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ABSTRACT

We study higher dimensional systems of first order dynamic equations on time

scales together with their applications. In particular, we focus on epidemic models such

as HIV (Human Immunodeficiency Virus), SIS (Susceptible-Infected-Susceptible) and SIR

(Susceptible-Infected-Recovered).

First, we generalize the early studied continuous three dimensional linear model of

drug therapy for HIV-1 decline on time scales in order to derive new discrete models that

predict the total concentration of plasma virus as a function of time. We compare these

models to explore the impact of the theory of time scales. After fitting the models to the data

collected at a clinical trial using nonlinear regression analysis, we show that the discrete

systems result in the best fit. We extend our work, in which the efficacy of the drug therapy

is assumed to be perfect, to the presence of combined imperfect drug therapy, and derive

the unique solution for the model on time scales. We also discuss the stability of the trivial

solution of this model on the set of integers.

Motivated by the fact that between discrete and continuous models of HIV-1 dynam-

ics, the former is more appropriate, we formulate and solve two dimensional SIS and SIR

epidemic models with nonlinear incidence and time dependent coefficients on time scales.

Later on, we discuss the asymptotic behavior of susceptibles and infectives. In addition, we

study three dimensional discrete SIRmodels with nonlinear incidence and time independent

coefficients. Specifically, we show the local stability and global stability of equilibria by

the linearization method and constructing a suitable Lyapunov function.

In all the work above, we show the applications of positive solutions of higher

dimensional systems in epidemiology. Finally, we investigate four dimensional dynamic

systems, in which solutions are classified based on the signs of their components, and find

the criteria to ensure that these systems are oscillatory and nonoscillatory.
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SECTION

1. INTRODUCTION

The theory of time scales, closed subsets of the real numbers, dates back to Ph.D.

dissertation of Stefan Hilger in 1988, [27]. The main idea of studying dynamic equations

on time scales is the unification and the extension of continuous and discrete analysis.

Dynamic equations on time scales turn out to be ordinary differential equations if the time

scale is chosen to be the set of real numbers, and difference equations if the time scale is

chosen to be the set of integers. Many other time scales may also be chosen to study such

as qN0 = {qn : n ∈ Z} ∪ {0}, q > 1 and hZ = {hz : z ∈ Z}, h > 0. Indeed, the theory of

time scales helps avoid proving results individually for different time scales.

This dissertation is related to both continuous and discrete epidemic models and

behavior of their solutions. In the next subsections, time scales calculus and epidemic

models are presented briefly and the outline of the dissertation is given at the end of this

section.

1.1. INTRODUCTION TO TIME SCALES CALCULUS

In this subsection, the basics of time scales calculus are introduced from the well-

known introductory books by Bohner and Peterson [13, 14].

Let T be a time scale. For t ∈ T, the forward jump operator σ : T → T and

the backward jump operator ρ : T → T are defined by σ(t) := inf{s ∈ T : s > t}

and ρ(t) := sup{s ∈ T : s < t}. The graininess function µ : T → [0,∞), defined by
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µ(t) := σ(t) − t and is the distance between successive points in the time scales. Using the

forward and backward jump operators, any point of a time scale can be classified as in the

following table:

Table 1.1. Classification of points

t < σ(t) t is right-scattered
t = σ(t) t is right-dense
ρ(t) < t < σ(t) t is isolated
t > ρ(t) t is left-scattered
t = ρ(t) t is left-dense
ρ(t) < t < σ(t) t is dense

Note that σ(ρ(t)) = t and ρ(σ(t)) = t may not always be true. If T has a left-

scattered maximum m, then Tκ = T − {m}. Otherwise, Tκ = T. The function f σ : T → R

is defined by f σ (t) = f (σ(t)) for all t ∈ T and [t0,∞)T := [t0,∞) ∩ T.

The jump operator is used to define a generalized derivative f ∆, so called the delta

(or Hilger) derivative of f . For given any ε > 0, if there exists a δ > 0 such that

|[ f σ (t) − f (s)] − f ∆(t)[σ(t) − s]| ≤ ε |σ(t) − s |, for all s ∈ (t − δ, t + δ),

then f is delta differentiable on t ∈ Tκ. If T = R, then f ∆ = f ′, i.e., the delta derivative

coincides with the usual derivative. If T = Z, then f ∆ = ∆ f , where ∆ is the usual forward

difference operator.

Theorem 1.1.1. Suppose f : T→ R and t ∈ Tκ.

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f ∆(t) =
f σ (t) − f (t)

µ(t)
.
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(iii) If t is right-dense, then f is differentiable at t iff the limit

lim
s→t

f (t) − f (s)
t − s

exists as a finite number. In this case, the limit is equal to the delta derivative of f .

(iv) If f is differentiable at t, then f σ (t) = f (t) + µ(t) f ∆(t).

The equation in Theorem 1.1.1 (iv) is called simple useful formula and holds for

any point in T. The product and the quotient rules on time scales are presented in the next

theorem.

Theorem 1.1.2. Assume f , g : T→ R are differentiable at t ∈ Tκ. Then:

(i) The product f g : T→ R is differentiable at t with

( f g)∆(t) = f ∆(t)g(t) + f σ (t)g∆(t) = f (t)g∆(t) + f ∆(t)gσ (t).

(ii) If g(t)gσ (t) , 0, then f
g is differentiable at t and

(
f
g

)∆
(t) =

f ∆(t)g(t) − f (t)g∆(t)
g(t)gσ (t)

.

It is clear that 1∆ = 0, t∆ = 1, and from Theorem 1.1.2 (i),

(t2)∆ = (t · t)∆ = t + σ(t) =




2t if T = R

2t + 1 if T = Z

3t if T = {2n : n ∈ Z} ∪ {0},

and second derivative of t2 may not exist because the forward jump operator is not dif-

ferentiable, see Example 1.56 in [13]. A function f : T → R is called rd-continuous

provided it is continuous at right-dense points in T and its left-sided limit exists (finite)
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at left dense points in T. The set of rd-continuous functions f : T → R is denoted

by Crd = Crd (T) = Crd (T,R). Every rd-continuous function has an antiderivative. In

particular, if t0 ∈ T, then for t ∈ T

F (t) :=
∫ t

t0
f (τ)∆τ

is an antiderivative of f . For f ∈ Crd , a, b ∈ T, if T = R, then
∫ b

a f (t)∆t =
∫ b

a f (t)dt, and

if T = Z, then

∫ b

a
f (t)∆t =




∑b−1
i=a fi if a < b

−
∑b−1

i=a fi if a > b

0 if a = b.

Since there are two product rules for differentiation on time scales, one can expect two

integration by parts formulations on time scales. For f , g ∈ Crd and a, b ∈ T, then

∫ b

a
f σ (t)g∆(t)∆t = ( f g)(b) − ( f g)(a) −

∫ b

a
f ∆(t)g(t)∆t

and ∫ b

a
f (t)g∆(t)∆t = ( f g)(b) − ( f g)(a) −

∫ b

a
f ∆(t)gσ (t)∆t.

A function f : T→ R is called regressive provided 1+µ(t) f (t) , 0 for all t ∈ Tκ. The set of

all regressive and rd-continuous functions f : T → R is denoted by R = R (T) = R (T,R).

There are two operations on R to simplify expressions and calculations on time scales,

circle plus ⊕ and circle minus 	, and defined as (p⊕ q)(t) = p(t) + q(t) + µ(t)p(t)q(t) and

(p 	 q)(t) = (p ⊕ (	q))(t) for p, q ∈ R, t ∈ Tκ, where (	p)(t) := − p(t)
1+µ(t)p(t) , respectively.

Theorem 1.1.3. Suppose p ∈ R and fix t0 ∈ T. Then the initial value problem

y∆ = p(t)y, y(t0) = 1
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has a unique solution ep(·, t0), so called the exponential function on time scales.

Let α ∈ R. If T = R, then eα (t, t0) = eα(t−t0) and e	α = e−α(t−t0). If T = hZ, then

eα (t, t0) = (1 + αh)(t−t0)/h and e	α = (1 + αh)−(t−t0)/h.

The following theorem presents some important properties of exponential functions

on time scales in which some properties are related to the delta derivative and the forward

jump operator, see Theorems 2.36 and 2.38 in [13].

Theorem 1.1.4. If p, q ∈ R, then

(i) e0(t, s) = 1 and ep(t, t) = 1

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s)

(iii) ep(t, s) =
1

ep(s, t)
= e	p(s, t)

(iv) ep(t, s)ep(s, r) = ep(t, r)

(v) e∆p	q(·, t0) = (p − q)
ep(·, t0)
eσq (·, t0)

.

It is worth mentioning that if p is positively regressive, then ep(t, t0) is positive,

which is used in the discussion on stability. Since this dissertation also deals with systems

of first order linear dynamic equations and the following Variation of Constants Formulas

on time scales (see Theorems 2.74 and Theorem 2.77 in [13]) are needed to find the unique

solution of such systems.

Suppose p ∈ R and f ∈ Crd . Let t0 and y0 ∈ R. The unique solutions of the

following dynamic equations with the initial condition y(t0) = y0

y∆ = −p(t)yσ + f (t) and y∆ = −p(t)y + f (t)

are given by the following solutions respectively

y(t) = e	p(t, t0)y0 +
∫ t

t0
e	p(t, τ) f (τ)∆τ and y(t) = ep(t, t0)y0 +

∫ t

t0
ep(t, σ(τ)) f (τ).
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1.2. INTRODUCTION TO EPIDEMIC MODELS

An epidemic is an unusually large, short term outbreak of a disease, [26]. The

first recorded epidemics occurred in the 14th century and 25 million people died in Europe

due to Bubonic Plague known as Black Death. In 1665, the British were exposed to the

virus known as Plague of London. Another epidemic occurred in the Aztec’s population

in the 16th century and smallpox killed 35 million people. A recent influenza virus broke

out in 1919, killing 20 million people. At present, we still face outbreaks of epidemics

such as SARS (Severe Acute Respiratory Syndrome), measles, tuberculosis, and AIDS

(Acquired Immune Deficiency Syndrome). The virus that causes AIDS is HIV (Human

Immunodeficiency Virus). Based on Global Health Observatory (GHO) data [1], 75 million

people have been infected with the virus and about 32 million have died. Globally, 37.9

million [32.7 − 44.0] people were living with HIV at the end of 2018.

Mathematical models of infectious diseases have a tremendous impact on under-

standing the spread of diseases, the risk factors, the predictability and control of an epidemic

and hence developing the cure. The first mathematical epidemic model regarding to small-

poxwas formulated byDaniel Bernoulli and published in 1760, [11]. His paper is considered

to be the very first compartmental model of an infectious disease.

In this dissertation, HIV and compartmental models of SIR and SIS on time scales

are proposed.

1.2.1. HIV: Basic Modeling of the Infection Dynamics. One of the two types

of HIV is HIV-1, which is found worldwide. The dynamics of HIV-1 infection have been

scrutinized by differentmathematicalmodels. The basicmodel of HIV-1 infection dynamics

considers three populations: uninfected target cells T, infected cells I, and free virus V (see

[36] by Nowak and May, 2000 and [42] by Perelson et. al, 1996) and is described by the
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system of first order differential equations




T
′

= s − dT − kVT

I
′

= kVT − δI

V
′

= λI − cV − kTV,

where uninfected cells are produced by the immune system at a constant rate s, uninfected

cells become infected at a rate kVT . λ is the rate of production of free viral particles from

one infected cell, δ and c are the per cell rate of productively infected cell death and the rate

constant for virus clearance, respectively.

1.2.2. SIS and SIR Epidemic Models. Unlike HIV model, there are some other

diseases, such as chickenpox, mumps, rubella, which are modeled at the population level.

The individuals in a population are divided into compartments: susceptible S, infected I and

removed/recover R. The first modern model of disease dynamics was proposed in 1927 by

Kermack andMcKendrick, [31], and given by the system of first order differential equations




S
′

= −βSI

I
′

= βSI − γI

R
′

= γI,

where β and γ are the infection rate and recovery rate, respectively. When individuals

become susceptible after they recover, the model is called SIS and has the form of




S
′

= −βSI + γI

I
′

= βSI − γI .
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The threshold value for a disease is determined by the reproduction number R0. From

epidemiological perspective, the reproduction number gives the number of secondary cases

of an infectious disease that one case would generate in a completely susceptible population

[25]. If R0 > 1, then the disease becomes endemic and if R0 < 1, the disease dies out.

Equilibrium points are constant solutions in time and play a key role in the long term

behavior of the solutions. An equilibrium point is called a disease-free if the disease is not

present in the population while called an endemic if the disease is present in the population.

This work contains SIS and SIR models with nonlinear incidence rates on different time

domain and stability analysis of the equilibrium points.

1.3. OUTLINE

The organization of this dissertation is as follows: In Paper I, the mathematical

models of the dynamics of HIV-1 infection in vivo are presented on time scales. Compar-

ison of these models to data obtained from a clinical trial when the patients were given

antiretroviral drug therapy is discussed by estimating the parameters. Combination drug

therapy model is also presented on time scales and the stability of the trivial solution of

the discrete model is discussed. In Paper II, SIS and SIR models with nonlinear incidence

rate and time dependent coefficients are formulated and solved on time scales. Moreover,

asymptotic behavior of the solutions is discussed and some illustrative examples are given

on different time scales. In Paper III, discrete SIR models with nonlinear incidence rate

and time independent coefficients, one of which is an advanced model, are presented, and

the stability of the disease-free and endemic equilibria is discussed. In Papers IV and

V, oscillation and nonoscillation criteria for solutions to four dimensional systems of first

order dynamic equations, that some of which are either advanced or delay, are obtained.

Several examples are provided to highlight the main results. We finalize the dissertation

with conclusions and future research ideas.
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ABSTRACT

Mathematical models have shed light on the dynamics of HIV- 1 infection in vivo.

In this paper, we generalize continuous mathematical models of drug therapy for HIV-1

by Perelson et al. [7, 8] on time scales, i.e., a nonempty closed subset of real numbers in

order to derive new discrete models that predict the total concentration of plasma virus as

a function of time.

One of our main goals is to compare discrete mathematical models with the contin-

uous model in [8] where HIV infected patients were given protease inhibitors and sampled

frequently thereafter. For the comparison, we use experimental data collected in [8] and

estimate the parameters such as the virion clearance rate and the rate of loss of infected

cells by fitting the total concentration of plasma virus to this data set. Our results show that

discrete systems describe the best fit.
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In the previous models of this study, the efficacy of protease inhibitor is assumed

to be perfect. Motivated by [7], we end the paper with a mathematical model of imperfect

protease inhibitor and reverse transcriptase (RT) inhibitor combination therapy of HIV-1

infection on time scales with its stability analysis.

Keywords: Time scales; HIV; Dynamic equations; Difference equations; Differential

equations; Systems; Mathematical modeling

1. INTRODUCTION

The human immunodeficiency virus (HIV) infects a host’s CD4+ T cells which play

an essential role in the immune system. HIV-1 infection leads to reduction of T cells over

time. Therefore, the count of T cells is used to measure advancement of HIV-1 infection.

The population dynamics of CD4+ T cells is modeled in [7] as follows

dT
dt
= s + pT

(
1 −

T
Tmax

)
− dTT,

where T is the concentration of CD4+ T cells, s is the source of new T cells from the

thymus, p is the maximum CD4+ T cells proliferation rate, Tmax is the maximum level of

CD4+ T concentration when Tmax is chosen such that dTTmax > s and dT is the death rate

per T cell. When HIV-1 infects CD4+ T cells, they become infected cells, I. Hence, the

model of dynamics between the immune system and HIV-1 is given in [7] by




dT
dt
= s + pT

(
1 −

T
Tmax

)
− dTT − kVT

dI
dt
= kVT − δI

dV
dt
= NδI − cV,

(1)
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where I and V are the concentrations of infected CD4+ T cells and viral particles in plasma,

respectively. The term kVT denotes the infection of CD4+ T cells by HIV-1 with the

infection rate constant k. In this model, δ represents the death rate of infected cells, c is

the virus clearance rate constant, and N is the number of new virus particles produced per

infected cell.

Perelson et al. in [8] developed a mathematical model from a clinical trial where five

HIV-1 infected patients were given the protease inhibitor ritonavir. After treatment, HIV-1

RNA concentrations in plasma, viral load of genetic material, were measured every 2 hours

until the 6 hour, every 6 hours until day 2, and every day until day 7. In this clinical trial,

15 data points were obtained from each patient where the unit of time was in days. System

(1) is assumed to be at quasi-steady state before treatment, that is, V and I are relatively

constant yielding I′(t) = 0 and V ′(t) = 0. Hence, kV0T0 = δI0 and NδI0 = cV0, and so

c = N kT0 and I0 =
kV0T0
δ , where the subscript 0 denotes a pretreatment quasi-steady state

value.

After treatment, newly created virions are noninfectious while infectious virions

from prior to the treatment still remain. Therefore, the total virus concentration is

V = VI + VN I, (2)

whereVI andVN I are the concentrations of infectious and noninfectious virions, respectively.

Drug efficacy is assumed 100% and (1) becomes




dT
dt
= s + pT

(
1 −

T
Tmax

)
− dTT − kVT

dI
dt
= kVIT − δI

dVI

dt
= −cVI

dVN I

dt
= NδI − cVN I .

(3)
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Assuming that system (1) is at quasi-steady state before drug treatment and T remains at

approximately its steady state value T0, that is T = constant = T0 for 1 week after drug

treatment, (3) leads to the following system




dI
dt
= kVIT0 − δI

dVI

dt
= −cVI

dVN I

dt
= NδI − cVN I

(4)

with the initial conditions



I (0) = kV0T0
δ

VI (0) = V0

VN I (0) = 0.

(5)

Perelson et al. in [7] also develop a mathematical model for the effects of combina-

tion therapy with both RT and protease inhibitors




dI
dt
= (1 − ηRT )kVIT0 − δI

dVI

dt
= (1 − ηPI )NδI − cVI

dVN I

dt
= ηPI NδI − cVN I

(6)

with the initial conditions (5), where ηRT and ηPI are the efficacy of the RT and protease

inhibitors, respectively, on anti-HIV treatment. In particular, ηPI, ηRT = 0 denote a null

therapy, while ηPI, ηRT = 1 denotes a 100% effective therapy.

The systems above are continuous models of HIV-1 dynamics in vivo. According to

our knowledge, there hasn’t been any study of the discrete cases of these models. Instead of

considering a discrete model itself, we prefer unifying the continuous and discrete analysis

in one comprehensive theory, a so called time scales theory. A time scale, denoted by T, is
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an arbitrary nonempty closed subset of the real numbers. The theory of time scales was first

initiated by Stefan Hilger in his PhD thesis [4] in 1988. The set of all real numbers R, which

gives rise to differential equations, the set of all integers Z, which gives rise to difference

equations, and the set of all integer powers of a number q > 1, including 0, which gives rise

to q-difference equations, are the well known examples of time scales, see [3, 5, 6].

In this paper, we first consider a mathematical model of perfect protease inhibitor

monotherapy of HIV-1 infection on time scales. One of our main purposes is to analyze

patient data presented in [8] on continuous and discrete cases. The outline of this paper is

as follows: In Section 2, time scales calculus is introduced briefly including essentials. In

Section 3, we formulate an initial value problem (IVP) modeling the dynamics of HIV-1

on time scales generalizing the IVP (4), (5) and calculate the total concentration of plasma

virions on different time scales. In addition to these models, we also introduce an alternative

discrete model in Section 4. We compare all these models by using nonlinear least squares

fitting in Section 5. It turns out that the alternative discrete model gives the best fit in

hours. This motivates us to consider another discrete model with the step-size h > 0 and

this model has the best fit in days. In the last section, we present a mathematical model

of imperfect RT and protease inhibitors combination therapy of HIV-1 infection on time

scales, and analyze the stability of the zero solution.

2. ESSENTIALS

In this section, we first include some preliminary concepts regarding the calculus

on time scales without proofs. The proofs can be found in the books written by Bohner and

Peterson [1, 2].

Definition 2.1. For t ∈ T, the forward jump operator σ : T→ T is

σ(t) := inf{s ∈ T : s > t}
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while the backward jump operator ρ : T→ T

ρ(t) := sup{s ∈ T : s < t},

and the graininess function µ : T→ [0,∞), defined as µ(t) := σ(t) − t.

If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t we say that t is

left-scattered. Points that are right-scattered and left-scattered at the same time are called

isolated. Besides, if t < supT and σ(t) = t, then t is called right-dense, and if t > inf T

and ρ(t) = t, then t is called left-dense. Points that are right-dense and left-dense at the

same time are called dense. The function f σ : T → R is defined by f σ (t) = f (σ(t)) for

all t ∈ T, i.e., f σ = f ◦ σ and [t0,∞)T := [t0,∞) ∩ T. If T has a left-scattered maximum

m, then Tκ = T − {m}. Otherwise, Tκ = T.

Definition 2.2. Assume f : T→ R is a function and let t ∈ Tκ. Then, the delta (or Hilger)

derivative of f , denoted by f ∆, on Tκ is defined to be the number (provided it exists) such

that for given any ε > 0, there is a neighborhood U = (t − δ, t + δ) for some δ > 0 such that

|[ f σ (t) − f (s)] − f ∆(t)[σ(t) − s]| ≤ ε |σ(t) − s |

for all s ∈ U .

If T = R, then f ∆ = f ′, i.e., the delta derivative coincides with the usual derivative.

If T = Z, then f ∆(t) = ∆ f (t) = f (t + 1) − f (t), where ∆ is the usual forward difference

operator.

Theorem 2.3. Assume f : T→ R is a function and let t ∈ Tκ. Then we have the following:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f ∆(t) =
f σ (t) − f (t)

µ(t)
.
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(iii) If t is right-dense, then f is differentiable at t iff the limit

lim
s→t

f (t) − f (s)
t − s

exists as a finite number. In this case

f ∆(t) = lim
s→t

f (t) − f (s)
t − s

.

(iv) If f is differentiable at t, then f σ (t) = f (t) + µ(t) f ∆(t).

Theorem 2.4. Assume f , g : T→ R are differentiable at t ∈ Tκ. Then:

(i) The sum f + g : T→ R is differentiable at t with

( f + g)∆(t) = f ∆(t) + g∆(t).

(ii) The product f g : T→ R is differentiable at t with

( f g)∆(t) = f ∆(t)g(t) + f σ (t)g∆(t) = f (t)g∆(t) + f ∆(t)gσ (t).

(iii) If g(t)gσ (t) , 0, then f
g is differentiable at t and

(
f
g

)∆
(t) =

f ∆(t)g(t) − f (t)g∆(t)
g(t)gσ (t)

.

Definition 2.5. A function f : T → R is called rd-continuous provided it is continuous at

right-dense points in T and its left-sided limit exists (finite) at left dense points in T. The

set of rd-continuous f : T→ R is denoted by Crd = Crd (T) = Crd (T,R).

Every rd-continuous function has an antiderivative. In particular, if t0 ∈ T, then the

antiderivative of f for t ∈ T is

F :=
∫ t

t0
f (τ)∆τ.
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Definition 2.6. A function f : T→ R is called regressive provided

1 + µ(t) f (t) , 0

for all t ∈ Tκ. The set of all regressive and rd-continuous functions f : T → R is denoted

by R = R (T) = R (T,R).

Definition 2.7. If p, q ∈ R, then the function 	p "circle minus" is defined by

(	p)(t) := −
p(t)

1 + µ(t)p(t)

while the function "circle minus substraction" is defined by

(p 	 q)(t) :=
p(t) − q(t)
1 + µ(t)q(t)

for all t ∈ Tκ.

Theorem 2.8. Suppose p ∈ R and fix t0 ∈ T. Then the initial value problem

y∆ = p(t)y, y(t0) = 1

has a unique solution ep(·, t0), the so called the exponential function on time scales.

Let a, b ∈ T with a < b, f ∈ Crd and α ∈ R. Then, if T = R

∫ b

a
f (t)∆t =

∫ b

a
f (t)dt, eα (t, t0) = eα(t−t0) and e	α = e−α(t−t0) .

If T = hZ = {hk : k ∈ Z}, where h > 0 then

∫ b

a
f (t)∆t =

b/h−1∑
k=a/h

f (kh)h, eα (t, t0) = (1 + αh)(t−t0)/h and e	α = (1 + αh)−(t−t0)/h.
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We use the following properties of exponential functions on time scales in our

proofs, see Theorems 2.36 and 2.38 in [1].

Theorem 2.9. If p, q ∈ R, then

(i) e0(t, s) = 1 and ep(t, t) = 1

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s)

(iii) ep(t, s) =
1

ep(s, t)
= e	p(s, t)

(iv) ep(t, s)ep(s, r) = ep(t, r)

(v) e∆p	q(·, t0) = (p − q)
ep(·, t0)
eσq (·, t0)

.

We need the following Variation of Constants Formulas on time scales.

Theorem 2.10. ([1], Theorem 2.74) Suppose p ∈ R and f ∈ Crd . Let t0 and y0 ∈ R. The

unique solution of the initial value problem

y∆ = −p(t)yσ + f (t), y(t0) = y0

is given by

y(t) = e	p(t, t0)y0 +
∫ t

t0
e	p(t, τ) f (τ)∆τ.

Theorem 2.11. ([1], Theorem 2.77) Suppose p ∈ R and f ∈ Crd . Let t0 and y0 ∈ R. The

unique solution of the initial value problem

y∆ = −p(t)y + f (t), y(t0) = y0

is given by

y(t) = ep(t, t0)y0 +
∫ t

t0
ep(t, σ(τ)) f (τ)∆τ.

An n × n -matrix-valued function A on a time scale T is called regressive provided

I + µ(t)A(t) is invertible for all t ∈ Tκ.
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Theorem 2.12. ([1], Exercise 5.6) An n × n -matrix-valued function A is regressive iff the

eigenvalues λi (t) of A(t) are regressive for all 1 ≤ i ≤ n.

The vector dynamic equation

x∆ = Ax,

where A ∈ R is a real constant n × n-matrix.

Theorem 2.13. ([1], Theorem 5.30) If λ0, ξ is an eigenpair for the constant n × n −matrix

A, then x(t) = eλ0 (t, t0)ξ is a solution of the vector dynamic equation above on T.

To have an alternative discrete model to the IVP (3), (5), we need the following

results.

Theorem 2.14. ([6], Theorem 3.1) Let p(t) , 0 and r (t) be given for t = a, a+1, · · ·. Then,

(i) The solutions of u(t + 1) = p(t)u(t) are

u(t) = u(a)
t−1∏
s=a

p(s), (t = a, a + 1, · · ·)

(ii) All solutions of y(t + 1) − p(t)y(t) = r (t) are given by

y(t) = u(t)


∑ r (t)
Eu(t)

+ C

,

where E is the shift operator defined by Eu(t) = u(t + 1), C is a constant, and u(t) is any

nonzero function from part (i).

Here, an "indefinite sum" (or "antidifference") of y(t), denoted
∑

y(t), is any

function so that ∆
(∑

y(t)
)
= y(t) for all t in the domain of y.
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The following system of n linear equations:

u1(t + 1) = a11u1(t) + a12u2(t) + · · · + a1nun(t)

u2(t + 1) = a21u1(t) + a22u2(t) + · · · + a2nun(t)
...

...
...

...

un(t + 1) = an1u1(t) + an2u2(t) + · · · + annun(t)

may be written in the vector form

u(t + 1) = Au(t), (7)

where u(t) = (u1(t), u2(t), · · · , un(t))T ∈ Rn, and A = (ai j ) is an n × n real nonsingular

matrix. Here T indicates the transpose of a vector. System (3) is considered autonomous,

or time-invariant, since the values of A are all constants. The spectral radius of A is defined

as

r (A) = max
{
|ξ | : ξ is an eigenvalue of A

}
.

The next theorem summarizes the main stability results for the linear autonomous (time-

invariant) systems (3).

Theorem 2.15. ([3], Theorem 4.13) The following statements hold:

(i) The zero solution of (3) is stable if and only if r (A) ≤ 1 and the eigenvalues of unit

modulus are semisimple, i.e., if the corresponding Jordan block is diagonal.

(ii) The zero solution of (3) is asymptotically stable if and only if r (A) < 1.
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3. DYNAMICS OF HIV-1 DECLINE DURING 100% EFFECTIVE PROTEASE
INHIBITOR MONOTHERAPY

We consider one of the generalization of the IVP (4), (5)




I∆ = kVσ
I T0 − δIσ

V∆I = −cVσ
I

V∆N I = NδIσ − cVσ
N I

(8)

on [0,∞)T subject to the initial conditions (5), where all parameters are positive constants

such that δ , c. Here, the forward jump operator appears in the system. In this section, our

purpose is to find the total concentration of plasma virions on different time scales. To do

this, we first solve the IVP (8), (5).

Theorem 3.1. The unique solution (I,VI,VN I ) of the IVP (8), (5) is given by




I (t) = e	δ (t, 0)kV0T0
{
1
δ +

1
δ−c [eδ	c(t, 0) − 1]

}

VI (t) = e	c(t, 0)V0

VN I (t) = cV0
c−δ

{
c

c−δ [e	δ (t, 0) − e	c(t, 0)] − δe	c(t, 0)
∫ t

0

1
1 + µ(τ)c

∆τ

}
,

where all parameters are positive constants such that δ , c.

Proof. We start with the second equation of (8) with VI (0) = V0 to solve the system. From

Theorem 2.10, we obtain

VI (t) = e	c(t, 0)V0. (9)

Substituting VI into the first equation of (8) yields

I∆(t) = keσ	c(t, 0)V0T0 − δIσ (t). (10)
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From Theorem 2.10, the IVP (10) with I (0) = kV0T0
δ has a unique solution

I (t) = e	δ (t, 0)I (0) + kV0T0

∫ t

0
e	δ (t, τ)eσ	c(τ, 0)∆τ, t ≥ 0.

Since we assume that I is in quasi-steady state before initiation of therapy, after plugging

I (0) into I above and using the properties of exponential functions given in Theorem 2.9,

we get

I (t) =e	δ (t, 0)
kV0T0
δ
+ kV0T0

∫ t

0
e	δ (t, τ)eσ	c(τ, 0)∆τ (11)

=e	δ (t, 0)
kV0T0
δ
+ kV0T0e	δ (t, 0)

∫ t

0
e	δ (0, τ)

1
eσc (τ, 0)

∆τ

=e	δ (t, 0)
kV0T0
δ
+ kV0T0

e	δ (t, 0)
δ − c

∫ t

0
e∆δ	c(τ, 0)∆τ

=e	δ (t, 0)
kV0T0
δ
+ kV0T0

e	δ (t, 0)
δ − c

[eδ	c(t, 0) − 1] .

Therefore,

I (t) = e	δ (t, 0)kV0T0

{
1
δ
+

1
δ − c

[eδ	c(t, 0) − 1]
}
. (12)

To solve VN I , we substitute (12) into the third equation of system (8) and obtain

V∆N I (t) = NδkV0T0eσ	δ (t, 0)
{
1
δ
+

1
δ − c

[
eσδ	c(t, 0) − 1

]}
− cVσ

N I (t). (13)

From Theorem 2.10 and c = N kT0, the IVP (13) with VN I (0) = 0 has a unique solution

VN I (t) = e	c(t, 0)VN I (0) + cV0δ

∫ t

0
e	c(t, τ)eσ	δ (τ, 0)

{
1
δ
+

1
δ − c

[
eσδ	c(τ, 0) − 1

]}
∆τ.
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Using VN I (0) = 0 and properties of exponential functions on time scales yield

VN I (t) =cV0

{
c

c − δ

∫ t

0
e	c(t, τ)eσ	δ (τ, 0)∆τ +

δ

δ − c

∫ t

0
e	c(t, τ)eσ	δ (τ, 0)eσδ	c(τ, 0)∆τ

}
=cV0

{
c

c − δ

[
e	c(t, 0)

c − δ
(ec	δ (t, 0) − 1)

]
+

δ

δ − c

∫ t

0
e	c(t, τ)

1
eσδ (τ, 0)

eσδ (τ, 0)
eσc (τ, 0)

∆τ

}
=cV0

{
c

(c − δ)2
[e	δ (t, 0) − e	c(t, 0)] +

δ

δ − c
e	c(t, 0)

∫ t

0
e	c(0, τ)

1
eσc (τ, 0)

∆τ

}
=cV0

{
c

(c − δ)2
[e	δ (t, 0) − e	c(t, 0)] +

δ

δ − c
e	c(t, 0)

∫ t

0

1
1 + µ(τ)c

∆τ

}
,

where the first integration above is computed as in (11). Hence,

VN I (t) =
cV0

c − δ

{
c

c − δ
[e	δ (t, 0) − e	c(t, 0)] − δe	c(t, 0)

∫ t

0

1
1 + µ(τ)c

∆τ

}
. (14)

This completes the proof.

Note that (9) and (14) imply that the total concentration of plasma virions (2) is

V (t) = e	c(t, 0)V0 +
cV0

c − δ

{
c

c − δ
[e	δ (t, 0) − e	c(t, 0)] − δe	c(t, 0)

∫ t

0

1
1 + µ(τ)c

∆τ

}
.

(15)

In the next examples, we calculate (15) on different time scales for data analysis.

Example 3.2. The total viral concentration (15) turns out to be

V (t) = e−ctV0 +
cV0

c − δ

{
c[e−δt − e−ct]

c − δ
− δte−ct

}
(16)

on [0,∞) which is consistent with the total viral load in [8].
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Example 3.3. Now consider the isolated time scales [0,∞)hZ, h > 0. In this case, the total

concentration of plasma virions is

V (t) =
1

(1 + ch)
t
h

V0 +
cV0

c − δ




c[(1 + ch)
t
h − (1 + δh)

t
h ]

(c − δ)(1 + δh)
t
h (1 + ch)

t
h

−
δt

(1 + ch)
t
h+1



. (17)

In the special case of h = 1 in (17), that is on [0,∞)Z, we have

V (t) =
1

(1 + c)t V0 +
cV0

c − δ

{
c[(1 + c)t − (1 + δ)t]

(c − δ)(1 + δ)t (1 + c)t −
δt

(1 + c)t+1

}
. (18)

4. AN ALTERNATIVE DISCRETE HIV-1 MODEL

Note that system (8) turns out to be the following system




∆I (t) = kVI (t + 1)T0 − δI (t + 1)

∆VI (t) = −cVI (t + 1)

∆VN I (t) = NδI (t + 1) − cVN I (t + 1)

(19)

on [0,∞)Z and the related total concentration of plasma virions of system (19) is given by

(18). In this section, we now consider an alternative discrete model




∆I (t) = kVI (t)T0 − δI (t)

∆VI (t) = −cVI (t)

∆VN I (t) = NδI (t) − cVN I (t)

(20)

on [0,∞)Z to the HIV-1 dynamics associated with (5). Therefore, we have the following

theorem where we assume c , δ and c, δ , 1 in order to solve (20).
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Theorem 4.1. The unique solution (I,VI,VN I ) of the IVP (20), (5) is given by




I (t) = kV0T0
δ−c

{
(1 − c)t −

c(1−δ)t
δ

}

VI (t) = V0(1 − c)t

VN I (t) = cV0
c−δ

{
c

c−δ
[
(1 − δ)t − (1 − c)t ] − δt(1 − c)t−1

}
,

where all parameters are positive constants such that δ , c and c, δ , 1.

Proof. System (20) can be written as a recurrence relation




I (t + 1) = kVI (t)T0 + (1 − δ)I (t)

VI (t + 1) = (1 − c)VI (t)

VN I (t + 1) = NδI (t) + (1 − c)VN I (t).

(21)

Solving the second equation with VI (0) = V0 and using Theorem 2.14 (i), we obtain

VI (t) = VI (0)
t−1∏
s=0

(1 − c) = V0(1 − c)t . (22)

Substituting (22) into the first equation of (21), one can obtain

I (t + 1) = kV0T0(1 − c)t + (1 − δ)I (t).

By Theorem 2.14 (i), the solution of u∗(t + 1) = (1 − δ)u∗(t) is

u∗(t) = u∗(0)
t−1∏
s=0

(1 − δ) = (1 − δ)t,
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where u∗(0) = 1. Then by Theorem 2.14 (ii), we have

I (t) =u∗(t)
[∑ kV0T0(1 − c)t

u∗(t + 1)
+ C

]

=(1 − δ)t
[∑ kV0T0(1 − c)t

(1 − δ)t+1 + C
]

=(1 − δ)t
[

kV0T0(1 − c)t

(δ − c)(1 − δ)t + C
]
,

where C is an arbitrary constant. Therefore,

I (t) =
kV0T0(1 − c)t

δ − c
+ (1 − δ)tC, (23)

and I (0) = kV0T0
δ implies C = − ckV0T0

δ(δ−c) . Substituting C into (23), we obtain

I (t) =
kV0T0
δ − c

[
(1 − c)t −

c(1 − δ)t

δ

]
.

To solve VN I , we first plug I into the third equation of (20) and then use the fact N kT0 = c

and obtain

VN I (t + 1) =
cV0δ

δ − c

[
(1 − c)t −

c
δ

(1 − δ)t
]
+ (1 − c)VN I (t).

By Theorem 2.14 (i), the solution of u(t + 1) = (1 − c)u(t) is

u(t) = u(0)
t−1∏
s=0

(1 − c) = (1 − c)t,

where u(0) = 1. Then, we have
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VN I (t) =u(t)



∑ cV0δ
δ−c

[
(1 − c)t −

c(1−δ)t
δ

]

u(t + 1)
+ D




=(1 − c)t



∑ cV0δ
δ−c

[
(1 − c)t −

c(1−δ)t
δ

]

(1 − c)t+1 + D



=(1 − c)t
{

cV0δ

(δ − c)(1 − c)

∑ [
1 −

c
δ

(
1 − δ
1 − c

) t ]
+ D

}
=(1 − c)t

{
cV0δ

(δ − c)(1 − c)

[
t −

c
δ

(
1 − δ
1 − c

) t 1 − c
c − δ

]
+ D

}
,

where D is an arbitrary constant and we use Theorem 2.14 (ii). Hence,

VN I (t) = −
cV0δt(1 − c)t−1

c − δ
+

c2V0(1 − δ)t

(c − δ)2
+ (1 − c)t D.

To evaluate D, we use VN I (0) = 0 yielding D = −
c2V0

(c − δ)2
, and that

VN I (t) =
cV0

c − δ

{ c
c − δ

[
(1 − δ)t − (1 − c)t

]
− δt(1 − c)t−1

}
, (24)

and hence the proof is completed.

In this discrete case, the total concentration of plasma virions of the IVP (20), (5)

that follows from (22) and (24) is given by

V (t) =V0(1 − c)t +
cV0

c − δ

{ c
c − δ

[
(1 − δ)t − (1 − c)t

]
− δt(1 − c)t−1

}
, (25)

which is not equivalent to (18).

Note that δ > c > 1 and chosing t to be even guarantee the positiveness of VI as in

(22) and VN I as in (24).
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5. DATA ANALYSIS

In this section, we determine how well the total viral concentrations obtained from

our models fit the HIV-1 RNA measurements from one reprensentative patient, namely

patient 104 in [8]. Here, we use MATLAB with nonlinear least squares fitting of data to

estimate the parameters of our models.

In the previous sections, we model the dynamics of HIV-1 decline in patients on

protease inhibitor monotherapy by the IVPs (8), (5) and (20), (5). From the IVP (8), (5), we

obtain the total viral concentrations (16), (17), (18) on [0,∞)T when T is equal to R, hZ and

Z, respectively. From the alternative discrete model (20), (5), we obtain (25) on [0,∞)Z.

In Tables 1 and 2, these total viral concentrations are represented in the second row

when T is equal to R, hZ and Z. Estimated parameters and evaluated R2
adj , SSE and RMSE

values from the fit of (16), (17), (18) and (25) to the HIV-1 RNA data are listed in these

tables as well.

In the following subsection, we discuss the results from the fit of the total viral

concentrations when the unit of time is in days and in hours.

5.1. TIME IN DAYS AND IN HOURS

In [8], HIV-1 RNA data was measured every 2 hours until the 6 hour, every 6 hours

until day 2, and every day until day 7 and the unit of the original data is in days.

Note that the IVP (8), (5) when T = R is known as the continuous case and (16) is

the corresponding total viral load introducing in [8]. From Table 1, we conclude that the

discrete cases (17) and (18) fit to the data as well as the continuous case (16) except for the

alternative discrete case (25). (17) has the best fit when h gets very close to zero. In fact,

the continuous case is obtained when h → 0.
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In [8], the lower and upper 68% confidence intervals are calculated and the virion

clearance rate is estimated as c = 3.68 day−1 that lies between 2.53 and 6.19 day−1 while the

rate of loss of infected cells is estimated as δ = 0.50 day−1 that lies between 0.47 and 0.54

day−1. Note that c and δ obtained from the nonlinear regression analysis for the continuous

case in our study are estimated as 3.11 day−1 and 0.51 day−1, and within those confidence

intervals, respectively, see Table 1.

Table 1. Data Analysis when time is in days

IVP (8), (5) (20), (5)

V (16) (17) (18) (25)

T R hZ Z Z

R2
adj 0.88916 0.87808 0.87955 0.52586

SSE 3079703800 3079703900 3346799500 13174681000

RMSE 14328.768 14328.768 14937.201 29636.33

V0 133956.89 133958.03 138869.87 110124.12

c 3.11582 3.11637 2.54322 0.62332867

δ 0.51553 0.51549 0.83074 0.62332868

h 0.00000007

Since (25) results a bad fit in days, see Figure 1, this urges us to investigate a different

time domain for (25). Therefore, we attempt scaling the input data by changing the unit

from days to hours.
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Figure 1. Fitted models in days

When changing the unit from days to hours, we note that all data was collected at

times that are even when expressed in hours, i.e. t is even. We also observe that curve

fittings of (16) and (17) to the data predict the same virion concentrations, see Tables 1 and

2. On the other hand, fittings of (18) and (25) to the data are improved. Indeed, fitting (25)

to the data is not only improved significantly but also results in by far the highest R2
adj value

and smaller errors.

For all the patients in [8], HIV-1 RNA levels increase at the beginning of therapy,

then drop down and keep decreasing. As seen in Figure 2, (25) is the only model capturing

this behavior in hours. For t even and 1 < c < 2, the last term in (25), −δt(1 − c)t−1, is

positive and initially increases and then decreases for the estimated parameters. Hence, this

causes the initially increasing behaviour of (25).
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Table 2. Data Analysis when time is in hours

IVP (8), (5) (20), (5)

V (16) (17) (18) (25)

T R hZ Z Z

R2
adj 0.88916 0.87808 0.88859 0.97198

SSE 3079703800 3079703800 3095595300 778626850

RMSE 14328.768 14328.768 14365.689 7204.7524

V0 133957 133956.79 134261.42 95708.735

c 0.12983 0.12982 0.12861 1.13006

δ 0.02148 0.02148 0.02189 1.98095

h 0.00000059

Figure 2. Fitted models in hours
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We observe that by changing the unit from days to hours the alternative discrete

curve (25) has the best fit. This leads to the important point of whether one should discuss

more discrete models for HIV-1 dynamics. Therefore, we now want to unify and extend the

continuous IVP (4), (5) and the discrete IVP (20), (5) in order to obtain the total viral load

on more discrete time settings. The model is formulated as follows:




I∆ = kVIT0 − δI

V∆I = −cVI

V∆N I = NδI − cVN I

(26)

subject to the initial conditions (5), where all parameters are positive constants such that

δ , c, −c,−δ ∈ R, i.e., 1 + µ(−c) , 0 and 1 + µ(−δ) , 0.

Note that system (26) is equivalent to systems (4) and (8) on [0,∞) whereas it is

equivalent to system (20) on [0,∞)Z.

To find the total concentrations of virions, we follow similar steps of the proof of

Theorem 3.1. By Theorems 2.11 and 2.9, we first obtain

VI (t) = e−c(t, 0)V0

and

I (t) = kV0T0

{
ce−δ (t, 0) − δe−c(t, 0)

δ(c − δ)

}
. (27)

Substituting (27) in the third equation of system (26) and solving for VN I yield

VN I (t) =
cV0

c − δ

{
c [e−δ (t, 0) − e−c(t, 0)]

c − δ
− δe−c(t, 0)

∫ t

0

1
1 − µ(τ)c

∆τ

}
.
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Hence, the total concentration of plasma virions is

V (t) = e−c(t, 0)V0 +
cV0

c − δ

{
c [e−δ (t, 0) − e−c(t, 0)]

c − δ
− δe−c(t, 0)

∫ t

0

1
1 − µ(τ)c

∆τ

}
.

(28)

As a result, (28) yields the same total concentration of plasma virions (16) on [0,∞) and

(25) obtained on [0,∞)Z. One can also calculate the total concentration of plasma virions

(28) on hZ as

V (t) = (1 − ch)
t
h V0 +

cV0

c − δ




c
[
(1 − δh)

t
h − (1 − ch)

t
h

]

c − δ
− δt(1 − ch)

t
h−1



, (29)

which is not same as (17). Tables 1 and 2 show data fitting of (16), (17), (18) and (25). Now

we compare (17) obtained from the system with forward jump operator and (29) obtained

from the system without forward jump operator.

Figure 3. Fitted model in days obtained from hZ
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The data fitting of (29) is done with MATLAB fmincon and results 0.97004 R2
adj

value, where SSE = 756676980, RMSE = 7102.4736 and estimated initial value of virus

concentration V0 = 151569.87 in days. Figure 3 shows that (29) fits to the data better than

other models with c = 8.93828, δ = 0.44710944 day−1, and h = 0.11186 in days. Note

that the fittings of (29) in days and in hours result the same curve. Estimated parameters

are c = 0.35556, δ = 0.01863 hours−1, V0 = 151082.19, and h = 2.81180 in hours with

0.96996 hours−1 R2
adj value, where SSE = 758649430, RMSE = 7111.7247.

When we compare all these models with MATLAB fmincon, we conclude that they

yield consistent curve fittings as before.

6. DYNAMICS OF HIV-1 DECLINE ON COMBINATION THERAPY

In the previous sections, we formulate the models of interaction of the immune sys-

tem with HIV-1 when the patients were given only protease inhibitors under the assumption

of efficacy of the protease inhibitor is 100%, i.e., ηPI = 1. Mathematical model (6) of HIV-

1 infection is studied in [7] when patients were given combination of imperfect protease

inhibitor and RT inhibitors. Hence, under the assumption of ηPI , 0, 1 and ηRT , 0, 1 we

generalize this model on time scales as follows:




I∆ = (1 − ηRT )kVIT0 − δI

V∆I = (1 − ηPI )NδI − cVI

V∆N I = ηPI NδI − cVN I

(30)

subject to the initial conditions (5) and find the total concentration of plasma virions on

different time scales by solving the IVP (30), (5).
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Theorem 6.1. The unique solution (I,VI,VN I ) of the IVP (30), (5) is given by




I (t) =
kT0V0(1 − ηRT )

λ2 − λ1

{
λ2 + cηPI

λ1 + δ
eλ1 (t, 0) −

λ1 + cηPI

λ2 + δ
eλ2 (t, 0)

}
VI (t) =

V0

λ2 − λ1

{
(λ2 + cηPI )eλ1 (t, 0) − (λ1 + cηPI )eλ2 (t, 0)

}
VN I (t) =

V0ηPI

λ2 − λ1

{
(λ2 + cηPI )eλ1 (t, 0) − (λ1 + cηPI )eλ2 (t, 0)

λ2 − λ1
− e−c(t, 0)

}
,

where all parameters are positive constants and

λ1,2 =
−(c + δ) ±

√
(c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηPI ))

2
. (31)

Proof. We first rewrite the first two equations as a vector dynamic equation and solve the

obtained the two dimensional linear system of I and VI . The vector dynamic equation is as

follows 

I∆

V∆I


=



−δ (1 − ηRT )kT0

(1 − ηPI )Nδ −c





I

VI


,

where the characteristic equation is λ2 + (c + δ)λ + δc(1 − (1 − ηRT )(1 − ηPI )) = 0.

Here, since we assume the patient was in quasi-steady state before treatment began, then

c = N kT0. Hence, the eigenvalues of the coefficient matrix are given as (31). By the fact

that (δ−c)2 > 0, one can get that (δ+c)2 > 4δc. Also, since 0 < ηRT < 1 and 0 < ηPI < 1,

then

(δ + c)2 > 4δc > 4δc(1 − (1 − ηRT )(1 − ηPI ))

and this shows that these two eigenvalues are real. Furthermore,

0 < (c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηPI )) < (c + δ)2, (32)

which implies that −(c + δ) +
√

(c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηPI )) < 0. Hence,
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λ1 < 0. Note that λ2 < 0 is negative by the definition. We have shown that λ1 and λ2 are

real, negative and distinct eigenvalues. The vector equation is regressive for any time scale

such that 1 + λ1,2µ(t) , 0 for all t ∈ Tκ by Theorem 2.12. From the characteristic equation

for the two dimensional I and VI system, we have for i=1, 2

(1 − ηRT )(1 − ηPI ) =
(λi + δ)(λi + c)

cδ
. (33)

Eigenvectors corresponding to λ1 and λ2 are

ξ1 =



c + λ1

(1 − ηPI )Nδ


, ξ2 =



c + λ2

(1 − ηPI )Nδ



respectively. By Theorem 2.13, it follows that



I

VI


= c1eλ1 (t, 0)



c + λ1

(1 − ηPI )Nδ


+ c2eλ2 (t, 0)



c + λ2

(1 − ηPI )Nδ


, (34)

where c1 and c2 are arbitrary constants. To find c1 and c2, we use the initial conditions

I (0) = kV0T0
δ and VI (0) = V0 with the properties of exponential functions on time scales.

Hence, we get the following equations

kV0T0 = c1δ(c + λ1) + c2δ(c + λ2)

V0 = c1(1 − ηPI )Nδ + c1(1 − ηPI )Nδ

with the constants

c1 =
V0(λ2 + cηPI )

Nδ(1 − ηPI )(λ2 − λ1)
=

kV0T0(λ2 + cηPI )(1 − ηRT )
(λ1 + δ)(λ1 + c)(λ2 − λ1)
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and

c2 = −
V0(λ1 + cηPI )

Nδ(1 − ηPI )(λ2 − λ1)
= −

kV0T0(λ1 + cηPI )(1 − ηRT )
(λ2 + δ)(λ2 + c)(λ2 − λ1)

,

where we use (33) to get equivalent relations for c1 and c2. Now, substituting c1 and c2 into

I of (34) yields

I (t) = c1eλ1 (t, 0)(1 − ηPI )Nδ + c2eλ2 (t, 0)(1 − ηPI )Nδ

= eλ1 (t, 0) −
kV0T0(λ1 + cηPI )(1 − ηRT )

(λ2 + δ)(λ2 − λ1)
eλ2 (t, 0).

Therefore,

I (t) =
kT0V0(1 − ηRT )

λ2 − λ1

{
λ2 + cηPI

λ1 + δ
eλ1 (t, 0) −

λ1 + cηPI

λ2 + δ
eλ2 (t, 0)

}
. (35)

Similarly, substituting c1 and c2 into VI of (34) yields

VI (t) =
V0(λ2 + cηPI )

λ2 − λ1
eλ1 (t, 0) −

V0(λ1 + cηPI )
λ2 − λ1

eλ2 (t, 0).

Hence,

VI (t) =
V0

λ2 − λ1

{
(λ2 + cηPI )eλ1 (t, 0) − (λ1 + cηPI )eλ2 (t, 0)

}
.

Substituting (6) into the third equation of (30) results

V∆N I (t) =
V0δcηPI (1 − ηRT )

λ2 − λ1

{
λ2 + cηPI

λ1 + δ
eλ1 (t, 0) −

λ1 + cηPI

λ2 + δ
eλ2 (t, 0)

}
− cVN I . (36)

From Theorem 2.11, (36) with VN I (0) = 0 has a unique solution
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VN I (t) =
∫ t

0
e−c(t, σ(τ))

V0δcηPI (1 − ηRT )
λ2 − λ1

{
λ2 + cηPI

λ1 + δ
eλ1 (τ, 0) −

λ1 + cηPI

λ2 + δ
eλ2 (τ, 0)

}
∆τ

=
V0δcηPI (1 − ηRT )

λ2 − λ1

{
λ2 + cηPI

λ1 + δ

∫ t

0
e−c(t, σ(τ))eλ1 (τ, 0)∆τ

−
λ1 + cηPI

λ2 + δ

∫ t

0
e−c(t, σ(τ))eλ2 (τ, 0)∆τ

}
=

V0δcηPI (1 − ηRT )
λ2 − λ1

{
λ2 + cηPI

λ1 + δ

e−c(t, 0)
λ1 + c

∫ t

0
e∆λ1	(−c) (τ, 0)∆τ

−
λ1 + cηPI

λ2 + δ

e−c(t, 0)
λ2 + c

∫ t

0
e∆λ2	(−c) (τ, 0)∆τ

}
=

V0δcηPI (1 − ηRT )
λ2 − λ1

{
λ2 + cηPI

λ1 + δ

e−c(t, 0)
λ1 + c

[
eλ1	(−c) (t, 0) − 1

]
−
λ1 + cηPI

λ2 + δ

e−c(t, 0)
λ2 + c

[
eλ2	(−c) (t, 0) − 1

] }
.

Therefore,

VN I (t) =
V0δcηPI (1 − ηRT )

λ2 − λ1

{
λ2 + cηPI

(λ1 + δ)(λ1 + c)
eλ1 (t, 0) −

λ2 + cηPI

(λ1 + δ)(λ1 + c)
e−c(t, 0)

}
−

V0δcηPI (1 − ηRT )
λ2 − λ1

{
λ1 + cηPI

(λ2 + δ)(λ2 + c)
eλ2 (t, 0) +

λ1 + cηPI

(λ1 + δ)(λ1 + c)
e−c(t, 0)

}
.

Substituting (33) into the above equation and then simplifying the resulting equation, one

can get

VN I =
V0ηPI

λ2 − λ1

{
(λ2 + cηPI )eλ1 (t, 0) − (λ1 + cηPI )eλ2 (t, 0)

λ2 − λ1
− e−c(t, 0)

}
.

This completes the proof.

Hence, the total concentration of plasma virions is given by

V (t) =
V0

1 − ηPI

{
(λ2 + cηPI )eλ1 (t, 0) − (λ1 + cηPI )eλ2 (t, 0)

λ2 − λ1
− ηPI e−c(t, 0)

}
. (37)

System (30) with ηRT = 0 and ηPI = 1 reduces to (26). Note that corresponding total viral

load (37) does not reduce to (28) due to the singularity.
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System (30) on [0,∞) has eigenvalues−c and (31) that are real, negative and distinct.

Hence, the zero solution of system (30) on [0,∞) is asymptotically stable. One can also

consider system (30) on [0,∞)Z and write it as




I (t + 1) = (1 − δ)I (t) + (1 − ηRT )kT0VI (t)

VI (t + 1) = (1 − ηPI )NδI (t) + (1 − c)VI (t)

VN I (t + 1) = ηPI NδI (t) + (1 − c)VN I (t)

(38)

In the following theorem, we discuss the behaviour of the zero solution of system (38).

Theorem 6.2. If c + δ < 2, the zero solution of system (38) is asymptotically stable.

Proof. Assume c+ δ < 2. An equivalent vector equation of system (38) has the companion

matrix

A =



1 − δ (1 − ηRT )kT0 0

(1 − ηPI )Nδ 1 − c 0

ηPI Nδ 0 1 − c


whose characteristic equation is

(1 − c − ξ)
[
(1 − δ − ξ)(1 − c − ξ) − δc(1 − ηRT )(1 − ηPI )

]
= 0,

and the eigenvalues are ξ1 = 1 − c, ξ2,3 =
−(c+δ−2)±

√
(c+δ−2)2−4δc(1−(1−ηRT )(1−ηPI ))

2 . Note

that ξi for i = 1, 2, 3 are real. Since 0 < c < 2, |ξ1 | < 1. From (32) and the assumption, we

have

0 <
−(c + δ − 2)

2
<
−(c + δ − 2) +

√
(c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηPI ))

2
< 1.
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Hence, |ξ2 | < 1. Furthermore, since 2(δ + c) − δc(1 − (1 − ηRT )(1 − ηPI )) < 4 and

4δc(1 − (1 − ηRT )(1 − ηPI )) < 4δc, we have

c + δ − 4 < −
√

(c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηPI )) < δ − c

and so −1 < −δ − c + 2
√

(c + δ)2 − 4δc(1 − (1 − ηRT )(1 − ηPI )) < 1 − c. The positivity

of c implies that |ξ3 | < 1. Therefore, from Theorem 2.15 the zero solution of system (38)

is asymptotically stable. This completes the proof.

7. CONCLUSION

In this study, one of our goals was to call attention to discrete models of the HIV-1

infection and make a comparison with the existing continuous model in [8].

We obtain the total concentration of plasma virus as a function of time for each

model. Then, we test the new discrete models (17), (18) and (25) with data from a clinical

trial and find the fitted new models to be as accurate as the continuous model (16) and in

some cases much better.

Based on the findings, the discrete model (25) on Z is found to yield the best fit in

hours. This motivated us to study other discrete models which have the best fit in days. It

turns out that the latest proposed discrete model (29) on hZ achieves an almost equally good

fit in both units. Moreover, in the continuous model (16) the clearance rate c and the rate of

loss δ are estimated as 3.11 day−1 and 0.51 day−1, respectively, while the clearance rate c

and the rate of loss δ are estimated as 8.93 day−1 and 0.44 day−1 in the discrete model (29).

In these models, the patients were given protease inhibitor monotherapy under the

assumption of the efficacy of the protease inhibitor is perfect. In addition, we consider a

mathematical model of imperfect protease inhibitor and RT inhibitor combination therapy

of HIV-1 infection on time scales and show that the zero solution is asymptotically stable.
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By considering mathematical models on time scales, i.e. dynamic models, one can

derive solutions of corresponding continuous and discrete models directly from dynamic

models. This helps to avoid solving models individually on their own domain. This has

shown to be significant when considering the model of HIV-1 dynamics. It is also worth to

mention that not only one continuous model can be obtained from a mathematical model

on time scales, but also many discrete models. In this work, one of the models on hZ,

namely (29), has an excellent fit to the data, captures the behavior of the data perfectly no

matter what the unit of time and has a better fit compared to the existing continuous model

in literature. Therefore, one can consider modeling on other discrete time scales such as

disjoint closed intervals, the set of all integer powers of a number q > 0, including zero etc.

which may result in better fitting.
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ABSTRACT

In this study, we address an SIR (susceptible-infected-recovered) model that is

given as a system of first order differential equations and propose the SIR model on time

scales which unifies and extends continuous and discrete models. More precisely, we derive

the exact solution to the SIR model and discuss the asymptotic behavior of the number of

susceptibles and infectives. Next, we introduce an SIS (susceptible-infected-susceptible)

model on time scales and find the exact solution. We solve the models by using the

Bernoulli equation on time scales which provides an alternative method to the existing

methods. Having the models on time scales also leads to new discrete models. We illustrate

our results with examples where the number of infectives in the population is obtained on

different time scales.

Keywords: Dynamic equations; Time scales; Epidemic models; Asymptotic behavior

1. INTRODUCTION

Epidemic models are used for understanding infectious disease dynamics where the

population dynamics is divided into compartments. In the susceptible-infected-recovered

(SIR) epidemic model, susceptible individuals may become infected, and infected individ-

uals may recover and become immune. No other transitions are considered in this model.

The structure of the SIR model dates back to Kermack and McKendrick in 1927 [9] which
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has provided the basic framework for almost all later epidemic models ever since. In the

susceptible-infected-susceptible (SIS) epidemicmodel, susceptible individualsmay become

infected, and infected individuals may recover and revert to being susceptible.

The continuous and discrete SIR and SIS models have been investigated in a number

of recent works, see [3, 8, 10, 11]. One of the continuous SIR models is presented in [12]

as



S
′

= −βSI − γS + γ

I
′

= βSI − γI,

(1)

where S(t) and I (t) are the number of susceptibles and the number of infectives at time t,

respectively with constant population N and the average number of adequate contacts of

a person per unit time, i.e, the transmission rate β and the recovery rate γ. The authors

eliminate the variable S and obtain the second equation of (1) in the form of the Bernoulli

equation, and by using the suitable substitution the authors find a solution to (1). According

to our knowledge, the discrete case of system (1) has not been studied earlier. In this study,

our purpose is to unify and extend the continuous and the discrete systems. Motivated by

system (1) and the Bernoulli equation on time scales, see [1], we propose the SIR model on

time scales in the following form




S∆ =
γ(t)

	(−γ(t))
(
	 (β(t)I)

)
S − γ(t)S + γ(t)

I∆ = −
γ(t)

	(−γ(t))
(
	 (β(t)I)

)
S − γ(t)I

(2)

with the initial conditions S(0) = S0 > 0, I (0) = I0 > 0, where β, γ ∈ Crd ([0,∞)T,R+),

S, I ∈ C1
rd ([0,∞)T,R+). If T = R, then 	p = −p, and system (2) with positive β and γ

constants turns out to be system (1). If T = Z, then 	p = −p
1+p for p , −1, and system (2) is
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equivalent to the system of first order difference equations as follows




Sn+1 =
1 − γn

1 + βnIn
Sn + γn

In+1 =
βn(1 − γn)
1 + βnIn

SnIn + (1 − γn)In.

(3)

In Section 3, we find the exact number of susceptibles and infectives of system (2) and

discuss their asymptotic behaviors. Furthermore, we illustrate the behavior of infectives of

the continuous and the discrete SIR models by examples.

The exact solution of the following SIS model




S
′

= −βSI + γI

I
′

= βSI − γI

(4)

with the initial conditions S(0) = S0 > 0, I (0) = I0 > 0 satisfying S0 + I0 = N , where β

and γ are positive constants is studied in [12] while the discrete model of (4)




Sn+1 = Sn
(
1 − βIn

)
+ γIn

In+1 = In
(
1 − γ + βSn

)
,

(5)

is studied in [2]. Motivated by system (4) and the Bernoulli equation on time scales, see

[1], we propose the SIS model on time scales as




S∆ = 	(β(t)I)S − 	(β(t)I)
γ(t)
β(t)

I∆ = − 	 (β(t)I)S + 	(β(t)I)
γ(t)
β(t)

,

(6)

where β, γ ∈ Crd ([0,∞)T,R+), S, I ∈ C1
rd ([0,∞)T,R+). If T = R, then system (6) with
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positive constants β and γ is equivalent to system (4). However, the discrete model of (6)

when T = Z is



Sn+1 = Sn

(
1 −

βn

1 + βnIn
In

)
+

γn

1 + βnIn
In

In+1 = In

(
1 −

γn

1 + βnIn
+

βn

1 + βnIn
Sn

)
,

(7)

which is not same as (5). Observe that continuous systems (1) and (4) are equivalent if

S + I = 1. However, this is not true for discrete systems (5) and (7). Note that a different

form of system (6) with constant coefficients is studied in [7].

In Section 4, we find the exact number of susceptibles and infectives of (6) and

demostrate the behavior of the infectives on a quantum calculus with an example.

Now let us present some preliminary concepts regarding the calculus on time scales

without proofs to help understanding the key points in our main results. We mainly refer

readers to books by Bohner and Peterson [5, 6] and manuscripts [1, 4].

2. ESSENTIALS OF TIME SCALES

There are two important operators in T. The forward jump operator σ : T → T is

defined as σ(t) := inf{s ∈ T : s > t} for t ∈ Twhile the backward jump operator ρ : T→ T

is defined as ρ(t) := sup{s ∈ T : s < t}. The graininess function µ : T→ [0,∞) is defined

as µ(t) := σ(t) − t. If t < supT and σ(t) = t, then t is called right-dense, and if t > inf T

and ρ(t) = t, then t is called left-dense. Besides, if ρ(t) < t, we say that t is left-scattered.

If T has a left-scattered maximum m, then Tκ = T − {m}. Otherwise, Tκ = T.

Assume f : T→ R is a function and let t ∈ Tκ. Then, the delta (or Hilger) derivative

of f , denoted by f ∆, on Tκ is defined to be the number (provided it exists) such that for

given any ε > 0, there is a neighborhood U = (t − δ, t + δ) for some δ > 0 such that for all

s ∈ U

|[ f σ (t) − f (s)] − f ∆(t)[σ(t) − s]| ≤ ε |σ(t) − s |,
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where f σ (t) = f (σ(t)) for all t ∈ T, i.e., f σ = f ◦ σ and [t0,∞)T := [t0,∞) ∩ T. A

function f : T → R is called rd-continuous provided it is continuous at right-dense points

in T and its left-sided limit exists (finite) at left dense points in T. The set of rd-continuous

f : T→ R is denoted byCrd = Crd (T) = Crd (T,R). The set of functions f : T→ R that are

differentiable and whose derivative rd-continuous is denoted by C1
rd = C1

rd (T) = C1
rd (T,R).

Every rd-continuous function has an antiderivative. In particular, if t0 ∈ T, then for t ∈ T

F :=
∫ t

t0
f (τ)∆τ

is an antiderivative of f . The set of functions f ∈ C1
rd (T,R), the so-called simple useful

formula

f σ (t) = f (t) + µ(t) f ∆(t) (8)

holds for all t ∈ Tκ. For any left-dense t0 ∈ T and any ε > 0, let Lε (t0) = {t ∈ T : 0 <

t0− t < ε }, and T̄ = T∪{supT}∪ {inf T}. The following theorem is one of several L’Hôpital

Rules on time scales.

Theorem 2.1. ([5], Theorem 1.120) Assume f and g are differentiable on T with

lim
t→t−0

g(x) = ∞

for some left-dense t0 ∈ T̄. Suppose there exists ε > 0 with g(t) > 0 and g∆(t) > 0 for all

t ∈ Lε (t0). Then,

lim
t→t−0

f ∆(t)
g∆(t)

= r ∈ R̄

implies

lim
t→t−0

f (t)
g(t)

= r .
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A function f : T→ R is called regressive if 1+ µ(t) f (t) , 0 for all t ∈ Tκ. The set

of all regressive and rd-continuous functions f : T→ R is denoted byR = R (T) = R (T,R).

Besides, f ∈ R is called positively regressive for all t ∈ T if 1+ µ(t) f (t) > 0, and is denoted

by R+. Note that R (α) = R if α ∈ N and R (α) = R+ if α ∈ R \ N. If p, q ∈ R, then circle

minus substraction is defined by

(	p)(t) := −
p(t)

1 + µ(t)q(t)

and

(p 	 q)(t) :=
p(t) − q(t)
1 + µ(t)q(t)

(9)

for all t ∈ Tκ, while circle dot multiplication is defined by

(α � p)(t) := αp(t)
∫ 1

0
(1 + µ(t)p(t)h)α−1dh

to find a simple form of the derivative of pα on time scales.

Theorem 2.2. Suppose p ∈ R and fix t0 ∈ T. Then the initial value problem

y∆ = p(t)y, y(t0) = 1

has a unique solution ep(·, t0), so called the exponential function on time scales.

Let α ∈ R be constant and t0 ∈ T. If T = R, then

eα (t, t0) = eα(t−t0) . (10)

For the discrete time scales T = Z,

eα (t, t0) = (1 + α)t−t0 (11)



48

and T = qN0 = {qn : n ∈ N}, where q > 1 and q ∈ R, i.e., the quantum calculus

eα (t, t0) =
∏

s∈[t0,t)qN0

[1 + (q − 1)αs], t > t0. (12)

We use the following properties of exponential functions on time scales in our

proofs, see Theorems 2.36, 2.39 and 2.44 in [5].

Theorem 2.3. If p, q ∈ R and t0, t, s ∈ T, then

(i) e0(t, s) = 1 and ep(t, t) = 1

(ii) ep(t, s) =
1

ep(s, t)
= e	p(s, t)

(iii) ep(t, s)ep(s, r) = ep(t, r)

(iv)
∫ t

t0
p(τ)ep(s, σ(τ))∆τ = ep(s, t0) − ep(s, t)

(v) If p ∈ R+ on Tκ, then ep(t, t0) > 0 for all t ∈ T.

One of theVariation of Constants Formulas in [5, Theorem2.77] states the following.

Theorem 2.4. Suppose p ∈ R and f ∈ Crd . Then the unique solution of the initial value

problem

y∆ = p(t)y + f (t), y(t0) = y0

is given by

y(t) = ep(t, t0)y0 +
∫ t

t0
ep(t, σ(τ)) f (τ)∆τ,

where t0 and y0 ∈ R.

As we mention in the introduction, our main results are based on solutions of the

Bernoulli equation on time scales of the form

x∆ =
[
p(t) 	

(
1
α
� ( f (t)xα)

)]
x, (13)
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where α ∈ R \ 0, and the proof of the existence of solutions of (13) can be found in [1,

Theorem 6.1].

Theorem 2.5. Suppose α ∈ R \ 0, p ∈ R (α) and f ∈ Crd . If

1
xα0
+

∫ t

t0
eαp (τ, t0) f (τ)∆τ > 0

for all t ∈ T, then

x(t) =
ep(t, t0)

[
1

xα0
+

∫ t
t0

eαp (τ, t0) f (τ)∆τ
]1/α

solves the Bernoulli equation (13) with x(t0) = x0.

Note that in the case of α = 1 in (13), we have

(1 � f x)(t) := f (t)x
∫ 1

0
(1 + µ(t) f (t)xh)0dh = f (t)x. (14)

Hence, the Bernoulli equation (13) is equivalent to

x∆ =
[

p(t) − f (t)x
1 + µ(t) f (t)x

]
x, (15)

where we use (9) and (14), and the solution of (15) with x(t0) = x0 is

x(t) =
ep(t, t0)

1
x0
+

∫ t
t0

ep(τ, t0) f (τ)∆τ
(16)

by Theorem 2.5.

The following inequalities, see [4, Lemma 2] and [4, Remark 2], are necessary to

show the asymptotic behavior of solutions of systems (2). For nonnegative f if − f ∈ R+,

then

1 −
∫ t

s
f (u)∆u ≤ e− f (t, s) ≤ exp

{
−

∫ t

s
f (u)∆u

}
, (17)
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and if f is rd-continuous, then

1 +
∫ t

s
f (u)∆u ≤ e f (t, s) ≤ exp

{∫ t

s
f (u)∆u

}
, (18)

for all t ≥ s.

3. AN SIR MODEL ON TIME SCALES

In this section, we find the exact solution to SIR model (2) with the initial conditions

(S0, I0). Then, we discuss the asymptotic behavior of the solutions and illustrate the behavior

of infectives on continuous and discrete time scales.

Theorem 3.1. Let β, γ ∈ Crd ([0,∞)T,R+) and −γ ∈ R+. Then the unique solution (S, I)

of SIR model (2) with the initial conditions (S0, I0) is given by




S = e−γ (t, 0) (D0 − 1) + 1 −
ep(t, 0)

1
I0
+

∫ t

0
β(τ)ep(τ, 0)∆τ

I =
ep(t, 0)

1
I0
+

∫ t

0
β(τ)ep(τ, 0)∆τ

,

(19)

where S, I ∈ C1
rd ([0,∞)T,R+), D = S + I with D(0) = D0, and

p(t) = β(t)D(t)(1 − µ(t)γ(t)) − γ(t) f or t ∈ [0,∞)T. (20)

Proof. Suppose β, γ ∈ Crd ([0,∞)T,R+) and −γ ∈ R+. First of all, from the assumption

−γ ∈ R+, 1+ µ(t)p(t) = 1+ µ(t)
[
β(t)D(t)

(
1− µ(t)γ(t)

)
− γ(t)

]
> 1− µ(t)γ(t) > 0, that

is p ∈ R+. Note that S∆ + I∆ = −γ(t)(S + I) + γ(t), that is

D∆ = −γ(t)D + γ(t), t ∈ [0,∞)T. (21)
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Since −γ ∈ R+, from Theorem 2.4, the solution to (21) with D(0) = D0 is

D(t) =e−γ (t, 0)D0 +

∫ t

0
e−γ (t, σ(τ))γ(τ)∆τ

=e−γ (t, 0)D0 − e−γ (t, 0)
∫ t

0

(
− γ(τ)

)
e−γ (0, σ(τ))∆τ

=e−γ (t, 0)D0 − e−γ (t, 0)
[
e−γ (0, 0) − e−γ (0, t)

]
=e−γ (t, 0)D0 − e−γ (t, 0) + 1

=e−γ (t, 0)
(
D0 − 1

)
+ 1 (22)

for t ∈ [0,∞)T, where we use Theorem 2.3 (iv). Note that SIR model (2) on time scales can

be rewritten as




S∆ = −
β(t)(1 − µ(t)γ(t))
1 + µ(t) β(t)I

SI − γ(t)S + γ(t),

I∆ =
β(t)(1 − µ(t)γ(t))
1 + µ(t) β(t)I

SI − γ(t)I .

(23)

By plugging S = D − I into the second equation of (1), we have

I∆ =
β(t)(1 − µ(t)γ(t))
1 + µ(t) β(t)I

I
[
D(t) − I

]
− γ(t)I

=
β(t)(1 − µ(t)γ(t))

[
D(t) − I

]
I −

[
1 + µ(t) β(t)I

]
γ(t)I

1 + µ(t) β(t)I

=

[
β(t)D(t) − β(t)D(t)µ(t)γ(t) − γ(t) − β(t)I

]
I

1 + µ(t) β(t)I

=

[
p(t) − β(t)I
1 + µ(t) β(t)I

]
I, (24)

where p is defined as in (20). Note that (24) is a Bernoulli equation in the form of (15).

Therefore, by Theorem 2.5 when α = 1, we obtain I as in (19). This implies that S = D − I

is obtained as in (19). Therefore, the proof is completed.

We now consider system (2) with positive β and γ constants for the following

examples.
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Example 3.2. Let T = [0,∞) and D = 1 in system (2). Then, since µ = 0, we have

p = β − γ from (20). From Theorem 3.1, the number of infectives to the continuous SIR

model with initial conditions S0 and I0 is given by

I (t) =
1

1
I0
+ βt

, t ∈ [0,∞) (25)

if p = 0, that is β = γ. Moreover, if p , 0 then

I (t) =
e
∫ t

0 (β−γ)du

1
I0
+

β
β−γ e(β−γ)t −

β
β−γ

=
e(β−γ)t

1
I0
+

β
β−γ

[
e(β−γ)t − 1

] , t ∈ [0,∞), (26)

where we use (10), and so S = 1 − I .

Example 3.3. Let T = Z+0 and D = 1 in system (2). Then, since µ = 1 and −γ ∈ R+, we

have p = β − βγ − γ from (20) and so 1+ µp = 1− γ + β(1− γ) = (1− γ)(1+ β) > 0, i.e.

p ∈ R+. Theorem 3.1 states that the number of infectives to discrete SIR model (3) with

initial conditions S0 and I0 is given by

In =
1

1
I0
+ βn

, n ∈ Z+0 (27)

if p = 0. Moreover, if p , 0, then from (11)

In =
(1 + p)n

1
I0
+ β

n−1∑
k=0

(1 + p)k

=
(1 + p)n

1
I0
+ β

[
(1 + p)n − 1

p

]

=
(1 + p)npI0

p + βI0
[
(1 + p)n − 1

] , n ∈ Z+0 . (28)
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Remark 3.4. Since γ > 0 and −γ ∈ R+, from Theorem 2.3 (v) and (17) we have

0 < e−γ (t, 0) ≤ e−
∫ t

0 γ∆u = e−γt, t ∈ [0,∞)T.

This implies that e−γ (t, 0) → 0 as t → ∞. Therefore, D(t) → 1 as t → ∞ by (22). Note

that D∆(t) = −γe−γ (t, 0)
(
D0 − 1

)
for all t ∈ [0,∞)T. Hence, D∆(t) > 0 if 0 < D0 < 1 and

D∆(t) < 0 if D0 > 1 for t ∈ [0,∞)T.

The results in Remark 3.4 are important to analyze the asymptotic behavior of

infectives and susceptibles to system (2) with positive constants β and γ in the following

theorem.

Theorem 3.5. Consider system (2) with positive constants β and γ. Let −γ ∈ R+ and p be

as in (20).

1. If p(t) = 0 on [0,∞)T, then all solutions (S, I) of system (2) with D0 = S0 + I0

converge to (1, 0).

2. If p(t) < 0 on [0,∞)T and γ > k β for some k > 0, then all solutions (S, I) of system

(2) with D0 = S0 + I0 converge to (1, 0).

3. If p(t) > 0 for t ∈ [0,∞)T with the constant graininess µ, then all solutions (S, I) of

system (2) with D0 = S0 + I0 converge to (γµ + γ
β, 1 − γµ −

γ
β ).

Proof. Assume that β and γ are positive constants, −γ ∈ R+, and p is as in (20) for

t ∈ [0,∞)T. In the proof of Theorem 3.1, we show that p ∈ R+.

1. Let p(t) = 0 on [0,∞)T. Then, ep(t, 0) ≡ 1 and by Theorem 3.1 the number of

infectives is (25) and so I (t) → 0 as t → ∞. Since D(t) → 1 as t → ∞ by Remark

3.4 and D = S + I, then S(t) → 1 as t → ∞.
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2. Suppose p(t) < 0 on [0,∞)T and γ > k β for some k > 0. Since p ∈ R+, then

ep(t, 0) > 0 for all t ∈ [0,∞)T by Theorem 2.3 (v). Therefore, we have

0 < I (t) ≤ ep(t, 0)I0, t ∈ [0,∞)T, (29)

where we use Theorem 3.1. If 0 < D0 ≤ 1, then D(t) ≤ 1 for t ∈ [0,∞)T by Remark

3.4. Therefore, p(t) ≤ βD − γ ≤ β − γ < 0 for t ∈ [0,∞)T. Now let − f = p < 0,

then f > 0 and − f ∈ R+. We can apply (17) for nonnegative f as follows

0 < ep(t, 0) ≤ e
∫ t

0 p(u)∆u
≤ e

∫ t

0 (β−γ)∆u = e(β−γ)t → 0 as t → ∞.

Hence, ep(t, 0) → 0 as t → ∞. This concludes that I (t) → 0 because of (29) and

so S(t) → 1 as t → ∞. If D0 > 1, then there exist η > 1 and t0 ∈ [0,∞)T such that

D(t) ≤ η for t ∈ [t0,∞)T by Remark 3.4. Besides, p(t) ≤ βD − γ ≤ βη − γ < 0 by

assumption. Again, by letting − f = p < 0 such that − f ∈ R+, we can apply (17) for

nonnegative f and obtain

0 < ep(t, 0) ≤ e
∫ t

0 p(u)∆u
≤ e

∫ t

0 (βη−γ)∆u = e(βη−γ)t → 0 as t → ∞.

Therefore, ep(t, 0) → 0 as t → ∞. This implies that I (t) → 0 as t → ∞ because of

(29) and so S(t) → 1 as t → ∞.

3. Let p(t) > 0 for t ∈ [0,∞)T with the constant graininess µ. Then, ep(t, 0) → ∞ as

t → ∞ and we have

ep(t, 0) ≥ 1 +
∫ t

0
p(u)∆u, t ∈ [0,∞)T
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by (18). Integrating the above inequality from 0 to∞ gives
∫ ∞
0 ep(u, 0)∆u = ∞. For

the limit of I, we apply L’Hôpital Rule. Let g(t) = 1
I0
+ β

∫ t
0 ep(τ, 0)∆τ > 0 and

f (t) = ep(t, 0) > 0 on [0,∞)T in Theorem 2.1. Hence, lim
t→∞

g(t) = ∞, g∆ = βep > 0

by Theorem 2.3 (v) and f ∆ = pep. Therefore,

lim
t→∞

f ∆(t)
g∆(t)

= lim
t→∞

p(t)ep(t, 0)
βep(t, 0)

= lim
t→∞

p(t)
β
.

Since D(t) → 1 as t → ∞, lim
t→∞

p(t) = β(1 − γµ) − γ. This implies that

lim
t→∞

I (t) = lim
t→∞

f (t)
g(t)

= lim
t→∞

p(t)
β
= 1 − γµ −

γ

β
,

and so S(t) → γµ +
γ
β as t → ∞.

The following examples illustrate Theorem 3.5, where the number of infectives is

obtained for the continuous and discrete SIR models.

Example 3.6. Consider SIR model (2) with (S0, I0) = (0.8, 0.2) on [0,∞). In Example 3.2,

we obtain the number of infectives from (25) and (26) for all t ∈ [0,∞). If β = γ = 0.5,

then p = 0. Hence, I → 0 as t → ∞. If β = 0.3 and γ = 0.4 are chosen, then p = −0.1 < 0

and in this case, I (t) → 0 as t → ∞. On the other hand, choosing β = 0.4 and γ = 0.3

yields p = 0.1 > 0. Hence, I (t) → 1
4 as t → ∞. Figure 1 shows the number of infectives

for all t ∈ [0, 50] based on the sign of p.

Example 3.7. Nowconsider SIRmodel (2)with (S0, I0) = (0.8, 0.2) on [0,∞)Z. In Example

3.3, we compute the number of infectives for all n ∈ [0,∞)Z from (27) and (28). If β = 0.25

and γ = 0.2, then p = 0 and so In → 0 as n → ∞. Letting β = 0.1 and γ = 0.4 yields

p = −0.34 < 0. Hence, In → 0 as n → ∞. Now let β = 1.5 and γ = 0.5. Then,

p = 0.25 > 0 and In →
1
6 as n → ∞. Number of infectives on [0, 25]Z for these cases are

demostrated in Figure 2.
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Figure 1. Number of infectives on [0, 50]

Figure 2. Number of infectives on [0, 25]Z
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4. AN SIS MODEL ON TIME SCALES

We now find the exact solution to SIS model (6) with the initial conditions (S0, I0)

where the population size is constant. An example on quantum calculus is presented at the

end of this section.

Theorem 4.1. Let β, γ ∈ Crd ([0,∞)T,R+) and q(t) = β(t)N −γ(t) ∈ R+. Then the unique

solution (S, I) of SIS model (6) is given by




S(t) = N −
eq(t, 0)

1
I0
+

∫ t

0
β(τ)eq(τ, 0)∆τ

I (t) =
eq(t, 0)

1
I0
+

∫ t

0
β(τ)eq(τ, 0)∆τ

,

(30)

with the initial conditions S(0) = S0 and I (0) = I0, where S, I ∈ C1
rd ([0,∞)T,R+) and

N = S0 + I0.

Proof. Suppose β, γ ∈ Crd ([0,∞)T,R+) and q(t) = β(t)N − γ(t) ∈ R+. First, adding

dynamic equations of system (6) yields S∆ + I∆ = 0. This implies that the total population

size N = S + I is constant in time and hence N = S0 + I0. Note that (6) can be rewritten as




S∆ = −
β(t)

1 + µ(t) β(t)I
SI +

γ(t)
1 + µ(t) β(t)I

I

I∆ =
β(t)

1 + µ(t) β(t)I
SI −

γ(t)
1 + µ(t) β(t)I

I .

(31)

By plugging S = N − I into the second equation of (31), we have

I∆ =
β(t)

1 + µ(t) β(t)I
(
N − I

)
I −

γ(t)
1 + µ(t) β(t)I

I

=

[
β(t)N − γ(t) − β(t)I

]
I

1 + µ(t) β(t)I

=

[
q(t) − β(t)I
1 + µ(t) β(t)I

]
I, (32)
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where q(t) = β(t)N − γ(t) ∈ R+ for all t ∈ [0,∞)T. Therefore, we obtain I as in (30) by

Theorem 2.5 when α = 1. The number of susceptibles can be found by S = N − I as in

(30). This completes the proof.

Remark 4.2. In the proof of Theorem 4.1, it is mentioned that SIS model (6) can be

rewritten as (31). Furthermore, if β, γ ∈ Crd ([0,∞)T,R+), then from the first equation of

(31), one can obtain

S∆
(
1 + µ(t) β(t)I

)
= − β(t)SI + γ(t)I, t ∈ [0,∞)T

and from (8)

S∆ +
(
Sσ − S

)
β(t)I = −β(t)SI + γ(t)I, t ∈ [0,∞)T.

This implies that

S∆ = −β(t)Sσ I + γ(t)I, t ∈ [0,∞)T. (33)

Now from the second equation of (31), we get

I∆ =β(t)
[
1 −

µ(t) β(t)I
1 + µ(t) β(t)I

]
SI − γ(t)

[
µ(t) β(t)I

1 + µ(t) β(t)I
− 1

]
I

=β(t)SI − µ(t) β(t)I
[

β(t)SI
1 + µ(t) β(t)I

]
− µ(t) β(t)I

[
γ(t)I

1 + µ(t) β(t)I

]
− γ(t)I

=β(t)SI + µ(t) β(t)I
[
−

β(t)
1 + µ(t) β(t)I

SI +
γ(t)I

1 + µ(t) β(t)I

]
− γ(t)I

=β(t)SI + µ(t) β(t)S∆I − γ(t)I

=β(t)
(
S + µ(t)S∆

)
I − γ(t)I

=β(t)Sσ I − γ(t)I, t ∈ [0,∞)T, (34)
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where we use (8) in the last step. Note that when β and γ are positive constants, (33) and

(34) give SIS model (3.1) in [7].

Remark 4.3. Let β and γ be positive constants and R0 =
βN
γ be the reproduction number.

If q = 0, i.e. R0 = 1, then Theorem 4.1 states that the number of susceptibles is S = N − I,

where I is given as in (25). If q , 0, i.e. R0 , 1, then the number of infectives is

I (t) =
qI0eq(t, 0)

q − βI0 + βI0eq(t, 0)
. (35)

Remark 4.4. Consider SIS model (6) when β and γ are positive constants. If q = 0, i.e.

R0 = 1, then I (t) → 0 and S(t) → N as t → ∞ from (25). Hence, the disease dies out. The

asymptotic behavior of infectives is discussed in [7, Theorem 3.2] when q , 0, i.e. R0 < 1

and R0 > 1 .

Example 4.5. Consider SIS model (6) on [0,∞)2N0 with N = 1, and positive constants β, γ.

Let s = 2n and t = 2k , n, k ∈ N and q = β − γ ∈ R+. From Remark 4.3, the unique solution

to the discrete SIS model with initial conditions S0 and I0 is given by

I (t) =
1

1
I0
+ βt

(36)

if q = 0. Moreover, if q , 0, then eq(t, 0) =
∏

s∈[0,t)
2N0

(1 + qs) =
k−1∏
n=0

(1 + q2n) by (12).

Hence, (35) implies that the number of infectives can be found as

I (t) =

qI0
k−1∏
n=0

(1 + q2n)

q − βI0 + βI0
k−1∏
n=0

(1 + q2n)

, (37)

and S(t) = 1 − I (t) for t ∈ [0,∞)T.
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Example 4.6. Consider SIS model (6) with (S0, I0) = (0.6, 0.4) on [0,∞)2N0 . If β =

γ = 0.3, then q = 0 and I (t) → 0 as t → ∞. Choosing β = 0.0008 and γ = 0.0016

yields q = −0.0008 < 0 and I (t) → 0 as t → ∞. If β = 0.5 and γ = 0.4 are chosen,

then q = 0.1 > 0. Hence, I (t) → q
β = 0.2 as t → ∞. Figure 3 illustrates the behavior of

infectives on [0, 1024)2N0 based on the sign of q. Here, the number of infectives is computed

from (36) and (37) in Example 4.5.

Figure 3. Number of infectives on [0, 1024)2N0
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ABSTRACT

In this study, we present discrete SIR (susceptible-infected-recovered) epidemic

models. We discuss the stability of the disease free and endemic equilibrium points by

using the linearization method and Lyapunov function.
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1. INTRODUCTION

In this paper, we consider a disease transmission model when the population is

divided into three epidemiological classes as the susceptibles S, the infectives I, and the

removed/recovered R, SIR in short. A basic continuous SIR model is studied by Hethcote

[9]:



S
′

= −βSI − γS + α

I
′

= βSI − (γ + λ)I

R
′

= λI − γR,
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where the transmission rate β is the average number of adequate contacts per unit time, and

γ and λ are the death rates of the population and the recovery rate of infectives, respectively.

The birth rate of susceptibles is denoted by α. The incidence rate βSI can be considered

in a nonlinear form as βSI
1+αI in [4] and as βS(t)I (t−τ)

1+αI (t−τ) in [5, 13, 14]. Here, τ indicates the

delay needed for the force of infection. McCluskey in [14] considers the system above with
βS(t)I (t−τ)
1+αI (t−τ) incidence rate and establishes global stability analysis of the endemic equilibrium

by constructing Lyapunov functions.

In [1], the unification of continuous and discrete models of SIR is formulated on an

arbitrary closed subset of real numbers, so called a time scale. The model in [1] is given

as a system of two nonlinear dynamic equations, and the exact solution is derived by the

approach of the Bernoulli equation on time scales, see [2]. In a number of works, some

other continuous and discrete SIR models have been investigated, see [3, 7, 8, 10, 12, 15].

Motivated by [1], we consider the following discrete SIR (susceptible-infected-

recovered) epidemic model of the form




∆Sn = −
β(1 − γ)
1 + βIn

SnIn − γSn + α

∆In =
β(1 − γ)
1 + βIn

SnIn − (γ + λ)In

∆Rn = λIn − γRn

(1)

with initial conditions S0 > 0, I0 > 0 and R0 ≥ 0. The numbers of susceptibles, infectives

and recovered for n ≥ 0 are denoted by Sn, In, and Rn respectively. It is assumed that all

parameters are positive such that γ < 1.
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We first introduce the prelimary results for the system of difference equations and

discrete stability analysis. Later, we find the equilibrium points that are classified as disease

free and endemic. We show the necessary conditions for their local stability. By the fact

that system (1) and the following system with the initial conditions S0 > 0, I0 > 0 and

R0 ≥ 0




∆Sn = −
β(1 − γ)
1 + βIn+1

Sn+1In+1 − γSn+1 + α

∆In =
β(1 − γ)
1 + βIn+1

Sn+1In+1 − (γ + λ)In+1

∆Rn = λIn+1 − γRn+1

(2)

have same equilibrium points, we construct a Lypunov fuction to show the global stability

of the endemic equilibrium, see Section 4.

2. PRELIMINARIES

In this paper, we discuss the stability analysis of systems (1) and (2). Therefore,

we first present some necessary definitions and results related to stability theory from the

books written by Peterson and Elaydi [6, 11].

The following system of n linear equations:

x1(n + 1) = a11x1(n) + a12x2(n) + · · · + a1m xm(n)

x2(n + 1) = a21x1(n) + a22x2(n) + · · · + a2m xm(n)
...

...
...

...

xm(n + 1) = am1x1(n) + am2x2(n) + · · · + amm xm(n)
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may be written in the vector form

x(n + 1) = Ax(n), (3)

where x(n) = (x1(n), x2(n), · · · , xm(n))T ∈ Rn, and A = (ai j ) is an m×m real nonsingular

matrix. System (3) is considered autonomous or time-invariant, since the values of A are

all constants. The spectral radius of A is defined as

r (A) = max
{
|ξ | : ξ is an eigenvalue of A

}
.

We consider the vector difference equation

x(n + 1) = f (x(n)), (4)

with x(n0) = x0, where x(n) ∈ Rk , f : Rk → Rk is continuous. A point x∗ in Rk is called

an equilibrium point of (4) if f (x∗) = x∗ for all n ≥ n0.

Definition 2.1. ([6], Definition 4.2) The equilibrium point x∗ of (4) is said to be:

(i) Stable if given ε > 0 and n0 ≥ 0, there exists δ = δ(ε, n0) such that ‖x0 − x∗‖ < δ

implies ‖x(n, n0, x0) − x∗‖ < ε for all n ≥ n0.

(ii) Attracting if there exists µ = µ(n0) such that ‖x(n, n0, x0) − x∗‖ < µ implies

lim
n→∞

x(n, n0, x0) = x∗.

(iii) Asymptotically stable if it is stable and attracting.

(iv) Globally asymptotically stable if µ = ∞ in parts (ii) and (iii).

The next theorem summarizes the main stability results for the linear autonomous

system (3).



66

Theorem 2.2. ([6], Theorem 4.13) The following statements hold:

(i) The zero solution of (3) is stable if and only if r (A) ≤ 1 and the eigenvalues of unit

modulus are semisimple, i.e., if the corresponding Jordan block is diagonal.

(ii) The zero solution of (3) is asymptotically stable if and only if r (A) < 1.

For two dimensional systems, if

|trA| < 1 + detA < 2 (5)

holds, then the zero solution of (3) is asymptotically stable, see [6].

Let x∗ be an equilibrium point of f in (4). A real-valued continuous function V

on some ball B about x∗ is called a "Lyapunov function" for f at x∗ provided V (x∗) = 0,

V (x) > 0 for x , x∗ in B, and

∆nV (x) ≡ V ( f (x)) − V (x) ≤ 0 (6)

for all x in B. If the inequality (6) is strict for x , x∗, then V is a "strict Lyapunov function".

We have the following theorem, which plays an important role in showing the global stability

of an equilibrium of the system of autonomous difference equations.

Theorem 2.3. (Lyapunov Stability Theorem) Let x∗ be a equilibrium point of f , and assume

f is continuous on some ball about x∗. If there is a Lyapunov function for f at x∗, then x∗

is stable. If there is a strict Lyapunov function for f at x∗, then x∗ is asymptotically stable.

Moreover, if V (x) → ∞ as ‖x‖ → ∞, then x∗ is globally asymptotically stable.
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2.1. EQUILIBRIUM POINTS

The first two equations of the SIR epidemic model (1) can be rewritten as




Sn+1 = −
β(1 − γ)
1 + βIn

SnIn + (1 − γ)Sn + α

In+1 =
β(1 − γ)
1 + βIn

SnIn + (1 − γ − λ)In.

(7)

It is clear that the equilibrium solution of (2) has

S∗ =
α + αβI∗

γ + βI∗
. (8)

From the second equation of (2), one can get β(1 − γ)S∗I∗ + (1 − γ − λ)I∗(1 + βI∗) =

(1 + βI∗)I∗. Simplifying yields I∗
(
βI∗(γ + λ) + γ + λ − βS∗ + βγS∗

)
= 0. Therefore,

I∗ = 0 or βI∗(γ + λ) + γ + λ − βS∗ + βγS∗ = 0. (9)

Nowwewant to solve (8) and (9). If I∗ = 0, then S∗ = α
γ . If βI∗(γ+λ)+γ+λ− βS∗+ βγS∗ =

0, then

I∗2 +
(
γ + 1
β
+
α(γ − 1)
γ + λ

)
I∗ +

(
γ

β2
+
α(γ − 1)
β(γ + λ)

)
= 0. (10)

Solving the algebraic equation (10) gives

I∗1,2 =
−

(
γ+1
β +

α(γ−1)
γ+λ

)
±

√(
γ+1
β +

α(γ−1)
γ+λ

)2
− 4

(
γ

β2
+

α(γ−1)
β(γ+λ)

)
2

.

To find I∗1 and I∗2 values, the expression in the square root needs to be simplified as follows

(
γ + 1
β
+
α(γ − 1)
γ + λ

)2
− 4

(
γ

β2
+
α(γ − 1)
β(γ + λ)

)
= (γ − 1)2

[
1
β2
+

2α
β(γ + λ)

+
α2

(γ + λ)2

]

= (γ − 1)2
[
1
β
+

α

(γ + λ)

]2
.
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Using the fact that γ < 1, we get

I∗1,2 =
−

(
γ+1
β +

α(γ−1)
γ+λ

)
± (1 − γ)

[
1
β +

α
(γ+λ)

]

2
.

Hence,

I∗1 = −
γ

β
+ (1 − γ)

α

γ + λ
and I∗2 = −

1
β
.

If I∗ = I∗1 , then substituting I∗ into (8) gives S∗ = α+αβI∗

γ+βI∗ =
γ+λ
β +α immediately. Therefore,

system (2) with initial conditions has a disease free equilibrium E0 = (S∗0, I∗0, R∗0), where

S∗0 =
α

γ
, I∗0 = 0, and R∗0 = 0 (11)

and a positive endemic equilibrium E+ = (S∗, I∗, R∗), where

S∗ =
γ + λ

β
+ α, I∗ = −

γ

β
+ (1 − γ)

α

γ + λ
, R∗ =

λ

γ

(
−
γ

β
+ (1 − γ)

α

γ + λ

)
. (12)

Now define the basic reproduction number for system (1) as

R0 =
(1 − γ)αβ

γ
+ 1 − (γ + λ). (13)

We analyze the stability of the equilibria of system (1) based on the basic reproduction

number.

3. LOCAL STABILITY OF EQUILIBRIUM POINTS OF SYSTEM (1)

In this section, we show that if R0 < 1, then all solutions of system (1) approach

E0 = (S∗0, 0, 0) as in (11). For the proof, it is sufficient to consider system (7).

Theorem 3.1. If R0 < 1, then the disease free equilibrium E0 of system (1) is locally

asymptotically stable. And if R0 > 1, then E0 is unstable.
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Proof. The Jacobian matrix for the variables of system (7) is

J (S, I) =



1−γ
1+βI

β(γ−1)S
(1+βI)2

β(1−γ)I
1+βI

β(1−γ)S
(1+βI)2 + 1 − γ − λ



. (14)

For the disease free equilibrium (S∗0, 0) of system (7), the Jacobian matrix is given by

J (S∗0, 0) =



1 − γ (γ−1)αβ
γ

0 (1−γ)αβ
γ + 1 − γ − λ



whose eigenvalues are

ξ1 = 1 − γ and ξ2 =
(1 − γ)αβ

γ
+ 1 − γ − λ. (15)

It follows that ifR0 < 1, then ξ1 < 1 and ξ2 < 1. Therefore, (S∗0, 0) is locally asymptotically

stable. If R0 > 1, then ξ2 > 1 and thus (S∗0, 0) is unstable. Now one can consider system

(1), where Rn+1 = λIn + (1 − γ)Rn. In this case, the Jacobian matrix for E0 is given by

J (E0 = (S∗0, 0, 0)) =



1 − γ (γ−1)αβ
γ 0

0 (1−γ)αβ
γ + 1 − γ − λ 0

0 λ 1 − γ



whose eigenvalues are ξ1, ξ2 given as in (15), and ξ3 = 1 − γ. Since γ < 1, ξ3 < 1.

Therefore, if R0 < 1, then E0 is locally asypmtotically stable, and unstable if R0 > 1 by

Theorem 2.2. Hence, the proof is completed.
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Following similar steps as in the previous theorem, in this section we show that if

R0 > 1, then all solutions of system (1) approach E+ = (S∗, I∗, R∗) as in (12). Note that

one can get the disease free equilibrium, i.e., S∗0 =
α
γ , I∗0 = 0, and R∗0 = 0 if R0 = 1.

Theorem 3.2. If R0 > 1, then the endemic equilibrium point E+ of system (1) is locally

asymptotically stable.

Proof. Assume R0 > 1. In the proof of Theorem 3.1, the Jacobian matrix for the variables

of system (7) is computed as in (14). Hence, for the endemic equilibrium (S∗, I∗), the

Jacobian matrix is

J (S∗, I∗) =



1−γ
1+βI∗

β(γ−1)S∗

(1+βI∗)2

β(1−γ)I∗

1+βI∗
β(1−γ)S∗

(1+βI∗)2 + 1 − γ − λ



=



γ+λ
γ+λ+αβ −

(γ+λ)2
(1−γ)(γ+λ+αβ)

−γ +
αβ

γ+λ+αβ
(γ+λ)2

(1−γ)(γ+λ+αβ) + 1 − γ − λ



.

To show that (S∗, I∗) is locally asymptotically stable, condition (5) needs to be held for

J (S∗, I∗), i.e.,

|trJ (S∗, I∗) | < 1 + detJ (S∗, I∗) < 2. (16)

First, note that

detJ (S∗, I∗) =
(γ + λ)2

(1 − γ)(γ + λ + αβ)

(
γ + λ

γ + λ + αβ
+

αβ

γ + λ + αβ
− γ

)
+

γ + λ

γ + λ + αβ

(
1 − γ − λ

)
=

(γ + λ)2

γ + λ + αβ
+

γ + λ

γ + λ + αβ

(
1 − γ − λ

)
=

γ + λ

γ + λ + αβ
. (17)
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The assumption R0 > 1 implies that

γ + λ

(1 − γ)(γ + λ + αβ)
− 1 < 0. (18)

Therefore,

|trJ (S∗, I∗) | = |
γ + λ

γ + λ + αβ
+

(γ + λ)2

(1 − γ)(γ + λ + αβ)
+ 1 − (γ + λ) |

= 1 +
γ + λ

γ + λ + αβ
+ (γ + λ)

(
γ + λ

(1 − γ)(γ + λ + αβ)
− 1

)
< 1 + detJ (S∗, I∗) (19)

by (17) and (18). Furthermore,

1 + detJ (S∗, I∗) = 1 +
γ + λ

γ + λ + αβ
= 1 +

1

1 + αβ
γ+λ

< 2. (20)

Hence, (16) holds from (19) and (20). For system (1), the characteristic equation is

det(J (E+ = (S∗, I∗, R∗)) − r I3×3) =

��������������������

γ+λ
γ+λ+αβ −

(γ+λ)2
(1−γ)(γ+λ+αβ) 0

−γ +
αβ

γ+λ+αβ
(γ+λ)2

(1−γ)(γ+λ+αβ) + 1 − γ − λ 0

0 −λ 1 − γ − r

��������������������

= det(J ((S∗, I∗)) − r I2×2) × (1 − γ − r) = 0,

where Ii×i is the i × i unit matrix for i = 2, 3. We already have the eigenvalues r1 and r2 of

det(J ((S∗, I∗)) − r I2×2), and r3 = 1− γ. Thus, by (16) and the Schur-Cohn Criterion in [6],

we have |r1 | < 1, |r2 | < 1, and |r3 | < 1. By Theorem 2.2, the positive endemic equilibrium

E+ is locally asymptotically stable if R0 > 1.
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Remark 3.3. From Theorems 3.1 and 3.2, R0 < 1 guarantees that the disease free equi-

librium is locally asymptotically stable. On the other hand, R0 > 1 guarantees that the

endemic equilibrium is locally asymptotically stable while the disease free equilibrium is

unstable.

4. GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM FOR SYSTEM (2)

By the fact that systems (1) and (2) have the same equilibrium points under the same

conditions, we show the global stability of the endemic equilibrium E+ = (S∗, I∗, R∗) of

system (2) when R0 > 1. Note that R0 > 1 guarantees the positivity of I∗ of E+.

Theorem 4.1. If R0 > 1, then the endemic equilibrium E+ of system (2) is globally

asymptotically stable.

Proof. Let f (x) = x
1+βx and g(x) = x − 1 − ln x, x > 0. It is clear that g has minimum

at x = 1 such that g(1) = 0 and g(x) ≥ 0 for x > 0. We define the following Lyapunov

function

Vn = V (Sn, In, Rn) =
1

β(1 − γ) f (I∗0 )
VSn +

I∗

β(1 − γ)S∗ f (I∗)
VIn, (21)

where

VSn = g

(
Sn

S∗

)
, VIn = g

(
In

I∗

)
. (22)

Now we calculate ∆VSn and ∆VIn in order to show ∆Vn < 0.

∆VSn = g

(
Sn+1

S∗

)
− g

(
Sn

S∗

)
=

Sn+1 − Sn

S∗
+ ln

Sn

Sn+1

≤ (Sn+1 − Sn)
(

Sn+1 − S∗

S∗Sn+1

)
= −γ

(Sn+1 − S∗)2

S∗Sn+1
− β(1 − γ) f (I∗)

(
Sn+1 f (In+1)

S∗ f (I∗)
− 1

) (
1 −

S∗

Sn+1

)
, (23)
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where we use ln (1 − x) ≤ −x for x < 1 and replace α by β(1−γ)S∗ f (I∗)+γS∗. Similarly,

∆VIn = g

(
In+1

I∗

)
− g

(
In

I∗

)
=

In+1 − In

I∗
+ ln

In

In+1

≤ (In+1 − In)
(

In+1 − I∗

I∗In+1

)
=
β(1 − γ)S∗ f (I∗)

I∗

(
Sn+1 f (In+1)

S∗ f (I∗)
−

In+1

I∗

) (
1 −

I∗

In+1

)
, (24)

since (γ + λ)I∗ = βS∗ f (I∗). Therefore, from (23) and (24)

∆Vn = Vn+1 − Vn

≤ −γ
(Sn+1 − S∗)2

β(1 − γ) f (I∗)S∗Sn+1
−

(
Sn+1 f (In+1)

S∗ f (I∗)
− 1

) (
1 −

S∗

Sn+1

)
+

(
Sn+1 f (In+1)

S∗ f (I∗)
−

In+1

I∗

) (
1 −

I∗

In+1

)
. (25)

For simplicity, let xn+1 =
Sn+1

S∗
, yn+1 =

In+1

I∗
and F (yn+1) =

f (In+1)
f (I∗)

. Then, (25) becomes

∆Vn ≤ −γ
(Sn+1 − S∗)2

β(1 − γ) f (I∗)S∗Sn+1
+ F (yn+1) −

xn+1

yn+1
F (yn+1) −

1
xn+1

− yn+1 + 2. (26)

Adding and subtracting ln
xn+1

yn+1
F (yn+1) in (26) yields

∆Vn ≤ −γ
(Sn+1 − S∗)2

β(1 − γ) f (I∗)S∗Sn+1
− g

(
1

xn+1

)
− g

(
xn+1

yn+1
F (yn+1)

)
+F (yn+1) − yn+1 + ln yn+1 − ln F (yn+1). (27)

Let h(z) = F (z) − z + ln z − ln F (z), where z = yn+1. Then, h(1) = 0 and h′(z) =

(1 − z)
(
2βI∗+(βI∗)2z

(1+βI∗z)2

)
. Hence, h′(z) > 0 if z < 1 and h′(z) < 0 if z > 1.
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From the above discussion and the fact that g is nonnegative, if (Sn+1, In+1) =

(S∗, I∗), then h = 0 and ∆Vn = 0. If (Sn+1, In+1) , (S∗, I∗), then h < 0 and hence ∆Vn < 0

for any n ≥ 0 from (27). Since V is a monotone decreasing sequence, lim
n→∞

Vn ≥ 0 and

lim
n→∞

(Vn+1 − Vn) = 0. Therefore, (26) implies that

lim
n→∞

Sn+1 = S∗. (28)

By solving the first equation of system (2) for In+1 and using (28), we have

lim
n→∞

In+1 = lim
n→∞

α − (γ + 1)Sn+1 + Sn

β(2Sn+1 − Sn − α)
=

α − γS∗

β(S∗ − α)
= I∗. (29)

From the third equation of system (2) and (29), lim
n→∞

Rn = R∗ can be shown similarly. Hence,

we obtain lim
n→∞

(Sn, In, Rn) = (S∗, I∗, R∗). Therefore, the endemic equilibrium E+ of system

(2) is asymptotically stable and since V (x) → ∞ as ‖x‖ → ∞, where x = (Sn, In, Rn), E+

is globally asymptotically stable by Theorem 2.3.

5. CONCLUSION

In this paper, we propose discrete SIR epidemic models (1) and (2) with nonlinear

incidence rate. The stability of disease-free and endemic equilibria is determined by

the reproduction number, R0. We show the local stability of disease-free and endemic

equilibria of system (1) by the linearizarion method, yet the global stability is left as an

open problem. On the other hand, we successfully show the global stability of the endemic

equilibrium of system (2) by constructing a suitable Lyapunov function. Note that since

the first two equations of system (2) is independent from the last equation, Rn → R∗ as

n → ∞ can be also obtained in Theorem 4.1 if the right-side of last equation has the form

of λIn+1 − γRn. To investigate an application of discrete models (1) and (2) from the

epidemiological perspective, the authors would like fit these models to a clinical data.
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IV. OSCILLATION CRITERIA FOR FOUR-DIMENSIONAL TIME-SCALE
SYSTEMS
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ABSTRACT

In this paper, we obtain oscillation and nonoscillation criteria for solutions to four

dimensional systems of first order dynamic equations on time scales. Especially, we are

interested in the conditions which insure that every solution is oscillatory in the sub-linear,

half-linear, and super-linear cases. Our approach is based on the sign of the components of

nonoscillatory solutions. Several examples are included to highlight our main results.

Keywords: Time scales; Oscillation; Nonoscillation; Four-dimensional systems

1. INTRODUCTION

We investigate four dimensional dynamic systems of the form




x∆(t) = a(t)yα (t)

y∆(t) = b(t)z β (t)

z∆(t) = c(t)wγ (t)

w∆(t) = −d(t)xλ (σ(t))

(1)
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on a time scale T, i.e., a closed subset of real numbers, where the coefficient functions

a, b, c, d ∈ Crd ([t0,∞)T, (0,∞)) and α, β, γ, λ are the ratios of odd positive integers. Here,

Crd is the set of rd-continuous functions and [t0,∞)T := [t0,∞)∩T. Throughout this paper,

we assume

∫ ∞

t0
a(t)∆t =

∫ ∞

t0
b(t)∆t =

∫ ∞

t0
c(t)∆t = ∞ (2)

and consider time scales unbounded. By a solution (x, y, z,w) of system (1), we mean that

functions x, y, z,w are delta-differentiable, their first delta-derivatives are rd-continuous,

and satisfy system (1) for all t ≥ t0. We call (x, y, z,w) a proper solution if it is defined

on [t0,∞)T and for t ≥ t0, sup{|x(s) |, |y(s) |, |z(s) |, |w(s) | : s ∈ [t,∞)T} > 0. A solution

(x, y, z,w) of system (1) is said to be oscillatory if all of its components x, y, z,w are

oscillatory, i.e., neither eventually positive nor eventually negative. Otherwise, it is said to

be nonoscillatory. Obviously, if one component of a solution of system (1) is eventually of

one sign, then all its components are eventually of one sign and so nonoscillatory solutions

have all components nonoscillatory. We are also interested in system (1) in the sub-linear

case, half-linear case, and super linear case, that is, when αβγλ < 1, αβγλ = 1, and

αβγλ > 1, respectively.

Motivated by [5] and [7], we establish some oscillation results for system (1) on

time scales. In the next section, we present some auxiliary lemmas which are needed in the

proof of our results and we consider two types of nonoscillatory solutions: one type when

all components have the same sign, the other type when the third component has a different

sign. In the following sections, we consider the properties of these types including the

asymptotic behaviors. Our approach is based on the integral conditions of the coefficient

functions a, b, c and d with the products of α, β, γ, λ. We also illustrate the results by

examples. Finally, we introduce the conditions which insure that every solution of system

(1) is oscillatory in the sub-linear, half-linear and super-linear cases.
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2. PRELIMINARY RESULTS

We only include preliminary results in this section. Nevertheless, we suggest readers

the books by Bohner and Peterson [3, 4] for an introduction to time scales calculus.

The following lemma is essential to establish our main theorems for the sub-linear,

half-linear and super-linear cases. Its proof follows from the chain rule on a time scale, see

[1].

Lemma 2.1. Let x ∈ Crd
(
T,R+

)
.

(i) If 0 < η < 1 and x∆(t) < 0 on T, then∫ ∞

T
−

x∆(t)
xη (t)

∆t < ∞, T ∈ T.

(ii) If η > 1 and x∆(t) > 0 on T, then∫ ∞

T

x∆(t)
xη (σ(t))

∆t < ∞, T ∈ T.

Using the sign of the components, one can observe the following: let (x, y, z,w) be

a nonoscillatory solution of system (1). Without loss of generality, assume that x(t) > 0 for

t ≥ t0, t0 ∈ T. From the fourth equation of system (1), w is strictly decreasing. Hence, it

is of one sign. Continuing by the same argument, we get z and y are monotone and of one

sign for large t too. The remaining cases when any of the components y, z,w are eventually

positive or negative are proved similarly. Therefore, if one of the components of a solution

(x, y, z,w) is eventually of one sign, then all of its components are eventually of one sign. In

other words, any nonoscillatory solution of system (1) has all components nonoscillatory.

The next lemma shows that any nonoscillatory solution (x, y, z,w) of system (1) has

two types when (2) holds.

Lemma 2.2. Any nonoscillatory solution (x, y, z,w) of system (1) such that x(t) > 0 for

large t ∈ T is one of the following types:

Type (a): x > 0, y > 0, z > 0, w > 0 eventually

Type (b): x > 0, y > 0, z < 0, w > 0 eventually.
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Proof. Let (x, y, z,w) be a nonoscillatory solution of system (1). Without loss of generality,

assume that x(t) > 0 for t ≥ T , T ∈ T. Then we first assume that there exists a solution

such that y(t) > 0, z(t) < 0, and w(t) < 0 for t ≥ T . The negativity of w and the third

equation of system (1) show that z(t) is nonincreasing for t ≥ T . Therefore, there exist

t0 ≥ T , t0 ∈ T and k > 0 such that z(t) ≤ −k for t ≥ t0. Plugging this inequality in the

integration of the second equation from t0 to t we get

y(t) − y(t0) ≤ −k β
∫ t

t0
b(s)∆s, t ≥ t0.

Then y(t) → −∞ as t → ∞, but this contradicts the fact that y(t) > 0 for large t. The case

when y(t) < 0, z(t) > 0, and w(t) > 0 is similar and hence is eliminated. Now assume that

there exists a nonoscillatory solution of system (1) such that y(t) < 0, z(t) < 0 for t ≥ T .

The negativity of z and the second equation of system (1) yield y(t) is nonincreasing for

t ≥ T . Hence, there exist t0 ≥ T , t0 ∈ T and l > 0 such that y(t) ≤ −l for t ≥ t0. Plugging

this inequality in the integration of the first equation from t0 to t yields

x(t) − x(t0) ≤ −lα
∫ t

t0
a(s)∆s, t ≥ t0.

Then x(t) → −∞ as t → ∞, but this contradicts the fact that x(t) > 0 for large t.

Next, assume that there exists a nonoscillatory solution of system (1) such that z(t) > 0,

w(t) < 0 for t ≥ T . The positivity of x and the fourth equation of system (1) yield w(t)

is nonincreasing for t ≥ T . Hence, there exist t0 ≥ T , t0 ∈ T and m > 0 such that

w(t) ≤ −m for t ≥ t0. Using this inequality and integrating the third equation from t0 to

t, we get

z(t) − z(t0) ≤ −mγ

∫ t

t0
c(s)∆s, t ≥ t0.

Then z(t) → −∞ as t → ∞, but this contradicts the assumption z(t) > 0 for large t.
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In order to show that system (1) is oscillatory, we first try the divergence of the

single integral of d.

Lemma 2.3. System (1) is oscillatory if

∫ ∞

t0
d(t)∆t = ∞. (3)

Proof. By Lemma 2.2, any nonoscillatory solution of system (1) is either Type (a) or Type

(b). Let (x, y, z,w) be of a Type (a) solution of system (1) such that x(t) > 0 for t ≥ T .

The positivity of y and the first equation of system (1) show that x(t) is nondecreasing for

t ≥ T . Therefore, there exist t0 ≥ T , t0 ∈ T and k > 0 such that x(t) ≥ k for t ≥ t0. Then

using this inequality and the integration of the fourth equation from t0 to t give us

w(t) ≤ −kλ
∫ t

t0
d(s)∆s, t ≥ t0.

As t → ∞, w(t) → −∞ by (3). But, this is a contradiction because of the assumption

w(t) > 0 for large t. The discussion above is also valid for Type (b) solutions because the

sign of z is not needed in this proof. Therefore, system (1) does not have any nonoscillatory

solutions and so the proof is completed.

Now as a result of the discussion above, from now on we will assume that

∫ ∞

t0
d(t)∆t < ∞. (4)

3. TYPE (A) SOLUTIONS

In this section, we investigate not only nonoscillatory criteria, but also the asymptotic

behavior of Type (a) solutions. The following property of Type (a) solutions in the discrete

case can be found in [6].
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Proposition 3.1. Every solution (x, y, z,w) of Type (a) of system (1) satisfies

I
(∫ ∞

t
d(s)∆s

)γ βα
≤ x1−λγ βα (σ(t)), (5)

where t ∈ T is sufficiently large and

I =
∫ t

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
c(η)∆η

) β
∆r+

-

α

∆s. (6)

Proof. Let (x, y, z,w) be of a Type (a) solution of system (1) such that x(t) > 0 for t ≥ T .

Then integrating the third equation from t0 to t yields

z(t) ≥
∫ t

t0
c(s)wγ (s)∆s, t ≥ t0. (7)

Since w(t) is nonincreasing for t ≥ T , (7) yields

z β (t) ≥ wγ β (t)
(∫ t

t0
c(s)∆s

) β
, t ≥ t0.

Now integrating of the second equation of system (1) from t0 to t and plugging the

above inequality into the resulting inequality yield

yα (t) ≥ wγ βα (t) *
,

∫ t

t0
b(s)

(∫ s

t0
c(r)∆r

) β
∆s+

-

α

, t ≥ t0, (8)

where we use the monotonicity of w. Integrating the first equation of system (1) from t0 to

t and substituting (8) in the resulting integration give us

x(σ(t)) ≥ wγ βα (t)I, (9)
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where we use the monotonicities of x and w, and I is defined as in (6). Integrating the

fourth equation of system (1) from t to∞ and using the monotonicity of x yield

w(t) ≥
∫ ∞

t
d(s)xλ (σ(s))∆s ≥ xλ (σ(t))

∫ ∞

t
d(s)∆s (10)

and this implies

wγ βα (t) ≥ xλγ βα (σ(t))
(∫ ∞

t
d(s)∆s

)γ βα
. (11)

Therefore, from (9) and (11) we have

x(σ(t)) ≥ I xλγ βα (σ(t))
(∫ ∞

t
d(s)∆s

)γ βα

which proves the desired result (5).

Theorem 3.1. Every nonoscillatory solution of system (1) is of Type (a) if any of the

following conditions holds:

(i)
∫ ∞

t0
c(t)

(∫ ∞

t
d(s)∆s

)γ
∆t = ∞;

(ii)
∫ ∞

t0
b(t)

(∫ ∞

t
c(r)

(∫ ∞

r
d(τ)∆τ

)γ
∆r

) β
∆s = ∞;

(iii) αβγλ < 1 and
∫ ∞

t0
b(t)

(∫ t

t0
a(s)∆s

)λγ β (∫ ∞

t
c(r)

(∫ ∞

r
d(τ)∆τ

)γ
∆r

) β
∆t = ∞;

(iv) λγ βα > 1 and
∫ ∞

t0
a(t) *

,

∫ ∞

σ(t)
b(s)

(∫ ∞

s
c(r)

(∫ ∞

r
d(η)∆η

)γ
∆r

) β
∆s+

-

α

∆t = ∞.

Proof. Since (2) holds, every nonoscillatory solution of system (1) is of either Type (a) or

Type (b) by Lemma 2.2. Assume that (x, y, z,w) is of a Type (b) solution of system (1)

such that x(t) > 0 for t ≥ T .
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Assume (i) holds. Since the monotonicities and the signs of x and w are same for

both types, (10) holds not only for Type (a) solutions but also for Type (b) solutions of

system (1). Substituting (10) in the integration of the third equation from t0 to t yields

−z(t0) ≥ xλγ (t0)
∫ t

t0
c(s)

(∫ ∞

s
d(r)∆r

)γ
∆s, t ≥ t0 (12)

following from the monotonicity of x. As t → ∞, the right-hand side of (12) approaches to

∞ by (i), but then this contradicts the boundedness of z. Therefore, (x, y, z,w) is of Type

(a) solution.

Assume that (ii) holds. Since w is positive, from the third equation of system (1)

we have that z(t) is nondecreasing for t ≥ T . Therefore, by integrating the third equation

of system (1) from t to∞ and using the inequality (10), we have

−z(t) ≥ xλγ (t)
∫ ∞

t
c(s)

(∫ ∞

s
d(r)∆r

)γ
∆s, t ≥ t0, (13)

where we use the monotonicity of x. The negativity of z and the second equation of system

(1) give us that y(t) is nonincreasing for t ≥ T . Therefore, integrating the second equation

from t0 to t and plugging (13) into the resulting integration yield

y(t0) ≥ xλγ β (t0)
∫ t

t0
b(s)

(∫ ∞

s
c(r)

(∫ ∞

r
d(τ)∆τ

)γ
∆r

) β
∆s. (14)

As t → ∞, the right hand side of the inequality (14) approaches to ∞ by (ii). On the other

hand, this contradicts the boundedness of y. Hence, we have shown that (x, y, z,w) is of

Type (a) solution.
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Assume that (iii) holds. By integrating the first equation of system (1) from t0 to t

and using the monotonicity of y, we get

x(t) ≥
∫ t

t0
a(s)yα (s)∆s (15)

≥ yα (t)
∫ t

t0
a(s)∆s, t ≥ t0. (16)

Substituting (13) in the second equation of system (1) yields for t ≥ t0

−y∆(t) = b(t)(−z β (t)) ≥ xλγ β (t)b(t)
(∫ ∞

t
c(s)

(∫ ∞

s
d(r)∆r

)γ
∆s

) β
.

Finally, substituting (16) in the above inequality gives us

−y∆(t) ≥ b(t)yλγ βα (t)
(∫ t

t0
a(s)∆s

)λγ β (∫ ∞

t
c(s)

(∫ ∞

s
d(r)∆r

)γ
∆s

) β
.

Dividing both sides of the inequality above by yλγ βα and integrating both sides of the

resulting inequality from t0 to t yield

∫ t

t0
−

y∆(s)
yλγ βα (s)

∆s ≥
∫ t

t0
b(s)

(∫ s

t0
a(η)∆η

)λγ β (∫ ∞

s
c(r)

(∫ ∞

r
d(τ)∆τ

)γ
∆r

) β
∆s.

As t → ∞,
∫ ∞

t0
−

y∆(s)
yλγ βα (s)

∆s = ∞ by (iii). However,
∫ ∞

t0
−

y∆(s)
yλγ βα (s)

∆s < ∞ by Lemma

2.1 (i) so this gives a contradiction and completes the proof. Therefore, (x, y, z,w) is of

Type (a) solution.

Assume that (iv) holds. Integrating the second equation of system (1) from σ(t) to

∞ and the monotonicity of y yield

y(t) ≥ y(σ(t)) ≥
∫ ∞

σ(t)
b(s)(−z β (s))∆s. (17)
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Substituting (13) and (17) gives

y(t) ≥ xλγ β (σ(t))
∫ ∞

σ(t)
b(s)

(∫ ∞

s
c(r)

(∫ ∞

r
d(τ)∆τ

)γ
∆r

) β
∆s, (18)

where we use the monotonicity of x. Now after plugging (18) into the first equation system

(1), dividing both sides of the resulting inequality by xλγ βα (σ(t)) and then integrating from

t0 to t, we obtain

∫ t

t0

x∆(s)
xλγ βα (σ(s))

∆s ≥
∫ t

t0
a(s) *

,

∫ ∞

σ(s)
b(r)

(∫ ∞

r
c(τ)

(∫ ∞

τ
d(η)∆η

)γ
∆τ

) β
∆r+

-

α

∆s.

As t → ∞,
∫ ∞

t0

x∆(s)
xλγ βα (s)

∆s = ∞ by (iv). However,
∫ ∞

t0

x∆(t)
xλγ βα (σ(t))

∆t < ∞ by Lemma

2.1 (ii). So this gives a contradiction and shows that (x, y, z,w) has to be of Type (a)

solution of system (1).

Since
∫ ∞

t0
d(t)∆t < ∞, we have

∫ ∞

t0
c(t)

(∫ ∞

t
d(s)∆s

)
∆t =

∫ ∞

t0
d(t)

(∫ σ(t)

t0
c(s)∆s

)
∆t,

see [2]. Therefore, in the special case of γ = 1 in part (i) of Theorem 3.1, we get the

following nonoscillation criteria.

Remark 3.2. If
∫ ∞

t0
d(t)

(∫ σ(t)

t0
c(s)∆s

)
∆t = ∞, then every nonoscillatory solution of

system (1) is of Type (a).

Finding an integral condition for Type (a) solutions when λγ βα = 1 is still open

for discussion. Nevertheless, we have the following corollary.

Corollary 3.1. Every nonoscillatory solution of system (1) is of Type (a) if λγ βα = 1 and

lim sup
t→∞

*
,

∫ ∞

σ(t)
b(s)

(∫ ∞

s
c(r)

(∫ ∞

r
d(η)∆η

)γ
∆r

) β
∆s+

-

α (∫ t

t0
a(s)∆s

)
> 1. (19)
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Proof. Let αβγλ = 1. Since (2) holds, every nonoscillatory solution of system (1) is of

either Type (a) or Type (b) by Lemma 2.2. Assume (19) holds and (x, y, z,w) is of a Type

(b) solution of system (1) such that x(t) > 0 for t ≥ T . Then (16) and (18) hold. Plugging

(18) into (16) yields

x(t) ≥ xλγ βα (σ(t)) *
,

∫ ∞

σ(t)
b(s)

(∫ ∞

s
c(r)

(∫ ∞

r
d(τ)∆τ

)γ
∆r

) β
∆s+

-

α ∫ t

t0
a(s)∆s. (20)

Hence, after dividing the inequality above by xλγ βα (σ(t)) and taking the lim sup of the

resulting inequality, we get

lim sup
t→∞

*
,

∫ ∞

σ(t)
b(s)

(∫ ∞

s
c(r)

(∫ ∞

r
d(η)∆η

)γ
∆r

) β
∆s+

-

α (∫ t

t0
a(s)∆s

)
≤ 1

which contradicts (19). Therefore, (x, y, z,w) is of a Type (a) solution of (1).

Remark 3.3. Any Type (a) solution (x, y, z,w) of system (1) satisfies the following:

(i) lim
t→∞

x(t) = ∞;

(ii) lim
t→∞

y(t) = ∞.

Proof. Let (x, y, z,w) be of a Type (a) solution of system (1) such that x(t) > 0 for t ≥ T .

Since z is positive, from the second equation of system (1) we have that y(t) is nondecreasing

for t ≥ T . Hence, there exist t0 ≥ T , t0 ∈ T and k > 0 such that y(t) ≥ k for t ≥ t0. Then

(15) holds. This implies that

x(t) ≥ kα
∫ t

t0
a(s)∆s, t ≥ t0. (21)

As t → ∞, we get lim
t→∞

x(t) = ∞.

Now since w is positive, from the third equation of system (1) we have that z(t)

is nondecreasing for t ≥ T . Hence, there exist t0 ≥ T , t0 ∈ T and k > 0 such that

z(t) ≥ k for t ≥ t0. Integrating the second equation from t0 to t and using this inequality
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give us

y(t) ≥
∫ t

t0
b(s)z β (s)∆s (22)

≥ k β
∫ t

t0
b(s)∆s, t ≥ t0. (23)

As t → ∞, we have lim
t→∞

y(t) = ∞.

Let us consider the following example to illustrate Theorem 3.1.

Example 3.4. Let T = Z and t0 = 1. Consider the system




∆xn =
19.3n

2n+3 yn

∆yn =
5.3

9n
5

22n+2 z
1
5
n

∆zn =
2n+1

31−nwn

∆wn = −
1
3n x

1
3
n+1 .

(24)

Then
∫ ∞

1
a(t)∆t = lim

T→∞

T−1∑
n=1

19.3n

2n+3 =

∞∑
n=1

19.3n

2n+3 =
19
8

∞∑
n=1

(
3
2

)n

= ∞ by geometric series.

Similarly,
∫ ∞

1
b(t)∆t =

∫ ∞

1
c(t)∆t = ∞, and

∫ ∞

1
d(t)∆t < ∞. Furthermore,

∫ ∞

1
c(t)

(∫ ∞

t
d(s)∆s

)
∆t = lim

T→∞

T−1∑
n=1

cn *
,

∞∑
k=n

dn+
-
=

∞∑
n=1

2n+1

31−n
*
,

∞∑
k=n

1
3k

+
-

=
2
3

∞∑
n=1

6n *
,

∞∑
k=n

1
3k

+
-
=

2
3

∞∑
n=1

6n 1
3n

3
2
=

∞∑
n=1

2n

= ∞.

Therefore, every nonoscillatory solution of system (24) is of Type (a) by Theorem 3.1 (i).

In fact, one can also show that
((

3
2

)3n
,
(
3
2

)2n
, 3n, 3

2n

)
is of a Type (a) solution of (24).
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4. TYPE (B) SOLUTIONS

The following property of Type (b) solutions in the discrete case is shown by Došlá

and Krejčová in [6] and its proof follows from (20) immediately.

Proposition 4.1. Every solution (x, y, z,w) of Type (b) of system (1) satisfies

Jα
∫ t

t0
a(s)∆s ≤

x(t)
xλγ βα (σ(t))

,

where t ∈ T is sufficiently large and

J =
∫ ∞

σ(t)
b(s)

(∫ ∞

s
c(r)

(∫ ∞

r
d(η)∆η

)γ
∆r

) β
∆s.

Theorem 4.1. Every nonoscillatory solution of system (1) is of a Type (b) solution if any

of the following conditions holds:

(i)
∫ ∞

t0
d(t)

(∫ t

t0
a(s)∆s

)λ
∆t = ∞;

(ii)
∫ ∞

t0
d(t)

(∫ t

t0
a(s)

(∫ s

t0
b(r)∆r

)α
∆s

)λ
∆t = ∞;

(iii) αβγλ < 1 and
∫ ∞

t0
d(t) *

,

∫ t

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
c(τ)∆τ

) β
∆r+

-

α

∆s+
-

λ

∆t = ∞;

(iv) αβγλ = 1 and 0 < ε < 1∫ ∞

t0
d(t) *

,

∫ t

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
c(τ)∆τ

) β
∆r+

-

α

∆s+
-

λ(1−ε)

∆t = ∞;

(v) αβγλ > 1 and
∫ ∞

t0
a(t) *

,

∫ t

t0
b(s)

(∫ s

t0
c(τ)∆τ

) β
∆s+

-

α (∫ ∞

σ(t)
d(η)∆η

)γ βα
∆t = ∞.

Proof. Since (2) holds, every nonoscillatory solution of system (1) is of either Type (a) or

Type (b) by Lemma 2.2. Assume that (x, y, z,w) is a Type (a) solution of system (1) such

that x(t) > 0 for t ≥ T .
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Assume that (i) holds. Then (21) holds. Now integrating the fourth equation of

system (1) from t0 to t and plugging (21) into the resulting integration yield for t ≥ t0,

w(t) − w(t0) = −
∫ t

t0
d(s)xλ (σ(s))∆s ≤ −kα

∫ t

t0
d(s)

(∫ s

t0
a(r)∆r

)λ
∆s

following from the monotonicity of x. Then as t → ∞, w(t) → −∞ by (i). But this

contradicts the boundedness of w. Therefore, (x, y, z,w) is of a Type (b) solution of system

(1).

Assume that (ii) holds. After integrating the first equation from t0 to t and using

(23), we obtain

xλ (σ(t)) ≥ kαβλ
(∫ t

t0
a(s)

(∫ s

t0
b(r)∆r

)α
∆s

)λ
, t ≥ t0. (25)

Integrating the fourth equation of system (1) from t0 to t and plugging (25) into it, one can

get

w(t) − w(t0) ≤ −kαβλ
∫ t

t0
d(s)

(∫ s

t0
a(r)

(∫ r

t0
b(τ)∆τ

)α
∆r

)λ
∆s, t ≥ t0. (26)

As t → ∞, the right hand side of (26) approaches to −∞ by (ii). Therefore, w(t) → −∞.

However, this contradicts the boundedness of w and completes the proof. Hence, (x, y, z,w)

is of a Type (b) solution of system (1).

Assume that (iii) holds. Taking the λ power of (9) and then multiplying both sides

of the inequality by −d give us the right hand side of the inequality of (9) being w∆, as

follows

w∆(t) ≤ −wγ βαλ (t)d(t) *
,

∫ t

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
c(η)∆η

) β
∆r+

-

α

∆s+
-

λ

.
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Now dividing both sides of this inequality by −wγ βαλ and integrating both sides of the

resulting inequality from t0 to t yield

∫ t

t0
−

w∆(s)
wγ βαλ (s)

∆s ≥
∫ t

t0
d(s) *

,

∫ s

t0
a(r) *

,

∫ r

t0
b(τ)

(∫ τ

t0
c(η)∆η

) β
∆τ+

-

α

∆r+
-

λ

∆s.

As t → ∞,
∫ ∞

t0
−

w∆(s)
wγ βαλ (s)

∆s = ∞ by (iii). However,
∫ ∞

t0
−

w∆(s)
wγ βαλ (s)

∆s < ∞ by Lemma

2.1 (i). So this gives a contradiction and hence (x, y, z,w) is of a Type (b) solution of system

(1).

Assume that (iv) holds. Taking the λ(1 − ε ) power of both sides of (9) implies that

xλ(1−ε ) (σ(t)) ≥ w1−ε (t) *
,

∫ t

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
c(η)∆η

) β
∆r+

-

α

∆s+
-

λ(1−ε )

. (27)

Since x is nondecreasing, there exists k > 0 such that xλ (σ(t)) ≥ k for large t. This

yields

xλ(1−ε ) (σ(t)) ≤
xλ (σ(t))

kε
for large t.

Nowusing the above inequality together with (27) andmultiplying both sides of the resulting

inequality by d give us

−w∆(t) ≥ kεw1−ε (t)d(t) *
,

∫ t

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
a(η)∆η

) β
∆r+

-

α

∆s+
-

λ(1−ε )

.

Dividing this inequality by w1−ε and integrating both sides of the resulting inequality from

t0 to t yield

∫ t

t0
−

w∆(s)
w1−ε (s)

∆s ≥ kε
∫ t

t0
d(s) *

,

∫ s

t0
a(r) *

,

∫ r

t0
b(τ)

(∫ τ

t0
c(η)∆η

) β
∆τ+

-

α

∆r+
-

λ(1−ε )

∆s.
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As t → ∞,
∫ ∞

t0
−

w∆(s)
w1−ε (s)

∆s = ∞ by (iv). However, by Lemma 2.1 (i) we obtain∫ ∞

t0
−

w∆(s)
w1−ε (s)

∆s < ∞, 0 < ε < 1. This gives a contradiction and hence (x, y, z,w) is of a

Type (b) solution of system (1).

Assume (v) holds. Integrating the fourth equation of system (1) from σ(t) to∞ and

using the monotonicity of x give us

w(σ(t)) ≥ xλ (σ(t))
∫ ∞

σ(t)
d(s)∆s. (28)

After subtituting (22) in the first equation of system (1) and then substituting (7) in the

resulting inequality, we get

x∆(t) ≥ a(t)
(∫ t

t0
b(s)z β (s)∆s

)α
≥ a(t) *

,

∫ t

t0
b(s)

(∫ s

t0
c(r)wγ (r)∆r

) β
∆s+

-

α

, t ≥ t0.

From the monotonoticity of w, this inequality becomes

x∆(t) ≥ wγ βα (σ(t))a(t) *
,

∫ t

t0
b(s)

(∫ s

t0
c(r)∆r

) β
∆s+

-

α

, t ≥ t0. (29)

Now plugging (28) into (29),

x∆(t) ≥ xλγ βα (σ(t))a(t) *
,

∫ t

t0
b(s)

(∫ s

t0
c(r)∆r

) β
∆s+

-

α (∫ ∞

σ(t)
d(s)∆s

)γ βα
∆t

dividing both sides by xλγ βα (σ(t)) and integrating the resulting inequality from t0 to t yield

∫ t

t0

x∆(s)
xλγ βα (σ(s))

∆s ≥
∫ t

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
c(τ)∆τ

) β
∆r+

-

α (∫ ∞

σ(s)
d(η)∆η

)γ βα
∆s.
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As t → ∞, we get
∫ ∞

t0

x∆(t)
xλγ βα (σ(t))

∆t = ∞ by (v). However,
∫ ∞

t0

x∆(t)
xλγ βα (σ(t))

∆t < ∞ by

Lemma 2.1 (ii) so it contradicts. Therefore, (x, y, z,w) is of a Type (b) solution of system

(1).

From changing the order of integration in part (i) of Theorem 4.1 when λ = 1, we

obtain ∫ t

t0
d(s)

(∫ s

t0
a(r)∆r

)
∆s =

∫ t

t0
a(s)

(∫ t

σ(s)
d(r)∆r

)
∆t,

see [2]. Therefore, we have the following result.

Remark 4.2. If
∫ ∞

t0
a(s)

(∫ ∞

σ(s)
d(r)∆r

)
∆s = ∞, then every nonoscillatory solution of

system (1) is of Type (b).

Remark 4.3. Any Type (b) solution (x, y, z,w) of (1) satisfies lim
t→∞

z(t) = 0.

Proof. Let (x, y, z,w) be of a Type (b) solution of system (1) such that x(t) > 0 for large

t ∈ T. Then z is eventually negative increasing. Therefore, lim
t→∞

z(t) = l ≤ 0. Suppose that

l < 0, then from the monotonicity of z, we have z(t) ≤ l for large t. Integrating the second

of system (1) from t0 to t yields,

y(t) − y(t0) ≤ l β
∫ t

t0
b(s)∆s, t ≥ t0.

Letting t → ∞ implies lim
t→∞

y(t) = −∞. But, this contradicts the positivity of y. Hence,

lim
t→∞

z(t) = 0.

Corollary 4.1. Every nonoscillatory solution of system (1) is of Type (b) if αβγλ = 1 and

lim sup
t→∞

*
,

∫ t

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
c(τ)∆τ

) β
∆r+

-

α

∆s+
-

(∫ ∞

t
d(s)∆s

)γ βα
> 1. (30)
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Proof. Since (2) holds, every nonoscillatory solution of system (1) is of either Type (a) or

Type (b) by Lemma 2.2. Assume (30) holds and (x, y, z,w) is of a Type (a) solution of

system (1) such that x(t) > 0 for t ≥ T . Let αβγλ = 1. Then, by (5) we have

I
(∫ ∞

t
d(s)∆s

)γ βα
≤ 1,

where I is given as in (6). Therefore,

lim sup
t→∞

I
(∫ ∞

t
d(s)∆s

)γ βα
≤ 1

which contradicts (30). Therefore, (x, y, z,w) is of a Type (b) solution of system (1).

Example 4.4. We consider the quantum time scale T = qN0 = {qn : n ∈ N}, where q > 1,

q ∈ R and let t0 = 1, s = qm, and t = qn for m, n ∈ N0 for the system




x∆(t) = t3y3(t)

y∆(t) = 1
q t z3(t)

z∆(t) = 1
q t8w5(t)

w∆(t) = − 1+q
q3t4 x(tq).

(31)

Then we have
∫ T

1
t3∆t =

∑
t∈[1,T )

qN0

t3t(q − 1) = (q − 1)
∑

t∈[1,T )
qN0

t4, and so
∫ ∞

1
a(t)∆t =

(q − 1)
∞∑

n=0

(q4)n = ∞. It can be shown similary that
∫ ∞

1
b(t)∆t =

∫ ∞

1
c(t)∆t = ∞.

Also,
∫ T

1

1 + q
q3t4
∆t =

(q2 − 1)
q3

∑
t∈[1,T )

qN0

1
t3

implies
∫ ∞

1
d(t)∆t =

(q2 − 1)
q3

∞∑
n=0

1
(q3)n < ∞.
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Besides,

∫ T

1

1 + q
q3t4

(∫ t

1
s3∆s

)
∆t =

∑
t∈[1,T )

qN0

1 + q
q3t4

*..
,

∑
s∈[1,t)

qN0

s4(q − 1)
+//
-

(q − 1)t

=
(1 − q)

(1 + q2)q3

∑
t∈[1,T )

qN0

1
t3

(
1 − t4

)

and so

∫ ∞

1
d(t)

(∫ t

1
a(s)∆s

)
∆t =

(1 − q)
(1 + q2)q3

∞∑
n=0

(
1

(q3)n − qn
)
= ∞

by geometric series. This shows that every nonoscillatory solution of system (31) is of a

Type (b) by Theorem 4.1 (i). One can see that
(
t,
1
t
,−

1
t
,
1
t2

)
is a nonoscillatory solution

and hence it is of a Type (b) solution of system (31).

5. CONCLUSION

In this study, we present oscillation criteria for system (1). Condition (2) guarantees

that any nonoscillatory solution (x, y, z,w) of system (1) is either of Type (a) or of Type (b),

see Lemma 2.2. We show that system (1) is oscillatory when (3) holds. Then, we assume

condition (4) instead of condition (3) to find oscillation criteria for system (1). In addition

to condition (2), if (4) holds, Theorems 3.1 and 4.1 eliminate all Type (b) and Type (a)

solutions of system (1), respectively. To achieve our goal, we use the integral conditions of

the coefficient functions a, b, c and d and the product αβγλ. Furthermore, this discussion

gives us the following theorem:

Theorem 5.1. If one of the conditions of Theorem 3.1 and one of the conditions of Theorem

4.1 are assumed, then system (1) is oscillatory.
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We also observe that system (1) is oscillatory in the sub-linear, half-linear and

super-linear cases.

Corollary 5.1. System (1) satisfies the following:

(i) Assume Theorem 3.1 (iii) and Theorem 4.1 (iii) hold, then sub-linear system (1) is

oscillatory.

(ii) Assume Corollary 3.1 and Theorem 4.1 (iv) hold, then half-linear system (1) is

oscillatory.

(iii) Assume Theorem 3.1 (iv) and Theorem 4.1 (v) hold, then super-linear system (1) is

oscillatory.

Note that an integral condition for a Type (a) solution in the half-linear system is

still to be found.

As a consequence of our proofs, it is worth to mention that by the monotonicity of

the first component all the results we have gotten in this study are also valid for the advanced

systems



x∆(t) = a(t)yα (t)

y∆(t) = b(t)z β (t)

z∆(t) = c(t)wγ (t)

w∆(t) = −d(t)xλ (k (t)),

where k (t) ≥ t, k ∈ Crd ([t0,∞)T, [t0,∞)T) and t ∈ T. At this point, one can consider the

delay system



x∆(t) = a(t)yα (t)

y∆(t) = b(t)z β (t)

z∆(t) = c(t)wγ (t)

w∆(t) = −d(t)xλ (τ(t)),
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where τ(t) ≤ t, lim
t→∞

τ(t) = ∞, and τ ∈ Crd ([t0,∞)T, [t0,∞)T). Therefore, our question is

now whether or not the same results are valid for the above delay system when (2) holds.

Note that without assuming (2), there are six more types of nonoscillatory solutions

of system (1). As a result of this study, we also would like to find the oscillation conditions

to eliminate other types.
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V. OSCILLATION AND NONOSCILLATION CRITERIA FOR FOUR
DIMENSIONAL ADVANCED AND DELAY TIME-SCALE SYSTEMS

Elvan Akın and Gülşah Yeni

Department of Mathematics and Statistics

Missouri University of Science and Technology

ABSTRACT

We obtain oscillation and nonoscillation criteria for solutions to four-dimensional

advanced and delay systems of first order dynamic equations on time scales. To establish

oscillation criteria, we eliminate nonoscillatory solutions of the systems based on the sign

of components of the solutions. Furthermore, some of our results are new in the discrete

case.

Keywords: Time scales; Nonoscillation; Oscillation; Advanced and delay; Four-dimensional

systems

1. INTRODUCTION

In this study, we consider the following systems on a time scale T, i.e., arbitrary

nonempty closed subset of the real numbers, see [6, 7]




x∆(t) = a(t)yα (t)

y∆(t) = b(t)z β (t)

z∆(t) = c(t)wγ (t)

w∆(t) = −d(t)xλ (t),

(1)
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


x∆(t) = a(t)yα (t)

y∆(t) = b(t)z β (t)

z∆(t) = c(t)wγ (t)

w∆(t) = −d(t)xλ (k (t)),

(2)

and



x∆(t) = a(t)yα (t)

y∆(t) = b(t)z β (t)

z∆(t) = c(t)wγ (t)

w∆(t) = −d(t)xλ (g(t)),

(3)

where k, g ∈ Crd ([t0,∞)T, [t0,∞)T), t ∈ [t0,∞)T := [t0,∞) ∩ T such that g(t) ≤ t ≤ k (t)

and lim
t→∞

g(t) = ∞. Here, Crd is the set of rd-continuous functions. Systems (2) and (3)

are so called advanced and delay systems, respectively. We also assume that the coefficient

functions a, b, c, d ∈ Crd
(
[t0,∞)T,R+

)
, α, β, γ, λ are the ratios of odd positive integers,

and T is unbounded. By a solution (x, y, z,w) of system (1)((2) or (3)), we mean that

functions x, y, z,w are delta-differentiable, their first delta-derivatives are rd-continuous,

and satisfy system (1) ((2) or (3)) for all t ≥ t0. We call (x, y, z,w) a proper solution if

it is defined on [t0,∞)T and sup{|x(s) |, |y(s) |, |z(s) |, |w(s) | : s ∈ [t,∞)T} > 0 for t ≥ t0.

A solution (x, y, z,w) of system (1) is said to be oscillatory if all of its components are

oscillatory, i.e., neither eventually positive nor eventually negative. Otherwise, it is said

to be nonoscillatory. Obviously, if one component of a solution is eventually of one sign,

then all its components are eventually of one sign and so nonoscillatory solutions have all

components nonoscillatory.
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In [3], oscillation and nonoscillation criteria of system (2) where k (t) = σ(t), t ∈ T

are investigated under the following condition

∫ ∞

t0
a(t)∆t =

∫ ∞

t0
b(t)∆t =

∫ ∞

t0
c(t)∆t = ∞. (4)

Assuming (4) shows that system (2) has two types of nonoscillatory solutions, namely

Type (a): x > 0, y > 0, z > 0, w > 0 eventually,

Type (b): x > 0, y > 0, z < 0, w > 0 eventually.

In other words, if (x, y, z,w) is any nonoscillatory solution of system (2) such that x > 0,

then (4) eliminates the rest of other nonoscillatory solutions of system (2), namely

Type (c): x > 0, y < 0, z > 0, w > 0 eventually

Type (d): x > 0, y < 0, z < 0, w > 0 eventually

Type (e): x > 0, y > 0, z > 0, w < 0 eventually

Type ( f ): x > 0, y < 0, z < 0, w < 0 eventually

Type (g): x > 0, y > 0, z < 0, w < 0 eventually

Type (h): x > 0, y < 0, z > 0, w < 0 eventually.

In [9] and [10], Došlá and Krejčová consider a class of fourth order difference

equations

∆(an(∆bn(∆cn(∆xn)γ) β)α) + dnxλn+τ = 0 (5)

with τ ∈ Z, {an}, {bn}, {cn} and {dn} are positive real sequences and present the oscillatory

properties of the solutions of equation (5). The continuous analogue of (5) can be found in

[12].

As a unification of the studies above with the special case of α = β = γ = λ = 1,

Zhang et al. [17] consider oscillatory behavior of the fourth order delay dynamic equation

(c(t)(b(t)(a(t)x∆(t))∆)∆)∆ + p(t)x(τ(t)) = 0,
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where τ ∈ Crd (T,T) such that τ(t) ≤ t and τ(t) → ∞ as t → ∞, and the fourth order

advanced dynamic equation

(p(t)x∆
3
(t))∆ + q(t) f (x(σ(t))) = 0

is considered in Zhang et al. [18], where p, q ∈ Crd
(
T,R+

)
and there exists L > 0 constant

such that f (y)
y > L for all y , 0. Previous of this study, Agarwal et al. [1] consider

oscillatory behavior of an advanced nonlinear dynamic equation

(p(t)(x∆
2
)α)∆

2
(t) + q(t) f (x(σ(t))) = 0,

where α is the ratio of two positive odd integers, p, q ∈ Crd
(
T,R+

)
, and f ∈ Crd (R,R)

such that x f (x) > 0 and f ′(x) ≥ 0 for all x , 0.

Motivated by these studies, we establish some oscillation and nonoscillation results

for systems (1), (2) and (3) without assuming (4). For the entire paper, we investigate the

integral conditions of the coefficient functions a, b, c and d in each subsection in order to

eliminate the indicated types above.

The proof of following auxiliary lemma which plays a key role to obtain nonoscilla-

tory criteria for systems (1)-(3) in sublinear case, that is, αβγλ < 1 follows from the chain

rule on a time scale, see [4].

Lemma 1.1. Let f ∈ Crd
(
T,R+

)
. If 0 < η < 1 and f ∆ < 0 on T, then∫ ∞

T
−

f ∆(t)
f η (t)

∆t < ∞, T ∈ T.

2. ELIMINATION OF NONOSCILLATORY SOLUTIONS

Note that the condition ∫ ∞

t0
d(t)∆t = ∞ (6)
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eliminates Type (a) and Type (b) nonoscillatory solutions of systems (1)-(3), see Lemma

2.3 in [3]. On the other hand, if

∫ ∞

t0
d(t)∆t < ∞, (7)

then one can find necessary conditions in Theorem 3.1 and Theorem 4.1 in [3] to eliminate

Type (b) and Type (a) nonoscillatory solutions of systems (1) and (2), respectively. The

elimination criteria of these types for system (3) are stated in the next section.

In the following each subsection, we obtain nonoscillatory criteria to eliminate all

the types from Type (c) to Type (h) for systems (1)-(3).

2.1. TYPE (C) SOLUTIONS

Theorem 2.1. Systems (1) and (3) have no solutions of Type (c) if any of the following

conditions holds:

(i)
∫ ∞

t0
b(t)∆t = ∞;

(ii)
∫ ∞

t0
a(t)

(∫ ∞

t
b(s)∆s

)α
∆t = ∞;

(iii) αβγλ < 1 and∫ ∞

t0
d(s)

(∫ s

t0
c(r)∆r

) βαλ (∫ ∞

s
a(r)

(∫ ∞

r
b(τ)∆τ

)α
∆r

)λ
∆s = ∞.

Proof. Assume that (x, y, z,w) is of a Type (c) solution of system (1). By the monotonicity

of z, there exist t0 ∈ T and m > 0 such that

z(t) ≥ m, t ≥ t0. (8)

Assume (i) holds. Plugging (8) into the integration of the second equation from t0 to t

yields

y(t) − y(t0) =
∫ t

t0
b(s)z β (s)∆s ≥ m β

∫ t

t0
b(s)∆s, t ≥ t0.
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As t → ∞, y(t) → ∞ by (i). However, this contradicts the negativity of y for large t. Hence,

we have shown that system (1) has no solution of Type (c). Assume (ii) holds. Integrating

the second equation of system (1) from t to∞, we get

−y(t) ≥ z β (t)
∫ ∞

t
b(s)∆s, t ≥ t0, (9)

where we use the monotonicity of z. Now integrating the first equation from t0 to t, plugging

(9) into the resulting inequality, and (8) yield

x(t) − x(t0) ≤ −
∫ t

t0
a(s)

(∫ ∞

s
b(r)z β (r)∆r

)α
∆s

≤ −m βα

∫ t

t0
a(s)

(∫ ∞

s
b(r)∆r

)α
∆s, t ≥ t0.

As t → ∞, x(t) → −∞ by (ii). But this contradicts the positivity of x for large t. Therefore,

system (1) has no solution of Type (c). Assume (iii) holds. By integrating the third equation

of system (1) from t0 to t, we have

z(t) ≥
∫ t

t0
c(s)wγ (s)∆s, t ≥ t0. (10)

Now integrating the first equation of system (1) from t to ∞ and plugging (9) into the

resulting inequality give us

x(t) ≥
∫ ∞

t
a(s)(−y(s))α∆s ≥ z βα (t)

∫ ∞

t
a(s)

( ∫ ∞

s
b(r)∆r

)α
∆s

for t ≥ t0, where we use the monotonicity of z. By plugging (10) into the equality above,

taking λ power of both sides of the resulting inequality, and using the monotonicity of w,

we get

xλ (t) ≥ wαβγλ (t)
(∫ t

t0
c(s)∆s

) βαλ (∫ ∞

t
a(s)

( ∫ ∞

s
b(r)∆r

)α
∆s

)λ
(11)
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for t ≥ t0. Multiplying (11) by −d, dividing both sides of the resulting inequality by wαβγλ ,

and integrating from t0 to t yield

∫ t

t0
−

w∆(s)
wαβγλ (s)

∆s ≥
∫ t

t0
d(s)

(∫ s

t0
c(r)∆r

) βαλ (∫ ∞

s
a(r)

( ∫ ∞

r
b(τ)∆τ

)α
∆r

)λ
∆s.

As t → ∞,
∫ ∞

t0
−

w∆(s)
wαβγλ (s)

∆s = ∞ by (iii). However,
∫ ∞

t0
−

w∆(s)
wαβγλ (s)

∆s < ∞ by Lemma

1.1 and so this gives a contradiction and completes the proof for system (1). Note that the

proof for system (3) can be shown similarly.

Remark 2.2. If (i) or (ii) holds in Theorem 2.1, then system (2) has no solution of Type (c)

either.

Since
∫ ∞

t0
b(t)∆t < ∞ in Theorem 2.1 (ii), from changing the order of integration,

see [5], we obtain the following nonoscillation criteria.

Remark 2.3. If
∫ ∞

t0
b(t)

(∫ σ(t)

t0
a(s)∆s

)
∆t = ∞, then systems (1), (2) and (3) with α = 1

have no solutions of Type (c).

2.2. TYPE (D) SOLUTIONS

Theorem 2.4. Systems (1) and (3) have no solutions of Type (d) if any of the following

conditions holds:

(i)
∫ ∞

t0
a(t)∆t = ∞;

(ii)
∫ ∞

t0
d(t)

(∫ ∞

t
a(s)∆s

)λ
∆t = ∞;

(iii)
∫ ∞

t0
c(t) *

,

∫ ∞

t
d(s)

(∫ ∞

s
a(r)∆r

)λ
∆s+

-

γ

∆t = ∞.
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Proof. Assume that (x, y, z,w) is of a Type (d) solution of system (1). By the monotonicity

of y, there exist t0 ∈ T and l < 0 such that y(t) ≤ l for t ≥ t0. Assume (i) holds. Plugging

this inequality into the integration of the first equation of system (1) from t0 to t yields

x(t) − x(t0) ≤ lα
∫ t

t0
a(s)∆s, t ≥ t0.

As t → ∞, x(t) → −∞ by (i). But, this contradicts the positivity of x. Hence, system (1)

has no solution of Type (d). Assume (ii) holds. Integrating the first equation from t to ∞

yields

−x(t) ≤ lα
∫ ∞

t
a(s)∆s, t ≥ t0. (12)

Now integrating the fourth equation from t0 to t and substituting (12) in the resulting

integration shows that

w(t) − w(t0) ≤ lαλ
∫ t

t0
d(s)

(∫ ∞

s
a(r)∆r

)λ
∆s, t ≥ t0.

As t → ∞, w(t) → −∞ by (ii). But, this contradicts the positivity of w. Hence, system (1)

has no solution of Type (d). Assume (iii) holds. Substituting (12) in the integration of the

fourth equation from t to∞ yields

w(t) ≥ −lαλ
∫ ∞

t
d(s)

(∫ ∞

s
a(r)∆r

)λ
∆s, t ≥ t0. (13)

By integrating the third equation of system (1) from t0 to t and plugging (13) into the

resulting integration, we get

z(t) − z(t0) ≥ −lαλ
∫ t

t0
c(s) *

,

∫ ∞

s
d(r)

(∫ ∞

r
a(τ)∆τ

)λ
∆r+

-

γ

∆s
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for t ≥ t0. As t → ∞, z(t) → ∞ by (iii). But, this contradicts the negativity of z. Therefore,

system (1) has no solution of Type (d). When (i) holds, the proof for system (3) can be done

similarly. The monotonicity of x is used in the proof of system (3) for (ii) and (iii).

Since
∫ ∞

t0
a(t)∆t < ∞ in Theorem 2.4 (ii), from changing the order of integration,

see [5], we get the following result.

Remark 2.5. If
∫ ∞

t0
a(t)

(∫ σ(t)

t0
d(s)∆s

)
∆t = ∞, then systems (1) and (3) with λ = 1

have no solutions of Type (d).

Remark 2.6. If (i) holds in Theorem 2.4, then system (2) has no solution of Type (d) either.

In the following theorem, we introduce double and triple integral conditions to

eliminate Type (d) solutions for system (2).

Theorem 2.7. System (2) has no solution of Type (d) if any of the following conditions

holds:

(i)
∫ ∞

t0
d(t)

(∫ ∞

k (t)
a(s)∆s

)λ
∆t = ∞;

(ii)
∫ ∞

t0
c(t) *

,

∫ ∞

t
d(s)

(∫ ∞

k (s)
a(r)∆r

)λ
∆s+

-

γ

∆t = ∞.

Proof. Assume that (x, y, z,w) is of a Type (d) solution of system (2). By the monotonicity

of y, there exist t0 ∈ T and l < 0 such that y(t) ≤ l for t ≥ t0. Plugging this inequality into

the integration of the first equation from k (t) to∞ yields

−x(k (t)) ≤ lα
∫ ∞

k (t)
a(s)∆s, t ≥ t0.

The rest of the proofs of (i) and (ii) can be completed similarly as in the proof of Theorem

2.4 (ii) and (iii), respectively.
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2.3. TYPE (E) SOLUTIONS

Theorem 2.8. Systems (1), (2) and (3) have no solutions of Type (e) if any of the following

conditions holds:

(i)
∫ ∞

t0
c(t)∆t = ∞;

(ii)
∫ ∞

t0
c(t)

(∫ t

t0
d(s)∆s

)λ
∆t = ∞.

Proof. Assume that (x, y, z,w) is of a Type (e) solution of system (1). Assume (i) holds.

By the monotonicity of w, there exist t0 ∈ T and l < 0 such that

w(t) ≤ l, t ≥ t0. (14)

Plugging (14) into the integration of the third equation from t0 to t yields

z(t) − z(t0) =
∫ t

t0
c(s)wγ (s)∆s ≤ lγ

∫ t

t0
c(s)∆s, t ≥ t0. (15)

Then as t → ∞, z(t) → −∞ by the assumption, but this contradicts the positivity of z.

Hence, it is shown that system (1) has no solution of Type (d). Assume (ii) holds. By the

monotonicity of x, there exist t0 ∈ T and m > 0 such that x(t) ≥ m for t ≥ t0. Substituting

this inequality in the integration of the fourth equation from t0 to t and plugging the resulting

inequality into the integration of the third equation from t0 to t yields

z(t) − z(t0) =
∫ t

t0
c(s)wγ (s)∆s ≤ −mλγ

∫ t

t0
c(s)

(∫ s

t0
d(r)∆r

)γ
∆s

for t ≥ t0. As t → ∞, z(t) → −∞ by (ii). But, we get a contradiction with the fact that

z(t) > 0 for large t. Therefore, system (1) has no solution of Type (e). Note that the proof

for systems (2) and (3) can be done similarly.
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2.4. TYPE (F) SOLUTIONS

Theorem 2.9. Systems (1) and (3) have no solutions of Type ( f ) if any of the following

conditions holds:

(i)
∫ ∞

t0
a(t)∆t = ∞;

(ii)
∫ ∞

t0
a(t)

(∫ t

t0
b(s)∆s

)α
∆t = ∞;

(iii) αβγλ < 1 and
∫ ∞

t0
a(t) *

,

∫ t

t0
b(s)

(∫ s

t0
c(r)

(∫ r

t0
d(τ)∆τ

)γ
∆r

) β
∆s+

-

α

∆t = ∞.

Proof. Suppose that (x, y, z,w) is of a Type ( f ) solution of system (1). The proof of (i)

follows from the proof of Theorem 2.4 (i). Assume (ii) holds. There exist t0 ∈ T and l < 0

such that

z(t) ≤ l, t ≥ t0. (16)

Integrating the second equation of system (1) from t0 to t, using (16), and plugging the

resulting inequality into the integration of the first equation of system (1) from t0 to t give

us

x(t) − x(t0) ≤ l βα
∫ t

t0
a(s)

(∫ s

t0
b(r)∆r

)α
∆s, t ≥ t0.

As t → ∞, x(t) → −∞ by (ii). However, we get a contradiction with the fact that x(t) > 0

for large t. Assume (iii) holds. Integrating the fourth equation of system (1) from t0 to t

and the monotonicity of x yield

w(t) ≤ −xλ (t)
∫ t

t0
d(s)∆s, t ≥ t0. (17)
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Plugging (17) into the integration of the third equation of system (1) from t0 to t, and then

plugging the resulting inequality into the integration of the second equation of system (1)

from t0 to t yield

yα (t) ≤ −xλγ βα (t) *
,

∫ t

t0
b(s)

(∫ s

t0
c(r)

(∫ r

t0
d(τ)∆τ

)γ
∆r

) β
∆s+

-

α

,

t ≥ t0, where we again use the monotonicity of x. After multiplying the above inequality

by a, dividing the resulting inequality by −xλγ βα, and integrating from t0 to t, we obtain

∫ t

t0
−

x∆(s)
xλγ βα (s)

∆s ≥
∫ t

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
c(τ)

(∫ τ

t0
d(η)∆η

)γ
∆τ

) β
∆r+

-

α

∆s

for t ≥ t0. As t → ∞,
∫ ∞

t0
−

x∆(s)
xλγ βα (s)

∆s = ∞ by (iii). However,
∫ ∞

t0
−

x∆(s)
xλγ βα (s)

∆s < ∞

by Lemma 1.1. This gives a contradiction and completes the proof. Therefore, (x, y, z,w)

is not of Type ( f ) solution of system (1). The proof for system (3) can be shown in the

same way.

By the fact that the fourth equation is not used in the proof of Theorem 2.9 (i) and

(ii), we have the following result for system (2).

Remark 2.10. If (i) or (ii) holds in Theorem 2.9, then system (2) has no solution of Type

( f ) either.

2.5. TYPE (G) SOLUTIONS

Theorem 2.11. Systems (1) and (2) have no solutions of Type (g) if any of the following

conditions holds:

(i)
∫ ∞

t0
b(t)∆t = ∞;

(ii)
∫ ∞

t0
b(t)

(∫ t

t0
c(s)∆s

) β
∆t = ∞;
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(iii)
∫ ∞

t0
b(t)

(∫ t

t0
c(s)

(∫ s

t0
d(r)∆r

)γ
∆s

) β
∆t = ∞;

(iv) αβγλ < 1 and
∫ ∞

t0
b(t) *

,

∫ t

t0
c(s) *

,

∫ s

t0
d(r)

(∫ r

t0
a(τ)∆τ

)λ
∆r+

-

γ

∆s+
-

β

∆t = ∞.

Proof. Assume that (x, y, z,w) is of a Type (g) solution of system (1) and (i) holds. Plugging

(16) into the integration of the second equation of system (1) from t0 to t yields

y(t) − y(t0) ≤ lγ
∫ t

t0
b(s)∆s, t ≥ t0.

As t → ∞, y(t) → −∞ by (i). But, this contradicts the positivity of y for large t. Hence,

we have shown that system (1) has no solution of Type (g). Assume (ii) holds. Then, (15)

holds and substituting (15) into the integration of the second equation of system (1) from t0

to t yields

y(t) − y(t0) ≤ lγ β
∫ t

t0
b(s)

(∫ s

t0
c(r)∆r

) β
∆s, t ≥ t0.

As t → ∞, y(t) → −∞ by (ii). Assume (iii) holds. There exist t0 ∈ T and n < 0 such that

x(t) ≥ n for t ≥ t0. Plugging this inequality into the integration of the fourth equation of

system (1) from t0 to t yields

w(t) ≤ −nλ
∫ t

t0
d(s)∆s, t ≥ t0. (18)

After substituting (18) into the integration of the third equation from t0 to t and then

substituting the resulting inequality into the integration of the second equation of system

(1) from t0 to t, we obtain

y(t) − y(t0) ≤ −nλγ β
∫ t

t0
b(s)

(∫ s

t0
c(r)

(∫ r

t0
d(τ)∆τ

)γ
∆r

) β
∆s.
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As t → ∞, y(t) → −∞ by (iii). However, we get a contradiction with the positivity of y.

Therefore, system (1) has no solution of Type (g). Assume (iv) holds. The proof can be

treated similarly as the proof of Theorem 2.9 (iii). First, substituting the integration of the

first equation of system (1) from t0 to t into the integration of the fourth equation of system

(1) from t0 to t, then substituting the resulting inequality into the integration of the third

equation of system (1) from t0 to t yield

z β (t) ≤ −yαλγ β (t) *
,

∫ t

t0
c(s) *

,

∫ s

t0
d(r)

(∫ r

t0
a(τ)∆τ

)λ
∆τ+

-

γ

∆s+
-

β

,

where we use the monotonicity of y. Multiplying the above inequality by b, dividing the

resulting inequality by −yαλγ β and integrating from t0 to t, we get

∫ t

t0
−

y∆(s)
yαλγ β (s)

∆(s) ≥
∫ t

t0
b(s) *

,

∫ s

t0
c(r) *

,

∫ r

t0
d(τ)

(∫ τ

t0
a(η)∆η

)λ
∆τ+

-

γ

∆r+
-

β

∆s.

As t → ∞,
∫ ∞

t0
−

y∆(s)
yαλγ β (s)

∆s = ∞ by (iv). However,
∫ ∞

t0
−

y∆(s)
yαλγ β (s)

∆s < ∞ by Lemma

1.1. This gives a contradiction and completes the proof. Therefore, (x, y, z,w) is not of

Type (g) solution of system (1). The proof for system (2) can be shown similarly.

Remark 2.12. If (i) or (ii) holds in Theorem 2.11, then system (3) has no solution of Type

(g) either.

Theorem 2.13. Let αβγλ < 1. System (3) has no solution of Type (g) if

∫ ∞

t0
a(t) *.

,

∫ t

t0
b(s) *

,

∫ s

t0
c(r)

(∫ g(r)

t0
d(τ)∆τ

)γ
∆r+

-

β

∆s+/
-

α

∆t = ∞. (19)

Proof. Assume that (x, y, z,w) is of a Type (g) solution of system (3) and (19) hold.

Integrating the first equation from t0 to g(t) and using the monotonicity of y yield

x(g(t)) ≥ yα (g(t))
∫ g(t)

t0
a(s)∆s, g(t) ≥ t0. (20)
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The rest of the proof can be completed similarly as in the proof of Theorem 2.11 (iv).

Therefore, (x, y, z,w) is not of Type (g) solution of system (3).

2.6. TYPE (H) SOLUTIONS

Theorem 2.14. Systems (1), (2) and (3) have no solutions of Type (h) if any of the following

conditions holds:

(i)
∫ ∞

t0
c(t)∆t = ∞;

(ii)
∫ ∞

t0
b(t)

(∫ ∞

t
c(s)∆s

) β
∆t = ∞.

Proof. Assume that (x, y, z,w) is of a Type (h) solution of system (1). The proof of (i)

follows from Theorem 2.8 (i). Assume (ii) holds. Then substituting (14) in the integration

of the third equation from t to∞ yields

z(t) ≥ −lγ
∫ ∞

t
c(s)∆s. (21)

Plugging (21) into the integration of the second equation from t0 to t yields

y(t) − y(t0) ≥ −lγ β
∫ t

t0
b(s)

(∫ ∞

s
c(r)∆r

) β
∆s, t ≥ t0.

As t → ∞, y(t) → ∞ by (ii). But, this contradicts the boundedness of y(t) for large t.

Hence, (x, y, z,w) is not of Type (h) solution of system (1). Note that the proof for systems

(2) and (3) can be done similarly.

In Theorem 2.14 (ii), since
∫ ∞

t0
c(t)∆t < ∞, we get the following nonoscillation

criteria in the special case of β = 1 by changing the order of integration, see [5].

Remark 2.15. If
∫ ∞

t0
c(t)

(∫ σ(t)

t0
b(s)∆s

)
∆t = ∞, then systems (1), (2) and (3) with

β = 1 have no solutions of Type (h).
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3. OSCILLATORY SYSTEMS

In this section, we first introduce oscillation criteria for systems (1), (2) and then for

system (3). We also finish this section with some open problems.

System (2) where k (t) = σ(t), t ∈ T is considered in [3]. By the monotonicity of

the first component of nonoscillatory solutions, all the results in [3] are valid for systems

(1) and (2).

If (4) holds, then there are two types of nonoscillatory solutions of systems (1) and

(2), namely Type (a) and Type (b). Assuming (6) is sufficient to eliminate these types.

Therefore, this implies that systems (1) and (2) are oscillatory, see Lemma 2.3 in [3]. If

(7) holds, then Theorems 3.1 and 4.1 in [3] eliminate Type (b) and Type (a) solutions of

systems (1) and (2), respectively. In this case, if one of the conditions of Theorems 3.1 and

Theorem 4.1 hold, then systems (1) and (2) are oscillatory.

If (4) does not hold, the theorems related with systems (1) and (2) in the previous

section of this paper are to eliminate all nonoscillatory solutions from Type (c) to Type (h).

In order to eliminate Type (a) and Type (b) solutions of systems (1) and (2), we have to

assume one of the conditions of Theorems 3.1 and Theorem 4.1 in [3] or (6). From the

discussions above, one can investigate oscillation criteria for systems (1) and (2).

In order to show that system (3) is oscillatory, we will make similar arguments. If

(4) holds, system (3) does not have nonoscillatory solutions from Type (c) to Type (h).

In addition, if (6) holds, then system (3) is oscillatory, see Lemmas 2.2 and 2.3 in [3]. If

(7) holds, we need the following theorems to eliminate Type (a) and Type (b) solutions

in order to show that system (3) is oscillatory. Note that these theorems follow from the

proofs of Theorems 4.1 and 3.1 in [3], respectively. However, we must assume that g is

nondecreasing in (ii) and (iii) of Theorem 3.2.

Theorem 3.1. System (3) has no solutions of Type (a) if any of the following conditions

holds:
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(i)
∫ ∞

t0
d(t)

(∫ t

t0
a(s)∆s

)λ
∆t = ∞;

(ii)
∫ ∞

t0
d(t)

(∫ g(t)

t0
a(s)

(∫ s

t0
b(r)∆r

)α
∆s

)λ
∆t = ∞;

(iii) αβγλ < 1 and
∫ ∞

t0
d(t) *

,

∫ g(t)

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
c(τ)∆τ

) β
∆r+

-

α

∆s+
-

λ

∆t = ∞;

(iv) αβγλ = 1 and 0 < ε < 1∫ ∞

t0
d(t) *

,

∫ g(t)

t0
a(s) *

,

∫ s

t0
b(r)

(∫ r

t0
c(τ)∆τ

) β
∆r+

-

α

∆s+
-

λ(1−ε)

∆t = ∞.

Theorem 3.2. System (3) has no solutions of Type (b) if any of the following conditions

holds:

(i)
∫ ∞

t0
c(t)

(∫ ∞

t
d(s)∆s

)γ
∆t = ∞;

(ii)
∫ ∞

t0
b(t)

(∫ ∞

t
c(r)

(∫ ∞

r
d(τ)∆τ

)γ
∆r

) β
∆s = ∞;

(iii) αβγλ < 1 and∫ ∞

t0
b(t)

(∫ g(t)

t0
a(s)∆s

)λγ β (∫ ∞

t
c(r)

(∫ ∞

r
d(τ)∆τ

)γ
∆r

) β
∆t = ∞.

If (4) does not hold, similarly theorems related with system (3) are to eliminate all

types of nonoscillatory solutions except for Type (a) and Type (b). In order to eliminate

Type (a) and Type (b) nonoscillatory solutions, we have to assume one of the conditions

of Theorems 3.1 and 3.2 or (6). Hence, under these assumptions, one can show that system

(3) is oscillatory.

As a continuation of this study, first we would like to consider the oscillation and

nonoscillation criteria of time-scale systems (1)-(3) in which the fourth dynamic equation

does not have a negative sign, see [8] for the discrete case.

We also would like to consider nonoscillatory solutions of four-dimensional nonlin-

ear neutral time-scale systems, see [11] for the discrete case.
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There have been studies for the existence of nonoscillatory solutions of two and

three dimensional dynamic systems, see [2, 13, 14, 15, 16]. As a future work, one can

consider the following system




x∆(t) = a(t) f (y(t))

y∆(t) = b(t)g(z(t))

z∆(t) = c(t)h(w(t))

w∆(t) = λd(t)l (x(t)),

where λ = ±1 in order to show the existence and nonexistence of nonoscillatory solutions.
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SECTION

2. CONCLUSION AND FUTUREWORK

One of the main purposes of this dissertation is to provide a novel approach to

epidemic models. We propose some epidemic models on time scales and introduce some

new discrete models to the literature.

In the first paper, we introduce a three dimensional linear model of drug therapy for

HIV-1 decline on time scales. Apart from the existing continuous model, we obtain different

discrete models of the HIV-1 dynamics. This helps us calculate the total concentration of

plasma virus as a function of time for each model. Fitting our models to the data from a

clinical trial, we conclude that discrete models result in the best fit. It would be interesting to

find out not only other discrete models, which we have not considered in this paper, but also

other data that validate our results better. In these models, the patients were given protease

inhibitor monotherapy and the efficacy of the protease inhibitor is assumed perfect. We also

study the model in presence of imperfect protease inhibitor and reverse transcriptase (RT)

inhibitor combination therapy on time scales and find the total concentration of plasma virus

as a function of time for this model as well. Moreover, we consider the imperfect model on

the set of integers and we show that the trivial solution is asymptotically stable. Stability of

trivial solution on time scales is left as an open problem. In our study, we have assumed that

our systems are in quasi-steady state before drug treatment and hence, the concentration

of CD4+ T cells is assumed to be constant. On the other hand, T cells can be described

by either a linear function or an exponential function. This is left as an open problem. In

particular, if a mathematical model of HIV-1 dynamics is not considered in quasi-steady



117

state, the model turns out to be nonlinear. Besides, since the selective depletion of CD4+ T

cells is one of the consequences of infection by HIV-1, it would be also interesting to study

the dynamics of HIV-1 infection of CD4+ T cells on time scales.

Since our results in the first paper indicate the importance of discrete modeling

of HIV-1 in data analysis, they motivate us to consider other epidemic models on time

scales. In the second paper, we introduce SIS (Susceptible-Infected-Susceptible) and SIR

(Susceptible-Infected-Recovered) models with nonlinear incidence rate as two dimensional

systems of first order dynamic equations. Because there might be factors affecting the

population dynamics in time, we present these models with time dependent coefficients,

which is more accurate from the biological perspective. To derive the explicit solution for

each model, we use the Bernoulli equation on time scales. Although we analyze the long

term behavior of susceptibles and infectives theoretically and demostrate our results on

different time scales, it would be interesting to have a data set to verify these results with.

It is worth mentioning that formulating epidemic models to derive explicit solutions

on time scales is challenging. Motivated by the SIRmodel in the second paper, we study SIR

models with nonlinear incidence rate and time independent coefficients as three dimensional

systems of first order difference equations, one of which is an advanced model, in the third

paper. We determine the stability of disease-free and endemic equilibria depending on the

reproduction number R0. We show the local stability of equilibria of the first system by

the linearization method, yet the global stability is left as an open problem. On the other

hand, we successfully show the global stability of the endemic equilibrium of the second

system by constructing a suitable Lyapunov function. We would like to fit all these models

to H1N1 swine flu data.

The technique we use in these papers could be expanded to other discrete epidemic

and disease outbreak models such as SIRS (Susceptible-Infected-Recovered-Susceptible),

SPIR (Susceptible-Potential-Infected-Recovered), SEIR (Susceptible-Exposed-Infected-Re-

covered), and SEIRS (Susceptible-Exposed-Infected-Recovered-Susceptible).
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Throughout the first three papers, we are mainly interested in the applications of

positive solutions of dynamical systems. In the fourth and fifth papers, we investigate four

dimensional systems of first order dynamic equations, where there are not only positive

solutions but also other types of nonoscillatory solutions. We show the conditions to

ensure that these systems are oscillatory and nonoscillatory. Showing the existence of

nonoscillatory solutions is left as an open problem.
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