user 

interface section. 

Load Cell Sensor measurements 

The Omega LCGB-10K miniature industrial compression load cell was used because of its small 

thickness and ability to provide long-term stable measurements in harsh conditions and is used to 

convert the force applied into an electrical signal. An Omega DMD 4059 strain gage to DC isolated 

transmitter is used to excite the load cell and amplify the signal. Important load cell specifications 

include an excitation voltage of 10 Vdc which applied using the Omega DMD4059 which has an 

adjustable excitation power supply. The output or expected difference voltage at full load of the 
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load cell is 2 mV/V, and thus, the expected full load voltage would be 20mV, therefore, the Omega 

DMD4059 amplifiers boost the signal level to a level which the DAQ can measure. This also 

increases measurement resolution and improves signal-to-noise ratios. In the case of the load cell 

sensor measurement subsystem the DAQ is used to digitize the incoming analog signal so that 

computer software’s in this case LabView can interpret the data. 

User Interface 

The system design platform LabVIEW 2017 from National Instruments was used to control the 

stepper motor and perform data acquisition for the load cell. A block diagram of the system was 

created in the visual programming language. The finished product is then operated using the 

interface called the front panel. Two separate front panels were developed for the load cell and 

stepper motor. This is so the load cell could be continuously monitored even when the stepper 

motor is not in use. This is especially important in early testing because it allowed the load to be 

monitored while spectral acquisitions were being collected using the Raman spectrometer. The 

load rate of the compression stage was controlled by changing the frequency of the PWM pulse 

signal. The calculated load and stress could also be monitored during load application 

simultaneously. In the future, a program which allows the system to load the sample to a specified 

load without human interaction will be developed.  
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Figure 54: LabVIEW front panel. 
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CHAPTER 5: TESTING AND INTEGRATION 

The compression stage and its systems were rigorously tested to ensure system seamless 

functionality and eliminate any possible problems for the operation. Majority of the problems 

uncovered during testing of the stage were fixed and a few remaining ones will be corrected in the 

future.  

Compression Fixture Bench Testing 

A preliminary test bench was fabricated to test the functional ability of all major systems and 

components. Bench testing also allowed for individual subsystems to be validated as well as 

trouble shoot problem. Major accomplished milestones included: the microscope fit check, cycling 

the system, and application of the compressive load to a test ceramic sample. Also, at this time, 

proof testing was performed to ensure the compression stage drive system and structural 

components could handle the required stress of the system.  

 

Figure 55: Bench testing of the compression stage. 
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Load Cell Calibration 

The load cell was calibrated using of the MTS Criterion 43 universal testing machine. The proper 

system calibration included aligning the whole support crosshead at the center of the MTS platens, 

compressing the load cell to different loads and recording the resulting voltage using the USB-

6002 DAQ.  

 

Figure 56: Load Cell Calibration using MTS Criterion Model 43 universal testing machine. 

 First, because pre-strained installation condition can generate nonzero initial voltage offsets. The 

initial voltage offsets were compensated effectively by bridge balancing the Omega DMD 4059 

amplifiers by using the built-in offset. After the voltage offset was zeroed, multiple measurements 
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at increasing loads were recorded. The electrical measurements were scaled to engineering units 

by recording electrical values and physical force measurements acquired from MTS universal 

testing machines software. A specified load was applied for each data point using MTS universal 

testing machine. Excel was using to determine a linear coefficient to be used for scaling. 

 

Figure 57: Load cell calibration graph. 

The voltage vs. force linear equation which was determined after the calibration procedure was 

then used to update the LabView program so force and stress values could be presented to the user. 

During calibration a problem with the load cell data was observed.  

Compression Fixture and Optical Microscope Integration 

The compression stage was mounted and integrated with the Leica microscope so in-situ Raman 

spectroscopy experiments could be performed (Figure 57). After mounting the stage, the optical 

microscope’s focusing adjustment was used to keep the ceramic sample in focus.  
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Figure 58: The mounting of the in-situ compression stage to the Leica microscope. 

After mounting the stage, it was realized the spring system which reduces the weight translating it 

into the microscope needed to be updated to make it easier to use. Springs with a lower spring 

constant were chosen and the mounting plate was updated to include spring seats shown in figure 

58.  
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Figure 59: Updated Spring system.  
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CHAPTER 6: PROCEDURES 

This section provides an overview of the procedure used to attach the compression stage, turn on 

the Raman spectroscopy machine, perform a health check of the Raman spectroscopy machine, 

and the experimental procedure which is used to check the functionality of the compression stage. 

An in-depth procedure for using the compression stage has been added to the waterproof case 

which houses the compression stage and instrumentation when it is not in use (Figure 59).  

 

Figure 60: Compression stage waterproof case. 
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Compression Fixture Setup 

Attaching the compression stage to the Leica optical microscope requires removal of the any 

attachments which were attached to the microscope. Then, attachment of the compression stage 

mounting fixture, and assembly of the compression stage weight elevation system can be 

performed. First, the two-axis mapping stage, which is typically connected to the Leica 

Microscope must be removed (figure 60-part A). Next, the compression stages mounting fixture 

must be mounted to the Leica microscope (figure 60-part B). Then, the compression weight 

elevations system which uses springs must be mounted to the table (figure 60-part C). After these 

steps are performed, the compression stage can be attached to the mounting fixture and the four 

springs can be placed under the compression stage. Last, the compression stage should be aligned 

so the focusing point of the microscope is located on the top of the sample. Finally, the mounting 

fixture set screws should be tightened. 

 

Figure 61: Compression stage setup. A) two-axis mapping stage, B) mounting fixture, C) 

elevations system. 
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Raman Spectrometer Operations 

Before performing Raman spectrum acquisitions, the Raman spectrometer and optical microscope 

must be turned on by power on the switches in the following order. Turn on the switch 1 which 

provides the main power to the Raman spectroscopy machine. Next, turn on the switch 2 and turn 

the key to the on position. These switches provide power to the laser source. Last, turn on the 

microscopes light sources using switch 4. If only the optical microscope is going to be used, its 

lights source can be turned on individually. Also, the software which control the machine Raman 

spectrometer, Wire version 3.4, must be started. When powering down the machine and 

instrumentation, the reverse order should be performed. 

 

Figure 62: Raman spectrograph machine power on procedure. 

Raman Spectrometer Calibration 

Calibration of the Raman spectroscopy system must be performed before any measurements could 

be done on the machine. The calibration procedure is well established and requires removal of the 

compression stage and mounting the calibration stage with the silicon calibration standard used 

for calibration. To do so, the rotation of the microscope objective lenses is required away from the 

measurement zone so it cannot be damaged while removing the compression fixture and installing 
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the calibration stage (figure 60 A). It is necessary to ensure that the stage is at the lowest position 

and, then the removal of the weight elevation springs under the compression stage is required. 

 

Figure 63: Microscope lens in rear position and removing stage support springs. 

 

Figure 64: Calibration sample stage and calibration reference sample. 
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After spring removal, the mounting fixture set screws can be loosened and the compression stage 

can be taken out. Then, calibration stage needs to be attached and the SI standard needs to be 

placed (figure 63). 

Using this setup, a health check of the system can be performed and if needed a further system 

calibration can be performed. First, a health check should be performed (figure 60 left) using the 

Renishaw Si standard and the acquisition should show an Si band position at 520.3 cm-1. If the Si 

band position is off, quick calibration must be performed. 

 

Figure 65: System health check (left) and quick calibration (left). 

For experimental records, the calibration procedure results should be recorded (figure 69). Finally, 

reconnect the compression stage by reversing the procedure used to remove the microscope stage. 
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Experimental Procedure 

The compression fixture, optical microscope, and micro-Raman spectrometer was used to conduct 

experiments and collect the Raman spectrum of LaCoO3 samples. First, the LaCoO3 cylindrical 

sample must be placed between the load and support platens. This was performed using clean 

medical grade specimen tweezers which allowed the sample to be properly was aligned and 

minimize eccentric loading. After the sample was positioned, a small preload was applied using 

the LabVIEW.  Next, the optical microscope was used to ensure the sample and compression 

fixture are aligned so the sample can be focused. After the stage was setup, the Raman spectrum 

at increasing loads was recorded.  

 

Figure 66: Raman experiment. 
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For each acquisition, the following steps were conducted prior to the acquisition. First, the average 

load cell voltage, load, and calculated stress were recorded from the front panel of the LabVIEW 

program. Next, the Leica optical microscope was focused, and an optical micrograph was recorded 

using the Renishaw CCD Camera. Then, the spectrum acquisition parameters were entered 

including the spectral acquisition range, exposure time, and data recording location on the 

computer. This was achieved by selecting “take a new spectral acquisition” and filing out the 

appropriate tabs in the dialog box. The spectral range of the acquisition was from 50-1000 Raman 

shift/cm-1 and an exposure time of 300 seconds was selected. The other parameter was set to the 

default settings for all acquisitions. The last step included switching the microscope from the 

optical setting to the spectrograph and focusing the laser. Prior to taking the spectral acquisition 

all lights were turned off in the room and the computer screens were set to the lowest setting to 

avoid altering the experimental data. Finally, to run the experiment, the run command on the wire 

3.4 interface was initialed. After the spectral acquisition was complete the data recorded was saved 

as a .txt file in the appropriate location so it could be analyzed using Excel after testing.  
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CHAPTER 7: RESULTS AND DISCUSSION 

Initial testing was performed on weakly Raman active LaCoO3 perovskite samples machined to an 

average diameter of 6.04mm. Samples were tested to perform a functionality check of the 

compression fixture. During testing, the compression fixtures demonstrated the ability to apply a 

specified load while simultaneously performing structural characterization. The Raman 

spectroscopy setup used during the testing included a 532 nm solid Si laser to excite the sample 

and a single spectrograph fitted with holographic notch filters. A laser power of 25 mW was used 

for all spectral acquisitions. The compression fixture was mounted to the Leica optical microscope 

which is optically coupled to the spectrograph. During the experiment the incident and scattered 

beams were focused with a long working distance 50x Leica objective. Renishaw Wire software 

was used to setup the spectral acquisition as described in the procedure section. The collection 

time for a single spectrum was 300 seconds and the spectrums were recorded from 50 to 1000 

Raman shift/cm-1.  

Four spectrum acquisitions of pure LaCoO3 perovskite cylindrical sample were used to verify the 

functionality of the miniature compression fixture. Each of the spectrum acquisitions was 

performed at an increasingly higher load. The sample was placed between the platens using clean 

medical grade specimen tweezers and properly was aligned to minimize eccentric loading. The 

first spectrum acquisition was performed after loading the sample to approximately 21 MPa. 

Another spectrum acquisition was performed when the sample was loaded to approximately 72 

MPa. The third spectrum acquisition was performed at approximately 178 MPa. The final spectrum 

acquisition was performed at approximately 188 MPa.  
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Raman Spectrometer Calibration Results 

Before collecting measurements, a heath check was performed on the spectrometer with a 

Renishaw Si standard which is expected to exhibit an Si band position at 520.3 cm-1. The position 

of the Si band was at 520.5 cm-1 which demonstrates the spectrometer was calibrated within 

acceptable limits. It is important to note during testing the laser was not perfectly aligned with the 

crosshead in the optical micrograph. This misalignment of the system was likely caused while 

mounting the compression stage. Therefore, the results presented will need to be re-tested to 

validate their validity after the system in re-aligned. 

 

Figure 67: Raman spectra of Renishaw Si standard and Laser alignment. 

Changes in Focus Location 

During loading the location of the laser spot on the LaCoO3 surface changed due to sample 

deformation, which might be a good way to measure the strain of the sample during loading. It is 

possible both axial and lateral strains could be detected and evaluated during future testing using 

optical microscopy. In this case, the deformation was tracked by identifying a unique feature on 
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the sample and locating it at different stress levels during loading, which is a standard digital image 

correlation technique used for strain measurements. 

Table 4: Change in stain vs. change is stress. 

 ∆ Strain ∆ Stress 

1-2 8μm 18.1 MPa 

2-3 18μm 31.9 MPa 

 

 

Figure 68: Changes in sample focus location due to sample deflection. 

Fine adjustment in the X and Y directions would be required to perform Raman spectrum sampling 

in the same location because of the strain the sample experiences during loading. 

Raman Spectroscopy Analysis of LaCoO3 

Multiple attempts were required during the first test to dial in the system. After reviewing the 

results of the first attempt, it appeared the laser lost focus during the experiment. It was originally 

alleged the laser focus issue was due to the stepper motor remaining on during the experiment. 

During the second attempted, the motor was shut down and the exposer time was reduced to 30s 
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to quickly troubleshoot the issue, but because the motor was turned so was the motors locking 

feature and the stress reduced to ~5 MPa. During the third test, the stress increased during testing. 

This was attributed to heating of the system cause by the stepper motor and it was assumed all 

tests would exhibit this behavior, therefore, the test was not repeated. Rather, the test should have 

been performed after the system reached a steady operating temperature because this problem was 

not experienced in other test likely because the fixture reached steady state.  

As described in the procedure an optical micrograph of the sample was recorded prior to each test. 

Then the laser was focused, and a spectrum was collected at a preload of 21 MPa. During this test, 

after acquiring the spectral acquisition the applied stress increased to 26 MPa. The root cause of 

this increase in stress was attributed to heating of the drive system caused by the stepper motor. In 

this first test, optical micrographs were collected before and after the spectra collection to ensure 

the intensity of the laser was not damaging the sample.  

 

Figure 69: Optical micrographs before and after testing. 

 As seen in the results, the Raman active peaks of LaCoO3 are weak and not easily distinguishable 

from the background. Pure LaCoO3 Raman scattering response is a function of laser power and as 

the intensity of the laser in increased, two bands at 557 and 673 cm-1 are decrease and can be 
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indistinguishable [7]. In this case, shallow yet distinguishable bands belonging to the cobaltite 

structure were observed at 163 cm-1, 435 cm-1, 574 cm-1, and 675 cm-1. 

 

Figure 70: Raw data of LaCoO3 Raman testing. 

A second vibrational spectra were taken after loading the sample to 72 MPa. It was discovered at 

this point that the spectrum collection location would move due to strain which is discussed in 

greater detail in the change in focus location section. Although the laser power was not adjusted, 

Raman bands became more distinguishable at this new sample location. Other bands which are not 

documented in other literature are present. This could be due to other materials being present at 
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this location and more testing will need to be performed to determine the validity of these bands. 

Four bands belonging to the Raman structure were observed at 163 cm-1, 463 cm-1, 597 cm-1, and 

662 cm-1. Also, two bands at 325 cm-1 and 377 cm-1 are observed which will needs to be studied in 

more detail. A third Raman spectrum was collected to determine the Raman scattering response at 

178 MPa. The intensity of cobaltite bands acquired during this test were minimal which is expected 

as compression strain increased and alters the crystalline structure of the materials. Bands 

belonging to the cobaltite structure at 463 cm-1, 597 cm-1, and 662 cm-1 are slightly visible. Also, 

an additional peak at 187 cm-1 was observed. The fourth Raman spectrum was performed at a 

calculated stress of 188 MPa. The intensity of Raman band at higher wave numbers reduce to 

insignificant levels yet the lowest band belonging to the cobaltite structure is visible at 162 cm-1 

and 471 cm-1. 
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Figure 71: LaCoO3 Raman Peaks at increasing compressive stress. 

The Raman peaks of the material exhibited changes which resemble that of other literature. As 

increasing external loads were applied to the LaCoO3 Perovskite, the band position tended to shift 

to higher wavenumbers. This effect on the vibrational response is due to the change in strain on 

the material’s molecular latus. When Raman peaks in compression are compare to the Raman 

peaks in tension from 450 to 800 wave number the shift of Raman peaks in appearance due to 

compressive and tensile force.  
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Figure 72: LaCoO3 Peaks shift due to uniaxial compression and three point bending tensile 

forces [23]. 

Also, as shown in the literature review, the Raman peaks of higher wave number became less 

apparent as compressive strain increase. The testing results obtained by performing four Raman 

spectrum acquisitions validated the ability of the compression fixture to be mounted and optically 

coupled to the spectrograph and study the vibrational properties of ceramics materials. The results 

shown in the previous section are for validating the design of the compression stage only.  

Additional testing will be requiring validating the vibrational response of LaCoO3.  



88 

 

CHAPTER 8: CONCLUSIONS 

A miniature compression fixture was design and assembled which allows the vibrational properties 

of ceramics to be tested while applying uniaxial compressive loads. The compression fixture was 

redesigned, and critical calculations were performed to insure design criteria would be satisfied. 

Also, finite element analysis was performed on the load and support crosshead to ensure margins 

of safety were maintained. While working with experienced machinist at the UCF machine shop, 

the stage was fabricated and assembled. Testing and integration demonstrated the compression 

fixtures ability to load ceramic samples and meet the required design criteria. Actual experiments 

were performed by attaching the fixture to the optical microscope and successful Raman scattering 

responses were recorded at four loads. These experiments showed a pattern between peak position 

and the external compressive force applied. Few testing techniques allow for non-destructive 

characterization of ceramics. The research performed in this thesis could be used in the future to 

determine residual stresses in ceramic materials and provide a basis for designing NDI techniques 

which could determine the health and status of ceramic component. 
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CHAPTER 9: FUTURE WORK 

The future work associated with this thesis can be separated into two sections. First, future 

compression stage improvement and second, future testing and experiments. Future work on the 

compression stage will be performed to improve its performance and accuracy. The ability to 

change the focus location by moving the stage in the X and Y directions could be designed to allow 

Raman spectral acquisitions to be performed in the same location. The load cell noise issue will 

need to be resolved to increase the accuracy of load cell measurements and allow future system 

logic to be possible. A closed loop PID controller will be designed using LabVIEW which will 

simplify testing and reduce the chances of human error. Also, future testing and experiments will 

be performed to determine the Raman scattering response as a function of external load. This will 

include adjusting Raman spectrum parameters to achieve the best possible results. Also, the same 

types of testing will be performed on multiple other ceramics and ceramic compositions to be 

understand the structural response caused by mechanical loading.  
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