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ABSTRACT

In section 1, we develop a novel method of confidence interval construction for

directly standardized rates. These intervals involve saddlepoint approximations to the

intractable distribution of a weighted sum of Poisson random variables and the deter-

mination of hypothetical Poisson mean values for each of the age groups. Simulation

studies show that, in terms of coverage probability and length, the saddlepoint confi-

dence interval (SP) outperforms four competing confidence intervals obtained from the

moment matching (M8), gamma-based (G1,G4) and ABC bootstrap (ABC) methods.

In section 2, we first consider Brillinger’s classical model for a vital rate estimate

with a random denominator. We derive statistical properties for this rate estimate and

investigate difficulties encountered while trying to perform statistical inference about

its expected value. Since inference about this expected value is not possible, we con-

sider instead confidence intervals for covariance of the bivariate Poisson distribution

which underlies Brillinger’s model, on the way to proposing a new model which is a

modification of Brillinger’s model and which has numerous theoretical and computa-

tional advantages over the latter. A simulation study for our new model shows that

in terms of coverage probability, our novel two-dimensional mid-P ”Clopper-Pearson”

type confidence interval (CP2) outperforms the ”Clopper-Pearson” type interval with

no mid-P correction (CP0) and the ”Clopper-Pearson” type interval with a classical

one-dimensional mid-P correction (CP1). In addition, CP2 was found to be more or

less equivalent, in terms of coverage probabilities, to CDF0, CDF1 and CDF2 which

are the CDF pivot methods with no mid-P correction, a one-dimensional mid-P cor-

rection and a two-dimensional mid-P correction, respectively. Furthermore, method

CP2 performed essentially as well as the saddlepoint approximation (SP0) to the CDF0

method. Finally, all of the above-mentioned methods (CDF0, CDF1, CDF2, CP0, CP1,

CP2 and SP0) substantially outperform the large sample (LS) method of confidence in-

terval construction, in terms of coverage probability.
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1. DIRECTLY STANDARDIZED RATES

1.1. INTRODUCTION

In this section we consider standardization which is a common strategy of control-

ling for confounding in the analysis of epidemiologic data. The age of a subject will act

as an important confounder in the comparison of incidence or mortality rates between

two or more groups when the age distributions of these groups differ significantly from

one another; see Rothman et al. (2008) and Woodard (2004). Epidemiologists often

use the Poisson distribution to model the occurrence of a specific disease. With this

assumption the sample directly (age) standardized (incidence) rate (DSR) of a disease

is a weighted sum of independent Poisson random variables. Here the weight for the ith

age group, wi, is determined as the ratio of the proportion of the standard population

in this group to the number of person-years observed for the group. As a result, the as-

sociated population DSR is a weighted sum of Poisson means and this fact complicates

the construction of good confidence intervals for this parameter Dobson et al. (1991),

Fay and Feuer (1997).

The classical asymptotic method based upon the large-sample normal approxima-

tion for the Poisson distribution may not work well when the number disease occurrences

is small Dobson et al. (1991), Fay and Feuer (1997). Ng et al. (2008) performed exten-

sive simulation studies comparing twenty different DSR confidence intervals methods.

The methods they considered fell into four basic classes: (i) the asymptotic normal

confidence interval and three modifications; (ii) the moment matching method of Dob-

son et al. (1991) and eight variants thereof; (iii) the gamma-based confidence interval

proposed by Fay and Feuer (1997) with three modifications and (iv) two methods based

on beta distribution both of which were proposed in Tiwari et al. (2006).

Ng et al. (2008) recommend three of these twenty methods for general use. These

methods are (in the original notation of Ng et al. (2008)): M8, a variant of the moment

matching method of Dobson et al. (1991) which is an approximation to the mid-P
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confidence interval proposed in Cohen and Yang (1994); G1, the gamma-based confi-

dence interval proposed by Fay and Feuer (1997) and G4, a modification of this method

proposed by Tiwari et al. (2006). Swift (2010) compared these three methods with

the approximate bootstrap method (ABC) method proposed in an earlier work of Swift

(1995) and found the ABC method to be competitive with the M8, G1 and G4 methods.

All of the aforementioned methods have coverage probabilities which tend to vary

significantly from the nominal level, usually taken to be 95%; Ng et al. (2008) and

Swift (2010). Trends in their coverage probabilities are roughly linear in V ar (wi), the

variance of the standardization weights. The M8 method is slightly liberal for small

values of V ar (wi) and becomes increasing more liberal as V ar (wi) increases. The

G1 method is conservative for small values of V ar (wi) and becomes increasing more

conservative for larger values of V ar (wi). In contrast, the G4 method is conservative

for small values of V ar (wi) and becomes increasing less conservative as V ar (wi) as

increases. Finally, the ABC bootstrap method tends to be slightly conservative for all

values of V ar (wi).

In the section 1.2, we develop a saddlepoint-based method with average coverage

probabilities that are close to the nominal 0.95 value for all values of V ar (wi). In section

1.3, we describe the four competing methods from Ng et al. (2008) and Swift (2010).

In section 1.4, we present an application of all methods to the Ausburg myocardial

infarction data from Dobson et al. (1991) and summarize the results of Monte Carlo

studies which compare our saddlepoint method with the M8, G1, G4 and ABC methods.

We conclude with a discussion in section 1.5.

1.2. SADDLEPOINT CONFIDENCE INTERVAL

The population DSR is defined as

µ =
∑n

i=1
wiµi (1.1)

where µi = niθi, ni is the number of person-years observed for the ith age group, θi is

the associated incidence rate, and wi is the associated standardization weight for this
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group. Here wi is given as

wi = ci

(
ni
∑n

j=1
cj

)−1

where ci is person-years in the standard population for the ith age group. We let Poisson

random variable Xi, with mean µi, represent the number of disease occurrences in the

ith group for i = 1, . . . , n. Furthermore, we assume that the Xi’s are independent of

one another. The maximum likelihood estimator (MLE) for DSR µ is given as

µ̂ =
∑n

i=1
wiXi. (1.2)

Note that while the distribution of µ̂ is intractable its cumulant generating function

(CGF) is easily obtained in closed-form as

Kµ̂ (s) =
∑n

i=1
µi [exp(swi)− 1] (1.3)

and from this one can easily verify that E (µ̂) = µ and V ar (µ̂) =
∑n

i=1
w2
i µi. Fur-

thermore, in what follows we shall let µ̂obs denote the observed value µ̂ from a random

sample of the n age groups, let µ0 denote the true value of the population DSR value,

and let µ denote the assumed value of µ0 which is used in the construction of the

saddlepoint confidence interval.

The motivation for the saddlepoint-based method lies in the observation that

probability integral transform P (µ̂ ≤ µ̂obs;µ = µ0) has a standard uniform distribution,

therefore is a pivotal quantity and, as such, can be used to construct a confidence interval

for µ0; see Casella and Berger (2002) for further discussion of confidence intervals of

this type. Here, one would determine (µ̂
L
, µ̂

U
), a 95% confidence interval for µ0, as the

solution of the following equations:

P (µ̂ ≤ µ̂obs;µ = µ̂
L
) = 0.975 and P (µ̂ ≤ µ̂obs;µ = µ̂

U
) = 0.025. (1.4)
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This confidence interval is guaranteed to have exact coverage under the assumption that

the family of cumulative distribution functions (CDFs) {P (µ̂ ≤ µ̂obs;µ)} is stochasti-

cally decreasing in µ, the assumed µ0 value.

The implementation of this method in practice is hindered by (i) the lack of a

tractable expression for the CDF of µ̂ and (ii) uncertainty about how to relate an

assumed value for µ to assumed values for the µi’s; from equation (1.1) we see that

there are an infinite number of ways of doing this.

The first issue is easily solved with a saddlepoint approximation to the CDF of

µ̂. Saddlepoint approximations have been found to be remarkably accurate in approxi-

mating nonnormal distributions in a wide variety of situations; see Butler (2007). We

use the Luganani and Rice (1980) saddlepoint approximation to the CDF of µ̂ which is

given as

P̂ (µ̂ ≤ µ̂obs;µ) =

 Φ(t̂) + φ(t̂)
[
t̂−1 − û−1

]
, if µ̂obs 6= µ

1
2

+K
(3)
µ̂ (0)

[
72πK

(2)
µ̂ (0)3

]−1/2

, if µ̂obs = µ
(1.5)

where Φ (·) and φ (·) are the standard normal CDF and normal (probability density

function) PDF respectively, K
(i)
µ̂ (s) is the ith derivative of CGF Kµ̂ (s) for i = 1, 2, 3,

t̂ = sgn (ŝ)
√

2 [ŝµ̂obs −Kµ̂ (ŝ)], û = ŝ

√
K

(2)
µ̂ (ŝ)

and saddlepoint ŝ is the solution to saddlepoint equation

K
(1)
µ̂ (ŝ) = µ̂obs.

With regards to the second issue of distributing a single assumed value for µ to

the µi parameters we write µ as

µ = µ̂+ ∆µ
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where µ̂ is the MLE for µ0 and ∆µ is the deviation of assumed value µ from µ̂. From

equations (1.1, 1.2) we have that

µ = µ̂+ ∆µ =
∑n

i=1
wi (Xi + di∆µ) =

∑n

i=1
wiµi

where di∆µ represents the deviation of assumed value µi from MLE µ̂i = Xi for i =

1, . . . , n. Clearly,
∑n

i=1
widi = 1. Note however that the assumed value of µi cannot be

negative and as such we take it to be

µi = max {Xi + di∆µ, 0} . (1.6)

Furthermore, setting µi = 0 in CGF (1.3) is equivalent to assuming that Xi is a degen-

erate random variable with unit point mass at 0. Finally, we define

di =

[ ∑
i:Xi 6=0

wi

]−1

(1.7)

and, as a result, assumed value (1.6) is a the conditional maximum likelihood estimate

for that parameter where deviation ∆µ is distributed equally among the non-zero Xi

values.

Our proposed saddlepoint method is a CDF pivot method (1.4) where (i) the

intractable CDF functions are replaced by their saddlepoint approximations given in

(1.5) and (ii) method (1.6) is used to determine assumed values for the µi Poisson mean

parameters from a single assumed value for population DSR µ. Pivotal CDF confidence

intervals which make use of saddlepoint CDF approximations often yield lengths and

coverage probabilities that compare favorably with those from basically any competing

method; see for instance Paige and Trindade (2008) and Paige et al. (2009).

1.3. COMPETING METHODS

In this section we briefly describe the competing methods that we will compare

to our saddlepoint confidence interval. They are the M8 method from Ng et al. (2008);
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method G1, the gamma-based confidence interval proposed by Fay and Feuer (1997);

method G4, a modification of Fay and Feuer’s method considered in Tiwari et al. (2006)

and the ABC bootstrap method proposed in Swift (2010).

1.3.1. M8 Confidence Interval. The upper and lower bounds of the

100 (1− α) % M8 confidence interval method are given as

µ̂M8
L

= X̃·
3

√
1− 1

9
X̃−1
· −

Z (1− α/2)

3
X̃
−1/2
·

µ̂M8
U

= X̃·
3

√
1− 1

9
X̃−1
· +

z1−α/2

3
X̃
−1/2
·

where X̃· =
∑n

i=1
Xi + 1/2 and Z (1− α/2) is the (1− α/2)th quantile of the standard

normal distribution.

1.3.2. G1 and G4 Confidence Intervals. The upper and lower bounds for

the 100 (1− α) % G1 interval are

µ̂G1
L

=
V̂ ar (µ̂)

2µ̂
χ2 (α/2)(

2µ̂2[V̂ ar(µ̂)]
−1
)

µ̂G1
U

=
V̂ ar (µ̂) + (wmax)2

2 (µ̂+ wmax)
χ2 (1− α/2)(

2(µ̂+wmax)2[V̂ ar(µ̂)+(wmax)2]
−1
)

where µ̂ =
∑n

i=1
wiXi, V̂ ar (µ̂) =

∑n

i=1
w2
iXi, wmax = max {w1, . . . , wn} and χ2 (γ)d is

the γth quantile of the chi-square distribution with d degrees of freedom. Method G4

is a continuity-corrected version of method G1 developed in Tiwari et al. (2006). Here

the upper and lower 100 (1− α) % confidence bounds are given as

µ̂G4
L

= µ̂G1
L

µ̂G4
U

=
V̂ ar

∗
(µ̂)

2µ̂∗
χ2 (1− α/2)(

2(µ̂∗)2[V̂ ar
∗
(µ̂)]

−1)

where µ̂∗ = µ̂+ 1
n

∑n

i=1
wi and V̂ ar

∗
(µ̂) = V̂ ar (µ̂) + 1

n

∑n

i=1
w2
i .



7

1.3.3. ABC Confidence Interval. The 100 (1− α) % ABC bootstrap confi-

dence interval is given as

µ̂ABC
L

= µ̂+
a− Z (1− α/2)

({1− a[a− Z (1− α/2)]}2

√
V̂ ar (µ̂)

µ̂ABCU = µ̂+
a+ Z (1− α/2)

({1− a[a+ Z (1− α/2)]}2

√
V̂ ar (µ̂)

where bootstrap acceleration constant a is given as
∑n

i=1
w2
iXi

[
6V̂ ar (µ̂)

]−1

. When

the crude incidence rate is zero, meaning that
∑n

i=1
Xi = 0, this interval defaults to an

interval of the form
(

0, µ̂PU
∑n

i=1
wi

)
where µ̂PU the exact upper confidence limit for the

mean of a Poisson random variable.

1.4. AN EXAMPLE AND MONTE CARLO STUDY

For our example we consider data from the WHO MONICA Project which is

shown in Table 1.1. This data has previously been considered in Dobson et al. (1991)

and Ng et al. (2008). Here incidence rates of myocardial infarction in 1986 for women

age 35-64 are recorded from an urban reporting unit of the study area in Ausburg,

Germany. Table 1.2 provides the 95% confidence intervals for the age-standardized

incidence rate per 10,000 obtained from the five different methods we consider. Here

V ar (wi) = 1. 843 × 10−3 and we see that in terms of length, the shortest to longest

intervals are M8, ABC, SP G4 and G1. These lengths are consistent with the liberalness

of the M8 method and the conservativeness of the G4 and G1 methods which we observe

in our simulation studies for small V ar (wi) values.

For these Monte Carlo studies we adopt a design motivated by those used in

Fay and Feuer (1997), Ng et al. (2008) and Swift (2010) and randomly generate the

standardization weights and age group means. In our study, we worked with n = 6

age groups, generated independent standard uniform weights, {wi}, and Poisson mean

parameters {µi} and then standardized their values so that
∑n

i=1
wi = 6 and µ· =∑n

i=1
µi = (10, 20). This process was repeated 500 times where µ· = 10 and another

500 times with µ· = 20. For each of these 1,000 weight-mean configurations we generated
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10,000 Poisson counts according to the true µi values and then computed confidence

intervals for population DSR µ using the saddlepoint (SP) method, the (M8) method

from Ng et al. (2008), method (G1) in Fay and Feuer (1997), the (G4) method from

Tiwari et al. (2006) and the (ABC) bootstrap method in Swift (2010). For each of these

sets of 10,000 confidence intervals the coverage probability, for a particular method, was

estimated as the proportion of times the interval contained µ0, the true value of µ. We

use the terms “underage” and “overage” to denote the probability the interval lies

completely below µ0 and completely above µ0, respectively. Furthermore, we estimated

underage by the proportion of times the upper confidence bound fell below µ0 and

overage by the proportion of times the lower confidence bound was above µ0. Minitab

16 c© was used to generate plots of the estimated coverage probabilities versus V ar (wi)

and the ratio of underage and overage versus V ar (wi). Figure 1.1 shows the estimated

coverage probabilities versus the V ar (wi) values, as well as 95% reference lines and

LOWESS smooths. Figure 1.2 shows the plot of the estimated underage/overage values

versus V ar (wi), along reference line of 1 which corresponds to a symmetric or equal-

tailed confidence interval method.

Figure 1.1 shows that, for µ· = 10 as well as µ· = 20, the SP method exhibits

a coverage probability trend which is quite close to the nominal 95% level, the ABC

method is quite similar in this regard, albeit while being slightly conservative, the M8

method is liberal and the G1 and G4 methods are generally more conservative. Figure

1.2 shows, for both µ· = 10 and µ· = 20, that the ABC method is the most symmetric

of all the methods, followed by the SP and G1 methods and then G4 and M8.

Table 1.3 provides the mean (CP Mean) , median (CP Median) and standard

deviation (CP SD) of the coverage probabilities for each of the five methods as well

as the average confidence interval lengths (CI Length). We see that the SP method

always has an average coverage probability which closest to the nominal 95% value and

exhibits the smallest variance. For µ· = 10 and µ· = 20, all differences in average

coverage probabilities for all the methods are statistically significant and the SP and

M8 methods always yield the shortest average lengths. For the µ· = 10 simulations the

lengths of the SP and M8 methods are not significantly different from one another, but
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are significantly less than the lengths from the G1, G4 and ABC methods. In contrast,

for µ· = 20 the lengths of the SP and M8 methods are significantly different from one

another. Furthermore, the means for the SP and ABC methods are not significantly

different from one another, but are significantly different from the lengths for the other

three methods.

1.5. CONCLUSIONS

We have developed a novel method of confidence interval construction for directly

standardized rates using saddlepoint approximations. These intervals involve working

with assumed values for µ, the population DSR. However this parameter is a weighted

sum of Poisson means {µi} and as such we had to infer reasonable values for these

means. We developed a maximum likelihood solution to this problem and the resulting

SP procedure performed well in practice. In particular, simulation results showed that,

in terms of coverage probability and length our intervals outperformed competing meth-

ods obtained from the moment matching, gamma-based and ABC bootstrap methods.

However, in terms of symmetry the ABC bootstrap method outperformed our method

and the G1 method slightly but the M8 and G4 methods by a wide margin.

Table 1.1. Incidence rates of myocardial infarction for women in Augsburg in 1986 by
age group.

Age ci ni wi Xi

35− 39 6/31 7, 971 0.243 0

40− 44 6/31 7, 084 0.273 0

45− 49 6/31 9, 291 0.208 1

50− 54 5/31 7, 743 0.208 2

55− 59 4/31 7, 798 0.165 4

60− 64 4/31 8, 809 0.146 10
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Table 1.2. 95% confidence intervals for the age-standardized incidence rate of myocar-
dial infarction per 10,000 people.

Method LCB UCB Length

SP 1.685 4.428 2.744

M8 1.653 4.321 2.668

G1 1.593 4.608 3.015

G4 1.593 4.430 2.836

ABC 1.643 4.358 2.715

Table 1.3. The mean (CP Mean), median (CP Median) and standard deviation (CP
SD) of the coverage probabilities as well as the average confidence interval
lengths (CI Length) for SP, M8, G1, G4 and ABC methods.

µ· = 10

Method CP Mean CP Median CP SD CI Length

SP 94.854 94.890 0.486 14.177

M8 93.702 93.935 1.122 14.068

G1 97.569 97.520 0.494 16.374

G4 96.044 96.100 0.649 15.055

ABC 95.255 95.555 1.134 14.885

µ· = 20

Method CP Mean CP Median CP SD CI Length

SP 94.941 94.930 0.293 19.873

M8 94.420 94.490 0.499 19.808

G1 96.841 96.780 0.423 21.906

G4 95.819 95.840 0.379 20.790

ABC 95.248 95.280 0.383 20.360
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Figure 1.1. Plots of estimated coverage probabilities (in percents) for each of the five
confidence interval methods (SP, M8, G1, G4 and ABC) versus V ar (wi)
with horizontal 95% reference lines and LOWESS smooths.
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Figure 1.2. Plots of the estimated underage/overage values versus V ar (wi) for each
of the five confidence interval methods (SP, M8, G1, G4 and ABC) with
horizontal reference lines at 1 and LOWESS smooths.
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2. RATIO OF TWO POISSON RANDOM VARIABLES

2.1. INTRODUCTION

In this section, we consider confidence intervals for the ratio of two Poisson random

variables. As such, we consider inference about a ratio with a random denominator.

One can think about this denominator as being a random sample size. When the de-

nominator is random standard distribution theory becomes more difficult to apply; see

Molenberghs et al. (2014) and Bain et al. (1990). For example, the mean of a ratio of

two Poisson random variables is not equal to the ratio of means, even when the Poisson

random variables are independent. Our methodologies are motivated by Brillinger’s

work on vital rates (Brillinger, 1986) which involve the ratio of two random variables.

Here it was shown why it is reasonable to have random denominator for vital rates.

The primary reason is that the denominator is an approximation to the population

size. Brillinger’s approach has a natural motivation involving planar Poisson processes

and a bivariate Poisson distribution on the number of deaths and mid-year popula-

tion in connection with Lexis diagrams (see section 2.2). One problem, however, with

Brillinger’s approach is that mid-year population size can be zero which is a hindrance

to the development of inferential techniques for his vital rates.

To remedy this, we consider restrictions of two types for Brillinger’s model; (i)

we constrain the mid-year population size to be strictly greater than zero and (ii) we

require the number of deaths to be less than or equal to mid-year population size. With

the latter restriction probability calculations become prohibitively complicated, so that

we develop methodologies only for the former restriction. Even with this tractable

restriction we find that Brillinger’s model lacks interpretability and it is difficult to

make inference about the model parameters. As a result, we propose a new model

which is a limiting case of Brillinger’s model and which has greater interpretability

and better inferential properties. In particular, the expectation of vital rate has a very
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simple form and is interpretable unlike the expectation of vital rate in Brillinger’s model

wherein we require the mid-year population size to exceed zero.

The CDF pivot method of confidence interval construction for vital rates is based

on probability integral transform where we use the cumulative distribution function

(CDF) as a pivotal quantity, much like in section 1.2. In the proposed model we also

consider confidence interval construction technique motivated by Clopper and Pearson

(1934) to overcome difficulties encountered when the number of deaths and population

size are equal. Also we consider confidence intervals based on the large sample the-

ory for the our proposed model. Since Brillinger’s model does not lend itself to large

sample theory we consider maximum likelihood estimates and their exact small sample

properties. For both models (Brillinger’s and proposed) we consider highly accurate

saddlepoint approximations and obtain confidence intervals based on the Luganani and

Rice (1980) saddlepoint approximation to the CDF of a random variable. In the two

types of models we estimate the nuisance parameters with constrained maximum likeli-

hood estimates. For Brillinger’s model we also introduce another constrained estimate

based on the method of moments principle. In the CDF pivot and “Clopper-Pearson”

type methods we introduce two mid-P correction methods which are novel in part

because they are developed for a bivariate discrete distribution.

The rest of this section is organized as follows. In section 2.2, we discuss Lexis dia-

grams which are used to motivate and develop Brillinger’s model as well as the proposed

model. In section 2.3, we discuss probabilistic properties, methods of confidence interval

construction and parameter estimation for Brillinger’s model. Here we also prove the

corollary from Brilliger (1986) which is not at all obvious but was stated without proof

in that paper. In section 2.4, we discuss probabilistic properties, methods of confidence

interval calculation and parameter estimation for the model we propose. Note that we

do not consider as wide a range of inferential techniques for Brillinger’s model as we

consider for our proposed model since for the former we cannot make inference about

the expected value of the vital rate estimate. In section 2.5, we discuss the saddlepoint

approximations to the CDF pivot method considered for Brillinger’s model and the

proposed model. In section 2.6, we present simulation studies involving all confidence



15

interval methods considered for both models. Finally, in section 2.7, we present our

conclusions.

2.2. LEXIS DIAGRAMS

The Lexis diagrams were first introduced by Lexis (1875). Here the concept of

representing the three demographic coordinates on one plane is considered, where (i)

X1 = the moment of death; (ii) X2 = the age of the deceased at the moment of death

and (iii) X3 = the moment of birth of the deceased. Vandeschrick (2001) explains how

the Lexis diagram represents a projection of a three-dimensional demographic point

onto the two-dimensional X2-X3 plane. This projection results in a ray of unit slope

representing the lifetime of a person. In effect this ray in the X2-X3 plane represents X1.

This is the basic setting in which Brillinger (1986) introduces a planar point Poisson

process to model counts within the various planar regions of a Lexis diagram. A more

detailed explanation and history of Lexis diagrams is provided by Vandeschrick (2001).

In addition, the various uses for Lexis diagrams and statistical techniques for Lexis

diagrams are reviewed in Keiding (1990).

2.2.1. Lexis Diagram for Brillinger’s Model. We will first introduce the

Lexis diagram for Brillinger’s model. A reproduction of this diagram from Brillinger

(1986) is shown in the Figure 2.1 below. We present this reproduction to improve

legibility. This diagram describes how the mortality rate is defined in terms of the

counts for regions B and C which are represented by N(B) and N(C), respectively.

The associated mortality rate is

N (B)

N (C)
.

Here, N(B) represents the number of deaths in that region and N(C) is the mid-year

population for the corresponding year. Note that region C extends indefinitely in the

direction of a 450 ray emanating from the origin. A rectangular region in a Lexis

diagram represents deaths from a certain age group during a particular time period. In

Figure 2.1, area B represents the number of people died in the age group 40 - 44 years
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during the 1980 calendar year. Parallelograms like C represent the total population

of 40 - 44 years old who were alive in mid-1980. One can extend the sides of this

parallelogram so that they intersect the horizontal axis and in the process determine

a range of birthdays for those persons in the study. Therefore, the region C in Figure

2.1 represents people who were born after July 1st of 1935 and before July 1st of 1940.

Recall that in Brillinger’s model, denominator count N (C) can be zero. This will

happen if all study subjects die in the first half of the time period.

Figure 2.1. Lexis diagram for Brillinger’s model.

2.2.2. Lexis Diagram for Proposed Model. Our proposed model is like

that of Brillinger in that we define a mortality rate as

N (BC)

N (C)

where, much like before, N(BC) and N(C) represent the number of counts (death) in

regions BC and C, respectively. Note however that region BC represents the deaths for
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a particular age-calendar year combination and has a different shape than Brillinger’s

region B.

Figure 2.2 shows the shapes for our BC and C regions, where region C contains

region BC as a subset. Tetrahedron-shaped region BC is discussed in Keiding (1990)

but is not used to define mortality rate models. Region BC can be seen to be a collection

of right triangles as discussed in Keiding (1990). Its tetrahedron shape comes from the

fact that vertical range of the age-calendar year combination is five units (years), from

40-44 years, but the horizontal range is one-half unit (year), from mid 1980 to beginning

of 1981. In the example discussed below and illustrated in Figure 2.4, we can see that

ten-by-five region BC becomes collection of three triangles since we consider age values

from 50 to 59 years and calender times from 1968 to 1972, in the latter part of the

time period. Furthermore, region BC represent the number of people who died in a

given time period and age limit, and are born in a given time period. For example if

we consider Brillinger’s set-up given in Figure 2.2, region BC represents the number

of people born from mid 1935 to mid 1939 and who died in the six month time period

mid 1980 to beginning of 1981, and so were aged 40 - 44 years. Here, the population

at risk is represented by region C like that in Figure 2.1. One important difference

between the proposed model and Brillinger’s model is that in the proposed model we

do not count deaths which occur before the mid-year or include deaths of subjects who

enter the age group after mid year. Therefore, deaths which occur before mid-year for

people aged 40-44 years and deaths for people enter the age 40-44 group after mid-year

are not counted as shown in Figure 2.2.

The “Epi” package in statistical software R provides code for generating a Lexis

diagram for the Danish male lung cancer data (Carstensen et al. 2014). We reproduce

diagrams given in Figures 2.3 and 2.4, of the “Epi” manual, to illustrate regions used in

the development of models (Brillinger’s model and proposed model). Note that in these

graphs, numbers in each triangle represent number of rays terminating in that region

since graphing a large number of rays will result in a graph which cannot be read.
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Figure 2.2. Lexis diagram for proposed model.

Figure 2.3. Lexis diagram for Danish male lung cancer data. This graph represents
number of males died in years 1963 - 1972 due to lung cancer in Denmark
who were in the age group 50 - 59 (Area B) and mid-population for that
time period (Area C).
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Figure 2.4. Lexis diagram for Danish male lung cancer data. This graph represents
number of males died in years 1968 - 1972 before reaching the age 60 due
to lung cancer in Denmark who were aged 50 - 59 years at the beginning of
1968 (Area BC) and mid-population for the time period 1963 - 1972(Area
C).

2.3. BRILLINGER’S MODEL

Brillinger (1986) defines a model for vital rates in which the estimator has a

random denominator. The denominator, which represents sample size, is often fixed in

statistical applications. There are however situations in which it makes sense to treat

the sample size as random, as described in the introduction. Brillinger (1986) takes the

estimator of the population size to be the size of the mid-year sample population. In

principle, the midyear population could consist of zero individuals and in such a setting

Brillinger’s vital rate estimator is undefined. We rectify this situation by restricting

the vital rate estimator to non-zero sample populations sizes by conditioning upon a

denominator which is non-zero.

The main idea for the Brillinger’s model is explained in the singular corollary of

that paper via a Lexis diagram much like that which was shown in Figure 2.1. Here a

planar Poisson process with arbitrary intensity functions is defined in each of the three
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disjoint regions of this graph. This implicitly defines three independent Poisson random

variables;

XB−BC , XC−BC and XBC ,

where BC ≡ B ∩ C and A − B denotes the set difference of sets A and B, in regions

[B −BC], [C −BC] and [BC], respectively, and with means λB−BC , λC−BC and λBC .

From this development the corollary states, without proof, that N(B) and N(C) have a

bivariate Poisson distribution, where N(B) is given as XB−BC +XBC and N(C) is given

as XC−BC +XBC . Note that the mean of XBC represents the covariance of the bivariate

Poisson distribution for N(B) and N(C) (see Johnson et al. 1997 and Kawamura 1984).

Following Brillinger’s notation we represent N(B) as D and N(C) as P . It turns out

that D and P have a bivariate Poisson distribution, i.e.

(D,P ) ∼ bivariate Poisson(λB−BC + λBC , λC−BC + λBC)

with associated probability mass function (PMF);

Pr (D = d, P = p) (2.1)

= Pr (XB−BC +XBC = d,XC−BC +XBC = p)

=

min(d,p)∑
k=0

Pr(XB−BC +XBC = d,XC−BC +XBC = p|XBC = k) Pr (XBC = k)

=

min(d,p)∑
k=0

Pr(XB−BC = d− k,XC−BC = p− k) Pr (XBC = k)

=

min(d,p)∑
k=0

Pr (XB−BC = d− k) Pr (XC−BC = p− k) Pr (XBC = k)

= e−λB−BC−λC−BC−λBC
min(d,p)∑
k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d− k)! (p− k)!k!
.

where d = 0, 1, 2, ...,∞ and p = 0, 1, 2, ...,∞.
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Brillinger (1986) estimates the vital rate, for a given age group and a time period, as

D/P where D and P distributed as bivariate Poisson. We consider the distribution of

D/P and associated probability calculation

Pr (D/P ≤ (D/P )obs) , (2.2)

where (D/P )obs = Dobs/Pobs, Dobs is the observed value of D and Pobs is the observed

value of P , in hopes of developing a confidence interval for E (D/P ) . The idea behind

this CDF pivot method of confidence interval construction involves the use of the CDF

value (equation 2.2), which is in fact the probability integral transform, as a pivotal

quantity and is described in greater detail in section 2.3.2.

Note however that this expected value is undefined since denominator P can be

zero. Furthermore in practice a sample proportion based upon a sample of size zero

is not of interest. To overcome these computational and practical difficulties when the

denominator is zero, we consider the distribution of D/P given that P > 0. The joint

distribution of random variable D and truncated random variable P is given in equation

(2.3),

Pr(D = d, P = p|P > 0) =
Pr(D = d, P = p)

Pr(P > 0)
(2.3)

=
e−λB−BC−λC−BC−λBC

1− e−λC−BC−λBC

min(d,p)∑
k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d− k)!(p− k)!k!
.

where d = 0, 1, 2, ...,∞ and p = 1, 2, ...,∞

We can easily see that this sums to one as follows,

∞∑
p=1

∞∑
d=0

Pr(D = d, P = p|P > 0)

=
∞∑
p=1

∞∑
d=0

e−λB−BC−λC−BC−λBC

1− e−λC−BC−λBC

min(d,p)∑
k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d− k)!(p− k)!k!

=
e−λB−BC−λC−BC−λBC

1− e−λC−BC−λBC

∞∑
p=1

∞∑
d=0

min(d,p)∑
k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d− k)!(p− k)!k!
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=
e−λB−BC−λC−BC−λBC

1− e−λC−BC−λBC

 ∞∑
p=0

∞∑
d=0

min(d,p)∑
k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d− k)!(p− k)!k!
−
∞∑
d=0

λdB−BC
d!


=
∞∑
p=0

∞∑
d=0

min(d,p)∑
k=0

e−λB−BC−λC−BC−λBCλd−kB−BCλ
p−k
C−BCλ

k
BC

(1− e−λC−BC−λBC ) (d− k)!(p− k)!k!
− e−λC−BC−λBC

1− e−λC−BC−λBC

=
∞∑
p=0

∞∑
d=0

Pr (D = d, P = p)

1− e−λC−BC−λBC
− e−λC−BC−λBC

1− e−λC−BC−λBC

=
1

1− e−λC−BC−λBC
− e−λC−BC−λBC

1− e−λC−BC−λBC

= 1

We would like to make inference about D/P given that P > 0 and are able to derive

its CDF in closed-from as follows,

Pr (D/P ≤ (D/P )obs |P > 0) (2.4)

= Pr(D ≤ (D/P )obs P |P > 0)

=
∞∑
p=1

bp(D/P )obsc∑
d=0

Pr(D = d|P = p, P > 0) Pr(P = p|P > 0)

=
∞∑
p=1

bp(D/P )obsc∑
d=0

Pr(D = d, P = p|P > 0)

Pr(P = p|P > 0)
Pr(P = p|P > 0)

=
∞∑
p=1

bp(D/P )obsc∑
d=0

Pr(D = d, P = p|P > 0)

=
e−λB−BC−λC−BC−λBC

1− e−λC−BC−λBC

∞∑
p=1

bp(D/P )obsc∑
d=0

min(d,p)∑
k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d− k)!(p− k)!k!

where bxc is the floor function which gives largest integer less than or equal to argument

x. Ideally we would like to construct confidence intervals for parameter E (D/P |P > 0)

but note however that

E (D/P |P > 0) (2.5)

= EPE (D/P |P, P > 0)

= EP

(
∞∑
d=0

d

p
Pr(D = d|P = p, P > 0)

)
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=
∞∑
p=1

∞∑
d=0

d

p
Pr(D = d, P = p|P > 0)

=
∞∑
p=1

∞∑
d=0

d

p

e−λB−BC−λC−BC−λBC

(1− e−λC−BC−λBC )

min(d,p)∑
k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d− k)!(p− k)!k!
.

This doubly infinite sum cannot be simplified to closed form expression. Due to the

complicated and non-interpretable nature of E (D/P |P > 0) we consider instead confi-

dence intervals for λBC to illustrate the proposed methodologies in sections (2.3.2) and

(2.5.1). Note that we have chosen λBC as our parameter of interest since it represents

the covariance of the bivariate Poisson distribution for the unconditional distribution

of D and P and has previously been consider by Johnson et al. (1997) and Kawa-

mura (1984).Ultimately however, we consider λBC for illustrative purposes only and we

could in fact just as easily consider confidence intervals for λB−BC and λC−BC , as well.

Nonetheless, we forgo these confidence interval computations, in detail, since they are

as complicated as those for covariance parameter λBC .

2.3.1. Maximum Likelihood Estimates for Brillinger’s Model. First,

let’s consider maximum likelihood estimates for Brillinger’s model. Teicher (1954) and

Holgate (1964) considered inference for parameters of the bivariate Poisson distribution.

Holgate (1964) also explains how to obtain maximum likelihood estimates for bivariate

Poisson distribution for arbitrary n. Our focus is on a sample of size of n = 1 and the

results shown in Holgate (1964) simplify considerably in this case with key quantity

R(D,P ) =
Pr(D − 1, P − 1)

Pr(D,P )
=

∑min(d−1,p−1)
k=0

λd−1−k
B−BCλ

p−1−k
C−BCλ

k
BC

(d−1−k)!(p−1−k)!k!∑min(d,p)
k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d−k)!(p−k)!k!

where Pr(D,P ) is given in equation (2.1). We note, however, that

R(D,P ) =

∑min(d,p)
k=0

kλd−kB−BCλ
p−k
C−BCλ

k
BC

(d−k)!(p−k)!k!

λBC
∑min(d,p)

k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d−k)!(p−k)!k!
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where we can consider it to be an expected value in the following form,

λBCR(D,P ) =

∑min(d,p)
k=0

kλd−kB−BCλ
p−k
C−BCλ

k
BC

(d−k)!(p−k)!k!∑min(d,p)
k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d−k)!(p−k)!k!

= E (T )

where T has PMF

Pr (T = k)

=

e−λB−BC−λC−BC−λBC

1−e−λC−BC−λBC
λd−kB−BCλ

p−k
C−BCλ

k
BC

(d−k)!(p−k)!k!

e−λB−BC−λC−BC−λBC

1−e−λC−BC−λBC
∑min(d,p)

k=0

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d−k)!(p−k)!k!

=
e−λB−BC−λC−BC−λBC

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d−k)!(p−k)!k!∑min(d,p)
k=0 e−λB−BC−λC−BC−λBC

λd−kB−BCλ
p−k
C−BCλ

k
BC

(d−k)!(p−k)!k!

=
Pr (XB−BC = d− k,XC−BC = p− k,XBC = k)∑min(d,p)

k=0 Pr (XB−BC = d− k,XC−BC = p− k,XBC = k)

=
Pr (XB−BC = d− k,XC−BC = p− k,XBC = k)

Pr (D = d, P = p)

=
Pr (D = d, P = p|XBC = k) Pr (XBC = k)

Pr (D = d, P = p)
.

Using Bayes’ theorem we can express P (T = k) as follows,

Pr (T = k) = Pr (XBC = k|D = d, P = p)

with expectation

λBCR(D,P ) = E(T ) = EXBC |D=d,P=p (XBC) .

First partial derivatives of the log-likelihood for Brillinger’s model with no positivity

condition on P from equation (2.1), with respect to λB−BC , λC−BC and λBC respec-

tively, yields equations which can be expressed in terms of EXBC |D,P (XBC) as follows,

−1 +
d

λB−BC
−
EXBC |D=d,P=p (XBC)

λB−BC
= 0 (2.6)
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−1 +
p

λC−BC
−
EXBC |D=d,P=p (XBC)

λC−BC
= 0

−1 +
EXBC |D=d,P=p (XBC)

λBC
= 0.

These equations simplify to

EXBC |D=d,P=p (XBC) = λBC

λB−BC = d− λBC

λC−BC = p− λBC .

Here

EXBC |D=d,P=p (XBC) = λBC

is similar to the expression

R(D,P ) = 1

in Holgate (1964) when we consider a sample of size n = 1. Holgate (1964) suggests

that to solve EXBC |D,P (XBC) = λBC for λBC one should profile out parameters λB−BC

and λC−BC via a substitution of the other two equations to obtain the maximum like-

lihood estimate (MLE) of λBC . From this MLE one can obtain the MLE’s for λB−BC

and λC−BC as well. The equation EXBC |D,P (XBC) = λBC then simplifies to following

univariate equation in λBC ,

min(d,p)∑
k=0

(d− λBC)d−k (p− λBC)p−k λkBC
(d− k)!(p− k)!k!

(λBC − k) = 0 (2.7)

whose solution corresponds to the root of a polynomial of degree (d + p), with a pa-

rameter space of 0 < λBC ≤ min(d, p). For arbitrary n, Holgate (1964) also obtains a

univariate polynomial equation in λBC whose order depends upon the observed D and

P values and notes that in general its root needs to be determined numerically. We
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note that for our n = 1 case the parameter space admits only one solution to equation

(2.7) which is λBC = min(d, p). This in turn yields the following MLE’s for λB−BC and

λC−BC ;

λ̂B−BC = d−min(d, p)

and

λ̂C−BC = p−min(d, p).

Note that in this situation either λ̂B−BC or λ̂C−BC must be zero depending on the

value of min(d, p). We derived the solution of the equation (2.7) while adopting the

convention that 00 := 1. This convention leads to equating a Poisson random variable

with zero mean to the degenerate random variable with unit point mass at zero. We

also see that convention of 00 := 1 makes sense in the model we propose, in section

(2.4), where we modify Brillinger’s model by taking λB−BC = 0.

The exact distributions of MLE’s λ̂B−BC , λ̂C−BC and λ̂BC are as follows,

Pr
(
λ̂B−BC ≤ k

)
= Pr (D −min(D,P ) ≤ k)

= Pr (min(D,P ) ≥ D − k)

= Pr (D ≥ D − k, P ≥ D − k)

= Pr (P ≥ D − k)

= Pr (XC−BC +XBC ≥ XB−BC +XBC − k)

= Pr (XC−BC ≥ XB−BC − k)

=
∞∑
i=0

Pr (XC−BC ≥ XB−BC − k|XB−BC = i) Pr (XB−BC = i)

=
∞∑
i=0

Pr (XC−BC ≥ i− k) Pr (XB−BC = i)

=
∞∑
i=0

∞∑
j=i−k

Pr (XC−BC = j) Pr (XB−BC = i)
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=
∞∑
i=0

∞∑
j=i−k

e−λC−BCλjC−BC
j!

e−λB−BCλiB−BC
i!

and

Pr
(
λ̂C−BC ≤ k

)
= Pr (P −min(D,P ) ≤ k)

= Pr (min(D,P ) ≥ P − k)

= Pr (D ≥ P − k, P ≥ P − k)

= Pr (D ≥ P − k)

= Pr (XB−BC +XBC ≥ XC−BC +XBC − k)

= Pr (XB−BC ≥ XC−BC − k)

=
∞∑
i=0

∞∑
j=i−k

Pr (XB−BC = j) Pr (XC−BC = i)

=
∞∑
i=0

∞∑
j=i−k

e−λB−BCλjB−BC
j!

e−λC−BCλiC−BC
i!

.

Note that above probability calculations for λ̂B−BC and λ̂C−BC involve infinite summa-

tions whereas the following probability calculation for λ̂BC involves only finite summa-

tions.

Pr
(
λ̂BC ≤ k

)
= Pr (min(D,P ) ≤ k)

= 1− Pr (min(D,P ) > k) = 1− Pr (D > k, P > k)

= 1− Pr (XB−BC +XBC > k,XC−BC +XBC > k)

= 1−
∞∑
i=0

Pr (XB−BC +XBC > k,XC−BC +XBC > k|XBC = i) Pr (XBC = i)

= 1−
∞∑
i=0

Pr (XB−BC > k − i,XC−BC > k − i) Pr (XBC = i)

= 1−
∞∑
i=0

Pr (XB−BC > k − i) Pr (XC−BC > k − i) Pr (XBC = i)

= 1−
∞∑
i=0

(
∞∑

j=k−i+1

Pr (XB−BC = j)
∞∑

j=k−i+1

Pr (XC−BC = j)

)
Pr (XBC = i)
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= 1−
∞∑
i=0

(
1− FλB−BC (k − i)

) (
1− FλC−BC (k − i)

) e−λBCλiBC
i!

=
k∑
i=0

(
FλB−BC (k − i) + FλC−BC (k − i)− FλB−BC (k − i)FλC−BC (k − i)

) e−λBCλiBC
i!

where the above CDFs are

FλB−BC (k − i) =
k−i∑
j=0

e−λB−BCλjB−BC
j!

and FλC−BC (k − i) =
k−i∑
j=0

e−λC−BCλjC−BC
j!

.

Note that one can obtain a confidence interval for covariance parameter λBC with the

CDF pivot method. In that case, one needs to solve following equations after replacing

λB−BC and λC−BC with constrained MLE’s λ̂B−BC (λBC) and λ̂C−BC (λBC).

Pr
(

min(D,P ) ≤ min(d, p)|λBCL, λ̂B−BC (λBC) , λ̂C−BC (λBC)
)

= 0.975

Pr
(

min(D,P ) ≤ min(d, p)|λBCU , λ̂B−BC (λBC) , λ̂C−BC (λBC)
)

= 0.025.

This is the CDF pivot method which will be discussed later in the section 2.3.2.

In a similar fashion one can compute the first partial derivatives of the natural

logarithm of equation (2.3) to obtain MLE’s for Brillinger’s model under the restriction

that P > 0. The derivative with respect to λB−BC is exactly equal to the left side of

the first equation in (2.6) and derivatives with respect to λC−BC and λBC yields the

following score equations,

−1 +
p

λC−BC
−
EXBC |D=d,P=p (XBC)

λC−BC
− e−λC−BC−λBC

1− e−λC−BC−λBC
= 0 (2.8)

−1 +
EXBC |D=d,P=p (XBC)

λBC
− e−λC−BC−λBC

1− e−λC−BC−λBC
= 0. (2.9)

These equations will not simplify further in closed-form like those for the unconditional

distribution. But equation (2.6) can be written as

λB−BC = d− pλBC
λC−BC + λBC

(2.10)
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equations (2.8) and (2.9) simplify to

p
(
1− e−λC−BC−λBC

)
− (λC−BC + λBC) = 0

EXBC |D=d,P=p (XBC)− pλBC
λC−BC + λBC

= 0.

By substituting λB−BC in to EXBC |D=d,P=p (XBC) from equation (2.10) one can solve

above two equations numerically to obtain MLE’s of λC−BC and λBC . Note however

that given the fact that these equations cannot be solved in closed-form and the above-

mentioned problems with the MLE’s for Brillinger’s unrestricted model we do not pursue

inference based upon the MLE’s but instead consider a CDF pivot method of confidence

interval construction next.

2.3.2. CDF Pivot Method. We construct a confidence interval for covariance

of bivariate Poisson distribution (λBC) using the probability integral transform, which

corresponds to the CDF given in equation (2.4) as a function of λBC , provided that one

knew the true values for λB−BC , λC−BC . In setting n = 1 case, one can obtain regular

MLE’s for λB−BC , λC−BC and λBC , as discussed in the previous section. For a sample of

size n > 1, numerical determination of these MLE’s is discussed in Kawamura (1984).

Since we always consider the n = 1 case, we do not have access to large sample

Wald confidence intervals like those considered in section 2.4. Nonetheless, one can

determine constrained estimates for two of the parameters given a third. Once we

have some form of constrained estimates, λ̂B−BC (λBC) and λ̂C−BC (λBC), for λB−BC

and λC−BC respectively, we may obtain a confidence interval
(
λ̂BCL, λ̂BCU

)
for λBC by

solving following equations:for (D/P )obs < 1

Pr
(
D/P ≤ (D/P )obs |λ̂BCL, λ̂B−BC (λBC) , λ̂C−BC (λBC) , P > 0

)
= 0.975

(2.11)

Pr
(
D/P ≤ (D/P )obs |λ̂BCU , λ̂B−BC (λBC) , λ̂C−BC (λBC) , P > 0

)
= 0.025
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for (D/P )obs > 1

Pr
(
D/P ≤ (D/P )obs |λ̂BCL, λ̂B−BC (λBC) , λ̂C−BC (λBC) , P > 0

)
= 0.025

(2.12)

Pr
(
D/P ≤ (D/P )obs |λ̂BCU , λ̂B−BC (λBC) , λ̂C−BC (λBC) , P > 0

)
= 0.975.

These two different sets of equations result from the fact that the above CDF for D/P

is a stochastically decreasing function in λBC when (D/P )obs < 1 and is stochastically

increasing when (D/P )obs > 1.

Note that one can obtain confidence intervals for λB−BC and λC−BC by replacing

constrained estimates
(
λ̂B−BC (λBC) , λ̂C−BC (λBC)

)
in equations (2.11, 2.12) by

(
λ̂C−BC (λB−BC) , λ̂BC (λB−BC)

)
and

(
λ̂B−BC (λC−BC) , λ̂BC (λC−BC)

)
respectively. These constrained estimates are described next in section (2.3.3).

2.3.3. Constrained Estimates.

2.3.3.1. Constrained MLE’s. Lee and Young (2005), DiCiccio et al. (2001)

and Diciccio and Romano (1995) discuss the optimal properties associated with the

substitution of unknown nuisance parameters with constrained maximum likelihood

estimates (constrained MLE’s). They show that a lower level of error is achieved by

replacing nuisance parameters with these constrained MLE’s instead of regular MLE’s.

As such, we replace λB−BC and λC−BC with their constrained MLE’s. We used multi-

variate form of Newton’s method to solve the equations given in (2.6) and (2.8) for a

fixed value of λBC .

Note that, to consider inference about λB−BC one can compute the first partial

derivatives of joint probability density function given in equation (2.3) with respect to

λC−BC and λBC which is given in (2.8) and (2.9). In a similar fashion the equations for

inference about λC−BC are given in (2.6) and (2.9).
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We also considered an alternative way to obtain constrained estimates and in

particular developed method of moments constrained estimates, which will be discussed

in the next section.

2.3.3.2. Method of moments constrained estimates. Constrained param-

eter estimates are obtained via the method of moments principle by solving equations

(2.13) . Which are based on the univariate distributions of D and P and the sample

moments.

E(D|P > 0) = d and E(P |P > 0) = p. (2.13)

These equations simplify to

e−λB−BC−λC−BC−λBC

1− e−λC−BC−λBC

∞∑
d=0

∞∑
p=1

min(d,p)∑
k=0

d
λd−kB−BCλ

p−k
C−BCλ

k
BC

(d− k)!(p− k)!k!
= d, (2.14)

(λC−BC + λBC) /(1− exp(−λC−BC − λBC)) = p. (2.15)

Here, equation (2.14) can be simplified to

λB−BC +
λBC

1− exp(−λC−BC − λBC)
= d. (2.16)

The equations given in (2.15, 2.16) can be solved separately. First, by solving equation

(2.15) we can obtain λ̂C−BC (λBC) , then by substituting λ̂C−BC (λBC) in equation (2.16)

can obtain λ̂B−BC (λBC) for given values of λBC . Note that the derivative of the equation

(2.16) with respect to λB−BC is 1 for all the values of λB−BC and has an intercept of

λBC/(1− exp(−λC−BC − λBC)).

This yields λ̂B−BC (λBC) in closed-form as

λ̂B−BC (λBC) = d− λBC/(1− exp(−λ̂C−BC (λBC)− λBC)).
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We can use equations (2.15, 2.16) to make inference about λB−BC and λC−BC using

method of moment constrained estimates. Here we need to treat λB−BC as a constant

and solve for λC−BC and λBC to obtain confidence interval for λB−BC . Similarly we can

obtain confidence interval for λC−BC by solving for λB−BC and λBC by treating λB−BC

as a constant.

With the method of moments estimates the lower bound of the CDF pivot con-

fidence interval cannot be obtained. Numerical investigations indicate that the CDF

given in equation (2.4) approaches a number close to 0.5 as λBC → 0. Here, equation

(2.4) reduces to following equation as λBC → 0,

Pr (D/P ≤ (D/P )obs |P > 0) =
e−λB−BC−λC−BC

1− e−λC−BC

∞∑
p=1

bp(D/P )obsc∑
d=0

λdB−BCλ
p
C−BC

d!p!
.

Note that the terms in the summation of variable k in equation (2.4) will be defined

only for k = 0 and for all the other values of k those terms are zero. This probability

fluctuates around 0.5 and it approaches the target percentile values of 0.025 and 0.975

as λB−BC goes to zero. But in this setting λB−BC will not be close to zero as λBC → 0.

Therefore we cannot obtain lower bound of the confidence interval using method of

moment constrained estimates, and as a result we default to finding a 95% upper bound.

Also, the regular MLE of λB−BC is zero when (D/P )obs < 1 and the MLE of λC−BC

is zero when (D/P )obs > 1. Therefore, if one were to replace the nuisance parameters

with regular MLE’s they would not have a problem finding the lower bound. Numerical

investigations of this procedure indicate that the resulting confidence intervals typically

have very low coverage close to 80%.

2.3.4. Proof of Brillinger’s Corollary. Corollary: Under the conditions of

the theorem 1 in Brillinger (1986), for any regions in the Lexis diagram: (a) {D,P}

is distributed as {XB−BC +XBC , XC−BC +XBC}, where XB−BC , XC−BC and XBC are

independent Poissons with means λB−BC , λC−BC and λBC ; (b) D/P is distributed as

(XB−BC + XBC)/(XC−BC + XBC). Further, (c) D given P is distributed as U + S

where U is Poisson with mean λB−BC and S is independently binomial with n = P and

proportion λBC/ (λC−BC + λBC).
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Proof: The three regions [B−BC], [C−BC], [BC] in Lexis diagram from Figure

2.1 are disjoint. Therefore counts in each region XB−BC , XC−BC and XBC is distributed

as Poisson with means respectively λB−BC , λC−BC and λBC . Then it follows

D = XB−BC +XBC ∼ Poisson (λB−BC + λBC)

and

P = XC−BC +XBC ∼ Poisson (λC−BC + λBC) .

Therefore D and P are two correlated Poisson random variables and {D,P} has a

bivariate Poisson distribution determined from the relation

{D,P} = {XB−BC +XBC , XC−BC +XBC}.

Now consider the distribution of D given P.

Pr (D = a|P = b) = Pr (XB−BC +XBC = a|XC−BC +XBC = b)

=
Pr(XB−BC +XBC = a,XC−BC +XBC = b)

P (XC−BC +XBC = b)
.

The numerator of the above expression can be expressed as

Pr (XB−BC +XBC = a,XC−BC +XBC = b)

=
∞∑
k=0

Pr(XB−BC +XBC = a,XC−BC +XBC = b|XBC = k)

× Pr (XBC = k)

=
∞∑
k=0

Pr(XB−BC = a− k,XC−BC = b− k) Pr(XBC = k)

=

min(a,b)∑
k=0

Pr(XB−BC = a− k) Pr(XC−BC = b− k) Pr(XBC = k)

=

min(a,b)∑
k=0

Pr(XB−BC = a− k) Pr(XC−BC = b− k) Pr(XBC = k).
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This yields

Pr(XB−BC +XBC = a|XC−BC +XBC = b)

=

min(a,b)∑
k=0

Pr(XB−BC = a− k) Pr(XC−BC = b− k) Pr(XBC = k)

Pr(XC−BC +XBC = b)
.

Consider the summand of the finite summation above

Pr(XB−BC = a− k) Pr(XC−BC = b− k) Pr(XBC = k)

Pr(XC−BC +XBC = b)

=

λa−kB−BCe
−λB−BCλb−kC−BCe

−λC−BCλkBCe
−λBC

(a−k)!(b−k)!k!

(Λ(C−BC)+Λ(BC))be−Λ(C−BC)−Λ(BC)

b!

=
b!λa−kB−BCe

−λB−BCλb−kC−BCλ
k
BC

(b− k)!k!(a− k)!(λC−BC + λBC)b
.

These terms can be rearranged in to a product of following terms,

(
b

k

)
,

(
λC−BC

λC−BC + λBC

)b−k
,

(
λBC

λC−BC + λBC

)k
and

λa−kB−BCe
−λB−BC

(a− k)!
.

From this we obtain

Pr (XB−BC +XBC = a|XC−BC +XBC = b)

=

min(a,b)∑
k=0

(
b

k

)(
λC−BC

λC−BC + λBC

)b−k (
λBC

λC−BC + λBC

)k
×
λa−kB−BCe

−λB−BC

(a− k)!
.

This is equivalent to the convolution of two Poisson and binomial random variables.

Consider for instance

X ∼ Poisson(λ) and Y ∼ Bin(n, θ)
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then we have

Pr (X + Y = i) =

min(i,n)∑
q=0

Pr(X + Y = i|Y = q) Pr(Y = q)

=

min(i,n)∑
q=0

Pr(X = i− q) Pr(Y = q)

=

min(i,n)∑
q=0

λk−qe−λ

(i− q)!

(
n

q

)
θq(1− θ)n−q.

2.3.5. Issues with Brillinger’s Model. There are several problems we faced

in making inference about λBC in Brillinger’s model. The biggest problem was compu-

tational errors in the Dobs = 0 and Dobs = Pobs cases, as such our simulations results

in section 2.6 for Brillinger’s model are exclude the Dobs = 0 and Dobs = Pobs cases. A

secondary problem was the inability to obtain a lower bound when using the method

of moments constrained estimate for the nuisance parameters in the Brillinger’s model.

This phenomenon occurs in CDF pivot method as well as its saddlepoint approximation,

which is discussed in section 2.5.

We tried imposing an additional restriction that D ≤ P , which was discussed

in the introduction, to get a confidence interval for covariance λBC and obtain the

probability calculation given in equation (2.17). Unfortunately, this results in a very

complicated CDF expression involving five summations in which two are infinite. The

CDF is as follows;

Pr(D/P ≤ (D/P )obs |P > 0, D ≤ P ) (2.17)

= Pr(D ≤ aP |P > 0, D ≤ P )

=
∞∑
p=0

bp(D/P )obsc∑
d=0

Pr(D = d|P = p,D ≤ P, P > 0) Pr(P = p|D ≤ P, P > 0)

=
∞∑
p=1

bp(D/P )obsc∑
d=0

Pr(D = d|P = p,D ≤ P ) Pr(P = p|D ≤ P )

Pr(P > 0)

=
∞∑
p=1

bp(D/P )obsc∑
d=0

Pr(D = d, P = p,D ≤ P )

Pr(P > 0) Pr(P = p,D ≤ P )
Pr(P = p|D ≤ P )
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=
∞∑
p=1

bp(D/P )obsc∑
d=0

Pr(D = d, P = p,D ≤ P )

Pr(P > 0) Pr(P = p,D ≤ P )

Pr(P = p,D ≤ P )

Pr(D ≤ P )

=
∞∑
p=1

bp(D/P )obsc∑
d=0

Pr(D = d, P = p,D ≤ P )

Pr(P > 0) Pr(D ≤ P )
.

If we consider the summand of the above infinite double summations

Pr(D = d, P = p,D ≤ P )

Pr(P > 0) Pr(D ≤ P )

=
Pr(XB−BC +XBC = d,XC−BC +XBC = p,XB−BC ≤ XC−BC)

Pr(P > 0) Pr(XB−BC ≤ XC−BC)

=

∑p
k=p−d Pr(XB−BC +XBC = d,XC−BC +XBC = p,XB−BC ≤ XC−BC |XC−BC = k)

Pr(P > 0)
∑∞

w=0 Pr(XB−BC ≤ w) Pr(XC−BC = w)

× Pr(XC−BC = k)

=

∑p
k=p−d Pr(XB−BC +XBC = d,XBC = p− k,XB−BC ≤ k) Pr(XC−BC = k)

Pr(P > 0)
∑∞

w=0

∑w
r=0 Pr(XB−BC = r) Pr(XC−BC = w)

=

∑p
k=p−d Pr(XB−BC = k − (p− d)) Pr (XBC = p− k) Pr(XC−BC = k)

Pr(P > 0)
∑∞

w=0

∑w
r=0 Pr(XB−BC = r) Pr(XC−BC = w)

=

∑p
k=p−d

(
e−λB−BC−λC−BC−λBCλ

k−(p−d)
B−BC λkC−BCλ

p−k
BC

(k−(p−d))!(p−k)!k!

)
∑∞

w=0

∑w
r=0

(
e−λB−BC−λC−BCλrB−BCλ

w
C−BC

r!w!

)
(1− e−λBC−λC−BC )

.

So that;

Pr (D/P ≤ (D/P )obs |P > 0, D ≤ P )

=
∞∑
p=1

bp(D/P )obsc∑
d=0

∑p
k=p−d

(
e−λB−BC−λC−BC−λBCλ

k−(p−d)
B−BC λkC−BCλ

p−k
BC

(k−(p−d))!(p−k)!k!

)
∑∞

w=0

∑w
r=0

(
e−λB−BC−λC−BCλrB−BCλ

w
C−BC

r!w!

)
(1− e−λBC−λC−BC )

.

In the next section we introduce a much simpler model that enforces the D ≤ P

restriction and has number of theoretical and inferential advantages over Brillinger’s

model.
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2.4. PROPOSED MODEL

This model is developed from Brillinger’s model by setting XB−BC = 0 in equation

2.3. As discussed in section 2.3.1 under the convention that 00 := 1 this results in

λB−BC = 0. Note that with this restriction we preserve the condition that P > 0 and in

section 2.3.1 we point out that the regular MLE of λB−BC for Brillinger’s unrestricted

model is equal to zero when Dobs ≤ Pobs. Hence, the setting of XB−BC = 0 in the

proposed model is consistent with the fitted Brillinger’s model in the Dobs ≤ Pobs and

Pobs > 0 setting.

Here, we estimate the mortality rate using the estimator D/P where we define

D = XBC ∼ Poisson(λBC) and P = XBC +XC−BC ∼ Poisson(λBC + λC−BC)

where, as before, XBC and XC−BC are two independent Poisson random variables with

means λBC and λC−BC , respectively. The corresponding Lexis diagram for this model

is given in Figure 2.2. The new D and P random variables are correlated, as were the

old ones in Brillinger’s model. We obtain the distribution of D/P given that P > 0 by

first considering the joint distribution of (D,P ) given that P > 0 that is obtained by

taking λB−BC = 0 in equation 2.3 for Brillinger’s model. More formally, we note the

continuity in λB−BC of the expressions for joint PMF and joint CDF of D and P in

Brillinger’s model and take the limit as λB−BC → 0 of these expressions. As such, the

joint distribution of D and P given that P > 0 is

Pr (D = d, P = p|P > 0)

=
e−λBC−λC−BCλdBCλ

p−d
C−BC

d! (p− d)! (1− e−λBC−λC−BC )
.

where D = 0, 1, ..., p and P = 1, 2, ..., p, ...,∞.

Note that in principle one can obtain expected value of D/P given that P > 0 from

Brillinger’s model by setting λB−BC = 0 in the equation 2.5 as follows,
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E (D/P |P > 0) =
∞∑
p=1

∞∑
d=0

d

p

e−λC−BC−λBC

(1− e−λC−BC−λBC )

λdBCλ
p−d
C−BC

d!(p− d)!

=
e−λBC−λC−BC

(1− e−λBC−λC−BC )

∞∑
p=1

1

p× p!
(λBC + λC−BC)p

×
p∑
d=0

d

(
p

d

)(
λBC

λBC + λC−BC

)d(
λBC

λBC + λC−BC

)p−d

where the second summation is the expectation of a binomial random variable with sam-

ple size p and proportion of success λBC
λBC+λC−BC

, which can be denoted as Bin
(
p, λBC

λBC+λC−BC

)
.

Now this will simplify to

E (D/P |P > 0)

=
e−λBC−λC−BC

1− e−λBC−λC−BC

∞∑
p=1

1

p× p!
(λBC + λC−BC)p

p∑
d=0

dBin

(
p,

λBC
λBC + λC−BC

)

=
e−λBC−λC−BC

1− e−λBC−λC−BC

∞∑
p=1

1

p× p!
(λBC + λC−BC)p p

(
λBC

λBC + λC−BC

)

=
e−λBC−λC−BC

1− e−λBC−λC−BC

∞∑
p=1

1

p!
(λBC + λC−BC)p

(
λBC

λBC + λC−BC

)

=
1

1− e−λBC−λC−BC

(
λBC

λBC + λC−BC

) ∞∑
p=1

e−λBC−λC−BC (λBC + λC−BC)p

p!

=
1

1− e−λBC−λC−BC

(
λBC

λBC + λC−BC

)(
1− e−λBC−λC−BC

)
=

λBC
λBC + λC−BC

.

This simple and easily interpretable closed-form expression of the expectation of D/P

allows us to obtain confidence interval for the mean of the estimator D/P . We use the

reparameterization

θ1 =
λBC

λBC + λC−BC
and θ2 = λC−BC

in the forthcoming development of the confidence intervals for population vital rate θ1.
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2.4.1. Large Sample Method. The large sample 95% confidence interval for

θ1 is of the form

θ̂1 ± 1.96 (SE) .

where

θ̂1 = D/P

and standard error (SE) given as the observed Fisher information for θ1;

J (θ1) =
−C

AC −B2
= SE2.

The log-likelihood function for θ1 and θ2 after reparameterization is

l(θ1, θ2|D = d, P = p) = −θ2/(1− θ1) + d log(θ1/(1− θ1)) + p log(θ2)

− log
(
1− e−θ2/(1−θ1)

)
− log(d!(p− d)!).

Taking second derivatives of this loglikelihood function, yields the following expressions

for the components of J (θ1),

A = −D
θ̂2

1

+
D(

1− θ̂1

)2 −
θ̂2

(
2
(

1− θ̂1

)(
1− ψ

(
θ̂1, θ̂2

))
+ θ̂2ψ

(
θ̂1, θ̂2

))
(

1− ψ
(
θ̂1, θ̂2

))2 (
1− θ̂1

)4 ,

B =
−
(

1− ψ
(
θ̂1, θ̂2

)
− θ̂2

1−θ̂1
ψ
(
θ̂1, θ̂2

))
(

1− ψ
(
θ̂1, θ̂2

))2 (
1− θ̂1

)2 ,

C = −P
θ̂2

2

−
ψ
(
θ̂1, θ̂2

)
(

1− ψ
(
θ̂1, θ̂2

))2 (
1− θ̂1

)2 ,

where
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ψ
(
θ̂1, θ̂2

)
= exp

(
−θ̂2

1− θ̂1

)
,

and θ̂1 and θ̂2 are maximum likelihood estimations of θ1 and θ2, respectively.

2.4.2. CDF Pivot Method. Using the CDF in equation 2.19 as a pivotal

quantity, as was done for Brillinger’s model in section 2.3, we obtain 95% confidence

intervals for θ1 which we denote as
(
θ̂CDF1L , θ̂CDF1U

)
and which satisfy the following equa-

tions;

Pr
(
D/P ≤ (D/P )obs |θ̂

CDF
1L , θ̂2|θ̂CDF1L

, P > 0
)

= 0.975 (2.18)

Pr
(
D/P ≤ (D/P )obs |θ

CDF
1U , θ̂2|θCDF1U

, P > 0
)

= 0.025.

Note that we used the constrained MLE of θ2 (θ̂2|θ1), as discussed in section 2.3.3 to

solve the equations given in (2.18) . Also, (D/P )obs is the observed value of estimator

D/P . The constrained MLE of θ2 can be obtained by solving following equation for θ2

with a fixed value of θ1;

Pobs

θ2

− 1

(1− θ1)
(

1− exp
(
−θ2
1−θ1

)) = 0.

The resulting CDF of estimator D/P , as a function of θ1, is given as follows;

Pr
(
D/P ≤ (D/P )obs |θ1, θ̂2|θ1 , P > 0

)
(2.19)

=
∞∑
p=1

bp(D/P )obsc∑
d=0

e−θ̂2|θ1/(1−θ1)θ̂2|θ1 θ̂
p
2|θ1 (θ1/ (1− θ1))d

d!(p− d)!
(

1− e−θ̂2|θ1/(1−θ1)
) .

For the CDF pivot method we encountered numerical issues whenDobs = Pobs (XC−BC =

0) since according to our model the above CDF given in equation (2.19) is equal to one

for any value of λBC and λC−BC . To overcome this problem, we use confidence intervals

generated from a “Clopper-Pearson” type method which we discuss next.
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2.4.3. “Clopper-Pearson” Type Method. The method we discuss here is

motivated by the classical Clopper and Pearson (1934) confidence interval for a pro-

portion. With this in mind we determine upper and lower 95% confidence bounds(
θ̂CP1L , θ̂

CP
1U

)
as a solution to equations given below:

θ̂CP1L = inf
{
θ1 : Pr

(
D/P ≥ (D/P )obs |θ1, θ̂2|θ1 , P > 0

)
> 0.025

}
(2.20)

θ̂CP1U = sup
{
θ1 : Pr

(
D/P ≤ (D/P )obs |θ1, θ̂2|θ1 , P > 0

)
> 0.025

}
where again θ̂2|θ1 is the constrained MLE of θ2. Note that the “Clopper-Pearson” type

upper confidence bound is equal to upper confidence bound of CDF pivot method in

section 2.4.2. To obtain the lower confidence bound one needs to solve following equation

for θ̂CP1L ;

Pr
(
D/P ≥ (D/P )obs |θ̂

CP
1L , θ̂2|θ

1θ̂CP
1L

, P > 0
)

= 0.025.

The following calculation shows how to obtain lower bound for the Dobs = Pobs case,

which is a problem for the CDF pivot method as discussed above in section 2.4.2. Here

we have suppressed much of the dependence on parameters and their estimates for the

sake of clarity.

inf {θ1 : Pr(D/P ≥ 1|, P > 0) > 0.025}

= inf {θ1 : Pr(D ≥ P |P > 0) > 0.025}

= inf {θ1 : Pr(D = P |P > 0) > 0.025}

= inf({θ1 : Pr(XBC = XC−BC +XBC |P > 0) > 0.025}

= inf {θ1 : Pr(XC−BC = 0|XC−BC +XBC > 0) > 0.025}

= inf

{
θ1 :

Pr(XC−BC = 0, XC−BC +XBC > 0)

Pr(XC−BC +XBC > 0)
> 0.025

}
= inf

{
θ1 :

Pr(XC−BC = 0, XBC > 0)

Pr(XC−BC +XBC > 0)
> 0.025

}
= inf

{
θ1 :

e−θ2
(
1− e−θ1θ2/(1−θ1)

)
1− e−θ1θ2/(1−θ1)

> 0.025

}
.
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The obtainment of the infimum yields the following equation:

e−θ2
(
1− e−θ1θ2/(1−θ1)

)
1− e−θ1θ2/(1−θ1)

= 0.025.

Here again, we solve this equation in θ1 after having replaced θ2 with its constrained

MLE θ̂2|θ1 .

The resulting “Clopper-Pearson” type confidence interval can be denote as (θ̂CP1L , 1)

since the upper bound is one. The calculation for the upper bound is as follows;

sup {θ1 : Pr (D/P ≤ 1|P > 0) > 0.025}

= sup {θ1 : Pr (D ≤ P |P > 0) > 0.025}

= sup {θ1 : Pr (XBC ≤ XC−BC +XBC |P > 0) > 0.025}

= sup {θ1 : Pr (XC−BC ≥ 0|XC−BC +XBC > 0) > 0.025}

= sup

{
θ1 :

Pr (XC−BC ≥ 0, XC−BC +XBC > 0)

Pr (XC−BC +XBC > 0)
> 0.025

}
= sup

{
θ1 :

Pr (XC−BC +XBC > 0)

Pr (XC−BC +XBC > 0)
> 0.025

}
= sup {θ1 : 1 > 0.025}

and the supremum of the above set is

θ1 = 1.

Finally, note that for Brillinger’s model, in section 2.3, we discuss two types of con-

strained estimates (constrained MLE’s and method of moment constrained estimates)

for the nuisance parameters, but here we consider only the constrained MLE. This is

because simulation results for Brillinger’s model show that the method of moment con-

strained estimate yields clearly inferior confidence intervals as the theory of Lee and

Young (2005), DiCiccio et al. (2001) and Diciccio and Romano (1995) would suggest.

Therefore we did not consider method of moment constrained estimates for our proposed

model.
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2.4.3.1. Comparison of lower bounds. In this subsection we investigate

how the lower bounds of CDF pivot method and the “Clopper-Pearson” type method

are related. Consider

θ̂CP1L = inf {θ1 : Pr (D/P ≥ (D/P )obs |P > 0) > 0.025}

= inf {θ1 : 1− Pr (D/P < (D/P )obs |P > 0) > 0.025}

= inf {θ1 : 1− Pr (D < (D/P )obs P |P > 0) > 0.025}

= inf{θ1 : 1− Pr (D ≤ (D/P )obs P |P > 0) +

Pr (D = (D/P )obs P |P > 0) > 0.025}

= sup{θ1 : Pr (D ≤ (D/P )obs P |P > 0)−

Pr (D = (D/P )obs P |P > 0) < 0.975}

= Pr (D ≤ (D/P )obs P |P > 0)−

Pr (D = (D/P )obs P |P > 0) = 0.975

and note that

θ̂CDF1L = {θ1|Pr (D ≤ (D/P )obs P |P > 0) = 0.975} .

2.4.4. Mid-P Correction. The random variable D/P is a discrete random

variable taking on values over Q+, the set of non-negative rational numbers. As such it

is different from a typical discrete random variable which takes on only integer values.

The regular one-dimensional mid-P correction is given in Berry and Armitage (1995)

and Agresti and Gottard (2005). Therefore to apply this correction one would have to

model D/P as having a lattice distribution with span 1/Pobs. With this in mind, we

introduce two methods for mid-P correction.

First, by way of review, we consider the classical setting from Berry and Armitage

(1995) and Agresti and Gottard (2005) and how the mid-P correction would be used to

generate a 95% confidence interval for mean of a Poisson random variable with mean λ
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where

Pr (X = x;λ) =
e−λλx

x!
.

If the observed value of X is 3, then confidence interval based upon a mid-P correction

is given as the solution to following equations

Pr (X = 0;λ) + Pr (X = 1;λ) + Pr (X = 2;λ) +
1

2
Pr (X = 3;λ) = 0.975

Pr (X = 0;λ) + Pr (X = 1;λ) + Pr (X = 2;λ) +
1

2
Pr (X = 3;λ) = 0.025.

The resulting 95% confidence interval is (0.763, 8.164).

2.4.4.1. One-dimensional mid-P correction. For the usual discrete random

variable defined over an integer lattice the mid-P correction is defined as the subtraction

one half of the probability of the boundary point from the P -value of the observed data,

as shown above in section 2.4.4. For random variable D/P we introduce first method

of mid-P correction involving the subtraction of 1/ (2Pobs)
th portion of the probability

from the P -value of the observed data. The CDF of D/P given in equation (2.18); and

used in the solution of

Pr
(
D/P ≤ (D/P )obs |θ̂

CDF
1L , θ̂2|θ̂CDF1L

, P > 0
)

= 0.975

Pr
(
D/P ≤ (D/P )obs |θ

CDF
1U , θ̂2|θCDF1U

, P > 0
)

= 0.025

would therefore be modified as

Pr
(
D/P ≤ (D/P )obs |θ

CDF
1L , θ̂2|θCDF1L

, P > 0
)
−

1

2Pobs

Pr
(
D/P = (D/P )obs |θ

CDF
1L , θ̂2|θCDF1L

, P > 0
)

= 0.975

Pr
(
D/P ≤ (D/P )obs |θ

CDF
1U , θ̂2θCDF1U

, P > 0
)
−

1

2Pobs

Pr
(
D/P = (D/P )obs |θ

CDF
1U , θ̂2|θCDF1U

, P > 0
)

= 0.025.
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For example, consider data in which Dobs = 4 and Pobs = 10. The 95% confidence

interval for the mean of D/P using CDF pivot method with one-dimensional mid-P

correction given above is (0.1448, 0.7291)

2.4.4.2. Two-dimensional mid-P correction. In this section we develop a

novel two-dimensional mid-P correction. Here we consider the joint distribution of the

random variables D and P as shown in Figure 2.5. To motivate this method consider

the following modification to equation (2.18). Notice that the boundary for the region

being computed by this equation is the

D = (D/P )obs P

line. For the mid-P calculation we consider mass points which are first-nearest neighbors

of the boundary line which are shown in Figure 2.5 as solid dots. For each pair of

vertically aligned neighboring points, we determine a mass on the border line point

in between them via linear interpolation. In effect we are smoothing the underlying

discrete joint distribution of D and P via linear interpolation. Hence the required

correction is 1/(2Pobs)
th of the sum of the linearly interpolated probabilities on boundary

line

D = (D/P )obs P.

The formula for (IP (p)), the interpolated probability at P = p is given as

IP (p) = (1− (p (D/P )obs − bp (D/P )obsc)) Pr (D/P = bp (D/P )obsc|P > 0) +

(2.21)

(p (D/P )obs − bp (D/P )obsc) Pr (D/P = bp (D/P )obsc+ 1|P > 0) .

The resulting modified version of equation(2.18) , is as follows,

Pr
(
D/P ≤ (D/P )obs |θ

CDF
1L , θ̂2|θCDF1L

, P > 0
)
− 1

2Pobs

∞∑
p=1

IP (p) = 0.975
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Pr
(
D/P ≤ (D/P )obs |θ

CDF
1U , θ̂2|θCDF1U

, P > 0
)
− 1

2Pobs

∞∑
p=1

IP (p) = 0.025.

If we consider the hypothetical example from section 2.4.4.1, wherein Dobs = 4 and

Pobs = 10, then the 95% confidence interval for the mean of D/P using CDF pivot

method with two dimensional mid-P correction is (0.1407, 0.7247) .

Figure 2.5. Illustration of points considered in mid-P correction method 2 for the case
(D/P )obs = 0.4.

2.5. SADDLEPOINT CONFIDENCE INTERVALS

2.5.1. Brillinger’s Model. Here we present a method to approximate the CDF

pivot confidence interval for the covariance (λBC) of the bivariate Poisson distribution

which underlies Brillinger’s model, that involves saddlepoint approximations. Note that

the CDF for D/P given in equation (2.4) which can be rewritten as follows:

Pr (D/P ≤ (D/P )obs |P > 0) (2.22)
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= Pr (D ≤ P (D/P )obs |P > 0)

= Pr (D − P (D/P )obs ≤ 0|P > 0)

= Pr (XB−BC +XBC ≤ (XC−BC +XBC) (D/P )obs |P > 0)

= Pr (− (D/P )obsXC−BC + (1− (D/P )obs)XBC +XB−BC ≤ 0|P > 0) .

One can easily obtain the moment generating function (MGF) of a linear combination

of three independent random variables and from that obtain the cumulant generating

function (CGF) as follows,

KXB−BC ,XC−BC ,XBC |XC−BC+XBC>0 (s,− (D/P )obs s, (1− (D/P )obs)s)

= log
(
MXC−BC (− (D/P )obs s)MXBC ((1− (D/P )obs)s)− e

(−λC−BC−λBC)
)

− log
(
1− e−λC−BC−λBC

)
+ log

(
MXB−BC (s)

)
= log

(
exp(λC−BC(e−(D/P )obss − 1) + λBC(e(1−(D/P )obs)s − 1)− e−λC−BC−λBC

)
− log

(
1− e−λC−BC−λBC

)
+ λB−BC(es − 1).

The first and second derivatives of this CGF and the Luganani and Rice (LR) approx-

imation for a CDF provides access to the saddlepoint approximation to the CDF given

in equation (2.22) .The LR saddlepoint approximation to the CDF of

Y = [D − P (D/P )obs] | {XC−BC +XBC > 0}

= [− (D/P )obsXC−BC + (1− (D/P )obs)XBC +XB−BC ] | {XC−BC +XBC > 0}

can be obtained by modifying the equation given in equation (1.5) as follows:

P̂r (Y ≤ 0;λBC) =

 Φ(t̂) + φ(t̂)
[
t̂−1 − û−1

]
, if E(Y ) 6= 0

1
2

+K
(3)
Y (0)

[
72πK

(2)
Y (0)3

]−1/2

, if E(Y ) = 0
(2.23)

where

t̂ = sgn (ŝ)
√

2 [−KY (ŝ)]
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û = ŝ

√
K

(2)
Y (ŝ)

and where saddlepoint ŝ is the solution to saddlepoint equation

K
(1)
Y (ŝ) = 0.

From here we simply replace the exact CDF in (2.4) with its LR saddlepoint approxi-

mation and proceed as we did in section 2.3.2.

Note that for these saddlepoint confidence intervals we use a saddlepoint approx-

imation to the root of random estimating equation

Y = [− (D/P )obsXC−BC + (1− (D/P )obs)XBC +XB−BC ] | {XC−BC +XBC > 0} = 0

whereas in section 1.2 our saddlepoint confidence intervals are based upon the saddle-

point approximation of the CDF for the directly standardized rate; see Butler (2007,

chapter 12) for more details on saddlepoint approximation of roots of estimation equa-

tions. The Luganani and Rice saddlepoint CDF approximation is obtained by approxi-

mating the Riemann-Lebesque integral of the saddlepoint density approximation, which

is a continuous approximation to the discrete mass function, by Temme’s method (But-

ler,2007, chapter 2.3). As such, the saddlepoint approximation automatically provides

an one-dimensional mid-P type correction for discreteness.

2.5.2. Proposed Model. Here we obtain a confidence interval for parameter

θ1 in our proposed model (see section (2.4)) wherein the exact CDF of D/P given in

equation (2.19) is replaced by its LR saddlepoint CDF approximation. The exact CDF

can be written as

Pr (D/P ≤ (D/P )obs |P > 0)

= Pr (D ≤ P (D/P )obs |P > 0)

= Pr (D − P (D/P )obs ≤ 0|P > 0)

= Pr (XBC − (XBC +XC−BC) (D/P )obs ≤ 0|P > 0)
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= Pr ((1− (D/P )obs)XBC − (D/P )obsXC−BC ≤ 0|P > 0) .

The CGF for

Y = [(1− (D/P )obs)XBC − (D/P )obsXC−BC ] | {XBC +XC−BC > 0}

can be found as,

KXBC ,XC−BC |XBC+XC−BC>0 ((1− (D/P )obs) s,− (D/P )obs s)

= log
(
MXC−BC (− (D/P )obs s)MXBC ((1− (D/P )obs) s)− e

−λBC−λC−BC
)
−

log
(
1− e−λBC−λC−BC

)
= log

(
exp

(
λC−BC(e−(D/P )obss − 1

)
+ λBC

(
e(1−(D/P )obs)s

)
− e−λBC−λC−BC

)
−

log
(
1− e−λBC−λC−BC

)
= log

(
exp

(
θ2(e−(D/P )obss − 1

)
+ (θ1θ2/ (1− θ1)) (e(1−(D/P )obs)s)− e−θ2/(1−θ1)

)
−

log
(
1− e−θ2/(1−θ1)

)
.

Using the same technique described in the section (2.5.1) we obtained an approximate

confidence interval for the θ1 by applying the LR approximation to the CDF given in

equation (2.23). Here, again θ2 is estimated using constrained MLE θ̂2|θ1 as described

in section 2.4.2. In the simulation studies which follow we observe that the saddlepoint

confidence interval for the two cases Dobs = 0 and Dobs = Pobs did not exist since

these cases correspond to boundaries of the support and so saddlepoint ŝ is infinite in

absolute value. Therefore, for these cases, we use the “Clopper-Pearson”type method

discussed in section 2.4.3. Nonetheless, the SP approximation provides an automatic

one-dimensional mid-P type correction for discreteness in this setting as well.

2.6. SIMULATION STUDIES

In this section we simulate coverage probabilities for the confidence interval meth-

ods applied to Brillinger’s model and to the proposed model, as described in the sections

2.3 and 2.4.
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2.6.1. Brillinger’s Model. Here we generate 10, 000 (D,P ) values for each

combination of the λB−BC , λC−BC and λBC parameters and for each we construct

95% confidence intervals for λBC , the correlation parameter in Brillinger’s model. From

these confidence intervals we compute empirical coverage probabilities. We vary each of

λB−BC , λC−BC and λBC from 1 to 9 in steps of 2. The confidence intervals we consider

are the CDF pivot method with constrained MLE’s (CDFML), the CDF pivot method

with method of moment constrained estimates (CDFMM), the saddlepoint approxima-

tion to CDFML (SPML), and the saddlepoint approximation to CDFMM (SPMM).

Table 2.1 presents the coverage probabilities for methods CDFML, CDFMM, SPML

and SPMM under the various combinations of the λB−BC , λC−BC and λBC parameters.

For methods CDFMM and SPMM we were unable to obtain lower confidence bounds.

Therefore we obtained 95% upper confidence bounds and report the resulting coverage

probabilities for them. Note that for the coverage probabilities, of all the methods

considered, we remove the Dobs = 0 and Dobs = Pobs cases due to the aforementioned

computational problems.

The performance of the CDF pivot method and its saddlepoint approximations

is comparable for the constrained MLE’s as well as method of moment constrained

estimates. However, the constrained MLE’s result in more conservative coverage prob-

abilities in comparison to method of moment constrained estimates for small sample

size estimates and small numbers of deaths. Future work might consider confidence

interval constructions for the Dobs = 0 and Dobs = Pobs cases to see whether this results

in improved coverage probabilities. Note also that with the method of moment con-

strained estimates we construct a 95% upper bound while taking the lower bound to be

zero. Therefore we observe much conservative results when true value of λBC is small.

The conservative results, for all of the confidence intervals considered, are mainly due

to the need to estimate two nuisance parameters. In the next section, the model we

proposed entails the estimation of only one nuisance parameter and as we will see, this

results in much better coverage probabilities overall.

2.6.2. Proposed Model. Here again we generate 10, 000 (D,P ) values for

each combination of the λC−BC and λBC parameters and for each we construct 95%
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Table 2.1. Coverage Probabilities for Brillinger’s Model
λB−BC λC−BC λBC CDFML CDFMM SPML SPMM λB−BC λC−BC λBC CDFML CDFMM SPML SPMM

1 1 1 100.00 85.25 100.00 100.00 5 1 1 99.91 98.17 99.86 100.00

1 1 3 100.00 73.32 100.00 76.27 5 1 3 99.97 88.97 99.97 90.70

1 1 5 98.61 69.48 99.46 68.95 5 1 5 98.47 98.43 98.51 89.42

1 1 7 99.60 66.82 99.66 66.82 5 1 7 98.94 85.18 99.26 85.18

1 1 9 99.61 65.00 99.70 65.00 5 1 9 99.26 82.96 99.41 82.96

1 3 1 99.80 97.83 99.95 100.00 5 3 1 99.59 99.37 99.63 100.00

1 3 3 100.00 89.50 100.00 89.90 5 3 3 99.97 96.71 99.98 97.36

1 3 5 99.84 83.46 99.64 81.46 5 3 5 99.64 95.72 99.67 95.62

1 3 7 99.71 77.97 99.62 77.95 5 3 7 99.82 92.93 99.88 92.93

1 3 9 99.78 75.52 99.78 75.11 5 3 9 99.85 90.11 99.88 90.09

1 5 1 99.20 99.78 99.59 100.00 5 5 1 97.46 99.93 98.60 100.00

1 5 3 99.98 96.55 99.99 96.60 5 5 3 99.91 99.31 99.95 99.51

1 5 5 99.97 91.37 99.19 89.86 5 5 5 99.94 98.41 99.92 98.24

1 5 7 99.61 85.60 99.18 85.14 5 5 7 99.94 96.25 99.94 96.25

1 5 9 99.53 83.65 99.45 82.33 5 5 9 99.98 94.80 99.95 94.65

1 7 1 97.80 99.96 98.69 100.00 5 7 1 89.32 99.98 93.01 100.00

1 7 3 99.88 98.97 99.90 98.99 5 7 3 99.47 99.82 99.62 99.84

1 7 5 99.92 93.41 98.77 92.67 5 7 5 99.94 99.18 99.93 99.06

1 7 7 99.47 90.13 99.01 89.36 5 7 7 99.98 98.15 99.97 98.07

1 7 9 99.29 88.72 99.19 86.83 5 7 9 99.98 96.98 99.98 96.73

1 9 1 96.45 99.99 97.52 100.00 5 9 1 75.12 100.00 80.53 100.00

1 9 3 99.62 99.68 99.69 99.68 5 9 3 97.89 99.99 98.41 99.99

1 9 5 99.75 95.17 98.51 94.40 5 9 5 99.65 99.56 99.63 99.53

1 9 7 99.13 92.85 98.76 92.06 5 9 7 99.82 99.18 99.82 99.12

1 9 9 99.22 91.81 99.16 90.36 5 9 9 99.94 98.50 99.95 98.20

3 1 1 100.00 92.84 100.00 100.00 7 1 1 99.71 99.49 99.56 100.00

3 1 3 100.00 83.33 100.00 87.14 7 1 3 99.94 91.82 99.93 92.48

3 1 5 98.24 82.24 98.59 82.19 7 1 5 98.51 92.20 98.36 92.20

3 1 7 99.27 78.24 99.59 78.24 7 1 7 98.75 89.23 98.91 89.23

3 1 9 99.62 74.65 99.75 74.64 7 1 9 99.19 87.01 99.27 87.01

3 3 1 99.80 98.09 99.93 100.00 7 3 1 98.34 99.85 97.72 100.00

3 3 3 100.00 93.85 100.00 95.07 7 3 3 99.75 98.02 99.76 98.33

3 3 5 99.75 91.16 99.77 90.69 7 3 5 99.66 97.27 99.65 97.26

3 3 7 99.81 87.42 99.87 87.41 7 3 7 99.74 95.51 99.77 95.51

3 3 9 99.95 84.48 99.95 84.42 7 3 9 99.70 93.96 99.78 93.96

3 5 1 97.88 99.67 99.07 100.00 7 5 1 95.04 99.99 95.31 100.00

3 5 3 99.98 98.25 99.99 98.43 7 5 3 99.60 99.59 99.62 99.65

3 5 5 99.93 96.23 99.84 95.72 7 5 5 99.83 99.12 99.81 99.10

3 5 7 99.92 92.56 99.88 92.51 7 5 7 99.93 98.01 99.98 98.01

3 5 9 99.91 91.11 99.89 90.57 7 5 9 99.96 97.05 99.96 97.05

3 7 1 92.55 99.93 95.41 100.00 7 7 1 88.49 99.98 90.93 100.00

3 7 3 99.72 99.50 99.78 99.54 7 7 3 99.16 99.93 99.36 99.97

3 7 5 99.92 97.97 99.72 97.72 7 7 5 99.83 99.78 99.88 99.73

3 7 7 99.86 95.78 99.74 95.56 7 7 7 100.00 99.24 99.99 99.23

3 7 9 99.85 94.14 99.79 93.32 7 7 9 99.97 98.52 99.97 98.50

3 9 1 84.20 99.99 88.05 100.00 7 9 1 74.51 100.00 78.4 100.00

3 9 3 98.70 99.85 99.00 99.87 7 9 3 96.95 100.00 97.57 100.00

3 9 5 99.76 98.36 99.56 98.04 7 9 5 99.43 99.89 99.55 99.88

3 9 7 99.70 97.19 99.62 97.03 7 9 7 99.91 99.80 99.91 99.78

3 9 9 99.81 96.09 99.80 95.43 7 9 9 99.98 99.27 99.98 99.19
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Table 2.1. Coverage Probabilities for Brillinger’s Model (cont.)

λB−BC λC−BC λBC CDFML CDFMM SPML SPMM

9 1 1 99.02 99.93 98.72 100.00

9 1 3 99.81 92.47 99.73 92.67

9 1 5 98.83 93.65 98.47 93.68

9 1 7 98.87 92.56 98.93 92.56

9 1 9 99.01 89.80 99.06 89.80

9 3 1 94.94 99.95 93.97 100.00

9 3 3 99.31 98.48 99.25 98.53

9 3 5 99.68 98.02 99.53 98.02

9 3 7 99.79 97.27 99.82 97.23

9 3 9 99.78 96.25 99.80 96.25

9 5 1 89.49 99.99 88.55 100.00

9 5 3 98.27 99.55 98.28 99.58

9 5 5 99.78 99.55 99.72 99.54

9 5 7 99.85 98.96 99.84 98.96

9 5 9 99.88 98.18 99.88 98.17

9 7 1 83.43 100.00 83.76 100.00

9 7 3 97.65 99.95 97.91 99.95

9 7 5 99.71 99.85 99.65 99.85

9 7 7 99.96 99.66 99.92 99.66

9 7 9 99.98 99.21 99.98 99.21

9 9 1 73.69 100.00 76.04 100.00

9 9 3 95.79 99.98 96.55 99.98

9 9 5 99.32 99.99 99.40 99.98

9 9 7 99.87 99.87 99.85 99.86

9 9 9 99.97 99.69 99.97 99.67

confidence intervals for θ1 the expected value of the vital rate estimator D/P . From

these confidence intervals we compute empirical coverage probabilities. We vary each

of value of λC−BC and λBC from 1 to 9 in steps of 2. The confidence intervals we

consider are the CDF pivot method with no mid-P correction (CDF0), one-dimensional

mid-P correction (CDF1) and two-dimensional mid-P correction (CDF2), respectively,

the “Clopper-Pearson” type method with no mid-P correction (CP0), one-dimensional

mid-P correction (CP1) and two-dimensional mid-P correction (CP2), respectively, the
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large sample method (LS) and saddlepoint approximation to CDF0 (SP0). Table 2.2

presents the coverage probabilities for methods CDF0, CDF1, CDF2, CP0, CP1, CP2,

LS and SP0 under the various settings for the λC−BC and λBC parameters. For the

CDF pivot method it turns out that a confidence interval cannot be obtained when

we observe Dobs = Pobs. In the “Clopper-Pearson” type method we do not have this

problem, and therefore for the Dobs = Pobs cases we replaced in the unobtainable CDF

pivot confidence intervals with “Clopper-Pearson” type confidence intervals and the

proportion of the time we made this replacement for CDF pivot method is given in

the “Patch 1” column of Table 2.2. For the large sample method and the saddlepoint

approximation to the CDF0 method we cannot find confidence intervals at the two

boundaries where Dobs = 0 and Dobs = Pobs. For the large sample method, this situation

occurs due to an infinite standard error and in the saddlepoint method the saddlepoint ŝ,

is infinite at the boundary of the support. Therefore for these cases we also replaced the

confidence intervals which cannot be computed with “Clopper-Pearson” type confidence

intervals and the proportion of the time we made this substitution is given in the “Patch

2” column of Table 2.2.

To further investigate the performance of the various confidence interval methods

for the rate parameter θ1, we consider the simulation over a finer grid of λC−BC and

λBC values and plot the resulting coverage probabilities below in Figure 2.6. Here we

vary λC−BC and λBC independently from 1 to 10 with increments of 0.25 and simulated

10,000 data sets for each of the 1,600 parameter settings. In Figure 2.6 we also include

horizontal 95% reference lines and LOWESS smooths fits to our coverage probabili-

ties. Notice that the coverage probabilities for the LS method have significantly higher

variability than the other methods.

From Table 2.2 and Figure 2.6 we see that for the proposed model the coverage

probabilities are generally conservative for small sample size estimates and small num-

bers of deaths. But these coverages are substantially better than those of Brillinger’s

model. The LS method performs poorly compared to all other methods (CDF0, CDF1,

CDF2, CP0, CP1, CP2 and SP0) and is often liberal. The “Clopper-Pearson” type

method with two-dimensional mid-P correction (CP2) performs better than the CP0
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Table 2.2. Coverage Probabilities for Proposed Model
λC−BC λBC CDF0 CDF1 CDF2 CP0 CP1 CP2 LS SP0 Patch1 Patch2

1 1 99.90 99.90 99.89 99.90 99.90 99.89 99.01 99.90 27.19 53.87

1 3 99.40 99.40 99.40 99.40 99.40 99.40 98.14 99.38 35.06 38.43

1 5 98.95 98.95 98.40 98.95 98.95 98.40 97.84 98.59 36.34 36.72

1 7 98.67 98.67 98.60 98.67 98.67 98.60 99.21 98.21 36.09 36.14

1 9 98.18 98.18 97.78 98.18 98.18 97.78 99.39 97.79 36.97 36.99

3 1 99.13 99.13 99.45 99.45 99.45 99.45 95.33 99.45 2.93 38.24

3 3 98.55 98.55 98.56 99.01 99.01 98.18 89.53 98.89 4.76 9.23

3 5 97.78 97.78 97.47 98.07 98.07 97.47 91.38 98.07 5.03 5.68

3 7 97.60 97.42 97.12 97.72 97.54 97.12 92.46 97.30 5.00 5.13

3 9 96.97 96.97 96.97 97.22 97.22 97.22 92.41 96.78 5.22 5.22

5 1 97.31 98.11 98.87 99.00 99.00 98.41 97.83 98.68 0.40 37.42

5 3 97.13 97.13 97.16 98.00 98.00 97.40 91.02 98.00 0.77 5.78

5 5 97.08 97.08 96.83 97.85 97.85 96.52 88.98 97.25 0.64 1.24

5 7 96.44 96.26 96.03 96.45 96.27 96.04 90.76 96.44 0.60 0.70

5 9 95.97 95.97 96.39 96.46 96.46 96.40 91.32 96.14 0.64 0.64

7 1 98.03 97.98 98.33 98.76 98.71 98.58 99.12 98.33 0.07 37.11

7 3 97.55 97.55 97.19 97.99 97.76 96.86 92.59 97.18 0.07 5.18

7 5 96.27 96.61 96.52 96.90 96.87 96.52 90.69 96.98 0.09 0.72

7 7 96.27 96.27 96.15 96.85 96.85 96.33 90.94 96.53 0.04 0.08

7 9 96.13 96.24 95.99 96.89 96.89 96.09 91.53 95.76 0.06 0.06

9 1 97.15 97.15 98.23 98.23 98.23 97.83 99.25 97.88 0.00 36.58

9 3 97.21 97.21 97.22 97.93 97.93 97.53 92.86 97.11 0.02 4.48

9 5 96.17 96.17 96.26 96.56 96.56 96.46 91.56 96.17 0.02 0.70

9 7 96.32 96.32 95.87 96.72 96.72 96.05 92.01 95.80 0.00 0.14

9 9 95.58 95.58 95.52 95.91 95.91 95.75 92.10 95.76 0.00 0.00

Figure 2.6. Plot of the coverage probabilities for methods CDF0, CDF1, CDF2, CP0,
CP1, CP2, LS and SP0 verses θ1.
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and CP1 methods. The CDF pivot methods (CDF0, CDF1 and CDF2) and SP0 method

perform more or less as well as the CP2 method in terms of coverage probability.

2.7. CONCLUSIONS

We developed various methods of confidence interval construction for vital rates.

Our work was is motivated by Brillinger’s seminal work on vital rates. Here the vital

rates are modeled as the ratio of two Poisson random variables and therefore we have

a random denominator. We discussed the Lexis diagrams for the Brillinger’s model

and introduced a novel Lexis diagram for our proposed model. Our investigation of

the statistical properties of and inference for Brillinger’s classical model shows that its

maximum likelihood estimates do not have standard large sample properties and as such

do not support the development of a large sample confidence interval for any parameter

including the covariance λBC . Nonetheless, we developed a CDF pivot method with its

saddlepoint approximated confidence interval, by applying a positivity condition to the

Brillinger’s classical model. For those methods we estimate our nuisance parameters

using constrained MLE’s and method of moment constrained estimates to obtain the

confidence intervals. Simulation studies show that inference about correlation parameter

in Brillinger’s model appears to be difficult in small samples as evidenced by its very

conservative confidence intervals.

We next proposed a new model which is also a limiting result of the Brillinger’s

model to construct confidence intervals for the expected value of the vital rate esti-

mator D/P and investigated statistical properties and inference for this expected rate

parameter. We developed a CDF pivot method with its saddlepoint approximation,

a “Clopper-Pearson” type method, and a large sample method of confidence interval

construction. Furthermore, we introduced a novel two-dimensional mid-P correction

for the CDF pivot method and “Clopper-Pearson” type method. Simulation studies

show that “Clopper-Pearson” type method with two-dimensional mid-P correction per-

formed better than the “Clopper-Pearson” type method with no mid-P correction and

“Clopper-Pearson” type method with one-dimensional mid-P correction. The CDF

pivot method with no mid-P correction, one-dimensional mid-P correction and two-
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dimensional mid-P correction, “Clopper-Pearson” type method with two-dimensional

mid-P correction and saddlepoint approximation to the CDF pivot method are not

significantly different in terms of coverage probabilities. Their coverage probabilities

are generally closer to the nominal 95% value than the coverage probabilities for the

confidence interval methods used with Brillinger’s model since we need to estimate more

nuisance parameters for that model.
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