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ABSTRACT 

Using quadcopters for analysis of an environment has been an intriguing subject of study recently.  

The purpose of this work is to develop a fully autonomous UAV platform for Railroad inspection 

The dynamics of the quadrotor is derived using Euler’s and Newton’s laws and then linearized 

around the hover position.  A PID controller is designed to control the states of the quadrotor in a 

manner to effectively follow a vision-based path, using the down facing camera on a Parrot Mambo 

quadrotor.  Using computer vision the distance from the position of the quadrotor to the position 

of the center of the path was found.  Using the yaw controller to minimize this distance was found 

to be an adequate method of vision-based path following, by keeping the area of interest in the 

field of view of the camera.  The downfacing camera is also simultaneously observing the path to 

detect defects using machine learning.  This technique was able to detect simulated defects on the 

path with around 90% accuracy.   
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CHAPTER ONE: BACKGROUND AND INTRODUCTION 

A major Florida infrastructure project ongoing right now is the railroad connecting Orlando to 

Miami.  With such a critical piece of infrastructure comes the need for cost and time efficient 

inspection, that will keep the system operating safely and effectively.   

Currently there are several methods being implemented to inspect railroad tracks.  Some the most 

recent methods include vision-based algorithms, with several showing success.  These methods 

are intrusive of the system, as it requires a camera being mounted on a train cart or having a 

separate cart to use for inspection.  The former being a costly addition to the train and the latter 

can cause costly and critical track closures. 

 

Figure 1 Various platforms for railroad inspection 

Research has been limited on the use of guidance, navigation, and control (GNC) of UAVs in 

conjunction with the vision inspection techniques.  Vision-based inspection was explored using a 

cart as the platform, [1] [2].  Although, vision based GNC of UAVs is very popular, with several 

contributions being found, [3] [4]. 
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Figure 2 (+) configuration and (x) configuration of a quadcopter [5]. 

The quadcopter has grown to become a very versatile and highly popular system to use for many 

applications.  Small unmanned aerial vehicles (UAV) have been made possible by the advances in 

sensors, microcomputing, control and aerodynamic theory.  The small size of the sensors needed 

in the quadcopter bring forth the problem of the sensors creating more noise.  The Micro-Electro-

Mechanical Systems (MEMS) sensors that are needed at this size are susceptible to temperature 

and vibrations as they are placed in a compact shell and it is hard to isolate them from the 

vibrational effects of the quadcopter system. Another problem that comes about with small 

aircrafts, generally less than a meter, is stability and robustness to an unpredictable environment.  

A strong focus must be applied to solving these challenges and a solution is pretty well documented 

at this point but is still being constantly perfected, [6] [7] [8] [9] [10] [11] [12] [13]. 

Currently there are several nondestructive methods for railroad inspection, [14].  There have been 

several successful implementations of vision-based methods to conduct these inspections as well, 

[1] [15] [16].  Some of these methods utilize attaching a camera to a specialized cart or placing it 

on an existing train cart, [1] [2].  This is usually a costly implementation, with some of the methods 

needing rail closures or slower than normal speeds of the trains.  This can have an adverse effect 

on the railway system itself as it limits the effectiveness of the system.  There has been limited 
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research on using UAVs to conduct the railroad inspections, with a lot of the focus being on 

computer vision, [4].  There are none that couples this with guidance, navigation and control 

algorithms.  There are however plenty of work relating to the use of the guidance, navigation, and 

control algorithms used on UAVs, [3] [17].  In this work a fully autonomous UAV platform that 

can conduct inspections on simulated railway defects in various lighting and in a GPS denied 

environment is developed. 

Objectives 

The objectives of this thesis are to develop, implement, and analyze: 

• Development of a platform using a UAV to autonomously navigate railways. 

• A method for detecting defects on the railroad with a vision-based method for aerial 

detection 

Outline 

Chapter 2 is dedicated to showing the literature review that was conducted to obtain knowledge of 

current and past work related to the challenges at hand.  Chapter 3 consists of the mathematical 

modeling of the quadcopter.  All theory, equations and implementation of the modeling will be 

represented here. 

Chapter 4 deals with all the control techniques used in this project.  It will show the deriving and 

implementation of PID and LQR controllers.  Path following will conclude this chapter as the 

method uses image processing and a controller to minimize the error of the tracked path and 

quadrotor position. 
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Chapter 5 details how defect detection will be used and the analysis of the performance.  Machine 

learning and neural networks will also be discussed in this section as it will be needed for the 

detection method.  

Chapter 6 will be the results and discussion portion of the paper.  It will analyze each component 

of the project and represent the performance of the system.  There will also be a discussion on the 

results of the analysis. 

Finally, Chapter 7 will state the conclusion of the findings from the project as well as the future 

work that will be pursued. 
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CHAPTER TWO:  LITERATURE REVIEW 

Dynamics and System Modeling 

There was a great deal of work found describing the derivation of a quadcopter’s dynamics and 

system identification with 6-degrees of freedom (DOF).  It is a very well documented procedure 

and some of the contributions focused on system identification [18], [19], while others used 

Newton’s and Euler’s laws, [20], [9], [11], [21].   

Using Newton’s laws and Euler’s laws, the force and moment equations can be derived, 

considering a quadcopter in the plus configuration.  A two-frame system, involving the inertial 

frame and the body frame, and the transformation matrices was used to relate the different forces 

with some being convenient to describe in the different reference frames.  Some of the assumptions 

made in the development of the quadcopter’s dynamics were to treat the quadcopter as a rigid 

body, the center of gravity aligns with the center of the quadcopter, and to neglect the 

aerodynamics effects.  The state space model can then be organized using the derived equations.  

It can then be used to generate a linear model of the quadcopter.   A simplified model, by small 

oscillations, was used to do the linearization.  The model was linearized around the hover position 

and the input value needed to counter the weight of the quadcopter.  The linear model was used to 

obtain the A, B, C, and D matrices, [11] [21]. 

Control Law 

Control methods for quadrotors has been a popular subject of research, with well documented 

work.  Some of the most common works utilizing backstepping [7], [22], sliding mode [23], [24], 

Linear Quadratic Regulator (LQR) [10], [25], [11], and Proportional-Intergral-Derivative (PID) 

[26], [8], [6], [21], [27] control techniques. 
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The focus of the control technique used in this work will be using the PID controller.  It has been 

concluded that a PID controller, used on a quadrotor, has shown smooth flight conditions, good 

disturbance rejection, and reliable control.  PID controller is commonly used in the industry.  It 

was stated that a PID controller cannot give robust performance, as it depends on the error of the 

Euler angles alone.  This type of controller neglects the system transient response due to the 

angular rate, which leaves the classic PID controller limited.  A cascade PID controller utilizes 

multiple PID controllers in series and the feedback from the outer loop becomes the setpoint for 

the inner loop controller (secondary).  The angle and the angular rate are controlled, and it was 

shown that it gives better disturbance rejection.  The robustness of the controller is then greatly 

increased compared to the classic PID control law.  The cascading PID drives the Euler angle to 

converge to the desired angle and it limits the angular rate during this convergence, which results 

in a smoother transient response controller.  Wang shows numerous simulation results of the pitch, 

roll, and yaw responses to show the improvement that comes with using cascading PID control, 

[21]. 

The basic knowledge of Laplace transforms and transfer functions is enough to develop an 

effective method.  A block diagram is a great method to use in these methods, as it gives an 

overview perspective of the system and the block can be defined as transfer functions.  Amethod 

was found on how to design PI controllers for first order systems and PI and PID controllers for 

second order systems and also describes the structure of stabilizing controllers.  The characteristic 

equation was obtained and then it was described in how to use it to find the controller parameters.  

Insight is also given on selecting relative damping and how when designing a cruise control 

system, a relative damping of one, critically damped, is usually used to make the response smooth.  
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The undamped natural frequency in the characteristic equation gives response speed and relative 

damping gives the shape, [27]. 

Path Following/Tracking 

Various methods for path following/tracking has been proposed, such as, characterizing the path 

using color identification [2], [5], [28], [29], vanishing points analysis [30], [31], funnel lane 

navigation [32], [33], and edge detection [34], [35], [36], [37]  These have all shown to be capable 

methods of path following. 

The method using color characterization to identify the path was used in this work. It was found 

that a vehicle in a GPS denied environment can follow a path with vision and that this can help 

minimize the reliance on obstacle avoidance.  The path the vehicle is following would have to be 

assumed obstruction free.  A yaw tracking controller was used to follow the target as to make the 

field of view of the camera efficient.  This makes it so the offset of the image is zero.  This is 

achieved through a proportional gain on the yaw rate.  Only a proportional gain is required as the 

low-level controller sets the heading from the given yaw rate.  The Zielgler-Nichols method was 

utilized to tune the controller in an indoor environment.  A higher gain can be found through further 

fine tuning, that gives a faster response to disturbances.  It was also noted that there is a decrease 

in the position and height controller performance if the response time of the yaw controller was 

any further improved, [38]. 

Defect detection 

Detecting surface defects in railways via computer vision was discussed in [39].  The necessary 

principles are machine vision, image acquisition device with auxiliary lighting and shading box, 

and portability.  Some of the results are that the method had 4.65 ms maximum positioning and 
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position failure rate of 5 percent.  The real-time detection speed is 2 m/s which is capable of real-

time detection for hand walking.  The time to process each image is 245.61 ms proving the ability 

for real-time detection.  It is stated that the rail, sleeper, and fastener are the most important 

components to detect defects on within a railroad track.  Some of the main defects needing 

detection are deformed rails and broken sleepers.  These defects can be inspected by the eye, which 

in turn makes it possible to detect with machine vision.  The research done in this article is mainly 

based on cracks, peeling, scratches, folds, broken rails, scars, and some other forms.  The 

inspection of the rails will have a strict detection time constraint, which increases the importance 

of being able to quickly detect the railway itself.  Hue mutation is to quickly pick out the targeted 

areas.  Some of the standards used in this type of application are the use of hue, saturation, and 

lightness, as well as colors that the human eye can perceive.  The hue characteristic is mentioned 

to be stable in different lighting condition.  It is easy to influence the characteristics in the images 

so image filtering is said to be a must.  In this article the main filter talked about is the median 

filter.  The variation between pixels is analyzes to make a comparison.  Color and temperature are 

less sensitive than contours.  So they used the canny algorithm to convert the image to binary to 

get the image contour.  Chain code is then used to track the contours.  There is not one parameter 

to describe to contour defects, so a table is shown to show the different parameters [39]. 

Defects that relate to rail gauge or the space between the rails were discussed in [1], where two 

different methods that were used.  One was two pairs of unaligned cameras and the other is using 

a pair of range finders to develop a depth map.  Other things that were detected were damaged or 

missing rail fasteners, tie clips, and bolts.  To make the detection real-time a GPU based library 

was used for parallel computation.  It is stated in his dissertation that rail gauge is the most 

important measurement as it is used as an indicator of the other defects.  A 3D panorama is made 
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and then some filtering and smoothing is applied.  It is demonstrated how to apply computer vision 

methods to look at railway components that are fixed in looks.  He uses a template the has the gray 

scale features to match up against the detected ones.  Correlation filters are used, but it is noted 

that a processing difficulty is present, and it is managed by parallel computing.  It is declared that 

a 0.98 rate for fastener detection was achieved, [1]. 

In [40], a double-layer data-driven frameworks for automated rail surface inspection was 

discussed.  First the method uses the images to detect location of cracks and next automatically 

get the crack boundaries from a feature-based linear iterative crack aggregation.  It is presented 

with six benchmarking methods to prove the advantages of the approach proposed.  These six are 

the Otsu’s method, mean shift, the visual detection system, the geometrical approach, fully 

convolutional networks, and the U-net [40]. 

Using UAVs for railway detection is a method that has not been implemented.  The UAV is a 

platform that should be able to advance the railway inspection method with less intrusion into the 

system and become a more effective and efficient inspection platform.  It is being proposed as not 

a total replacement of current platforms, but it should also be able to thrive as a supplemental 

platform to the others and fill the gaps of inspection that exist. 
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CHAPTER THREE: MATHEMATICAL MODELING OF A QUADROTOR 

 

Figure 3 Body coordinate system of the quadrotor 

The quadcopter that was chosen for use in this project was the Parrot Mambo because of its ability 

to be coded, relatively cheap price for testing purposes if it breaks, and the small frame to maximize 

the flight capabilities in a laboratory environment.  As shown in Figure 3, the X-configuration was 

chosen mostly for the purpose of keeping the proper orientation of the camera.  This is especially 

important in this project, as the cameras images will be used for line tracking.  The 𝑏1-axis is 

positive out of the front of the quadcopter, the 𝑏2-axis is positive out of the right side, and due to 

the righthand rule the 𝑏3-axis is positive out of the bottom. 
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Figure 4 From Inertial to body frame, translational and rotational changes 

A quadrotor has 6 degrees of freedom (DOF) with 3-DOF for translation and 3-DOF for rotation.  

To describe the motion of the quadcopter, the following two vectors for linear velocity in the body-

frame ( 𝑣𝑏 ) and angular velocity (𝜔𝑏) in the rotating body-fixed reference frame will be defined. 

 

𝑣𝑏 = [
𝑢
𝑣
𝑤
] =  [

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑡𝑦
𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑛𝑜𝑟𝑚𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

] 
(1) 

 

𝜔𝑏 = [
𝑝
𝑞
𝑟
] =  [

𝑟𝑜𝑙𝑙 𝑟𝑎𝑡𝑒 (𝑥 − 𝑎𝑥𝑖𝑠)
𝑝𝑖𝑡𝑐ℎ 𝑟𝑎𝑡𝑒 (𝑦 − 𝑎𝑥𝑖𝑠)
𝑦𝑎𝑤 𝑟𝑎𝑡𝑒 (𝑧 − 𝑎𝑥𝑖𝑠)

] 
(2) 

   

Next, the forces that influence the quadrotors motion are defined.  These will again be separated 

into translational and rotational vectors 

 

𝐹𝑜𝑟𝑐𝑒 =  [

𝐹𝑥
𝐹𝑦
𝐹𝑧

] =  [

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒
𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑓𝑜𝑟𝑐𝑒
𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

] 
(3) 

 

𝑀𝑜𝑚𝑒𝑛𝑡 =  [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] =  [

𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 �̂�1 − 𝑎𝑥𝑖𝑠

𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 �̂�2 − 𝑎𝑥𝑖𝑠

𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 �̂�3 − 𝑎𝑥𝑖𝑠

] 

(4) 



12 

 

Where 𝑀𝑥, 𝑀𝑦, and 𝑀𝑧 are rotations about the x, y, and z axis in the body frame.  The naming of 

these axes in the body frame use the nomenclature �̂�1, �̂�2, and �̂�3 for x, y, and z respectively to 

reduce confusion with the x, y, and z axis in the inertial frame. 

The “influences” can either be in the inertial frame (gravity) or the body frame (propulsion).  There 

will be some conversions back and forth between these two frames..  The conversions need to be 

done in a specific sequence and in this work the 3-2-1 sequence is used, shown in Figure 7.  

Therefore, the three Euler angles (below) will need to be defined and tracked as well. Φ is the 

rotation about the x-axis, θ is the rotation about the y-axis, and ψ is the rotation about the z-axis. 

 

𝛷 = [
𝜙
𝜃
𝜓
] =  [

𝑏𝑎𝑛𝑘 𝑎𝑛𝑔𝑙𝑒
𝑝𝑖𝑡𝑐ℎ 𝑎𝑛𝑔𝑙𝑒
ℎ𝑒𝑎𝑑𝑖𝑛𝑔

] 
(5) 

To make sure the right-hand rule is followed for the dynamics equations, the resulting inertial 

reference frame ends up being North, East and Down.  For navigation purposes, it is convenient to 

define height in the positive direction.  This leads to the relation: 

 

[
𝑥𝐸

𝑦𝐸

ℎ𝐸
]

𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

= [
𝑥𝑛

𝑦𝑛

−𝑧𝑛
]

𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙

 
(6) 

The reference frame for which each of these variables is in reference to is expressed and needs to 

be considered.  The translational and the rotational motion will be with respect to the inertial frame.  

A rigid body is assumed, so there will be no motion with respect to the body frame.  The sensors 

that detect the changes of these states are attached to the body of the quadrotor, so the equations 

of motion (EOM) that are derived in the Inertial frame will be represented in the body frame. 
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To do this the chain rule needs to be used.  This means that both the change due to the time 

derivative of the vector within the coordinate frame needs to be accounted for, as well as the time 

derivative of the coordinate frame’s rotation. 

 

Newton’s second law is used to derive the quadrotors dynamics.  Newton’s law can is defined as: 

 
𝐹𝑜𝑟𝑐𝑒 =  

𝑑�̅�

𝑑𝑡
 

(7) 

Where, p, is the momentum.  For systems with constant mass, this law can be written to give the 

linear form of the law: 

 
𝐹𝑜𝑟𝑐𝑒 = 𝑚

𝑑�̅�

𝑑𝑡
= 𝑚�̅� 

(8) 

From the linear form of the law, the rotational form can be defined to give the Moments by the 

crossing both sides of the equation with a position vector: 

 
�̅�  ×  𝐹𝑜𝑟𝑐𝑒 = �̅�  × 

𝑑�̅�

𝑑𝑡
 

(9) 

This can be simplified to: 

 
𝑀𝑜𝑚𝑒𝑛𝑡 =

𝑑𝐻

𝑑𝑡
 

 

(10) 

Where, H, is the angular momentum.  If the system has a constant distribution of mass, then it can 

be reduced to: 

 𝑀𝑜𝑚𝑒𝑛𝑡 = 𝐼𝛺 (11) 

Where, I is the moment of inertia and 𝛺 is the angular acceleration. 

 



14 

 

Focusing on the linear form of the law the external forces, which come from the thrust of the four 

propellers ( 𝐹1, 𝐹2, 𝐹3, 𝑎𝑛𝑑 𝐹4), can be represented by the thrust vector: 

 

𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝐹𝑜𝑟𝑐𝑒 =  [

𝐹𝑥
𝐹𝑦
𝐹𝑧

]

𝑏𝑜𝑑𝑦

= [
0
0

−𝐹1 − 𝐹2 − 𝐹3 − 𝐹4

]

𝑏𝑜𝑑𝑦

 

(12) 

The linear forces are in the z-direction and this is logical, since the force from the propellers is 

always in the z-direction.  It is also noted that the forces are also negative, since the �̂�3 is positive 

in the down direction. 

The gravity force also needs to be considered.  The gravity force points towards the center of the 

Earth and is expressed in the Inertial frame as 

 
𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝐹𝑜𝑟𝑐𝑒 =  𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦

𝑛 = [
0
0
𝑚𝑔

]

𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙

 
(13) 

It now needs to be converted to the body frame and to do this the Euler angle transformation matrix 

of a 3-2-1 sequence will be used as defined below 

 

𝐶𝑛
𝑏 = [

𝐶𝜃𝐶𝜓 𝐶𝜃𝑆𝜓 −𝑆𝜃
−𝐶𝜃𝑆𝜓 + 𝑆𝜙𝑆𝜃𝐶𝜓 𝐶𝜙𝐶𝜓 + 𝑆𝜙𝑆𝜃𝑆𝜓 𝑆𝜙𝐶𝜃
𝑆𝜙𝑆𝜓 + 𝐶𝜙𝑆𝜃𝐶𝜓 −𝑆𝜙𝐶𝜓 + 𝐶𝜙𝑆𝜃𝑆𝜓 𝐶𝜓𝐶𝜃

] 
(14) 

Where S and C are placeholders for Sine and Cosine respectively. Now gravity can be expressed 

in the body frame as 

 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦
𝑏 =  𝐶𝑛

𝑏𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦
𝑛

= [

𝐶𝜃𝐶𝜓 𝐶𝜃𝑆𝜓 −𝑆𝜃
−𝐶𝜃𝑆𝜓 + 𝑆𝜙𝑆𝜃𝐶𝜓 𝐶𝜙𝐶𝜓 + 𝑆𝜙𝑆𝜃𝑆𝜓 𝑆𝜙𝐶𝜃
𝑆𝜙𝑆𝜓 + 𝐶𝜙𝑆𝜃𝐶𝜓 −𝑆𝜙𝐶𝜓 + 𝐶𝜙𝑆𝜃𝑆𝜓 𝐶𝜓𝐶𝜃

] [
0
0
𝑚𝑔

] 

 

(15) 
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𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦
𝑛 = [

−𝑚𝑔𝑠𝑖𝑛(𝜃)

𝑚𝑔𝑠𝑖𝑛(𝜙)cos (𝜃)
𝑚𝑔𝑐𝑜𝑠(𝜙)cos (𝜃)

] 
(16) 

Now that the forces are defined, the moments can be defined as 

 

𝑀𝑜𝑚𝑒𝑛𝑡𝑠 =  [
𝐿
𝑀
𝑁
] =  [

𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 �̂�1 − 𝑎𝑥𝑖𝑠 

𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 �̂�2 − 𝑎𝑥𝑖𝑠

𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 �̂�3 − 𝑎𝑥𝑖𝑠

] 

(17) 

 

Figure 5 Distances from the axes to the motors 

Above, in Figure 5, the distance from the x and y axes to the motors is defined.  The moments are 

then expressed as 

 𝐿(𝑟𝑜𝑙𝑙) = 𝐹1𝑑1𝑦 − 𝐹2𝑑2𝑦 − 𝐹3𝑑3𝑦 + 𝐹4𝑑4𝑦 (18) 

 𝑀(𝑝𝑖𝑡𝑐ℎ) = −𝐹1𝑑1𝑥 + 𝐹2𝑑2𝑥 + 𝐹3𝑑3𝑥 − 𝐹4𝑑4𝑥 (19) 
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Figure 6 Rotation direction of the propellers (1 through 4) 

The yaw moment (N) can be derived from the torque produced by the spinning propellers.  The 

direction of the spinning propellers is chosen as #1 and #2 spinning in the counterclockwise 

direction and propellers #3 and #4 spinning in the clockwise direction (Figure 6).  This gives the 

resulting equation for yaw: 

 𝑁(𝑦𝑎𝑤) = −𝜏1 − 𝜏2 + 𝜏3 + 𝜏4 (20) 

Where 𝜏, is the torque of the corresponding motor as a function of its thrust, propeller radius, and 

the distance from the center of gravity. 

The moment of inertia is defined in a 3x3 matrix, since it depends on the axis of rotation.  To find 

the values for the matrix the mass is integrated over the body of the quadcopter. 

 
𝐼 =   ∫ 𝑟2𝑑𝑚 =  ∫[𝑟 × 𝑟 × 𝑑𝑚] =  ∫ [

0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

] [
0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

] 𝑑𝑚 
(21) 
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𝐼 =  

[
 
 
 
 
 ∫(𝑦2 + 𝑧2)𝑑𝑚 −∫(𝑥𝑦)𝑑𝑚 −∫(𝑥𝑧)𝑑𝑚

−∫(𝑥𝑦)𝑑𝑚 ∫(𝑥2 + 𝑧2)𝑑𝑚 −∫(𝑦𝑧)𝑑𝑚

−∫(𝑥𝑧)𝑑𝑚 −∫(𝑦𝑧)𝑑𝑚 ∫(𝑥2 + 𝑦2)𝑑𝑚
]
 
 
 
 
 

 

(22) 

 

𝐼 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] 
(23) 

Due to the assumption of the quadrotor being symmetric about the x-axis and y-axis, this leads to 

only the diagonal components of the matrix remaining 

 

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] 
(24) 

The linear and angular acceleration needs to be defined now and to do this the Coriolis Theorem 

will be used to describe the inertial velocity derivative in the rotating body frame.  The chain rule 

must be used here to get the equation 

 

�̇�𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = �̇�
𝑏 + 𝜔𝑏 × 𝑣𝑏 = �̇�𝑏 + [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

] 𝑣 

(25) 

After using the previously defined 𝑣𝑏 and 𝜔𝑏, this equation becomes 

 

�̇�𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = [
�̇�
�̇�
�̇�
] + [

0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

] [
𝑢
𝑣
𝑤
]

𝑏

= [

�̇� + 𝑞𝑤 − 𝑟𝑣
�̇� + 𝑟𝑢 − 𝑝𝑤
�̇� + 𝑝𝑣 − 𝑞𝑢

] 
(26) 

Newton’s Second Law for translation motion can be defined as 

 

 

𝐹𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 + 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚�̇�𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏  (27) 

Combining the force, quadcopter dynamics in the body force is given by 
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[

−𝑚𝑔𝑠𝑖𝑛(𝜃)

𝑚𝑔𝑠𝑖𝑛(𝜙)(𝜃)

−𝐹1 − 𝐹2 − 𝐹3 − 𝐹4 +𝑚𝑔𝑐𝑜𝑠(𝜙) cos(𝜃)
] = 𝑚 [

�̇� + 𝑞𝑤 − 𝑟𝑣
�̇� + 𝑟𝑢 − 𝑝𝑤
�̇� + 𝑝𝑣 − 𝑞𝑢

] 
(28) 

For angular acceleration and rotational motion, the Coriolis Theorem is used in a similar way to 

get 

 𝑀 = 𝐼𝑏𝜔𝑛
𝑏 +̇ 𝜔𝑛

𝑏 × 𝐼𝑏𝜔𝑛
𝑏 (29) 

 

[
𝐿
𝑀
𝑁
] =  [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] [
�̇�
�̇�
�̇�

] + [

0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

] [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] [
𝑝
𝑞
𝑟
] 

(30) 

 

[
𝐿
𝑀
𝑁
] =  [

𝐼𝑥𝑥�̇�
𝐼𝑦𝑦�̇�

𝐼𝑧𝑧�̇�
] + [

𝐼𝑧𝑧𝑞𝑟 − 𝐼𝑦𝑦𝑞𝑟

𝐼𝑥𝑥𝑝𝑟 − 𝐼𝑧𝑧𝑝𝑟
𝐼𝑦𝑦𝑝𝑞 − 𝐼𝑥𝑥𝑝𝑞

] 
(31) 

 
�̇� =  

𝐼𝑦𝑦 − 𝐼𝑧𝑧

𝐼𝑥𝑥
𝑞𝑟 +

𝐿

𝐼𝑥𝑥
              

�̇� =  
𝐼𝑧𝑧 − 𝐼𝑥𝑥
𝐼𝑦𝑦

𝑝𝑟 +
𝑀

𝐼𝑦𝑦
   

�̇� =  
𝐼𝑥𝑥 − 𝐼𝑦𝑦

𝐼𝑧𝑧
𝑝𝑞 +

𝑁

𝐼𝑧𝑧
   

 

(32) 

The rotational kinematics are computed by the rate of change of the Euler angles [𝜙 𝜃 𝜓]𝑇.  The 

angular velocity as a function of the rate of change of the Euler angles can then be expressed by 

representing them all in the body frame of reference.  The sensors are all on-board the quadrotor 

and reference the body frame.  To do this the transformations have to be done in a specific series 

of sequences.  It is a sequence that first will be done about the z-axis, y-axis, and then the x-axis.  

The representation is 𝑅(𝜓), 𝑅(𝜃), 𝑎𝑛𝑑 𝑅(𝜙) 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.  This transformation is known as the 

3-2-1 transformation.  The intermediate frames of this transformation are represented as b’’ and b’ 

(Figure 7). 
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Figure 7 Intermediate steps of transforming from Inertial Frame to Body frame 

Now using the coordinate transformations,  

 

𝑅(𝜙) =  [

1 0 0
0 𝐶𝜙 𝑆𝜙
0 −𝑆𝜙 𝐶𝜙

] 

𝑅(𝜃) =  [
𝐶𝜃 0 −𝑆𝜃
0 1 0
𝑆𝜃 0 𝐶𝜃

] 

𝑅(𝜓) =  [

𝐶𝜓 𝑆𝜓 0

−𝑆𝜓 𝐶𝜓 0

0 0 1

] 

(33) 

the angular velocities [𝑝 𝑞 𝑟]𝑇can be expressed as a function of the Euler angle rates [𝜙 𝜃 𝜓]𝑇 as 

 

[
𝑝
𝑞
𝑟
]

𝑏

= 𝑅(𝜙)𝑅(𝜃) [
0
0
�̇�
]

𝑏′′

+ 𝑅(𝜙) [
0
�̇�
0
]

𝑏′

+ [
�̇�
0
0

] 

 

(34) 

 

[
𝑝
𝑞
𝑟
] =  [

−�̇�𝑆𝜃
�̇�𝐶𝜃𝑆𝜙

�̇�𝐶𝜙𝐶𝜃

] + [

0
�̇�𝐶𝜙

−𝜃𝑆𝜙̇
] + [

�̇�
0
0

] 

 

(35) 

This results in the equations 

 𝑝 =  �̇� − �̇�sin (𝜃) (36) 
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𝑞 =  �̇�cos (𝜙) + �̇� cos(𝜃) sin(𝜙) 

𝑟 =  �̇� cos(𝜙) cos(𝜃) − �̇� sin(𝜙) 

Which can be rewritten to give the Euler angle rates 

 �̇� = 𝑝 + (qsin(𝜙) + 𝑟𝑐𝑜𝑠(𝜙))𝑡𝑎𝑛(𝜃) 

�̇� = 𝑞𝑐𝑜𝑠(𝜙) − 𝑟𝑠𝑖𝑛(𝜙) 

�̇� = (𝑞𝑠𝑖𝑛(𝜙) + 𝑟𝑠𝑖𝑛(𝜙)) sec(𝜃) 

(37) 

To get the last three states, which are the navigation coordinates, the body frame velocities can be 

transformed using the Euler angle transformation matrix 𝐶𝑏
𝑛 

 

[
𝑥�̇�

�̇�𝐸

−ℎ𝐸̇
] =  [

𝐶𝜃𝐶𝜓 −𝐶𝜃𝑆𝜓 + 𝑆𝜙𝑆𝜃𝐶𝜓 𝑆𝜙𝑆𝜓 + 𝐶𝜙𝑆𝜃𝐶𝜓
𝐶𝜃𝑆𝜓 𝐶𝜙𝐶𝜓 + 𝑆𝜙𝑆𝜃𝑆𝜓 −𝑆𝜙𝐶𝜓 + 𝐶𝜙𝑆𝜃𝑆𝜓
−𝑆𝜃 𝑆𝜙𝐶𝜃 𝐶𝜙𝐶𝜃

] [
𝑢
𝑣
𝑤
]

𝑏

 

(38) 

  

𝑥�̇� = 𝐶𝜃𝐶𝜓𝑢 + (−𝐶𝜃𝑆𝜓 + 𝑆𝜙𝑆𝜃𝐶𝜓)𝑣 + (𝑆𝜙𝑆𝜓 + 𝐶𝜙𝑆𝜃𝐶𝜓)𝑤 

�̇�𝐸 = 𝐶𝜃𝑆𝜓𝑢 + (𝐶𝜙𝐶𝜓 + 𝑆𝜙𝑆𝜃𝑆𝜓)𝑣 + (−𝑆𝜙𝐶𝜓 + 𝐶𝜙𝑆𝜃𝑆𝜓)𝑤 

ℎ𝐸 = 𝑆𝜃𝑢 − 𝑆𝜙𝐶𝜃𝑣 − 𝐶𝜙𝐶𝜃𝑤 

 

(39) 

   

Using equations (38), (39, and (41), the full nonlinear 12th order system describing the quadrotor’s 

translational and rotational dynamics is then given by 
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
�̇� =  𝑝 + (qsin(𝜙) + 𝑟𝑐𝑜𝑠(𝜙))𝑡𝑎𝑛(𝜃)  

�̇� =  𝑞𝑐𝑜𝑠(𝜙) − 𝑟𝑠𝑖𝑛(𝜙)                          

�̇� =  (𝑞𝑠𝑖𝑛(𝜙) + 𝑟𝑠𝑖𝑛(𝜙)) sec(𝜃)          

                                         

�̇� =  
𝐼𝑦𝑦 − 𝐼𝑧𝑧

𝐼𝑥𝑥
𝑞𝑟 +

𝐿

𝐼𝑥𝑥
              

�̇� =  
𝐼𝑧𝑧 − 𝐼𝑥𝑥
𝐼𝑦𝑦

𝑝𝑟 +
𝑀

𝐼𝑦𝑦
              

�̇� =  
𝐼𝑥𝑥 − 𝐼𝑦𝑦

𝐼𝑧𝑧
𝑝𝑞 +

𝑁

𝐼𝑧𝑧
              

                                                          

�̇� =  𝑟𝑣 − 𝑞𝑤 − 𝑔𝑠𝑖𝑛(𝜃)                                                                    

�̇�  =  𝑝𝑤 − 𝑟𝑢 + 𝑔𝑠𝑖𝑛(𝜙) cos(𝜃)                                                     

�̇� =  𝑞𝑢 − 𝑝𝑣 + 𝑔𝑐𝑜𝑠(𝜙) cos(𝜃) +
𝐹𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒

𝑚
                            

�̇�  = 𝐶𝜃𝐶𝜓𝑢 + (−𝐶𝜃𝑆𝜓 + 𝑆𝜙𝑆𝜃𝐶𝜓)𝑣 + (𝑆𝜙𝑆𝜓 + 𝐶𝜙𝑆𝜃𝐶𝜓)𝑤    

𝑦 ̇ =  𝐶𝜃𝑆𝜓𝑢 + (𝐶𝜙𝐶𝜓 + 𝑆𝜙𝑆𝜃𝑆𝜓)𝑣 + (−𝑆𝜙𝐶𝜓 + 𝐶𝜙𝑆𝜃𝑆𝜓)𝑤 

𝑧 ̇ =  𝑆𝜃𝑢 − 𝑆𝜙𝐶𝜃𝑣 − 𝐶𝜙𝐶𝜃𝑤                                                        
  

 

(40) 

Linearization of quadrotor’s dynamics 

The nonlinear dynamics of the quadrotor needs to be applied as to simplify the system, so a linear 

controller can be applied.  The linearization method used here is the small perturbations concept 

and linearizing around an equilibrium point.  This will give the linear dynamics that the linear 

controllers can be applied to and the those controllers can be utilized on the actual plant 

(quadrotor). 

To start the linearization, small oscillations are assumed.  This gives sin(∠)=∠ , cos(∠)=1 , and 

tan(∠)=∠.  When this method is applied to our state vector the resulting vector becomes: 



22 

 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
�̇� ≈ 𝑝 + 𝑟𝜃 + 𝑞𝜙𝜃                                         

�̇� ≈ 𝑞 − 𝑟𝜙                                                      

�̇� ≈ 𝑟 + 𝑞𝜙                                                      

�̇� ≈
𝐼𝑦𝑦 − 𝐼𝑧𝑧

𝐼𝑥𝑥
𝑟𝑞 +

𝐿

𝐼𝑥𝑥
                                   

�̇� ≈
𝐼𝑧𝑧 − 𝐼𝑥𝑥
𝐼𝑦𝑦

𝑝𝑟 +
𝑀

𝐼𝑦𝑦
                                   

�̇� ≈
𝐼𝑥𝑥 − 𝐼𝑦𝑦

𝐼𝑧𝑧
𝑝𝑞 +

𝑁

𝐼𝑧𝑧
                                   

�̇� ≈ 𝑟𝑣 − 𝑞𝑤 − 𝑔𝜃                                         
�̇� ≈ 𝑝𝑤 − 𝑟𝑢 + 𝑔𝜙                      

�̇� ≈ 𝑞𝑢 − 𝑝𝑣 + 𝑔 +
−𝐹𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒

𝑚
               

�̇� ≈ 𝑤(𝜙𝜓 + 𝜃) − 𝑣(𝜓 − 𝜙𝜃) + 𝑢            

�̇� ≈ 𝑣(1 + 𝜙𝜓𝜃) − 𝑤(𝜙 − 𝜓𝜃) + 𝑢𝜓      
�̇� ≈ 𝑤 − 𝑢𝜃 + 𝑣𝜙                                           

 (41) 

The next step in linearizing this system is to find an equilibrium point that the model can be 

linearized around.  For this quadcopter problem the hover position is chosen.   

All of the states will be zeros except for the position.  When in the hover position there ideally is 

no changes in the angles or in the position, which leads to the equilibrium state being 

 �̅� = [ 0  0  0  0  0  0  0  0  0  �̅�   �̅�   𝑧̅ ]𝑇 (42) 

Where �̅�, �̅�, and 𝑧̅ are arbitrary position components.  The needed input vector can then be 

resolved by setting the input thay relates to altitude equal to the force in the z_direction.  This leads 

to  the input vector being 

 �̅� = [ 𝑚𝑔  0  0  0 ]𝑇 (43) 

Using the small perturbation method to linearize the system, the higher order terms are neglected.  

For an example in linearizing �̇�, each variable that shows up in the equation are given a initial 

value, plus a small change (perturbation).  Hence the expansion of �̇� is given by 

 𝜙 =  𝜙0 +  𝛿𝜙 (44) 
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�̇� =  𝛿�̇� 

 

 �̇� = 𝑝 (45) 

So for simplicity we will adopt equation 46.  When this method is used for all the state equations, 

we get the linearized state vector: 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
�̇� = 𝑝                        

�̇� = 𝑞                        

�̇� = 𝑟                        

�̇� =
𝐿

𝐼𝑥𝑥
                     

�̇� =
𝑀

𝐼𝑦𝑦
                     

�̇� =
𝑁

𝐼𝑧𝑧
                      

�̇� = −𝑔𝜃                  
�̇� = 𝑔𝜙                     

�̇� =
−𝐹𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒

𝑚
   

�̇� = 𝑢                        
�̇� = 𝑣                        
�̇� = 𝑤                       

 (46) 

With the associated matrices: 

 A =

[
 
 
 
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
𝑔
0
0
0
0

    

0
0
0
0
0
0
−𝑔
0
0
0
0
0

    

0
0
0
0
0
0
0
0
0
0
0
0

    

1
0
0
0
0
0
0
0
0
0
0
0

    

0
1
0
0
0
0
0
0
0
0
0
0

    

0
0
1
0
0
0
0
0
0
0
0
0

    

0
0
0
0
0
0
0
0
0
1
0
0

    

0
0
0
0
0
0
0
0
0
0
1
0

    

0
0
0
0
0
0
0
0
0
0
0
1

    

0
0
0
0
0
0
0
0
0
0
0
0

    

0
0
0
0
0
0
0
0
0
0
0
0

    

0
0
0
0
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 
 
 
 

 (47) 
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 𝐁=

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0
0 0 0
0
0
0
0
0
0
1

𝑚

0
0
0

0
1

𝐼𝑥𝑥

0
0
0
0
0
0
0
0

0
0
1

𝐼𝑦𝑦

0
0
0
0
0
0
0

    

0
0
0
0
0
1

𝐼𝑧𝑧

0
0
0
0
0
0 ]
 
 
 
 
 
 
 
 
 
 
 

 (48) 

When wind disturbance 𝑑 = [ 𝐹𝑤𝑥  𝐹𝑤𝑦  𝐹𝑤𝑧  𝜏𝑤𝑥  𝜏𝑤𝑦  𝜏𝑤𝑧 ]
𝑇
 is considered, it gives the D matrix: 

 D =  

[
 
 
 
 
 
 
 
 
 
 
 
 
0
0
0
0
0
0
1

𝑚
0
0
0
0
0

    

0
0
0
0
0
0
0
1

𝑚
0
0
0
0

    

0
0
0
0
0
0
0
0
1

𝑚
0
0
0

    

0
0
0
1

𝐼𝑥𝑥
0
0
0
0
0
0
0
0

   

0
0
0
0
1

𝐼𝑦𝑦
0
0
0
0
0
0
0

   

0
0
0
0
0
1

𝐼𝑧𝑧
0
0
0
0
0
0 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (49) 

Where the linear model of the system is: 

 ẋ = A ∙ 𝑥 + B ∙ 𝑢 + D ∙ 𝑑 (50) 

From the system above, using the Matrices A, B, C, and D the transfer functions of the states can 

be derived using the flowing process.  Also using the values for the variables shown in Table 1 
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Table 1 Moment of Inertia values, aslong with mass and gravity values 

VARIABLE VALUE 

𝑰𝒙𝒙 5.8286e-05  
𝑘𝑔

𝑚2 ⁄  

𝑰𝒚𝒚 7.1691e-05  
𝑘𝑔

𝑚2 ⁄  

𝑰𝒛𝒛 1.0000e-04  
𝑘𝑔

𝑚2 ⁄  

𝒎 0.0630  𝑘𝑔 

𝒈 9.81  𝑚 𝑠2⁄  

 

Starting with the state space matrix equations 

 �̇� = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 

(51) 

Then taking the Laplace transfer of both to get 

 𝑋(𝑠) = (𝑠𝐼 − 𝐴)−1𝐵𝑈(𝑠) 

𝑌(𝑠) = 𝐶𝑋(𝑠) + 𝐷𝑈(𝑠) 

(52) 

Substituting X(s) into the Y(s) (output) equation and dividing by U(s) to get the transfer function 

H(s) 

 
𝐻(𝑠) =  

𝑌(𝑠)

𝑈(𝑠)
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 

(53) 

This gives the open loop transfer functions for the states and they are separated by input 

Input 1: 
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𝐻(𝑠)𝑤  =  

15.87

𝑠

𝐻(𝑠)𝑧  =  
15.87

𝑠2
 

 

(54) 

Input 2: 

 
𝐻(𝑠)𝜙 = 

1.716𝑒04

𝑠2

𝐻(𝑠)𝑝  =  
1.716𝑒04

𝑠

𝐻(𝑠)𝑣 = 
1.683𝑒05

𝑠3
 

𝐻(𝑠)𝑦 = 
1.683𝑒05

𝑠4

 

(55) 

Input 3: 

 
𝐻(𝑠)𝜃 = 

1.395𝑒04

𝑠2

𝐻(𝑠)𝑞 = 
1.395𝑒04

𝑠

𝐻(𝑠)𝑢 = 
−1.368𝑒05

𝑠3

𝐻(𝑠)𝑥 = 
−1.368𝑒05

𝑠4

 

(56) 

Input 4: 

 
𝐻(𝑠)𝜓 = 

10000

𝑠2

𝐻(𝑠)𝑟 = 
10000

𝑠

 

(57) 

The plant transfer function in equations (57 -59 will be the basis for the control design of the 

quadcopter as discussed in the next chapter.   
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CHAPTER FOUR: CONTROL TECHNIQUES 

This section expands on two types of control techniques.  The first controller discussed is the PID 

controller, followed by the discussion on an LQR controller.  Both control techniques use the 

linearized version of our system obtained in the previous section.  The controller gets tuned to this 

linearized system and then used on the nonlinear system of the quadcopter.  The tuning should be 

close to the necessary values to stabilize the quadrotor and can be further fine-tuned.  Simulations 

were done for each control technique as well to graphically show the response of the system when 

controlled by these techniques.  Figure 8 shows the response of the system when it is not controlled 

and the system quickly diverges.  This shows the necessity for a controller to be implemented.   

 

Figure 8 The states of the system diverging in response to a step input. 

PID Controller 

In this section, a PID controller is defined and it is showed how it was used for controlling the 

chosen states. A PID controller is used in a control feedback loop to drive a state to a selected 

value.  It is broken down into three operations to carry this out.  The three operations are the 
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proportional, integral and derivative controllers.  Each one has a different function for driving the 

state to the desired value.  Some systems may only need the proportional controller or a 

combination of the proportional and the others.  Sometimes when just the proportional controller 

is used it will cause and oscillation and the system may never converge or may converge too 

slowly.  To combat this, the derivative controller is coupled with it which helps drive the state to 

the desired value.  Then if a faster convergence is needed the integral controller is added as well.  

This helps drive the state to the desired value more quickly.  When the integral controller is used 

a phenomenon that must be watched called integral windup, due to an accumulated error in the 

process. 

In the figure below, the general layout of a PID controller is shown.  It starts with the error, which 

is the difference between the measured/estimated state and the reference input for that state.  This 

error gets fed into the controller and goes through the three branches Proportional (P), Integral (I) 

and the Derivative (D).  These three branches essentially access data from the present, past, and 

future.  This helps by reacting to the present and past data and it helps predict what will happen 

shortly which can help with oscillation and overshooting the target value.  For example, if there 

was no information about the future, then the system would not know to slow down ahead of time 

and pass the value and would have to correct this after passing the desired value.  After the signal 

passes through the three branches, it then enters the plant as the input.     

 

Figure 9 Simple block diagram of a PID controller with feedback 
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      From the transfer functions derived in Chaper two and the transfer function of the controller, 

the parameters for the PID parameters can be equated.  A PID controller transfer function is defined 

as 

 
𝐶(𝑠)𝑃𝐼𝐷 = 𝐾𝑝 + 𝐾𝑑𝑠 +

𝐾𝑖
𝑠

 
(58) 

   

This is used in the equation 

 𝐻(𝑠)𝑝𝑙𝑎𝑛𝑡𝐶(𝑠)𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

1 + 𝐻(𝑠)𝑝𝑙𝑎𝑛𝑡𝐶(𝑠)𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
 

(59) 

to compare the denominator to the characteristic equation 

 𝑠2 + 2𝜉𝜔𝑛
2𝑠 + 𝜔𝑛

2 (60) 

With 𝜉 being relative damping and 𝜔𝑛being the undamped natural frequency.  To show how this 

works, this method will be used to find the parameters of the PD roll controller, with the 

corresponding transfer function found below 

 𝑏
𝑠𝑠 (𝐾𝑝 + 𝐾𝑑𝑠)

1 +
𝑏
𝑠𝑠 (𝐾𝑝 + 𝐾𝑑𝑠)

 

(61) 

With 𝑏, being the numerator from the roll transfer function.  When it is simplified it gives the 

denominator  

 𝑠2 + 𝑏𝐾𝑑𝑠 + 𝑏𝐾𝑝 (62) 

to compare with the characteristic equation.  This gives the equations 

 
𝐾𝑑 = 

2𝜉𝜔𝑛
2

𝑏

𝐾𝑖 = 
𝜔𝑛
2

𝑏

 

(63) 
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Now that the parameters 𝐾𝑝 and 𝐾𝑑are defined, they can be implemented in the controller and use 

the Ziegler-Nichols method to fine tune them.  The Ziegler-Nichols method is used by increasing 

𝐾𝑝until there are small oscillations and then back it down.  After this start increasing 𝐾𝑑until there 

are small oscillations again and then back it down until the oscillations are gone. 

In the figures below, it can be how some of the different combinations of the 3 separate branches 

of a P-I-D controller is used to control different states.  A simulation showing the response of each 

state correlating to a step input is shown along with the controller setup. 

 

Figure 10 3D Simulation of Parrot Mambo mini drone flight using MATLAB/Simulink. 

 

Figure 11 Step response of the y-position at 20 seconds 
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Figure 12 Step response of the x-position at 10 seconds 

 

Figure 13 Step response of the z-position at 20 seconds 

 

 

Figure 14 Simplified block diagram of y-position 
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Figure 15 Simplified block diagram of x-position 

 

 

Figure 16 Simplified block diagram of z-position 

 

 

Figure 17 Simplified block diagram of yaw state 

The controller was implemented in MATLAB and Simulink.  The A,B,C, and D matrices and the 

values for different variables like mass, moment of inertia, and gravity are stored in the MATLAB 

workspace and referenced throughout the use of Simulink.  The input to the system is the rpm of 

the propellers coinciding with the thrust force.  As mentioned in the derivation of the dynamics of 

the system in Chapter 3, a combination of the thrust from the different propellers gives the input 



33 

 

to the different states being controlled.  The outputs are the  6 states, which are the positions for x, 

y, and z as well as the orientation of the Euler angles. 

With the combination of these states and the controllers shown, it is possible to stabilize the quad 

rotor.   Below is a graph showing the results of a quadcopter being controlled by a PID controller 

for a hover position.  A step input of four meters is being implemented with respect to the y-

position, so it can be seen how quickly the quadcopter will converge to a value of four for the y-

position. 

 

Figure 18 Simplified representation of the quadrotor’s system, with a PID controller, responding to a step 

response. 
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Line Following Technique 

 

Figure 19 Illustrations showing the downfacing camera of the quadcopter and defining the distance 'd_image' 

To simulate a railroad in a laboratory environment, it was decided that a line of red tape would be 

used for the quadcopter to follow.   The downfacing camera on the quadcopter was used to detect 

and track the line.  Using Simulink, the Parrot Image Conversion block (see Figure 20) was used 

to take the image data captured by the camera and return the R-G-B values.  The Green (G) and 

Blue (B) values were divided in half and subtracted by the Red (R) value.  Next, the value obtained 

was compared to the value of 100 and anything above that number would illustrate that the camera 

was seeing the red tape. 

 

Figure 20 Block diagram of the system capturing the image and analyzing the R-G-B values 
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Figure 21 Blob analysis block and blocks used to determine yaw reference input 

The output is a binary image that gets passed through a function block that takes a few rows from 

the top of the image.  This segment acts as the steering for the quadrotor, as it is set to become the 

data that will be used to build the yaw reference values.  As the red pixels shift from the middle to 

the right or left of the segment, it will indicate a desired change in the heading angle to follow the 

tape.  The distance between red pixels and the center of the image will be weighted and be 

represented in the inertial frame. This will then be set as the error used in the yaw PID controller. 

Mathematically the yaw reference (𝜓𝑑𝑒𝑠) is 

 𝑑𝑖𝑚𝑎𝑔𝑒 = 𝑑𝑐𝑚𝑥
− 𝑑𝑐𝑖𝑥 (64) 

 𝜓𝑑𝑒𝑠 = 𝑑𝑖𝑚𝑎𝑔𝑒𝐶45 +𝜓_𝑒𝑠𝑡 (65) 

 𝜓𝑒𝑟𝑟 = 𝜓𝑑𝑒𝑠 − 𝜓𝑒𝑠𝑡  = 𝑑𝑖𝑚𝑎𝑔𝑒𝐶45 (66) 

where 𝐶45 is a constant to put a weight on the input correlating 𝑑𝑖𝑚𝑎𝑔𝑒 = 40 ↔ 𝜓𝑑𝑒𝑠 = 45° and 

𝑑𝑐𝑚𝑥, 𝑑𝑐𝑖𝑥are the center of mass of the red pixels and center of the image respectively.   

Now that the reference input for yaw is established, the quadrotor needs to move along the red tape 

in the desired direction.  To keep the orientation of the camera compared to the line, it is desired 

that the quadcopter moves forward in the x-direction in the body frame.  The reference input is 
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given in the inertial frame, so the desired x-direction in the body frame had to be changed to the 

inertial frame.  This led to the x and y position reference input becoming 

 𝑥𝑟𝑒𝑓 = 𝑥𝑒𝑠𝑡
𝑛 + 𝑝 ∗ cos(𝜓)

𝑦𝑟𝑒𝑓 = 𝑦𝑒𝑠𝑡
𝑛 + 𝑝 ∗ sin (𝜓)

 
(67) 

where 𝑝 is a constant that relates to the desired velocity in the x-direction in the body frame. 

Defect detection using machine learning 

The quadrotor needs to be able to detect defects in the railroad and save a reference to the position 

of the defect as it finds it for later analysis.  In the simulated laboratory environment machine 

learning was used to execute this.  Machine learning gives the ability to train the neural network 

to look for and distinguish a feature in a picture.  In the laboratory environment the letter X was 

chosen as the “feature” to search for. 

The neural network used was the alexnet neural network.  This network has good accuracy, as well 

as a good processing time.  A balance of these two traits was viewed as important because it needs 

to be accurate, but it also needs to be ran on the test quadrotor which doesn’t have a very high 

processing capacity.  Other neural networks are available with a little higher accuracy, but it also 

increases the processing time.  These will be further looked at as the project progresses and the 

code is built onto a quadrotor with better processing. 

The neural network was trained with one hundred images with an X in it and one hundred images 

without the X.  Through testing of the neural network, it was found to have around 85% accuracy.  

Accuracy as high as 90% was also seen during the testing. 

The code runs the vision portion as a feed of pictures at a high rate.  Every still image is analyzed 

and determined whether it has an X (defect) or if it does not.  If it does detect a “defect” it will 

save the time the image was taken and the image itself.  The quadrotor keeps a log of its position 
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with time, so the position of the “defect” is determined by referencing the saved time with the 

logged position data.  After flight a file is then extracted that holds the recorded data of all the 

“defects” found for that flight. 

Lab experimental setup description 

Right now, in our research laboratory, numerous different quadcopters are being used.  They range 

in size from small to large and from simple to complex.  All the quadcopters are mostly using the 

same sensors, sensors also can be added and removed.  Right now, they are using an Inertial 

Measurement Unit (IMU) consisting of two accelerometers and two gyroscopes for position and 

attitude measurements.  They also use a sonar sensor for altitude determination.  Cameras are also 

used on-board to reduce drifting, using optical flow techniques, and for imaging.  Some of the 

quadcopters have multiple cameras for different views and functions.  Below, in Figure 22, is a 

picture of the quadrotor that was used for the experiments. 

 

Figure 22 Parrot mambo mini drone 

In addition to having access to the various quadcopters, within our research laboratory there is 

access to numerous useful tools and space.  There is a grid on the floor that gives visual indicators 
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and references of where the quadcopters should be during experiments.  There are also motion 

detection cameras (OptiTrak) that gives what can be described as an indoor GPS.  From using 

reference points on the quadrotor and an established coordinate system, the translational and 

rotational states can be established for a more accurate understanding of what is happening, and 

the coordinates can also be used as if the quadrotor was receiving outdoor GPS coordinates for 

feedback loops.  There is also additional access to machine shop, 3-D printers and other various 

tools and references on campus to help make the end goal possible and give a more efficient 

process. 

A 3-D simulation of the quadcopter is also available to analyze how the quadcopter will react with 

different inputs and controllers.  It uses a 3-D model of the specific quadrotor that is being used 

and places it in a 3-D environment, so the user can visually see the response in a close to real world 

environment.  This gives the power to try different controllers and setups, so they can be 

experimented with without the real-world risk of breaking components, risk of injury, and it also 

saves time in the fact that new things can be tried in quick succession without having to build the 

code to the quadrotor repetitively. 

Quadcopters have been used in many applications in the area of inspections.  They are great for 

integrating cameras and other sensors into the system.  The fact they are easily hovered, and great 

maneuverability makes them a great base for these applications.  The technology used in these 

quadcopters have increased greatly over the years also making them very affordable.  It has been 

found that they have been used in this area for inspecting wind turbines, roads, buildings and many 

more inspections applications.  It has been found that there is a need for the use of these systems 

in inspecting railroads. 
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CHAPTER FIVE: RESULTS AND DISCUSSION 

The results that have been obtained from MATLAB /Simulink will be discussed and presented in 

this chapter.  The step response of the states displays how the systems responds to a step input of 

1.  Next, the error of the quadcopter’s position to the position of the line following path will be 

discussed.  To end the chapter, the accuracy of the defect detection technique is analyzed.  

State Response 

The Quadcopter Project from Simulink provided a student development kit (sdk) for the Parrot 

Mambo mini drone that was used in our initial lab experiments.  The 3D simulation license was 

needed to utilize 3D simulation to display a video of the simulated flight.  It uses a model of the 

Parrot Mambo mini drone quadcopter that we also used for lab experiments.  Figure 23 displays 

the response to a step input for the 𝑥, 𝑦, 𝑧, 𝜓 with a combination of PID controllers applied to the 

system.  The combinations and the gains applied are shown in  

Table 2 Values for PID gains and shows combination of PID controllers per state 

PID controller gains 𝒌𝒑 𝒌𝒊 𝒌𝒅 

x -0.23 0 0.1 

y 0.15 0 0.3 

Altitude 0.85 0 0.35 

Yaw  0.004 0 0.011 

Pitch 0.013 0.01 0.003 

Roll 0.03 0.01 0.004 
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Figure 23 Displays the step response and a graph of error vs time for the x,y,z,ψ states. 

Figure 23 shows the response of the system to a step unit step input.  These figures help to 

characterize the response of the system.  The rise time, settling time, maximum overshoot, and the 

steady state error can be obtained from these plots, as shown in  
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Table 3 shows the rise time, settling time, maximum overshoot, and the steady state error for the x, y, and z 

states. 

 Rise time 

[s] 

Settling Time 

[s] 

Maximum 

Overshoot [m] 

Steady State 

Error [m] 

x 1.2 2.6 1.38 0.031 

y 2.7 4.3 0.02 0.0092 

z 0.7 0.87 0.06 0.001 

Yaw 0.7 0.85 0.098e-5 0.0967e-5 

 

The controllers for this project didn’t need to be extremely responsive, as only very smalls inputs 

were needed to follow the railroad tracks.  The quadcopter will also be moving slow, as to increase 

the chances of correctly categorizing the images as having a defect or not. To have the most 

consistent images of the track a higher emphasis was placed on the steady state error.  Graphs of 

the steady state error of the states can be found in Figure 12 as well.  The error in the step response 

of the yaw (ψ) state was extremely small and essentially zero in this simulation.  The steady state 

errors were 0.031m and .009m for the 𝑥, 𝑦 states respectively.  These errors proved to be adequate 

for following a piece of tape on the ground used as the reference path.  In the future other and more 

complex controllers will be experimented with tweak the response of the system to have a more 

ideal behavior for path following using vision. 

Path Following 

The quadrotor was able to follow the red piece of tape with a small enough error to keep the 

downfacing camera above the red tape to analyze it for defects.  The maximum error that was 
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found using the vision path following technique used was 0.05 meters.  Below is a graph of the 

error of the position of the quadcopter relative to the path. 

Through the experiments it was seen that the error in the yaw relative to the angle needed to “steer” 

down the path was near zero, but there was still an error in the line following.  In the future a line 

following controller will be placed to try to decrease the remaining error.  Other techniques for 

line following using computer vision will be experimented with as well. 

 

Figure 24 Actual path overlaid on top of the reference path 
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Figure 25 Error in path following 

It can be seen from Figure 25 that the max error is 0.23 feet.  This was shown to be a small enough 

error to keep the path in camera view to continue following the path and analyze the path for 

defects as it progresses along it. 

 

Defect Detection Using Machine Learning 

The alexnet neural network was trained to categorize the stream of images from the quadcopter as 

‘Not Defective’ and ‘Defective’ if it detects an X in the image representing a defect.  The network 

was tested with and a set of test images and both single images.  In Figure 26 below, the statistics 

from the set of images test runs can be found and the returned accuracy was 90% (.90). 
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Figure 26 Statistics and accuracy of the trained neural network. 

Figure 27, represents how the single test image runs looked and the categorization of a ‘defective’ 

image.  The green ‘x’ above the picture denotes it as a defective image.  If it was a non-defective 

image it would show up as a red ‘O’.  It shows the image along with the designation of ‘X’ or ‘O’. 

 

Figure 27 Single image test of the neural network accuracy (displaying defective categorization). 

The following table, Table 4, represents 5 consecutive runs and the accuracy associated with each.  

The average accuracy of these five runs is 89%, backing up the displayed accuracy of the set 

images in Figure 26. 

Table 4 Shows the accuracy in percentage of five consecutive test runs. 
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Test Run 

# 

Accuracy 

[%] 

1 0.85 

2 0.87 

3 0.93 

4 0.89 

5 0.91 

 

This can be expanded to simulate a specific railroad defect, as it looks for a signature in the image 

to categorize it as necessary.  For example, if the rail itself has a crack, the program is trained to 

recognize the characteristics of that crack.  It will then categorize the image by matching it with 

the training images and flagging it as a defect.  This can be applied to other defects along the 

railway and not only be able to characterize it as a defect, but it should be able to characterize it 

by the type of defect as well. 
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CONCLUSION 

The dynamics of the quadrotor were derived using Newton’s laws, as well as Euler’s laws.  After 

linearizing the system around the hover position the PID controllers for the states were able to be 

adequately designed to get a reasonable starting point for the PID controllers’ gains.  The Ziegler-

Nichols technique accompanied with more trial and error was used to tune the gains to get a useable 

response from the system.  These were later finely tuned more for better line following traits.  

Using the   Alexnet neural network gave good initial results for a good starting point to detecting 

true defects on a railroad track.  Future changes to this project will be explained to show the 

proposed progression of this project.  Using new and more complex controllers to increase the 

response of the quadcopter for better line following results. A more in-depth architecture of the 

quadrotor’s system and environment to account for conducting flights outdoors.  Different and 

more complicated techniques for line following based on vision.  The sensors used to detect defects 

will either need to change or an algorithm to detect actual defects in the railroad tracks and more 

accurate neural networks will be used to more accurately categorize the images. 

Future Work 

There are some things to be add in for future work to fully address the problem of autonomously 

detecting defects in a railroad track in a real worl environment.  Further investigation and 

experiments into the different controllers that can be used, including sliding mode and H-infinity 

controllers.  These may be able to enhance the response of the system.  Different following 

algorithms will also be investigated further to attempt to drive the path following error closer to 

zero.  A quadcopter that can utilize a processor with greater performance specs giving the 

capability for more complex algorithms and onboard processing.  This leads to the ability to 
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changes in the defect detection strategy of this project.  Other neural networks will be used in 

combination with a quadcopter that carries a higher processing capacity to try to increase the 

accuracy and still handle the processing in adequate time. 
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