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ABSTRACT

Nonlocal models have recently become a powerful tool for studying complex sys-
tems with long-range interactions or memory effects, which cannot be described properly
by the traditional differential equations. So far, different nonlocal (or fractional differential)
models have been proposed, among which models with the fractional Laplacian have been
well applied. The fractional Laplacian (—A)?/? represents the infinitesimal generator of
a symmetric a-stable Lévy process. It has been used to describe anomalous diffusion,
turbulent flows, stochastic dynamics, finance, and many other phenomena. However, the
nonlocality of the fractional Laplacian introduces considerable challenges in its mathemat-
ical modeling, numerical simulations, and mathematical analysis.

To advance the understanding of the fractional Laplacian, two novel and accurate
finite difference methods — the weighted trapezoidal method and the weighted linear inter-
polation method are developed for discretizing the fractional Laplacian. Numerical analysis
is provided for the error estimates, and fast algorithms are developed for their efficient
implementation. Compared to the current state-of-the-art methods, these two methods
have higher accuracy but less computational complexity. As an application, the solution
behaviors of the fractional Schrodinger equation are investigated to understand the non-
local effects of the fractional Laplacian. First, the eigenvalues and eigenfunctions of the
fractional Schrodinger equation in an infinite potential well are studied, and the results
provide insights into an open problem in the fractional quantum mechanics. Second, three
Fourier spectral methods are developed and compared in solving the fractional nonlinear
Schrodinger equation (NLS), among which the SSFS method is more effective in the study
of the plane wave dynamics. Sufficient conditions are provided to avoid the numerical
instability of the SSFS method. In contrast to the standard NLS, the plane wave dynamics

of the fractional NLS are more chaotic due to the long-range interactions.
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1. INTRODUCTION

In the last couple of decades, nonlocal or fractional differential models have become
a powerful tool for modeling phenomena which cannot be described properly by the integer-
order partial differential equations. Recent experiments in the study of diffusion processes
which take places in various complex systems perform significant deviations from the
standard laws of diffusion [21, 67]. Under such settings, the standard Laplacian A which
processes a mathematical description of the normal diffusion fails to reproduce the observed
anomalous diffusion behavior, and the fractional models have to take the place as an
alternative modeling approach. So far, different fractional differential models have been
proposed, among which models with the fractional Laplacian have been well applied in
the field of the anomalous diffusion or dispersion [25, 30], turbulent flows [13, 76], porous
media flows, quantum mechanics [33, 63], stochastic dynamics [40], finance [20], and many
others.

Contrary to the standard Laplacian, the fractional Laplacian is a nonlocal operator
defined on the entire space. Over R?, the fractional Laplacian (—A)?/? is defined via a

pseudo-differential operator with symbol |£]* [62, 73]:

(-AN)Pux) = FIE1°F [u]],  for a >0, (1.1)

where 7 represents the Fourier transform, and F 1 is the inverse Fourier transform. In
a special case with @ = 2, the definition in (1.1) reduces to the standard Laplace operator
—A. The definition in (1.1) enables one to utilize the fast Fourier transform to efficiently
solve problems involving the fractional Laplacian, however, it is suitable only for problems
defined either on the whole space R? or on a bounded domain with periodic boundary

conditions. In the literature, an equivalent hypersingular integral definition of the fractional



Laplacian (—A)?/? is introduced [28, 62, 73, 80]:

(-A)*u(x) = Cyq P.V. f ux) - uy)

Ty S dy,  for a € (0,2), (1.2)
Ty =

where P.V. stands for the principal value, and Cy, is the normalization constant given by

27 la T ((d + @)/2)
Cio = 1.3)
¢ VrdT(1 - a/2) (

with I'(-) denoting the Gamma function. From the probabilistic point of view, the fractional
Laplacian (-=A)?/? represents the infinitesimal generator of a symmetric a-stable Lévy
process [3, 18]. In contrast to (1.1), the definition in (1.2) can easily incorporate with non-
periodic bounded domains. Note that the integral representation in (1.2) is defined for 0 <
a < 2, while the pseudo-differential definition in (1.1) is valid forall @ > 0. The equivalence
of definitions (1.1) and (1.2) for @ € (0,2) are studied in [26, Proposition 3.3] and more
discussions can be found in [26, 60, 73, 88] and references therein. Recently, many studies
have been carried out on the Dirichlet fractional Laplacian, i.e., the fractional Laplacian on
abounded domain with extended homogeneous Dirichlet boundary condition. However, the
current understanding of this topic still remains limited, and the main challenges are from
the approximation of the hypersingular integral combining with the non-local boundary
condition. So far, numerical methods for directly discretizing the Dirichlet fractional
Laplacian still remains limited.

The fractional Schrodinger equation was introduced by Laskin [63, 64] as a result
of extending the Feynman path integral over Brownian trajectories to Lévy trajectories. It
is a fundamental model of factional quantum mechanics that is expected to reveal some
novel phenomena that are absent from its standard (non-fractional) counterpart. In [94], a
zigzag propagation of light is found in the fractional Schrodinger equation with parabolic
potential, which is different from the phenomena that is observed in the standard Schrodinger

equation. Moreover, several optical realizations of the fractional Schrodinger equation have



been recently proposed in [65, 94, 95], and references therein. Although lots of topics under
the context of the standard Schrodinger equation have been well studied, such as the infinite
potential well model, the dynamics of the plane waves, due to the nonlocality arises from
the fractional Laplacian, the studies of the fractional Schrodinger equation are still very
limited.

The Schrodinger equation in an infinite potential well plays an important role in
the understanding of the difference between the classical and quantum mechanics. To
understand the difference between classical and fractional quantum mechanics, numerous
studies have been devoted to finding the eigenvalues and eigenfunctions of the fractional
Schrodinger equation in an infinite potential well [8, 27, 47, 48, 50, 59, 63, 66]. However,
there is one continuing debate in the literature that whether the fractional linear Schrodinger
equation in an infinite potential well has the same eigenfunctions as those of its standard
(non-fractional) counterpart [8, 27, 47, 50, 66]. The analytical result still remains open and
as conjectured in [66], that the eigenfunctions of the fractional Schrédinger equation cannot
be written in terms of elementary functions. The difficulties arise not only in the analysis
but also in its computations. So far, no study has been carried out by directly solving the
fractional Schrodinger equation with an infinite potential well numerically.

In the study of the standard NLS equation, the plane wave solution is one of the most
fundamental solution which plays important role in the study of many other more complex
solutions. In the last couple of decades, the modulated plane wave dynamics attracted
much attention in the study of NLS equation which has been experimentally confirmed with
applications in the modulations of deep water waves [86]. The modulational instability
(or the Benjamin—Feir instability) of the plane wave solutions has been well studied which
mainly depends on the nonlinearity of the NLS. As shown in [86], the plane waves are always
stable if the nonlinearity is defocusing; in contrast, they could have long-wave instability in
the focusing case. Due to the conservation properties of the NLS, the unstable perturbations

do not grow unboundedly, and thus the recurrence of the plane wave solution is observed



in the dynamics of the standard focusing NLS [89]. To numerically study the plane wave
dynamics, numerical methods should be able to capture the analytical instability of the
plane wave solutions without introducing numerical instability. Recently, many studies
have been carried out to understand the instability in solving the plane wave solution by
different numerical methods; see [12, 22, 37, 61, 70, 86] and references therein. Similar
to the standard NLS, the fractional NLS conserves mass and energy, and admits the plane
wave solution. However, the plane wave stability and their dynamics of the fractional NLS
have not been studied in detail. In addition, only a few numerical methods are available in
the literature for solving the fractional NLS. Both analysis and computations are desired to

understand the plane wave stability and dynamics of the fractional NLS.

1.1. OBJECTIVES AND OVERVIEW OF THIS DISSERTATION

The objectives of this dissertation include: (i). The development of accurate and
efficient numerical methods for directly discretizing the fractional Laplacian. (ii). The
understanding of the solution properties of the fractional Schrodinger equations.

In Part I (Sections 2—-7), we develop two novel finite difference methods for directly
discretizing the fractional Laplacian and compare them with the exist numerical methods
in the literature. Because of the challenges in approximating its hypersingular integral,
so far numerical methods for discretizing the fractional Laplacian still remain limited. To
avoid integrating the hypersingular integral (1.2) over the entire space, some other nonlocal
operators that are closely related to the fractional Laplacian have been proposed in recent
years, including the regional fractional Laplacian, the spectral fractional Laplacian, and the
peridynamic operator. To understand the connections and differences among these nonlocal
operators, in Section 2, we compare the properties of the fractional Laplacian with the
other three nonlocal operators from various aspects. We show that on a bounded domain,
the spectral fractional Laplacian and regional fractional Laplacian are significantly different

from the Dirichlet fractional Laplacian, although they can be used to approximate each other



as the power @ — 2. The peridynamic operator can provide a consistent approximation to
the fractional Laplacian for any a € (0, 2), but a large horizon size is required to obtain a
good approximation, especially when « is small.

It is well known that the central finite difference scheme has the second order
of accuracy for discretizing the standard Laplacian if the function is smooth enough. It
arises a question that whether we can extend this idea to develop a corresponding second
order scheme for the fractional Laplacian. In Sections 3-5, we develop two novel and
accurate finite difference methods — the weighted trapezoidal method and the weighted
linear interpolation method to directly discretize the fractional Laplacian (1.2). The key
idea of both methods is to rewrite the hypersigular integral form of the fractional Laplacian
as a weighted integral. By choosing proper weight functions, both of these two methods
provide the second order of accuracy for smooth enough functions. We provide error
analysis for the local truncation error of both methods in one and two-dimensions. The
proof in higher dimensions can follow the same idea as in two-dimensional cases. The
main technique used in the analysis of the weighted trapezoidal method is the weighted
Montgomery’s identity, where its standard counterpart has been widely applied in the
error analysis of the standard quadrature rules. The weighted trapezoidal method and the
weighted linear interpolation method provide same convergence rates. In one dimension,
the difference between their computational costs is insignificant, however, the weighted
linear interpolation method has higher computational cost than the weighted trapezoidal
method in higher dimensions. In contrast to the one-dimensional case where the single
integrals can be evaluated exactly, in higher dimensions, the double/triple integrals can
only be evaluated numerically. Due to the basis functions, more double/triple integrals
appear in the weighted linear interpolation scheme, which is the main reason that results in
higher computational cost in higher dimensions. Because these two methods provide same
accuracy, we will use the weighted trapezoidal method as a representation to compare with

other numerical methods in the literature.



The current state of the art for directly discretizing the fractional Laplacian is the
finite difference method proposed in [49]. To solve the fractional Poisson’s equation with
homogeneous Dirichlet boundary condition, a finite element method is proposed in [2, 25]
recently. In Section 6, we compare our weighted trapezoidal method as a representation
with the scheme proposed in [49] for discretizing the fractional Laplacian. We also compare
theses two finite difference methods with the finite element method proposed in [2, 25] for
solving the fractional Poisson’s equation and address the computational issues arising in
the implementation of the finite element method. Our comparison results show that the
weighted trapezoidal method has higher accuracy than the finite difference method in [49],
moreover, its implementation is much simpler than the finite element method for solving
the fractional Poisson’s equation.

In contrast to the standard Laplacian, the discretization of the fractional Laplacian
results in a large dense matrix A due to its nonlocality. A direct computation of the
matrix-vector product Au has large computational costs, especially in higher dimensions.
In Section 7, we introduce a fast algorithm for computing the matrix-vector product Au of
the discretized fractional Laplacian with a vector-valued function. In fact, the discretized
fractional Laplacian is a symmetric Toeplitz matrix whose structure can be exploited through
the use of fast algorithms [15, 81, 84], and its computation can be achieved efficiently by
using the fast Fourier transform (FFT). In addition, this fast algorithm can be directly
extended to higher dimensions.

In Part II (Sections 8 and 9), as the applications of the fractional Laplacian, we study
the solution properties of the fractional Schrodinger equation. In Section 8, we numerically
study the ground and the first excited states of the fractional Schrodinger equation in
an infinite potential well. The study of its eigenvalues and eigenfunctions has attracted
massive attention from both physicists and mathematicians. There is a continuing debate in
the literature that whether the fractional linear Schrodinger equation in an infinite potential

well has the same eigenfunctions as those of its standard (nonfractional) counterpart. By



introducing a normalized fractional gradient flow combine with the weighted trapezoidal
method, we numerically solve the eigenvalue problem of the fractional Schrodinger equation.
Our numerical results suggest that the eigenfunctions of the fractional Schrodinger equation
differ from those of the standard Schroodinger equations.

In Section 9, we study the modulational stability of the plane waves and their
dynamics of the fractional nonlinear Schrodinger equation (NLS) both analytically and
numerically. Firstly, we present the linear stability analysis of the plane wave solution and
find that the stability in the fractional NLS is more complicated than that in the standard NLS.
In contrast to the standard NLS, the plane waves are no longer always stable in the defocusing
fractional NLS, the instability appears for the fractional power a € (0, 1]. Besides the linear
stability analysis, numerical simulation is a powerful tool to further understand the plane
wave dynamics from its nonlinear stage. Since the plane wave solutions are studied, the
periodic boundary condition is naturally associated with the fractional NLS. Thus, we adopt
the pseudo-differential definition of the the fractional Laplacian (—=A)*/? in (1.1), which
enables us to utilize the fast Fourier transform to efficiently solve the problem. We develop
three Fourier spectral methods i.e., the split-step Fourier spectral (SSFS) method, the Crank-
Nicolson Fourier spectral (CNFS), and the relaxation Fourier spectral (ReFS) method, for
solving the fractional NLS. Our results suggest that the SSFS method is more efficient for
studying the long-time behaviors of the plane wave solutions of the fractional NLS, since
it preserves the dispersion relation. The plane wave dynamics of the fractional NLS are
numerically studied by the SSFS method, and it suggests different phenomena from that in
standard Schrodinger equation, such as the disappearance of the well-known recurrence of
the plane wave solution for @ # 2 and the leakage of the low-frequency instability to high
frequency. The fractional power a represents the strength of the long-range interactions,

the smaller the the fractional power, the stronger the long-range interactions, and more



chaotic the dynamics of the fractional NLS. Since the numerical simulation by SSFS
method introduces instabilities that have no analytical counterpart, we provided sufficient
conditions for the mesh size and time step to avoid such numerical instabilities.

Finally, the conclusions of this dissertation are made in Section 10.



2. DIRICHLET FRACTIONAL LAPLACIAN AND RELATED OPERATORS

In contrast to the entire space, the fractional Laplacian (1.2) on a bounded domain
associated with the Dirichlet boundary condition (the Dirichlet fractional Laplacian) is of
great interest, not only from the mathematical point of view, but also in practical appli-
cations. Any equation involving the Dirichlet fractional Laplacian has to be enclosed by
a nonconventional, nonlocal boundary condition imposed on the complement of the phys-
ical domain where the governing equation is defined. Besides the hypersingularity from
the fractional Laplacian (1.2), the nonlocal boundary condition also introduces significant
challenge, especially in the numerical simulations. To avoid evaluation and analysis over
the entire space, one common approach is to “truncate" and approximate the integral of the
Dirichlet fractional Laplacian. Therefore, some other nonlocal operators that are closely
related to the Dirichlet fractional Laplacian have been proposed in recent years, including
the regional fractional Laplacian, the spectral fractional Laplacian, and the peridynamic
operator. In this section, we study and compare the properties of the Dirichlet fractional
Laplacian with the other three related nonlocal operators. Our main purpose to understand
the connections and differences among these nonlocal operators. Let Q ¢ R? denote an

open bounded domain, and Q¢ = R4\Q represents the complement of Q.

2.1. DIRICHLET FRACTIONAL LAPLACIAN

Recently, many studies have been carried out on the Dirichlet fractional Laplacian
(also known as the restricted fractional Laplacian), i.e., the fractional Laplacian on a
bounded domain Q2 with extended homogeneous Dirichlet boundary condition (#(x) = 0
for x € Q). However, the current understanding of this topic still remains limited, and the
main challenge is from the non-locality of the operator. In the following, we will discuss

some fundamental properties of the Dirichlet fractional Laplacian.
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Probablisticly, the Dirichlet fractional Laplacian (—A)®/? represents the infinitesimal
generator of a symmetric a-stable Lévy process that particles are killed upon leaving the
domain Q [18, 79, 88]. One fundamental issue in the study of the Dirichlet fractional
Laplacian is its eigenvalues and eigenfunctions. So far, their exact results still remain
unknown, and only some estimates and approximations can be found in the literature. It
shows in [17] that on a convex domain Q c R?, the k-th eigenvalue Ay (for k € N) of the
Dirichlet fractional Laplacian (—A)?/? are bounded by [17]:

1 op

SH S A< 12 for a € (0,2), 2.1

k ’

where uy represents the k-th eigenvalue of the Dirichlet standard Laplace operator —A on
the same domain Q. That is, the eigenvalue of the fractional Laplacian is always smaller
than that of the standard Laplacian —A. If a one-dimensional (i.e., d = 1) domain is
considered, the estimates in (2.1) can be improved, and sharper bounds can be found for
two special cases, suchas k =1 and @ € (0,2) in [3,35],and @ = 1 and k = 1,2,3 in [3].
More discussion on the eigenvalue bounds can be found in [39, 51, 87, 88] and references
therein. Furthermore, in a one-dimensional interval (-1, 1), the asymptotic approximation

of the eigenvalue Ay is given by [59]:

3 k_ﬂ_(Z—a)ﬂ « 2—«
/lk—( —) +O(—k\/5)’ for k € N. 2.2)

It further shows thatif @ > 1, the eigenvalue A (for k € N) is simple, and the corresponding
eigenfunction satisfies i (—x) = (—l)k_lgo(x). Compared to the studies on eigenvalues,
the understanding of eigenfunctions is even less. It shows in [75] that the eigenfunction
¢k (for k € N) are Holder continuous up to the boundary of a smooth bounded domain
Q c R?. Recent numerical results on eigenvalues and eigenfunctions of the Dirichlet

fractional Laplacian can be found in [32, 33].
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The fractional Poisson equation is one main building block in the study of fractional

PDEs, which takes the following form [2, 25, 31, 35]:

(-A)u(x) = f(x), for x € Q, (2.3)

u(x) =0, for x € Q°. 2.4)

In (2.4), the extended homogeneous boundary conditions are imposed on Q°, distinguish-
ing from the classical Poisson problem where boundary conditions are added on 0Q. This
difference can be explained from probabilistic interpretation of the standard and fractional
Laplacian. The standard Laplace operator represents the infinitesimal generator of a Brow-
nian motion with continuous sample paths; thus for a particle in domain €, it must leave
the domain via the boundary points on Q2. By contrast, the fractional Laplacian is the
infinitesimal generator of a symmetric a-stable Lévy process with discontinuous sample
paths; particles may “jump” out of the domain without touching any boundary points on
0Q. Hence, the solution on Q can be determined by the values at dQ in the context of

classical Poisson equations but not in the context of fractional Poisson equations.

2.2. SPECTRAL FRACTIONAL LAPLACIAN

The spectral fractional Laplacian (also known as the fractional power of the Dirich-
let Laplacian, or the “Navier” fractional Laplacian) is defined via the spectral decomposi-

tion of the standard Laplace operator [1, 69, 75], i.e.,

(~A)"Pu(x) = Y ek piPpr(x),  for @ >0, (2.5)
keN

where uj; and ¢y are the k-th eigenvalue and normalized eigenfunction of the standard
Dirichlet Laplace operator —A on the domain Q. From a probabilistic point of view, it

represents the infinitesimal generator of a subordinate killed Brownian motion, i.e., the
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process that first kills Brownian motion in a bounded domain €2 and then subordinates it via
a a/2-stable subordinator [78, 79]. Here, we include the domain Q in the notation (—Agq)®/?
to reflect this process and to distinguish it from the fractional Laplacian (—A)®/2. Specially,
if @ = 2 the definition in (2.5) reduces to the standard Dirichlet Laplace operator —A on the
domain Q.

The spectral fractional Laplacian is a nonlocal operator, and it is often used in
the analysis of (partial) differential equations. The eigenvalues and eigenfunctions of

the spectral fractional Laplacian are clearly suggested from its definition in (2.5), that is,

a/2

the k-th eigenvalue of (-Ag)?? is M,

, and the corresponding eigenfunction is @ (X).
We remark that the spectral fractional Laplacian and the Dirichlet fractional Laplacian
represent generators of different processes, which is also reflected by their eigenvalues and
eigenfunctions. The eigenfunctions of the spectral fractional Laplacian are smooth up to
the boundary as the boundary allows, while those of the Dirichlet fractional Laplacian are
only Holder continuous up to the boundary [75]. Additionally, it is easy to conclude from

(2.1) that the k-th eigenvalue of the Dirichlet fractional Laplacian is always smaller than

that of the spectral fractional Laplacian, for k € N.

2.3. REGIONAL FRACTIONAL LAPLACIAN

The regional fractional Laplacian (also known the censored fractional Laplacian)

is defined as [10, 43, 45, 46]:

(=M u(x) = Co P.V. f wa’y, for @ € (0,2), (2.6)
o |y —x[®

with the constant C,, defined in (1.3). In contrast to the fractional Laplacian, the regional
fractional Laplacian (—A)g/ 2 represents the infinitesimal generator of a censored a-stable
process that is obtained from a symmetric a-stable Lévy process by restricting its measure

to Q[78]. If the domain Q = R¢, the regional fractional Laplacian collapses to the fractional
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Laplacian (=A%, To distinguish it from the fractional Laplacian (=A)?/2, we include the
subscript ‘QQ’ in the operator (—A)g/ ? to indicate the restriction of the a-stable Lévy process
to the domain Q.

The regional fractional Laplacian is different from the Dirichlet fractional Laplacian,
although they are freely interchanged in some literature. In fact, a symmetric @-stable
Lévy process killed upon leaving the domain Q (represented by the Dirichlet fractional
Laplacian) is a subprocess of the censored a-stable process (represented by the regional
fractional Laplacian) killing inside the domain €, i.e., the trajectories may be killed inside
Q through Feynman-Kac transform [79]. Moreover, we will illustrate their difference using
a simple example. Consider a one-dimensional interval Q = (=/,/). Let u be a smooth
function satisfying u(x) = 0 for x € Q€. Then the difference between the regional fractional

Laplacian and the Dirichlet fractional Laplacian can be computed as:

Quu(x) = ((~A)** = (=M )u(x)

Q

— l —
Cia (f u(x) b:(y) dy_f u(x) blt(y) dy)
R X =yt -1 =yl

-1 o0
1 1
Cla (f—‘oo |x — y|i+e dy+fz lx — y|i+e dy)u(x)

Cia 1
a \(l+x)

G _lx)w) u(x),  for x € Q. 2.7)

We find that in the limit case of @ — 2, the difference between the regional fractional
Laplacian and the Dirichlet fractional Laplacian vanishes, i.e., Q1 — 0, due to the constant
Cio — 0. In other words, the regional fractional Laplacian can be used to approximate the
Dirichlet fractional Laplacian as @ — 2. While in the limit of @ — 0, the difference in (2.7)
reduces to Q{u — u, i.e., the Dirichlet fractional Laplacian can be written as the summation
of the regional fractional Laplacian and an identity operator. Otherwise, if @ > 0 and
a < 2, the difference Qu ~ O(1/(I — |x])*), which does not tend to zero for any fixed /,

and as x — #/, there is |Qu| — oo.
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In contrast to the fractional Laplacian, the current understanding on the regional
fractional Laplacian still remains very limited. Recently, the interior regularity of the
regional fractional Laplacian is discussed in [46, 68]. It shows that if u € CP*(Q) for
s € (o, 1] oru € CP*L5(Q) for s € (a — 1, min(e, 1)], then there is (—A)g/zu e CP(Q),
where p € N. So far, no results of the eigenvalues or eigenfunctions on the regional fractional
Laplacian can be found in the literature. Here, we expect that our numerical results could
provide insights into the understanding of the properties of the regional fractional Laplacian

in the future.

2.4. PERIDYNAMIC OPERATOR

The peridynamic models were originally proposed as a reformation of the classical
solid mechanics in [77]. In contrast to the classical models, it properly accounts for the near-
field nonlocal interactions so as to effectively model elasticity problems with discontinuity

and other singularities. The general form of this nonlocal operator has the following form:

Lu(x) = f K(x y) (u(x) - u(y)) dy, 2.8)
B(x.6)

where B(X, 0) denotes a ball with its center at point x and radius ¢, which represents the
interaction region of point x. The kernel function K(x,y) = K(|x — y|) describes the
interaction strength between points X and y. The constant 6 > 0 denotes the size of material
horizon, and in practical applications it is often chosen to be a small number.

Recently, the operator (2.8) with specially chosen kernel function is used to approx-
imate the fractional Laplacian [25, 44]. We will refer it as the peridynamic operator and

denote it as

(~M)?u(x) = Cga fB ut) —uly) 4o 2.9)

0 xo) |X—yldte
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i.e., the kernel function in this case is taken as:

Cd,a

Ks(xy) = { [x=yl*
0, otherwise.

if y € B(x,9),

In other words, Ks(x,y) in the peridynamic operator represents a hard-threshold of the
kernel function K(x,y) = Cyo/|Xx — y|d+"‘ of the fractional Laplacian, which can be viewed
as a truncation of K(x,y) in the fractional Laplacian. In the limit case of 6 — oo, the
peridynamic operator (2.9) coincides with the fractional Laplacian (1.2), and thus it is often
used to approximate the fractional Laplacian by choosing a sufficiently large 6 [25, 44]. On
the other hand, note that the kernel function K(x,y) has an algebraic decay of order d + «,
which presents a heavy tail that accounts for considerable far field interactions. Hence, the
cutoff of the kernel function K (x,y) outside of the horizon B(x, §) may have a significant
impact on its approximation to the fractional Laplacian as we shall show next.

Similarly, we choose a smooth function u satisfying u(x) = 0 for x € Q¢ with
Q = (=1, 1) to illustrate the difference between the peridynamic operator and the Dirichlet
fractional Laplacian on a bounded domain. Here, we assume that the horizon size ¢ in (2.9)
is large enough, such that 6 > max{/ — x,/ + x} for any point x € (—/,1). Then, we can

compute their difference as:

Quu(x) = ((=0)* = (=A)5")u(x)

o

_ x+0 _
e [ [
R |[x =Yl s lx—=yl

AR * 1
= Cia (f —dy+f —dy)u(x)
o =yl xvo [X =yl

Ciaq 2
= 2 C L, for x € Q. (2.10)
a 0%
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It shows that the difference of these two operators is of order O(1/6%) when u(x) is
uniformly bounded on Q, hence their difference vanishes as ¢ — co. On the other hand, the
convergence of the peridynamic operator to the fractional Laplacian as 6 — oo depends on
the power a, and it may degenerate rapidly for small . Additionally, in the limit case of
a — 2, the difference Qou — 0, because the coefficient Cy, — O.

The peridynamic operator in (2.9) can be viewed as the infinitesimal generator of a
symmtric a-stable process by restricting its measure to B(X, d). In contrast to the regional
fractional Laplacian operator, the interaction region of point x in the peridynamic operator
is symmetric with respect to itself. Hence, the peridynamic operator is expected to provide
a symmetric approximation for a homogeneous elastic material.

In summary, the fractional Laplacian (1.2), spectral fractional Laplacian (2.5),
regional fractional Laplacian (2.6), and the peridynamic operator (2.9) are all nonlocal
operators in which every point x interacts with other points y over certain long distance.
For a point x € Q, the fractional Laplacian (—A)®/? accounts for the interactions between x
and y for all y € R4\{x}. By contrast, the interaction region of x in the regional fractional
Laplacian (—A)g/ 2 is truncated to Q\{x}, i.e., the same domain of x, while the interaction
region of the peridynamic operator (—A)g/ 2 reduces to B(x, 6)\{x}. We will further compare

them in Section 2.5.

2.5. NUMERICAL COMPARISONS

In this section, we further compare these four nonlocal operators by studying their
nonlocal effects, eigenvalues and eigenfunctions, and the solution behavior of the cor-
responding nonlocal problems. In our simulations, the spectral fractional Laplacian is
discretized by using the finite difference method combined with matrix transfer techniques
introduced in [30], while the other three operators are discretized by the weighted trape-
zoidal method developed in Section 3. Our numerical results provide insights not only to

further understand these operators but also to improve the analytical results in the literature.
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In the following, we will consider the one-dimensional cases. For notational simplic-
ity, we will also use £, to represent the fractional Laplacian, L for the spectral fractional
Laplacian, L, for the regional fractional Laplacian, and L, for the peridynamic operator.

2.5.1. Nonlocal Effects of Operators. We compare the nonlocal effects of these
four operators by acting them on functions with compact support on the domain Q = (-1, 1).
Example 1. Consider the function
(1l + x))

2
0, otherwise,

sin( if xeQ,

u(x) = x €R, 2.11)

which is continuous on the whole space R. It is easy to obtain that

(—Ag)*2u(x) = (g)wsm (@) for x € Q.

that is, the function from the spectral fractional Laplacian can be found exactly, while we
will numerically compute the functions from the other three operators.

In Figure 2.1, we compare the function L;u fori = s, h, r, or p. The results clearly
suggest the difference between these four operators, especially the function Lu from the
spectral fractional Laplacian is significantly different from those of the other three operators.
It shows that for any « € (0, 2), the function L u is proportional to the function u on (-1, 1).
In contrast, the properties of L;u (fori = h, r, or p) significantly depend on the parameter «.
For a € (0, 1), the function L;u exists on the closed domain ﬁ, but they are very different
between operators. The smaller the parameter «, the larger the differences. For a € [1,2),
the function £;u does not exist at the boundary points, i.e., x = +1. As @ — 2, the function

Liu (fori = h,r, or p) converges to —u,, for x € (-1, 1).
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Figure 2.1. Comparison of Lu with u in (2.11). The operator £ represents L (solid line),
L), (dashed line), £, (dashdot line), or £, with 6 = 4 (dotted line). Note that the plots in
y-direction are partially presented for @ = 1, 1.5 or 1.95.

Additionally, Figure 2.1 shows that both the regional fractional Laplacian and peri-
dynamic operator can be used to approximate the fractional Laplacian, if « is close to 2
(see Figure 2.1 for « = 1.95). For small «, the results from the regional fractional Lapla-
cian are inconsistent with that from the fractional Laplacian. However, the peridynamic
operator can still provide a good approximation to the fractional Laplacian by enlarging the
horizon size ¢. Figure 2.2 presents the differences between the functions £,u and Lu for
various « and §. It shows that for a fixed horizon size 6, the difference between these two
operators dramatically decreases as « increases. On the other hand, Figure 2.2 implies that

for small @ the convergence of the function .L,u to .L,u could be very slow. For instance,
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Figure 2.2. Difference max | £L,u — L u| versus the horizon size ¢ for various @, with u(x)
defined in (2.11),

for @ = 0.6, the difference in Figure 2.2 is around 0.005 for a horizon size 6 = 4000. In
fact, the nonlocal interactions decay slowly for small «, and thus a large horizon size ¢ is
needed for the peridynamic operator to better approximate the fractional Laplacian.
Example 2. Consider the function

(1 - x%)4*3, for x € Q,
u(x) = x €R, (2.12)

0, otherwise,

for ¢ € N. For the fractional Laplacian, the analytical solution can be found as:

2°T(HDI(E + g+ 1) a+1 1,
2 1( ;x)

- 2.1
Val(g+ 1) ) 13)

(=8)*u(x) =
for x € Q, where » F denotes the Gauss hypergeometric function. Moreover, we can obtain
the exact values of (—A)g/ 24 and (—A)(‘;/ 2y by using their relation to the fractional Laplacian

in (2.7) and (2.10), respectively. For the spectral fractional Laplacian, we numerically

computed (—Aq)®*/?u by the finite difference method proposed in [30].
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Figure 2.3 displays the function L;u for various @, where u is defined in (2.12)
with ¢ = 2. It shows that the function L;u exists on the closed domain [—1, 1] for any

a € (0,2), but their values are very different, especially for small . For the spectral

X X
o=1.95
6
3
=
Y0
-3
-1 -0.5 0 0.5 1
X X

Figure 2.3. Comparison of Lu with u in (2.12) and ¢ = 2. The operator L represents L
(solid line), L}, (dashed line), £, (dash-dot line), or £, with 6 = 4 (dotted line).

fractional Laplacian, the values of Lu at the boundary are always zero, which inherits
from its definition in (2.5). For the regional fractional Laplacian, the function u in (2.12)
with g = 2 satisfies the conditions that u € C 2([-1,1]) and «’(£1) = 0, which guarantee
the existence of the function £,u for any @ € (0,2) [46]. Since the function u(x1) = 0
and the relations in (2.7) and (2.10), the values of L;u (for i = h,r and p) are the same
at boundary points, but they are nonzero. Figure 2.3 also shows that both the regional
fractional Laplacian and the peridynamic operator with relatively small ¢ could provide a

good approximation to the fractional Laplacian, if « is large (see Figure 2.3 for @ = 1.95).
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While « is small, although the peridynamic operator can be still used to approximate the
fractional Laplacian with a large ¢, the regional fractional Laplacian is inconsistent with
the fractional Laplacian.

Figure 2.3 additionally shows that as @« — 2, the differences between the four
operators become insignificant (see Figure 2.3 for @ = 1.95), and the function L;u (for
i = h, s, r, or p) converges to —d,,u, that is, the four operators converge to the standard
Dirichlet Laplace operator —A. In contrast to cases of @ — 2, the functions L,u from
the fractional Laplacian and L u from the spectral fractional Laplacian converge to u, as
a — 0, while £,u from the regional fractional Laplacian and .L,u from the peridynamic

operator converge to a zero function; see Figure 2.4.

o = 0.001

0 e s e L I T I N ey rpay,

-1 -0.5 0 0.5 1
X

Figure 2.4. Comparison of Lu with u in (2.12) and ¢ = 2. The operator L represents L
(solid line), L}, (dashed line), £, (dash-dot line), or £, with 6 = 4 (dotted line).

Moreover, our numerical results suggested that for @ € [1,2), if the function u €
cle/ 2(ﬁ) and u’(+1) = 0, then the regional fractional Laplacian £, u exists; see Figure
2.5. Hence, we conjugate that the regularity results in [46] might be able to improve to
ueCchel2 (ﬁ) at least for one-dimensional case. More analysis needs to be carried out for

further understanding this issue.
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Figure 2.5. Comparison of Lu with u in (2.12) and ¢ = 1. The operator L represents L
(solid line), L}, (dashed line), £, (dash-dot line), or £, with 6 = 4 (dotted line).

2.5.2. Eigenvalues and Eigenfunctions. In this section, we compare the four non-
local operators by studying their eigenvalues and eigenfunctions on a one-dimensional
bounded domain Q = (-1, I).

Denote /l’,'< and d)’}c as the k-th (for k € N) eigenvalue and eigenfunction of the nonlo-
cal operator £; on Q with the corresponding homogeneous Dirichlet boundary conditions,
where i = h, s, r, or p. It is well known that the eigenvalues and eigenfunctions of the

spectral fractional Laplacian £ can be found analytically, i.e.,

km @/2 1 km X
s _ /2 _ S — H
=k = (_21) ’ ¢k<x>_\gsm(_2 (1+7)) xecin

for k € N. For the other operators, so far no analytical results can be found in the literature,

and thus we will compute their eigenvalues and eigenfunctions numerically.
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In Table 2.1, we present the eigenvalues of the fractional Laplacian £, spectral
fractional Laplacian L, and regional fractional Laplacian £,, on the domain Q = (-1, 1).
We leave the peridynamic operator £, out of our comparison here, since its spectrum
depends on the horizon size 6. The eigenvalues of the standard Dirichlet Laplace operator
—A are presented in most right column in Table 2.1. For each k, the upper row represents
Ay.; the middle row represents A”; the lower row represents A

From Table 2.1 and our extensive numerical studies, we find
<At <Ay, for @€ (0,2) and k €N,

that is, the eigenvalues of the regional fractional Laplacian are much smaller than those
of the fractional Laplacian and spectral fractional Laplacian. However, as @« — 2 the
eigenvalue /ll}c of these three operators converges to u; = k>r>/4 — the kth eigenvalue of
the standard Dirichlet Laplace operator —A on (-1, 1).

In [75], it is proved that the first eigenvalue of the fractional Laplacian is strictly
smaller than that of the spectral fractional Laplacian, i.e., /li’ < /li, for @ € (0,2). Our
numerical results in Table 2.1 confirm this conclusion and additionally suggest that the
eigenvalue /lZ is strictly smaller than A3, for any k € N. Furthermore, we present the
difference between the eigenvalues 4; and /IZ for various @ and k in Figure 2.6. It shows
that the difference between the eigenvalues A; and /12‘ depends on both parameters a and
k. For a given k € N, there exists a critical value ax where the gap between 1; and /lZ is
maximized. The value of a increases as k € N increase (see Figure 2.6 left). On the other
hand, as k € N, the relative difference between the eigenvalues A; and /12‘ decreases quickly
(see Figure 2.6 right).

In Figure 2.7, we compare the first and second eigenfunctions of the fractional
Laplacian, the spectral fractional Laplacian, and the regional fractional Laplacian. For

any @ € (0,2), the eigenfunctions for these three operators are all symmetric (for odd
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Figure 2.6. The absolute (left panel) and relative (right panel) differences in the eigenvalues
of the fractional Laplacian and spectral fractional Laplacian.

k) or antisymmetric (for even k) with respect to the center of the domain . Especially,
the eigenfunctions of the spectral fractional Laplacian are independent of the parameter
a, which are also the eigenfunctions of the standard Dirichlet Laplace operator —A. In
contrast, the eigenfunctions of the other two operators significantly depend on «, and as

a — 2, they converge to sin(km(1 + x)/2) — the eigenfunctions of the standard Dirichlet

Laplace operator —A. Our numerical observations in Figure 2.7 justify the regularity results

in [75, Theorem 1], that is, the eigenfunctions of the fractional Laplacian is no better than

Holder continuous up to the boundary, while the eigenfunctions of the spectral fractional

Laplacian are smooth up to the boundary as the boundary allows.

From our extensive studies, we find that the eigenvalues of the fractional Laplacian
L, the spectral fractional Laplacian L, and the regional fractional Laplacian £, reduces
as the domain size increases. In particular, if the domain size increases by a ratio of «,

the k-th (for k € N) eigenvalues decreases by a ratio of x*. Additionally, we explore

the eigenvalues of the peridynamic operators for different 6. It shows that the eigenvalue
increases as ¢ decreases.
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Figure 2.7. The first (left panel) and second (right panel) eigenfunctions of the spectral
fractional Laplacian (solid line), fractional Laplacian (dash-dot line), and regional fractional
Laplacian (dashed line). Note that the eigenfunctions of the spectral fractional Laplacian
are independent of a > 0.

In this section, we compare the properties of the Dirichlet fractional Laplacian

with some related nonlocal operators, i.e., the spectral fractional Laplacian, the regional

fractional Laplacian, and the peridynamic operator. Our study shows that their differences

are significant on a bounded domain. Probabilistically, they represent the generators of

different stochastic processes. In addition, the eigenvalues and eigenfunctions of these
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four operators are different, although they all converge to those of the classical Laplace
operator as @ — 2. In conclusion, our extensive numerical investigations suggest that
these three nonlocal operators can only serve as good approximations of the Dirichlet
fractional Laplacian under some special situations but the deviations could be large as the
fractional power « is relatively small. As @ — 2, all the four operators collapse to the
classical Dirichlet Laplacian. For relatively small «, to provide a good approximation of
the Dirichlet fractional Laplacian, the horizon size ¢ of the peridynamic operator must
be taken sufficiently large; differently, the regional fractional Laplacian generally provides

inconsistent results from the fractional Laplacian.
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3. THE WEIGHTED TRAPEZOIDAL METHOD IN 1D

The traditional trapezoidal method is widely used in the field of numerical integra-
tion, and it has the second order of accuracy if the integrand function is smooth enough.
However, the fractional Laplacian defined in (1.2) is a hypersingular integral, and directly
applying the traditional trapezoidal method fails to provide the optimal accuracy or to be
convergent. It is known that the weighted quadrature rules are advantageous in approxi-
mating the hypersingular integrals [23, Chapter 5]. By introducing a weight function, the
hypersingular integral is formulated as a weighted integral of a weaker singular function.

In this section, we will develop a novel finite difference method based on the
weighted trapezoidal rule to discretize the fractional Laplacian (1.2) in one dimension (1D).
The error analysis will be provided for functions with different smoothness conditions.

Some numerical examples are presented to justify the analytical results.

3.1. NUMERICAL SCHEME

Consider the fractional Laplacian defined in (1.2). We focus on the discretization
of the fractional Laplacian on a one-dimensional bounded domain Q with homogeneous
Dirichlet boundary conditions, i.e., u(x) = 0 for x € Q°. Our scheme can be also used for
nonhomogeneous constant boundary conditions, i.e., u(x) = g with g a constant for x € Q°.
In this case, one can define v = u — g, and there is (-A)*%y = (=A)*%y.

Letting £ = |x — y|, we can rewrite the one-dimensional fractional Laplacian in (1.2)

as

(=A)2u(x) = -C fm u(x — &) —2ul) +ulx +é) . 3.1)

0 é‘:1+a
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Define domain € = (a, b), and choose a constant L = |Q| = b — a. We further write the

integral in (3.1) as:

L —_ —
(—A)U/Zu(x) = _Cl,a(f u(x —&) —2u(x) +u(x + &) i

0 §1+a
+f°° u(x —&) = 2u(x) + u(x + &)
L §1+a

dg). 3.2)

Note that for any x € (a, b) and & > L, there is (x = &) € R\(a, b), and thus the function

u(x £ ¢) = 0. Hence, the second integral in (3.2) reduces to

foo u(x — &) = 2u(x) + u(x +¢) dé = =2u(x) fm
; L

1 2
e A& = ———u(x), (3.3)

al?

-fl

that is, it can be computed exactly.

Now, we will approximate the first integral in (3.2) numerically. Choose a positive
integer N, and define the mesh size & = L/N. Denote grid points & = ih, for 0 <i < N;
evidently £y = L. First, we introduce a splitting parameter y € (a,2]. The choice of v is
important in determining the accuracy of our method, and we will carry out more discussion

later. Then, we can formulate the first integral in (3.2) as:

fL u(x —§¢) - 2u1(+);) +u(x + &) dé = le//y(x’ £)er-0+a) ge
0 '3 0
N &i
= D, | U6 dg (34)
i=1 YEi-1

where for notational simplicity we define the function

u(x — &) —2u(x) +u(x + &)
&Y '

Yy(x, &) = (3.5)



30

That is, the first integral in (3.2) can be viewed as an weighted integral of ,, with gr-U+a)
representing the weight function. For 2 < i < N, we use the weighted trapezoidal rule to

approximate the integrals in (3.4), i.e.,

& 1 ‘.
| e de < Sy Ce i) + 0y (5. 8) L g0 g
Si—1 1 - 3 -

B 2—(y_a)(57 =) (Wi + 9y (6 6)), (3.6)

for any vy = (@, 2]. While for i = 1, we will divide our discussion into two cases based on

different choice of the splitting parameter, i.e., y € (a,2) ory = 2.

Case 1. The splitting parameter y € (@,2). Fori = 1, we can approximate the integral

as

& C(lta 1 o
; Uy(x, &) €71 ag ~ mfly Uy (X, £1), (3.7)

which can be formally obtained using the weighted trapezoidal rule, i.e.,

&

1 h
Yy (x, &) grrage o E(lim Uy (x,8) + Yy (x, 51)) gr-(+a) g
o -0 0

Assuming that u is smooth enough, the above limit is zero, i.e.,
lim ¥, (x, &) ~ im &>7u” (x) = 0.
Jim gy (3, £) = lim €277 (x)

Combining (3.2)-(3.4) and (3.6)—(3.7), we obtain the numerical approximation of the

fractional Laplacian (-A)%/? as:

C 104 - al - -
(M) Pu(x) = —m[ﬂ Uy (e, €0 + D (67 = €177 (y (e &)
i=2
2C1 4
Wy &) |+ T, for x e (@ b) (3.8)
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where the function i, is defined in (3.5).
Define grid points x; = a+ih, forO < i < N. Letu; be the numerical approximation
of u(x;). Using the definition of y, in (3.5), we further obtain the fully discretized scheme

as:

i—1 N-1-i
(—A)Zgzui = _Cl,a (a() u; + (Z ajui—j + Z ajul-+j)), (39)
=1 j=1

fori=1,2,...,N — 1, where

G+ D7 - (-1

1 > , for j=1,....,N—-1,
N — j
aj = - a NV (N -1)r"@
2(y—a)h ( ) ’ for =N,
N7
o 1
S . .
“0 (Z 4G ozL“)
J=1
Denote the vector w = (uy,us,--- ,un—1)!. Then, the scheme (3.9) can then be expressed

in matrix-vector form, i.e., (—A)Z{y 2n = Au, where A is the matrix representation of the

Dirichlet fractional Laplacian, defined as

ag al ... AN-3 dAN-2
ap ap ai *tt AN-3
A=| : : (3.10)
an-3 ... ai ap ai
ay-2 aN-3 ... dai ao

(N=1)x(N-1)

where A is a symmetric Toeplitz matrix.
Case 2. The splitting parameter y = 2.  In this case, the integral for i = 1 can be

approximated by

&1

& 1
Uy (6, )87 VdE = | ()¢ dE ~ 5
o o -

E5%Nn(x, &), (3.11)
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where the function

u(x + &) —2u(x) +u(x—§)
62

Ya(x, &) = (3.12)

can be viewed as the central difference approximation of u”(x). It is easy to verify that if

v = 1+ a/2, the approximation (3.7) coincides with (3.11). As we will show in Section

3.2, the scheme resulting from y = 1 + @/2 or 2 in fact has an optimal convergence rate.
Combining (3.2)—(3.4), (3.6) with v = 2, and (3.11) yields the numerical approxi-

mation of the fractional Laplacian (—A)®/? as:

N
(-0 %u(x) = —L[zﬁ‘“mx,anz (&7 - &) (valx &)

hy 22 -a) P

2C
Lx),  for xe(a b),  (3.13)
al®

(. 8)| +

Following similar lines for y € («,2), we get the fully discretized scheme at point x = x;

as in (3.9), but different coefficients, i.e.,

227 4, for j=1,
-+12—a_ -_12—a
a; = LY BV Rl Rk VT WP S VI
22 — a)he j?
N2—a/ _ (N _ 1)2—(1 .
, for j=N,
NZ
al 1
aO:—Z(Zaj+aLa).
j=1

Similarly, we can write the discretized scheme into a matrix-vector form, which we will

omit here for brevity.

Remark 3.1.1. As @ — 2, both the schemes withy = 1 + a/2 and y = 2 exactly reduce to

the central difference scheme for the classical Laplace operator —A, i.e.,

1 .
—Aju; = ﬁ[—ui_1+2ui—ui+1], for i=12,...,N—1.
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3.2. ERROR ESTIMATES

In the following, we provide error estimates on the weighted trapezoidal scheme
in discretizing the fractional Laplacian. The main technique that used in our proof is the
weighted Montgomery’s identity. The standard Montgomery’s identity has been generalized
in different ways with applications to numerical integration, especially the error analysis
of different types of quadrature rules. We will extend this idea by using the weighted
Montgomery’s identity to prove the accuracy of our weighted trapezoidal method.

First, we will review the standard Montgomery identity for n-time differentiable
functions and make remarks on how it is applied to prove the accuracy of the trapezoidal

method for functions with different smoothness conditions.

Theorem 3.2.1 (Standard Montgomery identity [14]). Let f : [a,b] — R be a mapping

such that f™ exists. Then for any x € [a, b], we have the identity

b “b=xV + (=1 x=a) .
fa S = 1( x) “J.!) =@ pn
=

b
+(=1)" f P,(x,0) f™(r)dt, (3.14)

where the Peano kernel P,(x,t) is defined by

(r—a)"

, for te€]a,x],

Py(x,t) = (¢ Iﬂb)n

n!

, for te(x,b].

The standard Montgomery’s identity is well applied in the proof of numerical
quadrature rules, especially the trapezoidal rules.
For functions f € C '([a, b]), the standard Montgomery identity in (3.14) reduces

to

b b
f f@dt—(b-a)f(x)= —f Pi(x,1)f'(t)dt. (3.15)
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Letting x = a or x = b in (3.15) and then taking the average leads to the following identity

b pa—
[ rwa- 2 1@+ s

1 b
- f [t —a) + (t - B)] f(1)dt,

By triangle inequality, there exists a constant C > 0, such that

b
b —
f f(t)dt—Ta [f(@)+ f(B)]] < C(b—a)2lrel%3>l§]|f'(t)l,

which implies the 1st order accuracy of the composite trapezoidal rule for f € C'([a, b]).
Following the similar lines, we can apply the Montgomery’s identity to obtain the

error estimates of the trapezoidal rule for f € C?([a, b]). For functions f € C?([a, b)),

b
b —
[ roa-22 1@+ o] < co - @ max 1w

which implies the 2nd order accuracy of the composite trapezoidal rule for f € C?([a, b]).
To prove the accuracy of the weighted trapezoidal method, the Montgomery’s iden-
tity needs to be generalized to a weighted version. We reviewed the weighted Montgomery’s

identity in the following theorem.

Theorem 3.2.2 (Weighted Montgomery’s identity [56]). Let f : [a, b] — R be a mapping
such that £ exists, and w : [a, b] — [0, o) be weight function, then for any x € [a, b], we

have
b n . ‘ b
f wn) f(dt = ) (1)1 0, () FU70 () + (- 1) f Py (1) f™ (D)1, (3.16)
a j=1 a

where

Qjw(x) = f (x = s)""w(s)ds,

1)'
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and the weighted Peano kernel P, (x,t) is defined by

1

(n—-1!
1

(n—1)!

t
f (t — )" Yw(s)ds, for telax]

Pn,w(x’ 1) = (3.17)

t
f (t — )" 'w(s)ds, for te(x, bl
b

As special cases of the weighted Montgomery’s identity for n-time differentiable
functions, we rewrite the weighted Montgomery’s identity in more simple expressions for
the first and second order differentiable functions in the following corollary. The results

will be applied to the error analysis of the weighted trapezoidal method.
Corollary 3.2.1. Let w, f : [a, b] — R be integrable functions.

(i). If f’ exists on [a, b), there is
b b b
f(x)f w(t)dt — f w(t)f(t)dt = f Pyy(x,1)f' (1) dt, (3.18)
(ii). If " exists on [a, b], there is

b b
£ f w(t)di - f w(o) (1)

b b
:f’(x)f (x—t)w(t)dt—f Py (x, 1) f (1) dt, (3.19)

where the weighted Peano kernel P,,, (n = 1,2) is defined in (3.17).

As an application of Theorem 3.2.1, letting x = a or x = b in (3.18) (or (3.19)) and

then taking the average, we have the following lemma for the weighted trapezoidal rule.

Lemma 3.2.1. Let w, f : [a, b] — R be integrable functions.

(i). If f' exists on |a, b], there is

b
b
[ (e - L@LO) 0

1 b X X
:_Ef (fb w(y)dy+f w(y)dy)f’(x)dx. (3.20)
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(ii). If f” exists on [a, b), there is

fb (f(x) - M)w(x)dx

2
1 b X X
= Ef (f W(y)(x—y)dy+j; W(y)(x—y)dy)f”(X) dx
1 b b
) (f'(a) f w(y)(a—y)dy + f'(b) f w(y)(b— y)dy) . (3.21)
Denote the multiindex ¥ = («1, ..., kq), Where each x; > Ofori = 1,2,...,d, and

|k| = k1 + - - - + k4. Foru : RY - R, define the k-th partial derivative

a’n
akl,,..,Kdu = Where |K| =m.

K1 K2 ., Kd’
axl 6x2 Oxd

On an open bounded set Q C R? and for v € (0, 1], denote the Holder space Cc®(Q) for
function u : Q — R with exponent v, i.e.,

)~ )

X,yeQ Ix —y[”
X£Yy

c®(Q) = {u e CY(Q)

For an integer n > 0 and N = {0, 1, . . . }, we denote
C™(Q) = {u e C"(Q)]*u € C*(Q), for k e N’ and |k| < n} .

For notational convenience, we will write ¢, (£) = i (x, ) in the rest of this section. Next,
we will present the properties of i, in the following lemma:

Lemma 3.2.2. Let @ € (0,2) and 0 < &€ < co.

(i). Ifu e CL/2(R), the derivative w;,(f) (v € (a,?2]) exists. Furthermore, there is

Wy @) < cet P =0, 1, (3.22)
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where C is a positive constant.

(ii). Ifu € C>*/2(R), the derivative (,bém) (&) exists, for m = 1,2. Furthermore, there is

i @< ce P m=1,2, (323)

where C is a positive constant.

Proof. By Taylor’s Theorem, there exist 71 € [x — &, x] and 17 € [x, x + £], such that

7 [u(x = &) = 2u(x) +u(x + £)]

= ETW () — i ()]

y (&)

Then, since u € C*/2(R), there exists a positive constant C, such that

W, (€)] < Ce¥/2H17Y,

By Taylor’s Theorem, there exist {1 € [x — &, x] and {3 € [x, x + £], such that

—y& 7 u(x = &) = 2u(x) + u(x + O + €7 [ -t/ (x = ) +u/ (x + 6)]
YW (L) W (D] + €7 W (x + &) —u'(x - §)].

Z163)

Then, since u € C1/2 (R), there exists a positive constant C, such that

W', (&)] < C&Y1*7

The proof of part (ii) can follow the same lines as the proof of part (i), for brevity, we will

omit the detail here. a
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Remark 3.2.1. Lemma 3.2.2 provides the bound estimates of ¢§m) (&) for u € CH/2(R)
and 1//;")(;;7) foru € C3I2(R). Different to (i), part (ii) in Lemma 3.2.2 does not hold for
v # 2. Increasing the smoothness of the function from C>*/2(R) to C>*/2(R) will lead to

an increment of order O(&7) only fory = 2.

Define the norm
||t]|co, @ = max |u(x)].
xeQ

To short the lengthy notation in the proof of Theorem 3.2.3 and 3.2.4, we define the following

function:

K((;’f;)(x) = f w(y)(x —y)"dy + fb wy)(x = )" dy, (3.24)

forx € [a,b]and m =0, 1.
Then, we have the following error estimates on our finite difference scheme for the

fractional Laplacian:

Theorem 3.2.3. Suppose that u € C*/2(R) has finite support on an open set Q € R, and
(—A)Z’Q 2 in (3.9) is a finite difference approximation of the fractional Laplacian (—A)®/?.

Then, for any y € (@, 2], there is

1=8)""u(x) = (=) 2u(®)|l o o < CH'™ for @ €(0,2) (3.25)

with C a positive constant depending on a and .

Proof. Define the error function

ehy () = (=D)Pu(x) - (=A);Pu(x).
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Case 1. For y € (@,2), we obtain from (3.6) and (3.7) that,

& 1 f
ey (X) = _C]’“[L Uy () &1 dg - §¢y(§l)L £r-0+) gz

+ i ( : () I 2 0y (G + U E0) ff g e g
= —Cro(I+11). (3.26)
Noticing that &, = 0 and & = h, we can write the term / as:
d 1
= | L - SUy(en)er g |
< fo h Wy ()17 dg + éwhn fo h g Dag. (3.27)

Using Lemma 3.2.2 (i) with m = 0, we obtain
h
|I| S f é:a/2—7+1 . é_-’y—(1+a)d§ + Cha/Z—yH . hy—cy S Cl’ll_a/2. (328)
0

Now, we move to the estimate of term //. Using Lemma 3.2.1 (i) by taking

w(&) = Y-+ and recall the definition (3.24), we obtain

|11
2

1 N & " ) N & sy
- E‘ZL K(gi_l,f,-)(f)%(f)df' SCh‘ZL &V ()] dé).
i=2 il i=2 i-1

N : . ;
> f: (9569 - LD TIED) o
i=2 Y si-l

By Lemma 3.2.2 (i) with m = 1, we obtain

N &i
1] < Ch‘z gy*“a)-ga”—ydg‘ < chl-n, (3.29)
i—2 V&

i-1
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Combining (3.26), (3.28) and (3.29) yields
leh | < T+ |11 < Ch'™"?,

for any x € Q, which leads to (3.25) immediately.

Case2: For y = 2, the error function is slightly different from (3.26), which is

Y & |
ehy(0) = ~Cia fé__ (w2&) ~ va(e)) €' de
| N & . .
.3 L (s P2 26D 1
=2 i1
= —Cl T+ 10). (3.30)

The estimation of term /7 follows exactly the same line as in proving (3.29) by simply taking

v = 2. For term I, by the triangle inequality, we have

& )
7= | fg (w206) — vate0)) ' e |
h h
< fo W2 (O dE + 1y (b)) fo ETvde. (3.31)

Using Lemma 3.2.2 (i) with m = 0, we obtain
_ h
7] < f Yl glmage L cpl2 L g2 < cplel?, (3.32)
0

Therefore, we proved that for y = 2, Ieg,yl < Ch'~@/2, m]

Remark 3.2.2. Theorem 3.2.3 shows that for u € C*/2(R), the accuracy of our method is
O(h'=%"2) for small mesh size h, i.e., its convergence for low regularity function is slow,
especially as « — 2. This result is consistent with the central difference scheme for the

classical Laplace operator, which is not convergent if u € CH'(R) or even C*(R).
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Next, we will show that for a smooth enough function u, the accuracy of our method

can be improved to O (h?) uniformly for any a € (0, 2).

Theorem 3.2.4. Suppose that u € C>*/*(R) has finite support on an open set Q € R, and
(—A)Z{y 2 defined in (3.9) is a finite difference approximation of the fractional Laplacian

(=A)?/2. If the parameter is chosen asy = 2 or 1 + a2, there is
(=AY 2u(x) - (—A)Z/yzu(x)ﬂm’ o SChY,  for a€(0,2) (3.33)

with C a positive constant depending on «.

Proof. For brevity, we start with the local truncation errors in (3.30) for y = 2 and (3.26)
fory=1+a/2.
First, we focus on the case of ¥ = 2 by considering the local truncation error in

(3.30). For term z by Taylor theorem, we obtain

| 7]

h
‘ fo W2(€) — Ya(&1)) §"“d§‘

IA

h
fo V(&) — U1 1€de

IA

h
Ch max |y} f glvqe < e3P, (3.34)
n€l0,h] 0
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For term 71 , by Lemma 3.2.1 (ii) for the second order differentiable function y,, we

get

&i . .
f (d/z(f) _ l/’z(fz—l); 902(&))
i1

N o ré
[Z fg;_l (K(l) L W7 (§) dé&

i=2

gimndg

=1
~

I
iD=

—(w;@,)K(”l o &)~ &K @) )]
1 N
= 3> “)15)(5)%’(5)@

1 N-
E Z wz(f’) ( (1) —1.€i )(fl) B ((;z),fm)(fi))
¥

’(f ) Y€1)
22N &)mgm(f) : ]K<(§11)§z>(§1)

= Iy + 11, + 115 + 4. (3.35)

Next, we focus on estimating terms 11 ;fori =1,2,3 and 4.

Applying definition of K (1) f_)(f ) in (3.24), we can easily get

Kig) o0 @) ‘fl (& - y)yl"‘dy+f(§ y)y”dy‘

Ch(&™ — €7,

IA

then we can estimate term 11 1 as,

N
17 < CH .2'“— max v
|11, 22 (€7 - &) max_ W1 (©)]
N
< CH? -2_“— max &¥/271
;(6’ )f[lefzg
N -2 . . l-a)2
_ —a & +&

1-a/2
i=2 'fi—l
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where the second inequality is obtained from Lemma 3.2.2 (ii) with m = 2. We further

obtain

N
|ﬁ1 | S ChZZ (gil—a/z 1 0/2)(1 +21 0/2) < Cthl (1'/2 < Chz (337)
i=2

To estimate term /1 1, let’s first find the bound of |K ((flil’ £ (&) — ( fz 0 (&)

By Definition

(3.24), we have

x® G - (1) S l-a
(ft lé:z)(é‘:l) - (¢i—y)y “dy and K(g §+,)(§i) = & —-y)y “dy,

&in &iv

Here we construct an auxiliary function

&
Gi(z) = & -y dy for zel&1,&Em]

Z

the functions K((g) & )(fl-) and K((;?f'+l)(§i) can be represented by G;(z) as

Kig) en&) = Gié) and K, (&) = Gi€in).
Taking derivatives of G;(z), we get
Gi(2)=(z-&)z7"7% G'@=Q-a)(-a)z"+a(l-a)é&z ",
and it is clear that

Gi(¢) =0, and max |G ()] < C&“.
neléi—1,éix1]



Then, by applying Taylor theorem, we can easily get

)] N () _
K(fi,,fm)(f’) K(ff—l,fz’)(f’)

= |Gi(&ir1) — Gi(&i-1)]

IA

Ch’ max |G (p)|
neléi-néinl ' )

Ch3§i—a/

IA

fori =2,3,..., N. Therefore, term 11 » is bounded by

N-1

N-1
|11, = %\ D (KL, & -KQ &) \ <O Y E (&
i=2

i=2

Applying Lemma 3.2.2 (i) with m = 1, we get
[T < Ch? Y &7 < Chzf &g < Ch2.
i=2 0
For term I~I3, by Lemma 3.2.2 (i) with m = 1, we get

— 1
|113|=§

For term 113, by applying Lemma 3.2.2 (ii), we obtain

~ 1
|U4|=§

VaEDKY) (0] < el en| < e,

, 1 - -
VOO, (6] = S max €l €)= O
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(3.38)

(3.39)

(3.40)

Then, the estimate of | 11 | can be obtained by combining (3.35) with (3.37)—(3.41), i.e.,

\I1| < |IIy| + | Iy |+ | 113 | + | II14] < Ch?.
Finally, combining (3.30), (3.34) and (3.41), we get

leh Ol < T+ 11| < Ch?,

(3.41)
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forany x € Q and a € (0,2), where y = 2.
Next, we focus on the case of v = 1 + @/2 by considering the local truncation error

in (3.26). For term I, we first rewrite it as

&1

1
L= (10a/2(6) = S1ap(€0)) € 2dE

& 1
L (&) €772 = Sun(en) &%) ae

h
j(; (W2(&) — Y (&) €177d¢. (3.42)

It is clear to see from (3.30) that I = I, so the estimation of I follows exactly the same line
as the estimation of term / in (3.34).

Now, we focus on the estimation of term /1. Different to the estimation of term 17
for v = 2, which can be done directly by using Lemma 3.2.2 (ii), since vy is taken to be
1 + @/2, no similar results hold in this case, to prove the second order accuracy, we should
firstly rewrite term /] by separating it into three terms including one is exactly the term I1.
This separation step is not removable, which plays the important role to prove the second

order accuracy for y = 1 + @ /2. We rewrite term /7 as follows,

11

1 N &i
72 fg W2(Eim) + (&) (2617012 — gl — gl el g
i Y&i-
1 X & a2 ap ,
"2 Z j; (& = &) Waléinr) —Ya(&))EYdE
=2 Si—1

N &i . .
+z£ (lﬁz(f)— lﬁz(fz—l); ‘”2(5’))51—%@
i=2 Véin

1L+ 1L+ 11 (3.43)

For term /1, a direct calculation shows that it vanishes, i.e.,

15 =

FN.

N &i
> Waléin) +va(é)] f§ Q¢ g g e Pag =0, (344
i=2 i-1
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For term /1,, we obtain

|11 |

‘Zf (&P -0 a/z)(wz(fi—l)—llfz(fi))f_“/zdf‘

< CZ |§i1—w/2 1 a/2||¢’2(§l 1) _ WZ(é‘:l)”fl a2 l] 1a//2|
i=2
N
<o (e )7 ( max_ wA(Ol), 3.45
; celéin & & |) (46[&-—%&»] |¢2(§)|) (3.45)

by Taylor’s theorem. Then by applying Lemma 3.2.2 (ii) with m = 1 to (3.45), we obtain

IA

2
Cch’ max (’/2 max [%/?
Z fe[‘fz 1 fl ) {e[fl 15 fz {

| 11> |

IA

Ch? f 2 < Ch.
0
Combine (3.43), (3.44), (3.46) and the estimation of term 11 in (3.41) we get
| 11| < I} |+ |11, |+ | 11| < Ch?. (3.46)
Finally, combine (3.42), (3.34) and (3.46), we proved
leh (Ol < [ 1]+ [1T] < CR?,

forany x € Qand a € (0,2), where y = 1 + a/2. O

Theorem 3.2.4 shows that for u € C>*/2(R), if the splitting parameter is chosen
asy = 2 or | + @/2, our numerical method has the accuracy of O(h?) uniformly for any

a € (0,2).
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Remark 3.2.3. The results of Theorem 3.2.4 are consistent with the behavior of the central
difference method for the standard Laplacian. Indeed, for u € C>'(R), by Taylor theorem

and mean value theorem, there exist x~ € [x — h, x] and x* € [x, x + h], such that

u(x +h) —2u(x) +u(x—h " 1., o
le| = ( ) h(z) ( )—u (x) :6h|u (x7) —u"(x7)| < Ch%.

3.3. NUMERICAL EXPERIMENTS

In this section, we numerically study the accuracy of the weighted trapezoidal
method in discretizing the fractional Laplacian (~A)®/2. Consider a function u of the form:

1-x3)%"2, f Q=(-11),
u(x) = (=29 or e ( ) x eR, (3.47)

0, otherwise,
for s € N, as in (2.12). It is easy to verify that u € C**/2(R), and it has compact support on
(=1,1). The fractional Laplacian of u(x) can be found exactly in (2.13) [35, 36]. We will

study the accuracy of the weighted Trapezoidal method for different s, implying different

smoothness of u.

, a=0.9 a=15
10
10° W
1072 W
\ wlteYy T ae--
I T N~ A I iy A o=
— _ - A A
2 2 02| Attt
—— = 1402
-5 107 —h— =2
10 —— = 1+20/5
—6—7:0.4+a
—4 —
107 10 = = =0o(h'"®
10° 107 107" 10° 107 107"
h h

Figure 3.1. Numerical errors 1(=A)*?y — (—A)Z‘/y2

u is defined in (3.47) with s = 1.

|| for different choices of y, where
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Figure 3.1 presents the numerical errors by taking different y. Although the conver-

gence rate in this case is independent of the splitting parameter y € (a, 2], our numerical

studies (see Figure 3.1) show that the numerical error is considerably lower when choosing

y=1+a/2ory=2.

Table 3.1. Numerical errors and convergence rates for u € C-%/?(R).

o h 1/32 1/64 1/128 1/256 1/512 171024 172048
02 4.846E-4 | 2.629E-4 | 1.417E-4 | 7.615E-5 | 4.086E-5 | 2.191E-5 | 1.174E-5
' C.I. 0.8822 0.8917 0.8961 0.8981 0.8991 0.8996
06 1.025E-3 | 6.497E-4 | 4.046E-4 | 2.502E-4 | 1.543E-4 | 9.505E-5 | 5.852E-5
’ C.I. 0.6582 0.6834 0.6934 0.6974 0.6990 0.6996
1 2.291E-3 | 1.544E-3 | 1.071E-3 | 7.516E-4 | 5.297E-4 | 3.740E-4 | 2.643E-4

C.I. 0.5691 0.5278 0.5113 0.5047 0.5020 0.5009
15 2.460E-2 | 2.015E-2 | 1.675E-2 | 1.401E-2 | 1.176E-2 | 9.874E-3 | 8.298E-3
’ C.I. 0.2885 0.2664 0.2573 0.2534 0.2516 0.2508
1.9 2.891E-2 | 2.632E-2 | 2.487E-2 | 2.381E-2 | 2.291E-2 | 2.209E-2 | 2.132E-2
' C.I. 0.1352 0.0817 0.0628 0.0556 0.0526 0.0513

Tables 3.1 and 3.2 present numerical errors I(=A)/2y — (—A)%ZMHZOO(Q) and con-

vergence rates of our method for various a, where u is defined in (3.47) with s = 1 and

s = 3, respectively. The symbol ‘c.r.” represents convergence rate. We find that for the

same mesh size h, the larger the parameter «, the bigger the numerical errors. For s = 1,

Table 3.1 shows that the convergence rates of our method is O(h'~%/?) for any a € (0,2),

which confirms our analytical results in Theorem 3.2.3. While for s = 3, our method has

accuracy of O(h?) for any « € (0,2); see Table 3.2. This observation is consistent with our

conclusion in Theorem 3.2.4.

Remark 3.3.1. For u € C>*/*(R), we study the convergence rates of our finite difference

method numerically; see Figure 3.2. It shows that for @« < 0.7 the convergence rate in

loo-norm is O(hz). For a > 0.7, the convergence rate decreases toward 1, which is better

than the case for u € CY*/2(R). In fact, this behavior is consistent with that of the classical



Table 3.2. Numerical errors and convergence rates for u € C 3a/2(R).
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o h 1/32 1/64 1/128 1/256 1/512 1/1024 172048
02 5.676E-5 | 1.418E-5 | 3.544E-6 | 8.861E-7 | 2.215E-7 | 5.538E-8 | 1.384E-8
' C.I. 2.0009 2.0003 2.0001 2.0000 2.0000 2.0001
06 2.230E-4 | 5.550E-5 | 1.385E-5 | 3.461E-6 | 8.651E-7 | 2.162E-7 | 5.406E-8
' C.I. 2.0062 2.0024 2.0009 2.0003 2.0001 2.0000
1 5.643E-4 | 1.379E-4 | 3.414E-5 | 8.490E-6 | 2.117E-6 | 5.290E-7 | 1.321E-7

C.I. 2.0324 2.0147 2.0074 2.0037 2.0007 2.0011
15 2.742E-3 | 8.050E-4 | 2.104E-4 | 5.251E-5 | 1.286E-5 | 3.129E-6 | 7.606E-7
' C.I. 1.7683 1.9356 2.0027 2.0297 2.0391 2.0405
1.9 1.450E-2 | 4.273E-3 | 1.140E-3 | 2.910E-4 | 7.275E-5 | 1.801E-5 | 4.436E-6
' C.I. 1.7631 1.9062 1.9699 1.9999 2.0143 2.0212

central difference approximation to the standard Laplace operator. For u € C>'(R), by

mean value theorem, there exist x~ € [x — h, x] and x* € [x, x + h], such that

1 1
le"| = [ya(x, h) =" (x)| = 3 " (x7) —u"(x)) + 3 (u”(x*) —u"(x)) | < Ch.

Convergence rate

0.5

1 1.5

o

Figure 3.2. Convergence rate versus « for u € C%?/2(R) defined in (3.47) with s = 2.
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In this section, we propose a novel finite difference method based on the weighted
trapezoidal rule to discretize the fractional Laplacian in one dimension. The novelty of our
method is that a splitting parameter y € (a, 2] is introduced so that the fractional Laplacian
is rewritten as the weighted integral of function ¢, (x, £) with the weight function gr-U+ra),
Notably, the choice of the splitting parameter y influences the accuracy of the method. For
function u € C*/2(R), our method has an accuracy of O(h'~*/?) with h a small mesh size,
for any splitting parameter y € (a, 2], which was also verified by our numerical simulations.
For function u € C>*/2(R), our method with ¥ = 1 + /2 or 2 has an accuracy of O(h?),
independent of the power a € (0,2). In fact, the optimal splitting parameter of our method
isy = 1+a/2 or 2 in one dimension, while choosing other y € (a, 2) (buty # 1+a/2)leads
to larger numerical errors. In addition, with y = 1 + @/2 or 2, the weighted trapezoidal
method closely resembling the central difference scheme for the classical Laplacian, as

a — 2.
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4. THE WEIGHTED TRAPEZOIDAL METHOD IN HIGHER DIMENSIONS

In this section, we generalize the weighted trapezoidal method for one dimensional
fractional Laplacian to higher dimensions. We first introduce our method in two dimension
(2D) and then extend it to higher dimensions. In one-dimensional case, the scheme with
either y = 2 or 1 + @ /2 can provide the second order accuracy for smooth enough functions,
however there is only one optimal choice of vy, i.e., ¥y = 2, in d-dimension (d > 2) to get the
second order accuracy. The error analysis and numerical examples are provided in detail

for 2D case, while the generalization to higher dimension is outlined.

4.1. TWO-DIMENSIONAL CASE

4.1.1. Numerical Scheme. Consider the 2D fractional Laplacian:

(—=A)*2u(x) = CroP.V. f wx) Zut) o @.1)
> R2 |X _ X/|2+a
where x = (x,y) and X' = (x’,y’), and their distance |x — x'| := /(x — x")2 + (y — y)2.

We focus on the discretization of the fractional Laplacian on a bounded domain Q =
(ax, by) X (ay, by) with homogeneous Dirichlet boundary conditions, i.e., u(x) = 0 for
x € Q°. By changing of variables, i.e., letting £ = |x — x’|,7 = |y — y’| and defining vector

&= (&,1), the 2D fractional Laplacian in (4.1) can be further written as

(—A)?u(x) = Ca fo fo Uy (x, €) - |€]773) dg, (4.2)
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i.e., a weighted integral o X, with weight function bein B , Where for vy €
i ighted integral of ,(x,§) with weight function being |£]7~***), where for y

(.2],
1
Uy €)= (3wl CDME Y+ (1))~ 4uo)) - €17 43)

m,n=0

Noticing the fact that the function u is compactly supported on €, choose a constant

L = max{b, — ay, by — ay}, we further rewrite the integral in (4.2) as,

D Pum) = ~Coa f( L E) g dg
+ f Uy €) - 6773 dg). (4.4)
R2\(0,L)?

The second integral in (4.4) can be found exactly. Precisely, for any x € Q, if (£,77) €

R2\(0, L)?, there is (x = &,y +717) € R?\Q, and thus u(x + &, y + 1) = 0. Hence, we obtain

f Uy (x, &) - [E]7"H dg = —du(x) €177 dE = —dwru(x), (4.5)
Rz\(O,L)2

R2\(0,L)?2

where the coefficient wy is defined by

Wi = f €172 de.
Rz\(O,L)2

The main part of the numerical approximation is from the first integral in (4.4).
We adopt the uniform mesh by choosing a positive integer N, and define the mesh size
h = L/N. Denote grid points & = n; = ih, for 0 < i < N, evidently éy = ny = L. For
brevity, we introduce the notation &, ; := (&, 17;) and & ;| := | /flz + njz. @G,j=01...,N),

As the preparation, we define the element

Lij :=[(i — Dh,ih] X [(j — Dh, jh], for 1<1i,j<N.
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For each & L define the associated element as
Lj =[G = Dh G+ DR X [(j = DA, (j + DRI N[0, LI X [0,L], for 0<i,j<N.

Then, we formulate the first integral in (4.4) as

N
> fl Uy (%, §) - 161773 dg. (4.6)

i

f Yy (X, £) - 1€ H dg =
(0,L)?

ij=1

If i # 1 and j # 1, the integral on I;; can be approximated by the 2D weighted

trapezoidal rule as:

1
ﬁ Uy () PV dE x L (U (i) + Uy (X i)

0y 0 635 0 6) [ 17O g, @)

Ifi =j =1, there is I1; = (0,h) X (0, h), and directly applying the weighted

trapezoidal rule leads to

1

f Uy(x €) - 6P dE ~ o (hm Uy (% €) + Uy (%€ 1)
I §-0

Wy (% o) + Uy (% €1 )) f1 £~ dg, (4.8)

where we assume the limit exists.
To find the limit, we separate our discussion into two cases:
Case 1: For y € (@,2), assuming that u is smooth enough, then the limit goes to

Zero, i.e.,

lim v, (x.£) = limy2(x.£) - €177 =0, (4.9)
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and thus the integral on /1 is approximated by

Uy (x, £) - 1€ d¢

I
1
~ 1 g0 T ey Eo) Ty g ) | PV ag @10)

I

Case 2: For y = 2, we approximate the limit as

;{I(l) Ya(x,8) =va(X,&10) +¥2(X,801) — Y2 (X &1 )-

Following it, the integral on /1 is approximated by

1
02(%.6) 1617 dE ~ 3 (va(x10) +Uax o) [ I dE @)

Iy

Combining (4.6), (4.7) and (4.10) or (4.11), we get, fory € (1 — @, 2),

N
>, [ ey -iererag

ij=1

1
= Z(lr[/)’(x, fl,O) + lﬁy(X, f(),l) + lflly(x’gl,l)) ﬁ |§|7—(2+cy) df

N
a (%(X’ Einj=1) ¥y (X &y ) + ¥y (X 65 5-1) + iy (X, fi,j)) [r g~ g¢
ij=1 ’
(i,j)];t(l,l)
| &
4 Z Py (X, fi,j)fI; €17 g, 4.12)
i,j=0 ij

(&.))#(0,0)
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fory =2,

Zf Ua(x €) - 1€ dE

l_/l

~ S W% £19) + (% £0.) f €7 de

LS (o) 0k )+ a6y )+ Ua( ) ) | vereae

i,j=1
@H#(LD
1 N
i X ey J v qpaosen [ wereae
(@,)#(1,0),(0,1),(1,1)
1
+1 (Vax610) +va(x£0)) ( fl §17"dg +2 | |§|‘“d§). (4.13)

In fact, the left-hand side of (4.12) and (4.13) can be viewed as summing over the
squares /;;, while the right-hand side can be viewed as summing over the grid points &;; i
(0, L1%.

Choosing a positive integer N, (or Ny,) which satisfies a, + Nyh (or a, + Nyh)
is the smallest number such that a, + Nyh > b, (or ay + Nyh > by). Define the grid
points x; = ay +ih for0 <i < Nyand y; = ay, + jhfor 0 < j < N,. Let u;; be the
numerical approximation of u(x;, y;). Combining (4.4)—(4.7) with (4.12) or (4.13), the fully

discretization of the 2D fractional Laplacian is given by

i—1 Ny—1-i
a/2
(=A), 5 tij = —Coa (ao,o ujj + Z Am,OUi—m,j + Z Am,0Ui+m,j
m=1 m=1
Ny—1-j
+ Z aognli j—n + Z aopnUi j+n
i-1  j-1 Ny_l_]
+ ( am,nui—m,j—n + Z am,nui—m,j+n)
m=1 n=1 n=1
Ne—l-i  j—1 Ny—1-j
+ ( Amnlivm,j-n t Z am,nui+m,j+n))’

m=1 n=1 n=1
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The coeflicient a,,, depends on the choice of the splitting parameters.

e Ify € (o,2),
zﬁ |§|7_(2+“)d§, if m=0,n=1,...,N,
IOn
1 f —-(2+a) .
Ay = 2 £V~ qg, if m=1,...,N,n=0, (4.14)
T Mgl Tno
€~ ag, if mn=1,...,N,
Imn

N N

N N
app = —2 (Z amo + Z ao,n) -4 Z Z Amp —4wL.
m n=1

=1 m=1 n=1

 If y = 2, the calculation of a,,, is the same as in (4.14), except

4 €17 déE + 2 &7 dé, it m=0,n=1,

l [1] 112
ana= 51 4 [ lermag e 2 [ 1ertag it m=1n=o0
4|§mn| I Iy
N |E]7 dE, if m=1n=1.
I\
Denote the 2D vector
_ T T T T
gy = (W), W5, .. .,uLNy_l) .
where u,; = (uyj,uzj, ..., uNx_LJ-)T for j = 1,2,..., Ny — 1. The matrix representation of

the 2D fractional Laplacian (—A)Z‘fy “u(x, y) is A®u,,, that

Ax,O Ax,l ce . Ax,Ny—3 Ax,Ny—Z
Ax,l Ax,O Ax,l e Ax,Ny—3
AD = :
Ax,Ny—S cee Ax,l Ax,O Ax,l
AxNy—2 Ax N3 ... Al Axp

(Nx=D)(Ny=D)x(Nx=1)(Ny=1)
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where

ao,j ai,j -.. A4N,-3j AN,-2,j
at,j doj 4l T aNy-3,j
Ax,j = )
an,-3,j . ai,j ao,j ai,j
an,-2,j AaN,-3,j --- a,j ao,j

(Nx—=D)x(Nx-1)

for j = 0,1,..., Ny —2. Notice that A® is a block-Toeplitz—Toeplitz-block (BTTB) matrix,
i.e.,an (N, —1)-by-(Ny—1) block-Toeplitz matrix with eachblock A, ; (j =0,1,..., Ny-2)
be an (N, — 1)-by-(N, — 1) Toeplitz matrix [71].

4.1.2. Error Estimates. In this section, we provide error estimates of the weighted
trapezoidal method in 2D. By using the weighted Montgomery’s identity for the 1st and 2nd
order differentiable functions of two variables, we will provide error analysis for functions
with different smoothness conditions.

For notational convenience, we will omit x, and simply use ¢, (§) := ¥, (X, &) in

the following. First, we will present the properties of i, in the following lemmas:
Lemma 4.1.1. Let @ € (0,2), 0 < &, 7 < oo and (&,1) # (0,0).

(i). Ifu e C3/2(R2), the derivative Omn2(&,m) exists, for mn = 0,1,2. Furthermore,

there is

|0l (&) + Oumia (0, &) < C|&|/>F1=0mam),

form,n =0,1,2 but m + n > 0. If one of &, equals zero, we further have

|01,0¥2(£,0)] < CE** and  |00,192(0,17)] < Cy®'2.
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(ii). If u € CL2/2(R?), the derivative Omnty (€,1) exists, for m,n = 0, 1. Furthermore,

there is
|Omntry (£,)| < ClE|P2H=mem),

Proof. The proof is directly followed by Taylor theorem. O

First, we define the generalized Peano kernel, which will be used in the statement of

Theorem 4.1.1.

Definition 4.1.1. Define functions for all the non-negative integers k,s =0, 1, ...,

k s
PO (5 y) = f f ) (n S!y) dé dn. (4.15)

Definition 4.1.2. Define function space for function f : [a,b] X [c,d] — R and all non-

negative integers m,n = 0,1, .. .,
C"™"([a,b] X [c,d]) = {f D Opqf(s,t) is continuous for 0 < p <m, 0 < g < n}

Next, we reformulate the weighted Montgomery’s identity in [52] specially by
considering the cases for functions in C Ll([a, b] X [c,d]) and C*%([a, b] X [c,d]). More
general cases for functions in C"™"([a, b] X [c,d]) (m,n = 0,1,...) can be found from

Theorem 2.2 in [52].

Theorem 4.1.1. (/52, Theorem 2.2]) Let w, f : [a, b] X [c,d] — R be integrable functions.
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(i). If f € C([a, b] X [¢c, d]), we have

b pd b pd
f(x,y)ff w(s,t)dtds—f f w(s,t) f(s,t)dt ds

b d
= [ PO yeseds+ [Py f e d

Cc

a
b rd o)
—f f P (x5, y,1)011f(s, 1) dt ds. (4.16)
a C

(ii). If f € C%%([a, b] X [c, d]), we have

b d b d
f(x,y)f f w(s, t)dt ds —f f w(s,t)f(s,t)dtds
a b a c

1 1

_ (i)
== 0 2 i f ) Pl ey (6 )

i=0 j=0
(i.j)#(0,0)
1

b Lo
+Z(;fa PUD (x,5,9)02,; £ (5, 9) ds+Z(;fC PO (x, y, )80 f (x, 1) di
J= =

bord_g
—f f P (x5, y,1)000f (s, 1) dt ds, 4.17)

where ﬁ(m’j)(x, S, y), plim (x,s,y) and ﬁ(m’m)(x, s, v,t) (m =0, 1) are defined by

(m.j)

<s<
ﬁ(m,j)(x’ 5, y) = P((a,s?)(c,d)(s» ¥ a<s<uzx,
m,j
Piosyeay(®Y) X <s<bh
pli P (x1), c<t<y,
P(”m)(x, y,1) = (a,b)(c,t)

(m,1)
PlabyanXt), ¥y <t<d,
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P((Z?;r)”()c’t)(S, l), a<s<x,c<t<y
P P(m’m) (S’t)a X<SSb, CStSy
P(m’m) (Xg S’ ya t) =< ((b,s)()c,t)
m,m
P(a,s)(d,t)(s’t)’ a<s<x, y<t<d
(m,m)
Pooan($,  x<ss<b ysrtr<d.

The following results are direct applications of Theorem 4.1.1, and will play impor-
tant role in the error analysis of the 2D weighted trapezoidal method. First, we define a new
function to short the lengthy notation in 2D. Some of its properties are also presented and

will be used in the error analysis of the weighted trapezoidal method.

Definition 4.1.3. Define functions for all the non-negative integers k,s = 0,1, ...,

(k.s)
K(a,b)(c‘,d) (xa )’)

y X _ ok X b— k —\S
= [ ([ weem “ae [ wem S/
c a . b . S

y X Kk X b— k d-— s
([ wen e [wen T ae) S @)
d a . b . s!

By the Definitions 4.1.1 and 4.1.3, we can rewrite function K ((;‘Z)) @ d)(x, y) in the

form of the generalized Peano kernels, i.e.,
(k,s) — (_1 \k+s [ p(k,s) (k,s)
Kabca®y) =D (P (@)@ )T Py (@ d)

(k,s) (k,s)
TP B ) + Py (B d))'

By definition 4.1.3, we have the following properties for function K ((;‘;)) (C d)(x, y).
These properties will be used frequently in the proof of Theorems 4.1.2 and 4.1.3.

Property 4.1.1. Assume a < b, ¢ < d, and k, s are non-negative integers.

(i). If w(&,n) =w(n, &), then we have the following commutative property:

(k,S) _ (S,k)
K(a,b)(c,d)(x’ y) = K(c,d)(a,b) (y, x).
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(ii). For any h > 0, if a,c > h and (a,c) # (h, h), specially by taking w(&,n) = |E]7¢

gives

|(K(k,s) (k,s) (k,s) + K(k,s)

(a—h,a)(c—h,c)_ (a,a+h)(c—h,c)_ (a—h,a)(c,c+h) (a,a+h)(c,c+h)

—a—1
< Cptk+s) (\/(a —h)?+(c- h)Z) .

Proof. The proof of (i) follows directly by Definition 4.1.3.

(4.19)

To prove part (ii), we can follow the same line as the 1D case, we first construct an

auxiliary function

c a _e\k _ N
Gl = [ [ wen I e an,
y Jx '

k!

By Definition 4.1.3, we can rewrite the left-hand side of (4.19) as

(k,s) (k,s)
K aZhay(e-ne) (@ ) = Ko Gamyemney (@ €)

(k,s) (k,s)
K hayeorm (@ )+ Ky cerm (@ €)

=G5 a—he-h) -G )@+ hc—h

~G&(a—hc+h)+Ged)(a+hc+h).

Applying Taylor theorem at (a, ¢), we have

‘Gg’a"g(a —h,c=h) =G (a+hc—h)

(a,c) (a,c)

Gl @R+ )+ G @+ e+ )|

—a—1
< cp3rkrs) (\/(a - )2+ (c- h)2) ,

which directly leads the result.

Lemma 4.1.2. Let w, f : [a, b] X [c, d] — R be integrable functions.

(4.20)
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(i). If f € C ' ([a, b] X [c, d]), there is

d b
[ [ @ren-tr@o+ saa + s+ fo.d) wiem dedy
d
-/ f KOO & o £ (&) dé dn
+ f (KOO (Ed) dyof €.d) = KOO o (6.0) drof (€.0)) de

d
b (RO e 0o 0 B = KOS @) f (@) i
(ii). If f € C**([a, b] X [c, d)), there is

d (b
f f (4](‘(6’ 77) - [f(a, C) + f(a, d) + f(b’ C) + f(l’), d)]) W(f,n) dé‘-‘ dn
d
_f f K(llg(cd)(f 022 f (& n) dé dn

+Z< 1! f (Kia ) ey & D2 f(€.d) = K7 (£, f(£,0)) d€
+Z<—1)"+1 f (K& o bmdafm -KED o @mdafam) d

1 1
=D D D (RED b d)d i f (b d) = K)o (B, )0y if (b o)
=0 i=0
(i,j)#(0,0)

—K(0) (@ d)dijflad) + KD - (a,0)d;jf(a,c)) .

Proof. Applying Theorem 4.1.1 by plugging (x, y) = (a, c), (a,d), (b, c¢), (b, d) into (4.16)

or (4.17), and then summing together will directly lead the results. O

Since the following results will be used very often throughout the proof of Theorems
4.1.2 and 4.1.3, to avoid interrupting the proof of the main theorem, we present them as two

Lemmas.
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Lemma 4.1.3. There is a positive constant C > 0, such that

L L L &
f f € P dédn < CsP2 (B>2) and f f P dédn < CsP2 (B> 1),
& & & 0

where € is a positive number which satisfies € < L.

Proof. By using the fact that |&]77 < &7 and |£]7# < 7P, we have

L L I L
f f '5'_ﬁd5d"3f f_mdf'f NP2 dy < CeF2,
& Fol £ n

For the second inequality, we have

L & L
f f |EI7P dg dn < @f nPdn < Ce P2,
& 0 &

Lemma 4.1.4 (2D Chebyshev integral inequality). Let f and g be positive functions on
Q = [a, b] X [c, d] with the same monotonicity, i.e. for any given points (s1, s2), (t1,12) € Q,
they satisfy [ f(s1,52) — f(t1,t2)] - [g(s1,52) — g(t1,t2)] = O, then we have the following

inequality

d b d b
fff(sl,sz)dsldSZ'ffg(sl»sz)dsldsz

d b
S(b—a)(d—c)fff-gdsldsz.
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Proof. Since the functions f and g have the same monotonicity on €, we have

d b ,d b
0 Sffff[f(Sl,SZ)_f(tl,IZ)]~[g(Sl,Sz)—g(tl,tZ)]dtldtzdS1dS2

d b d b
= f f f f [f(s]’ S2)g(sl, 52) — f(sl’ s2)g(tl,t2)

+f(t1,2)8(s1, 52) — f(t1,t2)8(t1,12)] dt dta dsy ds

d b
=2[(b—a)(d—0)f f f(s1,52)8g(s1, 52) dsy ds

d b d b
—f f f(Sl,Sz)dsldsz'f f g(s1,82) dsy dsa].
C a C a

Thus, we proved the lemma. O

Note that, the inequality for double integrals in Lemma 4.1.4 is a generalization of
the Chebyshev integral inequality [41] for single integrals.

Then, we have the following error estimates on the weighted trapezoidal rule:

Theorem 4.1.2. Suppose that u € CY*/>(R?) has finite support on the domain Q. Let

(—A)% 2 be the finite difference approximation of the fractional Laplacian. Forally € (a, 2],

there is

l(=A)*2u(x) - (—A)Z/yzu(x)ﬂ Loy SCRT for a € (0,2) (4.21)

with C a positive constant depending on a and .

Proof. Define the error function

ehy(X) = (=0)"2u(x) = (=) Pu(x).
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For y € (@,2), from (4.4), (4.6) and (4.12), we obtain

h h 1
= —cz,a{ fo fo (%(&n) — = [y (0 0) + 4y (0. 1) + yy (h, h)]) €173+ dé dn

1 L& o opé i
3202 f f (4%(5 m- >, D, l//y(fk,ﬂs)) £P-C dg di

j=1i=1 Y71 s=j—1 k=i—1
(L) #(LD)
= —Coo(I +11). (4.22)

For term 1, by triangle inequality and Lemma 4.1.1 (ii) for m = n = 0, it’s easy to show that

h h
I < fo fo |y (£.1)| - 1£1772%) dg dn
1 h rh
7 [0 (0.0) + 4y 0. 1) + ury (. ) fo fo £~ gg ap

h h
C (f f |§|—a//2—1 dé: dn + ha/2—7+1 X hy—a) < Chl—w/z.
0 0

IA

For term /1, by taking w(&) = |£]Y~?*® in Lemma 4.1.2 (i), we obtain
1
1= 21 +1D),

where

N N
‘ZZf f KD (€m) - iy (&) dé dn,

(i)

&i
I, = { Y (K@i eny - K Enno € de

i-1

()¢ )
nj
+f KA €m0ty (€ m) = K5 G moairy o) ) d ).

77]1



66

In the above equation, we introduce the following notation to short the lengthy notation:

(m) (mm) _
Kii & = K@ e gep&m) for m=0.1. (4.23)

For term 11}, by the definition of KI(%_O)(f, n) in (4.1.3) and Lemma 4.1.1 (ii), we have
ilj

Ihi<c i _ (f”f 69" (2+“)d§d77) (f”f g1/ 1d§dn)
1

By further applying the Chebyshev integral inequality in 2D as in Lemma 4.1.4, we get

N N &
|IIl|<ChZZZf f 1E174/273 d¢ dn. (4.24)

: :1 7]/ 1 ft
( J#ELD

Rewrite the summation as

3y [ [ e acan

j=1 =1 Y11 YéEin
@j)#(L,1)

L h L L h L
_ f 672 dé + f f €171 dé + f f €7 dg. (4.25)
h 0 h h 0 h

Combining (4.24) and (4.25) and then applying Lemma 4.1.3, we get

1h| < Ch* (f f §1727 dé dn +f f £ de dn) < Cch'o”,
h 0 h h

For term 11>, by using Property 4.1.1 (i), we first rewrite it as

N N &
1L = Z Z:‘ {fg-_l K(OO)(f n;) (31,0%(6 nj)+ (90,1%(51’5)) dé

1= i
i,)#(1,1)

&
—L K(OO)(f n;- 1) (310%(5 nj- 1)+801¢V(§] 1"5)) df}

Si—1

~
~
~
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Then, applying Lemma 4.1.1 (ii), we get

on g ()7 (W) ) [ () e

i=1 i i
1

( fn N L f 670+ a ) fn ! L g €1 d ).

j-1

11|

IA

IA
QO
=
M= %
M= =

Further by applying the 2D Chebyshev inequality in Lemma 4.1.4, we have

N N n;
|112|SChZZf

j:l i=1 nj-1
(6,)#(L,1)

&i
f €177 2dér dgy, < Ch™2,
i1
Combining the estimation of terms / and /I, we show that for any u € ClL/2(R?) and
Y € (@,2),
le)ll = |(=8)""2u(x) = (~A); Pu(X)l; @) < Ch' .

For y = 2, the error function is slightly different from (4.22), which is

h h 1
—=Coa{ [ [ (vatem - 5 020000 40200 ) -l de
0 0
1 N N nj o & J i
2200, f (4w2em = D) D" vatéwn) 161 de dn

i=1 V-1V &i-1 s=j—1 k=i—1
1

= —Coo (T +11). (4.26)

The estimation of this error function can follow the same line as in proving (4.22) by simply

taking v = 2. Therefore, we proved that for all y € («, 2],

le)ll = [|(=A)"?u(x) - (—A)Z/yzu(x)HLw(g) < Ch'-e2,
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O

Theorem 4.1.3. Suppose that u € C>*/>(R?) has finite support on the domain Q. Let
(—A); 22 be the finite difference approximation of the fractional Laplacian. If the splitting

parameter is chosen as y = 2, there is
1=8)""u(x) = (=AY 2l ) < CH,  for @ €(0,2) (4.27)

with C a positive constant depending on «.

Proof. We start from the local truncation error in (4.26).
For term Z by Talylor theorem and Lemma 4.1.1 (i), for any (&, 77) € [0, k] X [0, k],

there is a positive constant C, such that

1
Ya(&m) = 12 (h, 0) + 42 (0, )]

<Ch max {|01,0¥2(&, 0)],]|00,1¥2(0,7)|}
(&n)el0,h)?

< Ch]+a/2.

Therefore, we have

h h
1] < Ch”“/zf f |17 dé dny < Ch3™92,
0 0

For term 11, by Lemma 4.1.2 (ii), we obtain

1
I = Z(Ill + 11 +]I3),

where 114, 115, 115 are defined as

N N

nj o (éi
=), f f Ky (€ - daowa(é.) dE dn,

j=1i=1 Y11 Vi
@)#(L1)
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N N
ZZ 2, 1>"{f (ke @ npdnaaien)
:l

K0 &m0 En;- 1))d§

nj
+ f i Em ko m) = KiG P (G m o éin 1,77)) } (4.28)

77j—l

N N 1 1
ZZ 2.2, (KL @ mp £ &mp - K @onj0de f €y
E e (00

K“”(a DOk f i) + KD nj )0k f (Eir- 1))

(4.29)

Next, we will focus on the estimation of term //; (j = 1,2,3). To apply Lemma
4.1.1, each term //; should be firstly rewritten symmetrically.

For term 111, in order to apply Lemma 4.1.1 (i), we have to first rewrite it symmet-

rically
1 N N i
10 = E;Z f f K@D @paten) + braa(,) dédn. (430)
@@,j)#(1,1)

From the definition of KI(’_II’J_I) (&, 1), it is easy to check that

(1. 1) S A
1K} 7. (& m) < Ch ; €17 d¢ dn, (4.31)
nj i

From Lemma 4.1.1 (i) by taking s = k = 2, we have

n;j &i
|02202(£,1) + Baotha (1, €)| < C f f £1°/%73 d¢ dn. (4.32)

nj-1 Yé&i-1
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Combining (4.30), (4.31) and (4.32), the term /15, can be bounded as follows

i <cry :1 > (f" f& € d§dn) (f f |§|“/“d§dn)

(1)¢1)

By further applying the 2D extension of the Chebyshev integral inequality as in Lemma

4.1.4, we get

N N ;
|111|<Ch4ZZf f €723 g an. (4.33)

(J)i L1)

Rewrite the summation as

Combining (4.33) and (4.34), and then applying Lemma 4.1.3, we get

L h L L
11| < Ch* (fh fo |§|‘“/2‘3d§+fh fh &7/ df) < Ch*9?,

For term 11, in order to apply Lemma 4.1.1 (i), we have to first rewrite it symmetrically.

By exchanging the position of i and j in the summation of the second integral, we have

1

=33 Y 1)k{f (KL nsarateny)

j=1i=1 k=0
(L.)H#(L1)

K5OG DOsa(Ens) ) d

ni
+ f (K”‘“(f,, k22 (Ejom) = Ki5 (o1 M rava (€ 1,77)) dn}

i-1
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Notice that & = n; and KI(AII’D(f, n) = K(k 1)(77, &) for k =0, 1, we can further rewrite it as
ilj

1

N
DDt { L Kii(6m)) o2 (é,m)) + B2y (n, ) dé

k=0

N
1L =
J

=1 i=1
L)#(1,1)

~

f K(lk)(f nj-1) (Ooxh2(€:mj-1) + Ok 22 (n- 1’5))""5}

By definition, it is easy to show that for £ € [&;_1,&;] and k =0, 1,

KL (6 n) \f ; & - g)M|§| 0 gE di
nj i

nj-1 —_ k
o) (f B WA 7w g aif

&
< Chl+kf f |§|—a/d§_«
nj-1

By Lemma 4.1.1 (i) for k = 0, 1, we have

nj &i
W2 002 (€,17) + Oraa(n, )| < C f ff €10/ kg (4.35)
nj- Si-1

Then, term /1, is bounded by

N N 1 n;j &
k af2-1-k
18] <;Z;Ch(nﬂfa & df)(fm f ey df)

j=1 k
@j)#(,1)
1 N N nj &i
<Cy Y £k g (4.36)
k=0 j=1 j=1 Ymj-1 Y&
@H)=(,1)
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Following the same line as the estimation of the summation in term //;, we get

< Chk+2 (f f |§| (a/2+1+k) d§+f f |f| (a/2+1+k) df (4‘37)

By Lemma 4.1.3,since /2 + 1 + k € (1,2)fork =0and /2 + 1 + k € (2,3) for k = 1,

we have

L h
f f EI7@R gg < Cn' PR for k=0,1 (4.38)
h 0

and

L L C if k=0
f f |£|7@/2 140 g < (4.39)
h Jh Ch™@? if k=1.

Finally, combining (4.36)—(4.39), term /1, is bounded by
IL| < C (R + - ™) < Ch. (4.40)

For term 115, first by letting 7: j—1 andi =i—1,and noticing that & = n;, we have

1 1 N N-1
= >, { > Z Ky (6 €0k f €D = ) Z KA (6 6)00sf (61.6))

5=0 k=0 \ j=1 i=1 j=0 i=1

(k,5)#0,0)  (1,)#(1,1) @.5)#(1,0)
N N-1 N-1N-1

_Z Z <s+f} (& €))0si f (€ E)) + Z ZK}j}jﬂ(g,-, ENOsif (& gj)}. (4.41)
j=1i=0 =0 j=0

i=0
@./)#0,1) (,j)#(0,0)
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We further rewrite it by

N-1N-1

k,s k k, k, k
1155 = Z(K( 5 _ 1(1,?1_Kl(i+f1)j+ K k) )(gl,gj) Ons [ (i &))

Livilj+1
i=1 i=1
,j)#(1,1)
N_

=
—_

+ 3 (KR @ en) - K5 (6 én) Osf € En)
i=1

N-1
+ (K;SI” (&N €j) - K}f}?ﬂ (€ns gj)) Osf(ENLE))
=1

N-1
* ( (kf}1(§Z’§0) KI(kIIS)(é:i"fO))ak,sf(fi,‘fo)
i=2

N-1
v 3 (KI5 6o 6 — K15 G0 6)) s 0. 6)
=2

K ED ey, )0 f (Ens ) + K52 (En, €000, f (En €0)

+K;50 (€0, En) ks f (0. €n) + Kioy (€1, £0) ks f (€1, €0)
+K;5D (€0, £1) 0k f (G0 €1) + K5 (1, €005 f(€1,1)
—KD (€1 E)Ok s f (1, €1) — KI5V (€1, €0k (€1, 61).

_ y7k.s) (k,s) (k,s)
=1Ly7 + 157 + 155 (4.42)

To avoid introducing too many notations, we still keep using Ilél?s) i@=123),
but they represent the sum of the double summation, single summation and no summation

terms in (4.42), respectively. Next we will focus on the estimations of the summations
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k=0 s=0
(k,5)#(0,0)
1 1 N-1N-1
— (k,s) (k,s) (ks) | g (kss)
B Z Z (Klilj B K1i1j+1 B K1i+11j +K liv1l; +1) (&3 §j) 05 f (€35 €))
k=0 s=0 j=1 i=1
(k7s):'é(070)(l_])¢(1,1)
1 1 N-IN-1
_ (s,k) (s,k) (s,k) (v k)
B Z Z (Kljli KIJ'IHI - Klj+11i +K Ll +1) (€ €05,k f (£ &0).-
k=0 s=0 j=1 i=1
(k,)#(0,0) (1, j)#(1,1)
(4.43)
By Property 4.1.1 (i), it is clear that
(k,s) (k,s) (k,s) (k s)
(KL-I- ~ K, K K HI,H) (&i- €5)
(s,k) (s,k) (8,k) (s k)
(KI I; Kljlm a K1j+11i + 1+111+1) (&> &1)- (4.44)

Combining (4.44) and (4.45), we can rewrite the summation symmetrically as

k=0 s=0
(k,5)#(0,0)
1 1 1 N-1N-1
_ (k,s) (k,s) (k,s) (k s)
T2 Z Z (KI I Klilj+1 B K1i+11j + z+11,+1) (&) &i)
k=0 s=0 j=1 i=1
(k,$)#(0,0) (7, j)#(1,1)

(Ousf (&) + Osa f(£),€)) . (445)
By using Property 4.1.1 (ii) with w(€) = |€|7%, we get

(k,s) (k,s) (k,s) (k, S) 3+(k+s) —a-1
(x5 - K0 Kk 4 KR ) @] < O ENg LI @46)
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Further, by triangle inequality and Lemma 4.1.1 (i), we have

1 1
1
(k,s) (k,s) (k,s) (k s)
< 5 Z Z . ‘(Klilj B K1i1j+l - K1i+11j + t+11j+1) (é:]’f’)‘

: ‘ak’sf(gi, &j) + Os i f (&), 51-)]

1 1 N-IN-1 g
< Ch—1+(k+3‘) ZZ Z f f |§|—a 1d§ f f |§;|Q’/2+1 (k+s)d§
k=0 s=0 j=1 i=1 Y&i-1Y&j-1 &1
(k,)#(0,0) (i, j)#(1,1)
4.47)
Finally, by Lemma 4.1.4, we have
1 1
DI Lva
k=0 s=0
(k,5)#(0,0)
1 1 N-1N-I
< Chltk+s) f f &] —a/2- (k+S)d§

< Ch2. (4.48)
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Next, we focus on term 113(1‘2s), ie.

2

15 = 3 (KD~ k59 ) (6 )i f 6 )

Liv1In

Il
= =

+ (Kl(lljls) I(f,ls) 1) (&N, Ej)Oks [ (En,E))

M

N-1
e 3T (KR~ K59 (6 00 (£ o)
=2
N-1
(KD - KIS G0 )0 60 6. (4.49)
=

Following the same line as the estimation of term / 13(1{1’5) by exchanging k, s and using

Property 4.1.1 (i), we get

1 1
2,2, 1157
k=0 s=
(k,5)#(0,0)
1 1 N-1
= DD (KD — K ) (v B G v) + Ok (e 0)
(]/:?%ES%) =l
N-1
#0 (KIS = KEED) (6 80) (Ohsf (€80) + 00 f 0.€0) |
=2

Finally, following the same line as the estimation of term / 13{‘ ls , we have

k=0 s=0
(k,s)#(0,0)
EN &
< Chl+(k+s) f f |§| a/2- (k+s)d§+ Zf f |§| af2- (k+s)d§}
(k ? * 3 0)
1 1
< Chl+(k+s) Z (f f |§|—a'/2 (k+S)d§+f f |§|—a/2 (k+s)d§)
=0 s=0 L-h
(k,s)#(0,0)

< Ch/2, (4.50)
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For term 715

33 > we have

15 = K& (En, 000 f Exs ) + KD (En 0)01s f (€, £0)
TR (G0, En) B f (0 En) + K5 (61, €0)00 (61, €0)
A% (0, €001 f(Eon 1) + K5 (1, €01 f(£1,61)

—K (€L ED Ok f(E1E1) — K5V (61, €00k f (£1,€1).

Then by Definition 4.1.3 and Lemma 4.1.1 (ii), it follows directly that

< Ch. 4.51)

Finally, combining the estimations of terms I and 11, it shows that for any u € C3%/2(R?),

specially by taking v = 2 gives,

le , GOl = [[(=8)32u(x) = (=) 2u)ll; ) < CH.

4.1.3. Numerical Experiments. Consider the functions of the form

1= 2 1= 2 s+a/2’ if 3 Q
w(x.y) = [(1 =x7)(1 = y7)] if (x,y) € 4.52)

0, otherwise,

which is in C**/?(R?) and has compact supporton Q = {x € R%: |x] <1 and ly| < 1}. To
test the analytical results in Theorem 4.1.2 and 4.1.3, we specifically consider the cases by
taking s = 1 and s = 3. Since the fractional Laplacian of this type of function can not be
computed analytically, we will use the numerical solution by taking y = 2 and N = 8192

as the exact solution for all the following numerical tests.
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Example 4.3.1. For s = 1,ie. u € C*/2(R?), as shown in Theorem 4.1.2 that for
u € CH¥/2(R?), the accuracy of the weighted trapezoidal method in /.,-norm is O (h'~%/?)
for small mesh size A, and it is independent of the splitting parameter y € (a,2]. Figure

4.1 presents the numerical errors by taking y = 1 + @ /2 and 2.

o'l 10°
1072} 107}
= -
5 5
= £
TR m
107°} _
107k
—— -2
10,4 +y=1+(x/2
3 [ _Ohvu/z ~
o ) 107°F ‘
107° 107 107" 107° 107 107"
h h
a=1.5
10"} 10”
1 - -
1072} 10
S .8 <}
= 10 ¢ £ 107}
| |
— -
10 4l _3
107°} —— 2
5 +y=1+oc/2
10 ' f ” - - o(h(3*¢1)/2)
107k
107 107 107" 107° 107 107"
h h

Figure 4.1. Numerical errors of the weighted trapezoidal method for vy = 2 and 1 + /2
for u defined in (3.47) with s = 1. The errors are defined in /,-norm (top row) or /;-norm
(bottom row).

Additionally, Figure 4.1 (bottom) compares the numerical errors in /;-norm for
different choice of y. It shows that choosing the parameter y = 2 leads to a better
convergence rate in /;-norm.

Example 4.3.2. For s = 3, i.e. u € C>*/2(R?), as shown in Theorem 4.1.3, only by

taking y = 2, the accuracy of the weighted trapezoidal method in /,-norm is O (h?).



79

Table 4.1. Numerical errors of the fractional Laplacian for u € C>*/2(R?).

o h 1/16 1/32 1/64 1/128 1/256 1/512 1/1024
02 1.062E-4 | 2.679E-5 | 6.716E-6 | 1.679E-6 | 4.187E-7 | 1.0344E-7 | 2.463E-8
' C.I. 1.9852 1.9959 1.9998 2.0039 2.0170 2.0704
| 4.594E-3 | 1.154E-3 | 2.892E-4 | 7.231E-5 | 1.803E-5 | 4.457E-6 | 1.061E-6

C.I. 1.9928 1.9970 1.9995 2.0035 2.0167 2.0702
1.9 6.695E-2 | 1.653E-2 | 4.383E-3 | 1.176E-3 | 3.011E-4 | 7.489E-5 | 1.780E-5
' C.I. 2.0183 1.9146 1.8983 1.9654 2.0075 2.0726

Table 4.1 presents numerical errors [(=A)*/2y — (—A)Z/ 21/l||100(Q) and convergence
rates of the weighted trapezoidal method for various a by taking u in (3.47) with s = 3,
where the splitting parameters are taken to be y = 2. It shows that the convergence rates of
the weighted trapezoidal method is O (h?) for any @ € (0,2), which confirms our analytical
results in Theorem 4.1.3. In addition, we find that for the same mesh size h, the larger the

parameter «, the bigger the numerical errors.

4.2. HIGHER DIMENSIONAL CASE

4.2.1. Numerical Scheme. The weighted trapezoidal method can be extended to
any d dimension for d > 2. In the following, we will first use the general d-dimensional
notation to derive the weighted trapezoidal method. Then, to show it clear, we will explicitly
provide the numerical scheme in 3D. As proved in 1D and 2D cases, for smooth enough
functions u € C>*/2(RY) (d = 1,2) with v = 2, the weighted trapezoidal method has second
order accuracy. We conjecture that the same analytical result will hold in any d-dimension

(d > 1) and will justify it numerically.
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Consider the d-dimensional fractional Laplacian in (1.2). By changing of variables,
i.e. letting & = |x; — X;| (i = 1,2,...,d) and defining vector é= (&1, ..., &4), the fractional

Laplacian can be further written as

(=A)*?u(x) = Cyq f

(X e ) e ag sy

ver
Vel

where (R+)d = (0,00) X (0,00) X - - - X (0, 0), and we define the d-dimensional cube /(4 &)

d—thintervals
which is centered at x with radius &1, . . ., &4 in each direction. For any d-dimensional cube,

we define its vertex set as
I = {V € RY|v is the vertex of cube I}. (4.54)

Following the same line as 2D case, we introduce a function i, (x, £) and define it as

Uy(x.§) = ( > uw - 2du(x)) €17

ver
vel x6)

Consider a d-dimensional cube © = (ay, b;) X --- X (ag4, by) and let L = max{b; —
ai,...,bg—ag}. For functions u which is compactly supported on Q, we can further rewrite

the fractional Laplacian by splitting it into two parts,

(-A)*u(x) = —cd,w( f(OL)dwo<x,§>-|§|—<d+“>df

+ f Yo(x, &) - €] d-f). (4.55)
(R*)4\(0,L)4
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The second integral in (4.55) can be found exactly. Precisely, for any x € Q, if
£ € (R*)4\ (0, L)?, then all the vertices v of the d-dimensional cube I(x¢) satisfy v € RAN\Q,

and thus u(v) = 0. Hence, we obtain

bf‘ Vo(x, £) - [£]7@4) g
(R*)4\(0,L)4

= -2%u(x) €17 dg = 27wy u(x), (4.56)
(RH)4\(0,L)4

where the coeflicient wy is defined by

wL:j‘ 7@ g,
(R*)4\(0,L)4

Next, we apply the weighted trapezoidal method to approximate the first integral

in (4.55). We adopt the uniform mesh by choosing a positive integer N, and define the

mesh size h = L/N. Denote grid points &1; = -+ = &£4; = ih, for 0 < i < N, evidently
& v =+ = &yn = L. For brevity, we introduce the notation &, := (£1,4), E2.ns - - > Edng)>
wheren := (ny,...,ng) forO<m; < N(@G=1,...,d).

We formulate the first integral in (4.55) as the weighted integral of ., with |£[7~(4+®)

representing the weight function,

f(o Ly Yo(x, &) - €7D g¢ = Z fz Uy (x, &) - [EP gg, 457)
’ }

Te{l,2,.. ,N}d ¥ 7

where T := (11,...,7g) is a d-dimensional vector belongs to the set
(L2 N ={re@)1<n<Ni=1...d},
and the d-dimensional interval /I, is defined by

I == [(r1 = Dh,7ih] X - - - X [(14 = 1), T4h).
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Fort # (1,1,...,1), we apply the weighted trapezoidal method to approximate the

integrals in (4.57)

f Uy (x.€) - €] <d+“>d§~2—d PR f P~ ag, (4.58)
Eelyer

where 17" includes all the vertices of I;.
Fort = (1,1,...,1),thereis Iy = (0, h) X- - - X (0, h), directly applying the weighted

trapezoidal rule as in (4.58) will lead to
e ©) 1 (@0 g ~ Uy E) |- [ 1EP7 0 ag. (4.59)
2d
I
§€IV€I‘

However, since 0 is one of the vertex of Iy, it arises a problem when evaluating ¢, (x, 0),
which is singular at 0. For this reason, we consider ¢, (x, 0) as a limit éin(l) Yy (X, €). Next,
—

we focus on the approximation of this limit.

* For y € (@,2), the limit equals zero, thus the integral I; is approximated by

Iwy(x,§>-|§|7‘<d+“>d§~— D vyxd) 6P dg. (@60

Eern\(0}

» For y = 2, we approximate the limit by

d —~
11m lﬂz(X &) = ( )Zlﬁz(x he;) — Z Ua(x, §),
fellver\{()}
f;&hel,...,hed
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and it follows that the integral /1 can be approximated by

d

(dta 1((2 d
P 8) I dg ?{ (F ) 1) Zm hei)

=Y wadr Y wad) f £~ ag

gelver\ } §elver\{0}
f#zhel,...,h d
1 d
= D vatxen [ 1gP ag 4.61)
i=1 h

Define I ; En be the d-dimensional cube centered at E with radius /4 in each direction.
Therefore, summing 7 over {1,2,..., N 44, and then combining (4.58) with (4.60) or (4.61),
we have the following approximations.

Fory € (1 - «@,2),

> f Uy (%, €) - 1EP 7 ag

T€{12 LN}
Z 3 0 ® f e ag s Y g f £ ag
-r;t(l ) feIVer §e]ver\{0
1
=5 Uy (%, &) €177 ag, (4.62)

ne(0,1,..,N}d Iign,myNIO,L]¢
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Fory =2,
Z f Uy (%, €) - €D gg
€{1,2,...N}d
SADIDIZC N N Zm(x e [ 100 dg
TE{] N}d é:elver
T#(1,...,1)
< 1
~ l// (X, hei) (—f |§|7—(d+a/) df+ (___)f |§|y (d+a) df)
; ! 24 Lhe;,myN(0,L]4 d 24
1 P —
tog ), hxd g dg
Eenyn\(hey,....heq) (gm\1DN(O,L]
1 - (04
+ﬁ Z Uy(X, &) €)Y (d+ )df. (4.63)
ne0,1,...N )<, L, myN(O.L]4
Enth

In fact, the left-hand side of (4.62) and (4.63) can be viewed as summing over the d-
dimensional intervals I, while the right-hand side can be viewed as summing over the grid
points in (0, L4,

Combining (4.55)—(4.57) and (4.62) (or (4.63)), the discretization of the d-dimensional

fractional Laplacian is

2
AP0 = ~Cua(amu+ T 3 uw)
ne0.1,...N)d VeIl |
n=0

where v are the vertices of the d-dimensional cube /(x ¢ ), which is centered at x with radius

&,- For different y, ay is given as follows.
* Fory € (a,2),

1

SE €77 gg if me Vi (0 <k < d);

I(fn,h) ﬂ[O,L]d
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where

Vi={ne{01,..., N}dl if there are k entries of n equal 0}.

* For y = 2, we only list the a,’s which are different from y € (a, 2)

1

— 1EP D gg ifne Vi (0<k <d)
2 (Tenmy\IDN(O,L1
and ‘fn € I1\{hey,..., hed},
an -
2 dia 2 2 dee
= e ag s (35 [ e ag
1

2d I(gn,h)ﬂ(O,L]d d 2d
if &,=he; for i=12...,d.

and
d-1
ap = — Z pd-k Z an — 2de.
k=0 nevi\ {0}

For easy illustration, we present the 3D matrix-vector form of the fractional Lapla-
cian in the following. The high dimensional cases can follow the same line.
Denote the 3D vector

T T T T
Weye = (W) W oy Wy )



86

T

whereu, yx = (W ... .,

ch:Ny—l,k)T fOI‘k = 1, 2, ey Nz—l, andux,j,k = (ul,j’k, ey MNx—l,j,k)T
forj=12...,Ny—land k =1,2,..., N, — 1. The matrix representation of the 3D frac-

tional Laplacian (—A)Z‘fy u(x, y, z) is A®u,, ,, that

Ax,y,O Ax,y,l cee Ax,y,NZ—3 Ax,y,Nz—Z
Ax,y,l Ax’y,o Ax’y’l e Ax’y’NZ_:;
3
A( ) — ,
Ax,y,Nz—3 <o Ax,y,l Ax,y,O Ax,y,l
Acyn2 Axyn,-3 ... Ay Ay
N R ” T =Dy =D P
where
Axok Ax 1k oo AxNy-3k AxNg-2k
Ax 1k Aok Axlk e AxNy-3k
Ax,y,k: s
AxNy-3.k e Axik  Axok Ax 1k
AxNy-2k AxNy-3k - -- A1k Ay ok

[(Nx=D(Ny-DT?

fork=0,1,...,N, —2,and

ao,j,k aitjk «eo AN-3jk OAN.-2jk
ai,jk Qao,j,k ai,jk te an,-3,j.k
Ax,_,‘,k: >
anN,-3,jk cee aitjk ao,j,k aitjk
aN,-2,jk QAN,-3jk --- aijk ao,jk

(Nx=1)?



87

forj =0,1,...,Ny—2and k = 0,1,..., N, — 2. Notice that each A, ;; is a symmetric
Toeplitz matrix, and each A, x is a block-Toeplitz matrix constructed by the matrices A, ; «
for j =0,1,..., Ny — 2. Similarly, the matrix A is also a block-Toeplitz matrix with each
block Ay, also be a block-Toepliz matrix. The computation of A®)u can be achieved
efficiently by using the fast Fourier transform (FFT), which we will introduce in Section 6.

4.2.2. Numerical Experiments. Assuggestedin 1D and 2D cases, foru € C>*/2(R)
(d = 1, 2), the weighted trapezoidal method is second order accuracy by taking the splitting
parameter v = 2. We conjecture the same result also holds in 3D and will numerically
justify it by considering the following example.

Example. Consider the functions of the form

1_2 1_2 1_23+0z/2, if )Y, Q
w3, 2) = (A =x)(1 = y7)(d = z7)] if (x,y,2) € (4.64)

0, otherwise,

which is in C>%/2(R3) and has compact support on Q = {x € R3: x| <1yl <1|z] <1}.
Since the fractional Laplacian of this type of function can not be computed analytically, we

will use the numerical solution by taking y = 2 and N = 256 as the exact solution.

Table 4.2. Numerical errors of the fractional Laplacian for u € C>*/2(R3).

o h 1/4 1/8 1/16 1/32 1/64
03 1.2160E-2 | 3.6919E-3 | 9.6941E-4 | 2.3505E-4 | 4.7266E-5
' C.I. 1.7197 1.9292 2.0441 2.3141
| 1.3202E-1 | 3.9773E-2 | 1.0791E-2 | 2.6827E-3 | 5.4721E-4

C.I. 1.7309 1.8820 2.0081 2.2935
1.9 1.6007E-0 | 4.1340E-1 | 1.0402E-1 | 2.5075E-2 | 5.0615E-3
' C.I. 1.9531 1.9907 2.0525 2.3086
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Table 4.2 presents numerical errors 1(=A)¥/2y — (—A)ny 2u||lm(g) and convergence
rates of the weighted trapezoidal method for various « by taking u in (4.64), where the
splitting parameter is taken to be y = 2. It shows that the weighted trapezoidal method in
3D also has second order accuracy by taking y = 2, which justifies our conjecture.

In this Section, we extend the weighted trapezoidal method from one dimension to
general d dimension (d > 2). Different to the 1D case which either y = 1 + @/2 or 2 can
provide an accuracy of O(h?), our analysis in two dimension suggest that y = 2 is the only
optimal choice to get second order accuracy for u € C>*/2(R?). Our extensive simulations
in 3D also suggests the same result that only by taking y = 2 can provide a second order
accuracy. Therefore, we conjecture that y = 2 is the only choice of the splitting parameter

that will provide a second order accuracy for functions in C>*/?(R?) with d > 2.
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5. THE WEIGHTED LINEAR INTERPOLATION METHOD

The interpolation methods are widely applied in numerical approximation. How-
ever, directly applying the traditional interpolation method to approximate the fractional
Laplacian lead to low accuracy because of the hypersingularity. In this section, we propose
a weighted linear interpolation method. For smooth enough functions, it provides second
order accuracy. This method is comparable with the weighted trapezoidal method that is
proposed in Section 3. The common feature of these two methods is the application of
the weighted integral. In addition, the weighted linear interpolation method can be easily

extended to higher dimensions.

5.1. ONE-DIMENSIONAL CASE

To simply show the main idea of the weighted linear interpolation method, we will
start with the derivation in 1D. Error analysis are presented for functions with different
smoothness conditions. Numerical examples will be provided to test the analytical results.

5.1.1. Numerical Scheme. First, following the same lines as the weighted trape-
zoidal method, we can rewrite the fractional Laplacian as in (3.2). The evaluation of the
second integral in (3.2) is the same as the weighted trapezoidal method, which is obtained
in (3.3). Here, we introduce a weighted linear interpolation method to approximate the first
integral in (3.2).

First, we interpolate ., (x, §) with respect to & € [0, L] by using the piecewise linear

basis function ¢; as

N
Uy (5,6) % Py (x,6) = Y Uy (x5, EDi(£). (5.1)

i=0
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where
&—&in1 .
, f i-1,&il,
£-e if £ e léio&]
l( ): ol s f i»Si+l1s (5.2)
HE =) S i £elfibinl
0, otherwise.

Because of the singularity at & = 0, the value of ¢, (x, &) is defined as a limit as
&—0,ie Yy(x, &) = él_r)% Yy (x,&). The parameter 7y is taken in (@ — 1, 2] to guarantee
the convergence of the method. Assume that u is smooth enough, to find the limit, we
separate our discussion in two cases.

Case 1: Fory € (o - 1,2),

ulx — &) +ulx + &) —2u(x)
£2 '

Uy (x.§0) = lim 7AW limETT =0 (5.3)

Case 2: Fory =2,

ux - &) +u(;2+ &)~ 2ulx) W (x). (5.4)

Ya(x, &o) = ;lir(l)

Notice that the further approximation of u”(x) for y = 2 in (5.4) depends on the
interpolation basis functions (i.e. whether it is constant, linear, quadratic, and so on) to
match up with the accuracy of the approximation of the first integral in (3.2). But here
we will only focus on the linear basis functions, which we expect to get a second order
accuracy for smooth enough functions u. Therefore, we use the central difference scheme

to approximate u”(x), and following (5.4), ¥»(x, &) can be further approximated as

u(x —h) —2u(x) +u(x + h)
h2

Ua(x, &o) ~ = Ya(x, &1). (5.5)
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Substituting (5.1) into the first integral in (3.2) gives

L N L
fo Uy (5, )TV dE ~ ) U (&) fo ¢i(£) - €T, (5.6)
i=0

where i, (x, &) is approximated by (5.3) if y € (@ — 1,2) or by (5.5) if y = 2.
Combining (3.2), (3.3) and (5.6), the fractional Laplacian (-A)¥/? is approximated
by

2C a
La (x), for x € (a, b),
(04

N L
(A %u(x) = =Cra ) Uy (x,&) fo Gi(§) 7T dg + —
i=0

where the function ¢, (x, &) (i = 1,..., N)is defined in (3.5) and ¢, (x, &y) is approximated
by (5.3) (or (5.5))ify € (¢ — 1,2) (ory = 2).
The fully discretization of the fractional Laplacian has the same expression as the

weighted trapezoidal method in (3.9), i.e.
i~1 N-1-i
(—A)Zgzui = —CLQ (a() u; + (Z ajui—j + ajul-+j)), (5.7)

Jj=1 Jj=1

fori=1,2,...,N—1,wherefory € (a — 1,2),

L
a":g_lyf ¢i(¢) - £V dg, for i=1,...,N,

Y 1
apg = -2 <Z a; + a/L“)’ (5.3

i=1

while for v = 2, the calculation of a; is the same as (5.8), except,

1 L
ay = ?L (¢0(&) + ¢1(&)) - €717 dg. (5.9)
1

The matrix-vector form is the same as the weighted trapezoidal method in (3.10).
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5.1.2. Error Estimates. In this section, we provide error estimates on our weighted
linear interpolation method in discretizing the fractional Laplacian.

Theorem 5.1.1 (Accuracy for functions in C*/2(R)). Suppose that u € C»*/*(R) has finite

support on an open set ) € R, and (—A)Z‘fy 2 in (5.7) is the weighted linear interpolation

approximation of the fractional Laplacian (-A)?'%. Then, for any y € (a — 1,2], there is

(=AY 2u(x) - (—A)%Zu(x)ﬂoo, 0 SCh72 for a € (0,2) (5.10)

with C a positive constant depending on a and .

Proof. Define the error function

ehy () = (=M)u(x) = (=8, %u(x).

From (5.6), we obtain

h h
ay fo Uy (x, )67 10 dg - fo (49 (. £0)80(€) + uy (x. £0)1(£)) €71V

N &i
’ Z ff (%(x’ E) =Wy (x, &i-1)i-1(€) — iy (x, fi)(ﬁi(cf)) g+ gg
i=2 i-1

I+11. (5.11)

For term I with y € (a — 1,2), by the approximation of v, (&p) in (5.3) and triangle

inequality, we get

h h
i = ‘ fo Uy (&) 71 gg - fo wy(a)«pl(g)a“l*“)df‘

+h!

IA

h h
‘ fo Yy (€) 1) gg Uy (€1) fo fV‘“df‘.
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Then, by applying Lemma 3.2.2 (i), there is a positive constant C such that

h h
1l < Cf gty = gl 4 ! h“/2+'_7f &7 d¢| < Ch'=,
0 0

For term / with y = 2, by the approximation of i, (£p) in (5.4) and triangle inequality, there

is

1]

h h
‘ fo Yo (&) 170 dé - fo lllz(fl)fl_adf‘

IA

+

h
U2 (€1) fo g df‘-

h
‘ f Ya(é) €17 d¢
0
Then, by applying Lemma 3.2.2 (i), there is a positive constant C such that

+ < Ch'72/2,

h h
|I| S C“f(; 50/2—1 é';l—a/ dé: h—1+a/2 f(; gl—af dé‘:

For term /1 with any y € (a — 1, 2], we first rewrite it as

N &i
=3 L (80 = vy (. 8-0)) 811 ©
i= Véi-1

+ (1 (5. ) = Uy (5.€0) (&) €714 de.

Then by triangle inequality and Talyor theorem, we have

[11]

IA

Pi-1(8)

N &i
ng (|w7(x’ &) =y (x,&i1)
i=2 i

+ iy (0.8) = 0y (5,€)] 1O €714 de

IA

il &i
2, fs (,max oy ] dia(@)+_max_ oy @] 616)) €7 e
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Finally, by applying Lemma 3.2.2 (i), we get

N &i
1< Chy [ e (4@ + i) 70 dg
i— VY&i-
L
= Chf g2 g < cp'2,
h
Therefore, we proved that for y € (a — 1,2], IeZ,yl < Ch'™@/2, -

Next, we will show that for a smooth enough function u, the accuracy of the weighted

linear interpolation method can be improved to O(h?) uniformly for any a € (0, 2).

Theorem 5.1.2 (Convergence rate for u € C3/2(R)). Suppose that u € C3>*/2(R) has finite
supporton an open set Q) € R, and (—A)Zé] 2 defined in (5.7) is a weighted linear interpolation
approximation of the fractional Laplacian (—A)/?. If the parameter is chosen asy = 1 or
2, there is

1=2)""u(x) = (=) 2u()l o 0 < CH,  for @ €(0,2) (5.12)

with C a positive constant depending on «.

Proof. For brevity, we start with the local truncation error in (5.11).
First, we focus on the case of y = 2.
Recall that for y = 2, we approximate ¢, (x, &) by ¥, (x, £1) as in (5.5). Then by

Taylor theorem and Lemma 3.2.2 (ii), we have

1]

h
' fo (W2 (&) — Ya(é))) €77 dé'

IA

h
Ch max |y’ ge < o2,
max o) [ el
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Now, we focus on term //. By the definition of the interpolation operator £, we can

first rewrite /1 and then using the triangle inequality, that

N-1 ~gp
> f Wa(x, &) — Py)E' 0 d¢
j=1 Y

N-1

|11]

IA

&j+l N-1
[ waw e - puet g = 3 11,
=

j=1

Next, let’s focus on the error estimation for each /11; (j = 1,2,..., N — 1). By using the

error estimates for the linear interpolation for function y»(x, &) for & € (£}, &j+1), there is

II; =

§j+1
L W &) - Py e

<Cn max Sl (€57 - 67).

NELE),Sj+1

Following similar lines as the estimations in (3.36) and (3.37), by summing over j from 1

to N — 1, we can prove || < Ch?, and it follows that Ie(’;’yl < Ch2.

Next, we focus on the case of y = 1.

Different to y = 2, in this case, we have ¢, (x, &) = 0 as in (5.3). Then we have

h h h
1l ‘ fo U1 (6 )6 dE — v (x, Eo) fo £ Go(E)dE — v (x. £1) fo f‘“cbl(f)df'

< Ch¥ 2,

h
‘ﬁ (W2(x, &) = Ya(x, &1)) €' dé

Noticing that, although the term 7 is approximated through different ways for y = 2 and 1,
but they eventually have the same expression.

The estimation of term /1 follows the same line as the case of y = 2, for brevity, we
start from the estimation of each term /; (j = 1,2,..., N — 1). Again, by using the error
estimates for the linear interpolation for function ¢ (x, &) for & € (&), &j+1), there is

§j+1
11 = L W)~ PuE | < O max i) (6] —€/77).

NELS),5j+1
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Then, by applying Lemma 3.2.2 (ii) with m = 2, for any 1 € (£}, &;4+1), there is

I < CR* max n* (&1 —£177) < CRP&" (5.13)
nelé;&j+l

Finally, summing over j from 1 to N — 1, we have
N-1 L
1| < Ch Y &7 <ch? | ¢°Pde < Ch. (5.14)
J:

Thus, we proved that for y = 1 or 2, there is |e§,y| < Ch?. O

Theorem 5.1.2 shows that for u € C>*/2(R), if the splitting parameter is chosen as
v = 1 or 2, our weighted linear interpolation method has a second order accuracy uniformly
for any @ € (0,2). Similar to the weighted trapezoidal method, in 1D case, the weighted
linear interpolation method also has two optimal choices of the splitting parameter y to get
the second order accuracy.

5.1.3. Numerical Experiments. In this section, we study the accuracy of the
weighted linear interpolation method in discretizing the fractional Laplacian (—A)%/2. We
will use the function u of the form in (3.47) in the following examples.

Example 4.1.1. Choose s = 1 in (3.47), i.e. u € Ch*/2(R). As shown in Theorem
5.1.1 that in this case, the accuracy of the weighted linear interpolation method in /-norm
is of order O (h'~%/?) for small mesh size &, and it is independent of the splitting parameter
v € (o — 1,2]. Figure 5.1 presents the numerical errors by taking different y in /- and
[,-norms. It shows that choosing the parameter y = 1 leads to more accurate results than
y = 2. Also, the convergence rates in l>-norm are of order O(h3~%2/2) for both ¥ = 1 and
2.

Example 4.1.2. Choose s = 3 in (3.47), i.e. u € C>*/>(R), as shown in Theorem
5.1.2 that in this case, by taking y = 1 or 2, the accuracy of the weighted linear interpolation

method in /-norm is of order O (h?).
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Error

Figure 5.1. Numerical errors of the weighted linear interpolation method for y = 1 and 2
for defined in (3.47) with s = 1. The errors are defined in /,,-norm (top row) or />-norm
(bottom row).

Tables 5.1 and 5.2 present numerical errors I(=A)/2y — (—A)ny Zulllm(g) and con-
vergence rates of the weighted linear interpolation method for various a by taking u in
(3.47) with s = 3, where the splitting parameters are taken to be y = 1 or 2, respectively.
The symbol ‘c.r.” represents convergence rate.

We find that in both cases, for the same mesh size #, the larger the parameter «, the
bigger the numerical errors. For y = 1 or 2, both of Table 5.1 and Table 5.2 show that the
convergence rates of the weighted linear interpolation method is O(h?) for any a € (0,2),
which confirms our analytical result in Theorem 5.1.2. The errors by taking y = 2 are

always smaller than the errors by taking y = 1 for the same mesh size 4. Similar to the
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Table 5.1. Numerical errors by weighted interpolation method for u € C>*/?(R) withy = 1.

o h 1/32 1/64 1/128 1/256 1/512 1/1024 172048
02 6.132E-5 | 1.532E-5 | 3.830E-6 | 9.575E-7 | 2.394E-7 | 5.984E-8 | 1.496E-8
' C.I. 2.0006 2.0002 2.0001 2.0000 2.0000 2.0000
0.6 2.707E-4 | 6.752E-5 | 1.686E-5 | 4.214E-6 | 1.053E-6 | 2.633E-7 | 6.583E-8
’ C.I. 2.0034 2.0013 2.0005 2.0002 2.0001 2.0001
1 7.319E-4 | 1.810E-4 | 4.502E-5 | 1.122E-5 | 2.802E-6 | 7.001E-7 | 1.749E-7

C.I. 2.0155 2.0077 2.0039 2.0019 2.0010 2.0006
15 3.151E-3 | 9.494E-4 | 2.540E-4 | 6.475E-5 | 1.616E-5 | 4.000E-6 | 9.872E-7
) C.I. 1.7309 1.9020 1.9722 2.0022 2.0145 2.0186
1.9 1.490E-2 | 4.418E-3 | 1.186E-3 | 3.045E-4 | 7.659E-5 | 1.907E-5 | 4.726E-6
’ C.I. 1.7542 1.8975 1.9613 1.9913 2.0057 2.0126

weighted trapezoidal method, specially by taking y = 2 for @ = 1, the errors are smaller

than all the other a’s, and its accuracy is of order O(h>*), which is higher than the second

order accuracy.

Table 5.2. Numerical errors by weighted interpolation method for u € C>*/2(R) withy = 2.

o h 1/32 1/64 1/128 1/256 1/512 1/1024 172048
02 3.317E-5 | 8.361E-6 | 2.095E-6 | 5.242E-7 | 1.31E-7 | 3.277E-8 | 8.193E-9
’ C.I. 1.9881 1.9966 1.9990 1.9997 1.9999 2.0000
06 5.645E-5 | 1.507E-5 | 3.860E-6 | 9.738E-7 | 2.443E-7 | 6.115E-8 | 1.530E-8
’ C.I. 1.9052 1.9651 1.9869 1.9950 1.9981 1.9993
1 9.778E-5 | 2.381E-5 | 4.821E-6 | 9.079E-7 | 1.655E-7 | 2.970E-8 | 5.290E-9

C.I. 2.0378 2.3043 2.4088 2.4559 24783 2.4890
15 2.057E-3 | 5.635E-4 | 1.376E-4 | 3.207E-5 | 7.347E-6 | 1.675E-6 | 3.824E-7
' C.I. 1.8682 2.0344 2.1006 2.1261 2.1330 2.1308
1.9 1.406E-2 | 4.112E-3 | 1.089E-3 | 2.760E-4 | 6.850E-5 | 1.683E-5 | 4.115E-6
' C.I. 1.7736 1.9167 1.9804 2.0105 2.0251 2.0321
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5.2. TWO-DIMENSIONAL CASE

The generalization of the weighted linear interpolation method from one dimension
to higher dimensions is straightforward. In this section, we will derive the numerical
scheme of the weighted linear interpolation method in two dimension and provide numerical
examples to test its accuracy.

5.2.1. Numerical Scheme. Consider the 2D fractional Laplacian in (4.1). We Start
from the fractional Laplacian in (4.4) with the second integral in (4.4) computed exactly as
in (4.5).

We will focus on the approximation of the first integral in (4.4) by the weighted

linear interpolation method. First, we interpolate i, (x, &) with respect to & on [0, L)? as

Uy(x,8) ~

1

N
D Uy (X )i (€); ). (5.15)

N

=0 j=0

Because of the singularity at (£,7) = (0,0), the value of v, (x, &y, n0) is defined as

Wy (X, &0,m0) = y l)irr%O 0 Uy (x,&). We separate our discussion in two cases for differ-
1) (U,

ent splitting parameters .

Case 1: For y € (@ — 1,2), the limit vanishes, i.e.

Uy (X, €0, 110) = (f’nl)ig%o’o) Yy (x,&,1m) = 0. (5.16)

Case 2: For y = 2, the value of ¢, (X, £, 170) is approximated by

, 1
Yo (X, &0, mo) = (f,nl)IB}O,O) Ya(x,6,m) ~ 2 (Y2(x,0,h) + Yo(x,h,0)) . (5.17)
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Substituting (5.15) into the first integral in (4.4) gives
N N
Uo(x €) - [E7 0 dg ~ N Ny (x &)
©.L)? i=0 j=0

L L
fo fo $i(£)p; () - 1€~ d¢ dn, (5.18)

where (X, &0, 7o) is approximated by (5.16) if y € (@ — 1,2) or by (5.17) if y = 2.
Combining (4.4), (4.5) and (5.18), the two-dimensional fractional Laplacian is

approximated by

N N L L
(0520 = ~Caa Y, D 0y ) fo fo Gi(E)9;(n) - [E7 > dg dn

i=0 j=0

—4u(x) £ dg). (5.19)

R2\(0,L)2

Finally, the fully discretization of the fractional Laplacian can be written in the same

form as the weighted trapezoidal method in (4.14), where for y € (a — 1,2),

f f ¢i(E)pj(m) - 1€V agady, if i=0,j=1,...,N,
f f GO - EP D dEdy, i i=1...N,j=0,
fo fo ¢i(&)p; () - €M~V agdny, if i j=1,...,N,

N N N N
aopp = —2(2 a;o + Zaoj) —42 Zaij — 4wy,
j=1

i=1 i=1 j=1

and for y = 2, only ag; and aj are different, which are listed as follows,

L L
| fo fo (B0(E)po(n) +260(E)p1(m)) - 1€~ dédn, ifi=0,j=1,
Clij:
i1

L L
fo fo ($o(E)po(n) +2¢1(E)go(m)) - 1€ F M dgdn, ifi=1,)=0.
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The same as the weighted trapezoidal method, its matrix-vector form is written as A(Z)ux,y
with A® expressed in (4.15).

5.2.2. Numerical Experiments. In this section, we numerically study the accuracy
of the weighted linear interpolation method in discretizing the fractional Laplacian (—A)®/?
with functions have finite support.

Consider the functions of the form in (4.52), we specifically consider the cases by
taking s = 1 and s = 3. Since the fractional Laplacian of this type of functions can not
be computed analytically, we will use the numerical solution by the weighted trapezoidal
method with y = 2 and N, = N, = 8192 to be the exact solution for all the following
numerical tests.

Example 5.2.1. For s = 1, ie. u € CY*/?(R?), as shown in Theorem 5.1.1
that for u € C*/2(R), the accuracy of the weighted linear interpolation method in /.-
norm is O(h'~%/?) for small mesh size 4, and it is independent of the splitting parameter
v € (@ — 1,2]. Our extensive numerical results suggest that this result is also hold in two
dimension. Figure 5.2 presents the numerical errors by taking y = 1 and 2 in both /.- and
[>-norms.

It shows that choosing the parameter v = 2 leads to more accurate results in both
loo- and [r-norms. For y = 2, the convergence rate in [>-norm is of order O(hG~%/?),
which is 0.5 order greater than the convergence rate in /,-norm. However, for y = 1, the
convergence rate in /;-norm is lower than O(h(3_“)/ 2) for larger a, i.e., @ = 1.5, see Figure
5.2 bottom right.

Example 5.2.2. For s = 3,ie. u € C3®/2(R?), Theorem 5.1.2 in one dimension
shows that either by taking ¥ = 2 or 1 can provide the second order accuracy. However,
in two dimension, our extensive numerical experiments show that only by taking v = 2
can provide the second order accuracy. This result is analogue to the weighted trapezoidal
method, that in higher dimensions, the only optimal choice of the splitting parameter is

vy =2.
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Error
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Figure 5.2. Numerical errors of the weighted linear interpolation method for y = 1 and 2
with u € C%%/2(R?) defined in (4.52) with s = 1. The errors are defined in /.,-norm (top
row) or [>-norm (bottom row).

Table 5.3. Numerical errors by weighted linear interpolation method for u € C>%/2(R?).

o h 1/16 1/32 1/64 1/128 1/256 1/512 171024
02 6.856E-5 | 1.658E-5 | 4.105E-6 | 1.022E-6 | 2.541E-7 | 6.228E-8 | 1.434E-8
' C.I. 2.0476 2.0143 2.0057 2.0081 2.0286 2.1190
| 2.784E-3 | 6.418E-4 | 1.536E-4 | 3.749E-5 | 9.212E-6 | 2.237E-6 | 5.044E-7

C.I. 2.1168 2.0631 2.0345 2.0248 2.0422 2.1487
1.9 6.361E-2 | 1.531E-2 | 4.178E-3 | 1.110E-3 | 2.816E-4 | 6.932E-5 | 1.626E-5
' C.I. 2.0551 1.8733 1.9120 1.9791 2.0222 2.0922




103

Table 5.3 presents numerical errors 1(=A)¥/2y — (—A)ny 2u||lm(g) and convergence
rates of the weighted linear interpolation method for various « by taking u in (4.52) with
s = 3, where the splitting parameter is taken to be y = 2. We find that for the same mesh
size h, the larger the parameter «, the bigger the numerical errors. It also shows that the
convergence rates of the weighted linear interpolation method is O(h?) for any a € (0,2).

In this section, we proposed a weighted linear interpolation method to discretize
the fractional Laplacian. Similar to the weighted trapezoidal method, we treated the
hyper-singular integral as a weighted integral of function ¢, (x,§) with a weight func-
tion |£]7~*®)_ The accuracy of this method is studied analytically and numerically, and it

has the same accuracy as the weighted trapezoidal method.
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6. COMPARISON OF NUMERICAL METHODS

Because of the nonlocality, so far, numerical methods for discretizing the fractional
Laplacian (1.2) still remain scant, with the main numerical challenge stemming from the
approximation of the hypersingular integral. In Sections 3-5, we proposed two novel finite
difference methods which are both based on the weighted integrals. These two methods
provide the same convergence rates for discretizing the fractional Laplacian. In application,
the weighted trapezoidal method has lower computational cost than the weighted linear
interpolation method especially in higher dimensions. The higher computational cost arises
from the computation of more double/triple integrals in 2D/3D. In this section, we will
compare our weighted trapezoidal method with a finite difference method proposed in [49],
which is the current state of the art for directly discretizing the fractional Laplacian. In
addition, we will compare the two finite difference methods with a finite element method
for solving the fractional Poisson equation. For brevity, numerical results will only be

presented in one dimension and same conclusions can be extended to higher dimensions.

6.1. NUMERICAL METHODS

In this section, we will first revisit the finite difference and finite element methods
in the literature for discretizing the fractional Laplacian and solving the fractional Poisson
equation.

6.1.1. Interpolation Method. The finite difference method proposed in [49] is the
current state-of-the-art method for directly discretizing the fractional Laplacian. In the
following context, we refer this method as the linear interpolation method. Notice that, the
linear interpolation method is similar to our weighted linear interpolation method in Section
5. However, our weighted linear interpolation method has higher order accuracy than the

linear interpolation method, which will be justified in our numerical examples. For brevity,



105

we only address the differences between the linear interpolation method and the weighted
linear interpolation method in the following. We will also explain the reason which causes
the lower accuracy of the linear interpolation method.

Following the same line as the weighted trapezoidal and weighted linear interpolation
methods in Sections 3-5, the fractional Laplacian is rewritten as in (3.2). The difference is
from the approximation of the first integral. In [49], the first integral in (3.2) is split into

two parts, i.e.,

L h L
fO Yo(x, &) &M dg = fo Yo(x, &) €1 dg + fh Yo(x, &) 1 dg. (6.1)

For the sake of convenience, here we adopt the notation (3.5) in Chapter 3 and define

Yo(x, &) = u(x = &) = 2u(x) +u(x + &).

Then the integral on [0, /] is approximated by

h h
1
f wo(x, )61 dg = f Va(x ) dE x T Yo (x. )
0 0 —a

i.e., the same approximation as in (3.11). The second integral is approximated by

L
[ wwere e ~ Zw vey [ 4D (62

where ¢; is defined in (5.2).
Finally, following the same line as the weighted linear interpolation method, the

fully discretization of the fractional Laplacian is
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fori =1,2,...,N — 1, where

L h—a
f ¢1(&) 1D gg + . for i=1,
o h 2 -

a
a;

- L
ffﬁi(f)f‘(““)dg, for i=2,...,N,
h

A 1
ap = —2(2(1,’ + (ILa’).

i=1

For smooth enough functions u € C>*/2(R), our weighted linear interpolation
method has second order accuracy. However, as is shown in [49, Lemma 3] that for
u € C*HR), the accuracy of the linear interpolation method is O(h*®) for a € (0,2).
Compare to our weighted linear interpolation method, the main reason that causes the lower
accuracy of the linear interpolation method is that the second integral in (6.1) is not rewritten
as a weighted integral with optimal choice of y (i.e. ¥ = 1 or 2). Instead, the splitting
parameter is chosen as y = 0 in (6.2) to approximate the integral on [A, L], which can be
partially viewed as one of the non-optimal cases of the weighted linear interpolation. As
proved in Theorem 5.1.2, the weighted linear interpolation method has the second order of
accuracy only when y = 1 or 2 is chosen.

6.1.2. Finite Element Method. We introduce a finite element method to solve the

fractional Poisson equation with extended homogeneous boundary condition [2, 72, 75]:

(-A)u(x) = f(x), for x € Q, (6.3)

u(x) =0, for x € Q°, (6.4)

where f is a function on Q and Q¢ = R\Q represents the complement of Q). The extended
Dirichlet condition is readily incorporated in the definition (1.2) of the fractional Laplacian,

by simply replacing u(y) with O in the integral when y ¢ Q.
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The nature functional space for the fractional Poisson equation (6.3)-(6.4) is
HP®R) = {v e H2(R) : v = 0in R\Q}, (6.5)
where the space H*/>(R) is denoted as
HY?R) = (v € L(R) : |v|garg, < o,

with | - |ga/2 () being the Aronszajn—Slobodeckij seminorm [2], defined as

3 ’ 1/2
s = ([ L0200 4 4)

|x_y|1+a

The space (Hg/ 2 (R), I - [lger2(ry) is a Hilbert space, equipped with the norm

IVllgerm) = IVIlL®) + VIgerg)-

Then, the weak formulation of (6.3)-(6.4) is to find u € HZ/*(R) such that

Claffu(y) 1 () i) dydx:ff(X)v(x)dx, Vv e HY?(R). (6.6)
R Q

|y_ |1+a

The existence and uniqueness of the solution to (6.6) has been proven in [85, Theorem
6.3.4]. Let A(,-) : HY*(R) x HY*(R) — R and F(-) : HY>(R) — R respectively be

the bilinear form and functional associated with the weak formulation (6.6),

AGt, v) = “’ff”(y) WX ) —v(x)) dydx and  F(v) ::ff(x)v(x)dx,
Q

|l+a'

then the problem (6.6) is equivalent to find u € Hg/ 2 (R) such that

A, v) = F(v), Vve HY*(R). (6.7)
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For an integer N > 0, take the mesh size h = ”‘Ta, consider the uniform partition x; = a+ih
fori = 0,1,...,N. Choose the finite element space Hg’/hz(R) = span{¢y,...,dn} C
Hg/ 2(R), where the basis functions ¢; (i = 1,2,..., N) are the standard “hat” functions.
The corresponding Galerkin approximation of problem (6.7) is to find uj, € Hg/ hz (R), such
that

Aup,vi) = F(vp),  Vvy € HYZ(R), (6.8)

Computationally, we express the approximate solution u;, as a linear combination of the
N-1

basis functions ¢;, written as u;,(x) = Z U;¢;(x), where u; is an approximation to u(x;).

j=1
Choose the test function v, = ¢;(x). Substitute u; and v, into (5.7), we obtain

N-1
Z A($j,¢)U; = F(¢;), for i=12...,N—1. 6.9)
j=1

Let U = (up,un,...,uny-1), and F = (F(¢1), F(¢2), ..., F(¢n-1))T. Then (6.9) can be
simply written as AU = F, where A = {A(¢}, qﬁi)}l{\’j‘:l1 is the stiffness matrix for the finite
element approximation.

The integral F'(¢;) in (6.9) can be either integrated exactly or numerically approxi-
mated by the Gauss quadrature rules (i.e. a four-point Gauss quadrature is applied in [25]).
In contrast, the double integral

Cla (V) — ¢;
Ajj :=A<¢,-,¢i>=% fR fR w(w)—w)) dy dx (6.10)

_x|1+a

must be treated carefully, because of the singularity in the integrand. The traditional Gauss
quadrature method fails to provide accurate approximation to (6.10). In fact, the integral

in (5.9) can be found analytically. If the function ¢; is chosen as in (5.2), then we get for
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a € (0,2)\{1}, the coefficient matrix A = (Al(j‘.’)), where

PARCE S j=i

1- _ _ ..
A(a) _ Croh ™ 33 _pd-a +7, lj—il =1, (6.11)

b a(l-a)2-a)B3-a) | 4 4
Z(—l)k( )(|i—j| +2-k)7 1j—il> 1,
k=0 k

and for @ = 1, the coeflicient matrix A = (AEJD),

81n2, j=1i

9In3 - 161n2, lj—il=1,
AW _ Cle 6.12
ii = 2 | 16In4—36In3 +241n2, |j—ﬂ:2,(' )

4
S0 - 2= G- 2= 0, -2
k=0 k

where (’;’) denotes the binomial coefficient. It is clear that as @ — 1, we have AEJ‘.’) - AS).
and the matrix A is symmetric and Toeplitz for all @ € (0, 2).

Even though the entries of matrix A can be calculated exactly, the implementation of
the finite element scheme is not straightforward. The problem arises from the computations
of the summations in (6.11) and (6.12), when |i — j| is large (i.e. |i — j| = 8192) and « is
small (i.e. @ = 0.1). In such situation, the machine errors pollute the true value of A;;y),
and thus affect the accuracy of the method.

To resolve this issue, we rewrite the summation in the last line of (6.11) into an
infinite sum by applying the binomial theorem which cancels all the higher power terms

li — jI>~®. For example, for @ # 1 and |j —i| > 1, the summation can be rewritten as

4 00
Z(—l)k(i)(li —jl2-pi =2y (327)"' —jISTT @ -4 (6.13)
k=0 n=2
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The expressions on the left- and right-hand sides of (6.13) are equivalent, but their computer
implementation lead to different results, and their difference is significant when « is small
and |i — j| is large. To illustrate it, we take @ = 0.1 and |i — j| = 8192, the direct
implementation of the left-hand side gives 1.2207 x 107*, but the true value is around
—2.45847 x 107>, and the relative error of direct implementation is around 5.9653.

The right hand side of (6.13) has infinite summation terms. In practice, we truncate
it to a finite sum by taking the number of the summation terms large enough, and thus the

error from the truncation is neglected.

6.2. NUMERICAL COMPARISONS

In this section, we will compare the performance of the weighted trapezoidal method,
linear interpolation method and the finite element method. The first two examples compare
the accuracy of the two finite difference methods in approximating the fractional Laplacian,
the last two examples compare the accuracy of the three numerical methods for solving the
fractional Poisson equation with extended homogeneous Dirichlet boundary condition.

6.2.1. Discretization of the Fractional Laplacian. In this section, we will com-
pare our weighted trapezoidal method with the linear interpolation method proposed in
[49], which is the current state of the art for directly discretizing the fractional Laplacian.

Example 1. We will compare the accuracy of the two finite difference schemes
acting on a bump function

e VA=) e x e (=1, 1),
u(x) = (6.14)

0, otherwise.
which is compactly supported on [—1, 1] and is in C*(R). Since the fractional Laplacian
of u(x) can not be computed analytically, in the following comparison, we will use the

numerical solution with a very small mesh size & = 2713 to be the exact solution.
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The top two rows of Figure 6.1 show the fractional Laplacian of the bump function
by using the weighted trapezoidal method. The bottom row presents the numerical errors in
ls-norm and /;-norm of the weighted trapezoidal method [33] and the interpolation method

[49], where an order line of 2 is also presented for easy comparison. The accuracy of

a=0.2 oa=0.8
0.1
0.3
-0.1
- - 0
-0.3 -0.3
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X X
=15 oa=1.9
6,
2
4}
1
2,
0
O,
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X X

)

[lu-u, II
1
L

Figure 6.1. Bump function and numerical errors. Top two rows: The fractional Laplacian of
the bump function by using weighted trapezoidal method for @ = 0.2,0.8,1.5,1.9. Bottow
row: Numerical errors in computing (—A)%/2u(x) by the weighted trapezoidal method [33]
(‘O”) and the linear interpolation method in [49] (‘CJ°) in /-norm (left) and /,-norm (right).
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the weighted trapezoidal method is O (h?), which is much better than the accuracy of the
linear interpolation method of order O(h%~®). The numerical results justify the analytical
results for the accuracy of these two methods. Although the smoothness of the solution
in this example has been increased to u € C*(R), the accuracy of the linear interpolation
method is still O(h>~?) and the weighted trapezoidal method is of order O(h?). In other
words, increase the smoothness of the function won’t help to increase the accuracy of both
methods. Moreover, the accuracy of the linear interpolation method depends on a, which
decreases to O(1) as @ — 2. Although the accuracy can be improved to O (h3~%) by using
a quadratic interpolation, the accuracy for @ € (1,2) is still less that the second order, and
significantly complicates the simulations. It also shows that for each @ € (0,2), when a
small mesh size & is used, the errors of the weighted trapezoidal method are much smaller
than those from the interpolation method. For both of these two methods, the errors are
smaller for smaller «.
Example 2. We consider a function u of the form:

—1-x»%  f Q=(-1,1),
u(x) = (=29 or X< ( ) x €R, (6.15)

0, otherwise,

for s € N. It is easy to verify that u(x) € C* ¢(R) for any € € (0, s), and it is compactly

supported on (-1, 1). The fractional Laplacian of u(x) can be computed analytically [35]:

20T (&) (s + 1 +1 1
( i,) AL CA L) (6.16)
VAl(=5 +s+1)

_A\@/2 _
(=M u(x) = > 75

where F denotes the Gauss hypergeometric function. In this example, we will test the
accuracy of our method for s = 2,3, 4.

The first column of Figure 6.2 compares the numerical errors || (—A)/2y— (—A)Z‘/ 2y I, ()
by the two finite difference methods for @ = 0.6,1.3,1.9. We can get similar conclusions

as in Example 1 that the weighted trapezoidal method always has higher order accuracy
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and smaller errors than the linear interpolation method in all the cases for @ = 0.6,1.5,1.9
in a given example for s = 2,3, or 4. And both of these two methods have smaller errors
for smaller «. In addition, as we improving the smoothness of the function u, the accuracy
of the weighted trapezoidal method is increasing. However, the accuracy of the linear
interpolation has no significant increment as the weighted trapezoidal method, and it can
not exceed O(h*™9).

The second column compares the convergence rates of the weighted trapezoidal
method and the linear interpolation method in /.-norm, where u is defined in (6.15) with
s = 2,3,4 from top to bottom. In all of the cases for s = 2, 3,4, the weighted trapezoidal
method has higher order accuracy than the linear interpolation method. As the function u
becoming smoother (increasing s from 2 to 4), the accuracy of the weighted trapezoidal
method becoming higher for a fixed « in a given norm. However, the accuracy of the linear
interpolation method has no such significant improvement and the order O(h>~) is the
highest accuracy it can reach.

6.2.2. Solution of the Fractional Poisson Equation. We will compare the ac-
curacy of the three numerical methods in solving the fractional Poisson equation with
homogeneous Dirichlet boundary condition (6.3)-(6.4). In our numerical simulations, we
evaluate F'(¢;) exactly. Functions with different smoothness conditions will be considered.

Example 3. We will compare the accuracy of the three numerical methods in
solving the following fractional Poisson equation,

(-A)*Pu=1, inQ
(6.17)
u =0, in R\Q.
This particular example (6.17) has been studied and applied in various areas. For example,
it can be used to estimate the first eigenvalues of the fractional Laplacian [35]. Also, its
solution u(x) € C%*/2(R) can be understood from particle point of view, which represents

the probability density of the first exit time of the symmetric @—stable Lévy process from
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Figure 6.2. Comparison of numerical errors and rates. The first column: Numerical errors
in computing (=A)2u(x) by the weighted trapezoidal method [33] (‘O’) and the linear
interpolation method in [49] (‘C0’) in l;-norm. The second column: Convergence rates
of the weighted trapezoidal method and the linear interpolation method in /,-norm. The
function u(x) is defined in (6.15) with s = 2, 3,4 from top to bottom.
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domain [—1, 1] [49]. The analytical solution of (6.17) can be found exactly by taking

s = a/2 in (6.16), which is
u(x) = (1-xH**/T@+1),  for xe(-1,1.
Figure 6.3 shows the errors in /,-norm of the finite element method, weighted

trapezoidal method and linear interpolation method for @ = 0.6, 1, 1.5, 1.9.

, a=0.4 a=1
10~ 1o
—f&— FDM-LERP —f— FDM-LERP
=—— FDM-WT ; =—— FDM-WT
- © = FEM 10 | = @ = FEM
~ — - 0.7 P
10 o(h®7) h e,
= —= 10
7 T
3 5
- — 10
10°
- 107
’
’
107 107 107" 107 107 107"
h h
a=1.5 a=1.9
10 10°
=—f— FDM-LERP ——f— FDM-LERP
—— FDM-WT —— FDM-WT
- @ = FEM - © = FEM
2| = = = Ofh) 107
10 w
= =
7 T
= =

Figure 6.3. Numerical errors in solving the fractional Poisson equation (6.17) by finite

element method, weighted trapezoidal method, and linear interpolation method.
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In all these cases, the accuracy of the finite element method and the weighted
trapezoidal method are almost the same and better than the linear interpolation method.
The accuracy of all these three methods are decreasing as @ increasing. Compare among
the three methods, the errors of the finite element method are smaller than the other methods
for larger «, i.e. 0.5 < @ < 2, but are larger for smaller a.

To see the accuracy more clear for each method, we define the convergence rate
of a given method as O(h#®)), where the power of h is a function with respect to a.
Figure 6.4 describes the relation between the accuracy and the fractional power a for

each numerical method. The left panel of Figure 6.4 shows the values of g(«) versus the

1 2
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Figure 6.4. Relations between the convergence rates for solving the fractional Poisson
equation and the fractional power « in [-norm (left) and in /;-norm (right).

fractional power « for the numerical errors in /-norm. All these three numerical methods
are convergent, because all the values of g(a) are positive. The accuracy of the finite
element and the weighted trapezoidal method are of order O (h*'?) for any @ € (0,2). The

linear interpolation method has accuracy O(h*'?) for 0 < a <

1.3, however, for larger a,
ie. 1.4 < a < 2, the accuracy is decreasing, and the order is around O(h!'?~®)) which

approaches to O(1) as @ — 27.
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The right panel of Figure 6.4 shows the values of g(a) versus the fractional power
« for the numerical errors in /,-norm. In the cases of small «, i.e. a € (0,0.8], all these
three numerical methods have the accuracy of order O(h®*D/2). However, for @ > 0.8,
the accuracy of the weighted trapezoidal method and the finite element method increase
slower, and stop increasing at the rate of order O(h) for @ € (1,2). The accuracy of the
linear interpolation method starts decreasing at @ = 1, and based on our extensive numerical
experiments, in the cases for @ € [1.3, 2), we conjecture that the linear interpolation method
has the accuracy of order O (h!?=®)). In addition, the accuracy of the finite element method
and the weighted trapezoidal method are the same in all the cases for @ € (0,2) in /,,-norm
and /,-norm and are better than the linear interpolation method for larger . Furthermore,
as mentioned in [49], because of the singularity of the solution at the boundaries, both of
the quadratic and the linear interpolation provide the same convergence rate in /-norm. In
other words, increasing the order of the interpolation weight functions won’t increase the
accuracy.

In sum, the numerical experiment shows that for u(x) € C%/2(R), the weighted
trapezoidal method is more preferable, since it has higher accuracy than the linear interpo-
lation method and is easier to implement than the finite element method.

Example 4. We compare the accuracy of the three numerical methods in solving

the fractional Poisson equation (6.3)-(6.4) of the following form

(-A)%u(x) = f(x), for xe(-11),

(6.18)
u(x) =0, for x € R\(-1,1).
with
a+l 1 20T (HHI 4+ %)
=CH F|—, -3;=; 2 , where C = .
f(x) 2 1( > 2|JC|) N



118

The solution can be found analytically as

u(x) = —(1 = x?)3/2, for xe(-1,1),

which is in C>*/2(R). Based on Theorem 3.2.4 and the convergence theorem in [34],
the weighted trapezoidal method is shown of second order accuracy in both discretizing
the fractional Laplacian and solving the fractional Poisson equation under the smoothness
condition that u € C>®/2(R). The following figures numerically compare the accuracy of

the three numerical methods.
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Figure 6.5. Numerical errors in solving the fractional Poisson problem (6.18) by finite

element method, weighted trapezoidal method, and linear interpolation method for @ =
04,1,1.51.9.
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Figure 6.5 presents the numerical errors of the finite element method, weighted
trapezoidal method and linear interpolation method in /;-norm, where an order line of 2 is
also presented for easy comparison. For all a € (0, 2), the weighted trapezoidal method is
precisely of second order accuracy. The finite element method has second order accuracy
for all @ € (0, 1), but it has accuracy slightly less than second order for some cases of
a € (1,2). Moreover, in most of the cases (i.e. a = 0.4, 1, 1.5), the errors of the finite
element method are greater than the errors of the weighted trapezoidal method for a given
mesh size. The linear interpolation method has the lowest accuracy among these three
numerical methods. and its accuracy decreases as « increases, especially as @ — 2, i.e. in
the case of @ = 1.9, the accuracy decreases to O(1).

To find the relation between the accuracy of the three numerical methods and the
fractional power a, we define the accuracy to be O(h8(®)) as we did in Example 3. Figure
6.6 shows the function g(a) versus the fractional power . Both of the weighted trapezoidal
method and the finite element method have second order accuracy for all @ € (0, 2) in both
l-norm and /;-norm. The linear interpolation method has lower accuracy, and we make the
following conjecture that it has accuracy of order O(h%>~®) in both of /,-norm and /,-norm

for larger @, i.e. 0.6 < @ < 2.
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Figure 6.6. Relations between the convergence rates for solving the fractional Poisson
equation and the fractional power « in [-norm (left) and in /;-norm (right).
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As a conclusion, for function u(x) € C>*/2(R), the finite element method and
the weighted trapezoidal method are much more accurate than the linear interpolation
method, especially for large @. As mentioned in [49], applying the quadratic interpolation
may increase the accuracy to O(h*~) for smooth enough functions (i.e. u(x) € C*(R)).
However, using a quadratic interpolation significantly complicates the simulations, and the
accuracy for @ € (1,2) is still less than second order. Moreover, with almost the same
accuracy, the weighted trapezoidal method is easier to implement than the finite element
method.

In summary, the weighted trapezoidal method is the most effective method among
the three numerical methods in both of discretizing the fractional Laplacian and solving the
fractional Poisson equation with homogeneous Dirichlet boundary condition in terms of
its accuracy and computational complexity. By choosing the splitting parameter optimally,
we are able to overcome the a-dependence of the accuracy estimate for u € C>*/2(R)
(a less severe smoothness assumption than that used in [49]), achieving an accuracy of
O(h?) for any @ € (0,2). Moreover, while generally giving rise to a full matrix, as is
usually the case for discretization of nonlocal operators, the discretized fractional Laplacian
is a symmetric Toeplitz matrix, whose structure can be exploited through the use of fast

algorithms [15, 81, 84] which we will introduce in the next section.
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7. THE FAST IMPLEMENTATION

The nonlocal nature of the fractional Laplacian (~A)?/? raises questions about
computational efficiency, especially in high dimensions. Usually, the matrix representation
of the fractional Laplacian A is a dense matrix, and it is costly to directly compute the
matrix-vector product Au. In this section, we propose an efficient method to compute the
matrix-vector product Au. Itis based on the properties of the Toeplitz and circulant matrices
and the fast Fourier transformation (FFT) [15, 81, 84]. The main merits of our algorithm
include that it requires less computational cost and memory, and thus it is more efficient in
solving higher dimensional problems. Moreover, our method can be easily implemented in

computer codes.

7.1. ONE-DIMENSIONAL CASE

Denote the column vector u, = (uy, uo, ..., u Nx_l)T. Next, we will focus on the fast
algorithm to the matrix-vector product AMu,, where AV is the matrix define in (3.10).
Notice that the matrix A" is Toeplitz, which can be embedded into a double sized circulant
matrix CV as

AL 7

ch = i (7.1
(2N, =2)X(2Ny—=2) 7 A

(2ZNx—=2)X(2Nx-2)
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where the matrix 7! is also a Toeplitz matrix defined by

0 an.—2 - as ai
an,-2 0 an,-2 - ar
TS\;X—l)x(NX—l) = : : ) (7.2)
ar ce an,-2 0 an,-2
ai ar ce an,-2

(Nx=D)x(Nx=1)

The circulant matrix C'") can be decomposed as

¢V = F~'diag(F - ¢)F, (7.3)

where F is an 2(N, — 1) X 2(N, — 1) discrete Fourier transform matrix, denoted as

1 2rijk
F(j,k) = ————ex (—), 0<j,k<2(N,-1), (7.4)
/ V2(N, - 1) P 2(N, — 1) /
and ¢ = (ap,ay,...,an,-2,0,an —2,..., a1)T, which is the first column of the circulant

matrix C'. By introducing a vector

Vx = . (75)

2(Ne—1)x1

The matrix-vector product Au, is extended to a double sized matrix-vector product Cv,,

and can be decomposed as

CWv, = F~'diag(F - ¢)Fv,. (7.6)
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In application, matrix operations F and F~! can be realized by the fast Fourier transform
and inverse fast Fourier transform respectively, and thus the computational cost is O(2(N, —
1)log(2(N, — 1))). The first (N, — 1) elements of C(Dv, gives the matrix-vector product

Ay,

7.2. TWO-DIMENSIONAL CASE

Denote the column vector u,, as

_ T T T T
Upy = (W p W, Wy )
where u, ; = (uyj,uzj, .. .,uNX_Lj)T forj = 1,2,..., N, — 1. Next, we will focus on the

fast algorithm for the matrix-vector product A®u Xy
Notice that the matrix A, ; (j = 0,..., Ny — 2) is Toeplitz, which can be embedded

into a double sized circulant matrix C,; as

C.j= ’ , (7.7)

T,.: A,;
B TS oN L —2) (2N, -2)

where the matrix T, ; is also a Toeplitz matrix defined by

0 an,-2,j . ayj aij
ane-2; 0 an-a; o a2
Tx,j = ’
azj ceoane2j 00 anj
alj azj e aNx_z,j

(Nx=D)x(Nx=1)
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The original matrix A® is now extended to a matrix with each block be a circulant

matrix, i.e.
Cxo Ce1 .. Cing3 Cing—2
Cx,l Cx,O Cx,l e Cx,Ny -3
co
Cx,Ny -3 s Cx,l Cx,O Cx,l
Cx,Ny -2 Cx,Ny—S cee Cx,l Cx,O

[(2Nx=2)x(Ny—D]?

Notice that the matrix C? is a block-Toeplitz matrix, which can be embedded into

a double sized block-circulant matrix C® as

2) 2
co_[COT
T@ ¢®
[(ZNX—Z)X(ZN},—Z)]2
where
0  Cony2 .- Coo  Cii
Cx,Ny—Z 0 Cx,Ny—Z e Cx,2
FO) —
Cx,2 cee Cx,Ny—Z 0 Cx,Ny—Z
Cx,l Cx,2 cee Cx,Ny -2 0

[(2Nx=2)x(Ny-D)]?

Now, we focus on the fast implementation of the matrix-vector product C>u,, y. We
notice that the matrix C® is a block circulant matrix with circulant blocks (BCCB). The
fast algorithm is available in the literature [24, Theorem 5.8.1] for computing this type of

matrix. The circulant matrix C® can be decomposed as

Cc? = (Fan,—2 ® Fon,—2) " 'diag(®)(Fan,—2 ® Fan,-2),
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where F» Ny—2 ® Foy, o represent the 2D discrete Fourier transform matrix, and ¢ is denoted

by

¢ = (Fany—2 ® Fan,-2)cC.

with ¢ be the first column of C®,

By introducing double sized vectors

Uy, j .
Vyj = , for j=12...,N, -1,
(2N, -2)x1
we define a vector
= T T T T
nyy = (Vx,l’ Vx,2’ e Vx,Ny—l) ’

and then further introduce a double sized vector

Vi,y

Vaxy

[(2N,—2)x(2N,-2)]x1

The matrix-vector product A®u, y is extended to a quadruple sized matrix-vector product

C®@yv, ,, and can be decomposed as

CPv,, = (Fany—2 ® Foy,2)7! [diag((FzNy—z ® Fon,2) - C)] (Fany—2 ® FaN,-2) Vi y-

In application, the matrices Foy,—2 ® Fon,—2 and (Fon,—2 ® FzNX_z)_l can be realized as

the 2D Fourier transform and inverse Fourier transform respectively, we thus can apply

the fast Fourier transform (FFT) to reduce the computation to only O((2N, —2) X (2N, —
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2)log((2N, —2) X (2N, — 2))) operations. Finally, the first (2N, —2) X (N, — 1) elements
of C(Z)Vx,y provide the matrix-vector product E(Z)Vx,y. And then extracting the first, third,

..., (Ny = 1)-th (N, — 1) elements of C?V, ,, we get the matrix-vector product A®u, .

7.3. THREE-DIMENSIONAL CASE

The fast implementation in 3D case can be done in the similar way as in 2D case.
Denote the (N — 1)(Ny — 1)(N; — 1)-by-1 column vector u,,, .,

T T T T
Uyyz = (ux,y,l’ ux,y,2’ T ux,y,N3—l) . (7.8)

where u,,, for k = 1,2,..., N, — 1 are defined by

T T T T
Weyk = (W g o Wepgo o> Wy 10) s (7.9)

and the vector Uy jx = (U1 j U s - - - UN,—1,jk)] TOTj = 1,2,...,Ny=1,k=1,2,...,N,—
1. Next, we will focus on the fast algorithm for the matrix-vector product A(3)ux,y, z:
Notice that the matrix Ay jx (j =0,...,Ny=2,k =0,..., N, —2)is Toeplitz, which

can be embedded into a double sized circulant matrix Cy j x as

C Ax,j,k Tx,j,k
x,jk = ) (7.10)

Teir Axj
Bk BRIk ] N, 2)x@Ne-2)
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where the matrix T, j x is also a Toeplitz matrix defined by

0 AN, -2,jk - azjk aijk
aN,-2,jk 0 an,-2,jk e @k
Tyjk = : : ,
azjk e aN,-2,jk 0 an,-2,jk
aijik ajik ce. AN-2jk

(Nx=DXx(Nx=1)

The matrix A, then can be extended to a matrix with each block be a circulant

matrix, i.e.
Crok Cr1k oo Ceng-3k Cang-2k
Ci1k Crok  Crlk e Cx.Ny-3.k
6x,y,k =
CiNy-3k e Cirk  Crok Cu1k
Cing-2k Cxng-3k -+ Cx1.k Cxo.k

[(2Nx=2)x(Ny=1)]?

Notice that for a given k = 0,1,..., N, — 2, the matrix Ex,y,k is a block-Toeplitz

matrix, which can be embedded into a double sized block-circulant matrix C, y x as

Cx,y,k Tx,y,k
Cx, vk =

T C
xyk o xyk [(2N,—2)X(2Ny—2)]2



128

where
0 CxNy-2.k e Ciok Cirk
Cx.Ny-2k 0 CiNg-2k - Ciok
;I;x,y,k =
Ciok e Cx.Ny—2.k 0 Cr.Ny—2.k
Cr1k Ciok e CxNy—2k

[(2Nx=2)x(Ny-1)J?

The original matrix A® is extended to a matrix with each block be a circulant

matrix, i.e.
Cx,y,O Cx,y,l cee Cx,y,NZ -3 Cx,y,NZ—Z
Cx,y,l Cx,y,O Cx,y,l T Cx,y,Nz—3
~x7y,z _
Cx,y,NZ—3 cee Cx,y,l Cx,y,O Cx,y,l
Cx,y,NZ—Z Cx,y,NZ—3 s Cx,y,l Cx,y,O

[(2Nx=2)x(Ny=1)]?

Notice that the matrix Ex,y, . is a block-Toeplitz matrix, which can be embedded into

a double sized block-circulant matrix Cy, , as

Cx,y,z Tx,y,z
Cx,y,z =

T C
B TR N —2)X (2Ny—2)X (2N, -2)2
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where
0 CryN,—2 e Cyy2 Cry,1
Cx,y,NZ—Z 0 Cx,y,NZ—Z T Cx,y,2
Tx,y,z =
Cx,y,2 s Cx,y,NZ—Z 0 Cx,y,Nz—Z
Cx,y,l Cx,y,Z “ee Cx,y,Nz—Z

[(2Nx=2)x(Ny=D)]?

Now, we focus on the fast implementation of the matrix-vector product Cy , u, ..

The circulant matrix C, ,, , can be decomposed as

Cryz = (Fan,-2 ® Fan,—2 ® Fan, )~ diag(€) (Fan,—2 ® Fan,—2 ® Fan,-2),

where Foy, > ® Fong—2 ® Fon, - represent the 3D discrete Fourier transform matrix, and ¢

is denoted by
¢ = (Fan,—2 ® Fan,—2 ® Fon,-2)c.

with ¢ be the first column of C ..

By introducing double sized vectors

WUy ik
Veik=| , for j=12...,N,—1, k=12...,N.—1,

(2N,-2)x1

we first define a vector

T T T
Vayk = (Ve Va0 Van, 140
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and then further introduce a double sized vector

Vx,y,k
Viyk = s
[(2N,=2)x(2Ny—2)]x1
we then define another vector
= _ T T T T
Veyz = (Vx,y,l’ Viy oo Vx,y,Ny—l) ’

and at the end we introduce a double sized vector

Vx,y,z
Vxyz = ,

[(2Nx—2)X(2Ny—2)x(2N,~2)]x1

The matrix-vector product A, .u, , . is extended to a octuple sized matrix-vector

product Cy v, .., and can be decomposed as

Cry.:Vay: = (Fan,-2 ® Fan,—2 ® Fon—2)"" [diag(®)] (Fan,—2 ® Fong—2 ® Fon,—2)Vxy.z-

In application, the matrices Fan, 2 ® Fan,—2 ® Fan,—2 and (Fay,—2 ® Fan,—2 ® Fay,—2)™!
can be realized as the 3D Fourier transform and inverse Fourier transform respectively,
we thus can apply the fast Fourier transform (FFT) to reduce the computation to only
O((2N; = 2)(2Ny = 2)(2N; - 2)log((2N, = 2)(2N, — 2)(2N; — 2))) operations.

The matrix representation of the fractional Laplacian A is a full dense matrix which
leads to large computational cost if compute the matrix-vector product Au directly. In
this section, we propose a fast algorithm to compute the matrix-vector product Au. In one
dimension, the fractional Laplacian A" discretized by the weighted trapezoidal or weighted
linear interpolation method is a symmetric Toeplitz matrix. It is known that any Toeplitz

matrix can be embedded into a double sized circulant matrix which can be diagonalized by
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a discrete Fourier transform. Therefore, it allows us to use the fast Fourier transform (FFT)
which reduces the computational cost to O((2N, — 2) log((2N, — 2))). Moreover, this fast

algorithm can be directly extended to higher dimensions.
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8. THE FRACTIONAL SCHRODINGER EQUATION IN AN INFINITE
POTENTIAL WELL

The fractional Schrodinger equation, a fundamental model of fractional quantum
mechanics, was first introduced by Laskin as the path integral of the Lévy trajectories
[63, 64]. It is a nonlocal integro-differential equation that is expected to reveal some novel
phenomena of the quantum mechanics. Recently, the fractional Schrodinger equation in an
infinite potential well has attracted massive attention from both physicists and mathemati-
cians, and numerous studies have been devoted to finding its eigenvalues and eigenfunctions;
see [8, 27, 47, 48, 50, 59, 63, 66] and references therein. However, one continuing debate
in the literature is whether the fractional linear Schrodinger equation in an infinite poten-
tial well has the same eigenfunctions as those of its standard (non-fractional) counterpart
[8, 27, 47, 50, 66]. The main goal of this section is to numerically study the ground and
first excited states of the fractional Schrodinger equation in an infinite potential well so as
to advance the understanding of this problem.

We consider the one-dimensional (1D) fractional Schrodinger equation of the fol-

lowing form [8, 47, 48, 50, 53, 63, 66]:

oy (x,t) = (MY + V() + BlylPy,  xeR, >0, (8.1)

where Y (x,t) is a complex-valued wave function, and i = V-1 is the imaginary unit.
The constant 5 € R describes the strength of local (or short-range) interactions between
particles (positive for repulsive interactions and negative for attractive interactions), and

V(x) represents an external trapping potential. In this section, we are interested in the case



133

that 8 > 0 and V(x) is an infinite potential well (also known as a box potential), i.e.,

0, if |x| <L,
V(x) = xeR, (8.2)

00, otherwise,

with the constant L > 0. The fractional Laplacian (—A)?/? is defined in (1.2) through the
hyper-singular integral.
The fractional Schrodinger equation (8.1) has two conserved quantities: the L;

norm, or mass of the wave function, which we will take to be normalized,

()% = fR W (x, )2 dx = fR Iy (x,0)]%dx = Iy (,0)*=1, >0, (83)

and the total energy

B

EW(,1)) = fR (w*<—A>“/2w + V)l + 5|¢|“) dx =EW(,0), t 20, (8.4

where f* represents the complex conjugate of a function f.

8.1. STATIONARY STATES

To find the stationary states of (8.1), we write the wave function in the form:
Yt =eMp(x), xeR 120, (8.5)

where u € R. Substituting the ansatz (8.5) into (8.1) and taking the normalized mass conser-
vation (8.3) into account, we obtain the following time-independent fractional Schrodinger

equation:

pp(x) = (~A)?¢ + V(x)p + BloI°¢,  xeR (8.6)



134

with the constraint

lgll* = fR lp(x)[*dx = 1. 8.7)

This is a constrained nonlocal nonlinear eigenvalue problem, and the eigenvalue u (also

called chemical potential) can be calculated from its corresponding eigenfunction ¢(x) via:

= pu(g) = fR (6" (=8¢ + V() IgI” + Blol*) dx = E(¢) + g fR pl'dx.  (8.8)

In fact, the eigenfunctions of (8.6)—(8.7) are equivalent to the critical points of the energy
E(¢) over the set T = {¢(x) | ||<b||2 =1 and E(¢) < oo}.

Let Q = (—L, L) denote the interval where the potential V(x) = 0. For x € Q€ the
potential V(x) = oo; consequently, the wave function ¢(x) = 0, since the mass ||<;5||2 =1
and the energy E(¢) < oo [63, 64]. Hence, solving for the eigenfunctions of the fractional
Schrodinger equation in an infinite potential well reduces to finding ¢(x) for x € Q, under

the condition ¢(x) = 0 for x € Q°. The corresponding eigenvalue can be calculated by
p= () = f (6"(=8)"7¢ + BlI*) dx. (8.9)
R

8.1.1. Standard Schrodinger Equation. For the convenience of readers, we briefly
review the eigenvalues and eigenfunctions of the standard Schrodinger equation in this sec-
tion. First, we present their exact solutions in the linear (8 = 0) cases. In the nonlinear
cases with S > 1, we obtain the leading-order approximations to the eigenvalues and
eigenfunctions. These analytical results can be used to compare with those of the fractional
Schrodinger equation so as to understand the differences between the standard and fractional

Schrodinger equations.
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Replacing (-A)*'? in (8.6) with the standard Laplacian —A, we obtain the standard
time-independent Schrodinger equation. Its eigenfunction ¢(x) for x € Q can be found by

solving the following problem [7, 42, 50]:

pp(x) = —=Ad(x) + Blop()*p(x),  xe€Q, (8.10)

along with the homogeneous Dirichlet boundary conditions

#(L) = ¢(-=L) =0, (8.11)

and the constraint of normalization

L
||¢||2:f |p(x)|%dx = 1. (8.12)

L

Note that the two-point homogeneous Dirichlet boundary conditions are applied to (8.10),
as the standard Laplacian A is a local operator. That is, the eigenvalues and eigenfunctions
of the standard Schrodinger equation can be solved in a piecewise approach — finding the
solutions inside of the infinite potential well and then using their continuity at x = +L to
match up with those outside the potential well.

In the linear (i.e., 8 = 0) cases, the eigenvalues and eigenfunctions of (8.10)—(8.12)

can be found exactly. For x € Q, the s-th eigenfunction has the form [7, 42, 63]:

¢s(x):\/%sin[(s+21)ﬂ(l+%)}, xeQ  seNu{o), (8.13)

and the corresponding eigenvalue is

(s+ Drm
2L

2
ps = p(ds) = ] ; s € NU {0}, (8.14)
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where the ground states and the first excited states correspond to s = 0 and s = 1,
respectively.

In the nonlinear (8 # 0) cases, the constrained eigenvalue problem (8.10)—(8.12)
cannot be exactly solved. However, the results in (8.13)—(8.14) provide a good approxima-
tion to the eigenfunctions and eigenvalues in the weakly interacting regimes with 5 ~ o(1).
In the strongly repulsive interacting cases (i.e., § > 1), we can find the leading-order ap-

proximation (also called Thomas—Fermi approximation) to the s-th (s € N°) eigenfunction

L(s+1)/2]
oagn B 2u8L X 4r
¢s(x)~¢s(x>-\/;{ D, tanh | (1+5)-=5)]
Ls/2] a a
+ > tanh 2“3L(4r 2 (1+ %))] e, tanh( Vzg‘“L) } (8.15)

— 2 s+ 1

[7,93]:

for x € Q, where | r]| defines the floor function of a real number r, and the constant

1, if s is even,
Csg =

0, if s is odd.

Correspondingly, the leading-order approximation to the s-th eigenvalue is

%ﬂ+ (s +2)7|BL + (s +2)2 + (s + 2)?

The approximations in (8.15) show that when > 1, all the stationary states of the standard

Us = U R s e NU{0}. (8.16)

T2

nonlinear Schrodinger equation have boundary layers. In addition to boundary layers, for
s > 1, the excited states also have inner layers, and the number of inner layers in the s-th
excited state is equal to s.

8.1.2. Fractional Schrodinger Equation. In contrast to the standard Schrodinger
equation, the stationary states of the fractional Schrodinger equation have not been well un-

derstood yet. Unlike the standard Laplacian, the fractional Laplacian is a nonlocal operator
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describing long-range interactions. For example, the function (—A)?/?¢(x) depends on the
wave function ¢(y) not only for y € Q, but also for y ¢ Q, albeit ¢(y) = 0 when y ¢ Q. As

a result, we consider the following eigenvalue problem in the fractional cases:
pp(x) = (~A)"PP(x) + Blp(N)P(x),  xeQ  ae(0,2), (817
with the nonlocal boundary condition [28, 83]
d(x) =0, x € R\Q, (8.18)
and the normalization constraint

L
||¢||2:f |p(x))* dx = 1. (8.19)

L

Here, we take the nonlocal character of the fractional Laplacian into account and apply the
nonlocal boundary condition (8.18) to the time-independent fractional Schrodinger equation
(8.17).

Due to the nonlocality, it is very challenging to solve (8.17)—(8.19) analytically,
and thus the analytical solutions to its eigenvalues and eigenfunctions still remain an open
question. For the eigenvalues, so far only some estimates and asymptotic approximations
are reported in the literature for the linear (8 = 0) cases [3, 17, 35, 59]. For the convenience

of readers, we will review the main results in the following remarks:

Remark 8.1.1. (Lower and upper bounds of eigenvalues) Various lower and upper bound
estimates are reported for the eigenvalue ug of the fractional linear (S = 0) Schrodinger
equation in an interval of length | [3, 17, 35, 58, 59]. In [17, p.9], the lower and upper

bounds of the eigenvalue ug are given by

(s+1rm
[

(s +ll)7r] < <

% ] SENU{OL ae0.2.  (820)
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where @ = 2 corresponds to the standard Schrodinger equation. When s = 0 (corresponding

to the ground states), different estimates can be found in [3, 35], i.e.,

(a+ D(@+2)(6-a) B3, 1+%)
2+ 1day D@ = Ho = g P (8.21)
with
29T(1 + &) T(He
play = D) (8.22)

r'(3)

for any a € (0,2), where B(a, b) defines the Beta function of a and b. Note that the lower

and upper bounds in (8.21) are, respectively, from [35] and [3].

It is easy to verify that when s = 0, the estimates in (8.21) are much sharper than
those in (8.20) for most of @ (except those close to 2), but the estimate in (8.20) is valid for
any s € NU {0}. To the best of our knowledge, the lower and upper bounds in (8.21) are the
best analytical estimates for the eigenvalue pg in the literature. More numerical estimates

on lower and upper bounds can be found in [58, 59] and references therein.

Remark 8.1.2. (Asymptotic approximations of eigenvalues) When 8 = 0, the asymptotic
approximation of the s-th eigenvalue of the fractional linear Schrodinger equation in an

interval (-1, 1) is given by [59, Theorem 1]:

B (s+1)7r_(2—a/)7r] +0( 2—-a

A 3 Se) econ sz

with C a positive constant. When « = 2, it gives the exact eigenvalue gy = [(s + 1)m/2]?

(for s € N U {0}) of the standard linear Schrodinger equation in an infinite potential well.

In section 8.3, we will compare these estimated results with our numerical solutions
(see Tables 8.1-8.2) and provide more discussions. Even though the estimates of eigenvalues

have been discussed extensively in [3, 17, 35, 58, 59], the results on the eigenfunctions
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are still limited. In [16, 38, 74], the existence and uniqueness of the ground states are
discussed for the general fractional Schrodinger equations. In [66], Luchko conjectured
that the eigenfunctions of the fractional Schrodinger equation cannot be written in terms of
elementary functions. In [96], Zoia et al. studied the eigenfunctions by solving eigenvectors
of the matrix representing the fractional Laplacian. Recently, Zaba and Garbaczewski
studied in [90] the eigenfunctions of the fractional Schrodinger equation in a finite potential
well when @ = 1, and they found that the eigenfunctions in a finite potential well converge
to those in an infinite potential well, as the depth of the potential well goes to infinity.
More discussions on the properties of eigenfunctions can be found in [4, 35, 48, 59, 66]
and references therein. Surprisingly, no study has been carried out by directly solving the
fractional Schrodinger equation with an infinite potential well, and furthermore no results
can be found in the literature on the stationary states of the fractional nonlinear (S # 0)

Schrodinger equation in an infinite potential well.

8.2. FRACTIONAL GRADIENT FLOW AND ITS DISCRETIZATION

In this section, we propose a numerical method for computing the ground and first
excited states of the fractional Schrodinger equation in an infinite potential well. First, we
apply an imaginary time (i.e., 7 = if) in (8.1) and introduce a normalized fractional gradient
flow. Then, we discretize it by using the weighted trapezoidal method in space and the
semi-implicit Euler method in time. Our method can be used to find the ground and first
excited states of both linear and nonlinear fractional Schrodinger equation in an infinite

potential well.
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Denote 7 = it as an imaginary time, and let ¢(x, 7) = ¢/ (x,t). Then the normalized

fractional gradient flow is given by:

a¢((;: i ~(=Np - BlpIPp + u(t)g, x€Q  T>0,
¢(x,7) =0, xeR\Q 7120 (8.23)

f lp(x, DPdx =1, 720
Q
along with the initial condition
o(x,0) =p(x), xe€Q  with |[¢]=1. (8.24)

Here, u(7) is computed from (8.9).

The gradient flow (8.23)—(8.24) is the fractional counterpart of the normalized
gradient flow which has many applications, such as finding stationary states of Bose—Einstein
condensates [6, 19, 92], and studying optimal eigenvalue partition problems [11, 29]. To
efficiently solve the normalized gradient flow, an operator splitting (or projection) method
is often used in the literature [5, 6, 29, 92], and the resulting scheme is often referred to as
a gradient flow with discrete normalization. Denote A7 > 0 as time step, and define time
sequence 1, = nAt forn =0, 1,.... Then from 7 = 7, to T = 7,41, we solve the following

fractional gradient flow with discrete normalization (FGFDN):

(9(;5((;: D —(=N)Py - BlolPd,  x€Q T, <T < Tupl
¢(x,7) =0, x € R\Q, 7, <7< Ty, (8.25)
¢(x’ Tn_+1)
s Ttl) = ————— Q,
d(X, Tus1) 16l X €

where ¢(x, 7" ,) is the solution obtained from (8.25) at 7 = 7,4, and the norm || - || = || -
l|lz2(q)- The FGFDN in (8.25) can be also viewed as first applying the steepest decent method

to the energy functional (8.4) and then projecting the solution to satisfy the normalization
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constraint (8.3). For more discussions on the gradient flow with discrete normalization,
see [5, 6, 29] and references therein. To discretize the fractional Laplacian, we apply the
weighted trapezoidal method introduced in Section 3.

Let ®(7) = (¢1(1), $2(7), ..., Py-1 (T))T denote the solution vector at time 7. Then

the semi-discretization of the fractional gradient flow in (8.25) is given by

dd(7)
dr

= AD(7) + F(D, D), T € (Ty, Tn+1)s (8.26)

where the matrix A is the discretization of the fractional Laplacian, defined in (3.10) with
v = 1+ a/2. The vector function F (D, d’) = (f(gbl,gb’l),f(gbz, #5), - . .,f(¢1_1,¢’J_1))T
with £(9). ) = —Bl¢;I*9).

The semi-discretization of the fractional gradient flow in (8.26) is a system of
nonlinear ordinary differential equations (ODEs). Its temporal discretization can be realized
by standard numerical methods for initial value problems. Here, we will use the semi-
implicit Euler method, and more discussion on other methods can be found in [5, 6, 29].

Denote @" as the numerical approximation of the solution vector ®(t,,). Then, we discretize

(8.26) as:

o) — "

—— =AWy F@ oY), an=01,..., (8.27)

AT
and the projection in (8.25) is discretized as
(I)(l) J-1 1/2
Q™! = . with 0D = (r > |6P)) . (8.28)
D] ( Z;f )

When n = 0, the initial condition at 7 = 0 is discretized by

=), 1<j<J-1 (8.29)
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The scheme (8.27)—(8.29) can be used to compute for both the ground states and the first
excited states of the fractional Schrodinger equation in an infinite potential well. In our
simulations, the ground and first excited states are obtained by requiring that

“(Dn+l _ (I)n”00
—_— < &

A (8.30)

for a small tolerance £ > 0. We remark that in order to obtain a good approximation to the

stationary states, a small time step is needed in the simulations.

8.3. FRACTIONAL LINEAR SCHRODINGER EQUATION.

In this section, we will numerically study the ground and first excited states of the
fractional linear (8 = 0) Schrodinger equation in an infinite potential well. In Sections
8.3.1-8.3.2, the ground and first excited states of the fractional linear Schrodinger equation
in an infinite potential well are studied by numerically solving the fractional gradient flow
in (8.25) with 8 = 0. In our simulations, we choose L = 1, equivalently, Q = (=1, 1). The
mesh size is & = 1/4096, and the time step is A7 = 0.005. The initial condition is chosen

as

(s+ D

p(x) :sin[ (1+x)], xef, s=0orl, (8.31)

where we choose s = 0 for computing the ground states, respectively, s = 1 for the first
excited states. We choose the tolerance € = 107 in (8.30). In the following, we will use the
subscripts “g” and “1” to represent the ground states and the first excited states, respectively.

For the s-th (s € N U {0}) state, we define its expected value of position as

(x)s = f x |¢ps (x)[2dx = f x |¢ps (x) 2 dx.
R Q
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It is easy to obtain that (x); = 0 if |¢s(x)| is symmetric with respect to the potential center

x = 0. Furthermore, we define the variance in position as

Var(x) = fR (x = (x))7 |¢hs () 2dx = fg (x = (x)5)? 165 (x)2dx,

which can be used to study the scattering of particles in the potential well.

8.3.1. Ground States. Figure 8.1 (left) depicts the ground state wave function
¢¢(x) of the fractional linear Schrodinger equation in an infinite potential well for @ =
0.2,0.7,1.1, 1.5, and 1.9; Figure 8.1 (right) shows the expected value of position and its
variance of the ground state solutions for @ € (0, 2], where @ = 2 corresponds to the standard
Schrodinger equation. From Figure 8.1, we find that the wave function of the ground state
is symmetric with respect to the center of the potential well x = 0, i.e., ¢4(x) = ¢o(—x)

for x € (=1,1). The wave function |¢,(x)| monotonically increases for x € (-1,0) and

B=0

0.25 -
- = =(x)
0.2 Var(x) ||

0.15

0.1

0.05

0 " " " _
-1 -0.5 0 0.5 1 0.05 0.5 1 15 2
X

Figure 8.1. Ground states and expected value of position. Left: Ground state solutions
for @ = 0.2,0.7,1.1, 1.5, and 1.9, where the arrow indicates the change of ¢,(x) for
progressively increasing @. Right: The expected value of position and its variance of the
ground state solutions.

monotonically decreases for x € (0, 1), and it reaches the maximum value at x = 0.
Furthermore, the ground state of the fractional Schrodinger equation in an infinite potential
well depends significantly on the parameter «. If @ is small, the nonlocal interactions from

the fractional Laplacian are strong, resulting in a flatter shape of the wave function. While
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if @ — 2, the wave function of the ground state converges to ¢, (x) = sin [7(1 + x)/2] -
the ground state solution of the standard Schrodinger equation. Our solutions are consistent
with the observations in [4, 48, 59, 66].

Figure 8.1 (right) shows that the expected value of the position (x), = 0, independent
of the parameter @. However, the variance in position highly depends on the parameter
«. The smaller the parameter «, the larger the variance in position. When @ — 0, the
nonlocal interactions represented by the fractional Laplacian become stronger, resulting
in a larger scattering of particles. Hence, the decrease in the parameter o leads to an
increase in variance in position. While @ — 2, the variance in position converges to that
of the standard Schrodinger equation. We remark that for the standard linear Schrodinger
equation, the expected value of position and its variance of the s-th stationary state can be

exactly computed as:

L? 6
<X>s =0 and Vars(x) = ? (1 - m) , seENU {O}, (832)

that is, for any stationary states, the average position is always at x = 0 — the center of the
infinite potential well. The variance in position increases as s increases, and as s — oo, the
variance Var,(x) — L?/3.

Furthermore, we compare our results with those reported in the literature [90, 96].
In [96], Zoia et al. study the ground state by computing the first eigenvector of the matrix
representing the fractional Laplacian. While in [90], Zaba et al. study the stationary states

of the fractional linear Schrodinger equation in a finite potential well of the following form:

— 0, x € Q,
V(ix) = x eR, (8.33)
Vo, X € R\Q,

where V) > 0 is a constant. They find that the ground states in a finite potential well
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B=0, a=1
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X X

Figure 8.2. Comparison of the ground state solutions obtained from our method (solid line),
Zoia’s method in [96] (dashdot line), and Zaba’s method in [90] with Vi = 100 (dotted line)
and Vj = 500 (dashed line). The right panel is an enlarged display of the left panel around
the maximum and boundary of the ground state solution.

converge to those in an infinite potential well, as Vj — oo, where only the case @ = 1 is
considered. In Figure 8.2, we compare the ground state solutions obtained by our method,

Zoia’s method in [96], and Zaba’s method in [90], where @ = 1. It shows that the ground

- = —0=06

0.8 E ~Aa == a=1.8

X
Error in eigenvalue

0 0.2 0.4 0.6 0.8 1 102 10

X Number of grid points
Figure 8.3. Comparison of the ground state solutions and errors of eigenvalues. Left:
Further comparison of the ground state solutions computed by our method (solid line) and
Zoia’s method in [96] (dashdot line) for @ = 0.3,0.6, 1.3, and 1.8, where the solutions for
only 0 < x < 1 are displayed for brevity. Right: Errors of the eigenvalues versus the
number of grid points which are computed by our method (‘o”) and Zoia’s method in [96]

(‘a’).

state solution obtained by our method is the same as that by Zoia’s method. The ground
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state solution by Zaba’s method approaches our solutions, as the depth of the potential
well Vj increases. In Figure 8.3, we further compare our method with Zoia’s method by
comparing the eigenfunctions for any « € (0, 2) and the convergence of eigenvalues as the
number of grid points increases. Figure 8.3 (left) and our extensive simulations show that
for any « € (0, 2), the ground state solutions obtained by our method are the same as those
by Zoia’s method. However, our numerical method has better accuracy in eigenvalues,
especially when « is large (see Figure 8.3 right). Moreover, our method can be used to
compute the ground and first excited states of the fractional Schrodinger equation not only
in the linear (B8 = 0) cases but also in the nonlinear (8 # 0) cases.

In Table 8.1, we compare our simulated eigenvalues ,ui,‘ with the approximate results
in [59, 96] and the lower and upper bound estimates in [3, 17, 35]. Columns 2—6 represent
the best analytical lower bounds from [35], asymptotical approximations in [59], numerical
approximations by Zoia’s method in [96], our numerical results, the best analytical upper
bounds from [3] (indicated by ‘{’) and [17] (indicated by ‘%), respectively. Note that
in Tables 8.1-8.2, we only compare with the analytical lower and upper bound estimates
reported in [3, 17, 35]. For more discussions on numerical bounds, we refer readers to
[58,59]. Table 8.1 shows thatas @ — 2, the eigenvalue u, converges to n? /4 —the eigenvalue
of the ground states of standard linear Schrodinger equation in an infinite potential well.
Our numerical results are consistent with the lower and upper bound estimates obtained in
[3, 17, 35]. Furthermore, our results suggest that the lower bound estimates reported in
[35] are much sharper than those in [3, 17]. When « is small, the differences between the
eigenvalues obtained by Zoia’s and our methods are insignificant. However, the difference
becomes larger as « increases, since the eigenvalues by Zoia’s method have larger errors
when « increases (also see Figure 8.3 right).

8.3.2. The First Excited States. Figure 8.4 (left) depicts the first excited state
wave function ¢ (x) of the fractional linear Schrodinger equation in an infinite potential

well for « = 0.2,0.7,1.1, 1.5, and 1.9, and Figure 8.4 (right) shows the expected value of
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Table 8.1. The eigenvalue u, of the ground states of the fractional linear (8 = 0) Schrodinger
equation in an infinite potential well.

a | Lower bounds | Results in [59] | Results in [96] | Our results | Upper bounds

0.01 0.9960 0.9976 0.996633 0.996636 0.9974"
0.1 0.9676 0.9809 0.97258 0.97261 0.9786"
0.2 0.9499 0.9712 0.9574 0.9575 0.96757
0.3 0.9442 0.9699 0.9527 0.9528 0.96557
0.5 0.9620 0.9908 0.9701 0.9702 0.98621
0.6 0.9839 1.0126 0.9911 0.9913 1.00847
0.8 1.0521 1.0789 1.0573 1.0576 1.07637
1 1.1538 1.1781 1.1576 1.1578 1.1781%
1.1 1.2183 1.2415 1.2218 1.2222 1.2432%
1.3 1.3781 1.4007 1.3832 1.3837 1.4064"
1.5 1.5861 1.6114 1.5970 1.5976 1.62237
1.8 2.0140 2.0555 2.0479 2.0488 2.0777"
1.9 2.1952 2.2477 2.2430 2.2441 2.2747%
1.99 2.3784 2.4441 2.4425 2.4437 2.4563%

position and its variance of ¢ (x) for a € (0, 2], where @ = 2 corresponds to the standard
Schrodinger equation. It shows that the wave function ¢ (x) varies for different values of
a, and as @ — 2, it converges to ¢(x) = sin(xm(1 + x)) — the first excited state solution

of the standard linear Schrodinger equation in an infinite potential well. In addition, the

Var(x)
0.35 j
0.3 k

Figure 8.4. The first excited state solutions and expected value of position. Left: The
first excited state solutions for @« = 0.2,0.7,1.1, 1.5, and 1.9, where the arrow indicates the
change of ¢ (x) for progressively increasing «. Right: The expected value of position and
its variance of the first excited state solutions.
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wave function ¢ (x) of the first excited states is antisymmetric with respect to the center
of the infinite potential well x = 0, i.e., ¢;(x) = —¢;(—x) for x € (—1,1) and ¢(0) = 0.
For the standard linear Schrodinger equation, ¢;(x) is also symmetric on each subinterval
(=1,0) and (0, 1), but in the fractional cases the wave function loses the symmetry in each
subinterval.

In addition, we find from Figure 8.4 (right) that for any @ € (0, 2), the expected
value (x); = 0, due to the antisymmetry of the wave function ¢;(x) with respect to x = 0,
while the variance in position changes for different @. The smaller the parameter «, the
stronger the scattering of particles, and thus the larger the variance in position, which is
similar to our observations in Figure 8.1 for ground states. However, we find that for a fixed
@, the variance Var|(x) > Varg(x). In fact, the energy of the first excited states is higher
than that of the ground states, and consequently the scattering of particles in the first excited
states is stronger, which leads to a larger variance in position of the first excited states.

To further study the symmetry of ¢;(x), we denote p;(x) = |¢1(x) |2 as the position

density of the first excited states. The fact that ¢;(x) is antisymmetric about the center of

0.98 1 0.6

0.96 058

T 0.94

kS | x° 056
0.92
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0.9
0.52

0.88

0.5
0.5 1 1.5 2 0.5 1 15 2

o o

Figure 8.5. The maximum value of the position density and the position. Left: The
maximum value of the position density p;(x.) versus the parameter . Right: The position
X¢ versus the parameter «.

the potential well implies that the position density p;(x) is symmetric with respect to x = 0.
Furthermore, there exist two points x. € (0,1) and —x, € (—1,0) at which the density

function p;(x) reaches its maximum values, i.e., p1(x.) = p1(—=x.) = maxye-1,11{p1(x)}.
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The point x, varies for different parameter «. Figure 8.5 shows the values of x. and p;(x.)
for various @. We see that the larger the parameter «, the smaller the value of x., but the
larger the density function p;(x.). The maximum value pi(x.) increases almost linearly
as the parameter «. In particular, the point x. = % and the maximum density function
01 (i%) = 1 for the standard linear Schrédinger equation.

In Figure 8.6, we compare our first excited state solution with that obtained by Zoia’s
method in [96], and the approximate solution using a finite potential well in [90], where
a = 1. It shows that the first excited state wave functions obtained by our method and

Zoia’s method are the same. While the wave function in a finite potential well gives a good
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Figure 8.6. Comparison of the first excited state solutions from our method (solid line),
Zoia’s method in [96] (dashdot line), and Zaba’s method in [90] with V = 100 (dotted line)
and Vp = 500 (dashed line). The right panel is an enlarged display of the left panel around
the maximum and boundary of the first excited state solution.

approximation to that in an infinite potential well, when the potential well is deep enough
(i.e., Vp is sufficiently large). In Figure 8.7, we further compare our method with Zoia’s
method in simulating the first excited states. Similar to the observations in Figure 8.3, the
first excited state wave functions obtained by our method are the same as those by Zoia’s
method, but our method converges much faster, especially when « is large (see Figure 8.7

right). For example, when a = 1.8, the eigenvalue that computed by our method with 128
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Figure 8.7. Comparison of the first excited state solutions and the errors of the eigenvalues.
Left: Further comparison of the first excited state solutions computed by our method (solid
line) and Zoia’s method in [96] (dashdot line), for @« = 0.3,0.6, 1.3, and 1.8, where the
solutions for only 0 < x < 1 are displayed for brevity. Right: Errors of the eigenvalues
versus the number of grid points which are computed by our method (‘o”) and Zoia’s method
in [96] (‘A”).

grid points has almost the same error as that obtained by Zoia’s method with 2048 grid
points, which implies that our method can achieve a better approximation with less number
of grid points.

In Table 8.2, we compare our simulated eigenvalues ,uﬁ’ with the approximate results
in [59, 96] and the lower and upper bound estimates in [17]. Columns 2-6 display the
best analytical lower bounds from [17], asymptotical approximations in [59], numerical
approximations by Zoia’s method in [96], our numerical results, the best analytical upper
bounds from [17], respectively. It shows that the eigenvalue of the first excited states
increases as a increases, and as @ — 2, it converges to u; = 7> — the eigenvalue of the
first excited states of the standard linear Schrodinger equation in an infinite potential well.
Our numerical results ,L/f are consistent with the estimates obtained in [17] as well as the
approximations in [59, 96]. Furthermore, our results suggest that the asymptotic results in
[59] are more accurate for the first excited states than for the ground states, as the asymptotic

approximation has the error O ((2 —a)/(s + 1)\/5).
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Table 8.2. The eigenvalue u; of the first excited states of the fractional linear (8 = 0)
Schrodinger equation in an infinite potential well.

a | Lower bounds | Results in [59] | Results in [96] | Our results | Upper bounds
0.01 0.5058 1.0086 1.008717 1.008719 1.0115
0.1 0.5606 1.0913 1.09218 1.09221 1.1213
0.2 0.6286 1.1948 1.1965 1.1966 1.2573
0.3 0.7049 1.3122 1.3147 1.3148 1.4098
0.5 0.8862 1.5977 1.6014 1.6016 1.7725
0.6 0.9937 1.7708 1.7750 1.7753 1.9874
0.8 1.2494 2.1941 2.1991 2.1995 2.4987
1 /2 2.7489 2.7543 2.7549 Vi
1.1 1.7613 3.0892 3.0946 3.0954 3.5226
1.3 2.2144 3.9319 3.9367 3.9380 4.4289
1.5 2.7842 5.0545 5.0581 5.0600 5.5683
1.8 3.9250 7.5003 7.5000 7.5033 7.8500
1.9 4.4010 8.5942 8.5919 8.5959 8.8021
1.99 4.8786 9.7330 9.7285 9.7332 9.7573

8.4. FRACTIONAL NONLINEAR SCHRODINGER EQUATION

There have been many discussions on the stationary states of the fractional linear
Schrodinger equation in an infinite potential well based on different representations of
the fractional Laplacian (—A)®/2. However, to the best of our knowledge, no study has
been reported in the nonlinear (8 # 0) cases yet. In this section, we numerically study
the ground and first excited states of the fractional Schrodinger equation with repulsive
nonlinear interactions (i.e., 8 > 0) and attempt to understand the effects of local (or
short-range) interactions and the competition of the local and nonlocal interactions. In our
simulations, we choose L = 1, the mesh size 7 = 1/4096, the time step A7 = 0.001, and
the convergence tolerance € = 1073 in (8.30). The initial condition is chosen as defined in

(8.31).
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8.4.1. Ground States. Figure 8.8 a)-c) displays the ground state wave function
¢¢(x) of the fractional nonlinear Schrodinger equation in an infinite potential well for

various @ and S. It shows that the wave function of the ground states ¢,(x) is always

b)

=, 05
P

0.4 «

Var(x)

0.3

0.2

0.1

) | : | d) | «
Figure 8.8. Ground state wave functions of the fractional nonlinear Schrodinger equation
and the variance in position. a)-c): Ground state wave functions of the fractional nonlinear
Schrodinger equation for @ = 0.2,0.7,1.1, 1.5, and 1.99, where the arrow indicates the

change in the wave function for progressively increasing . d): The variance in position of
the ground state solutions.

symmetric with respect to the center of the infinite potential well x = 0. As @ — 2, the wave
function converges to the ground state solution of the standard Schrodinger equation with the
same nonlinear parameter . In contrast to the linear cases, the local repulsive interactions
may lead to boundary layers in the ground states. Here, we divide our discussions into
two interaction regimes: the weak interactions when 8 ~ o(1) and the strong interactions

when 8 > 1. For 8 ~ o(1), the effects of local repulsive interactions are significant only
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when « is small, resulting in two boundary layers at x = +1 (see the case of @ = 0.2 and
B = 1 in Figure 8.8). While in the strongly interacting cases (e.g. S = 50), the local
interactions become significant for any a € (0,2). Due to the normalization condition, the
wave function ¢, (x) inside the potential well tends to approach the value V2/2. However,
since the wave function ¢¢(x) = 0 at x = £1, two layers emerge at the boundaries of the
potential well.

In Figure 8.8 d), we present the variance in position of ¢, (x) for a € (0,2) and
B = 1,10, 50, and 100. Since the wave function ¢, (x) is symmetric with respect to x = 0,
the expected value of position (x), = 0, independent of the parameters a and . Here, we
omit showing it for brevity. Figure 8.8 d) shows that the variance in position monotonically
increases as « decreases or S increases, implying that strong local or nonlocal interactions
yield a large scattering of particles in the potential well. Comparing Figure 8.8 d) to Figure
8.1 (right), we find that even weak local interactions (e.g., § = 1) can significantly change
the variance in position, especially when « is small. Moreover, Figure 8.8 d) suggests
that when g is small (e.g., 8 = 1), the nonlocal interactions from the fractional Laplacian
are dominant, and the variance decreases concave up as « increases, similar to the cases
of B = 0. When g is large, the local repulsive interactions become significant, and the
decrease of the variance becomes concave down as « increases. In addition, due to the

|2 = 1, the variance of position converges to 1/3 as @ — 0 or § — 0.

constraint ||¢,
The ground state solutions in Figure 8.8 show that the width of boundary layers
depends on both the parameters @ and . To further study their relation, we define w as the

width of the boundary layers. In our simulations, it is computed by w = 1 — [x|, where X

satisfies

0de(x
‘ g (x) =1, with n ~ O(1) a constant.

ox

X=X
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Here, we choose 7 = V2/2. In Figure 8.9, we present the log-log plots of the width of

boundary layers w versus S for different @. It shows that when S is large, log(w) linearly

10
log(B)

Figure 8.9. Log-log plots of the width of boundary layers versus $ in the ground states of
the fractional nonlinear Schrodinger equation in an infinite potential well.

decreases as log(3) increases, which implies that
w=0(B9 (8.34)

with ¢ > 0 a constant depending on «@. In particular, the width of the boundary layers
w~ 0 ( BY 2) in the ground states of the standard Schrodinger equation [7].

In [90], the ground state solutions in a finite potential well are studied when g = 0
and @ = 1, and it shows that the ground state solutions in a finite potential well provide
good approximations to those in an infinite potential well when the potential well is deep
enough. Similarly, here we consider a finite potential of the form in (8.33) and compare
the ground state solutions in finite and infinite potential wells when 8 # 0 and a € (0, 2).
Figure 8.10 depicts the ground states for different depth of the potential well V, where
B = 10. It shows that the ground state solution in a deep (i.e., large Vj) finite potential
well gives a good approximation to that in an infinite potential well. Furthermore, when «

increases, a deeper finite potential well is needed to obtain a better approximation.
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Figure 8.10. Comparison of the ground states of the fractional nonlinear Schrodinger
equation in a finite potential well with depth Vj and those in an infinite potential well, where
B = 10. The right panel is an enlarged display of the left panel around the maximum and

boundary of the ground state solution.

Table 8.3. The simulated eigenvalue ,ug and the kinetic energy ,uZ i, Of the ground states of
the fractional nonlinear Schrodinger equation in an infinite potential well.

B

=1

ﬁ:

5

B =10

ﬁ:

50

h
H g.kin

My

h
H g.kin

1

h
H g.kin

M

h
H g.kin

My

0.3
0.5
0.7
0.9

1.1
1.3
1.5
1.7
1.9

0.9627
0.9808
1.0304
1.1124
1.1664
1.2302
1.3904
1.6031
1.8823
2.2475

1.4864
1.5295
1.6056
1.7143
1.7817
1.8586
2.0449
2.2827
2.5860
2.9743

0.9843
1.0220
1.0870
1.1793
1.2368
1.3028
1.4646
1.6748
1.9483
2.3054

3.5062
3.5915
3.7341
3.9272
4.0419
4.1691
4.4625
4.8137
5.2335
5.7380

0.9930
1.0483
1.1345
1.2475
1.3145
1.3894
1.5661
1.7869
2.0653
24211

6.0233
6.1236
6.3053
6.5622
6.7174
6.8901
7.2890
7.7632
8.3209
8.9754

1.0099
1.1055
1.2743
1.5009
1.6318
1.7734
2.0882
2.4488
2.8637
3.3460

26.498
26.612
26.869
27.309
27.603
27.948
28.791
29.839
31.098
32.582
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Denote the kinetic energy fsxin Of the s-th stationary state as

Hskin = f ¢ (A2, dx, s € NU{0}.
R

Especially when S = 0, we have the eigenvalue gy = g kin for any a. In Table 8.3,
we present the simulated eigenvalue ,uZ and the kinetic energy ,uz’kin corresponding to the
ground states of the fractional nonlinear Schrodinger equation in an infinite potential well.
It shows that both the eigenvalue u, and the kinetic energy (i, «in increase as the parameter a
or 3 becomes larger. However, when g increases, the kinetic energy becomes insignificant
compared to the eigenvalue, especially when « is small. This implies that one could ignore
the kinetic energy when g is large and « is small. Furthermore, we find that if S > 1, the
eigenvalue p, ~ O(B/2).

8.4.2. The First Excited States. Figure 8.11 a)-c) shows the first excited state
solution ¢ (x) of the fractional nonlinear Schrodinger equation in an infinite potential well.
The wave function ¢;(x) is antisymmetric with respect to the center of the potential well
x = 0, independent of the parameters @ and 8. As @ — 2, the wave function converges to
the first excited state solution of the standard Schrodinger equation with the same nonlinear
parameter S. The effect of local interactions becomes more significant when « is small,
resulting in sharp boundary layers at x = +1 as well as one inner layer at x = 0. The
width of the boundary and inner layers decreases as @ decreases or 8 increases. Numerical
simulations show that our method converges fast in computing both the ground and first
excited states.

In addition, Figure 8.11 d) displays the variance of ¢(x) for @ € (0,2) and S = 1,
10, 50, and 100. Note that the expected value of position (x); = 0, independent of the
parameters @ and . The properties of the variance in position can be divided into two

cases: when a < 1, the larger the parameter S, the smaller the variance, and as § — oo, the
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Figure 8.11. The first excited state wave functions of the fractional nonlinear Schrodinger
equation and the variance in position. a)-c): The first excited state wave functions of the
fractional nonlinear Schrodinger equation for @ = 0.2,0.7,1.1, 1.5, and 1.99, where the

arrow indicates the change in the wave function for progressively increasing a. d): The
variance in position of the first excited state solutions.

variance converges to 1/3. While @ > 1, the larger the parameter (3, the bigger the variance,
implying that in this case the scattering of particles is mainly caused by the local repulsive
interactions.

Similarly, we also compare in Figure 8.12 the first excited state solutions in an
infinite potential well with those in a finite potential well with different depth V), where
B = 10. As the depth Vjj — oo, the first excited states in a finite potential well approaches
those in an infinite potential well, which is consistent with the observations in [90] for the
linear cases.

In Table 8.4, we present our numerical results of the eigenvalue ,u'll and the kinetic

energy " . of the first excited states for various a and 3. It shows that both the eigenvalue
1,kin
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Figure 8.12. Comparison of the first excited states of the fractional nonlinear Schrodinger
equation in a finite potential well with depth Vj and those in an infinite potential well, where
B = 10. The right panel is an enlarged display of the left panel around the maximum and
boundary of the first excited state solution.

Table 8.4. The simulated eigenvalue ,uﬁl and the kinetic energy ,u}]’ Wi, Of the first excited
states of the fractional nonlinear Schrodinger equation in an infinite potential well.

B

=1

ﬁ:

5

B =10

ﬁ:

50

7
M1 kin

Hy

7
M kin

i

7
M1 kin

H

7
M kin

Mf

0.3
0.5
0.7
0.9

1.1
1.3
L.5
1.7
1.9

1.3349
1.6179
1.9853
2.4669
2.7621
3.1014
3.9422
5.0630
6.5666
8.5970

1.8998
2.2252
2.6258
3.1332
3.4392
3.7882
4.6457
5.7807
7.2967
9.3385

1.3931
1.7023
2.0777
2.5546
2.8444
3.1769
4.0022
5.1077
6.5982
8.6185

3.9589
4.3923
4.9209
5.5599
5.9300
6.3407
7.3118
8.5449
10.144
12.255

1.4218
1.7670
2.1759
2.6714
2.9657
3.2994
4.1179
5.2071
6.6768
8.6766

6.4828
6.9702
7.5983
8.3680
8.8115
9.2992
10.429
11.819
13.561
15.797

1.4683
1.9441
2.5376
3.2328
3.6219
4.0438
5.0093
6.1905
7.6797
9.6183

26.959
27.513
27.389
29.626
30.383
31.233
33.223
35.630
38.507
41.942
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and kinetic energy increase as the parameter @ or 8 becomes larger. Comparing Tables
8.4 and 8.3, we find that for fixed parameters @ and g, the kinetic energy uxin of the first
excited states is much larger than pg ki, of the ground states, which mainly caused by the
emergence of the inner layer in the first excited states. Similar to the cases of the ground
states, the kinetic energy is significant compared to the eigenvalue only when the local
interactions are weak (i.e., £ is small).

In this section, we numerically studied the ground and first excited states of the
one-dimensional fractional Schrodinger equation in an infinite potential well. We proposed
a normalized fractional gradient flow and discretize it by the weighted trapezoidal method
in space and the semi-implicit Euler method in time. Our numerical results suggested
that the eigenfunctions of the fractional Schrodinger equation are different from those of
its standard counterpart. The nonlocal interactions are strong when « is small, leading
to a large scattering of particles in an infinite potential well. In addition, our simulated
eigenvalues are consistent not only with the approximation results in [59, 96] but also with

the best lower and upper bounds in [3, 17, 35].
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9. PLANE WAVE DYNAMICS OF THE FRACTIONAL SCHRODINGER
EQUATION

The plane wave solutions play an important role in understanding the NLS equation,
and especially the phenomena associated to their stability are of great interest. In the
standard (@ = 2) NLS, the stability of the plane wave solutions has been well studied, in
contrast, because of the nonlocality, the study on the plane wave solution of the fractional
NLS still remain limited. In this section, we aim to understand the stability and dynamics
of the plane wave solutions under the nonlocal effects of the fractional Laplacian and to
compare the properties of different numerical methods in simulating the plane waves of the
fractional NLS.

We consider the following fractional nonlinear Schrodinger (NLS) equation:

ia”((;;’ D (APt t) + Yl ) Pute ). £ 0, ©.1)
u(x,0) = ¥ (x), (9.2)

where u(x,t) is a complex-valued wave function of x € R and + > 0. The fractional
Laplacian (—=A)?/? is defined via the pseudo-differential operator in (1.1).
The fractional NLS (9.1) has some similar properties to the standard NLS. It has

two important conserved quantities: the mass of the wave function:

NG = 1) o= fR u(x, ) Pdx = N(O), 9.3)

and the rotal energy (or Hamiltonian):

E(t) = fR [Re(u*(x,t)(—A)“/Zu(x,t))+g|u(x,t)|4] dx

E(0), 9.4)
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where Re(¢) and ¢*, respectively, represent the real part and the complex conjugate of a
function ¢. The fractional NLS is time reversible, that is, (9.1) remains invariant if one
replaces the time t by —¢ and takes its conjugate. These properties are usually used as
benchmarks to develop and examine numerical methods for the fractional NLS.

In addition, the fractional NLS (9.1) admits the plane wave solution of the form:

u(x,t) = aexp (i(Ax x — wt)), 9.5)

provides that the dispersion relation

w = [4|* +ylal, (9.6)

is satisfied. Here, ‘a’ is the amplitude of the plane wave solution, 1; € R is the wave

numbers, and w is the time frequency.

9.1. LINEAR STABILITY ANALYSIS

Due to the nonlocality, the stability and dynamics of the plane wave solutions in the
fractional NLS are significantly different from those in the standard NLS [33]. Consider a
finite domain of size L, and thus the wave number is chosen as Ay = 2kn/L with k € Z. Due
to the nonlinearity of (9.1), the plane wave solution is stable only under certain conditions.
Here, we will focus on the linear stability analysis of the plane wave solution (9.5). Consider

a perturbed solution of the form

u(x,t) =ulx,t)(1 + &(x, 1)), 9.7)
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where u(x,t) is the plane wave solution in (9.5), and £(x, ) is a small perturbation function
satisfying |e| < 1. We assume that ¢ is periodic on an interval [—%L, 111, and it can be

expanded in Fourier series as

e(un) = ) &) explip)

leZ

with y; = 2In/L for I € Z. In what follows, we set Re(£((0)) = 0 without loss of generality.
Indeed, having Re(gy(0)) # 0 simply rescales the amplitude a of the unperturbed wave
(9.5) in the order O(¢).

Substituting (9.7) into the fractional NLS (9.1) and taking the leading order terms

of £, we obtain
. @ ~ a . 20 %
e =i(1l% = )" O + ul” explipux) — ylal(e” + &), (9.8)
leZ

where £* denotes the complex conjugate of £. Taking the Fourier transform of (9.8) and its

complex conjugate, we get the following system of ODEs:

d &l &l
7 =Gy ,
"\ &, g,
for [ € Z\{0}, where
|k = ylal* = | Ak + w)® ~ylal?
1 =1
ylal? —| Ak + ylal® + | = wl®

The eigenvalues of matrix G; are computed as:

I 1
m=—5wu+mW—qum%i5¢£ (9.9)
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where

A= _[(Mk + ol + A — ) - 2|/1k|a]

-[(m ol + 1A — ™) =201 — 2y|a|2)].

The modes (g, Z:\"Z‘)T exponentially grow if at least one of the eigenvalues A; in (9.9) has

positive real part, which occurs for
A > 0. (9.10)

If A; > Oforatleastone ! € Z, then the plane wave solution (9.5) is unstable. This instability
condition depends not only on the parameters 1; and a from the plane wave solution, but
also on a and vy from the fractional NLS (9.1).

Below we will focus on how the instability condition (9.10) depends on the exponent
« in the fractional NLS (9.1) and the wave number A, in the initial condition. For the
standard NLS (@ = 2), it is known that the plane wave is stable in the defocusing (y > 0)
case and unstable in the focusing (y < 0) case. Moreover, stability of the plane wave in the
standard NLS is independent of its wave number A;. For the fractional NLS (0 < a < 2),
both these well-established facts no longer hold: the plane wave may be unstable in the
defocusing case (for @ € (0, 1)), and its (in)stability is affected by Az, ¥ and a. These

situations are delineated in Theorems 9.1.1 and 9.1.2 below.

Theorem 9.1.1 (Stability for a € [1,2]).
(a) Fory > 0 (defocusing), a plane wave with any Ay is always stable.
(b) Fory < 0 (focusing), the plane wave solution is linearly unstable if there exists at least

one |l € Z such that

200" < 1Ak + l® + 1Ak = ul® < 241" - 4ylal. (9.11)
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Proof. Let us introduce a notation:

81 =0(w) = Ak + ™ + 1Ak — ™ = 2| 24|

then the analytical instability condition (9.10) takes the form

A = =6;(8; + 4ylal?) > 0. 9.12)

For 1 < a < 2, the function f(x) = |x|? is convex. By the Jensen’s inequality [57], we

obtain:

| k]

1 1 a
|§(/1k + ) + 5 (A - ,Uz)|

IA

1 1
§|/1k +u” + §|/1k - " a € [1, 2], (9.13)

which implies that 6; > 0, for any ;.
(a). Fory > 0, we get A; = —6;(0; + 4y|a|2) < 0 for any y;, and thus the plane wave
solution is always stable in this case.

(b). Fory < 0,A; > 0isequivalentto 0 < §; < —4y|a|2, which leads the result. |

The instability condition for a € (0, 1) is more complicated than « € [1,2]. Let g

be the largest root of 6(x;) = 0. We then have the following Theorem for @ € (0, 1).

Theorem 9.1.2 (Stability for @ € (0, 1)).
(a) Fory > 0 (defocusing), the plane wave solution is linearly unstable if there exists at

least one | € Z such that
|| < o and S(pp) > —dylal®. (9.14)

This condition can be further expressed more explicitly,
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(al) If—4y|a|2 < (2% = 2)|Ax|?, then the second condition d(u;) > —4’)/|Cl|2 is satisfied
automatically, thus the plane wave solution is linearly unstable if there exists at least

one | € Z such that || < po, see Figure 9.1 on the left.

(a2) If—4y|a|2 > (2% = 2)|Ax|?, then we can prove 6(u;) = —47/|a|2 has four distinct
roots u; = £p; (i = 1 or2) satisfy —py < —p1 < 0 < gy < gy < Ho, thus the plane
wave solution is linearly unstable if there exists at least one | € Z such that |u;| < uy

or iy < || < po, see Figure 9.1 on the right.

(b) Forvy < 0 (focusing), the plane wave solution is linearly unstable if there exists at least

onel € Z such that

lwl > @ and  S(u) < —dylal*.

Precisely, the equation 6(u;) = —4yla|> has two distinct real roots p; = +3 satisfy
—3 < 0 < o < a3, thus the plane wave solution is linearly unstable if there exists at least

one |l € Z such that fig < || < fiz, see Figure 9.2.

Proof. First of all, the instability condition (9.12) is equivalent to the following two cases:

S(u) +4ylal*> >0 and 6(w) <0; or

S(w) +4ylal*> <0 and () > 0.

In case (a) for y > 0, assuming that

S(up) +4ylal* < 0= 6(uy) < —4ylal* <0
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Figure 9.1. Illustration of Theorem 9.1.2 (a). Analytical stability for @ € (0,1) and a = 0.5
for y > 0. The intervals colored in red correspond to the instability conditions in Theorem
9.1.2 (a). Left: corresponds to the case (al); Right: corresponds to the case (a2).
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Figure 9.2. Illustration of Theorem 9.1.2 (b). Analytical stability for @ € (0,1) and a = 0.5
for y < 0. The intervals colored in red correspond to the instability conditions in Theorem
9.1.2 (b). Left: corresponds to the case by taking 1; = 0; Right: corresponds to the case
by taking Ay # 0.
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conflicting to 6(y;) > 0, which implies that the instability condition (9.12) can not be

satisfied by case 2. That is the instability condition (9.12) is equivalent to

S(up) +4ylal*> >0 and 6(w) <O.

To get the instability condition in (9.14), it is left to show

o(u) <0 & wl < po. (9.15)

The function 6(y;) is presented in the left plot of Figure 9.1. Analytically, it is easy to show

that 6(y;) is increasing on (| 4|, c0) and decreasing on (0, |Ax|). In addition, since

0(|Akl) = 2% =2)[4]" <0 and  6(2[A]) = 3Y = D] > 0,

by Intermediate theorem, there exists one solution o € (|Axl,2|Ax|) such that 6(u;) = 0,
and this root is unique because 0 () is increasing on (|A|, c0). By the symmetric property
of function 6 (), it is easy to prove the d(y;) is increasing on (—oo, —|1¢|) and decreasing
on (—|A¢|,0). In addition, there exists a unique solution —gy € (=2|Ax|, —|Ax|) such that
d(—uy) = 0. Therefore, we prove the equivalence of the two statements in (9.16) and thus
proved case (a). Next, we will further prove the statements (al) and (a2).

Since +|Ak| are the global minimum of function d(u;), we consider 6(£|Ax|) =

(2% = 2)|Ax|“ be the critical line, and separate our discussion into two cases:

(al). if —4y|a|*> < (2% = 2)|Ax|?, the plot of §(y;) is presented on the left of Figure 9.1;

(@2). if —4y|a|* > (2% = 2)|Ax|?, the plot of 6(u;) is presented on the right of Figure 9.1.

Therefore, the statements (al) and (a2) directly followed by the illustration from Figure 9.1.

In case (b) for y < 0, since that

S(up) +4ylal®* > 0 = 6(w;) > —4ylal* > 0
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conflicts to d(u;) < 0, which implies that the instability condition (9.10) is equivalent to

S(w) +4ylal*> <0 and () > 0.

Following the same line as the proof of case (a), we have

o(u) >0 e wl> po. (9.16)

The function 6(y;) is displayed in Figure 9.2 for 4y = 0O on the left and 4 # O on the
right. Let +u3 be the two roots of equation §(y;) = —4y|a|2, since for y < 0, it always has

—4ylal? > 0, which follows that

—H3 < —fip < 0 < o < p3.

Therefore, we proved case (b). O

Remark 9.1.1. As a special case, for 1y = 0, the instability condition (9.35) reduces to

0 < |w|* < =2ylal’, (9.17)

for all @ € (0,2], and the case @ = 2 is consistent with the condition obtained in the

literature on the standard NLS; see [12, 37, 86] and references therein.

Remark 9.1.1 shows that the stability of the plane wave solution in the standard (i.e.,
a = 2) NLS is independent of the wave number A, and thus Ay is ignored in the analysis
[12, 22, 37, 86]. However, in the fractional NLS, the wave number A; of the plane wave
solution plays an important role in its stability, which is one main difference between the

fractional and standard NLS.
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Figures 9.3 and 9.4 illustrate the behavior of Re(A;) = % A; versus u; fory > 0 and
v < 0, respectively; we only show the location of unstable modes, where Re(A;) > 0. In the
defocusing (y > 0) case, no instability occurs if the frequency 4, = 0, for any a € (0, 2].

If the wave number Ay # 0, Figure 9.3 shows that all modes are stable for 1 < o < 2, and

-02,4 =05 i
v K x 107

y=1, xk =0.5
2 2
15 02 15 8
0.15 6
3 1 3 1
0.1 4
05 0.05 0.5 () 0 2
0
-1 -0.5 0 0.5 1 1 -0.5 0 0.5 1
l'I'I MI

Figure 9.3. Contour plots of Re(A;) for the plane wave solution (9.5) with a = % Note that
when a < 1, Re(A;) > 0 for || < 1, although its value is small.

thus the plane wave solution is always stable in this case, which is consistent to the analysis
in Theorem 9.1.1 (a). In contrast if 0 < @ < 1, unstable modes appear in low-y; region,
and the number of unstable modes depends on A, ¥ and a. The results in Figure 9.3 also
justify Theorem 9.1.2. In fact, the left plot of Figure 9.3 illustrates Theorem 9.1.2 (al) and
the right of Figure 9.3 illustrates Theorem 9.1.2 (a2). For a fixed «, the unstable modes
in Figure 9.3 (left/right) correspond to the unstable region that is colored in red of Figure
9.1 (left/right). As shown in Theorem 9.1.2 (a2), if —4)/|a|2 > (2% — 2)|Ak|¥, there is a
“stable-gap” at low-y; area., and the width of the gap is |, — w1 /.

In the focusing (y < 0) case, Figure 9.4 shows that the unstable modes could occur
forany 0 < @ < 2. When 1 < a < 2, unstable modes always exist in the low-y; region,
and the size of unstable band depends on Iyllalz. By contrast, if 0 < @ < 1, the unstable
modes are sensitive to A;. For 4; = 0, instability start from low-y; modes and could spread

to high-y; region if « is small. For A; # 0, unstable modes start from relatively high-
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Figure 9.4. Contour plots of Re(A;) for y < 0. Same as in Figure 9.6, but for y < 0. Note
that v in the first and second rows are different. Note that when @ > 1, Re(A;) > 0 for
|| < 1, although its value is small.

region, and there is a “stable-gap" at the low-y; area, the width of the gap is o which is
suggested in Theorem 9.1.2 (b) (see also Figure 9.2 on the right). As a special case, the
width of the gap is ||, if @ = 1.

Figs. 9.3 and 9.4 show that the instability behaviors of the plane wave solutions for
a > 1 and @ < 1 are significantly different. Namely, the stability of low-x; modes changes
at @« = 1. To further understand it, we present Re(A;) versus y; for @ = 0.9,1 and 1.1 in
Figure 9.5. It shows that when y > 0 and @ > 1, Re(A;) < 0 for any / € Z, implying all
modes are stable and thus the plane wave solution are stable in this case. While y < 0 and
Ak # 0, the unstable modes starts from p.; for @ = 1.1, but they appear only at relatively

high frequency region for = 0.9 or 1.
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Figure 9.5. Comparison of unstable modes for @ = 0.9, 1 and 1.1.

9.2. NUMERICAL METHODS

To further understand the nonlinear stage of the plane wave dynamics of the fNLS,
only linear stability analysis is not enough. Therefore, numerical simulations play an
important role in the study of the fractional NLS. However, in contrast to the standard
NLS, only a few numerical methods are available in the literature for solving the fractional
NLS. In this section, we aim to develop and compare the numerical methods for solving
the fractional NLS, which preserve one or more analytical properties of the fractional NLS,
including mass conservation, energy conservation, time reversible, and dispersion relation.

First, we truncate (9.1)—(9.2) into a finite computational domain [-L/2, L/2] with

periodic boundary conditions and consider the following problem:

iOu(x, 1) = (—=A)?u(x, 1) + ylu(x, ) Pu(x, 1), r>0, (9.18)

u(x,0) = ¢ (x), (9.19)

for x € [-L/2,L/2]. Usually, we choose L to be sufficiently large, unless plane wave
solutions are studied. We will leave the discussion of other boundary conditions for our

future work.



172

Let T > O denote a time step, and define the time sequence t,, = nt for n > 0.
Define the mesh size h = L/J, with J a positive even integer. Denote the spatial grid points
xj=-L/2+ jhfor0 < j < J Let u;‘ be the numerical approximation of the solution
u(x;j,t,). Then, we denote the solution vector at time ¢ = 7, as U" = (up, uj, ..., u’})T.

Due to the definition of (—A)?/2 in (1.1), it is natural to use the Fourier spectral method for

spatial discretization. Hence, we assume the anzatz:

J/2-1
u(et)= ) () explipx), (9.20)
I=-J/2
where
2nl J J
== for ——<Il<=-1.
p=—n  for —gslsg

In the following, we will focus on the temporal discretization and the properties of the
resulting numerical methods.

9.2.1. Split-step Fourier Spectral Method. The split-step method, also known as
the time-splitting method, is one of the most popular numerical methods for solving the
standard NLS equation (also known as the Gross—Pitaevskii equation in the literature of
Bose—FEinstein condensation). It is an explicit method and thus avoids solving nonlinear
systems at each time step. The main idea of this method is outlined below. From time z = ¢,

tot = t,+1, the fractional NLS (9.18) is solved in two steps:

iu(x,t) = ylu(x, t)|2u(x, 1), (9.21)

iu,(x, 1) = (=N *u(x,1). (9.22)
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On one hand, multiplying u*(x,¢) at both sides of (9.21) and subtracting from its

conjugate, we obtain that |u(x,t)| = |u(x,t,)| for any t € [t,,t,+1]. Therefore, (9.21)

reduces to

iug(x,t) = ylu(x, tn)lzu(x, 1).

Integrating it in time yields the solution to (9.21):

u(x, 1) = u(x t) exp (= iyluCe t) (= 1)), 1 € [t tar1].

On the other hand, substituting (9.20) into (9.22), we obtain that
J J
u, (t) = | up(e), ——<Il<=--1
iuy(t) = |py|” uy(t) > >
Integrating it in time gives

w (1) = uy(tn) exp (= ilp|* (@t = tn)),

(9.23)

(9.24)

for t € [t,,t,+1] and —% <l < % — 1. Combining (9.58) and (9.20) gives the numerical

approximation to the solution of (9.22).

Let u;‘ denote the numerical approximation of u(x;,7,). Then the first-order Strang

split-step Fourier spectral method for the fractional NLS can be summarized as follows:

n+l,—
J

u = u;’ exp(—inlu;?IZ),

J/2-1

J
I==J/2

(9.25)

W= Y @ exp(—ilwl®T) explipmx;), 0<j<J-1, n=01,... (926)
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The numerical scheme in (9.25)—(9.26) has spectral accuracy in space and first-order ac-
curacy in time, and the time accuracy can be easily improved by adapting higher order
split-step methods [82]. Combine the steps (9.21) and (9.22) by the second order Strang
splitting method, resulting in the second-order split-step Fourier spectral (SSFS) method

for the fractional NLS (9.18)—(9.19) as follows:

ml _ n o n2
u; = u; exp( zyrlujl /2),

J/2—-1

u;.l’z = Z Z’l exp (—ilp1¥7) exp (ipixj), (9.27)
1=—J/2

T u?’z exp(—inlu;.l’zlz/Z), 0<j<J-1n=0,1,.... (9.28)

The initial condition (9.19) is discretized as:
u) = y(x)), 0<j<J. (9.29)

The SSFS method in (9.27)—(9.29) has the spectral order spatial accuracy and the second-
order temporal accuracy, which can be efficiently implemented by the fast Fourier transform
(FFT).

It is easy to verify that the SSFS method (9.27)—(9.29) is time reversible, i.e., the
method remains unchanged if 7 < —7 and n < n + 1. Moreover, the SSFS method has the

properties in the following lemmas

Lemma 9.2.1 (SSFS: Mass conservation). Suppose that U" is the numerical solution of the
fractional NLS at time t,, obtained from the SSFS method in (9.27)—(9.29). Then, we have

the discrete mass:
J-1 J-1
N" = hz ! = hz WP=N n>0 (9.30)
=0 =0

i.e., it is conserved at any time t,,.
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Proof. From (9.27), we obtain that

J-1 J=1 J/2-1 )
212 . .
2P = | D @ exp (= ilaul” ) exp (ipux; )|
j=0 j=0"1=—J)2
J/2-1 J/2-1 J-1
1 * . .
= > T At @ exp (—it(lul® = 1psl®) Y exp (i - )x;)
1=—J/2 s=—J/2 =0
J/2—-1
= J Z . (9.31)
I==JJ2

Then, using the discrete Parseval’s relation

we obtain from (9.27) and (9.31) that

J-1 J-1 J-1 J-1
N = h QW = b WG = R D b = ) = N
Jj=0 Jj=0 Jj=0 Jj=0
which implies the mass conservation in (9.30), as n > 0 is arbitrary. O

Lemma 9.2.2 (SSFS: Dispersion relation). The SSFS method (9.27)—(9.29) preserves the

dispersion relation w = |A;|* + y|a|? of the plane wave solution in the fractional NLS.

Proof. Assume that at time ¢ = t,, (for any n > 0), the solution u;‘ has the form:
u;‘ =aexp (i(Axxj —wt,)), with Ay =2nk/L, fork € Z. (9.32)
Note that A; = ug. On one hand, from (9.32) and the solution u?’l in (9.27), we get that

. |o if %k
btl’ =

aexp(—iwt,) exp(—iytlal?/2), if [=k,



for —J/2 <1 < J/2 — 1. Plugging it into the second step of (9.27) gives that

w?? = ! exp(=iytlal®/2) exp(—il | 7).

Substituting the above solution u;.”z into the last step of (9.27), we get

=l exp [ it (Il +vlal®)].

u

On the other hand, setting n = n + 1 in (9.32), we get

17+1

U

=aexp (((Axxj — Wtpe1)) = u;’ exp(—iwT).

Comparing (9.33) and (9.34), we obtain

2
w = || +ylal’,
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(9.33)

(9.34)

i.e., the numerical solution from the SSFS method satisfies the dispersion relation of the

plane wave solution.

O

Lemma 9.2.2 implies that the SSFS method can exactly solve the plane wave solution

of the NLS, if there is no numerical error, which makes it an ideal method to study

the long-time behavior of the plane wave dynamics. However, the SSFS method, as an

explicit method, is conditionally stable in simulating the plane wave solution, and sufficient

conditions are need to be derived to avoid its numerical instability, which will be carried

out in Section 9.3
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9.2.2. Crank-Nicolson Fourier Spectral Method. In this section, we study the
Crank—Nicolson Fourier spectral method for solving the fractional NLS. First, let’s define

the pseudo-differential operator

J/2-1
SUy = D Il @ exp (ipurx)). (9.35)

I=—J/2
which can be viewed as a numerical approximation of (—A)%/?u(x, t) at point x = x; and
time t = t,,.
Then, the Crank—Nicolson Fourier spectral (CNFS) method for the fractional NLS
(9.18) reads:

uttt — gy
; j

| 0% 1,2 2 1
= 5 (08U ort) TR ! )

N =

(9.36)
for 0 < j < J and n > 0, where the function F is defined as

1
F(é1, ¢2) = fo (61 + (1 —6)p2)db.

It is easy to compute that

1
F(¢1,¢2) = 3 (o1 + ¢2) .

At n = 0, the initial condition (9.19) is discretized as:

W) =y (x)), 0<j<lJ. (9.37)
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The CNFS method (9.36)—(9.37) is an implicit scheme, which requires solving a nonlinear
system at each time step. Hence, the computational cost of the CNFS method is higher than
that of the SSFS method. However, the CNFS method conserves not only the mass but also

the energy of the fractional NLS. In addition, the CNFS method is time reversible.

Lemma 9.2.3 (CNFS: Mass conservation). Suppose that U" is the numerical solution of
the fractional NLS at time t,, obtained from the CNFS method in (9.36)—(9.37). Then, we

have the discrete mass
J-1 J-1
- hZ ! = hZ WP=N° 20 (9.38)
i=0 i=0

Proof. Multiplying (u;’+1 +u'")" t0 (9.36) and summing it up for 0 < j < J — 1, we obtain

J-1
1 1 1 *
i~ DT =) @i+ ul)
j=0
e J/2-1
=5 (u;“rl + u?)>k Z || () + ul“) exp(ipx;)
j=0 I=—J/2
y J-1
2
+3 2 F UG WG e + i (9.39)
j=0
Note that
J-1 J/2—-1
@) Yl @+ @) explipg)
j=0 1=—J/2
J/2—-1
=7 >0l + @ (9.40)
I=—J/2

Then taking the imaginary part of (9.39) and noticing that 7 > 0, we get

~

-1

> = Z

.
Il
o
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which implies that N"*! = N, and thus (9.38) as n > 0 is arbitrary. O

Lemma 9.2.4 (CNFS: Energy conservation). Suppose that U" is the numerical solution of
the fractional NLS at time t,, obtained from the CNFS method in (9.36)—(9.37). Then, we

have the discrete energy
J/2-1

a ’y n —
hZ[ >l @+ Lt = B nzo. 941

1=—J)2

Proof. We assume that |u;?+1| # |u;.‘|. Multiplying (u;.“rl - u;’)* to (9.36) and summing it

upfor0 < j < J -1, we get

J-1 J-1 J/2-1

1 ) 1 .
l;ZW?“ —uj|” = EZ (M;Hl —uj) Z |l @7 + @) explipx;)
j=0 J 1=—J/2
y J-1 |ur.‘+1|4 |u n|4
—] n+1 n n+1 ny *
+Z |un+1|2 |u n|2( uj)(uj _uj) . (9.42)
J=0 17
Note that
J-1 J/2-1
@) =) Dl @+ ) explip)
J=0 I=—J/2
J-1 Jj2-1
=Z STl L@ P - R + 2im Gy,
j=01=—J/2

Taking the real part of (9.42) yields

J-1 J/2-1 y J—-
—Z > mna(m;’“P—mﬂZ)WZ [ = )] = 0.
j=01=—J/2 j=0

Hence, we get

J-1 _ J/2-1 y J-1 _ J/2-1 y
1 14 2 4
@ P L = 30D i+ L
J=0 " 1==J]2 j=0 "1=-J/2
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for any n > 0, which implies E"*! = E" and thus the energy conservation in (9.41). O

Assume that at time ¢ = ¢, (for any n > 0), the solution u; has the form in (9.32).
Then, the time frequency w obtained from the CNFS method (9.36)—(9.37) satisfies the

relation:

tan% - %(Mkl" +ylalP). (9.43)

If wt < 1, the Taylor expansion of (9.43) yields
w = (| A|* + ylal?) + O(w’1?). (9.44)

Remark 9.2.1 (CNFS: dispersion relation). The CNFS method (9.36)—(9.37) does not
preserve the exact dispersion relation of the plane wave solution, but it gives a good

approximation to the dispersion relation if w3t is small.

9.2.3. Relaxation Fourier Spectral Method. In [9], a relaxation method was first
introduced for the standard NLS, in which the nonlinear part of the NLS is solved in
two steps. It shows that the relaxation method is more efficient than the Crank—Nicolson
method, if the finite difference or finite element methods are used for spatial discretization
[9]. However, if the Fourier spectral method is use for spatial discretization, the relaxation
method has the same computational costs as the Crank—Nicolson method.

First, we write the fractional NLS (9.18) as a system of two equations:

idu(x,t) = (=A)u(x,1) + yo(x, Hu(x, 1),

lu(x, 1)

@(x,1)
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Then, the relaxation Fourier spectral (ReFS) method for (9.18) is given by:

1 n+l
i~ —u) = (6“U”+'| +69U"; )+ @+l (9.45)

41

1wl
Sl 7+ =W 0<j<J nx0 (9.46)

where the operator 6% is defined in (9.35). At n = 0, the initial condition is discretized as

u) =y (x)), ol = WP =)l 0<j<J. (9.47)

=

The ReFS method (9.45)—-(9.47) is implicit, and thus at each time step numerical iterations
are needed to solve the nonlinear system. It is easy to show that the ReFS method is time

reversible. In addition, the ReFS method has the following properties:

Lemma 9.2.5 (ReFS: Mass conservation). Suppose that U" is the numerical solution of the
fractional NLS at time t,, obtained from the ReFS method in (9.45)—(9.47). Then, we have

the discrete mass
J-1 J-1
- hz ul|? = hZ WP=N >0 (9.48)
=0 =0

Proof. Multiplying (u;’+1 + u;’)* to (9.45) and summing it up for 0 < j < J — 1, we obtain

| 4!
i— >y @™ =)y W+ uh)”
T4 J R J
J:
= J/2-1 y Ll 1
. 2 n+sx
=2 (u7+1 i)’ Z | @+ + @) exp (l,u,xj)+5 |u;;+1 rulP
Jj=0 I==J/2 J=0

Taking its imaginary part and noticing that (9.40) and the function ¢ is real, we obtain

~

-1

> = Z

.
1l
o
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which implies that N"*! = N" and thus (9.38) as n > 0 is arbitrary. O

Lemma 9.2.6 (ReFS: Energy conservation). Suppose that U" is the numerical solution of
the fractional NLS at time t,, obtained from the ReFS method in (9.45)—(9.47). Then, we

have the discrete energy
Jj2-1 Ly -
n—s n—s
hZ[ PR AR A T AR o (9.49)
I==J)2

for any n > 0.

Proof. On one hand, multiplying (u”+1 ’.’)’k to (9.36) and summing itup for0 < j < J -1,

we get
= e J/2-1
: 2
i— D T =2 Y T =) ) |l @+ ) explipg)
=0 j=0 1=—=J )2
y J-1 1
n+s on+l n n+1 ny*
+5 2.9 ;" +uf) (™ =)
j=0
Taking its real part yields
J-1 J/2-1 y J-1 1
n+s
—Z 2 (@ =ty + 2 e (P = ) = 0
j=01==J/2 =0

1 1
On the other hand, multiplying (<,0;.1Jr2 - (,0;.1 ) to (9.46) and summing it from O to n, we

obtain

1

n
5(@;%)2 -6 = ) P (or ™ - )

1
12 nt+y 12 nt+s3
—E (A e A T +|u”+|90j g
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Combining the above two equations leads to

J=1 _J/2-1 | |
P A AR CHDY
j=0 " 1=—J)2
J-1 _J/2-1 1
@702 02 =5 Y, -5\2
= | D @R vl - 2],

j=0 " I=—J)2

for any n > 0, which implying the energy conservation in (9.49). O

Assume that at time ¢ = ¢, (for any n > 0), the solution u;.’ has the form in (9.32).
Then, we find that the time frequency w obtained from the ReFS method (9.45)-(9.47)
satisfies (9.43) and (9.44).

Remark 9.2.2 (ReFS: dispersion relation). The ReF'S method (9.45)—(9.37) does not pre-
serve the exact dispersion relation of the plane wave solution, but it gives a good approxi-

mation to the dispersion relation if w3t is small.

9.2.4. Comparison in Simulating Plane Waves. In this section, we will compare
the performance of the three Fourier spectral methods — the SSFS, CNFS and ReFS methods
in simulating the plane wave dynamics of the fractional NLS.

Example 1 We study the plane wave solutions of the 1D fractional NLS (9.1) on
a finite domain [—m, r]. The parameters are chosen as y = 2, and the initial condition is

taken as

u(x,0) = exp(idx), x € [-m, 7], (9.50)

i.e., the amplitude a = 1 and the wave number 1; = 4. It is easy to verify that the exact

solution of (9.1) with (9.50) is

u(x,1) = exp (i(4x —wr)),  with = [A]* +ylal> = 4% + 2. (9.51)

In our simulations, we choose the mesh size 4 = 7/32 and the time step 7 = 0.02.
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Table 9.1 presents the values of mass N(t) of the SSFS, CNFS and ReFS methods
at different time ¢ in solving the 1D fractional NLS (9.18) with @ = 1.5 and y = 2, where
the initial condition is (9.50); Table 9.2 displays the corresponding energy E(¢). It shows

that all of these three methods preserve the mass of the fractional NLS, which is consistent

with our analytical results in Section 9.2.

Table 9.1. Mass N (¢) by different methods.

Time SSES CNFS ReFS
=0 6.3813600776042669 6.3813600776042669 6.3813600776042669
t=2 6.3813600776043637 6.3813600776041390 6.3813600776043593
t=4 6.3813600776044765 6.3813600776040227 6.3813600776044428
=6 6.3813600776046160 6.3813600776038797 6.3813600776045032
=8 6.3813600776046577 6.3813600776037678 6.3813600776045503
t=10 6.3813600776047359 6.3813600776036479 6.3813600776046275

Table 9.2. Energy E(¢) by different methods.

Time SSFS CNFS ReFS
=0 57.432240698438406 57.432240698438406 57.432240698438406
t=2 57.432240698439358 57.432240698437134 57.432240698439315
=4 57.432240698440559 57.432240698436004 57.432240698440161
=6 57.432240698441866 57.432240698434526 57.432240698440765
=8 57.432240698442264 57.432240698433425 57.432240698441248
t=10 57.432240698443110 57.432240698432238 57.432240698442030

Table 9.2 shows that both the CNFS and ReFS methods have the energy conservation,
which verifies our analysis in Lemmas 9.2.4 and 9.2.6. In addition, the SSFS preserves the
energy well in solving the plane wave solution, although it is not analytically proved.

As discussed in Lemma 9.2.2, the SSFS method preserves the dispersion relation
of the plane wave solutions, if the numerical errors are insignificant. In contrast, the CNFS
and ReFS methods have a good approximation to the dispersion relation only when wt <« 1

and the numerical errors are neglectable. To illustrate this difference, we present in Figure
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9.6 the time evolution of Re(u(0,7)) and Im(u(0,¢)) computed from the SSFS and CNFS

methods, for @ = 1 or 2. Note that the results from the ReFS and CNFS methods are almost

0.5

0.5}

Figure 9.6. Time evolution of Re(u(0,¢)) and Im(u(0,7)) from the exact solution (9.52)
(dashed dot line), the SSFS method (solid line) and the CNFS method (dashed line). Note
that the graphs of the exact solution and the numerical solution from the SSFS method are
identical.

the same; thus for a better illustration, we omit the results of the ReFS method from Figure
9.6. In fact, the exact solution of Re(u(0, 7)) and Im(u(0, #)) can be obtained by substituting

x =01in (9.51):

Re(texact (0, 1)) = cos(wt), Im(¢exact (0, 7)) = — sin(wt), (9.52)

i.e., they are periodic functions with period 27 /w. Figure 9.6 shows that the graphs of the
exact solution and the numerical solution from the SSFS method are the same, independent

of the power a, which implies that the SSFS method preserves the exact time frequency of
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the plane wave solution. However, the solution from the CNFS method is more accurate
when the power « is small or the time ¢ is short. For example, when @ = 2, the numerical
solution from the CNFS method has almost the same time frequency as the exact solution
in a short time, but their difference becomes significant over time. While @ = 1, the
results from the CNFS method are consistent with the exact solution for a longer time. To
understand this, we find that when a = 2, the frequency w = 18, and w = 6 if @« = 1. For
the same time step 7, the value of wt is smaller when @ = 1, and thus the CNFS method
has a better approximation to the dispersion relation (reflected by the time frequency) in
this case.

In addition, we present the numerical errors in Re(u(0,7)) and Im(u(0,¢)) of the

SSFS an CNFS methods in Figure 9.7. It shows that for both the SSFS and CNFS methods,

%1072 SSFS method x107"° SSFS method

Error
Error

-2
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6 s s s

0.04
0.02|
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o

-0.02
-0.04
0

Figure 9.7. Numerical errors in Re(u(0, 7)) (solid line) and Im(u(0, ¢)) (dashed line) of the
SSFS and CNFS methods, where @ = 2 (left) or @ = 1 (right).

the smaller the fractional power «, the smaller the numerical errors, but the numerical errors
increase over time. For the same power «, the numerical errors from the CNFS method are

much larger than those from the SSFS method, which is mainly because the CNFS method
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does not satisfy the analytical dispersion relation. Our extensive simulations show that the
numerical errors of the CNFS and ReFS methods can be significantly reduced by decreasing
the time step 7.

Example 2 We further compare the performance of the SSFS, CNFS and ReFS
methods in simulating the plane wave solutions. Here, we consider the fractional NLS (9.1)
on a finite domain [-5m, S7] with @ = 1.1 and v = —1. The initial condition is chosen as

the plane wave solution with a small perturbation [33], i.e.,

u(x,0) = —[1+ dpcos (x/5) ], —5m < x < 5m, (9.53)

Bl -

with |dp] < 1. In our simulations, we choose 8y = 10™>. The mesh size is chosen as
h = 5m/512. It shows that the SSFS method might introduce numerical instability in
simulating the plane wave solution of the NLS, and one sufficient condition to ensure its
stability is that the mesh size and time step satisfies 7 < h® /7% for @ € (0, 2]; see [33] for
more discussions. In contrast, the CNFS and ReFS methods allow much larger time step 7
in the simulations.

To illustrate this, we choose the time step 7 = 0.00909, larger than the threshold of
the SSFS method, and simulate the plane wave dynamics by the SSFS, CNFS and ReFS
methods. Figure 9.8 presents the time evolution of the density |u(x, )| computed from the
SSES (left), CNFS (middle) and ReFS (right) methods. It shows that many humps appear
in the solution of the SSFS method because of its numerical instability. However, due to
the mass conservation of the SSFS method, this instability does not grow unboundedly, and
the plane wave solution recurs periodically. In contrast, the plane wave solution from the

CNFS and ReFS methods remain stable (see Figure 9.8 middle and right panels).
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Figure 9.8. Illustration of the instability of SSFS. Time evolution of |u| of (9.1) with the
initial condition (9.53) computed by the SSFS (left), CNSF (middle), and ReFS (right)
methods, where @ = 1.1 and v = —1 in the 1D fractional NLS (9.1) and & = 57/512 and
7 = 0.00909. It shows that the SSFS method is numerically unstable.

In summary, the SSFS method is more accurate than the other two methods in
simulating plane wave dynamics of the fractional NLS, since it preserves the dispersion
relation. However, as an explicit numerical method, it is more unstable, and its numerical

instability should be avoided in simulating of the plane wave dynamics.

9.3. NUMERICAL INSTABILITY OF SSFS

In numerical studies of plane wave dynamics, it is desirable for a numerical method
to preserve the dispersion relation in (9.6). Among all the three methods, only SSFS method
preserve the dispersion relation, and thus is more accurate in the simulation. However, since
the SSFS is an explicit method, which is conditionally stable. Time step must be taken
small enough to avoid the artificial instability from the SSFS method. In this section, we
study the numerical instability of the SSFS method in solving the plane wave solution (9.5).
At time ¢ = t,,, we consider a perturbed plane wave solution:

up =uj(1+&Y), with 7} = ae!(Axi=win) (9.54)
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where s;?, with |s;.’| < 1, is a small periodic perturbation on [-L/2, L/2] and can be

expanded as:

J/2-1
8’; = Z glet, 0<j<J-1,
1=—J)2
where £

| is the Fourier coeflicient of 8;.‘, defined by

J-1

1 .
=~ § n_—iux;
Sl .—7. Sje H 7, —J/ZSISJ/Z_I

~

Since 8;? is periodic, there is

~
~
—_

-1 -
g = l gle Ik Xj = l gle M¥igmikiXj = g for keZ, (9.55)
I+kJ J J J J l

~
Il
(]

~
Il
e

where in the last equality, we use the fact that e/#+/%/ = 1 since pyx ; = 2mjk is an integer
multiple of 27. In the following numerical instability analysis, the parameter / is always
defined on [-J/2, J/2 — 1] and the subscript of ?5? is also restricted on [-J/2, J/2 — 1]. For
those [ € Z\[-J/2,J /2 — 1], by the periodicity of EIE as shown in (9.55), we can always find
an integer k, such that

=8 ., where [+kJe[-J/2,T/2—1].
) 1+kJ

On one hand, setting n = n + 1 in (9.54) and taking the discrete Fourier transform

of Uh := (up*!, w1, .. ut) yields

. 1+&t!, 1=k
WH — ae—lwt,,+1 _

<+l
g, [ # k,

(9.56)

|~
IA
~
IA
|~
|
p—
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Here we notice that I — k € [-J/2 — k,J/2 — 1 — k], and thus there are some values of
[ — k outside of the range [-J/2,J/2 — 1. For those [ — k € [-J/2 — k,—J/2 — 1], i.e.
le[-J/2,-J/2 -1+ k], by periodicity (9.55), we have E;‘_*kl = é?jkl”.

Thus, we rewrite (9.56) by

1+&t, 1=k

l’[;z+l = q e 1Wn é:;zj—lirJ’ | e [_%, _% +k—1], (9.57)
gl L €[5 +k 3 —11\{k},

On the other hand, we can obtain u;’” from the SSFS scheme in (9.27)-(9.29). To
this end, we substitute u;’ in (9.54) into (9.25) and take the leading order terms of s;.’ to
obtain

=T laPre] 4 ) 0o

with ﬁ? defined in (9.54). Then, taking the discrete Fourier transform of U"+!:~ yields

oo 2_(an P~ —
L Z g emi@tntylal’T) L+ &g —iylal"r(eg + (£0)), =k (9.58)

[
g, —iylalPtE  + EL)Y,  1#k

It arises a same issue as in (9.56) that there are some subscripts of 57 fall out side of

[-J/2,J/2 — 1]. For this reason, we rewrite (9.58) by

+1,— —i 2
1’47 = q ¢ M Wintylal™n)

1 +8p —iylal*t(E} + (E))"), I =k,

&, —iylal* @, + @), lel-L,-L+k-1]
[—k+J [—k+J k=1-J 2 2 (9.59)
g, —iylalPt(E, + (&L, D", l=-4+k,

g, —iylal*t (&, + (E]_)Y), le[-3+k+1,4-11\{k).
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Substituting (9.59) into (9.26) and then take the discrete Fourier transform, we get

i711+1 _ ae—i(wtn+7|a|2‘r+|yl|”‘r)
1+ &1 —iylal*t(E} + (E)"), [ =k,
& —ivlalPt @+ @)Y, le[-4-L+k-1]
» I-k+J I-k+J k—=I1-J 2 2 (9.6())
g, —iylalPtE + (&L, DY), [=-4+k
g, —iylal*t(E, + (E]_)Y), le[-4+k+1,4-11\{k}.

Comparing (9.60) with (9.57) and their complex conjugates, we obtain the following

equations for —% +1<1[< %— land !/ # 0,

g s Ch
= A] ,
& ()"

where for -2 + 1 <1 < -4 +k,

(1 _ i’}/|a|2T)€_i(|'uk+l|a_|/lkla)‘r _l',y|a|2Te_i(|;uk+l|a_|/lk|a)7

~

i)/|a|2‘l'ei(|“k’l’] [“= A )T (1+ i)/|a|2T)ei(|”k’l’J|a_|#k|a)T,

for—f+k+1<I<f-k-1landl#0,

_: 2 =i (|41 |¥ = Ak 1) T s 2 =il =117
(I —iylal"T)e iyla|“te

l = |(Y

iy|a|27-ei(|#k—tI"—I/lkl")T (1 +iy|a|2T)ei(|'uk‘l —|ﬂk|(l)7,

ford —k<l1<4-1,

N~

(1- i7|a|27)e—i(|ﬂk+171Ia—lﬂklo‘)f _l-,ylal27.e—i(|#k+14|“—|/1k|(’)T
l = : (e (e ; @ a
i,yla|2T€l(|/1k—l| =[x |)T (1 + iylalz‘r)e’(lﬂk‘l' =l )7-.
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While for / = -2, since - = ¢ [-4, 4 — 1], it has a different representation,
n+l —~
€_un €_sp
| =A_jpn ,
+ * %
(€25, (&)
where
(1- i7|a|27)e—i(|#k71/2|”—|/1kIQ)T _i,},la|2Te—i(|,uk,l/2|ﬂ_|/1k|<Y)T
A_J/2 - j @ @ 7 (e (o2
i,ylalzTel(“lk—J/Zl =T (1 +l-,y|a|27_)el(|,uk_1/2| —| k| )T’

The eigenvalues of matrix A; are computed as:

Ais = (cos 0; — yla|* sin 91) + \/(COS 0, — vla|*t sin 91)2 -1 (9.61)
with
T a @ o . J
=(ur=sy2 k—g2l = 2| Ak, = -3,
2(|,U 1%+ |u | = 2] 4¢[%), if [
T .
§(|,Uk+l|a oy =20 %), i -4+ 1<I<-f+k,
0, = = (9.62)
§(|,Uk+l|a + -] = 21241Y), it O<|l|<4-k-1,
<
§(|,Uk+l—l|a o =200, if -k <I<$-1.

The modes (£, (é\’i}Ll)*)T exponentially grow if the eigenvalue |A; 4| > 1 or |A;_| > 1.

Thus, we obtain the instability condition in the following lemma:

Lemma 9.3.1 (Instability condition). The unstable modes of the split-step Fourier spec-
tral (SSFS) method in solving the plane wave solutions are those satisfying the following

condition:

J J
|cos 6, — ylal*T sin 6| > 1, —5 sl o1 (9.63)
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with 0; defined in (9.62). This condition includes both the analytically unstable modes

satisfying (9.10) and numerically unstable modes introduced by the SSF'S method.
In fact, when time step 7 is small, a Taylor expansion of (cos 6; — ylalzr sinf;) > 1

for 0 < |I] < 4 —k — 1 yields

[latksrl® + Tar—gl® = 201 [t + Lie—i]® = 2(1241% = 2y]al®)] + O(x%) < 0,

which corresponds to the analytical instability condition obtained in (9.10). Similarly, a

Taylor expansion of (cos 6; — ylalzr sinf;) < —1 gives that

16
[latk—t]® + Tarerl® = 2001 [pt—t]® + Lprax]® = 2(124]* = 2ylal®)] + O(r?) < =

These are the unstable modes numerically introduced by the SSFS method, and thus we

want to avoid them in simulations.

Remark 9.3.1. For the standard NLS with a = 2, the instability condition in (9.63) reduces

to

| cos (,u%r) — yla|?®tsin (,u%T) | > 1, -

which is consistent with the conclusion obtained in the literature [12, 86].

It shows that in the standard NLS, although the analytical instability of the plane
wave solution is independent of the wave number A, the numerical instability of the SSFS
method depends on Aj. Following the similar arguments in [86], we can obtain from (9.63)
the sufficient conditions of the time step T and mesh size /4 to avoid numerical instability of

the SSFS method in solving the plane wave solution of NLS.
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Remark 9.3.2. In the focusing NLS with y < 0, one sufficient condition to ensure the SSFS

method stable in solving the plane wave solution (9.5) with A = 0 is:

for a € (0,2]. (9.64)

It is easy to verify that when a = 2, (9.64) reduces to the sufficient condition obtained in

the literature [86].

The detailed derivation of Remark 9.3.2 can be found in Appendix A. Remark 9.3.2
shows that for the same mesh size, the larger the fractional power «, the smaller the threshold

of the time step.

Remark 9.3.3. In the defocusing NLS with v > 0, one sufficient condition to ensure the

SSF'S method stable in solving the plane wave solution (9.5) with Ay = 0 is:

2 h?

r GOEON o w e 0.2) (9.65)
n
where ¢ € (—n/2,0), and it satisfies

1 —ylal*t

S — ¢= — .
V1 +v2lal*r? V1 +v2lal*r?

The derivation of Remark 9.3.3 can be found in Appendix B. The sufficient condition

Ccos ¢ =

in (9.65) is implicit. When the mesh size h and time step T are small, a Taylor expansion of

(9.65) leads to an explicit condition:

mh®

P L——e 10 LY f € (0,2]. 9.66
T T 2y lalthe (h7”) or a € (0,2] (9.66)

The sufficient conditions in Remarks 9.3.2 and 9.3.3 provide us some guide for choosing

the time step and mesh size in simulating the plane wave solution of the NLS equation.
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We remark that our analysis in this section can be generalized to the higher order
split-step method. Our conclusions on numerical stability in Lemma 9.3 and Remarks
9.3.1-9.3.3 are also valid for high-order split-step Fourier spectral method. In particular,
we numerically verify that the threshold in (9.64) and (9.66) is the same for the higher order

split-step method, but the growth rate of numerical instability is different.

9.4. NUMERICAL STUDY ON PLANE WAVE DYNAMICS

We study the dynamics of the unstable plane wave solution by simulating the
fractional NLS (9.1) with the first-order split-step Fourier spectral (SSFS) method. To
understand the nonlocal effects of the fractional Laplacian, the plane wave dynamics in the
fractional NLS are compared to those in the standard NLS. In this section, the time step 7
is chosen to be small enough to avoid numerical instability of the SSFS method. The initial

condition is chosen as a perturbed plane wave solution of the following form:

: 2
u(x,0) =a e”l"x(l + &0 coS %),

N | B~

L
<x< E, (967)

where a and g are constants, and |gg| < 1. Our simulations show that different perturbation
in the initial condition may slightly affect the dynamics of the plane wave solution, but it does
not affect our conclusions on comparing the fractional and standard NLS. In the following,
we choose €9 = 107 and a = % in (9.67), and the domain size L = 5.

9.4.1. Focusing NLS. We study the dynamics of the plane wave solution when
v < 0in (9.1), and the frequency A; = 0 and Ay # 0 are considered in Examples 9.4.1 and

9.4.2, respectively.

Example 9.4.1 We choose 1; = 0 in the initial state (9.67) and the nonlinear
coefficient y = —1 in the NLS (9.1). The analysis in Remark 9.3.2 shows that for any
a € [0.76,2], there exists one pair unstable modes at [ = +1, and thus the plane wave

solutions are unstable in this case. Figure 9.9 presents the time evolution of |u(x,?)| for
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Figure 9.9. Dynamics of the unstable plane wave solution in the 1D focusing NLS with
v = —1 and A; = 0 in the initial state (9.67). The recurrence of plane wave solution is
observed in the standard NLS and the fractional NLS with large fractional power «.

different @. It shows that the solution remains a plane wave for a short time, and then
around # = 50 one hump appears due to the instability. In the standard NLS with o = 2,
the well-known recurrence of the plane wave solution is observed, whereby the solution is
repeated periodically during the evolution (see Figure 9.9 top left).

In the fractional case @ < 2, the dynamics of plane wave solution crucially depends
on the fractional power «, and its behaviors can be divided into two regimes: 1 < @ < 2
and 0 < @ < 1. When « is close to 2, the dynamics is similar to that in the standard NLS.
One single hump periodically emerges during the dynamics, and the smaller the fractional
power «a, the shorter the period. The recurrence of the plane wave solution is observed when
a close enough to 2 (e.g., @ = 1.98 from our extensive simulations). As « decreases, the
dynamics loses its periodicity in time, and the recurrence of the plane wave solution ceases
(see Figure 9.9 for @ = 1.6 or 1.3). Moreover, as « approaches 1 from above, the solution

tends to collapse shortly after the hump appears (see Figure 9.9 for @ = 1.1). Figure 9.10
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further shows the time evolution of the solution around the time when the peak emerges

for the first time. When a = 1.9, the peak reaches its maximum around # = 52 and then

! —1t=56
| Ct=57
! ‘== t=58
' - - -t=59

Figure 9.10. Time evolution of the wave function around the peak first appears with y = —1
in the fractional NLS (9.1) and A; = O in the initial state (9.67).

it quickly dissolves. As a decreases, the hump becomes more concentrated around x = 0,
which is also taller because of the normalization constraint (see Figure 9.10 middle). While
a is close to 1, the solution tends to collapse along with decoherence, which is mainly
caused by the nonlocal effects from the fractional Laplacian [54].

For @ < 1, our extensive simulations show that the plane wave solution collapse after
the instability develops. The more analytically unstable modes exist in the computational
domain, the earlier the collapse occurs.

Figure 9.11 displays the time evolution of the spectrum of the solution u(x, t), with
its density dynamics shown in Figure 9.9. Since the spectrum |F [u(x,?)]| is symmetric
with respect to 4 = 0, we only present the results for 4 > 0 to get a better illustration.
Also, our computational spectrum domain is much larger than that displayed in Figure 9.11.
In the standard NLS with @ = 2, the spectrum expands as the unstable modes grow, and
correspondingly a bump appears in the density |u(x, )| (see Figure 9.9 for @ = 2). This
process is repeated periodically. In the fractional case with « close to 2, the dynamics of

the spectrum is similar to that in the standard cases. The smaller the fractional power «,
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Figure 9.11. Time evolution of log;, |F (u(x,))| in the 1D focusing NLS with y = —1
and A; = 0 in the initial condition (9.67). The spectrum broadens as the fractional power
decreases.

the more frequently the spectrum expands. However, when « is close to 1, the spectrum
expands quickly, after the analytical instability is triggered, to a large frequency domain
(see Figure 9.11 for @ = 1.1).

The dynamics of the spectrum in Figure 9.11 clearly demonstrates the nonlocal
effects of the fractional Laplacian. Due to the long-range interactions from the fractional
Laplacian, the analytical instability at low-y; quickly “leaks" to the high wave number
region. The smaller the fractional power, the stronger the long-range interactions, the
stronger the “leakage" of the instability.

Example 9.4.2 We choose Ay = 4x/L in the initial state (9.67) and study the
dynamics of unstable plane wave solution. The nonlinear coefficient of the NLS in (9.1) is

taken as y = —1. Compared to Example 8.3.1, the perturbed plane wave in this case would
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move with the group velocity:

_ 0w _ |l
Vg = Py a ST Ar #0, (9.68)

where w is the dispersion relation in (9.6).

Figure 9.12 shows the time evolution of |u(x,t)| for different a. In the standard

lufx, )l
lugx, i)
lugx, )l

Figure 9.12. Dynamics of the unstable plane wave solution in the 1D focusing NLS with

v = —1 and A = 4x/L in the initial state (9.67). The recurrence of the plane wave solution
is observed in both standard and fractional NLS.

NLS with @ = 2, the recurrence of plane wave solution is observed. When the instability
develops, one hump appears in the density plot, and it moves along the x-axis. The dynamics
when @ = 1.9 is similar, but the recurrence of the hump becomes more frequent. When

a = 1.6 or 1.3, there are two unstable pairs at / = =1 and +2, and thus there may be one
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or two humps appearing during the dynamics, depending on whether the first or second
mode becomes dominant. For @ = 1 or 0.9, there is only one unstable pair at / = +3, and
correspondingly three humps in the density.

Note that in contrast to the results in Example 9.4.1, no wave collapse is observed
when @ < 1. Figure 9.13 shows the dynamics of the solution around the time when the peak

first appears, for @ = 1.9,1.3 and 1. It shows that the velocity decreases as the fractional

Figure 9.13. Time evolution of the wave function around the time when the peak first
appears with y = —1 in the fractional NLS (9.1) and A = 4x/L on the initial state (9.67).

power « increases, consistent with our prediction from (9.68).

Figure 9.14 shows the time evolution of the spectrum corresponding to the density
dynamics in Figure 9.12. Compared to the case with A3 = 0, the “leakage" of instability to
high-; is greatly reduced when A; # 0. In particular, the spectrum is contained in a narrow
band when @ = 1, which is significantly different from the dynamics when A; = 0. For
a < 1, the spectrum broadens still quickly after the instability develops, but still remains
much narrower than in the 4; = O cases.

9.4.2. Defocusing NLS. In the defocusing cases with y > 0, our numerical simu-
lations shows that the plane wave solution is always stable if 1y = 0or 1 < @ < 2, which is
consistent with the analysis in Section 9.1. Therefore, in Example 9.4.3, we will only focus

on the case with A; #0and 0 < a < 1.
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Figure 9.14. Time evolution of log;, |¥ (u(x,?))| in the 1D focusing NLS with y = —1 and
Ax = 4n/L in the initial state (9.67).

Example 9.4.3 Let 1; = 4n/L in the initial state (9.67) and v = 1. Figure 9.15
presents the time evolution of the wave function and its spectrum for @ = 0.9 and 0.7.
For both these values of @, there exist two unstable pairs: at [ = +1 and +2, and thus
the plane wave solution is unstable. Since A # 0, the wave moves along the x-axis from
left to right (see Figure 9.15 middle). During the dynamics, the recurrence of the plane
wave solution is not observed. Figure 9.15 (right) shows that the spectrum broadens after
instability develops, and it is much wider for @ = 0.9 than for @ = 0.7. This phenomenon
is different from that observed in the focusing cases where it appears that the smaller the
fractional power «, the wider the spectrum (see Figure 9.14). Moreover, comparing the
spectra in Figures 9.14 and 9.15 for @ = 0.9, one see that the spectrum in the focusing NLS

is much wider than that in the defocusing case.
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Figure 9.15. Dynamics of the unstable plane wave solution in the 1D defocusing NLS with
v =1 and Ay = 4n/L in the initial condition (9.67).

In summary, Examples 9.4.1-9.4.3 and our extensive simulations show that the
dynamics of a perturbed plane wave solution are significantly different in the standard
and fractional NLS. As instability occurs, the dynamics in the fractional NLS tends to be
more chaotic than that in the standard case, which makes the recurrence of the plane wave
solution less likely. As a decreases from 2, the spectrum of the solution becomes wider.
The instability analysis of the plane wave solution in Section 9.1 are consistent with our
simulations performed in this section. However, the linear stability analysis fails to predict
the broadening of the spectrum, but which is common in the dynamics with long-range
interactions [55, 91]. We note that as @« — 1, the spectrum of the solution becomes very
broad (more so far the focusing case), which suggests that a wave collapse occurs at or close
to @ = 1. Simulations in the regime a ~ 1 are, therefore, very time-consuming. More
numerical and analytical studies are demanded to understand the dynamics of fractional

NLS.
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10. CONCLUSION

The main purpose of this dissertation is to provide novel and accurate numerical
methods for the fractional Laplacian with applications on solving the fractional Schrodinger
equation. In this section, we summarize the main results in this dissertation.

We proposed two novel and accurate finite difference methods — the weighted trape-
zoidal method and the weighted linear interpolation method to discretize the fractional
Laplacian. The novelty of our methods is the use of the weighted integral, which reveals
the nonlocal natural of the fractional Laplacian. A splitting parameter vy is introduced so
that the fractional Laplacian is rewritten as a weighted integral of function y, (x, £) with
weight |£|7~(@+®) Notably, the choice of the splitting parameter y plays the most important
role in the accuracy of our methods. The universal optimal choice for any d dimension
(d > 1) is y = 2, which provides the most accurate results compare to the other choices,
i.e., ¥ # 2, in both methods. Additionally, there is one more optimal choice of the splitting
parameter in one dimension for each method. For the weighted trapezoidal method, taking
v = 1 + a/2 provides the same accuracy as y = 2; for the weighted linear interpolation
method, besides y = 2, the parameter y = 1 is another optimal choice that can provide
the most accurate results. Moreover, the weighted trapezoidal method closely resembling
the central difference scheme for the standard Laplacian —A, which is indeed a fractional
generalization of the central difference scheme with the 2nd order accuracy for smooth
enough functions. In implementation, the computation of the matrix-vector product Au is
achieved efficiently by using the fast Fourier transform (FFT).

In addition, we prove the accuracy of both numerical methods analytically. The
analysis of the weighted trapezoidal method is not as standard as the weighted linear
interpolation method. The most important technique that is used in the error analysis of

the former method is the weighted Montgomery’s identity. The standard Montgomery’s
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identity plays important role in the context of the integral approximation. Recently, the
Montgomery’s identity is generalized to a weighted version for any order differentiable
functions with two variables, however, in contrast to its standard counterpart, it has not
yet been applied to the error analysis of the weighted integral approximations. The error
analysis of the weighted trapezoidal method not only fills this gap but also suggests a broad
application of the weighted Montgomery’s identity to the field of the weighted integral
approximations.

As the first application of the fractional Laplacian, we numerically solve the ground
and the first excited states of the fractional Schrodinger equation in an infinite potential well
by a normalized fractional gradient flow combine with the weighted trapezoidal method
in space and the semi-implicit Euler method in time. Our numerical results suggest that
the eigenfunctions of the fractional Schrodinger equation are different from those of the
standard Schrodinger equations. The nonlocal interactions are stronger when the fractional
power « is smaller, which leads to a larger scattering of particles in an infinite potential
well. In addition, our solutions are consistent not only with the approximation results in
[59, 96] but also with the best lower and upper bounds in [3, 17, 35].

As the second application of the fractional Laplacian, we investigate the stability
and dynamics of the plane wave solutions of the fractional nonlinear Schrodinger equation
from both analytical and numerical perspectives. We presented the linear stability analysis
to study the stability of the plane wave solution. Our analysis shows that the stability of the
plane wave solution in the fractional NLS is more complicated than its standard counterpart.
To further understand the nonlinear stage of the plane wave dynamics, we proposed and
compared three numerical methods, i.e., the split-step Fourier spectral (SSFS) method,
the Crank—Nicolson Fourier spectral (CNFS), and the relaxation Fourier spectral (ReFS)
method, for solving the fractional NLS. The SSFS is more accurate in simulating the
plane wave dynamics since it preserves the dispersion relation of the plane wave solutions.

We further applied the SSFS method to study the dynamics of the plane wave solution
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of the fractional NLS, where the time step is taken small enough to avoid the numerical
instability from the SSFS method. Our numerical results suggest new phenomena that
are different from the standard NLS, such as the well-known recurrence of the plane wave
solution does not always occurs in the fractional cases, and the leakage of the low-frequency
instability to high frequency is observed. The fractional power « reflects the nonlocality
of the system, the smaller the fractional power, the stronger the long-range interactions,
the stronger the leakage of instability. In addition, due to the expansion of the spectrum,
numerical simulations for the fractional NLS, especially with focusing interactions, could
be challenging. More numerical and analytical studies are demanded to understand the

dynamics of fractional NLS.
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Let’s define ¢, such that

1 —ylal*t

— sin(¢) = ————.
V1 +y?%al*r? V1 +y?lal*r?

Then, the instability condition in (9.63) is equivalent to

cos(¢) =

| cos(6; — @)| > cos ¢,

i.e., there exists an integer p, such that

6; — ¢ — prr| < |8l (A.1)

When y < 0, we have sin¢ > 0 and cos¢ > 0. Without loss of generality, we choose

¢ € (0,%). Then, (A.1) can be written as:

pr < 0; <2¢ + pn. (A.2)

Now let’s first consider the case with A; = 0, for which (9.62) gives that 8; = 7|1;|* > 0.
Now we will focus on p € Z* U {0} in (A.2) since if p < —1,2¢ + pr < 0 but §; > 0.

If p =0, (A.2) becomes

0 < 7| < 2arctan(—yla|*7), (A.3)

as ¢ = arctan(—y|a|>t). Furthermore, the Taylor expansion shows that

arctan(—ylal*t) = —ylal>t + O(r%),  if |yllal*t < 1.
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Substituting it into (A.3) leads to

0 < |wl® < =2ylal* + O(?),

which corresponds to the analytical instability condition in (9.17).

Note that our goal is to avoid the numerical instability, i.e., finding the condition for
mesh size h and time step 7 such that (A.2) is not satisfied.

Now we will focus on p € Z* in (A.2). To avoid the numerical instability, we can

let max; 68; < «,i.e.,

T max ¢ <. A4
-J/2<i<J/2-1 |,Lll| ( )

From the definition of w; and mesh size &, we obtain max; |y;|* = (Ja/L)* = (n/h)®.
Substituting it into (A.4) yields the sufficient condition (9.64) in Remark 9.3.1 for avoiding

the numerical instability of the SSFS method.



APPENDIX B
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When vy > 0, we choose ¢ € (—%,O) without loss of generality, and then (A.1)

becomes

2¢ + pn < 0; < pm. (B.1)

Now we first consider the case with A1y = 0. If p < 0, (B.1) leads to 8; < 0, which is a
conflict with 6; = 7|;|* > 0. Hence, we focus on (B.1) with p € Z*. To avoid numerical

instability, we let max; 6; < 2¢ + 7, i.e.,

T max || < 2¢ + m, (B.2)
-J/2<1<J/2-1

since —m/2 < ¢ < 0. Substituting max; |;|* = (Jr/L)* = (n/h)® into (B.2) gives the

sufficient condition (9.65) in Remark 9.3.3.
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