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ABSTRACT

Analogues of special functions on time scales are studied with special focus on

the time scale T = hZ. Functions investigated in particular include complex monomi-

als, new trigonometric functions, Gaussian bell, Hermite and Laguerre polynomials,

Bessel functions, and hypergeometric series.
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1. INTRODUCTION

Continuous calculus, finite difference calculus, and the so-called q-calculus have

worked in tandem for hundreds of years, but are typically approached using different

notations and intuitions. They perhaps most richly interact within the study of special

functions — those functions which we have found it useful to name such as Bessel

functions, the gamma function, orthogonal polynomials, and trigonometric functions.

Once a function has entered the “list of special functions”, its use to solve problems

becomes acceptable. In this way, special functions “constitute a common currency”

of mathematics [5, page 12], and their use allows us to express solutions of problems

in a closed form. The theory of special functions encompasses a huge amount of

mathematics, and they have historically proven useful time after time.

Most special functions were encountered while doing other scientific endeavors.

For instance, Bessel functions appear in solving Laplace’s partial differential equation

in cylindrical coordinates. Bessel functions are not generally reducible to simpler

functions, so we allow the solution to be expressed in terms of them. Special functions

frequently manifest from a differential equation, and their properties are often found

by manipulating power series. We have reserved Section 2 to summarize the well-

known classical results for which we will find analogues in the sequel. We have

included domain colorings of the classical special functions in Figure 2.8.

Time scale calculus is a relatively new branch of mathematics that unifies and

extends the similarities between differential calculus, difference calculus, q-calculus,

and more. Its investigation was initiated in 1988 by Stefan Hilger in his PhD thesis

and has since led to many papers and a few books. One does time scale calculus upon

a closed subset of R (of which there are uncountably many) called a time scale and

consequently for each closed subset of R, there is a theory of calculus unique to that
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time scale. If one proves a theorem in the full generality of time scale calculus, one

gains as a consequence a theorem in the theory of differential equations, a theorem

in the theory of difference equations, a theorem in the theory of q-calculus, and in

fact an analogous theorem for every time scale. This unifying principle can be seen

in some applications. For instance, in [32, Example 39], the wealth generated by

different interest schemes are compared using the time scale exponential function –

with the time scale T = R the interest rate is continuous compounding interest, while

the time scale T = Z may model yearly compounding interest. In this way, time scale

calculus is a powerful technique and method of organizing mathematics.

Our primary goal is to find analogues of the classical special functions in the

generality offered by time scale calculus. This investigation was formally initiated

in [27]. In Section 3 we look at two complexifications of the discrete monomials

which we have visualized in Figure 3.1 and Figure 3.2. After this, Section 3 contains

a detailed investigation in the particular time scale T = hZ with the “obvious” ana-

logues for some more general time scales reserved for Section 4 using the polynomial

shift operator as defined by Figure 4.1. Of the functions we have found analogues for

are tangent and other unstudied trigonometric functions, Bessel functions, Gaussian

bell, Hermite polynomials, Laguerre polynomials, and generalized hypergeometric se-

ries. The last item in particular will yield many new special functions that do not

appear in this thesis by comparing to the existing literature for hypergeometric series.

Our methods unfortunately do not extend to all time scales because of the lack of a

critical ingredient: a formula for the inverse Laplace transform for all time scales.
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2. CLASSICAL SPECIAL FUNCTIONS

2.1. REAL CALCULUS

The derivative of a function f : R→ C is defined by

f ′(t) = lim
h→0+

f(t+ h)− f(t)

h
. (1)

For higher-order derivatives we use the notation f (n). If f is infinitely-times differ-

entiable at a point t0, then in a neighborhood of t0 the following formula, called a

Taylor series, holds [36, Theorem 8.4]

f(t) =
∞∑
k=0

f (k)(t0)(t− t0)k. (2)

The Laplace transform L is a linear operator on functions f : R→ C defined

by the formula

L {f}(z) =

∫ ∞
0

f(τ)e−zτdτ. (3)

We have included many common Laplace transforms in Table 2.1. The following

formula holds [37, Theorem 2.12]:

L {f (n)}(z) = znL {f}(z)−
n−1∑
j=0

zn−j−1f (j)(0). (4)

We say that two functions f and g are asymptotically equivalent, written f ≈ g if

lim
x→∞

f(x)

g(x)
= 1. The convolution integral of two functions f and g is the function

(f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ)dτ. (5)
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Table 2.1. Laplace transforms of classical special functions.

Function Laplace transform Source

tn

n!

1

zn+1

eαx
1

z − α

cosh(αt)
z

z2 − α2

cos(αt)
z

α2 + z2

sin(αt)
α

α2 + z2

J0(t)
1√
z2 + 1

[39, page 61]

Jν(t)
1√

z2 + 1[
√
z2 + 1 + z]ν

[39, page 61]

t
ν
2

α
ν
2

Jν(2
√
αt); Re(ν) > −1

1

zν+1e
α
z

[39, page 22 (E1.3.1)]

The convolution obeys the so-called convolution theorem [18, Theorem 10.1, page 46]

L {f ∗ g}(z) = L {f}(z)L {g}(z). (6)

2.2. COMPLEX CALCULUS

The symbol i stands for the imaginary number i =
√
−1. The complex num-

bers are the elements of the set C = {x+ iy : x, y ∈ R}. We represent points in C on

a plane by corresponding x+ iy ∈ C to the point (x, y) in the plane. This induces the
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ability to associate to any x + iy ∈ C an angle θ (measured from the x-axis) and a

length r (measured from (0, 0)) called the polar form of x+ iy = reiθ. Given z0 ∈ C,

we define the notation for a disk of radius ε centered at z0 by

Dε(z0) = {z ∈ C : |z − z0| < ε}.

The product of two series may be computed and is called a Cauchy product:

(
∞∑
k=0

ak

)(
∞∑
k=0

bk

)
=
∞∑
k=0

k∑
j=0

ajbk−j. (7)

Let f : C → C. The complex derivative of f at z0 is defined [15, page 56] by

the formula

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

,

provided the limit exists. If U ⊂ C and f possesses a complex derivative at all z ∈ U ,

then we say that f is holomorphic on U . It is known [23, Corollary 3.1.2] that if f is

once complex-differentiable at z0, then it is infinitely-times complex-differentiable at

z0. It is known [23, Theorem 3.3.1] that if f is holomorphic on U , then at each point

z0 ∈ U , there exists an εz0 > 0 with Dεz0
(z0) ⊂ U such that for all z ∈ Dεz0

(z0),

f(z) =
∞∑
k=0

dfn

dzn
(z0)

(z − z0)k

k!
.

If f : Dε(z0) \ {z0} → C is holomorphic, then we know [23, Theorem 4.3.2] that there

exists a so-called Laurent series expansion for z ∈ Dε(z0) \ {z0}

f(z) =
∞∑

j=−∞

aj(z − z0)j (8)

where for 0 < s < ε and ∂D denoting the boundary of the disk, the coefficients are
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given by the contour integral

aj =
1

2πi

∮
∂D(z0,s)

f(ζ)

(ζ − z0)j+1
dζ.

If aj = 0 for all j < 0, then we call z0 a removable singularity and (8) defines a

holomorphic function. If k > 0 and aj = 0 for all −∞ < j < −k, then we call z0 a

pole of order k of f . If inf{aj : aj 6= 0} = −∞, then we call z0 an essential singularity

of f . If f has Laurent series f(z) =
∞∑

k=−∞

ak(z − z0)k in the annulus Dε(z0) \ {z0},

then we define [15, page 231] the residue of f to be Res
z=z0

f(z) = a−1, i.e., the coefficient

of the term
1

z − z0

.

Since both the domain and codomain of a function f : C → C are two-

dimensional, it is not immediately clear how to render a graph of such a function.

What we will do is associate to each θ ∈ [0, 2π) a color as in Figure 2.1. For instance,

all positive real numbers are “red”, all negative real numbers are “light blue”, the

number i is “green”.

To visualize a complex function f : C → C, we visualize the mapping in the

domain and range through a domain coloring. For example, if f(z) = z2, then we

know that f(i) = −1. This suggests in the domain coloring of f at the position of i

(i.e., at at (0, 1)) in the plane matches the color of −1 at (−1, 0) in the plane (light

blue) as demonstrated in Figure 2.2. In the sequel we will omit the left image in all

pictures because it will always be C. The magnitude of each point is described by

the darkness of the image at the point. For example, the function f(z) = e−z
2

has

small magnitude away from zero on the real line as shown in Figure 2.3. Using domain

coloring, we can observe qualitatively interesting properties of complex functions. For

example, the periodic nature of eiz manifests itself as repeating bands of color along

any vertical line in C as shown in Figure 2.4. The zeros of a function are represented

as black spots, as Figure 2.5 shows. A chosen branch cut of a multi-valued function
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Figure 2.1. Domain coloring of f(z) = z.

f−→

Figure 2.2. Domain coloring of f(z) = z2.
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Figure 2.3. Domain coloring of f(z) = e−z
2
.

Figure 2.4. Domain coloring of ez.
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Figure 2.5. Domain coloring of f(z) = z(z2 − 1)(z2 + 1).

is clear from the domain coloring Figure 2.6. Suppose f is a holomorphic function

with an essential singularity at z. The big Picard theorem [23, Theorem 10.5.6, page

323] states that in any neighborhood z, the function f maps to all values of C except

possibly one. The effect such a singularity has on a domain coloring is an infinite

repeating pattern of striped colors converging to a point as shown in Figure 2.7. We

have included domain colorings of classical special function in Figure 2.8.

2.3. ELEMENTARY CLASSICAL SPECIAL FUNCTIONS

The function exp is defined to be the solution of the initial value problem

y′(t) = y(t), y(0) = 1.
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Figure 2.6. Domain coloring of f(z) = log(z) with branch cut (−∞, 0].

We will often express exp(t) as et, where e = exp(1). The following Taylor series is

known:

ez =
∞∑
k=0

zk

k!
. (9)

The function sin is defined to be the solution of the initial value problem

y′′(t) = −y(t), y(0) = 0, y′(0) = 1. (10)

The function cos is the solution of the initial value problem

y′′(t) = −y(t), y(0) = 1, y′(0) = 0. (11)

The following formula is called Euler’s identity:

eit = cos(t) + i sin(t),
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Figure 2.7. Domain coloring of e
1
z with essential singularity at z = 0.

and consequently we have

cos(t) =
eit + e−it

2
(12)

and

sin(t) =
eit − e−it

2i
.

The following formula is well known:

cos2(t) + sin2(t) = 1. (13)

The tangent function is tan =
sin

cos
. If we restrict tan to the interval

(
−π
2
,
π

2

)
, then

we may define an inverse tangent function arctan: R →
(
−π

2
,
π

2

)
. The following

complex formulation of arctan is known [1, 4.4.28, page 80]:

arctan t =
i

2
log

(
1− it
1 + it

)
. (14)
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A sequence of orthogonal polynomials is a sequence of polynomials {Pn}∞n=0 such

that there exists an inner product 〈·, ·〉 such that 〈Pn, Pm〉 = 0 for m 6= n. The

following theorem is called the three-term-recurrence of a sequence of orthogonal

polynomials [28, Theorem 2.2.1].

Theorem 2.3.1. Let 〈·, ·〉 be an inner product to which the sequence {pn}∞n=0 of

polynomials is orthogonal respect to. Then there exist constants αn, βn, γn such that

the following formula holds for all n ∈ N0:

pn+1(t) = (αnt+ βn)pn(t) + γnpn−1(t).

2.4. GAMMA FUNCTION AND INCOMPLETE GAMMA FUNCTION

The Gamma function Γ is defined for t > 0 by the formula

Γ(t) =

∫ ∞
0

ξt−1e−ξdξ. (15)

Using integration by parts, it can be shown that

Γ(t+ 1) = tΓ(t). (16)

It is known [2, page 7] that Γ(1
2
) =
√
π. Combining this with (16) for k ∈ N0 yields

Γ

(
1

2
− k
)

=
(−2)k

√
π

(2k − 1) · (2k − 3) · . . . · 5 · 3 · 1
=

(−1)k22k
√
πk!

(2k)!
. (17)

The formula (16) can be used to extend the domain of Γ to negative values. For

instance, Γ

(
−1

2

)
=

Γ(−1
2

+ 1)

−1
2

. With this formula, we must deduce that Γ has a

pole at t = 0 and hence also at t = −1,−2, . . .. Sometimes we exploit this fact to see

the zeros of the reciprocal gamma function
1

Γ
are at t = 0,−1,−2, . . .. The following
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formula is known as the Euler reflection formula [2, page 9, Theorem 1.21]:

Γ(t)Γ(1− t) =
π

sin(tπ)
. (18)

The following formula holds [38, (12)] for any α ∈ C and z ∈ C \ {−α,−α− 1, . . . −

β,−β − 1, . . .}:
Γ(z + α)

Γ(z + β)
≈ zα−β. (19)

The incomplete gamma function γ is defined by the formula

γ(ξ, x) =

∫ x

0

tξ−1e−tdt. (20)

It is known [21, page 135 (4)] that

γ(a, x) = e−x
∞∑
k=0

xa+k

an+1
. (21)

We will use the gamma function to define binomial coefficients as studied in detail

in [22]: (
α

β

)
=

Γ(α + 1)

Γ(β + 1)Γ(α− β + 1)
. (22)

The following formula is called the binomial series [1, page 14]:

(1 + x)α =
∞∑
k=0

(
α

k

)
xk =

∞∑
k=0

Γ(α + 1)

k!Γ(α− k + 1)
xk. (23)

2.5. BESSEL FUNCTIONS

The Bessel function Jν is defined by the formula

Jν(t) =
∞∑
k=0

(−1)kt2k+ν

Γ(k + ν + 1)22k+νk!
. (24)
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This function is a solution to Bessel’s differential equation

t2y′′ + ty′ + (t2 − ν2)y = 0. (25)

It is known in general that y(t) = tαJν(ξx
γ) solves the differential equation

t2y′′ + (1− 2α)ty′ + (ξ2γ2z2γ + (α2 − ν2γ2))y = 0. (26)

The following formulas are well known [31, (11), page 39]:

sin(z) =

√
πz

2
J 1

2
(z) (27)

and

cos(z) =

√
πz

2
J− 1

2
(z). (28)

The following Laplace transform holds:

L {Jν(·)}(z) =
1√

z2 + 1[
√
z2 + 1 + z]−ν

and it is deduced in [39, page 61 (E2.4.3)] as the solution of the differential equation

(z2 + 1)y′′(z) + 3zy′(z) + (1− n2)y(z) = 0 (29)

The following Laplace transform holds for Re(ν) > −1 [39, page 22 (E1.3.1)]:

L
{
t
ν
2Jν

(
2
√
αt
)}

(z) =
α
ν
2

zν+1e
α
z

. (30)
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(a) Domain coloring of
z4+3i

Γ(4 + 3i+ 1)
with branch cut (−∞, 0).

(b) Domain coloring of
z4+3i

Γ(4 + 3i+ 1)
with branch cut (0,∞).

(c) Domain coloring of sin(z). (d) Domain coloring of cos(z).

(e) Domain coloring of Γ(z). (f) Domain coloring of Bessel J0(z).

Figure 2.8. Domain colorings of classical special functions.
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2.6. HYPERGEOMETRIC SERIES

The rising factorial is defined by

at =
Γ(a+ t)

Γ(a)
. (31)

We will use the notation a to refer to the ordered p-tuple (a1, . . . , ap), and we will

abuse notation writing ak to refer to the product

p∏
j=1

akj . We will sometimes write a1

as simply a. We will also use a + n to refer to the tuple (a1 + n, . . . , ap + n) and

(a+n)k to refer to the product

p∏
j=1

(aj +n)k. The hypergeometric series pFq is defined

by the formula

pFq(a; b; t) =
∞∑
k=0

ak

bk
tk

k!
. (32)

We have included many common hypergeometric function representations in Ta-

ble 2.2. The following formula is known as the negative binomial series [2, page

64]:

(1− x)−a = 1F0(a;−;x) =
∞∑
k=0

ak

k!
xk. (33)

Define the operator

θ = z
d

dz
. (34)

If y(t) = pFq(~a;~b; t), then we know [35, page 75 (3)]

[
θ

q∏
j=1

(θ + bj − 1)− z
p∏
i=1

(θ + ai)

]
y = 0. (35)
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Table 2.2. Representations of classical special functions as hypergeometric series.

Function Hypergeometric series representation Source

cosh(az) 0F1

(
;
1

2
;−(az)2

4

)

sinh(az) az0F1

(
;
3

2
;
(az)2

4

)

cos(az) 0F1

(
;
1

2
;−(az)2

4

)

sin(az) az0F1

(
;
3

2
;−(az)2

4

)

ex 0F0(; ; z) [31, page 38]

L
(α)
n (z)

(α + 1)n

n!
1F1(−n;α + 1; z) [1, page 780, 22.5.24]

Jν(z)
zν

2νΓ(ν + 1)
0F1

(
; ν + 1;−z

2

4

)
[31, page 39]
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3. DISCRETE SPECIAL FUNCTIONS

3.1. DISCRETE CALCULUS

There are two discrete derivatives that we will use from the theory of difference

calculus. For f : hZ→ C, we define the delta derivative

∆hf(t) =
f(t+ h)− f(t)

h
, (36)

and we define the nabla derivative

∇hf(t) =
f(t)− f(t− h)

h
. (37)

Both the ∆h and ∇h derivatives yield the classical derivative (1) in the limit. In other

words,

d

dt
f(t) = lim

h→0+
∆hf(t) = lim

h→0+
∇hf(t).

We must be careful with this limit because, for example, 2 ∈ 2Z but 2 6∈ 2.1Z, so we

understand the limit in the sense of [30, Definition 4.2] which formalizes this notion

via “convergence through the hZs”. The product rule for ∆h is given by

∆h[f(t)g(t)] = g(t+ h)∆hf(t) + f(t)∆hg(t), (38)

and the quotient rule for ∆h is given by

∆h

(
f(t)

g(t)

)
=
g(t)∆hf(t)− f(t)∆hg(t)

g(t)g(t+ h)
. (39)
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The two discrete analogues of the integral

∫ t

s

f(τ)dτ are the ∆h-integral

∫ t

s

f(τ)∆hτ = h

t
h
−1∑

k= s
h

f(kh) (40)

and the ∇h-integral ∫ t

s

f(τ)∇hτ = h

t
h∑

k= s
h

+1

f(kh). (41)

These definitions imply the fundamental theorem of ∆h-calculus,

∆h

h t
h
−1∑

k= s
h

f(kh)

 = f(t), (42)

and

h

t
h
−1∑

k= s
h

∆hf(kh) = f(t)− f(s),

and the fundamental theorem of ∇h-calculus,

∇h

h t
h∑

k= s
h

+1

f(kh)

 = f(t),

and

h

t
h
−1∑

k= s
h

+1

∇hf(kh) = f(t)− f(s).

3.2. DISCRETE POLYNOMIALS AND RELATED FUNCTIONS

We will be using the symbol h in two different ways in this section: h alone

refers to a number in (0,∞), while hn will refer to discrete polynomials. Define the

weighted hn monomials of hZ centered about s by to be the functions hn : hZ×hZ×
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R+ → R given by 
h0(t, s;h) = 1

hn+1(t, s;h) = h

t
h
−1∑

k= s
h

hn(kh, s;h).

Hence it is clear in lieu of (42) that ∆hhn(t, s;h) = hn−1(t, s;h). It is well known [26,

Example 8] that

hn(t, s;h) =
1

n!

n−1∏
k=0

(t− s− kh) . (43)

For the series methods that follow, it will be useful to define the (unweighted) discrete

monomials of hZ centered about s by the formula

(t− s)nh = n!hn(t, s;h). (44)

The following “shift lemma” will allow us to emulate series methods from classical

special functions theory in discrete calculus.

Lemma 3.2.1. The following formula holds for n,m ∈ N0:

(t− s)nh(t− s− hn)mh = (t− s)n+m
h .

Proof. We compute

(t− s)nh(t− s− hn)mh =

(
n−1∏
k=0

(t− s− kh)

)(
m−1∏
k=0

(t− s− hn− kh)

)

=
n+m−1∏
k=0

(t− s− kh)

= (t− s)n+m
h ,

as was to be shown.
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Corollary 3.2.1. If a function f has a series representation f(t) =
∞∑
k=0

ak(t − s)kh,

then

(t− s)ηhf(t− ηh) =
∞∑
k=0

ak(t− s)k+η
h .

At certain times, we will want to use non-integer values of n in the expression

(t−s)nh. As written, this is impossible because of how the product notation is defined.

We will get around this by defining the product using the gamma function (and thus

we will have complexifications), however there is not a unique way to do this without

imposing more conditions. We will consider two natural complexifications of hn.

3.2.1. Falling Complexification. We define the falling factorial notation

at =
Γ(a+ 1)

Γ(a− t+ 1)
.

We define the falling complexification of hn(t, s;h) by

hn(t, s;h) =
hn

Γ(n+ 1)

(
t− s
h

)n
=

hn

Γ(n+ 1)

Γ( t−s
h

+ 1)

Γ( t−s
h
− n+ 1)

. (45)

Theorem 3.2.1. If n ∈ N0 and t, s ∈ hZ, then

hn(t, s;h) = hn(t, s;h).

Proof. Recall 43 and calculate

hn(t, s;h) =
hn

n!

Γ( t−s
h

+ 1)

Γ( t−s
h
− n+ 1)

=
1

n!

n−1∏
k=0

(t− s− kh)

= hn(t, s;h),

as was to be shown.
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Corollary 3.2.2. If n ∈ N and t, s ∈ C, then hn(·, s;h) has n zeros at zj = s + jh

for j ∈ {0, 1, . . . , n− 1}.

Corollary 3.2.3. If n ∈ N0, then lim
h→0+

hn(t, s;h) =
(t− s)n

n!
.

Theorem 3.2.2. The following formulas hold:

h0(t, s;h) = 1 for all t, s ∈ C

and

hn(s, s;h) =
hn sin(πn)

nπ
for all s ∈ C.

Proof. Calculate

h0(t, s;h) =
h0

Γ(1 + 0)

(
t− s
h

)0

=
Γ( t−s

h
+ 1)

Γ( t−s
h
− 0 + 1)

= 1,

as was to be shown. Now we use (18) to compute

hn(s, s;h) =
hn

Γ(n+ 1)
(0)n

=
hn

Γ(n+ 1)

Γ(1)

Γ(0− n+ 1)

=
hn

nΓ(n)Γ(1− n)

=
hn sin(nπ)

nπ
,

as was to be shown.

Theorem 3.2.3. If n ∈ Z is negative, then hn(t, s;h) = 0 for all t, s ∈ C.

Proof. The factor
1

Γ(n+ 1)
equals zero when n is a negative integer.

Theorem 3.2.4. If n ∈ C \ N0, then hn(·, s;h) has infinitely many zeros at t =

s+(n−m−1)h for m ∈ N0. Also hn(·, s;h) has infinitely many poles at t = s−(m+1)h

for m ∈ N0.
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Proof. From formula (45), we see that hn has zeros whenever
t− s
h
−n+1 = −m, for

m ∈ N0. Rearrangement of this yields t = s− (m− n+ 1)h. Also from formula (45),

we see that hn has poles whenever
t− s
h

+ 1 = −m, where m ∈ N0. Rearrangement

of this formula yields t = s− (m+ 1)h.

From Theorem 3.2.4, we see that as h → 0+, the poles of hn become more

and more dense and cluster along the interval (−∞, s). Note the similarity between

Figure 2.8(a) and Figure 3.1(f).

Theorem 3.2.5. The following formula holds for n ∈ C \ Z:

lim
h→0+

hn(t, s;h) =
(t− s)n

Γ(n+ 1)
,

where the branch cut of (t− s)n is taken to be (−∞, s).

Proof. Using (19), α = 1, β = 1− n, and u =
t− s
h

, we calculate

lim
h→0+

hn(t, s;h) = lim
h→0+

hn

Γ(n+ 1)

Γ( t−s
h

+ 1)

Γ( t−s
h
− n+ 1)

= lim
u→∞

(
t−s
u

)n
Γ(n+ 1)

Γ(u+ 1)

Γ(u− n+ 1)

=
(t− s)n

Γ(n+ 1)
,

as was to be shown.

3.2.2. Rising Complexification. Recall the rising factorial (31). The rising

complexification of hn(t, s;h) is defined by

hn(t, s, h) =
(−1)nhn−1

Γ(n+ 1)
(s− t)

(
s− t
h

+ 1

)n−1

=
(−1)nhn

Γ(n+ 1)

Γ( s−t
h

+ n)

Γ( s−t
h

)
. (46)

Theorem 3.2.6. If n ∈ N0 and t, s ∈ hZ, then

hn(t, s;h) = hn(t, s;h).
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(a) Domain coloring of h2

(
t,

2

3
;
1

3

)
. (b) Domain coloring of h 1

2

(
t, 0;

1

2

)
.

(c) Domain coloring of h1+i(t, 0; 1). (d) Domain coloring of h4+3i(t, 0; 1).

(e) Domain coloring of h4+3i(t, 0; 0.5). (f) Domain coloring of h4+3i(t, 0; 0.01).

Figure 3.1. Falling complexification of discrete monomials.
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Proof. Observe that

Γ( s−t
h

+ n)

Γ( s−t
h

)
=

n−1∏
k=0

s− t+ kh

h
.

Recall (43) and calculate

hn(t, s;h) =
(−1)nhn

Γ(n+ 1)

n−1∏
k=0

s− t+ kh

h

=
1

n!

n−1∏
k=0

(t− s− kh)

= hn(t, s;h),

as was to be shown.

Corollary 3.2.4. If n ∈ N and t, s ∈ C, then hn(·, s;h) has n zeros at zj = s + jh

for j ∈ {0, 1, . . . , n− 1}.

Corollary 3.2.5. If n ∈ N0, then lim
h→0+

hn(t, s;h) =
(t− s)n

n!
.

Theorem 3.2.7. The following formulas hold:

h0(t, s;h) = 1 for all t, s ∈ C

and

hn(s, s;h) = 0 for all s ∈ C.

Proof. Calculate

h0(t, s;h) =
(−1)0h0

Γ(1)

Γ( t−s
h

)

Γ( t−s
h

)
= 1,

and since
1

Γ(0)
= 0, we have

hn(s, s;h) =
(−1)nhn

Γ(n+ 1)

Γ(n)

Γ(0)
= 0,

as was to be shown.
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Theorem 3.2.8. If n ∈ Z is negative, then hn(t, s;h) = 0 for all t, s ∈ C.

Proof. The factor of
1

Γ(n+ 1)
in formula (46) proves this.

Theorem 3.2.9. If n ∈ C\N0, then hn(·, s;h) has infinitely many zeros at t = s+mh

for m ∈ N0. Also hn(·, s;h) has infinitely many poles at t = s+ (m+n)h for m ∈ N0.

Proof. The factor of
Γ( s−t

h
+ n)

Γ( s−t
h

)
in (46) shows us that hn has zeros whenever

s− t
h

=

−m for m ∈ N0. Rearrangement yields t = s + mh. We also see that hn has poles

whenever
s− t
h

+ n = −m for m ∈ N0. Rearrangement yields t = s + (m + n)h, as

was to be shown.

Note the similarity between Figure 2.8(b) and Figure 3.2(f).

Theorem 3.2.10. The following formula holds for n ∈ C \ Z:

lim
h→0+

hn(t, s;h) =
(t− s)n

Γ(n+ 1)
,

where the branch cut of (t− s)n is taken to be (s,∞).

Proof. Using (19), α = n, β = 0, and u =
s− t
h

, we calculate

lim
h→0+

(−1)nhn

Γ(n+ 1)

Γ( s−t
h

+ n)

Γ( s−t
h

)
= lim

u→∞

(−1)n
(
s−t
u

)n
Γ(n+ 1)

un

=
(s− t)n

Γ(n+ 1)
,

as was to be shown.

3.3. DISCRETE EXPONENTIAL

A function f : hZ → C is called µh-regressive if 1 + hf(t) 6= 0 for all t ∈ hZ.

A function f : hZ → C is called νh-regressive if 1 − hf(t) 6= 0 for all t ∈ hZ. We

denote the set of µh-regressive functions by the symbol Rµh . If 1 + hf(t) > 0 for all



27

(a) Domain coloring of h2

(
t,

2

3
;
1

3

)
. (b) Domain coloring of h 1

2

(
t, 0;

1

2

)
.

(c) Domain coloring of h1+i(t, 0; 1). (d) Domain coloring of h4+3i(t, 0; 1).

(e) Domain coloring of h4+3i(t, 0; 0.5). (f) Domain coloring of h4+3i(t, 0; 0.01).

Figure 3.2. Rising complexification of discrete monomials.
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t ∈ hZ, then we say that f is positively µh-regressive (R+
µh

), and if 1 + hf(t) < 0 for

all t ∈ hZ, then we say that f is negatively µh-regressive (R−µh). We use the notation

Rc
µh

to denote the constant functions f : hZ → C that are µh-regressive. We use

similar notation for the νh-regressive functions Rνh .

There is a natural vector space structure on the set of regressive functions.

Define the group addition operation ⊕h : Rµh ×Rµh → Rµh by

(p⊕µh q)(t) = p(t) + q(t) + hp(t)q(t)

and its additive inverse 	µh : Rµh → Rµh

(	µhp)(t) = − p(t)

1 + hp(t)
. (47)

Define the operation �µh : R×Rµh → Rµh by

(α�µh p)(t) = αp(t)
1

h
[(1 + hp(t))α − 1] .

It is well known that the structure (Rµh ,⊕µh) is a group [14, Exercise 1.35] and the

structure (R,⊕µh ,�µh) is a real vector space [14, Theorem 2.46]. It is known that if

p ∈ R+
νh

, then êp(t, s) > 0 for all t, s ∈ hZ [14, Theorem 3.18 (i)].

Let p ∈ Rµh and consider the initial value problem

∆hy(t) = p(t)y(t), y(s) = 1. (48)

Expanding the derivative in this equation, rearranging, and applying the initial condi-
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tion yields the following solution which we call the discrete ∆h-exponential function:

ep(t, s;h) =



s
h
−1∏

k= t
h

1

1 + hp(hk)
, t < s

1, t = s
t
h
−1∏

k= s
h

(1 + hp(hk)) , t > s.

(49)

We may perform the same construction but instead using the ∇h derivative: let

p ∈ Rh and consider the initial value problem

∇hy(t) = p(t)y(t), y(s) = 1.

Rearrangement yields the discrete ∇h-exponential

êp(t, s;h) =



s
h∏

k= t
h

+1

(1− hp(hk)), t < s

1, t = s
t
h∏

k= s
h

+1

1

1− hp(hk)
, t > s.

(50)

Both of the functions ep and êp are analogues of the classical exponential function

exp

(∫
p(τ)dτ

)
. If α ∈ Rc

µh
, then eα(t, s;h) = (1 + αh)

t−s
h , and if β ∈ Rc

νh
, then

êβ(t, s;h) = (1 − αh)
t−s
h . If α is a regressive constant, then we know [33, Proposi-

tion 6.9] that

eα(t, s;h) =
∞∑
k=0

αkhk(t, s) =
∞∑
k=0

αk(t− s)kh
k!

. (51)

In lieu of (49), we see that

eα(t, s;h) = (1 + αh)
t−s
h . (52)
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We now use (51) to consider the falling complexification of eα given by

eα(t, s;h) =
∞∑
k=0

αkhk(t, s;h).

Theorem 3.3.1. The following formula holds:

eα(t, s;h) = 1F1

(
s− t
h

, 1;−αh
)

Proof. Note that for k ∈ N0,

(
s− t
h

)k
=

k−1∏
j=0

s− t+ jh

h
= k!

(−1)k

hk
hk(t, s;h)

and 1k =
Γ(1 + k)

Γ(1)
= k!. Calculate

1F1

(
s− t
h

, 1;−αh
)

=
∞∑
k=0

( s−t
h

)k

1k
(−αh)k

=
∞∑
k=0

αkhk(t, s;h)

= eα(t, s;h),

as was to be shown.

3.4. DISCRETE HYPERBOLIC TRIGONOMETRIC FUNCTIONS

Suppose that p is a function such that both p and −p are in Rµh . The discrete

hyperbolic sine and cosine are defined in [12, Definition 3.17, page 89]

coshp(t, s;h) =
ep(t, s;h) + e−p(t, s;h)

2
(53)
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and

sinhp(t, s;h) =
ep(t, s;h)− e−p(t, s;h)

2
. (54)

We have included plots of some of these functions in Figure 3.3. We see from (48)

that coshp(s, s;h) = 1 and sinhp(s, s;h) = 0. The following ∆h derivatives follow as

well:

∆h coshp(t, s;h) = p(t) sinhp(t, s;h) (55)

and

∆h sinhp(t, s;h) = p(t) coshp(t, s;h). (56)

It is known [12, Theorem 3.21, page 90] that if α > 0 is a constant such that both α

and −α are in Rµh , then the general solution of ∆2
hy(t)− α2y(t) = 0 is

y(t) = c1 coshα(t, s;h) + c2 sinhα(t, s;h).

The case of α = 1 of the following theorem is pointed out in [25, page 6]; it follows

directly from (51).

Theorem 3.4.1. The following formulas hold:

coshα(t, s;h) =
∞∑
k=0

α2k

(2k)!
(t− s)2k

h

and

sinhα(t, s;h) =
∞∑
k=0

α2k+1

(2k + 1)!
(t− s)2k+1

h .
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(e) Domain coloring of the function
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(f) Domain coloring of the function

sinh 1
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.

Figure 3.3. Discrete hyperbolic trigonometric functions.
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3.5. DISCRETE TRIGONOMETRIC FUNCTIONS

Let i =
√
−1 be the imaginary number and p a function such that both ip and

−ip are in Rµh . The trigonometric functions are defined in [12, Definition 3.5, page

92] to be

cosp(t, s;h) =
eip(t, s;h) + e−ip(t, s;h)

2
(57)

and

sinp(t, s;h) =
eip(t, s;h)− e−ip(t, s;h)

2i
. (58)

We have included some plots of these functions in Figure 3.4. From [12, Lemma 3.26],

we know

cos2
p(t, s;h) + sin2

p(t, s;h) = ehp2(t, s;h). (59)

We may further define tanp(t, s;h) =
sinp(t, s;h)

cosp(t, s;h)
, and similarly we may define the

analogues secα =
1

cosα
, cscα =

1

sinα
and cotα =

1

tanα
. We have visualized all of these

trigonometric functions in Figure 3.5. As a consequence of (59), we see that

1 + tan2
p(t, s;h) = ehp2(t, s;h) sec2

p(t, s;h)

and

cot2
p(t, s;h) + 1 = ehp2(t, s;h) csc2

p(t, s;h).

We see from (48) that cosp(s, s;h) = 1 and sinp(s, s;h) = 0. The following delta

derivatives follow as well:

∆h cosp(t, s;h) = −p(t) sinp(t, s;h)

and

∆h sinp(t, s;h) = p(t) cosp(t, s;h).
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Theorem 3.5.1. The following formulas hold:

∆h tanp(t, s;h) = p(t)ehp2(t, s;h) secp(t, s;h) secp(t+ h, s;h),

∆h secp(t, s;h) = p(t) tanp(t, s;h) secp(t+ h, s;h),

∆h cscp(t, s;h) = −p(t) cotp(t, s;h) cscp(t+ h, s;h),

and

∆h cotp(t, s;h) = −p(t)ehp2(t, s;h) cscp(t, s;h) cscp(t+ h, s;h).

Proof. Using (39) and (59), we see that

∆h tanp(t, s;h) = ∆h

[
sinp(t, s;h)

cosp(t, s;h)

]
=
p cos2

p(t, s;h) + p sin2
p(t, s;h)

cosp(t, s;h) cosp(t+ h, s;h)

= pehp2(t, s;h) secp(t, s;h) secp(t+ h, s;h),

as was to be shown. The other formulas are proven similarly.

It is known [12, Theorem 3.31, page 93] that if α > 0 is a constant such that

both α and −α are in Rµh , then the general solution of ∆2
hy(t) + α2y(t) = 0 is

y(t) = c1 cosα(t, s;h) + c2 sinα(t, s;h).

The following theorem follows directly from manipulation of (51).

Theorem 3.5.2. The following formulas hold:

cosα(t, s;h) =
∞∑
k=0

(−1)kα2k

(2k)!
(t− s)2k

h
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Figure 3.4. Discrete sin and cos along with their complexifications.
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and

sinα(t, s;h) =
∞∑
k=0

(−1)kα2k+1

(2k + 1)!
(t− s)2k+1

h .

It is known that our trigonometric functions are unbounded. We now provide

a characterization of precisely how it is unbounded by factoring cosα and sinα into an

unbounded part and a bounded part.

Theorem 3.5.3. The following formulas hold:

cosα(t, s;h) =
(
1 + α2h2

) t−s
2h cos

(
(t− s) arctan(αh)

h

)

and

sinα(t, s;h) = (1 + α2h2)
t−s
2h sin

(
(t− s) arctan(αh)

h

)
.

Proof. By (57) and (52), we see that

cosα(t, s;h) =
eα(t, s;h) + e−α(t, s;h)

2
=

(1 + αhi)
t−s
h + (1− αhi) t−sh

2
.

Using (14), we get

arctan(αh) =
i

2
log

(
1− αhi
1 + αhi

)
.

We may calculate

cos

(
(t− s) arctan(αh)

h

)
=

exp
(
i (t−s) arctan(αh)

h

)
+ exp

(
−i (t−s) arctan(αh)

h

)
2

=

(
1 + αhi

1− αhi

) t−s
2h

+

(
1− αhi
1 + αhi

) t−s
2h

2
,
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and since (1 + α2h2) = (1− αhi)(1 + αhi), we obtain

(1 + α2h2)
t−s
2h cos

(
(t− s) arctan(αh)

h

)
=

(1 + αhi)
t−s
h + (1− αhi) t−sh

2
,

as was to be shown. The formula for sinα is proven similarly.

Theorem 3.5.3 shows us that both the discrete sine and discrete cosine are

unbounded because they have an exponential factor. Since they have the same ex-

ponential factor, this shows that the discrete tangent is in fact a classical tangent

function.

Corollary 3.5.1. The following formula holds:

tanα(t, s;h) = tan

(
(t− s) arctan(αh)

h

)
.

Since coth is the reciprocal of tanh, it follows that coth is a classical cotangent

function.

3.6. DISCRETE LAPLACE TRANSFORM

The Z-transform is a well-known analogue of the Laplace transform [29, Def-

inition 3.4] defined for functions f : Z→ C by the formula

Z{f}(z) =
∞∑
k=0

f(k)

zk
.

The following discrete analogue of (4) is known [19, Exercise 13, page 281]:

Z{∆n
1f}(z) = (z − 1)nZ{f}(z)− z

n−1∑
j=0

(z − 1)n−j−1∆j
1f(0). (60)
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Figure 3.5. Discrete trigonometric functions.
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Using (47), we may calculate 	z = − z

1 + hz
, and using (49), we see for t > s,

e	z(t, s) =

t
h
−1∏

k= s
h

(
1− hz

1 + hz

)
=

t
h
−1∏

k= s
h

1

1 + hz
=

(
1

1 + hz

) t−s
h

.

We say a function f : hZ → R has exponential order α on [s,∞) ∩ hZ if α ∈ Rµh

and there exists K > 0 such that |f(t)| ≤ Keα(t, s) for all t ∈ [s,∞) ∩ hZ. An

alternative transformation to Z was introduced in [13] and studied in detail in [9,10]

for a function f of exponential order α on [s,∞) ∩ hZ:

Lh{f}(z; s) = h
∞∑
k= s

h

f(hk)e	z(hk + h, s;h)

= h
∞∑
k= s

h

f(hk)

(1 + hz)k+1− s
h

.

(61)

We have included a table of common discrete Laplace transforms in Table 3.1. Being

a discrete integral, the discrete Laplace transform is a linear transformation. We have

an analogue of (60) from [10, Corollary 6.3] which better resembles (4):

Lh{∆n
hf}(z; s) = znLh{f}(z; s)−

n−1∑
k=0

zn−1−k∆k
hf(s). (62)

Complex derivatives of discrete h-Laplace transforms manifest as polynomial factors.

Theorem 3.6.1. If f(t, s) =
∞∑
j=0

ak(t− s)kh, then

dn

dzn
Lh{f(·, s)}(z; s) = (−1)nLh{fn}(z; s),

where fn(t) = (t− s)nhf(t− s− hn).
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Proof. Using Lemma 3.2.1, the computation

(Lh)
(n) (z) = h

dn

dzn

∞∑
k=0

f(hk)

(z + 1)k+1

= h(−1)n
∞∑
k=0

(k + 1)(k + 2) . . . (k + n)f(hk)

(z + 1)k+n+1

= h(−1)n
∞∑
k=n

(k − n+ 1)(k − n+ 2) . . . (k + 1)kf(h(k − n))

(z + 1)k+1

= (−1)n
∞∑
k=0

knhf(hk − hn)

(z + 1)k+1

= (−1)nLh{fn}(z; s)

proves the claim.

The paper [17, Theorem 1.4] proves an inversion theorem to find the inverse

discrete Laplace transform L −1
h . If

∫ c+i∞

c−i∞
|F (z)||dz| <∞, then we may express f in

the form

L −1
h {F}(t) = f(t) =

n∑
k=1

Resz=zkez(t, 0)F (z). (63)

Since hZ is a topologically discrete set, the “almost everywhere” (see [24]) condition

present in [17, Theorem 1.5, page 1300] does not apply since all points of hZ are “right-

scattered”. Consequently, we have uniqueness of the inverse Laplace transform.

We would like to have a discrete analogue of the convolution integral (5). To

achieve this, we first consider the “shifting problem” partial h-difference equation for

a function f : hZ→ C. The function f̂(t, s) is the solution of the initial value problem

 ∆h,1(t, σ(s)) = −∆h,2u(t, s), t, s ∈ hZ, t ≥ s ≥ t0

u(t, t0) = f(t), t ∈ hZ, t ≥ t0,

where ∆h,mf(t1, . . . , tn) denotes a partial h-difference in the mth argument of f .
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When simplified, this partial h-difference equation yields the formula

u(t, s) = u(t+ h, s+ h).

Taking the initial condition into account shows that u(t, s) = f̂(t, s) = f(t− s+ t0).

The h-convolution is defined in [8, (2.6), page 4] by

(f ∗ g)(t, s) = h

t
h
−1∑

k= s
h

f(t− hk + t0)g(hk). (64)

With the h-convolution, we have the convolution theorem [8, Theorem 3.2, page 8]

Lh{(f ∗ g)(·, s)}(z; s) = Lh{f}(z; s)Lh{g}(z; s). (65)
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Table 3.1. Discrete Laplace transforms of discrete special functions.

f(t) Lh{f}(z; s) Source

hn(t, s;h)
1

zn+1
[9, Table 5]

eα(t, s;h)
1

z − α
[9, Table 5]

coshα(t, s;h)
z

z2 − α2
[12, Table 3.2, page 133]

sinhα(t, s;h)
α

z2 − α2
[12, Table 3.2,page 133]

cosα(t, s;h)
z

z2 + α2
[12, Table 3.2, page 133]

sinα(t, s;h)
α

z2 + α2
[12, Table 3.2, page 133]

J0(t, 1, 0, 1;h)
1√
z2 + 1

Theorem 3.10.2

Jν(t, ξ, 0, 1;h)
1√

z2 + 1[
√
z2 + 1 + z]−ν

Jν

(
t, 2
√
α,
ν

2
,
1

2
;h

)
α
ν
2

zν+1e
α
2

Theorem 3.10.4
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3.7. DISCRETE GAMMA FUNCTION

The gamma function Γh is defined in [11] by the formula

Γh(t, s) = h

∞∑
k=0

k−1∏
j= s

h

j + t

j + 1

 1

(1 + h)k+1
.

We have visualized this function in Figure 3.6. This function has many properties

analogous to the properties of the classical gamma function. It diverges as t → 0+

and as t→∞. We always know that Γh(1; s) = 1.

Lemma 3.7.1. The following formula holds:

Γh(t, h) =
1

t

(
1 +

1

h

)t−1

.

Proof. Using (33) with x =
1

1 + h
and a = t, we see

(
h

1 + h

)−t
=

(
1− 1

1 + h

)−t
=
∞∑
k=0

1

(1 + h)k
tk

k!
.

Using (16) and (31), we compute

Γh(t, h) = h

∞∑
k=0

(
k−1∏
j=1

j + t

j + 1

)
1

(1 + h)k+1

= h

∞∑
k=0

Γ(t+ k)

k!Γ(t+ 1)(1 + h)k+1

=
h

1 + h

1

t

∞∑
k=0

Γ(t+ k)

Γ(t)

1

k!

1

(1 + h)k

=
h

1 + h

1

t

∞∑
k=0

1

(1 + h)k
tk

k!

=
1

t

(
1 +

1

h

)t−1

,
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as was to be shown.

Theorem 3.7.1. The following formula holds for t, s ∈ hZ+:

Γh(t, s) =

(
s
h

)
!

t(t+ 1) . . . (t+ s
h
− 1)

(
1 +

1

h

)t−1

.

Proof. We use Lemma 3.7.1 to compute

Γh(t, s) = h

∞∑
k=0

k−1∏
j= s

h

j + t

j + 1

 1

(1 + h)k+1

=

 s
h
−1∏
j=1

j + 1

j + t

Γh(t, h)

=

(
s
h

)
!

t(t+ 1) . . . (t+ s
h
− 1)

(
1 +

1

h

)t−1

,

as was to be shown.

The complexification Γh follows by simple algebra and is unique by analytic

continuation:

Γh(t, s) =
Γ
(
s
h

+ 1
) (

1 + 1
h

)t−1

t(1 + t)s/h−1
.

3.8. DISCRETE GAUSSIAN BELL

An analogue of the Gaussian bell is defined in [20] by the formula

Eh(t) =
[
(1 + h)

1
h

]− t(t−h)
2

.

This Gaussian bell has the unfortunate property that its ∆-derivative is proportional

to an exponential function: ∆Eh(t) = (2t − 1)Eh(t). We want to use a Gaussian bell
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Figure 3.6. Plots of discrete gamma functions.
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to look at analogues of Hermite polynomials, and so we prefer a Gaussian bell whose

difference is proportional to t.

Choose some α > 0 and s ∈ hZ and define the function p : hZ → R by

p(t) = −α(t−s). We define a Gaussian bell analogue by considering the split ∆h−∇h

initial value problem


∆hy(t) = p(t)y(t) = −α(t− s)y(t), t < s

1, t = s

∇hy(t) = p(t)y(t) = −α(t− s)y(t), t > s.

(66)

We now use our knowledge of discrete exponential functions in formulas (49) and (50)

to deduce that the solution of (66) is given by

Ωh(t, s, α) =



ep(t, s;h) =

s
h
−1∏

k= t
h

1

1 + αh|hk − s|
, t < s

1, t = s

êp(t, s;h) =

t
h∏

k= s
h

+1

1

1 + αh|hk − s|
, t > s


=

| t−sh |∏
k=1

1

1 + αhk
(67)

which we call the Gaussian bell on hZ. We say that hZ is symmetric about s ∈ hZ

because if s+δ ∈ hZ, then s−δ ∈ hZ. We define the operation −s so that if t = s+δt,

then −st = s− δt. With this operation, we see that for t = s+ δt,

p(−st) = −α(−st− s) = −α(s− (δt + s)) = α(t− s) = −p(t).

Theorem 3.8.1. The following formula holds:

Ωh(t, s, α) = Ωh(−st, s, α).

Proof. The proof for t = s is obvious from the definition. Suppose that t > s. Now
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compute

Ωh(t, s, α) = êp(t, s)

=

t
h∏

k= s
h

+1

1

1− hp(hk)

=
1

(1− hp(s+ h)) . . . (1− hp(t))
,

while

Ωh(−st, s, α) = ep(−st, s)

=

s
h
−1∏

k=−st
h

1

1 + hp(hk)

=
1

(1 + hp(−st)) . . . (1 + hp(s− h))

=
1

(1 + hp(s− δt)) . . . (1 + hp(s− h))

=
1

(1− hp(t)) . . . (1− hp(s+ h))
.

Hence we observe that Ωh(−st, a, α) = Ωh(t, s, α). The proof for t < s is similar.

Theorem 3.8.2. The discrete Gaussian bell is always positive, i.e., for all t ∈ hZ,

Ωh(t, s, α) > 0.

Proof. If t = s, then Ωh(t, s, α) = 1. Let t > s. Since p(t) = −α(t− s), we see that

1− ν(t)p(t) = 1 + αν(t)(t− s) > 0.

This implies that p ∈ R+
νh

([s,∞) ∩ hZ,R), and hence by [14, Theorem 3.18 (i)], we

have Ωh(t, s, α) > 0. From this and Theorem 3.8.1, it follows that for all t < s,
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Ωh(t, s, α) > 0.

Theorem 3.8.3. The following formula holds:

Ωh(t, s, α) =

(
1

αh2

) |t−s|
h 1(

1 + 1
αh2

) |t−s|
h

.

Proof. For t = s, the claim is immediately clear. For t > s, we compute

(
1

αh2

) |t−s|
h 1(

1 + 1
αh2

) |t−s|
h

=

(
1

αh2

) |t−s|
h Γ

(
1
αh2 + 1

)
Γ
(
1 + 1

αh2 + t−s
h

)
=

(
1

αh2

) |t−s|
h

t
h∏

k= s
h

+1

1
1
αh2 + (k − s

h
)

=

t
h∏

k= s
h

+1

1

1 + αh(hk − s)

= Ωh(t, s, α),

as was to be shown. The case for t < s is similar.

A natural application for the Gaussian bell is as the basis of a discrete normal

distribution. To achieve this, we will need to be able to sum over the Gaussian bell.

First we define

Lh(s, α) = h
∞∑

k=−∞

Ωh(kh, s, α).

Theorem 3.8.4. The number Lh(s, α) exists, and

Lh(s, α) = 2he
1
αh2 (αh2)

1
αh2 γ

(
1 +

1

αh2
;

1

αh2

)
.
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Proof. From (21), we see

γ

(
1 +

1

αh2
;

1

αh2

)
= e−

1
αh2

(
1

αh2

) 1
αh2

∞∑
k=1

(
1
αh2

)k(
1 + 1

αh2

)k .
and using Theorem 3.8.3, we compute

Lh(s, α) = 2h
∞∑
k=1

Ωh(hk, s, α)

= 2h
∞∑
k=1

(
1
αh2

)
(
1 + 1

αh2

) |t−s|
h

= 2he
1
αh2 (αh2)

1
αh2 γ

(
1 +

1

αh2
;

1

αh2

)
,

as was to be shown.

3.9. ANALOGUES OF ORTHOGONAL POLYNOMIALS

3.9.1. Hermite I. We define the h-difference equation analogue of the Her-

mite differential equation of type I by

∆2
hy(t)− (t− s)∆hy(t− h) + ny(t) = 0. (68)

We define the discrete Hermite polynomials of type I Hn by

Hn(t, s;h) =

bn
2
c∑

k=0

(−1)kn!(t− s)n−2k
h

k!Γ(n− 2k + 1)2k
. (69)

We have included some of these functions in Table 3.2. We justify the names of these

functions in the following theorem.

Theorem 3.9.1. The function y(t) = Hn(t, s;h) solves (68).

Proof. First assume that n = 2m for some m ∈ N. Then using (16) and the fact that
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1

Γ
has zeros whenever t ∈ {0,−1,−2, . . .}, we see

∆hHn(t, s;h) =
m−1∑
k=0

(−1)kn!(t− s)n−2k−1
h

k!Γ(n− 2k)2k
=

m∑
k=0

(−1)kn!(t− s)n−2k−1
h

k!Γ(n− 2k)2k
,

and hence by Lemma 3.2.1,

(t− s)∆hHn(t− h, s;h) =
m∑
k=0

(−1)kn!(t− s)n−2k
h

k!Γ(n− 2k)2k
.

We take a second difference and reindex to find

∆2
hHn(t, s;h) =

m−1∑
k=0

(−1)kn!(t− s)n−2k−2
h

k!Γ(n− 2k − 1)2k

=
m∑
k=1

(−1)k−1n!(t− s)n−2(k−1)−2
h

(k − 1)!Γ(n− 2(k − 1)− 1)2k−1

= −2
m∑
k=1

k(−1)kn!(t− s)n−2k
h

k!Γ(n− 2k + 1)2k

= −2
m∑
k=0

k(−1)kn!(t− s)n−2k
h

k!Γ(n− 2k + 1)2k
.

Therefore we compute

∆2Hn(t, s;h)− (t− s)∆Hn(t− h, s;h) + nHn(t, s;h)

=
m∑
k=0

(−1)kn!(t− s)n−2k
h

k!2k

[
−2k

Γ(n− 2k + 1)
− 1

Γ(n− 2k)
+

n

Γ(n− 2k + 1)

]
=

m∑
k=0

(−1)kn!(t− s)n−2k
h

k!Γ(n− 2k + 1)2k
[−2k − (n− 2k) + n]

= 0,

as was to be shown. The case n = 2m+ 1 is essentially the same.

Theorem 3.9.2. The following formula holds:

∆hHn(t, s;h) = nHn−1(t, s;h).
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Table 3.2. Discrete Hermite polynomials of type I.

n Hn(t;h)
0 1
1 t− s
2 (t− s)2

h − 1
3 (t− s)3

h − 3(t− s)
4 (t− s)4

h − 6(t− s)2
h + 3

5 (t− s)5
h − 10(t− s)3

h + 15(t− s)
6 (t− s)6

h − 15(t− s)4
h + 45(t− s)2

h − 15
...

...

Proof. If n = 2m+ 1, then

⌊
n− 1

2

⌋
= m, and so

∆hHn(t, s;h) =
m∑
k=0

(−1)kn!(t− s)n−2k−1
h

k!Γ(n− 2k)2k

= n
m∑
k=0

(−1)k(n− 1)!(t− s)(n−1)−2k−1

k!Γ((n− 1)− 2k)2k

= nHn−1(t, s;h),

as was to be shown. The proof for n = 2m is essentially the same.

Theorem 3.9.3. The following formula holds:

Hn+1(t, s;h) = tHn(t− h, s;h)− nHn−1(t, s;h).

Proof. If n = 2m, then

⌊
n+ 1

2

⌋
= m and

⌊
n− 1

2

⌋
= m− 1, so we compute

Hn+1(t, s;h) =
m∑
k=0

(−1)k(n+ 1)!(t− s)(n+1)−2k
h

k!Γ((n+ 1)− 2k + 1)2k
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=
m∑
k=0

(−1)kn!(t− s)n+1−2k
h

k!Γ(n− 2k + 1)2k

(
n+ 1

n+ 1− 2k

)
=

m∑
k=0

(−1)kn!(t− s)n+1−2k
h

k!Γ(n− 2k + 1)2k

(
1 +

2k

n+ 1− 2k

)

= (t− s)Hn(t− h, s;h) + n
m∑
k=0

k(−1)k(n− 1)!(t− s)(n+1)−2k
h

k!Γ((n+ 1)− 2k + 1)2k−1

= (t− s)Hn(t− h, s;h)− n
m−1∑
k=−1

(−1)k(n− 1)!(t− s)(n−1)−2k
h

k!Γ((n− 1)− 2k + 1)2k

= (t− s)Hn(t− h, s;h)− nHn−1(t, s;h),

as was to be shown.

Theorem 3.9.4. There do not exist constants α2, β2, γ2 such that

H3(t, 0;h) = (α2t+ β2)H2(t, 0;h) + γ2H1(t, 0;h).

Moreover, there does not exist an inner product with respect to which all of the Hn

functions are orthogonal.

Proof. Consider the equation

H3(t, 0;h) = (α2t+ β2)H2(t, 0;h) + γ2H1(t, 0;h). (70)

First note that

H2(t, 0;h) = t2h − 1 = t2 − th− 1.

The right-hand side of this equation becomes

(α2 + tβ2)H2(t, 0;h) + γ2H1(t, 0;h) = (α2 + tβ2)(t2 − th− 1) + γ2t

= t3β2 + t2(α2 − β2h) + t(γ2 − β2 − α2h)− α2.
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Since

H3(t, 0;h) = t3 − 3ht2 + (2h2 − 3)t,

the equation (70) yields the system of equations



β2 = 1

α2 − β2h = −3h

γ2 − β2 − α2h = 2h2 − 3

−α2 = 0,

which is an inconsistent system because β2 = 1 and α2 = 0, but α2− β2h 6= −3h. By

the contrapositive of Theorem 2.3.1, we see that there is no inner product for which

the polynomials {Hn}∞n=0 are orthogonal with respect to.

3.9.2. Hermite II. Because of Theorem 3.9.4, we seek alternative Hermite

polynomials that obey an orthogonality property. Define φh(t, s) = Ωh(t, s, 1). By

(66), we know  ∆hφh(t, s) = −(t− s)φh(t, s), t < s

∇hφh(t, s) = −(t− s)φh(t, s), t > s.

We now define an analogue of the Hermite polynomials on hZ by a Rodrigues type.

The piecewise defined nature reflects the fact that the nth ∆h or∇h difference requires

an argument of the form φh(t± nh):

Hn(t, s;h) =


(−1)n

∆n
hφh(t, s)

φh(t, s)
, t ≤ s− nh

(−1)n
∇n
hφh(t, s)

φh(t, s)
, t ≥ s+ nh.

(71)

The piecewise domain of these functions gives us freedom to force orthogonality but

we lose uniqueness on hZ as a consequence.
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Theorem 3.9.5. The following formulas hold:

Hn+1(t, s;h) =

 (t− s)Hn(t+ h, s;h)−∆hHn(t, s;h), t ≤ s− (nh+ h)

(t− s)Hn(t− h, s;h)−∇hHn(t, s;h), t ≥ s+ nh+ h

and

Hn+1(t, s;h) =

 −(1 + |t− s|)∆hHn(t, s;h) + (t− s)Hn(t, s;h), t ≤ s− nh

−(1 + (t− s))∇hHn(t, s;h) + (t− s)Hn(t, s;h), t ≥ s+ nh.

Proof. For t ≥ s+ nh+ h, we compute

Hn+1(t, s;h) = (−1)n+1∇n+1
h φh(t, s)

φh(t, s)

= (−1)n+1∇h[(−1)nHn(t, s;h)φh(t, s)]

φh(t)

= −∇h[Hn(t, s;h)φh(t, s)]

φh(t, s)

= −∇hHn(t, s;h)φh(t, s)− (t− s)φh(t, s)Hn(t− h, s;h)

φh(t, s)

= (t− s)Hn(t− h, s;h)−∇hHn(t, s;h),

and the proof for t ≤ s − (nh + h) is similar. Now note that for t ≥ s + nh, the

formula

φ(t− h, s)
φ(t, s)

=

∏| t−sh |−1

k=1
1

1+kh∏| t−sh |
k=1

1
1+kh

= (1 + |t− s|) = 1 + t− s

holds. To prove the other formula, use the other form of the product rule

Hn+1(t, s;h) = −∇h[Hn(t, s;h)φh(t, s)]

φh(t, s)

=
−φh(t− h, s)∇Hn(t, s;h) + (t− s)Hn(t, s;h)φh(t, s)

φh(t, s)

= −(1 + t− s)∇Hn(t, s;h) + (t− s)Hn(t, s;h),
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as was to be shown. The proof for t ≤ s− (nh+ h) is similar.

Theorem 3.9.6. The following formulas hold:

Hn+1(t, s;h) =

 (t− s)Hn(t, s;h)− nHn−1(t+ h, s;h), t ≤ s− nh

(t− s)Hn(t, s;h)− nHn−1(t− h, s;h), t ≥ s+ nh

Proof. Suppose that t ≥ s+ (n+ 1)h. From ∇hφ(t, s) = −(t− s)φ(t, s), we compute

∇hφh(t, s) + (t− s)φh(t, s) = 0,

∇2
hφh(t, s) + (t− s)∇hφh(t, s) + φh(t− h, s) = 0,

∇3
hφh(t, s) + (t− s)∇2

hφh(t, s) + 2∇hφh(t− h, s) = 0,

...

∇n+1
h φh(t, s) + (t− s)∇n

hφh(t, s) + n∇n−1
h φh(t− h, s) = 0. (72)

Applying the definition of Hn now yields

Hn+1(t, s;h) = (t− s)Hn(t, s;h)− nHn−1(t− h, s;h),

as was to be shown. The proof for t < s is similar.

Theorem 3.9.7. The following formulas hold:

(1+h(t−s))Hn+1(t;h) =

 (t− s)Hn(t+ h, s;h)− nHn−1(t+ h, s), t ≤ s− (nh+ h)

(t− s)Hn(t− h, s;h)− nHn−1(t− h, s), t ≥ s+ nh+ h.

Proof. We will prove the claim for t ≥ s+ nh+ h. From ∇hφ(t, s) = −(t− s)φ(t, s),
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we compute

∇hφh(t, s) + (t− s)φh(t, s) = 0,

∇2
hφh(t, s) + (t− s)∇hφh(t, s) + φh(t− h, s) = 0,

∇3
hφh(t, s) + (t− s)∇2

hφh(t, s) + 2∇hφh(t− h, s) = 0,

...

∇n+1
h φh(t, s) + (t− s)∇n

hφh(t, s) + n∇n−1
h φh(t− h, s) = 0.

Using the relationship f(t) = h∇hf(t) + f(t−h), we examine the middle term in the

formula

∇n+1
h φh(t, s) + (t− s)∇n

hφh(t, s) + n∇n−1
h φh(t− h, s) = 0 (73)

and notice that

(t− s)∇n
hφn(t, s) = (t− s)

[
h∇n+1

h φh(t, s) +∇n
hφh(t− h, s)

]
.

Hence (73) becomes

(1 + h(t− s))∇n+1
h φh(t, s) + (t− s)∇n

hφh(t− h, s) + n∇n−1
h φh(t− h, s) = 0.

Substitution of the definition of Hn yields

(1 + h(t− s))Hn+1(t, s;h) = (t− s)Hn(t− h, s;h)− nHn−1(t− h, s),

as was to be shown. The proof for t ≤ s− (nh+ h) is similar.

We have purposely left the values |t−s| < hn undefined in the definition of the

Hermite polynomials so that we can force orthogonality. This is necessary because if

we do not impose this restriction, then the resulting polynomials are not orthogonal
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with respect to φh(t, s). Define the inner product

〈f, g〉s = h

∞∑
k=−∞

f(hk, s;h)g(hk, s;h)φ(hk, s;h).

It is easy to show that if n is even and m is odd, then 〈Hn, Hm〉s = 0. So we restrict our

attention to even-indexedH2n functions and decide on values forHn(t, s;h) for |t−s| <

2n. We extend first by allowing H2n(t, s;h) to be extended using Theorem 3.9.6 for

t− s ∈ {nh+h− s, nh+ 2h− s, . . . , 2hn− s}. We extend these values to the negative

points via the formula H2n(−t, s;h) = H2n(t, s;h). We must pick the remaining values

H2n(s, s;h), H2n(s + h, s;h), . . . , H2n(s + nh, s;h) so that the following n equations

hold: 

〈H2n, H0〉s = 0

〈H2n, H2〉s = 0

...

〈H2n, H2n−2〉s = 0.

(74)

We now define the notations

(H2n, f)` = h
n−1∑
k=`

H2n(hk, s;h)g(hk)φ(hk, s;h),


α

(1)
0 (t, s;h) ≡ 1

α
(1)
m (t, s;h) = H2m(t, s;h) m = 1, 2, . . . , n− 1

α
(N+1)
m (t, s;h) = α

(N)
m (t, s;h)− α

(N)
m (N − 1, s;h)

α
(N)
N−1(N − 1, s;h)

m = 1, 2, . . . , n− 1,


ψ

(1)
m = 2

∞∑
k=n

H2n(s+ hk, s;h)H2m(s+ hk, s;h)

(k + 1)!
m = 0, 1, . . . , n− 1

ψ
(N+1)
m = ψ

(N)
m − α

(N)
m (s+Nh, s;h)

α
(N)
N−1(s+Nh, s;h)

ψ
(N)
N−1,
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and for ` = 1, 2, . . . , n,

ξ(n− `) =

[
−ψ(n−`+1)

n−` −
`−1∑
k=1

ξ(n− k)α
(n−k)
n−k−1(s+ h(n− k), s;h)

]
α

(n−`+1)
n−` (s+ h(n− `), s;h)

.

Lemma 3.9.1. Suppose H0, H2, . . . , H2n−2 are known and defined on hZ. The system

(74) is equivalent to



H2n(s, s;h) + 2(H2n(·, s;h), α
(1)
0 (·, s;h))1 = −ψ(1)

0

H2n(s+ h, s;h)α
(2)
1 (s+ h, s;h) + (H2n(·, s;h), α

(2)
1 (·, s;h))2 = −ψ(2)

1

...

H2n(s+ h(n− 1), s;h)α
(n)
n−1(s+ h(n− 1), s;h) = −ψ(n)

n−1.

Proof. First rewrite (74) as

 H2n(s, s;h) + 2(H2n(·, s;h), α
(1)
0 (·, s;h))1 = −ψ(1)

0

H2n(s, s;h)H2m(s, s;h) + 2(H2n(·, s;h), α
(1)
m (·, s;h))1 = −ψ(1)

m ;m = 1, . . . , n− 1.

Consider the row operations

rnew
m = rm −

H2m(s, s;h)

1
r1 = rm −

α
(1)
m (s, s;h)

α
(1)
0 (s, s;h)

r1

applied for m = 1, . . . , n− 1. Compute

2(H2n(·, s;h), α(1)
m (·, s;h))1 −

α
(1)
m (s, s;h)

α
(1)
0 (s, s;h)

2(H2n(·, s;h), α
(1)
0 (·, s;h))1

= 2

(
H2n(·, s;h), α(1)

m (·, s;h)− α
(1)
m (s, s;h)

α
(1)
0 (s, s;h)

α
(1)
0 (·, s;h)

)

= 2(H2n(·, s;h), α(2)
m (·, s;h))1,
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and the right-hand-side becomes ψ
(2)
m . Therefore the row operation yields


H2n(s, s;h) + 2(H2n(·, s;h), α

(1)
0 (·, s;h))1 = −ψ(1)

0

H2n(s+ h, s;h)α
(2)
1 (s+ h, s;h) + (H2n(·, s;h), α

(2)
1 (·, s;h))2 = −ψ(2)

1

H2n(s, s;h)α
(2)
1 (s+ h, s;h) + 2(H2n(·, s;h), α

(1)
m (·, s;h))2 = −ψ(2)

m

for m = 2, . . . , n− 1. Now we apply the row operations

rnew
m = rm −

α
(η)
m (s+ (η − 1)h, s;h)

α
(η)
1 (s+ (η − 1)h, s;h)

rη

for η = 2, . . . , n− 1 and each m = η, . . . , n− 1. Then the result follows.

Theorem 3.9.8. If we define

H2n(s+ (n− 1)h, s;h) = ξ(n− 1),

H2n(s+ (n− 2)h, s;h) = ξ(n− 2),

...

H2n(s, s;h) = ξ(0),

then the resulting Hermite functions obey (74).

Proof. From Lemma 3.9.1, we have



H2n(s, s;h) + 2(H2n(·, s;h), α
(1)
0 (·, s;h))1 = −ψ(1)

0

H2n(s+ h, s;h)α
(2)
1 (s+ h, s;h) + (H2n(·, s;h), α

(2)
1 (·, s;h))2 = −ψ(2)

1

...

H2n(s+ h(n− 1), s;h)α
(n)
n−1(s+ h(n− 1), s;h) = −ψ(n)

n−1.
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So starting from the bottom, we see we must choose

H2n(s+ h(n− 1), s;h) =
−ψ(n)

n−1

α
(n)
n−1(s+ h(n− 1), s;h)

,

which equals ξ(n− `) with ` = 1. The other terms follow similarly.

3.9.3. Laguerre. We define the Laguerre h-difference equation by

(t− s)∆2
hy(t− h;h) + (α + 1)∆hy(t;h)− (t− s)∆y(t− h;h) + ny(t;h) = 0. (75)

We define the discrete associated Laguerre polynomials by the formula

L(α)
n (t, s;h) =

n∑
k=0

(−1)k(t− s)kh
k!

(
n+ α

n− k

)
. (76)

The first few of these functions are given by

L
(α)
0 (t, s;h) = 1,

L
(α)
1 (t, s;h) = −(t− s) + (1 + α),

L
(α)
2 (t, s;h) =

1

2!
[(t− s)2 − (t− s)(4 + 2α + h) + (α2 + 3α + 2)],

....

We now justify the names of these functions.

Theorem 3.9.9. The functions L
(α)
n (t, s;h) solve (75).

Proof. Compute

∆hL
(α)
n (t, s;h) =

n∑
k=1

(−1)k(t− s)k−1
h

(k − 1)!

(
n+ α

n− k

)

= −
n−1∑
k=0

(−1)k(t− s)kh
k!

(
n+ α

n− k − 1

)
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and

∆2
hL

(α)
n (t, s;h) =

n∑
k=2

(−1)k(t− s)k−1
h

(k − 1)!

(
n+ α

n− k

)

= −
n−1∑
k=1

(−1)k(t− s)k−1
h

(k − 1)!

(
n+ α

n− k − 1

)
.

Hence by Lemma 3.2.1

(t− s)∆2
hL

(α)
n (t− h, s;h) = −(n+ α)!

n−1∑
k=1

(−1)k(t− s)khk
k!(n− k − 1)!(α + k + 1)

.

Now compute

(α + 1)∆hL
(α)
n (t, s;h) = −(α + 1)

n−1∑
k=0

(−1)k(t− s)kh
k!

(
n+ α

n− k − 1

)

= − (α + 1)(n+ α)!

(n− 1)!(α + 1)!
−

n−1∑
k=1

(α + 1)(n+ α)!(−1)k(t− s)kh
k!(n− k − 1)!(α + k + 1)!

= − (n+ α)!

(n− 1)!α!
−

n−1∑
k=1

(α + 1)(n+ α)!(−1)k(t− s)kh
k!(n− k − 1)!(α + k + 1)!

,

and again using Lemma 3.2.1,

−(t− s)∆hL
(α)
n (t− h, s;h) = −

n∑
k=1

(−1)k(t− s)kh
k!

k

(
n+ α

n− k

)

= −(−1)n(t− s)nh
(n− 1)!

−
n−1∑
k=1

(n+ α)!(−1)k(t− s)khk
k!(n− k)!(α + k)!

.

Finally compute

nL(α)
n (t, s;h) = n

n∑
k=0

(−1)k(t− s)kh
k!

(
n+ α

n− k

)

= n

(
n+ α

n

)
+
n(−1)n(t− s)nh

n!
+

n−1∑
k=1

n(n+ α)!(−1)k(t− s)kh
k!(n− k)!(α + k)!
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=
(n+ α)!

(n− 1)!Γ(α + 1)
+

(−1)n(t− s)nh
(n− 1)!

+
n−1∑
k=1

n(n+ α)!(−1)k(t− s)kh
k!(n− k)!(α + k)!

.

Combine these formulas together and compute

(t− s)∆2
hL

(α)
n (t− h, s;h) + (α + 1)∆hLn(t, s;h)− (t− s)∆hL

(α)
n (t− h, s;h)

+nL(α)
n (t, s;h) = 0,

proving the claim.

Theorem 3.9.10. The following formula holds:

(n+1)L(α)
n (t, s;h) = (2n+α+1)L(α)

n (t, s;h)−(t−s)L(α)
n (t−h, s;h)−(n+α)L

(α)
n−1(t, s;h).

Proof. Compute

(2n+ α + 1)L(α)
n (t, s;h) = (2n+ α + 1)

[
n∑
k=0

(−1)k(t− s)kh
k!

(
n+ α

n− k

)]

= (2n+ α + 1)

[(
n+ α

n

)
+

(−1)n(t− s)nh
n!

+
n−1∑
k=1

(−1)k(t− s)kh
k!

(
n+ α

n− k

)]
,

−tL(α)
n (t− h, s;h) = −

n∑
k=0

(−1)k(t− s)k+1
h

k!

(
n+ α

n− k

)

=
n+1∑
k=1

(−1)k(t− s)kh
k!

k

(
n+ α

n− k + 1

)
=

(−1)n+1(t− s)n+1
h

(n+ 1)!
(n+ 1) +

(−1)n(t− s)nh
n!

n

(
n+ α

1

)
+

n−1∑
k=1

(−1)k(t− s)kh
k!

k

(
n+ α

n− k + 1

)
,
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and

−(n+ α)L
(α)
n−1(t, s;h) = −(n+ α)

n−1∑
k=0

(−1)k(t− s)kh
k!

(
n− 1 + α

n− 1− k

)

= −(n+ α)

[(
n− 1 + α

n− 1

)
+
n−1∑
k=1

(−1)k(t− s)kh
k!

(
n− 1 + α

n− 1− k

)]
.

Adding these formulas together yields

(2n+ α + 1)L
(α)
n (t, s;h)− (t− s)L(α)

n (t, s;h)− (n+ α)L
(α)
n−1(t, s;h)

= An,α +Bn,α(t− s)nh + Cn(t− s)n+1
h α(t) +

∑n−1
k=1

(−1)k(t−s)kh
k!

Dn,k,α,

(77)

where

An,α = (2n+ α + 1)

(
n+ α

n

)
− (n+ α)

(
n− 1 + α

n− 1

)
,

Bn,α = (2n+ α + 1)
(−1)n

n!
+

(−1)n

n!
n(n+ α),

Cn =
(−1)n+1

(n+ 1)!
(n+ 1),

and

Dn,k,α = (2n+ α + 1)

(
n+ α

n− k

)
+ k

(
n+ α

n− k + 1

)
− (n+ α)

(
n− 1 + α

n− 1− k

)
.

Now examine

An,α = (2n+ α + 1)

(
n+ α

n

)
− (n+ α)

(
n− 1 + α

n− 1

)
=

(2n+ α + 1)Γ(n+ α + 1)

n!Γ(α + 1)
− (n+ α)Γ(n+ α)

(n− 1)!Γ(α + 1)

=
Γ(n+ α + 1)

(n− 1)!Γ(α + 1)

[
2n+ α + 1

n
− 1

]
=

Γ(n+ α + 1)

(n− 1)!Γ(α + 1)

n+ α + 1

n
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= (n+ 1)

(
n+ α + 1

n+ 1

)
,

Bn,α = (2n+ α + 1)
(−1)n

n!
+

(−1)n

n!
n(n+ α)

=
(−1)n

n!
(2n+ α + 1 + n2 + nα)

= (n+ 1)
(−1)n(t− s)nh

n!
(n+ α + 1),

and

Dn,k,α = (2n+ α+ 1)

(
n+ α

n− k

)
+ k

(
n+ α

n− k + 1

)
− (n+ α)

(
n− 1 + α

n− 1− k

)
=

(2n+ α+ 1)Γ(n+ α+ 1)

(n− k)!Γ(α+ k + 1)
+

kΓ(n+ α+ 1)

(n− k + 1)!Γ(α+ k)
− Γ(n+ α+ 1)Γ(n+ α)

(n− 1− k)!Γ(α+ k + 1)

=
Γ(n+ α+ 1)

(n− k − 1)!Γ(α+ k)

[
1

(n− k)(n− k + 1)(α+ k)

]
× [(2n+ α+ 1)(n− k + 1) + k(α+ k)− (n− k)(n− k + 1)]

=
Γ(n+ α+ 1)

(n− k + 1)!Γ(α+ k + 1)

× [2n2 − 2nk + 2n+ nα− αk + α+ n− k + 1 + αk + k2 + kn− k2 + k

− n2 + kn− n]

=
Γ(n+ α+ 1)

(n− k + 1)!Γ(α+ k + 1)
(n2 + 2n+ αn+ α+ 1)

=
Γ(n+ α+ 1)

(n− k + 1)!Γ(α+ k + 1)
(n+ 1)(n+ α+ 1)

= (n+ 1)
Γ(n+ α+ 2)

(n− k + 1)!Γ(α+ k + 1)
.

Therefore (77) implies

(2n+ α + 1)L(α)
n (t, s;h)− tL(α)

n (t− h, s;h)− (n+ α)L
(α)
n−1(t, s;h)

= (n+ 1)

[(
n+ α + 1

n+ 1

)
+

(−1)n(t− s)nh
n!

(n+ α + 1) +
(−1)n+1(t− s)n+1

h

(n+ 1)!

+
n−1∑
k=1

(−1)k(t− s)kh
k!

(
n+ 1 + α

n+ 1− k

)]
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= (n+ 1)L
(α)
n+1(t, s;h),

as was to be shown.

Theorem 3.9.11. The following formula holds:

(t− s)∆hL
(α)
n (t− h, s;h) = nL(α)

n (t, s;h)− (n+ α)L
(α)
n−1(t, s;h).

Proof. Apply Lemma 3.2.1 to the left-hand side and calculate

(t− s)∆hL
(α)
n (t− h, s;h) = (t− s)∆h

[
n∑
k=0

(−1)k(t− h− s)k

k!

(
n+ α

n− k

)]

= (t− s)

[
n∑
k=1

(−1)k(t− s− h)k−1

(k − 1)!

(
n+ α

n− k

)]

=
n∑
k=1

(−1)k(t− s)kh
(k − 1)!

(
n+ α

n− k

)

=
(−1)n(t− s)nh

(n− 1)!
+

n−1∑
k=1

(−1)k(t− s)kh
(k − 1)!

(
n+ α

n− k

)
.

Now expand to right-hand side to get

n
n∑
k=0

(−1)k(t− s)kh
k!

(
n+ α

n− k

)
− (n+ α)

n−1∑
k=0

(−1)k(t− s)kh
k!

(
n− 1 + α

n− 1− k

)

=
(−1)n(t− s)nh

(n− 1)!
+

n−1∑
k=1

(−1)k(t− s)kh
k!

[
n

(
n+ α

n− k

)
− (n+ α)

(
n− 1 + α

n− 1− k

)]

=
(−1)n(t− s)nh

(n− 1)!
+

n−1∑
k=1

(−1)k(t− s)kh
k!

[
Γ(n+ α + 1)k

(n− k)!Γ(α + k + 1)

]

=
(−1)n(t− s)nh

(n− 1)!
+

n−1∑
k=1

(−1)k(t− s)nh
(k − 1)!

(
n+ α

n− k

)
,

proving the claim.
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The following corollary follows from expanding the derivative on the left-hand-

side of the formula in Theorem 3.9.11.

Corollary 3.9.1. The following formula holds:

−(t− s)L(α)
n (t− h, s;h) = (hn− (t− s))L(α)

n (t, s;h)− h(n+ α)L
(α)
n−1(t, s;h).

Theorem 3.9.12. The following formula holds:

∆hL
(α)
n (t, s;h) = −L(α+1)

n−1 (t, s;h).

Proof. Compute

∆hL
(α)
n (t, s;h) =

n∑
k=1

(−1)k(t− s)k−1
h

(k − 1)!

(
n+ α

n− k

)

= −
n−1∑
k=0

(−1)k(t− s)kh
k!

(
n+ α

n− k − 1

)
= −L(α+1)

n−1 (t, s;h),

as was to be shown.

Theorem 3.9.13 (Three-term recurrence). The following formula holds:

(n+1)L
(α)
n+1(t, s;h) = [(2+h)n+α+1−(t−s)]L(α)

n (t, s;h)−(h+1)(n+α)L
(α)
n−1(t, s;h).

Proof. Apply Corollary 3.9.1 to Theorem 3.9.10 and the result is immediate.
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3.10. DISCRETE BESSEL FUNCTIONS

We define the general discrete Bessel function Jν(·, s, ξ, α, γ;h) by the formula

Jν(t, s, ξ, α, γ;h) =
∞∑
k=0

(−1)kξ2k+ν

Γ(k + ν + 1)22k+ν

(t− s)γ(2k+ν)+α
h

k!
. (78)

We have visualized some of these functions in Figure 3.7. This function is meant to

be a discrete analogue of the function tαJν(ξt
γ) that solves (26). We now justify our

claim that this is the analogue of tαJν(ξt
γ).

Theorem 3.10.1. Let γ ∈ Z. The function Jν(·, s, ξ, α, γ;h) solves the h-difference

equation

(t− s)2
h∆

2
hy(t− 2h) + (1− 2α)(t− s)h∆hy(t− h) + ξ2γ2(t− s)2γ

h y(t− 2hγ)

+ (α2 − ν2γ2)y(t) = 0, (79)

which we call the general discrete Bessel h-difference equation.

Proof. Let ψ(t) = Jν(t, s, ξ, α, γ;h). Use Lemma 3.2.1 to compute

(t− s)2
h∆

2
hψ(t− 2h) =

∞∑
k=0

(−1)kξ2k+ν(γ(2k + ν) + α)(γ(2k + ν) + α− 1)(t− s)γ(2k+ν)+α
h

Γ(k + ν + 1)22k+νk!
,

compute

(t− s)h∆hψ(t− h) =
∞∑
k=0

(−1)kξ2k+ν(γ(2k + ν) + α)(t− s)γ(2k+ν)+α
h

Γ(k + ν + 1)22k+νk!
,

and finally

(t− s)2γ
h ψ(t− 2hγ) = −

∞∑
k=1

4k(k + ν)(−1)kξ2k+ν(t− s)γ(2k+ν)+α
h

Γ(k + ν + 1)22k+νk!ξ2
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= −
∞∑
k=0

4k(k + ν)(−1)kξ2k+ν(t− s)γ(2k+ν)+α
h

Γ(k + ν + 1)22k+νk!ξ2
.

Plugging these expressions into the left-hand side of the general discrete Bessel h-

difference equation yields zero after routine calculations.

The direct discrete analogue of the classical Bessel function Jν from (24) is

Jν(t, s;h) = Jν(t, s, 1, 0, 1;h). (80)

The following corollary defines the discrete analogue of the Bessel differential equation

(25).

Corollary 3.10.1. The function Jν(t, s;h) solves the discrete Bessel h-difference

equation

(t− s)2
h∆

2
hy(t− 2h) + (t− s)h∆hy(t− h) + (t− s)2

hy(t− 2h)− ν2y(t) = 0. (81)

The notation (t − s)γ(2k+ν)+α
h in (78) suggests the exponent must be a posi-

tive integer. Otherwise we will appeal to Theorem 3.2.5 and in recognition that the

standard branch cut in classical complex analysis is (−∞, 0) use the falling complex-

ification in such cases (without explicitly noting it). All proofs will be written with

this complexification in mind.

First we will show it is easy to derive the Laplace transform of J0(t, s;h).

Theorem 3.10.2. The following formula holds:

Lh{J0(·, s;h)}(z; s) =
1√
z2 + 1

.
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Proof. From (81), the equation that J0 solves is

(t− s)2
h∆

2
hJ0(t− 2h, s;h) + (t− s)h∆hJ0(t− h, s;h) + (t− s)2

hJ0(t− 2h, s;h) = 0.

Dividing by (t− s)h yields

(t− s− h)h∆
2
hJ0(t− 2h, s;h) + ∆hJ0(t− h, s;h) + (t− s− h)hJ0(t− 2h, s;h) = 0,

and replace t by t+ h yielding

(t− s)h∆2
hJ0(t− h, s;h) + ∆hJ0(t, s;h) + (t− s)hJ0(t− h, s;h) = 0.

Note by direct computation that J0(s, s;h) = 1. We apply Theorem 3.6.1 to see that

L {J0(·, s;h)} obeys

−zL {J0}(z; s)− (z2 + 1)L {J0}′(z; s) = 0,

a first-order differential equation solvable by separation of variables whose solution is

L {J0}(z; s) =
1√
z2 + 1

, as was to be shown.

Theorem 3.10.3. The following formula holds:

Lh{Jν}(z) =
[
√
z2 + 1 + z]−ν√

z2 + 1
.

Proof. Applying Theorem 3.6.1 to (81), yields

(Lh{∆2Jν})′′(z)− (Z̃{∆Jν})′(z) + (Lh{Jν})′′(z)− ν2Lh{Jν}(z) = 0.
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Now we apply (62) to get

d2

dz2
[z2Lh{Jν}(z)− zJν(0)−∆Jν(0)] − d

dz
[zLh{Jν}(z)− Jν(0)]

+
d2

dz2
Z̃{Jν}(z)− ν2Lh{Jν}(z) = 0.

We compute the derivatives and simplify to obtain

(z2 + 1)(Lh{Jn})′′(z) + 3z(Lh{Jn})′(z) + (1− n2)Lh{Jn}(z).

This is simply (29) with y(z) = Lh{Jn}(z). Therefore

Lh{y}(z) =
[
√
z2 + 1 + z]−n√

z2 + 1
,

as claimed.

Corollary 3.10.2. The following formula holds:

(J0 ∗ J0) (t, s;h) = sin1(t, s;h).

Proof. By Theorem 3.10.2 and the convolution theorem (65), we see that

Lh{J0 ∗ J0}(z; s) =

(
1√
z2 + 1

)2

=
1

z2 + 1
,

while Table 3.1 shows that

Lh{sin1(t, s;h)}(z; s) =
1

z2 + 1
,

and so the uniqueness of the inverse transform proves the claim.

We shall derive an analogue of (30). Our proof is inspired by [39, page 22
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(E1.3.1)].

Theorem 3.10.4. The following formula holds:

Lh

{
Jν

(
t, s, 2

√
α,
ν

2
,
1

2
;h

)}
(z; s) =

α
ν
2

zν+1e
α
2

.

Proof. First note that

Jν

(
t, s, 2

√
α,
ν

2
,
1

2
;h

)
=
∞∑
k=0

(−1)k22k+ν(
√
α)2k+ν

Γ(k + ν + 1)22k+νk!
(t− s)

1
2

(2k+ν)+ ν
2

h

=
∞∑
k=0

(−1)kαk+ ν
2

Γ(k + ν + 1)k!
(t− s)k+ν

h ,

and so since Lh{(t− s)k+ν
h }(z; s) =

Γ(k + ν + 1)

zk+ν+1
, by appealing to (9), we see

Lh

{
Jν

(
t, s, 2

√
α,
ν

2
,
1

2
;h

)}
(z; s) =

α
ν
2

zν+1

∞∑
k=0

(
−α
z

)k
1

k!
=

α
ν
2

zν+1e
α
z

,

as was to be shown.

Theorem 3.10.5. For n ∈ Z, we have J−n(t, s;h) = (−1)nJn(t, s;h).

Proof. Recall that for negative m ∈ Z,
1

Γ(m+ 1)
= 0. Now compute

J−n(t, s;h) =
∞∑
k=0

(−1)k(t− s)2k−n
h

k!Γ(k − n+ 1)22k−n

= (−1)n
∞∑

k=−n

(−1)k(t− s)2k+n
h

(k + n)!Γ(k + 1)22k+n

= (−1)n
∞∑
k=0

(−1)k(t− s)2k+n
h

k!Γ(k + n+ 1)22k+n

= (−1)nJn(t, s;h),
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as was to be shown.

Theorem 3.10.6. For all ν,

(t− s)∆hJν(t− h, s;h) = νJν(t, s;h)− (t− s)Jν+1(t− h, s;h).

Proof. Using Lemma 3.2.1, we compute

(t− s)∆hJν(t− h, s;h) =
∞∑
k=0

(−1)k(2k + ν)(t− s)2k+ν
h

k!Γ(k + ν + 1)22k+ν

= νJν(t, s;h) + (t− s)
∞∑
k=0

(−1)k(t− s− h)2k+ν−1
h

Γ(k)Γ(k + ν + 1)22k+ν−1

= νJν(t, s;h) + (t− s)
∞∑
k=1

(−1)k(t− s− h)2k+ν−1
h

Γ(k)Γ(k + ν + 1)22k+ν−1

= νJν(t, s;h)− (t− s)
∞∑
k=0

(−1)k(t− s− h)2k+ν+1
h

k!Γ(k + (ν + 1) + 1)22k+ν+1

= νJν(t, s;h)− (t− s)Jν+1(t− h, s;h),

as was to be shown.

Theorem 3.10.7. For all ν,

(t− s)∆hJν(t− h, s;h) = −νJν(t, s;h) + (t− s)Jν−1(t− h, s;h).

Proof. Using Lemma 3.2.1, we compute

(t− s)∆hJν(t− s− h;h) =
∞∑
k=0

(−1)k(2k + ν)(t− s)2k+ν
h

k!Γ(k + ν + 1)22k+ν

= −νJν(t, s;h) +
∞∑
k=0

(−1)k(2k + 2ν)(t− s)2k+ν
h

k!Γ(k + ν + 1)22k+ν
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= −νJν(t, s;h) + t
∞∑
k=0

(−1)k(t− h)2k+ν−1(t− s)2k+(ν−1)
h

k!Γ(k + (ν − 1) + 1)22k+(ν−1)

= −νJν(t, s;h) + (t− s)Jν−1(t− h, s;h),

as was to be shown.

The formulas in the following corollary come from subtracting and adding the

formulas from Theorem 3.10.6 and Theorem 3.10.7.

Corollary 3.10.3. For all ν, the following formulas hold:

2νJν(t, s;h) = tJν−1(t− h, s;h) + tJν+1(t− h, s;h)

and

2∆hJν(t, s;h) = Jν−1(t, s;h)− Jν+1(t, s;h).

Theorem 3.10.8. The following formula holds:

∆h [(t− s)νhJν(t− ν, s;h)] = (t− s)νhJν−1(t− ν, s;h).

Proof. Using Lemma 3.2.1, we compute

∆h [(t− s)νhJν(t− ν, s;h)] = ∆h

[
∞∑
k=0

(−1)k(t− s)2k+2ν
h

k!Γ(k + ν + 1)22k+ν

]

=
∞∑
k=0

(−1)k(t− s)2k+2ν−1
h

k!Γ(k + (ν − 1) + 1)22k+(ν−1)

= (t− s)νhJν−1(t− ν, s;h),

as was to be shown.
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(a) Plot of J0(t, 0, 1, 0, 1; 1
2). (b) Domain coloring of J0(z, 0, 1, 0, 1; 1

2).
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(c) Plot of J 1
2
(t, 0, 2, 0, 1; 1

4). (d) Domain coloring of J 1
2
(z, 0, 2, 0, 1; 1

4).
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(e) Plot of J1.3(t, 0, 1, 0, 1; 0.1) and the
classical Bessel J1.3(t).
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(f) Plot of J1.3(t, 0, 1, 0, 1; 0.05) and the
classical Bessel J1.3(t).

Figure 3.7. Discrete Bessel functions.
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Theorem 3.10.9. The following formula is equivalent to (81):

[(t+ 2h− s)2
h + h2(t+ 2h− s)2

h]∆
2
hy(t)

+[(t+ 2h− s)− h(t+ 2h− s)2
h − ν2]∆hy(t+ h) + [(t+ 2h− s)2

h − ν2]y(t+ h) = 0.

Proof. First map t 7→ t+ 2h to turn (81) into

(t+ 2h− s)2
h∆

2
hy(t) + (t+ 2h− s)h∆hy(t+h) + (t+ 2h− s)−h2y(t)− ν2y(t+ 2h) = 0.

The result follows from substituting in the formulas

y(t) = y(t+ 1)− h∆hy(t+ 1) + h2∆2
hy(t)

and

y(t+ 2h) = ∆hy(t+ 1) + y(t+ 1)

and then simplifying.

A second-order h-difference equation is said to be written in self-adjoint form

if it is written as ∆(p(t)∆y(t)) + q(t)y(t+ 1) = 0. The following theorem is called the

Leighton–Wintner theorem [12, Theorem 4.64]. It says that if the following condition

holds, then y is oscillatory (i.e., equalling zero or changing signs infinitely often): for

some a ∈ hZ,

h

∞∑
k= a

h

1

p(hk)
= h

∞∑
k= a

h

q(hk) =∞. (82)

Lemma 3.10.1. The function J0(t, s; 1) is oscillatory.
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Proof. The difference equation of this function can be put into the form

∆[(t+ 1)∆y(t)] + (t+ 1)y(t) = 0,

which is self-adjoint form with p(t) = t+ 1 and q(t) = t+ 1. Indeed,

∞∑
k=0

1

k + 1
=
∞∑
k=0

k + 1 =∞,

satisfying the condition (82), and so by the Leighton-Wintner theorem we may con-

clude that J0 is oscillatory.

Theorem 3.10.10. For all n ∈ Z, Jn(t, s; 1) is oscillatory.

Proof. If n = 0, then Lemma 3.10.1 guarantees the result. If n is negative, we may

use Theorem 3.10.5 to reduce the argument to checking −n. Let n ∈ N. Let y solve

the equation in Theorem 3.10.9 so that

∆2y(t) =
t(t+ 2) + n2

2(t+ 1)(t+ 2)
∆y(t+ 1)− (t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)
y(t+ 1). (83)

Write u(t) = v(t)y(t). It follows that

∆u(t) = y(t+ 1)∆v(t) + v(t)∆y(t)

and

∆2u(t) = y(t+ 1)∆2v(t) + (∆v(t+ 1) + ∆v(t))∆y(t+ 1) + v(t)∆2y(t).
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Using (83), we see

∆2u(t) =

[
∆2v(t)

v(t+ 1)
− v(t)

v(t+ 1)

(t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)

]
u(t+ 1)

+

[
∆v(t+ 1) + ∆v(t) + v(t)

t(t+ 2) + n2

2(t+ 1)(t+ 2)

]
∆y(t+ 1).

(84)

Let N > 2n2 − 3 and let t ≥ N . Now define the function v to be the solution of the

initial value problem

∆v(t+ 1) + ∆v(t) + v(t)
t(t+ 2) + n2

2(t+ 1)(t+ 2)
= 0, v(N) = v(N + 1) = 1,

i.e., for t ≥ N ,

v(t+ 2) =
(t+ 2)2 − n2

2(t+ 1)(t+ 2)
v(t), v(N) = v(N + 1) = 1. (85)

Consequently this forces (84) to reduce to a self-adjoint difference equation

∆2u(t) +

[
v(t)

v(t+ 1)

(t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)
− ∆2v(t)

v(t+ 1)

]
u(t+ 1) = 0,

where the functions p and q in the self-adjoint form obey the formulas p(t) = 1 and

q(t) =
v(t)

v(t+ 1)

(t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)
− ∆2v(t)

v(t+ 1)
. Using ∆2v(t) = v(t+2)−2v(t+1)+v(t)

and (85), we may compute

q(t) =
v(t)

v(t+ 1)

(t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)
− v(t+ 2)− 2v(t+ 1) + v(t)

v(t+ 1)

=
v(t)

v(t+ 1)

[
(t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)
− 1

]
− (t+ 2)2 − n2

2(t+ 1)(t+ 2)

v(t)

v(t+ 1)
+ 2

=
v(t)

v(t+ 1)

[
−(t+ 2)(t+ 1)− n2 − (t+ 2)2 + n2

2(t+ 1)(t+ 2)

]
+ 2

= 2− v(t)

v(t+ 1)

2t+ 3

2t+ 2
. (86)
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It follows from (85) that

v(t+ 2)

v(t)
=

(t+ 2)2 − n2

2(t+ 1)(t+ 2)
, v(n) = v(n+ 1) = 1,

and v(t) > 0 for all t ≥ n. It is also clear that

lim
t→∞

v(t+ 2)

v(t)
=

1

2
.

We have shown that u = vy has self-adjoint form

∆(1 ·∆u(t)) + q(t)u(t+ 1) = 0.

Following (82), it is obvious that
∞∑
k=N

1

1
= ∞, so all we must demonstrate is that

∞∑
k=N

q(k) = ∞. Assume that
∞∑
k=N

q(k) is convergent. Hence lim
t→∞

q(t) = 0. Rearrange

(86) to get
v(t)

v(t+ 2)
= (2− q(t))2t+ 2

2t+ 3
. Now notice that

lim
t→∞

v(t)

v(t+ 2)
= lim

t→∞

v(t)

v(t+ 1)

v(t+ 1)

v(t+ 2)
=

1

4
.

However,

lim
t→∞

(2− q(t))2t+ 2

2t+ 3
= 2,

which is a contradiction. Hence
∞∑
k=N

q(k) diverges. To complete the proof, we will

argue that q(t) is positive for all t ≥ N (and hence the sum diverges to ∞). Notice

that

q(N) = 2−
(

1 +
1

2N + 2

)
> 0

and the inequality q(N + 1) > 0 is algebraically equivalent to N > 2n2 − 3, the
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condition we imposed earlier. Hence q(N + 1) > 0. Now note for ` ∈ N that

q(N + 2`)− q(N + 2(`− 1)) =
v(N + 2(`− 1))

2v(N + 2(`− 1) + 1)

8`2 + 8`N + 8`+ 2n2 + 4N + 1

(N + 2`− 1)[(N + 2`+ 1)2 − n2]
> 0

and

q(N + 2`+ 1)− q(N + 2(`− 1) + 1) =
v(N + 2`− 1)(4n2 − 1)

2v(N + 2`)(N + 2`)[(N + 2`+ 2)2 − n2]
> 0.

This shows that the q function is essentially two interlaced increasing sequences that start

at positive values. Hence q(t) is positive for all t ≥ N , and we may conclude that Jn is

oscillatory.

3.11. DISCRETE HYPERGEOMETRIC SERIES

Following the notation defining the hypergeometric series (32), we define the

discrete hypergeometric series by the formula

pFq(a; b; t, s, n, ξ;h) =
∞∑
k=0

ak

bk
ξk

(t− s)nkh
k!

. (87)

We have included representations of discrete special functions in terms of this function

in Table 3.3.

3.11.1. Elementary Properties and Difference Equations.

Theorem 3.11.1. The following formula holds:

∆h [pFq(a; b; t, s, 1, ξ;h)] =
a1a2 . . . ap
b1b2 . . . bq

ξpFq(a + 1; b + 1; t, s, 1, ξ;h).
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Proof. Compute

∆h [pFq(a; b; t, s, 1, ξ;h)] =
∞∑
k=1

ak

bk
ξk
k(t− s)k−1

h

k!

=
∞∑
k=0

ak+1

bk+1
ξk+1 (t− s)kh

k!

=
a1 . . . ap
b1 . . . bq

ξ
∞∑
k=0

(a + 1)k

(b + 1)k
ξk

(t− s)kh
k!

,

as was to be shown.

Similarly, we may prove the following result.

Theorem 3.11.2. The following formula holds for integers n ∈ N0:

∆n
h [pFq(a; b; t, s, 1, ξ;h)] =

an

bn
ξnpFq(a + n; b + n; t, s, 1, ξ;h).

Let f : hZ → C be a function and define the function shift operator %h by

(%hf)(t) = f(t− h). Now define an analogue of (34), Υh, by the formula

Υh = (t− s)h%h∆h.

Lemma 3.11.1. The following formula holds:

Υh(t− s)kh = k(t− s)kh.

Proof. Compute using Lemma 3.2.1,

Υh(t− s)kh = t%h∆h(t− s)kh

= t%h
(
k(t− s)k−1

h

)
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= kt(t− s− h)k−1
h

= k(t− s)kh,

as was to be shown.

We now present an h-difference equation analogue of the formula (35) that the

discrete hypergeometric function satisfies.

Theorem 3.11.3. Define y(t) = pFq(a; b; t, s, n, ξ;h). Then y satisfies the equation

[
Υh

q∏
j=1

(
1

n
Υh + bj − 1

)
− nξ(t− s)nh%nh

p∏
i=1

(
1

n
Υh + ai

)]
y = 0.

Proof. First compute

nξ(t− s)nh%nh

[
p∏
i=1

Υh + ai

]
y = nξ(t− s)nh%nh

∞∑
k=0

akξk

bkk!

[
p∏
i=1

1

n
Υh + ai

]
(t− s)nkh

= nξ(t− s)nh%nh
∞∑
k=0

akξk

bkk!

[
p∏
i=1

k + ai

]
(t− s)nkh

= nξ
∞∑
k=0

akξk

bkk!

[
p∏
i=1

k + ai

]
(t− s)nk+n

h .

Now compute

Υh

[
q∏
j=1

1

n
Υh + bj − 1

]
y = Υh

∞∑
k=0

akξk

bkk!

[
q∏
j=1

1

n
Υh + bj − 1

]
(t− s)nkh

= Υh

∞∑
k=0

akξk

bkk!

[
q∏
j=1

k + bj − 1

]
(t− s)nkh

= Υh

∞∑
k=0

akξk

bk−1k!
(t− s)nkh

= n(t− s)h%h
∞∑
k=1

akξk

bk−1(k − 1)!
(t− s)nk−1

h

= n(t− s)h%h
∞∑
k=0

ak+1ξk+1

bkk!
(t− s)nk+(n−1)

h
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= nξ
∞∑
k=0

akξk

bkk!

[
p∏
i=1

k + ai

]
(t− s)nk+n

h ,

which is the same series as before, which completes the proof.

Corollary 3.11.1. Define y(t) = pFq(a; b; t, s, 1, ξ;h). Then y satisfies the equation

[
Υh

q∏
j=1

(Υh + bj − 1)− ξ(t− s)%h
p∏
i=1

(Υh + ai)

]
y = 0.

3.11.2. Contiguous Relations. Define a±j to be the p-tuple

(a1, . . . , aj−1, aj ± 1, aj+1, . . . , ap)

and similarly define b±j as a q-tuple. We will now derive the so-called contiguous

relations for the pFq function. We adapt the notations and theorems throughout this

section from [35, page 81] for the discrete case

F = pFq(a; b; t, s, n, ξ;h),

F (aj+) = F (a+
j ; b; t, s, n, ξ;h) =

∞∑
k=0

ak

bk
aj + k

aj
ξnk

(t− s)nkh
k!

, (88)

F (aj−) = pFq(a
−
j ; b; t, s, n, ξ;h) =

∞∑
k=0

ak

bk
aj − 1

aj + k − 1

(t− s)nkh
k!

,

F (bj+) = pFq(a; b+
j ; t, s, n, ξ;h) =

∞∑
k=0

ak

bk
bj

bj + k

(t− s)nkh
k!

,

and

F (bj−) = pFq(a; b−j ; t, s, n, ξ;h) =
∞∑
k=0

ak

bk
bj + k − 1

bj − 1

(t− s)nkh
k!

.

Lemma 3.11.2. The following recurrences hold:

(Υh + aj)F = ajF (aj+), k ∈ {1, 2, . . . , p},
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and

(Υh + bj − 1)F = (bj − 1)F (bj−), k ∈ {1, 2, . . . , q}.

Proof. Using (88), we compute

(Υh + aj)F = ΥhF + ajF

=
∞∑
k=0

(aj + k)
ak

bk
(t− s)kh
k!

= ajF (aj+),

as was to be shown. The rest of the proof is similar.

Lemma 3.11.3. The following formulas hold:

(a1 − aj)F = a1F (a1+)− ajF (aj+), j ∈ {2, 3, . . . , p}

and

(a1 − bj + 1)F = a1F (a1+)− (bj − 1)F (bj−), j ∈ {1, 2, . . . , q}.

Proof. As a consequence of Lemma 3.11.2, we see for j = 1, 2, . . . , p

ajF = ajF (aj+)−ΥhF.

Using this formula with j = 1 and j ∈ {2, . . . , p}, we get

(a1 − aj)F = a1F − ajF

= (a1F (a1+)−ΥhF )− (ajF (aj+)−ΥF )

= a1F (a1+)− ajF (aj+),

as was to be shown. The other formula follows similarly using the other part of
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Lemma 3.11.2.

Given a and b, it will be useful to use the following definitions:

q∏
k=1,(j)

zk = z1z2 . . . zj−1zj+1 . . . zq,

Uj =

∏p
k=1 ak − bj

bj
∏q

k=1,(j) bk − bj
,

cn =
an

bn
,

and

Sn =
a + n

b + n
.

Note that cn+1 = Sncn.

Theorem 3.11.4. If p < q and all entries in b are pairwise different, then

a1F = a1F (a1+)− (t− s)
q∑
j=1

UjF
ρ(bj+).

Proof. Consider the partial fraction decomposition [35, page 82]

Sn =
a + n

b + n
=

q∑
j=1

bjUj
bj + n

.

Now compute

ΥhF = (t− s)%h
∞∑
k=1

ck
(t− s)k−1

h

(k − 1)!

= (t− s)
∞∑
k=0

ck+1
(t− s− h)kh

k!

= (t− s)
∞∑
k=0

Skck
(t− s− h)kh

k!
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= (t− s)
∞∑
k=0

(
q∑
j=1

bjUj
bj + n

)
ak

bk
(t− s− h)kh

k!
,

but since

F ρ(bj+) =
∞∑
k=0

bj
bj + k

ak

bk
(t− h)kh
k!

,

we see

ΥhF = t

q∑
j=1

UjF
ρ(bj+).

Using this alongside Lemma 3.11.2 with j = 1, we compute

a1F = a1F (a1+)−ΥhF

= a1F (a1+)− t
q∑
j=1

UjF
ρ(bj+),

as was to be shown.

Theorem 3.11.5. If p = q and all entries in b are pairwise different, then

ΥhF = tF ρ + t

q∑
j=1

UjF
ρ(bj+).

Proof. Let p = q. The partial fraction decomposition [35, page 84] yields

Sn = 1 +

q∑
k=1

bjUj
bj + n

.

Now similarly to before,

ΥhF = t

∞∑
k=0

ck+1
(t− h)kh
k!

= t

∞∑
k=0

(
1 +

q∑
k=1

bjUj
bj + n

)
ak

bk
(t− h)kh
k!

,
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and so we get

ΥhF = tF ρ + t

q∑
j=1

UjF
ρ(bj+),

as was to be shown.

3.11.3. Relations to Discrete Special Functions.

Theorem 3.11.6. The following formula holds:

eα(t, s;h) = 0F0 (; ; t, s, 1, α;h) .

Proof. Recall (51) and compute

0F0 (; ; t, s, 1, α;h) =
∞∑
k=0

αk(t− s)kh
k!

,

as was to be shown.

Theorem 3.11.7. The following formula holds:

coshα(t, s;h) = 0F1

(
;
1

2
; t, s, 2,

α2

4
;h

)
.

Proof. First note that

(
1

2

)k
k!22k =

(
1

2

)(
1

2
+ 1

)
. . .

(
2k − 1

2

)
k!22k = (2k)!.

By Theorem 3.4.1, we compute

0F1

(
;
1

2
; t, s, 2,

α2

4
;h

)
=
∞∑
k=0

α2k

22k

(t− s)2k
h(

1
2

)k
k!
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=
∞∑
k=0

α2k(t− s)2k
h

(2k)!
,

as was to be shown.

Theorem 3.11.8. The following formula holds:

sinhα(t, s;h) = αt0F1

(
;
3

2
; t− h, s, 2, α

2

4
;h

)
.

Proof. First note that

(
3

2

)k
k!22k =

(
3

2

)
. . .

(
2k + 1

2

)
k!22k = (2k + 1)!.

Now using Lemma 3.2.1 and Theorem 3.4.1, we see

αt0F1

(
;
3

2
; t, 2,

α2

4
;h

)
= αt

∞∑
k=0

α2k(t− h)2k
h

22k(3
2
)kk!

=
∞∑
k=0

α2k+1(t− s)2k+1
h

(2k + 1)!
,

as was to be shown.

The proof of the following theorem is essentially the same as the proofs of

Theorem 3.11.7 and Theorem 3.11.8.

Theorem 3.11.9. The following formulas hold:

cosα(t, s;h) = 0F1

(
;
1

2
; t, s, 2,−α

2

4
;h

)

and

sinα(t, s;h) = a(t− s)0F1

(
;
3

2
; t− h, s, 2,−α

2

4
;h

)
.
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Theorem 3.11.10. The following formula holds:

L(α)
n (t, s;h) =

(α + 1)n

n!
1F1(−n;α + 1; t, s, 1, 1;h).

Proof. By (76), we have

L(α)
n (t, s;h) =

n∑
k=0

(−1)k(t− s)kh
k!

(
n+ α

n− k

)
.

Using (22), we see (
n+ α

n− k

)
=

Γ(n+ α + 1)

(n− k)!Γ(α + k + 1)
.

Note that (−n)k = (−n)(−n+ 1) . . . (−n+ k − 1) = 0 if k ≥ n+ 1. Now compute

(α + 1)n

n!
1F1(−n;α + 1;x) =

(α + 1)n

n!

∞∑
k=0

(−n)k(t− s)kh
(α + 1)kk!

= (α + 1)n
n∑
k=0

(−1)kn(n− 1) . . . (n− k + 1)(t− s)kh
n!(α + 1)kk!

=
Γ(α + 1 + n)

Γ(α + 1)

n∑
k=0

(−1)k(t− s)khΓ(α + 1)

(n− k)!Γ(α + 1 + k)k!

=
n∑
k=0

(−1)k(t− s)kh
k!

(
n+ α

n− k

)
= L(α)

n (t, s;h),

as was to be shown.
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Table 3.3. Representations of discrete special functions as discrete hypergeometric
series.

Function Hypergeometric representation Source
eα(t, s;h) 0F0 (; ; t, s, 1, α;h) Theorem 3.11.6

coshα(t, s;h) 0F1

(
;
1

2
; t, s, 2,

α2

4
;h

)
Theorem 3.11.7

sinhα(t, s;h) αt0F1

(
;
3

2
; t− h, s, 2, α

2

4
;h

)
Theorem 3.11.8

cosα(t, s;h) 0F1

(
;
1

2
; t, s, 2,−α

2

4
;h

)
Theorem 3.11.9

sinα(t, s;h) αt0F1

(
;
3

2
; t− h, s, 2,−α

2

4
;h

)
Theorem 3.11.9

n!

(α + 1)n
L

(α)
n (t, s;h) 1F1(−n;α + 1; t, s, 1, 1;h) Theorem 3.11.10

2νΓ(ν + 1)Jν(t, s, 1,−ν, 1;h) 0F1

(
; ν + 1; t, s, 2,−1

4
;h

)
Theorem 3.11.11

Theorem 3.11.11. The following formula holds:

2νΓ(ν + 1)Jν(t, 1,−ν, 1) = 0F1

(
; ν + 1; t, s, 2,−1

4
, h

)
.

Proof. We proceed via direct calculation using (78):

2νΓ(ν + 1)Jν (t, s, 1,−ν, 1;T) = 2νΓ(ν + 1)
∞∑
k=0

(−1)k(t− s)2k
h

Γ(k + ν + 1)22k+νk!

=
∞∑
k=0

(t− s)2k
h

(
−1

4

)k
(ν + 1)kk!

= 0F1

(
; ν + 1; t, s, 2,−1

4
, h

)
,

as was to be shown.
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Corollary 3.11.2. The Bessel h-difference equation (3.10.1) can be factored as

[
Υh

(
1

2
Υh + ν

)
+

1

2
t2h%

2
h

]
y = 0.
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4. EXTENSION TO TIME SCALES

4.1. DEFINITIONS FROM TIME SCALES

Let X ⊆ R. We say that x ∈ X is a limit point of X if for every δ > 0,

the set (x − δ, x + δ) \ {x} is nonempty. We say that a set is a closed set if it

contains all of its limit points. A time scale T is defined to be a closed subset of

R. Sometimes if a time scale T has a left-scattered maximum, it is useful to use the

notation Tκ = T \ {maxT}.

Let T be a time scale. A function f : T → C is called rd-continuous if it is

continuous at all t ∈ T such that σ(t) = t (i.e., t is “right-dense”). We define the

forward jump function σ : T → T by σ(t) = inf{s ∈ T : s > t}, where we interpret

inf ∅ = supT. We define the forward graininess (or “stepsize”) function µ : T → R

by µ(t) = σ(t) − t. Let f : T → C. We may define the delta derivative f∆ of f at a

point t ∈ Tκ by

f∆(t) =


f(σ(t))− f(t)

µ(t)
, σ(t) > 0

f ′(t), σ(t) = t.

A function f : T → C is called rd-continuous if it is continuous at all right-dense

points in T and left-sided limits exist at all left-dense points in T. We write Crd to

denote the set of rd-continuous functions on T. The quotient rule on time scales is

(
f

g

)∆

(t) =
g(t)f∆(t) + f(t)g∆(t)

g(t)g(σ(t))
. (89)

Integration on a time scale is often defined as the inverse operation of differentiation

[12, Theorem 1.74] in the sense that

∫ b

a

f∆(τ)∆τ = f(b)− f(a),
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but it may also be defined in a Riemann-integration or Lebesgue-integration sense [14,

Chapter 5].

With ∆-integration, we define the (weighted) monomials hk : T× T→ R by


h0(t, s;T) = 1

hn+1(t, s;T) =

∫ t

s

hn(τ, s;T)∆τ.
(90)

These functions are called “time scale analogues” of the classical (weighted) monomial

functions
xk

k!
, and obey the important property that h∆

k+1(t, s) = hk(t, s). Just as in

(44), we define the (unweighted) monomial functions on a time scale by

(t− s)nT = n!hn(t, s;T),

and these functions will be used for our power series.

Given the ∆-derivative, it is natural to look at ∆-differential equations, also

known as dynamic equations. Let p : T→ C be a function such that 1 + p(t)µ(t) 6= 0.

We say that such p is a regressive function on T and write p ∈ Rµ(T). If 1+µ(t)p(t) >

0, then we say p is positively regressive and write p ∈ R+
µ . We define the operation

⊕ : Rµ(T)×Rµ(T)→ Rµ(T) by

(p⊕ q)(t) = p(t) + q(t) + µ(t)p(t)q(t).

Similarly, the operation 	 : Rµ(T)→ Rµ(T) is defined by

(	p)(t) = − p(t)

1 + µ(t)p(t)
.
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We also define the operation � : R×Rµ → Rµ by the formula

(α� p)(t) =


(1 + µ(t)p(t))α − 1

µ(t)
if µ(t) > 0

αp(t) if µ(t) = 0.

It is well-known that the structure (Rµ(T),⊕µh) is a group [14, Exercise 1.35] and

the structure (Rµ(T),⊕,�) is a real vector space [14, Theorem 2.46].

Consider the dynamic initial value problem y∆(t) = p(t)y(t), y(s) = 1. The

solution of this equation, ep : T× T→ C, is the time scale analogue of (49) and can

be defined in terms of a ∆-integral to be [12, page 59]

ep(t, s;T) = exp

(∫ t

s

1

µ(τ)
Log(1 + µ(τ)p(τ))∆τ

)
.

Let p : T→ C be regressive and define the time scale trigonometric functions by

cosp(t, s;T) =
eip(t, s;T) + e−ip(t, s;T)

2
(91)

and

sinp(t, s;T) =
eip(t, s;T)− e−ip(t, s;T)

2i
. (92)

The following formulas are known [12, Lemma 3.26]:

cos∆
p (·, s;T)(t) = −p(t) sinp(t, s;T), (93)

sin∆
p (·, s;T)(t) = p(t) cosp(t, s;T), (94)

and

cos2
p(t, s;T) + sin2

p(t, s;T) = eµp2(t, s;T). (95)

We now prove an analogue to Theorem 3.5.3.
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Theorem 4.1.1. Let T be an isolated time scale T = {. . . , t−1, t0, t1, . . .} and define

the bijection π(tk) = k. The following formulas hold for regressive constants α:

cosα(t, s;T) = cos

(∫ t

s

arctan(αµ(τ))

µ(τ)2
∆τ

) π(t)−1∏
k=π(s)

(1 + µ(tk)
2α2)

1
2µ(tk)

and

sinα(t, s;T) = sin

(∫ t

s

arctan(αµ(τ))

µ(τ)2
∆τ

) π(t)−1∏
k=π(s)

(1 + µ(tk)
2α2)

1
2µ(tk) .

Proof. From (91), we have

cosα(t, s;T) =

π(t)−1∏
k=π(s)

(1 + µ(tk)αi) +

π(t)−1∏
k=π(s)

(1− µ(tk)αi)

2
.

From (14), we see

arctan(αµ(t))

µ(t)
=

i

2µ(t)
log

(
1− αµ(t)

1 + αµ(t)

)
= i log

[(
1− αµ(t)

1 + αµ(t)

) 1
2µ(t)

]
.

First compute using (12)

cos

(∫ t

s

arctan(αµ(τ))

µ(τ)2
∆τ

)
=

1

2

π(t)−1∏
k=π(s)

(
1− µ(tk)αi

1 + µ(tk)αi

)− 1
2µ(tk)

+

π(t)−1∏
k=π(s)

(
1− µ(tk)αi

1 + µ(tk)αi

) 1
2µ(tk)

 .
Therefore since (1 + µ(tk)

2α2) = (1− µ(tk)αi)(1 + µ(tk)αi), we see

π(t)−1∏
k=π(s)

(1 + µ(tk)
2α2)

1
2µ(tk) cos

(∫ t

s

arctan(αµ(τ))

µ(τ)2
∆τ

)
= cosα(t, s;T),

as was to be shown. The proof for sinα is similar.
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Define a time scale tangent function by

tanp(t, s;T) =
sinp(t, s;T)

cosp(t, s;T)
, (96)

and similarly define the other time scale trigonometric functions by secp =
1

cosp
,

cscp =
1

sinp
, and cotp =

1

tanp
. These definitions leads to the following analogue of

Corollary 3.5.1.

Corollary 4.1.1. Let T be an isolated time scale. The following theorem holds:

tanα(t, s;T) = tan

(∫ t

s

arctan(αµ(τ))

µ(τ)2
∆τ

)
.

From (95), we get the following formulas.

Theorem 4.1.2. The following formulas hold:

1 + tan2
p(t, s;T) = eµp2(t, s;T) sec2

p(t, s;T)

and

cos2
p(t, s;T) + 1 = eµp2(t, s;T) csc2

p(t, s;T).

We also have differentiation formulas for all the new time scale trigonometric

functions.

Theorem 4.1.3. Let T be an isolated time scale. Then the following formulas hold:

tan∆
p (t, s;T) = p(t)eµp2(t, s;T) secp(t, s;T) secp(σ(t), s;T),

sec∆
p (t, s;T) = p(t) tanp(t, s;T) secp(σ(t), s;T),

csc∆
p (t, s;T) = −p(t) cotp(t, s;T) cscp(σ(t), s;T),
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and

cot∆
p (t, s;T) = −p(t)eµp2(t, s;T) cscp(t, s;T) cscp(σ(t), s;T).

Proof. Using (89), (93), (94), (95), and (96), we see

tan∆
p (t, s;T) =

[
sinp(t, s;T)

cosp(t, s;T)

]∆

=
p(t) sin2(t, s;T) + p(t) cos2(t, s;T)

cos(t, s;T) cos(σ(t), s;T)

= p(t)eµp2(t, s;T) sec(t, s;T) sec(σ(t), s;T),

as was to be shown. The other formulas are proven similarly.

A Laplace transform on time scales was first defined in [27], but was modified

and studied in detail in [9,10,13,17]. We have included a list of some Laplace trans-

forms of special functions on time scales in Table 4.1. We now summarize some of the

properties of the time scale Laplace transform. Let s ∈ T. A function f ∈ Crd(T) is

said to be of exponential order α, where α is a positive regressive constant, provided

there exists K > 0 with the property that

|f(t)| ≤ Keα(t, s) for all t ∈ [s,∞) ∩ T.

Let f be of exponential order α. Then we define its Laplace transform, centered at

s, to be

LT{f}(z; s) =

∫ ∞
s

f(τ)e	z(σ(τ), s)∆τ.

We introduce the minimal graininess function µ∗ : T→ R by

µ∗(s) = inf{µ(τ) : t ∈ [s,∞) ∩ T}.

We define the Hilger real part of a complex number by

Reh(z) =
1

h
(|1 + hz| − 1)
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and the sets

Ch =

{
z ∈ C : z 6= −1

h

}
and

Ch(λ) = {z ∈ Ch : Reh(z) > λ}.

It is known [9, Theorem 5.1] that L {f}(z; s) converges absolutely for z ∈ Cµ∗(s)(α)

and [9, Theorem 5.3] converges uniformly in Cµ∗(s)(β) for any β > α. It is also

known [9, Theorem 6.1] that if there exists an M > 0 such that |ak| ≤ Mαk for all

k ∈ N0, then

L

{
∞∑
k=0

akhk(·, s;T)

}
(z; s) =

∞∑
k=0

ak
zk+1

.

It is also shown in the proof of [9, Theorem 7.1] that

d

dz
ez(t, s;T) = mz(t, s;T)ez(t, s;T), (97)

where mz(t, s;T) =

∫ t

s

1

1 + µ(τ)z
∆τ. Define the functions (related to the un from [9,

Corollary 7.2])

vn(z; t, s;T) =

 1, n = 0

d

dz
vn−1(z; t, s;T) + vn−1(z; t, s;T)mz(t, s;T), n ∈ N.

(98)

The following lemma will allow us to write ez as a power series involving un.

Lemma 4.1.1. The following formula holds:

dn

dzn
ez(t, s;T) = vn(z; t, s;T)ez(t, s;T).

Proof. From (97), we see that the claim holds for n = 1. Now assume that the claim
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holds for n = N − 1. Now compute

dN

dzN
ez(t, s;T) =

d

dz
[vN−1(z; t, s;T)ez(t, s;T)]

=

[
d

dz
vN−1(z; t, s;T) + vN−1(z; t, s;T)mz(t, s;T)

]
ez(t, s;T)

and compare to (98), proving the claim.

The following corollary is immediate from Lemma 4.1.1 and (2).

Corollary 4.1.2. The following formula holds for any regressive z0 ∈ C:

ez(t, s;T) = ez0(t, s;T)
∞∑
k=0

vk(z0; t, s;T)
(z − z0)k

k!
.

An inverse Laplace transform is known, but only for time scales whose grain-

iness obeys 0 < µmin ≤ µ(t) ≤ µmax < ∞ (an isolated time scale with bounded

graininess). Using such a time scale and c > 0, suppose that the complex function F

is analytic for z ∈ Cµ∗(s)(α) for some s, α > 0. If

∮ c+i∞

c−i∞
|F (z)||dz| <∞, then

f(t) = L −1
T {f}(t; s) =

n∑
i=1

Res
z=zi

ez(t, s)F (z) (99)

is a function which obeys LT{f}(z; s). Of course, inverse Laplace transforms are not

necessarily unique on all time scales, but as noted in [17, Theorem 1.5], any two inverse

transforms are equal almost everywhere, where almost everywhere is determined in

the sense defined in [24]. Consequently, if T is an isolated time scale, then inverse

Laplace transforms are everywhere unique.

When generalizing the Bessel functions, we will want to allow time scale poly-

nomials of arbitrary order. The recursion (90) will not suffice for this. Instead, we will
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Table 4.1. Laplace transforms of time scale special functions.

f(t) LT{f}(z; s) Source

hn(t, s;T)
1

zn+1
[9, Table 5]

(t− s)nT
n!

zn+1
Definition

(t− s)νT
Γ(ν + 1)

zν+1
Definition

eα(t, s;T)
1

z − α
[9, Table 5]

coshα(t, s;T)
z

z2 − α2
[12, Table 3.2, page 133]

sinhα(t, s;T)
α

z2 − α2
[12, Table 3.2, page 133]

cosα(t, s;T)
z

z2 + α2
[12, Table 3.2, page 133]

sinα(t, s;T)
α

z2 + α2
[12, Table 3.2, page 133]

J0(t, s;T)
1√
z2 + 1

Theorem 4.4.1

Jν

(
t, s, 2

√
α,
ν

2
,
1

2
;T
)

α
ν
2

zν+1e
α
2

Table 4.2

interpret noninteger subscripts in hn in a sense similar to that studied in [4, Propo-

sition 3.2], i.e.,

hn(t, s;T) = L −1
T

{
1

zn+1

}
(t, s).
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4.2. WHY ANALOGUES ON TIME SCALES ARE DIFFICULT TO FIND

The papers [25,33] are concerned with Taylor series representations of functions

on time scales. In [25, Theorem 6.1, page 6], the following formula is derived for any

time scale T with constant graininess µ (i.e., R or hZ for some h > 0):

hn(t, s;T)hm(t, s;T) =
n∑
k=0

µn−k(m+ k)(n)

k!(n− k)!
hm+k(t, s;T).

This formula gives us the ability to do series methods for dynamic equations on

such a T, but the generalization of this formula to all time scales seems difficult to

penetrate. The way we chose to get around this difficulty was to use Lemma 3.2.1.

The benefit of this formula was that it allowed us to shift a single monomial without

introducing other terms, but the downside is that it does this by forcing us to deal

with h-difference equations with a delay in the argument. It was always possible to

rewrite our delay difference equations to have no delay, but that would have ruined

the nice correspondence between the differential equation and the delay h-difference

equation analogue.

In fact, we would have no problem defining the Gaussian bell on a time scale,

but defining a function in a way analogous to (71) on a general time scale inevitably

leads to nondifferentiability because of the product rule. One way to dodge this

problem is to define a time scale analogue of Hn(t, s;h) via the Gram–Schmidt or-

thogonalization, but this just shifts the burden to finding in what way (71) holds on

a general time scale.

Our proof of Lemma 3.2.1 relies on the product representation of hk(t, s;h),

and so until we have a similar representation for hk(t, s) on a general time scale,

we cannot use the same trick. Instead we will approach this using inverse Laplace

transforms.

We may take any formula defining a special function on hZ and look at the
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∞∑
k=0

ak(t− s)kT
∞∑
k=0

akk!

zk+1

∞∑
k=0

ak(t− s)k+1
T

∞∑
k=0

ak(k + 1)!

zk+2

UT

LT

− d

dz

L −1
T

Figure 4.1. Diagram for the polynomial shift operator U on time scales.

consequences of it on a time scale. For example, we could exploit (78) and define for

any ν such that γ(2k + ν) + α is an integer,

Jν(t, s, ξ, α, γ;T) =
∞∑
k=0

(−1)kξ2k+ν

Γ(k + ν + 1)22k+ν

(t− s)γ(2k+ν)+α
T
k!

.

What sorts of theorems could we prove about this function? Could we find a dynamic

equation analogue to (3.10.1) for this function? Without a Lemma 3.2.1 analogue, we

cannot. It is unclear how any theorem involving a polynomial times Jν would gener-

alize to an arbitrary time scale, but analogues of other theorems like Theorem 3.10.5

are proven exactly the same.

If we can find an analogue of a polynomial shift operator on time scales, we

may recover many of the theorems in the thesis on a general time scale in terms of

such an operator.

4.3. POLYNOMIAL SHIFT OPERATOR

Consider the diagram of operators in Figure 4.1 to justify our definition of a

polynomial shift on time scales. Hence we define UT by the formula
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UT{f} :=

(
L −1

T ◦
[
− d

dz

]
◦LT

)
{f}.

The following theorem justifies this definition of UT as a time scale analogue of

Lemma 3.2.1.

Theorem 4.3.1. If T = hZ and f(t) =
∞∑
k=0

ak(t− s)khZ
k!

, then

UhZ{f}(t; s) = (t− s)hZf(t− h).

Proof. Compute

UhZ{f(·; s)}(t, s) =

(
L −1
hZ ◦

[
− d

dz

])
h
∞∑
k=0

f(hk)

(1 + hz)k−
s
h

+1

= L −1
hZ

{
h
∞∑
k=0

(kh− s+ h)f(hk)

(1 + hz)k−
s
h

+2

}
(t; s)

= L −1
hZ

{
h
∞∑
k=0

(kh− s)f(hk − h)

(1 + hz)k−
s
h

+1

}
(t; s)

= (t− s)f(t− h),

as was to be shown.

The follow theorem is proven by repeated application of Theorem 4.3.1.

Theorem 4.3.2. The following formula holds:

U n
hZ{f(·)}(t; s) = (t− s)nhZf(t− nh).

Theorem 4.3.3. Let T be a time scale of isolated points with either constant grain-

iness or 0 < µmin ≤ µmax < ∞. Let f : T → C be of exponential order α and

write F (z) = L {f}(z). If F has n regressive poles {z1, . . . , zn} of orders θ1, . . . , θn
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respectively, then

UT{f}(z) =
n∑
i=1

ezi(t, s;T)

θi−1∑
j=0

(θi − j)a(i)
j−θivθi−j(zi; t, s;T)

(θi − j)!
.

Proof. By (8), such an F obeys a series of the form

F (z) =
∞∑

k=−θi

a
(i)
k (z − zi)k,

for all z in some annulus Dεi(zi) \ {zi}. We may compute

− d

dz
F (z) =

∞∑
k=−θi

ãk
(i)(z − zi)k−1,

where

ãk
(i) =

 −ka
(i)
k if k 6= 0

0 if k = 0.

Now Corollary 4.1.2 shows

ez(t, s;T) = ezi(t, s;T)
∞∑
k=0

vk(zi; t, s;T)
(z − zi)k

k!
,

and so we may use (99) and the Cauchy product (7) to compute

UT{f}(t; s) =

L −1
T

{
∞∑

k=−θi

ãk
(i)(· − zi)k−1

}
(t; s)

=
n∑
i=1

Res
z=zi

ez(t, s;T)
∞∑

k=−θi

ã
(i)
k (z − zi)k−1

=
n∑
i=1

Res
z=zi

ezi(t, s;T)

(
∞∑

k=−θi

ã
(i)
k (z − zi)k−1

)(
∞∑
k=0

vk(zi; t, s;T)
(z − zi)k

k!

)
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=
n∑
i=1

Res
z=zi

ezi(t, s;T)

(
∞∑
k=0

ã
(i)
k−θi(z − zi)

k−θi−1

)(
∞∑
k=0

vk(zi; t, s;T)
(z − zi)k

k!

)

=
n∑
i=1

Res
z=zi

ezi(t, s;T)
∞∑
k=0

k∑
j=0

ã
(i)
j−θi(z − zi)

j−θi−1vk−j(zi; t, s;T)
(z − zi)k−j

(k − j)!

=
n∑
i=1

Res
z=zi

ezi(t, s;T)
∞∑
k=0

k∑
j=0

ã
(i)
j−θivk−j(zi; t, s;T)

(z − zi)k−θi−1

(k − j)!
.

Notice that the factor (z−zi)k−θi−1 does not depend on j. Therefore, the term k = θi

forces k− θi− 1 = −1, i.e., this is the term whose coefficient we need to compute the

residue. Thus

U {f}(t; s) =
n∑
i=1

ezi(t, s;T)

θi∑
j=0

ã
(i)
j−θivθi−j(zi; t, s;T)

(θi − j)!

=
n∑
i=1

ezi(t, s;T)

θi∑
j=0

(θi − j)a(i)
j−θivθi−j(zi; t, s;T)

(θi − j)!

=
n∑
i=1

ezi(t, s;T)

θi−1∑
j=0

(θi − j)a(i)
j−θivθi−j(zi; t, s;T)

(θi − j)!
,

as was to be shown.

Corollary 4.3.1. The following formula holds:

UT{1}(t; s) = (t− s)T.

Proof. This is evident from Figure 4.1, but we will compute it from Theorem 4.3.3.

From Table 4.1, we have F (z) = L {1}(z; s) =
1

z
. This is a function with one pole of

order 1 at z = 0. Hence Theorem 4.3.3 shows

UT{1}(t; s) = e0(t, s;T)v1(0; t, s) = (t− s)T,

as was to be shown.
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Corollary 4.3.2. The following formula holds:

UT{(t− s)T}(t; s) = (t− s)2
T.

Proof. Table 4.1 shows us that F (z) = LT{(t − s)T}(z; s) =
2!

z2
, and we see that F

has a pole of order 2 at z1 = 0. Since F is already expressed as a Laurent series, we

have a
(1)
−1 = 0 and a

(1)
−2 = 1. We may also compute

v2(z; t, s;T) =
d

dz
mz(t, s) +mz(t, s)

2

= −
∫ t

s

µ(τ)

1 + µ(τ)z
∆τ +

(∫ t

s

1

1 + µ(τ)z
∆τ

)2

,

and so

v2(0; t, s;T) = −
∫ t

s

µ(τ)∆τ +

(∫ t

s

1∆τ

)2

= (t− s)2 −
∫ t

s

µ(τ)∆τ.

Hence

UT{h1(·, s;T)}(t; s) = e0(t, s;T)
1∑
j=0

(2− j)a(1)
j−2v2−j(0; t, s)

(2− j)!

=
2v2(0; t, s)

2!

= (t− s)2 −
∫ t

s

µ(τ)∆τ.

It is well known [17, page 1298] [32, pages 21–22] that

2!h2(t, s;T) = (t− s)2
T = (t− s)2 −

∫ t

s

µ(τ)∆τ,

and so we have verified

UT{(t− s)T}(t; s) = (t− s)2
T,
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as was to be shown.

Corollary 4.3.3. The following formula holds for a regressive constant α:

UT{eα(t, s)}(t) = mα(t, s)eα(t, s).

Proof. By Table 4.1, we see that

F (z) = LT{eα(·, s;T)}(z; s) =
1

z − α
,

which has one pole of order 1 at z1 = α. It is already expanded in an appropriate

series, and so we see that a
(1)
−1 = 1. Therefore

UT{eα(·, t;T)}(t; s) = eα(t, s;T)

[
1 · 1 · v1(α; t, s)

1!

]
= mα(t, s)eα(t, s;T),

as was to be shown.

4.4. SPECIAL FUNCTIONS ON TIME SCALES USING UT

In this section, we restrict our attention to time scales T for which Theo-

rem 4.3.3 holds. To generalize the results to all time scales requires extension of

the formula (99) to all time scales. We know that UT is a time scale analogue of

Lemma 3.2.1. Theorem 4.3.3 tells us how to compute UT for any function f : T→ C

of exponential order α. If we allow the use of the UT operator in dynamic equations,

then we may replicate most of the results obtained in Section 2. Define the time scale

Bessel function analogous to (78)

Jν(t, s, ξ, α, γ;T) =
∞∑
k=0

(−1)kξ2k+ν

Γ(k + ν + 1)22k+ν

(t− s)γ(2k+ν)+α
T
k!

. (100)
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Examine the proof of Theorem 3.10, and notice that all steps in the proof involve only

using the formula ∆(t − s)khZ = k(t − s)k−1
hZ , algebraic manipulation of coefficients,

and appeals to Lemma 3.2.1. Each time we apply Lemma 3.2.1 here, we differentiate

first, and so to generalize this to time scales, we claim that Jν(·, s, ξ, α, γ;T) solves

the following analogue of (3.10.1) for γ ∈ Z:

U 2
T

{
y∆2
}

(t; s) + (1− 2α)U {y∆}(t; s) + ξ2γ2U 2γ
T {y}(t; s) + (α2 − ν2γ2)y(t) = 0.

We will work through the proof that the time scale Bessel functions solve this equa-

tion, and then cite the rest of the theorems in this section in the U -notation. Let

ψ(t) = Jν(t, s, ξ, α, γ;T). Calculate

U 2
T {ψ∆2}(t; s) =

∞∑
k=2

(−1)kξ2k+ν(γ(2k + ν) + α)(γ(2k + ν) + α− 1)(t− s)γ(2k+ν)+α
T

Γ(k + ν + 1)22k+νk!
,

now compute

UT{ψ∆}(t; s) =
∞∑
k=1

(−1)kξ2k+ν(γ(2k + ν) + α)(t− s)γ(2k+ν)+α
T

Γ(k + ν + 1)22k+νk!
,

and finally reindex the series to see

ψ(t) = − 1

ξ2

∞∑
k=1

4k(k + ν)(−1)kξ2k+ν(t− s)γ(2k+ν)+α−2γ
T

Γ(k + ν + 1)22k+νk!

and thus

ξ2U 2γ
T {ψ}(t; s) = −

∞∑
k=1

4k(k + ν)(−1)kξ2k+ν(t− s)γ(2k+ν)+α
T

Γ(k + ν + 1)22k+νk!
.
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The proof completes by plugging these expressions into the left-hand side of the time

scale Bessel equation and computing

(γ(2k+ν)+α)(γ(2k+ν)+α−1)+(1−2α)(γ(2k+ν)+α)−γ2(4k(k+ν))+α2−ν2γ2 = 0.

We define the time scale analogue of (80) by

Jν(t, s;T) = Jν(t, s, 1, 0, 1;T) =
∞∑
k=0

(−1)k(t− s)2k+ν
T

Γ(k + ν + 1)22k+νk!
.

We have listed the properties of this function in Table 4.2. We now summarize the

time scale analogues of discrete Bessel function results. First we prove an analogue

of Theorem 3.10.2, because the proof does not work without a time scale analogue of

Theorem 3.6.1.

Theorem 4.4.1. The following formula holds:

LT{J0(·, s;T)}(z; s) =
1√
z2 + 1

.

Proof. Notice that

z√
z2 + 1

=
1√

1 + 1
z2

= z

(
1 +

1

z2

)− 1
2

.

By (17) and (23),

(
1 +

1

z2

)− 1
2

=
∞∑
k=0

(
−1

2

k

)
1

z2k

=
∞∑
k=0

Γ(−1
2

+ 1)

k!Γ(−1
2
− k + 1)

1

z2k
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=
∞∑
k=0

√
π

k!Γ(1
2
− k)

1

z2k

=
∞∑
k=0

(−1)k(2k)!

(k!)222k

1

z2k
.

Therefore

1√
z2 + 1

=
∞∑
k=0

(−1)k(2k)!

(k!)222k

1

z2k+1
.

By Table 4.1, we see L −1
T

{
1

z2k+1

}
(z; s) =

1

(2k)!
(t− s)2k

T , and so

L −1
T

{
1√
z2 + 1

}
(z; s) =

∞∑
k=0

(−1)k

(k!)222k
(t− s)2k

T ,

which is the series for J0(t, s;T), as was to be shown.
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Table 4.2. Properties of time scale Bessel functions.

Formula Analogue of

LT{J0(·, s;T)}(z; s) =
1√
z2 + 1

Theorem 4.4.1

(J0 ∗ J0) (t, s;T) = sin1(t, s;T) Corollary 3.10.2

LT

{
Jν

(
t, s, 2

√
α,
ν

2
,
1

2
;T
)}

(z; s) =
α
ν
2

zν+1e
α
2

Theorem 3.10.4

J−n(t, s;T) = (−1)nJn(t, s;T) Theorem 3.10.5

UT
{
J∆
ν (·, s;T)

}
(t; s) = νJν(t, s;T)−UT {Jν+1(·, s;T)} (t; s) Theorem 3.10.6

UT
{
J∆
ν (·, s;T)

}
= −νJν(t, s;T) + UT {Jν−1(·, s;T)} Theorem 3.10.7

2νJν(t, s;T) = UT {Jν−1(·, s;T)} (t; s) + UT {Jν+1(·, s;T)} (t; s) Corollary 3.10.3

2∆hJν(t, s;T) = Jν−1(t, s;T)− Jν+1(t, s;T) Corollary 3.10.3

∆h [U n
T {Jν(·, s;T)} (t; s)] = U n

T {Jν−1(·, s;T)} (t; s);n = 0, 1, 2, . . . Theorem 3.10.8
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An analogue of Hermite polynomials already exists on time scales [34], but

it is different than both analogues in this thesis. We will not attempt to generalize

the second Hermite polynomials because they are defined via repeated differentiation

which is not guaranteed to exist on an arbitrary time scale. However, we will write

out the time scale analogues of the formulas for the analogue of (69). Define the time

scale Hermite polynomials (of type I) to be

Hn(t, s;T) =
m∑
k=0

(−1)kn!(t− s)n−2k−1
T

k!Γ(n− 2k)2k
.

We have included the properties of the time scale Hermite polynomials in Table 4.4.

We also define the time scale associated Laguerre polynomials by

L(α)
n (t, s;T) =

n∑
k=0

(−1)k(t− s)kT
k!

(
n+ α

n− k

)
.

We have included properties of the time scale associated Laguerre polynomials in

Table 4.5. Finally we define the generalized hypergeometric series on time scales by

the following analogue of (87):

pFq(a; b; t, s, n, ξ;T) =
∞∑
k=0

ak

bk
ξk

(t− s)nkT
k!

.

We have included the properties of this function in Table 4.3. We define the ΥT

operator by ΥT = UT
∆

∆t
.
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Table 4.3. Properties of generalized hypergeometric series on time scales.

Formula Analogue of

pF
∆n

q (a; b; t, s, 1, ξ;T) =
an

bn
pFq(a + n; b + n; t, s, 1, ξ;T) Corollary 3.11.2

eα(t, s;T) = 0F0(; ; t, s, 1, α;T) Theorem 3.11.6

coshα(t, s;T) = 0F1

(
;
1

2
; t, s, 2,

α2

4
;T
)

Theorem 3.11.7

sinhα(t, s;T) = αUT

{
0F1

(
;
3

2
; t, s, 2,

α2

4
;T
)}

Theorem 3.11.8

cosα(t, s;T) = 0F1

(
;
1

2
; t, s, 2,−α

2

4
;T
)

Theorem 3.11.9

sinα(t, s;T) = αUT

{
0F1

(
;
3

2
; ·, s, 2,−α

2

4
;T
)}

Theorem 3.11.9

L
(α)
n (t, s;T) =

(α + 1)n

n!
1F1(−n;α + 1; t, s, 1, 1;T) Theorem 3.11.10

2νΓ(ν + 1)Jν(t, s, 1,−ν, 1;T) = 0F1

(
; ν + 1; t, s, 2,−1

4
;T
)

Theorem 3.11.11
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Table 4.4. Properties of Hn(t, s;T).

Formula Analogue of

∆H∆∆
n (t, s;T)−UT

{
H∆
n (t, s;T)

}
+ nHn(t, s;T) = 0 Theorem 3.9.1

H∆
n (t, s;T) = nHn−1(t, s;T) Theorem 3.9.2

Hn+1(t, s;T) = UT{Hn(· − h, s;T)}(t; s)− nHn−1(t, s;T) Theorem 3.9.3

Table 4.5. Properties of time scale L
(α)
n (t, s;T).

Formula Analogue of

UT{L(α)∆∆

n }+ (α + 1)L
(α)∆

n −UT{y∆}+ nL
(α)
n = 0 Theorem 3.9.9

(n+ 1)L
(α)
n = (2n+ α + 1)L

(α)
n −UT{L(α)

n }(t; s)− (n+ α)L
(α)
n−1 Theorem 3.9.10

UT{L(α)∆

n } = nL
(α)
n − (n+ α)L

(α)
n−1 Theorem 3.9.11

Lα
∆

n = −L(α+1)
n−1 Theorem 3.9.12
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5. CONCLUSION

We have seen many analogues of special functions on time scales, and it is

clear that we have barely scratched the surface. We have introduced new natural

time scale trigonometric functions and derived some of their properties. We have

found a nice formula for the gamma function on hZ. We have shown that the time

scale monomials may converge to different branches of the power function depending

on which complexification is chosen. We have derived some formulas for an analogue

of the Gaussian bell whose ∆-derivative is proportional to a linear function instead

of an exponential. We have demonstrated that orthogonality of a set of polynomials

is not preserved under finding time scale analogues using Lemma 3.2.1, so perhaps

another method of generalization can be developed to preserve orthogonality. We have

fleshed out in detail a theory of Bessel functions of the first kind. In the end, we have

tied together many of these topics into a theory of an analogue of a hypergeometric

series. It is clear that much work needs to be done in expanding these results to a

general time scale.

The standard special functions on time scales still have properties we need to

discover — for instance, can analogues of Rodrigues-type formulas like (71) exist on a

time scale? Are there nice representations of the general time scale gamma function?

In what sense can we find a partial dynamic equation analogous to Laplace’s equation

in cylindrical coordinates that leads to classical Bessel functions? Does the time

scale gamma function in [11] obey a Bohr–Mollerup theorem analogue similar to the

results in [3]? A major open problem in the theory remains to be the inverse Laplace

transform for a general time scale. With one, we may extend UT to all time scales and

replicate the results in this thesis on all time scales. Can the polynomial shift operator

be simplified in terms of standard time scale operations? A major area left alone by
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this thesis is generating functions — such analogues are difficult to achieve because

of the regressive function operations and the lack of an easy-to-use polynomial shift

operator. In what way may we find complexifications similar to the discrete rising

and falling complexifications? If a time scale contains a limit point, do we obtain

any type of uniqueness for complex extensions in neighborhoods of the limit point?

How do the results extend to the “time scale complex plane” as defined in the sense

of [7]?
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Birkhäuser Boston, Inc., Boston, MA, 2001. An introduction with applications.



117

[13] Martin Bohner and Allan Peterson. Laplace transform and Z-transform: unifi-
cation and extension. Methods Appl. Anal., 9(1):151–157, 2002.

[14] Martin Bohner and Allan Peterson, editors. Advances in dynamic equations on
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