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ABSTRACT

Nonlocal models have recently become a powerful tool for studying complex sys-

tems with long-range interactions or memory effects, which cannot be described properly

by the traditional differential equations. So far, different nonlocal (or fractional differential)

models have been proposed, among which models with the fractional Laplacian have been

well applied. The fractional Laplacian (−∆)α/2 represents the infinitesimal generator of

a symmetric α-stable Lévy process. It has been used to describe anomalous diffusion,

turbulent flows, stochastic dynamics, finance, and many other phenomena. However, the

nonlocality of the fractional Laplacian introduces considerable challenges in its mathemat-

ical modeling, numerical simulations, and mathematical analysis.

To advance the understanding of the fractional Laplacian, two novel and accurate

finite difference methods – the weighted trapezoidal method and the weighted linear inter-

polation method are developed for discretizing the fractional Laplacian. Numerical analysis

is provided for the error estimates, and fast algorithms are developed for their efficient

implementation. Compared to the current state-of-the-art methods, these two methods

have higher accuracy but less computational complexity. As an application, the solution

behaviors of the fractional Schrödinger equation are investigated to understand the non-

local effects of the fractional Laplacian. First, the eigenvalues and eigenfunctions of the

fractional Schrödinger equation in an infinite potential well are studied, and the results

provide insights into an open problem in the fractional quantum mechanics. Second, three

Fourier spectral methods are developed and compared in solving the fractional nonlinear

Schrödinger equation (NLS), among which the SSFS method is more effective in the study

of the plane wave dynamics. Sufficient conditions are provided to avoid the numerical

instability of the SSFS method. In contrast to the standard NLS, the plane wave dynamics

of the fractional NLS are more chaotic due to the long-range interactions.



iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my Ph.D. advisor

Dr. Yanzhi Zhang for introducing me to this exciting field of mathematics and for her

dedicated help, encouragement, advice and continuous support throughout my Ph.D. It

has been my honor to be her first Ph.D. student. Her enthusiasm, integral perspective on

research and her mission for providing high-quality work, has made a deep impression on

me. I appreciate all her contributions of time, guidance, and funding to make my Ph.D.

experience productive and stimulating. I am really glad to be associated with a person like

Dr. Yanzhi Zhang in my life.

Besides my advisor, I would like to thank my Ph.D. committee members, Dr. Vy

Choi Le, Dr. Xiaoming He, Dr. John Singler and Dr. Thomas Vojta for their helpful

comments on my thesis and career advice in general.

I wish to thank my officemates Sabrina Streipert, Gulsah Yeni and Jinyu Du, my

roommate Xuejing Liu for their warmly support academically and personally.

Lastly, I would like to thank my family for all their love and encouragement. To

my late father Yongshun Duo, who raised me with a love of science, helped me to realize

my own potential and always believed in me and encouraged me to follow my dream. To

my beloved mother Ruohong Liu, who is supporting me in all my pursuits and showing me

that the key to life is enjoyment. My thanks also goes to Guodong Cui for all his love and

patient whose faithful support and everlasting encouragement during the final stages of this

Ph.D. is deeply appreciated.



v

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

SECTION

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. OBJECTIVES AND OVERVIEW OF THIS DISSERTATION . . . . . . . . . . . . . . . 4

2. DIRICHLET FRACTIONAL LAPLACIAN AND RELATED OPERATORS. . . . . 9

2.1. DIRICHLET FRACTIONAL LAPLACIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. SPECTRAL FRACTIONAL LAPLACIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. REGIONAL FRACTIONAL LAPLACIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4. PERIDYNAMIC OPERATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5. NUMERICAL COMPARISONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1. Nonlocal Effects of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2. Eigenvalues and Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. THE WEIGHTED TRAPEZOIDAL METHOD IN 1D . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1. NUMERICAL SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2. ERROR ESTIMATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3. NUMERICAL EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



vi

4. THE WEIGHTED TRAPEZOIDAL METHOD IN HIGHER DIMENSIONS. . . . . 51

4.1. TWO-DIMENSIONAL CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1. Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2. Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3. Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2. HIGHER DIMENSIONAL CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1. Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.2. Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5. THE WEIGHTED LINEAR INTERPOLATION METHOD . . . . . . . . . . . . . . . . . . . . 89

5.1. ONE-DIMENSIONAL CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1. Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2. Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.3. Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2. TWO-DIMENSIONAL CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.1. Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.2. Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6. COMPARISON OF NUMERICAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1. NUMERICAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.1. Interpolation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.2. Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2. NUMERICAL COMPARISONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.1. Discretization of the Fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2. Solution of the Fractional Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7. THE FAST IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1. ONE-DIMENSIONAL CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



vii

7.2. TWO-DIMENSIONAL CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3. THREE-DIMENSIONAL CASE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8. THE FRACTIONAL SCHRÖDINGER EQUATION IN AN INFINITE POTEN-
TIAL WELL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.1. STATIONARY STATES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.1.1. Standard Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.1.2. Fractional Schrödinger Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2. FRACTIONAL GRADIENT FLOW AND ITS DISCRETIZATION . . . . . . . . . 139

8.3. FRACTIONAL LINEAR SCHRÖDINGER EQUATION.. . . . . . . . . . . . . . . . . . . . . 142

8.3.1. Ground States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3.2. The First Excited States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.4. FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION . . . . . . . . . . . . . . . 151

8.4.1. Ground States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.4.2. The First Excited States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9. PLANE WAVE DYNAMICS OF THE FRACTIONAL SCHRÖDINGER EQUA-
TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.1. LINEAR STABILITY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2. NUMERICAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.2.1. Split-step Fourier Spectral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.2.2. Crank–Nicolson Fourier Spectral Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.2.3. Relaxation Fourier Spectral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.2.4. Comparison in Simulating Plane Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.3. NUMERICAL INSTABILITY OF SSFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.4. NUMERICAL STUDY ON PLANE WAVE DYNAMICS . . . . . . . . . . . . . . . . . . . . 195

9.4.1. Focusing NLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.4.2. Defocusing NLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200



viii

10. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

APPENDICES

A. DERIVATION OF REMARK 9.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

B. DERIVATION OF REMARK 9.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220



ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 Comparison of Lu with u in (2.11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Difference max |Lhu − Lpu| versus the horizon size δ for various α, with u(x)
defined in (2.11), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Comparison of Lu with u in (2.12) and q = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Comparison of Lu with u in (2.12) and q = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Comparison of Lu with u in (2.12) and q = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 The absolute and relative differences in the eigenvalues of the fractional Lapla-
cian and spectral fractional Laplacian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 The first and second eigenfunctions of the spectral fractional Laplacian, frac-
tional Laplacian, and regional fractional Laplacian.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Numerical errors ‖(−∆)α/2u − (−∆)α/2h,γ u‖∞,Ω for different choices of γ, where
u is defined in (3.47) with s = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Convergence rate versus α for u ∈ C2,α/2(R) defined in (3.47) with s = 2. . . . . . . . 49

4.1 Numerical errors of the weighted trapezoidal method for γ = 2 and 1+ α/2 for
u defined in (3.47) with s = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Numerical errors of the weighted linear interpolation method for γ = 1 and 2
for defined in (3.47) with s = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Numerical errors of the weighted linear interpolation method for γ = 1 and 2
with u ∈ C1,α/2(R2) defined in (4.52) with s = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Bump function and numerical errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Comparison of numerical errors and rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Numerical errors in solving the fractional Poisson equation (6.17) by finite
element method, weighted trapezoidal method, and linear interpolation method. 115

6.4 Relations between the convergence rates for solving the fractional Poisson
equation and the fractional power α in l∞-norm and in l2-norm. . . . . . . . . . . . . . . . . . . 116

6.5 Numerical errors in solving the fractional Poisson problem (6.18) by finite
element method, weighted trapezoidal method, and linear interpolation method
for α = 0.4, 1, 1.5, 1.9.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



x

6.6 Relations between the convergence rates for solving the fractional Poisson
equation and the fractional power α in l∞-norm and in l2-norm. . . . . . . . . . . . . . . . . . . 119

8.1 Ground states and expected value of position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Comparison of the ground state solutions obtained from our method, Zoia’s
method in [96], and Żaba’s method in [90] with V0 = 100 and V0 = 500. . . . . . . . . . 145

8.3 Comparison of the ground state solutions and errors of eigenvalues. . . . . . . . . . . . . . 145

8.4 The first excited state solutions and expected value of position. . . . . . . . . . . . . . . . . . . . 147

8.5 The maximum value of the position density and the position. . . . . . . . . . . . . . . . . . . . . . 148

8.6 Comparison of the first excited state solutions from our method, Zoia’s method
in [96], and Żaba’s method in [90] with V0 = 100 and V0 = 500. . . . . . . . . . . . . . . . . . . 149

8.7 Comparison of the first excited state solutions and the errors of the eigenvalues. 150

8.8 Ground state wave functions of the fractional nonlinear Schrödinger equation
and the variance in position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.9 Log-log plots of the width of boundary layers versus β in the ground states of
the fractional nonlinear Schrödinger equation in an infinite potential well. . . . . . . 154

8.10 Comparison of the ground states of the fractional nonlinear Schrödinger equa-
tion in a finite potential well with depth V0 and those in an infinite potential
well, where β = 10. The right panel is an enlarged display of the left panel
around the maximum and boundary of the ground state solution. . . . . . . . . . . . . . . . . 155

8.11 The first excited state wave functions of the fractional nonlinear Schrödinger
equation and the variance in position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.12 Comparison of the first excited states of the fractional nonlinear Schrödinger
equation in a finite potential well with depth V0 and those in an infinite potential
well, where β = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.1 Illustration of Theorem 9.1.2 (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.2 Illustration of Theorem 9.1.2 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.3 Contour plots of Re(Λl ) for the plane wave solution (9.5) with a = 1
2 .. . . . . . . . . . . . 169

9.4 Contour plots of Re(Λl ) for γ < 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.5 Comparison of unstable modes for α = 0.9, 1 and 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.6 Time evolution of Re(u(0, t)) and Im(u(0, t)) from the exact solution (9.52),
the SSFS method and the CNFS method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



xi

9.7 Numerical errors in Re(u(0, t)) and Im(u(0, t)) of the SSFS and CNFSmethods,
where α = 2 or α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.8 Illustration of the instability of SSFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.9 Dynamics of the unstable plane wave solution in the 1D focusing NLS with
γ = −1 and λk = 0 in the initial state (9.67). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.10 Time evolution of the wave function around the peak first appears with γ = −1
in the fractional NLS (9.1) and λk = 0 in the initial state (9.67). . . . . . . . . . . . . . . . . . 197

9.11 Time evolution of log10 |F (u(x, t)) | in the 1D focusing NLS with γ = −1 and
λk = 0 in the initial condition (9.67). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.12 Dynamics of the unstable plane wave solution in the 1D focusing NLS with
γ = −1 and λk = 4π/L in the initial state (9.67). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.13 Time evolution of the wave function around the time when the peak first appears
with γ = −1 in the fractional NLS (9.1) and λk = 4π/L on the initial state (9.67). 200

9.14 Time evolution of log10 |F (u(x, t)) | in the 1D focusing NLS with γ = −1 and
λk = 4π/L in the initial state (9.67). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.15 Dynamics of the unstable plane wave solution in the 1D defocusing NLS with
γ = 1 and λk = 4π/L in the initial condition (9.67). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202



xii

LIST OF TABLES

Table Page

2.1 Comparison of the eigenvalues for different operators, where the eigenvalues of
the standard Dirichlet Laplace operator −∆ are presented in most right column. . 23

3.1 Numerical errors and convergence rates for u ∈ C1,α/2(R). . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Numerical errors and convergence rates for u ∈ C3,α/2(R). . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Numerical errors of the fractional Laplacian for u ∈ C3,α/2(R2). . . . . . . . . . . . . . . . . . . 79

4.2 Numerical errors of the fractional Laplacian for u ∈ C3,α/2(R3). . . . . . . . . . . . . . . . . . . 87

5.1 Numerical errors by weighted interpolation method for u ∈ C3,α/2(R) with γ = 1. 98

5.2 Numerical errors by weighted interpolation method for u ∈ C3,α/2(R) with γ = 2. 98

5.3 Numerical errors by weighted linear interpolation method for u ∈ C3,α/2(R2). . . . 102

8.1 The eigenvalue µg of the ground states of the fractional linear (β = 0)
Schrödinger equation in an infinite potential well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 The eigenvalue µ1 of the first excited states of the fractional linear (β = 0)
Schrödinger equation in an infinite potential well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3 The simulated eigenvalue µh
g and the kinetic energy µh

g,kin of the ground states
of the fractional nonlinear Schrödinger equation in an infinite potential well. . . . . 155

8.4 The simulated eigenvalue µh
1 and the kinetic energy µh

1,kin of the first excited
states of the fractional nonlinear Schrödinger equation in an infinite potential
well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.1 Mass N (t) by different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.2 Energy E(t) by different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



1. INTRODUCTION

In the last couple of decades, nonlocal or fractional differential models have become

a powerful tool for modeling phenomena which cannot be described properly by the integer-

order partial differential equations. Recent experiments in the study of diffusion processes

which take places in various complex systems perform significant deviations from the

standard laws of diffusion [21, 67]. Under such settings, the standard Laplacian ∆ which

processes a mathematical description of the normal diffusion fails to reproduce the observed

anomalous diffusion behavior, and the fractional models have to take the place as an

alternative modeling approach. So far, different fractional differential models have been

proposed, among which models with the fractional Laplacian have been well applied in

the field of the anomalous diffusion or dispersion [25, 30], turbulent flows [13, 76], porous

media flows, quantummechanics [33, 63], stochastic dynamics [40], finance [20], and many

others.

Contrary to the standard Laplacian, the fractional Laplacian is a nonlocal operator

defined on the entire space. Over Rd , the fractional Laplacian (−∆)α/2 is defined via a

pseudo-differential operator with symbol |ξ |α [62, 73]:

(−∆)α/2u(x) = F −1
[
|ξ |αF [u]

]
, for α > 0, (1.1)

where F represents the Fourier transform, and F −1 is the inverse Fourier transform. In

a special case with α = 2, the definition in (1.1) reduces to the standard Laplace operator

−∆. The definition in (1.1) enables one to utilize the fast Fourier transform to efficiently

solve problems involving the fractional Laplacian, however, it is suitable only for problems

defined either on the whole space Rd or on a bounded domain with periodic boundary

conditions. In the literature, an equivalent hypersingular integral definition of the fractional
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Laplacian (−∆)α/2 is introduced [28, 62, 73, 80]:

(−∆)α/2u(x) = Cd,α P.V.
∫
Rd

u(x) − u(y)
|y − x|d+α

dy, for α ∈ (0, 2), (1.2)

where P.V. stands for the principal value, and Cd,α is the normalization constant given by

Cd,α =
2α−1α Γ

(
(d + α)/2

)
√
πd Γ

(
1 − α/2

) (1.3)

with Γ(·) denoting the Gamma function. From the probabilistic point of view, the fractional

Laplacian (−∆)α/2 represents the infinitesimal generator of a symmetric α-stable Lévy

process [3, 18]. In contrast to (1.1), the definition in (1.2) can easily incorporate with non-

periodic bounded domains. Note that the integral representation in (1.2) is defined for 0 <

α < 2, while the pseudo-differential definition in (1.1) is valid for all α > 0. The equivalence

of definitions (1.1) and (1.2) for α ∈ (0, 2) are studied in [26, Proposition 3.3] and more

discussions can be found in [26, 60, 73, 88] and references therein. Recently, many studies

have been carried out on the Dirichlet fractional Laplacian, i.e., the fractional Laplacian on

a bounded domain with extended homogeneous Dirichlet boundary condition. However, the

current understanding of this topic still remains limited, and the main challenges are from

the approximation of the hypersingular integral combining with the non-local boundary

condition. So far, numerical methods for directly discretizing the Dirichlet fractional

Laplacian still remains limited.

The fractional Schrödinger equation was introduced by Laskin [63, 64] as a result

of extending the Feynman path integral over Brownian trajectories to Lévy trajectories. It

is a fundamental model of factional quantum mechanics that is expected to reveal some

novel phenomena that are absent from its standard (non-fractional) counterpart. In [94], a

zigzag propagation of light is found in the fractional Schrödinger equation with parabolic

potential, which is different from the phenomena that is observed in the standard Schrödinger

equation. Moreover, several optical realizations of the fractional Schrödinger equation have
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been recently proposed in [65, 94, 95], and references therein. Although lots of topics under

the context of the standard Schrödinger equation have been well studied, such as the infinite

potential well model, the dynamics of the plane waves, due to the nonlocality arises from

the fractional Laplacian, the studies of the fractional Schrödinger equation are still very

limited.

The Schrödinger equation in an infinite potential well plays an important role in

the understanding of the difference between the classical and quantum mechanics. To

understand the difference between classical and fractional quantum mechanics, numerous

studies have been devoted to finding the eigenvalues and eigenfunctions of the fractional

Schrödinger equation in an infinite potential well [8, 27, 47, 48, 50, 59, 63, 66]. However,

there is one continuing debate in the literature that whether the fractional linear Schrödinger

equation in an infinite potential well has the same eigenfunctions as those of its standard

(non-fractional) counterpart [8, 27, 47, 50, 66]. The analytical result still remains open and

as conjectured in [66], that the eigenfunctions of the fractional Schrödinger equation cannot

be written in terms of elementary functions. The difficulties arise not only in the analysis

but also in its computations. So far, no study has been carried out by directly solving the

fractional Schrödinger equation with an infinite potential well numerically.

In the study of the standard NLS equation, the plane wave solution is one of the most

fundamental solution which plays important role in the study of many other more complex

solutions. In the last couple of decades, the modulated plane wave dynamics attracted

much attention in the study of NLS equation which has been experimentally confirmed with

applications in the modulations of deep water waves [86]. The modulational instability

(or the Benjamin–Feir instability) of the plane wave solutions has been well studied which

mainly depends on the nonlinearity of theNLS.As shown in [86], the planewaves are always

stable if the nonlinearity is defocusing; in contrast, they could have long-wave instability in

the focusing case. Due to the conservation properties of the NLS, the unstable perturbations

do not grow unboundedly, and thus the recurrence of the plane wave solution is observed
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in the dynamics of the standard focusing NLS [89]. To numerically study the plane wave

dynamics, numerical methods should be able to capture the analytical instability of the

plane wave solutions without introducing numerical instability. Recently, many studies

have been carried out to understand the instability in solving the plane wave solution by

different numerical methods; see [12, 22, 37, 61, 70, 86] and references therein. Similar

to the standard NLS, the fractional NLS conserves mass and energy, and admits the plane

wave solution. However, the plane wave stability and their dynamics of the fractional NLS

have not been studied in detail. In addition, only a few numerical methods are available in

the literature for solving the fractional NLS. Both analysis and computations are desired to

understand the plane wave stability and dynamics of the fractional NLS.

1.1. OBJECTIVES AND OVERVIEW OF THIS DISSERTATION

The objectives of this dissertation include: (i). The development of accurate and

efficient numerical methods for directly discretizing the fractional Laplacian. (ii). The

understanding of the solution properties of the fractional Schrödinger equations.

In Part I (Sections 2–7), we develop two novel finite difference methods for directly

discretizing the fractional Laplacian and compare them with the exist numerical methods

in the literature. Because of the challenges in approximating its hypersingular integral,

so far numerical methods for discretizing the fractional Laplacian still remain limited. To

avoid integrating the hypersingular integral (1.2) over the entire space, some other nonlocal

operators that are closely related to the fractional Laplacian have been proposed in recent

years, including the regional fractional Laplacian, the spectral fractional Laplacian, and the

peridynamic operator. To understand the connections and differences among these nonlocal

operators, in Section 2, we compare the properties of the fractional Laplacian with the

other three nonlocal operators from various aspects. We show that on a bounded domain,

the spectral fractional Laplacian and regional fractional Laplacian are significantly different

from the Dirichlet fractional Laplacian, although they can be used to approximate each other
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as the power α → 2. The peridynamic operator can provide a consistent approximation to

the fractional Laplacian for any α ∈ (0, 2), but a large horizon size is required to obtain a

good approximation, especially when α is small.

It is well known that the central finite difference scheme has the second order

of accuracy for discretizing the standard Laplacian if the function is smooth enough. It

arises a question that whether we can extend this idea to develop a corresponding second

order scheme for the fractional Laplacian. In Sections 3–5, we develop two novel and

accurate finite difference methods – the weighted trapezoidal method and the weighted

linear interpolation method to directly discretize the fractional Laplacian (1.2). The key

idea of both methods is to rewrite the hypersigular integral form of the fractional Laplacian

as a weighted integral. By choosing proper weight functions, both of these two methods

provide the second order of accuracy for smooth enough functions. We provide error

analysis for the local truncation error of both methods in one and two-dimensions. The

proof in higher dimensions can follow the same idea as in two-dimensional cases. The

main technique used in the analysis of the weighted trapezoidal method is the weighted

Montgomery’s identity, where its standard counterpart has been widely applied in the

error analysis of the standard quadrature rules. The weighted trapezoidal method and the

weighted linear interpolation method provide same convergence rates. In one dimension,

the difference between their computational costs is insignificant, however, the weighted

linear interpolation method has higher computational cost than the weighted trapezoidal

method in higher dimensions. In contrast to the one-dimensional case where the single

integrals can be evaluated exactly, in higher dimensions, the double/triple integrals can

only be evaluated numerically. Due to the basis functions, more double/triple integrals

appear in the weighted linear interpolation scheme, which is the main reason that results in

higher computational cost in higher dimensions. Because these two methods provide same

accuracy, we will use the weighted trapezoidal method as a representation to compare with

other numerical methods in the literature.
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The current state of the art for directly discretizing the fractional Laplacian is the

finite difference method proposed in [49]. To solve the fractional Poisson’s equation with

homogeneous Dirichlet boundary condition, a finite element method is proposed in [2, 25]

recently. In Section 6, we compare our weighted trapezoidal method as a representation

with the scheme proposed in [49] for discretizing the fractional Laplacian. We also compare

theses two finite difference methods with the finite element method proposed in [2, 25] for

solving the fractional Poisson’s equation and address the computational issues arising in

the implementation of the finite element method. Our comparison results show that the

weighted trapezoidal method has higher accuracy than the finite difference method in [49],

moreover, its implementation is much simpler than the finite element method for solving

the fractional Poisson’s equation.

In contrast to the standard Laplacian, the discretization of the fractional Laplacian

results in a large dense matrix A due to its nonlocality. A direct computation of the

matrix-vector product Au has large computational costs, especially in higher dimensions.

In Section 7, we introduce a fast algorithm for computing the matrix-vector product Au of

the discretized fractional Laplacian with a vector-valued function. In fact, the discretized

fractional Laplacian is a symmetric Toeplitzmatrixwhose structure can be exploited through

the use of fast algorithms [15, 81, 84], and its computation can be achieved efficiently by

using the fast Fourier transform (FFT). In addition, this fast algorithm can be directly

extended to higher dimensions.

In Part II (Sections 8 and 9), as the applications of the fractional Laplacian, we study

the solution properties of the fractional Schrödinger equation. In Section 8, we numerically

study the ground and the first excited states of the fractional Schrödinger equation in

an infinite potential well. The study of its eigenvalues and eigenfunctions has attracted

massive attention from both physicists and mathematicians. There is a continuing debate in

the literature that whether the fractional linear Schrödinger equation in an infinite potential

well has the same eigenfunctions as those of its standard (nonfractional) counterpart. By
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introducing a normalized fractional gradient flow combine with the weighted trapezoidal

method, we numerically solve the eigenvalue problemof the fractional Schrödinger equation.

Our numerical results suggest that the eigenfunctions of the fractional Schrödinger equation

differ from those of the standard Schröodinger equations.

In Section 9, we study the modulational stability of the plane waves and their

dynamics of the fractional nonlinear Schrödinger equation (NLS) both analytically and

numerically. Firstly, we present the linear stability analysis of the plane wave solution and

find that the stability in the fractionalNLS ismore complicated than that in the standardNLS.

In contrast to the standardNLS, the planewaves are no longer always stable in the defocusing

fractional NLS, the instability appears for the fractional power α ∈ (0, 1]. Besides the linear

stability analysis, numerical simulation is a powerful tool to further understand the plane

wave dynamics from its nonlinear stage. Since the plane wave solutions are studied, the

periodic boundary condition is naturally associated with the fractional NLS. Thus, we adopt

the pseudo-differential definition of the the fractional Laplacian (−∆)α/2 in (1.1), which

enables us to utilize the fast Fourier transform to efficiently solve the problem. We develop

three Fourier spectral methods i.e., the split-step Fourier spectral (SSFS)method, the Crank-

Nicolson Fourier spectral (CNFS), and the relaxation Fourier spectral (ReFS) method, for

solving the fractional NLS. Our results suggest that the SSFS method is more efficient for

studying the long-time behaviors of the plane wave solutions of the fractional NLS, since

it preserves the dispersion relation. The plane wave dynamics of the fractional NLS are

numerically studied by the SSFS method, and it suggests different phenomena from that in

standard Schrödinger equation, such as the disappearance of the well-known recurrence of

the plane wave solution for α , 2 and the leakage of the low-frequency instability to high

frequency. The fractional power α represents the strength of the long-range interactions,

the smaller the the fractional power, the stronger the long-range interactions, and more
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chaotic the dynamics of the fractional NLS. Since the numerical simulation by SSFS

method introduces instabilities that have no analytical counterpart, we provided sufficient

conditions for the mesh size and time step to avoid such numerical instabilities.

Finally, the conclusions of this dissertation are made in Section 10.
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2. DIRICHLET FRACTIONAL LAPLACIAN AND RELATED OPERATORS

In contrast to the entire space, the fractional Laplacian (1.2) on a bounded domain

associated with the Dirichlet boundary condition (the Dirichlet fractional Laplacian) is of

great interest, not only from the mathematical point of view, but also in practical appli-

cations. Any equation involving the Dirichlet fractional Laplacian has to be enclosed by

a nonconventional, nonlocal boundary condition imposed on the complement of the phys-

ical domain where the governing equation is defined. Besides the hypersingularity from

the fractional Laplacian (1.2), the nonlocal boundary condition also introduces significant

challenge, especially in the numerical simulations. To avoid evaluation and analysis over

the entire space, one common approach is to “truncate" and approximate the integral of the

Dirichlet fractional Laplacian. Therefore, some other nonlocal operators that are closely

related to the Dirichlet fractional Laplacian have been proposed in recent years, including

the regional fractional Laplacian, the spectral fractional Laplacian, and the peridynamic

operator. In this section, we study and compare the properties of the Dirichlet fractional

Laplacian with the other three related nonlocal operators. Our main purpose to understand

the connections and differences among these nonlocal operators. Let Ω ⊂ Rd denote an

open bounded domain, and Ωc = Rd\Ω represents the complement of Ω.

2.1. DIRICHLET FRACTIONAL LAPLACIAN

Recently, many studies have been carried out on the Dirichlet fractional Laplacian

(also known as the restricted fractional Laplacian), i.e., the fractional Laplacian on a

bounded domain Ω with extended homogeneous Dirichlet boundary condition (u(x) ≡ 0

for x ∈ Ωc). However, the current understanding of this topic still remains limited, and the

main challenge is from the non-locality of the operator. In the following, we will discuss

some fundamental properties of the Dirichlet fractional Laplacian.
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Probablisticly, theDirichlet fractional Laplacian (−∆)α/2 represents the infinitesimal

generator of a symmetric α-stable Lévy process that particles are killed upon leaving the

domain Ω [18, 79, 88]. One fundamental issue in the study of the Dirichlet fractional

Laplacian is its eigenvalues and eigenfunctions. So far, their exact results still remain

unknown, and only some estimates and approximations can be found in the literature. It

shows in [17] that on a convex domain Ω ⊂ Rd , the k-th eigenvalue λk (for k ∈ N) of the

Dirichlet fractional Laplacian (−∆)α/2 are bounded by [17]:

1
2
µα/2k ≤ λk ≤ µα/2k , for α ∈ (0, 2), (2.1)

where µk represents the k-th eigenvalue of the Dirichlet standard Laplace operator −∆ on

the same domain Ω. That is, the eigenvalue of the fractional Laplacian is always smaller

than that of the standard Laplacian −∆. If a one-dimensional (i.e., d = 1) domain is

considered, the estimates in (2.1) can be improved, and sharper bounds can be found for

two special cases, such as k = 1 and α ∈ (0, 2) in [3, 35], and α = 1 and k = 1, 2, 3 in [3].

More discussion on the eigenvalue bounds can be found in [39, 51, 87, 88] and references

therein. Furthermore, in a one-dimensional interval (−1, 1), the asymptotic approximation

of the eigenvalue λk is given by [59]:

λk =

(
kπ
2
−

(2 − α)π
8

)α
+ O

(
2 − α
k
√
α

)
, for k ∈ N. (2.2)

It further shows that if α ≥ 1, the eigenvalue λk (for k ∈ N) is simple, and the corresponding

eigenfunction satisfies ϕk (−x) = (−1)k−1ϕ(x). Compared to the studies on eigenvalues,

the understanding of eigenfunctions is even less. It shows in [75] that the eigenfunction

ϕk (for k ∈ N) are Hölder continuous up to the boundary of a smooth bounded domain

Ω ⊂ Rd . Recent numerical results on eigenvalues and eigenfunctions of the Dirichlet

fractional Laplacian can be found in [32, 33].
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The fractional Poisson equation is one main building block in the study of fractional

PDEs, which takes the following form [2, 25, 31, 35]:

(−∆)α/2u(x) = f (x), for x ∈ Ω, (2.3)

u(x) = 0, for x ∈ Ωc. (2.4)

In (2.4), the extended homogeneous boundary conditions are imposed on Ωc, distinguish-

ing from the classical Poisson problem where boundary conditions are added on ∂Ω. This

difference can be explained from probabilistic interpretation of the standard and fractional

Laplacian. The standard Laplace operator represents the infinitesimal generator of a Brow-

nian motion with continuous sample paths; thus for a particle in domain Ω, it must leave

the domain via the boundary points on ∂Ω. By contrast, the fractional Laplacian is the

infinitesimal generator of a symmetric α-stable Lévy process with discontinuous sample

paths; particles may “jump” out of the domain without touching any boundary points on

∂Ω. Hence, the solution on Ω can be determined by the values at ∂Ω in the context of

classical Poisson equations but not in the context of fractional Poisson equations.

2.2. SPECTRAL FRACTIONAL LAPLACIAN

The spectral fractional Laplacian (also known as the fractional power of the Dirich-

let Laplacian, or the “Navier” fractional Laplacian) is defined via the spectral decomposi-

tion of the standard Laplace operator [1, 69, 75], i.e.,

(−∆Ω)α/2u(x) =
∑
k∈N

ck µ
α/2
k ϕk (x), for α > 0, (2.5)

where µk and ϕk are the k-th eigenvalue and normalized eigenfunction of the standard

Dirichlet Laplace operator −∆ on the domain Ω. From a probabilistic point of view, it

represents the infinitesimal generator of a subordinate killed Brownian motion, i.e., the
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process that first kills Brownian motion in a bounded domainΩ and then subordinates it via

a α/2-stable subordinator [78, 79]. Here, we include the domainΩ in the notation (−∆Ω)α/2

to reflect this process and to distinguish it from the fractional Laplacian (−∆)α/2. Specially,

if α = 2 the definition in (2.5) reduces to the standard Dirichlet Laplace operator −∆ on the

domain Ω.

The spectral fractional Laplacian is a nonlocal operator, and it is often used in

the analysis of (partial) differential equations. The eigenvalues and eigenfunctions of

the spectral fractional Laplacian are clearly suggested from its definition in (2.5), that is,

the k-th eigenvalue of (−∆Ω)α/2 is µα/2k , and the corresponding eigenfunction is ϕk (x).

We remark that the spectral fractional Laplacian and the Dirichlet fractional Laplacian

represent generators of different processes, which is also reflected by their eigenvalues and

eigenfunctions. The eigenfunctions of the spectral fractional Laplacian are smooth up to

the boundary as the boundary allows, while those of the Dirichlet fractional Laplacian are

only Hölder continuous up to the boundary [75]. Additionally, it is easy to conclude from

(2.1) that the k-th eigenvalue of the Dirichlet fractional Laplacian is always smaller than

that of the spectral fractional Laplacian, for k ∈ N.

2.3. REGIONAL FRACTIONAL LAPLACIAN

The regional fractional Laplacian (also known the censored fractional Laplacian)

is defined as [10, 43, 45, 46]:

(−∆)α/2
Ω

u(x) = Cd,α P.V.
∫
Ω

u(x) − u(y)
|y − x|d+α

dy, for α ∈ (0, 2), (2.6)

with the constant Cd,α defined in (1.3). In contrast to the fractional Laplacian, the regional

fractional Laplacian (−∆)α/2
Ω

represents the infinitesimal generator of a censored α-stable

process that is obtained from a symmetric α-stable Lévy process by restricting its measure

toΩ [78]. If the domainΩ = Rd , the regional fractional Laplacian collapses to the fractional
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Laplacian (−∆)α/2. To distinguish it from the fractional Laplacian (−∆)α/2, we include the

subscript ‘Ω’ in the operator (−∆)α/2
Ω

to indicate the restriction of the α-stable Lévy process

to the domain Ω.

The regional fractional Laplacian is different from theDirichlet fractional Laplacian,

although they are freely interchanged in some literature. In fact, a symmetric α-stable

Lévy process killed upon leaving the domain Ω (represented by the Dirichlet fractional

Laplacian) is a subprocess of the censored α-stable process (represented by the regional

fractional Laplacian) killing inside the domain Ω, i.e., the trajectories may be killed inside

Ω through Feynman-Kac transform [79]. Moreover, we will illustrate their difference using

a simple example. Consider a one-dimensional interval Ω = (−l, l). Let u be a smooth

function satisfying u(x) = 0 for x ∈ Ωc. Then the difference between the regional fractional

Laplacian and the Dirichlet fractional Laplacian can be computed as:

Q1u(x) =
(
(−∆)α/2 − (−∆)α/2

Ω

)
u(x)

= C1,α

(∫
R

u(x) − u(y)
|x − y |1+α

dy −
∫ l

−l

u(x) − u(y)
|x − y |1+α

dy
)

= C1,α

(∫ −l

−∞

1
|x − y |1+α

dy +
∫ ∞

l

1
|x − y |1+α

dy
)

u(x)

=
C1,α

α

(
1

(l + x)α
+

1
(l − x)α

)
u(x), for x ∈ Ω. (2.7)

We find that in the limit case of α → 2, the difference between the regional fractional

Laplacian and the Dirichlet fractional Laplacian vanishes, i.e., Q1 → 0, due to the constant

C1,α → 0. In other words, the regional fractional Laplacian can be used to approximate the

Dirichlet fractional Laplacian as α → 2. While in the limit of α → 0, the difference in (2.7)

reduces to Q1u → u, i.e., the Dirichlet fractional Laplacian can be written as the summation

of the regional fractional Laplacian and an identity operator. Otherwise, if α � 0 and

α � 2, the difference Q1u ∼ O
(
1/(l − |x |)α

)
, which does not tend to zero for any fixed l,

and as x → ±l, there is |Q1u| → ∞.
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In contrast to the fractional Laplacian, the current understanding on the regional

fractional Laplacian still remains very limited. Recently, the interior regularity of the

regional fractional Laplacian is discussed in [46, 68]. It shows that if u ∈ Cp, s (Ω) for

s ∈ (α, 1] or u ∈ Cp+1, s (Ω) for s ∈ (α − 1,min(α, 1)], then there is (−∆)α/2
Ω

u ∈ Cp(Ω),

where p ∈ N. So far, no results of the eigenvalues or eigenfunctions on the regional fractional

Laplacian can be found in the literature. Here, we expect that our numerical results could

provide insights into the understanding of the properties of the regional fractional Laplacian

in the future.

2.4. PERIDYNAMIC OPERATOR

The peridynamic models were originally proposed as a reformation of the classical

solid mechanics in [77]. In contrast to the classical models, it properly accounts for the near-

field nonlocal interactions so as to effectively model elasticity problems with discontinuity

and other singularities. The general form of this nonlocal operator has the following form:

Lu(x) =
∫

B(x,δ)
K (x, y)

(
u(x) − u(y)

)
dy, (2.8)

where B(x, δ) denotes a ball with its center at point x and radius δ, which represents the

interaction region of point x. The kernel function K (x, y) = K (|x − y|) describes the

interaction strength between points x and y. The constant δ > 0 denotes the size of material

horizon, and in practical applications it is often chosen to be a small number.

Recently, the operator (2.8) with specially chosen kernel function is used to approx-

imate the fractional Laplacian [25, 44]. We will refer it as the peridynamic operator and

denote it as

(−∆)α/2δ u(x) = Cd,α

∫
B(x,δ)

u(x) − u(y)
|x − y|d+α

dy, (2.9)
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i.e., the kernel function in this case is taken as:

Kδ (x, y) =




Cd,α

|x − y|d+α
, if y ∈ B(x, δ),

0, otherwise.

In other words, Kδ (x, y) in the peridynamic operator represents a hard-threshold of the

kernel function K (x, y) = Cd,α/|x − y|d+α of the fractional Laplacian, which can be viewed

as a truncation of K (x, y) in the fractional Laplacian. In the limit case of δ → ∞, the

peridynamic operator (2.9) coincides with the fractional Laplacian (1.2), and thus it is often

used to approximate the fractional Laplacian by choosing a sufficiently large δ [25, 44]. On

the other hand, note that the kernel function K (x, y) has an algebraic decay of order d + α,

which presents a heavy tail that accounts for considerable far field interactions. Hence, the

cutoff of the kernel function K (x, y) outside of the horizon B(x, δ) may have a significant

impact on its approximation to the fractional Laplacian as we shall show next.

Similarly, we choose a smooth function u satisfying u(x) = 0 for x ∈ Ωc with

Ω = (−l, l) to illustrate the difference between the peridynamic operator and the Dirichlet

fractional Laplacian on a bounded domain. Here, we assume that the horizon size δ in (2.9)

is large enough, such that δ > max{l − x, l + x} for any point x ∈ (−l, l). Then, we can

compute their difference as:

Q2u(x) =
(
(−∆)α/2 − (−∆)α/2δ

)
u(x)

= C1,α

( ∫
R

u(x) − u(y)
|x − y |1+α

dy −
∫ x+δ

x−δ

u(x) − u(y)
|x − y |1+α

dy
)

= C1,α

(∫ x−δ

−∞

1
|x − y |1+α

dy +
∫ ∞

x+δ

1
|x − y |1+α

dy
)

u(x)

=
C1,α

α

2
δα

u(x), for x ∈ Ω. (2.10)
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It shows that the difference of these two operators is of order O(1/δα) when u(x) is

uniformly bounded on Ω, hence their difference vanishes as δ → ∞. On the other hand, the

convergence of the peridynamic operator to the fractional Laplacian as δ → ∞ depends on

the power α, and it may degenerate rapidly for small α. Additionally, in the limit case of

α → 2, the difference Q2u → 0, because the coefficient Cd,α → 0.

The peridynamic operator in (2.9) can be viewed as the infinitesimal generator of a

symmtric α-stable process by restricting its measure to B(x, δ). In contrast to the regional

fractional Laplacian operator, the interaction region of point x in the peridynamic operator

is symmetric with respect to itself. Hence, the peridynamic operator is expected to provide

a symmetric approximation for a homogeneous elastic material.

In summary, the fractional Laplacian (1.2), spectral fractional Laplacian (2.5),

regional fractional Laplacian (2.6), and the peridynamic operator (2.9) are all nonlocal

operators in which every point x interacts with other points y over certain long distance.

For a point x ∈ Ω, the fractional Laplacian (−∆)α/2 accounts for the interactions between x

and y for all y ∈ Rd\{x}. By contrast, the interaction region of x in the regional fractional

Laplacian (−∆)α/2
Ω

is truncated to Ω\{x}, i.e., the same domain of x, while the interaction

region of the peridynamic operator (−∆)α/2δ reduces to B(x, δ)\{x}. Wewill further compare

them in Section 2.5.

2.5. NUMERICAL COMPARISONS

In this section, we further compare these four nonlocal operators by studying their

nonlocal effects, eigenvalues and eigenfunctions, and the solution behavior of the cor-

responding nonlocal problems. In our simulations, the spectral fractional Laplacian is

discretized by using the finite difference method combined with matrix transfer techniques

introduced in [30], while the other three operators are discretized by the weighted trape-

zoidal method developed in Section 3. Our numerical results provide insights not only to

further understand these operators but also to improve the analytical results in the literature.
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In the following, wewill consider the one-dimensional cases. For notational simplic-

ity, we will also use Lh to represent the fractional Laplacian, Ls for the spectral fractional

Laplacian, Lr for the regional fractional Laplacian, and Lp for the peridynamic operator.

2.5.1. Nonlocal Effects of Operators. We compare the nonlocal effects of these

four operators by acting them on functions with compact support on the domainΩ = (−1, 1).

Example 1. Consider the function

u(x) =



sin
(π(1 + x)

2
)
, if x ∈ Ω,

0, otherwise,
x ∈ R, (2.11)

which is continuous on the whole space R. It is easy to obtain that

(−∆Ω)α/2u(x) =
(
π

2

)α
sin

(π(1 + x)
2

)
, for x ∈ Ω,

that is, the function from the spectral fractional Laplacian can be found exactly, while we

will numerically compute the functions from the other three operators.

In Figure 2.1, we compare the function Liu for i = s, h, r , or p. The results clearly

suggest the difference between these four operators, especially the function Lsu from the

spectral fractional Laplacian is significantly different from those of the other three operators.

It shows that for any α ∈ (0, 2), the functionLsu is proportional to the function u on (−1, 1).

In contrast, the properties ofLiu (for i = h, r , or p) significantly depend on the parameter α.

For α ∈ (0, 1), the function Liu exists on the closed domain Ω, but they are very different

between operators. The smaller the parameter α, the larger the differences. For α ∈ [1, 2),

the function Liu does not exist at the boundary points, i.e., x = ±1. As α → 2, the function

Liu (for i = h, r , or p) converges to −uxx for x ∈ (−1, 1).
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Figure 2.1. Comparison of Lu with u in (2.11). The operator L represents Ls (solid line),
Lh (dashed line), Lr (dashdot line), or Lp with δ = 4 (dotted line). Note that the plots in
y-direction are partially presented for α = 1, 1.5 or 1.95.

Additionally, Figure 2.1 shows that both the regional fractional Laplacian and peri-

dynamic operator can be used to approximate the fractional Laplacian, if α is close to 2

(see Figure 2.1 for α = 1.95). For small α, the results from the regional fractional Lapla-

cian are inconsistent with that from the fractional Laplacian. However, the peridynamic

operator can still provide a good approximation to the fractional Laplacian by enlarging the

horizon size δ. Figure 2.2 presents the differences between the functions Lpu and Lhu for

various α and δ. It shows that for a fixed horizon size δ, the difference between these two

operators dramatically decreases as α increases. On the other hand, Figure 2.2 implies that

for small α the convergence of the function Lpu to Lhu could be very slow. For instance,
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Figure 2.2. Difference max |Lhu − Lpu| versus the horizon size δ for various α, with u(x)
defined in (2.11),

for α = 0.6, the difference in Figure 2.2 is around 0.005 for a horizon size δ = 4000. In

fact, the nonlocal interactions decay slowly for small α, and thus a large horizon size δ is

needed for the peridynamic operator to better approximate the fractional Laplacian.

Example 2. Consider the function

u(x) =



(1 − x2)q+α2 , for x ∈ Ω,

0, otherwise,
x ∈ R, (2.12)

for q ∈ N. For the fractional Laplacian, the analytical solution can be found as:

(−∆)α/2u(x) =
2αΓ( α+12 )Γ( α2 + q + 1)

√
πΓ(q + 1)

2F1

(
α + 1
2

, −q;
1
2
; x2

)
(2.13)

for x ∈ Ω, where 2F1 denotes the Gauss hypergeometric function. Moreover, we can obtain

the exact values of (−∆)α/2
Ω

u and (−∆)α/2δ u by using their relation to the fractional Laplacian

in (2.7) and (2.10), respectively. For the spectral fractional Laplacian, we numerically

computed (−∆Ω)α/2u by the finite difference method proposed in [30].
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Figure 2.3 displays the function Liu for various α, where u is defined in (2.12)

with q = 2. It shows that the function Liu exists on the closed domain [−1, 1] for any

α ∈ (0, 2), but their values are very different, especially for small α. For the spectral
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Figure 2.3. Comparison of Lu with u in (2.12) and q = 2. The operator L represents Ls
(solid line), Lh (dashed line), Lr (dash-dot line), or Lp with δ = 4 (dotted line).

fractional Laplacian, the values of Lsu at the boundary are always zero, which inherits

from its definition in (2.5). For the regional fractional Laplacian, the function u in (2.12)

with q = 2 satisfies the conditions that u ∈ C2([−1, 1]) and u′(±1) = 0, which guarantee

the existence of the function Lru for any α ∈ (0, 2) [46]. Since the function u(±1) = 0

and the relations in (2.7) and (2.10), the values of Liu (for i = h, r and p) are the same

at boundary points, but they are nonzero. Figure 2.3 also shows that both the regional

fractional Laplacian and the peridynamic operator with relatively small δ could provide a

good approximation to the fractional Laplacian, if α is large (see Figure 2.3 for α = 1.95).
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While α is small, although the peridynamic operator can be still used to approximate the

fractional Laplacian with a large δ, the regional fractional Laplacian is inconsistent with

the fractional Laplacian.

Figure 2.3 additionally shows that as α → 2, the differences between the four

operators become insignificant (see Figure 2.3 for α = 1.95), and the function Liu (for

i = h, s, r, or p) converges to −∂xxu, that is, the four operators converge to the standard

Dirichlet Laplace operator −∆. In contrast to cases of α → 2, the functions Lhu from

the fractional Laplacian and Lsu from the spectral fractional Laplacian converge to u, as

α → 0, while Lru from the regional fractional Laplacian and Lpu from the peridynamic

operator converge to a zero function; see Figure 2.4.

−1 −0.5 0 0.5 1

0

0.5

1

x

L
u

α = 0.001

Figure 2.4. Comparison of Lu with u in (2.12) and q = 2. The operator L represents Ls
(solid line), Lh (dashed line), Lr (dash-dot line), or Lp with δ = 4 (dotted line).

Moreover, our numerical results suggested that for α ∈ [1, 2), if the function u ∈

C1,α/2(Ω) and u′(±1) = 0, then the regional fractional Laplacian Lru exists; see Figure

2.5. Hence, we conjugate that the regularity results in [46] might be able to improve to

u ∈ C1,α/2(Ω) at least for one-dimensional case. More analysis needs to be carried out for

further understanding this issue.
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Figure 2.5. Comparison of Lu with u in (2.12) and q = 1. The operator L represents Ls
(solid line), Lh (dashed line), Lr (dash-dot line), or Lp with δ = 4 (dotted line).

2.5.2. Eigenvalues and Eigenfunctions. In this section, we compare the four non-

local operators by studying their eigenvalues and eigenfunctions on a one-dimensional

bounded domain Ω = (−l, l).

Denote λi
k and φ

i
k as the k-th (for k ∈ N) eigenvalue and eigenfunction of the nonlo-

cal operator Li on Ω with the corresponding homogeneous Dirichlet boundary conditions,

where i = h, s, r , or p. It is well known that the eigenvalues and eigenfunctions of the

spectral fractional Laplacian Ls can be found analytically, i.e.,

λs
k = µ

α/2
k =

(
kπ
2l

)α/2
, φs

k (x) =

√
1
l
sin

( kπ
2

(
1 +

x
l

))
, x ∈ (−l, l),

for k ∈ N. For the other operators, so far no analytical results can be found in the literature,

and thus we will compute their eigenvalues and eigenfunctions numerically.
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In Table 2.1, we present the eigenvalues of the fractional Laplacian Lh, spectral

fractional Laplacian Ls, and regional fractional Laplacian Lr , on the domain Ω = (−1, 1).

We leave the peridynamic operator Lp out of our comparison here, since its spectrum

depends on the horizon size δ. The eigenvalues of the standard Dirichlet Laplace operator

−∆ are presented in most right column in Table 2.1. For each k, the upper row represents

λs
k ; the middle row represents λh

k ; the lower row represents λr
k .

From Table 2.1 and our extensive numerical studies, we find

λr
k < λh

k < λs
k, for α ∈ (0, 2) and k ∈ N,

that is, the eigenvalues of the regional fractional Laplacian are much smaller than those

of the fractional Laplacian and spectral fractional Laplacian. However, as α → 2 the

eigenvalue λi
k of these three operators converges to µk = k2π2/4 – the kth eigenvalue of

the standard Dirichlet Laplace operator −∆ on (−1, 1).

In [75], it is proved that the first eigenvalue of the fractional Laplacian is strictly

smaller than that of the spectral fractional Laplacian, i.e., λh
1 < λs

1, for α ∈ (0, 2). Our

numerical results in Table 2.1 confirm this conclusion and additionally suggest that the

eigenvalue λh
k is strictly smaller than λs

k , for any k ∈ N. Furthermore, we present the

difference between the eigenvalues λs
k and λh

k for various α and k in Figure 2.6. It shows

that the difference between the eigenvalues λs
k and λh

k depends on both parameters α and

k. For a given k ∈ N, there exists a critical value αk where the gap between λs
k and λh

k is

maximized. The value of αk increases as k ∈ N increase (see Figure 2.6 left). On the other

hand, as k ∈ N, the relative difference between the eigenvalues λs
k and λ

h
k decreases quickly

(see Figure 2.6 right).

In Figure 2.7, we compare the first and second eigenfunctions of the fractional

Laplacian, the spectral fractional Laplacian, and the regional fractional Laplacian. For

any α ∈ (0, 2), the eigenfunctions for these three operators are all symmetric (for odd
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Figure 2.6. The absolute (left panel) and relative (right panel) differences in the eigenvalues
of the fractional Laplacian and spectral fractional Laplacian.

k) or antisymmetric (for even k) with respect to the center of the domain Ω. Especially,

the eigenfunctions of the spectral fractional Laplacian are independent of the parameter

α, which are also the eigenfunctions of the standard Dirichlet Laplace operator −∆. In

contrast, the eigenfunctions of the other two operators significantly depend on α, and as

α → 2, they converge to sin(kπ(1 + x)/2) – the eigenfunctions of the standard Dirichlet

Laplace operator −∆. Our numerical observations in Figure 2.7 justify the regularity results

in [75, Theorem 1], that is, the eigenfunctions of the fractional Laplacian is no better than

Hölder continuous up to the boundary, while the eigenfunctions of the spectral fractional

Laplacian are smooth up to the boundary as the boundary allows.

From our extensive studies, we find that the eigenvalues of the fractional Laplacian

Lh, the spectral fractional Laplacian Ls, and the regional fractional Laplacian Lr reduces

as the domain size increases. In particular, if the domain size increases by a ratio of κ,

the k-th (for k ∈ N) eigenvalues decreases by a ratio of κα. Additionally, we explore

the eigenvalues of the peridynamic operators for different δ. It shows that the eigenvalue

increases as δ decreases.
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Figure 2.7. The first (left panel) and second (right panel) eigenfunctions of the spectral
fractional Laplacian (solid line), fractional Laplacian (dash-dot line), and regional fractional
Laplacian (dashed line). Note that the eigenfunctions of the spectral fractional Laplacian
are independent of α > 0.

In this section, we compare the properties of the Dirichlet fractional Laplacian

with some related nonlocal operators, i.e., the spectral fractional Laplacian, the regional

fractional Laplacian, and the peridynamic operator. Our study shows that their differences

are significant on a bounded domain. Probabilistically, they represent the generators of

different stochastic processes. In addition, the eigenvalues and eigenfunctions of these
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four operators are different, although they all converge to those of the classical Laplace

operator as α → 2. In conclusion, our extensive numerical investigations suggest that

these three nonlocal operators can only serve as good approximations of the Dirichlet

fractional Laplacian under some special situations but the deviations could be large as the

fractional power α is relatively small. As α → 2, all the four operators collapse to the

classical Dirichlet Laplacian. For relatively small α, to provide a good approximation of

the Dirichlet fractional Laplacian, the horizon size δ of the peridynamic operator must

be taken sufficiently large; differently, the regional fractional Laplacian generally provides

inconsistent results from the fractional Laplacian.
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3. THE WEIGHTED TRAPEZOIDAL METHOD IN 1D

The traditional trapezoidal method is widely used in the field of numerical integra-

tion, and it has the second order of accuracy if the integrand function is smooth enough.

However, the fractional Laplacian defined in (1.2) is a hypersingular integral, and directly

applying the traditional trapezoidal method fails to provide the optimal accuracy or to be

convergent. It is known that the weighted quadrature rules are advantageous in approxi-

mating the hypersingular integrals [23, Chapter 5]. By introducing a weight function, the

hypersingular integral is formulated as a weighted integral of a weaker singular function.

In this section, we will develop a novel finite difference method based on the

weighted trapezoidal rule to discretize the fractional Laplacian (1.2) in one dimension (1D).

The error analysis will be provided for functions with different smoothness conditions.

Some numerical examples are presented to justify the analytical results.

3.1. NUMERICAL SCHEME

Consider the fractional Laplacian defined in (1.2). We focus on the discretization

of the fractional Laplacian on a one-dimensional bounded domain Ω with homogeneous

Dirichlet boundary conditions, i.e., u(x) ≡ 0 for x ∈ Ωc. Our scheme can be also used for

nonhomogeneous constant boundary conditions, i.e., u(x) = g with g a constant for x ∈ Ωc.

In this case, one can define v = u − g, and there is (−∆)α/2v = (−∆)α/2u.

Letting ξ = |x− y |, we can rewrite the one-dimensional fractional Laplacian in (1.2)

as

(−∆)α/2u(x) = −C1,α

∫ ∞

0

u(x − ξ) − 2u(x) + u(x + ξ)
ξ1+α

dξ. (3.1)
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Define domain Ω = (a, b), and choose a constant L = |Ω| = b − a. We further write the

integral in (3.1) as:

(−∆)α/2u(x) = −C1,α

( ∫ L

0

u(x − ξ) − 2u(x) + u(x + ξ)
ξ1+α

dξ

+

∫ ∞

L

u(x − ξ) − 2u(x) + u(x + ξ)
ξ1+α

dξ
)
. (3.2)

Note that for any x ∈ (a, b) and ξ ≥ L, there is (x ± ξ) ∈ R\(a, b), and thus the function

u(x ± ξ) ≡ 0. Hence, the second integral in (3.2) reduces to

∫ ∞

L

u(x − ξ) − 2u(x) + u(x + ξ)
ξ1+α

dξ = −2u(x
) ∫ ∞

L

1
ξ1+α

dξ = −
2

αLα
u(x), (3.3)

that is, it can be computed exactly.

Now, we will approximate the first integral in (3.2) numerically. Choose a positive

integer N , and define the mesh size h = L/N . Denote grid points ξi = ih, for 0 ≤ i ≤ N ;

evidently ξN = L. First, we introduce a splitting parameter γ ∈ (α, 2]. The choice of γ is

important in determining the accuracy of our method, and we will carry out more discussion

later. Then, we can formulate the first integral in (3.2) as:

∫ L

0

u(x − ξ) − 2u(x) + u(x + ξ)
ξ1+α

dξ =
∫ L

0
ψγ (x, ξ)ξγ−(1+α) dξ

=

N∑
i=1

∫ ξi

ξi−1

ψγ (x, ξ) ξγ−(1+α) dξ, (3.4)

where for notational simplicity we define the function

ψγ (x, ξ) =
u(x − ξ) − 2u(x) + u(x + ξ)

ξγ
. (3.5)
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That is, the first integral in (3.2) can be viewed as an weighted integral of ψγ, with ξγ−(1+α)

representing the weight function. For 2 ≤ i ≤ N , we use the weighted trapezoidal rule to

approximate the integrals in (3.4), i.e.,

∫ ξi

ξi−1

ψγ (x, ξ) ξγ−(1+α) dξ ≈
1
2
(
ψγ (x, ξi−1) + ψγ (x, ξi)

) ∫ ξi

ξi−1

ξγ−(1+α)dξ

=
1

2(γ − α)

(
ξ
γ−α
i − ξ

γ−α
i−1

) (
ψγ (x, ξi−1) + ψγ (x, ξi)

)
, (3.6)

for any γ = (α, 2]. While for i = 1, we will divide our discussion into two cases based on

different choice of the splitting parameter, i.e., γ ∈ (α, 2) or γ = 2.

Case 1. The splitting parameter γ ∈ (α, 2). For i = 1, we can approximate the integral

as

∫ ξ1

ξ0

ψγ (x, ξ) ξγ−(1+α)dξ ≈
1

2(γ − α)
ξ
γ−α
1 ψγ (x, ξ1), (3.7)

which can be formally obtained using the weighted trapezoidal rule, i.e.,

∫ ξ1

ξ0

ψγ (x, ξ) ξγ−(1+α)dξ ≈
1
2
(
lim
ξ→0

ψγ (x, ξ) + ψγ (x, ξ1)
) ∫ h

0
ξγ−(1+α) dξ.

Assuming that u is smooth enough, the above limit is zero, i.e.,

lim
ξ→0

ψγ (x, ξ) ≈ lim
ξ→0

ξ2−γu′′(x) = 0.

Combining (3.2)–(3.4) and (3.6)–(3.7), we obtain the numerical approximation of the

fractional Laplacian (−∆)α/2 as:

(−∆)α/2h,γ u(x) = −
C1,α

2(γ − α)

[
ξ
γ−α
1 ψγ (x, ξ1) +

N∑
i=2

(
ξ
γ−α
i − ξ

γ−α
i−1

) (
ψγ (x, ξi−1)

+ψγ (x, ξi)
)]
+
2C1,α

αLα
u(x), for x ∈ (a, b), (3.8)
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where the function ψγ is defined in (3.5).

Define grid points xi = a+ ih, for 0 ≤ i ≤ N . Let ui be the numerical approximation

of u(xi). Using the definition of ψγ in (3.5), we further obtain the fully discretized scheme

as:

(−∆)α/2h,γ ui = −C1,α

(
a0 ui +

( i−1∑
j=1

a jui− j +

N−1−i∑
j=1

a jui+ j

))
, (3.9)

for i = 1, 2, . . . , N − 1, where

a j =
1

2(γ − α)hα




( j + 1)γ−α − ( j − 1)γ−α

jγ
, for j = 1, . . . , N − 1,

Nγ−α − (N − 1)γ−α

Nγ
, for j = N,

a0 = −2
( N∑

j=1
a j +

1
αLα

)
.

Denote the vector u = (u1, u2, · · · , uN−1)T . Then, the scheme (3.9) can then be expressed

in matrix-vector form, i.e., (−∆)α/2h,γ u = Au, where A is the matrix representation of the

Dirichlet fractional Laplacian, defined as

A =

*..............
,

a0 a1 . . . aN−3 aN−2

a1 a0 a1 · · · aN−3
...

. . .
. . .

. . .
...

aN−3 . . . a1 a0 a1

aN−2 aN−3 . . . a1 a0

+//////////////
-(N−1)×(N−1)

, (3.10)

where A is a symmetric Toeplitz matrix.

Case 2. The splitting parameter γ = 2. In this case, the integral for i = 1 can be

approximated by

∫ ξ1

ξ0

ψγ (x, ξ)ξγ−(1+α)dξ =
∫ ξ1

ξ0

ψ2(x, ξ)ξ1−αdξ ≈
1

2 − α
ξ2−α1 ψ2(x, ξ1), (3.11)
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where the function

ψ2(x, ξ) =
u(x + ξ) − 2u(x) + u(x − ξ)

ξ2
(3.12)

can be viewed as the central difference approximation of u′′(x). It is easy to verify that if

γ = 1 + α/2, the approximation (3.7) coincides with (3.11). As we will show in Section

3.2, the scheme resulting from γ = 1 + α/2 or 2 in fact has an optimal convergence rate.

Combining (3.2)–(3.4), (3.6) with γ = 2, and (3.11) yields the numerical approxi-

mation of the fractional Laplacian (−∆)α/2 as:

(−∆)α/2h,γ u(x) = −
C1,α

2(2 − α)

[
2ξ2−α1 ψ2(x, ξ1) +

N∑
i=2

(
ξ2−αi − ξ2−αi−1

) (
ψ2(x, ξi−1)

+ψ2(x, ξi)
)]
+
2C1,α

αLα
u(x), for x ∈ (a, b), (3.13)

Following similar lines for γ ∈ (α, 2), we get the fully discretized scheme at point x = xi

as in (3.9), but different coefficients, i.e.,

a j =
1

2(2 − α)hα




22−α + 1, for j = 1,
( j + 1)2−α − ( j − 1)2−α

j2
, for j = 2, . . . , N − 1,

N2−α − (N − 1)2−α

N2 , for j = N,

a0 = −2
( N∑

j=1
a j +

1
αLα

)
.

Similarly, we can write the discretized scheme into a matrix-vector form, which we will

omit here for brevity.

Remark 3.1.1. As α → 2, both the schemes with γ = 1 + α/2 and γ = 2 exactly reduce to

the central difference scheme for the classical Laplace operator −∆, i.e.,

−∆hui =
1
h2

[
− ui−1 + 2ui − ui+1

]
, for i = 1, 2, . . . , N − 1.
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3.2. ERROR ESTIMATES

In the following, we provide error estimates on the weighted trapezoidal scheme

in discretizing the fractional Laplacian. The main technique that used in our proof is the

weightedMontgomery’s identity. The standardMontgomery’s identity has been generalized

in different ways with applications to numerical integration, especially the error analysis

of different types of quadrature rules. We will extend this idea by using the weighted

Montgomery’s identity to prove the accuracy of our weighted trapezoidal method.

First, we will review the standard Montgomery identity for n-time differentiable

functions and make remarks on how it is applied to prove the accuracy of the trapezoidal

method for functions with different smoothness conditions.

Theorem 3.2.1 (Standard Montgomery identity [14]). Let f : [a, b] → R be a mapping

such that f (n) exists. Then for any x ∈ [a, b], we have the identity

∫ b

a
f (t)dt =

n∑
j=1

(b − x) j + (−1) j−1(x − a) j

j!
f ( j−1) (x)

+(−1)n
∫ b

a
Pn(x, t) f (n) (t)dt, (3.14)

where the Peano kernel Pn(x, t) is defined by

Pn(x, t) =



(t − a)n

n!
, for t ∈ [a, x],

(t − b)n

n!
, for t ∈ (x, b].

The standard Montgomery’s identity is well applied in the proof of numerical

quadrature rules, especially the trapezoidal rules.

For functions f ∈ C1([a, b]), the standard Montgomery identity in (3.14) reduces

to

∫ b

a
f (t)dt − (b − a) f (x) = −

∫ b

a
P1(x, t) f ′(t)dt. (3.15)
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Letting x = a or x = b in (3.15) and then taking the average leads to the following identity

∫ b

a
f (t)dt −

b − a
2

[
f (a) + f (b)

]
= −

1
2

∫ b

a
[(t − a) + (t − b)] f ′(t)dt,

By triangle inequality, there exists a constant C > 0, such that

�����

∫ b

a
f (t)dt −

b − a
2

[
f (a) + f (b)

] �����
≤ C(b − a)2 max

t∈[a,b]
| f ′(t) |,

which implies the 1st order accuracy of the composite trapezoidal rule for f ∈ C1([a, b]).

Following the similar lines, we can apply the Montgomery’s identity to obtain the

error estimates of the trapezoidal rule for f ∈ C2([a, b]). For functions f ∈ C2([a, b]),

�����

∫ b

a
f (t)dt −

b − a
2

[
f (a) + f (b)

] �����
≤ C(b − a)3 max

t∈[a,b]
| f ′′(t) |,

which implies the 2nd order accuracy of the composite trapezoidal rule for f ∈ C2([a, b]).

To prove the accuracy of the weighted trapezoidal method, the Montgomery’s iden-

tity needs to be generalized to a weighted version. We reviewed the weightedMontgomery’s

identity in the following theorem.

Theorem 3.2.2 (Weighted Montgomery’s identity [56]). Let f : [a, b] → R be a mapping

such that f (n) exists, and w : [a, b]→ [0,∞) be weight function, then for any x ∈ [a, b], we

have

∫ b

a
w(t) f (t)dt =

n∑
j=1

(−1) j−1Q j,w (x) f ( j−1) (x) + (−1)n
∫ b

a
Pn,w (x, t) f (n) (t)dt, (3.16)

where

Q j,w (x) =
1

( j − 1)!

∫ b

a
(x − s) j−1w(s)ds,
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and the weighted Peano kernel Pn,w (x, t) is defined by

Pn,w (x, t) =




1
(n − 1)!

∫ t

a
(t − s)n−1w(s)ds, for t ∈ [a, x],

1
(n − 1)!

∫ t

b
(t − s)n−1w(s)ds, for t ∈ (x, b],

(3.17)

As special cases of the weighted Montgomery’s identity for n-time differentiable

functions, we rewrite the weighted Montgomery’s identity in more simple expressions for

the first and second order differentiable functions in the following corollary. The results

will be applied to the error analysis of the weighted trapezoidal method.

Corollary 3.2.1. Let w, f : [a, b]→ R be integrable functions.

(i). If f ′ exists on [a, b], there is

f (x)
∫ b

a
w(t)dt −

∫ b

a
w(t) f (t)dt =

∫ b

a
P1,w (x, t) f ′(t) dt, (3.18)

(ii). If f ′′ exists on [a, b], there is

f (x)
∫ b

a
w(t)dt −

∫ b

a
w(t) f (t)dt

= f ′(x)
∫ b

a
(x − t)w(t) dt −

∫ b

a
P2,w (x, t) f ′′(t) dt, (3.19)

where the weighted Peano kernel Pn,w (n = 1, 2) is defined in (3.17).

As an application of Theorem 3.2.1, letting x = a or x = b in (3.18) (or (3.19)) and

then taking the average, we have the following lemma for the weighted trapezoidal rule.

Lemma 3.2.1. Let w, f : [a, b]→ R be integrable functions.

(i). If f ′ exists on [a, b], there is

∫ b

a

(
f (x) −

f (a) + f (b)
2

)
w(x)dx

= −
1
2

∫ b

a

( ∫ x

b
w(y)dy +

∫ x

a
w(y)dy

)
f ′(x)dx. (3.20)
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(ii). If f ′′ exists on [a, b], there is

∫ b

a

(
f (x) −

f (a) + f (b)
2

)
w(x)dx

=
1
2

∫ b

a

( ∫ x

a
w(y)(x − y)dy +

∫ x

b
w(y)(x − y)dy

)
f ′′(x) dx

−
1
2

(
f ′(a)

∫ b

a
w(y)(a − y)dy + f ′(b)

∫ b

a
w(y)(b − y)dy

)
. (3.21)

Denote the multiindex κ = (κ1, . . . , κd), where each κi ≥ 0 for i = 1, 2, . . . , d, and

|κ | = κ1 + · · · + κd . For u : Rd → R, define the κ-th partial derivative

∂κ1,...,κdu :=
∂m

∂xκ11 ∂xκ22 · · · ∂xκdd

, where |κ | = m.

On an open bounded set Ω ⊂ Rd and for ν ∈ (0, 1], denote the Hölder space C0,ν (Ω) for

function u : Ω→ R with exponent ν, i.e.,

C0,ν (Ω) =
{
u ∈ C0(Ω)

���� sup
x, y ∈Ω
x, y

|u(x) − u(y) |
|x − y|ν

< ∞
}
.

For an integer n ≥ 0 and N = {0, 1, . . . }, we denote

Cn,ν (Ω) =
{
u ∈ Cn(Ω) �� ∂κu ∈ C0,ν (Ω), for κ ∈ Nd and |κ | ≤ n

}
.

For notational convenience, we will write ψγ (ξ) = ψγ (x, ξ) in the rest of this section. Next,

we will present the properties of ψγ in the following lemma:

Lemma 3.2.2. Let α ∈ (0, 2) and 0 < ξ < ∞.

(i). If u ∈ C1,α/2(R), the derivative ψ ′γ (ξ) (γ ∈ (α, 2]) exists. Furthermore, there is

��ψ (m)
γ (ξ)�� ≤ Cξα/2+1−(m+γ), m = 0, 1, (3.22)
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where C is a positive constant.

(ii). If u ∈ C3,α/2(R), the derivative ψ (m)
2 (ξ) exists, for m = 1, 2. Furthermore, there is

��ψ (m)
2 (ξ) | ≤ Cξα/2+1−m, m = 1, 2, (3.23)

where C is a positive constant.

Proof. By Taylor’s Theorem, there exist η1 ∈ [x − ξ, x] and η2 ∈ [x, x + ξ], such that

ψγ (ξ) = ξ−γ
[
u(x − ξ) − 2u(x) + u(x + ξ)

]
= ξ1−γ

[
u′(η2) − u′(η1)

]
Then, since u ∈ C1,α/2(R), there exists a positive constant C, such that

|ψγ (ξ) | ≤ Cξα/2+1−γ .

By Taylor’s Theorem, there exist ζ1 ∈ [x − ξ, x] and ζ2 ∈ [x, x + ξ], such that

ψ′2(ξ) = −γξ−γ−1
[
u(x − ξ) − 2u(x) + u(x + ξ)

]
+ ξ−γ

[
− u′(x − ξ) + u′(x + ξ)

]
= −γξ−γ

[
u′(ζ2) − u′(ζ1)

]
+ ξ−γ

[
u′(x + ξ) − u′(x − ξ)

]
.

Then, since u ∈ C1,α/2(R), there exists a positive constant C, such that

|ψ′γ (ξ) | ≤ Cξα/2−γ .

The proof of part (ii) can follow the same lines as the proof of part (i), for brevity, we will

omit the detail here. �
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Remark 3.2.1. Lemma 3.2.2 provides the bound estimates of ψ (m)
γ (ξ) for u ∈ C1,α/2(R)

and ψ (m)
2 (ξ) for u ∈ C3,α/2(R). Different to (i), part (ii) in Lemma 3.2.2 does not hold for

γ , 2. Increasing the smoothness of the function from C1,α/2(R) to C3,α/2(R) will lead to

an increment of order O(ξγ) only for γ = 2.

Define the norm

‖u‖∞,Ω = max
x∈Ω
|u(x) |.

To short the lengthy notation in the proof of Theorem 3.2.3 and 3.2.4, we define the following

function:

K (m)
(a,b) (x) =

∫ x

a
w(y)(x − y)m dy +

∫ x

b
w(y)(x − y)m dy, (3.24)

for x ∈ [a, b] and m = 0, 1.

Then, we have the following error estimates on our finite difference scheme for the

fractional Laplacian:

Theorem 3.2.3. Suppose that u ∈ C1,α/2(R) has finite support on an open set Ω ∈ R, and

(−∆)α/2h,γ in (3.9) is a finite difference approximation of the fractional Laplacian (−∆)α/2.

Then, for any γ ∈ (α, 2], there is



(−∆)α/2u(x) − (−∆)α/2h,γ u(x)

∞,Ω ≤ Ch1−α/2, for α ∈ (0, 2) (3.25)

with C a positive constant depending on α and γ.

Proof. Define the error function

eh
α,γ (x) = (−∆)α/2u(x) − (−∆)α/2h,γ u(x).
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Case 1. For γ ∈ (α, 2), we obtain from (3.6) and (3.7) that,

eh
α,γ (x) = −C1,α

[ ∫ ξ1

ξ0

ψγ (ξ) ξγ−(1+α)dξ −
1
2
ψγ (ξ1)

∫ ξ1

ξ0

ξγ−(1+α)dξ

+

N∑
i=2

( ∫ ξi

ξi−1

ψγ (ξ) ξγ−(1+α)dξ −
1
2

(
ψγ (ξi−1) + ψγ (ξi)

) ∫ ξi

ξi−1

ξγ−(1+α)dξ
)]

= −C1,α
(
I + I I

)
. (3.26)

Noticing that ξ0 = 0 and ξ1 = h, we can write the term I as:

| I | =
����

∫ ξ1

ξ0

(
ψγ (ξ) −

1
2
ψγ (ξ1)

)
ξγ−(1+α)dξ

����

≤

∫ h

0
|ψγ (ξ) |ξγ−(1+α)dξ +

1
2
|ψγ (h) |

∫ h

0
ξγ−(1+α)dξ. (3.27)

Using Lemma 3.2.2 (i) with m = 0, we obtain

| I | ≤
∫ h

0
ξα/2−γ+1 · ξγ−(1+α)dξ + Chα/2−γ+1 · hγ−α ≤ Ch1−α/2. (3.28)

Now, we move to the estimate of term I I. Using Lemma 3.2.1 (i) by taking

w(ξ) = ξγ−(1+α) and recall the definition (3.24), we obtain

| I I | =
����

N∑
i=2

∫ ξi

ξi−1

(
ψγ (ξ) −

ψγ (ξi−1) + ψγ (ξi)
2

)
ξγ−(1+α) dξ

����

=
1
2

����

N∑
i=2

∫ ξi

ξi−1

K (0)
(ξi−1,ξi )

(ξ)ψ′γ (ξ) dξ
���� ≤ Ch

����

N∑
i=2

∫ ξi

ξi−1

ξγ−(1+α) ��ψ′γ (ξ)�� dξ
����.

By Lemma 3.2.2 (i) with m = 1, we obtain

| I I | ≤ Ch
����

N∑
i=2

∫ ξi

ξi−1

ξγ−(1+α) · ξα/2−γ dξ
���� ≤ Ch1−α/2. (3.29)
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Combining (3.26), (3.28) and (3.29) yields

|eh
α,γ | ≤ | I | + | I I | ≤ Ch1−α/2,

for any x ∈ Ω, which leads to (3.25) immediately.

Case2: For γ = 2, the error function is slightly different from (3.26), which is

eh
α,γ (x) = −C1,α

[ ∫ ξ1

ξ0

(
ψ2(ξ) − ψ2(ξ1)

)
ξ1−αdξ

+

N∑
i=2

∫ ξi

ξi−1

(
ψ2(ξ) −

ψ2(ξi−1) + ψ2(ξi)
2

)
ξ1−αdξ

]

= −C1,α
(
Ĩ + Ĩ I

)
. (3.30)

The estimation of term Ĩ I follows exactly the same line as in proving (3.29) by simply taking

γ = 2. For term Ĩ, by the triangle inequality, we have

| Ĩ | =
����

∫ ξ1

ξ0

(
ψ2(ξ) − ψ2(ξ1)

)
ξ1−αdξ

����

≤

∫ h

0
|ψ2(ξ) |ξ1−αdξ + |ψ2(h) |

∫ h

0
ξ1−αdξ. (3.31)

Using Lemma 3.2.2 (i) with m = 0, we obtain

| Ĩ | ≤
∫ h

0
ξα/2−1 · ξ1−αdξ + Chα/2−1 · h2−α ≤ Ch1−α/2. (3.32)

Therefore, we proved that for γ = 2, |eh
α,γ | ≤ Ch1−α/2. �

Remark 3.2.2. Theorem 3.2.3 shows that for u ∈ C1,α/2(R), the accuracy of our method is

O(h1−α/2) for small mesh size h, i.e., its convergence for low regularity function is slow,

especially as α → 2. This result is consistent with the central difference scheme for the

classical Laplace operator, which is not convergent if u ∈ C1,1(R) or even C2(R).
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Next, we will show that for a smooth enough function u, the accuracy of our method

can be improved to O(h2) uniformly for any α ∈ (0, 2).

Theorem 3.2.4. Suppose that u ∈ C3,α/2(R) has finite support on an open set Ω ∈ R, and

(−∆)α/2h,γ defined in (3.9) is a finite difference approximation of the fractional Laplacian

(−∆)α/2. If the parameter is chosen as γ = 2 or 1 + α/2, there is



(−∆)α/2u(x) − (−∆)α/2h,γ u(x)

∞,Ω ≤ Ch2, for α ∈ (0, 2) (3.33)

with C a positive constant depending on α.

Proof. For brevity, we start with the local truncation errors in (3.30) for γ = 2 and (3.26)

for γ = 1 + α/2.

First, we focus on the case of γ = 2 by considering the local truncation error in

(3.30). For term Ĩ, by Taylor theorem, we obtain

| Ĩ | =
�����

∫ h

0

(
ψ2(ξ) − ψ2(ξ1)

)
ξ1−αdξ

�����

≤

∫ h

0
|ψ2(ξ) − ψ2(ξ1) |ξ1−αdξ

≤ Ch max
η∈[0,h]

|ψ′2(η) |
∫ h

0
ξ1−αdξ ≤ Ch3−α/2. (3.34)
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For term Ĩ I, by Lemma 3.2.1 (ii) for the second order differentiable function ψ2, we

get

Ĩ I =
N∑

i=2

∫ ξi

ξi−1

(
ψ2(ξ) −

ψ2(ξi−1) + ψ2(ξi)
2

)
ξ1−αdξ

=
1
2

[ N∑
i=2

∫ ξi

ξi−1

(
K (1)

(ξi−1,ξi )
(ξ)ψ′′2 (ξ) dξ

−
(
ψ′2(ξi)K (1)

(ξi−1,ξi )
(ξi) − ψ′2(ξi−1)K (1)

(ξi−1,ξi )
(ξi−1)

) )]

=
1
2

N∑
i=2

∫ ξk

ξk−1

K (1)
(ξi−1,ξi )

(ξ)ψ′′2 (ξ) dξ

−
1
2

N−1∑
i=2

ψ′2(ξi)
(
K (1)

(ξi−1,ξi )
(ξi) − K (1)

(ξi,ξi+1) (ξi)
)

−
ψ′2(ξN )

2
K (1)

(ξN−1,ξN ) (ξN ) +
ψ′2(ξ1)

2
K (1)

(ξ1,ξ2) (ξ1)

= Ĩ I1 + Ĩ I2 + Ĩ I3 + Ĩ I4. (3.35)

Next, we focus on estimating terms Ĩ Ii for i = 1, 2, 3 and 4.

Applying definition of K (1)
(ξi−1,ξi )

(ξ) in (3.24), we can easily get

���K
(1)
(ξi−1,ξi )

(ξ)��� =
�����

∫ ξ

ξi−1

(ξ − y) y1−α dy +
∫ ξ

ξi

(ξ − y) y1−α dy
�����

≤ Ch(ξ2−αi − ξ2−αi−1 ),

then we can estimate term Ĩ I1 as,

| Ĩ I1 | ≤ Ch2
N∑

i=2

(
ξ2−αi − ξ2−αi−1

)
max

ξ∈[ξi−1, ξi ]
|ψ′′2 (ξ) |

≤ Ch2
N∑

i=2

(
ξ2−αi − ξ2−αi−1

)
max

ξ∈[ξi−1, ξi ]
ξα/2−1

≤ Ch2
N∑

i=2

(
ξ1−α/2i − ξ1−α/2i−1

) ξ1−α/2i + ξ1−α/2i−1

ξ1−α/2i−1

, (3.36)
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where the second inequality is obtained from Lemma 3.2.2 (ii) with m = 2. We further

obtain

| Ĩ I1 | ≤ Ch2
N∑

i=2

(
ξ1−α/2i − ξ1−α/2i−1

) (
1 + 21−α/2

)
≤ Ch2L1−α/2 ≤ Ch2. (3.37)

To estimate term Ĩ I2, let’s first find the bound of ���K
(1)
(ξi−1,ξi )

(ξi) − K (1)
(ξi,ξi+1) (ξi)

���. ByDefinition

(3.24), we have

K (1)
(ξi−1,ξi )

(ξi) =
∫ ξi

ξi−1

(ξi − y) y1−α dy and K (1)
(ξi,ξi+1) (ξi) =

∫ ξi

ξi+1

(ξi − y) y1−α dy,

Here we construct an auxiliary function

Gi (z) :=
∫ ξi

z
(ξi − y) y1−α dy for z ∈ [ξi−1, ξi+1] ,

the functions K (1)
(ξi−1,ξi )

(ξi) and K (1)
(ξi,ξi+1) (ξi) can be represented by Gi (z) as

K (1)
(ξi−1,ξi )

(ξi) = Gi (ξi−1) and K (1)
(ξi,ξi+1) (ξi) = Gi (ξi+1).

Taking derivatives of Gi (z), we get

G′i (z) = (z − ξi)z1−α, G′′′i (z) = (2 − α)(1 − α)z−α + α(1 − α)ξi z−α−1,

and it is clear that

G′i (ξi) = 0, and max
η∈[ξi−1,ξi+1]

|G′′′i (η) | ≤ Cξ−αi .
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Then, by applying Taylor theorem, we can easily get

���K
(1)
(ξi,ξi+1) (ξi) − K (1)

(ξi−1,ξi )
(ξi)

��� = |Gi (ξi+1) − Gi (ξi−1) |

≤ Ch3 max
η∈[ξi−1,ξi+1]

|G′′′i (η) |

≤ Ch3ξ−αi (3.38)

for i = 2, 3, . . . , N . Therefore, term Ĩ I2 is bounded by

| Ĩ I2 | =
1
2

����

N−1∑
i=2

ψ′2(ξi)
(
K (1)

(ξi,ξi+1) (ξi) − K (1)
(ξi−1,ξi )

(ξi)
) ���� ≤ Ch3

N−1∑
i=2

ξ−αi
��ψ′2(ξi)��. (3.39)

Applying Lemma 3.2.2 (i) with m = 1, we get

| Ĩ I2 | ≤ Ch3
N∑

i=2
ξ−α/2i ≤ Ch2

∫ L

0
ξ−α/2dξ ≤ Ch2. (3.40)

For term Ĩ I3, by Lemma 3.2.2 (i) with m = 1, we get

| Ĩ I3 | =
1
2

���ψ
′
2(ξN )K (1)

(ξN−1,ξN ) (ξN )��� ≤
1
2

h2ξα/2N max
{
ξ1−αN−1, ξ

1−α
N

}
≤ Ch2.

For term Ĩ I4, by applying Lemma 3.2.2 (ii), we obtain

| Ĩ I4 | =
1
2

���ψ
′
2(ξ1)K (1)

(ξ1,ξ2) (ξ1)��� ≤ Ch3−α��ψ′2(ξ1)�� ≤ Ch3−α/2.

Then, the estimate of | Ĩ I | can be obtained by combining (3.35) with (3.37)–(3.41), i.e.,

| Ĩ I | ≤ | Ĩ I1 | + | Ĩ I2 | + | Ĩ I3 | + | Ĩ I4 | ≤ Ch2. (3.41)

Finally, combining (3.30), (3.34) and (3.41), we get

|eh
α,γ (x) | ≤ | Ĩ | + | Ĩ I | ≤ Ch2,
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for any x ∈ Ω and α ∈ (0, 2), where γ = 2.

Next, we focus on the case of γ = 1 + α/2 by considering the local truncation error

in (3.26). For term I, we first rewrite it as

I =
∫ ξ1

ξ0

(
ψ1+α/2(ξ) −

1
2
ψ1+α/2(ξ1)

)
ξ−α/2dξ

=

∫ ξ1

ξ0

(
ψ2(ξ) ξ1−α/2 −

1
2
ψ2(ξ1) ξ1−α/21

)
ξ−α/2dξ

=

∫ h

0

(
ψ2(ξ) − ψ2(ξ1)

)
ξ1−αdξ. (3.42)

It is clear to see from (3.30) that I = Ĩ, so the estimation of Ĩ follows exactly the same line

as the estimation of term I in (3.34).

Now, we focus on the estimation of term I I. Different to the estimation of term Ĩ I

for γ = 2, which can be done directly by using Lemma 3.2.2 (ii), since γ is taken to be

1 + α/2, no similar results hold in this case, to prove the second order accuracy, we should

firstly rewrite term I I by separating it into three terms including one is exactly the term Ĩ I.

This separation step is not removable, which plays the important role to prove the second

order accuracy for γ = 1 + α/2. We rewrite term I I as follows,

I I =
1
4

N∑
i=2

∫ ξi

ξi−1

(
ψ2(ξi−1) + ψ2(ξi)

) (
2ξ1−α/2 − ξ1−α/2i−1 − ξ1−α/2i

)
ξ−α/2dξ

+
1
4

N∑
i=2

∫ ξi

ξi−1

(
ξ1−α/2i − ξ1−α/2k−1

) (
ψ2(ξi−1) − ψ2(ξi)

)
ξ−α/2dξ

+

N∑
i=2

∫ ξi

ξi−1

(
ψ2(ξ) −

ψ2(ξi−1) + ψ2(ξi)
2

)
ξ1−αdξ

= I I1 + I I2 + Ĩ I (3.43)

For term I I1, a direct calculation shows that it vanishes, i.e.,

I I1 =
1
4

N∑
i=2

[
ψ2(ξi−1) + ψ2(ξi)

] ∫ ξi

ξi−1

(
2ξ1−α/2 − ξ1−α/2i−1 − ξ1−α/2i

)
ξ−α/2dξ = 0. (3.44)
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For term I I2, we obtain

| I I2 | =
1
4

����

N∑
i=2

∫ ξi

ξi−1

(
ξ1−α/2i − ξ1−α/2k−1

) (
ψ2(ξi−1) − ψ2(ξi)

)
ξ−α/2dξ

����

≤ C
N∑

i=2

��ξ1−α/2i − ξ1−α/2i−1
����ψ2(ξi−1) − ψ2(ξi)����ξ1−α/2i − ξ1−α/2i−1

��

≤ Ch3
N∑

i=2

(
max

ξ∈[ξi−1, ξi ]
��ξ−α/2��

)2 (
max

ζ∈[ξi−1,ξi ]
|ψ′2(ζ ) |

)
, (3.45)

by Taylor’s theorem. Then by applying Lemma 3.2.2 (ii) with m = 1 to (3.45), we obtain

| I I2 | ≤ Ch3
N∑

i=2

(
max

ξ∈[ξi−1, ξi ]
ξ−α/2

)2
max

ζ∈[ξi−1, ξi ]
ζα/2

≤ Ch2
∫ L

0
ξ−α/2 ≤ Ch2.

Combine (3.43), (3.44), (3.46) and the estimation of term Ĩ I in (3.41) we get

| I I | ≤ | I I1 | + | I I2 | + | Ĩ I | ≤ Ch2. (3.46)

Finally, combine (3.42), (3.34) and (3.46), we proved

|eh
α,γ (x) | ≤ | I | + | I I | ≤ Ch2,

for any x ∈ Ω and α ∈ (0, 2), where γ = 1 + α/2. �

Theorem 3.2.4 shows that for u ∈ C3,α/2(R), if the splitting parameter is chosen

as γ = 2 or 1 + α/2, our numerical method has the accuracy of O(h2) uniformly for any

α ∈ (0, 2).



47

Remark 3.2.3. The results of Theorem 3.2.4 are consistent with the behavior of the central

difference method for the standard Laplacian. Indeed, for u ∈ C3,1(R), by Taylor theorem

and mean value theorem, there exist x− ∈ [x − h, x] and x+ ∈ [x, x + h], such that

|eh | =
�����
u(x + h) − 2u(x) + u(x − h)

h2
− u′′(x)

�����
=

1
6

h��u′′′(x+) − u′′′(x−)�� ≤ Ch2.

3.3. NUMERICAL EXPERIMENTS

In this section, we numerically study the accuracy of the weighted trapezoidal

method in discretizing the fractional Laplacian (−∆)α/2. Consider a function u of the form:

u(x) =



(1 − x2)s+α2 , for x ∈ Ω = (−1, 1),

0, otherwise,
x ∈ R, (3.47)

for s ∈ N, as in (2.12). It is easy to verify that u ∈ Cs,α/2(R), and it has compact support on

(−1, 1). The fractional Laplacian of u(x) can be found exactly in (2.13) [35, 36]. We will

study the accuracy of the weighted Trapezoidal method for different s, implying different

smoothness of u.
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Figure 3.1. Numerical errors ‖(−∆)α/2u − (−∆)α/2h,γ u‖∞,Ω for different choices of γ, where
u is defined in (3.47) with s = 1.
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Figure 3.1 presents the numerical errors by taking different γ. Although the conver-

gence rate in this case is independent of the splitting parameter γ ∈ (α, 2], our numerical

studies (see Figure 3.1) show that the numerical error is considerably lower when choosing

γ = 1 + α/2 or γ = 2.

Table 3.1. Numerical errors and convergence rates for u ∈ C1,α/2(R).

α
h 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048

0.2 4.846E-4 2.629E-4 1.417E-4 7.615E-5 4.086E-5 2.191E-5 1.174E-5
c.r. 0.8822 0.8917 0.8961 0.8981 0.8991 0.8996

0.6 1.025E-3 6.497E-4 4.046E-4 2.502E-4 1.543E-4 9.505E-5 5.852E-5
c.r. 0.6582 0.6834 0.6934 0.6974 0.6990 0.6996

1 2.291E-3 1.544E-3 1.071E-3 7.516E-4 5.297E-4 3.740E-4 2.643E-4
c.r. 0.5691 0.5278 0.5113 0.5047 0.5020 0.5009

1.5 2.460E-2 2.015E-2 1.675E-2 1.401E-2 1.176E-2 9.874E-3 8.298E-3
c.r. 0.2885 0.2664 0.2573 0.2534 0.2516 0.2508

1.9 2.891E-2 2.632E-2 2.487E-2 2.381E-2 2.291E-2 2.209E-2 2.132E-2
c.r. 0.1352 0.0817 0.0628 0.0556 0.0526 0.0513

Tables 3.1 and 3.2 present numerical errors ‖(−∆)α/2u − (−∆)α/2h,γ u‖l∞(Ω) and con-

vergence rates of our method for various α, where u is defined in (3.47) with s = 1 and

s = 3, respectively. The symbol ‘c.r.’ represents convergence rate. We find that for the

same mesh size h, the larger the parameter α, the bigger the numerical errors. For s = 1,

Table 3.1 shows that the convergence rates of our method is O(h1−α/2) for any α ∈ (0, 2),

which confirms our analytical results in Theorem 3.2.3. While for s = 3, our method has

accuracy of O(h2) for any α ∈ (0, 2); see Table 3.2. This observation is consistent with our

conclusion in Theorem 3.2.4.

Remark 3.3.1. For u ∈ C2,α/2(R), we study the convergence rates of our finite difference

method numerically; see Figure 3.2. It shows that for α ≤ 0.7 the convergence rate in

l∞-norm is O(h2). For α > 0.7, the convergence rate decreases toward 1, which is better

than the case for u ∈ C1,α/2(R). In fact, this behavior is consistent with that of the classical
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Table 3.2. Numerical errors and convergence rates for u ∈ C3,α/2(R).

α
h 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048

0.2 5.676E-5 1.418E-5 3.544E-6 8.861E-7 2.215E-7 5.538E-8 1.384E-8
c.r. 2.0009 2.0003 2.0001 2.0000 2.0000 2.0001

0.6 2.230E-4 5.550E-5 1.385E-5 3.461E-6 8.651E-7 2.162E-7 5.406E-8
c.r. 2.0062 2.0024 2.0009 2.0003 2.0001 2.0000

1 5.643E-4 1.379E-4 3.414E-5 8.490E-6 2.117E-6 5.290E-7 1.321E-7
c.r. 2.0324 2.0147 2.0074 2.0037 2.0007 2.0011

1.5 2.742E-3 8.050E-4 2.104E-4 5.251E-5 1.286E-5 3.129E-6 7.606E-7
c.r. 1.7683 1.9356 2.0027 2.0297 2.0391 2.0405

1.9 1.450E-2 4.273E-3 1.140E-3 2.910E-4 7.275E-5 1.801E-5 4.436E-6
c.r. 1.7631 1.9062 1.9699 1.9999 2.0143 2.0212

central difference approximation to the standard Laplace operator. For u ∈ C2,1(R), by

mean value theorem, there exist x− ∈ [x − h, x] and x+ ∈ [x, x + h], such that

|eh | = ��ψ2(x, h) − u′′(x)�� =
����
1
2

(
u′′(x−) − u′′(x)

)
+
1
2

(
u′′(x+) − u′′(x)

) ���� ≤ Ch.
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Figure 3.2. Convergence rate versus α for u ∈ C2,α/2(R) defined in (3.47) with s = 2.
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In this section, we propose a novel finite difference method based on the weighted

trapezoidal rule to discretize the fractional Laplacian in one dimension. The novelty of our

method is that a splitting parameter γ ∈ (α, 2] is introduced so that the fractional Laplacian

is rewritten as the weighted integral of function ψγ (x, ξ) with the weight function ξγ−(1+α).

Notably, the choice of the splitting parameter γ influences the accuracy of the method. For

function u ∈ C1,α/2(R), our method has an accuracy of O(h1−α/2) with h a small mesh size,

for any splitting parameter γ ∈ (α, 2], which was also verified by our numerical simulations.

For function u ∈ C3,α/2(R), our method with γ = 1 + α/2 or 2 has an accuracy of O(h2),

independent of the power α ∈ (0, 2). In fact, the optimal splitting parameter of our method

is γ = 1+α/2 or 2 in one dimension, while choosing other γ ∈ (α, 2) (but γ , 1+α/2) leads

to larger numerical errors. In addition, with γ = 1 + α/2 or 2, the weighted trapezoidal

method closely resembling the central difference scheme for the classical Laplacian, as

α → 2.
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4. THE WEIGHTED TRAPEZOIDAL METHOD IN HIGHER DIMENSIONS

In this section, we generalize the weighted trapezoidal method for one dimensional

fractional Laplacian to higher dimensions. We first introduce our method in two dimension

(2D) and then extend it to higher dimensions. In one-dimensional case, the scheme with

either γ = 2 or 1+α/2 can provide the second order accuracy for smooth enough functions,

however there is only one optimal choice of γ, i.e., γ = 2, in d-dimension (d ≥ 2) to get the

second order accuracy. The error analysis and numerical examples are provided in detail

for 2D case, while the generalization to higher dimension is outlined.

4.1. TWO-DIMENSIONAL CASE

4.1.1. Numerical Scheme. Consider the 2D fractional Laplacian:

(−∆)α/2u(x) = C2,αP.V .
∫
R2

u(x) − u(x′)
|x − x′|2+α

dx′, (4.1)

where x = (x, y) and x′ = (x′, y′), and their distance |x − x′| :=
√

(x − x′)2 + (y − y′)2.

We focus on the discretization of the fractional Laplacian on a bounded domain Ω =

(ax, bx) × (ay, by) with homogeneous Dirichlet boundary conditions, i.e., u(x) ≡ 0 for

x ∈ Ωc. By changing of variables, i.e., letting ξ = |x − x′|, η = |y − y′| and defining vector

ξ= (ξ, η), the 2D fractional Laplacian in (4.1) can be further written as

(−∆)α/2u(x) = C2,α

∫ ∞

0

∫ ∞

0
ψγ (x, ξ ) · |ξ |γ−(2+α) dξ, (4.2)
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i.e., a weighted integral of ψγ (x, ξ ) with weight function being |ξ |γ−(2+α), where for γ ∈

(α.2],

ψγ (x, ξ ) :=
( 1∑

m,n=0
u
(
x + (−1)mξ, y + (−1)nη

)
− 4u(x)

)
· |ξ |−γ . (4.3)

Noticing the fact that the function u is compactly supported onΩ, choose a constant

L = max{bx − ax, by − ay}, we further rewrite the integral in (4.2) as,

(−∆)α/2u(x) = −C2,α

( ∫
(0,L)2

ψγ (x, ξ ) · |ξ |γ−(2+α) dξ

+

∫
R2\(0,L)2

ψγ (x, ξ ) · |ξ |γ−(2+α) dξ
)
. (4.4)

The second integral in (4.4) can be found exactly. Precisely, for any x ∈ Ω, if (ξ, η) ∈

R2\(0, L)2, there is (x ± ξ, y ± η) ∈ R2\Ω, and thus u(x ± ξ, y ± η) = 0. Hence, we obtain

∫
R2\(0,L)2

ψγ (x, ξ ) · |ξ |γ−(2+α) dξ = −4u(x)
∫
R2\(0,L)2

|ξ |−2−α dξ = −4wLu(x), (4.5)

where the coefficient wL is defined by

wL =

∫
R2\(0,L)2

|ξ |−2−α dξ .

The main part of the numerical approximation is from the first integral in (4.4).

We adopt the uniform mesh by choosing a positive integer N , and define the mesh size

h = L/N . Denote grid points ξi = ηi = ih, for 0 ≤ i ≤ N , evidently ξN = ηN = L. For

brevity, we introduce the notation ξ i, j := (ξi, η j ) and |ξ i, j | :=
√
ξ2i + η

2
j (i, j = 0, 1, . . . , N),

As the preparation, we define the element

Ii j := [(i − 1)h, ih] × [( j − 1)h, jh], for 1 ≤ i, j ≤ N .
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For each ξ i, j , define the associated element as

Ĩi j = [(i − 1)h, (i + 1)h] × [( j − 1)h, ( j + 1)h] ∩ [0, L] × [0, L], for 0 ≤ i, j ≤ N .

Then, we formulate the first integral in (4.4) as

∫
(0,L)2

ψγ (x, ξ ) · |ξ |γ−(2+α) dξ =
N∑

i, j=1

∫
Ii j
ψγ (x, ξ ) · |ξ |γ−(2+α) dξ . (4.6)

If i , 1 and j , 1, the integral on Ii j can be approximated by the 2D weighted

trapezoidal rule as:

∫
Ii j
ψγ (x, ξ ) · |ξ |γ−(2+α) dξ ≈

1
4

(
ψγ (x, ξ i−1, j−1) + ψγ (x, ξ i−1, j )

+ψγ (x, ξ i, j−1) + ψγ (x, ξ i, j )
) ∫

Ii j
|ξ |γ−(2+α) dξ . (4.7)

If i = j = 1, there is I11 = (0, h) × (0, h), and directly applying the weighted

trapezoidal rule leads to

∫
I11
ψγ (x, ξ ) · |ξ |γ−(2+α) dξ ≈

1
4

(
lim
ξ→0

ψγ (x, ξ ) + ψγ (x, ξ1,0)

+ψγ (x, ξ0,1) + ψγ (x, ξ1,1)
) ∫

I11
|ξ |γ−(2+α) dξ, (4.8)

where we assume the limit exists.

To find the limit, we separate our discussion into two cases:

Case 1: For γ ∈ (α, 2), assuming that u is smooth enough, then the limit goes to

zero, i.e.,

lim
ξ→0

ψγ (x, ξ ) = lim
ξ→0

ψ2(x, ξ ) · |ξ |2−γ = 0, (4.9)
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and thus the integral on I11 is approximated by

∫
I11
ψγ (x, ξ ) · |ξ |γ−(2+α) dξ

≈
1
4

(
ψγ (x, ξ1,0) + ψγ (x, ξ0,1) + ψγ (x, ξ1,1)

) ∫
I11
|ξ |γ−(2+α) dξ . (4.10)

Case 2: For γ = 2, we approximate the limit as

lim
ξ→0

ψ2(x, ξ ) = ψ2(x, ξ1,0) + ψ2(x, ξ0,1) − ψ2(x, ξ1,1).

Following it, the integral on I11 is approximated by

∫
I11
ψ2(x, ξ ) · |ξ |−α dξ ≈

1
2

(
ψ2(x, ξ1,0) + ψ2(x, ξ0,1)

) ∫
I11
|ξ |−α dξ . (4.11)

Combining (4.6), (4.7) and (4.10) or (4.11), we get, for γ ∈ (1 − α, 2),

N∑
i, j=1

∫
Ii j
ψγ (x, ξ ) · |ξ |γ−(2+α) dξ

≈
1
4
(
ψγ (x, ξ1,0) + ψγ (x, ξ0,1) + ψγ (x, ξ1,1)

) ∫
I11
|ξ |γ−(2+α) dξ

+
1
4

N∑
i, j=1

(i, j),(1,1)

(
ψγ (x, ξ i−1, j−1) + ψγ (x, ξ i−1, j ) + ψγ (x, ξ i, j−1) + ψγ (x, ξ i, j )

) ∫
Ii j
|ξ |γ−(2+α) dξ

=
1
4

N∑
i, j=0

(i, j),(0,0)

ψγ (x, ξ i, j )
∫

Ĩi j
|ξ |γ−(2+α) dξ ; (4.12)
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for γ = 2,

N∑
i, j=1

∫
Ii j
ψ2(x, ξ ) · |ξ |−α dξ

≈
1
2
(
ψ2(x, ξ1,0) + ψ2(x, ξ0,1)

) ∫
I11
|ξ |−α dξ

+
1
4

N∑
i, j=1

(i, j),(1,1)

(
ψ2(x, ξ i−1, j−1) + ψ2(x, ξ i−1, j ) + ψ2(x, ξ i, j−1) + ψ2(x, ξ i, j )

) ∫
Ii j
|ξ |−α dξ

=
1
4

N∑
i, j=0

(i, j),(1,0),(0,1),(1,1)

ψ2(x, ξ i, j )
∫

Ĩi j
|ξ |−α dξ +

1
4
ψ2(x, ξ1,1)

∫
Ĩ11\I11

|ξ |−α dξ

+
1
4

(
ψ2(x, ξ1,0) + ψ2(x, ξ0,1)

) (∫
I12
|ξ |−α dξ + 2

∫
I11
|ξ |−α dξ

)
. (4.13)

In fact, the left-hand side of (4.12) and (4.13) can be viewed as summing over the

squares Ii j , while the right-hand side can be viewed as summing over the grid points ξ i j in

(0, L]2.

Choosing a positive integer Nx (or Ny) which satisfies ax + Nx h (or ay + Nyh)

is the smallest number such that ax + Nx h ≥ bx (or ay + Nyh ≥ by). Define the grid

points xi = ax + ih for 0 ≤ i ≤ Nx and y j = ay + jh for 0 ≤ j ≤ Ny. Let ui, j be the

numerical approximation of u(xi, yi). Combining (4.4)–(4.7) with (4.12) or (4.13), the fully

discretization of the 2D fractional Laplacian is given by

(−∆)α/2h,γ ui, j = −C2,α

(
a0,0 ui, j +

i−1∑
m=1

am,0ui−m, j +

Nx−1−i∑
m=1

am,0ui+m, j

+

j−1∑
n=1

a0,nui, j−n +

Ny−1− j∑
n=1

a0,nui, j+n

+

i−1∑
m=1

( j−1∑
n=1

am,nui−m, j−n +

Ny−1− j∑
n=1

am,nui−m, j+n

)

+

Nx−1−i∑
m=1

( j−1∑
n=1

am,nui+m, j−n +

Ny−1− j∑
n=1

am,nui+m, j+n

))
,
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The coefficient am,n depends on the choice of the splitting parameters.

• If γ ∈ (α, 2),

am,n =
1

4|ξm,n |
γ




2
∫

Ĩ0n
|ξ |γ−(2+α) dξ, if m = 0, n = 1, . . . , N,

2
∫

Ĩm0

|ξ |γ−(2+α) dξ, if m = 1, . . . , N, n = 0,∫
Ĩmn

|ξ |γ−(2+α) dξ, if m, n = 1, . . . , N,

(4.14)

a0,0 = −2 *
,

N∑
m=1

am,0 +
N∑

n=1
a0,n+

-
− 4

N∑
m=1

N∑
n=1

am,n − 4wL .

• If γ = 2, the calculation of am,n is the same as in (4.14), except

am,n =
1

4|ξm,n |
2




4
∫

I11
|ξ |−α dξ + 2

∫
I12
|ξ |−α dξ, if m = 0, n = 1,

4
∫

I11
|ξ |−α dξ + 2

∫
I21
|ξ |−α dξ, if m = 1, n = 0,∫

Ĩ11\I11
|ξ |−α dξ, if m = 1, n = 1.

Denote the 2D vector

ux,y = (uT
x,1, u

T
x,2, . . . , u

T
x,Ny−1)T .

where ux, j = (u1, j, u2, j, . . . , uNx−1, j )
T for j = 1, 2, . . . , Ny − 1. The matrix representation of

the 2D fractional Laplacian (−∆)α/2h,γ u(x, y) is A(2)ux,y, that

A(2) =

*..............
,

Ax,0 Ax,1 . . . Ax,Ny−3 Ax,Ny−2

Ax,1 Ax,0 Ax,1 · · · Ax,Ny−3
...

. . .
. . .

. . .
...

Ax,Ny−3 . . . Ax,1 Ax,0 Ax,1

Ax,Ny−2 Ax1,Ny−3 . . . Ax,1 Ax,0

+//////////////
-(Nx−1)(Ny−1)×(Nx−1)(Ny−1)

,
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where

Ax, j =

*..............
,

a0, j a1, j . . . aNx−3, j aNx−2, j

a1, j a0, j a1, j · · · aNx−3, j
...

. . .
. . .

. . .
...

aNx−3, j . . . a1, j a0, j a1, j

aNx−2, j aNx−3, j . . . a1, j a0, j

+//////////////
-(Nx−1)×(Nx−1)

,

for j = 0, 1, . . . , Ny − 2. Notice that A(2) is a block-Toeplitz–Toeplitz-block (BTTB) matrix,

i.e., an (Ny−1)-by-(Ny−1) block-Toeplitz matrix with each block Ax, j ( j = 0, 1, . . . , Ny−2)

be an (Nx − 1)-by-(Nx − 1) Toeplitz matrix [71].

4.1.2. Error Estimates. In this section, we provide error estimates of the weighted

trapezoidal method in 2D. By using the weighted Montgomery’s identity for the 1st and 2nd

order differentiable functions of two variables, we will provide error analysis for functions

with different smoothness conditions.

For notational convenience, we will omit x, and simply use ψγ (ξ ) := ψγ (x, ξ ) in

the following. First, we will present the properties of ψγ in the following lemmas:

Lemma 4.1.1. Let α ∈ (0, 2), 0 ≤ ξ, η < ∞ and (ξ, η) , (0, 0).

(i). If u ∈ C3,α/2(R2), the derivative ∂m,nψ2(ξ, η) exists, for m, n = 0, 1, 2. Furthermore,

there is

��∂m,nψ2(ξ, η) + ∂n,mψ2(η, ξ)�� ≤ C |ξ |α/2+1−(m+n),

for m, n = 0, 1, 2 but m + n > 0. If one of ξ, η equals zero, we further have

��∂1,0ψ2(ξ, 0)�� ≤ Cξα/2 and ��∂0,1ψ2(0, η)�� ≤ Cηα/2.
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(ii). If u ∈ C1,α/2(R2), the derivative ∂m,nψγ (ξ, η) exists, for m, n = 0, 1. Furthermore,

there is

���∂m,nψγ (ξ, η)��� ≤ C |ξ |α/2+1−γ−(m+n) .

Proof. The proof is directly followed by Taylor theorem. �

First, we define the generalized Peano kernel, which will be used in the statement of

Theorem 4.1.1.

Definition 4.1.1. Define functions for all the non-negative integers k, s = 0, 1, . . . ,

P(k,s)
(a,b)(c,d) (x, y) =

∫ d

c

∫ b

a
w(ξ, η)

(ξ − x)k

k!
(η − y)s

s!
dξ dη. (4.15)

Definition 4.1.2. Define function space for function f : [a, b] × [c, d] → R and all non-

negative integers m, n = 0, 1, . . . ,

Cm,n([a, b] × [c, d]) :=
{

f : ∂p,q f (s, t) is continuous for 0 ≤ p ≤ m, 0 ≤ q ≤ n
}
.

Next, we reformulate the weighted Montgomery’s identity in [52] specially by

considering the cases for functions in C1,1([a, b] × [c, d]) and C2,2([a, b] × [c, d]). More

general cases for functions in Cm,n([a, b] × [c, d]) (m, n = 0, 1, . . . ) can be found from

Theorem 2.2 in [52].

Theorem 4.1.1. ([52, Theorem 2.2]) Let w, f : [a, b] × [c, d]→ R be integrable functions.
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(i). If f ∈ C1,1([a, b] × [c, d]), we have

f (x, y)
∫ b

a

∫ d

c
w(s, t)dt ds −

∫ b

a

∫ d

c
w(s, t) f (s, t)dt ds

=

∫ b

a
P̂(0,0) (x, s, y)∂1,0 f (s, y) ds +

∫ d

c
P̃(0,0) (x, y, t)∂0,1 f (x, t) dt

−

∫ b

a

∫ d

c
P

(0,0)
(x, s, y, t)∂1,1 f (s, t) dt ds. (4.16)

(ii). If f ∈ C2,2([a, b] × [c, d]), we have

f (x, y)
∫ b

a

∫ d

b
w(s, t)dt ds −

∫ b

a

∫ d

c
w(s, t) f (s, t)dt ds

= −

1∑
i=0

1∑
j=0

(i, j),(0,0)

∂i, j f (x, y) P(i, j)
(a,b)(c,d) (x, y)

+

1∑
j=0

∫ b

a
P̂(1, j) (x, s, y)∂2, j f (s, y) ds +

1∑
i=0

∫ d

c
P̃(i,1) (x, y, t)∂i,2 f (x, t) dt

−

∫ b

a

∫ d

c
P

(1,1)
(x, s, y, t)∂2,2 f (s, t) dt ds, (4.17)

where P̂(m, j) (x, s, y), P̃(i,m) (x, s, y) and P
(m,m)

(x, s, y, t) (m = 0, 1) are defined by

P̂(m, j) (x, s, y) :=



P(m, j)
(a,s)(c,d) (s, y), a ≤ s ≤ x,

P(m, j)
(b,s)(c,d) (s, y), x < s ≤ b,

P̃(i,m) (x, y, t) :=



P(m,1)
(a,b)(c,t) (x, t), c ≤ t ≤ y,

P(m,1)
(a,b)(d,t) (x, t), y < t ≤ d,
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P
(m,m)

(x, s, y, t) :=




P(m,m)
(a,s)(c,t) (s, t), a ≤ s ≤ x, c ≤ t ≤ y

P(m,m)
(b,s)(c,t) (s, t), x < s ≤ b, c ≤ t ≤ y

P(m,m)
(a,s)(d,t) (s, t), a ≤ s ≤ x, y ≤ t ≤ d

P(m,m)
(b,s)(d,t) (s, t), x < s ≤ b, y ≤ t ≤ d.

The following results are direct applications of Theorem 4.1.1, and will play impor-

tant role in the error analysis of the 2D weighted trapezoidal method. First, we define a new

function to short the lengthy notation in 2D. Some of its properties are also presented and

will be used in the error analysis of the weighted trapezoidal method.

Definition 4.1.3. Define functions for all the non-negative integers k, s = 0, 1, . . . ,

K (k,s)
(a,b)(c,d) (x, y)

=

∫ y

c

( ∫ x

a
w(ξ, η)

(a − ξ)k

k!
dξ +

∫ x

b
w(ξ, η)

(b − ξ)k

k!
dξ

) (c − η)s

s!
dη

+

∫ y

d

( ∫ x

a
w(ξ, η)

(a − ξ)k

k!
dξ +

∫ x

b
w(ξ, η)

(b − ξ)k

k!
dξ

) (d − η)s

s!
dη. (4.18)

By the Definitions 4.1.1 and 4.1.3, we can rewrite function K (k,s)
(a,b)(c,d) (x, y) in the

form of the generalized Peano kernels, i.e.,

K (k,s)
(a,b)(c,d) (x, y) = (−1)k+s

(
P(k,s)

(a,x)(c,y) (a, c) + P(k,s)
(a,x)(d,y) (a, d)

+P(k,s)
(b,x)(c,y) (b, c) + P(k,s)

(b,x)(d,y) (b, d)
)
.

By definition 4.1.3, we have the following properties for function K (k,s)
(a,b)(c,d) (x, y).

These properties will be used frequently in the proof of Theorems 4.1.2 and 4.1.3.

Property 4.1.1. Assume a < b, c < d, and k, s are non-negative integers.

(i). If w(ξ, η) = w(η, ξ), then we have the following commutative property:

K (k,s)
(a,b)(c,d) (x, y) = K (s,k)

(c,d)(a,b) (y, x).
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(ii). For any h > 0, if a, c ≥ h and (a, c) , (h, h), specially by taking w(ξ, η) = |ξ |−α

gives

���
(
K (k,s)

(a−h,a)(c−h,c) − K (k,s)
(a,a+h)(c−h,c) − K (k,s)

(a−h,a)(c,c+h) + K (k,s)
(a,a+h)(c,c+h)

)
(a, c)���

≤ Ch3+(k+s)
(√

(a − h)2 + (c − h)2
)−α−1

. (4.19)

Proof. The proof of (i) follows directly by Definition 4.1.3.

To prove part (ii), we can follow the same line as the 1D case, we first construct an

auxiliary function

G(k,s)
(a,c) (x, y) =

∫ c

y

∫ a

x
w(ξ, η)

(a − ξ)k

k!
(c − η)s

s!
dξ dη. (4.20)

By Definition 4.1.3, we can rewrite the left-hand side of (4.19) as

K (k,s)
(a−h,a)(c−h,c) (a, c) − K (k,s)

(a,a+h)(c−h,c) (a, c)

−K (k,s)
(a−h,a)(c,c+h) (a, c) + K (k,s)

(a,a+h)(c,c+h) (a, c)

= G(k,s)
(a,c) (a − h, c − h) − G(k,s)

(a,c) (a + h, c − h)

−G(k,s)
(a,c) (a − h, c + h) + G(k,s)

(a,c) (a + h, c + h).

Applying Taylor theorem at (a, c), we have

����G
(k,s)
(a,c) (a − h, c − h) − G(k,s)

(a,c) (a + h, c − h)

−G(k,s)
(a,c) (a − h, c + h) + G(k,s)

(a,c) (a + h, c + h)
����

≤ Ch3+(k+s)
(√

(a − h)2 + (c − h)2
)−α−1

,

which directly leads the result. �

Lemma 4.1.2. Let w, f : [a, b] × [c, d]→ R be integrable functions.
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(i). If f ∈ C1,1([a, b] × [c, d]), there is

∫ d

c

∫ b

a

(
4 f (ξ, η) − [ f (a, c) + f (a, d) + f (b, c) + f (b, d)]

)
w(ξ, η) dξ dη

= −

∫ d

c

∫ b

a
K (0,0)

(a,b)(c,d) (ξ, η) ∂1,1 f (ξ, η) dξ dη

+

∫ b

a

(
K (0,0)

(a,b)(c,d) (ξ, d) ∂1,0 f (ξ, d) − K (0,0)
(a,b)(c,d) (ξ, c) ∂1,0 f (ξ, c)

)
dξ

+

∫ d

c

(
K (0,0)

(a,b)(c,d) (b, η) ∂0,1 f (b, η) − K (0,0)
(a,b)(c,d) (a, η) ∂0,1 f (a, η)

)
dη.

(ii). If f ∈ C2,2([a, b] × [c, d]), there is

∫ d

c

∫ b

a

(
4 f (ξ, η) − [ f (a, c) + f (a, d) + f (b, c) + f (b, d)]

)
w(ξ, η) dξ dη

= −

∫ d

c

∫ b

a
K (1,1)

(a,b)(c,d) (ξ, η)∂2,2 f (ξ, η) dξ dη

+

1∑
j=0

(−1) j+1
∫ b

a

(
K (1, j)

(a,b)(c,d) (ξ, d)∂2, j f (ξ, d) − K (1, j)
(a,b)(c,d) (ξ, c)∂2, j f (ξ, c)

)
dξ

+

1∑
i=0

(−1)i+1
∫ d

c

(
K (i,1)

(a,b)(c,d) (b, η)∂i,2 f (b, η) − K (i,1)
(a,b)(c,d) (a, η)∂i,2 f (a, η)

)
dη

−

1∑
j=0

1∑
i=0

(i, j),(0,0)

(−1)i+ j
(
K (i, j)

(a,b)(c,d) (b, d)∂i, j f (b, d) − K (i, j)
(a,b)(c,d) (b, c)∂i, j f (b, c)

−K (i, j)
(a,b)(c,d) (a, d)∂i, j f (a, d) + K (i, j)

(a,b)(c,d) (a, c)∂i, j f (a, c)
)
.

Proof. Applying Theorem 4.1.1 by plugging (x, y) = (a, c), (a, d), (b, c), (b, d) into (4.16)

or (4.17), and then summing together will directly lead the results. �

Since the following results will be used very often throughout the proof of Theorems

4.1.2 and 4.1.3, to avoid interrupting the proof of the main theorem, we present them as two

Lemmas.
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Lemma 4.1.3. There is a positive constant C > 0, such that

∫ L

ε

∫ L

ε
|ξ |−β dξ dη ≤ Cε−β+2 (β > 2) and

∫ L

ε

∫ ε

0
|ξ |−β dξ dη ≤ Cε−β+2 (β > 1),

where ε is a positive number which satisfies ε � L.

Proof. By using the fact that |ξ |−β < ξ−β and |ξ |−β < η−β, we have

∫ L

ε

∫ L

ε
|ξ |−β dξ dη ≤

∫ L

ε
ξ−β/2 dξ ·

∫ L

h
η−β/2 dη ≤ Cε−β+2.

For the second inequality, we have

∫ L

ε

∫ ε

0
|ξ |−β dξ dη ≤ Cε

∫ L

ε
η−β dη ≤ Cε−β+2.

�

Lemma 4.1.4 (2D Chebyshev integral inequality). Let f and g be positive functions on

Ω = [a, b]× [c, d] with the same monotonicity, i.e. for any given points (s1, s2), (t1, t2) ∈ Ω,

they satisfy [ f (s1, s2) − f (t1, t2)] · [g(s1, s2) − g(t1, t2)] ≥ 0, then we have the following

inequality

∫ d

c

∫ b

a
f (s1, s2) ds1 ds2 ·

∫ d

c

∫ b

a
g(s1, s2) ds1 ds2

≤ (b − a)(d − c)
∫ d

c

∫ b

a
f · g ds1 ds2.
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Proof. Since the functions f and g have the same monotonicity on Ω, we have

0 ≤

∫ d

c

∫ b

a

∫ d

c

∫ b

a
[ f (s1, s2) − f (t1, t2)] · [g(s1, s2) − g(t1, t2)] dt1 dt2 ds1 ds2

=

∫ d

c

∫ b

a

∫ d

c

∫ b

a

[
f (s1, s2)g(s1, s2) − f (s1, s2)g(t1, t2)

+ f (t1, t2)g(s1, s2) − f (t1, t2)g(t1, t2)
]

dt1 dt2 ds1 ds2

= 2
[
(b − a)(d − c)

∫ d

c

∫ b

a
f (s1, s2)g(s1, s2) ds1 ds2

−

∫ d

c

∫ b

a
f (s1, s2) ds1 ds2 ·

∫ d

c

∫ b

a
g(s1, s2) ds1 ds2

]
.

Thus, we proved the lemma. �

Note that, the inequality for double integrals in Lemma 4.1.4 is a generalization of

the Chebyshev integral inequality [41] for single integrals.

Then, we have the following error estimates on the weighted trapezoidal rule:

Theorem 4.1.2. Suppose that u ∈ C1,α/2(R2) has finite support on the domain Ω. Let

(−∆)α/2h,γ be the finite difference approximation of the fractional Laplacian. For all γ ∈ (α, 2],

there is



(−∆)α/2u(x) − (−∆)α/2h,γ u(x)

L∞(Ω) ≤ Ch1−α/2, for α ∈ (0, 2) (4.21)

with C a positive constant depending on α and γ.

Proof. Define the error function

eh
α,γ (x) = (−∆)α/2u(x) − (−∆)α/2h,γ u(x).
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For γ ∈ (α, 2), from (4.4), (4.6) and (4.12), we obtain

eh
α,γ (x)

= −C2,α

{ ∫ h

0

∫ h

0

(
ψγ (ξ, η) −

1
4

[
ψγ (h, 0) + ψγ (0, h) + ψγ (h, h)

])
|ξ |γ−(2+α) dξ dη

+
1
4

N∑
j=1

N∑
i=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

*.
,
4ψγ (ξ, η) −

j∑
s= j−1

i∑
k=i−1

ψγ (ξk, ηs)+/
-
|ξ |γ−(2+α) dξ dη

}
= −C2,α (I + I I). (4.22)

For term I, by triangle inequality and Lemma 4.1.1 (ii) for m = n = 0, it’s easy to show that

I ≤

∫ h

0

∫ h

0

���ψγ (ξ, η)��� · |ξ |
γ−(2+α) dξ dη

+
1
4

���ψγ (h, 0) + ψγ (0, h) + ψγ (h, h)���

∫ h

0

∫ h

0
|ξ |γ−(2+α) dξ dη

≤ C
(∫ h

0

∫ h

0
|ξ |−α/2−1 dξ dη + hα/2−γ+1 · hγ−α

)
≤ Ch1−α/2.

For term I I, by taking w(ξ ) = |ξ |γ−(2+α) in Lemma 4.1.2 (i), we obtain

I I =
1
4

(I I1 + I I2),

where

I I1 = −
N∑

j=1

N∑
i=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

K (0,0)
Ii I j

(ξ, η) · ∂1,1ψγ (ξ, η) dξ dη,

I I2 =
N∑

j=1

N∑
i=1

(i, j),(1,1)

{ ∫ ξi

ξi−1

(
K (0,0)

Ii I j
(ξ, η j )∂1,0ψγ (ξ, η j ) − K (0,0)

Ii I j
(ξ, η j−1)∂1,0ψγ (ξ, η j−1)

)
dξ

+

∫ η j

η j−1

(
K (0,0)

Ii I j
(ξi, η)∂0,1ψγ (ξi, η) − K (0,0)

Ii I j
(ξi−1, η)∂0,1ψγ (ξi−1, η)

)
dη

}
.



66

In the above equation, we introduce the following notation to short the lengthy notation:

K (m,m)
Ii I j

(ξ, η) := K (m,m)
(ξi−1,ξi )(ξ j−1,ξ j )

(ξ, η) for m = 0, 1. (4.23)

For term I I1, by the definition of K (0,0)
Ii I j

(ξ, η) in (4.1.3) and Lemma 4.1.1 (ii), we have

|I I1 | ≤ C
N∑

j=1

N∑
i=1

(i, j),(1,1)

*
,

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |γ−(2+α) dξ dη+
-
· *

,

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |α/2−γ−1 dξ dη.+
-

By further applying the Chebyshev integral inequality in 2D as in Lemma 4.1.4, we get

|I I1 | ≤ Ch2
N∑

j=1

N∑
i=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |−α/2−3 dξ dη. (4.24)

Rewrite the summation as

N∑
j=1

N∑
i=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |−α/2−3 dξ dη

=

∫ L

h

∫ h

0
|ξ |−α/2−3 dξ +

∫ L

h

∫ L

h
|ξ |−α/2−3 dξ +

∫ h

0

∫ L

h
|ξ |−α/2−3 dξ . (4.25)

Combining (4.24) and (4.25) and then applying Lemma 4.1.3, we get

|I I1 | ≤ Ch2
(∫ L

h

∫ h

0
|ξ |−α/2−3 dξ dη +

∫ L

h

∫ L

h
|ξ |−α/2−3 dξ dη

)
≤ Ch1−α/2.

For term I I2, by using Property 4.1.1 (i), we first rewrite it as

I I2 =
N∑

j=1

N∑
i=1

(i, j),(1,1)

{ ∫ ξi

ξi−1

K (0,0)
Ii I j

(ξ, η j )
(
∂1,0ψγ (ξ, η j ) + ∂0,1ψγ (ξ j, ξ)

)
dξ

−

∫ ξi

ξi−1

K (0,0)
Ii I j

(ξ, η j−1)
(
∂1,0ψγ (ξ, η j−1) + ∂0,1ψγ (ξ j−1, ξ)

)
dξ

}
.
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Then, applying Lemma 4.1.1 (ii), we get

|I I2 | ≤ Ch
N∑

j=1

N∑
i=1

(i, j),(1,1)

( ∫ ξi

ξi−1

(√
ξ2 + η2j

)γ−(2+α)
dξ

) ( ∫ ξi

ξi−1

(√
ξ2 + η2j

)α/2−γ
dξ

)

≤ Ch−1
N∑

j=1

N∑
i=1

(i, j),(1,1)

( ∫ η j

η j−1

∫ ξi

ξi−1

|ξ |γ−(2+α)dξ dη
) ( ∫ η j

η j−1

∫ ξi

ξi−1

|ξ |α/2−γdξ dη
)
.

Further by applying the 2D Chebyshev inequality in Lemma 4.1.4, we have

|I I2 | ≤ Ch
N∑

j=1

N∑
i=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |−α/2−2dξ1 dξ2 ≤ Ch1−α/2.

Combining the estimation of terms I and I I, we show that for any u ∈ C1,α/2(R2) and

γ ∈ (α, 2),

‖e(x)‖ = 

(−∆)α/2u(x) − (−∆)α/2h,γ u(x)

L∞(Ω) ≤ Ch1−α/2.

For γ = 2, the error function is slightly different from (4.22), which is

eh
α,2(x)

= −C2,α

{ ∫ h

0

∫ h

0

(
ψ2(ξ, η) −

1
2

[
ψ2(h, 0) + ψ2(0, h)

] )
· |ξ |−α dξ dη

+
1
4

N∑
j=1

N∑
i=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

(
4ψ2(ξ, η) −

j∑
s= j−1

i∑
k=i−1

ψ2(ξk, ηs)
)
|ξ |−α dξ dη

}

= −C2,α ( Ĩ + Ĩ I). (4.26)

The estimation of this error function can follow the same line as in proving (4.22) by simply

taking γ = 2. Therefore, we proved that for all γ ∈ (α, 2],

‖e(x)‖ = 

(−∆)α/2u(x) − (−∆)α/2h,γ u(x)

L∞(Ω) ≤ Ch1−α/2.
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�

Theorem 4.1.3. Suppose that u ∈ C3,α/2(R2) has finite support on the domain Ω. Let

(−∆)α/22,h be the finite difference approximation of the fractional Laplacian. If the splitting

parameter is chosen as γ = 2, there is



(−∆)α/2u(x) − (−∆)α/2h,γ u(x)

L∞(Ω) ≤ Ch2, for α ∈ (0, 2) (4.27)

with C a positive constant depending on α.

Proof. We start from the local truncation error in (4.26).

For term Ĩ, by Talylor theorem and Lemma 4.1.1 (i), for any (ξ, η) ∈ [0, h] × [0, h],

there is a positive constant C, such that

�����
ψ2(ξ, η) −

1
2
[ψ2(h, 0) + ψ2(0, h)]

�����
≤ Ch max

(ξ,η)∈[0,h]2

{��∂1,0ψ2(ξ, 0)�� , ��∂0,1ψ2(0, η)��
}

≤ Ch1+α/2.

Therefore, we have

| Ĩ | ≤ Ch1+α/2
∫ h

0

∫ h

0
|ξ |−α dξ dη ≤ Ch3−α/2.

For term Ĩ I, by Lemma 4.1.2 (ii), we obtain

Ĩ I =
1
4

(I I1 + I I2 + I I3) ,

where I I1, I I2, I I3 are defined as

I I1 =
N∑

j=1

N∑
i=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

K (1,1)
Ii I j

(ξ, η) · ∂2,2ψ2(ξ, η) dξ dη,
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I I2 =
N∑

j=1

N∑
i=1

(i, j),(1,1)

1∑
k=0

(−1)k
{ ∫ ξi

ξi−1

(
K (1,k)

Ii I j
(ξ, η j )∂2,kψ2(ξ, η j )

−K (1,k)
Ii I j

(ξ, η j−1)∂2,kψ2(ξ, η j−1)
)

dξ

+

∫ η j

η j−1

(
K (k,1)

Ii I j
(ξi, η)∂k,2ψ2(ξi, η) − K (k,1)

Ii I j
(ξi−1, η)∂k,2ψ2(ξi−1, η)

)
dη

}
, (4.28)

I I3 =
N∑

j=1

N∑
i=1

(i, j),(1,1)

1∑
s=0

1∑
k=0

(k,s),(0,0)

(
K (k,s)

Ii I j
(ξi, η j )∂k,s f (ξi, η j ) − K (k,s)

Ii I j
(ξi, η j−1)∂k,s f (ξi, η j−1)

−K (k,s)
Ii I j

(ξi−1, η j )∂k,s f (ξi−1, η j ) + K (k,s)
Ii I j

(ξi−1, η j−1)∂k,s f (ξi−1, η j−1)
)
.

(4.29)

Next, we will focus on the estimation of term I I j ( j = 1, 2, 3). To apply Lemma

4.1.1, each term I I j should be firstly rewritten symmetrically.

For term I I1, in order to apply Lemma 4.1.1 (i), we have to first rewrite it symmet-

rically

I I1 =
1
2

N∑
j=1

N∑
i=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

K (1,1)
Ii I j

(ξ, η) ·
(
∂2,2ψ2(ξ, η) + ∂2,2ψ2(η, ξ)

)
dξ dη. (4.30)

From the definition of K (1,1)
Ii I j

(ξ, η), it is easy to check that

|K (1,1)
Ii I j

(ξ, η) | ≤ Ch2
∫ η j

η j−1

∫ ξi

ξi−1

|ξ |−α dξ dη, (4.31)

From Lemma 4.1.1 (i) by taking s = k = 2, we have

��∂2,2ψ2(ξ, η) + ∂2,2ψ2(η, ξ)�� ≤ C
∫ η j

η j−1

∫ ξi

ξi−1

|ξ |α/2−3 dξ dη. (4.32)
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Combining (4.30), (4.31) and (4.32), the term I I2,2 can be bounded as follows

|I I1 | ≤ Ch2
N∑

j=1

N∑
i=1

(i, j),(1,1)

*
,

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |−α dξ dη+
-
· *

,

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |α/2−3 dξ dη+
-
.

By further applying the 2D extension of the Chebyshev integral inequality as in Lemma

4.1.4, we get

|I I1 | ≤ Ch4
N∑

j=1

N∑
i=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |−α/2−3 dξ dη. (4.33)

Rewrite the summation as

N∑
j=1

N∑
i=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |−α/2−3 dξ dη

=

∫ L

h

∫ h

0
|ξ |−α/2−3 dξ +

∫ L

h

∫ L

h
|ξ |−α/2−3 dξ +

∫ h

0

∫ L

h
|ξ |−α/2−3 dξ . (4.34)

Combining (4.33) and (4.34), and then applying Lemma 4.1.3, we get

|I I1 | ≤ Ch4
(∫ L

h

∫ h

0
|ξ |−α/2−3 dξ +

∫ L

h

∫ L

h
|ξ |−α/2−3 dξ

)
≤ Ch3−α/2.

For term I I2, in order to apply Lemma 4.1.1 (i), we have to first rewrite it symmetrically.

By exchanging the position of i and j in the summation of the second integral, we have

I I2 =
N∑

j=1

N∑
i=1

(i, j),(1,1)

1∑
k=0

(−1)k
{ ∫ ξi

ξi−1

(
K (1,k)

Ii I j
(ξ, η j )∂2,kψ2(ξ, η j )

−K (1,k)
Ii I j

(ξ, η j−1)∂2,kψ2(ξ, η j−1)
)

dξ

+

∫ ηi

ηi−1

(
K (k,1)

I j Ii
(ξ j, η)∂k,2ψ2(ξ j, η) − K (k,1)

I j Ii
(ξ j−1, η)∂k,2ψ2(ξ j−1, η)

)
dη

}
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Notice that ξi = ηi and K (1,k)
Ii I j

(ξ, η) = K (k,1)
I j Ii

(η, ξ) for k = 0, 1, we can further rewrite it as

I I2 =
N∑

j=1

N∑
i=1

(i, j),(1,1)

1∑
k=0

(−1)k
{∫ ξi

ξi−1

K (1,k)
Ii I j

(ξ, η j )
(
∂2,kψ2(ξ, η j ) + ∂k,2ψ2(η j, ξ)

)
dξ

−

∫ ξi

ξi−1

K (1,k)
Ii I j

(ξ, η j−1)
(
∂2,kψ2(ξ, η j−1) + ∂k,2ψ2(η j−1, ξ)

)
dξ

}

By definition, it is easy to show that for ξ ∈ [ξi−1, ξi] and k = 0, 1,

����K
(1,k)
Ii I j

(ξ, η j−1)
���� =

����

∫ η j−1

η j

∫ ξ

ξi−1

(ξ − ξ̂)
(η j−1 − η̂)k

k!
|ξ̂ |−αd ξ̂ dη̂

+

∫ η j−1

η j

∫ ξ

ξi

(ξ − ξ̂)
(η j−1 − η̂)k

k!
|ξ̂ |−αd ξ̂ dη̂

����

≤ Ch1+k
∫ η j

η j−1

∫ ξi

ξi−1

|ξ̂ |−αd ξ̂ .

By Lemma 4.1.1 (i) for k = 0, 1, we have

h2 ��∂2,kψ2(ξ, η) + ∂k,2ψ2(η, ξ)�� ≤ C
∫ η j

η j−1

∫ ξi

ξi−1

|ξ |α/2−1−k dξ . (4.35)

Then, term I I2 is bounded by

|I I2 | ≤

N∑
j=1

N∑
j=1

(i, j),(1,1)

1∑
k=0

Chk *
,

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |−α dξ+
-

*
,

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |α/2−1−k dξ+
-

≤ C
1∑

k=0
hk+2

N∑
j=1

N∑
j=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |−α/2−1−k dξ . (4.36)
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Following the same line as the estimation of the summation in term I I1, we get

hk+2
N∑

j=1

N∑
j=1

(i, j),(1,1)

∫ η j

η j−1

∫ ξi

ξi−1

|ξ |−α/2−1−k dξ

≤ Chk+2
(∫ L

h

∫ h

0
|ξ |−(α/2+1+k) dξ +

∫ L

h

∫ L

h
|ξ |−(α/2+1+k) dξ

)
. (4.37)

By Lemma 4.1.3, since α/2 + 1 + k ∈ (1, 2) for k = 0 and α/2 + 1 + k ∈ (2, 3) for k = 1,

we have

∫ L

h

∫ h

0
|ξ |−(α/2+1+k) dξ ≤ Ch1−α/2−k for k = 0, 1 (4.38)

and

∫ L

h

∫ L

h
|ξ |−(α/2+1+k) dξ ≤




C if k = 0

Ch−α/2 if k = 1.
(4.39)

Finally, combining (4.36)–(4.39), term I I2 is bounded by

|I I2 | ≤ C
(
h2 + h3 · h−α/2

)
≤ Ch2. (4.40)

For term I I3, first by letting j̃ = j − 1 and ĩ = i − 1, and noticing that ξi = ηi, we have

I I3 =
1∑

s=0

1∑
k=0

(k,s),(0,0)

{ N∑
j=1

N∑
i=1

(i, j),(1,1)

K (k,s)
Ii I j

(ξi, ξ j )∂k,s f (ξi, ξ j ) −
N−1∑
j=0

N∑
i=1

(i, j),(1,0)

K (k,s)
Ii I j+1

(ξi, ξ j )∂k,s f (ξi, ξ j )

−

N∑
j=1

N−1∑
i=0

(i, j),(0,1)

K (s,k)
Ii+1I j

(ξi, ξ j )∂s,k f (ξi, ξ j ) +
N−1∑
i=0

N−1∑
j=0

(i, j),(0,0)

K (s,k)
Ii+1I j+1

(ξi, ξ j )∂s,k f (ξi, ξ j )
}
. (4.41)
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We further rewrite it by

I I k,s
3 =

N−1∑
j=1

N−1∑
i=1

(i, j),(1,1)

(
K (k,s)

Ii I j
− K (k,s)

Ii I j+1
− K (k,s)

Ii+1I j
+ K (k,s)

Ii+1I j+1

)
(ξi, ξ j ) · ∂k,s f (ξi, ξ j )

+

N−1∑
i=1

(
K (k,s)

Ii IN
(ξi, ξN ) − K (k,s)

Ii+1IN
(ξi, ξN )

)
∂k,s f (ξi, ξN )

+

N−1∑
j=1

(
K (k,s)

IN I j
(ξN, ξ j ) − K (k,s)

IN I j+1
(ξN, ξ j )

)
∂k,s f (ξN, ξ j )

+

N−1∑
i=2

(
K (k,s)

Ii+1I1
(ξi, ξ0) − K (k,s)

Ii I1
(ξi, ξ0)

)
∂k,s f (ξi, ξ0)

+

N−1∑
j=2

(
K (k,s)

I1I j+1
(ξ0, ξ j ) − K (k,s)

I1I j
(ξ0, ξ j )

)
∂k,s f (ξ0, ξ j )

+K (k,s)
IN IN

(ξN, ξN )∂k,s f (ξN, ξN ) + K (k,s)
IN I1

(ξN, ξ0)∂k,s f (ξN, ξ0)

+K (k,s)
I1IN

(ξ0, ξN )∂k,s f (ξ0, ξN ) + K (k,s)
I2I1

(ξ1, ξ0)∂k,s f (ξ1, ξ0)

+K (k,s)
I1I2

(ξ0, ξ1)∂k,s f (ξ0, ξ1) + K (k,s)
I2I2

(ξ1, ξ1)∂k,s f (ξ1, ξ1)

−K (k,s)
I1I2

(ξ1, ξ1)∂k,s f (ξ1, ξ1) − K (k,s)
I2I1

(ξ1, ξ1)∂k,s f (ξ1, ξ1).

= I I (k,s)
3,1 + I I (k,s)

3,2 + I I (k,s)
3,3 . (4.42)

To avoid introducing too many notations, we still keep using I I (k,s)
3,i (i = 1, 2, 3),

but they represent the sum of the double summation, single summation and no summation

terms in (4.42), respectively. Next we will focus on the estimations of the summations



74

1∑
s=0

1∑
k=0

(k,s),(0,0)

I I (k,s)
3,i (i = 1, 2, 3). First, by exchanging the positions of k, s and i, j, there is

1∑
k=0

1∑
s=0

(k,s),(0,0)

I I (k,s)
3,1

=

1∑
k=0

1∑
s=0

(k,s),(0,0)

N−1∑
j=1

N−1∑
i=1

(i, j),(1,1)

(
K (k,s)

Ii I j
− K (k,s)

Ii I j+1
− K (k,s)

Ii+1I j
+ K (k,s)

Ii+1I j+1

)
(ξi, ξ j )∂k,s f (ξi, ξ j )

=

1∑
k=0

1∑
s=0

(k,s),(0,0)

N−1∑
j=1

N−1∑
i=1

(i, j),(1,1)

(
K (s,k)

I j Ii
− K (s,k)

I j Ii+1
− K (s,k)

I j+1Ii
+ K (s,k)

I j+1Ii+1

)
(ξ j, ξi)∂s,k f (ξ j, ξi).

(4.43)

By Property 4.1.1 (i), it is clear that

(
K (k,s)

Ii I j
− K (k,s)

Ii I j+1
− K (k,s)

Ii+1I j
+ K (k,s)

Ii+1I j+1

)
(ξi, ξ j )

=

(
K (s,k)

I j Ii
− K (s,k)

I j Ii+1
− K (s,k)

I j+1Ii
+ K (s,k)

I j+1Ii+1

)
(ξ j, ξi). (4.44)

Combining (4.44) and (4.45), we can rewrite the summation symmetrically as

1∑
k=0

1∑
s=0

(k,s),(0,0)

I I (k,s)
3,1

=
1
2

1∑
k=0

1∑
s=0

(k,s),(0,0)

N−1∑
j=1

N−1∑
i=1

(i, j),(1,1)

(
K (k,s)

Ii I j
− K (k,s)

Ii I j+1
− K (k,s)

Ii+1I j
+ K (k,s)

Ii+1I j+1

)
(ξ j, ξi)

·
(
∂k,s f (ξi, ξ j ) + ∂s,k f (ξ j, ξi)

)
. (4.45)

By using Property 4.1.1 (ii) with w(ξ ) = |ξ |−α, we get

����

(
K (k,s)

Ii I j
− K (k,s)

Ii I j+1
− K (k,s)

Ii+1I j
+ K (k,s)

Ii+1I j+1

)
(ξ j, ξi)

���� ≤ Ch3+(k+s) |ξ i−1, j−1 |
−α−1. (4.46)
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Further, by triangle inequality and Lemma 4.1.1 (i), we have

1∑
k=0

1∑
s=0

(k,s),(0,0)

I I (k,s)
3,1

≤
1
2

1∑
k=0

1∑
s=0

(k,s),(0,0)

N−1∑
j=1

N−1∑
i=1

(i, j),(1,1)

����

(
K (k,s)

Ii I j
− K (k,s)

Ii I j+1
− K (k,s)

Ii+1I j
+ K (k,s)

Ii+1I j+1

)
(ξ j, ξi)

����

·
���∂k,s f (ξi, ξ j ) + ∂s,k f (ξ j, ξi)

���

≤ Ch−1+(k+s)
1∑

k=0

1∑
s=0

(k,s),(0,0)

N−1∑
j=1

N−1∑
i=1

(i, j),(1,1)

∫ ξi

ξi−1

∫ ξ j

ξ j−1

|ξ |−α−1dξ ·
∫ ξi

ξi−1

∫ ξ j

ξ j−1

|ξ |α/2+1−(k+s)dξ .

(4.47)

Finally, by Lemma 4.1.4, we have

1∑
k=0

1∑
s=0

(k,s),(0,0)

I I (k,s)
3,1

≤ Ch1+(k+s)
1∑

k=0

1∑
s=0

(k,s),(0,0)

N−1∑
j=1

N−1∑
i=1

(i, j),(1,1)

∫ ξi

ξi−1

∫ ξ j

ξ j−1

|ξ |−α/2−(k+s)dξ

≤ Ch1+(k+s)
1∑

k=0

1∑
s=0

(k,s),(0,0)

(∫ h

0

∫ L

h
|ξ |−α/2−(k+s)dξ +

∫ L

h

∫ L

h
|ξ |−α/2−(k+s)dξ

)

≤ Ch2. (4.48)
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Next, we focus on term I I (k,s)
3,2 , i.e.

I I (k,s)
3,2 =

N−1∑
i=1

(
K (k,s)

Ii IN
− K (k,s)

Ii+1IN

)
(ξi, ξN )∂k,s f (ξi, ξN )

+

N−1∑
j=1

(
K (k,s)

IN I j
− K (k,s)

IN I j+1

)
(ξN, ξ j )∂k,s f (ξN, ξ j )

+

N−1∑
i=2

(
K (k,s)

Ii+1I1
− K (k,s)

Ii I1

)
(ξi, ξ0)∂k,s f (ξi, ξ0)

+

N−1∑
j=2

(
K (k,s)

I1I j+1
− K (k,s)

I1I j

)
(ξ0, ξ j )∂k,s f (ξ0, ξ j ). (4.49)

Following the same line as the estimation of term I I (k,s)
3,1 by exchanging k, s and using

Property 4.1.1 (i), we get

1∑
k=0

1∑
s=0

(k,s),(0,0)

I I (k,s)
3,2

=

1∑
k=0

1∑
s=0

(k,s),(0,0)

{ N−1∑
i=1

(
K (k,s)

Ii IN
− K (k,s)

Ii+1IN

)
(ξi, ξN )

(
∂k,s f (ξi, ξN ) + ∂s,k f (ξN, ξi)

)

+

N−1∑
i=2

(
K (k,s)

Ii+1I1
− K (k,s)

Ii I1

)
(ξi, ξ0)

(
∂k,s f (ξi, ξ0) + ∂s,k f (ξ0, ξi)

) }

Finally, following the same line as the estimation of term I I k,s
3,1 , we have

����

1∑
k=0

1∑
s=0

(k,s),(0,0)

I I (k,s)
3,2

����

≤ Ch1+(k+s)
1∑

k=0

1∑
s=0

(k,s),(0,0)

{ N−1∑
i=1

∫ ξN

ξN−1

∫ ξi

ξi−1

|ξ |−α/2−(k+s)dξ +
N−1∑
i=2

∫ ξ1

ξ0

∫ ξi

ξi−1

|ξ |−α/2−(k+s)dξ
}

≤ Ch1+(k+s)
1∑

k=0

1∑
s=0

(k,s),(0,0)

(∫ L

L−h

∫ L

0
|ξ |−α/2−(k+s)dξ +

∫ h

0

∫ L

h
|ξ |−α/2−(k+s)dξ

)

≤ Ch3−α/2. (4.50)
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For term I I (k,s)
3,3 , we have

I I (k,s)
3,2 = K (k,s)

IN IN
(ξN, ξN )∂k,s f (ξN, ξN ) + K (k,s)

IN I1
(ξN, ξ0)∂k,s f (ξN, ξ0)

+K (k,s)
I1IN

(ξ0, ξN )∂k,s f (ξ0, ξN ) + K (k,s)
I2I1

(ξ1, ξ0)∂k,s f (ξ1, ξ0)

+K (k,s)
I1I2

(ξ0, ξ1)∂k,s f (ξ0, ξ1) + K (k,s)
I2I2

(ξ1, ξ1)∂k,s f (ξ1, ξ1)

−K (k,s)
I1I2

(ξ1, ξ1)∂k,s f (ξ1, ξ1) − K (k,s)
I2I1

(ξ1, ξ1)∂k,s f (ξ1, ξ1).

Then by Definition 4.1.3 and Lemma 4.1.1 (ii), it follows directly that

����

1∑
k=0

1∑
s=0

(k,s),(0,0)

I I (k,s)
3,3

���� ≤ Ch2. (4.51)

Finally, combining the estimations of terms Ĩ and Ĩ I, it shows that for any u ∈ C3,α/2(R2),

specially by taking γ = 2 gives,

‖eh
α,γ (x)‖ = 

(−∆)α/22 u(x) − (−∆)α/2h,γ u(x)

L∞(Ω) ≤ Ch2.

�

4.1.3. Numerical Experiments. Consider the functions of the form

u(x, y) =



[(1 − x2)(1 − y2)]s+α/2, if (x, y) ∈ Ω

0, otherwise,
(4.52)

which is in Cs,α/2(R2) and has compact support on Ω = {x ∈ R2 : |x | < 1 and |y | < 1}. To

test the analytical results in Theorem 4.1.2 and 4.1.3, we specifically consider the cases by

taking s = 1 and s = 3. Since the fractional Laplacian of this type of function can not be

computed analytically, we will use the numerical solution by taking γ = 2 and N = 8192

as the exact solution for all the following numerical tests.
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Example 4.3.1. For s = 1, i.e. u ∈ C1,α/2(R2), as shown in Theorem 4.1.2 that for

u ∈ C1,α/2(R2), the accuracy of the weighted trapezoidal method in l∞-norm is O(h1−α/2)

for small mesh size h, and it is independent of the splitting parameter γ ∈ (α, 2]. Figure

4.1 presents the numerical errors by taking γ = 1 + α/2 and 2.
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Figure 4.1. Numerical errors of the weighted trapezoidal method for γ = 2 and 1 + α/2
for u defined in (3.47) with s = 1. The errors are defined in l∞-norm (top row) or l2-norm
(bottom row).

Additionally, Figure 4.1 (bottom) compares the numerical errors in l2-norm for

different choice of γ. It shows that choosing the parameter γ = 2 leads to a better

convergence rate in l2-norm.

Example 4.3.2. For s = 3, i.e. u ∈ C3,α/2(R2), as shown in Theorem 4.1.3, only by

taking γ = 2, the accuracy of the weighted trapezoidal method in l∞-norm is O(h2).
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Table 4.1. Numerical errors of the fractional Laplacian for u ∈ C3,α/2(R2).

α
h 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

0.2 1.062E-4 2.679E-5 6.716E-6 1.679E-6 4.187E-7 1.0344E-7 2.463E-8
c.r. 1.9852 1.9959 1.9998 2.0039 2.0170 2.0704

1 4.594E-3 1.154E-3 2.892E-4 7.231E-5 1.803E-5 4.457E-6 1.061E-6
c.r. 1.9928 1.9970 1.9995 2.0035 2.0167 2.0702

1.9 6.695E-2 1.653E-2 4.383E-3 1.176E-3 3.011E-4 7.489E-5 1.780E-5
c.r. 2.0183 1.9146 1.8983 1.9654 2.0075 2.0726

Table 4.1 presents numerical errors ‖(−∆)α/2u − (−∆)α/2h u‖l∞(Ω) and convergence

rates of the weighted trapezoidal method for various α by taking u in (3.47) with s = 3,

where the splitting parameters are taken to be γ = 2. It shows that the convergence rates of

the weighted trapezoidal method is O(h2) for any α ∈ (0, 2), which confirms our analytical

results in Theorem 4.1.3. In addition, we find that for the same mesh size h, the larger the

parameter α, the bigger the numerical errors.

4.2. HIGHER DIMENSIONAL CASE

4.2.1. Numerical Scheme. The weighted trapezoidal method can be extended to

any d dimension for d ≥ 2. In the following, we will first use the general d-dimensional

notation to derive the weighted trapezoidal method. Then, to show it clear, we will explicitly

provide the numerical scheme in 3D. As proved in 1D and 2D cases, for smooth enough

functions u ∈ C3,α/2(Rd) (d = 1, 2) with γ = 2, the weighted trapezoidal method has second

order accuracy. We conjecture that the same analytical result will hold in any d-dimension

(d ≥ 1) and will justify it numerically.
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Consider the d-dimensional fractional Laplacian in (1.2). By changing of variables,

i.e. letting ξi = |xi − x̂i | (i = 1, 2, . . . , d) and defining vector ξ= (ξ1, . . . , ξd), the fractional

Laplacian can be further written as

(−∆)α/2u(x) = Cd,α

∫
(R+)d

( ∑
v∈Iver(x,ξ)

u (v) − 2du(x)
)
· |ξ |−(d+α) dξ, (4.53)

where (R+)d := (0,∞) × (0,∞) × · · · × (0,∞)︸                                 ︷︷                                 ︸
d−th intervals

, and we define the d-dimensional cube I(x,ξ )

which is centered at xwith radius ξ1, . . . , ξd in each direction. For any d-dimensional cube,

we define its vertex set as

Iver :=
{
v ∈ Rd �� v is the vertex of cube I

}
. (4.54)

Following the same line as 2D case, we introduce a function ψγ (x, ξ ) and define it as

ψγ (x, ξ ) :=
( ∑
v∈Iver(x,ξ)

u (v) − 2du(x)
)
· |ξ |−γ .

Consider a d-dimensional cube Ω = (a1, b1) × · · · × (ad, bd) and let L = max{b1 −

a1, . . . , bd −ad }. For functions u which is compactly supported onΩ, we can further rewrite

the fractional Laplacian by splitting it into two parts,

(−∆)α/2u(x) = −Cd,α

( ∫
(0,L)d

ψ0(x, ξ ) · |ξ |−(d+α) dξ

+

∫
(R+)d\(0,L)d

ψ0(x, ξ ) · |ξ |−(d+α) dξ
)
. (4.55)
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The second integral in (4.55) can be found exactly. Precisely, for any x ∈ Ω, if

ξ ∈ (R+)d\(0, L)d , then all the vertices v of the d-dimensional cube I(x,ξ ) satisfy v ∈ Rd\Ω,

and thus u(v) = 0. Hence, we obtain

∫
(R+)d\(0,L)d

ψ0(x, ξ ) · |ξ |−(d+α) dξ

= −2du(x)
∫

(R+)d\(0,L)d
|ξ |−(d+α) dξ = −2d wL u(x), (4.56)

where the coefficient wL is defined by

wL =

∫
(R+)d\(0,L)d

|ξ |−(d+α) dξ .

Next, we apply the weighted trapezoidal method to approximate the first integral

in (4.55). We adopt the uniform mesh by choosing a positive integer N , and define the

mesh size h = L/N . Denote grid points ξ1,i = · · · = ξd,i = ih, for 0 ≤ i ≤ N , evidently

ξ1,N = · · · = ξd,N = L. For brevity, we introduce the notation ξn := (ξ1,n1, ξ2,n2, . . . , ξd,nd ),

where n := (n1, . . . , nd) for 0 ≤ ni ≤ N (i = 1, . . . , d).

We formulate the first integral in (4.55) as theweighted integral ofψγ, with |ξ |γ−(d+α)

representing the weight function,

∫
(0,L)d

ψ0(x, ξ ) · |ξ |−(d+α) dξ =
∑

τ∈{1,2,...,N }d

∫
Iτ
ψγ (x, ξ ) · |ξ |γ−(d+α) dξ, (4.57)

where τ := (τ1, . . . , τd) is a d-dimensional vector belongs to the set

{1, 2, . . . , N }d :=
{
τ ∈ (N+)d �� 1 ≤ τi ≤ N, i = 1, . . . , d

}
,

and the d-dimensional interval Iτ is defined by

Iτ := [(τ1 − 1)h, τ1h] × · · · × [(τd − 1)h, τd h].
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For τ , (1, 1, . . . , 1), we apply the weighted trapezoidal method to approximate the

integrals in (4.57)

∫
Iτ
ψγ (x, ξ ) · |ξ |γ−(d+α) dξ ≈

1
2d

*..
,

∑
ξ̂∈Iverτ

ψγ (x, ξ̂ )
+//
-
·

∫
Iτ
|ξ |γ−(d+α) dξ, (4.58)

where Iverτ includes all the vertices of Iτ .

For τ = (1, 1, . . . , 1), there is I1 = (0, h)×· · ·× (0, h), directly applying the weighted

trapezoidal rule as in (4.58) will lead to

∫
I1
ψγ (x, ξ ) · |ξ |γ−(d+α) dξ ≈

1
2d

*..
,

∑
ξ̂∈Iver1

ψγ (x, ξ̂ )
+//
-
·

∫
I1
|ξ |γ−(d+α) dξ . (4.59)

However, since 0 is one of the vertex of I1, it arises a problem when evaluating ψγ (x, 0),

which is singular at 0. For this reason, we consider ψγ (x, 0) as a limit lim
ξ→0

ψγ (x, ξ ). Next,

we focus on the approximation of this limit.

• For γ ∈ (α, 2), the limit equals zero, thus the integral I1 is approximated by

∫
I1
ψγ (x, ξ ) · |ξ |γ−(d+α) dξ ≈

1
2d

∑
ξ̂∈Iver1 \{0}

ψγ (x, ξ̂ )
∫

I1
|ξ |γ−(d+α) dξ . (4.60)

• For γ = 2, we approximate the limit by

lim
ξ→0

ψ2(x, ξ ) =
(
2d

d
− 1

) d∑
i=1

ψ2(x, hei) −
∑

ξ̂∈Iver1 \{0}

ξ̂,he1,...,hed

ψ2(x, ξ̂ ),
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and it follows that the integral I1 can be approximated by

∫
I1
ψ2(x, ξ ) · |ξ |2−(d+α) dξ ≈

1
2d

{ (
2d

d
− 1

) d∑
i=1

ψ2(x, hei)

−
∑

ξ̂∈Iver1 \{0}

ξ̂,he1,...,hed

ψ2(x, ξ̂ ) +
∑

ξ̂∈Iver1 \{0}

ψγ (x, ξ̂ )
} ∫

I1
|ξ |2−(d+α) dξ

=
1
d

d∑
i=1

ψ2(x, hei)
∫

I1
|ξ |2−(d+α) dξ (4.61)

Define I(ξ̂,h) be the d-dimensional cube centered at ξ̂ with radius h in each direction.

Therefore, summing τ over {1, 2, . . . , N }d , and then combining (4.58) with (4.60) or (4.61),

we have the following approximations.

For γ ∈ (1 − α, 2),

∑
τ∈{1,2,...,N }d

∫
Iτ
ψγ (x, ξ ) · |ξ |γ−(d+α) dξ

≈
1
2d

{ ∑
τ∈{1,...,N }d
τ,(1,...,1)

∑
ξ̂∈Iverτ

ψγ (x, ξ̂ )
∫

Iτ
|ξ |γ−(d+α) dξ +

∑
ξ̂∈Iver1 \{0}

ψγ (x, ξ̂ )
∫

Iτ
|ξ |γ−(d+α) dξ

}

=
1
2d

∑
n∈{0,1,...,N }d

ψγ (x, ξn)
∫

I(ξn,h)∩[0,L]d
|ξ |γ−(d+α) dξ, (4.62)
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For γ = 2,

∑
τ∈{1,2,...,N }d

∫
Iτ
ψγ (x, ξ ) · |ξ |γ−(d+α) dξ

≈
1
2d

∑
τ∈{1,...,N }d
τ,(1,...,1)

∑
ξ̂∈Iverτ

ψγ (x, ξ̂ )
∫

Iτ
|ξ |γ−(d+α) dξ +

1
d

d∑
i=1

ψ2(x, hei)
∫

I1
|ξ |2−(d+α) dξ

≈

d∑
i=1

ψγ (x, hei) *
,

1
2d

∫
I(hei ,h)∩(0,L]d

|ξ |γ−(d+α) dξ +
(
1
d
−

1
2d

) ∫
I1
|ξ |γ−(d+α) dξ+

-
+
1
2d

∑
ξ̂∈Iver1 \{he1,...,hed }

ψγ (x, ξ̂ )
∫

(I(̂ξ,h)\I1)∩(0,L]d
|ξ |γ−(d+α) dξ

+
1
2d

∑
n∈{0,1,...,N }d,

ξn<I1

ψγ (x, ξn)
∫

I(ξn,h)∩(0,L]d
|ξ |γ−(d+α) dξ . (4.63)

In fact, the left-hand side of (4.62) and (4.63) can be viewed as summing over the d-

dimensional intervals Iτ , while the right-hand side can be viewed as summing over the grid

points in (0, L]d .

Combining (4.55)–(4.57) and (4.62) (or (4.63)), the discretization of the d-dimensional

fractional Laplacian is

(−∆)α/2h,γ u(x) = −Cd,α

(
a0 u(x) +

∑
n∈{0,1,...,N }d

n,0

an
∑

v∈Iver(x,ξn)

u (v)
)
,

where v are the vertices of the d-dimensional cube I(x,ξn), which is centered at xwith radius

ξn. For different γ, an is given as follows.

• For γ ∈ (α, 2),

an =
1

2d−k

∫
I(ξn,h)∩[0,L]d

|ξ |γ−(d+α) dξ, if n ∈ Vk (0 ≤ k ≤ d);
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where

Vk = {n ∈ {0, 1, . . . , N }d | if there are k entries of n equal 0}.

• For γ = 2, we only list the an’s which are different from γ ∈ (α, 2)

an =




1
2d−k

∫
(I(ξn,h)\I1)∩(0,L]d

|ξ |2−(d+α) dξ, if n ∈ Vk (0 ≤ k ≤ d)

and ξn ∈ I1\{he1, . . . , hed },

2
2d

∫
I(ξn,h)∩(0,L]d

|ξ |2−(d+α) dξ +
(
2
d
−

2
2d

) ∫
I1
|ξ |2−(d+α) dξ,

if ξn = hei for i = 1, 2, . . . , d.

and

a0 = −
d−1∑
k=0

2d−k
∑

n∈Vk\{0}
an − 2dwL .

For easy illustration, we present the 3D matrix-vector form of the fractional Lapla-

cian in the following. The high dimensional cases can follow the same line.

Denote the 3D vector

ux,y,z = (uT
x,y,1, u

T
x,y,2, . . . , u

T
x,y,Nz−1)T,
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whereux,y,k = (uT
x,1,k, . . . , u

T
x,Ny−1,k )T for k = 1, 2, . . . , Nz−1, andux, j,k = (u1, j,k, . . . , uNx−1, j,k )T

for j = 1, 2, . . . , Ny − 1 and k = 1, 2, . . . , Nz − 1. The matrix representation of the 3D frac-

tional Laplacian (−∆)α/2h,γ u(x, y, z) is A(3)ux,y,z, that

A(3) =

*..............
,

Ax,y,0 Ax,y,1 . . . Ax,y,Nz−3 Ax,y,Nz−2

Ax,y,1 Ax,y,0 Ax,y,1 · · · Ax,y,Nz−3
...

. . .
. . .

. . .
...

Ax,y,Nz−3 . . . Ax,y,1 Ax,y,0 Ax,y,1

Ax,y,Nz2 Ax,y,Nz−3 . . . Ax,y,1 Ax,y,0

+//////////////
-[(Nx−1)(Ny−1)(Nz−1)]2

,

where

Ax,y,k =

*..............
,

Ax,0,k Ax,1,k . . . Ax,Ny−3,k Ax,Ny−2,k

Ax,1,k Ax,0,k Ax,1,k · · · Ax,Ny−3,k
...

. . .
. . .

. . .
...

Ax,Ny−3,k . . . Ax,1,k Ax,0,k Ax,1,k

Ax,Ny−2,k Ax,N2−3,k . . . Ax,1,k Ax,0,k

+//////////////
-[(Nx−1)(Ny−1)]2

,

for k = 0, 1, . . . , Nz − 2, and

Ax, j,k =

*..............
,

a0, j,k a1, j,k . . . aNx−3, j,k aNx−2, j,k

a1, j,k a0, j,k a1, j,k · · · aNx−3, j,k
...

. . .
. . .

. . .
...

aNx−3, j,k . . . a1, j,k a0, j,k a1, j,k

aNx−2, j,k aNx−3, j,k . . . a1, j,k a0, j,k

+//////////////
-(Nx−1)2

,
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for j = 0, 1, . . . , Ny − 2 and k = 0, 1, . . . , Nz − 2. Notice that each Ax, j,k is a symmetric

Toeplitz matrix, and each Ax,y,k is a block-Toeplitz matrix constructed by the matrices Ax, j,k

for j = 0, 1, . . . , Ny − 2. Similarly, the matrix A(3) is also a block-Toeplitz matrix with each

block Ax,y,k also be a block-Toepliz matrix. The computation of A(3)u can be achieved

efficiently by using the fast Fourier transform (FFT), which we will introduce in Section 6.

4.2.2. NumericalExperiments. As suggested in 1Dand2Dcases, foru ∈ C3,α/2(Rd)

(d = 1, 2), the weighted trapezoidal method is second order accuracy by taking the splitting

parameter γ = 2. We conjecture the same result also holds in 3D and will numerically

justify it by considering the following example.

Example. Consider the functions of the form

u(x, y, z) =



[(1 − x2)(1 − y2)(1 − z2)]3+α/2, if (x, y, z) ∈ Ω

0, otherwise,
(4.64)

which is in C3,α/2(R3) and has compact support on Ω = {x ∈ R3 : |x | < 1 |y | < 1 |z | < 1}.

Since the fractional Laplacian of this type of function can not be computed analytically, we

will use the numerical solution by taking γ = 2 and N = 256 as the exact solution.

Table 4.2. Numerical errors of the fractional Laplacian for u ∈ C3,α/2(R3).

α
h 1/4 1/8 1/16 1/32 1/64

0.3 1.2160E-2 3.6919E-3 9.6941E-4 2.3505E-4 4.7266E-5
c.r. 1.7197 1.9292 2.0441 2.3141

1 1.3202E-1 3.9773E-2 1.0791E-2 2.6827E-3 5.4721E-4
c.r. 1.7309 1.8820 2.0081 2.2935

1.9 1.6007E-0 4.1340E-1 1.0402E-1 2.5075E-2 5.0615E-3
c.r. 1.9531 1.9907 2.0525 2.3086
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Table 4.2 presents numerical errors ‖(−∆)α/2u − (−∆)α/2h,γ u‖l∞(Ω) and convergence

rates of the weighted trapezoidal method for various α by taking u in (4.64), where the

splitting parameter is taken to be γ = 2. It shows that the weighted trapezoidal method in

3D also has second order accuracy by taking γ = 2, which justifies our conjecture.

In this Section, we extend the weighted trapezoidal method from one dimension to

general d dimension (d ≥ 2). Different to the 1D case which either γ = 1 + α/2 or 2 can

provide an accuracy of O(h2), our analysis in two dimension suggest that γ = 2 is the only

optimal choice to get second order accuracy for u ∈ C3,α/2(R2). Our extensive simulations

in 3D also suggests the same result that only by taking γ = 2 can provide a second order

accuracy. Therefore, we conjecture that γ = 2 is the only choice of the splitting parameter

that will provide a second order accuracy for functions in C3,α/2(Rd) with d ≥ 2.
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5. THE WEIGHTED LINEAR INTERPOLATION METHOD

The interpolation methods are widely applied in numerical approximation. How-

ever, directly applying the traditional interpolation method to approximate the fractional

Laplacian lead to low accuracy because of the hypersingularity. In this section, we propose

a weighted linear interpolation method. For smooth enough functions, it provides second

order accuracy. This method is comparable with the weighted trapezoidal method that is

proposed in Section 3. The common feature of these two methods is the application of

the weighted integral. In addition, the weighted linear interpolation method can be easily

extended to higher dimensions.

5.1. ONE-DIMENSIONAL CASE

To simply show the main idea of the weighted linear interpolation method, we will

start with the derivation in 1D. Error analysis are presented for functions with different

smoothness conditions. Numerical examples will be provided to test the analytical results.

5.1.1. Numerical Scheme. First, following the same lines as the weighted trape-

zoidal method, we can rewrite the fractional Laplacian as in (3.2). The evaluation of the

second integral in (3.2) is the same as the weighted trapezoidal method, which is obtained

in (3.3). Here, we introduce a weighted linear interpolation method to approximate the first

integral in (3.2).

First, we interpolate ψγ (x, ξ) with respect to ξ ∈ [0, L] by using the piecewise linear

basis function φi as

ψγ (x, ξ) ≈ Pψγ (x, ξ) =
N∑

i=0
ψγ (x, ξi)φi (ξ). (5.1)
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where

φi (ξ) =




ξ − ξi−1
ξi − ξi−1

, if ξ ∈ [ξi−1, ξi],
ξi+1 − ξ

ξi+1 − ξi
, if ξ ∈ [ξi, ξi+1],

0, otherwise.

(5.2)

Because of the singularity at ξ = 0, the value of ψγ (x, ξ0) is defined as a limit as

ξ → 0, i.e. ψγ (x, ξ0) := lim
ξ→0

ψγ (x, ξ). The parameter γ is taken in (α − 1, 2] to guarantee

the convergence of the method. Assume that u is smooth enough, to find the limit, we

separate our discussion in two cases.

Case 1: For γ ∈ (α − 1, 2),

ψγ (x, ξ0) = lim
ξ→0

u(x − ξ) + u(x + ξ) − 2u(x)
ξ2

· ξ2−γ ≈ u′′(x) lim
ξ→0

ξ2−γ = 0. (5.3)

Case 2: For γ = 2,

ψ2(x, ξ0) = lim
ξ→0

u(x − ξ) + u(x + ξ) − 2u(x)
ξ2

≈ u′′(x). (5.4)

Notice that the further approximation of u′′(x) for γ = 2 in (5.4) depends on the

interpolation basis functions (i.e. whether it is constant, linear, quadratic, and so on) to

match up with the accuracy of the approximation of the first integral in (3.2). But here

we will only focus on the linear basis functions, which we expect to get a second order

accuracy for smooth enough functions u. Therefore, we use the central difference scheme

to approximate u′′(x), and following (5.4), ψ2(x, ξ0) can be further approximated as

ψ2(x, ξ0) ≈
u(x − h) − 2u(x) + u(x + h)

h2
= ψ2(x, ξ1). (5.5)
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Substituting (5.1) into the first integral in (3.2) gives

∫ L

0
ψγ (x, ξ)ξ−1−α+γdξ ≈

N∑
i=0

ψγ (x, ξi)
∫ L

0
φi (ξ) · ξ−1−α+γdξ, (5.6)

where ψγ (x, ξ0) is approximated by (5.3) if γ ∈ (α − 1, 2) or by (5.5) if γ = 2.

Combining (3.2), (3.3) and (5.6), the fractional Laplacian (−∆)α/2 is approximated

by

(−∆)α/2h,γ u(x) = −C1,α

N∑
i=0

ψγ (x, ξi)
∫ L

0
φi (ξ) ξ−1−α+γdξ +

2C1,α

αLα
u(x), for x ∈ (a, b),

where the function ψγ (x, ξi) (i = 1, . . . , N) is defined in (3.5) and ψγ (x, ξ0) is approximated

by (5.3) (or (5.5)) if γ ∈ (α − 1, 2) (or γ = 2).

The fully discretization of the fractional Laplacian has the same expression as the

weighted trapezoidal method in (3.9), i.e.

(−∆)α/2h,γ ui = −C1,α

(
a0 ui +

( i−1∑
j=1

a jui− j +

N−1−i∑
j=1

a jui+ j

))
, (5.7)

for i = 1, 2, . . . , N − 1, where for γ ∈ (α − 1, 2),

ai =
1
ξ
γ
i

∫ L

0
φi (ξ) · ξ−1−α+γ dξ, for i = 1, . . . , N,

a0 = −2 *
,

N∑
i=1

ai +
1

αLα
+
-
, (5.8)

while for γ = 2, the calculation of ai is the same as (5.8), except,

a1 =
1
ξ
γ
1

∫ L

0

(
φ0(ξ) + φ1(ξ)

)
· ξ−1−α+γ dξ. (5.9)

The matrix-vector form is the same as the weighted trapezoidal method in (3.10).
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5.1.2. Error Estimates. In this section, we provide error estimates on our weighted

linear interpolation method in discretizing the fractional Laplacian.

Theorem 5.1.1 (Accuracy for functions inC1,α/2(R)). Suppose that u ∈ C1,α/2(R) has finite

support on an open set Ω ∈ R, and (−∆)α/2h,γ in (5.7) is the weighted linear interpolation

approximation of the fractional Laplacian (−∆)α/2. Then, for any γ ∈ (α − 1, 2], there is



(−∆)α/2u(x) − (−∆)α/2h,γ u(x)

∞,Ω ≤ Ch1−α/2, for α ∈ (0, 2) (5.10)

with C a positive constant depending on α and γ.

Proof. Define the error function

eh
α,γ (x) = (−∆)α/2u(x) − (−∆)α/2h,γ u(x).

From (5.6), we obtain

eh
α,γ =

∫ h

0
ψγ (x, ξ)ξγ−(1+α)dξ −

∫ h

0

(
ψγ (x, ξ0)φ0(ξ) + ψγ (x, ξ1)φ1(ξ)

)
ξγ−(1+α)dξ

+

N∑
i=2

∫ ξi

ξi−1

(
ψγ (x, ξ) − ψγ (x, ξi−1)φi−1(ξ) − ψγ (x, ξi)φi (ξ)

)
ξγ−(1+α) dξ

= I + I I . (5.11)

For term I with γ ∈ (α − 1, 2), by the approximation of ψγ (ξ0) in (5.3) and triangle

inequality, we get

|I | =
�����

∫ h

0
ψγ (ξ) ξγ−(1+α) dξ −

∫ h

0
ψγ (ξ1)φ1(ξ) ξγ−(1+α) dξ

�����

≤
�����

∫ h

0
ψγ (ξ) ξγ−(1+α) dξ

�����
+ h−1

�����
ψγ (ξ1)

∫ h

0
ξγ−α dξ

�����
.
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Then, by applying Lemma 3.2.2 (i), there is a positive constant C such that

|I | ≤ C
�����

∫ h

0
ξα/2+1−γ ξγ−(1+α) dξ

�����
+ h−1

�����
hα/2+1−γ

∫ h

0
ξγ−α dξ

�����
≤ Ch1−α/2.

For term I with γ = 2, by the approximation of ψγ (ξ0) in (5.4) and triangle inequality, there

is

|I | =
�����

∫ h

0
ψ2(ξ) ξ1−α dξ −

∫ h

0
ψ2(ξ1) ξ1−α dξ

�����

≤
�����

∫ h

0
ψ2(ξ) ξ1−α dξ

�����
+

�����
ψ2(ξ1)

∫ h

0
ξ1−α dξ

�����
.

Then, by applying Lemma 3.2.2 (i), there is a positive constant C such that

|I | ≤ C
�����

∫ h

0
ξα/2−1 ξ1−α dξ

�����
+

�����
h−1+α/2

∫ h

0
ξ1−α dξ

�����
≤ Ch1−α/2.

For term I I with any γ ∈ (α − 1, 2], we first rewrite it as

I I =
N∑

i=2

∫ ξi

ξi−1

( (
ψγ (x, ξ) − ψγ (x, ξi−1)

)
φi−1(ξ)

+
(
ψγ (x, ξ) − ψγ (x, ξi)

)
φi (ξ)

)
ξγ−(1+α) dξ.

Then by triangle inequality and Talyor theorem, we have

|I I | ≤
N∑

i=2

∫ ξi

ξi−1

( ���ψγ (x, ξ) − ψγ (x, ξi−1)��� φi−1(ξ)

+
���ψγ (x, ξ) − ψγ (x, ξi)

��� φi (ξ)
)
ξγ−(1+α) dξ

≤ Ch
N∑

i=2

∫ ξi

ξi−1

(
max

η∈[ξi−1,ξi ]
���ψγ (η)��� φi−1(ξ) + max

η̃∈[ξi−1,ξi ]
���ψγ (η̃)��� φi (ξ)

)
ξγ−(1+α) dξ.
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Finally, by applying Lemma 3.2.2 (i), we get

|I I | ≤ Ch
N∑

i=2

∫ ξi

ξi−1

ξα/2−γ
(
φi−1(ξ) + φi (ξ)

)
ξγ−(1+α) dξ

≤ Ch
∫ L

h
ξ−1−α/2 dξ ≤ Ch1−α/2.

Therefore, we proved that for γ ∈ (α − 1, 2], |eh
α,γ | ≤ Ch1−α/2. �

Next, wewill show that for a smooth enough function u, the accuracy of the weighted

linear interpolation method can be improved to O(h2) uniformly for any α ∈ (0, 2).

Theorem 5.1.2 (Convergence rate for u ∈ C3,α/2(R)). Suppose that u ∈ C3,α/2(R) has finite

support on an open setΩ ∈ R, and (−∆)α/2h,γ defined in (5.7) is a weighted linear interpolation

approximation of the fractional Laplacian (−∆)α/2. If the parameter is chosen as γ = 1 or

2, there is



(−∆)α/2u(x) − (−∆)α/2h,γ u(x)

∞,Ω ≤ Ch2, for α ∈ (0, 2) (5.12)

with C a positive constant depending on α.

Proof. For brevity, we start with the local truncation error in (5.11).

First, we focus on the case of γ = 2.

Recall that for γ = 2, we approximate ψγ (x, ξ0) by ψγ (x, ξ1) as in (5.5). Then by

Taylor theorem and Lemma 3.2.2 (ii), we have

|I | =
�����

∫ h

0

(
ψ2(ξ) − ψ2(ξ1)

)
ξ1−α dξ

�����

≤ Ch max
η∈[0,h]

|ψ′2(η) |
∫ h

0
ξ1−αdξ ≤ Ch3−α/2.
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Now, we focus on term I I. By the definition of the interpolation operator P, we can

first rewrite I I and then using the triangle inequality, that

|I I | =
�������

N−1∑
j=1

∫ ξ j+1

ξ j

(ψ2(x, ξ) − Pψ2)ξ1−αdξ
�������

≤

N−1∑
j=1

������

∫ ξ j+1

ξ j

(ψ2(x, ξ) − Pψ2)ξ1−αdξ
������
=

N−1∑
j=1

I I j .

Next, let’s focus on the error estimation for each I I j ( j = 1, 2, . . . , N − 1). By using the

error estimates for the linear interpolation for function ψ2(x, ξ) for ξ ∈ (ξ j, ξ j+1), there is

I I j =

������

∫ ξ j+1

ξ j

(ψ2(x, ξ) − Pψ2)ξ1−αdξ
������
≤ Ch2 max

η∈[ξ j,ξ j+1]
|ψ′′2 (x, η) |

(
ξ2−αj+1 − ξ

2−α
j

)
.

Following similar lines as the estimations in (3.36) and (3.37), by summing over j from 1

to N − 1, we can prove |I I | ≤ Ch2, and it follows that |eh
α,γ | ≤ Ch2.

Next, we focus on the case of γ = 1.

Different to γ = 2, in this case, we have ψγ (x, ξ0) = 0 as in (5.3). Then we have

|I | =
�����

∫ h

0
ψ1(x, ξ)ξ−αdξ − ψ1(x, ξ0)

∫ h

0
ξ−αφ0(ξ)dξ − ψ1(x, ξ1)

∫ h

0
ξ−αφ1(ξ)dξ

�����

=
�����

∫ h

0

(
ψ2(x, ξ) − ψ2(x, ξ1)

)
ξ1−αdξ

�����
≤ Ch3−α/2.

Noticing that, although the term I is approximated through different ways for γ = 2 and 1,

but they eventually have the same expression.

The estimation of term I I follows the same line as the case of γ = 2, for brevity, we

start from the estimation of each term I j ( j = 1, 2, . . . , N − 1). Again, by using the error

estimates for the linear interpolation for function ψ1(x, ξ) for ξ ∈ (ξ j, ξ j+1), there is

I I j =

������

∫ ξ j+1

ξ j

(ψ1(x, ξ) − Pψ1)ξ−αdξ
������
≤ Ch2 max

η∈[ξ j,ξ j+1]
|ψ′′1 (η) |

(
ξ1−αj+1 − ξ

1−α
j

)
.
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Then, by applying Lemma 3.2.2 (ii) with m = 2, for any η ∈ (ξ j, ξ j+1), there is

I I j ≤ Ch2 max
η∈[ξ j,ξ j+1]

ηα/2
(
ξ1−αj+1 − ξ

1−α
j

)
≤ Ch3ξ−α/2j (5.13)

Finally, summing over j from 1 to N − 1, we have

|I I | ≤ Ch3
N−1∑
j=1

ξ−α/2j ≤ Ch2
∫ L

0
ξ−α/2dξ ≤ Ch2. (5.14)

Thus, we proved that for γ = 1 or 2, there is |eh
α,γ | ≤ Ch2. �

Theorem 5.1.2 shows that for u ∈ C3,α/2(R), if the splitting parameter is chosen as

γ = 1 or 2, our weighted linear interpolation method has a second order accuracy uniformly

for any α ∈ (0, 2). Similar to the weighted trapezoidal method, in 1D case, the weighted

linear interpolation method also has two optimal choices of the splitting parameter γ to get

the second order accuracy.

5.1.3. Numerical Experiments. In this section, we study the accuracy of the

weighted linear interpolation method in discretizing the fractional Laplacian (−∆)α/2. We

will use the function u of the form in (3.47) in the following examples.

Example 4.1.1. Choose s = 1 in (3.47), i.e. u ∈ C1,α/2(R). As shown in Theorem

5.1.1 that in this case, the accuracy of the weighted linear interpolation method in l∞-norm

is of order O(h1−α/2) for small mesh size h, and it is independent of the splitting parameter

γ ∈ (α − 1, 2]. Figure 5.1 presents the numerical errors by taking different γ in l∞- and

l2-norms. It shows that choosing the parameter γ = 1 leads to more accurate results than

γ = 2. Also, the convergence rates in l2-norm are of order O(h(3−α)2/2) for both γ = 1 and

2.

Example 4.1.2. Choose s = 3 in (3.47), i.e. u ∈ C3,α/2(R), as shown in Theorem

5.1.2 that in this case, by taking γ = 1 or 2, the accuracy of the weighted linear interpolation

method in l∞-norm is of order O(h2).
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Figure 5.1. Numerical errors of the weighted linear interpolation method for γ = 1 and 2
for defined in (3.47) with s = 1. The errors are defined in l∞-norm (top row) or l2-norm
(bottom row).

Tables 5.1 and 5.2 present numerical errors ‖(−∆)α/2u − (−∆)α/2h,γ u‖l∞(Ω) and con-

vergence rates of the weighted linear interpolation method for various α by taking u in

(3.47) with s = 3, where the splitting parameters are taken to be γ = 1 or 2, respectively.

The symbol ‘c.r.’ represents convergence rate.

We find that in both cases, for the same mesh size h, the larger the parameter α, the

bigger the numerical errors. For γ = 1 or 2, both of Table 5.1 and Table 5.2 show that the

convergence rates of the weighted linear interpolation method is O(h2) for any α ∈ (0, 2),

which confirms our analytical result in Theorem 5.1.2. The errors by taking γ = 2 are

always smaller than the errors by taking γ = 1 for the same mesh size h. Similar to the
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Table 5.1. Numerical errors by weighted interpolation method for u ∈ C3,α/2(R) with γ = 1.

α
h 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048

0.2 6.132E-5 1.532E-5 3.830E-6 9.575E-7 2.394E-7 5.984E-8 1.496E-8
c.r. 2.0006 2.0002 2.0001 2.0000 2.0000 2.0000

0.6 2.707E-4 6.752E-5 1.686E-5 4.214E-6 1.053E-6 2.633E-7 6.583E-8
c.r. 2.0034 2.0013 2.0005 2.0002 2.0001 2.0001

1 7.319E-4 1.810E-4 4.502E-5 1.122E-5 2.802E-6 7.001E-7 1.749E-7
c.r. 2.0155 2.0077 2.0039 2.0019 2.0010 2.0006

1.5 3.151E-3 9.494E-4 2.540E-4 6.475E-5 1.616E-5 4.000E-6 9.872E-7
c.r. 1.7309 1.9020 1.9722 2.0022 2.0145 2.0186

1.9 1.490E-2 4.418E-3 1.186E-3 3.045E-4 7.659E-5 1.907E-5 4.726E-6
c.r. 1.7542 1.8975 1.9613 1.9913 2.0057 2.0126

weighted trapezoidal method, specially by taking γ = 2 for α = 1, the errors are smaller

than all the other α’s, and its accuracy is of order O(h2.5), which is higher than the second

order accuracy.

Table 5.2. Numerical errors by weighted interpolation method for u ∈ C3,α/2(R) with γ = 2.

α
h 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048

0.2 3.317E-5 8.361E-6 2.095E-6 5.242E-7 1.31E-7 3.277E-8 8.193E-9
c.r. 1.9881 1.9966 1.9990 1.9997 1.9999 2.0000

0.6 5.645E-5 1.507E-5 3.860E-6 9.738E-7 2.443E-7 6.115E-8 1.530E-8
c.r. 1.9052 1.9651 1.9869 1.9950 1.9981 1.9993

1 9.778E-5 2.381E-5 4.821E-6 9.079E-7 1.655E-7 2.970E-8 5.290E-9
c.r. 2.0378 2.3043 2.4088 2.4559 2.4783 2.4890

1.5 2.057E-3 5.635E-4 1.376E-4 3.207E-5 7.347E-6 1.675E-6 3.824E-7
c.r. 1.8682 2.0344 2.1006 2.1261 2.1330 2.1308

1.9 1.406E-2 4.112E-3 1.089E-3 2.760E-4 6.850E-5 1.683E-5 4.115E-6
c.r. 1.7736 1.9167 1.9804 2.0105 2.0251 2.0321
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5.2. TWO-DIMENSIONAL CASE

The generalization of the weighted linear interpolation method from one dimension

to higher dimensions is straightforward. In this section, we will derive the numerical

scheme of the weighted linear interpolationmethod in two dimension and provide numerical

examples to test its accuracy.

5.2.1. Numerical Scheme. Consider the 2D fractional Laplacian in (4.1). We Start

from the fractional Laplacian in (4.4) with the second integral in (4.4) computed exactly as

in (4.5).

We will focus on the approximation of the first integral in (4.4) by the weighted

linear interpolation method. First, we interpolate ψγ (x, ξ ) with respect to ξ on [0, L]2 as

ψγ (x, ξ ) ≈
N∑

i=0

N∑
j=0

ψγ (x, ξi, η j )φi (ξ)φ j (η). (5.15)

Because of the singularity at (ξ, η) = (0, 0), the value of ψγ (x, ξ0, η0) is defined as

ψγ (x, ξ0, η0) := lim
(ξ,η)→(0,0)

ψγ (x, ξ ). We separate our discussion in two cases for differ-

ent splitting parameters γ.

Case 1: For γ ∈ (α − 1, 2), the limit vanishes, i.e.

ψγ (x, ξ0, η0) = lim
(ξ,η)→(0,0)

ψγ (x, ξ, η) = 0. (5.16)

Case 2: For γ = 2, the value of ψγ (x, ξ0, η0) is approximated by

ψ2(x, ξ0, η0) = lim
(ξ,η)→(0,0)

ψ2(x, ξ, η) ≈
1
2

(
ψ2(x, 0, h) + ψ2(x, h, 0)

)
. (5.17)
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Substituting (5.15) into the first integral in (4.4) gives

∫
(0,L)2

ψ0(x, ξ ) · |ξ |−(2+α) dξ ≈
N∑

i=0

N∑
j=0

ψγ (x, ξi, η j )

·

∫ L

0

∫ L

0
φi (ξ)φ j (η) · |ξ |γ−(2+α) dξ dη, (5.18)

where ψγ (x, ξ0, η0) is approximated by (5.16) if γ ∈ (α − 1, 2) or by (5.17) if γ = 2.

Combining (4.4), (4.5) and (5.18), the two-dimensional fractional Laplacian is

approximated by

(−∆)α/2h,γ u(x) = −C2,α

( N∑
i=0

N∑
j=0

ψγ (x, ξi, η j )
∫ L

0

∫ L

0
φi (ξ)φ j (η) · |ξ |γ−(2+α) dξ dη

−4u(x)
∫
R2\(0,L)2

|ξ |−2−α dξ
)
. (5.19)

Finally, the fully discretization of the fractional Laplacian can be written in the same

form as the weighted trapezoidal method in (4.14), where for γ ∈ (α − 1, 2),

ai j =
1
|ξ i, j |

γ




2
∫ L

0

∫ L

0
φi (ξ)φ j (η) · |ξ |γ−(2+α) dξ dη, if i = 0, j = 1, . . . , N,

2
∫ L

0

∫ L

0
φi (ξ)φ j (η) · |ξ |γ−(2+α) dξ dη, if i = 1, . . . , N, j = 0,∫ L

0

∫ L

0
φi (ξ)φ j (η) · |ξ |γ−(2+α) dξ dη, if i, j = 1, . . . , N,

a00 = −2 *.
,

N∑
i=1

ai0 +
N∑

j=1
a0 j

+/
-
− 4

N∑
i=1

N∑
j=1

ai j − 4wL,

and for γ = 2, only a01 and a10 are different, which are listed as follows,

ai j =
1
|ξ i, j |

γ




∫ L

0

∫ L

0

(
φ0(ξ)φ0(η) + 2φ0(ξ)φ1(η)

)
· |ξ |γ−(2+α) dξ dη, if i = 0, j = 1,∫ L

0

∫ L

0

(
φ0(ξ)φ0(η) + 2φ1(ξ)φ0(η)

)
· |ξ |γ−(2+α) dξ dη, if i = 1, j = 0.
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The same as the weighted trapezoidal method, its matrix-vector form is written as A(2)ux,y

with A(2) expressed in (4.15).

5.2.2. Numerical Experiments. In this section, we numerically study the accuracy

of the weighted linear interpolation method in discretizing the fractional Laplacian (−∆)α/2

with functions have finite support.

Consider the functions of the form in (4.52), we specifically consider the cases by

taking s = 1 and s = 3. Since the fractional Laplacian of this type of functions can not

be computed analytically, we will use the numerical solution by the weighted trapezoidal

method with γ = 2 and Nx = Ny = 8192 to be the exact solution for all the following

numerical tests.

Example 5.2.1. For s = 1, i.e. u ∈ C1,α/2(R2), as shown in Theorem 5.1.1

that for u ∈ C1,α/2(R), the accuracy of the weighted linear interpolation method in l∞-

norm is O(h1−α/2) for small mesh size h, and it is independent of the splitting parameter

γ ∈ (α − 1, 2]. Our extensive numerical results suggest that this result is also hold in two

dimension. Figure 5.2 presents the numerical errors by taking γ = 1 and 2 in both l∞- and

l2-norms.

It shows that choosing the parameter γ = 2 leads to more accurate results in both

l∞- and l2-norms. For γ = 2, the convergence rate in l2-norm is of order O(h(3−α)/2),

which is 0.5 order greater than the convergence rate in l∞-norm. However, for γ = 1, the

convergence rate in l2-norm is lower than O(h(3−α)/2) for larger α, i.e., α = 1.5, see Figure

5.2 bottom right.

Example 5.2.2. For s = 3, i.e. u ∈ C3,α/2(R2), Theorem 5.1.2 in one dimension

shows that either by taking γ = 2 or 1 can provide the second order accuracy. However,

in two dimension, our extensive numerical experiments show that only by taking γ = 2

can provide the second order accuracy. This result is analogue to the weighted trapezoidal

method, that in higher dimensions, the only optimal choice of the splitting parameter is

γ = 2.
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Figure 5.2. Numerical errors of the weighted linear interpolation method for γ = 1 and 2
with u ∈ C1,α/2(R2) defined in (4.52) with s = 1. The errors are defined in l∞-norm (top
row) or l2-norm (bottom row).

Table 5.3. Numerical errors by weighted linear interpolation method for u ∈ C3,α/2(R2).

α
h 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

0.2 6.856E-5 1.658E-5 4.105E-6 1.022E-6 2.541E-7 6.228E-8 1.434E-8
c.r. 2.0476 2.0143 2.0057 2.0081 2.0286 2.1190

1 2.784E-3 6.418E-4 1.536E-4 3.749E-5 9.212E-6 2.237E-6 5.044E-7
c.r. 2.1168 2.0631 2.0345 2.0248 2.0422 2.1487

1.9 6.361E-2 1.531E-2 4.178E-3 1.110E-3 2.816E-4 6.932E-5 1.626E-5
c.r. 2.0551 1.8733 1.9120 1.9791 2.0222 2.0922
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Table 5.3 presents numerical errors ‖(−∆)α/2u − (−∆)α/2h,γ u‖l∞(Ω) and convergence

rates of the weighted linear interpolation method for various α by taking u in (4.52) with

s = 3, where the splitting parameter is taken to be γ = 2. We find that for the same mesh

size h, the larger the parameter α, the bigger the numerical errors. It also shows that the

convergence rates of the weighted linear interpolation method is O(h2) for any α ∈ (0, 2).

In this section, we proposed a weighted linear interpolation method to discretize

the fractional Laplacian. Similar to the weighted trapezoidal method, we treated the

hyper-singular integral as a weighted integral of function ψγ (x, ξ ) with a weight func-

tion |ξ |γ−(2+α). The accuracy of this method is studied analytically and numerically, and it

has the same accuracy as the weighted trapezoidal method.
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6. COMPARISON OF NUMERICAL METHODS

Because of the nonlocality, so far, numerical methods for discretizing the fractional

Laplacian (1.2) still remain scant, with the main numerical challenge stemming from the

approximation of the hypersingular integral. In Sections 3–5, we proposed two novel finite

difference methods which are both based on the weighted integrals. These two methods

provide the same convergence rates for discretizing the fractional Laplacian. In application,

the weighted trapezoidal method has lower computational cost than the weighted linear

interpolation method especially in higher dimensions. The higher computational cost arises

from the computation of more double/triple integrals in 2D/3D. In this section, we will

compare our weighted trapezoidal method with a finite difference method proposed in [49],

which is the current state of the art for directly discretizing the fractional Laplacian. In

addition, we will compare the two finite difference methods with a finite element method

for solving the fractional Poisson equation. For brevity, numerical results will only be

presented in one dimension and same conclusions can be extended to higher dimensions.

6.1. NUMERICAL METHODS

In this section, we will first revisit the finite difference and finite element methods

in the literature for discretizing the fractional Laplacian and solving the fractional Poisson

equation.

6.1.1. Interpolation Method. The finite difference method proposed in [49] is the

current state-of-the-art method for directly discretizing the fractional Laplacian. In the

following context, we refer this method as the linear interpolation method. Notice that, the

linear interpolation method is similar to our weighted linear interpolation method in Section

5. However, our weighted linear interpolation method has higher order accuracy than the

linear interpolation method, which will be justified in our numerical examples. For brevity,
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we only address the differences between the linear interpolation method and the weighted

linear interpolation method in the following. We will also explain the reason which causes

the lower accuracy of the linear interpolation method.

Following the same line as theweighted trapezoidal andweighted linear interpolation

methods in Sections 3–5, the fractional Laplacian is rewritten as in (3.2). The difference is

from the approximation of the first integral. In [49], the first integral in (3.2) is split into

two parts, i.e.,

∫ L

0
ψ0(x, ξ) ξ−(1+α) dξ =

∫ h

0
ψ0(x, ξ) ξ−(1+α) dξ +

∫ L

h
ψ0(x, ξ) ξ−(1+α) dξ. (6.1)

For the sake of convenience, here we adopt the notation (3.5) in Chapter 3 and define

ψ0(x, ξ) = u(x − ξ) − 2u(x) + u(x + ξ).

Then the integral on [0, h] is approximated by

∫ h

0
ψ0(x, ξ)ξ−(1+α)dξ =

∫ h

0
ψ2(x, ξ)ξ1−αdξ ≈

1
2 − α

h2−αψ2(x, h),

i.e., the same approximation as in (3.11). The second integral is approximated by

∫ L

h
ψ0(x, ξ) ξ−(1+α) dξ ≈

N∑
i=1

ψ0(x, ξi)
∫ L

h

φi (ξ)
ξ1+α

dξ. (6.2)

where φi is defined in (5.2).

Finally, following the same line as the weighted linear interpolation method, the

fully discretization of the fractional Laplacian is

(−∆)α/2h,γ ui = −C1,α

(
a0 ui +

( i−1∑
j=1

a jui− j +

N−1−i∑
j=1

a jui+ j

))
,
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for i = 1, 2, . . . , N − 1, where

ai =




∫ L

h
φ1(ξ) ξ−(1+α) dξ +

h−α

2 − α
, for i = 1,∫ L

h
φi (ξ) ξ−(1+α) dξ, for i = 2, . . . , N,

a0 = −2 *
,

N∑
i=1

ai +
1

αLα
+
-
.

For smooth enough functions u ∈ C3,α/2(R), our weighted linear interpolation

method has second order accuracy. However, as is shown in [49, Lemma 3] that for

u ∈ C4(R), the accuracy of the linear interpolation method is O(h2−α) for α ∈ (0, 2).

Compare to our weighted linear interpolation method, the main reason that causes the lower

accuracy of the linear interpolationmethod is that the second integral in (6.1) is not rewritten

as a weighted integral with optimal choice of γ (i.e. γ = 1 or 2). Instead, the splitting

parameter is chosen as γ = 0 in (6.2) to approximate the integral on [h, L], which can be

partially viewed as one of the non-optimal cases of the weighted linear interpolation. As

proved in Theorem 5.1.2, the weighted linear interpolation method has the second order of

accuracy only when γ = 1 or 2 is chosen.

6.1.2. Finite Element Method. We introduce a finite element method to solve the

fractional Poisson equation with extended homogeneous boundary condition [2, 72, 75]:

(−∆)α/2u(x) = f (x), for x ∈ Ω, (6.3)

u(x) = 0, for x ∈ Ωc, (6.4)

where f is a function on Ω and Ωc = R\Ω represents the complement of Ω. The extended

Dirichlet condition is readily incorporated in the definition (1.2) of the fractional Laplacian,

by simply replacing u(y) with 0 in the integral when y < Ω.
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The nature functional space for the fractional Poisson equation (6.3)-(6.4) is

Hα/2
Ω

(R) =
{
v ∈ Hα/2(R) : v = 0 in R\Ω

}
, (6.5)

where the space Hα/2(R) is denoted as

Hα/2(R) = {v ∈ l2(R) : |v |Hα/2(R) < ∞},

with | · |Hα/2(R) being the Aronszajn–Slobodeckij seminorm [2], defined as

|v |Hα/2(R) =

("
R2

(v(x) − v(y))2

|x − y |1+α
dxdy

)1/2
.

The space (Hα/2
Ω

(R), ‖ · ‖Hα/2(R)) is a Hilbert space, equipped with the norm

‖v‖Hα/2(R) = ‖v‖l2(R) + |v |Hα/2(R) .

Then, the weak formulation of (6.3)-(6.4) is to find u ∈ Hα/2
Ω

(R) such that

C1,α

2

∫
R

∫
R

u(y) − u(x)
|y − x |1+α

(
v(y) − v(x)

)
dy dx =

∫
Ω

f (x)v(x) dx, ∀v ∈ Hα/2
Ω

(R). (6.6)

The existence and uniqueness of the solution to (6.6) has been proven in [85, Theorem

6.3.4]. Let A(·, ·) : Hα/2
Ω

(R) × Hα/2
Ω

(R) −→ R and F (·) : Hα/2
Ω

(R) −→ R respectively be

the bilinear form and functional associated with the weak formulation (6.6),

A(u, v) :=
C1,α

2

∫
R

∫
R

u(y) − u(x)
|y − x |1+α

(
v(y) − v(x)

)
dy dx and F (v) :=

∫
Ω

f (x)v(x) dx,

then the problem (6.6) is equivalent to find u ∈ Hα/2
Ω

(R) such that

A(u, v) = F (v), ∀v ∈ Hα/2
Ω

(R). (6.7)
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For an integer N > 0, take the mesh size h = b−a
h , consider the uniform partition xi = a+ ih

for i = 0, 1, . . . , N . Choose the finite element space Hα/2
Ω,h (R) = span{φ1, . . . , φN } ⊂

Hα/2
Ω

(R), where the basis functions φi (i = 1, 2, . . . , N ) are the standard “hat” functions.

The corresponding Galerkin approximation of problem (6.7) is to find uh ∈ Hα/2
Ω,h (R), such

that

A(uh, vh) = F (vh), ∀vh ∈ Hα/2
Ω,h (R), (6.8)

Computationally, we express the approximate solution uh as a linear combination of the

basis functions φ j , written as uh(x) =
N−1∑
j=1

Ujφ j (x), where u j is an approximation to u(x j ).

Choose the test function vh = φi (x). Substitute uh and vh into (5.7), we obtain

N−1∑
j=1

A(φ j, φi)Uj = F (φi), for i = 1, 2, . . . , N − 1. (6.9)

Let U = (u1, u2, . . . , uN−1)T , and F = (F (φ1), F (φ2), . . . , F (φN−1))T . Then (6.9) can be

simply written as AU = F, where A = {A(φ j, φi)}N−1i, j=1 is the stiffness matrix for the finite

element approximation.

The integral F (φi) in (6.9) can be either integrated exactly or numerically approxi-

mated by the Gauss quadrature rules (i.e. a four-point Gauss quadrature is applied in [25]).

In contrast, the double integral

Ai j := A(φ j, φi) =
C1,α

2

∫
R

∫
R

φ j (y) − φ j (x)
|y − x |1+α

(
φi (y) − φi (x)

)
dy dx (6.10)

must be treated carefully, because of the singularity in the integrand. The traditional Gauss

quadrature method fails to provide accurate approximation to (6.10). In fact, the integral

in (5.9) can be found analytically. If the function φi is chosen as in (5.2), then we get for
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α ∈ (0, 2)\{1}, the coefficient matrix A = (A(α)
i j ), where

A(α)
i j =

C1,αh1−α

α(1 − α)(2 − α)(3 − α)




24−α − 8, j = i,

33−α − 25−α + 7, | j − i | = 1,
4∑

k=0
(−1)k

(
4
k

) (
|i − j | + 2 − k

)3−α, | j − i | > 1,

(6.11)

and for α = 1, the coefficient matrix A = (A(1)
i j ),

A(1)
i j =

C1,α

2




8 ln 2, j = i,

9 ln 3 − 16 ln 2, | j − i | = 1,

16 ln 4 − 36 ln 3 + 24 ln 2, | j − i | = 2,
4∑

k=0
(−1)k

(
4
k

) (
|i − j | + 2 − k

)3−α ln (
|i − j | + 2 − k

)
, | j − i | > 2.

(6.12)

where
(

m
n

)
denotes the binomial coefficient. It is clear that as α → 1, we have A(α)

i j → A(1)
i j .

and the matrix A is symmetric and Toeplitz for all α ∈ (0, 2).

Even though the entries of matrix A can be calculated exactly, the implementation of

the finite element scheme is not straightforward. The problem arises from the computations

of the summations in (6.11) and (6.12), when |i − j | is large (i.e. |i − j | = 8192) and α is

small (i.e. α = 0.1). In such situation, the machine errors pollute the true value of A(α)
i j ,

and thus affect the accuracy of the method.

To resolve this issue, we rewrite the summation in the last line of (6.11) into an

infinite sum by applying the binomial theorem which cancels all the higher power terms

|i − j |3−α. For example, for α , 1 and | j − i | > 1, the summation can be rewritten as

4∑
k=0

(−1)k
(
4
k

)
(|i − j | + 2 − k)3−α = 2

∞∑
n=2

(
3 − α
2n

)
|i − j |(3−α)−2n · (22n − 4). (6.13)
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The expressions on the left- and right-hand sides of (6.13) are equivalent, but their computer

implementation lead to different results, and their difference is significant when α is small

and |i − j | is large. To illustrate it, we take α = 0.1 and |i − j | = 8192, the direct

implementation of the left-hand side gives 1.2207 × 10−4, but the true value is around

−2.45847 × 10−5, and the relative error of direct implementation is around 5.9653.

The right hand side of (6.13) has infinite summation terms. In practice, we truncate

it to a finite sum by taking the number of the summation terms large enough, and thus the

error from the truncation is neglected.

6.2. NUMERICAL COMPARISONS

In this section, wewill compare the performance of theweighted trapezoidalmethod,

linear interpolation method and the finite element method. The first two examples compare

the accuracy of the two finite difference methods in approximating the fractional Laplacian,

the last two examples compare the accuracy of the three numerical methods for solving the

fractional Poisson equation with extended homogeneous Dirichlet boundary condition.

6.2.1. Discretization of the Fractional Laplacian. In this section, we will com-

pare our weighted trapezoidal method with the linear interpolation method proposed in

[49], which is the current state of the art for directly discretizing the fractional Laplacian.

Example 1. We will compare the accuracy of the two finite difference schemes

acting on a bump function

u(x) =



e−1/(1−x2), if x ∈ (−1, 1),

0, otherwise.
(6.14)

which is compactly supported on [−1, 1] and is in C∞(R). Since the fractional Laplacian

of u(x) can not be computed analytically, in the following comparison, we will use the

numerical solution with a very small mesh size h = 2−13 to be the exact solution.
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The top two rows of Figure 6.1 show the fractional Laplacian of the bump function

by using the weighted trapezoidal method. The bottom row presents the numerical errors in

l∞-norm and l2-norm of the weighted trapezoidal method [33] and the interpolation method

[49], where an order line of 2 is also presented for easy comparison. The accuracy of
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Figure 6.1. Bump function and numerical errors. Top two rows: The fractional Laplacian of
the bump function by using weighted trapezoidal method for α = 0.2, 0.8, 1.5, 1.9. Bottow
row: Numerical errors in computing (−∆)α/2u(x) by the weighted trapezoidal method [33]
(‘◦’) and the linear interpolation method in [49] (‘�’) in l∞-norm (left) and l2-norm (right).
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the weighted trapezoidal method is O(h2), which is much better than the accuracy of the

linear interpolation method of order O(h2−α). The numerical results justify the analytical

results for the accuracy of these two methods. Although the smoothness of the solution

in this example has been increased to u ∈ C∞(R), the accuracy of the linear interpolation

method is still O(h2−α) and the weighted trapezoidal method is of order O(h2). In other

words, increase the smoothness of the function won’t help to increase the accuracy of both

methods. Moreover, the accuracy of the linear interpolation method depends on α, which

decreases to O(1) as α → 2−. Although the accuracy can be improved to O(h3−α) by using

a quadratic interpolation, the accuracy for α ∈ (1, 2) is still less that the second order, and

significantly complicates the simulations. It also shows that for each α ∈ (0, 2), when a

small mesh size h is used, the errors of the weighted trapezoidal method are much smaller

than those from the interpolation method. For both of these two methods, the errors are

smaller for smaller α.

Example 2. We consider a function u of the form:

u(x) =



−(1 − x2)s, for x ∈ Ω = (−1, 1),

0, otherwise,
x ∈ R, (6.15)

for s ∈ N. It is easy to verify that u(x) ∈ Cs−ε (R) for any ε ∈ (0, s), and it is compactly

supported on (−1, 1). The fractional Laplacian of u(x) can be computed analytically [35]:

(−∆)α/2u(x) =
−2αΓ( α+12 )Γ(s + 1)
√
πΓ(−α2 + s + 1)

·2 F1

(
α + 1
2

,−s +
α

2
;
1
2
; |x |2

)
, (6.16)

where 2F1 denotes the Gauss hypergeometric function. In this example, we will test the

accuracy of our method for s = 2, 3, 4.

Thefirst columnof Figure 6.2 compares the numerical errors ‖(−∆)α/2u−(−∆)α/2h u‖l2(Ω)

by the two finite difference methods for α = 0.6, 1.3, 1.9. We can get similar conclusions

as in Example 1 that the weighted trapezoidal method always has higher order accuracy
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and smaller errors than the linear interpolation method in all the cases for α = 0.6, 1.5, 1.9

in a given example for s = 2, 3, or 4. And both of these two methods have smaller errors

for smaller α. In addition, as we improving the smoothness of the function u, the accuracy

of the weighted trapezoidal method is increasing. However, the accuracy of the linear

interpolation has no significant increment as the weighted trapezoidal method, and it can

not exceed O(h2−α).

The second column compares the convergence rates of the weighted trapezoidal

method and the linear interpolation method in l∞-norm, where u is defined in (6.15) with

s = 2, 3, 4 from top to bottom. In all of the cases for s = 2, 3, 4, the weighted trapezoidal

method has higher order accuracy than the linear interpolation method. As the function u

becoming smoother (increasing s from 2 to 4), the accuracy of the weighted trapezoidal

method becoming higher for a fixed α in a given norm. However, the accuracy of the linear

interpolation method has no such significant improvement and the order O(h2−α) is the

highest accuracy it can reach.

6.2.2. Solution of the Fractional Poisson Equation. We will compare the ac-

curacy of the three numerical methods in solving the fractional Poisson equation with

homogeneous Dirichlet boundary condition (6.3)-(6.4). In our numerical simulations, we

evaluate F (φi) exactly. Functions with different smoothness conditions will be considered.

Example 3. We will compare the accuracy of the three numerical methods in

solving the following fractional Poisson equation,




(−∆)α/2u = 1, in Ω,

u = 0, in R\Ω.
(6.17)

This particular example (6.17) has been studied and applied in various areas. For example,

it can be used to estimate the first eigenvalues of the fractional Laplacian [35]. Also, its

solution u(x) ∈ C0,α/2(R) can be understood from particle point of view, which represents

the probability density of the first exit time of the symmetric α−stable Lévy process from
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Figure 6.2. Comparison of numerical errors and rates. The first column: Numerical errors
in computing (−∆)α/2u(x) by the weighted trapezoidal method [33] (‘◦’) and the linear
interpolation method in [49] (‘�’) in l2-norm. The second column: Convergence rates
of the weighted trapezoidal method and the linear interpolation method in l∞-norm. The
function u(x) is defined in (6.15) with s = 2, 3, 4 from top to bottom.
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domain [−1, 1] [49]. The analytical solution of (6.17) can be found exactly by taking

s = α/2 in (6.16), which is

u(x) = (1 − x2)α/2/Γ(α + 1), for x ∈ (−1, 1).

Figure 6.3 shows the errors in l2-norm of the finite element method, weighted

trapezoidal method and linear interpolation method for α = 0.6, 1, 1.5, 1.9.
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Figure 6.3. Numerical errors in solving the fractional Poisson equation (6.17) by finite
element method, weighted trapezoidal method, and linear interpolation method.
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In all these cases, the accuracy of the finite element method and the weighted

trapezoidal method are almost the same and better than the linear interpolation method.

The accuracy of all these three methods are decreasing as α increasing. Compare among

the three methods, the errors of the finite element method are smaller than the other methods

for larger α, i.e. 0.5 ≤ α < 2, but are larger for smaller α.

To see the accuracy more clear for each method, we define the convergence rate

of a given method as O(hg(α)), where the power of h is a function with respect to α.

Figure 6.4 describes the relation between the accuracy and the fractional power α for

each numerical method. The left panel of Figure 6.4 shows the values of g(α) versus the
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Figure 6.4. Relations between the convergence rates for solving the fractional Poisson
equation and the fractional power α in l∞-norm (left) and in l2-norm (right).

fractional power α for the numerical errors in l∞-norm. All these three numerical methods

are convergent, because all the values of g(α) are positive. The accuracy of the finite

element and the weighted trapezoidal method are of order O(hα/2) for any α ∈ (0, 2). The

linear interpolation method has accuracy O(hα/2) for 0 < α ≤ 1.3, however, for larger α,

i.e. 1.4 ≤ α < 2, the accuracy is decreasing, and the order is around O(h1.1(2−α)) which

approaches to O(1) as α → 2−.
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The right panel of Figure 6.4 shows the values of g(α) versus the fractional power

α for the numerical errors in l2-norm. In the cases of small α, i.e. α ∈ (0, 0.8], all these

three numerical methods have the accuracy of order O(h(α+1)/2). However, for α > 0.8,

the accuracy of the weighted trapezoidal method and the finite element method increase

slower, and stop increasing at the rate of order O(h) for α ∈ (1, 2). The accuracy of the

linear interpolation method starts decreasing at α = 1, and based on our extensive numerical

experiments, in the cases for α ∈ [1.3, 2), we conjecture that the linear interpolation method

has the accuracy of orderO(h1.1(2−α)). In addition, the accuracy of the finite elementmethod

and the weighted trapezoidal method are the same in all the cases for α ∈ (0, 2) in l∞-norm

and l2-norm and are better than the linear interpolation method for larger α. Furthermore,

as mentioned in [49], because of the singularity of the solution at the boundaries, both of

the quadratic and the linear interpolation provide the same convergence rate in l∞-norm. In

other words, increasing the order of the interpolation weight functions won’t increase the

accuracy.

In sum, the numerical experiment shows that for u(x) ∈ C0,α/2(R), the weighted

trapezoidal method is more preferable, since it has higher accuracy than the linear interpo-

lation method and is easier to implement than the finite element method.

Example 4. We compare the accuracy of the three numerical methods in solving

the fractional Poisson equation (6.3)-(6.4) of the following form




(−∆)α/2u(x) = f (x), for x ∈ (−1, 1),

u(x) = 0, for x ∈ R\(−1, 1).
(6.18)

with

f (x) = C ·2 F1

(
α + 1
2

,−3;
1
2
; |x |2

)
, where C =

2αΓ( α+12 )Γ(4 + α
2 )

√
πΓ(4)

.
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The solution can be found analytically as

u(x) = −(1 − x2)3+α/2, for x ∈ (−1, 1),

which is in C3,α/2(R). Based on Theorem 3.2.4 and the convergence theorem in [34],

the weighted trapezoidal method is shown of second order accuracy in both discretizing

the fractional Laplacian and solving the fractional Poisson equation under the smoothness

condition that u ∈ C3,α/2(R). The following figures numerically compare the accuracy of

the three numerical methods.

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

||
u
−

u
h
||

2

α = 0.4

 

 

FDM−LERP

FDM−WT

FEM

O(h
2
)

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

||
u
−

u
h
||

2

α = 1

 

 

FDM−LERP

FDM−WT

FEM

O(h
2
)

10
−3

10
−2

10
−1

10
−5

10
0

h

||
u
−

u
h
||

2

α = 1.5

 

 

FDM−LERP

FDM−WT

FEM

O(h
2
)

10
−3

10
−2

10
−1

10
−5

10
0

h

||
u
−

u
h
||

2

α = 1.9

 

 

FDM−LERP

FDM−WT

FEM

O(h
2
)

Figure 6.5. Numerical errors in solving the fractional Poisson problem (6.18) by finite
element method, weighted trapezoidal method, and linear interpolation method for α =
0.4, 1, 1.5, 1.9.
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Figure 6.5 presents the numerical errors of the finite element method, weighted

trapezoidal method and linear interpolation method in l2-norm, where an order line of 2 is

also presented for easy comparison. For all α ∈ (0, 2), the weighted trapezoidal method is

precisely of second order accuracy. The finite element method has second order accuracy

for all α ∈ (0, 1), but it has accuracy slightly less than second order for some cases of

α ∈ (1, 2). Moreover, in most of the cases (i.e. α = 0.4, 1, 1.5), the errors of the finite

element method are greater than the errors of the weighted trapezoidal method for a given

mesh size. The linear interpolation method has the lowest accuracy among these three

numerical methods. and its accuracy decreases as α increases, especially as α → 2, i.e. in

the case of α = 1.9, the accuracy decreases to O(1).

To find the relation between the accuracy of the three numerical methods and the

fractional power α, we define the accuracy to be O(hg(α)) as we did in Example 3. Figure

6.6 shows the function g(α) versus the fractional power α. Both of the weighted trapezoidal

method and the finite element method have second order accuracy for all α ∈ (0, 2) in both

l∞-norm and l2-norm. The linear interpolation method has lower accuracy, and wemake the

following conjecture that it has accuracy of order O(h2−α) in both of l∞-norm and l2-norm

for larger α, i.e. 0.6 < α < 2.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

α

C
o

n
v
e

rg
e

n
c
e

 r
a

te

 

 

FDM−LERP

FDM−WT

FEM

y = 2−α

0 0.5 1 1.5 2

0

0.5

1

1.5

2

α

C
o

n
v
e

rg
e

n
c
e

 r
a

te

 

 

FDM−LERP

FDM−WT

FEM

y = 2−α

Figure 6.6. Relations between the convergence rates for solving the fractional Poisson
equation and the fractional power α in l∞-norm (left) and in l2-norm (right).
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As a conclusion, for function u(x) ∈ C3,α/2(R), the finite element method and

the weighted trapezoidal method are much more accurate than the linear interpolation

method, especially for large α. As mentioned in [49], applying the quadratic interpolation

may increase the accuracy to O(h3−α) for smooth enough functions (i.e. u(x) ∈ C4(R)).

However, using a quadratic interpolation significantly complicates the simulations, and the

accuracy for α ∈ (1, 2) is still less than second order. Moreover, with almost the same

accuracy, the weighted trapezoidal method is easier to implement than the finite element

method.

In summary, the weighted trapezoidal method is the most effective method among

the three numerical methods in both of discretizing the fractional Laplacian and solving the

fractional Poisson equation with homogeneous Dirichlet boundary condition in terms of

its accuracy and computational complexity. By choosing the splitting parameter optimally,

we are able to overcome the α-dependence of the accuracy estimate for u ∈ C3,α/2(R)

(a less severe smoothness assumption than that used in [49]), achieving an accuracy of

O(h2) for any α ∈ (0, 2). Moreover, while generally giving rise to a full matrix, as is

usually the case for discretization of nonlocal operators, the discretized fractional Laplacian

is a symmetric Toeplitz matrix, whose structure can be exploited through the use of fast

algorithms [15, 81, 84] which we will introduce in the next section.
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7. THE FAST IMPLEMENTATION

The nonlocal nature of the fractional Laplacian (−∆)α/2 raises questions about

computational efficiency, especially in high dimensions. Usually, the matrix representation

of the fractional Laplacian A is a dense matrix, and it is costly to directly compute the

matrix-vector product Au. In this section, we propose an efficient method to compute the

matrix-vector product Au. It is based on the properties of the Toeplitz and circulant matrices

and the fast Fourier transformation (FFT) [15, 81, 84]. The main merits of our algorithm

include that it requires less computational cost and memory, and thus it is more efficient in

solving higher dimensional problems. Moreover, our method can be easily implemented in

computer codes.

7.1. ONE-DIMENSIONAL CASE

Denote the column vector ux = (u1, u2, . . . , uNx−1)T . Next, we will focus on the fast

algorithm to the matrix-vector product A(1)ux , where A(1) is the matrix define in (3.10).

Notice that the matrix A(1) is Toeplitz, which can be embedded into a double sized circulant

matrix C(1) as

C(1)
(2Nx−2)×(2Nx−2) =

*..
,

A(1) T (1)

T (1) A(1)

+//
-(2Nx−2)×(2Nx−2)

, (7.1)
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where the matrix T (1) is also a Toeplitz matrix defined by

T(1)
(Nx−1)×(Nx−1) =

*..............
,

0 aNx−2 · · · a2 a1

aNx−2 0 aNx−2 . . . a2
...

. . .
. . .

. . .
...

a2 . . . aNx−2 0 aNx−2

a1 a2 . . . aNx−2 0

+//////////////
-(Nx−1)×(Nx−1)

. (7.2)

The circulant matrix C (1) can be decomposed as

C (1) = F−1diag(F · c)F, (7.3)

where F is an 2(Nx − 1) × 2(Nx − 1) discrete Fourier transform matrix, denoted as

F ( j, k) =
1

√
2(Nx − 1)

exp
(

2πi j k
2(Nx − 1)

)
, 0 ≤ j, k ≤ 2(Nx − 1), (7.4)

and c = (a0, a1, . . . , aNx−2, 0, aNx−2, . . . , a1)T , which is the first column of the circulant

matrix C (1). By introducing a vector

vx =
*..
,

ux

0

+//
-2(Nx−1)×1

, (7.5)

The matrix-vector product Aux is extended to a double sized matrix-vector product Cvx ,

and can be decomposed as

C (1)vx = F−1diag(F · c)Fvx . (7.6)
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In application, matrix operations F and F−1 can be realized by the fast Fourier transform

and inverse fast Fourier transform respectively, and thus the computational cost is O(2(Nx−

1) log(2(Nx − 1))). The first (Nx − 1) elements of C (1)vx gives the matrix-vector product

A(1)ux .

7.2. TWO-DIMENSIONAL CASE

Denote the column vector ux,y as

ux,y = (uT
x,1, u

T
x,2, . . . , u

T
x,Ny−1)T,

where ux, j = (u1, j, u2, j, . . . , uNx−1, j )
T for j = 1, 2, . . . , Ny − 1. Next, we will focus on the

fast algorithm for the matrix-vector product A(2)ux,y.

Notice that the matrix Ax, j ( j = 0, . . . , Ny − 2) is Toeplitz, which can be embedded

into a double sized circulant matrix Cx, j as

Cx, j =
*..
,

Ax, j Tx, j

Tx, j Ax, j

+//
-(2Nx−2)×(2Nx−2)

, (7.7)

where the matrix Tx, j is also a Toeplitz matrix defined by

Tx, j :=

*..............
,

0 aNx−2, j . . . a2 j a1 j

aNx−2, j 0 aNx−2, j · · · a2 j

...
. . .

. . .
. . .

...

a2 j . . . aNx−2, j 0 aNx−2, j

a1 j a2 j . . . aNx−2, j 0

+//////////////
-(Nx−1)×(Nx−1)

,
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The original matrix A(2) is now extended to a matrix with each block be a circulant

matrix, i.e.

C̃(2) =

*..............
,

Cx,0 Cx,1 . . . Cx,Ny−3 Cx,Ny−2

Cx,1 Cx,0 Cx,1 · · · Cx,Ny−3
...

. . .
. . .

. . .
...

Cx,Ny−3 . . . Cx,1 Cx,0 Cx,1

Cx,Ny−2 Cx,Ny−3 . . . Cx,1 Cx,0

+//////////////
-[(2Nx−2)×(Ny−1)]2

.

Notice that the matrix C̃(2) is a block-Toeplitz matrix, which can be embedded into

a double sized block-circulant matrix C(2) as

C(2) =
*..
,

C̃(2) T̃(2)

T̃(2) C̃(2)

+//
-[(2Nx−2)×(2Ny−2)]2

.

where

T̃(2) =

*..............
,

0 Cx,Ny−2 . . . Cx,2 Cx,1

Cx,Ny−2 0 Cx,Ny−2 · · · Cx,2
...

. . .
. . .

. . .
...

Cx,2 . . . Cx,Ny−2 0 Cx,Ny−2

Cx,1 Cx,2 . . . Cx,Ny−2 0

+//////////////
-[(2Nx−2)×(Ny−1)]2

.

Now, we focus on the fast implementation of the matrix-vector product C(2)ux,y. We

notice that the matrix C(2) is a block circulant matrix with circulant blocks (BCCB). The

fast algorithm is available in the literature [24, Theorem 5.8.1] for computing this type of

matrix. The circulant matrix C(2) can be decomposed as

C(2) = (F2Ny−2 ⊗ F2Nx−2)−1diag(ĉ)(F2Nx−2 ⊗ F2Nx−2),
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where F2Ny−2 ⊗ F2Nx−2 represent the 2D discrete Fourier transform matrix, and ĉ is denoted

by

ĉ = (F2Ny−2 ⊗ F2Nx−2)c.

with c be the first column of C(2).

By introducing double sized vectors

vx, j =
*..
,

ux, j

0

+//
-(2Nx−2)×1

, for j = 1, 2, . . . , Ny − 1,

we define a vector

ṽx,y = (vT
x,1, v

T
x,2, . . . , v

T
x,Ny−1)T,

and then further introduce a double sized vector

vx,y =
*..
,

ṽx,y

0

+//
-[(2Nx−2)×(2Ny−2)]×1

.

The matrix-vector product A(2)ux,y is extended to a quadruple sized matrix-vector product

C(2)vx,y, and can be decomposed as

C(2)vx,y = (F2Ny−2 ⊗ F2Nx−2)−1
[
diag((F2Ny−2 ⊗ F2Nx−2) · c)

]
(F2Ny−2 ⊗ F2Nx−2)vx,y .

In application, the matrices F2Ny−2 ⊗ F2Nx−2 and (F2Ny−2 ⊗ F2Nx−2)−1 can be realized as

the 2D Fourier transform and inverse Fourier transform respectively, we thus can apply

the fast Fourier transform (FFT) to reduce the computation to only O((2Nx − 2) × (2Ny −
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2) log((2Nx − 2) × (2Ny − 2))) operations. Finally, the first (2Nx − 2) × (Ny − 1) elements

of C(2)vx,y provide the matrix-vector product C̃(2)ṽx,y. And then extracting the first, third,

. . . , (Ny − 1)-th (Nx − 1) elements of C̃(2)ṽx,y, we get the matrix-vector product A(2)ux,y.

7.3. THREE-DIMENSIONAL CASE

The fast implementation in 3D case can be done in the similar way as in 2D case.

Denote the (Nx − 1)(Ny − 1)(Nz − 1)-by-1 column vector ux,y,z,

ux,y,z = (uT
x,y,1, u

T
x,y,2, . . . , u

T
x,y,N3−1)T . (7.8)

where ux,y,k for k = 1, 2, . . . , Nz − 1 are defined by

ux,y,k = (uT
x,1,k, u

T
x,2,k, . . . , u

T
x,Ny−1,k )T, (7.9)

and the vector ux, j,k = (u1, j,k, u2, j,k, . . . , uNx−1, j,k )T for j = 1, 2, . . . , Ny−1, k = 1, 2, . . . , Nz−

1. Next, we will focus on the fast algorithm for the matrix-vector product A(3)ux,y,z.

Notice that the matrix Ax, j,k ( j = 0, . . . , Ny −2, k = 0, . . . , Nz −2) is Toeplitz, which

can be embedded into a double sized circulant matrix Cx, j,k as

Cx, j,k =
*..
,

Ax, j,k Tx, j,k

Tx, j,k Ax, j,k

+//
-(2Nx−2)×(2Nx−2)

, (7.10)
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where the matrix Tx, j,k is also a Toeplitz matrix defined by

Tx, j,k :=

*..............
,

0 aNx−2, j,k . . . a2 j k a1 j k

aNx−2, j k 0 aNx−2, j k · · · a2 j k

...
. . .

. . .
. . .

...

a2 j k . . . aNx−2, j k 0 aNx−2, j k

a1 j k a2 j k . . . aNx−2, j k 0

+//////////////
-(Nx−1)×(Nx−1)

,

The matrix Ax,y,k then can be extended to a matrix with each block be a circulant

matrix, i.e.

C̃x,y,k =

*..............
,

Cx,0,k Cx,1,k . . . Cx,Ny−3,k Cx,Ny−2,k

Cx,1,k Cx,0,k Cx,1,k · · · Cx,Ny−3,k
...

. . .
. . .

. . .
...

Cx,Ny−3,k . . . Cx,1,k Cx,0,k Cx,1,k

Cx,Ny−2,k Cx,Ny−3,k . . . Cx,1,k Cx,0,k

+//////////////
-[(2Nx−2)×(Ny−1)]2

.

Notice that for a given k = 0, 1, . . . , Nz − 2, the matrix C̃x,y,k is a block-Toeplitz

matrix, which can be embedded into a double sized block-circulant matrix Cx,y,k as

Cx,y,k =
*..
,

C̃x,y,k T̃x,y,k

T̃x,y,k C̃x,y,k

+//
-[(2Nx−2)×(2Ny−2)]2

.
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where

T̃x,y,k =

*..............
,

0 Cx,Ny−2,k . . . Cx,2,k Cx,1,k

Cx,Ny−2,k 0 Cx,Ny−2,k · · · Cx,2,k
...

. . .
. . .

. . .
...

Cx,2,k . . . Cx,Ny−2,k 0 Cx,Ny−2,k

Cx,1,k Cx,2,k . . . Cx,Ny−2,k 0

+//////////////
-[(2Nx−2)×(Ny−1)]2

.

The original matrix A(3) is extended to a matrix with each block be a circulant

matrix, i.e.

C̃x,y,z =

*..............
,

Cx,y,0 Cx,y,1 . . . Cx,y,Nz−3 Cx,y,Nz−2

Cx,y,1 Cx,y,0 Cx,y,1 · · · Cx,y,Nz−3
...

. . .
. . .

. . .
...

Cx,y,Nz−3 . . . Cx,y,1 Cx,y,0 Cx,y,1

Cx,y,Nz−2 Cx,y,Nz−3 . . . Cx,y,1 Cx,y,0

+//////////////
-[(2Nx−2)×(Ny−1)]2

.

Notice that the matrix C̃x,y,z is a block-Toeplitz matrix, which can be embedded into

a double sized block-circulant matrix Cx,y,z as

Cx,y,z =
*..
,

C̃x,y,z T̃x,y,z

T̃x,y,z C̃x,y,z

+//
-[(2Nx−2)×(2Ny−2)×(2Nz−2)]2

.
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where

T̃x,y,z =

*..............
,

0 Cx,y,Nz−2 . . . Cx,y,2 Cx,y,1

Cx,y,Nz−2 0 Cx,y,Nz−2 · · · Cx,y,2
...

. . .
. . .

. . .
...

Cx,y,2 . . . Cx,y,Nz−2 0 Cx,y,Nz−2

Cx,y,1 Cx,y,2 . . . Cx,y,Nz−2 0

+//////////////
-[(2Nx−2)×(Ny−1)]2

.

Now, we focus on the fast implementation of the matrix-vector product Cx,y,zux,y,z.

The circulant matrix Cx,y,z can be decomposed as

Cx,y,z = (F2Nz−2 ⊗ F2Ny−2 ⊗ F2Nx−2)−1diag(ĉ)(F2Nz−2 ⊗ F2Ny−2 ⊗ F2Nx−2),

where F2Nz−2 ⊗ F2Ny−2 ⊗ F2Nx−2 represent the 3D discrete Fourier transform matrix, and ĉ

is denoted by

ĉ = (F2Nz−2 ⊗ F2Ny−2 ⊗ F2Nx−2)c.

with c be the first column of Cx,y,z.

By introducing double sized vectors

vx, j,k =
*..
,

ux, j,k

0

+//
-(2Nx−2)×1

, for j = 1, 2, . . . , Ny − 1, k = 1, 2, . . . , Nz − 1,

we first define a vector

ṽx,y,k = (vT
x,1,k, v

T
x,2,k, . . . , v

T
x,Ny−1,k )T,
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and then further introduce a double sized vector

vx,y,k =
*..
,

ṽx,y,k

0

+//
-[(2Nx−2)×(2Ny−2)]×1

,

we then define another vector

ṽx,y,z = (vT
x,y,1, v

T
x,y,2, . . . , v

T
x,y,Ny−1)T,

and at the end we introduce a double sized vector

vx,y,z =
*..
,

ṽx,y,z

0

+//
-[(2Nx−2)×(2Ny−2)×(2Nz−2)]×1

,

The matrix-vector product Ax,y,zux,y,z is extended to a octuple sized matrix-vector

product Cx,y,zvx,y,z, and can be decomposed as

Cx,y,zvx,y,z = (F2Nz−2 ⊗ F2Ny−2 ⊗ F2Nx−2)−1
[
diag(ĉ)

]
(F2Nz−2 ⊗ F2Ny−2 ⊗ F2Nx−2)vx,y,z .

In application, the matrices F2Nz−2 ⊗ F2Ny−2 ⊗ F2Nx−2 and (F2Nz−2 ⊗ F2Ny−2 ⊗ F2Nx−2)−1

can be realized as the 3D Fourier transform and inverse Fourier transform respectively,

we thus can apply the fast Fourier transform (FFT) to reduce the computation to only

O((2Nx − 2)(2Ny − 2)(2Nz − 2) log((2Nx − 2)(2Ny − 2)(2Nz − 2))) operations.

The matrix representation of the fractional Laplacian A is a full dense matrix which

leads to large computational cost if compute the matrix-vector product Au directly. In

this section, we propose a fast algorithm to compute the matrix-vector product Au. In one

dimension, the fractional Laplacian A(1) discretized by the weighted trapezoidal or weighted

linear interpolation method is a symmetric Toeplitz matrix. It is known that any Toeplitz

matrix can be embedded into a double sized circulant matrix which can be diagonalized by
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a discrete Fourier transform. Therefore, it allows us to use the fast Fourier transform (FFT)

which reduces the computational cost to O((2Nx − 2) log((2Nx − 2))). Moreover, this fast

algorithm can be directly extended to higher dimensions.
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8. THE FRACTIONAL SCHRÖDINGER EQUATION IN AN INFINITE
POTENTIAL WELL

The fractional Schrödinger equation, a fundamental model of fractional quantum

mechanics, was first introduced by Laskin as the path integral of the Lévy trajectories

[63, 64]. It is a nonlocal integro-differential equation that is expected to reveal some novel

phenomena of the quantum mechanics. Recently, the fractional Schrödinger equation in an

infinite potential well has attracted massive attention from both physicists and mathemati-

cians, and numerous studies have been devoted to finding its eigenvalues and eigenfunctions;

see [8, 27, 47, 48, 50, 59, 63, 66] and references therein. However, one continuing debate

in the literature is whether the fractional linear Schrödinger equation in an infinite poten-

tial well has the same eigenfunctions as those of its standard (non-fractional) counterpart

[8, 27, 47, 50, 66]. The main goal of this section is to numerically study the ground and

first excited states of the fractional Schrödinger equation in an infinite potential well so as

to advance the understanding of this problem.

We consider the one-dimensional (1D) fractional Schrödinger equation of the fol-

lowing form [8, 47, 48, 50, 53, 63, 66]:

i∂tψ(x, t) = (−∆)α/2ψ + V (x)ψ + β |ψ |2ψ, x ∈ R, t > 0, (8.1)

where ψ(x, t) is a complex-valued wave function, and i =
√
−1 is the imaginary unit.

The constant β ∈ R describes the strength of local (or short-range) interactions between

particles (positive for repulsive interactions and negative for attractive interactions), and

V (x) represents an external trapping potential. In this section, we are interested in the case
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that β ≥ 0 and V (x) is an infinite potential well (also known as a box potential), i.e.,

V (x) =



0, if |x | < L,

∞, otherwise,
x ∈ R, (8.2)

with the constant L > 0. The fractional Laplacian (−∆)α/2 is defined in (1.2) through the

hyper-singular integral.

The fractional Schrödinger equation (8.1) has two conserved quantities: the L2

norm, or mass of the wave function, which we will take to be normalized,

‖ψ(·, t)‖2 :=
∫
R
|ψ(x, t) |2dx =

∫
R
|ψ(x, 0) |2dx = ‖ψ(·, 0)‖2 = 1, t ≥ 0, (8.3)

and the total energy

E(ψ(·, t)) :=
∫
R

(
ψ∗(−∆)α/2ψ + V (x) |ψ |2 +

β

2
|ψ |4

)
dx = E(ψ(·, 0)), t ≥ 0, (8.4)

where f ∗ represents the complex conjugate of a function f .

8.1. STATIONARY STATES

To find the stationary states of (8.1), we write the wave function in the form:

ψ(x, t) = e−iµtφ(x), x ∈ R, t ≥ 0, (8.5)

where µ ∈ R. Substituting the ansatz (8.5) into (8.1) and taking the normalizedmass conser-

vation (8.3) into account, we obtain the following time-independent fractional Schrödinger

equation:

µφ(x) = (−∆)α/2φ + V (x)φ + β |φ|2φ, x ∈ R (8.6)
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with the constraint

‖φ‖2 =

∫
R
|φ(x) |2dx = 1. (8.7)

This is a constrained nonlocal nonlinear eigenvalue problem, and the eigenvalue µ (also

called chemical potential) can be calculated from its corresponding eigenfunction φ(x) via:

µ = µ(φ) :=
∫
R

(
φ∗(−∆)α/2φ + V (x) |φ|2 + β |φ|4

)
dx = E(φ) +

β

2

∫
R
|φ|4dx. (8.8)

In fact, the eigenfunctions of (8.6)–(8.7) are equivalent to the critical points of the energy

E(φ) over the set T = {φ(x) | ‖φ‖2 = 1 and E(φ) < ∞}.

Let Ω = (−L, L) denote the interval where the potential V (x) ≡ 0. For x ∈ Ωc, the

potential V (x) = ∞; consequently, the wave function φ(x) ≡ 0, since the mass ‖φ‖2 = 1

and the energy E(φ) < ∞ [63, 64]. Hence, solving for the eigenfunctions of the fractional

Schrödinger equation in an infinite potential well reduces to finding φ(x) for x ∈ Ω, under

the condition φ(x) ≡ 0 for x ∈ Ωc. The corresponding eigenvalue can be calculated by

µ = µ(φ) :=
∫
R

(
φ∗(−∆)α/2φ + β |φ|4

)
dx. (8.9)

8.1.1. StandardSchrödingerEquation. For the convenience of readers, we briefly

review the eigenvalues and eigenfunctions of the standard Schrödinger equation in this sec-

tion. First, we present their exact solutions in the linear (β = 0) cases. In the nonlinear

cases with β � 1, we obtain the leading-order approximations to the eigenvalues and

eigenfunctions. These analytical results can be used to compare with those of the fractional

Schrödinger equation so as to understand the differences between the standard and fractional

Schrödinger equations.
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Replacing (−∆)α/2 in (8.6) with the standard Laplacian −∆, we obtain the standard

time-independent Schrödinger equation. Its eigenfunction φ(x) for x ∈ Ω can be found by

solving the following problem [7, 42, 50]:

µφ(x) = −∆φ(x) + β |φ(x) |2φ(x), x ∈ Ω, (8.10)

along with the homogeneous Dirichlet boundary conditions

φ(L) = φ(−L) = 0, (8.11)

and the constraint of normalization

‖φ‖2 =

∫ L

−L
|φ(x) |2dx = 1. (8.12)

Note that the two-point homogeneous Dirichlet boundary conditions are applied to (8.10),

as the standard Laplacian ∆ is a local operator. That is, the eigenvalues and eigenfunctions

of the standard Schrödinger equation can be solved in a piecewise approach – finding the

solutions inside of the infinite potential well and then using their continuity at x = ±L to

match up with those outside the potential well.

In the linear (i.e., β = 0) cases, the eigenvalues and eigenfunctions of (8.10)–(8.12)

can be found exactly. For x ∈ Ω, the s-th eigenfunction has the form [7, 42, 63]:

φs (x) =

√
1
L
sin

[
(s + 1)π

2
(
1 +

x
L

)]
, x ∈ Ω, s ∈ N ∪ {0}, (8.13)

and the corresponding eigenvalue is

µs := µ(φs) =
[

(s + 1)π
2L

]2
, s ∈ N ∪ {0}, (8.14)



136

where the ground states and the first excited states correspond to s = 0 and s = 1,

respectively.

In the nonlinear (β , 0) cases, the constrained eigenvalue problem (8.10)–(8.12)

cannot be exactly solved. However, the results in (8.13)–(8.14) provide a good approxima-

tion to the eigenfunctions and eigenvalues in the weakly interacting regimes with β ∼ o(1).

In the strongly repulsive interacting cases (i.e., β � 1), we can find the leading-order ap-

proximation (also called Thomas–Fermi approximation) to the s-th (s ∈ N0) eigenfunction

[7, 93]:

φs (x) ≈ φa
s (x) =

√
µa

s

β

{ b(s+1)/2c∑
r=0

tanh
[√2µa

s L
2

((
1 +

x
L

)
−

4r
s + 1

)]

+

bs/2c∑
r=0

tanh
[√2µa

s L
2

(4r + 2
s + 1

−
(
1 +

x
L

))]
− cs tanh *

,

√
2µa

s L
2

+
-

}
, (8.15)

for x ∈ Ω, where brc defines the floor function of a real number r , and the constant

cs =




1, if s is even,

0, if s is odd.

Correspondingly, the leading-order approximation to the s-th eigenvalue is

µs ≈ µa
s =

1
L2

[
L
2
β + (s + 2)

√
βL + (s + 2)2 + (s + 2)2

]
, s ∈ N ∪ {0}. (8.16)

The approximations in (8.15) show that when β � 1, all the stationary states of the standard

nonlinear Schrödinger equation have boundary layers. In addition to boundary layers, for

s ≥ 1, the excited states also have inner layers, and the number of inner layers in the s-th

excited state is equal to s.

8.1.2. Fractional Schrödinger Equation. In contrast to the standard Schrödinger

equation, the stationary states of the fractional Schrödinger equation have not been well un-

derstood yet. Unlike the standard Laplacian, the fractional Laplacian is a nonlocal operator
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describing long-range interactions. For example, the function (−∆)α/2φ(x) depends on the

wave function φ(y) not only for y ∈ Ω, but also for y < Ω, albeit φ(y) ≡ 0 when y < Ω. As

a result, we consider the following eigenvalue problem in the fractional cases:

µφ(x) = (−∆)α/2φ(x) + β |φ(x) |2φ(x), x ∈ Ω, α ∈ (0, 2), (8.17)

with the nonlocal boundary condition [28, 83]

φ(x) = 0, x ∈ R\Ω, (8.18)

and the normalization constraint

‖φ‖2 =

∫ L

−L
|φ(x) |2 dx = 1. (8.19)

Here, we take the nonlocal character of the fractional Laplacian into account and apply the

nonlocal boundary condition (8.18) to the time-independent fractional Schrödinger equation

(8.17).

Due to the nonlocality, it is very challenging to solve (8.17)–(8.19) analytically,

and thus the analytical solutions to its eigenvalues and eigenfunctions still remain an open

question. For the eigenvalues, so far only some estimates and asymptotic approximations

are reported in the literature for the linear (β = 0) cases [3, 17, 35, 59]. For the convenience

of readers, we will review the main results in the following remarks:

Remark 8.1.1. (Lower and upper bounds of eigenvalues) Various lower and upper bound

estimates are reported for the eigenvalue µs of the fractional linear (β = 0) Schrödinger

equation in an interval of length l [3, 17, 35, 58, 59]. In [17, p.9], the lower and upper

bounds of the eigenvalue µs are given by

1
2

[
(s + 1)π

l

]α
≤ µs ≤

[
(s + 1)π

l

]α
, s ∈ N ∪ {0}, α ∈ (0, 2], (8.20)



138

where α = 2 corresponds to the standard Schrödinger equation. When s = 0 (corresponding

to the ground states), different estimates can be found in [3, 35], i.e.,

(α + 1)(α + 2)(6 − α)
(12 + 14α)

p(α) ≤ µ0 ≤
B( 12, 1 +

α
2 )

B( 12, 1 + α)
p(α), (8.21)

with

p(α) =
2α Γ(1 + α

2 ) Γ( 1+α2 )

Γ( 12 )
, (8.22)

for any α ∈ (0, 2), where B(a, b) defines the Beta function of a and b. Note that the lower

and upper bounds in (8.21) are, respectively, from [35] and [3].

It is easy to verify that when s = 0, the estimates in (8.21) are much sharper than

those in (8.20) for most of α (except those close to 2), but the estimate in (8.20) is valid for

any s ∈ N∪ {0}. To the best of our knowledge, the lower and upper bounds in (8.21) are the

best analytical estimates for the eigenvalue µ0 in the literature. More numerical estimates

on lower and upper bounds can be found in [58, 59] and references therein.

Remark 8.1.2. (Asymptotic approximations of eigenvalues)When β = 0, the asymptotic

approximation of the s-th eigenvalue of the fractional linear Schrödinger equation in an

interval (−1, 1) is given by [59, Theorem 1]:

µs =

[
(s + 1)π

2
−

(2 − α)π
8

]α
+O

(
2 − α

(s + 1)
√
α

)
, α ∈ (0, 2], s ≥ (C/α)

3
2α

with C a positive constant. When α = 2, it gives the exact eigenvalue µs = [(s + 1)π/2]2

(for s ∈ N ∪ {0}) of the standard linear Schrödinger equation in an infinite potential well.

In section 8.3, we will compare these estimated results with our numerical solutions

(see Tables 8.1–8.2) and providemore discussions. Even though the estimates of eigenvalues

have been discussed extensively in [3, 17, 35, 58, 59], the results on the eigenfunctions
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are still limited. In [16, 38, 74], the existence and uniqueness of the ground states are

discussed for the general fractional Schrödinger equations. In [66], Luchko conjectured

that the eigenfunctions of the fractional Schrödinger equation cannot be written in terms of

elementary functions. In [96], Zoia et al. studied the eigenfunctions by solving eigenvectors

of the matrix representing the fractional Laplacian. Recently, Żaba and Garbaczewski

studied in [90] the eigenfunctions of the fractional Schrödinger equation in a finite potential

well when α = 1, and they found that the eigenfunctions in a finite potential well converge

to those in an infinite potential well, as the depth of the potential well goes to infinity.

More discussions on the properties of eigenfunctions can be found in [4, 35, 48, 59, 66]

and references therein. Surprisingly, no study has been carried out by directly solving the

fractional Schrödinger equation with an infinite potential well, and furthermore no results

can be found in the literature on the stationary states of the fractional nonlinear (β , 0)

Schrödinger equation in an infinite potential well.

8.2. FRACTIONAL GRADIENT FLOW AND ITS DISCRETIZATION

In this section, we propose a numerical method for computing the ground and first

excited states of the fractional Schrödinger equation in an infinite potential well. First, we

apply an imaginary time (i.e., τ = it) in (8.1) and introduce a normalized fractional gradient

flow. Then, we discretize it by using the weighted trapezoidal method in space and the

semi-implicit Euler method in time. Our method can be used to find the ground and first

excited states of both linear and nonlinear fractional Schrödinger equation in an infinite

potential well.
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Denote τ = it as an imaginary time, and let φ(x, τ) = ψ(x, t). Then the normalized

fractional gradient flow is given by:

∂φ(x, τ)
∂τ

= −(−∆)α/2φ − β |φ|2φ + µ(τ)φ, x ∈ Ω, τ > 0,

φ(x, τ) = 0, x ∈ R\Ω, τ ≥ 0, (8.23)∫
Ω

|φ(x, τ) |2dx = 1, τ ≥ 0

along with the initial condition

φ(x, 0) = ϕ(x), x ∈ Ω, with ‖ϕ‖ = 1. (8.24)

Here, µ(τ) is computed from (8.9).

The gradient flow (8.23)–(8.24) is the fractional counterpart of the normalized

gradient flowwhich hasmany applications, such as finding stationary states ofBose–Einstein

condensates [6, 19, 92], and studying optimal eigenvalue partition problems [11, 29]. To

efficiently solve the normalized gradient flow, an operator splitting (or projection) method

is often used in the literature [5, 6, 29, 92], and the resulting scheme is often referred to as

a gradient flow with discrete normalization. Denote ∆τ > 0 as time step, and define time

sequence τn = n∆τ for n = 0, 1, . . .. Then from τ = τn to τ = τn+1, we solve the following

fractional gradient flow with discrete normalization (FGFDN):

∂φ(x, τ)
∂τ

= −(−∆)α/2φ − β |φ|2φ, x ∈ Ω, τn < τ < τn+1,

φ(x, τ) = 0, x ∈ R\Ω, τn ≤ τ ≤ τn+1, (8.25)

φ(x, τn+1) =
φ(x, τ−n+1)
‖φ(·, τ−n+1)‖

, x ∈ Ω,

where φ(x, τ−n+1) is the solution obtained from (8.25) at τ = τn+1, and the norm ‖ · ‖ = ‖ ·

‖L2(Ω). The FGFDN in (8.25) can be also viewed as first applying the steepest decent method

to the energy functional (8.4) and then projecting the solution to satisfy the normalization
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constraint (8.3). For more discussions on the gradient flow with discrete normalization,

see [5, 6, 29] and references therein. To discretize the fractional Laplacian, we apply the

weighted trapezoidal method introduced in Section 3.

LetΦ(τ) =
(
φ1(τ), φ2(τ), . . . , φJ−1(τ)

)T denote the solution vector at time τ. Then

the semi-discretization of the fractional gradient flow in (8.25) is given by

dΦ(τ)
dτ

= AΦ(τ) + F (Φ,Φ), τ ∈ (τn, τn+1), (8.26)

where the matrix A is the discretization of the fractional Laplacian, defined in (3.10) with

γ = 1 + α/2. The vector function F (Φ,Φ′) =
(

f (φ1, φ′1), f (φ2, φ′2), . . . , f (φJ−1, φ
′
J−1)

)T

with f (φ j, φ
′
j ) = −β |φ j |

2φ′j .

The semi-discretization of the fractional gradient flow in (8.26) is a system of

nonlinear ordinary differential equations (ODEs). Its temporal discretization can be realized

by standard numerical methods for initial value problems. Here, we will use the semi-

implicit Euler method, and more discussion on other methods can be found in [5, 6, 29].

DenoteΦn as the numerical approximation of the solution vectorΦ(τn). Then, we discretize

(8.26) as:

Φ(1) − Φn

∆τ
= AΦ(1) + F (Φn,Φ(1)), n = 0, 1, . . . , (8.27)

and the projection in (8.25) is discretized as

Φ
n+1 =

Φ(1)

‖Φ(1) ‖
, with ‖Φ(1) ‖ =

(
h

J−1∑
j=1

��φ(1)
j

��2
)1/2

. (8.28)

When n = 0, the initial condition at τ = 0 is discretized by

φ0j = ϕ(x j ), 1 ≤ j ≤ J − 1. (8.29)
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The scheme (8.27)–(8.29) can be used to compute for both the ground states and the first

excited states of the fractional Schrödinger equation in an infinite potential well. In our

simulations, the ground and first excited states are obtained by requiring that

‖Φn+1 − Φn‖∞

∆τ
< ε (8.30)

for a small tolerance ε > 0. We remark that in order to obtain a good approximation to the

stationary states, a small time step is needed in the simulations.

8.3. FRACTIONAL LINEAR SCHRÖDINGER EQUATION.

In this section, we will numerically study the ground and first excited states of the

fractional linear (β = 0) Schrödinger equation in an infinite potential well. In Sections

8.3.1–8.3.2, the ground and first excited states of the fractional linear Schrödinger equation

in an infinite potential well are studied by numerically solving the fractional gradient flow

in (8.25) with β = 0. In our simulations, we choose L = 1, equivalently, Ω = (−1, 1). The

mesh size is h = 1/4096, and the time step is ∆τ = 0.005. The initial condition is chosen

as

ϕ(x) = sin
[

(s + 1)π
2

(1 + x)
]
, x ∈ Ω, s = 0 or 1, (8.31)

where we choose s = 0 for computing the ground states, respectively, s = 1 for the first

excited states. We choose the tolerance ε = 10−5 in (8.30). In the following, we will use the

subscripts “g” and “1” to represent the ground states and the first excited states, respectively.

For the s-th (s ∈ N ∪ {0}) state, we define its expected value of position as

〈x〉s =
∫
R

x |φs (x) |2dx =
∫
Ω

x |φs (x) |2dx.
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It is easy to obtain that 〈x〉s = 0 if |φs (x) | is symmetric with respect to the potential center

x = 0. Furthermore, we define the variance in position as

Vars (x) =
∫
R

(
x − 〈x〉s

)2
|φs (x) |2dx =

∫
Ω

(
x − 〈x〉s

)2
|φs (x) |2dx,

which can be used to study the scattering of particles in the potential well.

8.3.1. Ground States. Figure 8.1 (left) depicts the ground state wave function

φg (x) of the fractional linear Schrödinger equation in an infinite potential well for α =

0.2, 0.7, 1.1, 1.5, and 1.9; Figure 8.1 (right) shows the expected value of position and its

variance of the ground state solutions for α ∈ (0, 2], where α = 2 corresponds to the standard

Schrödinger equation. From Figure 8.1, we find that the wave function of the ground state

is symmetric with respect to the center of the potential well x = 0, i.e., φg (x) = φg (−x)

for x ∈ (−1, 1). The wave function |φg (x) | monotonically increases for x ∈ (−1, 0) and

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β = 0

x

φ g
(x

)

α

0.5 1 1.5 2
−0.05

0

0.05

0.1

0.15

0.2

0.25

α

 

 

〈 x 〉

Var(x)

Figure 8.1. Ground states and expected value of position. Left: Ground state solutions
for α = 0.2, 0.7, 1.1, 1.5, and 1.9, where the arrow indicates the change of φg (x) for
progressively increasing α. Right: The expected value of position and its variance of the
ground state solutions.

monotonically decreases for x ∈ (0, 1), and it reaches the maximum value at x = 0.

Furthermore, the ground state of the fractional Schrödinger equation in an infinite potential

well depends significantly on the parameter α. If α is small, the nonlocal interactions from

the fractional Laplacian are strong, resulting in a flatter shape of the wave function. While
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if α → 2, the wave function of the ground state converges to φg (x) = sin
[
π(1 + x)/2

]
–

the ground state solution of the standard Schrödinger equation. Our solutions are consistent

with the observations in [4, 48, 59, 66].

Figure 8.1 (right) shows that the expected value of the position 〈x〉g ≡ 0, independent

of the parameter α. However, the variance in position highly depends on the parameter

α. The smaller the parameter α, the larger the variance in position. When α → 0, the

nonlocal interactions represented by the fractional Laplacian become stronger, resulting

in a larger scattering of particles. Hence, the decrease in the parameter α leads to an

increase in variance in position. While α → 2, the variance in position converges to that

of the standard Schrödinger equation. We remark that for the standard linear Schrödinger

equation, the expected value of position and its variance of the s-th stationary state can be

exactly computed as:

〈x〉s = 0 and Vars (x) =
L2

3

(
1 −

6
π2(s + 1)2

)
, s ∈ N ∪ {0}, (8.32)

that is, for any stationary states, the average position is always at x = 0 – the center of the

infinite potential well. The variance in position increases as s increases, and as s → ∞, the

variance Vars (x) → L2/3.

Furthermore, we compare our results with those reported in the literature [90, 96].

In [96], Zoia et al. study the ground state by computing the first eigenvector of the matrix

representing the fractional Laplacian. While in [90], Żaba et al. study the stationary states

of the fractional linear Schrödinger equation in a finite potential well of the following form:

Ṽ (x) =



0, x ∈ Ω,

V0, x ∈ R\Ω,
x ∈ R, (8.33)

where V0 > 0 is a constant. They find that the ground states in a finite potential well
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Figure 8.2. Comparison of the ground state solutions obtained from our method (solid line),
Zoia’s method in [96] (dashdot line), and Żaba’s method in [90] with V0 = 100 (dotted line)
and V0 = 500 (dashed line). The right panel is an enlarged display of the left panel around
the maximum and boundary of the ground state solution.

converge to those in an infinite potential well, as V0 → ∞, where only the case α = 1 is

considered. In Figure 8.2, we compare the ground state solutions obtained by our method,

Zoia’s method in [96], and Żaba’s method in [90], where α = 1. It shows that the ground
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Figure 8.3. Comparison of the ground state solutions and errors of eigenvalues. Left:
Further comparison of the ground state solutions computed by our method (solid line) and
Zoia’s method in [96] (dashdot line) for α = 0.3, 0.6, 1.3, and 1.8, where the solutions for
only 0 ≤ x ≤ 1 are displayed for brevity. Right: Errors of the eigenvalues versus the
number of grid points which are computed by our method (‘◦’) and Zoia’s method in [96]
(‘4’).

state solution obtained by our method is the same as that by Zoia’s method. The ground
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state solution by Żaba’s method approaches our solutions, as the depth of the potential

well V0 increases. In Figure 8.3, we further compare our method with Zoia’s method by

comparing the eigenfunctions for any α ∈ (0, 2) and the convergence of eigenvalues as the

number of grid points increases. Figure 8.3 (left) and our extensive simulations show that

for any α ∈ (0, 2), the ground state solutions obtained by our method are the same as those

by Zoia’s method. However, our numerical method has better accuracy in eigenvalues,

especially when α is large (see Figure 8.3 right). Moreover, our method can be used to

compute the ground and first excited states of the fractional Schrödinger equation not only

in the linear (β = 0) cases but also in the nonlinear (β , 0) cases.

In Table 8.1, we compare our simulated eigenvalues µh
g with the approximate results

in [59, 96] and the lower and upper bound estimates in [3, 17, 35]. Columns 2–6 represent

the best analytical lower bounds from [35], asymptotical approximations in [59], numerical

approximations by Zoia’s method in [96], our numerical results, the best analytical upper

bounds from [3] (indicated by ‘†’) and [17] (indicated by ‘‡’), respectively. Note that

in Tables 8.1–8.2, we only compare with the analytical lower and upper bound estimates

reported in [3, 17, 35]. For more discussions on numerical bounds, we refer readers to

[58, 59]. Table 8.1 shows that asα → 2, the eigenvalue µg converges to π2/4 – the eigenvalue

of the ground states of standard linear Schrödinger equation in an infinite potential well.

Our numerical results are consistent with the lower and upper bound estimates obtained in

[3, 17, 35]. Furthermore, our results suggest that the lower bound estimates reported in

[35] are much sharper than those in [3, 17]. When α is small, the differences between the

eigenvalues obtained by Zoia’s and our methods are insignificant. However, the difference

becomes larger as α increases, since the eigenvalues by Zoia’s method have larger errors

when α increases (also see Figure 8.3 right).

8.3.2. The First Excited States. Figure 8.4 (left) depicts the first excited state

wave function φ1(x) of the fractional linear Schrödinger equation in an infinite potential

well for α = 0.2, 0.7, 1.1, 1.5, and 1.9, and Figure 8.4 (right) shows the expected value of
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Table 8.1. The eigenvalue µg of the ground states of the fractional linear (β = 0) Schrödinger
equation in an infinite potential well.

α Lower bounds Results in [59] Results in [96] Our results Upper bounds
0.01 0.9960 0.9976 0.996633 0.996636 0.9974†
0.1 0.9676 0.9809 0.97258 0.97261 0.9786†
0.2 0.9499 0.9712 0.9574 0.9575 0.9675†
0.3 0.9442 0.9699 0.9527 0.9528 0.9655†
0.5 0.9620 0.9908 0.9701 0.9702 0.9862†
0.6 0.9839 1.0126 0.9911 0.9913 1.0084†
0.8 1.0521 1.0789 1.0573 1.0576 1.0763†
1 1.1538 1.1781 1.1576 1.1578 1.1781†
1.1 1.2183 1.2415 1.2218 1.2222 1.2432†
1.3 1.3781 1.4007 1.3832 1.3837 1.4064†
1.5 1.5861 1.6114 1.5970 1.5976 1.6223†
1.8 2.0140 2.0555 2.0479 2.0488 2.0777†
1.9 2.1952 2.2477 2.2430 2.2441 2.2747†
1.99 2.3784 2.4441 2.4425 2.4437 2.4563‡

position and its variance of φ1(x) for α ∈ (0, 2], where α = 2 corresponds to the standard

Schrödinger equation. It shows that the wave function φ1(x) varies for different values of

α, and as α → 2, it converges to φ1(x) = sin(π(1 + x)) – the first excited state solution

of the standard linear Schrödinger equation in an infinite potential well. In addition, the
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Figure 8.4. The first excited state solutions and expected value of position. Left: The
first excited state solutions for α = 0.2, 0.7, 1.1, 1.5, and 1.9, where the arrow indicates the
change of φ1(x) for progressively increasing α. Right: The expected value of position and
its variance of the first excited state solutions.
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wave function φ1(x) of the first excited states is antisymmetric with respect to the center

of the infinite potential well x = 0, i.e., φ1(x) = −φ1(−x) for x ∈ (−1, 1) and φ(0) = 0.

For the standard linear Schrödinger equation, φ1(x) is also symmetric on each subinterval

(−1, 0) and (0, 1), but in the fractional cases the wave function loses the symmetry in each

subinterval.

In addition, we find from Figure 8.4 (right) that for any α ∈ (0, 2), the expected

value 〈x〉1 ≡ 0, due to the antisymmetry of the wave function φ1(x) with respect to x = 0,

while the variance in position changes for different α. The smaller the parameter α, the

stronger the scattering of particles, and thus the larger the variance in position, which is

similar to our observations in Figure 8.1 for ground states. However, we find that for a fixed

α, the variance Var1(x) > Varg (x). In fact, the energy of the first excited states is higher

than that of the ground states, and consequently the scattering of particles in the first excited

states is stronger, which leads to a larger variance in position of the first excited states.

To further study the symmetry of φ1(x), we denote ρ1(x) = |φ1(x) |2 as the position

density of the first excited states. The fact that φ1(x) is antisymmetric about the center of
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Figure 8.5. The maximum value of the position density and the position. Left: The
maximum value of the position density ρ1(xc) versus the parameter α. Right: The position
xc versus the parameter α.

the potential well implies that the position density ρ1(x) is symmetric with respect to x = 0.

Furthermore, there exist two points xc ∈ (0, 1) and −xc ∈ (−1, 0) at which the density

function ρ1(x) reaches its maximum values, i.e., ρ1(xc) = ρ1(−xc) = maxx∈[−1,1]{ρ1(x)}.
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The point xc varies for different parameter α. Figure 8.5 shows the values of xc and ρ1(xc)

for various α. We see that the larger the parameter α, the smaller the value of xc, but the

larger the density function ρ1(xc). The maximum value ρ1(xc) increases almost linearly

as the parameter α. In particular, the point xc =
1
2 and the maximum density function

ρ1(±1
2 ) = 1 for the standard linear Schrödinger equation.

In Figure 8.6, we compare our first excited state solution with that obtained by Zoia’s

method in [96], and the approximate solution using a finite potential well in [90], where

α = 1. It shows that the first excited state wave functions obtained by our method and

Zoia’s method are the same. While the wave function in a finite potential well gives a good
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Figure 8.6. Comparison of the first excited state solutions from our method (solid line),
Zoia’s method in [96] (dashdot line), and Żaba’s method in [90] with V0 = 100 (dotted line)
and V0 = 500 (dashed line). The right panel is an enlarged display of the left panel around
the maximum and boundary of the first excited state solution.

approximation to that in an infinite potential well, when the potential well is deep enough

(i.e., V0 is sufficiently large). In Figure 8.7, we further compare our method with Zoia’s

method in simulating the first excited states. Similar to the observations in Figure 8.3, the

first excited state wave functions obtained by our method are the same as those by Zoia’s

method, but our method converges much faster, especially when α is large (see Figure 8.7

right). For example, when α = 1.8, the eigenvalue that computed by our method with 128
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Figure 8.7. Comparison of the first excited state solutions and the errors of the eigenvalues.
Left: Further comparison of the first excited state solutions computed by our method (solid
line) and Zoia’s method in [96] (dashdot line), for α = 0.3, 0.6, 1.3, and 1.8, where the
solutions for only 0 ≤ x ≤ 1 are displayed for brevity. Right: Errors of the eigenvalues
versus the number of grid points which are computed by our method (‘◦’) and Zoia’s method
in [96] (‘4’).

grid points has almost the same error as that obtained by Zoia’s method with 2048 grid

points, which implies that our method can achieve a better approximation with less number

of grid points.

In Table 8.2, we compare our simulated eigenvalues µh
1 with the approximate results

in [59, 96] and the lower and upper bound estimates in [17]. Columns 2–6 display the

best analytical lower bounds from [17], asymptotical approximations in [59], numerical

approximations by Zoia’s method in [96], our numerical results, the best analytical upper

bounds from [17], respectively. It shows that the eigenvalue of the first excited states

increases as α increases, and as α → 2, it converges to µ1 = π2 – the eigenvalue of the

first excited states of the standard linear Schrödinger equation in an infinite potential well.

Our numerical results µh
1 are consistent with the estimates obtained in [17] as well as the

approximations in [59, 96]. Furthermore, our results suggest that the asymptotic results in

[59] are more accurate for the first excited states than for the ground states, as the asymptotic

approximation has the error O
(
(2 − α)/(s + 1)

√
α
)
.
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Table 8.2. The eigenvalue µ1 of the first excited states of the fractional linear (β = 0)
Schrödinger equation in an infinite potential well.

α Lower bounds Results in [59] Results in [96] Our results Upper bounds
0.01 0.5058 1.0086 1.008717 1.008719 1.0115
0.1 0.5606 1.0913 1.09218 1.09221 1.1213
0.2 0.6286 1.1948 1.1965 1.1966 1.2573
0.3 0.7049 1.3122 1.3147 1.3148 1.4098
0.5 0.8862 1.5977 1.6014 1.6016 1.7725
0.6 0.9937 1.7708 1.7750 1.7753 1.9874
0.8 1.2494 2.1941 2.1991 2.1995 2.4987
1 π/2 2.7489 2.7543 2.7549 π
1.1 1.7613 3.0892 3.0946 3.0954 3.5226
1.3 2.2144 3.9319 3.9367 3.9380 4.4289
1.5 2.7842 5.0545 5.0581 5.0600 5.5683
1.8 3.9250 7.5003 7.5000 7.5033 7.8500
1.9 4.4010 8.5942 8.5919 8.5959 8.8021
1.99 4.8786 9.7330 9.7285 9.7332 9.7573

8.4. FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION

There have been many discussions on the stationary states of the fractional linear

Schrödinger equation in an infinite potential well based on different representations of

the fractional Laplacian (−∆)α/2. However, to the best of our knowledge, no study has

been reported in the nonlinear (β , 0) cases yet. In this section, we numerically study

the ground and first excited states of the fractional Schrödinger equation with repulsive

nonlinear interactions (i.e., β > 0) and attempt to understand the effects of local (or

short-range) interactions and the competition of the local and nonlocal interactions. In our

simulations, we choose L = 1, the mesh size h = 1/4096, the time step ∆τ = 0.001, and

the convergence tolerance ε = 10−5 in (8.30). The initial condition is chosen as defined in

(8.31).
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8.4.1. Ground States. Figure 8.8 a)-c) displays the ground state wave function

φg (x) of the fractional nonlinear Schrödinger equation in an infinite potential well for

various α and β. It shows that the wave function of the ground states φg (x) is always
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Figure 8.8. Ground state wave functions of the fractional nonlinear Schrödinger equation
and the variance in position. a)-c): Ground state wave functions of the fractional nonlinear
Schrödinger equation for α = 0.2, 0.7, 1.1, 1.5, and 1.99, where the arrow indicates the
change in the wave function for progressively increasing α. d): The variance in position of
the ground state solutions.

symmetric with respect to the center of the infinite potential well x = 0. As α → 2, the wave

function converges to the ground state solution of the standard Schrödinger equationwith the

same nonlinear parameter β. In contrast to the linear cases, the local repulsive interactions

may lead to boundary layers in the ground states. Here, we divide our discussions into

two interaction regimes: the weak interactions when β ∼ o(1) and the strong interactions

when β � 1. For β ∼ o(1), the effects of local repulsive interactions are significant only
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when α is small, resulting in two boundary layers at x = ±1 (see the case of α = 0.2 and

β = 1 in Figure 8.8). While in the strongly interacting cases (e.g. β = 50), the local

interactions become significant for any α ∈ (0, 2). Due to the normalization condition, the

wave function φg (x) inside the potential well tends to approach the value
√
2/2. However,

since the wave function φg (x) ≡ 0 at x = ±1, two layers emerge at the boundaries of the

potential well.

In Figure 8.8 d), we present the variance in position of φg (x) for α ∈ (0, 2) and

β = 1, 10, 50, and 100. Since the wave function φg (x) is symmetric with respect to x = 0,

the expected value of position 〈x〉g ≡ 0, independent of the parameters α and β. Here, we

omit showing it for brevity. Figure 8.8 d) shows that the variance in position monotonically

increases as α decreases or β increases, implying that strong local or nonlocal interactions

yield a large scattering of particles in the potential well. Comparing Figure 8.8 d) to Figure

8.1 (right), we find that even weak local interactions (e.g., β = 1) can significantly change

the variance in position, especially when α is small. Moreover, Figure 8.8 d) suggests

that when β is small (e.g., β = 1), the nonlocal interactions from the fractional Laplacian

are dominant, and the variance decreases concave up as α increases, similar to the cases

of β = 0. When β is large, the local repulsive interactions become significant, and the

decrease of the variance becomes concave down as α increases. In addition, due to the

constraint ‖φg‖2 = 1, the variance of position converges to 1/3 as α → 0 or β → ∞.

The ground state solutions in Figure 8.8 show that the width of boundary layers

depends on both the parameters α and β. To further study their relation, we define w as the

width of the boundary layers. In our simulations, it is computed by w = 1 − | x̄ |, where x̄

satisfies

�����
∂φg (x)
∂x

���x=x̄

�����
= η, with η ∼ O(1) a constant.
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Here, we choose η =
√
2/2. In Figure 8.9, we present the log-log plots of the width of

boundary layers w versus β for different α. It shows that when β is large, log(w) linearly

10
2

10
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10
−1

10
0

log(β)

lo
g
(w

)

 

 

α = 0.7

α = 0.9

α = 1.2

α = 1.5

α = 1.99

Figure 8.9. Log-log plots of the width of boundary layers versus β in the ground states of
the fractional nonlinear Schrödinger equation in an infinite potential well.

decreases as log(β) increases, which implies that

w = O(β−q) (8.34)

with q > 0 a constant depending on α. In particular, the width of the boundary layers

w ∼ O
(
β−1/2

)
in the ground states of the standard Schrödinger equation [7].

In [90], the ground state solutions in a finite potential well are studied when β = 0

and α = 1, and it shows that the ground state solutions in a finite potential well provide

good approximations to those in an infinite potential well when the potential well is deep

enough. Similarly, here we consider a finite potential of the form in (8.33) and compare

the ground state solutions in finite and infinite potential wells when β , 0 and α ∈ (0, 2).

Figure 8.10 depicts the ground states for different depth of the potential well V0, where

β = 10. It shows that the ground state solution in a deep (i.e., large V0) finite potential

well gives a good approximation to that in an infinite potential well. Furthermore, when α

increases, a deeper finite potential well is needed to obtain a better approximation.
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Figure 8.10. Comparison of the ground states of the fractional nonlinear Schrödinger
equation in a finite potential well with depth V0 and those in an infinite potential well, where
β = 10. The right panel is an enlarged display of the left panel around the maximum and
boundary of the ground state solution.

Table 8.3. The simulated eigenvalue µh
g and the kinetic energy µh

g,kin of the ground states of
the fractional nonlinear Schrödinger equation in an infinite potential well.

α
β = 1 β = 5 β = 10 β = 50

µh
g,kin µh

g µh
g,kin µh

g µh
g,kin µh

g µh
g,kin µh

g

0.3 0.9627 1.4864 0.9843 3.5062 0.9930 6.0233 1.0099 26.498
0.5 0.9808 1.5295 1.0220 3.5915 1.0483 6.1236 1.1055 26.612
0.7 1.0304 1.6056 1.0870 3.7341 1.1345 6.3053 1.2743 26.869
0.9 1.1124 1.7143 1.1793 3.9272 1.2475 6.5622 1.5009 27.309
1 1.1664 1.7817 1.2368 4.0419 1.3145 6.7174 1.6318 27.603
1.1 1.2302 1.8586 1.3028 4.1691 1.3894 6.8901 1.7734 27.948
1.3 1.3904 2.0449 1.4646 4.4625 1.5661 7.2890 2.0882 28.791
1.5 1.6031 2.2827 1.6748 4.8137 1.7869 7.7632 2.4488 29.839
1.7 1.8823 2.5860 1.9483 5.2335 2.0653 8.3209 2.8637 31.098
1.9 2.2475 2.9743 2.3054 5.7380 2.4211 8.9754 3.3460 32.582
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Denote the kinetic energy µs,kin of the s-th stationary state as

µs,kin =

∫
R
φ∗s (−∆)α/2φs dx, s ∈ N ∪ {0}.

Especially when β = 0, we have the eigenvalue µs ≡ µs,kin for any α. In Table 8.3,

we present the simulated eigenvalue µh
g and the kinetic energy µh

g,kin corresponding to the

ground states of the fractional nonlinear Schrödinger equation in an infinite potential well.

It shows that both the eigenvalue µg and the kinetic energy µg,kin increase as the parameter α

or β becomes larger. However, when β increases, the kinetic energy becomes insignificant

compared to the eigenvalue, especially when α is small. This implies that one could ignore

the kinetic energy when β is large and α is small. Furthermore, we find that if β � 1, the

eigenvalue µg ∼ O(β/2).

8.4.2. The First Excited States. Figure 8.11 a)-c) shows the first excited state

solution φ1(x) of the fractional nonlinear Schrödinger equation in an infinite potential well.

The wave function φ1(x) is antisymmetric with respect to the center of the potential well

x = 0, independent of the parameters α and β. As α → 2, the wave function converges to

the first excited state solution of the standard Schrödinger equation with the same nonlinear

parameter β. The effect of local interactions becomes more significant when α is small,

resulting in sharp boundary layers at x = ±1 as well as one inner layer at x = 0. The

width of the boundary and inner layers decreases as α decreases or β increases. Numerical

simulations show that our method converges fast in computing both the ground and first

excited states.

In addition, Figure 8.11 d) displays the variance of φ1(x) for α ∈ (0, 2) and β = 1,

10, 50, and 100. Note that the expected value of position 〈x〉1 ≡ 0, independent of the

parameters α and β. The properties of the variance in position can be divided into two

cases: when α < 1, the larger the parameter β, the smaller the variance, and as β → ∞, the
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Figure 8.11. The first excited state wave functions of the fractional nonlinear Schrödinger
equation and the variance in position. a)-c): The first excited state wave functions of the
fractional nonlinear Schrödinger equation for α = 0.2, 0.7, 1.1, 1.5, and 1.99, where the
arrow indicates the change in the wave function for progressively increasing α. d): The
variance in position of the first excited state solutions.

variance converges to 1/3. While α > 1, the larger the parameter β, the bigger the variance,

implying that in this case the scattering of particles is mainly caused by the local repulsive

interactions.

Similarly, we also compare in Figure 8.12 the first excited state solutions in an

infinite potential well with those in a finite potential well with different depth V0, where

β = 10. As the depth V0 → ∞, the first excited states in a finite potential well approaches

those in an infinite potential well, which is consistent with the observations in [90] for the

linear cases.

In Table 8.4, we present our numerical results of the eigenvalue µh
1 and the kinetic

energy µh
1,kin of the first excited states for various α and β. It shows that both the eigenvalue
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Figure 8.12. Comparison of the first excited states of the fractional nonlinear Schrödinger
equation in a finite potential well with depth V0 and those in an infinite potential well, where
β = 10. The right panel is an enlarged display of the left panel around the maximum and
boundary of the first excited state solution.

Table 8.4. The simulated eigenvalue µh
1 and the kinetic energy µh

1,kin of the first excited
states of the fractional nonlinear Schrödinger equation in an infinite potential well.

α
β = 1 β = 5 β = 10 β = 50

µh
1,kin µh

1 µh
1,kin µh

1 µh
1,kin µh

1 µh
1,kin µh

1
0.3 1.3349 1.8998 1.3931 3.9589 1.4218 6.4828 1.4683 26.959
0.5 1.6179 2.2252 1.7023 4.3923 1.7670 6.9702 1.9441 27.513
0.7 1.9853 2.6258 2.0777 4.9209 2.1759 7.5983 2.5376 27.389
0.9 2.4669 3.1332 2.5546 5.5599 2.6714 8.3680 3.2328 29.626
1 2.7621 3.4392 2.8444 5.9300 2.9657 8.8115 3.6219 30.383
1.1 3.1014 3.7882 3.1769 6.3407 3.2994 9.2992 4.0438 31.233
1.3 3.9422 4.6457 4.0022 7.3118 4.1179 10.429 5.0093 33.223
1.5 5.0630 5.7807 5.1077 8.5449 5.2071 11.819 6.1905 35.630
1.7 6.5666 7.2967 6.5982 10.144 6.6768 13.561 7.6797 38.507
1.9 8.5970 9.3385 8.6185 12.255 8.6766 15.797 9.6183 41.942
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and kinetic energy increase as the parameter α or β becomes larger. Comparing Tables

8.4 and 8.3, we find that for fixed parameters α and β, the kinetic energy µ1,kin of the first

excited states is much larger than µg,kin of the ground states, which mainly caused by the

emergence of the inner layer in the first excited states. Similar to the cases of the ground

states, the kinetic energy is significant compared to the eigenvalue only when the local

interactions are weak (i.e., β is small).

In this section, we numerically studied the ground and first excited states of the

one-dimensional fractional Schrödinger equation in an infinite potential well. We proposed

a normalized fractional gradient flow and discretize it by the weighted trapezoidal method

in space and the semi-implicit Euler method in time. Our numerical results suggested

that the eigenfunctions of the fractional Schrödinger equation are different from those of

its standard counterpart. The nonlocal interactions are strong when α is small, leading

to a large scattering of particles in an infinite potential well. In addition, our simulated

eigenvalues are consistent not only with the approximation results in [59, 96] but also with

the best lower and upper bounds in [3, 17, 35].
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9. PLANEWAVE DYNAMICS OF THE FRACTIONAL SCHRÖDINGER
EQUATION

The plane wave solutions play an important role in understanding the NLS equation,

and especially the phenomena associated to their stability are of great interest. In the

standard (α = 2) NLS, the stability of the plane wave solutions has been well studied, in

contrast, because of the nonlocality, the study on the plane wave solution of the fractional

NLS still remain limited. In this section, we aim to understand the stability and dynamics

of the plane wave solutions under the nonlocal effects of the fractional Laplacian and to

compare the properties of different numerical methods in simulating the plane waves of the

fractional NLS.

We consider the following fractional nonlinear Schrödinger (NLS) equation:

i
∂u(x, t)
∂t

= (−∆)α/2u(x, t) + γ |u(x, t) |2u(x, t), t > 0, (9.1)

u(x, 0) = ψ(x), (9.2)

where u(x, t) is a complex-valued wave function of x ∈ R and t ≥ 0. The fractional

Laplacian (−∆)α/2 is defined via the pseudo-differential operator in (1.1).

The fractional NLS (9.1) has some similar properties to the standard NLS. It has

two important conserved quantities: the mass of the wave function:

N (t) = ‖u(·, t)‖2 :=
∫
R
|u(x, t) |2dx ≡ N (0), (9.3)

and the total energy (or Hamiltonian):

E(t) =
∫
R

[
Re

(
u∗(x, t)(−∆)α/2u(x, t)

)
+
γ

2
|u(x, t) |4

]
dx

≡ E(0), (9.4)
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where Re(φ) and φ∗, respectively, represent the real part and the complex conjugate of a

function φ. The fractional NLS is time reversible, that is, (9.1) remains invariant if one

replaces the time t by −t and takes its conjugate. These properties are usually used as

benchmarks to develop and examine numerical methods for the fractional NLS.

In addition, the fractional NLS (9.1) admits the plane wave solution of the form:

u(x, t) = a exp
(
i(λk x − ωt)

)
, (9.5)

provides that the dispersion relation

ω = |λk |
α + γ |a |2, (9.6)

is satisfied. Here, ‘a’ is the amplitude of the plane wave solution, λk ∈ R is the wave

numbers, and ω is the time frequency.

9.1. LINEAR STABILITY ANALYSIS

Due to the nonlocality, the stability and dynamics of the plane wave solutions in the

fractional NLS are significantly different from those in the standard NLS [33]. Consider a

finite domain of size L, and thus the wave number is chosen as λk = 2kπ/L with k ∈ Z. Due

to the nonlinearity of (9.1), the plane wave solution is stable only under certain conditions.

Here, we will focus on the linear stability analysis of the plane wave solution (9.5). Consider

a perturbed solution of the form

ũ(x, t) = u(x, t)(1 + ε(x, t)), (9.7)
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where u(x, t) is the plane wave solution in (9.5), and ε(x, t) is a small perturbation function

satisfying |ε | � 1. We assume that ε is periodic on an interval [−1
2L, 1

2L], and it can be

expanded in Fourier series as

ε(x, t) =
∑
l∈Z

ε̂l (t) exp(iµl x)

with µl = 2lπ/L for l ∈ Z. In what follows, we set Re(ε̂0(0)) = 0 without loss of generality.

Indeed, having Re(ε̂0(0)) , 0 simply rescales the amplitude a of the unperturbed wave

(9.5) in the order O(ε).

Substituting (9.7) into the fractional NLS (9.1) and taking the leading order terms

of ε, we obtain

εt = i
(
|λk |

αε −
∑
l∈Z

ε̂l (t) |λk + µl |
α exp(iµl x) − γ |a |2(ε∗ + ε)

)
, (9.8)

where ε∗ denotes the complex conjugate of ε. Taking the Fourier transform of (9.8) and its

complex conjugate, we get the following system of ODEs:

d
dt

*..
,

ε̂l

ε̂∗
−l

+//
-
= Gl

*..
,

ε̂l

ε̂∗
−l

+//
-
,

for l ∈ Z\{0}, where

Gl = i
*..
,

|λk |
α − γ |a |2 − |λk + µl |

α −γ |a |2

γ |a |2 −|λk |
α + γ |a |2 + |λk − µl |

α

+//
-
.

The eigenvalues of matrix Gl are computed as:

Λl = −
i
2
(
|λk + µl |

α − |λk − µl |
α) ± 1

2
√
∆l, (9.9)
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where

∆l = −

[(
|λk + µl |

α + |λk − µl |
α) − 2|λk |

α
]

·

[(
|λk + µl |

α + |λk − µl |
α) − 2( |λk |

α − 2γ |a |2
)]
.

The modes (ε̂l, ε̂
∗
l )T exponentially grow if at least one of the eigenvalues Λl in (9.9) has

positive real part, which occurs for

∆l > 0. (9.10)

If∆l > 0 for at least one l ∈ Z, then the plane wave solution (9.5) is unstable. This instability

condition depends not only on the parameters λk and a from the plane wave solution, but

also on α and γ from the fractional NLS (9.1).

Belowwe will focus on how the instability condition (9.10) depends on the exponent

α in the fractional NLS (9.1) and the wave number λk in the initial condition. For the

standard NLS (α = 2), it is known that the plane wave is stable in the defocusing (γ > 0)

case and unstable in the focusing (γ < 0) case. Moreover, stability of the plane wave in the

standard NLS is independent of its wave number λk . For the fractional NLS (0 < α < 2),

both these well-established facts no longer hold: the plane wave may be unstable in the

defocusing case (for α ∈ (0, 1)), and its (in)stability is affected by λk , γ and a. These

situations are delineated in Theorems 9.1.1 and 9.1.2 below.

Theorem 9.1.1 (Stability for α ∈ [1, 2]).

(a) For γ > 0 (defocusing), a plane wave with any λk is always stable.

(b) For γ < 0 (focusing), the plane wave solution is linearly unstable if there exists at least

one l ∈ Z such that

2|λk |
α < |λk + µl |

α + |λk − µl |
α < 2|λk |

α − 4γ |a |2. (9.11)
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Proof. Let us introduce a notation:

δl = δ(µl ) = |λk + µl |
α + |λk − µl |

α − 2|λk |
α;

then the analytical instability condition (9.10) takes the form

∆l = −δl (δl + 4γ |a |2) > 0. (9.12)

For 1 ≤ α ≤ 2, the function f (x) = |x |α is convex. By the Jensen’s inequality [57], we

obtain:

|λk |
α =

���
1
2

(λk + µl ) +
1
2

(λk − µl )
���
α

≤
1
2

��λk + µl ��α +
1
2

��λk − µl ��α; α ∈ [1, 2], (9.13)

which implies that δl ≥ 0, for any µl .

(a). For γ > 0, we get ∆l = −δl (δl + 4γ |a |2) < 0 for any µl , and thus the plane wave

solution is always stable in this case.

(b). For γ < 0, ∆l > 0 is equivalent to 0 < δl < −4γ |a |2, which leads the result. �

The instability condition for α ∈ (0, 1) is more complicated than α ∈ [1, 2]. Let µ̃0

be the largest root of δ(µl ) = 0. We then have the following Theorem for α ∈ (0, 1).

Theorem 9.1.2 (Stability for α ∈ (0, 1)).

(a) For γ > 0 (defocusing), the plane wave solution is linearly unstable if there exists at

least one l ∈ Z such that

|µl | < µ̃0 and δ(µl ) > −4γ |a |2. (9.14)

This condition can be further expressed more explicitly,
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(a1) If −4γ |a |2 < (2α − 2) |λk |
α, then the second condition δ(µl ) > −4γ |a |2 is satisfied

automatically, thus the plane wave solution is linearly unstable if there exists at least

one l ∈ Z such that |µl | < µ̃0, see Figure 9.1 on the left.

(a2) If −4γ |a |2 > (2α − 2) |λk |
α, then we can prove δ(µl ) = −4γ |a |2 has four distinct

roots µl = ±µ̃i (i = 1 or 2) satisfy −µ̃2 < −µ̃1 < 0 < µ̃1 < µ̃2 < µ̃0, thus the plane

wave solution is linearly unstable if there exists at least one l ∈ Z such that |µl | < µ̃1

or µ̃2 < |µl | < µ̃0, see Figure 9.1 on the right.

(b) For γ < 0 (focusing), the plane wave solution is linearly unstable if there exists at least

one l ∈ Z such that

|µl | > µ̃0 and δ(µl ) < −4γ |a |2.

Precisely, the equation δ(µl ) = −4γ |a |2 has two distinct real roots µl = ±µ̃3 satisfy

−µ̃3 < 0 < µ̃0 < µ̃3, thus the plane wave solution is linearly unstable if there exists at least

one l ∈ Z such that µ̃0 < |µl | < µ̃3, see Figure 9.2.

Proof. First of all, the instability condition (9.12) is equivalent to the following two cases:

δ(µl ) + 4γ |a |2 > 0 and δ(µl ) < 0; or

δ(µl ) + 4γ |a |2 < 0 and δ(µl ) > 0.

In case (a) for γ > 0, assuming that

δ(µl ) + 4γ |a |2 < 0⇒ δ(µl ) < −4γ |a |2 < 0
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by taking λk , 0.
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conflicting to δ(µl ) > 0, which implies that the instability condition (9.12) can not be

satisfied by case 2. That is the instability condition (9.12) is equivalent to

δ(µl ) + 4γ |a |2 > 0 and δ(µl ) < 0.

To get the instability condition in (9.14), it is left to show

δ(µl ) < 0 ⇔ |µl | < µ̃0. (9.15)

The function δ(µl ) is presented in the left plot of Figure 9.1. Analytically, it is easy to show

that δ(µl ) is increasing on (|λk |,∞) and decreasing on (0, |λk |). In addition, since

δ(|λk |) = (2α − 2) |λk |
α < 0 and δ(2|λk |) = (3α − 1) |λk |

α > 0,

by Intermediate theorem, there exists one solution µ̃0 ∈ ( |λk |, 2|λk |) such that δ( µ̃l ) = 0,

and this root is unique because δ(µl ) is increasing on (|λk |,∞). By the symmetric property

of function δ(µl ), it is easy to prove the δ(µl ) is increasing on (−∞,−|λk |) and decreasing

on (−|λk |, 0). In addition, there exists a unique solution −µ̃0 ∈ (−2|λk |,−|λk |) such that

δ(−µ̃l ) = 0. Therefore, we prove the equivalence of the two statements in (9.16) and thus

proved case (a). Next, we will further prove the statements (a1) and (a2).

Since ±|λk | are the global minimum of function δ(µl ), we consider δ(±|λk |) =

(2α − 2) |λk |
α be the critical line, and separate our discussion into two cases:

(a1). if −4γ |a |2 < (2α − 2) |λk |
α, the plot of δ(µl ) is presented on the left of Figure 9.1;

(a2). if −4γ |a |2 > (2α − 2) |λk |
α, the plot of δ(µl ) is presented on the right of Figure 9.1.

Therefore, the statements (a1) and (a2) directly followed by the illustration from Figure 9.1.

In case (b) for γ < 0, since that

δ(µl ) + 4γ |a |2 > 0⇒ δ(µl ) > −4γ |a |2 > 0
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conflicts to δ(µl ) < 0, which implies that the instability condition (9.10) is equivalent to

δ(µl ) + 4γ |a |2 < 0 and δ(µl ) > 0.

Following the same line as the proof of case (a), we have

δ(µl ) > 0 ⇔ |µl | > µ̃0. (9.16)

The function δ(µl ) is displayed in Figure 9.2 for λk = 0 on the left and λ , 0 on the

right. Let ±µ̃3 be the two roots of equation δ(µl ) = −4γ |a |2, since for γ < 0, it always has

−4γ |a |2 > 0, which follows that

−µ̃3 < −µ̃0 < 0 < µ̃0 < µ̃3.

Therefore, we proved case (b). �

Remark 9.1.1. As a special case, for λk = 0, the instability condition (9.35) reduces to

0 < |µl |
α < −2γ |a |2, (9.17)

for all α ∈ (0, 2], and the case α = 2 is consistent with the condition obtained in the

literature on the standard NLS; see [12, 37, 86] and references therein.

Remark 9.1.1 shows that the stability of the plane wave solution in the standard (i.e.,

α = 2) NLS is independent of the wave number λk , and thus λk is ignored in the analysis

[12, 22, 37, 86]. However, in the fractional NLS, the wave number λk of the plane wave

solution plays an important role in its stability, which is one main difference between the

fractional and standard NLS.
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Figures 9.3 and 9.4 illustrate the behavior of Re(Λl ) = 1
2
√
∆l versus µl for γ > 0 and

γ < 0, respectively; we only show the location of unstable modes, where Re(Λl ) > 0. In the

defocusing (γ > 0) case, no instability occurs if the frequency λk = 0, for any α ∈ (0, 2].

If the wave number λk , 0, Figure 9.3 shows that all modes are stable for 1 ≤ α ≤ 2, and
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Figure 9.3. Contour plots of Re(Λl ) for the plane wave solution (9.5) with a = 1
2 . Note that

when α < 1, Re(Λl ) > 0 for |µl | � 1, although its value is small.

thus the plane wave solution is always stable in this case, which is consistent to the analysis

in Theorem 9.1.1 (a). In contrast if 0 < α < 1, unstable modes appear in low-µl region,

and the number of unstable modes depends on λk , γ and a. The results in Figure 9.3 also

justify Theorem 9.1.2. In fact, the left plot of Figure 9.3 illustrates Theorem 9.1.2 (a1) and

the right of Figure 9.3 illustrates Theorem 9.1.2 (a2). For a fixed α, the unstable modes

in Figure 9.3 (left/right) correspond to the unstable region that is colored in red of Figure

9.1 (left/right). As shown in Theorem 9.1.2 (a2), if −4γ |a |2 > (2α − 2) |λk |
α, there is a

“stable-gap” at low-µl area., and the width of the gap is | µ̃2 − µ̃1 |.

In the focusing (γ < 0) case, Figure 9.4 shows that the unstable modes could occur

for any 0 < α ≤ 2. When 1 < α ≤ 2, unstable modes always exist in the low-µl region,

and the size of unstable band depends on |γ | |a |2. By contrast, if 0 < α ≤ 1, the unstable

modes are sensitive to λk . For λk = 0, instability start from low-µl modes and could spread

to high-µl region if α is small. For λk , 0, unstable modes start from relatively high-µl
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Figure 9.4. Contour plots of Re(Λl ) for γ < 0. Same as in Figure 9.6, but for γ < 0. Note
that γ in the first and second rows are different. Note that when α > 1, Re(Λl ) > 0 for
|µl | � 1, although its value is small.

region, and there is a “stable-gap" at the low-µl area, the width of the gap is µ̃0 which is

suggested in Theorem 9.1.2 (b) (see also Figure 9.2 on the right). As a special case, the

width of the gap is |λk |, if α = 1.

Figs. 9.3 and 9.4 show that the instability behaviors of the plane wave solutions for

α > 1 and α < 1 are significantly different. Namely, the stability of low-µl modes changes

at α = 1. To further understand it, we present Re(Λl ) versus µl for α = 0.9, 1 and 1.1 in

Figure 9.5. It shows that when γ > 0 and α ≥ 1, Re(Λl ) ≤ 0 for any l ∈ Z, implying all

modes are stable and thus the plane wave solution are stable in this case. While γ < 0 and

λk , 0, the unstable modes starts from µ±1 for α = 1.1, but they appear only at relatively

high frequency region for α = 0.9 or 1.
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9.2. NUMERICAL METHODS

To further understand the nonlinear stage of the plane wave dynamics of the fNLS,

only linear stability analysis is not enough. Therefore, numerical simulations play an

important role in the study of the fractional NLS. However, in contrast to the standard

NLS, only a few numerical methods are available in the literature for solving the fractional

NLS. In this section, we aim to develop and compare the numerical methods for solving

the fractional NLS, which preserve one or more analytical properties of the fractional NLS,

including mass conservation, energy conservation, time reversible, and dispersion relation.

First, we truncate (9.1)–(9.2) into a finite computational domain [−L/2, L/2] with

periodic boundary conditions and consider the following problem:

i∂tu(x, t) = (−∆)α/2u(x, t) + γ |u(x, t) |2u(x, t), t > 0, (9.18)

u(x, 0) = ψ(x), (9.19)

for x ∈ [−L/2, L/2]. Usually, we choose L to be sufficiently large, unless plane wave

solutions are studied. We will leave the discussion of other boundary conditions for our

future work.
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Let τ > 0 denote a time step, and define the time sequence tn = nτ for n ≥ 0.

Define the mesh size h = L/J, with J a positive even integer. Denote the spatial grid points

x j = −L/2 + jh for 0 ≤ j ≤ J. Let un
j be the numerical approximation of the solution

u(x j, tn). Then, we denote the solution vector at time t = tn as Un = (un
0, un

1, . . . , un
J )T .

Due to the definition of (−∆)α/2 in (1.1), it is natural to use the Fourier spectral method for

spatial discretization. Hence, we assume the anzatz:

u(x, t) =
J/2−1∑

l=−J/2
ûl (t) exp(iµl x), (9.20)

where

µl =
2πl
L
, for −

J
2
≤ l ≤

J
2
− 1.

In the following, we will focus on the temporal discretization and the properties of the

resulting numerical methods.

9.2.1. Split-step Fourier Spectral Method. The split-step method, also known as

the time-splitting method, is one of the most popular numerical methods for solving the

standard NLS equation (also known as the Gross–Pitaevskii equation in the literature of

Bose–Einstein condensation). It is an explicit method and thus avoids solving nonlinear

systems at each time step. The main idea of this method is outlined below. From time t = tn

to t = tn+1, the fractional NLS (9.18) is solved in two steps:

iut (x, t) = γ |u(x, t) |2u(x, t), (9.21)

iut (x, t) = (−∆)α/2u(x, t). (9.22)
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On one hand, multiplying u∗(x, t) at both sides of (9.21) and subtracting from its

conjugate, we obtain that |u(x, t) | = |u(x, tn) | for any t ∈ [tn, tn+1]. Therefore, (9.21)

reduces to

iut (x, t) = γ |u(x, tn) |2u(x, t).

Integrating it in time yields the solution to (9.21):

u(x, t) = u(x, tn) exp
(
− iγ |u(x, tn) |2(t − tn)

)
, t ∈ [tn, tn+1]. (9.23)

On the other hand, substituting (9.20) into (9.22), we obtain that

iû′l (t) = |µl |
α ûl (t), −

J
2
≤ l ≤

J
2
− 1.

Integrating it in time gives

ûl (t) = ûl (tn) exp
(
− i |µl |

α (t − tn)
)
, (9.24)

for t ∈ [tn, tn+1] and − J
2 ≤ l ≤ J

2 − 1. Combining (9.58) and (9.20) gives the numerical

approximation to the solution of (9.22).

Let un
j denote the numerical approximation of u(x j, tn). Then the first-order Strang

split-step Fourier spectral method for the fractional NLS can be summarized as follows:

un+1,−
j = un

j exp(−iγτ |un
j |
2), (9.25)

un+1
j =

J/2−1∑
l=−J/2

ûn+1,−
l exp(−i |µl |

ατ) exp(iµl x j ), 0 ≤ j ≤ J − 1, n = 0, 1, . . . (9.26)
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The numerical scheme in (9.25)–(9.26) has spectral accuracy in space and first-order ac-

curacy in time, and the time accuracy can be easily improved by adapting higher order

split-step methods [82]. Combine the steps (9.21) and (9.22) by the second order Strang

splitting method, resulting in the second-order split-step Fourier spectral (SSFS) method

for the fractional NLS (9.18)–(9.19) as follows:

un,1
j = un

j exp(−iγτ |un
j |
2/2),

un,2
j =

J/2−1∑
l=−J/2

ûn,1
l exp

(
− i |µl |

ατ
)
exp

(
iµl x j

)
, (9.27)

un+1
j = un,2

j exp(−iγτ |un,2
j |

2/2), 0 ≤ j ≤ J − 1, n = 0, 1, . . . . (9.28)

The initial condition (9.19) is discretized as:

u0j = ψ(x j ), 0 ≤ j ≤ J . (9.29)

The SSFS method in (9.27)–(9.29) has the spectral order spatial accuracy and the second-

order temporal accuracy, which can be efficiently implemented by the fast Fourier transform

(FFT).

It is easy to verify that the SSFS method (9.27)–(9.29) is time reversible, i.e., the

method remains unchanged if τ ↔ −τ and n ↔ n + 1. Moreover, the SSFS method has the

properties in the following lemmas

Lemma 9.2.1 (SSFS: Mass conservation). Suppose thatUn is the numerical solution of the

fractional NLS at time tn, obtained from the SSFS method in (9.27)–(9.29). Then, we have

the discrete mass:

Nn = h
J−1∑
j=0
|un

j |
2 = h

J−1∑
j=0
|u0j |

2 ≡ N0, n ≥ 0, (9.30)

i.e., it is conserved at any time tn.
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Proof. From (9.27), we obtain that

J−1∑
j=0

��un,2
j

��2 =
J−1∑
j=0

����

J/2−1∑
l=−J/2

ûn,1
l exp

(
− i |µl |

ατ
)
exp

(
iµl x j

) ����
2

=

J/2−1∑
l=−J/2

J/2−1∑
s=−J/2

ûn,1
l

(
ûn,1

s
)∗ exp (

− iτ(|µl |
α − |µs |

α)
) J−1∑

j=0
exp

(
i(µl − µs)x j

)
= J

J/2−1∑
l=−J/2

|ûn,1
l |

2. (9.31)

Then, using the discrete Parseval’s relation

J/2−1∑
l=−J/2

|ûn,1
l |

2 =
h
2L

J−1∑
j=0

��un,1
j

��2 =
1
J

J−1∑
j=0

��un,1
j

��2,

we obtain from (9.27) and (9.31) that

Nn+1 = h
J−1∑
j=0

��un+1
j

��2 = h
J−1∑
j=0

��un,2
j

��2 = h
J−1∑
j=0

��un,1
j

��2 = h
J−1∑
j=0

��un
j
��2 = Nn,

which implies the mass conservation in (9.30), as n ≥ 0 is arbitrary. �

Lemma 9.2.2 (SSFS: Dispersion relation). The SSFS method (9.27)–(9.29) preserves the

dispersion relation ω = |λk |
α + γ |a |2 of the plane wave solution in the fractional NLS.

Proof. Assume that at time t = tn (for any n ≥ 0), the solution un
j has the form:

un
j = a exp

(
i(λk x j − ωtn)

)
, with λk = 2πk/L, for k ∈ Z. (9.32)

Note that λk = µk . On one hand, from (9.32) and the solution un,1
j in (9.27), we get that

ûn,1
l =




0, if l , k,

a exp(−iωtn) exp(−iγτ |a |2/2), if l = k,
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for −J/2 ≤ l ≤ J/2 − 1. Plugging it into the second step of (9.27) gives that

un,2
j = un

j exp(−iγτ |a |2/2) exp(−i |µk |
ατ).

Substituting the above solution un,2
j into the last step of (9.27), we get

un+1
j = un

j exp
[
− iτ

(
|µk |

α + γ |a |2
)]
. (9.33)

On the other hand, setting n = n + 1 in (9.32), we get

un+1
j = a exp

(
i(λk x j − ωtn+1)

)
= un

j exp(−iωτ). (9.34)

Comparing (9.33) and (9.34), we obtain

ω = |λk |
α + γ |a |2,

i.e., the numerical solution from the SSFS method satisfies the dispersion relation of the

plane wave solution. �

Lemma 9.2.2 implies that the SSFSmethod can exactly solve the plane wave solution

of the NLS, if there is no numerical error, which makes it an ideal method to study

the long-time behavior of the plane wave dynamics. However, the SSFS method, as an

explicit method, is conditionally stable in simulating the plane wave solution, and sufficient

conditions are need to be derived to avoid its numerical instability, which will be carried

out in Section 9.3
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9.2.2. Crank–Nicolson Fourier Spectral Method. In this section, we study the

Crank–Nicolson Fourier spectral method for solving the fractional NLS. First, let’s define

the pseudo-differential operator

δαx Un�� j =

J/2−1∑
l=−J/2

|µl |
α ûn

l exp
(
iµl x j

)
, (9.35)

which can be viewed as a numerical approximation of (−∆)α/2u(x, t) at point x = x j and

time t = tn.

Then, the Crank–Nicolson Fourier spectral (CNFS) method for the fractional NLS

(9.18) reads:

i
un+1

j − un
j

τ
=

1
2

(
δαx Un+1�� j + δ

α
x Un�� j

)
+
γ

2
F (|un+1

j |
2, |un

j |
2)

(
un+1

j + un
j
)
,

(9.36)

for 0 ≤ j ≤ J and n ≥ 0, where the function F is defined as

F (φ1, φ2) =
∫ 1

0

(
θφ1 + (1 − θ)φ2

)
dθ.

It is easy to compute that

F (φ1, φ2) =
1
2

(
φ1 + φ2

)
.

At n = 0, the initial condition (9.19) is discretized as:

u0j = ψ(x j ), 0 ≤ j ≤ J . (9.37)
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The CNFS method (9.36)–(9.37) is an implicit scheme, which requires solving a nonlinear

system at each time step. Hence, the computational cost of the CNFS method is higher than

that of the SSFS method. However, the CNFS method conserves not only the mass but also

the energy of the fractional NLS. In addition, the CNFS method is time reversible.

Lemma 9.2.3 (CNFS: Mass conservation). Suppose that Un is the numerical solution of

the fractional NLS at time tn, obtained from the CNFS method in (9.36)–(9.37). Then, we

have the discrete mass

Nn = h
J−1∑
j=0
|un

j |
2 = h

J−1∑
j=0
|u0j |

2 ≡ N0, n ≥ 0. (9.38)

Proof. Multiplying
(
un+1

j + un
j
)∗ to (9.36) and summing it up for 0 ≤ j ≤ J − 1, we obtain

i
1
τ

J−1∑
j=0

(
un+1

j − un
j
) (

un+1
j + un

j
)∗

=
1
2

J−1∑
j=0

(
un+1

j + un
j
)∗ J/2−1∑

l=−J/2
|µl |

α (ûn
l + ûn+1

l
)
exp(iµl x j )

+
γ

2

J−1∑
j=0

F ( |un+1
j |

2, |un
j |
2)��un+1

j + un
j
��2. (9.39)

Note that

J−1∑
j=0

(
un+1

j + un
j
)∗ J/2−1∑

l=−J/2
|µl |

α (ûn
l + ûn+1

l
)
exp(iµl x j )

= J
J/2−1∑

l=−J/2
|µl |

α��ûn
l + ûn+1

l
��2. (9.40)

Then taking the imaginary part of (9.39) and noticing that τ > 0, we get

J−1∑
j=0

��un+1
j

��2 =
J−1∑
j=0

��un
j
��2,
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which implies that Nn+1 = Nn, and thus (9.38) as n ≥ 0 is arbitrary. �

Lemma 9.2.4 (CNFS: Energy conservation). Suppose that Un is the numerical solution of

the fractional NLS at time tn, obtained from the CNFS method in (9.36)–(9.37). Then, we

have the discrete energy

En = h
J−1∑
j=0

[ J/2−1∑
l=−J/2

|µl |
α |ûn

l |
2 +

γ

2
|un

j |
4

]
≡ E0, n ≥ 0. (9.41)

Proof. We assume that |un+1
j | , |u

n
j |. Multiplying

(
un+1

j − un
j
)∗ to (9.36) and summing it

up for 0 ≤ j ≤ J − 1, we get

i
1
τ

J−1∑
j=0

��un+1
j − un

j
��2 =

1
2

J−1∑
j=0

(
un+1

j − un
j
)∗ J/2−1∑

l=−J/2
|µl |

α (ûn
l + ûn+1

l
)
exp(iµl x j )

+
γ

4

J−1∑
j=0

|un+1
j |

4 − |un
j |
4

|un+1
j |

2 − |un
j |
2
(
un+1

j + un
j
) (

un+1
j − un

j
)∗. (9.42)

Note that

J−1∑
j=0

(
un+1

j − un
j
)∗ J/2−1∑

l=−J/2
|µl |

α (ûn
l + ûn+1

l
)
exp(iµl x j )

=

J−1∑
j=0

J/2−1∑
l=−J/2

|µl |
α [(��ûn+1

l
��2 − ��ûn

l
��2
)
+ 2iIm

(
(ûn+1

l )∗ûn
l
)]
.

Taking the real part of (9.42) yields

1
2

J−1∑
j=0

J/2−1∑
l=−J/2

|µl |
α (��ûn+1

l
��2 − ��ûn

l
��2
)
+
γ

4

J−1∑
j=0

[
|un+1

j |
4 − |un

j |
4] = 0.

Hence, we get

J−1∑
j=0

[ J/2−1∑
l=−J/2

|µl |
α |ûn+1

l |2 +
γ

2
|un+1

j |
4

]
=

J−1∑
j=0

[ J/2−1∑
l=−J/2

|µl |
α |ûn

l |
2 +

γ

2
|un

j |
4

]
,
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for any n ≥ 0, which implies En+1 = En and thus the energy conservation in (9.41). �

Assume that at time t = tn (for any n ≥ 0), the solution un
j has the form in (9.32).

Then, the time frequency ω obtained from the CNFS method (9.36)–(9.37) satisfies the

relation:

tan
ωτ

2
=
τ

2
(
|λk |

α + γ |a |2
)
. (9.43)

If ωτ � 1, the Taylor expansion of (9.43) yields

ω =
(
|λk |

α + γ |a |2
)
+ O(ω3τ2). (9.44)

Remark 9.2.1 (CNFS: dispersion relation). The CNFS method (9.36)–(9.37) does not

preserve the exact dispersion relation of the plane wave solution, but it gives a good

approximation to the dispersion relation if ω3τ2 is small.

9.2.3. Relaxation Fourier Spectral Method. In [9], a relaxation method was first

introduced for the standard NLS, in which the nonlinear part of the NLS is solved in

two steps. It shows that the relaxation method is more efficient than the Crank–Nicolson

method, if the finite difference or finite element methods are used for spatial discretization

[9]. However, if the Fourier spectral method is use for spatial discretization, the relaxation

method has the same computational costs as the Crank–Nicolson method.

First, we write the fractional NLS (9.18) as a system of two equations:

i∂tu(x, t) = (−∆)α/2u(x, t) + γϕ(x, t)u(x, t),

ϕ(x, t) = |u(x, t) |2.
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Then, the relaxation Fourier spectral (ReFS) method for (9.18) is given by:

i
1
τ

(
un+1

j − un
j
)
=

1
2

(
δαx Un+1�� j + δ

α
x Un�� j

)
+
γ

2
(
un+1

j + un
j
)
ϕ

n+ 1
2

j , (9.45)

1
2
(
ϕ

n+ 1
2

j + ϕ
n− 1

2
j

)
= |un

j |
2, 0 ≤ j ≤ J, n ≥ 0, (9.46)

where the operator δαx is defined in (9.35). At n = 0, the initial condition is discretized as

u0j = ψ(x j ), ϕ
− 1

2
j = |u

0
j |
2 = |ψ(x j ) |2, 0 ≤ j ≤ J . (9.47)

The ReFS method (9.45)–(9.47) is implicit, and thus at each time step numerical iterations

are needed to solve the nonlinear system. It is easy to show that the ReFS method is time

reversible. In addition, the ReFS method has the following properties:

Lemma 9.2.5 (ReFS: Mass conservation). Suppose thatUn is the numerical solution of the

fractional NLS at time tn, obtained from the ReFS method in (9.45)–(9.47). Then, we have

the discrete mass

Nn = h
J−1∑
j=0
|un

j |
2 = h

J−1∑
j=0
|u0j |

2 ≡ N0, n ≥ 0. (9.48)

Proof. Multiplying
(
un+1

j + un
j
)∗ to (9.45) and summing it up for 0 ≤ j ≤ J − 1, we obtain

i
1
τ

J−1∑
j=0

(
un+1

j − un
j
) (

un+1
j + un

j
)∗

=
1
2

J−1∑
j=0

(
un+1

j + un
j
)∗ J/2−1∑

l=−J/2
|µl |

α (ûn+1
l + ûn

l
)
exp

(
iµl x j

)
+
γ

2

J−1∑
j=0

��un+1
j + un

j
��2ϕ

n+ 1
2

j .

Taking its imaginary part and noticing that (9.40) and the function ϕ is real, we obtain

J−1∑
j=0

��un+1
j

��2 =
J−1∑
j=0

��un
j
��2,
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which implies that Nn+1 = Nn and thus (9.38) as n ≥ 0 is arbitrary. �

Lemma 9.2.6 (ReFS: Energy conservation). Suppose that Un is the numerical solution of

the fractional NLS at time tn, obtained from the ReFS method in (9.45)–(9.47). Then, we

have the discrete energy

En = h
J−1∑
j=0

[ J/2−1∑
l=−J/2

|µl |
α |ûn

l |
2 + γ |un

j |
2ϕ

n− 1
2

j −
γ

2
(
ϕ

n− 1
2

j
)2]
≡ E0, (9.49)

for any n ≥ 0.

Proof. On one hand, multiplying
(
un+1

j −un
j
)∗ to (9.36) and summing it up for 0 ≤ j ≤ J−1,

we get

i
1
τ

J−1∑
j=0

��un+1
j − un

j
��2 =

1
2

J−1∑
j=0

(
un+1

j − un
j
)∗ J/2−1∑

l=−J/2
|µl |

α (ûn
l + ûn+1

l
)
exp(iµl x j )

+
γ

2

J−1∑
j=0

ϕ
n+ 1

2
j

(
un+1

j + un
j
) (

un+1
j − un

j
)∗.

Taking its real part yields

1
2

J−1∑
j=0

J/2−1∑
l=−J/2

|µl |
α (��ûn+1

l
��α − ��ûn

l
��α

)
+
γ

2

J−1∑
j=0

ϕ
n+ 1

2
j

(
|un+1

j |
2 − |un

j |
2) = 0.

On the other hand, multiplying (ϕ
n+ 1

2
j − ϕ

n− 1
2

j ) to (9.46) and summing it from 0 to n, we

obtain

1
2
((
ϕ

n+ 1
2

j
)2
−

(
ϕ
− 1

2
j

)2)
=

n∑
m=0
|um

j |
2
(
ϕ

m+ 1
2

j − ϕ
m− 1

2
j

)
=

n∑
m=0

(
|um

j |
2 − |um+1

j |2
)
ϕ

n+ 1
2

j − |u0j |
2ϕ
− 1

2
j + |u

n+1
j |

2ϕ
n+ 1

2
j .
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Combining the above two equations leads to

J−1∑
j=0

[ J/2−1∑
l=−J/2

|µl |
α |ûn+1

l |2 + γ |un+1
j |

2ϕ
n+ 1

2
j −

γ

2
(
ϕ

n+ 1
2

j
)2]

=

J−1∑
j=0

[ J/2−1∑
l=−J/2

|µl |
α |û0l |

2 + γ |u0j |
2ϕ
− 1

2
j −

γ

2
(
ϕ
− 1

2
j

)2]
,

for any n ≥ 0, which implying the energy conservation in (9.49). �

Assume that at time t = tn (for any n ≥ 0), the solution un
j has the form in (9.32).

Then, we find that the time frequency ω obtained from the ReFS method (9.45)–(9.47)

satisfies (9.43) and (9.44).

Remark 9.2.2 (ReFS: dispersion relation). The ReFS method (9.45)–(9.37) does not pre-

serve the exact dispersion relation of the plane wave solution, but it gives a good approxi-

mation to the dispersion relation if ω3τ2 is small.

9.2.4. Comparison in Simulating Plane Waves. In this section, we will compare

the performance of the three Fourier spectral methods – the SSFS, CNFS and ReFSmethods

in simulating the plane wave dynamics of the fractional NLS.

Example 1 We study the plane wave solutions of the 1D fractional NLS (9.1) on

a finite domain [−π, π]. The parameters are chosen as γ = 2, and the initial condition is

taken as

u(x, 0) = exp(i4x), x ∈ [−π, π], (9.50)

i.e., the amplitude a = 1 and the wave number λk = 4. It is easy to verify that the exact

solution of (9.1) with (9.50) is

u(x, t) = exp
(
i(4x − ωt)

)
, with ω = |λk |

α + γ |a |2 = 4α + 2. (9.51)

In our simulations, we choose the mesh size h = π/32 and the time step τ = 0.02.
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Table 9.1 presents the values of mass N (t) of the SSFS, CNFS and ReFS methods

at different time t in solving the 1D fractional NLS (9.18) with α = 1.5 and γ = 2, where

the initial condition is (9.50); Table 9.2 displays the corresponding energy E(t). It shows

that all of these three methods preserve the mass of the fractional NLS, which is consistent

with our analytical results in Section 9.2.

Table 9.1. Mass N (t) by different methods.

Time SSFS CNFS ReFS
t = 0 6.3813600776042669 6.3813600776042669 6.3813600776042669
t = 2 6.3813600776043637 6.3813600776041390 6.3813600776043593
t = 4 6.3813600776044765 6.3813600776040227 6.3813600776044428
t = 6 6.3813600776046160 6.3813600776038797 6.3813600776045032
t = 8 6.3813600776046577 6.3813600776037678 6.3813600776045503
t = 10 6.3813600776047359 6.3813600776036479 6.3813600776046275

Table 9.2. Energy E(t) by different methods.

Time SSFS CNFS ReFS
t = 0 57.432240698438406 57.432240698438406 57.432240698438406
t = 2 57.432240698439358 57.432240698437134 57.432240698439315
t = 4 57.432240698440559 57.432240698436004 57.432240698440161
t = 6 57.432240698441866 57.432240698434526 57.432240698440765
t = 8 57.432240698442264 57.432240698433425 57.432240698441248
t = 10 57.432240698443110 57.432240698432238 57.432240698442030

Table 9.2 shows that both theCNFS andReFSmethods have the energy conservation,

which verifies our analysis in Lemmas 9.2.4 and 9.2.6. In addition, the SSFS preserves the

energy well in solving the plane wave solution, although it is not analytically proved.

As discussed in Lemma 9.2.2, the SSFS method preserves the dispersion relation

of the plane wave solutions, if the numerical errors are insignificant. In contrast, the CNFS

and ReFS methods have a good approximation to the dispersion relation only whenωτ � 1

and the numerical errors are neglectable. To illustrate this difference, we present in Figure
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9.6 the time evolution of Re(u(0, t)) and Im(u(0, t)) computed from the SSFS and CNFS

methods, for α = 1 or 2. Note that the results from the ReFS and CNFS methods are almost
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Figure 9.6. Time evolution of Re(u(0, t)) and Im(u(0, t)) from the exact solution (9.52)
(dashed dot line), the SSFS method (solid line) and the CNFS method (dashed line). Note
that the graphs of the exact solution and the numerical solution from the SSFS method are
identical.

the same; thus for a better illustration, we omit the results of the ReFS method from Figure

9.6. In fact, the exact solution of Re(u(0, t)) and Im(u(0, t)) can be obtained by substituting

x = 0 in (9.51):

Re(uexact(0, t)) = cos(ωt), Im(uexact(0, t)) = − sin(ωt), (9.52)

i.e., they are periodic functions with period 2π/ω. Figure 9.6 shows that the graphs of the

exact solution and the numerical solution from the SSFS method are the same, independent

of the power α, which implies that the SSFS method preserves the exact time frequency of
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the plane wave solution. However, the solution from the CNFS method is more accurate

when the power α is small or the time t is short. For example, when α = 2, the numerical

solution from the CNFS method has almost the same time frequency as the exact solution

in a short time, but their difference becomes significant over time. While α = 1, the

results from the CNFS method are consistent with the exact solution for a longer time. To

understand this, we find that when α = 2, the frequency ω = 18, and ω = 6 if α = 1. For

the same time step τ, the value of ωτ is smaller when α = 1, and thus the CNFS method

has a better approximation to the dispersion relation (reflected by the time frequency) in

this case.

In addition, we present the numerical errors in Re(u(0, t)) and Im(u(0, t)) of the

SSFS an CNFS methods in Figure 9.7. It shows that for both the SSFS and CNFS methods,
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Figure 9.7. Numerical errors in Re(u(0, t)) (solid line) and Im(u(0, t)) (dashed line) of the
SSFS and CNFS methods, where α = 2 (left) or α = 1 (right).

the smaller the fractional power α, the smaller the numerical errors, but the numerical errors

increase over time. For the same power α, the numerical errors from the CNFS method are

much larger than those from the SSFS method, which is mainly because the CNFS method
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does not satisfy the analytical dispersion relation. Our extensive simulations show that the

numerical errors of the CNFS and ReFSmethods can be significantly reduced by decreasing

the time step τ.

Example 2 We further compare the performance of the SSFS, CNFS and ReFS

methods in simulating the plane wave solutions. Here, we consider the fractional NLS (9.1)

on a finite domain [−5π, 5π] with α = 1.1 and γ = −1. The initial condition is chosen as

the plane wave solution with a small perturbation [33], i.e.,

u(x, 0) =
1
4
[
1 + δ0 cos (x/5)

]
, −5π ≤ x ≤ 5π, (9.53)

with |δ0 | � 1. In our simulations, we choose δ0 = 10−5. The mesh size is chosen as

h = 5π/512. It shows that the SSFS method might introduce numerical instability in

simulating the plane wave solution of the NLS, and one sufficient condition to ensure its

stability is that the mesh size and time step satisfies τ < hα/πα−1 for α ∈ (0, 2]; see [33] for

more discussions. In contrast, the CNFS and ReFS methods allow much larger time step τ

in the simulations.

To illustrate this, we choose the time step τ = 0.00909, larger than the threshold of

the SSFS method, and simulate the plane wave dynamics by the SSFS, CNFS and ReFS

methods. Figure 9.8 presents the time evolution of the density |u(x, t) | computed from the

SSFS (left), CNFS (middle) and ReFS (right) methods. It shows that many humps appear

in the solution of the SSFS method because of its numerical instability. However, due to

the mass conservation of the SSFS method, this instability does not grow unboundedly, and

the plane wave solution recurs periodically. In contrast, the plane wave solution from the

CNFS and ReFS methods remain stable (see Figure 9.8 middle and right panels).



188

Figure 9.8. Illustration of the instability of SSFS. Time evolution of |u| of (9.1) with the
initial condition (9.53) computed by the SSFS (left), CNSF (middle), and ReFS (right)
methods, where α = 1.1 and γ = −1 in the 1D fractional NLS (9.1) and h = 5π/512 and
τ = 0.00909. It shows that the SSFS method is numerically unstable.

In summary, the SSFS method is more accurate than the other two methods in

simulating plane wave dynamics of the fractional NLS, since it preserves the dispersion

relation. However, as an explicit numerical method, it is more unstable, and its numerical

instability should be avoided in simulating of the plane wave dynamics.

9.3. NUMERICAL INSTABILITY OF SSFS

In numerical studies of plane wave dynamics, it is desirable for a numerical method

to preserve the dispersion relation in (9.6). Among all the three methods, only SSFSmethod

preserve the dispersion relation, and thus is more accurate in the simulation. However, since

the SSFS is an explicit method, which is conditionally stable. Time step must be taken

small enough to avoid the artificial instability from the SSFS method. In this section, we

study the numerical instability of the SSFS method in solving the plane wave solution (9.5).

At time t = tn, we consider a perturbed plane wave solution:

un
j = ũn

j (1 + εn
j ), with ũn

j = aei(λk x j−ωtn ), (9.54)
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where εn
j , with |ε

n
j | � 1, is a small periodic perturbation on [−L/2, L/2] and can be

expanded as:

εn
j :=

J/2−1∑
l=−J/2

ε̂n
l eiµl x j, 0 ≤ j ≤ J − 1,

where ε̂n
l is the Fourier coefficient of εn

j , defined by

ε̂n
l :=

1
J

J−1∑
j=0

εn
j e−iµl x j, −J/2 ≤ l ≤ J/2 − 1.

Since εn
j is periodic, there is

ε̂n
l+k J =

1
J

J−1∑
j=0

εn
j e−iµl+kJ x j =

1
J

J−1∑
j=0

εn
j e−iµl x j e−iµkJ x j = ε̂n

l , for k ∈ Z, (9.55)

where in the last equality, we use the fact that e−iµkJ x j = 1 since µk J x j = 2π j k is an integer

multiple of 2π. In the following numerical instability analysis, the parameter l is always

defined on [−J/2, J/2− 1] and the subscript of ε̂n
l is also restricted on [−J/2, J/2− 1]. For

those l̃ ∈ Z\[−J/2, J/2− 1], by the periodicity of ε̂n
l̃
as shown in (9.55), we can always find

an integer k, such that

ε̂n
l̃
= ε̂n

l̃+k J
, where l̃ + k J ∈ [−J/2, J/2 − 1].

On one hand, setting n = n + 1 in (9.54) and taking the discrete Fourier transform

of Un+1 := (un+1
0 , un+1

1 , . . . , un+1
J−1) yields

ûn+1
l = a e−iωtn+1




1 + ε̂n+1
0 , l = k,

ε̂n+1
l−k , l , k,

−
J
2
≤ l ≤

J
2
− 1. (9.56)
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Here we notice that l − k ∈ [−J/2 − k, J/2 − 1 − k], and thus there are some values of

l − k outside of the range [−J/2, J/2 − 1. For those l − k ∈ [−J/2 − k,−J/2 − 1], i.e.

l ∈ [−J/2,−J/2 − 1 + k], by periodicity (9.55), we have ε̂n+1
l−k = ε̂

n+1
l−k+J .

Thus, we rewrite (9.56) by

ûn+1
l = a e−iωtn+1




1 + ε̂n+1
0 , l = k,

ε̂n+1
l−k+J, l ∈ [− J

2,−
J
2 + k − 1],

ε̂n+1
l−k , l ∈ [− J

2 + k, J
2 − 1]\{k},

(9.57)

On the other hand, we can obtain un+1
l from the SSFS scheme in (9.27)–(9.29). To

this end, we substitute un
j in (9.54) into (9.25) and take the leading order terms of εn

j to

obtain

un+1,−
j = ũn

j e−iγ |a |2τ (1 + εn
j − iγ |a |2τ(εn

j + (εn
j )∗)

)
0 ≤ j ≤ J − 1

with ũn
j defined in (9.54). Then, taking the discrete Fourier transform of Un+1,− yields

ûn+1,−
l = a e−i(ωtn+γ |a |2τ)




1 + ε̂n
0 − iγ |a |2τ(ε̂n

0 + (ε̂n
0)∗), l = k,

ε̂n
l−k − iγ |a |2τ(ε̂n

l−k + (ε̂n
k−l )

∗), l , k .
(9.58)

It arises a same issue as in (9.56) that there are some subscripts of ε̂n
l fall out side of

[−J/2, J/2 − 1]. For this reason, we rewrite (9.58) by

ûn+1,−
l = a e−i(ωtn+γ |a |2τ)

·




1 + ε̂n
0 − iγ |a |2τ(ε̂n

0 + (ε̂n
0)∗), l = k,

ε̂n
l−k+J − iγ |a |2τ(ε̂n

l−k+J + (ε̂n
k−l−J )∗), l ∈ [− J

2,−
J
2 + k − 1],

ε̂n
l−k − iγ |a |2τ(ε̂n

l−k + (ε̂n
k−l−J )∗), l = − J

2 + k,

ε̂n
l−k − iγ |a |2τ(ε̂n

l−k + (ε̂n
k−l )

∗), l ∈ [− J
2 + k + 1, J

2 − 1]\{k}.

(9.59)
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Substituting (9.59) into (9.26) and then take the discrete Fourier transform, we get

ûn+1
l = a e−i(ωtn+γ |a |2τ+|µl |ατ)

·




1 + ε̂n
0 − iγ |a |2τ(ε̂n

0 + (ε̂n
0)∗), l = k,

ε̂n
l−k+J − iγ |a |2τ(ε̂n

l−k+J + (ε̂n
k−l−J )∗), l ∈ [− J

2,−
J
2 + k − 1],

ε̂n
l−k − iγ |a |2τ(ε̂n

l−k + (ε̂n
k−l−J )∗), l = − J

2 + k,

ε̂n
l−k − iγ |a |2τ(ε̂n

l−k + (ε̂n
k−l )

∗), l ∈ [− J
2 + k + 1, J

2 − 1]\{k}.

(9.60)

Comparing (9.60) with (9.57) and their complex conjugates, we obtain the following

equations for − J
2 + 1 ≤ l ≤ J

2 − 1 and l , 0,

*..
,

ε̂n+1
l

(ε̂n+1
−l )∗

+//
-
= Al

*..
,

ε̂n
l

(ε̂n
−l )
∗

+//
-
,

where for − J
2 + 1 ≤ l ≤ − J

2 + k,

Al =
*..
,

(1 − iγ |a |2τ)e−i( |µk+l |α−|λk |α )τ −iγ |a |2τe−i( |µk+l |α−|λk |α )τ

iγ |a |2τei( |µk−l−J |α−|λk |α )τ (1 + iγ |a |2τ)ei( |µk−l−J |α−|µk |α )τ,

+//
-
.

for − J
2 + k + 1 ≤ l ≤ J

2 − k − 1 and l , 0,

Al =
*..
,

(1 − iγ |a |2τ)e−i( |µk+l |α−|λk |α )τ −iγ |a |2τe−i(|µk+l |α−|λk |α )τ

iγ |a |2τei( |µk−l |α−|λk |α )τ (1 + iγ |a |2τ)ei( |µk−l |α−|µk |α )τ,

+//
-
.

for J
2 − k ≤ l ≤ J

2 − 1,

Al =
*..
,

(1 − iγ |a |2τ)e−i(|µk+l−J |α−|λk |α )τ −iγ |a |2τe−i(|µk+l−J |α−|λk |α )τ

iγ |a |2τei(|µk−l |α−|λk |α )τ (1 + iγ |a |2τ)ei( |µk−l |α−|µk |α )τ .

+//
-
.
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While for l = − J
2 , since −l = J

2 < [−
J
2,

J
2 − 1], it has a different representation,

*..
,

ε̂n+1
−J/2

(ε̂n+1
−J/2)∗

+//
-
= A−J/2

*..
,

ε̂n
−J/2

(ε̂n
−J/2)∗

+//
-
,

where

A−J/2 =
*..
,

(1 − iγ |a |2τ)e−i( |µk−J/2 |α−|λk |α )τ −iγ |a |2τe−i( |µk−J/2 |α−|λk |α )τ

iγ |a |2τei( |µk−J/2 |α−|λk |α )τ (1 + iγ |a |2τ)ei( |µk−J/2 |α−|µk |α )τ,

+//
-
.

The eigenvalues of matrix Al are computed as:

Λl,± =
(
cos θl − γ |a |2τ sin θl

)
±

√(
cos θl − γ |a |2τ sin θl

)2
− 1 (9.61)

with

θl =




τ

2
( |µk−J/2 |

α + |µk−J/2 |
α − 2|λk |

α), if l = − J
2,

τ

2
( |µk+l |

α + |µk−l−J |
α − 2|λk |

α), if − J
2 + 1 ≤ l ≤ − J

2 + k,
τ

2
( |µk+l |

α + |µk−l |
α − 2|λk |

α), if 0 < |l | ≤ J
2 − k − 1,

τ

2
( |µk+l−J |

α + |µk−l |
α − 2|λk |

α), if J
2 − k ≤ l ≤ J

2 − 1.

(9.62)

The modes (ε̂n+1
l , (ε̂n+1

−l )∗)T exponentially grow if the eigenvalue |Λl,+ | > 1 or |Λl,− | > 1.

Thus, we obtain the instability condition in the following lemma:

Lemma 9.3.1 (Instability condition). The unstable modes of the split-step Fourier spec-

tral (SSFS) method in solving the plane wave solutions are those satisfying the following

condition:

���cos θl − γ |a |2τ sin θl
��� > 1, −

J
2
≤ l ≤

J
2
− 1 (9.63)
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with θl defined in (9.62). This condition includes both the analytically unstable modes

satisfying (9.10) and numerically unstable modes introduced by the SSFS method.

In fact, when time step τ is small, a Taylor expansion of (cos θl − γ |a |2τ sin θl ) > 1

for 0 < |l | ≤ J
2 − k − 1 yields

[
|µk+l |

α + |µk−l |
α − 2|λk |

α] [|µk+l |
α + |µk−l |

α − 2(|λk |
α − 2γ |a |2)

]
+ O(τ2) < 0,

which corresponds to the analytical instability condition obtained in (9.10). Similarly, a

Taylor expansion of (cos θl − γ |a |2τ sin θl ) < −1 gives that

[
|µk−l |

α + |µl+k |
α − 2|λk |

α] [|µk−l |
α + |µl+k |

α − 2(|λk |
α − 2γ |a |2)

]
+ O(τ2) <

16
τ2
.

These are the unstable modes numerically introduced by the SSFS method, and thus we

want to avoid them in simulations.

Remark 9.3.1. For the standard NLS with α = 2, the instability condition in (9.63) reduces

to

�� cos
(
µ2l τ

)
− γ |a |2τ sin

(
µ2l τ

) �� > 1, −
J
2
≤ l ≤

J
2
− 1,

which is consistent with the conclusion obtained in the literature [12, 86].

It shows that in the standard NLS, although the analytical instability of the plane

wave solution is independent of the wave number λk , the numerical instability of the SSFS

method depends on λk . Following the similar arguments in [86], we can obtain from (9.63)

the sufficient conditions of the time step τ and mesh size h to avoid numerical instability of

the SSFS method in solving the plane wave solution of NLS.
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Remark 9.3.2. In the focusing NLS with γ < 0, one sufficient condition to ensure the SSFS

method stable in solving the plane wave solution (9.5) with λk = 0 is:

τ ≤
hα

πα−1
, for α ∈ (0, 2]. (9.64)

It is easy to verify that when α = 2, (9.64) reduces to the sufficient condition obtained in

the literature [86].

The detailed derivation of Remark 9.3.2 can be found in Appendix A. Remark 9.3.2

shows that for the samemesh size, the larger the fractional power α, the smaller the threshold

of the time step.

Remark 9.3.3. In the defocusing NLS with γ > 0, one sufficient condition to ensure the

SSFS method stable in solving the plane wave solution (9.5) with λk = 0 is:

τ ≤
(2φ + π)hα

πα
, for α ∈ (0, 2], (9.65)

where φ ∈ (−π/2, 0), and it satisfies

cos φ =
1√

1 + γ2 |a |4τ2
, sin φ =

−γ |a |2τ√
1 + γ2 |a |4τ2

.

The derivation of Remark 9.3.3 can be found in Appendix B. The sufficient condition

in (9.65) is implicit. When the mesh size h and time step τ are small, a Taylor expansion of

(9.65) leads to an explicit condition:

τ ≤
πhα

πα + 2γ |a |2hα
+O(hατ3), for α ∈ (0, 2]. (9.66)

The sufficient conditions in Remarks 9.3.2 and 9.3.3 provide us some guide for choosing

the time step and mesh size in simulating the plane wave solution of the NLS equation.
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We remark that our analysis in this section can be generalized to the higher order

split-step method. Our conclusions on numerical stability in Lemma 9.3 and Remarks

9.3.1–9.3.3 are also valid for high-order split-step Fourier spectral method. In particular,

we numerically verify that the threshold in (9.64) and (9.66) is the same for the higher order

split-step method, but the growth rate of numerical instability is different.

9.4. NUMERICAL STUDY ON PLANEWAVE DYNAMICS

We study the dynamics of the unstable plane wave solution by simulating the

fractional NLS (9.1) with the first-order split-step Fourier spectral (SSFS) method. To

understand the nonlocal effects of the fractional Laplacian, the plane wave dynamics in the

fractional NLS are compared to those in the standard NLS. In this section, the time step τ

is chosen to be small enough to avoid numerical instability of the SSFS method. The initial

condition is chosen as a perturbed plane wave solution of the following form:

u(x, 0) = a eiλk x
(
1 + ε0 cos

2πx
L

)
, −

L
2
≤ x ≤

L
2
, (9.67)

where a and ε0 are constants, and |ε0 | � 1. Our simulations show that different perturbation

in the initial conditionmay slightly affect the dynamics of the planewave solution, but it does

not affect our conclusions on comparing the fractional and standard NLS. In the following,

we choose ε0 = 10−5 and a = 1
2 in (9.67), and the domain size L = 5π.

9.4.1. Focusing NLS. We study the dynamics of the plane wave solution when

γ < 0 in (9.1), and the frequency λk = 0 and λk , 0 are considered in Examples 9.4.1 and

9.4.2, respectively.

Example 9.4.1 We choose λk = 0 in the initial state (9.67) and the nonlinear

coefficient γ = −1 in the NLS (9.1). The analysis in Remark 9.3.2 shows that for any

α ∈ [0.76, 2], there exists one pair unstable modes at l = ±1, and thus the plane wave

solutions are unstable in this case. Figure 9.9 presents the time evolution of |u(x, t) | for
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Figure 9.9. Dynamics of the unstable plane wave solution in the 1D focusing NLS with
γ = −1 and λk = 0 in the initial state (9.67). The recurrence of plane wave solution is
observed in the standard NLS and the fractional NLS with large fractional power α.

different α. It shows that the solution remains a plane wave for a short time, and then

around t = 50 one hump appears due to the instability. In the standard NLS with α = 2,

the well-known recurrence of the plane wave solution is observed, whereby the solution is

repeated periodically during the evolution (see Figure 9.9 top left).

In the fractional case α < 2, the dynamics of plane wave solution crucially depends

on the fractional power α, and its behaviors can be divided into two regimes: 1 < α < 2

and 0 < α ≤ 1. When α is close to 2, the dynamics is similar to that in the standard NLS.

One single hump periodically emerges during the dynamics, and the smaller the fractional

power α, the shorter the period. The recurrence of the plane wave solution is observed when

α close enough to 2 (e.g., α = 1.98 from our extensive simulations). As α decreases, the

dynamics loses its periodicity in time, and the recurrence of the plane wave solution ceases

(see Figure 9.9 for α = 1.6 or 1.3). Moreover, as α approaches 1 from above, the solution

tends to collapse shortly after the hump appears (see Figure 9.9 for α = 1.1). Figure 9.10
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further shows the time evolution of the solution around the time when the peak emerges

for the first time. When α = 1.9, the peak reaches its maximum around t = 52 and then
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Figure 9.10. Time evolution of the wave function around the peak first appears with γ = −1
in the fractional NLS (9.1) and λk = 0 in the initial state (9.67).

it quickly dissolves. As α decreases, the hump becomes more concentrated around x = 0,

which is also taller because of the normalization constraint (see Figure 9.10 middle). While

α is close to 1, the solution tends to collapse along with decoherence, which is mainly

caused by the nonlocal effects from the fractional Laplacian [54].

For α ≤ 1, our extensive simulations show that the plane wave solution collapse after

the instability develops. The more analytically unstable modes exist in the computational

domain, the earlier the collapse occurs.

Figure 9.11 displays the time evolution of the spectrum of the solution u(x, t), with

its density dynamics shown in Figure 9.9. Since the spectrum |F [u(x, t)]| is symmetric

with respect to µ = 0, we only present the results for µ > 0 to get a better illustration.

Also, our computational spectrum domain is much larger than that displayed in Figure 9.11.

In the standard NLS with α = 2, the spectrum expands as the unstable modes grow, and

correspondingly a bump appears in the density |u(x, t) | (see Figure 9.9 for α = 2). This

process is repeated periodically. In the fractional case with α close to 2, the dynamics of

the spectrum is similar to that in the standard cases. The smaller the fractional power α,
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Figure 9.11. Time evolution of log10 |F (u(x, t)) | in the 1D focusing NLS with γ = −1
and λk = 0 in the initial condition (9.67). The spectrum broadens as the fractional power
decreases.

the more frequently the spectrum expands. However, when α is close to 1, the spectrum

expands quickly, after the analytical instability is triggered, to a large frequency domain

(see Figure 9.11 for α = 1.1).

The dynamics of the spectrum in Figure 9.11 clearly demonstrates the nonlocal

effects of the fractional Laplacian. Due to the long-range interactions from the fractional

Laplacian, the analytical instability at low-µl quickly “leaks" to the high wave number

region. The smaller the fractional power, the stronger the long-range interactions, the

stronger the “leakage" of the instability.

Example 9.4.2 We choose λk = 4π/L in the initial state (9.67) and study the

dynamics of unstable plane wave solution. The nonlinear coefficient of the NLS in (9.1) is

taken as γ = −1. Compared to Example 8.3.1, the perturbed plane wave in this case would
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move with the group velocity:

vg =
∂ω

∂λk
= α
|λk |

α

λk
, λk , 0, (9.68)

where ω is the dispersion relation in (9.6).

Figure 9.12 shows the time evolution of |u(x, t) | for different α. In the standard

Figure 9.12. Dynamics of the unstable plane wave solution in the 1D focusing NLS with
γ = −1 and λk = 4π/L in the initial state (9.67). The recurrence of the plane wave solution
is observed in both standard and fractional NLS.

NLS with α = 2, the recurrence of plane wave solution is observed. When the instability

develops, one hump appears in the density plot, and it moves along the x-axis. The dynamics

when α = 1.9 is similar, but the recurrence of the hump becomes more frequent. When

α = 1.6 or 1.3, there are two unstable pairs at l = ±1 and ±2, and thus there may be one



200

or two humps appearing during the dynamics, depending on whether the first or second

mode becomes dominant. For α = 1 or 0.9, there is only one unstable pair at l = ±3, and

correspondingly three humps in the density.

Note that in contrast to the results in Example 9.4.1, no wave collapse is observed

when α ≤ 1. Figure 9.13 shows the dynamics of the solution around the time when the peak

first appears, for α = 1.9, 1.3 and 1. It shows that the velocity decreases as the fractional
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Figure 9.13. Time evolution of the wave function around the time when the peak first
appears with γ = −1 in the fractional NLS (9.1) and λk = 4π/L on the initial state (9.67).

power α increases, consistent with our prediction from (9.68).

Figure 9.14 shows the time evolution of the spectrum corresponding to the density

dynamics in Figure 9.12. Compared to the case with λk = 0, the “leakage" of instability to

high-µl is greatly reduced when λk , 0. In particular, the spectrum is contained in a narrow

band when α = 1, which is significantly different from the dynamics when λk = 0. For

α < 1, the spectrum broadens still quickly after the instability develops, but still remains

much narrower than in the λk = 0 cases.

9.4.2. Defocusing NLS. In the defocusing cases with γ > 0, our numerical simu-

lations shows that the plane wave solution is always stable if λk = 0 or 1 ≤ α ≤ 2, which is

consistent with the analysis in Section 9.1. Therefore, in Example 9.4.3, we will only focus

on the case with λk , 0 and 0 < α < 1.
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Figure 9.14. Time evolution of log10 |F (u(x, t)) | in the 1D focusing NLS with γ = −1 and
λk = 4π/L in the initial state (9.67).

Example 9.4.3 Let λk = 4π/L in the initial state (9.67) and γ = 1. Figure 9.15

presents the time evolution of the wave function and its spectrum for α = 0.9 and 0.7.

For both these values of α, there exist two unstable pairs: at l = ±1 and ±2, and thus

the plane wave solution is unstable. Since λk , 0, the wave moves along the x-axis from

left to right (see Figure 9.15 middle). During the dynamics, the recurrence of the plane

wave solution is not observed. Figure 9.15 (right) shows that the spectrum broadens after

instability develops, and it is much wider for α = 0.9 than for α = 0.7. This phenomenon

is different from that observed in the focusing cases where it appears that the smaller the

fractional power α, the wider the spectrum (see Figure 9.14). Moreover, comparing the

spectra in Figures 9.14 and 9.15 for α = 0.9, one see that the spectrum in the focusing NLS

is much wider than that in the defocusing case.
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Figure 9.15. Dynamics of the unstable plane wave solution in the 1D defocusing NLS with
γ = 1 and λk = 4π/L in the initial condition (9.67).

In summary, Examples 9.4.1–9.4.3 and our extensive simulations show that the

dynamics of a perturbed plane wave solution are significantly different in the standard

and fractional NLS. As instability occurs, the dynamics in the fractional NLS tends to be

more chaotic than that in the standard case, which makes the recurrence of the plane wave

solution less likely. As α decreases from 2, the spectrum of the solution becomes wider.

The instability analysis of the plane wave solution in Section 9.1 are consistent with our

simulations performed in this section. However, the linear stability analysis fails to predict

the broadening of the spectrum, but which is common in the dynamics with long-range

interactions [55, 91]. We note that as α → 1, the spectrum of the solution becomes very

broad (more so far the focusing case), which suggests that a wave collapse occurs at or close

to α = 1. Simulations in the regime α ≈ 1 are, therefore, very time-consuming. More

numerical and analytical studies are demanded to understand the dynamics of fractional

NLS.
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10. CONCLUSION

The main purpose of this dissertation is to provide novel and accurate numerical

methods for the fractional Laplacian with applications on solving the fractional Schrödinger

equation. In this section, we summarize the main results in this dissertation.

We proposed two novel and accurate finite difference methods – the weighted trape-

zoidal method and the weighted linear interpolation method to discretize the fractional

Laplacian. The novelty of our methods is the use of the weighted integral, which reveals

the nonlocal natural of the fractional Laplacian. A splitting parameter γ is introduced so

that the fractional Laplacian is rewritten as a weighted integral of function ψγ (x, ξ ) with

weight |ξ |γ−(d+α). Notably, the choice of the splitting parameter γ plays the most important

role in the accuracy of our methods. The universal optimal choice for any d dimension

(d ≥ 1) is γ = 2, which provides the most accurate results compare to the other choices,

i.e., γ , 2, in both methods. Additionally, there is one more optimal choice of the splitting

parameter in one dimension for each method. For the weighted trapezoidal method, taking

γ = 1 + α/2 provides the same accuracy as γ = 2; for the weighted linear interpolation

method, besides γ = 2, the parameter γ = 1 is another optimal choice that can provide

the most accurate results. Moreover, the weighted trapezoidal method closely resembling

the central difference scheme for the standard Laplacian −∆, which is indeed a fractional

generalization of the central difference scheme with the 2nd order accuracy for smooth

enough functions. In implementation, the computation of the matrix-vector product Au is

achieved efficiently by using the fast Fourier transform (FFT).

In addition, we prove the accuracy of both numerical methods analytically. The

analysis of the weighted trapezoidal method is not as standard as the weighted linear

interpolation method. The most important technique that is used in the error analysis of

the former method is the weighted Montgomery’s identity. The standard Montgomery’s
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identity plays important role in the context of the integral approximation. Recently, the

Montgomery’s identity is generalized to a weighted version for any order differentiable

functions with two variables, however, in contrast to its standard counterpart, it has not

yet been applied to the error analysis of the weighted integral approximations. The error

analysis of the weighted trapezoidal method not only fills this gap but also suggests a broad

application of the weighted Montgomery’s identity to the field of the weighted integral

approximations.

As the first application of the fractional Laplacian, we numerically solve the ground

and the first excited states of the fractional Schrödinger equation in an infinite potential well

by a normalized fractional gradient flow combine with the weighted trapezoidal method

in space and the semi-implicit Euler method in time. Our numerical results suggest that

the eigenfunctions of the fractional Schrödinger equation are different from those of the

standard Schrödinger equations. The nonlocal interactions are stronger when the fractional

power α is smaller, which leads to a larger scattering of particles in an infinite potential

well. In addition, our solutions are consistent not only with the approximation results in

[59, 96] but also with the best lower and upper bounds in [3, 17, 35].

As the second application of the fractional Laplacian, we investigate the stability

and dynamics of the plane wave solutions of the fractional nonlinear Schrödinger equation

from both analytical and numerical perspectives. We presented the linear stability analysis

to study the stability of the plane wave solution. Our analysis shows that the stability of the

plane wave solution in the fractional NLS is more complicated than its standard counterpart.

To further understand the nonlinear stage of the plane wave dynamics, we proposed and

compared three numerical methods, i.e., the split-step Fourier spectral (SSFS) method,

the Crank–Nicolson Fourier spectral (CNFS), and the relaxation Fourier spectral (ReFS)

method, for solving the fractional NLS. The SSFS is more accurate in simulating the

plane wave dynamics since it preserves the dispersion relation of the plane wave solutions.

We further applied the SSFS method to study the dynamics of the plane wave solution
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of the fractional NLS, where the time step is taken small enough to avoid the numerical

instability from the SSFS method. Our numerical results suggest new phenomena that

are different from the standard NLS, such as the well-known recurrence of the plane wave

solution does not always occurs in the fractional cases, and the leakage of the low-frequency

instability to high frequency is observed. The fractional power α reflects the nonlocality

of the system, the smaller the fractional power, the stronger the long-range interactions,

the stronger the leakage of instability. In addition, due to the expansion of the spectrum,

numerical simulations for the fractional NLS, especially with focusing interactions, could

be challenging. More numerical and analytical studies are demanded to understand the

dynamics of fractional NLS.



APPENDIX A

DERIVATION OF REMARK 9.3.2
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Let’s define φ, such that

cos(φ) =
1√

1 + γ2 |a |4τ2
, sin(φ) =

−γ |a |2τ√
1 + γ2 |a |4τ2

.

Then, the instability condition in (9.63) is equivalent to

| cos(θl − φ) | > cos φ,

i.e., there exists an integer p, such that

|θl − φ − pπ | < |φ|. (A.1)

When γ < 0, we have sin φ > 0 and cos φ > 0. Without loss of generality, we choose

φ ∈ (0, π2 ). Then, (A.1) can be written as:

pπ < θl < 2φ + pπ. (A.2)

Now let’s first consider the case with λk = 0, for which (9.62) gives that θl = τ |µl |
α > 0.

Now we will focus on p ∈ Z+ ∪ {0} in (A.2) since if p ≤ −1, 2φ + pπ < 0 but θl > 0.

If p = 0, (A.2) becomes

0 < τ |µl |
α < 2 arctan(−γ |a |2τ), (A.3)

as φ = arctan(−γ |a |2τ). Furthermore, the Taylor expansion shows that

arctan(−γ |a |2τ) = −γ |a |2τ + O(τ3), if |γ | |a |2τ � 1.
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Substituting it into (A.3) leads to

0 < |µl |
α < −2γ |a |2 + O(τ2),

which corresponds to the analytical instability condition in (9.17).

Note that our goal is to avoid the numerical instability, i.e., finding the condition for

mesh size h and time step τ such that (A.2) is not satisfied.

Now we will focus on p ∈ Z+ in (A.2). To avoid the numerical instability, we can

let maxl θl ≤ π, i.e.,

τ max
−J/2 ≤ l≤ J/2−1

|µl |
α ≤ π. (A.4)

From the definition of µl and mesh size h, we obtain maxl |µl |
α = (Jπ/L)α = (π/h)α.

Substituting it into (A.4) yields the sufficient condition (9.64) in Remark 9.3.1 for avoiding

the numerical instability of the SSFS method.



APPENDIX B

DERIVATION OF REMARK 9.3.3
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When γ > 0, we choose φ ∈ (− π2, 0) without loss of generality, and then (A.1)

becomes

2φ + pπ < θl < pπ. (B.1)

Now we first consider the case with λk = 0. If p ≤ 0, (B.1) leads to θl < 0, which is a

conflict with θl = τ |µl |
α > 0. Hence, we focus on (B.1) with p ∈ Z+. To avoid numerical

instability, we let maxl θl < 2φ + π, i.e.,

τ max
−J/2 ≤ l≤ J/2−1

|µl |
α < 2φ + π, (B.2)

since −π/2 < φ < 0. Substituting maxl |µl |
α = (Jπ/L)α = (π/h)α into (B.2) gives the

sufficient condition (9.65) in Remark 9.3.3.
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