
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations 

2019 

Interfacial Behavior in Polymer Derived Ceramics and Salt Water Interfacial Behavior in Polymer Derived Ceramics and Salt Water 

Purification Via 2D MOS2 Purification Via 2D MOS2 

Hao Li 
University of Central Florida 

 Part of the Engineering Science and Materials Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

STARS Citation STARS Citation 
Li, Hao, "Interfacial Behavior in Polymer Derived Ceramics and Salt Water Purification Via 2D MOS2" 
(2019). Electronic Theses and Dissertations. 6746. 
https://stars.library.ucf.edu/etd/6746 

This Doctoral 
Dissertation (Open 
Access) is brought 
to you for free and 
open access by 
STARS. It has been 
accepted for 
inclusion in 
Electronic Theses 
and Dissertations by 
an authorized 
administrator of 
STARS. For more 
information, please 
contact 
lee.dotson@ucf.edu. 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/279?utm_source=stars.library.ucf.edu%2Fetd%2F6746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
https://stars.library.ucf.edu/etd/6746?utm_source=stars.library.ucf.edu%2Fetd%2F6746&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


INTERFACIAL BEHAVIOR IN POLYMER DERIVED CERAMICS 

AND SALT WATER PURIFICATION VIA 2D MOS2 

 

 

 

 

 

 

 

 

by 

 

 

 

HAO LI 

B.Eng. Sichuan University, 2011 

M.Sc. Loughborough University, 2012 

 

 

 
A dissertation submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

 in the Department of Materials Science and Engineering  

in the College of Engineering and Computer Science  

at the University of Central Florida  

Orlando, Florida 
 

 

 

 

 

 

 

 

 

 

Fall Term 

2019 

 

 

 

 

Major Professor: Linan An 

 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

© 2019 Hao Li 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

In the present dissertation, the behavior of the internal potential barrier in a polymer-derived 

amorphous SiAlCN ceramic was studied by measuring its complex impedance spectra at 

various dc bias as well as different testing and annealing temperatures. The complex impedance 

spectra of the polymer-derived a-SiAlCN were measured under various dc bias voltages in a 

temperature range between 50 and 150 °C, as well as different annealing temperatures (1100-

1400  °C). All spectra, regardless of temperature and bias, consist of two semi-circular arcs, 

corresponding to the free-carbon phase and the interface, respectively. The impedance of the 

free-carbon phase is independent of the bias, while that of the interface decreased significantly 

with increasing dc bias. It is shown that the change of the interfacial capacitance with the bias 

can be explained using the double Schottky barrier model. The charge-carrier concentration 

and potential barrier height were estimated by comparing the experimental data and the model. 

The results revealed that increasing testing temperature led to an increased charge-carrier 

concentration and a reduced barrier height, both following Arrhenius dependence, whereas the 

increase in annealing temperature resulted in increased charge-carrier concentration and barrier 

height. The phenomena were explained in terms of the unique bi-phasic microstructures of the 

material. The research findings reveal valuable microstructural information of temperature-

dependent properties of polymer derived ceramics, and should contribute towards more precise 

understanding and control of the electrical as well as dielectric properties of polymer derived 

ceramics.  

Furthermore, the desalination performances and underlying mechanisms of two-dimensional 

CVD-grown MoS2 layers membranes have been experimentally assessed. Based on a 

successful large-area few-layer 2D materials growth, transfer and integration method, the 2D 
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MoS2 layers membranes showed preserved chemical and microstructural integrity after 

integration. The few-layer 2D MoS2 layers demonstrated superior desalination capability 

towards various types of seawater salt solutions approaching theoretically-predicted values. 

Such performances are attributed to the dimensional and geometrical effect, as well as the 

electrostatic interaction of the inherently-present CVD-induced atomic vacancies for governing 

both water permeation and ionic sieving at the solution/2D-layer interfaces.  
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CHAPTER 1: INTRODUCTION 

The roles of interfaces of nanomaterials have significant contributions towards the properties, 

performances and applications of various categories of materials, either conventional or novel. 

The interfacial characteristics could stem from the responses of the intrinsically-present intra-

phase interfaces upon external stimuli (e.g., electric field and magnetic field), or they may also 

arise from the interactions between the surfaces of materials with outside matters (e.g., 

solutions, oxygen, and irradiation). 

Polymer derived ceramics (PDCs) are a novel class of amorphous materials synthesized 

through the controlled thermal decomposition of polymeric precursors.1 PDCs exhibit unique 

microstructural features and desirable electrical/thermal/mechanical properties with promising 

applications compared to conventional ceramic materials prepared via powder metallurgy 

route.2 Prominent PDCs properties include: superior thermal stability, excellent 

oxidation/corrosion resistance and high temperature multi-functionalities. In addition, the 

direct polymer-to-ceramic processing route makes PDCs particularly feasible for fabricating 

ceramic (micro)-components with complex structures/shapes.3 

Reliable and accurate real-time pressure/temperature monitoring under high temperature and 

harsh environments (e.g., gas turbines, nuclear reactors, and high-speed vehicles) has been on 

high demand for device damage prevention as well as structural performance improvement. 

Surviving under harsh environments (e.g., pressurized, oxidative, radiative and corrosive) 

demands materials that satisfy both structural stability and functionality/properties reliability, 

which most currently available materials fall far short of.  
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Recent research and development efforts have explored several types of materials for harsh-

environments sensing applications. Most notably among them are semiconducting silicon and 

silicon carbide due to proven controllable electric properties and well-developed micro-

fabrication capabilities. However, applications of Si-based sensors are significantly restricted 

to a very limited operational temperature range due to severe material degradation,4 not to 

mention when the environment involves corrosive atmospheres as well.  

In the first part of this dissertation, we studied the microstructure, properties and impedance 

behaviors of polymer-derived SiAlCN ceramics, with a special attention on the internal 

potential barrier characteristics of this nano-domained two-phase material. 

In a further attempt of investigating the interface/surface interactions in nanomaterials, this 

dissertation has also studied the interfacial interactions between the surfaces/interiors of two-

dimensional (2D) MoS2 layers upon contact with seawater solutions, with an overall goal of 

the development of viable 2D layers-based desalination membranes. The availability of 

freshwater resources has decreased with increasing potable, agricultural, and industrial water 

demands around the globe for the past decades.5 This global challenge, along with the adversely 

accelerating climate change, has been calling for immediate solutions for meeting the demands. 

Apart from the conservation of existing water resources, increasing the freshwater supply is 

deemed as a more sustainable and direct solution.6 Since seawater is readily accessible and 

abundant, various thermal and physical desalination technologies have been utilised worldwide 

to produce drinking water by removing dissolved salts and other minerals from saline water. 

While multi-stage flash (MSF), multi-effect distillation (MED), and reverse osmosis (RO) are 

the most widely used desalination technologies, RO membrane is gaining market share at a 

faster pace.7,8 RO is a high-pressure membrane process that utilizes a semi-permeable 
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polymeric membrane to retain salts and low-molecular-weight solutes while allowing the 

passage of water via diffusion. Despite the operational simplicity, RO membranes suffer from 

several technical limitations including low conversion efficiency, membrane fouling, and 

energy demand to pressurize the feedwater.9,10 Accordingly, developing high-performance 

membrane materials with improved water recovery without compromising the solute rejection 

remains a compelling demand. 

A potentially promising solution stands with engineering the structure of traditional materials 

into tailored porosity or exploring a new type of intrinsically porous nanomaterials-based 

membranes. Recently developed two-dimensional (2D) materials present unprecedented 

opportunities for water desalination and molecular sieving technologies owing to their 

structural uniqueness.11-13 Their extremely small thickness (i.e., a few Å for 2D monolayers) 

projects superior water permeation rates benefiting from small diffusion lengths for molecular 

transports while their high mechanical flexibility renders advantages for membrane 

integrations. Moreover, 2D materials produced by chemical synthetic routes possess high-

density “intrinsic” structural imperfections (e.g., near atomic vacancies) whose physical 

dimensions are comparable to those of salt ions and water molecules.14 In this endeavor, a 

variety of 2D materials have been explored including graphene,15-18 dichalcogenides,19-22 and 

graphene oxides,23-26 along with substantive efforts for the structural engineering of traditional 

membrane materials such as zeolites,27-30 and metal-organic frameworks 31-34. Amongst them, 

2D molybdenum disulfide (MoS2) layers have recently gained significant interests for a wide 

range of water and environmental technologies. They not only share the intrinsic structural 

advantages inherent to other 2D materials but also present additional suitability such as 

excellent chemical stability and non-toxicity.35-37 Furthermore, a variety of structural variations 

such as point defects, grain boundaries, and van der Waals (vdW) gaps have been ubiquitously 
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observed in 2D MoS2 layers grown via chemical vapor deposition (CVD) process.38-40 Such 

“intrinsically” present structural imperfections of very high concentration (e.g., areal density 

of ~1013 cm-2 for sulfur vacancies41) offer 2D MoS2 layers high promise as an efficient 

membrane material for water desalination applications. Despite the theoretically-projected 

promise of 2D MoS2 layers, their experimental utilization for membrane-based desalination 

technologies has been rarely approached. A few experimental studies have explored MoS2 

laminar membranes of very large thickness (typically, ~1-10 µm) constituting mechanically 

stacked individual 2D flakes.14 These laminar 2D MoS2 membranes of large thickness have 

exhibited significantly limited desalination efficiencies, failing in meriting the structural 

uniqueness and performance advantages projected with near atom-thick membranes. Scarcity 

of experimental studies on the 2D MoS2 layers-based membranes of near atomic thickness for 

water desalination is attributed to technical difficulties associated with integrating 2D layers 

preserving their structural integrity. Particularly, it has been challenging to produce large-scale 

(> cm2) “continuous” 2D MoS2 layers of ~1-10 nm thickness and their seamless integration 

onto porous substrates, hindering their applications to desalination technologies.  

In the latter part of the dissertation, we investigate the experimental realization of high-

efficiency water desalination enabled by ultra-thin 2D MoS2 layers-based membranes. We 

demonstrate the integration of centimeter-scale CVD-grown 2D MoS2 layers of only ~7 nm 

thickness onto porous polymeric substrates and studied their desalination performances. This 

new type of near atom thick-membranes exhibits an excellent combination of high water 

permeability approaching theoretically predicated values and superior ionic sieving 

performance for various seawater salts. Fundamental mechanisms responsible for the observed 

high desalination efficiency are also discussed, with a special focus on the roles of interfaces. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Polymer-Derived Ceramics (PDCs) 

2.1.1 Introduction to Polymer Derived Ceramics  

Polymer derived ceramics (PDCs) are a novel class of amorphous materials synthesised 

through the controlled thermal decomposition of polymeric precursors.1 As compared to the 

conventional polycrystalline ceramics, PDCs possess unique complex microstructures that 

comprised of a silicon-based amorphous matrix phase and a nano-domained "free-carbon" 

phase that contains graphitic sp2 carbon. Silicon-based PDCs have been obtained via the 

pyrolysis of organo-silicon polymers as a direct synthesis route as early as the 1960s.2 

Pioneering work by Fritz and Raabe42 and by Yajima et al.43 on the synthesis of SiC ceramic 

fibers from thermolysis of polycarbosilanes made prominent scientific progress towards 

application potential of PDCs. 

The PDCs processing  route has drawn growing attention as an additive-free method which 

also yields materials with fine-tuned chemical composition as well as well-defined nano-

structures.44 The sophisticated microstructures of PDCs would experience significant 

transformations under very high temperatures with a characteristic persistence of the nano-

domains, which gives rise to the exceptional resistance to crystallisation.45 Characterisation 

techniques for investigating PDCs microstructures include NMR, XRD, SAXS, FTIR, and 

Raman spectroscopy, which give integral information, as well as TEM, SEM and EELS that 

provide information about local properties at the nano-scale. In addition to experimental studies, 

there have also been many theoretical investigations aiming to explain the transformations of 

nano-clustered carbons during thermal decomposition as well as the crystallisation behaviour 

of PDCs.2     
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The  unique yet diverse electrical and thermo-mechanical properties of PDCs such as high-

temperature semiconducting behaviour46, anomalously high piezoresistivity47, profound 

doping effects48, as well as excellent resistance towards high-temperature decomposition and 

creep49 have enabled PDCs to become promising candidates for potential applications in 

ceramic fibres50, ceramic matrix composites51, energy storage52, porous components53, and 

high-temperature micro-sensors54.  

Through the PDCs direct polymer-to-ceramic processing route, products such as ceramic fibres 

and layered composite materials have been made, which the conventional powder-based 

technology cannot feasibly yield due to the presence of additives. Traditional polymer-forming 

techniques such as polymer infiltration pyrolysis (PIP), injection molding, coating from solvent, 

extrusion, or resin transfer molding (RTM) can also be utilised to process pre-ceramic polymers, 

and the formed objects then undergo further conversions to ceramic components by appropriate 

heat-treatment. 2     

The processing procedures of PDCs comprised of the following fundamental steps (as shown 

in Figure 1 as a basic flow-chart):  

(a). Chemical synthesis of starting ingredients which produces polymeric precursor;  

(b). Cross-linking of polymeric precursor gives infusible pre-ceramic network;  

(c). Pyrolysis of the pre-ceramic network under high temperature yields amorphous ceramics.  

 

Figure 1 The processing procedure of PDCs.  
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2.1.2 Polymeric Precursors  

As the starting materials for PDCs, pre-ceramic polymeric precursors have attracted extensive 

attentions, and many review articles 55-57 are dedicated to topics related to precursors synthesis. 

The importance of their key roles in heavily influencing the properties of PDCs stems from the 

fact that the chemical composition, the number of phases, the phase distribution and the 

microstructure of PDCs depend upon the molecular structures of polymeric precursors. 

Extensive research efforts have been devoted to the investigations of tailing various molecular 

structures to achieve optimum macroscopic chemical and physical properties of PDCs.2 

Birot et al.55 had proposed some key properties that effective polymeric precursors should 

possess in order to satisfy subsequent thermal decomposition processes:   

(a). Sufficiently high molecular weight in order to avoid volatilisation of low molecular 

components;  

(b). Suitable rheological properties (viscoelasticity) and solubility for the shaping process;  

(c). Latent reactivity (presence of functional groups) in order to gain thermosetting or curing 

properties;  

(d). Polymeric structures with cages or rings to reduce the volatilisation of the fragments due 

to backbone cleavage;  

(e). Low level of organic groups which lead to increased ceramic yield and decrease 

undesired/excessive "free-carbon" contents.   

Since its inception, silicon-based polymeric precursors for PDCs have long drawn wide 

attention. Suitable organo-silicon PDCs precursors have a generalised molecular structure as 

illustrated in Figure 2. Design and tailoring of the polymeric precursors on a molecular level 
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mainly focuses on two aspects: a). the (X) group on the backbone, and b). the substituents 

groups attached to Si (i.e., R1 and R2). Different classes of the Si-based polymers contain 

different (X) group. Examples as shown in Figure 3 include: poly(organosilanes) with X=Si, 

poly(borosilanes) with X=B, poly(carbosilazanes) with X=C, and 

poly(organosilylcarbodiimides) with X=[N=C=N]. Functional side groups of R1 and R2 also 

play important roles in adjusting the solubility of the polymer, the electronic, optical, and 

rheological properties as well as the chemical and thermal stability of PDCs. Furthermore, the 

Rx groups determine the carbon content in the final PDCs products. 2  

 

Figure 2 Generalized representation of the molecular structure of pre-ceramic organo-silicon 

PDCs precursors.2 
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Figure 3 Main types of Si-based polymer precursors for PDCs.2 

Besides from the above-illustrated Si-B, Si-C, Si-N and Si-O based polymer backbones, 

another promising elemental candidate is aluminium, because Al-containing materials (e.g., 

AlN and Al2O3) show desired properties such as high strength and excellent resistance to 

thermal shock and oxidation.58 Research has shown that polysilazane-derived ceramic with a 

Si/Al/O/N system has a suppressed grain growth.59 High-strength alkali-resistant Si/Al/C/O-

fibers have been produced from polyaluminocarbosilane.60 

2.1.3 Processing of Pre-ceramic Polymers  

2.1.3.1 Shaping  

Since the PDCs precursors essentially remain polymeric materials during the shaping 

conditions/temperatures, extensive varieties of more cost-effective and industrial-friendly 

forming techniques can be applied than the traditional powder-/paste-based routes. Moreover, 
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this approach has important technological advantages in many aspects, for example: has no 

drying issues which has enabled bulk-fabrication; does not require long processing times for 

gelation and drying; no involvement of  flammable solvents; can be processed in the molten 

state; avoids tool wear problems and brittle fracture upon finishing of the component.2,61  

The shaping techniques as reported in literature have been diverse: some are unique (e.g., 

formation of nanostructures  directly by pyrolysis)62; some explore polymer-processing routes 

(e.g., injection moulding)63; while many are applicable to ceramic materials in general (i.e., 

casting/solidification, deformation, machining/material removal, joining, and solid free-

forming).2,64 

2.1.3.2 Crosslinking  

Since cross-linking is an essential part of the PDCs fabrication processes, a typical precursor 

falls into one the three categories: 1). a cross-linkable liquid; 2). a meltable and curable solid; 

3). an unmeltable but soluble solid.2 In addition, the shaped pre-ceramic polymers should be 

able to undergo a thermosetting transformation while keeping the shape unchanged during the 

subsequent polymer-to-ceramic conversion. Functional groups (e.g., the X group being –H or 

–OH) introduced to the pre-ceramic polymers can achieve a spontaneous thermosetting 

typically below 200 °C. It is also possible to further lower the cross-linking temperature via 

catalysing agents, which can also reduce oligomers evapouration hence fewer bubbles and 

higher ceramic yield.65,66 Successful laser curing has also been reported for rapid prototyping 

processes in fabricating complex-shaped components.67 

Various other curing methods may also be applied after-shaping. One commonly used method 

is oxidative curing, which would of course introduces undesired high level of oxide, thus results 

in ceramics with a lowered high-temperature stability.68,69 Another means involve γ-radiation 
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or e-beam curing which can yield virtually oxygen-free ceramics, however the limited 

penetration depth means they are mostly suitable for producing fibres.70 Incorporation of 

photosensitive functional groups onto the backbone of pre-ceramic polymers can produce UV-

curable precursors, which has found desirable applications in fabricating MEMS and fibres.71-

74  

The demands of bulk / batched productions of PDC has brought forth the introduction of 

various types of fillers to be incorporated with pre-ceramic polymers. Fillers serving different 

purposes have been employed, examples include: polymers, metals, ceramics in various 

formats ( e.g., powders, platelets, nanotubes, and nanofibres).2 Effects of fillers vary in broad 

ranges depending on the desired production outcomes. Inert fillers (e.g., SiC powders) help 

minimise the number of pore-sized defects; whereas functional fillers (e.g., MoSi2 
75 and FeSi 

76) have been used as electrical conductivity and magnetic functionality modifiers. Of the 

previously mentioned examples of fillers, metallic ones mainly contribute as to react away the 

gaseous byproducts during heat-treatment processes 77; in contrast though, the polymeric fillers 

aim to produce micro-pores of desired sizes 78. 

2.1.3.3 Conversion from polymer precursor to ceramics  

After obtaining shaped and cross-linked precursors, the final step towards PDCs products is 

polymer-to-ceramic transformation. Typical thermal decomposition (at approximately 1000 °C) 

of basic organo-silicon polymers –[SiR1R2–X]n– leads to amorphous SiC, SixCyOz, and SixCyNz 

PDCs (as illustrated in Figure 4). The polymer-to-ceramic conversion process results in the 

decomposition or elimination of methyl, phenyl, vinyl groups as well as Si–H, Si–OH, or Si–

NHx groups. There have been many conversion methods applied, both thermal and non-

thermal,2 yet amongst them, oven pyrolysis still remains the most extensively used coupled 
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with flowing inert gas continuously removing undesired decomposition residuals.79 One of the 

most routinely used conventional technique is thermal decompositions at relatively medium 

temperatures, followed by annealing stages at even higher temperatures. Another route 

explored is via photolithography, during which liquid phased mixture of pre-polymeric 

materials are exposed under ultra violet irradiations for a relative brief period of time. At this 

stage, the crosslinking processes are initiated and carried to complete, yielding pre-ceramics in 

solid phase with fewer residues. The resultant product then would undergo similar pyrolysis as 

well as annealing processes as mentioned above. The latter approach (the UV route) normally 

would result in fully-dense PDCs samples and shorter products turn-around times.  

Various other newly-developed / implemented techniques have also been utilised to yield PDC 

components of complex shapes. One prominent example is 3-dimentional printing which have 

found applications in producing microfluidic channels via lithography 80 as well as parts with 

ordered porosity based on a powdered route 81. Another promising technique for micro / nano-

fabrication of PDCs is focused ion beam (FIB) for micro electro mechanical systems (MEMS) 

applications as demonstrated by Tian et al., which have been shown to yield PDCs products of 

more precise shape controls while retaining the superior properties of PDCs.82 Additive 

manufacturing techniques, with the help of 3-D printing and stereolithography, have also been 

explored to develop ceramics with greater geometrical flexibility while improving material 

strength and density which hold promise for potential applications in wider fields such as 

protective thermal shields and electronic device packaging.83 
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Figure 4 Typical thermal decomposition of basic organo-silicon polymers.2 

Among the other polymer-to-ceramic conversion methods, chemical vapour deposition84 and 

plasma spraying85 have been used to produce ceramic coatings with the pre-ceramic polymers 

deposited directly on different substrates. Ceramic coatings has also been prepared via laser 

pyrolysis, which has the capability for selective writing.86 In terms of non-thermal process, ion 

irradiation has been used to produce nanowires87 as well as luminescent ceramic 

coatings/layers with high hardness.88-90 

2.1.4 Microstructure of PDCs 

PDCs possess sophisticated microstructures and would experience significant transformations 

under very high temperatures (>1000 °C) with a characteristic persistence of the nano-domains, 

which gives rise to the exceptional resistance to crystallisation.45 At elevated temperatures, 

local crystallisation initiates in the amorphous bulk, followed by chemical bonding re-

distribution leading to phase separation, and finally results in nucleation and growth of nano-

crystals. It has been reported that SiCN contains nano-domains of approximately 1–3 nm in 
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size,91-93 with the type, composition and shape of nano-domains identified via small-angle X-

ray and neutron scattering (SAXS).94 A schematic illustration of the possible microstructure of 

Si-C-N based PDCs is given in Figure 5. 

 

Figure 5 Schematic illustration of the possible microstructure of Si-C-N based PDCs. 

For the amorphous-to-partially-crystalline transformation process, PDCs materials typically 

experience the following three main phases of microstructural changes: a). phase separation in 

the bulk of the material during annealing; b). graphitization process gives rise of the "free 

carbon" phase with the presence of carbon-dangling bonds; c). localised nano-crystals emerge 

under elevated temperatures.2  

Characterisation techniques for investigating PDCs microstructures include NMR, XRD, 

SAXS, FTIR, and Raman spectroscopy which give integral information, as well as TEM, SEM 

and EELS that provide information about local properties at the nano-scale.2 Various and 

extensive experimental characterisation efforts have been devoted to study the microstructure 

or microstructural evolutions of PDCs. Raman spectroscopy reveal that beside the possible 

presence of "free carbon", graphene sheets of relatively long-range order could exit. Raman 
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spectra also act as a powerful technique to conduct quantitative investigations on the 

evolutionary history / concentration changes of these "free carbons", which would significantly 

influence the electrical conduction mechanism (i.e., amorphous semiconducting behaviour for 

PDCs with low free carbon concentrations, whereas high free carbon concentrations yield a 

tunneling percolation mechanism95).96  

Free carbons are generally present in many PDC systems. Depending on temperatures, their 

distributions are different. At elevated temperatures (e.g., > 1000 °C), carbon takes the form of 

locally enriched regions of turbostratic graphite, whereas at lower temperatures, they normally 

show a homogeneous dispersion within the amorphous matrix. Although not thoroughly 

understood about the nature of free carbons, several reports have attributed PDCs oxidation / 

corrosion / crystallisation resistance to the presence of and its distribution characteristics of 

them. Transmission electron microscopy (TEM) have been extensively used to study the nature 

of the free carbons, which confirmed the presence of nano-sized carbons in turbostratic / 

graphitic forms.2 TEM results also revealed how that the concentration of polymeric precursors 

as well as annealing histories could affect the ordering of carbons clusters. 97 Investigative 

efforts have devoted on the nano-domain-like distributions of Si-based carbon and carbon-rich 

clusters. One of the most valuable tools is small-angle X-ray scattering (SAXS), which proved 

the presence of short-range order. Together with the other auxiliary techniques such as Raman 

spectroscopy as well as X-ray diffraction (XRD), SAXS characterisations have confirmed to 

presence of nano-domains within polymer derived SiCN samples, with the increase in the nano-

domain volume fraction lead to the increase in the inter-granular surface area thus the reactivity 

of the PDCs.94 Experimental techniques, however, have limitations on the investigations of 

PDCs because of the amorphous nature of the materials. To compliment this, computational / 

theoretical modelling efforts have also emphasised on the microstructural changes in PDCs 
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systems. The microstructural evolutions of PDCs during processing / annealing as well as when 

under external influences (e.g., stress, temperature) can reveal both how to better tailor the 

properties of PDCs for targeted needs and how to understand the fundamental mechanisms of 

its characteristic behaviours (e.g., electronic, magnetic, optical, and chemical aspects).  

As discussed above, the versatility of the potential applications of polymer derived ceramics 

stems from the possibility to tailor the backbone elements of the polymeric precursors (as well 

as a variety selections of fillers of many types), which ultimately comes from the less-

sophisticated chemical synthesis processes. 

Most commonly studied PDC categories are ternary ceramics as well as quaternary ones (i.e., 

polymeric backbones containing three or four types of main elements). Of all these PDCs, those 

derived from silicon (Si) containing polymeric precursors are the most promising and are the 

most extensively investigated. 

Besides the foundational Si atom on the polymeric backbone, molecular structural differences 

also would influence the properties of the final PDCs products. Stoichiometric factors dictate 

there would be three groups attached to the Si atom (other than the Si-Si bonds themselves). 

These three attached groups can be classified into two main categories: organic groups of R1 

and R2 as well as a functional group of X (as show below in Figure 6). The choice of different 

organic groups of R would mainly influence the rheology as well as solubility which would 

certainly affect the selection of processing techniques in subsequent steps.98 In addition, the 

PDCs yield is also dependent on the amount of carbon atomic contents of the R organic groups, 

with higher yields correspond to increased carbons. Moreover, the functional X group is chiefly 

responsible for the microstructures of the resultant PDCs, where the presence of free carbons 

become a hindrance for diffusions thus lead to the increased resistance towards 
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crystallization.99 A synergistic effect of the selection of the R and X group (as well as the Si/X 

ratios) will ultimately determine the properties of PDCs on the stability, electronic, and optical 

aspects. Mera et. al.100 have reported nanoscale characterizations of PDC SiCN and SiCO in 

terms of microstructures and energetics. They found that the results are consistent with the 

nano-domained models as proposed by Saha et al.101, which essentially comprised of a 

continuous yet inefficiently packed Si-based matrix phase, as well as entrapped within some 

carbon-rich clusters of varying degree of order. The illustrative depictions of Si-O-C as well as 

Si-C-N PDC systems are given in Figure 7 and Figure 8 respectively. The mixed bonds (Si-C 

and Si-O bonds) sandwiched between the Si-O-C and carbon-rich domains (as shown in Figure 

7) are attributed to the high thermodynamic stability according to calorimetric results. 

Additionally, carbon contents in SiCN PDCs significantly affect the microstructure in terms of 

the nano-domain dimension and distributions. At lower carbon contents, polymer derived SiCN 

ceramics are constituted of Si3N4 and free carbon (mainly in sp2) nano-domains (which are 

inherently amorphous), with the inter-domain regions consist of mixed bonds (Si-N and Si-C 

bonds) which is likely stabilised due to the H atoms. Whereas for higher carbon contents. SiCN 

PDCs witness free carbon nano-domains of larger sizes, which are semi-continuously inter-

connected within the matrix (depicted below in Figure 8). One noteworthy feature of PDCs is 

that the annealing temperatures would cause further microstructural changes in terms of the 

loss H as well as lowered amount of mixed bonds (refer to Figure 9). 
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Figure 6 A generalized formula of Si-containing polymeric PDC precursors.100  

 

Figure 7 Nano-scale structural model of low carbon (left) and high carbon (right) containing 

SiOC ceramics at 1100 ℃.100 
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Figure 8 Carbon-rich precursor system comprised of Si3N4 clusters embedded within a 

continuous amorphous / turbostratic carbon matrix. 100 

 

Figure 9 Mixed bonding in the interfacial region between Si3N4 and carbon nano-domains in a 

samples synthesized at 800 ℃ and (right) loss of hydrogen and of mixed bonding post 1100 ℃ 

pyrolysis.100 

Microstructural changes in PDCs under external stress / strains have also been reported, both 

for SiOC 102 as well as SiCN 47. Both teams observed piezoresistive effect for respective PDCs 

samples with the latter team ascribed this phenomenon to the unique self-assembled nano-
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domain microstructures discussed above following a tunneling-percolation model. Whilst the 

former team studying polymer derived SiOC discovered similar mechanism due to percolation 

effects owing to the segregated (electrically conductive) carbon clusters within the Si-based 

matrix. Specifically in terms of the origin of piezoresistivity, a tunneling-percolation network 

within the Si-based matrix stem from the conducting graphene sheets, with the tunneling 

process (which PDCs resistivity is dependent of) become ultra-sensitive to the distance 

between the graphene sheets. Such model therefore connects the piezoresistivity to the distance 

changes between graphene sheets due to external pressure.  

In addition to the influence of external pressure on microstructural changes in PDCs, 

temperature could also influence the microstructures of PDCs especially causing changes in 

free carbons thus further determine the electrical properties.103 The pyrolysis temperatures 

could cause the ratio of sp2/sp3 carbon to increase thus lead to a rise in electrical conductivity 

owing to various mechanisms: a band-tail hopping conduction mechanism for SiAlCN 104, a 

caused by the conductivity increase in the carbon phase for SiBCN 105, as well as C-O bonds 

re-arrangement in the free carbon phase (for SiOCN) 106.  

2.1.5 Properties of PDCs 

2.1.5.1 Thermal Properties 

Polymer-derived ceramics exhibit excellent thermal properties under high temperatures 

including: a). resistance to thermal decomposition and crystallisation up to 1800 °C (Figure 10 

and Figure 11 respectively) 49; b). good thermal shock resistance (Figure 12) 107; and c). 

superior oxidation resistance and corrosion resistance.108  
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Riedel et al.49 have reported a polymer-derived SiBCN ceramic that can withstand thermal 

degradation up to ~2000 °C, much higher than that of SiCN and Si3N4. The composition of 

SiBCN annealed at 2000 °C almost remains the same as the as-synthesised specimen, 

indicating its excellent high-temperature stability.  

  

  

Figure 10 Thermal gravimetric analysis of polymer-derived SiCN, SiBCN and commercially 

available Si3N4.49 

As shown in Figure 11 of the XRD results, SiBCN remains amorphous up to 1700 °C, and 

when annealing temperature reaches 2100 °C, β-SiC is found as the only crystalline phase, 

showing excellent resistance to crystallisation.49   
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Figure 11 The XRD results of SiBCN annealed at different temperatures.49 

 

Figure 12 Typical creep observed in polymer-derived SiCN and SiBCN materials.108  

Polymer-derived SiAlCN ceramics have been reported to exhibit superior oxidation and hot-

corrosion resistance than that of SiCN (as shown in Figure 13).109-111 Comparison of SiAlCN 

and SiCN surfaces underwent hot-corrosion in NaCl saturated solution shows virtually no 

cracks on SiAlCN (Figure 14). Due to the excellent oxidation/corrosion resistance of SiAlCN 

ceramics, they are promising candidates for high-temperature and harsh-environment 

applications.  
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Figure 13 A plot of the square of the oxide scale thickness as a function of annealing time for 

both SiCN and SiAlCN at 1200C in dry air.58  

 

Figure 14 SEM micrographs of the surfaces of (a) SiCN, (b) SiAlCN-07 and (c) SiAlCN-14. 

The specimens first immersed in de-ionized water saturated with NaCl at 100C, and then 

annealed at 1200C for 50h in air.58  

2.1.5.2 Mechanical Properties 

Apart from PDCs fibres, the Si–C–O, and the Si–C–N systems have attracted detailed 

investigations in terms of bulk mechanical properties of PDCs. For both systems, mechanical 

properties have been measured at different pyrolysis temperatures, with the summarised 

reported results presented below in Table 1.2 In addition to the excellent room-temperature 

mechanical properties, it is expected that such superior mechanical behaviours can be retained 

at high temperatures due to the absence of grain boundary phases. 
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Table 1 Summary of the Mechanical and Thermal Properties Measured on Bulk Samples of 

the Si–C–N and Si–C–O Systems. 2 

System 

Bulk 

density

, 

𝜌 

(g/cm3

) 

Elastic 

modulus

, 

E (GPa) 

Vickers 

hardness

, 

HV 

(GPa) 

Fractur

e 

strength

. 

𝜎F 

(MPa)  

Poisson’

s ratio, 

(n) 

Fracture 

toughness

, 

KIC (MPa 

∙ m1/2) 

Thermal 

expansion

, 𝛼 (×106 

℃-1) 

SiCN 

(Ceraset) 

1.85-

2.16 
82-140 8.3-11.3 <1100 

0.21-

0.24 
0.56-1.3  

SiCN 

(NVP200) 
2.32 110-130 11-15 <118 −  − 

SiCN 

(VT50) 
1.95 105 6.1 88-146  2.1 3.08-3.96 

SiCN 

(HVNG/HPS

) 

2.6 109-118 7.9-12.8 80-235    

Si(O)C 

(AHPCS) 
2.3-2.9  9.13   1.4-1.67  

SiCO (sol-

gel) 

1.7-

2.28 
57-113 4.7-9.3 70-900  0.57-0.77 3.21 

SiOC (MK) 2.23 101 6.4  0.11   

SiOC 

(SR350) 
2.35 97.9 8.5 

133-

612 
 1.8 3.14 

 

In general, the elastic moduli of PDCs systems of S-C-N and S-C-O is lower than that of the 

crystalline silicon carbides or silicon nitrides, due to the less densely packed systems of 

networks, which also lead to low densities.2 For the conventional thermal pyrolysis routes of 

producing PDCs, higher annealing temperatures typically result in increased elastic modulus 
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as well as density because of the loss of H atoms in C-H bonds leading to more closely 

connected networks. Similar trends are observed for the hardness values of PDCs, where higher 

pyrolysis temperatures normally yield increased hardness, since more carbon atoms migrated 

into the silica networks, thus impose more restrictions on dislocations.112 Extraordinary creep 

resistance is another interesting feature of (Si-based) PDCs, which have typical viscosities of 

three orders of magnitudes better than vitreous silica.108 

 2.1.5.3 Electrical Properties 

Electronic behaviours of amorphous PDCs have gained extensive attentions because: a). they 

provide a unique model system for studying the structure-properties-performance relationships 

of complex amorphous covalent materials, and b). they could find the promising applications 

in harsh-environment sensing as well as MEMS.54,113 

2.1.5.3.1 DC Conductivity 

Haluschka et al.103 have shown that the electrical properties of amorphous Si–C–N ceramics 

are in the range between the electrical properties of semi-conducting SiC and that of insulating 

Si3N4. Their results revealed that the DC conductivity is influenced by the conditions of the 

final heat treatment, namely the annealing time and temperature. Haluschka et al. identified 

three distinctive regimes: a) due to the loss of residual hydrogen and an increased sp2-/sp3-ratio 

of the carbon atoms, the conductivity of the amorphous SiCN matrix would experience a rise 

up to three orders of magnitude (up to 1300 °C); b) due to the formation of SiC and the loss of 

nitrogen of the remaining amorphous a-SiC(N) matrix, the material  had a pronounced 

conductivity increase (between 1300 and 1600 °C); and c) lastly the nano-crystalline SiC 

particles were responsible for the conductivity increase by formation of percolation paths 

throughout the sample  (above 1600 °C). 
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2.1.5.3.2 AC-conductivity  

Studies on AC (alternative current) behaviour (as shown below in Figure 15) of a PDC material 

(SiCN) show that at low frequencies the AC conductivity remains stable (attributed mainly to 

the long-range transport of charge carriers through the matrix-to-free-carbon path), while at 

high-frequency regime it rises with frequency (proposed to be caused by interfacial polarisation 

due to charge carrier relaxation within the free-carbon phase).114   

 

Figure 15 Schematic showing the conduction mechanisms in the a-SiCN at low and high 

frequency regions.114   

2.1.5.4 Impedance 

Complex impedance behaviors of polymer-derived amorphous SiCO and SiAlCO are 

reported.115,116 Equivalent circuit models have been applied and showed fitting correspondence 

with the measured data. The conduction of current in both materials is found to pass through 

the matrix and free carbon phases in series, with the conductivity of both phase increases with 

increasing synthesis temperature, whereas the matrix has a significantly shorter relaxation time 

than that of the free carbon. The relaxation process of polymer-derived SiAlCO is found to 

move to higher frequency with increasing pyrolysis temperature.  
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Despite the investigative efforts made as discussed above, little attention has been focused on 

the interfacial areas sandwiched between the matrix and carbon phases. The role and effect of 

the interfaces deserve more in-depth investigations as the electrical behaviors may experience 

great influence from the interfaces between two phases with vastly different conductivities. 117 

However, this has started to attract research efforts with some recent reports investigating 

mainly Si-C-N PDCs systems.   

Strong interfacial charge polarisation has been reported to present, leading to giant relative 

permittivity. 118 The interfacial polarisation underwent relaxation processes (from -50 to 300 

℃), following a 3D random hopping mechanism, depend on the capacitance and resistance of 

the interfacial areas. 119 Employing complex impedance spectroscopy with superimposed direct 

current (dc) bias, Li et al. have applied a double Schottky barrier model to help determine the 

room temperature interfacial characteristics. The authors have revealed that the capacitance 

and resistance appeared to be independent of dc bias, whereas that of the interface is suppressed 

with increased dc bias voltage, with such effect attributed to bias influence on potential barrier 

height and barrier region width.120  

Due to intense research interests on PDC as a promising candidate particularly for high-

temperature sensing applications, it would provide more in-depth revelations to further study 

the interracial behaviours under elevated temperatures, and impedance spectroscopy with 

superimposed dc current bias on ac current remains a powerful pathway towards this aim.  

2.1.5.5 Contacts between Metallic-Conducting Phase and Semi-Conducting Phase 

Due to the bi-phasic nature of most Si-based PDCs, the interface sandwiched between the two 

phase becomes an accumulation venue for charge carriers when PDCs are under external AC 

current. The interface is therefore a highly conductive region, which may be treated as 
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possessing metallic-conducting characteristics. Furthermore, comparative to the highly-

conductive interfacial phase, the free carbon phase as well as the ceramics matrix phase have 

semi-conducting behaviours. Therefore, the contact between the (highly-conductive) interface 

phase and the semi-conducting phase (either the free carbon phase or the ceramics matrix phase) 

have similar electrical conductive characteristics of the metal-semiconductor contacts. Here in 

the following contents, we will review the fundamental theories of the Schottky contact, which 

shows the non-linear, rectifying current voltage characteristics.121  

For the energy band structures of either the interfaces or the (n-type) semi-conducting phase, 

their respective work functions are inherently different. With the work function of the 

interfaces being the minimum energy required to eject one electron (i.e., interfacial Fermi 

energy of  𝐸𝐹𝐼𝑛𝑡𝑒𝑟
), whilst that of the semi-conducting phase has a work function of 𝐸𝐹𝐶

 (energy 

needed to "kick" an electron from the Fermi level at the conduction band). For discussion 

convenience purposes, we consider the contact between an n-type semi-conducting phase and 

the highly-conductive interfacial phase so that the Fermi level of the former phase is larger than 

that of the latter (i.e.,  𝐸𝐹𝐼𝑛𝑡𝑒𝑟
< 𝐸𝐹𝐶

). Because of such energy level difference, when the 

interfaces phase makes contact with the semi-conducting phase (i.e., when the bi-phasic PDCs 

is placed under AC electric field forming the interfacial phase filled with accumulated charge 

carriers), the energy levels tend to align to reach thermodynamic equilibrium via the migration 

of charge carriers from the (high-energy level) conduction band to the (low energy level) 

interfacial regions. As the electrons depart from the semi-conducting phase, they also leave 

behind certain donor atoms with positive charges. Such process creates a region depleted of 

electrons (i.e., depletion zone). When thermodynamic equilibrium is achieved after contact has 

been fully established, the Fermi energy levels reach an aligned value in addition to the 
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formation of the depletion region. Therefore, the process results in a curved energy band in the 

semi-conducting phase. Such curved energy band acts as a potential barrier, impeding the flow 

of electrons from the semi-conducting phase to the interfaces. 

Under complete thermodynamic equilibrium and without any external electric field, electrical 

neutrality dictates that the current flow from the semi-conducting phase to the interfaces is 

exactly matched by the flow of the reverse direction. However, when the AC electric field is 

biased due to a DC voltage, the current flows of the two directions becomes different. Under a 

forward DC bias (V), the potential barrier (at the semi-conductor side) is lowered (by a level of 

V). This eases the restrictions of electron migrations and therefore increased electron flow from 

the semi-conducting phase to the interfaces. Furthermore, since the potential barrier from the 

interfaces side remains the same, the level of electrons crossed into the semi-conducting phase 

is still unchanged. Such imbalance of the bi-direction electron flows effectively creates current 

from the interfaces to the semi-conducting phase. On the other hand, when under a reverse bias 

(of V), the potential barrier witnesses a rise (of V). Similar to the above discussions, the electron 

flows from the semi-conducting phase are reduced because of the heightened potential barrier. 

Since the interface-to-semiconductor current still remains unchanged, the resultant net current 

flows from the interfaces to the semi-conducting phase. 

2.1.5.6 Piezo-resistivity 

Some  amorphous PDCs have been reported to demonstrate significant piezoresistivity, with a 

polymer-derived SiCN showed piezoresistive coefficients of an unprecedented 4000 47 

following a tunneling-percolation model based on Saha et al.101 who proposed the formation 

of conductive graphene sheets within the framework of PDCs nano-domains. Similarly, the 

tunneling-percolation mechanism has been attributed to a reported high strain sensitivity of 145 
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of a PDC SiCO owing to the presence of a percolating network of electrical conductive free 

carbon.102 Interestingly, the electrical resistance of SiCO rises with increased compressive 

stress, contrary to that of SiCN.  

2.1.6 Magnetic Properties 

Polymer derived ceramics containing ferrous elements have attracted research efforts 

investigating its magnetic behaviours. Since PDCs themselves are not inherently magnetic, one 

common approach to impart such properties is to incorporate PDCs with other ferrous materials 

or particles to make essentially PDCs composites. One less sophisticated method is to simply 

disperse Fe3O4 powders into liquid-phased polymeric precursors before undergoing a reduction 

process in graphite, yielding a high Ms of  around 57 emu∙g-1.122 Iron silicide fillers have also 

been incorporate into preceramics producing PDCs with cubic Fe3Si particles embedded the 

matrix, showing an Ms of up to 17 emu∙g-1.76 A more fundamental approach to synthesise 

magnetic PDCs is to modify the design at the molecular / polymeric backbone level, which is 

to add metallic iron atoms (e.g., via ferrocene).2 Sun et al. have obtained phosphorus-

containing PDCs with good magnetisation (Ms up to 50 emu∙g-1) exhibiting very low remanence 

and coercivity.123 Higher (more than doubled magnetisation of 118 emu∙g-1) have been detected 

from Cobalt-containing PDCs which also retained similarly low remanence and coercivity.124 

In addition, the observed magnetic behaviours also agree with the evidence of the existence of 

domain-like regimes within PDCs matrix. And such functionalised PDCs with tunable 

electromagnetic properties may find promising applications as regenerable absorbers or 

regenerable diesel particulate traps.76 
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2.1.7 Optical Properties 

Polymer derived ceramics did not initially attract much attention upon investigating its optical 

properties since most PDCs are not optically transparent. The blackish appearance of many 

PDCs is chiefly believed to have cause by the presence of sp2 carbons forming light-absorbing 

graphitic thin layers.2 However, research efforts have yielded largely transparent SiCO PDC 

discs (due to the lowered presence of sp2 carbons). 125 These transparent PDCs show a 

luminescence band centering around 500 nm which the authors ascribed still to the sp2 carbons. 

Produce via a sol-gel route, SiCO PDCs doped with Eu2+ proved to be a luminescent glass, with 

an emission band exhibit a peak in 450–480 nm.126 With the aim of producing high-temperature 

stable materials for white light applications, an Italian team has pyrolyzed sol-gel derived SiOC 

PDCs films showing visible luminescence.127 They show that different pyrolysis temperatures 

yielded luminescence of varying colours: bluish emitting from low-temperature annealed 

samples, whereas their high-temperature analogues exhibit green-yellow. Besides SiOC PDCs, 

polymer derived SiCN have also been reported with regard to its photo-luminescence 

behaviours and mechanisms.128 In contrast to their SiCO counterparts, these N-containing 

PDCs show prominent luminescence at much lowered annealing temperatures (500 – 600 ℃), 

which the authors attributed to the microstructural re-arrangement as well as the presence of 

sp2 carbon along with the formation of radicalized species. In addition, SiOCN PDCs have also 

been shown to exhibit intense photo-luminescence in the range of 500 – 800 nm.129 The author 

also employed the previously-discussed nano-domain model to explain the luminescence 

phenomena, which they ascribed to the mixed bonds of Si–C–N–O tetrahedral.  
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2.1.8 Chemical Properties 

Chemical stability of PDCs is the reason they attract research interest to develop and study in 

the first place, with the additional characteristics of superior oxidation resistance properties.2 

There have been extensive research reports with regard to the chemical durability of PDCs. 

Polymer derived SiOC ceramics have been put to the test of highly corrosive acidic and basic 

solutions to examine its chemical stability.130 Compared to its silica counterparts, SiOC PDCs 

show much greater endurance because of the presence of Si-C bonds, and the cross-linked 

carbons as well as the highly disordered composition, which jointly retard the transport of 

nucleophilic species. 

The oxidation behaviors of PDCs have been widely studied (with focus on systems of SiC, 

SiCO, SiCN, and SiBCN). Here, the pyrolysis processes play a vital role, since the elimination 

of H atoms is key to achieve parabolic oxidation rates.2 Most systems investigated reveal a 

dense, continuous (defect-free) oxide layer above the ceramic interfacial areas. Efforts have 

also been devoted to the effects of additional elements incorporated with Si-C-N PDC systems 

(e.g., B, Al, as well as Zr), 109,131,132 relying on the blockage effect of these added atoms towards 

a dropped O2 diffusion rates. 

2.1.9 Applications of Polymer Derived Ceramics 

As the above-discussed superior properties of polymer derived ceramics indicate, they could 

find numerous potential applications in various technical fields which this section aims to 

review and correlate the structure, processing and properties relationships. 

 The fundamental mechanism of application / properties tailoring lies with the versatile 

capability of designing the microstructures of the pre-ceramic polymers at a molecular level. 
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When combined with various types of fillers as previously discussed (e.g., metallic and 

polymeric), the properties of PDCs can be tuned to meet or more often exceed conventional 

ceramics in terms of mechanical strength, electrical / dielectric behaviours, and oxidation / 

corrosion resistance. It is therefore promising both in terms of fundamental research as well 

practical applications to study the properties of PDCs more in-depth. 

2.1.9.1 PDCs Protective Coatings 

Since the processing of polymer derived ceramics is based on liquid phased polymeric 

precursors, coatings / thin membranes could be produced while retaining the exceptional wear 

/ oxidation / corrosion resistance capabilities.133 SiCO coatings have been applied on to fibres 

acting as flame / temperature shields.1 SiCN has also been spray coated on conventional 

substrates against oxidising environments and mechanical wears.134 Similar techniques have 

produced porous SiCN membranes aimed for gas (e.g., hydrogens) separation under high 

temperatures.135 

2.1.9.2 Micro-electro-mechanical Systems (MEMS) 

The successful development of micro- or nano- electro mechanical systems relies on the inter-

connectivity of different components of various sizes. This again depends on the capability of 

producing parts with complex shapes / dimensions. Conventional methods, besides the lack of 

high accuracy, are limited in terms of this aspect, since molds of pre-determined corresponding 

shapes would need to be manufactured first, which is also less cost-effective. The (high 

temperature as well as harsh environment) mechanical strength of polymer derived ceramics 

makes them a very promising candidate for MEMS components with desired features can be 

as small as less than one micron achievable via lithographic techniques.136 Typical examples 

of polymer derived ceramics MEMS include: electrostatic actuators (which could also find use 
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in high power laser systems)54, photonic crystals137, as well as embossed micro-fluidic 

channels138. 

2.1.9.3 PDCs Fibres 

The fibres, which are composite in nature, made from polymer derived ceramics combines both 

the strength of carbon fibres and oxidation / corrosion resistance of ceramics. These PDC fibres 

have found wide applications as ceramics reinforcements and have attracted extensive further 

research interests for performance optimisations. Till today, three generations of PDC (mainly 

non-oxide) fibres have been developed, with the latest ones have already been successfully 

commercialised possessing exceptional thermal stability as well as very high Young's modulus. 

Flores et al. have reported  polymer derived SiCN fibres which can retain a Young's modulus 

of over 300 GPa under temperatures as high as 1400 degrees Celsius.139 

2.1.9.4 Polymer Derived Composites 

Though polymer derived ceramics themselves already possess composites-like properties, 

tremendous interests and efforts have still been devoted to the further development of PDC-

based composites combining the superior properties of many other newly-discovered nano 

materials. Carbon nanotubes  / PDC composites have been reported with the  modulus, hardness, 

as well as damage resistance of the reinforced composite product greatly improved even with 

just a small amount of multi-walled carbon nanotubes incorporated.51 

2.1.9.5 Sensing Materials  / Devices based on Polymer Derived Ceramics 

As discussed in previous sections, one of the most unique aspects of PDCs are that their 

microstructures could change with external parameters (e.g., temperature, stress, and strain), 



35 
 

which lead to detectable changes in intrinsic bulk properties (such as: thermal coefficient, 

electrical conductivity, as well as relative permittivity). 

Heat flux sensor for gas turbine environment under high temperatures have been reported based 

on polymer derived SiCN via lithography microfabrication techniques.140 Temperature sensors 

have also been variously reported take advantage of the "tunneling percolation" effect due to 

microstructural changes. One example demonstrated a wireless PDC (SiCN) sensor based on 

cavity radio frequency resonator.141 Another showed a SiAlCN-based high temperature sensor 

with retained good accuracy even after many repetitive cycles.142  

Pressure sensor, with desired shapes and very high hardness (23 GPa), for high temperatures 

have also been reported employing the drag effect.143 Gas sensing capabilities of PDCs have 

also been investigated, with hydrogen sensors being explored owing to the semiconducting 

behavior of polymer derived SiCN which were reported to show good performance up to 785 

K.144 

2.2 Polymer-Derived SiAlCN Ceramics 

Due to excellent oxidation and corrosion resistance111, anomalously high piezoresistivity47 as 

well as its capability for temperature measurement in harsh environment142, SiAlCN has 

become a novel promising candidate of high-temperature multi-functional material. It is 

particularly attractive to apply and integrate the PDCs into wireless sensing systems and 

embedded within the interior regions of moving parts of turbine engines, highly irradiative 

surfaces of gasifiers / reactors to detect the real-time temperatures and pressures to gain reliable 

and accurate feedbacks for system operation optimisations. Its excellent mechanical strength 
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means it could also find potential future applications in civil engineering field for structural 

health monitoring (for example: high-rise buildings or long-span bridges). 

Polymer-derived SiAlCN ceramics has been found to have more superior oxidation resistance 

than other silicon-based materials, with the oxidation rate for the SiAlCN is about an order of 

magnitude lower than that for pure silicon carbide/nitride.58,110 It was also observed that 

SiAlCN exhibits excellent water-vapour corrosion resistance under 1100 °C, which was 

attributed to the formation of aluminum-doped cristobalite oxide scale.111 

Electric properties characterisations of PDC SiAlCN show a smooth increase of DC 

conductivity with elevated sintering temperatures.3 The dielectric measurements revealed that 

the dielectric constant and dielectric loss rise with increasing temperature.3  

Temperature sensor design based on polymer-derived SiAlCN for high-temperature 

applications has been reported.142 The sensor resistance showed a monotonous change with 

ambient temperature (up to 830 °C), and has demonstrated excellent accuracy repeatability to 

both uni-directional and bi-directional temperature variations.  

2.3 Desalination Membranes 

The imminent risks of global water shortages pose as threats not only to those directly impacted 

due to the lack of clean water for everyday usage, industrial waste processing and treatment, 

as well as agricultural irrigations, but also cause collateral damages to the society since the 

imbalance of such basic human needs of accessing clean water would induce social unrest and 

conflicts. 6 

As a readily accessible and abundant resource, seawater has the promising potential of greatly 

reducing the risks of the fresh water shortage. However, as a complex mixture of various types 
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of salt, water, and dissolved solvents, seawater is not directly potable or useful for industrial or 

agricultural demands. For decades, researchers and engineers have been exploring materials 

and techniques for removing the mineral components within seawater in an efficient and cost-

effective manner. Durable and selective-filtering membranes have been the dominant 

candidates for such applications, with the polymeric membranes still account for the majority 

of the commercially available products. 8 With respect to the most widely-adopted desalination 

techniques, reverse-osmosis (RO) have been the dominant method for producing large amounts 

of fresh water, with multistage flash (MSF), multi-effect distillation (MED) are also attracting 

increasing attentions. RO is a high-pressure membrane process that utilises a semipermeable 

polymeric membrane to retain salts and low-molecular-weight solutes while allowing the 

passage of water via diffusion. However, a major drawback of RO remains, which is its high 

energy demands due to the pressurisation process, which in turn contributes to the release of 

greenhouse gases from fueling burning. The polymeric membranes developed decades ago 

have underwent significant modifications in terms of increasing desalination performances for 

example new polymerisation routes, developing thin-film composite membranes, as well as 

post-synthesis surface modifications to obtain membranes with high permeability, salt rejection 

rates, fouling-resistant capability, and chlorine-tolerance. In addition, future challenges for 

desalination technique also come from integrating renewable energy source, as well as stringent 

water standard and brine management.9 

In addition to the polymeric-based membranes, there have been many recently developed 

materials for desalination applications, although not fully capable of large-scale industrial 

usage. For example, ceramics-based membranes have been used in harsh environmental 

situations (e.g., high-temperature, highly-radioactive feeds, and highly-reactive components) 

where polymeric membranes could not endure. 145 Furthermore, mixed matrix membranes (e.g., 
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incorporating zeolite nano-particles) have been developed with smoother, more hydrophilic 

surface exhibiting improvement in salt rejection rates.146 Another category of novel 

desalination membrane involves the incorporation of carbon nanotubes (CNTs) which have 

been excellent water transport. However, although CNTs-integrated membranes show great 

promise in flux enhancement, efficient synthesis methods to produce membranes with well-

aligned CNTs, as well as the development of surface modifications for more efficient salt 

rejection remain major obstacles for future applications.147  

Nano-structured RO membranes offer inherently high permeability as well as salt ions rejection, 

while the development of nanotechnologies could bring forth multitudes of innovative 

progresses towards high-performing desalination membranes. However, practical issues of 

cost-effectiveness, scaling-up, and potential health risks still demand extensive investigations. 

9 

2.4 Two-Dimensional Materials for Desalination Applications 

As a promising alternative to the conventional polymeric desalination membranes, a viable 

potential solution stands with engineering the structure of traditional materials into tailored 

porosity or exploring a new type of intrinsically porous nanomaterials-based membranes. 

Recently developed two-dimensional (2D) materials present unprecedented opportunities for 

water desalination and molecular sieving technologies owing to their structural uniqueness.11-

13 Their extremely small thickness (i.e., a few Å for 2D monolayers) projects superior water 

permeation rates benefiting from small diffusion lengths for molecular transports while their 

high mechanical flexibility renders advantages for membrane integrations. Moreover, 2D 

materials produced by chemical synthetic routes possess high-density "intrinsic" structural 

imperfections (e.g., near atomic vacancies) whose physical dimensions are comparable to those 



39 
 

of salt ions and water molecules.14 In this endeavor, a variety of 2D materials have been 

explored including graphene,15-18 dichalcogenides,19-22 and graphene oxides,23-26 along with 

substantive efforts for the structural engineering of traditional membrane materials such as 

zeolites,27-30 and metal-organic frameworks 31-34.  

Although for graphene in its pristine form is impervious to water molecules, techniques to 

generate nanopores on graphene sheets have been developed, and the nanoporous graphene 

membranes have shown great potential in desalination performances, with some investigations 

have demonstrated their capability of withstanding high pressures associated with RO. For 

example, Suk et al. have shown that graphene-based membranes show water permeation rates 

of 2–3 orders of magnitude higher compared to conventional RO membranes, with salt 

rejections approaching 100%.148 However, mature techniques for producing large-area 

graphene with well-defined distribution of nanopores are still absent at this stage of research. 

15 In addition to graphene-based membranes, graphene-oxide-based membranes offer many 

desiring features for potential water treatment technologies including distinct microstructural 

design, hydrophilicity, excellent mechanical strength, as well as good anti-fouling 

performances. 

In addition to graphene and GOs based desalination membranes, many other types of 2D 

nanoporous membranes have been investigated for their potential for filtration applications 

owing to their ultra-thinness as well as inherent nano-sized pores for impeding salt ion 

translocations. For example, zeolites are composed of three-dimensionally interconnected 

nanopores of 0.3-0.8 nm, and have been shown to be able to effectively reject salt ions, while 

retaining a water permeability of 40 L/(cm2·day·MPa), similar to that of graphene.149 Moreover, 

covalent organic frameworks (COFs) consisting of tunable and precisely controlled nanopores 
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have been proposed as a promising candidate for filtration ultrathin membranes. For instance, 

Triazine framework nanoporous membranes have demonstrated a water permeation of 24.6 

L/(cm2·day·MPa), and a salt rejections rate of nearly 100%.150 Furthermore, owing to their 

high flexibility, mechanical strength, and hydrophilicity, MXenes with controllable thickness 

can also yield suitable membranes for separation applications with ultra-fast water flux. 

Ti3C2Tx MXene membranes have been shown to have a water flux of 37.4 L/(m2·h·bar), due 

to the hydrophilic nature of the material and the presence of intra-layer water molecules. 151 

2D materials of mono-to-few layers (e.g., h-BN, phosphorene, and MoS2) have attracted 

extensive investigations towards their potentials for ionic sieving. A prominent example is 2D 

MoS2 which have been fabricated for nanoporous membranes for desalination applications, in 

addition to many theoretical projections of their performances. MoS2 also demonstrates 

excellent mechanical properties (e.g., MoS2 nanoporous 1 nm-thick membrane possesses a 

Young's modulus of 270 GPa), as well as good flexibility. 2D molybdenum disulfide (MoS2) 

layers have recently gained significant interests for a wide range of water and environmental 

technologies. They not only share the intrinsic structural advantages inherent to other 2D 

materials but also present additional suitability such as excellent chemical stability and non-

toxicity.35-37 Furthermore, a variety of structural variations such as point defects, grain 

boundaries, and van der Waals (vdW) gaps have been ubiquitously observed in 2D MoS2 layers 

grown via chemical vapour deposition (CVD) process.38-40 Such "intrinsically" present 

structural imperfections of very high concentration (e.g., areal density of ~1013 cm-2 for sulphur 

vacancies41) offer 2D MoS2 layers high promise as an efficient membrane material for water 

desalination applications. In fact, several studies based on theoretical calculations and 

molecular dynamics simulations have predicted superior desalination performances of 

monolayer 2D MoS2.
14,19,41,152,153 Heiranian et al. have predicted that 2D MoS2 monolayers of 
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enriched defective sites can exhibit ~2-5 orders-of-magnitude higher water fluxes than 

traditional filtration membranes, which is even 70% greater than the performance of graphene 

nanopores.154 Köhler et al. have projected that the ion rejection capability of 2D MoS2 

membranes is superior to graphene under a wide range of test conditions including pressure, 

nanopore size, and cation valences.152 Li et al. have simulated the desalination performance of 

2D MoS2 layers, demonstrating high water transport rate (355.3 L m-2 h-1 bar-1) and excellent 

salt rejection capability.155 Despite the theoretically-projected promise of 2D MoS2 layers, their 

experimental utilisation for membrane-based desalination technologies has been rarely 

approached. A few experimental studies have explored MoS2 laminar membranes of very large 

thickness (typically, ~1-10 µm) constituting mechanically stacked individual 2D flakes.14 Sun 

et al. studied ~1.7 µm thick MoS2 membrane films prepared via chemical exfoliation and 

subsequent filtration of aqueous dispersion.156 Hirunpinyopas et al. demonstrated chemically 

functionalised ~5 µm thick laminar membranes composed of exfoliated 2D MoS2 flakes 

employing the similar filtration process.157 These laminar 2D MoS2 membranes of large 

thickness have exhibited significantly limited desalination efficiencies, failing in meriting the 

structural uniqueness and performance advantages projected with near atom-thick membranes. 

For example, their water permeation rates were experimentally identified to be in a range of 

~245-275 L m-2 h-1 bar-1,156,157 significantly falling short of theoretical values predicted by 

simulation studies.154  Moreover, ion rejection rates of mere ~15-30% were reported for pristine 

laminar 2D MoS2 membranes of ~1-5 µm thickness. Scarcity of experimental studies on the 

2D MoS2 layers-based membranes of near atomic thickness for water desalination is attributed 

to technical difficulties associated with integrating 2D layers preserving their structural 

integrity. Particularly, it has been challenging to produce large-scale (> cm2) "continuous" 2D 
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MoS2 layers of ~1-10 nm thickness and their seamless integration onto porous substrates, 

hindering their applications to desalination technologies.  
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CHAPTER 3: INTERFACIAL CHARACTERISTICS OF POLYMER 

DERIVED SIALCN CERAMICS1  

3.1 Introduction 

The bi-phasic nature of PDCs features two phases of different conductivities, with the free-

carbon phase exhibited higher conductivity than the amorphous matrix phase. The difference 

in conductivity between the two phases gives the materials many unique electrical properties, 

notably high-temperature semiconducting behaviour 46,158 and anomalous piezoresistivity.47,159 

It was shown that the dc (direct current) conductive behaviour of PDCs was determined by the 

concentration of the free-carbon phase.95 When the free-carbon content is high, a tunneling 

percolation network is formed by the free-carbon clusters, leading to high piezoresistivity.160 

On the other hand, when the free-carbon content is low, the materials exhibit amorphous 

semiconducting behavior.161  

Previous studies also demonstrated that the electric heterogeneity resulted in an internal 

potential barrier at the interface between the matrix and the free-carbon clusters. This barrier 

caused the transition of the ac (alternating current) conduction mechanism from the long-

distance transport of the charge carriers to the interfacial polarisation.114 The barrier also led to 

a very high permittivity in PDCs.118,162 Given its importance in determining the dielectric 

behaviour of PDCs, the behavior of the barrier itself has yet been explored.120 

In this study, the behaviour of the internal potential barrier is studied by using a polymer-

derived amorphous silicoaluminum carbonitride (a-SiAlCN) as the model material, which 

                                                 
1 Part of contents in this Chapter contains published works adapted with permission from: Hao Li, Baisheng Ma, 

& Linan An. Effect of temperature on internal potential barriers in polymer-derived amorphous ceramics. 

Ceramics International 45, 13575-13578 (2019). Copyright 2019 Elsevier Ltd and Techna Group. Published on 

March 30th 2019. Hao Li prepared the samples and conducted part of materials characterization, as well as 

analyzed the data. 
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exhibited excellent oxidation and corrosion resistance.58,109 It is revealed that the interfacial 

capacitance of the material can be described by a double Schottky barrier model. The height of 

the barrier and the charge-carrier concentration exhibit Arrhenius dependence on testing 

temperature and annealing temperature respectively. The results are discussed in terms of the 

electronic structures of the material. 

3.2 Experimental Methods 

The a-SiAlCN studied here was prepared from a polyaluminasilazane precursor following the 

procedure as previously reported.163 First, the precursor was synthesized by mixing/reacting 

liquid polysilazane (VL20, Kion, Huntingdon Valley, PA) as the major precursor with 20 wt% 

poly (melamine-co-formaldehyde) acrylated solution (PVN, Sigma-Aldrich, St. Louis, MO) as 

the N source and 5 wt% aluminumtri-sec-butoxide (ASB, Sigma-Aldrich, St. Louis, MO) as 

the Al source. The mixing/reacting was carried out at 80 °C for 12 h under continuous stirring 

to ensure the completion of the reaction. The synthesized precursor was then photo-cured under 

ultraviolet light, followed by heat-treatment at 120 °C for 12 h to enhance cross-link. The cross-

linked samples were finally annealed at different temperatures (i.e., 1100, 1300, and 1400 °C) 

for 4 h to obtain a-SiAlCN ceramic specimens of 10 mm in diameter and 1 mm in thickness. 

The entire procedure was protected by flowing ultrahigh-purity argon. The obtained samples 

were characterised via X-Ray diffraction utilising a Rigaku D/MAX Xray Diffractometer 

(XRD Rigaku, Tokyo, Japan) with a monochromatic Cu-Kα radiation (𝜆=0.154 nm), which 

confirmed that they are amorphous without detectable crystalline phase. Furthermore, Raman 

spectroscopy was also used to examine the microstructural evolution of the free carbon phase 

in the material. Raman spectra of samples prepared under different pyrolysis temperatures were 

obtained from the Renishaw inVia Raman microscopy (Renishaw Inc., Gloucestershire, UK). 
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The excitation source was a 532 nm line of silicon-solid laser. For each sample, 25 Raman 

spectra were obtained by a 10 μm×10 μm mapping acquisition for measurement accuracy. 

To obtain the complex impedance spectra of the samples, silver paste was painted on their 

surfaces as the electrodes. The spectra were acquired in a frequency range of 4 Hz–10 MHz on 

an Agilent 4294 A precision impedance analyzer with a 16065 A external voltage bias fixture. 

The measurement was performed at different temperatures (i.e., testing temperature range of  

50-150 °C and on samples underwent annealing treatment from 1100 to 1400 °C), and dc bias 

(0-10 V). 

3.3 Results and Discussions 

3.3.1 Raman Spectroscopy and XRD 

Raman spectroscopy is a useful characterisation tool for investigating the formation and 

evolution of free carbon phase in PDCs.164 As shown in the Raman spectra (Figure 16), two 

prominent bands at approximately 1350 cm-1 ("D-band" resulting from breathing modes of sp2 

carbon atoms in rings) and 1582 cm-1 ("G-band" due to in-plane bond stretching of sp2 carbon) 

can be observed, which feature the presence of free carbon.165,166 As shown in Figure 16, both 

the D and G peaks exhibit shifting trend as annealing temperature increases, with the G peaks 

showing an up-shift, whereas the D peaks exhibit an initial up-shift before remained stable 

around 1350 cm-1. Such shifts stemmed from microstructural changes: the up-shift of D peak 

reflects the increase in the number of ordered three-fold aromatic rings, whereas that of the G 

peak indicates the transition from disordered carbon to nanocrystalline carbon.167 Such shifting 

patterns along with the decrease in the widths of D and G peaks indicate the graphitisation 

process of the free carbon phase as it transitions from amorphous carbon to nanocrystalline 
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graphite as annealing temperature increases.166,167 An increase of the D-to-G peak intensity 

ratio was observed as annealing temperature increased, resulting from the in-plane growth of 

nanopolycrystalline graphite.166,167 In addition, it has been revealed that during the pyrolysis 

stage of PDCs, large amounts of unpaired electrons (i.e., dangling bonds) are formed owing to 

the release of hydrogen and methane,168-170 where the unpaired electrons are related to the 

carbon-dangling bond in the free carbon phase.3,170 The presence of these unpaired electrons 

facilitates charge accumulation under AC field at the interface between the matrix and free 

carbon phases which exhibit different conductivities.118 

XRD analysis revealed that samples pyrolyzed at up to 1400 ℃  are amorphous exhibiting no 

obvious diffraction peaks, indicating that they are all amorphous without significant indications 

of the formation of crystalline carbon, which is expected to appear at higher temperatures 

(Figure 17). The amorphous feature is common to most polymer derived ceramics with 

comparable annealing history.114,171 

 

Figure 16 Raman spectra of SiAlCN samples pyrolyzed at different temperatures. 
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Figure 17 XRD of SiAlCN sample at 1400 ℃, with that of SiCN for reference.  

3.3.2 Effect of Testing Temperature 

Figure 18 shows the typical complex impedance spectra of the a-SiAlCN, obtained under 

various testing temperatures without the effect of bias. It is seen that all the spectra contain two 

semi-circular arcs. Previous study demonstrated that the one in high-frequency region (left) 

corresponds to the free-carbon phase, and the other in low-frequency region (right) corresponds 

to the amorphous matrix.116 In addition, only moderate decrease in impedance was observed as 

the temperature increased, since such modest change in testing temperature would not cause 

microstructural rearrangements or any changes in chemical compositions in PDCs due to its 

superior thermal stability.93 
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Figure 18 Influence of testing temperature on the complex impedance of the a-SiAlCN 

ceramics, without bias. 

Typical impedance spectra of the a-SiAlCN under different bias are shown in Figure 19, with 

the specimen kept under 150 °C testing temperature. It is interesting to note that the response 

of the free-carbon phase is not affected by the dc bias; but the response of the amorphous matrix 

is greatly held down as the dc bias increases. This indicates that the arc in low-frequency area 

has significant contribution from the interfacial polarisation.172 
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Figure 19 The complex impedance spectra of the a-SiAlCN, measured at 150 oC under different 

dc bias as labeled. The inset is the equivalent circuit used to analyze the spectra. 

The spectra were further analysed by curve-fitting them with a modified-Debye equivalent 

circuit comprised of two parallel constant phase element (CPE or Q)-resistance (R) circuits 

connected in series (the inset in Figure 19). The parameters obtained from the best fitting are 

summarized in Table 2. As can be seen, the capacitance (C2) of the amorphous matrix is about 

three orders of magnitude higher than that (C1) of the free-carbon phase, suggesting that the 

capacitance of the amorphous matrix is mainly due to the contribution from the internal 

barriers.172 The applied bias has negligible effect on the resistance and capacitance of the free-

carbon phase. In contrast, the resistance of the amorphous matrix and the capacitance of the 

interface decrease with increasing dc bias levels. Similar trends were observed at all testing 

temperatures. 

. 
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Table 2 Parameters obtained by curve-fitting the impedance spectra in Figure 19 

Bias (V) R1 (ohm) C1 (nF) R2 (ohm) C2 (nF) 

0 1.18× 105 4.46× 10−3 2.89× 105 2.69 

2 1.17× 105 4.42× 10−3 1.88× 105 1.49 

4 1.16× 105 4.36× 10−3 1.23× 105 1.15 

6 1.15× 105 4.33× 10−3 9.68× 104 0.97 

8 1.15× 105 4.31× 10−3 8.33× 104 0.88 

10 1.15× 105 4.31× 10−3 7.50× 104 0.81 

 

Previous studies suggested that in heterogeneity materials, a Schottky barrier could be formed 

at the interface between the phases with different conductivities.173 This barrier provides 

extrinsic capacitance. The dependence of the interfacial capacitance on the applied dc bias can 

be described by a double Schottky barrier model.172,173 According to the model, the interfacial 

capacitance can be related to the dc bias by the following equation174  

            (
1

𝐶
−

1

2𝐶𝑜
)2 =

2

𝜀′𝑞𝑁𝑑
(𝜙𝑏 − 𝑉)   (1) 

where C and Co are capacitances of the interface with and without the applied dc bias, 

respectively; 𝜀′ is the permittivity of the material; 𝑞 is the electronic charge; 𝑁𝑑 is the charge 

carrier concentration in the more conducting phase; 𝜙𝑏 is the height of the potential barrier; 

and V  is the applied dc bias. This equation suggests that the modified capacitance ((
1

𝐶
−

1

2𝐶𝑜
)2) 

should exhibit a linear relationship with the bias.  
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Figure 20 is a typical plot of (
1

𝐶
−

1

2𝐶0
)2 as a function of V, using the data obtained from the a-

SiAlCN at 150 oC (Table 2). The good linear trend indicates that the double Schottky barrier 

model well represents the behaviour of the a-SiAlCN, similar to that reported previously.120 

This result is not surprising since the microstructure of the a-SiAlCN is comparable to that of 

the inter barrier layer capacitor (IBLC),173,175 with the free-carbon clusters analogous to the 

relatively conducting grains and the amorphous matrix analogous to the relative insulating 

grain boundaries.     

 

Figure 20 Plot of the modified interfacial capacitance vs. dc bias, using the data obtained at 

150℃. 

The interfacial behaviour was then studied by estimating the charge-carrier concentration and 

the potential barrier height of the a-SiAlCN from the intercept and the slope of the fitting lines 

obtained at various testing temperatures. Figure 21 shows the dependence of the charge-carrier 

concentration and the potential barrier height on testing temperature. It is seen that the charge-
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carrier concentration increases with increasing testing temperature, but the barrier height 

decreases with increasing testing temperature. The figure also reveals that both the charge-

carrier concentration and the barrier height exhibit Arrhenius dependence on testing 

temperature, indicating that they are dominated by thermally active processes. The estimated 

activation energies are 0.07 eV and 0.054 eV for charge-carrier concentration and barrier height, 

respectively. The difference in the activation energy suggests that they are governed by 

different processes.   
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Figure 21 The influence of testing temperature on the charge-carrier concentration (a) and 

potential barrier (b). 

The above phenomena can be correlated to the unique heterogeneous structure of the a-SiAlCN. 

Previous studies demonstrated that both the free-carbon phase and the amorphous ceramic 

matrix are n-type semiconductors with significantly different   conductivities.95,164 The gaps 

between Fermi energy and conduction band are different for the amorphous Si-based ceramics 

and the free-carbon phases.161,176 A Schottky barrier can then be established between the two 

phases with the potential height approximating to the difference between their Fermi levels. As 
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a result, double (back-to-back) Schottky barriers are created at the interfaces between n-type 

free-carbon clusters (Figure 22).  

The formation of the internal potential barrier is discussed below. At the point immediately 

after the bi-phasic PDC is under external AC electric field, the free carbon phase and the 

ceramic matrix phase establish close electrical contact where the respective Fermi energy levels 

(EF) are still different and not in thermal equilibrium (i.e., as shown in the flatband diagram in 

Figure 22a, where EBT and EF represent the mobility edge for band-tail and Fermi level at this 

point, respectively). Because of the Fermi energy levels difference between the free carbon and 

the ceramics matrix phase, the electrons in the free carbon phase tend to transverse through the 

junction to lower their energy. The departed electrons leave behind, due to the ionised donor 

atoms, a positive charge, which then causes the formation of a negative field and lowers the 

band edges of free carbon. Thermal equilibrium will finally be achieved (i.e., no net electrons 

flow) when the free-carbon-to-matrix electrons diffusion equals the electrons-drifting 

stemming from the formed internal electric field.177 A leveled Fermi energy is thus reached at 

thermal equilibrium, with the band tail being bent therefore a potential barrier to overcome (as 

shown in Figure 22b).  
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Figure 22 Schematic illustrations of the energy structure of the a-SiAlCN, (a) flatband diagram 

and (b) thermal equilibrium diagram. A back-to-back double Schottky barrier is formed as the 

gap between the band tail (EBT) and Fermi level (EF) for the free-carbon phase is different from 

that of the matrix phase. 

According to this model, the increase in charge carrier concentration with temperature (Figure 

21a) suggests that more electrons are excited to the band tail in the free-carbon phase. This can 

be understood as follows. For crystalline semiconductors, the charge-carrier concentration is 

fixed by the doping concentration and is temperature independent within a reasonable 

temperature range. However, for amorphous semiconductors, since chemical environment is 

different from defect to defect, the energy level of defects (dangling bonds) is varied in a range 

to form a narrow defect band within the band gap. Accordingly, increasing temperature will 

activate more defects, leading to more charge carriers. The activation energy estimated from 

the plot in Figure 21a is likely corresponds to the difference between the band-tail and defect 

levels. This is consistent with the fact that the material exhibited the band-tail hopping 

conduction behavior in the temperature range used here.158  
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The cause for the change in barrier height with temperature (i.e., a 0.19 eV change within a 

temperature range of 100 °C) is rather complex. Two possible factors could lead to an increase 

in Fermi level: (1) increasing temperature (increasing temperature could reduce the band gap); 

and (2) increasing concentrations of active defects. In the present study, the first factor (i.e., 

band gap drop due to increasing temperature) would play only a negligible role, since the 

coefficient for the temperature-dependent band gap change would only appear at a miniscule 

level,178 and therefore would not be able to cause any significant effect over a moderate (100 °C) 

temperature increase. On the other hand, increasing temperature leads to higher levels of active 

dopants (dangling defects) concentrations for both the free carbon and the amorphous matrix, 

which lead to an increased Fermi level in both phases. However, the two phases experience 

different degrees of the Fermi level changes: the amorphous matrix would witness a more 

substantial rise (exhibiting stronger temperature dependence), because of the deeper defect 

levels in the amorphous matrix compared to its free carbon counterparts. Such variation in the 

magnitudes of Fermi level rise in the two phases would therefore result in a reduced difference 

between the Fermi energy in the free carbon and amorphous matrix phases, which leads to the 

decrease in the potential barrier height. Since the charge-carrier concentration has Arrhenius 

temperature dependence for both the free carbon and the amorphous, the potential barrier 

should exhibit similar Arrhenius temperature-dependence, which is consistent with the 

experimental results shown in Figure 21b. 

3.3.3 Effect of Annealing Temperature 

As a more systematic approach towards studying the interfacial behaviors of PDCs, the 

influence of annealing temperatures on the internal potential barrier was also assessed in 

addition to that of the testing temperature. As discussed in the above section, the range of 
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variation in testing temperature did not cause microstructural rearrangements or band gap drop. 

Instead, an increased Fermi level in both phases was induced by increased concentrations of 

thermally-activated defects.  

In contrast, variations in annealing temperatures of PDCs would have profound effects in both 

microstructural evolutions and electronic structure changes.171,179 It is well-established that 

both the free carbon phase and the amorphous matrix phase experience a gradual increase in 

the degree of order with increasing annealing temperature.115 On one hand for the free carbon 

phase, increasing annealing temperature induces a transformation from amorphous carbon to 

nanocrystalline graphite,105 accompanied by the sp3–sp2 transition.180 One the other hand for 

the amorphous matrix phase, it has been revealed that as annealing temperature increases, the 

major structural evolutions involve the de-mixing of the SiCxN4-x mixed bonds, resulting in the 

shrinkage of the SiCxN4-x area, thus a reduced number of the mix-bonded silicon tetrahedral, 

and therefore a more ordered structure.170,171,181,182 

Figure 23 shows the typical complex impedance spectra of the a-SiAlCN, obtained under 

various annealing temperatures, under the same testing conditions without the effect of dc bias. 

It shows more drastic changes in impedance due to increased annealing temperatures in 

comparison with the influence of varying testing temperature (e.g., as shown in Figure 18).  

Superimposing bias voltage at different levels has induced very similar effects in the impedance 

behaviours (as observed in Figure 19), which also exhibit two semi-circular arcs corresponding 

to the amorphous matrix and the free carbon phase, with the former showed significant 

diminishing features as bias level rose and negligible influence on the free carbon phase. Such 

features again indicate significant contribution from the interfacial polarisation to the 

amorphous matrix phase (represented by the low-frequency semi-arc).116,172 The spectra were 
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analysed by curve-fitting them with the modified-Debye equivalent circuit (the same as shown 

in the inset in Figure 19). Comparable trends in the changes in the resistance and capacitance 

of the amorphous matrix and free carbon phases were observed across all samples under similar 

measurement conditions as discussed in Section 3.3.2. Similar to that discussed above, the 

contribution from the internal barriers accounts for the larger capacitance of the amorphous 

matrix. 

 

Figure 23 Influence of annealing temperature on the complex impedance of the a-SiAlCN 

ceramics, under 50 ℃ without dc bias voltage. Combined plots of different annealing 

temperatures are shown in (a) in the same scale, and the individual plots corresponding to 

1100 ℃, 1300 ℃ and 1400 ℃ are shown in (b), (c), and (d) respectively.  

The double Schottky barrier model (as discussed in detail in Section 3.3.2) was similarly 

applied to describe the bias dependent interfacial capacitance to account for the influence of 

annealing temperature. Good linear fitting trend was observed in the modified capacitance 
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((
1

𝐶
−

1

2𝐶𝑜
)2) versus bias voltage (V) plots, similar to that shown in Figure 20. The charge carrier 

concentration and the potential barrier height of the a-SiAlCN are estimated from the intercept 

and the slope of fitting lines for samples obtained under different annealing temperatures. 

Figure 24 shows the annealing temperature dependence of the charge-carrier concentration and 

the potential barrier height, with both parameters increase with elevated annealing temperature. 

 

Figure 24 The influence of annealing temperature on the charge-carrier concentration (a) and 

potential barrier (b). 

Such phenomena are also correlated to the heterogeneous structure of the a-SiAlCN (i.e., 

biphasic material comprised of a free carbon phase and an amorphous ceramic matrix phase 

possessing significantly different conductivities). As discussed above, double (back-to-back) 
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Schottky barriers are created at the interfaces between n-type free carbon clusters, since the 

gaps between Fermi energy and band tail are different for the amorphous Si-based ceramics 

and the free carbon phases (Figure 22).161,176  

Previous studies have suggested that in the free carbon phase, an increased amount of C-

dangling bonds would lead to the increase in charge carrier concentration with rising annealing 

temperature (Figure 24a).158,169 As discussed above, a defect band is formed within the band 

gap, with the defects are predominantly the C-dangling bonds, which act as donors to provide 

electrons. Previous studies have revealed that the concentration of the C-dangling bonds 

increases with increasing annealing temperature.169,183 Therefore, the increase in C-dangling 

bonds leads to an increase in the density of the defect states, resulting in more defects, leading 

to more charge carriers, thus higher donor concentrations with increasing annealing 

temperature.  

With respect to the increase of potential barrier height with increasing annealing temperature 

(Figure 24b), it can be understood as follows considering the changes in the respective Fermi 

levels in the free carbon and amorphous matrix phases. It has been revealed that C-dangling 

bonds are present as defects in the free carbon phase, and also within the bulk of the amorphous 

ceramic network,169 with the free carbon contains much more defects than the amorphous 

matrix (i.e., higher defect concentration).115 In addition, investigations have shown that the 

concentration of the C-dangling bonds increases with increasing annealing temperature, 

leading to an increase in the density of the defect states.179,184 Therefore, due to the increase in 

annealing temperature, both the free carbon and the amorphous matrix witness higher levels of 

active dopants (dangling defects) concentrations, which lead to an increased Fermi level in both 

phases, both moving towards the band tail, which is consistent with previous reports.179 
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However, the two phases experience different degrees of the Fermi level increase: the free 

carbon would witness a more significant rise, because of the higher defect concentration 

compared to that of the amorphous matrix. Such variation in the magnitudes of Fermi level rise 

in the two phases would therefore result in an enlarged difference between the Fermi energy in 

the free carbon and amorphous matrix phases, which leads to the increase in the potential 

barrier height. 

3.4 Conclusions 

The complex impedance spectra of the polymer-derived a-SiAlCN were measured under 

various dc bias voltages in a temperature range between 50 and 150 °C, on the samples 

annealed at different temperatures (1100-1400  °C). All spectra, regardless of temperature and 

bias, consist of two semi-circular arcs, corresponding to the free-carbon phase and the interface, 

respectively. The impedance of the free-carbon phase is independent of the bias, while that of 

the interface decreased significantly with increasing dc bias. It is shown that the change of the 

interfacial capacitance with the bias can be explained using the double Schottky barrier model. 

The charge-carrier concentration and potential barrier height were estimated by comparing the 

experimental data and the model. The results revealed that increasing testing temperature led 

to an increased charge-carrier concentration and a reduced barrier height, both following 

Arrhenius dependence, whereas the increase in annealing temperature resulted in increased 

charge-carrier concentration and barrier height. The phenomena were explained in terms of the 

unique bi-phasic microstructures of the material. 
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CHAPTER 4: FEW LAYER 2D MOS2 MEMBRANES OF NEAR 

ATOMIC THICKNESS FOR HIGH EFFICIENCY WATER 

DESALINATION2 

4.1 Introduction 

The availability of freshwater resources has decreased with increasing potable, agricultural, 

and industrial water demands around the globe for the past decades.5 This global challenge, 

along with the adversely accelerating climate change, has been calling for immediate solutions 

for meeting the demands. Apart from the conservation of existing water resources, increasing 

the freshwater supply is deemed as a more sustainable and direct solution.6 Since seawater is 

readily accessible and abundant, various thermal and physical desalination technologies have 

been utilised worldwide to produce drinking water by removing dissolved salts and other 

minerals from saline water. While multi-stage flash (MSF), multi-effect distillation (MED), 

and reverse osmosis (RO) are the most widely used desalination technologies, RO membrane 

is gaining market share at a faster pace.7,8 RO is a high-pressure membrane process that utilises 

a semi-permeable polymeric membrane to retain salts and low-molecular-weight solutes while 

allowing the passage of water via diffusion. Despite the operational simplicity, RO membranes 

suffer from several technical limitations including low conversion efficiency, membrane 

fouling, and energy demand to pressurise the feedwater.9,10 Accordingly, developing high-

performance membrane materials with improved water recovery without compromising the 

solute rejection remains a compelling demand. 

                                                 
2 Part of contents in this Chapter contains published works adapted with permission from: Hao Li, Tae-Jun Ko, 

Myeongsang Lee, Hee-Suk Chung, Sang Sub Han, Kyu Hwan Oh, Anwar Sadmani, Hyeran Kang, and 

Yeonwoong Jung. Experimental Realization of Few Layer 2D MoS2 Membranes of Near Atomic Thickness for 

High Efficiency Water Desalination. Nano Letters 19, 5194−5204 (2019). Copyright 2019 American Chemical 

Society. Published on July 1st 2019. Hao Li co-conceived the project, prepared the membrane materials and 

characterized them, performed the desalination tests, and analyzed the data. 
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A potentially promising solution stands with engineering the structure of traditional materials 

into tailored porosity or exploring a new type of intrinsically porous nanomaterials-based 

membranes. Recently developed two-dimensional (2D) materials present unprecedented 

opportunities for water desalination and molecular sieving technologies owing to their 

structural uniqueness.11-13 Their extremely small thickness (i.e., a few Å for 2D monolayers) 

projects superior water permeation rates benefiting from small diffusion lengths for molecular 

transports while their high mechanical flexibility renders advantages for membrane 

integrations. Moreover, 2D materials produced by chemical synthetic routes possess high-

density "intrinsic" structural imperfections (e.g., near atomic vacancies) whose physical 

dimensions are comparable to those of salt ions and water molecules.14 In this endeavour, a 

variety of 2D materials have been explored including graphene,15-18 dichalcogenides,19-22 and 

graphene oxides,23-26 along with substantive efforts for the structural engineering of traditional 

membrane materials such as zeolites,27-30 and metal-organic frameworks 31-34. Amongst them, 

2D molybdenum disulfide (MoS2) layers have recently gained significant interests for a wide 

range of water and environmental technologies. They not only share the intrinsic structural 

advantages inherent to other 2D materials but also present additional suitability such as 

excellent chemical stability and non-toxicity.35-37 Furthermore, a variety of structural variations 

such as point defects, grain boundaries, and van der Waals (vdW) gaps have been ubiquitously 

observed in 2D MoS2 layers grown via chemical vapour deposition (CVD) process.38-40 Such 

"intrinsically" present structural imperfections of very high concentration (e.g., areal density 

of ~1013 cm-2 for sulphur vacancies41) offer 2D MoS2 layers high promise as an efficient 

membrane material for water desalination applications. In fact, several studies based on 

theoretical calculations and molecular dynamics simulations have predicted superior 

desalination performances of monolayer 2D MoS2.
14,19,41,152,153 Heiranian et al. have predicted 
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that 2D MoS2 monolayers of enriched defective sites can exhibit ~2-5 orders-of-magnitude 

higher water fluxes than traditional filtration membranes, which is even 70% greater than the 

performance of graphene nanopores.154 Köhler et al. have projected that the ion rejection 

capability of 2D MoS2 membranes is superior to graphene under a wide range of test conditions 

including pressure, nanopore size, and cation valences.152 Li et al. have simulated the 

desalination performance of 2D MoS2 layers, demonstrating high water transport rate (355.3 L 

m-2 h-1 bar-1) and excellent salt rejection capability.155 Despite the theoretically-projected 

promise of 2D MoS2 layers, their experimental utilisation for membrane-based desalination 

technologies has been rarely approached. A few experimental studies have explored MoS2 

laminar membranes of very large thickness (typically, ~1-10 µm) constituting mechanically 

stacked individual 2D flakes.14 Sun et al. studied ~1.7 µm thick MoS2 membrane films prepared 

via chemical exfoliation and subsequent filtration of aqueous dispersion.156 Hirunpinyopas et 

al. demonstrated chemically functionalized ~5 µm thick laminar membranes composed of 

exfoliated 2D MoS2 flakes employing the similar filtration process.157 These laminar 2D MoS2 

membranes of large thickness have exhibited significantly limited desalination efficiencies, 

failing in meriting the structural uniqueness and performance advantages projected with near 

atom-thick membranes. For example, their water permeation rates were experimentally 

identified to be in a range of ~245-275 L m-2 h-1 bar-1,156,157 significantly falling short of 

theoretical values predicted by simulation studies.154  Moreover, ion rejection rates of mere 

~15-30% were reported for pristine laminar 2D MoS2 membranes of ~1-5 µm thickness.157 

Scarcity of experimental studies on the 2D MoS2 layers-based membranes of near atomic 

thickness for water desalination is attributed to technical difficulties associated with integrating 

2D layers preserving their structural integrity. Particularly, it has been challenging to produce 
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large-scale (> cm2) "continuous" 2D MoS2 layers of ~1-10 nm thickness and their seamless 

integration onto porous substrates, hindering their applications to desalination technologies.  

In this Chapter, we discuss the experimental realisation of high-efficiency water desalination 

enabled by ultra-thin 2D MoS2 layers-based membranes. We demonstrate the integration of 

centimetre-scale CVD-grown 2D MoS2 layers of only ~7 nm thickness onto porous polymeric 

substrates and studied their desalination performances. This new type of near atom thick-

membranes exhibits an excellent combination of high water permeability approaching 

theoretically predicated values and superior ionic sieving performance for various seawater 

salts. Fundamental mechanisms responsible for the observed high desalination efficiency are 

also discussed. 

4.2 Experimental Method 

CVD growth of 2D MoS2 layers:  Very thin films of Mo (typically, ~2-2.5 nm thickness) were 

deposited onto SiO2/Si substrates via electron beam evapouration to ensure the growth of 

horizontally-oriented 2D MoS2 layers avoiding their unwanted vertical alignment.185-187 As-

deposited Mo-SiO2/Si samples were then placed inside a 1 inch quartz tube located in the 

middle of a horizontal tube furnace (Lindberg Blue M, ThermoScientific). Subsequently, 

sulphur powders (99.5%, Sigma-Aldrich, St. Louis, MO) were loaded within the quartz tube at 

the furnace upstream side. The furnace was pumped down to a base pressure of 5 mTorr 

following purging with high-purity argon (Ar) gas.  It was then ramped up to 780 ℃ and was 

held for 50 mins at a ramping rate of 15 ℃/min under a constant flow of Ar gas (100 SCCM). 

After the reaction, the furnace was naturally cooled down to room temperature under Ar supply. 
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Water permeation rate measurement: A typical external pressure method was used to assess the 

water permeation rate by employing a common dead-end filtration setup. The sandwiched 

membrane containing 2D MoS2 layers was placed inside a leak-free syringe filter holder. The 

water permeation rate was calculated by weighing the volume of water passing through the 2D 

MoS2/PES membrane area under a constant pressure of 1 bar as a function of time. 

Salt ion rejection rate measurement: A conductivity probe (ThermoScientific, model: Orion 

013605MD) connected to a solute conductivity meter (ThermoScientific, model: Orion 5 Star) 

was used to monitor conductivities in respective containers. The probe was thoroughly rinsed 

each time before each measurement. The salt rejection rate was calculated by (1 −
𝐶𝑃

𝐶𝐹
) ×

100%, where 𝐶𝑃  and 𝐶𝐹  are the conductivity of the permeate and feed side, respectively. 

Seawater salts of NaCl (99%, Sigma-Aldrich, St. Louis, MO), KCl (99%, Sigma-Aldrich, St. 

Louis, MO), MgCl2 (98%, Sigma-Aldrich, St. Louis, MO), and CaCl2 (93%, Sigma-Aldrich, 

St. Louis, MO) of various concentrations were employed for rejection rates measurements.  

Each measurement was repeated for three times to improve consistency and averaged values 

are presented. 

TEM/STEM characterisation: The crystalline structure of 2D MoS2 layers was characterised 

using a JEOL ARM200F FEG-TEM/STEM with a Cs-corrector. Plane-view TEM samples 

were prepared by delaminating the 2D MoS2 layers from SiO2/Si substrates inside water and 

by transferring them to holey carbon TEM grids. Cross-sectional TEM samples were 

prepared by focused ion beam (FIB)-based milling and lift-out techniques. As-grown 2D 

MoS2 layers-SiO2/Si substrates were coated with a carbon film of ~100 nm thickness and 

were subsequently cross-sectioned inside a FIB (Quanta 2D FEG, FEI). Ga ion milling 

(30 keV) was executed until the target area became electron transparent and the prepared 
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specimen was transferred to a TEM grid using a micromanipulator (Omniprobe). All TEM 

operations were performed at an accelerating voltage of 200 kV. 

AFM characterisation: Topography images and height profiles of the 2D MoS2 layers 

integrated on PES supporters were obtained with AFM (nanoIR2 by Anasys Instruments, Santa 

Barbara, CA) operated in a tapping mode at a scan rate of 1 Hz. AFM probes (PR-EX-T125-

10, Anasys Instruments) with a nominal spring constant of 30 N/m were employed. 

MD simulation: MD simulations were performed using a large-scale atomic/molecular 

massively parallel simulator (LAMMPS) package188 in a similar way to a recent computational 

study.154 We generated a 2D MoS2 layer (4.1 × 3.5 nm2) with a nanopore (1.6 nm in diameter) 

and applied a constant pressure (250 atm) to the graphene piston using VMD 1.9.1.189 The 

simulation system is 6.0 × 5.6 × 11.5 nm3 in size containing ~6,600 atoms. Lennard-Jones (LJ) 

parameters for 2D MoS2 layer,154 graphene sheet,190 and NaCl 191 were obtained from previous 

studies. The mixing rule was applied to obtain the remaining LJ parameters following the recent 

computational study.154 Specifically, TIP3P water model192,193 and SHAKE algorithm were 

employed to maintain water molecules in rigid states. The cut-off distance for LJ was set to 10 

Å and long-range electrostatic interactions were calculated using the Ewald method.194  

4.3 Results and Discussion 

4.3.1 2D MoS2 Layers Membrane Preparations and Characterisations  

Centimetre-scale 2D MoS2 layers were grown by the modified CVD process developed in our 

lab.195-197 A thin film of Mo (typically, ~2-2.5 nm thickness) was deposited onto a SiO2/Si 

substrate via electron beam evapouration. The as-deposited Mo-SiO2/Si sample was thermally 

sulphurised inside a CVD chamber under the controlled flow of vapourised sulphur (S), which 
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yields the conversion of Mo to 2D MoS2 layers. Detailed conditions for 2D MoS2 layers growth 

are described in Method section. After the CVD reaction, as-prepared 2D MoS2-SiO2/Si sample 

was gently immersed into de-ionised water until the 2D MoS2 layers were spontaneously 

delaminated. The separated 2D MoS2 layers floating on the water surface were then gently 

scooped up with a polyethersulfone (PES) membrane substrate (~0.03 µm pore size and ~100 

μm thickness; commercial products from Sterlitech, Kent, WA). Note that PES has been 

extensively employed as a substrate for conventional desalination198 as well as 2D materials-

based membranes.199 Following the integration of 2D MoS2 layers on PES, a thin film of 

polydimethylsiloxane (PDMS) was selectively deposited on the 2D MoS2/PES surface leaving 

a small opened area which is to function as a membrane directly exposed to water. Figure 25(a) 

illustrates the membrane preparation procedure, from the large-area CVD growth of 2D MoS2 

layers and their integration onto PES substrate as well as selective PDMS sealing. Given that 

the porosity of PES substrates is much larger than the intrinsic near-atomic vacancies inherent 

to 2D MoS2 layers (to be verified in the later section), water permeation and ionic sieving are 

exclusively determined by 2D MoS2 layers which are the integral part of the membrane. Prior 

to the integration of 2D MoS2 layers, the PES surface can be treated with oxygen plasma to 

ensure the uniform adhesion of large-area 2D MoS2 layers to it. Figure 25(b) demonstrates the 

water-assisted delamination of 2D MoS2 layers from a SiO2/Si growth substrate, revealing that 

only 2D MoS2 layers become spontaneously detached upon immersion in water. The success 

of this facile 2D layer separation is attributed to the combined effect of the high surface energy 

contrast between 2D MoS2 basal planes and SiO2 surface as well as the weak vdW molecular 

attraction in between them as clarified in our previous reports.200 
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Figure 25 (a) Schematic procedures for few-layer 2D MoS2 membranes preparation, transfer, 

and integration. (b) Sequential images showing the detachment process of 2D MoS2 layers 

from a SiO2/Si substrate upon water immersion. 

Prior to investigating the water permeation and ion rejection capability of 2D MoS2 layers 

integrated on PES substrates, we first verified the material quality of CVD-grown 2D MoS2 

layers in their as-grown state. Figure 26(a) shows an image of 2D MoS2 layers grown on a 

SiO2/Si substrate of > 2 cm2 in size. The chemical and structural integrity of the as-grown 2D 

MoS2 layers were characterised via Raman spectroscopy and transmission electron microscopy 

(TEM). Figure 26(b) presents a typical Raman spectrum of the CVD-grown 2D MoS2 layers 

revealing two distinctive peaks. The peak positions correspond to the in-plane (𝐸2𝑔
1 ) and out-

of-plane (𝐴1𝑔) vibration modes of 2D MoS2 layers, confirming their presence on the growth 

substrate.185,201,202 Figure 26(c) shows a TEM image of the same sample in Figure 26(a) in a 

cross-sectional view, revealing the presence of continuous 2D MoS2 layers of uniform 

thickness. Figure 26(d) shows an enlarged view of the red box in Figure 26(c), revealing the 
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crystalline structure of 2D MoS2 layers. The image clarifies that they are composed of 

horizontally-oriented individual layers of uniform ~7 nm thickness. Moreover, the individual 

2D layers are separated by the physical gaps formed by vdW interaction with an average 

interlayer spacing of ~0.65 nm. Figure 26(e) illustrates the atomic schematics of the 2D MoS2 

layers corresponding to the red box in Figure 26(d). Although the vdW gap denotes the 

interlayer spacing corresponding to Mo-to-Mo distance across adjacent 2D layers, the actual 

"physical gap" which serves as a transport channel for molecular diffusion in this case should 

be close to ~0.3 nm determined by the interlayer S-to-S distance.  Note that the dimension of 

this transport channel is larger than that of a single water molecule, i.e., ~0.275 nm in a diagonal 

length.203 Figure 26(f) shows a plane-view high-resolution TEM (HRTEM) image of the 

horizontally-oriented 2D MoS2 layers. The image clearly reveals the Moiré fringes of 

hexagonal MoS2 basal planes, reflecting the crystallographic stacking of mis-oriented 

individual 2D layer grain as well as indicating the presence of grain boundaries.195 These 

comprehensive characterisation results conclude that our CVD-grown 2D MoS2 layers possess 

high spatial continuity and uniform thickness (~7 nm in Figure 26(c), (d)) while containing a 

large degree of intrinsic structural porosity (e.g., ~0.65 nm vdW gaps). Such combined 

attributes of macroscopic structural homogeneity and near atomic scale heterogeneity render 

the CVD-grown 2D MoS2 layers high suitability as desalination membranes, as verified below.  
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Figure 26 (a) Optical image of as-grown 2D MoS2 layers on a SiO2/Si substrate.  (b) Raman 

spectrum of the corresponding CVD-grown 2D MoS2 layers. (c) TEM image of the same 

sample in Figure 26(a) in a cross-sectional view. (d) Enlarged view of the red box in Figure 

26(c). (e) Atomic schematics of the few-layer 2D MoS2 corresponding to the red box in 

Figure 26(d). (f) Plane-view HRTEM image of horizontally-oriented 2D MoS2 layers 

showing Moiré fringes.  

Having identified the intrinsic structural suitability of the CVD-grown 2D MoS2 layers for 

desalination applications, we then characterised the morphologies of 2D MoS2 layers integrated 

on PES supporting substrates. As depicted in Figure 25(a), complete membranes are in a 

configuration such that the 2D MoS2 layers are selectively covered by an impermeable PDMS 

film, which defines a specific region for water penetration by sealing the surrounding surface. 

Figure 27(a) illustrates a schematic set-up for water permeation measurements. The 2D MoS2 

layers-integrated PES substrate was covered with another bare PES substrate on the back side. 
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It was subsequently sandwiched in between two PDMS sealing films defining a membrane area 

of ~5 mm on the centre region.  Note that this sandwich-like assembly has been extensively 

employed in configuring nanomaterials-based membranes including 2D materials of large 

thickness (> 1 μm).157 This layered membrane was then loaded inside a syringe filter holder in 

a typical dead-end filtration setup. The water permeation rate was then measured via an external 

pressure method by weighing the volume of water passing through the membrane area (i.e., ~5 

mm central hole composed of 2D MoS2/PES only) as a function of time under a constant 

pressure. Details are presented in the Method section. Figure 27(b) shows a representative 

image of a 2D MoS2 layers-integrated PES supporter achieved following the procedures in 

Figure 25(a). On top of the sample surface, PDMS was selectively deposited (denoted by 

yellow false colour) leaving an open membrane hole at the center while sealing the surrounding 

area. The morphology of the 2D MoS2 layers integrated on PES was characterised by atomic 

force microscopy (AFM) and Raman spectroscopy. Figure 27(c) shows an AFM topography 

image of 2D MoS2 layers whose thickness was determined by obtaining the height profile 

across their interface with PES (denoted by the yellow line). Figure 27(d) shows the 

corresponding AFM height profile revealing that the integrated 2D MoS2 layers are ~7 nm 

thick which corresponds to ~10-11 layers given the interlayer spacing of ~0.65 nm.204,205 The 

result is quite consistent with the TEM characterisation (Figure 26(d)) obtained from the 

sample in a pristine state before integration onto PES, indicating the high fidelity of our 2D 

layer integration process. Figure 27(e) shows a Raman profile of the 2D MoS2 layers on PES, 

revealing two characteristic peaks of 𝐸2𝑔
1  and 𝐴1𝑔  vibration modes consistent with the 

observation prior to their separation and integration (Figure 26(b)). This analysis confirms that 

the 2D MoS2 layers integrated on PES maintain their original structural and chemical integrity, 

which were not altered through the membrane preparation procedures.   
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Figure 27 (a) Schematic set-up for water permeation measurement. (b) Representative image 

of a 2D MoS2 layers-integrated PES supporter with PDMS sealing. 2D MoS2 layers-

membrane hole is denoted by the inner dotted circle. (c) AFM topography image of a 2D 

MoS2 layers/PES interface. (d) AFM height profile corresponding to the yellow line in Figure 

27(c). (e) Raman spectrum profile obtained from 2D MoS2 layers integrated on a PES 

supporter.  

4.3.2 Desalination Performances Evaluations and Comparisons 

Desalination efficacies of 2D MoS2 layers on PES supporters were investigated by measuring 

their water permeation and salt ion rejection rates. The water permeation rate was determined 

via the external pressure method employing the equipment described in Figure 27(a). Figure 

28(a) compares the water permeation rates of bare PES vs. 2D MoS2 layers (~7 nm thick) 

integrated on PES, revealing the exclusive role of 2D MoS2 layers on controlling the 
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permeability of water molecules. The bare PES substrate exhibits a high water flux of 2735 (± 

139) L m-2 h-1 bar-1, reflecting its intrinsic porosity of large size and high density (~0.03 µm 

pore size). Integrating 2D MoS2 layers suppresses the permeability to 322 (± 27.2) L m-2 h-1 

bar-1 owing to their intrinsic porosity of much smaller dimension - typically, atomic vacancies 

of ~1-1.5 nm in size which is to be verified in the later section. It is noteworthy that this 

permeability value achieved with ~7 nm thick 2D MoS2 layers is significantly larger (up to > 

30%) than those realised with the 2D MoS2 laminar membranes of ~1-10 µm thickness,156,157 

indicating their suitability for desalination. Such micrometer-thick 2D MoS2 laminar 

membranes have been developed by mechanically stacking up individual 2D flakes dispersed 

in aqueous solvents using filtration processes. Owing to the nature of high pressure-demanding 

methods in their preparation, the assembled 2D laminar MoS2 layers often tend to exhibit 

uncontrolled physical gaps in between constituent layers.199,206,207 For example, an interlayer 

spacing of ~0.3 nm has been reported,199 which is much smaller than the intrinsic vdW gap 

distance of ~0.65 nm observed with our CVD-grown 2D MoS2 layers (Figure 26(d), (e)). 

Accordingly, the transport of water molecules in between 2D layers becomes interfered, 

resulting in lower water permeation rates given the diameter of a single water molecule is 

~0.275 nm.203 Moreover, the 2D MoS2 laminar membranes assembled by the high-pressure 

liquid filtration processes exhibit significantly larger thickness of ~1-10 µm compared to our 

CVD-2D MoS2 layers, which further contributes to slowing down the transport kinetics of 

water molecules. The proficiency of our CVD-2D MoS2 layers on PES supports for rejecting 

a variety of salt ions was determined using a measurement set-up whose schematic is presented 

in Figure 28(b). A custom-built apparatus composed of a pair of one-litre water containers and 

a conductivity probe was assembled with a leakage-proof pathway. The sandwiched membrane 

containing 2D MoS2 layers was then placed inside the water pathway which allows for the 
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access of ions only through the 2D MoS2 layers-membrane hole. The container at the permeate 

side was filled with pure de-ionised water while the feed side maintained an equal volume of 

de-ionised water mixed with salt ions to be tested. Measurements were carried out at room 

temperature under continuous stirring of a magnet in the feed container to minimise the 

concentration gradient of test salt ions. We have quantified the movement of ions by employing 

the conductivity measurement method well established in the field;157 i.e., the salt rejection rate 

was calculated by (1 −
𝐶𝑃

𝐶𝐹
) × 100%, where 𝐶𝑃 and 𝐶𝐹  are the conductivity of the permeate 

and feed side, respectively.208 Measurement conditions are detailed in the Method section. 

Various seawater salts of diverse concentrations were tested: (1) sodium chloride (NaCl) of 0.6 

M (equivalent to seawater salinity concentration209), (2) NaCl of 0.469 M (typical seawater Na+ 

concentration210), (3) potassium chloride (KCl) of 0.1 M, (4) magnesium chloride (MgCl2) of 

0.1 M, and (5) calcium chloride (CaCl2) of 0.1 M. The concentration of 0.1 M for KCl, MgCl2 

and CaCl2 was selected for measurements consistency although the typical seawater 

concentrations of K+, Mg2+ and Ca2+ are below 0.1 M.210,211 Figure 28(c) presents the plots of 

seawater ion rejection rates obtained at identical interval times during the course of three hours. 

Remarkably, the 2D MoS2 layers-integrated membrane exhibits very high salt rejection 

capability (> 99.5%) for all the tested species at their respective concentrations. Moreover, the 

durability of the membrane in retaining desalination capability was evaluated by using 0.1 M 

NaCl solute as a testing agent over a continuous time period of > 24 hours. Figure 28(d) 

confirms the superior performance of the 2D MoS2 layers-integrated membrane which retains 

~ 98.3% rejection rate even after 24 hours. Apart from the rejection rate tests with single-ionic 

solutions, two different types of seawater containing multiple ions were employed to further 

assess the desalination efficacies of our CVD-2D MoS2 layers. One was actual seawater 

obtained from the Atlantic coast and the other was synthetic seawater prepared to mimic the 
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concentrations of typical ion species present in standard seawater, i.e., Na+ of 0.469 mol/L 210, 

K+ of 0.01 mol/L 210, Mg2+ of 0.0528 mol/L 210, and Ca2+ of 0.01 mol/L 210. Figure 28(e) 

presents salt rejection rates for both cases, confirming the excellent desalination capability of 

near 100% rejection rates. It is noteworthy that the overall desalination efficiencies of our CVD 

grown-2D MoS2 layers of ~7 nm thickness are significantly higher than  those of previously 

developed micrometre-thick 2D MoS2 laminar membranes assembled via liquid filtration 

processes.157 Detailed comparisons will be presented in the later section. Figure 28(f) presents 

pressure-dependent rejection rates for various salt ions of diverse concentrations. The plots 

reveal a slight decrease of the rejection rates with increasing applied pressure which exerts 

higher mechanical forces causing more ion translocation events, consistent with numerical 

predictions with monolayer 2D MoS2.
154  Moreover, the high rejection rate of > 98.5 % is well 

retained for all salt ions irrespective of applied pressure within the tested range. We believe 

that the superior salt rejection performance observed with our CVD-2D MoS2 layers is 

attributed to their ionic sieving capability owing to the intrinsically present vdW gaps of 

uniform spacing (Figure 26(e)).  Meanwhile, the micrometer-thick 2D MoS2 laminar 

membranes inevitably contain a high density of uncontrolled physical gaps in between the 

edges of adjoining 2D flakes owing to the intrinsic randomness associated with stacking them 

up in solutions.  Discussion will follow in the later section of this Chapter.  
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Figure 28 (a) Comparison of water permeation rates for 2D MoS2 layers/PES vs. bare PES. 

(b) Schematics of salt rejection rates measurement set-up. (c) Time-dependent rejection rates 

for typical seawater salt ions of various species. (d) Rejection rate for 0.1 M NaCl over a 

continuous 24-hour period. (e) Salt rejection performances of 2D MoS2 layers tested with 

actual and synthetic seawater. (f) Pressure-dependent rejection rates for various salt ions. 

We compare the desalination performances of our CVD-2D MoS2 layers with previously 

developed thin membrane materials. Figure 29(a) presents comparisons with a variety of 

systems ranging from conventional porous membrane materials to recently developed 
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nanostructured materials. The materials include MFI zeolite,212 seawater reduced reverse 

osmosis (RO),213 brackish RO,213 nanofiltration,213 high-flux RO,213 polysulfone214 as well as 

graphene oxide enhanced polyamide thin-film nanocomposite membrane (GO/PA),215 and 

multi-walled carbon nanotubes incorporated polyamide (MWNTs-PA)216 materials. The 

comparison plot is presented in terms of water permeability vs. salt rejection rate – two most 

decisive indicators for defining the performances of desalination membranes. This survey 

result reveals that our CVD-2D MoS2 layers present an outstanding combination of high 

permeability and strong ionic sieving capability. Despite the similar ion rejection rates noted 

for many of the compared materials, our CVD-2D MoS2 layers of extremely small (~7 nm) 

thickness exhibit orders-of-magnitude higher water permeability. We note that monolayer 

graphene membranes in recent experimental studies exhibit much higher water permeability 

than our CVD-2D MoS2 layers, which must be attributed to their extremely small one-atom 

thickness.217,218 However, it is worth mentioning that their areal dimensions are very limited, 

i.e., in a range of ~ 20 μm2 217 to ~104 μm2 218, much smaller than our "centimetre-scale" 

membrane areas. Moreover, the fabrication of these monolayer graphene membranes has relied 

on top-down lithographic patterning processes, much more complicated than our facile manual 

integration approach. Furthermore, we compare the desalination performances of the CVD-2D 

MoS2 layers with previously developed 2D MoS2 laminar membranes of micrometre thickness 

prepared via liquid exfoliation/filtration processes (Figure 29(b)). Compared to the traditional 

membrane materials (Figure 29(a)), we note that decently higher water permeability was 

achieved with these micrometre-thick 2D MoS2 laminar membranes.157 However, they 

significantly fall short of our CVD-2D MoS2 layers of ~ 7 nm thickness in terms of ionic 

sieving capability.  Particularly, pristine 2D MoS2 laminar membranes of ~1-5 μm thickness 

exhibit ion rejection rates of only ~15-30%,157 in a sharp contrast to the performance (i.e., 
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rejection rate > 99%) achieved with our CVD-2D MoS2 layers which were not even 

functionalised for further property improvement.   

 

Figure 29 (a) Desalination performances of various membranes regarding salt rejection and 

water permeation rates. (b) Desalination performances of the CVD-2D MoS2 layers of ~7 nm 

thickness developed in this study vs. 2D MoS2 laminar membranes of micrometer thicknesses 

prepared via liquid exfoliation/filtration processes. 

Due to the imperfect nature of CVD process optimisation, intrinsic structural variations such 

as atomic vacancies and grain boundaries have been regarded inevitably present in CVD-grown 

2D MoS2 layers.38,40,199,219-221  For instance, various types of near atomic-scale vacancies have 

been identified to exist within CVD-grown 2D MoS2 basal planes, including mono-sulphur 

vacancy (VS), di-sulphur vacancy (VS2), vacancy complex of Mo with three surrounding 

sulphur (VMoS3), and vacancy complex of Mo with three surrounding pairs of di-sulphur 

(VMoS6).
38 Water permeability achieved with CVD-2D MoS2 layers can be understood by 

considering the dimensional effect of this intrinsic porosity as well as its areal density; i.e., the 

size of these vacancies should be large enough to allow for the facile translocation of water 

molecules and their areal density should be large to ensure high probability for the translocation 

event. Amongst the above listed vacancies, it has been known that sulphur vacancies of various 
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sizes yield a large areal density of up to ~1013 cm-2, 41 rendering CVD-grown 2D MoS2 layers 

sulphur-deficient in general.220,222 However, it is known that the areal density of large-sized (~ 

1 nm) intrinsic sulphur vacancies such as VMoS6 is much smaller than that of small-sized 

vacancies, e.g., VS of < 0.3 nm.220 This competing situation makes it difficult to experimentally 

quantify and identify the kind of specific vacancies which most govern water permeability.  In 

addition to the intrinsic atomic vacancies within basal planes, CVD-grown 2D MoS2 layers 

contain a large density of intrinsic "nanopores" present along the grain boundaries formed by 

individually stitching 2D grains of distinct crystallographic orientation. The size of these 

nanopores is larger than that of the atomic vacancies within basal planes as they are generally 

composed of multiple un-coordinated atoms. For instance, nanopores of ~0.6–0.82 nm2 in size 

can be naturally formed by adjoining 2D layers in a binary stack while their size can further 

vary with grain boundary angles.223,224 Accordingly, their role on governing water permeation 

and ion rejection must become pronounced as far as they are abundantly present within grain 

boundaries, which must be the case for our CVD-2D MoS2 layers as verified in the next section. 

Indeed, theory predicts that nanopore sizes of ~0.74–0.98 nm would yield the optimal 

combination of high salt rejection rate and high water permeation flux for 2D MoS2 layers.41 

In addition to the contributions from atomic vacancies and nanopores to water permeation, the 

uniformly spaced vdW gaps inherent to our CVD-2D MoS2 layers (Figure 26(e)) are believed 

to play a significant role as well, particularly, for achieving high ionic sieving capability. In 

fact, the physical sizes of the hydrated ions tested in this experiment are identified to be larger 

than the interlayer vdW gap size of our horizontally-aligned 2D MoS2 layers. The interlayer 

vdW gap which functions as a channel for molecular/ionic transport is ~0.65 nm wide 

accompanying the actual S-to-S distance of ~0.3 nm, as shown in Figure 26(d) and Figure 26(e).  

Meanwhile, diameters of the tested cations in their hydrated states are as follows: 0.66 nm (K+), 
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0.72 nm (Na+), and 0.86 nm (Mg2+).225,226 This observation suggests that the transportation of 

the hydrated ions through the vdW gap within our material is efficiently impeded, which well 

explains the observed high rejection rates.  In addition to the above accounted 

dimensional/geometrical effect, electrostatic interaction of atomic vacancies is considered as 

another major factor for governing both water permeation and ionic sieving. Theory suggests 

that salt ions encounter significantly high energetic and steric barriers when approaching 

sulphur vacancies while water molecules are relatively unaffected.155 For example, cations (e.g., 

Na+) experience high Coulombic barrier since the sulphur vacancies are positively charged due 

to the surplus amount of un-bonded Mo atoms.155 Moreover, these atomic vacancies expose 

hydrophilic Mo-rich sites which can readily attract water molecules allowing for their efficient 

permeation while impeding ion movements, yielding high water flux and ion rejection rates.154, 

227 Molecular dynamics (MD) simulation studies by Köhler et al. further justify this analysis, 

identifying that the water-accessible nanopores of up to ~1 nm present strong ion rejection 

capability even at a high pressure of 100 MPa.152  

The proposed desalination mechanism based on the intrinsic nanopores and vdW gaps of CVD-

2D MoS2 layers is elucidated in Figure 30. The schematic in Figure 30(a) illustrates that the 

nanopores primarily present within the grain boundaries of poly-crystalline 2D MoS2 layers 

allow for the efficient permeation of water molecules. The illustration in Figure 30(b) shows a 

cross-sectional view of water permeation and ion rejection events through the interlayer vdW 

gaps within horizontally-aligned multilayer 2D MoS2. While water molecules easily 

translocate through the nanopores as well as transport within the interlayer vdW gaps, the 

transportation of hydrated ions is efficiently interfered owing to their relatively large sizes. 

Accordingly, high water fluxes and ion rejection rates should be resultant, as above 

experimentally verified. The presence of such nanopores localised within grain boundaries has 
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been directly verified by aberration-corrected TEM characterization. Figure 30(c)-Figure 30(g) 

present representative TEM images of the CVD 2D MoS2 layers of ~ 7 nm thickness, 

highlighting their intrinsic structural imperfections. Figure 30(c) and Figure 30(d) reveal their 

typical poly-crystalline structure with ample crystalline grains and grain boundaries. The red 

arrows in Figure 30(c) denote the areas where multiple nanopores are observed, typically across 

the grain boundaries.  Figure 30(d) shows one large (~ 1.5 nm) localised nanopore (blue dotted 

circle) observed in the area different from Figure 30(c). Figure 30(e)-Figure 30(g) present 

HRTEM images of localised grain boundaries and their detailed crystalline structures. Figure 

30(e) reveals a large-sized (~ 2 nm) highly disordered region (red dotted circle) constituting 

multiple nanopores of various sizes on the interfacial junction formed by the grains of two 

distinct crystallographic orientations. Note that the yellow triangle and the green hexagon 

clarify two different Moiré fringes evidencing the distinct orientation of each grain. Figure 30(f) 

and Figure 30(g) present zoomed-in HRTEM images of individual nanopores on the grain 

boundaries of the same sample – areas different from Figure 30(e).  The images clearly 

evidence the presence of multiple nanopores the size of which varies in a range of ~0.5 nm to 

~ 1 nm (denoted by the yellow circles), suitable for the permeation of water molecules. 

Although it is experimentally challenging to precisely quantify the areal density of such 

vacancies in a statistical manner, their presence is strongly believed to be responsible for the 

overall desalination performances.   
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Figure 30 (a) Schematic illustration to visualize the translocation of water molecules through 

nanopores within the grain boundaries of horizontally-aligned multilayer 2D MoS2. Note that 

the size of the nanopores is large enough to allow for water permeation.  (b) Side-view 

illustration to show that water molecules easily transport through the interlayer vdW gaps 

while hydrated ions are efficiently rejected due to their larger sizes. The inset HRTEM image 

visualizes the vdW gap (red arrows) which functions as a water transporting channel. (c)-(g)  

TEM images to confirm the presence of intrinsic nanopores within the grain boundaries of 

CVD-2D MoS2 layers revealing: (c) multiple nanopores, (d) a localized nanopore of ~1.5 nm 

in size, (e) distinct grain orientations, and (f)-(g) nanopores of various sizes.   

Lastly, we further justify the exclusive role of nanopores within 2D MoS2 layers on the 

experimentally observed water permeation and ionic sieving effects. We have carried out non-

equilibrium molecular dynamics (MD) simulations and monitored the filtration of saline water 

through a 2D MoS2 layer containing a near-atomic scale vacancy. A schematic of the 

simulation system is shown in Figure 31(a) which illustrates NaCl-containing saline water at 

the onset of a filtration process. A NaCl concentration of 0.6 M was chosen to mimic seawater 

salt concentration conditions. A graphene sheet placed on top of the saline water box acts as a 
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rigid piston and the permeation of water molecules is directly visualised using visual molecular 

dynamics (VMD) 1.9.1.189  Upon the application of constant pressure to the piston, water 

molecules as well as Na+ and Cl- start to move toward the 2D MoS2 layer.  Figure 31(b) 

illustrates the time-lapse snapshot of this molecular and ionic movement at varying timeframes. 

It is apparent that a majority of water molecules facilely pass through the pore, which becomes 

more pronounced as the timeframe extends from 5 ps to 40 ps, while both Na+ and Cl- barely 

penetrate it. This MD simulation result well agrees with our experimental observation of high 

water permeability and ion rejection rates and is also consistent with the recent computational 

study.154  

 

Figure 31 (a) Schematic of MD simulation system. Saline water is located between the 

graphene sheet which acts as a rigid piston and the 2D MoS2 layer. Green and orange spheres 

indicate Na+ and Cl- ions, respectively. Pure water is located underneath the 2D MoS2 layer 

to prevent the dispersion of filtered water. (b) Time-lapse snapshot images of water 

desalination through the near atomic vacancy of the 2D MoS2 layer during 40 ps MD 

simulations.  

 



85 
 

4.4 Conclusion 

In summary, we experimentally evaluated the performances of CVD-grown few-layer 2D 

MoS2 of ~7 nm thickness as water permeable membranes for desalination and molecular 

sieving. This near atom-thick membrane presented an excellent combination of high water 

permeability and high ionic sieving capability for a variety of tested ions, outperforming 

previously developed 2D MoS2 layer membranes of much larger thickness. This 

experimentally confirmed superiority is believed to be a combined result of small thickness 

and near atomic vacancies inherent to CVD-grown 2D MoS2 layers, verified by STEM 

characterization and MD simulation. The present study merits further investigations towards 

the potential exploration of 2D materials for high-efficiency membrane and desalination 

technologies.  
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CHAPTER 5: WATER DESALINATION VIA VERTICALLY-ALIGNED 

2D MOS2 LAYERS MEMBRANES 

5.1. Introduction  

The past decades have seen an escalating global shortage of freshwater resources due to the 

spiraling rise of water demands from the agricultural and industrial sectors.5 Apart from the 

management and conservation of existing water resources, more environmentally and 

technologically sustainable solutions that facilitate increasing freshwater supplies are urgently 

demanded around the globe in mitigating the challenging impacts of the looming water crisis, 

particularly during the rapidly evolving effects of climate change.6 Significant technological 

and research efforts have been devoted towards seawater desalination techniques, due to the 

abundance and accessibility of oceans and seas, aiming to produce freshwater in a more time 

and energy efficient manner.10 Amongst the most widely adopted desalination technologies are 

the multi-stage flash (MSF), multi-effect distillation (MED), and reverse osmosis (RO), with 

RO increasingly attaining more market share.7,8 As a pressure-driven process, the RO 

polymeric membranes still face unfavourable technical drawbacks in particular low conversion 

efficiency, and the high energy demand for pressurising the feedwater. Therefore, the 

development and adoption of high-performance membrane materials still present compelling 

demands, especially materials armed with an inherently balanced combination of optimal water 

recovery efficiency and maximised solute rejection rates.  

Two-dimensional (2D) materials based membranes have rapidly emerged as a promising 

candidate for addressing and overcoming the undesirable trade-offs between permeability and 

selectivity for improved desalination performances.11-13,149  
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Their desirable unique suitability stems from a combination of the ultra-thinness of only one-

to-few molecular layers which allows for rapid water pathways as well as superior 

ionic/molecular sieving capabilities due to versatile mechanisms (e.g., in-plane nanopores, 

interfacial voids, and inter-gallery channels).12 In addition, many other attributes of 2D 

materials including their high mechanical flexibility and chemical functionality further qualify 

them as a favourable alternative towards high-performance desalination. Moreover, the 

chemical synthetic processing routes can impart intrinsic sieving/filtration nano-channels 

which can be even further tailored towards desired channel sizes, distribution density, and 

orientation configurations for optimal desalination capabilities.14,228,229  

In this endeavour, the ionic sieving and water permeation performance of various types of 2D 

materials have been explored, with the most notable categories of examples include 

graphene,15-18,230 dichalcogenides,19-22,231 and graphene oxides.23-26,232 

Amongst a host of 2D materials based membranes, 2D molybdenum disulfide (MoS2) layers 

attracted newly gained research efforts for their promise in water and environmental 

fields,149,153 along with their demonstrated superior properties in various other fields of 

applications including electronics,233 catalysis,234 biomedical,235 and energy conversion and 

storage236. In addition to their inherent structural advantages, other attributes such as excellent 

chemical stability and non-toxicity further make 2D MoS2 layers a fitting candidate for high-

performance desalination applications.35-37 Despite their promising potential as an efficient 

membrane material for water desalination applications, only limited experimental research 

efforts have been devoted towards the investigation of 2D MoS2 layers for their ionic sieving 

and water permeation capabilities, whilst extensive theoretical projections based on molecular 

dynamics simulations have already revealed their promising outlooks in this 



88 
 

regard.19,149,154,155,237 Recent experimental desalination assessments of 2D MoS2 flakes/layers 

based membranes include chemically functionalised ~5 µm thick laminar membranes 

composed of exfoliated 2D MoS2 flakes via a filtration process.157 Moreover, a recent notable 

work by Li et al. reported the experimental demonstration of high-efficiency water desalination 

membranes based on horizontally-aligned few-layer 2D MoS2 of only ~7 nm thickness, 

attributing the high performance to the small thickness and near atomic vacancies inherent to 

the CVD-grown 2D MoS2 layers.238  

Compared to their horizontally-aligned counterparts, vertically-aligned 2D / nano materials 

have received even more scarce research efforts for their potential roles in environmental 

applications, both in terms of theoretical and experimental investigations. Amongst the limited 

reported results, few explored the theoretical performance of vertical graphene-based 

membranes, whilst the majority of the efforts have been devoted to vertically-aligned carbon 

nanotubes (VA-CNTs).229,239-242 In addition, a recent MD simulations work by Köhler et al. has 

suggested that theoretically the transport of water through MoS2 nanotubes can be as 

anomalous as in CNTs, potentially have promising applications such as nano-filtration.243 In 

this Chapter we present results and discussions on the superior ionic sieving capability of a 

vertically-aligned 2D MoS2 layers based membrane, both the experimentally demonstrated 

capabilities, with a special attention on the comparisons with its horizontal counterparts238 with 

regards to the differences in performances and the respective underlying mechanisms. 
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5.2. Experimental Methods 

CVD Growth of 2D VA-MoS2 Layers:  Ultra thin films of Mo (6 nm thickness) were deposited 

onto SiO2/Si substrates via electron beam evapouration (Thermionics VE-100 evapourator) at 

a deposition rate of 0.15 Å s−1. As-deposited Mo-SiO2/Si samples were then centrally-placed 

inside a 1 inch quartz tube located in the middle of a horizontal tube furnace (Lindberg Blue 

M, ThermoScientific). Sulphur powders (99.5%, Sigma-Aldrich, St. Louis, MO) placed in a 

ceramic boat were then loaded within the quartz tube at the furnace upstream side. The furnace 

was then pumped down to a base pressure of 1 mTorr following purging with high-purity argon 

(Ar) gas.  The tube system was then ramped up to 780 ℃ at a ramping rate of 15 ℃/min for 50 

mins and was held for another 50 mins under the constant flow of Ar gas (100 SCCM), with a 

working pressure of 75 mTorr. After the CVD reaction, the furnace was naturally cooled down 

to room temperature under continuous Ar supply. 

Water Permeation Rate Measurement: A typical external pressure method was used for the 

water permeation rate assessments via a common dead-end filtration setup. The sandwiched 

membrane with exposing holes over the vertically-aligned 2D MoS2 layers was secured inside 

a leak-free syringe filter holder. The water permeation rate was calculated by weighing the 

volume of water passing through the 2D VA-MoS2/PES membrane area under a constant 

pressure of 1 bar as a function of time. 

Salt Ion Rejection Rate Measurement: A conductivity probe (ThermoScientific, model: Orion 

013605MD) connected to a solute conductivity meter (ThermoScientific, model: Orion 5 Star) 

was used to monitor conductivities in respective containers, in order to quantify salt ion 

concentration variations. The conductivity probe was calibrated on a routine basis, and was 

thoroughly rinsed with de-ionised water each before measurements. The salt rejection rate was 
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calculated via (1 −
𝐶𝑃

𝐶𝐹
) × 100%, where 𝐶𝑃 and 𝐶𝐹 are the conductivity of the permeate and 

feed side, respectively. Common seawater salt types of sodium chloride (NaCl) (99%, Sigma-

Aldrich, St. Louis, MO), potassium chloride (KCl) (99%, Sigma-Aldrich, St. Louis, MO), 

magnesium chloride (MgCl2) (98%, Sigma-Aldrich, St. Louis, MO), and calcium chloride 

(CaCl2) (93%, Sigma-Aldrich, St. Louis, MO) were employed for salt rejection rates 

measurements. The seawater salt solutions tested were as follows: (1) NaCl of 0.6 M 

(equivalent to seawater salinity concentration209), (2) NaCl of 0.469 M (typical seawater Na+ 

concentration210), (3) KCl of 0.1 M, (4) MgCl2 of 0.1 M, (5) CaCl2 of 0.1 M, (6) actual seawater 

sampled from the Florida Atlantic coast, and (7) synthetic seawater. The concentration of 0.1 

M for KCl, MgCl2 and CaCl2 was selected for measurements consistency, although the typical 

seawater concentrations of K+, Mg2+ and Ca2+ are below 0.1 M.210,211 The synthetic seawater 

solution was prepared to mimic the concentrations of typical salt ion species present in standard 

seawater, i.e., Na+ of 0.469 mol/L 210, K+ of 0.01 mol/L 210, Mg2+ of 0.0528 mol/L 210, and Ca2+ 

of 0.01 mol/L 210. Each measurement was repeated for three times to improve testing 

consistency, with the averaged values presented in the corresponding plots. 

AFM Characterisation: Topography images and height profiles of the vertically-aligned 2D 

MoS2 layers integrated on PES substrates were acquired with Anasys nanoIR AFM (Anasys 

Instruments, Santa Barbara, CA) operated in tapping mode with the scan rate of 1 Hz. The 

AFM probes (Model: PR-EX-T125-10, Anasys Instruments) had a nominal spring constant of 

30 N/m. 
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5.3. Results and Discussions 

5.3.1 Vertical 2D MoS2 Layers Preparations and Characterizations 

Vertically-aligned (VA) 2D MoS2 layers of centimetre-scale were grown based on a modified 

chemical vapour deposition (CVD) process previously developed in our research group.195-197 

A thin film of Mo (~6 nm thickness) was deposited onto a SiO2/Si substrate via electron beam 

evaporation, followed by a thermal sulphurisation process inside a CVD chamber, producing 

VA 2D MoS2 layers. Conditions for VA 2D MoS2 layers growth are detailed in Methods section. 

As-prepared VA 2D MoS2-SiO2/Si sample following the CVD process was then facilely 

delaminated via a water-assisted process, with the afloat VA 2D MoS2 layers gently transferred 

onto an O2 plasma treated porous poly(ether sulfone) (PES) membrane substrate (~0.03 µm 

pore size and ~100 μm thickness, Sterlitech, WA), which has been extensively employed as 

substrate for assessing desalination performance of 2D materials-based membranes.199 The 2D 

VA-MoS2/PES surface was then covered with a selectively deposited thin layer of non-

permeable polydimethylsiloxane (PDMS), exposing a pre-defined open region of 2D 

vertically-aligned MoS2 layers as the ionic sieving membrane upon solutions contact (Figure 

32(a)). The growth, delamination, transfer and integration of 2D layers onto PES substrates 

followed similar procedures as illustrated on our previous report.238 With the PES substrate 

possessing pores greatly exceeding the sizes of salt ion species, the ionic sieving effects can 

only be attributed to the 2D VA-MoS2 layers (with the possible mechanism shown 

schematically in Figure 32(b) and discussed in detail in latter sections of this Chapter).  
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Figure 32 (a). Schematic depiction of 2D VA-MoS2 layers integrated onto porous PES 

substrate. A non-permeable PDMS layer is selectively deposited on the MoS2/PES, leaving 

an opened area allowing water/solution penetration through the exposed 2D VA-MoS2 layers. 

The enlarged view of the red rectangle area shows the vertical alignment of the 2D VA-MoS2 

layers, note the vdW gaps of ~0.65 nm as indicated by the arrows. (b). Schematic illustration 

of proposed mechanism for the water permeation and salt rejection of 2D VA-MoS2 layers. 

The inherent vdW gaps of the vertically-aligned MoS2 layers pose restrictions towards 

inbound salt ions mainly due to size exclusions. Whilst the hydrophobic interior regions 

between the MoS2 layers facilitate smooth transport of water molecules. 

Prior to the integration of VA 2D MoS2 layers onto PES substrates, the material quality of as-

grown 2D MoS2 layers was first assessed. The structural and chemical integrity of the CVD-

grown VA 2D MoS2 layers were characterised via transmission electron microscopy (TEM) 

and Raman spectroscopy. A plane-view of the as-grown 2D MoS2 layers via HR-TEM clearly 

demonstrates the vertical alignment of 2D MoS2 layers (Figure 33(a)), with the inset showing 

a typical interlayer spacing of ~0.65 nm between the adjacent MoS2 layers. In addition, a cross-

sectional view of the 2D MoS2 layers via TEM (Figure 33(b)) reveals the presence of 

continuous 2D MoS2 layers that are of uniform thickness. Shown as an enlarged view of the 

blue box in Figure 33(b), the crystalline structure of 2D MoS2 layers is further revealed in 
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Figure 33(c) with the corresponding atomic arrangements of the 2D MoS2 layers also illustrated 

as in the red boxes, which further clarifies the vertical orientation of the 2D MoS2 layers, and 

again confirms an average interlayer spacing of ~0.65 nm.  Furthermore, the typical Raman 

spectrum of the as-grown MoS2 layers (red spectrum line in Figure 33(d)) confirms the presence 

of 2D MoS2 layers, with the two distinctive peaks corresponding to the in-plane (𝐸2𝑔
1 ) and out-

of-plane (𝐴1𝑔) vibration modes of 2D MoS2 layers, respevtively.185,201,202 These comprehensive 

characterisation results conclude that our CVD-grown 2D MoS2 possess continuous and 

vertically-aligned layers, with multitudes of intrinsic sub-nanometre vertical channels (e.g., 

~0.65 nm vdW gaps). Such microstructural attributes impart VA 2D MoS2 layers with unique 

suitability as desalination membranes. 

Subsequent morphological characterisations of the as-integrated VA 2D MoS2 layers on PES 

substrates were performed via atomic force microscopy (AFM) and Raman spectroscopy. The 

AFM height profile (Figure 33(e)) corresponding to the yellow line across the VA 2D MoS2 / 

PES interface (Figure 33(e) inset) shows that the integrated 2D VA-MoS2 layers are ~20 nm 

thick (which is within the reasonable range as produced from a 6 nm Mo seed layer). The 

Raman profile of the as-integrated VA 2D MoS2 layers / PES (blue spectrum line in Figure 

33(d)) reveals the resembling characteristic peaks of 𝐸2𝑔
1  and 𝐴1𝑔 vibration modes, which are 

consistent with the observation prior to 2D layers separation and integration (i.e., near-

overlapping red spectrum line in Figure 33(d)). The results confirm that after the VA 2D MoS2 

layers integration onto PES substrates, they preserved a maintained structural and chemical 

integrity. 



94 
 

 

Figure 33 (a). Plane view of the HR-TEM imaging of the smooth 2D VA-MoS2 layers, 

clearly showing the vertical alignment of the 2D MoS2 layers. The inset shows a zoomed-in 

view of the vertical layers with well-defined vdW gaps of ~0.65 nm as indicated by the 

yellow arrows. (b). A cross-sectional view of the 2D VA-MoS2 layers, showing continuous 

2D VA-MoS2 layers with uniform thickness. (c). An enlarged view of the 2D VA-MoS2 

layers as shown in the blue rectangle area in Figure 33(b), showing the vertically-aligned 

nano-channels formed in between the parallel 2D MoS2 layers, again with a well-defined 

vdW gaps distance of ~0.65 nm (indicated by the black arrows). Atomic schematic 

representation of the vertical MoS2 nano-channels is also depicted (see the two corresponding 

areas in the red rectangles). (d). Typical Raman spectra of the 2D VA-MoS2 layers before 

(red line) and after (blue line) the PES integration, showing the two distinctive peaks 

corresponding to the 𝐸2𝑔
1  and 𝐴1𝑔 vibration modes. The inset picture shows a representative 

sample after the 2D VA-MoS2 layers (dark gold area) have been integrated onto the PES 

substrate (white area). (e). Representative AFM height profile of 2D VA-MoS2 layers 

integrated onto the PES substrate, here showing a thickness of approximately 20 nm. The 

height profile was taken along the gold-coloured line on the inset AFM imaging, across the 

boundary between the PES substrate and the 2D VA-MoS2 layers. 
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5.3.2 Water Permeation Assessments 

Figure 34(a) illustrates a schematic set-up for water permeation measurements. The 2D VA-

MoS2 layers-integrated PES substrate was covered with another bare PES substrate. After the 

2D layers integration, the sample was subsequently sandwiched between two non-permeable 

PDMS sealing films both exposing pre-defined open areas overlapping with the 2D VA-MoS2 

layers membrane region. Note that this sandwich-like assembly has been extensively employed 

in configuring nanomaterials-based membranes including 2D materials of large thickness (> 1 

μm).157 This layered membrane was then loaded inside a syringe filter holder in a typical dead-

end filtration setup. The water permeation rate was then measured via common external 

pressure method by weighing the volume of water passing through the membrane area (i.e., the 

central hole filtration region composed of 2D VA-MoS2/PES only) as a function of time under 

a constant pressure. Details are presented in the Methods section.   

Due to the vertical nature of the 2D MoS2 layers configuration in our case, the pathways that 

allow passage for water molecules are treated as parallel continuous nano-channels, which 

should account for the vast majority of water permeation, with some types of defects (e.g., edge 

sites and dislocations) may only have very insignificant contributions. 

Before proceeding with the experimental assessments of the water permeation capability of 2D 

VA-MoS2 layers, it is worth exploring the theoretical performance of water permeability of a 

single nano-channel of vertical 2D MoS2 layers (and this per nano-channel estimation will be 

further extended to the per unit area value).  

 Since the "openings" for water molecules to penetrate upon contact on the surfaces of 2D VA-

MoS2 layers do not present themselves as geographical "holes", (instead, there are parallel 

"slits" composed of adjacent nano-channels). Therefore, for the sake of reasonable and 
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simplified estimations, the preferable "opening" for water molecules permeation is considered 

as the area defined by the following two dimensional factors: (1). the width of each of the 

parallel "slits" d=0.333 nm 244, and (2). the Sulphur-to-Sulphur distance within a single 2D 

MoS2 layer dS=0.316 nm 245. 

The theoretical water permeation capability of 2D VA-MoS2 layers is based on the Hagen-

Poiseuille (H-P) permeability, which describes the water flux under ideal and non-slip flow 

conditions through cylindrical pores, and is widely adopted as a base for theoretical 

estimations.239,246,247 

The theoretical H-P permeability for vertical 2D MoS2 layers maybe calculated via the 

following equation:239,247 

𝑄 =  
𝜋(

𝑑

2
)4

8𝜇
∙

Δ𝑃

𝐿
                     (2) 

Where 

𝑄 = The water flux = the volume of water passage per unit time, per unit pressure, per nano-

opening 

𝑑 = Size of nano-opening 

𝜇 = Viscosity of de-ionised water (at 20 ℃) 248 

∆𝑃 = Trans-membrane pressure 

𝐿 = Nano-opening length 

Therefore, from Equation. 2, the theoretical H-P permeability is calculated as: 
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𝑄 = 5.54 × 10−18  
𝐿

ℎ ∙ 𝑏𝑎𝑟 ∙ 𝑜𝑝𝑒𝑛𝑖𝑛𝑔
 

Furthermore, based on the dimensional factors (d and dS) mentioned above, the number of 

nano-openings per 1 cm2 for 2D VA-MoS2 layers can be estimated as 4.88 × 1014  
𝑂𝑝𝑒𝑛𝑖𝑛𝑔

𝑐𝑚2
, 

which is the areal density. Note this estimation is at least 50 times more compared to that of 

the horizontally-aligned CVD-grown 2D MoS2 layers.41 

Therefore, the theoretical estimation of the Hagen–Poiseuille permeability of a typical 2D VA-

MoS2 layers sample (under ideal, non-slip conditions) can be deduced by combining Equation. 

2 and the estimated areal density, which gives: 

𝑄𝐻−𝑃 = 27 
𝐿

ℎ ∙ 𝑏𝑎𝑟 ∙ 𝑚2
 

For comparisons, the reported theoretical Hagen–Poiseuille water permeability of vertical 

CNTs varies in a wide range: from 𝑄 = 0.0053 
𝐿

ℎ∙𝑏𝑎𝑟∙𝑚2  to 𝑄 = 3.35 
𝐿

ℎ∙𝑏𝑎𝑟∙𝑚2 (due to varied 

sample parameters like pore densities and sizes).247 

The experimentally assessed water permeation rate, based on the common dead-end filtration 

method, for 2D VA-MoS2 layers is 𝑄 = 1656.8 (±129.7) 
𝐿

ℎ∙𝑏𝑎𝑟∙𝑚2. 

The prominent difference of the water permeations rates between the theoretical Hagen–

Poiseuille permeability and the experimentally assessed values indicate that the vertical 2D 

MoS2 layers possess highly slippery nano-channels for water molecules. Comparable and 

sometimes even more dramatic enhancement effects on water permeability have been reported 

on vertical CNTs membranes.247,249-251  
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We believe the hydrophobicity of the vertical 2D MoS2 layers would most likely account for 

such contrasting differences. For comparison, the underlying mechanism behind the significant 

enhancement effects for vertical CNTs has been similarly attributed to hydrophobic–

hydrophobic interaction, stemming from the hydrophobicity of the inner wall of CNTs.239,252 

Furthermore, theoretical MD simulations study also supports the presence of an induced super-

flow regime inside MoS2 nanotubes, leading to high water mobility.243 

Comparing to the their horizontally-aligned counterparts, vertical 2D MoS2 layers clearly show 

a higher water permeability (see the comparison plot in Figure 34(b)).238 Such contrast is 

ascribed to the different pathways that water molecules take. In the case of horizontal-MoS2 

2D layers, water translocates through the nanopores as well as transports within the interlayer 

vdW gaps.238 Whilst in 2D VA-MoS2 layers, three main factors are at play contributing to the 

enhanced water permeability: 1). the available passages for water molecules become more 

abundant, due to the presence of the numerous "slits" like openings (i.e., the vdW gaps between 

layers of vertical MoS2); 2). the vertically-aligned layers present much more straightforward 

"straight-to-the-end" passages, compared to the "zig-zag" routes that water molecules take 

when migrate through the horizontal MoS2 layers; and 3). the hydrophobicity of the interior 

regions between the vertical MoS2 layers further leads to rather "slippery" pathways for water 

molecules to move more smoothly.  

5.3.3 Salt Rejection Evaluations 

In addition to the superior water permeability capability discussed above, the salt rejection 

performances of 2D VA-MoS2 layers were also assessed. 
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The proficiency of 2D VA-MoS2 layers on PES supports for salt ions rejection was determined 

via the bespoke measurement set-up (depicted in Figure 34(c)) as described in detail in our 

previous report, following similar procedures and testing conditions.238 In brief, a leak-free 

solution passage via only the sandwiched 2D VA-MoS2 layers connects the permeate and feed 

side containing de-ionised water and different types of testing salt solutions respectively. The 

levels of the migration of salt ions were quantified via the conductivity measurement method 

well established in the field;157 i.e., the salt rejection rate was calculated by (1 −
𝐶𝑃

𝐶𝐹
) × 100%, 

where 𝐶𝑃  and 𝐶𝐹  are the conductivity of the permeate and feed side, respectively.208 

Measurement procedures, conditions as well as the different types of salt solutions underwent 

testing are detailed in the Methods section. Figure 34(d) presents the plots of seawater ion 

rejection rates obtained at identical interval times during the course of three hours towards 

various types of respective salt ion species, whilst the plots for multi-ionic mixture solutions 

are given in Figure 34(e). 

The results (as given in Figure 34(d) and Figure 34(e)) show a high level of capability for 2D 

VA-MoS2 layers acting as reliable hindrance to the passage of common seawater salt ion 

species at various concentrations, for both single-ionic and multi-ion mixture solutions (with 

an overall salt rejection rate of > 99.7%).  
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Figure 34 (a). Schematic depiction of the water permeation measurement set-up. The 

enlarged view shows the sandwiched membrane composed of 2D VA-MoS2 layers integrated 

on PES substrate, with another bare PES covered on top of them. The selectively-deposited 

PDMS regions are also shown with the circular areas left open for water/solution penetration. 

(b). The comparisons of water permeation rates for: 1). bare PES substrates, 2). horizontal 2D 

MoS2 layers,238 3). vertically-aligned 2D MoS2 layers, and 4). the theoretical Hagen-

Poiseuille permeability of 2D VA-MoS2 layers. (c). Schematic representation of the salt 

rejection rates measurement set-up. The sandwiched membrane composed of 2D VA-MoS2 

layers / PES, with selective PDMS sealing is shown in the enlarged view. (d). Salt rejection 

rates of 2D VA-MoS2 layers towards various types of seawater ions over a continuous 3-hr 

time period. (e). Salt rejection rates of 2D VA-MoS2 layers towards synthetic and actual 

seawater samples over a continuous 3-hr time period. 
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Due to the similarity of assessment methodology and testing conditions, the following 

discussions focus on the salt ions rejection performance of 2D VA-MoS2 layers as compared 

to their horizontal counterparts, in addition to comparisons with vertical-CNTs. 

It is found that across all the different types of ionic solutions, the vertically-aligned 2D MoS2 

layers show a slight yet consistently higher performance in terms of salt rejection rates under 

similar testing conditions compared to the horizontally-aligned 2D MoS2 layers238 

(representative optical imaging of 2D H-MoS2/PES and TEM imaging of the horizontal layers 

are shown in Figure 35(a)). The respective salt rejection performance comparison plots are 

given in Figure 35(b)-(f) for single-ionic solutions, and in Figure 35 (g)-(h) for multi-ionic 

mixture solutions. This improvement of performance may due to two possible reasons (also 

illustrated in Figure 32(b)): 1). Compared to H-MoS2 layers, which possess nano-pores of 

varying degrees of sizes, the VA-MoS2 layers instead contain filtration networks of near-

consistent dimensions (i.e., tiny "slits" of  approximately 0.65 nm in width. See Figure 33(a) 

and Figure 33(c)). Such narrow-sized vdW gaps "slits" are well-suited for allowing the smooth 

and even maybe accelerated passage for water molecules, which have a diagonal length of 

~0.275 nm.203 And at the same time, the hydrated salt ions face both dimensional exclusions 

upon encountering the narrow "slits" due to their larger sizes (also note the actual Sulphur-to-

Sulphur distance of ∼0.3 nm.244), and the energetic impedance of having to lose their solvation 

shells if they are to squeeze through.225,226 Additionally 2). The thickness of 2D VA-MoS2 

layers are inherently higher than that of the H-MoS2 layers, since the growth of vertical 2D 

MoS2 layers prefers thicker (>∼3 nm) Mo-seed layers.185 Thus possessing lengthened barriers 

preventing the salt ions from passing through. 
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Despite many MD simulations works253,254 as well as extensive experimental 

investigations229,247 on the potential of VA-CNTs membranes for desalination applications, 

their practical feasibility has been limited by the actual pore sizes which remain larger than 1 

nm 213,239,247, greater than the hydrated radius of typical salt ions (e.g., Na+ of 0.72 nm).225,239 

It is worth noting that extensive molecular dynamics simulations have shown that the inner 

pore diameter of VA-CNTs should reach ~0.6 nm for optimal salt rejection rates.240,253,254 

Although the present technologies have the capability to reduce the pore diameter of VA-CNTs 

to this range, a critical pore size of ~0.7 nm would pose as a limiting factor, beyond which the 

transport of water will be impeded due to the confinement effect.240,253,255 Therefore, although 

VA-CNTs have demonstrated exceptionally high experimental water permeability (e.g., up to 

10,500 
𝐿

ℎ∙𝑏𝑎𝑟∙𝑚2 ) 247, their practical prospect as salt rejection membranes remains 

uninviting.239,240,256,257 For example, molecular modelling indicates that even with a pore 

diameter of 0.75 nm for VA-CNTs membranes, they would only yield a 58% of salt rejection 

capacity.253,254 Furthermore, experimental investigations of the salt rejection capacity of VA-

CNTs membranes show that with an average pore size of 1.6 nm, only up to 60% ion exclusion 

efficiency was observed.258 Therefore, alternative to seawater desalination, vertical CNTs have 

instead found promising application potential as filtration membranes towards larger-sized 

species like heavy hydrocarbons and microbial contaminants.256,259 
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Figure 35 (a). Representative optical imaging of the 2D horizontal-MoS2 layers integrated 

onto PES substrate. Along with a top-view HR-TEM imaging showing the horizontally-

aligned 2D MoS2 layers. (b). Comparison plots of the respective salt rejection rates for 2D 

vertically-aligned MoS2 layers and 2D horizontally-aligned MoS2 layers towards 0.469 mol/L 

NaCl solution over a continuous 3-hr time period under similar measurement conditions. (c). 

Comparison plots of the respective salt rejection rates for 2D vertically-aligned MoS2 layers 

and 2D horizontally-aligned MoS2 layers towards 0.6 mol/L NaCl solution over a continuous 

3-hr time period under similar measurement conditions. (d). Comparison plots of the 

respective salt rejection rates for 2D vertically-aligned MoS2 layers and 2D horizontally-
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aligned MoS2 layers towards 0.1 mol/L KCl solution over a continuous 3-hr time period 

under similar measurement conditions. (e). Comparison plots of the respective salt rejection 

rates for 2D vertically-aligned MoS2 layers and 2D horizontally-aligned MoS2 layers towards 

0.1 mol/L CaCl2 solution over a continuous 3-hr time period under similar measurement 

conditions. (f). Comparison plots of the respective salt rejection rates for 2D vertically-

aligned MoS2 layers and 2D horizontally-aligned MoS2 layers towards 0.1 mol/L MgCl2 

solution over a continuous 3-hr time period under similar measurement conditions. (g). 

Comparison plots of the respective salt rejection rates for 2D vertically-aligned MoS2 layers 

and 2D horizontally-aligned MoS2 layers towards synthetic seawater over a continuous 3-hr 

time period under similar measurement conditions. (h). Comparison plots of the respective 

salt rejection rates for 2D vertically-aligned MoS2 layers and 2D horizontally-aligned MoS2 

layers towards actual seawater over a continuous 3-hr time period under similar measurement 

conditions. 

Comparisons of water permeability of 2D VA-MoS2 layers (the present work) with reported 

performances of VA-CNTs and commercial ultrafiltration (UF) are given in Table 3 

Comparisons of membrane specifications and water permeability., along with the 

corresponding materials properties of the testing samples. (Note: Amongst the reported results 

for VA-CNTs, there are vast performance differences because of inherent variations of sample 

parameters like pore densities and sizes). 
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Table 3 Comparisons of membrane specifications and water permeability. 

Membrane 

specification

s 

This 

study 

Lee 

et 

al.247 

Yu et 

al.250 

Zhan

g et 

al.260 

Baek 

et 

al.239 

Hind

s et 

al.249 

Holt 

et 

al.246 

Du 

et 

al.241 

UF 

247 

Average 

(CNT) inner 

diameter, 

nm 

N/A 4.1 3.0 10 4.8 7.5 1.6 10 5.7 

Thickness, 

nm 
19.6 106 

7.5×1

05 

1.2×1

05 

2×1

05 

5×1

03 

2.5×1

03 

4×1

06 

2×1

04 

Pore density,  

1010 pore 

/cm2 

4.88×1

04 

300 290 10 6.8 6 25 2.4 9 

Water 

permeability 

at 20 °C,  

L m-2 h-1 bar-

1 

1,657 

10,50

0 

2,740 1,913 

1,10

0 

606 267 234 32 

Calculated 

water 

270,00

0 

677 276 7,348 159 

33,4

81 

578 53 

4,09

6 
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permeability 

at 20 °C, 

 × 10-4 L m-2 

h-1 bar-1 

 

5.4 Summary 

In summary, we experimentally evaluated the performances of vertically-aligned CVD-grown 

2D MoS2 layers (approximately 20 nm in thickness) as water permeable membranes for 

desalination and ionic sieving. This ultra-thin membrane presented an excellent combination 

of high water permeability and high ionic sieving capability for a variety of tested ions, which 

with improved performances compared to horizontally-aligned 2D MoS2 layer layers 

membranes. This experimentally confirmed superiority is believed to be a combined result of 

small thickness and the hydrophobic interiors regions of the vertical MoS2 layer sheets. The 

present study merits further investigations towards the potential exploration of 2D materials 

for high-efficiency membrane and desalination technologies.  

 

 

 

 

 

 



107 
 

CHAPTER 6: CONCLUSIONS 

In summary of the present dissertation, the behavior of the internal potential barrier in a 

polymer-derived amorphous SiAlCN ceramic was studied by measuring its complex 

impedance spectra at various dc bias as well as different testing and annealing temperatures. 

The complex impedance spectra of the polymer-derived a-SiAlCN were measured under 

various dc bias voltages in a temperature range between 50 and 150 °C, as well as different 

annealing temperatures (1100-1400  °C). All spectra, regardless of temperature and bias, 

consist of two semi-circular arcs, corresponding to the free-carbon phase and the interface, 

respectively. The impedance of the free-carbon phase is independent of the bias, while that of 

the interface decreased significantly with increasing dc bias. It is shown that the change of the 

interfacial capacitance with the bias can be explained using the double Schottky barrier model. 

The charge-carrier concentration and potential barrier height were estimated by comparing the 

experimental data and the model. The results revealed that increasing testing temperature led 

to an increased charge-carrier concentration and a reduced barrier height, both following 

Arrhenius dependence, whereas the increase in annealing temperature resulted in increased 

charge-carrier concentration and barrier height. The phenomena were explained in terms of the 

unique bi-phasic microstructures of the material. The research findings reveal valuable 

information of temperature-dependent properties of polymer derived ceramics, and should 

contribute towards more precise understanding and control of the electrical as well as dielectric 

properties of polymer derived ceramics.  

Furthermore, the desalination performances and underlying mechanisms of two-dimensional 

CVD-grown MoS2 layers membranes have been experimentally assessed. Based on a 

successful large-area few-layer 2D materials growth, transfer and integration method, the 2D 
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MoS2 layers membranes showed preserved chemical and microstructural integrity after 

integration. We experimentally evaluated the performances of CVD-grown few-layer 2D MoS2 

of ~7 nm thickness as water permeable membranes for desalination and molecular sieving. This 

near atom-thick membrane presented an excellent combination of high water permeability and 

high ionic sieving capability for a variety of tested ions, outperforming previously developed 

2D MoS2 layer membranes of much larger thickness. Such performances are attributed to the 

dimensional and geometrical effect, as well as the electrostatic interaction of the inherently-

present CVD-induced atomic vacancies (as verified by STEM characterization and MD 

simulation) for governing both water permeation and ionic sieving at the solution/2D-layer 

interfaces. The present study merits further investigations towards the potential exploration of 

2D materials for high-efficiency membrane and desalination technologies.  
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CHAPTER 7: FUTURE WORK 

The interfaces of nanomaterials are integral parts for defining the properties and performances 

of many types of materials. Therefore, the investigations of the roles of interfaces should also 

be extended to the studies of inherent properties of their bordering phases as well as the 

influences of the externally applied fields. The following suggestions are proposed for aiding 

future research efforts. 

(a). 

The eventual aims of the investigations on the electrical and dielectric properties of polymer 

derived ceramics is multi-fold: (1) to understand the origin and fundamental mechanism of 

conductions; (2) to decipher the microstructure-processing-properties relationships (i.e., how 

the different parameters / conditions / techniques would influence its electrical / dielectric 

performance); (3) to gain in-depth knowledge of better controlling / targeting its structures and 

properties towards different and wider applications (e.g., harsh environment sensing, and 

environmental barrier coatings). There are a number of factors that could influence its eventual 

performance, for example: (a) the ratio of initial ingredients; (b) the processing temperatures; 

(c) temperatures under which the PDC materials operate; and (d) contaminations (especially 

oxygen species) introduced during processing steps. Based on the results and discussions of 

the present investigations, in order to continue to build a more thorough understanding of 

controlling the electrical and dielectric properties of PDCs (for scientific research as well as 

practical applications purposes), the following further recommendations are provided as a 

suggestive guideline: 
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(1). Since the PDCs materials are particularly notable for their high-temperature-stable 

properties as well as promising future applications under harsh environments, it would be 

empirical to investigate the performance of PDCs (in particular their electronic / dielectric 

properties) under in-service conditions / environments. Though many research works have 

demonstrated the structural stability of PDCs, its long-term influence over PDCs 

microstructures and properties still demand in-depth efforts before the materials render 

practically useful. In addition, impedance measurements of even wider ranges should be 

investigated as temperatures could have shifted peaks towards higher ends. 

One additional aspect of a future research direction worth pursuing of is to study the synergistic 

effects of the material's responses to both temperatures and external compressive pressures. It 

was found / observed that the polymer derived SiAlCN ceramics, at the same time, show 

prominent responses to varying degrees of temperatures and pressure. This effect could 

undermine its future applications for harsh environment sensing, since the actual operating 

environment of such sensors would have both rapidly-changing temperatures and pressures 

present. Since these two effects arise from different origins, it truly worth more further 

explorations on the improved control of this effect. It is suggested that one approach to reduce 

such effect would be to study how the processing / annealing route would affect such 

synergistic effect. And another more resistive path would be to combine electrical engineering 

knowledge via clever design of circuits to minimise the effect, which would normally require 

product shape-control technique during processing. 

(2). To study the effect of microstructures on the double Schottky barriers model in controlling 

PDC dielectric properties. Especially the electronic band / energy structures of PDCs with 

different annealing / pyrolysis histories. The presence of varying levels of defects in different 
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PDCs dictates the relative complexity of determining their band structure. However, various 

experimental microstructural characterisation techniques should be useful for identifying the 

electronic structures of PDCs. Examples include: optical absorption measurement, X-ray 

photoelectron spectroscopy (for bond information). They could provide critical information on 

the microstructural evolutions and assist the evaluations of how various factors may affect the 

relative permittivity as well as dielectric loss of polymer derived ceramics, which are crucial 

indicators of the practical applicability of these materials for future applications.  

(3) The aims of studying the electronic as well as the dielectric properties of PDCs are to have 

more precise and dependable controls for practical sensing applications. It is therefore 

imperative to conduct further investigations on the integration and packaging processes of the 

sensing materials (i.e., PDCs) into an integral system. The reliability and accuracy of the 

sensing system first depends on the innate microstructures of the PDC sensing material. From 

a holistic scientific point of view, the materials processing will have fundamental effects on 

the performance of PDCs, which requires further investigations as well as future explorations 

of the applicability of novel processing techniques. 

(b). 

The filtration / selective separation properties of 2D layers-based membranes are just beginning 

to gain substantial research attentions, and the practical applications are still in its infancy. 

Significant endeavors and discoveries await in developing device-level / large-scale 

applications of them.  

(1). As a fundamental aspect of research and development, viable methods for the growth, 

transfer and integration of large-area 2D membranes are vital for the implementations of 2D 
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layers-based desalination devices / equipment. Most importantly, the long-term durability as 

well as defect-free integration and operations still require extensive investigations. 

(2). As a novel type of nanomaterials, the long-term immunological bio-compatibility, 

toxicology, and bio-persistence of 2D materials shall be established via intensive research 

efforts to ensure the health aspects are addressed properly. 

(3). Another potential avenue for future investigations would be the evaluation of controlled 

pore size generations to produce nanopores with desired sizes to meet the needs of selective 

filtrations. Detailed studies are required to fine-tune the operational procedures and parameters 

for optimal nanopore size distributions.  
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