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ABSTRACT

We propose an incremental algorithm to compute the proper orthogonal decom-

position (POD) of simulation data for a partial differential equation. Specifically, we

modify an incremental matrix SVD algorithm of Brand to accommodate data arising from

Galerkin-type simulation methods for time dependent PDEs. We introduce an incremental

SVD algorithm with respect to a weighted inner product to compute the proper orthogonal

decomposition (POD). The algorithm is applicable to data generated by many numerical

methods for PDEs, including finite element and discontinuous Galerkin methods. We also

modify the algorithm to initialize and incrementally update both the SVD and an error bound

during the time stepping in a PDE solver without storing the simulation data. We show the

algorithm produces the exact SVD of an approximate data matrix, and the operator norm

error between the approximate and exact datamatrices is bounded above by the computed er-

ror bound. This error bound also allows us to bound the error in the incrementally computed

singular values and singular vectors. We demonstrate the effectiveness of the algorithm

using finite element computations for a 1D Burgers’ equation, a 1D FitzHugh-Nagumo PDE

system, and a 2D Navier-Stokes problem.
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SECTION

1. INTRODUCTION

Proper orthogonal decomposition (POD) is an optimal data approximation method:

It produces a basis called POD modes that can be used to optimally reconstruct the data.

POD was introduced to the turbulence community by Lumley in 1967 [1]. Before that time

it was already invented in 1901 by Karl Pearson [2] under the name principal component

analysis (PCA) as an analogue of the principal axis theorem in mechanics. POD has been

developed by several people, therefore it is known under other names such as principal

component analysis [3], and the Karhunen-Loève decomposition [4, 5]. Proper orthogonal

decomposition (POD) has been widely used in many applications involving partial differen-

tial equations (PDEs) such as aeroelasticity [6], fluid dynamics [7, 8], feedback control [9],

PDE constrained optimization and optimal control problems [10, 11], uncertainty quantifi-

cation [12], and data assimilation [13, 14]. The most important point in the POD procedure

is optimality: it provides the most efficient way of capturing the dominant components of a

finite or infinite-dimensional data set by producing the minimum number of basis elements

(called POD modes) to reconstruct the data. In other words, POD is an effective method

for reducing high-dimensional data sets.

We formulate POD as a constrained minimization problem. Let X be a Hilbert

space with the inner product (·, ·)X and norm ‖ · ‖X . Suppose snapshots x1, x2, . . . , xn ∈ X

are given, where dim X ≥ n. Define Y = span{x1, x2, . . . , xn} ⊂ X , and let {y j}
n
j=1 be any

orthonormal basis for Y . Then we have

xi =

n∑
j=1
(xi, y j)X y j, i = 1, . . . , n. (1.1)
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For any k ∈ N and k < n, our goal is to find the orthonormal basis {y j}
k
j=1 (the PODmodes)

of rank k which is the solution of the following problem:

min
n∑

i=1
‖xi − x̂i‖

2
X, with (yi, y j)X = δi j, for 1 ≤ i, j ≤ k, (1.2)

where the approximation of xi is

x̂i =

k∑
j=1
(xi, y j)X y j . (1.3)

Therefore, the PODmodes are the orthonormal basis ofY minimizing the total mean square

error between the snapshots xi and their corresponding low order approximations x̂i.

There aremanymethods to compute the POD of a dataset; themost basic approaches

rely on computing the eigenvalue decomposition or singular value decomposition (SVD) of

amatrix constructed using the dataset. Themethod of snapshots introduced by Sirovich [15]

is the most widely used approach to find the POD of large data sets (see, e.g., [16, 17, 18]).

However, the SVDbased technique can be used to obtain low-rankmatrix approximations (to

recall SVD see [19, 20, 21]). SVD has been applied in conjunction with various techniques

such as proper orthogonal decomposition (POD), although this approach requires a large

amount of data storage and it is computationally expensive. Researchers have proposed

various methods to deal with the computational complexity and data storage issues for

POD computations (see, e.g., [22, 23, 24, 25, 26]). One of the approaches is called

incremental SVD algorithms; specifically, the SVD of a data set is initialized on a small

amount of data and then updated as new data arrives. For more information see, e.g.,

[27, 28, 26, 29, 30, 31, 32]. However, the Hilbert space inner product has not been

thoroghly explored in these works. It is important to consider the inner product in the POD

calculations for applications (see, e.g., [33, 34, 35, 36]).
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  Incremental SVD methods have been used in combination with numerical methods 

for PDEs to compute POD modes during the time stepping without storing any of the 

simulation data. For examples of this approach, see, e.g., [37, 38, 39].

  In this dissertation, we focus on computing the POD of a data set in a Hilbert space 

that is expressed using a collection of basis functions; therefore, the data can be generated 

by many numerical methods for PDEs, including finite element and discontinuous Galerkin 

methods. The main purpose of our work is to propose an incremental algorithm for the 

POD computations where we account for the Hilbert space inner product. We extend 

Brand’s incremental matrix SVD algorithm [27] to accommodate the Hilbert space data 

expanded in basis elements. We show that the POD of the Hilbert space data expressed 

in term of a basis is equivalent to the POD of the vectors in Rm of the coefficient data 

with respect to a weighted inner product on Rm. Therefore, we present an algorithm that 

incrementally computes the matrix SVD with respect to a weighted inner product. This 

algorithm involves truncations. We demonstrate the effectiveness of the truncation in the 

algorithm by computing the error bound incrementally without storing the whole data. We 

compute the error bound between the exact data matrix and the approximate truncated SVD 

of the data matrix. This error bound allows us to bound the error in the incrementally

computed singular values and singular vectors.

1.1. BACKGROUND: SVD

Let X and Y be separable Hilbert spaces, and let A : X → Y be a compact 

linear operator with Hilbert adjoint operator A∗ : Y → X . The self-adjoint nonnegative

compact operators AA∗ and A∗ A have nonnegative eigenvalues, and the square root of the 

eigenvalues are equal to the singular values µk of A. A singular value of A is equal to 

zero if an eigenvalue of AA∗ or A∗ A is equal to zero. Furthermore, the corresponding

orthonormal basis of eigenvectors of AA∗ is {ξk } ⊂ Y and the corresponding orthonormal 

basis of eigenvectors of A∗ A is {ηk } ⊂ X , thus the corresponding singular value expansions
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can be defined as follows:

Aη =
∑
k≥1

µk (η, ηk)X ξk, A∗ξ =
∑
k≥1

µk (ξ, ξk)Y ηk,

for all η ∈ X and ξ ∈ Y . This gives

Aηi = µiξi, A∗ξi = µiηi, ∀µi > 0

We consider different Hilbert spaces such as Rk that denotes the space with the standard

inner product (x, y) = yT x, for all x, y ∈ Rk (i.e., the Euclidean inner product or dot product).

Let Rm
M denote the Hilbert space Rm with M-weighted inner product (x, y)M = yT M x, for

all x, y ∈ Rm, where M ∈ Rm×m is a symmetric positive definite square matrix.

1.2. OUTLINE

  The organization of this dissertation is as follows: In paper I [40], we show that the 

POD of the Hilbert space data expressed in terms of a basis is equivalent to the POD of the 

vectors in Rm of the coefficient data with respect to a weighted inner product on Rm. In 

this paper we consider two approaches to compute the incremental SVD with respect to the 

weighted inner product: (1) using a Cholesky factor of the weight matrix, and (2) without 

using a Cholesky factor. The first approach follows standard POD ideas for weighted inner 

products (see, e.g., [18]), but requires the computation of the Cholesky factor and also 

solving linear systems involving the Cholesky factor. In the second approach, we avoid 

these extra computations by directly extending Brand’s incremental matrix SVD algorithm

[27] to work with a weighted inner product on Rm. In paper II [41], we show that we 

compute an error bound incrementally without storing the whole data set by extending 

the incremental SVD algorithm for a weighted inner product from paper I. This work also
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displays an error analysis that discusses the effect of truncation at each step, and provides

more insight into the accuracy of the algorithm with truncation and the choices of the

tolerances. Finally, conclusions and future research ideas are presented in Section 2.
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PAPER

I. INCREMENTAL PROPER ORTHOGONAL DECOMPOSITION FOR PDE
SIMULATION DATA

Hiba Fareed1, John R. Singler1, Yangwen Zhang1, and Jiguang Shen2

1 Department of Mathematics and Statistics

Missouri University of Science and Technology
2 School of Mathematics, University of Minnesota

ABSTRACT

  We propose an incremental algorithm to compute the proper orthogonal decomposi- 

tion (POD) of simulation data for a partial differential equation. Specifically, we modify an 

incremental matrix SVD algorithm of Brand to accommodate data arising from Galerkin- 

type simulation methods for time dependent PDEs. The algorithm is applicable to data 

generated by many numerical methods for PDEs, including finite element and discontin- 

uous Galerkin methods. The algorithm initializes and efficiently updates the dominant 

POD eigenvalues and modes during the time stepping in a PDE solver without storing the 

simulation data. We prove that the algorithm without truncation updates the POD exactly. 

We demonstrate the effectiveness of the algorithm using finite element computations for a 

1D Burgers’ equation and a 2D Navier-Stokes problem.

Keywords: proper orthogonal decomposition, incremental algorithm, weighted norm, finite 

element method
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1. INTRODUCTION

Proper orthogonal decomposition (POD) has been widely used in many applica-

tions involving partial differential equations such as aeroelasticity [1], fluid dynamics [2],

feedback control [3], PDE constrained optimization and optimal control [4, 5], uncertainty

quantification [6], and data assimilation [7, 8]. In the most basic form, POD is an optimal

data approximation method: the POD of a dataset produces a basis (called PODmodes) that

can be used to optimally reconstruct the data. There are many methods to compute the POD

of a dataset; the most basic approaches rely on computing the eigenvalue decomposition or

singular value decomposition (SVD) of a matrix constructed using the dataset. The method

of snapshots introduced by Sirovich [9] is commonly used to find POD eigenvalues and

modes. For more information, see, e.g., [10, 11, 12].

For very large datasets, such as datasets arising from simulations of partial differen-

tial equations (PDEs), the basic approaches to POD computations become computationally

expensive and require a large amount of data storage. Researchers have proposed various

methods to deal with the computational complexity (see, e.g., [13, 14, 15, 16]), and both the

computational complexity and data storage (see, e.g., [17] and the references therein). The

latter class of methods are incremental SVD algorithms; specifically, the SVD is initialized

on a small amount of data and then updated as new data becomes available. This type

of incremental algorithm can be easily used in conjunction with a time stepping code for

simulating a time dependent PDE; the POD eigenvalues and modes are updated during the

time stepping without storing any of the simulation data. For examples of this approach,

see, e.g., [18, 19, 20].

In this work, we focus on computing the POD of data arising from a Galerkin-type

simulation of a PDE. Specifically, the data lies in a Hilbert space and are expressed using

a collection of basis functions; therefore, the data can be generated using many numerical

methods for PDEs, including finite element and discontinuous Galerkin methods. We

extend Brand’s incremental matrix SVD algorithm [21] to accommodate data of this type.
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Specifically, we show that the POD of the Hilbert space data expressed in term of a basis is 

equivalent to the POD of the vectors in Rm of the coefficient data with respect to a weighted 

inner product on Rm (see Appendix 1). We consider two approaches to compute the 

incremental SVD with respect to the weighted inner product: (1) using a Cholesky factor 

of the weight matrix (Section 3), and (2) without using a Cholesky factor (Section 4). The 

first approach follows standard POD ideas for weighted inner products (see, e.g., [12]), but 

requires the computation of the Cholesky factor and also solving linear systems involving 

the Cholesky factor. In the second approach, we avoid these extra computations by directly 

extending Brand’s incremental matrix SVD algorithm [21] to work with a weighted inner 

product on Rm. We analyze an idealized version of the second approach that does not 

involve truncation and prove that it produces the exact SVD with respect to the weighted 

inner product.

We link the second approach together with (approximate) POD of time varying 

functions in Section 5, and then present numerical results in Section 4. For the numerical 

results, we consider computing the POD of finite element simulation data for a 1D Burgers’ 

equation and a 2D Navier-Stokes equation. For the 1D problem and a coarse discretization 

of the 2D flow problem, we compare the result of the second incremental SVD approach to 

the true results and find excellent a greement. For a  large-scale simulation of the 2D flow 

problem, we compute the POD without storing all the data by calculating the incremental 

SVD only. We present conclusions in Section 5.

2. BASIC DEFINITIONS AND CONCEPTS

We begin by introducing many important definitions and concepts needed throughout 

this work.
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For notational convenience, we adopt Matlab notation herein. Given a vector u ∈ Rn

and r ≤ n, let u(1 : r) denote the vector of the first r components of u. Similarly, for a 

matrix A ∈ Rm×n, we let A(p : q, r : s) denote the submatrix of A consisting of the entries

of A from rows p, . . . , q and columns r, . . . , s.

2.1. THE SVD WITH RESPECT TO A WEIGHTED INNER PRODUCT

Let M ∈ Rm×m be a symmetric positive definite square matrix. Let Rm
M denote the

Hilbert space Rm with M-weighted inner product, i.e.,

(x, y)M = yT M x for all x, y ∈ Rm.

Throughout this work, Rk without a subscript denotes the space with the standard inner

product (x, y) = yT x (i.e., the Euclidean inner product or dot product).

We require two functional analytic concepts for a matrix P ∈ Rm×n considered as a

mapping P : Rn → Rm
M : the Hilbert adjoint operator and the singular value decomposition.

First, the Hilbert adjoint operator of the matrix P : Rn → Rm
M is a matrix P∗ :

Rm
M → R

n satisfying

(Px, y)M = (x, P∗y) for all x ∈ Rn and y ∈ Rm
M .

We can show P∗ = PT M as follows:

(Px, y)M = (x, P∗y) ⇒ yT M Px = (P∗y)T x ⇒ yT M Px = yT (P∗)T x.

Since this holds for all x, y, we have M P = (P∗)T and therefore P∗ = PT M .

Second, since the matrix P : Rn → Rm
M is a compact linear operator, it has a singular

value decomposition: the nonzero eigenvalues of PP∗ : Rm
M → R

m
M and P∗P : Rn → Rn

are equal, and the nonzero singular values σ1 ≥ σ2 ≥ · · · ≥ 0 of P equal the square roots
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of those eigenvalues. Also, zero is a singular value of P if either PP∗ or P∗P has a zero

eigenvalue. Therefore, there are max{m, n} singular values, counting multiplicities. The

corresponding orthonormal bases of eigenvectors, {φ j}
m
j=1 ⊂ R

m
M and {ψ j}

n
j=1 ⊂ R

n, are

the singular vectors. This gives

Pψ j = σjφ j, P∗φ j = σjψ j if σj > 0. (1)

Note that {φ j}
m
j=1 being orthonormal in Rm

M means

(φi, φ j)M = φ
T
j Mφi =

0, if i , j,1, if i = j.
For more information about the singular value decomposition of operators acting on Hilbert 

spaces, see, e.g., [22, Chapters VI–VIII], [23, Chapter 30], [24, Sections VI.5–VI.6].

In POD applications, it is typical to only need information about singular vectors

corresponding to nonzero singular values. Let k = rank(P), i.e., P has exactly k positive 

singular values σ1 ≥ σ2 ≥ · · · ≥ σk > 0. Let V = [φ1, φ2, . . . , φk ] ∈ Rm×k be the matrix 

of the first k orthonormal eigenvectors of PP∗, and let W = [ψ1, ψ2, . . . , ψk ] ∈ Rn×k be the 

matrix of the first k orthonormal eigenvectors of P∗P. Then (1) gives

  PW = V Σ, P∗V = W Σ, Σ = diag(σ1, . . . , σk ). (2)

Since {ψ j }kj=1 is orthonormal in Rn, we have WT W = I. Also, since {φ j }kj=1 is orthonormal

in Rm
M , we have VT MV = I or V ∗V = I, where V ∗ = VT M . Therefore, (2) is equivalent to

TP = V ΣW . (3)
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Since we are primarily interested in the nonzero singular values and corresponding

singular vectors, we primarily consider the decomposition (3) for our theoretical results.

For the standard matrix case (i.e., without weighted norms), the decomposition (3) is

called by various names in the literature and sometimes definitions in different references

conflict.1 In order to potentially avoid confusion, we call this decomposition the core SVD.

Definition 1: For a matrix P : Rn → Rm
M with exactly k positive singular values, a core

SVD of P is given by P = VΣWT , where V ∈ Rm×k , Σ ∈ Rk×k , and W ∈ Rn×k are defined

above. �

Just like the regular SVD, the core SVD is not unique. For example, the columns of V and

W can change sign and P = VΣWT is still a core SVD of P.

Also, we sometimes consider a core SVD of a matrix in the standard sense, i.e., all

inner products are unweighted. To be clear, we call this the standard core SVD.

Below, we give some basic properties of the core SVD.

Proposition 1: Suppose V ∈ Rm×k has M-orthonormal columns, W ∈ Rn×k has orthonor-

mal columns, and Σ ∈ Rk×k is a positive diagonal matrix with Σ11 ≥ Σ22 ≥ · · · Σkk > 0. If

P : Rn → Rm
M satisfies P = VΣWT , then V , Σ, W give a core SVD of P. �

Proof: First, it is clear that rank(P) ≤ k, and therefore P has at most k positive singular

values. It is straightforward to check that (2) holds. This implies the k columns of V are

eigenvectors of PP∗ and the k columns ofW are eigenvectors of P∗P, and the corresponding

k eigenvalues are the nonzero diagonal entries of Σ. Thus, P = VΣWT is a core SVD of

P �.

We use the next basic result frequently in this work.

1For example, Horn and Johnson [25] call this decomposition the thin SVD, but this contradicts with the
definition of thin SVD in Golub and Van Loan [26]. Furthermore, this definition is called compact SVD in
[27]; however, we do not use this terminology to avoid confusion with the SVD of a compact operator.
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Proposition 2: Suppose Vu ∈ R
m×k has M-orthonormal columns and Wu ∈ R

n×k has

orthonormal columns. IfQ ∈ Rk×k has standard core SVDQ = VQΣQWT
Q and P : Rn → Rm

M

is defined by P = VuQWT
u , then

TP = VΣQW , V = VuVQ, W = WuWQ, (4)

is a core SVD of P �.

Proof: First, it is clear P has the representation (4). By the above proposition, we only 

need to show V has M-orthonormal columns and W also has orthonormal columns. This 

follows directly since Vu
T MVu = I, Wu

TWu = I, VQ
TVQ = I, and WQ

TWQ = I. �

2.2. COMPUTING THE EXACT SVD WITH RESPECT TO A WEIGHTED INNER 
PRODUCT

Next, we briefly outline how to compute the exact SVD of a matrix with respect 

to a weighted inner product using a Cholesky factorization of the weight matrix. In our 

numerical results in Section 4, we compare the incremental SVD approach in Section 4 to 

the exact SVD computed using the Cholesky factorization approach discussed here. Note 

that this Cholesky approach requires storing all of the data, which incremental approaches 

do not require.

LetU ∈ Rm×n be amatrix considered as amappingU : Rn → Rm
M , where M ∈ Rm×m

is a symmetric positive definite weight matrix. Wewant to compute the SVD ofU as defined

in Section 2.1 above.

Let

M = RT
M RM
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be the Cholesky factorization of M , where RM ∈ R
m×m is upper triangular and invertible.

Transform the matrix U using the Cholesky factor by defining

Ũ = RMU ∈ Rm×n.

The standard SVD of Ũ (i.e., the SVD with unweighted inner products) gives the SVD of

U with respect to the weighted inner product.

Proposition 3: Let U ∈ Rm×n, and suppose M ∈ Rm×m is symmetric positive definite with

Cholesky factorization M = RT
M RM as above. If Ũ = Ṽ Σ̃W̃T is the standard core SVD of

Ũ = RMU ∈ Rm×n, then

U = VΣWT, V = R−1
M Ṽ, Σ = Σ̃, W = W̃ (5)

is the core SVD of U : Rn → Rm
M . �

Proof: We have

U = R−1
M Ũ = V Σ̃W̃T,

and

V∗V = VT MV = ṼT R−T
M MR−1

M Ṽ = ṼT R−T
M RT

M RM R−1
M Ṽ = ṼTṼ = I .

The result follows directly from Proposition 1. �

Algorithm 1 Exact SVD via Cholesky factorization
Input: U ∈ Rm×n and M ∈ Rm×m (symmetric positive definite)
1: RM = chol(M)
2: Ũ = RMU
3: [ Ṽ, Σ,W ] = svd(Ũ)
4: Solve for V : RMV = Ṽ
5: return V , Σ, W
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3. BRAND’S INCREMENTAL SVD

Next, we briefly review Brand’s incremental SVD algorithm from [21]. The algo-

rithm updates the SVD of a matrix when one or more columns are added to the matrix. A

basic implementation of his algorithm has been used for POD computations in [18, 19, 20].

Below, we present the modified version of Brand’s incremental SVD algorithm from

[20] using single column updates. We first consider the standard inner product, and then

a weighted inner product using the Cholesky factorization of the weight matrix. We also

briefly discuss why it is beneficial to avoid the Cholesky factorization. Then, in Section

4 below, we propose an extension of Brand’s algorithm for a weighted inner product that

avoids the Cholesky factorization entirely.

3.1. STANDARD INNER PRODUCT

Suppose we already have the rank-k truncated SVD of a matrix U ∈ Rm×n denoted

by
TU = VΣW , (6)

where Σ ∈ Rk×k is a diagonal matrix with the k (ordered) singular values of U on the

diagonal, V ∈ Rm×k is the matrix containing the corresponding k left singular vectors of U,

and W ∈ Rn×k is the matrix of the corresponding k right singular vectors of U.

Let c ∈ Rm be the single column to be added to U. Our goal is to update the above

SVD, i.e., we want to find the SVD of [U c ]. Furthermore, we want to update (Σ,V,W)

without forming the matrices U or [U c ].

To do this, let h ∈ Rm be the projection of c onto the orthogonal complement of the

space spanned by the columns of V , i.e.,

Th = c − VV c.
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Also, let p be the magnitude of h and let j be the unit vector in the direction of h, i.e.,

p = ‖h‖, j = h/p.

If p > 0, we have the fundamental identity

[
U c

]
=

[
VΣWT c

]
=

[
V j

] 
Σ VT c

0 p




W 0

0 1


T

.

As in Proposition 2, we can find the SVD of the updated matrix [U c ] by finding

the SVD of the middle matrix Q in the right hand side of the above identity. Specifically, if

Q :=


Σ VT c

0 p

 = VQΣQ WT
Q

is the standard core SVD of Q, then the standard core SVD of [U c ] is given by

[
U c

]
=

( [
V j

]
VQ

)
ΣQ

©­­«


W 0

0 1

 WQ
ª®®¬

T

. (7)

In practice, truncation is performed when p is very small, and also reorthogonal-

ization must be performed on the columns of the updated V and W . We discuss these

implementation steps in detail in Section 4.2. We also correct an error in the truncation

formulas for the right singular vectors in [20].

Furthermore, as is discussed in [20], we note that only the singular values and left

singular vectors need to be computed for many POD applications. However, if one wants

to retain an approximation to the data without storing the data, then it is necessary to also

compute the right singular vectors.
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3.2. WEIGHTED INNER PRODUCT VIA CHOLESKY FACTORIZATION

  Next, we discuss incrementally computing the SVD of [ U c ] with respect to a 

weighted inner product using a Cholesky factorization of the weight matrix. Specifically,

consider U ∈ Rm×n as a mapping U : Rn → Rm
M , where M ∈ Rm×m is symmetric positive

definite. Let c ∈ Rm
M be the column to be added to U. Our goal is to find the SVD of the

updated matrix [U c ] considered as a mapping [U c ] : Rn+1 → Rm
M .

Suppose we already have the rank-k SVD of U with respect to the weighted inner

product given by U = VΣWT . As in Section 2.1, let M = RT
M RM be the Cholesky

factorization of M , and transform the data: Let

Ũ = RMU = ṼΣWT, Ṽ = RMV .

Next, we update the standard SVD of Ũ by applying Brand’s algorithm as outlined above

in Section 3.1 to the transformed updated matrix RM[U c ] = [ Ũ RMc ]. This gives

[ Ũ RMc ] = RM[U c ] = ṼnewΣnewWT
new. (8)

We undo the transformation by multiplying (8) on the left by R −1
M . Therefore, in order to

find the updated SVD of [U c ] we need to rescale the left singular vectors for Ũ as follows:

Vnew = R−1
M Ṽnew. (9)

This gives the updated SVD: [U c ] = VnewΣnewWT
new.

The above approach gives an incremental algorithm for the SVD with respect to a

weighted inner product; however, the algorithm has a few drawbacks if m is very large:

• A Cholesky factorization of M ∈ Rm×m is required.



17

• The Cholesky factor RM of M may not be as sparse as M . (However, it may be

possible to avoid a significant loss of sparsity by using ordering methods; see, e.g.,

[Davis06, Davis16]).

˜• Solving the linear system RMVnew = Vnew is required.

We avoid all of these drawbacks in the next section by modifying Brand’s algorithm to deal 

with the weighted inner product directly.

4. BRAND’S INCREMENTAL SVD WITH RESPECT TO A WEIGHTED INNER
PRODUCT

  In this section, we avoid the Cholesky factorization of the weight matrix M and 

modify Brand’s algorithm to treat the weighted inner product case. In the modified algo- 

rithm, we do not need to solve any linear systems; we only need to multiply by the weight 

matrix M . In large-scale applications involving partial differential equations, it is common 

for M to be sparse; therefore, multiplying by M is a minor computational cost. The modified 

algorithm has a similar computational cost to the standard algorithm if M is sparse or if 

multiplying M by a vector can be computed quickly.

  We begin in Section 4.1 by describing an idealized version of the incremental SVD 

algorithm, and we prove it produces the exact core SVD. Then we discuss implementation

details in Section 4.2.

4.1. IDEALIZED ALGORITHM WITHOUT TRUNCATION

Suppose we have an exact core SVD of a matrix U : Rn −→ Rm
M , and our goal is to

update the core SVD when we add a column c ∈ Rm
M to U. Furthermore, we want to update

the core SVD without forming U or [U c ].
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First, we propose an idealized version of the algorithm by modifying Brand’s al-

gorithm to work in the Hilbert space structure of the weighted inner product space Rm
M

from Section 2. We use Hilbert adjoint operators of matrices, and also the weighted norm

‖x‖M = xT M x for x ∈ Rm
M .

The idealized algorithm is given in the following theorem. Again, we present

implementation details in Section 4.2 below.

Theorem 1: Let U : Rn −→ Rm
M , and suppose U = VΣWT is the exact core SVD of U,

where VT MV = I for V ∈ Rm×k , WTW = I for W ∈ Rn×k , and Σ ∈ Rk×k . Let c ∈ Rm
M and

define

h = c − VV∗c, p = ‖h‖M, Q =


Σ V∗c

0 p

 ,
where V∗ = VT M . If p > 0 and the standard core SVD of Q ∈ Rk+1×k+1 is given by

Q = VQ ΣQ WT
Q, (10)

then the core SVD of [U c ] : Rn+1 −→ Rm
M is given by

[U c ] = VuΣQWT
u ,

where

Vu = [V j ] VQ, j = h/p, Wu =


W 0

0 1

 WQ .

�
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Proof: Since j = h/p = (c − VV∗c)/p, we have c = VV∗c + jp. This gives

[U c ] = [VΣWT c ]

= [VΣWT VV∗c + jp ]

= [V j ]


ΣWT V∗c

0 p


= [V j ]


Σ V∗c

0 p




W 0

0 1


T

.

Next, note

[V j ]T M[V j ] =


VT MV VT M j

(VT M j)T jT M j

 =


I 0

0 1


since VT MV = V∗V = I by assumption,

VT M j = V∗ j = V∗(c − VV∗c)/p = (V∗c − V∗c)/p = 0,

and

jT M j =
‖h‖2M

p2 =
‖h‖2M
‖h‖2M

= 1.

Also, since WTW = I, 
W 0

0 1


T 

W 0

0 1

 =


I 0

0 1

 .
Proposition 2 gives the result. �
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4.2. ALGORITHM DETAILS: INITIALIZATION, TRUNCATION, AND 
ORTHOG-ONALIZATION

In Section 4.1, we demonstrated an idealized approach to computing the SVD with 

respect to a weighted inner product incrementally, i.e., by adding one column at a time. Next, 

we give implementation details concerning initialization, truncation, and orthogonalization.

Initialization. We initialize the SVD with a single column of data c by setting

Σ = ‖ c ‖M = (c
T Mc)1/2, V = cΣ−1, W = 1.

We note that although the matrix M may be positive definite in theory, small round off

errors may cause cT Mc to be very small and negative in practice. Therefore, throughout

this work, when computing the weighted norm we use absolute values under the square

root. For example, we actually set Σ = (|cT Mc |)1/2. We also note that c should be nonzero

to initialize. The procedure is given in Algorithm 2.

Algorithm 2 Initialize incremental SVD with respect to weighted inner product
Input: c ∈ Rm×1, c , 0, M ∈ Rm×m (symmetric positive definite)
1: Σ = (|cT Mc |)1/2

2: V = cΣ−1

3: W = 1
4: return V , Σ, W

Truncation part 1. The exact SVD update result in Theorem 3 requires p =

‖c−VV∗c‖M > 0. When p is small enough, i.e., p < tol for a given tolerance tol, we extend

the truncation update approach of Brand [21] to the current weighted norm framework.
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If p < tol, we approximate and set p = 0. Since p = ‖c − VV∗c‖M , this implies

c = VV∗c. This gives

[U c ] = [VΣWT c ]

= [VΣWT VV∗c ]

= [V 0 ]


ΣWT V∗c

0 0


= [V 0 ]


Σ V∗c

0 0




W 0

0 1


T

.

Similarly to Section 4.1, define Q ∈ Rk+1×k+1 by

Q =


Σ V∗c

0 0

 .
If the full standard SVD of Q is given by Q = VQΣQWT

Q, where VQ, ΣQ,WQ ∈ R
k+1×k+1,

then

Q = VQ


ΣQ(1:k,1:k) 0

0 0

 WT
Q

= VQ


ΣQ(1:k,1:k)

(
WQ(:,1:k)

)T

0


= VQ(:,1:k)ΣQ(1:k,1:k)

(
WQ(:,1:k)

)T
.



22

This gives

[U c ] = [V 0 ]Q


W 0

0 1


T

= [V 0 ]VQ(:,1:k)ΣQ(1:k,1:k)

(
WQ(:,1:k)

)T


W 0

0 1


T

= VVQ(1:k,1:k)ΣQ(1:k,1:k)

©­­«

W 0

0 1

 WQ(:,1:k)

ª®®¬
T

.

This suggests the following update

V −→ VVQ(1:k,1:k), Σ −→ ΣQ(1:k,1:k), W −→


W 0

0 1

 WQ(:,1:k) .

We note that the rank of the SVD is not increased even though we added a column.

Furthermore, the formula for the update ofW given here corrects an error in [21] (the matrix

[W, 0; 0, 1] is missing from the update formula).

Orthogonalization. In the idealized algorithm in Section 4.1, the SVD update

yields orthonormal left and right singular vectors. However, in practice, small numerical

errors cause a loss of orthogonality. Following [20], we reorthogonalize when the weighted

inner product between the first and last left singular vectors is greater than some tolerance.

Specifically, we apply a modified M-weighted Gram-Schmidt procedure with reorthogo-

nalization to the columns of V ; the columns of the resulting matrix are orthonormal with

respect to the M-weighted inner product. See Algorithm 3, which is a modification for

the weighted inner product of the Gram-Schmidt code in [28, Algorithm 6.11, page 307,

Section 6.5.6].
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Algorithm 3Modified M-weighted Gram-Schmidt with reorthogonalization
Input: V ∈ Rm×r , M ∈ Rm×m

1: Q = V
2: for k = 1 to m do
3: for i = 1 to k − 1 do
4: for t = 1 to 2 (reorthogonalize) do
5: E = Q(:, i)T MQ(:, k)
6: Q(:, k) = Q(:, k) − EQ(:, i)
7: R(i, k) = R(i, k) + E
8: end for
9: end for
10: R(k, k) = sqrt(Q(:, k)T MQ(:, k))
11: Q(:, k) = Q(:, k)/R(k, k)
12: end for
13: return Q

Truncation part 2. The orthogonalization step described above is a large part of

the computational cost of the incremental SVD algorithm. If the incremental SVD update is

to be repeated for a large number of added columns, the number of nonzero singular values

can increase quickly and the computational cost of the orthogonalization steps will be large.

In such a case, it is important to keep only the singular values of interest to the application.

Usually, singular values very near zero (and their corresponding singular vectors) are not

required for POD applications. Therefore, during an incremental SVD update, we keep only

the singular values (and corresponding singular vectors) above a user specified tolerance.

Complete Implementation. Our implementation of the incremental SVD update

algorithm for a weighted inner product is given in Algorithm 4. Our implementation is

modeled after the algorithm in [20] (without a weighted inner product). As is noted in

[20], for many POD applications only the singular values and left singular vectors need to

be updated and stored. However, if one desires to be able to approximately reconstruct the

entire dataset (without storing the data), then one must update and store the singular values

and both left and right singular vectors.
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Algorithm 4 Incremental SVD with weighted inner product
Input: V ∈ Rm×k , Σ ∈ Rk×k , W ∈ Rn×k , c ∈ Rm, M ∈ Rm×m, tol, tolsv

% Prepare for SVD update
1: d = VT Mc, p = sqrt(|(c − Vd)T M(c − Vd)|)
2: if (p < tol) then

3: Q =
[
Σ d
0 0

]
4: else
5: Q =

[
Σ d
0 p

]
6: end if
7: [VQ, ΣQ,WQ ] = svd(Q)

% SVD update
8: if ( p < tol ) or ( k ≥ m ) then

9: V = VVQ(1:k,1:k) , Σ = ΣQ(1:k,1:k) , W =
[
W 0
0 1

]
WQ(:,1:k)

10: else
11: j = (c − Vd)/p

12: V = [V j]VQ, Σ = ΣQ, W =
[
W 0
0 1

]
WQ

13: k = k + 1
14: end if

% Orthogonalize if necessary
15: if ( |VT

(:,end)MV(:,1) | > min(tol, tol × m)) then
16: V = modifiedGSweighted(V, M) % Algorithm 3
17: end if

% Neglect small singular values: truncation
18: if (Σ(r,r) > tolsv) and (Σ(r+1,r+1) < tolsv) then
19: Σ = Σ(1:r,1:r), V = V(:,1:r), W = W(:,1:r)
20: end if
21: return V , Σ, W
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5. INCREMENTAL POD FOR TIME VARYING FUNCTIONS

  POD is often used to extract mode shapes or basis functions from solutions of time 

dependent PDEs. In this case, the dataset consists of a time varying function taking values 

in a Hilbert space X with inner product (·, ·) and corresponding norm ‖ · ‖. More information

about POD for this type of data can be found in, e.g., [29, 30, 11, 12].

  In this section, we show how to compute the POD of the data in this setting using the 

modified incremental SVD algorithm proposed in Section 4. We focus on approximating 

continuous POD in Section 5.1, and then consider data expanded in basis functions for X

in Section 5.2. We also briefly consider data generated by a finite difference method in

Section 5.3.

5.1. APPROXIMATE CONTINUOUS POD

Let w be in L2(0,T ; X), i.e., roughly,
∫ T

0 ‖w(t)‖
2 dt < ∞. Define the continuous

POD operator Z : L2(0,T) → X by

Zg =
∫ T

0
w(t) g(t) dt.

In practice, we typically only have access to the data at discrete points in time {t j}
s+1
j=1, where

0 ≤ t1 < t2 < . . . < ts+1 ≤ T . For j = 1, . . . , s, let δ j = t j+1 − t j denote the jth time step.

As is well-known (see, e.g., [11, 12]), we rescale the data below by δ1/2
j in order to arrive

at a discrete POD operator.

Approximate the time integral in the definition of the POD operator Z by a Riemann

sum with left hand endpoint:

Zg ≈
s∑

j=1
w(t j) δ j g(t j)

=

s∑
j=1

u j f j, u j = δ
1/2
j w(t j), f j = δ

1/2
j g(t j).
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Therefore, define the (discrete) POD operator K : Rs → X by

s

K f =
∑

u j f j, f = [ f1, . . . , fs]T .
j=1

5.2. DATA EXPANDED IN BASIS FUNCTIONS

In POD applications, a common way to collect data from a time dependent PDE

is via numerical simulation. Many approximate solution methods for PDEs (such as finite

element and discontinuous Galerkin methods) are Galerkin-type, i.e., the approximate

solution data is expressed in terms of a basis of a finite dimensional subspace of X . Let

{φk}
m
k=1 ⊂ X be a collection of linearly independent basis functions, and assume the rescaled

data u j = δ
1/2
j w(t j) ∈ X can be expressed as

u j = δ
1/2
j w(t j) =

m∑
k=1

Uk, jφk, for j = 1, . . . , s.

In Appendix 1, we show that the SVD of K : Rs → X can be computed using the SVD

of the coefficient data matrix U : Rs → Rm , where the weight matrix M ∈ Rm×m has
M

entries Mj,k = (φ j, φk ). We leave the precise statement of the result to the appendix, but we

note that if {σi, fi, ci } are the nonzero singular values and corresponding singular vectors of
U : Rs → Rm

M , then {σi, fi, xi} are the nonzero singular values and corresponding singular

vectors of K , where

xi =

m∑
k=1

ci,kφk

and ci,k is the kth entry of the vector ci.

Let U j denote the jth column of the coefficient data matrix U. Algorithm 5 gives

the incremental POD algorithm for time varying data. As mentioned previously, for many

POD applications only the singular values and left singular vectors (the POD modes) need

to be updated and stored. However, if one also updates and stores the right singular vectors
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then it is possible to approximately reconstruct the entire dataset without storing the data.

Furthermore, we note that the POD eigenvalues are the squares of the POD singular values.

Algorithm 5 Time varying incremental POD
Input: {δ j}, {U j}, M ∈ Rm×m, tol, tolsv % δ j,U j , M as described above
1: [V, Σ,W] = initializeSVD(U1, M) % Algorithm 2
2: for j = 2, . . . , s do
3: [V, Σ,W] = incrementalSVD(V, Σ,W,U j, tol, tolsv, M) % Algorithm 4
4: end for
5: W = diag(δ)−1/2W % undo rescaling, δ = [δ1, ..., δs]

6: return V , Σ, W

Remark 1: Many researchers remove the average of the data, and then compute the POD 

of this new data. Such a computation can be performed incrementally without storing the 

data. We give a brief overview of the algorithm with a weighted inner product in Appendix 

2. �

In some of our numerical results, we compare the time varying incremental SVD 

with the exact time varying SVD computed using the Cholesky factorization of M as in 

Section 2.2. We must modify Algorithm 1 for the exact SVD to account for the rescaling 

by the square roots of the time steps. Let D = diag(δ), where δ = [δ1, ..., δs]. The modified 

exact SVD algorithm is shown in Algorithm 6. Again, note that this exact algorithm requires 

storing all of the data, which incremental algorithms do not require.

Algorithm 6 Exact time varying SVD via Cholesky factorization
Input: U = [U1, . . . ,Us], M , D % U j , M , D as described above
1: RM = chol(M)
2: Ũ = RMU
3: [ Ṽ, Σ, W̃ ] = svd(Ũ)
4: Solve for V : RMV = Ṽ
5: W = D−1/2W̃
6: return V , Σ, W
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5.3. DATA FROM A FINITE DIFFERENCE METHOD

  Although we focus on Galerkin-type simulation methods for PDEs in this work, we 

briefly consider incremental POD for data generated by one type of numerical method for 

PDEs that is not of Galerkin-type: finite difference methods. The key is to focus on the 

Hilbert space inner product and its approximation.

Suppose a finite difference method is used to approximate the solution of a scalar

time dependent PDE on a bounded domain Ω ⊂ Rd , and the goal is to approximate the POD 

of the data with respect to the L2(Ω) inner product. For a function u, let u f ∈ Rm denote the 

vector of approximations to the function u evaluated at the m finite difference nodes. Then

(u, v)L2(Ω) =

∫
Ω

u(x) v(x) dx ≈
m∑

i=1
ηiu f ,iv f ,i = vT

f Mu f ,

where {ηi}
m
i=1 are positive quadrature weights and M = diag(η1, . . . , ηm). It is possible to

apply the modified incremental SVD algorithm in this work with the weight matrix M .

However in this case the data can be rescaled by the square roots of the quadrature weights

and Brand’s incremental SVD algorithm can be used without a weighted inner product.

Once the POD modes are computed, the modes must be multiplied by the diagonal matrix

M−1/2 so that they are orthonormal with respect to the M weighted inner product.

If instead the goal is to approximate the POD of the data with respect to the H1(Ω)

inner product, then we have

(u, v)H1(Ω) =

∫
Ω

u v + ∇u · ∇v dx ≈ vT
f Mu f .

Here, the matrix M is obtained by approximating the integral using quadrature with positive

weights and approximating the gradients by finite difference approximations. In this case,

the weight matrix M is not diagonal and so the rescaling idea described above is not

applicable; however, the incremental SVD algorithm with weight matrix M can be applied.
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6. NUMERICAL RESULTS

In this section, we present numerical results for the incremental POD algorithm 

applied to time varying finite e lement s olution d ata f or t wo P DEs: ( i) a  1 D Burgers’ 

equation, and (ii) a 2D Navier-Stokes equation. The first problem serves as a  small test 

problem with varying time steps. For the second problem, we consider fixed time steps and 

both small-scale and large-scale computations. For the small-scale problems, we stored all 

of the simulation data to compare the standard SVD (computed using Algorithm 6) with 

the incremental SVD (computed using Algorithm 5). For the large-scale problem, we did 

not store the simulation data and only computed the incremental SVD using Algorithm 5).

For all of the examples reported here, we used the standard L2 inner product for 

the POD computations. This corresponds to the matrix SVD with respect to a weighted 

inner product, where the weight matrix M is the standard finite element mass m atrix. For 

the 1D Burgers’ equation example, we also tested the incremental POD using the standard 

H1 inner product, which yields a different matrix M . We do not report these results here; 

we found the algorithm performance is similar in this case to the L2 performance. We also 

tested the incremental approach to POD for the removed average data for the 1D 

Burgers’ equation example (as outlined in Appendix 2). Again, we found that the 

performance of the algorithm is similar to the other cases, and so we do not report the 

results here.

6.1. EXAMPLE 1: 1D BURGERS’ EQUATION

We begin with a small test problem. Consider 1D Burgers’ equation with zero 

Dirichlet boundary conditions
∂w

∂t
(t, x) + w(t, x)

∂w

∂x
(t, x) =

1
Re

∂2w

∂x2 (t, x), −1 < x < 1.



30

0 5 10 15 20 25 30
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

number of singular values

si
ng

ul
ar

 v
al

ue
s 

 

 
true singular values
incremental singular values

Figure 1. Example 1, Re = 20: Exact versus incremental singular values

We used piecewise linear finite elements with 1000 equally spaced notes to approximate

the solution of this PDE with Re = 20 and initial condition w(0, x) = sin(πx). We used

Matlab’s ode23s to approximate the solution of the resulting nonlinear ODE system on the

time interval 0 ≤ t ≤ 2. The solver returned the approximate solution at 26 points in time in

that interval; the time steps were not equally spaced. At each time point, the finite element

coefficient vector had length 998.

For the incremental POD algorithm, we set tol = 10−14 and tolsv = 10−15. Recall,

the first tolerance tol is the truncation tolerance for the incremental algorithm, while the

second tolerance tolsv is the truncation tolerance for the singular values. In this example and

in the examples below, we set tolsv very small in order to test the accuracy of the very small

singular values and the corresponding singular vectors; in practice, a very small singular

value tolerance is likely rarely needed.

Figure 1 shows the exact versus the incrementally computed singular values. We

see excellent agreement for all singular values down to near the singular value tolerance

(10−14). Note that the incremental SVD algorithm only returns 21 singular values due to

the singular value truncation. A few of the exact and incrementally computed right singular

vectors and POD modes are shown in Figures 2 and 3. Again, we see excellent agreement.
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Figure 2. Example 1, Re = 20: Exact versus incremental right singular vectors
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Figure 3. Example 1, Re = 20: Exact versus incremental POD modes
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Figure 4. Example 1, Re = 20: Errors between true and incremental POD modes

  Next, Figure 4 shows the weighted norm error between the exact and incrementally 

computed POD modes. The errors for the dominant POD modes (corresponding to the 

largest singular values) are extremely small. The errors in the POD modes increase slowly 

and monotonically as the corresponding singular values approach zero. The number of 

highly accurate POD modes is quite large; the first 12 modes are computed to an accuracy 

level of at least 10−5. The 12th singular value is O(10−9). In many POD applications,

POD modes are not required for POD singular values that are this small. (Recall, the POD 

eigenvalues are the squares of the POD singular values.) The incremental POD algorithm 

works very well for this problem.

6.2. EXAMPLE 2: 2D NAVIER-STOKES EQUATION

  For our second example, we consider a 2D laminar flow around a cylinder with 

circular cross-section [31]. The flow is governed by the time dependent incompressible 

Navier-Stokes equations with Reynolds number Re = 100, and we consider a rectangular 

spatial domain of length 2.2 and width 0.41. The diameter of the cylinder is 0.1, and it is 

centered at the point (0.2, 0.2). For the initial condition, we take the steady state solution

of the same problem with Reynolds number 40 (instead of 100). On the right boundary 

of the rectangle (the outlet), we consider stress free boundary conditions. The boundary
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conditions on all other walls are Dirichlet boundary conditions. The Dirichlet velocity data

on the left wall of the rectangle (the inlet) is (6y(0.41−y)
0.412 , 0). The Dirichlet data on all other

boundaries is zero.

The primary goal of this example is to test the incremental POD algorithm on a

problem with more complex solution behavior than the first example (the 1D Burgers’

equation). First, we use a coarse grid and a relatively small number of time steps over a

short time interval in order to compute the exact errors compared to the exact SVD (with

respect to the weighted inner product). We do not attempt to simulate over a longer time

period in order to obtain similar numerical results to POD works in the literature (see, e.g.,

[32, 33]).

For the simulation, we consider the time interval 0 ≤ t ≤ 1 and time step 0.01.

The finite element mesh is generated by Triangle [34, 35] with local refinement near the

cylinder; also, the mesh is polygonal and only approximately fits the circular boundary of

the cylinder. We used standard Taylor-Hood elements, and backward Euler for the time

stepping for simplicity.

We first consider a coarse mesh. At each time point, the velocity finite element

coefficients are vectors of length 55552. We have 101 total solution snapshots. For

the incremental SVD computation, we take tol = 10−10 and the singular value tolerance

tolsv = 10−12.

The incremental SVD algorithm returns 33 singular values and corresponding sin-

gular vectors. Figure 5 shows the exact versus the incremental singular values. We see

excellent agreement for all singular values down to near the singular value tolerance (10−10).

The first four exact and incrementally computed right singular vectors are shown in Figure 6,

and the agreement is again excellent. Figure 7 shows the horizontal and vertical components

of the 1st, 5th, and 10th velocity POD modes.
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Figure 5. Example 2, Re = 100: Exact versus incremental singular values
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Figure 6. Example 2, Re = 100: Exact versus incremental right singular vectors
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Figure 7. Example 2, Re = 100: 1st, 5th, and 10th incremental velocity POD modes (from
top to bottom); horizontal components are on the left, and vertical components are on the
right
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Figure 8. Example 2, Re = 100: Errors between true and incremental POD modes

Figure 8 shows the weighted norm error between the exact and incrementally com-

puted velocity POD modes. The error behaves in a similar fashion to the POD mode error

in the first example (Figure 4). Again, the errors for the dominant PODmodes are extremely

small, and the errors increase slowly and monotonically as the corresponding singular val-

ues approach zero. Furthermore, there are a large number of highly accurate POD modes.

Again, the incremental POD algorithm is very accurate for this problem.

We also tested the same problem with a smaller time step of 0.001 (instead of 0.01);

this gives 1001 solution snapshots. We also reduced the algorithm tolerance to tol = 10−12.

Using the same the singular value tolerance tolsv = 10−12, the algorithm returned 97 singular

values and corresponding singular vectors. We again found that the incremental approach

gave accurate results (not shown).

Next, we return to the larger time step 0.01, but now use a fine mesh for the

finite element discretization. Each of the 101 flow velocity snapshots has a finite element

coefficient vector of length nearly 2 million (1978904). In this case, we did not store

the solution data or compute the exact SVD; we only performed the POD computations

incrementally. Also, we compared the incremental SVD to the incremental SVD computed

on the coarse finite element mesh (with the same time step). We found both incremental
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SVD computations gave similar singular values and singular vectors (not shown), as we

would expect from POD theory. Specifically, the finite element solution should converge to

the solution of the PDE as the mesh is refined; therefore, the POD eigenvalues and modes

must converge (see, e.g., [30, 11, 12].

7. CONCLUSION

We extended Brand’s incremental SVD algorithm [21] to treat data expanded in

basis functions from a Hilbert space. Many numerical methods for PDEs generate data

of this form. Specifically, we reformulated Brand’s matrix algorithm in a weighted norm

setting using functional analytic techniques. We proved that an idealized version of the

algorithm exactly updates the SVD when a new column is added to the data. We also

considered time varying data by incorporating the quadrature on the time integral into the

incremental approach.

We used the left singular vectors to compute the POD modes for the collected data.

Standard methods for computing the POD modes require storing the whole large dataset; in

contrast, using an incremental SVD algorithm only requires storing one snapshot of the data

at a time. Therefore, the incremental approach drastically reduces the memory requirement

for computing the POD of the data. Furthermore, the computational cost of the incremental

approach is also much lower than standard approaches. Moreover, by truncating small

singular values (and corresponding singular vectors) during the incremental update, we

reduce the computational cost of orthgonalizing the stored singular vectors.

We tested our approach on finite element simulation data with the L2 inner product

for a 1D Burgers’ equation and a 2D Navier-Stokes equation. For the small-scale compu-

tational cases, we compared the incremental SVD results with the exact SVD and found

excellent agreement. We also found that the incremental algorithm worked very well using

a different inner product and also if we removed the average from the data (again with an

incremental approach without storing the data). We also tested the algorithm on a fine
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mesh for the Navier-Stokes problem with nearly 2 million velocity unknowns. We did 

not consider an optimized or parallel implementation of the algorithm in this work; this 

would be of interest to explore in the future. Although we showed the proposed algorithm 

is exact in an idealized case, we did not perform an error analysis of the algorithm with 

truncation in this work. In our numerical experiments, we found that the results were not 

sensitive to the truncation tolerances, as long as the tolerances were chosen relatively small

(such as 10−8 and smaller). An analysis may provide more insight into the accuracy of the 

algorithm with truncation and the choices of the tolerances; we leave this to be explored 

elsewhere. Although we showed the proposed algorithm is exact in an idealized case, we 

did not perform an error analysis of the algorithm with truncation in this work. In our 

numerical experiments, we found that we obtained very accurate results for many choices 

of the truncation tolerances, as long as the tolerances were chosen relatively small (such as 

10−8 and smaller). An analysis may provide more insight into the accuracy of the algorithm

with truncation and the choices of the tolerances; we leave this for future work.

APPENDIX

1. POD IN A HILBERT SPACE AND THE MATRIX SVD WITH A WEIGHTED
NORM

Let X be a Hilbert space with inner product (·, ·), and suppose {u j } j
s
=1 ⊂ X . Define 

the POD operator K : Rs → X by

K f =
s∑

j=1
u j f j, f = [ f1, . . . , fs]T . (11)

The Hilbert adjoint operator K∗ : X → Rs satisfies (K f , x) = ( f ,K∗x)Rs for all f ∈ Rs and

x ∈ X . It can be checked that

K∗x =
[
(x, u1), (x, u2), . . . , (x, us)

]T
. (12)
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Since K has rank at most s, K is compact and has a singular value decomposition.

Let {σi, fi, xi} be the core singular values and singular vectors of K , i.e., the nonzero singular

values and corresponding singular vectors of K . Then

K fi = σi xi, (13)

K∗xi = σi fi . (14)

In the proposition below, we consider the case where each u j is expressed in terms

of a finite set of basis functions. We show that the core singular values and singular vectors

of K can be computed by finding the core SVD of a coefficient matrix with respect to a

weighted inner product.

Proposition 4: Suppose {φk}
m
k=1 ⊂ X are linearly independent, and assume u j ∈ X is given

by

u j =

m∑
k=1

Uk, jφk, for j = 1, . . . , s. (15) �

Let the matrices M ∈ Rm×m and U ∈ Rm×s have entries Mj,k := (φ j, φk) and Uk,l , for

j, k = 1, . . . ,m and l = 1, . . . , s. Then {σi, fi, ci} ⊂ R×R
s×Rm

M are the core singular values

and singular vectors of U : Rs → Rm
M if and only if {σi, fi, xi} ⊂ R × R

s × X are the core

singular values and singular vectors of K : Rs → X , where ci and xi are related by

xi =

m∑
k=1

ci,kφk for all i.

Proof: First, since {φk}
m
k=1 ⊂ X is a linearly independent set, we know M is symmetric

positive definite.
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Next, assume K fi = σi xi (13) is satisfied with σi > 0. Substitute in the expansion

for u j (15) and use the definition of K in (11) to obtain

s∑
j=1

m∑
k=1

Uk, j fi, jφk = σi xi, (16)

where fi, j denotes the jth entry of the vector fi. Therefore,

xi =

m∑
l=1

ci,lφl, ci,l =
1
σi

s∑
j=1

fi, jUl, j . (17)

Let ci ∈ R
m
M denote the vector with entries ci,k . Then we have

σi fi =
∑
l=1

U fi = σici for all i. (18)

Note the above argument is reversible, i.e., if we assume U fi = σici with σi > 0 as in (18),

then we obtain K fi = σi xi, where xi is defined in (17).

Next, we proceed similarly with K∗xi = σi fi (14) and σi > 0. Using the definition

of K∗ in (12), the expansion for u j in (18), and the expansion for xi in (17) gives

m m∑
k=1

[ (
ci,lφl,Uk,1φk

)
, . . . ,

(
ci,lφl,Uk,sφk

) ]T

=

m∑
l=1

m∑
k=1

[
ci,l Ml,kUk,1, . . . , ci,l Ml,kUk,s

]T

=
[
cT

i MU1, . . . , cT
i MUs

]T

=
(
cT

i MU
)T
,

where U j denotes the jth column of the matrix U. Since U∗ = UT M , we have

U∗ci = σi fi for all i. (19)
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Again, this argument is reversible, i.e., U∗ci = σi fi in (19) with σi > 0 implies K∗xi = σi fi,

where xi is defined in (17).

Therefore, we have

U fi = σici, U∗ci = σi fi for all i

if and only if

K fi = σi xi, K∗xi = σi fi for all i.

Next, suppose {σi, fi, xi} ⊂ R × R
s × X are the core singular values and singular

vectors of K : Rs → X . To show {σi, fi, ci} ⊂ R×R
s ×Rm

M are the core singular values and

singular vectors of U : Rs → Rm
M , where ci = σ

−1
i U fi, we only need to show {ci} ⊂ R

m
M is

orthonormal. We show this as follows. Using c j = σ
−
j

1U f j ,U∗ci = σi fi (19), and { fi} ⊂ Rs

is orthonormal gives

(
ci, c j

)
M =

1
σj

(
ci,U f j

)
M

=
1
σj

(
U∗ci, f j

)
Rs

=
σi

σj

(
fi, f j

)
Rs

=
σi

σj
δi j = δi j .

Therefore, {ci} ⊂ R
m
M is orthonormal.

Finally, suppose {σi, fi, ci} ⊂ R×R
s ×Rm

M are the core singular values and singular

vectors of U : Rs → Rm
M . To show {σi, fi, xi} ⊂ R × R

s × X are the core singular values

and singular vectors of K : Rs → X , where xi is defined in (17), we only need to show

{xi} ⊂ X is orthonormal. This follows directly from {ci} ⊂ R
m
M being an orthonormal set:

(
xi, x j

)
= cT

j Mci = δi j .
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This completes the proof. �

2. INCREMENTAL SVD AFTER REMOVING THE AVERAGE

Some authors apply POD on the data after removing the average of the data. Such a 

computation has recently been performed incrementally in [19] by applying an algorithm for 

the additive modification of an SVD [36]. A similar procedure can be done for time varying 

data with a weighted norm (as considered in Section 5). We do not give the details of the 

procedure here; however, we show how Brand’s algorithm for the additive modification of 

the SVD [36] can be extended to the case of a weighted norm.

Theorem 2: Let M ∈ Rm×m be symmetric positive definite, and let a ∈ Rm
M and b ∈ Rn.

Suppose U : Rn −→ Rm
M has core SVD given by U = VΣWT , where VT MV = I for

V ∈ Rm×k , WTW = I for W ∈ Rn×k , and Σ ∈ Rk×k . Define

m = V∗a, p = a − Vm, pa = ‖p‖M, (20)

n = WT b, d = b −Wn, db = ‖d‖Rn, (21)

where V∗ = VT M and

K =


Σ + mnT dbm

panT padb

 .
If pa, db > 0 and the standard core SVD of K ∈ Rk+1×k+1 is given by

K = VKΣKWT
K, (22)

then the core SVD of U + abT is given by

U + abT = VuΣKWT
u ,
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where
Vu = [V r ] VK, r = p−1

a p, Wu = [W q ]WK, q = d−1
b d.

�

Proof: Rewrite U + abT as

U + abT = VΣWT + abT = [V a ]


Σ 0

0 1

 [W b ]T . (23)

Next, use the definitions in (20) and (21), respectively, to obtain

[V a ] = [V r ]


I V∗a

0 pa

 ,
[W b ] = [W q ]


I WT b

0 db

 .
Substituting these results into (6) gives

U + abT = [V r ]
©­­­«

I m

0 pa



Σ 0

0 1



I n

0 db


Tª®®®¬ [W q ]T

= [V r ]


Σ + mnT dbm

panT padb

 [W q ]T .

Next, note

[V r ]T M[V r ] =


VT MV VT Mr

(VT Mr)T rT Mr

 =


I 0

0 1


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since VT MV = V∗V = I by assumption,

VT Mr = V∗r = V∗(a − Vm)/pa = (m − m)/pa = 0,

and

rT Mr =
‖p‖2M

p2
a
=
‖p‖2M
‖p‖2M

= 1.

Also, we have

[W q ]T [W q ] =


WTW WT q

(WT q)T qT q

 =


I 0

0 1


since WTW = I,

WT q = WT (b −Wn)/db = (n − n)/db = 0,

and

qT q =
‖d‖2M

d2
b

=
‖d‖2M
‖d‖2M

= 1.

Proposition 2 gives the result. �
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ABSTRACT

In our earlier work [1], we proposed an incremental SVD algorithm with respect to 

a weighted inner product to compute the proper orthogonal decomposition (POD) of a set 

of simulation data for a partial differential equation (PDE) without storing the data. In this 

work, we perform an error analysis of the incremental SVD algorithm. We also modify the 

algorithm to incrementally update both the SVD and an error bound when a new column 

of data is added. We show the algorithm produces the exact SVD of an approximate data 

matrix, and the operator norm error between the approximate and exact data matrices is 

bounded above by the computed error bound. This error bound also allows us to bound the 

error in the incrementally computed singular values and singular vectors. We illustrate our 

analysis with numerical results for three simulation data sets from a 1D FitzHugh-Nagumo

PDE system with various choices of the algorithm truncation tolerances.

1. INTRODUCTION

Proper orthogonal decomposition (POD) is a method to find an optimal low order 

basis to approximate a given set of data. The basis elements are called POD modes, and 

they are often used to create low order models of high-dimensional systems of ordinary 

differential equations or partial differential equations (PDEs) that can be simulated easily
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and even used for real-time applications. For more about the applications of POD in

engineering and applied sciences and POD model order reduction, see, e.g., [2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

There is a close relationship between the singular value decomposition (SVD) of a

set of data and the POD eigenvalues and modes of the data. Due to applications involving

functional data and PDEs, many researchers discuss this relationship in weighted inner

product spaces and general Hilbert spaces [18, 19, 20, 21]. For the POD calculation, it is

important to determine an inner product that is appropriate for the application [22, 23, 24,

25, 7].

Since the size of data sets continues to increase in applications, many researchers

have proposed and developed more efficient algorithms for POD computations, the SVD,

and other related methods [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. These algorithms have

been recently applied in conjunction with techniques such as POD model order reduction

and the dynamic mode decomposition, which often consider simulation data from a PDE

[37, 25, 38, 39, 40, 41, 42, 43, 44, 45].

In our earlier work [1], we proposed an incremental SVD algorithm for computing

POD eigenvalues and modes in a weighted inner product space. Specifically, we considered

Galerkin-type PDE simulation data, initialized the SVD on a small amount of the data,

and then used an incremental approach to approximately update the SVD with respect to a

weighted inner product as new data arrives. The algorithm involves minimal data storage;

the PDE simulation data does not need to be stored. The algorithm also involves truncation,

and therefore produces approximate POD eigenvalues and modes. We proved the SVD

update is exact without truncation.

In this paper, we study the effectiveness of the truncations and deduce error bounds

for the SVD approximation. To handle the computational challenge raised by large data sets,

we bound the error incrementally. Specifically, we extend the incremental SVD algorithm

for a weighted inner product in [1] to compute an error bound incrementally without storing
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the data set; see 2, Algorithm 7. We also perform an error analysis in 3 that clarifies the

effect of truncation at each step, and provides more insight into the accuracy of the algorithm

with truncation and the choices of the two tolerances. We prove the algorithm produces

the exact SVD of an approximate data set, and the operator norm error between the exact

and approximate data set is bounded above by the incrementally computed error bound.

This yields error bounds for the approximate POD eigenvalues and modes. To illustrate the

analysis, we present numerical results in 4 for a set of PDE simulation data using various

choices of the tolerances. Finally, we present conclusions in 5.

2. BACKGROUND AND ALGORITHM

We begin by setting notation, recalling background material, and discussing the

algorithm.

For a matrix A ∈ Rm×n, let A(p:q,r:s) denote the submatrix of A consisting of the

entries of A from rows p, . . . , q and columns r, . . . , s. Also, if p and q are omitted, then the

submatrix should consist of the entries from all rows. A similar convention applies for the

columns if r and s are omitted.

Let M ∈ Rm×m be symmetric positive definite, and let Rm
M denote the Hilbert

space Rm with weighted inner product (x, y)M = yT M x and corresponding norm ‖x‖M =

(xT M x)1/2. For a matrix P ∈ Rm×n, we can consider P as a linear operator P : Rn → Rm
M .

In this case, the operator norm of P is

‖P‖L(Rn,RmM ) = sup
‖x‖=1

‖Px‖M .

We note that Rn without a subscript should be understood to have the standard inner product

(x, y) = yT x and Euclidean norm ‖x‖ = (xT x)1/2. The Hilbert adjoint operator of the

matrix P : Rn → Rm
M is the matrix P∗ : Rm

M → Rn given by P∗ = PT M . We have

(Px, y)M = (x, P∗y) for all x ∈ Rn and y ∈ Rm
M .
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In our earlier work [1], we discussed how the proper orthogonal decomposition of

a set of PDE simulation data can be reformulated as the SVD of a matrix with respect to

a weighted inner product. We do not give the details of the reformulation here, but we do

briefly recall the SVD with respect to a weighted inner product since we use this concept

throughout this work.

Definition 2: A core SVD of a matrix P : Rn → Rm
M is a decomposition P = VΣWT , where

V ∈ Rm×k , Σ ∈ Rk×k , and W ∈ Rn×k satisfy

VT MV = I, WTW = I, Σ = diag(σ1, . . . , σk),

where σ1 ≥ σ2 ≥ · · · ≥ σk > 0. The values {σi} are called the (positive) singular values

of P and the columns of V and W are called the corresponding singular vectors of P. �

Since POD applications do not typically require the zero singular values, we do not consider

the full SVD of P : Rn → Rm
M in this work. We do note that the SVD of P : Rn → Rm

M is

closely related to the eigenvalue decompositions of P∗P and PP∗. See [1, Section 2.1] for

more details.

Also, when we consider the SVD (or core SVD) of a matrix without weighted inner

products we refer to this as the standard SVD (or standard core SVD).

We consider approximately computing the SVD of a dataset U incrementally by

updating the core SVD when each new column c of data is added to the data set. This

incremental procedure is performed without forming or storing the original data matrix.

Specifically, we focus on the incremental SVD algorithm with a weighted inner product

proposed in Algorithm 4 of [1]. The algorithm is based on the following fundamental
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identity: if U = VΣWT is a core SVD, then

[U c ] = [VΣWT c ]

= [V j ]


Σ V∗c

0 p




W 0

0 1


T

,

where j = (c − VV∗c)/p and p = ‖c − VV∗c‖M [1]. The algorithm is a modified version

of Brand’s incremental SVD algorithm [26] to directly treat the weighted inner product.

Brand’s incremental SVD algorithm without a weighted inner product has been used for

POD computations in [42, 45], and our implementation strategy follows the algorithm in

[45].

Below, we consider a slight modification of the algorithm from [1]; specifically, we

update the algorithm to include a computable error bound e. We show in this work that the

algorithm produces the exact core SVD of a matrix Ũ such that ‖U−Ũ‖L(Rs,RmM ) ≤ e, where

U is the true data matrix. This error bound gives information about the approximation error

for the singular values and singular vectors; see 3.2 for details.

We take the first step in the incremental SVD algorithm by initializing the SVD and

the error bound with a single column c , 0 as follows:

Σ = ‖ c ‖M = (|c
T Mc |)1/2, V = cΣ−1, W = 1, e = 0.

Here, the error bound e is set to zero since the initial SVD is exact. Also, as mentioned in

[1], even though M is positive definite it is possible for round off errors to cause cT Mc to

be very small and negative; we use the absolute value here and throughout the algorithm to

avoid this issue.
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Then we incrementally update the SVD and the error bound by applying Algorithm

7 when a new column is added. Most of the algorithm is taken directly from [1, Algorithm

4]; we refer to that work for a detailed discussion of the algorithm and details about the

implementation.

We note the following:

• The input is an existing SVD V , Σ, and W , a new column c, the weight matrix M , two

positive tolerances, and an error bound e.

• Lines 10, 15, 18, 21, and 26 are new, and are simple computations used to update the

error bound e.

• In the SVD update stage (lines 1–16), ep is the error due to p-truncation in line 3.

• In the singular value truncation stage (lines 17–22), esv is the error due to the singular

value truncation in line 19.

• In the orthogonalization stage (lines 23–25), a modified Gram-Schmidt algorithm

with reorthogonalization is used; see Section 4.2 in [1].

• The output is the updated SVD and error bound.

• The columns ofV are the M-orthonormal PODmodes, and the squares of the singular

values are the POD eigenvalues.

• If only the POD eigenvalues and modes are required, then the computations involving

W can be skipped; however, W is needed if an approximate reconstruction of the

entire data set is desired.

• As new columns continue to be added, a user can monitor the computed error bound

and lower the tolerances if desired.
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Algorithm 7 Incremental SVD and error bound with weighted inner product
Input: V ∈ Rm×k , Σ ∈ Rk×k , W ∈ Rn×k , c ∈ Rm, M ∈ Rm×m, tol, tolsv, e

% Prepare for SVD update
1: d = VT Mc, p = sqrt(|(c − Vd)T M(c − Vd)|)
2: if (p < tol) then

3: Q =
[
Σ d
0 0

]
4: else
5: Q =

[
Σ d
0 p

]
6: end if
7: [VQ, ΣQ,WQ ] = svd(Q)

% SVD update
8: if ( p < tol ) or ( k ≥ m ) then

9: V = VVQ(1:k,1:k) , Σ = ΣQ(1:k,1:k) , W =
[
W 0
0 1

]
WQ(:,1:k)

10: ep = p
11: else
12: j = (c − Vd)/p

13: V = [V j]VQ, Σ = ΣQ, W =
[
W 0
0 1

]
WQ

14: k = k + 1
15: ep = 0
16: end if

% Neglect small singular values: truncation
17: if (Σ(r,r) > tolsv) and (Σ(r+1,r+1) ≤ tolsv) then
18: esv = Σ(r+1,r+1)
19: Σ = Σ(1:r,1:r), V = V(:,1:r), W = W(:,1:r)
20: else
21: esv = 0
22: end if

% Orthogonalize if necessary
23: if ( |VT

(:,end)MV(:,1) | > min(tol, tol × m)) then
24: V = modifiedGSweighted(V, M)
25: end if
26: e = e + ep + esv
27: return V , Σ, W , e
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3. ERROR ANALYSIS

In this section, we perform an error analysis of Algorithm 7. We show the algorithm

˜produces the exact SVD of another matrix U, and bound the error between the matrices.

  We assume all computations in the algorithm are performed in exact arithmetic. 

Therefore, the Gram-Schmidt orthogonalization stage (in lines 23–25) is not considered 

here. We note that in [1], we considered a Gram-Schmidt procedure with reorthogonal- 

ization to minimize the effect of round-off errors; see, e.g., [46, 47, 48, 49]. We leave an 

analysis of round-off errors in Algorithm 7 to be considered elsewhere.

  We begin our analysis in 3.1 by analyzing the error due to each individual truncation 

step in the algorithm. Then we provide error bounds for the algorithm in 3.2.

3.1. INDIVIDUAL TRUNCATION ERRORS

We begin our analysis of the incremental SVD algorithm by recalling a result from

[1]. This result shows that a single column incremental update to the SVD is exact without 

truncation when p = ‖c − VV ∗c‖M > 0.

Theorem 3 (Theorem 4.1 in [1]): Let U : Rn −→ Rm
M , and suppose U = VΣWT is an

exact core SVD of U, where VT MV = I for V ∈ Rm×k , WTW = I for W ∈ Rn×k , and

Σ ∈ Rk×k . Let c ∈ Rm
M and define

h = c − VV∗c, p = ‖h‖M, Q =


Σ V∗c

0 p

 ,
where V∗ = VT M . If p > 0 and a standard core SVD of Q ∈ Rk+1×k+1 is given by

Q = VQ ΣQ WT
Q, (1)
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then a core SVD of [U c ] : Rn+1 −→ Rm
M is given by

[U c ] = VuΣQWT
u ,

where

Vu = [V j ] VQ, j = h/p, Wu =


W 0

0 1

 WQ .

�

Next, we analyze the incremental SVD update in the case when the added column c

satisfies p = ‖c − VV∗c‖M = 0.

Lemma 1: Let U = VΣWT , c, h, p, and Q be given as in 3, and assume p = ‖c −

VV∗c‖M = 0. If the full standard SVD of Q ∈ Rk+1×k+1 is given by Q = VQΣQWT
Q, where

VQ, ΣQ,WQ ∈ R
k+1×k+1, then

VQ =


VQ(1:k,1:k) 0

0 1

 , ΣQ =


ΣQ(1:k,1:k) 0

0 0

 , ΣQ(1:k,1:k) > 0,

and a standard core SVD of R = Q(1:k,1:k+1) = [ Σ V∗c ] ∈ Rk×k+1 is given by

R = VQ(1:k,1:k)ΣQ(1:k,1:k)(WQ(:,1:k))
T .

�
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Proof: Let σQ1 ≥ σQ2 ≥ · · · ≥ σQk+1 ≥ 0 be the singular values of Q so that ΣQ =

diag(σQ1, ..., σQk+1). Also, let {vQ j } and {wQ j } be the corresponding orthonormal singular

vectors in Rk+1, so that

VQ = [vQ1, . . . , vQ(k+1)], WQ = [wQ1, . . . ,wQ(k+1)],

with VT
Q VQ = I and WT

QWQ = I.

First, we show Q has exactly one zero singular value. Since we know

QTvQ j = σQ jwQ j, (2)

QwQ j = σQ jvQ j, (3)

for j = 1, . . . , k + 1, the number of zero singular values of Q is precisely equal to the

dimension of the nullspace of QT . Suppose v = [v1, . . . , vk+1]
T ∈ Rk+1 satisfies QTv = 0.

Recall Σ = diag(σ1, σ2, . . . , σk) > 0, and let d = V∗c = [d1, . . . , dk]
T . Then QTv = 0

implies 

σ1v1

σ2v2
...

σkvk

d1v1 + d2v2 + . . . + dkvk


=



0

0
...

0

0


.

Since σ1 ≥ · · · ≥ σk > 0, we have v j = 0 for j = 1, . . . , k. This implies the nullspace

of QT is exactly the span of ek+1 = [0, . . . , 0, 1]T ∈ Rk+1. Therefore, the nullspace is one

dimensional and Q has exactly one zero singular value, i.e., σQk+1 = 0 and σQ1 ≥ σQ2 ≥

· · · ≥ σQk
> 0.
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Next, QwQ j = σjvQ j for j = 1, . . . , k gives

⇒



σ1wQ j,1 + d1wQ j,k+1

σ2wQ j,2 + d2wQ j,k+1

...

σkwQ j,k
+ dkwQ j,k+1

0


=



σjvQ j,1

σjvQ j,2

...

σjvQ j,k

σjvQ j,k+1


.

The last equation gives vQ j,k+1 = 0 since σj > 0 for j = 1, . . . , k. Therefore, for j = 1, . . . , k,

vQ j = [vQ j,1, vQ j,2, . . . , vQ j,k
, 0]T,

and

vQk+1 = [0, 0, . . . , 0, 1]
T .

This implies

VQ =


VQ(1:k,1:k) 0

0 1

 ,
and so the SVD decomposition of Q is given by

Q =


VQ(1:k,1:k) 0

0 1



ΣQ(1:k,1:k) 0

0 0

 WT
Q .

This gives R = Q(1:k,1:k+1) = V̌QΣ̌QW̌T
Q, where V̌Q = VQ(1:k,1:k) , Σ̌Q = ΣQ(1:k,1:k) , and

W̌Q = WQ(1:k+1,1:k) . It can be checked that V̌T
Q V̌Q = I and W̌T

QW̌Q = I since VT
Q VQ = I and

WT
QWQ = I. Therefore, a standard core SVD of R ∈ Rk×k+1 is given by R = V̌QΣ̌QW̌T

Q.

The following result is nearly identical to Proposition 2.3 in [1]; the proof is also

almost identical and is omitted.
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Lemma 2 (Proposition 2.3 in [1]): Suppose Vu ∈ R
m×k has M-orthonormal columns and

Wu ∈ R
n×l has orthonormal columns. If R ∈ Rk×l has standard core SVD R = VRΣRWT

R

and P : Rn → Rm
M is defined by P = V RWT , then

P = VuΣuWT
u , Vu = VVR, Σu = ΣR, Wu = WWR, (4)

is a core SVD of P. �

Next, we complete the analysis of the p = 0 case:

Proposition 5: Let U = VΣWT , c, h, p, and Q be given as in 3, and assume p = ‖c −

VV∗c‖M = 0. If the full standard SVD of Q ∈ Rk+1×k+1 is given by Q = VQΣQWT
Q, where

VQ, ΣQ,WQ ∈ R
k+1×k+1, then a core SVD of [U c ] : Rn+1 → Rm

M is given by

[U c ] = VuΣuWT
u ,

where

Vu = VVQ(1:k,1:k), Σu = ΣQ(1:k,1:k), Wu =


W 0

0 1

 WQ(:,1:k) .

Proof: Since p = 0, we have c = VV∗c and therefore

[
U c

]
=

[
VΣWT VV∗c

]
= V

[
Σ V∗c

] 
W 0

0 1


T

.

The result follows from Lemma 1 and Lemma 2 by taking P = [U c ] and R = [ Σ V∗c ].�

Truncation part 1. Next, we analyze the incremental SVD update in the case when

the added column c satisfies p = ‖c − VV∗c‖M < tol. In this case, Algorithm 7 does not

compute the SVD of [U c ]. Instead, Algorithm 7 sets p = 0 and returns the exact SVD of

Ũ = [U VV∗c ]. The approximation error in the operator norm is given in the next result.



61

Proposition 6: Let U : Rn −→ Rm
M , and suppose U = VΣWT is a core SVD of U. If

c ∈ Rm
M , p = ‖c − VV∗c‖M , and

Ũ = [U VV∗c ],

then

‖[U c ] − Ũ‖L(Rn+1,RmM )
= p.

Proof: For x = [x1, . . . , xn+1]
T ∈ Rn+1, we have

‖[U c ] − Ũ‖L(Rn+1,RmM )
= sup
‖x‖=1



[ 0 (c − VV∗c) ]x




M

= sup
‖x‖=1

‖c − VV∗c‖M |xn+1 |

= ‖c − VV∗c‖M,

where the sup is clearly attained by x = [0, . . . , 0, 1]T ∈ Rn+1. �

Truncation part 2. In Algorithm 7, after the SVD update due to an added column

the algorithm truncates any singular values that are smaller than a given tolerance, tolsv.

For the matrix case with unweighted inner products, the operator norm error caused by this

truncation is well-known to equal the first neglected singular value. This result is also true

for a compact linear operator mapping between two Hilbert spaces; see, e.g., [50, Chapters

VI–VIII], [51, Chapter 30], and [52, Sections VI.5–VI.6] for more information about the

SVD for compact operators. This gives the following result:

Proposition 7: Let U : Rn −→ Rm
M , and suppose U = VΣWT is a core SVD of U. For a

given r > 0, let Ũ be the rank r truncated SVD of U, i.e.,

Ũ = V(:,1:r)Σ(1:r,1:r)(W(:,1:r))
T .

Then

‖U − Ũ‖L(Rn,RmM ) = Σ(r+1,r+1).
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3.2. ERROR BOUNDS

Next, we fully explain the computed error bound in Algorithm 7. In a typical

application of the algorithm, many new columns of data are added and the POD is updated

many times. In the following result, we assume we are at the kth step of this procedure and

we have an existing error bound. We prove that Algorithm 7 produces a correct update of

the error bound.

More specifically, let k ∈ N, let Uk, Ũk : Rk → Rm
M , and assume

Uk = VkΣkWT
k , Ũk = Ṽk Σ̃kW̃T

k

are core SVDs of U and Ũ. Let ck ∈ R
m
M and define Uk+1 := [Uk ck] : Rk+1 → Rm

M .

Furthermore, let Ũk+1 : Rk+1 → Rm
M be the result of one step of the incremental SVD

update applied to Ũk so that

Ũk+1 = Ṽk+1Σ̃k+1W̃T
k+1.

Therefore, we consider the sequence {Uk} to be the exact data matrices, and the sequence

{Ũk} to be the result produced (in exact arithmetic) by Algorithm 7.

In exact arithmetic, there are two stages to Algorithm 7. The first stage is the SVD

update in lines 1–16. This stage of the algorithm takes Ũk and the added column c and

produces the update Ûk+1. There are two possible results for Ûk+1 depending on the value

of p in line 1. The second stage is the singular value truncation applied to Ûk+1 (lines

17–22), which produces the final update Ũk+1. Again, there are two possible results for

Ũk+1, depending on the singular values of Ûk+1. We analyze the error bound for each

possible outcome of the algorithm in the result below.

Let the positive tolerances tol and tolsv be fixed. Below, we let pk denote the value

p in line 1 of Algorithm 7. We say that p truncation is applied if pk < tol. We say the

singular value truncation is applied if any of the singular values of Ûk+1 are less than tolsv.
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In this case, we find a value r so that the first r largest singular values of Ûk+1 are greater

than tolsv, while the remaining singular values are less than or equal to tolsv. We let σ̂r+1

denote the largest singular value of Ûk+1 such that σ̂r+1 ≤ tolsv.

Theorem 4: If

‖Uk − Ũk ‖L(Rk,RmM )
≤ ek, pk = ‖ck − ṼkṼ∗k ck ‖M,

then

‖Uk+1 − Ũk+1‖L(Rk+1,RmM )
≤ ek+1,

where

ek+1 =



ek, if no truncation is applied,

ek + pk, if only p truncation is applied,

ek + σ̂r+1, if only the singular value truncation is applied,

ek + pk + σ̂r+1, if both truncations are applied.

Proof: Stage 1 of Algorithm 7 (lines 1–16) takes Ũk and produces Ûk+1. If pk ≥ tol, then

3 gives that the core SVD is updated exactly, i.e.,

Ûk+1 = [ Ũk ck ] if pk ≥ tol.

Otherwise, if pk < tol, then Proposition 6 implies

Ûk+1 = [ Ũk ṼṼ∗ck ] if pk < tol,

and the error is given by

‖[ Ũk ck ] − Ûk+1‖L(Rk+1,RmM )
= pk .
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Stage 2 of Algorithm 7 (lines 17–22) takes Ûk+1 and produces Ũk+1. If all of the

singular values of Ûk+1 are greater than tolsv, then Ûk+1 = Ũk+1 and there is no error in this

stage. Otherwise, let σ̂r+1 denote the largest singular value of Ûk+1 such that σ̂r+1 ≤ tolsv.

In this case, Ũk+1 is simply the rth order truncated SVD of Ûk+1, and the error is given by

7:

‖Ũk+1 − Ûk+1‖L(Rk+1,RmM )
= σ̂r+1.

Below, for ease of notation, let ‖ · ‖ denote the L(Rk+1,Rm
M) operator norm. The

error between Uk+1 and Ũk+1 in the operator norm can be bounded as follows:

‖Uk+1 − Ũk+1‖ ≤ ‖Uk+1 − [ Ũk ck ]‖ + ‖[ Ũk ck ] − Ûk+1‖ + ‖Ûk+1 − Ũk+1‖.

As noted above, the second error term is either zero if p truncation is not applied or pk

otherwise. Also, the third error term is either zero if the singular values truncation is not

applied or σ̂r+1 otherwise. For the first term, we have

‖Uk+1 − [ Ũk ck ]‖ = ‖[Uk ck ] − [ Ũk ck ]‖

= ‖(Uk − Ũk) 0‖

= sup
‖x‖=1



[(Uk − Ũk) 0]x




M

≤ ‖Uk − Ũk ‖L(Rk,RmM )
≤ ek .

This completes the proof. �

The result above explains the update of the error bound in one step of Algorithm

7. Now we assume the SVD is initialized exactly when k = 1, and then the algorithm is

applied for a sequence of added columns {ck} ⊂ R
m
M , for k = 2, . . . , s.
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Corollary 1: Let tol and tolsv be fixed positive constants, and let {ck} ⊂ R
m
M , for k =

1, . . . , s, be the columns of a matrix U. For k = 1, assume the SVD Ũ1 = Ṽ1Σ̃1W̃T
1

and error bound e1 = 0 are initialized exactly as described in 2. For k = 1, . . . , s − 1,

let Ũk+1 = Ṽk+1Σ̃k+1W̃T
k+1 and ek+1 be the output of Algorithm 7 applied to the input

Ũk = Ṽk Σ̃kW̃T
k and ek . If Tp represents the total number of times p truncation is applied and

Tsv represents the total number of times the singular value truncation is applied, then

‖U − ṼsΣ̃sW̃s‖L(Rs,RmM ) ≤ Tptol + Tsvtolsv.

�

Proof: The proof follows immediately from the previous result, using pk ≤ tol and σ̂r+1 ≤

tolsv. �

The error bound in the result above is not as precise as the error bound computed using

Algorithm 7 since the tolerances are only upper bounds on the errors in each step. However,

this result does provide some insight into the choice of the tolerances for the algorithm.

Specifically, in general there is no reason to expect one of Tp or Tsv to be significantly larger

than the other; therefore, it seems reasonable to choose equal values for the tolerances.

Furthermore, for a very large number of added columns, it is possible that Tp and Tsv can

be large; therefore, small tolerances should be chosen to preserve accuracy.

Algorithm 7 computes an upper bound on the operator norm error between the exact

data matrix U and the approximate truncated SVD Ũ = Ṽ Σ̃W̃T of the data matrix. (The

above corollary also provides another upper bound on the error.) This error bound allows us

to bound the error in the incrementally computed singular values and singular vectors. Let

{σk, vk,wk}k≥1 and {σ̃k, ṽk, w̃k}k≥1 denote the ordered singular values and corresponding
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orthonormal singular vectors of U, Ũ : Rs → Rm
M in the result below. The following result

follows directly from general results about error bounds for singular values and singular

vectors of compact linear operators in 6.

Theorem 5: Let k ≥ 1, and let ε > 0 such that ‖U − Ũ‖L(Rs,RmM ) ≤ ε. Then

|σ` − σ̃` | ≤ ε for all ` ≥ 1.

Also, for j = 1, . . . , k, define

ε j = jε + 2
j−1∑
i=1

(
εi + σiE

1/2
i

)
, E j = 2 ©­«1 −

√√√
(σj − 2ε j)

2 − σ2
j+1

σ2
j − σ

2
j+1

ª®¬ .
If the first k + 1 singular values of U are distinct and positive, the singular vector pairs

{ṽ j, w̃ j}
k
j=1 are suitably normalized, and

ε j ≤
σj − σj+1

2
for j = 1, . . . , k,

then

‖v j − ṽ j ‖M ≤ E1/2
j , ‖w j − w̃ j ‖ ≤ E1/2

j + 2σ−1
j ε j, for j = 1, . . . , k. (5) �

This result indicates we should expect accurate approximate singular values and also accu-

rate approximate singular vectors if ε is small and there is not a small gap in the singular

values. We note that POD singular values often decay to zero quickly, and therefore we

expect to see lower accuracy in the computed POD modes for smaller singular values due

to the small gap. The examples in our first work [1] and the new examples below show both

of these expected behaviors for the errors in the approximate singular vectors.
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4. NUMERICAL RESULTS

We consider the 1D FitzHugh-Nagumo system

∂v(t, x)
∂t

= µ
∂2v(t, x)
∂x2 −

1
µ
w(t, x) +

1
µ

f (v) +
c
µ
, 0 < x < 1,

∂w(t, x)
∂t

= bv(t, x) − γw(t, x) + c, 0 < x < 1,

where f (v) = v(v − 0.1)(1 − v), µ = 0.015, b = 0.5, γ = 2, c = 0.05, the boundary

conditions are vx(t, 0) = −50000t3e−15t , vx(t, 1) = 0, and the initial conditions are zero.

This example problemwas considered in [53], and we used the interpolated coefficient finite

element method from that work to discretize the problem in space. For the finite element

method we used continuous piecewise linear basis functions with equally spaced nodes,

and we used Matlab’s ode23s to approximate the solution of the resulting nonlinear ODE

system on different time intervals.

For the POD computations, we consider the data z(t, x) = [v(t, x),w(t, x)] in the

Hilbert space L2(0, 1) × L2(0, 1) with standard inner product. Now we follow the procedure

in our first work [1] to arrive at the weighted SVD problem. At each time step, we rescale

the approximate solution data by the square root of the time step; see [1, Section 5.1]. We

expand the approximate solution in the finite element basis to obtain the weight matrix M

as in [1, Section 5.2]. To compute the POD of the approximate solution data, we compute

the SVD of the finite element solution coefficient matrix U : Rs → Rm
M , where s is the

number of time steps (snapshots) and m is two times the number of finite element nodes.

To illustrate our analysis of the incremental SVD algorithm, we consider three

examples:

Example 1 5000 finite element nodes and s = 491 snapshots in the time interval [0, 10]

Example 2 10000 finite element nodes and s = 710 snapshots in the time interval [0, 15]

Example 3 50000 finite element nodes and s = 1275 snapshots in the time interval [0, 28]
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We consider relatively small values of m = 2 × nodes and s in order to test the incremental

algorithm against exact SVD computations.

Let U denote the finite element solution coefficient matrix, and let Ũ = Ṽ Σ̃W̃T

denote the incrementally computed approximate SVD of U : Rs → Rm
M produced by

Algorithm 7. For each example, we choose various tolerances and compute:

Rank = rank(Ũ), Exact error = ‖U − Ũ‖L(Rs,RmM ),

Incr. error bound = e computed by Algorithm 7 at the final snapshot.

The exact SVD of U : Rs → Rm
M and the exact error are both computed using a Cholesky

factorization of the weight matrix M following Algorithm 1 in [1]. The exact computations

are for testing only since they require storing all of the data.

Tables 1–3 display the computed quantities listed above for the three exampleswith

various choices of the p truncation tolerance, tol, and the singular value truncation

tolerance, tolsv. We set each tolerance to 10−8, 10−10, or 10−12, for a total of nine tests for

each example. In all of the tests, the incrementally computed error bound is larger than the

exact error and the error bound is small. Also, the tests indicate that there is no benefit from

choosing one tolerance different than the other.

Figure 1 shows the exact and incrementally computed POD singular values and also

the weighted norm error between the exact and incrementally computed POD modes with

tol and tolsv both equal to 10−12. The errors for the POD modes corresponding to the

largest singular values are extremely small (approximately 10−12). The errors in the POD

modes increase slowly as the corresponding singular values approach zero. There are many

accurate POD modes; the first 30 modes are computed to an accuracy level of at least 10−5.

The POD singular value and mode errors behaved similarly for other cases.



69

toltol sv Incr. error boundExact errorRank
10−8 10−8 336 .6924e − 207 .8029e − 06
10−8 10−10 366 .1932e − 107 .1826e − 06
10−8 10−12 861 .5938e − 907 .0495e − 07
10−10 10−8 330 .9090e − 108 .4908e − 06
10−10 10−10 444 .4893e − 210 .7417e − 08
10−10 10−12 371 .9349e − 810 .9680e − 09
10−12 10−8 330 .9090e − 108 .4908e − 06
10−12 10−10 441 .5256e − 110 .5511e − 08
10−12 10−12 455 .4334e − 212 .8596e − 10

Table 1. Example 1 – error between true and incremental SVD

toltol sv Incr. error boundExact errorRank
10−8 10−8 335 .0859e − 307 .6931e − 06
10−8 10−10 166 .3881e − 107 .1429e − 06
10−8 10−12 364 .4657e − 107 .5321e − 06
10−10 10−8 431 .1497e − 108 .7368e − 06
10−10 10−10 545 .3142e − 310 .6491e − 08
10−10 10−12 774 .7348e − 110 .1523e − 08
10−12 10−8 430 .1497e − 108 .7368e − 06
10−12 10−10 441 .6086e − 110 .8671e − 08
10−12 10−12 459 .8658e − 312 .4880e − 10

Table 2. Example 2 – error between true and incremental SVD

toltol sv Incr. error boundExact errorRank
10−8 10−8 638 .5705e − 408 .3271e − 06
10−8 10−10 672 .8271e − 107 .1523e − 06
10−8 10−12 367 .6916e − 207 .3847e − 06
10−10 10−8 431 .7018e − 208 .2388e − 06
10−10 10−10 449 .8302e − 410 .3655e − 08
10−10 10−12 278 .4473e − 208 .6825e − 08
10−12 10−8 431 .7018e − 208 .2388e − 06
10−12 10−10 441 .9660e − 210 .5022e − 08
10−12 10−12 660 .3200e − 512 .7438e − 10

Table 3. Example 3 – error between true and incremental SVD
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Figure 1. Example 3 – exact versus incremental POD computations with tol = tolsv = 10−12

5. CONCLUSION

In our earlier work [1], we proposed computing the SVD with respect to a weighted

inner product incrementally to obtain the POD eigenvalues and modes of a set of PDE

simulation data. In this work, we extended the algorithm to update the SVD and an error

bound incrementally when a new column is added. We also performed an error analysis

of this algorithm by analyzing the error due to each individual truncation. We showed

that the algorithm produces the exact SVD of a matrix Ũ such that ‖U − Ũ‖L(Rs,RmM ) ≤ e,

where U is the true data matrix, M is the weight matrix, and e is computed error bound.

We also proved error bounds for the incrementally computed singular values and singular

vectors. We tested our approach on three example data sets from a 1D FitzHugh-Nagumo

PDE system with various choices of the two truncation tolerances. In all of the tests, the

incrementally computed error bound was larger than the exact error and the error bound

was small. Furthermore, the approximate singular values and dominant singular vectors

were accurate. Also, our analysis and the numerical tests suggest that there is no benefit

from choosing one algorithm tolerance different than the other.
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APPENDIX

Let X and Y be two separable Hilbert spaces, with inner products (·, ·)X and (·, ·)Y and 

corresponding norms ‖ · ‖X and ‖ · ‖Y . Below, we drop the subscripts on the inner products 

and the norms since the space will be clear from the context. Assume H, Hε : X → Y 

are compact linear operators. In this section, we prove bounds on the error between the 

singular vectors of H and Hε assuming the singular values are distinct. Our results rely on 

techniques from [54, 55].

Let {σk, vk, wk }k≥1 and {σk
ε, vk

ε, wk
ε }k≥1 be the ordered singular values and corre-

sponding orthonormal singular vectors of H and Hε. They satisfy

Hvk = σkwk, H∗wk = σkvk, Hεv
ε
k = σ

ε
k w

ε
k, H∗εw

ε
k = σ

ε
k v

ε
k, (6)

where the star denotes the Hilbert adjoint operator. Also, if σk > 0, then σ2
k is the kth

ordered eigenvalue of the self-adjoint nonnegative compact operators HH∗ and H∗H. First,

we recall a well-known bound on the singular values; see, e.g., [56, page 30] and [50, page

99].

Proposition 8: Let ε > 0 such that ‖H − Hε‖L(X,Y ) ≤ ε. Then for all k ≥ 1 we have

|σk − σ
ε
k | < ε. (7) �

In the results below, we require the singular vectors {vεk,w
ε
k } are suitably normalized.

We note that any pair {vεk,w
ε
k } of singular vectors for a fixed value of k can be rescaled by

a constant of unit magnitude and remain a pair of singular vectors. However, due to the

relationship 6, we note that both vectors in the pair must be rescaled by the same constant.

The proof of the following result is largely contained in [54, Appendix 2], but we

include the proof here to be complete.
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Lemma 3: Let ε > 0 such that ‖H−Hε‖L(X,Y ) ≤ ε. If σ1 > σ2 > 0, vε1 and wε
1 are suitably

normalized, and

ε ≤
σ1 − σ2

2
, (8)

then

‖v1 − v
ε
1 ‖ ≤ E1/2

1 , ‖w1 − w
ε
1 ‖ ≤ E1/2

1 + 2σ−1
1 ε, E1 = 2 ©­«1 −

√√
(σ1 − 2ε)2 − σ2

2

σ2
1 − σ

2
2

ª®¬ .
(9) �

Remark 2: The larger error bound for ‖w1 −w
ε
1 ‖ is due to the way we assume the singular

vectors are normalized in the proof. It is possible to use a different normalization and make

the error bound larger for ‖v1 − vε1 ‖ instead. We comment on the normalization in the

proof. �

Proof: Define V1 = span{v1} ⊂ X . We have X = V1 ⊕ V⊥1 , and therefore vε1 = rεv1 + xε

for some constant rε and xε ∈ X satisfies (xε, v1) = 0. This gives ‖xε‖2 = 1− |rε |2 and also

|rε | ≤ 1. Then

‖v1 − v
ε
1 ‖

2 = ‖v1 − rεv1 − xε‖2

= |1 − rε |2‖v1‖
2 + ‖xε‖2

= 2(1 − Re(rε)). (10)

Note ‖σε
1w

ε
1 ‖ = ‖Hεv

ε
1 ‖ implies

σε
1 = ‖Hεv

ε
1 + Hvε1 − Hvε1 ‖

≤ ‖Hvε1 ‖ + ‖H − Hε‖‖v
ε
1 ‖

≤ ‖H(rεv1 + xε)‖ + ε

= ‖rεσ1w1 + Hxε‖ + ε.
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To estimate this norm, we use (Hxε,w1) = (xε,H∗w1) = σ1(xε, v1) = 0 and also

‖Hxε‖2 =
(H∗Hxε, xε)
‖xε‖2

‖xε‖2 ≤ sup
x∈V⊥1 , x,0

(H∗Hx, x)
‖x‖2

‖xε‖2 = σ2
2 ‖xε‖

2,

where we used the variational characterization of the second eigenvalue σ2
2 of the self-

adjoint compact nonnegative operator H∗H. These results give

‖rεσ1w1 + Hxε‖2 = |rε |2σ2
1 + ‖Hxε‖2

≤ |rε |2σ2
1 + σ

2
2 ‖xε‖

2

=
(
σ2

1 − σ
2
2
)
|rε |2 + σ2

2 .

Next, the assumption 8 for ε gives ε ≤ (σ1 − σ2)/2 ≤ σ1/2, and therefore σ1 − 2ε ≥ 0.

Also, 7 gives −ε ≤ σ ε
1 −σ1, or σε

1 − ε ≥ σ1 − 2ε ≥ 0. This gives (σε
1 − ε)

2 ≥ (σ1 − 2ε)2,

and therefore

|rε |2 ≥
(σε

1 − ε)
2 − σ2

2

σ2
1 − σ

2
2

≥
(σ1 − 2ε)2 − σ2

2

σ2
1 − σ

2
2

.

Note that the assumption 8 for ε guarantees that we can take a square root of this estimate.

If vε1 is normalized so that rε is a nonnegative real number, then 10, 1 − Re(rε) =

1 − |rε |, and the above inequality give the desired estimate 9 for ‖v1 − vε1 ‖. If rε is not a

nonnegative real number, then rescale the singular vector pair {vε1,w
ε
1} by rε/|rε | to obtain

the proper normalization and the bound 9 for ‖v1 − v ε
1 ‖.

For w1 and wε
1 , it does not appear that we can use a similar proof strategy since

we have already rescaled the singular vector pair {vε1,w
ε
1}. Specifically, we can obtain

wε
1 = sεw1 + yε, but it is not clear that sε will be a nonnegative real number and we are

unable to rescale again. Therefore, we use ‖H‖ = σ1, ‖H − Hε‖ ≤ ε, and |σ1 − σ
ε
1 | ≤ ε to
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directly estimate:

‖w1 − w
ε
1 ‖ = ‖σ

−1
1 Hv1 − (σ

ε
1 )
−1Hεv

ε
1 ‖

≤ ‖σ−1
1 Hv1 − σ

−1
1 Hvε1 ‖ + ‖σ

−1
1 Hvε1 − σ

−1
1 Hεv

ε
1 ‖ + ‖σ

−1
1 Hεv

ε
1 − (σ

ε
1 )
−1Hεv

ε
1 ‖

≤ ‖v1 − v
ε
1 ‖ + σ

−1
1 ε + |σε

1σ
−1
1 − 1|

≤ ‖v1 − v
ε
1 ‖ + 2σ−1

1 ε.

In the result below, note that ε1 = ε and E1 is defined as in 9 in Lemma 3 above.

Theorem 6: Let k ≥ 1, and let ε > 0 such that ‖H − Hε‖L(X,Y ) ≤ ε. For j = 1, . . . , k,

define √
ε j = jε + 2

j∑
i=

−

1

1 (
εi + σiE

1
i
/2

)
, E j = 2 ©­«1 −

√√
(σj − 2ε j)

2 − σ2
j+1

σ2
j − σ

2
j+1

ª®¬ .
If the first k + 1 singular values of H are distinct and positive, the singular vector pairs

{vεj ,w
ε
j }

k
j=1 are suitably normalized, and

ε j ≤
σj − σj+1

2
for j = 1, . . . , k,

then

‖v j − v
ε
j ‖ ≤ E1/2

j , ‖w j − w
ε
j ‖ ≤ E1/2

j + 2σ−1
j ε j, for j = 1, . . . , k. (11) �

Proof: The proof is by induction. First, the result is true for k = 1 by Lemma 3. Next,

assume the result is true for all j = 1, . . . , k − 1. Define compact linear operators for

j = 2, . . . , k by

H j x = Hx −
j−1∑
i=1

σi(x, vi)wi, H j
ε x = Hεx −

j−1∑
i=1

σε
i (x, v

ε
i )w

ε
i ,
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for all x ∈ X . Then the ordered singular values and corresponding singular vectors of H j

and H j
ε are {σi, vi,wi}i≥ j and {σε

i , v
ε
i ,w

ε
i }i≥ j .

Note that

‖Hk x − Hk
ε x‖ ≤ ‖(H − Hε)x‖ +

k−1∑
i=1
‖σε

i (x, v
ε
i )w

ε
i − σi(x, vi)wi‖

≤ ε‖x‖ + ‖x‖
k−1∑
i=1

(
|σε

i − σi | + σi‖v
ε
i − vi‖ + σi‖w

ε
i − wi‖

)
.

Then since the result 4 is true for all j = 1, . . . , k − 1, we have ‖Hk − Hk
ε ‖ ≤ εk , where

εk = ε +

k−1∑
i=1

(
ε + σiE

1/2
i + σi

(
E1/2

i + 2σ−1
i εi

) )
= kε + 2

k−1∑
i=1

(
εi + σiE

1/2
i

)
.

Applying Lemma 3 to Hk and Hk
ε with ‖Hk − Hk

ε ‖ ≤ εk completes the proof. �
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SECTION

2. CONCLUDING REMARKS AND FUTURE WORK

2.1. CONCLUDING REMARKS

We extended Brand’s incremental SVD algorithm [27] to treat data expanded in 

basis functions from a Hilbert space. Many numerical methods for PDEs generate data 

of this form. Specifically, we reformulated Brand’s matrix algorithm in a  weighted norm 

setting to obtain the POD computations for a set of PDE simulation data. In this work, we 

extended Brand’s algorithm to update the SVD and an error bound incrementally when a 

new column is added. We also considered time varying data by incorporating quadrature 

on the time integral into the incremental approach. Standard methods for computing the 

POD modes require storing the whole large dataset; in contrast, using an incremental 

SVD algorithm only requires storing one snapshot of the data at a time. Therefore, the 

incremental approach drastically reduces the memory requirement for computing the POD 

and error bound of the data. Furthermore, the computational cost of the incremental 

approach is also much lower than standard approaches. Moreover, by truncating small 

singular values (and corresponding singular vectors) during the incremental update, we 

reduce the computational cost of orthgonalizing the stored singular vectors. We also 

performed an error analysis of this algorithm by analyzing the effect of truncation at each 

step, and provided more insight into the accuracy of the algorithm with truncation and the 

choices of the two tolerances. We showed that the algorithm produces the exact SVD of a 

matrix Ũ such that ‖U − Ũ ‖L(Rs,Rm ) ≤ e, where U is the true data matrix, M is the weight
M

matrix, and e is computed error bound. This error bound allows us to find error bounds for 

the incrementally computed singular values and singular vectors. We tested our approach
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on finite element simulation data with t he L 2 inner product for a  1D Burgers’ equation, a 

1D FitzHugh-Nagumo PDE system, and a 2D Navier-Stokes equation with various choices 

of the two truncation tolerances. For the small-scale computational cases, we compared the 

incremental SVD results with the exact SVD and found excellent agreement. For the 1D 

FitzHugh-Nagumo PDE, we found that the incrementally computed error bound was larger 

than the exact error and the error bound was small. Furthermore, the approximate singular 

values and dominant singular vectors were accurate. Also, our analysis and the numerical 

tests suggest that there is no benefit from choosing one algorithm tolerance different than 

the other. We also found that the incremental algorithm worked very well using a different 

inner product and also if we removed the average from the data.

2.2. FUTURE RESEARCH IDEAS

• In the first paper, we approximated the continuous time POD using a Riemann

sum approximation for the integral. It would be interesting to develop and analyze

incremental POD algorithms usingmore accurate approximations to the integral, such

as the trapezoid rule.

• In the second paper, we analyzed the incremental SVD algorithm assuming all arith-

metic is exact. Future work could include a rounding error analysis of the algorithm.

• As mentioned in the introduction to the second paper, there are other existing incre-

mental SVD algorithms. It would be interesting to extend some of these algorithms

to the weighted inner product case, perform an error analysis of the resulting algo-

rithms, and thoroughly compare these new algorithms to the incremental algorithm

developed in our work.
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