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ABSTRACT

In this work, we study concepts in optimal control for dynamic equations on time

scales, which unifies the discrete and continuous cases. After a brief introduction of

dynamic equations on time scales, we will examine controllability and observability for

linear systems. Then we construct and solve the linear quadratic regulator for arbitrary

time scales. Here, we seek to find an optimal control that minimizes a given cost function

associated with a linear system. We will find such an input under two different settings;

when the final state is fixed and when it is free. Later, we extend these results to deal with

linear quadratic tracking on time scales. The main contribution of this dissertation is the

construction of the Kalman filter on time scales. In this setting, we seek to find an optimal

estimate of a linear stochastic system whose state is corrupted by noisy measurements.

Finally, we will make an argument that the linear quadratic regulator and the Kalman

filter are mathematically dual to each other.
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1. INTRODUCTION

1.1. A BRIEF HISTORY OF FILTERING THEORY

The modern theory of filtering is commonly considered to have been developed by

the independent work of Kolmogorov [37–39] and Wiener [28, 54, 55] in the 1940s. Both

began by considering stationary processes with scalar signals and noise. Their efforts,

particularly those of Wiener, were not purely academic. The immediate need for this

theory was determining where to aim anti-aircraft guns at evading airplanes during World

War II. As a forecasting problem, the desire was to determine where to aim the gun so

that the shell travels near an aircraft with the smallest error. In continuous time, this

required solving the well-known Wiener–Hopf integral equation. In order to solve this

equation, Wiener had to transform the equation into the frequency domain, decomposing

the resulting power densities using spectral factorization, and combining certain factors

to find a time-invariant filter over an infinite observation time in the form of a frequency

response. As a result of the war effort, much of Wiener’s work remained classified until

after 1945.

While Wiener’s method was elegant, it was equally restrictive. Using Kolmogorov’s

theory, Levinson [41, 42] showed in the discrete case that the entire theory could be

reduced to least squares. A few years later, Bode and Shannon [9] would introduce a more

simplified method of solving the Wiener–Hopf equation by introducing the concept of a

shaping filter. In 1952, Booten generalized the Wiener–Hopf equation for nonstationary

processes and time-varying filters (see [13]). Follin and Carlton [25] independently of

Hanson [26] soon afterward began investigating the filter problem for a finite observation

time. Their work showed that the optimal parameters for corresponding time-varying

filters of stationary processes had to satisfy certain differential equations. In 1959, Bucy

[18] proved that this method could be applied for nonstationary processes as well. Much

of these results were later considered in discrete time, particulary by Swerling [52].
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Then in 1960, Kalman extended Wiener’s theory for nonstationary processes using

the concept of state-space techniques he developed earlier [32]. Kalman invented a re-

cursive algorithm involving a system of difference equations for the filter and its gain

matrices. In the discrete case, the Kalman filter is essentially a predictor-corrector type

estimator. The first step in this algorithm is to predict an estimate of the state based

from a previous measurement. This prediction is then associated with an error covariance.

This step is sometimes referred to as the “time update” portion of the algorithm. Then

the next step is to calculate a correction of the state estimate based on the prediction

and the new measurement along with its associated error covariance. This new corrected

estimate depends on a residual whose weighting coefficient represents the Kalman gain.

This last step is sometimes called the “measurement update” portion. The algorithm then

repeats itself. A year later Kalman and Bucy created a corresponding filter in the con-

tinuous case [35]. This case was also formulated in state-space representation to derive a

time-varying matrix form of the Wiener–Hopf equation. Using this equation, Kalman and

Bucy derived a similar filter involving a system of differential equations. While Kalman is

credited with developing the Kalman filter (Swerling invented a similar algorithm earlier),

it was actually Schmidt who first found an application of the filter. Following Kalman’s

visit to the NASA Ames Research Center, Schmidt applied Kalman’s work to the problem

of navigating to the moon with the Apollo program. Sometimes the Kalman filter is called

the Linear Quadratic Estimator (LQE).

Since then, the Kalman filter has been implemented for numerous applications in

one form or another. One such example is the extended Kalman filter which is used

for nonlinear systems. Applications for this form of the filter include ballistics, neural

networks, and GPS navigation [8, 27, 58]. However, this form is not particularly reliable

as an optimal estimator. An improvement for this design is the unscented filter, which uses

deterministic sampling techniques to find the true mean and variances. There has also

been interest in comparing discrete with continuous measurements when the filter design

is given as a continuous process [22, 49, 57]. Applications here include biomechanical

models, particularly for cardiac kinetics estimation. Such filters are sometimes called
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“hybrid” filters, although this term is generic. Despite its various incarnations, each filter

design strikingly resembles Kalman’s original filter.

1.2. OUTLINE OF DISSERTATION

In 1988 Stefan Hilger [29], under the direction of Bernd Aulbach, introduced the

theory of time scales in order to unify discrete and continuous analysis. As a result, one

can generalize a process to account for both cases, or any combination of the two provided

we restrict ourselves to closed, nonempty subsets of the reals (a time scale). However, this

generalized process can handle many other time scales than just the set of real numbers

and the set of integers, and we are left with a more general result. This thesis deals

with the theory of optimal control on time scales. The theory of optimal control leads

itself extremely well to the theory of time scales, as many discrete processes often look

strikingly similar to their continuous counterparts. Our aim is to unify and extend such

processes to dynamic equations on time scales.

In Section 2, we introduce some basic concepts of time scale calculus. A more formal

definition of time scales is given along with examples. We will also consider the derivative

and integral of functions on an arbitrary time scale, along with some basic properties of

each. The so-called “simple useful formula,” which we will use to derive many of our

results in Sections 4 and 5 is discussed. Also, since we are mainly concerned with linear

systems, we will examine the matrix exponential and its properties.

For Section 3, we will unify and extend the concepts of controllability and observabil-

ity for the adjoint equation in the time invariant setting. These concepts are attributed

to Kalman in the real and discrete cases (see [31, 33, 34, 36]). We will compare these re-

sults with the controllability and observability results of a similar linear system. We also

consider controllability and observability for linear time-varying (LTV) systems as well.

In Section 4, we will introduce and unify the concept of the linear quadratic regulator

(LQR) on time scales. This concept can also be attributed to Kalman in the discrete and

continuous cases. In this section, we seek to find an optimal control that minimizes a

quadratic cost function associated with a linear system. Depending on the final state,

this optimal control can take on two completely different forms. If the final state is fixed
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we have an open-loop control, meaning that the input is not in terms of the current state.

On the other hand, if the final state is not fixed, we have a closed-loop control. This

means that the optimal input is in terms of the current state (i.e., state feedback). In the

second situation, we will use the simple useful formula to find a Riccati equation whose

solution gives us the optimal control.

Section 5 is essentially an extension of the LQR. In this section, we introduce and

unify the concept of the linear quadratic tracker (LQT) on time scales. Using the concept

of the tracker, we find an optimal control when the final state is fixed using the same

mechanics as we did when the final state was free.

In Section 6, we introduce the Kalman filter or linear quadratic estimator (LQE)

for time scales. Yet again this concept can be attributed to Kalman in the discrete case

(see [32]) and the continuous case (with Bucy, see [35]). However this one is up for debate!

One can see [51] for more details. In this section, we consider the Kalman filter in both

its discrete and continuous forms. Next we introduce the concept of an observer for linear

systems on time scales. An observer is a linear system that estimates a system when the

system is not entirely available for measurement. Then when the linear system is also

stochastic, we introduce the Kalman filter as an observer that estimates the system when

the state is corrupted by noisy measurements. Finally, we make an argument that LQR

and LQE are dual problems of each other, since the Riccati equations and gains that

describe each optimal problem look mathematically similar to each other.

In Section 7, we consider some open problems dealing with the LQR and LQE on

time scales.
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2. INTRODUCTION TO TIME SCALES

In 1988, Stefan Hilger under the direction of Bernd Aulbach introduced calculus on

time scales in his PhD thesis [4,29]. The study of dynamic equations on time scales unifies

both continuous and discrete mathematical analysis. As a result, one can generalize a

process to account for both cases, or any combination of the two. Since its inception, this

area of mathematics has gained a great deal of international attention. Researchers have

since found applications of time scales to include heat transfer, population dynamics, and

economics. In further sections, we will extend our results toward applications found in

electrical engineering. For a more in-depth study of time scales, see Bohner and Peterson’s

books [11,12].

2.1. BASIC DEFINITIONS

In this subsection, we will introduce the basic results on time scales that we will use

in later sections.

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of the real num-

bers.

Next, we consider some common examples of time scales.

Example 2.2. Some common time scales include

a. T = R and T = Z;

b. T = hZ := {hz : z ∈ Z} for h > 0;

c. T = qZ :=
{
qk : k ∈ Z

}
for q > 1;

d. T = 2Z :=
{

2k : k ∈ Z
}

;

e. The so-called harmonic numbers,

{
Hn =

n∑
k=1

1

k
: n ∈ N0

}
;

f. T = N2
0 := {n2 : n ∈ N0};

g. The Cantor set.



6

Any time scale that is a combination of any of the above sets is called a hybrid time

scale. On the other hand, sets such as (a, b) and C are not time scales.

Next, we define the forward and backward jump operators.

Definition 2.3. For t ∈ T we define the following:

a. The forward jump operator σ : T→ T is given by

σ(t) := inf {s ∈ T : s > t} . (2.1)

b. The backward jump operator ρ : T→ T is defined by

ρ(t) := sup {s ∈ T : s < t} . (2.2)

Definition 2.4. For any function f : T → R, we will define the function fσ : T → R to

be

fσ(t) = f(σ(t)) for all t ∈ T, (2.3)

i.e., fσ = f ◦ σ.

Remark 2.5. We classify points as follows. If σ(t) > t, then t is said to be right-scattered.

Similarly if ρ(t) < t, t is said to be left-scattered. If a point is both left and right-scattered,

it is said to be isolated. On the other hand, if σ(t) = t, then t is said to be right-dense.

Similarly if ρ(t) = t, t is said to be left-dense. If a point is both left and right-dense, it is

said to be dense. Table 2.1 gives a classification of points.

Definition 2.6. If T is a time scale with a left-scattered maximum m, then the set

Tκ = T \ {m}. Otherwise Tκ = T.

Definition 2.7. The graininess function µ : T→ [0,∞) is defined by

µ(t) := σ(t)− t. (2.4)
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t < σ(t) t is right-scattered

ρ(t) < t t is left-scattered

ρ(t) < t < σ(t) t is isolated

σ(t) = t t is right-dense

ρ(t) = t t is left-dense

ρ(t) = t = σ(t) t is dense

Table 2.1. Classification of Points

In the Table 2.2, we define the forward and backward jump operators and the grain-

iness function for some common time scales.

T µ(t) σ(t) ρ(t)

R 0 t t

Z 1 t+ 1 t− 1

hZ h t+ h t− h

qZ (q − 1)t qt
t

q

2Z t 2t
t

2

N2
0 1 + 2

√
t (
√
t+ 1)2 (

√
t− 1)2

Hn
1

n+ 1
Hn+1 Hn−1

Table 2.2. Examples of Times Scales

2.2. DIFFERENTIATION

Next we define the delta (or Hilger) derivative.
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Definition 2.8. Let f : T→ R. The delta derivative f∆(t) is the number (when it exists)

such that given any ε > 0, there is a neighborhood U of t such that

∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]
∣∣ ≤ ε|σ(t)− s| for all s ∈ U.

In the next two theorems, we will consider some properties of the delta derivative.

Theorem 2.9. [11, Theorem 1.16] Suppose f : T→ R is a function and let t ∈ Tκ. Then

we have the following:

a. If f is differentiable at a point t, then f is continuous at t.

b. If f is continuous at t, where t is right-scattered, then f is differentiable at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
. (2.5)

c. If f is differentiable at t, where t is right-dense, then

f∆(t) = lim
s→t

f(t)− f(s)

t− s
. (2.6)

d. If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t). (2.7)

The last equation is sometimes called the “simple useful formula.” We will need this

equation to develop the “sweep method” used extensively in later sections.

Remark 2.10. Note the following examples.

a. When T = R, then (if the limit exists)

f∆(t) = lim
s→t

f(t)− f(s)

t− s
= f ′(t).
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b. When T = Z, then

f∆(t) = f(t+ 1)− f(t) = ∆f(t).

c. When T = qZ for q > 1, then

f∆(t) =
f(qt)− f(t)

(q − 1)t
.

Next we consider the linearity property as well as the product and quotient rules.

Theorem 2.11. [11, Theorem 1.20] Let f, g : T → R be differentiable at t ∈ Tκ. Then

we have the following:

a. For any constants α and β, the sum (αf + βg) : T→ R is differentiable at t with

(αf + βg)∆(t) = αf∆(t) + βg∆(t). (2.8)

b. The product fg : T→ R is differentiable at t with

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f(t)g∆(t) + f∆(t)gσ(t). (2.9)

c. If g(t)g(σ(t)) 6= 0, then the quotient f/g : T→ R is differentiable at t with

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
. (2.10)

2.3. INTEGRATION

We will now consider when functions are integrable on an arbitrary time scale.

However, we must first introduce the following two concepts.

Definition 2.12. A function f : T → R is said to be regulated if its left and right-sided

limits exist at all left and right-dense points in T, respectively.
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Definition 2.13. A function f : T→ R is said to be rd-continuous if it is continuous at

right-dense points in T and its left-sided limits exist at left-dense points in T. The class

of rd-continuous functions f : T→ R is given by

Crd = Crd(T) = Crd(T,R). (2.11)

From the previous two definitions, we have the following theorem.

Theorem 2.14. [11, Theorem 1.60] Let f : T→ R.

a. If f is continuous, then it is also rd-continuous.

b. If f is rd-continuous, then it is also regulated.

c. The jump operator σ is rd-continuous.

d. If f is regulated or rd-continuous, then so is fσ.

e. Assume f is continuous. If g : T→ R is regulated or rd-continuous, so is f ◦ g.

Definition 2.15. A continuous function f : T → R is said to be pre-differentiable with

(region of differentiation) D, provided D ⊂ Tκ, Tκ \ D is countable and contains no

right-scattered elements of T, and f is differentiable at each point t ∈ D.

Next, we consider when the existence of pre-antiderivatives are guaranteed.

Theorem 2.16. [11, Theorem 1.70] Let f : T → R be a regulated function. Then there

exists a function F which is pre-differentiable with region of differentiation D such that

F∆(t) = f(t) for all t ∈ D.

Any such function F is called a pre-antiderivative of f .

Definition 2.17. Let f : T→ R be a regulated function and let F be a pre-antiderivative

of f . Then the Cauchy integral integral of f is given by

∫ b

a

f(t) ∆t = F (b)− F (a) for all a, b ∈ T.
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Example 2.18. Let a, b ∈ T and f be rd-continuous. Note the following examples.

a. When T = R, then

∫ b

a

f(t) ∆t =

∫ b

a

f(t) dt.

b. When [a, b] contains only isolated points, then

∫ b

a

f(t) ∆t =


∑

t∈[a,b) µ(t)f(t) if a < b

0 if a = b

−
∑

t∈[a,b) µ(t)f(t) if a > b.

c. When T = Z, then

∫ b

a

f(t) ∆t =


∑b−1

t=a f(t) if a < b

0 if a = b

−
∑a−1

t=b f(t) if a > b.

c. When T = hZ, then

∫ b

a

f(t) ∆t =


∑b/h−1

k=a/h hf(hk) if a < b

0 if a = b

−
∑a/h−1

k=b/h hf(hk) if a > b.

In the next theorem, we consider basic properties of integration on time scales.

Theorem 2.19. [11, Theorem 1.77] If a, b, c ∈ T, α ∈ R, and f, g ∈ Crd , then

a.
∫ b
a
[f(t) + g(t)]∆t =

∫ b
a
f(t)∆t+

∫ b
a
g(t)∆t;

b.
∫ b
a
(αf)(t)∆t = α

∫ b
a
f(t)∆t;

c.
∫ b
a
f(t)∆t = −

∫ a
b
f(t)∆t;

d.
∫ b
a
f(t)∆t =

∫ c
a
f(t)∆t+

∫ b
c
f(t)∆t;
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e.
∫ b
a
[fσ(t)g∆(t)]∆t = (fg)(b)− (fg)(a) +

∫ b
a
f∆(t)g(t)∆t;

f.
∫ b
a
[f(t)g∆(t)]∆t = (fg)(b)− (fg)(a) +

∫ b
a
f∆(t)gσ(t)∆t;

g.
∫ a
a
f(t)∆t = 0.

Finally, we consider a generalized form of the Leibniz rule.

Theorem 2.20. [11, Theorem 1.117] Let a ∈ Tκ, b ∈ T, and assume f : T× Tκ → R is

continuous at (t, t), where t ∈ Tκ with t > a. Also assume that f∆(t, ·) is rd-continuous

on [a, σ(t)]. Suppose that for each ε > 0 there exists a neighborhood U of t independent

of τ ∈ [a, σ(t)], such that

|f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ U,

where f∆ denotes the derivative of f with respect to the first variable. Then

a. g(t) :=
∫ t
a
f(t, τ)∆τ implies g∆(t) =

∫ t
a
f∆(t, τ)∆τ + f(σ(t), t);

b. h(t) :=
∫ b
t
f(t, τ)∆τ implies h∆(t) =

∫ b
t
f∆(t, τ)∆τ − f(σ(t), t).

2.4. EXPONENTIAL FUNCTIONS

In this section, we introduce exponential functions on time scales. First we offer

regressive functions on time scales.

Definition 2.21. We say that the function p : T→ R is regressive provided that

1 + µ(t)p(t) 6= 0 for all t ∈ Tκ.

The set of all regressive and rd-continuous functions is given by

R = R(T) = R(T,R).

Now we will introduce some special operations for regressive functions on time scales.

We will use the next three definitions to introduce some properties of the exponential

function on time scales.
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Definition 2.22. Let p, q ∈ R. Then we define “circle plus” addition ⊕ by

(p⊕ q)(t) = p(t) + (1 + µ(t)p(t))q(t) for all t ∈ Tκ. (2.12)

Definition 2.23. Let p, q ∈ R. Then we define “circle minus” subtraction 	 by

(p	 q)(t) =
p(t)− q(t)

1 + µ(t)q(t)
for all t ∈ Tκ. (2.13)

Definition 2.24. Let n ∈ N and p ∈ R. Then we define the “circle dot” multiplication

�, denoted by

n� p = p⊕ p⊕ p⊕ ...⊕ p,

where there are n terms on the right-hand side of the equation.

Next, we introduce the notion of the Hilger complex plane.

Definition 2.25. For h > 0, we define the Hilger complex numbers by

Ch :=

{
z ∈ C : z 6= −1

h

}
.

When h = 0, let C0 = C.

We will now express the exponential function in terms of what is known as the

cylinder transformation whose range is the set Zh defined as follows.

Definition 2.26. For h > 0, we define the strip

Zh :=
{
z ∈ C : −π

h
< Im(z) ≤ π

h

}
.

When h = 0, let Z0 := C.

Definition 2.27. For h > 0, we define the cylinder transformation ξh : Ch → Zh by

ξh(z) =
1

h
Log(zh+ 1),
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where Log represents the principal logarithm function. For h = 0, we define ξ0(z) = z for

all z ∈ C.

Next, the generalized exponential function is given as follows.

Definition 2.28. If p ∈ R, then we define the exponential function by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T. (2.14)

where the cylinder transformation ξh(z) is the same as in Definition 2.27.

Definition 2.29. If p ∈ R, then the linear dynamic equation

y∆(t) = p(t)y(t) (2.15)

is regressive.

Theorem 2.30. [11, Theorem 2.33] Suppose that (2.15) is regressive and fix t0 ∈ T.

Then the solution to the initial value problem

y∆(t) = p(t)y(t), y(t0) = 1 (2.16)

is given by ep(·, t0).

Our next theorem addresses the uniqueness of the solution for (2.16).

Theorem 2.31. [11, Theorem 2.35] If (2.15) is regressive, then the only solution of

(2.16) is given by ep(·, t0).

Now we will state some properties of the exponential function.

Theorem 2.32. [11, Theorem 2.36] and [12, Theorem 2.44] If p, q ∈ R, then

a. e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

b. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

c. e	p(t, s) = 1
ep(t,s)

;



15

d. ep(t, s) = 1
ep(s,t)

= e	p(s, t);

e. ep(t, s)ep(s, r) = ep(t, r);

f. ep(t, s)eq(t, s) = ep⊕q(t, s);

g.
ep(t, s)

eq(t, s)
= ep	q(t, s);

h.

(
1

ep(·, s)

)∆

= − p(t)

eσp(·, s)
;

i. enp (t, s) = en�p(t, s).

We will use the next result in Section 4.

Theorem 2.33. [11, Theorem 2.39] If p ∈ R and a, b, c ∈ T, then

[ep(c, ·)]∆ = −p[ep(c, ·)]σ

and

∫ b

a

p(τ)ep(c, σ(τ))∆τ = ep(c, a)− ep(c, b).

2.5. MATRIX EXPONENTIAL

Before we introduce the matrix exponential, we consider the notion of regressive

matrices.

Definition 2.34. Let A be an m×n matrix-valued function defined on T. If every entry

of A is rd-continuous on T, then A is said to be rd-continuous on T.

It should be noted that the class of rd-continuous matrix-valued functions is abbre-

viated by

Crd = Crd(T) = Crd(T,Rm×n). (2.17)
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Remark 2.35. Consider the linear system of dynamic equations

x∆(t) = A(t)x(t), (2.18)

where A is an n×n matrix defined on T. We say that the vector-valued function v : T→ R

is a solution to (2.18) provided that v∆(t) = A(t)v(t) holds for all t ∈ Tκ. Now in order

to discuss this system subject to some initial condition, we need the following definition.

Definition 2.36. Let A be an n × n matrix-valued function defined on T. A is said to

be regressive if I + µ(t)A(t) is invertible for all t ∈ Tκ, where I is the identity matrix.

The class of all rd-continuous and regressive matrix-valued functions is given by

R = R(T) = R(T,Rm×n). (2.19)

The system (2.18) is said to be regressive provided that A ∈ R. Before we consider

the solution to an initial value problem for (2.18), we offer the existence and uniqueness

theorem as follows.

Theorem 2.37. [11, Theorem 5.8] Let A ∈ R be an n×n matrix-valued function defined

on T. Suppose that f : T→ Rn, t0 ∈ T, and x0 ∈ R. Then the initial value problem

x∆(t) = A(t)x(t) + f(t), x(t0) = x0 (2.20)

has a unique solution z : T→ Rn.

Next, we introduce two special operations we will use with the matrix exponential.

Definition 2.38. Let A and B be regressive n×n matrix-valued functions defined on T.

Then we define “circle plus” addition ⊕ by

(A⊕B)(t) = A(t) + (I + µ(t)A(t))B(t) for all t ∈ Tκ. (2.21)
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We define the additive inverse 	 (read “circle minus”) by

(	)A(t) = −[I + µ(t)A(t)]−1A(t) for all t ∈ Tκ (2.22)

= −A(t)[I + µ(t)A(t)]−1. (2.23)

Next, we will consider the matrix exponential on the time scale T and some of its

properties.

Definition 2.39. Suppose that A is regressive and rd-continuous. Then the unique n×n

matrix-valued solution to the IVP

X∆(t) = A(t)X(t), X(t0) = I

is called the matrix exponential function and denoted is by eA(·, t0).

Example 2.40. Assume that A is an n× n matrix.

a. If T = Z, then

eA(t, t0) =


t−1∏
τ=t0

[I + A(τ)] if A(t) is never −I

(I + A)t−t0 if I + A is a constant and invertible.

b. If T = R, then

eA(t, t0) =


exp

{∫ t

t0

A(τ)dτ

}
if A is continuous and

A(s)A(t) = A(t)A(s) for all s, t ∈ T

eA(t−t0) if A(t) is constant.

c. If T = hZ, then

eA(t, t0) =


t/h−1∏
τ=t0

[I + hA(hτ)] if A(t) is regressive

(I + hA)
t−t0
h if I + hA is a constant and invertible.
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d. If T = qN0 for q > 1, then

eA(t, 1) =
∏

τ∈T∩(0,t)

[I + (q − 1)τA(τ)].

Theorem 2.41. [11, Theorem 5.21] Let eA(·, t0) be as in Definition 2.39. Then for

r, s, t ∈ T, we have the following:

a. eA(t, t) = e0(t, s) ≡ I.

b. eA(σ(t), s) = (I + µ(t)A(t))eA(t, s).

c. e−1
A (t, s) = eA(s, t) = eT	AT (t, s).

d. eA(t, s)eA(s, r) = eA(t, r).

Next we will find the solution (state response) to our linear systems using variation

of parameters.

Theorem 2.42. [11, Theorem 5.24] Let A ∈ R be an n × n matrix-valued function on

T and suppose that f : T → Rn is rd-continuous. Let t0 ∈ T and x0 ∈ Rn. Then the

solution of the initial value problem

x∆(t) = A(t)x(t) + f(t), x(t0) = x0

is given by

x(t) = eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ.

Theorem 2.43. [11, Theorem 5.27] Let A ∈ R be an n× n matrix-valued function on T

and suppose that f : T→ Rn is rd-continuous. Then for t0 ∈ T, x0 ∈ Rn, the solution of

the initial value problem

x∆(t) = −A(t)xσ(t) + f(t), x(t0) = x0
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is given by

x(t) = e	A(t, t0)x0 +

∫ t

t0

e	A(t, τ)f(τ)∆τ

= eTAT (t0, t)

[
x0 +

∫ t

t0

eTAT (τ, t0)f(τ)∆τ

]
.

2.6. LYAPUNOV AND RICCATI EQUATIONS

In much of the later sections, we will use the notion of Lyapunov and Riccati equa-

tions on time scales to obtain our results.

Definition 2.44. A square matrix-valued function A is said to symmetric if it is equal

to its transpose, i.e. A = AT .

Definition 2.45. A symmetric matrix-valued function A is said to positive definite (de-

noted A > 0) if xTAx > 0 for any nonzero vector x. A symmetric matrix-valued function

A is said to positive semi-definite (denoted A ≥ 0) if xTAx ≥ 0 for any nonzero vector x.

In the next lemma, we consider a Lyapunov function on time scales associated with

the autonomous dynamic equation

x∆(t) = Ax(t). (2.24)

Definition 2.46. Let S ∈ C1
rd(T, Rn×n) be symmetric. A generalized Lyapunov function

is given by

xT (t)S(t)x(t). (2.25)

Lemma 2.47. The derivative of the generalized Lyapunov function is given by

(xTSx)∆(t) = xT (t)[ATS(t) + (I + µ(t)AT )S(t)A

+(I + µ(t)AT )S∆(t)(I + µ(t)A)]x(t). (2.26)



20

Proof. Using the product rule, we have

(xTSx)∆(t) = (xTS)∆(t)xσ(t) + (xTS)(t)x∆(t)

= [(xT )∆(t)S(t) + (xT )σ(t)S∆(t)]xσ(t) + (xTS)(t)Ax(t).

Now using the simple useful formula, we have

(xTSx)∆(t) = [(xT (t)ATS(t) + (x+ µx∆)T (t)S∆(t)](x+ µx∆)(t) + (xTS)(t)Ax(t)

= [(xT (t)ATS(t) + xT (t)(I + µ(t)A)TS∆(t)](I + µ(t)A)x(t)

+(xTS)(t)Ax(t)

= xT [ATS(t)(I + µ(t)A) + (I + µ(t)A)TS∆(t)(I + µ(t)A)]x(t)

+(xTS)(t)Ax(t)

= xT (t)[ATS(t) + (I + µ(t)AT )S(t)A

+(I + µ(t)AT )S∆(t)(I + µ(t)A)]x(t).

This gives the result as desired.

While Lyapunov functions are often used to establish a stability criterion (see

DaCunha’s dissertation [19]), we will use them to find an optimal cost in Sections 4

and 5. Next, we consider two forms of the matrix Riccati equation on time scales.

Definition 2.48. Let X be positive definite and let A,B,C be constant matrices. Then

a Riccati equation of the first form is given by

X∆(t) = C + AX(t) + (I + µ(t)A)X(t)AT

−(I + µ(t)A)X(t)BT (C + µ(t)BX(t)BT )−1BX(t)(I + µ(t)AT ) (2.27)

and a Riccati equation of the second form is given by

−X∆(t) = C + AXσ(t) + (I + µ(t)A)Xσ(t)AT
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−(I + µ(t)A)Xσ(t)BT (C + µ(t)BXσ(t)BT )−1BXσ(t)(I + µ(t)AT ). (2.28)

It should be noted that we will derive both forms using widely different methods in

Sections 4 and 6. However, we will use the solutions of both forms in the same manner.

The solution to the first form will be used to determine the gain for the Kalman filter.

Similarly, the solution of the second form will be used to determine the gain for the linear

quadratic regulator.
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3. CONTROLLABILITY AND OBSERVABILITY

3.1. INTRODUCTION

In the early 1960s, R.E. Kalman introduced two concepts that have since become

the backbone of modern control theory (see [31, 33, 34, 36]). With “controllability” and

“observability,” one can classify a control system without first finding the solution in

closed form. A linear system is said to be controllable if there exists at least one input

that drives the state vector to the origin. On the other hand, a linear system is said to be

observable if there exists at least one output such that the initial state can be determined.

These properties have been studied in depth in both the continuous and discrete cases,

where one can see striking similar, if not identical, results. Yet until recently there did

not exist a method to relate these results in one case with the results in the other.

The purpose of this section is to lay down the foundation of linear control systems on

time scales. Here we examine controllability and observability in both time-invariant and

time-dependent cases. It should be noted that there have been other excellent attempts

to do so, e.g., in [6, 7, 24]. Both examine the linear system

x∆(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(3.1)

in an effort to generalize controllability and observability for dynamic equations. At

first, this seems to be a very natural extension from the continuous and discrete cases.

However, as one examines the rank condition for controllability in the classical sense,

one must assume that the graininess function is differentiable, an assumption that is not

satisfied in general for all time scales (see [11, Example 1.56]). To side step this issue, we

have altered the linear system so that it appears as

x∆(t) = −A(t)xσ(t) +B(t)u(t)

y(t) = C(t)xσ(t).
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The motivation for modifying the system follows from the generalized variation of pa-

rameters formula. However, just as with the other system, one must assume that the

graininess function is differentiable when one examines the rank condition for observabil-

ity in the classical means. Instead, we will examine the controllability of the above and

the observability portion of (3.1) and then draw a parallel between both systems. As a

result, we see that this connection of controllability and observability for linear systems

on time scales is more compelling than previously realized. Also, the proofs of this thesis

follow a similar pattern as the proofs found for the continuous and discrete cases.

It should be noted, however, that in later sections we will restrict ourselves to the

system (3.1). Now we will examine controllability and observability of linear systems on

time scales.

3.2. THE TIME-INVARIANT CASE FOR THE ADJOINT EQUATION

Now let us consider the general state space representation of a linear dynamic system

to be

x∆(t) = −Axσ(t) +Bu(t)

y(t) = Cxσ(t),
(3.2)

where x ∈ Rn is the state, u ∈ Rm is the input (control), and y ∈ Rr is the output.

Here u is assumed to be rd-continuous. Note that A, B, and C are real-valued matrices

of dimensions n × n, n × m, and r × n respectively. A is assumed to be regressive. C

is assumed to be of rank n. In Subsection 3.4, we will consider A(t), B(t), and C(t) for

(3.2) instead of constant matrices.

Note that for the controllability portion of this work, we will look solely at the

matrices A and B while we will examine the matrices A and C for the observability

portion.

3.2.1. Controllability and Reachability. Throughout our discussion, we will

make the assumptions that t0, tf ∈ T and tf > σn(t0). As controllability does not rely on
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the output equation, we will only consider the state equation

x∆(t) = −Axσ(t) +Bu(t) (3.3)

in this section. When we refer to a linear system being “controllable,” we mean there

exist inputs such that the state vector “can be driven” to the origin for any given initial

condition. If all of the states of the linear system are controllable, then we have the

following definition for complete controllability (see [15]).

Definition 3.1. The state equation (3.3) is said to be completely controllable on [t0, tf ]

if for all x0 ∈ Rn, there exists u such that the solution x of (3.3) with x(t0) = x0 satisfies

x(tf ) = 0.

Next we give the generalized controllability criterion as follows.

Theorem 3.2. The state equation (3.3) is completely controllable if and only if the con-

trollability Gramian WC [t0, tf ] is invertible where

WC [t0, tf ] :=

∫ tf

t0

eTAT (τ, t0)BBT eAT (τ, t0)∆τ.

Proof. First assume that (3.3) is completely controllable and let α ∈ KerWC [t0, tf ]. Then

0 = αTWC [t0, tf ]α

=

∫ tf

t0

αT eTAT (τ, t0)BBT eAT (τ, t0)α∆τ

=

∫ tf

t0

∥∥BT eAT (τ, t0)α
∥∥2

∆τ,

which implies BT eAT (τ, t0)α = 0 for all τ ∈ [t0, tf ) ∩ T. Then there exists a u such that

the solution x of (3.3) with x(t0) = α satisfies x(tf ) = 0. It follows from Theorem 2.43

that

α = −
∫ tf

t0

eTAT (τ, t0)Bu(τ)∆τ.
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Then

‖α‖2 = αTα = −
∫ tf

t0

uT (τ)BT eAT (τ, t0)α∆τ = 0,

which implies α = 0. Hence KerWC [t0, tf ] = {0}. Therefore WC [t0, tf ] is invertible.

Now assume that WC [t0, tf ] is invertible and let x0 ∈ Rn. Define u by

u(t) = −BT eAT (t, t0)W−1
C [t0, tf ]x0.

Then by Theorem 2.43, the solution x of (3.3) with x(t0) = x0 satisfies

x(tf ) = eTAT (tf , t0)

[
x0 +

∫ tf

t0

eTAT (τ, t0)Bu(τ)∆τ

]
= eTAT (t0, tf )

[
x0 −

∫ tf

t0

eTAT (τ, t0)BBT eAT (τ, t0)W−1
C [t0, tf ]x0∆τ

]
= eTAT (t0, tf )

[
x0 −WC [t0, tf ]W

−1
C [t0, tf ]x0

]
= 0,

which tells us that the linear system is completely controllable.

Now we will look at the generalized Kalman rank condition for controllability of

linear systems on time scales.

Theorem 3.3. The state equation (3.3) is completely controllable if and only if the n×

(nm) controllability matrix ΓC [A,B] has full rank n, where

ΓC [A,B] := [ B AB A2B · · · An−1B ].

Proof. First assume that (3.3) is completely controllable. Let x0 ∈ Rn. Then there exists

u such that the solution of x of (3.3) with x(t0) = x0 satisfies x(tf ) = 0. It follows from

Theorem 2.43 that

x0 = −
∫ tf

t0

eTAT (τ, t0)Bu(τ)∆τ. (3.4)
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Now by DaCunha [20] or Zafer [56] (using the Cayley–Hamilton theorem), there exist rj

such that

eAT (t, t0) =
n−1∑
j=0

rj(t, t0)(AT )j. (3.5)

Next, we define Hj by

Hj = −
∫ tf

t0

rj(τ, t0)u(τ)∆τ.

Now substituting Hj and (3.5) into (3.4), we have

x0 = −
∫ tf

t0

eTAT (τ, t0)Bu(τ)∆τ

= −
∫ tf

t0

[
n−1∑
j=0

rj(τ, t0)Aj

]
Bu(τ)∆τ

=
n−1∑
j=0

AjBHj

= ΓC [A,B]


H0

H1

...

Hn−1


∈ Im ΓC [A,B].

Then Rn ⊂ Im ΓC [A,B] ⊂ Rn and thus rank ΓC [A,B] = n.

Now assume that rank ΓC [A,B] = n and let α ∈ KerWC [t0, tf ]. Then

0 = αTWC [t0, tf ]α

=

∫ tf

t0

αT eTAT (τ, t0)BBT eAT (τ, t0)α∆τ

=

∫ tf

t0

∥∥BT eAT (τ, t0)α
∥∥2

∆τ,

which implies

BT eAT (τ, t0)α = 0 for all τ ∈ [t0, tf ) ∩ T. (3.6)
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Now differentiating (3.6) m times, where 0 ≤ m ≤ n− 1, we have

BT (Am)T eAT (τ, t0)α = 0 for all τ ∈ [t0, tf )
κm ,

hence

(AmB)T eAT (τ, t0)α = 0 for all τ ∈ [t0, tf )
κm .

Then picking τ = t0 ∈ [t0, tf )
κm for all 0 ≤ m ≤ n − 1 (since tf > σn(t0)) and using

Theorem 2.41 part (a), we have

(AmB)Tα = 0 for all 0 ≤ m ≤ n− 1,

which implies ΓTC [A,B]α = 0. Then α ∈ Ker ΓTC [A,B] 6= {0}. Hence KerWC [t0, tf ] = {0}

and thus WC [t0, tf ] is invertible. Then by Theorem 3.2, (3.3) is completely controllable.

Next, we introduce a similar concept to controllability: reachability.

Definition 3.4. The state equation (3.3) is said to be completely reachable on [t0, tf ] if

for all xf ∈ Rn, there exists u such that the solution x of (3.3) with x(t0) = 0 satisfies

x(tf ) = xf .

Now we will give the relationship between controllability and reachability in the

following theorem.

Theorem 3.5. The state equation (3.3) is controllable if and only if it is reachable.

Proof. First assume that (3.3) is controllable. Let xf ∈ Rn. Then there exists u such that

the solution x of (3.3) with x(t0) = −eTAT (tf , t0)xf satisfies x(tf ) = 0. Then by Theorem

2.43, we have

0 = x(tf )

= eTAT (t0, tf )

[
−eTAT (tf , t0)xf +

∫ tf

t0

eTAT (τ, t0)Bu(τ)∆τ

]
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= −xf +

∫ tf

t0

eTAT (τ, tf )Bu(τ)∆τ,

which implies that the solution x̃ of (3.3) with x̃(t0) = 0 satisfies

x̃(tf ) =

∫ tf

t0

eTAT (τ, tf )Bu(τ)∆τ = xf .

Therefore (3.3) is reachable.

Now assume that (3.3) is reachable. Let x0 ∈ Rn. Then there exists an input u

such that the solution x of (3.3) with x(t0) = 0 satisfies x(tf ) = −eTAT (tf , t0)x0. Then by

Theorem 2.43, we have

−eTAT (tf , t0)x0 = x(tf ) =

∫ tf

t0

eTAT (τ, tf )Bu(τ)∆τ,

which implies that the solution x̃ of (3.3) with x̃(tf ) = 0 satisfies

0 = x̃(t0)

= eTAT (t0, t0)

[
x̃(t0) +

∫ tf

t0

eTAT (τ, t0)Bu(τ)∆τ

]
= −

∫ tf

t0

eTAT (τ, t0)Bu(τ)∆τ

= x0,

which implies (3.3) is controllable.

Remark 3.6. In the continuous case, controllability and reachability are always equivalent.

This is not necessarily true in the discrete case. In fact, reachability is considered stronger

condition than controllability. However, Theorem 3.5 holds since A is always assumed to

be regressive. As a result, we will use these terms interchangeably.

Theorem 3.7. The state equation (3.3) is completely reachable if and only if the reach-

ability Gramian WR[t0, tf ] is invertible, where

WR[t0, tf ] :=

∫ tf

t0

eTAT (τ, tf )BB
T eAT (τ, tf )∆τ.
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Proof. Note that

WR[t0, tf ] = eTAT (t0, tf )Wc[t0, tf ]eAT (t0, tf ),

which implies that WR[t0, tf ] and WC [t0, tf ] are congruent. Then by Sylvester’s law of

inertia, WR[t0, tf ] is invertible if and only if WC [t0, tf ] is invertible. Then the statement

follows from Theorem 3.2.

Next we revisit the generalized Kalman rank condition on time scales for reachability.

The proof is omitted as it again relies on Sylvester’s law of inertia as found in Theorem

3.7. Then using Theorem 3.3, we have the following result.

Theorem 3.8. The state equation (3.3) is completely reachable if and only if the n×(nm)

controllability matrix ΓC [A,B] has full rank n.

3.2.2. Observability. We refer to a linear system being “observable” if given the

output y and input u, we can find our initial condition x0. If this is true regardless of the

initial time and initial state, we have the following definition for complete observability.

Definition 3.9. The linear system (3.2) is said to be completely observable on [t0, tf ]

where, if for any x(t0) and a known u, x(t0) can be uniquely determined by y(t).

On the other hand, the linear system (3.2) is said to be unobservable if given x(t0) =

x0 and the input u(t) = 0, there exists a finite time tf such that y(t) = 0 for all t ∈ [t0, tf ).

Theorem 3.10. The linear system (3.2) is completely observable if and only if the ob-

servability Gramian WO[t0, tf ] is invertible, where

WO[t0, tf ] :=

∫ tf

t0

eT	A(σ(τ), t0)CTCe	A(σ(τ), t0)∆τ. (3.7)

Proof. Assume (3.1) is completely observable and let α ∈ KerWO[t0, tf ]. Then

0 = αTWO[t0, tf ]α

=

∫ tf

t0

αT eT	A(σ(τ), t0)CTCe	A(σ(τ), t0)α∆τ
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=

∫ tf

t0

‖Ce	A(σ(τ), t0)α‖2 ∆τ,

which implies Ce	A(σ(τ), t0)α = 0 for all t ∈ [t0, tf ) ∩ T. Now picking x0 = α and u = 0,

we have y = 0 for all t ∈ [t0, tf )∩T. This implies that (3.1) is not completely observable,

a contradiction.

Now suppose that W−1
O [t0, tf ] exists. Then for any output y, we have

WO[t0, tf ]x0 =

∫ tf

t0

eT	A(σ(τ), t0)CTCe	A(σ(τ), t0)x0∆τ

=

∫ tf

t0

eT	A(σ(τ), t0)CTy(τ)∆τ,

which implies x0 = W−1
O [t0, tf ]

∫ tf

t0

eT	A(σ(τ), t0)CTy(τ)∆τ . Therefore the system is com-

pletely observable.

Next, we will construct the generalized Kalman rank condition for observability

of linear systems on time scales. However the Gramian is not particularly useful in

establishing this result. Instead, we will appeal to the simple useful formula.

Theorem 3.11. The linear system (3.2) is completely observable if and only if the (nr)×n

observability matrix ΓO[A,C] has full rank n, where

ΓO[A,C] :=


C

CA

...

CAn−1


.

Proof. First assume B = 0 since the input does not affect observability and that y(t) = 0

for all t ≥ 0 while rank ΓO[A,C] = n. We will further assume that µ(t) 6= 0 for all t ≥ 0.
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Then using the simple useful formula n− 1 times, the output equation can rewritten as


1 0 0 . . . 0

0 −µ(t) 0 . . . 0

...
...

0 0 0 . . . (−µ(t))n−1




C

CA

...

CAn−1


x(t) = 0, (3.8)

where x(t) = e	A(t, t0)x0. Note that equation (3.8) then implies x0 = 0. Thus (3.2) is

completely observable.

Next, suppose that rank ΓO[A,C] < n. Then there exists a vector α ∈ Rn \{0} such

that ΓO[A,C]α = 0. This is equivalent to the system equation


CP0

CP1

...

CPn−1


α = 0,

or CP0α = 0, . . . , CPn−1α = 0 for t ≥ t0. This implies that y(t) = Ce	A(t, t0)α = 0. So

for x0 = α, the linear system (3.2) is not observable.

3.3. THE TIME-INVARIANT CASE FOR THE CLASSIC EQUATION

3.3.1. Controllability. For the sake of completeness, we will include the study

of controllability of the state equation

x∆(t) = Ax(t) +Bu(t). (3.9)

First, we give a similar controllability criterion as the one for the adjoint equation.

Theorem 3.12. The state equation (3.3) is completely controllable if and only if the

controllability Gramian WC [t0, tf ] is invertible where

WC [t0, tf ] :=

∫ tf

t0

eA(t0, σ(τ))BBT eTA(t0, σ(τ))∆τ. (3.10)
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While we will appeal to the Gramian in later sections, it is not particularly useful in

deriving the rank condition in this case. This is due to the way the matrix exponential here

is defined. We will use the argument first presented by Davis, Gravagne, Jackson, Marks,

and Ramos in [21, 30]. This argument is made possible using the Laplace transform and

convolution on time scales. In the next lemma, we define the input as a delay function.

Lemma 3.13. [30, Lemma 3.1] Let u = ux0(tf , σ(τ)) be any rd-continuous function, then

span

{∫ tf

t0

eA(τ, t0)Bux0(tf , σ(τ))∆τ

}
= span{B,AB,A2B, · · · , An−1B}

Proof. The proof can found in Jackson’s dissertation [30].

Theorem 3.14. [30, Theorem 3.2] The state equation (3.9) is completely controllable if

and only if the n× (nm) controllability matrix ΓC [A,B] has full rank n, where

ΓC [A,B] := [ B AB A2B · · · An−1B ].

Proof. The proof can found in Jackson’s dissertation [30].

Remark 3.15. Note that (3.3) was also completely controllable if and only if the same

controllability matrix had full rank! Therefore it can be argued that (3.3) is completely

controllable if and only if (3.9) is completely controllable.

3.3.2. Observability. It should be noted that the following theorems in observ-

ability follow much the same way as the controllability portion for the adjoint equation,

only with a few changes in notation. First we will give the generalized observability

criterion as follows.

Theorem 3.16. The linear system (3.1) is completely observable if and only if the ob-

servability Gramian WO[t0, tf ] is invertible, where

WO[t0, tf ] :=

∫ tf

t0

eTA(τ, t0)CTCeA(τ, t0)∆τ.
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Proof. Assume (3.1) is completely observable and let α ∈ KerWO[t0, tf ]. Then

0 = αTWO[t0, tf ]α

=

∫ tf

t0

αT eTA(τ, t0)CTCeA(τ, t0)α∆τ

=

∫ tf

t0

‖CeA(τ, t0)α‖2 ∆τ,

which implies CeA(τ, t0)α = 0 for all t ∈ [t0, tf ) ∩ T. Now picking x0 = α and u = 0, we

have y = 0 for all t ∈ [t0, tf ) ∩ T. This implies that (3.1) is not completely observable, a

contradiction.

Now suppose that W−1
O [t0, tf ] exists. Then for any output y, we have

WO[t0, tf ]x0 =

∫ tf

t0

eTA(τ, t0)CTCeA(τ, t0)x0∆τ

=

∫ tf

t0

eTA(τ, t0)CTy(τ)∆τ,

which implies x0 = W−1
O [t0, tf ]

∫ tf

t0

eTA(τ, t0)CTy(τ)∆τ. Therefore the system is completely

observable.

Next, we will give the generalized Kalman rank condition for observability of linear

systems on time scales.

Theorem 3.17. The linear system (3.1) is completely observable if and only if the (nr)×n

observability matrix ΓO[A,C] has full rank n, where

ΓO[A,C] :=


C

CA

...

CAn−1


.

Proof. First assume (3.1) is completely observable. Then for any x0 ∈ Rn, we have

WO[t0, tf ]x0 =

∫ tf

t0

eTA(τ, t0)CTy(τ)∆τ.
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Next define Fj such that

Fj =

∫ tf

t0

rj(τ, tf )y(τ)∆τ.

Now we have

WO[t0, tf ]x0 =

∫ tf

t0

[
n−1∑
j=0

rj(τ, tf )(A
j)T

]
CTy(τ)∆τ

=
n−1∑
j=0

(CAj)TFj

= ΓTO[A,C]


F0

F1

...

Fn−1


.

Then WO[t0, tf ]x0 ∈ Im ΓTO[A,C] ⊂ Rn, which then implies that rank ΓTO[A,C] = n.

Finally, rank ΓTO[A,C] = rank ΓO[A,C]. Now assume that rank ΓO[A,C] = n, while the

system is not completely observable. Using the previous theorem, there exists α ∈ Rn\{0}

such that WO[t0, tf ]α = 0. Then

0 = αTWO[t0, tf ]α

=

∫ tf

t0

αT eTA(τ, t0)CTCeA(τ, t0)α∆τ

=

∫ tf

t0

‖CeA(τ, t0)α‖2 ∆τ,

which implies that CeA(τ, t0)α = 0 for all τ ∈ [t0, tf ] ∩ T. Now taking m derivatives,

where 0 ≤ m ≤ n− 1 we have

CAmeA(τ, t0)α = 0 for all τ ∈ [t0, tf )
κm .
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Then picking τ = t0, we obtain

CAmα = 0 for all τ ∈ [t0, tf )
κm ,

which can be rewritten as ΓO[A,C]α = 0, and implies α = 0.

Remark 3.18. When examining linear systems in the continuous and discrete case, there

can occur what is referred to as a duality between controllability and observability. Next,

we wish to see if this relationship is preserved in the generalized case. We will do this

by comparing (3.1) with its adjoint. The theorem below can be referred to as the duality

principle theorem.

Theorem 3.19. The linear system (3.1) is completely controllable (observable) over

[t0, tf ] if and only if the linear system

x∆(t) = ATx(t) + CTu(t) (3.11)

y(t) = BTx(t)

is completely observable (controllable).

Proof. Assume the linear system (3.1) is completely controllable. Note that from Theorem

3.14, this is true if and only if

ΓC [A,B] = [ B AB A2B . . . An−1B ]

has full rank n. Note that this is true if and only if

ΓTC [A,B] =


BT

BTAT

...

BT (An−1)T


has full rank n, where ΓTC [A,B] = ΓO[AT , BT ] is the observability matrix associated with

(3.11).
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We will use Theorem 3.19 later in Subsection 3.5. We will also appeal to this result

when we compare the linear quadratic regulator with the Kalman filter on time scales in

Section 6.

3.4. THE TIME-VARYING CASE

3.4.1. The Adjoint Equation. Now let us consider the general state space

representation of a linear dynamic system to be

x∆(t) = −A(t)xσ(t) +B(t)u(t)

y(t) = C(t)x(t),
(3.12)

where the assumptions on A(t), B(t), and C(t) are the same as their counterparts in

Section 3.2. We will only consider the controllability of this system.

Theorem 3.20. The linear system (3.12) is completely controllable if and only if the

controllability Gramian WC [t0, tf ] is invertible over [t0, tf ], where

WC [t0, tf ] =

∫ tf

t0

eTAT (τ, t0)B(τ)BT (τ)eAT (τ, t0)∆τ.

Proof. The proof is the same as found in [24], only with eAT in place of Φ.

Theorem 3.21. Let B(t) be m times ∆-differentiable and A(t) be m − 1 times ∆-

differentiable. Then the linear system (3.12) is completely controllable for tf > σ(t0)

if and only if there exist Kj(t) that satisfies

K0(t) = BT (t)

Kj(t) = K∆
j−1(t) +Kσ

j−1(t)AT (t)

such that rankQc(t) = n, where

Qc(t) = [KT
0 (t) KT

1 (t) KT
2 (t) . . . KT

n−1(t)].
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Proof. By definition of Kj(t), B
T (t)eAT (t, t0) = K0(t)eAT (t, t0). Then

[BT (t)eAT (t, t0)]∆ = (BT )∆(t)eσAT (t, t0) +BT (t)e∆
AT (t, t0)

= [K∆
0 (t)(I + µ(t)AT (t)) +K0(t)AT (t)]eAT (t, t0)

= [K∆
0 (t) +Kσ

0 (t)AT (t)]eAT (t, t0)

= K1(t)eAT (t, t0).

Then by induction, we have [Ki(t)eAT (t, t0)]∆ = Ki+1(t)eAT (t, t0). Now assume that

rankQc(t) = n, while the linear system (3.12) is not completely controllable. Then by

the previous theorem, there exists a nonzero vector α ∈ Rn such that

0 = αTWC [t0, tf ]α

=

∫ tf

t0

αT eTAT (τ, t0)B(τ)BT (τ)eAT (τ, t0)α∆τ

=

∫ tf

t0

∥∥BT (τ)eAT (τ, t0)α
∥∥2

∆τ,

which implies BT (t)eAT (t, t0)α = 0 for all t ∈ [t0, tf ] ∩ T. Now differentiating m times

where 0 ≤ m ≤ n− 1 we have

0 = [BT (t)eAT (t, t0)α]∆
m

for all t ∈ [t0, tf )
κm

= Km(t)eAT (t, t0)α,

hence

[KT
0 (τ) KT

1 (t) KT
2 (t) . . . KT

n−1(t)]T eAT (t, t0)α = 0.

Then picking t = t0 we have

QT
c (t)α = 0 for all t ∈ [t0, tf )

κm ,
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which implies α = 0. Therefore the linear system is completely controllable. Now suppose

that the linear system is completely controllable. Define Θ(t) = BT (t)eAT (t, t0). From

[50, 53] we see that by Theorem 3.20 the linear system is completely controllable if and

only if the rows of Θ(t) are linearly independent over [t0, tf ]. Now define the Wronskian,

W (t) to be such that

W (t) = [Θ(t) Θ(1)(t) Θ(2)(t) . . . Θ(n−1)(t)]

= [KT
0 (t) KT

1 (t) KT
2 (t) . . . KT

n−1(t)]T eAT (t, t0)

= QT
c (t)eAT (t, t0).

Since eAT (t, t0) is nonsingular, it follows that rankW (t) = rankQc(t). Since the rows of

W (t) are linearly independent, it follows that the rankW (t) = n. Then as a consequence,

Qc(t) will also have full rank.

3.4.2. The Classic Equation. We will now consider the general time-varying

linear system

x∆(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t).
(3.13)

Theorem 3.22. [30, Theorem 3.1] The linear system (3.13) is completely controllable if

and only if the controllability Gramian WC [t0, tf ] is invertible over [t0, tf ], where

WC [t0, tf ] =

∫ tf

t0

eA(t0, σ(τ))B(τ)BT (τ)eTA(t0, σ(τ))∆τ.

Proof. The proof can be found in Jackson’s dissertation [30].

Similar to the adjoint equation, there is a rank condition theorem. However we must

assume that µ is sufficiently differentiable.

Theorem 3.23. [30, Theorem 3.2] Suppose that m is a positive integer such that, for

t ∈ [t0, tf ], both A(t) and µ(t) are (m − 1)-times ∆-differentiable and B(t) is m-times

∆-differentiable. Then (3.13) is completely controllable on [t0, tf ] if for some tc ∈ [t0, tf ),
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we have

rank

[
K0(tc) K1(tc) K2(tc) . . . Km(tc)

]
= n

where

Kj(t) =
∂

∆sj
[
eA(σ(t), σ(s))B(s)

]∣∣∣∣
s=t

, j = 0, 1, 2...m.

Proof. The proof can be found in [30].

Next, we introduce a stronger notion of controllability for linear time-varying systems

when restrictions are imposed on the Gramian.

Definition 3.24. The linear system (3.13) is said to be uniformly completely controllable

if there exist positive integers α0, α1 such that for any t0,

α0I ≤ WC(t0, tf ) ≤ α1I. (3.14)

Note that the above definition implies that the control that drives the state is roughly

independent of the initial time. In the time-invariant case uniformly completely control-

lable and completely controllable are equivalent. Next, we consider the observability

conditions for (3.13).

Theorem 3.25. [30, Theorem 3.7] The linear system (3.13) is completely observable if

and only if the observability Gramian WO[t0, tf ] is invertible over [t0, tf ], where

WO[t0, tf ] =

∫ tf

t0

eTA(τ, t0)CT (τ)C(τ)eA(τ, t0)∆τ.

Proof. The proof can be found in Jackson’s dissertation [30].

Now we consider the observability rank condition for linear time-varying systems.

Theorem 3.26. [30, Theorem 3.8] Suppose that m is a positive integer such that, for

t ∈ [t0, tf ], both A(t) and µ(t) are (m − 1)-times ∆-differentiable and C(t) is m-times
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∆-differentiable. Then (3.13) is completely observable on [t0, tf ] if for some tc ∈ [t0, tf ),

we have

rank


L0(tc)

L1(tc)

...

Ln−1(tc)


= n,

where

Lj(t) =
∂

∆sj
[
C(t)eA(t, s)

]∣∣∣∣
s=t

, j = 0, 1, 2...m.

Proof. The proof can be found in [30].

As before, we now impose restriction on the Gramian.

Definition 3.27. The linear system (3.13) is said to be uniformly completely observable

if there exist positive integers α0, α1 such that for any tf ,

α0I ≤ WO(t0, tf ) ≤ α1I. (3.15)

Uniform observability guarantees that the state can be found within roughly the

same time. For time-invariant systems the uniform observability and complete observ-

ability are the same.

3.5. KALMAN DECOMPOSITIONS

In this subsection, we will examine our canonical forms for linear time invariant

systems as seen in Brogan and Kwakernaak and Sivan [15, 40]. We will use these forms

in a later section on stability. In the previous sections, we considered the conditions

necessary for our system to be completely controllable. Now suppose that system is in

fact not completely controllable. Then becomes of great interest to find what part of state

can be controlled.
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Theorem 3.28. Consider the state equation x∆(t) = Ax(t) + Bu(t), where the con-

trollability matrix ΓC [A,B] has rank q < n. Then there exists a completely controllable

subsystem

x∆
1 (t) = A11x1 +B1u. (3.16)

Proof. Let T = (T1, T2) be a nonsingular matrix transformation, where the columns of

T1 represent a basis for the q-dimensional controllable subspace. Next we define the new

transformed state by

x(t) = T−1x(t). (3.17)

Then the new state equation can be written as x∆(t) = Ax(t) +Bu(t), where

A = T−1AT =

A11 A12

0 A22

 and B = T−1B =

B1

0

 .
Note that A11 is n×q and A22 is (n−q)×(n−q). Now (A11, B1) is completely controllable

since any state of the form [x0, 0]T is in the controllable subspace of the original state

equation.

Remark 3.29. Now if we rewrite x as

x =

x1

x2

 , where x1 ∈ Rq and x2 ∈ Rn−q,

then the transformed system can be written as

x1

x2

∆

=

A11 A12

0 A22

x1

x2

+

B1

0

u. (3.18)

Note that (3.18) is our original state equation transformed into controllability canonical

form.
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Next, we will show that controllability is invariant under a nonsingular matrix trans-

formation.

Corollary 3.30. The linear system (3.1) is completely controllable if and only if (3.18)

is completely controllable.

Proof. (3.1) is completely controllable if and only if ΓC [A,B] has rank n. Now let T be a

nonsingular matrix as described in Theorem 3.28. Then ΓC [A,B] has rank n if and only

if

[ T−1B T−1ATT−1B T−1A2TT−1B · · · T−1An−1TT−1B ]

has rank n.

Theorem 3.31. Consider the linear system (3.1) where the observability matrix ΓO[A,C]

has rank l < n. Then there exists a completely observable subsystem

x∆
1 (t) = A11x1(t) +B1u(t)

y(t) = C1x1(t).
(3.19)

Proof. Let U = (U1, U2) be a nonsingular matrix transformation where the rows of U1 rep-

resent a basis for the l-dimensional observable subspace. Now we define the transformed

state to be

x(t) = Ux(t).

The transformed system can be rewritten as

x∆(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(3.20)

where

A = UAU−1 =

A11 0

A21 A22

 , B = UB =

B1

B2

 , and C = CU−1 =
[
C1 0

]
.
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Note that A11 is l × l and the pair (A11, C1) is completely observable. This follows from

the fact that if x(t0) produces a zero input response identical to zero, it must be of the

form x(t0) = [0, x2(t0)]T .

Remark 3.32. Now if we rewrite x as

x =

x1

x2

 , where x1 ∈ Rl and x2 ∈ Rn−l,

then the transformed system can be written as

x1

x2

∆

=

A11 0

A21 A22

x1

x2

+

B1

B2

u
y =

[
C1 0

]
x.

(3.21)

Note that (3.21) is the original system (3.1) transformed into observability canonical form.

Finally, our last corollary states that observability is invariant under a nonsingular

matrix transformation.

Corollary 3.33. The linear system (3.1) is completely observable if and only if (3.21) is

completely observable.

Proof. This is true by Theorem 3.19.
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4. OPTIMIZATION OF LINEAR SYSTEMS ON TIME SCALES

In this section, we will extend and unify the optimal control problem for systems on

time scales. In Subsection 4.2, we will derive the optimal control for general systems. Next,

we turn our attention to the special case of linear systems associated with a quadratic cost

function in Subsection 4.3. Then in Subsection 4.4 we will consider the optimal regulator

problem in three parts. First, we will consider the form of our cost function in the absence

of an input. Second, we find an optimal control when the final state is fixed, resulting in

an open-loop control. Finally, we will consider a free final state, resulting in a closed-loop

control.

To understand the difference between these control schemes, consider the following

example. Suppose that we want to heat a room through a heating vent to a desired

temperature. The room and vent describe a control system (plant) we wish to control.

This desired temperature can be thought of as a reference value. If the input heats

the room without regard to the current temperature (state) of the room, it is called an

open-loop control. This control system will run uninterrupted unless some disturbance

is introduced. While such control scheme is simple to set up, it is not self-correcting.

Suppose we now include a sensor in the room that reads the current temperature of the

room. If the control that now heats the room is based on the reading of the current

temperature, we say we have a closed-loop system. In this case, the reading of the current

temperature describes what is called state feedback. In this set up, the heating vent can

be turned on and off as necessary.

In order to derive an optimal control law needed to minimize the quadratic perfor-

mance index, we must first describe the notion of calculus of variations on time scales.

4.1. CALCULUS OF VARIATIONS ON TIME SCALES

In this subsection, we will consider a generalization of calculus. Variational theory is

concerned with the existence and determination for which a given function has a stationary

value, namely a minimum or maximum. Bohner introduced the following variational
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problem in [10]

L(y) =

∫ b

a

L(t, yσ(t), y∆(t))∆t→ min, y(a) = α, y(b) = β, (4.1)

where a, b ∈ T with a < b; α, β ∈ Rn and L : T× R2n → R.

Definition 4.1. For f ∈ C1
rd, we define the norm

||f || = max
t∈[a,b]κ

|fσ(t)|+ max
t∈[a,b]κ

|f∆(t)|. (4.2)

A function ŷ ∈ C1
rd is said to be a (weak) local minimum of (4.1) provided that there exists

δ > 0 such that ||y− ŷ|| < δ and L(ŷ) ≤ L(y) for all y ∈ C1
rd satisfying the given boundary

conditions. Next η ∈ C1
rd is said to be an admissible variation if η(a) = η(b) = 0.

Next, we consider a generalized definition of the first and second derivatives.

Definition 4.2. Let η be an admissible function. We define the function Φ : R→ R such

that

Φ(ε) = Φ(ε; y, η) = L(y + εη), ε ∈ R. (4.3)

Then the first variation of the variational problem (4.1) is defined by

L1(y, η) = Φ̇(0; y, η). (4.4)

Similarly, the second variation of the variational problem (4.1) is defined by

L2(y, η) = Φ̈(0; y, η). (4.5)

Finally, we consider a generalized form of Dubois–Reymond’s theorem on time scales.

Theorem 4.3. [10, Lemma 4.1] Let g ∈ Crd, where g : [a, b]→ Rn. Then

∫ b

a

gT (τ)η∆(τ)∆τ = 0 for all η ∈ C1
rd with η(a) = η(b) = 0
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holds if and only if

g(t) ≡ c on [a, b]κ for some c ∈ Rn.

4.2. SOLUTION TO THE GENERAL OPTIMIZATION PROBLEM

In this subsection, we will derive the control law for a state equation (plant) associ-

ated with a general cost function. Assume that the plant can be described on the interval

[t0, tf ] by the time-varying equation (see [44])

x∆(t) = f(t, x(t), u(t)), (4.6)

where x describes the state and u represents the input. For the given plant, we shall

consider the cost function

J(t0) = φ(x(tf ), tf ) +

∫ tf

t0

L(t, x(t), u(t))∆t. (4.7)

Note that L(t, x, u) represents the weighting function which depends on the state and input

for intercessory times in [t0, tf ] while the final weighting function φ(x(tf ), tf ) depends only

on the final state and time. Now the goal is to find the input u∗ that not only drives our

plant along a trajectory x∗ such that (4.7) will be minimized, but also ensures that

Ψ(x(tf ), tf ) = 0 (4.8)

for some given function Ψ ∈ Rp. This can be thought of as some final time constraint.

To solve the above optimal control problem, we will introduce the Lagrange multipliers

λ ∈ Rn and ν ∈ Rp, associated with (4.6) and (4.8) respectively. Now adding (4.6) and

(4.8) to (4.7), we have the augmented cost function

J+(x, u, λ, t0) = νTΨ(x(tf ), tf ) + φ(x(tf ), tf )

+

∫ tf

t0

[L(·, x, u)− (λσ)Tf(·, x, u)− x∆)](τ)∆τ
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= νTΨ(x(tf ), tf ) + φ(x(tf ), tf ) +

∫ tf

t0

[H(·, x, u, λσ)− (λσ)Tx∆](τ)∆τ, (4.9)

where

H(t, x, u, λ) = L(t, x, u) + λTf(t, x, u) (4.10)

is called the Hamiltonian function. We will refer to λ as the costate since it is related to

the state equation through the Hamiltonian.

While the augmented cost (4.9) is essentially the same equation as (4.7), it will be

easier to calculate the first variation in this form. Using [10], we introduce η1, η2, η3 ∈ C1
rd

where ηi is an admissible variation. Next, we define a function Φ : R→ R such that

Φ(ε) = Φ(ε;x, u, λ, η1, η2, η3) = J+(x+ εη1, u+ εη2, λ
σ + εησ3 , t0), ε ∈ R.

Calculating Φ̇(ε), we have

Φ̇(ε) = [ΨT
x (x(tf ) + εη1(tf ), tf )ν + φx(x(tf ) + εη1(tf ), tf )]

Tη1(tf )

+

∫ tf

t0

Hx(·, x+ εη1, u+ εη2, λ
σ + εησ3 )Tη1(τ)∆τ

+

∫ tf

t0

Hu(·, x+ εη1, u+ εη2, λ
σ + εησ3 )Tη2(τ)∆τ

+

∫ tf

t0

[Hλ(·, x+ εη1, u+ εη2, λ
σ + εησ3 )Tησ3 ∆τ

−
∫ tf

t0

[(ησ3 )T (x+ εη1)∆ − (λσ + εησ3 )Tη∆
1 ](τ)∆τ,

provided that the Hamiltonian is differentiable with respect to x, u, and λ and that the

derivative can be brought inside the integral. Then the first variation is given by

Φ̇(0) = [ΨT
x (x(tf ), tf )ν + (φx(x(tf ), tf )]

Tη1(tf )

+

∫ tf

t0

[HT
x (·, x, u, λσ)η1 +HT

u (·, x, u, λσ)η2 +HT
λ (·, x, u, λσ)ησ3 ](τ)∆τ

−
∫ tf

t0

[(ησ3 )Tx∆ + (λσ)Tη∆
1 ](τ)∆τ.
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Recall that

∫ tf

t0

(λσ)T (τ)η∆
1 (τ)∆τ = λT (tf )η1(tf )− λT (t0)η1(t0)−

∫ tf

t0

(λ∆)T (τ)η1(τ)∆τ. (4.11)

Using (4.11), the first variation can be rewritten as

Φ̇(0) =
[
ΨT
x (x(tf ), tf )ν + φx(x(tf ), tf )− λ(tf )

]T
η1(tf ) + λT (t0)η1(t0)

+

∫ tf

t0

[ (
Hx(·, x, u, λσ) + λ∆

)T
η1 +HT

u (·, x, u, λσ)η2

]
(τ)∆τ

+

∫ tf

t0

[ (
Hλ(·, x, u, λσ)− x∆

)T
ησ3 − (λσ)Tη∆

1

]
(τ)∆τ.

Now in order for Φ̇(0) = 0, we will set each coefficient of independent increments η1, η2, η
σ
3

equal to zero. This yields the necessary conditions for a minimum of (4.7). First, the

state equation (plant) can be found to be

x∆(t) = Hλ(t, x(t), u(t), λσ(t)) = f(t, x(t), u(t)). (4.12)

Similarly, the costate equation can be found using

−λ∆(t) = Hx(t, x(t), u(t), λσ(t)) = fTx (t, x(t), u(t))λσ(t) + Lx(t, x(t), u(t)). (4.13)

Finally, the stationary condition is given by

0 = Hu(t, x(t), u(t), λσ(t)) = Lu(t, x(t), u(t)) + fTu (t, x(t), u(t))λσ(t). (4.14)

This final condition yields our control law. Note that our optimal control can be found

simply by the knowledge of the costate. For our purposes, we will assume that the initial

state, x(t0) is fixed to some given number x0. Therefore, our boundary condition will be

determined by

[ΨT
x (x(tf ), tf )ν + φx(x(tf ), tf )− λ(tf )]

Tη1(tf ) = 0. (4.15)
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We will use this second boundary condition later to determine the “sweep method.”

4.3. EXAMPLES

Example 4.4. Let θ(t) represent the temperature of some object. Assume that θm rep-

resents the temperature of the surrounding medium held constant. Let u(t) be rate of

heat supply to the medium. Then the rate of change in the object’s temperature may be

modeled by the dynamic equation

θ∆(t) = a(t)(θ(t)− θm) + b(t)u(t). (4.16)

Suppose that we want to find a minimum input needed to heat the object over the interval

[t0, tf ]. First, define the state to be the difference between the object’s temperature and

its surrounding environment, that is

x(t) = θ(t)− θm. (4.17)

Then the state equation is given by

x∆(t) = a(t)x(t) + b(t)u(t). (4.18)

Next, define the associated cost function

J(t0) =
1

2

∫ tf

t0

u2(τ)∆τ. (4.19)

Then from the general form of the Hamiltonian, we have

H(t, x(t), u(t), λ(t)) =
Ru2(t)

2
+ λ(t)(a(t)x(t) + b(t)u(t)), (4.20)
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where R is a constant. Finally, the state and costate equations and stationary condition

are given by

x∆(t) = Hλ(t, x(t), u(t), λσ(t)) = a(t)x(t) + b(t)u(t), (4.21)

−λ∆(t) = Hx(t, x(t), u(t), λσ(t)) = a(t)λσ(t), (4.22)

and

0 = Hu(t, x(t), u(t), λσ(t)) = Ru(t) + b(t)λσ(t). (4.23)

Rewriting (4.23), we find the optimal control to be

u(t) = −b(t)λ
σ(t)

R
. (4.24)

Now plugging the optimal control into the state-costate equations, we have

x∆(t) = a(t)x(t)− b2(t)λσ(t)

R
, (4.25)

λ∆(t) = −a(t)λσ(t). (4.26)

Solving for λ(t), we have

λ(t) = e	a(t, tf )λ(tf ), (4.27)

where λ(tf ) will be determined later. Before solving for x note that

λσ(t) = λ(t) + µ(t)λ∆(t) = λ(t)− a(t)µ(t)λσ(t),

which implies that

λσ(t) =
λ(t)

1 + µ(t)a(t)
(4.28)
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provided that 1 + µ(t)a(t) 6= 0. Then the state equation is given by

x∆(t) = a(t)x(t)− b2(t)

R(1 + µ(t)a(t))
e	a(t, tf )λ(tf ). (4.29)

Now the exponential can be rewritten as

e	a(t, tf ) = ea(tf , σ(t))ea(σ(t), t) = ea(tf , σ(t))(1 + µ(t)a(t))ea(t, t)

= ea(tf , σ(t))(1 + µ(t)a(t)). (4.30)

Solving (4.25) and using Theorem 2.32 yields

x(t) = ea(t, t0)x(t0)− b2(t)

R

∫ t

t0

ea(t, σ(τ))e	a(τ, tf )λ(tf )

(1 + µ(τ)a(τ))
∆τ

= ea(t, t0)x(t0)− b2(t)

R

∫ t

t0

(1 + µ(τ)a(τ))ea(t, σ(τ))ea(tf , σ(τ))

(1 + µ(τ)a(τ))
∆τλ(tf )

= ea(t, t0)x(t0)− b2(t)

R

∫ t

t0

ea(t, σ(τ))ea(tf , σ(τ))∆τλ(tf )

= ea(t, t0)x(t0)− b2(t)

R
ea(t, tf )

∫ t

t0

e2
a(tf , σ(τ))∆τλ(tf )

= ea(t, t0)x(t0)− b2(t)

R
ea(t, tf )

∫ t

t0

e2�a(tf , σ(τ))∆τλ(tf ). (4.31)

In order to find our state and costate equations, we must find λ(tf ). Now we consider

two different control schemes that can be used to determine λ(tf ).

Case 1 (Fixed Final State): Assume that the temperature of the object is originally the

same as the temperature of its surrounding medium, θm = 700 F (i.e., x(t0) = 0). Now

we are looking for an optimal control such that the final temperature of the object is

θ(tf ) = 1000 F. This means that the value that the final state must take on is given by

x(tf ) = 300 F. Since both the initial and final states are fixed, the boundary conditions

are given by η1(t0) = η1(tf ) = 0. Note that by (4.31), the final state can also be written

as

x(tf ) = 30 = −b
2(tf )

R

∫ tf

t0

e2�a(tf , σ(τ))∆τλ(tf ). (4.32)
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Solving for the final costate, we have

λ(tf ) =
−30R

b2(tf )

∫ tf

t0

e2�a(tf , σ(τ))∆τ

. (4.33)

Now by (4.27), the final costate is given by

λ∗(t) =
−30R

b2(tf )

∫ tf

t0

e2�a(tf , σ(τ))∆τ

e	a(t, tf ). (4.34)

Using (4.24) and (4.28), the optimal control is given by

u∗(t) = −b(t)
R

 −30R

b2(tf )(1 + µ(t)a(t))

∫ tf

t0

e2�a(tf , σ(τ))∆τ

 e	a(t, tf )
=

30b(t)

b2(tf )

∫ tf

t0

e2�a(tf , σ(τ))∆τ

e	a(σ(t), tf ). (4.35)

Finally, the optimal trajectory is given by

x∗(t) =

30b2(t)ea(t, tf )

∫ t

t0

e2�a(tf , σ(τ))∆τ

b2(tf )

∫ tf

t0

e2�a(tf , σ(τ))∆τ

. (4.36)

Case 2 (Free Final State): Now suppose that the final state is not quite 300 F. However,

we would like the final state to be as close to 300 F as possible. Thus to make the difference

x(tf )− 30 small, we will include it in the cost function

J(t0) =
1

2
s(x(tf )− 30)2 +

1

2

∫ tf

t0

u2(τ) ∆τ, (4.37)

where s is some constant. Here, we would like to find a minimum input that minimizes

both (4.37) and |x(tf )− 30|, later which can be thought of as an error term. From (4.7),
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this has required us to add the term

φ(x, t) =
1

2
s(x− 30)2. (4.38)

Note that since the integrand remains unchanged, the Hamiltonian is still given by (4.20).

Thus the equations for the state, costate, and input are preserved. Next, we need to

determine our boundary conditions. As before, x(t0) is given, so η1(t0) = 0. On the other

hand, x(tf ) is not fixed, which means that η1(tf ) 6= 0. Therefore we require that

λ(tf ) =
∂φ

∂x

∣∣∣∣
t=tf

= s(x(tf )− 30). (4.39)

Now by (4.32), the final costate can be rewritten as

λ(tf ) =
−30Rs

R + sb2(tf )

∫ tf

t0

e2�a(tf , σ(τ))∆τ

. (4.40)

Using (4.27), we have the optimal costate

λ∗(t) =
−30Rs

R + sb2(tf )

∫ tf

t0

e2�a(tf , σ(τ))∆τ

e	a(t, tf ). (4.41)

From the optimal costate, we have the optimal control

u∗(t) =
30sb(t)

R + sb2(tf )

∫ tf

t0

e2�a(tf , σ(τ))∆τ

e	a(σ(t), tf ). (4.42)

Finally, the optimal state is given by

x∗(t) =

30sb2(t)ea(t, tf )

∫ t

t0

e2�a(tf , σ(τ))∆τ

R + sb2(tf )

∫ tf

t0

e2�a(tf , σ(τ))∆τ

. (4.43)
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Remark 4.5. In the previous example, we were unable to evaluate the integral over a

general time scale due to the way the exponential is defined. In the next example, we will

consider a specific state coefficient.

Example 4.6. Let T be a general time scale and pick a to be such that 2� a = c for some

constant c. Then the state and costate equations and stationary condition are the same

as found in Example 4.4. Now solving for the state, we have

x(t) = −b
2(t)

R
ea(t, tf )

∫ t

t0

e2�a(tf , σ(τ))∆τλ(tf )

= − b2(t)

R(2� a)
ea(t, tf )

∫ t

t0

(2� a)e2�a(tf , σ(τ))∆τλ(tf )

= − b2(t)

R(2� a)
ea(t, tf )

∫ t

t0

[e2�a(tf , ·)]∆∆τλ(tf )

= − b2(t)

R(2� a)
ea(t, tf )[e2�a(tf , t0)− 1].

Case 1 (Fixed Final State): The optimal control is given by

u∗(t) =
30(2� a)

[e2�a(tf , t0)− 1]
e	a(σ(t), tf ). (4.44)

The optimal state is given by

x∗(t) =
30ea(t, tf )[e2�a(tf , t0)− e2�a(tf , t)]

[e2�a(tf , t0)− 1]
. (4.45)

Case 2 (Free Final State): Here we have the optimal control

u∗(t) =
30bs(2� a)

R(2� a) + b2s[e2�a(tf , t0)− 1]
e	a(σ(t), tf ). (4.46)

Finally, the optimal state is given by

x∗(t) =
30b2sea(t, tf )[e2�a(tf , t0)− 1]

R(2� a) + b2s[e2�a(tf , t0)− 1]
. (4.47)
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Example 4.7. Let T = R with 2 � a ≡ c. Then the state and costate equations and

stationary condition are given by

ẋ(t) = a(t)x(t) + b(t)u(t), (4.48)

−λ̇(t) = a(t)λ(t), (4.49)

and

0 = Ru(t) + b(t)λ(t). (4.50)

Case 1 (Fixed Final State): In this case, the optimal control is given by

u∗(t) =
30c

[ec(tf−t0) − 1]ea(t−tf )
,

while the optimal state is given by

x∗(t) =
30ea(t−tf )[ec(tf−t0) − ec(tf−t)]

[ec(tf−t0) − 1]
. (4.51)

Case 2 (Free Final State): In this setting we have the optimal control

u∗(t) =
30bsc

Rc+ b2s[ec(tf−t0) − 1]ea(t−tf )
(4.52)

with the optimal state given by

x∗(t) =
30b2sea(t−tf )[ec(tf−t0) − 1]

Rc+ b2s[ec(tf−t0) − 1]
. (4.53)

Example 4.8. Let T = qN0 with q > 1 and 2�a ≡ c. Then the state and costate equations

and stationary condition are given by

x∆(t) = a(t)x(t) + b(t)u(t), (4.54)

−λ∆(t) = a(t)λ(qt), (4.55)
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and

0 = Ru(t) + b(t)λ(qt). (4.56)

Case 1 (Fixed Final State): The optimal control is given by

u∗(t) =
30c

[ec(tf , t0)− 1]
e	a(σ(t), tf )

=
30c

[ec(tf , t0)− 1](1 + (q − 1)ta(t))ea(t, tf )
,

where

ec(tf , t0) =
∏

τ∈T∩[t0,tf )

(1 + (q − 1)cτ).

Similarly, the optimal state is given by

x∗(t) =
30ea(t, tf )[ec(tf , t0)− ec(tf , t)]

[ec(tf , t0)− 1]
. (4.57)

Case 2 (Free Final State): In this setting we have the optimal control

u∗(t) =
30bsc

Rc+ b2s[ec(tf , t0)− 1](1 + (q − 1)ta(t))ea(t, tf )
. (4.58)

Finally, the optimal state is given by

x∗(t) =
30b2sea(t, tf )[ec(tf , t0)− 1]

Rc+ b2s[ec(tf , t0)− 1]
. (4.59)

4.4. THE LINEAR QUADRATIC REGULATOR ON TIME SCALES

While the previous subsection provides us with a control law for general time varying

systems, this may be difficult to calculate for nonlinear systems. In this subsection,

we will examine the special case where we are given a linear system associated with a

quadratic performance index. For convenience, we shall only consider the time-invariant
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case. Consider the state equation

x∆(t) = Ax(t) +Bu(t) (4.60)

with the associated quadratic performance index

J(t0) =
1

2
xT (tf )S(tf )x(tf ) +

1

2

∫ tf

t0

(xTQx+ uTRu)(τ)∆τ, (4.61)

where S(tf ), Q ≥ 0 and R > 0. In Subsubsections 4.4.2 and 4.4.3, we will determine an

optimal control u∗ that minimizes (4.61) over the interval [t0, tf ]. We will assume that

x(t0) is given and that the final time tf ∈ T is a fixed known number. Additionally, we

assume that there is no function Ψ that must be augmented to (4.61). Next, define the

Hamiltonian to be

H(x, u, λ) =
1

2
(xTQx+ uTRu) + λT (Ax+Bu),

where λ ∈ Rn is a multiplier to be determined in later subsections. Using the above

Hamiltonian, we have the following state and costate equations and stationary condition

x∆ = Hλ(x, u, λ
σ) = Ax+Bu, (4.62)

−λ∆ = Hx(x, u, λ
σ) = Qx+ ATλσ, (4.63)

and

0 = Hu(x, u, λ
σ) = Ru+BTλσ. (4.64)

Solving the stationary equation for u yields

u = −R−1BTλσ. (4.65)
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Eliminating the input from the state equation, the Hamiltonian system is given by

 x

λ

∆

(t) =

 A −BR−1BT

−Q −AT

 x

λσ

 (t).

A block diagram of this control scheme is found in Figure 4.1.

Figure 4.1. State-costate formulation of dynamic linear quadratic optimal controller

Example 4.9. When T = Z, the Hamiltonian can be rewritten as

xk
λk

 =

 (I + A)−1 (I + A)−1BR−1BT

Q(I + A)−1 Q(I + A)−1BR−1BT − (I + AT )

xk+1

λk+1

 .
Note that from the above system, the equations for the state and costate can be written

so that they operate “backward” in time. From Example 4.4, we saw that if we know

x(tf ) and λ(tf ), we can find x and λ. Thus once the state and costate are known, we can

determine the optimal control. However, we are only given x(t0), not λ(tf ).
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Recall in Subsection 4.2, we found the necessary conditions to find an optimal con-

trol. Now we want to show the sufficient conditions such that (4.65) is an optimal control

that minimizes (4.61). This requires finding the second variation. We will restrict our-

selves to the linear quadratic case. First note that

Φ(ε) =
1

2
(x+ εη1)T (tf )S(tf )(x+ εη1)(tf )

+
1

2

∫ tf

t0

[(x+ εη1)TQ(x+ εη1) + (u+ εη2)TR(u+ εη2)](τ)∆τ

+

∫ tf

t0

[(λσ + εησ3 )TA(x+ εη1) + (λσ + εησ3 )TB(u+ εη2)](τ)∆τ

−
∫ tf

t0

(λσ + εησ3 )T (x+ εη1)∆(τ)∆τ.

Then

Φ̇(ε) =
1

2
ηT1 (tf )S(tf )(x+ εη1)(tf ) +

1

2
(x+ εη1)T (tf )S(tf )η1(tf )

+
1

2

∫ tf

t0

[ηT1 Q(x+ εη1) + (x+ εη1)TQη1](τ)∆τ

+
1

2

∫ tf

t0

[ηT2 R(u+ εη2) + (u+ εη2)TRη2](τ)∆τ

+

∫ tf

t0

[(ησ3 )TA(x+ εη1) + (λσ + εησ3 )TAη1 + (ησ3 )TB(u+ εη2)](τ)∆τ

+

∫ tf

t0

[(λσ + εησ3 )TBη2](τ)∆τ −
∫ tf

t0

[(ησ3 )T (x+ εη1)∆ + (λσ + εησ3 )Tη∆
1 ](τ)∆τ.

Thus the first variation can be written as

Φ̇(0) = [S(tf )x(tf )− λ(tf )]
Tη1(tf ) + λT (t0)η1(t0)

+

∫ tf

t0

[(Aλσ +Qx+ λ∆)Tη1 + (Ru+BTλσ)Tη2](τ)∆τ

+

∫ tf

t0

[(Ax+Bu− x∆)Tησ3 ](τ)∆τ.

Next,

Φ̈(ε) =
1

2
ηT1 (tf )S(tf )η1(tf ) +

1

2
ηT1 (tf )S(tf )η1(tf )
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+
1

2

∫ tf

t0

[ηT1 Qη1 + ηT1 Qη1 + ηT2 Rη2 + ηT2 Rη2](τ)∆τ

+

∫ tf

t0

[(ησ3 )TAη1 + (ησ3 )TAη1 + (ησ3 )TBη2](τ)∆τ

+

∫ tf

t0

[(ησ3 )TBη2](τ)∆τ −
∫ tf

t0

[(ησ3 )Tη∆
1 + (ησ3 )Tη∆

1 ](τ)∆τ

= ηT1 (tf )S(tf )η1(tf ) +

∫ tf

t0

[ηT1 Qη1 + ηT2 Rη2](τ)∆τ

+

∫ tf

t0

[(Aη1 +Bη2 − η∆
1 )Tησ3 ](τ)∆τ.

If we assume that η1 and η2 satisfy the constraint

η∆
1 = Aη1 +Bη2, (4.66)

the second variation is given by

Φ̈(0) = ηT1 (tf )S(tf )η1(tf ) +

∫ tf

t0

[ηT1 Qη1 + ηT2 Rη2](τ)∆τ. (4.67)

Note that (5.57) closely resembles (4.61), where x and u have been replaced by their

variations. Now if η3 6= 0, then (5.57) is guaranteed to be positive. As such, (4.65) now

represents a control that locally minimizes (4.61).

4.4.1. Zero Input and the Observability Lyapunov Equation. In this part,

we will find the form of our cost function (4.61) in the absence of a given input. In this

setting, we will use a generalized form of the Lyapunov equation to rewrite (4.61). Here

we will make no assumptions as to whether or not the final state is fixed, though this a

large role later when we seek an optimal input that minimizes (4.61). Now consider the

state equation when u(t) = 0. Let S be an n× n matrix solution to

−S∆(t) = ÃT (t)[ATS(t) + (I + µ(t)AT )S(t)A+Q]Ã(t), (4.68)

where

Ã(t) = (I + µ(t)A)−1 (4.69)
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and S(tf ) is as in (4.61). As (4.68) describes the interaction between the plant and cost

in the absence of a driving force, it can be called an “observability” Lyapunov equation.

Lemma 4.10. A solution to (4.68) is given by

S(t) = eTA(tf , t)S(tf )eA(tf , t) +

∫ tf

t

eTA(τ, t)QeA(τ, t)∆τ.

Proof. Before we differentiate S, we need to know e∆
A(tf , t) as well as eA(tf , σ(t)). First

note that eA(t, tf )eA(tf , t) = I. Then

0 = [eA(·, tf )eA(tf , ·)]∆(t)

= e∆
A(t, tf )eA(tf , t) + eA(σ(t), tf )e

∆
A(tf , t)

= A+ (I + µ(t)A)eA(t, tf )e
∆
A(tf , t).

Solving for e∆
A(tf , t) yields

e∆
A(tf , t) = −[(I + µ(t)A)eA(t, tf )]

−1A = −eA(tf , t)(I + µ(t)A)−1A

= −eA(tf , t)A(I + µ(t)A)−1. (4.70)

Applying the simple useful formula, we have

eA(tf , σ(t)) = eA(tf , t) + µ(t)e∆
A(tf , t)

= eA(tf , t)[I − µ(t)(I + µ(t)A)−1A]

= eA(tf , t)(I + µ(t)A)−1. (4.71)

Now using Theorem 2.20 part (b), we differentiate S to get

S∆(t) = (eTA)∆(tf , t)S(tf )eA(tf , σ(t)) + eTA(tf , t)S(tf )e
∆
A(tf , t)

+

∫ tf

t

[
eTA(τ, ·)QeA(τ, ·)

]∆
(t)∆τ − eTA(t, σ(t))QeA(tf , σ(t)).
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Note that because of (4.70) and (4.71), the first term can be rewritten as

[
−eA(tf , t)(I + µ(t)A)−1A

]T
S(tf )eA(tf , t)(I + µ(t)A)−1

= −AT (I + µ(t)AT )−1eTA(tf , t)S(tf )eA(tf , t)(I + µ(t)A)−1

= −(I + µ(t)AT )−1AT eTA(tf , t)S(tf )eA(tf , t)(I + µ(t)A)−1.

Similarly the second term can be rewritten as

−eTA(tf , t)S(tf )eA(tf , t)(I + µ(t)A)−1A = −eTA(tf , t)S(tf )eA(tf , t)A(I + µ(t)A)−1.

Finally, the last two terms can restated as

−
∫ tf

t

[(I + µ(·)AT )−1AT eTA(τ, ·)QeA(τ, ·)(I + µ(·)A)−1](t)∆τ

−
∫ tf

t

[eTA(τ, ·)QeA(τ, ·)A(I + µ(·)A)−1](t)∆τ + (I + µ(t)AT )−1Q(I + µ(t)A)−1

= −(I + µ(t)AT )−1AT
∫ tf

t

[eTA(τ, ·)QeA(τ, ·)](t)∆τ(I + µ(t)A)−1

−
∫ tf

t

[eTA(τ, ·)QeA(τ, ·)](t)∆τA(I + µ(t)A)−1 + (I + µ(t)AT )−1Q(I + µ(t)A)−1.

Now combining like terms, we have

−S∆(t) = −(I + µ(t)AT )−1ATS(t)(I + µ(t)A)−1 − S(t)A(I + µ(t)A)−1

−(I + µ(t)AT )−1Q(I + µ(t)A)−1

= −(I + µ(t)AT )−1[ATS(t) + (I + µ(t)AT )S(t)A+Q](I + µ(t)A)−1.

This concludes the proof.

It should be noted that DaCunha examined the limiting case of a similar equation

in his thesis (see [19]). Now we rewrite the quadratic performance index (4.61) as follows.
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Theorem 4.11. Consider the state equation x∆ = Ax associated the cost function (4.61).

Then the cost function on [t, tf ] can be rewritten as

J(t) =
1

2
xT (t)S(t)x(t).

Proof. First note that

1

2

∫ tf

t0

(xTSx)∆(τ)∆τ =
1

2
xT (tf )S(tf )x(tf )−

1

2
xT (t0)S(t0)x(t0). (4.72)

Then using (2.26), we have

J(t0) =
1

2
xT (tf )S(tf )x(tf ) +

1

2

∫ tf

t0

(xTQx)(t)∆t

=
1

2
xT (tf )S(tf )x(tf ) +

1

2

∫ tf

t0

(xTQx)(t)∆t+
1

2

∫ tf

t0

(xTSx)∆(t)∆t

−1

2
xT (tf )S(tf )x(tf ) +

1

2
xT (t0)S(t0)x(t0)

=
1

2
xT (t0)S(t0)x(t0) +

1

2

∫ tf

t0

(xTQx+ {xTSx}∆)(t)∆t

=
1

2
xT (t0)S(t0)x(t0)

+
1

2

∫ tf

t0

xT [Q+ (I + µAT )S∆(I + µA) + ATS(I + µA) + SA]x(t)∆t

=
1

2
xT (t0)S(t0)x(t0).

This gives the result as stated.

S can be referred here as the cost kernel function. Since S does not depend on x, it

can be “pre-computed” and “stored off–line,” i.e., in order to find the cost function, we

need only to compute the current state.

4.4.2. Fixed-Final-State and Open-Loop Control. Now we want to deter-

mine an optimal control u∗ on [t0, tf ] that minimizes (4.61). Recall the state and costate
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equations are given by the system

 x

λ

∆

(t) =

 A −BR−1BT

−Q −AT

 x

λσ

 (t). (4.73)

We need to solve (4.73) with the following boundary conditions. As before we will assume

that x(t0) is some known value x0. Further, we will assume η1(tf ) = 0. Then the control

objective is to drive the state exactly to a given fixed reference value r(tf ) at the final

time tf , i.e., x(tf ) = r(tf ). Note that since x(tf ) is fixed at r(tf ), it is redundant to have

a final-state weighting in the performance index, so we pick S(tf ) = 0. To find a useful

solution, we pick Q = 0 so that (4.61) becomes

J(t0) =
1

2

∫ tf

t0

(uTRu)(τ)∆τ. (4.74)

In other words, we are looking for a “minimum control” that drives x(t0) to x(tf ) = r(tf ).

Theorem 4.12. Consider the linear system (4.73) subject to the boundary conditions

 x(t0) = x0

x(tf ) = r(tf ).

Assume that

GC(t0, tf ) :=

∫ tf

t0

eA(tf , σ(τ))BR−1BT eTA(tf , σ(τ))∆τ (4.75)

is invertible. Then the control that minimizes (4.74) is given

u∗(t) = R−1BT (I + µ(t)AT )−1eTA(tf , t)G
−1
C (t0, tf )[r(tf )− eA(tf , t0)x(t0)]. (4.76)

Proof. Using the above conditions, (4.73) becomes

x∆(t) = Ax(t)−BR−1BTλσ(t)

λ∆(t) = −ATλσ(t).
(4.77)
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Solving the costate equation for λ(t), we get

λ(t) = e	AT (t, tf )λ(tf ), (4.78)

where λ(tf ) is still unknown. Before solving for x(t), we will eliminate λσ(t) from the

equation. Note that

λσ(t) = λ(t) + µ(t)λ∆(t) = λ(t)− µ(t)ATλσ(t), (4.79)

which gives

λσ(t) = (I + µ(t)AT )−1λ(t) = (I + µ(t)AT )−1e	AT (t, tf )λ(tf ). (4.80)

Using (4.80), the state equation now becomes

x∆(t) = Ax(t)−BR−1BT (I + µ(t)AT )−1e	AT (t, tf )λ(tf ). (4.81)

Now solving (4.81) at time t = tf , we get

x(tf ) = eA(tf , t0)x(t0)−
∫ tf

t0

eA(tf , σ(τ))BR−1BT (I + µ(t)AT )−1e	AT (τ, tf )λ(tf )∆τ

= eA(tf , t0)x(t0)

−
∫ tf

t0

eA(tf , σ(τ))BR−1BT (I + µ(t)AT )−1(I + µ(t)AT )eTA(tf , σ(τ))∆τλ(tf )

= eA(tf , t0)x(t0)−GC(t0, tf )λ(tf ),

where (4.75) represents a weighted controllability Gramian. Now solving for λ(tf ) and

using the given boundary conditions, we have

λ(tf ) = −G−1
C (t0, tf )[x(tf )− eA(tf , t0)x(t0)] = −G−1

C (t0, tf )[r(tf )− eA(tf , t0)x(t0)].
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Then the optimal control is given by

u∗(t) = −R−1BTλσ(t) (4.82)

= −R−1BT (I + µ(t)AT )−1e	AT (t, tf )λ(tf )

= R−1BT (I + µ(t)AT )−1eTA(tf , t)G
−1
C (t0, tf )[r(tf )− eA(tf , t0)x(t0)].

This gives our optimal control as desired.

Here u∗ represents the minimum-energy control that drives the given initial state

x(t0) to the desired final reference value of x(tf ) = r(tf ). Note that when u∗(t) = 0, the

final state is given by x(tf ) = eA(tf , t0)x(t0). This implies that the optimal control is

proportional to the difference between the zero input solution and the desired final state.

Since G−1
C (t0, tf ) is needed in order to find u∗, the optimal control exists for arbitrary

x(t0) and r(tf ) if and only if GC(t0, tf ) is invertible. However, note that this is just a

restatement of the controllability of the plant. Also, the optimal control (4.82) is called

an open–loop control since while u∗ depends on both the initial and final states, it does

not rely on the current state. As a result, this control can be pre–computed and applied

for all t ∈ [t0, tf ].

Next, we want to determine the optimal cost J∗(t0).

Theorem 4.13. Let (4.76) be the optimal control that minimizes the cost function (4.74).

Assume that (4.75) is invertible. Then the optimal cost is given by

J∗(t0) =
1

2
dT (t0, tf )G

−1
C (t0, tf )d(t0, tf ), (4.83)

where d(t0, tf ) := r(tf )− eA(tf , t0)x(t0).

Proof. First we will define the final state difference to be

d(t0, tf ) = r(tf )− eA(tf , t0)x(t0). (4.84)
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Again, the second term represents the final state when u∗(t) = 0. Then J∗(t0) is given by

J∗(t0) =
1

2

∫ tf

t0

(u∗TRu∗)(τ)∆τ

=
1

2

∫ tf

t0

dT (t0, tf )G
−1
C (t0, tf )

[
eA(tf , ·)(I + µ(·)A)−1BR−1RR−1BT

(I + µ(·)AT )−1eTA(tf , ·)
]
(τ)G−1

C (t0, tf )d(t0, tf )∆τ.

Now since neither d(t0, tf ) nor G−1
C (t0, tf ) depend on t, J∗(t0) can be rewritten as

J∗(t0) =
1

2
dT (t0, tf )G

−1
C (t0, tf )

∫ tf

t0

eA(tf , τ)(I + µ(τ)A)−1BR−1BT ·

(I + µ(τ)AT )−1eTA(tf , τ)∆τG−1
C (t0, tf )d(t0, tf )

=
1

2
dT (t0, tf )G

−1
C (t0, tf )

∫ tf

t0

eA(tf , σ(τ))BR−1BT eTA(tf , σ(τ))∆τG−1
C (t0, tf )d(t0, tf )

=
1

2
dT (t0, tf )G

−1
C (t0, tf )GC(t0, tf )G

−1
C (t0, tf )d(t0, tf )

=
1

2
dT (t0, tf )G

−1
C (t0, tf )d(t0, tf ).

This concludes the proof.

While an open-loop control is not usually in terms of the current state, we can show

that with some additional assumptions that it can. This will require a knowledge of the

mechanics in the next subsection. We will revisit this case in Section 5.

4.4.3. Free-Final-State and Closed-Loop Control. In the previous subsub-

section, we found an optimal control when the final time was fixed. In this case, we shall

develop an optimal control law in the form of state feedback. Note that the state and

costate equations are the same as found in (4.73). In considering the boundary conditions,

note that x(t0) is known (meaning η1(t0) = 0) while x(tf ) is free (meaning η1(tf ) 6= 0).

Thus the coefficient on η1(tf ) must be zero. Let φx(x(tf ), t) − λ(tf ) be the coefficient of

η1(tf ), where

φ(x, t) =
1

2
xTS(t)x. (4.85)
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Then the terminal condition on the costate is given by

λ(tf ) =
∂φ

∂x

∣∣∣∣
t=tf

= S(tf )x(tf ). (4.86)

Remark 4.14. Now we will make the assumption that x and λ satisfy a linear relationship

similar to (4.86) for all t ∈ [t0, tf ], i.e.,

λ(t) = S(t)x(t). (4.87)

This condition (4.87) is called a “sweep condition,” a term used by Bryson and Ho in [17].

Since S(tf ) ≥ 0, it is natural to assume that S ≥ 0 as well.

Next, we use this sweep condition to derive our Riccati equation.

Theorem 4.15. Assume that
(
I + µ(t)BR−1BTSσ(t)

)
is invertible. Further assume that

the condition (4.87) holds. Then S satisfies a Riccati equation (of the second form)

−S∆ = Q+ATSσ+(I+µ(t)AT )Sσ
(
I + µ(t)BR−1BTSσ

)−1 (
A−BR−1BTSσ

)
, (4.88)

for all t ≤ tf with boundary condition S(tf ).

Proof. First, we will rewrite the state equation solely in terms of one variable.

x∆(t) = Ax(t)−BR−1BTSσ(t)xσ(t)

= Ax(t)−BR−1BTSσ(t)
(
x(t) + µ(t)x∆(t)

)
= Ax(t)−BR−1BTSσ(t)x(t)− µ(t)BR−1BTSσ(t)x∆(t)

=
(
I + µ(t)BR−1BTSσ(t)

)−1 (
A−BR−1BTSσ(t)

)
x(t)

if
(
I + µ(t)BR−1BTSσ(t)

)
is invertible. Next, we rewrite the costate equation in terms

of x:

λ∆ = −Qx− ATSσxσ

= −Qx− ATSσ
(
x+ µx∆

)
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= −
(
Q+ ATSσ

)
x− µATSσx∆

= −[Q+ ATSσ + µATSσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
]x. (4.89)

But using the product rule instead, we get

λ∆ = S∆x+ Sσx∆

= S∆x+ Sσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
x. (4.90)

Comparing equations (4.89) and (4.90) and combining like terms, we have

[
S∆ +Q+ ATSσ + (I + µAT )Sσ

(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)]
x = 0.

Then the above equation must be true for all t ≤ tf and for any choice of x(t0). Note

that S does not depend on x for any time t. It follows that the above equation must be

true for all values of x. As a result, this means that S must satisfy (4.88). This concludes

the proof.

At first glance (4.88) does not resemble a Riccati equation of the second form as we

defined it by (2.28). We will later show that they are in fact equivalent. But first, we

must define a state feedback gain.

Definition 4.16. A matrix-valued function

K(t) = (R + µ(t)BTSσ(t)B)−1BTSσ(t)(I + µ(t)A) (4.91)

is called a state feedback or Kalman gain, provided that R+ µ(t)BTSσ(t)B is invertible.

Corollary 4.17. The Riccati equation (4.88) is a Riccati equation of the second form

provided that BR−1BTSσ(t) is regressive.

Proof. First note that (4.91) can also be written as

K(t) = R−1BTSσ(t)(I + µ(t)BR−1BTSσ(t))−1(I + µ(t)A). (4.92)
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Then (4.88) can be written as

−S∆ = Q+ ATS + (I + µAT )Sσ(I + µBR−1BTSσ)−1A

−(I + µAT )SσBR−1BTSσ(I + µBR−1BTSσ)−1.

Next, we multiply the last term by I in the form I−µA+µA on the right. Then plugging

in (4.92) yields

−S∆ = Q+ ATS + (I + µAT )Sσ(I + µBR−1BTSσ)−1A

−(I + µAT )SσBK + µ(I + µAT )SσBR−1BTSσ(I + µBR−1BTSσ)−1A

= Q+ ATS − (I + µAT )SσBK

+(I + µAT )Sσ(I + µBR−1BTSσ)(I + µBR−1BTSσ)−1A.

Finally, plugging in (4.91), we have

−S∆ = Q+ATS+(I+µAT )SσA−(I+µAT )SσB(R+µBTSσB)−1BTSσ(I+µA). (4.93)

Note that the above equation is a Riccati equation of the second form.

When an optimal control is in terms of the current state, it is said to be a closed-loop

control. We now consider the form of an optimal control that minimizes (4.61).

Theorem 4.18. Let u∗ represent an optimal control that minimizes (4.61). Then u∗ can

be written in the form

u∗(t) = −K(t)x(t), (4.94)

where the matrix K(t) is given by (4.91) provided that R + µ(t)BTSσ(t)B is invertible.

Proof. Using (4.82) and the state equation (4.60), we have

u∗(t) = −R−1BTSσ(t)
(
x(t) + µ(t)x∆(t)

)
= −R−1BTSσ(t)(I + µ(t)A)x(t)− µ(t)R−1BTSσ(t)Bu∗(t).
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Now combining like terms and pre-multiplying by R we have

(R + µ(t)BTSσ(t)B)u∗(t) = −BTSσ(t)(I + µ(t)A)x(t),

which implies

u∗(t) = −(R + µ(t)BTSσ(t)B)−1BTSσ(t)(I + µ(t)A)x(t).

This gives our optimal control as desired.

The input (4.94) is sometimes referred to as the control law that minimizes the cost

function (4.61). Note in order to determine the closed-loop control that gives u∗, we need

only K and the solution to the Riccati equation, S. But recall that we obtained S from

the sweep condition, not from the Riccati equation. At first, it would appear as though

the derivation of (4.88) was pointless. However as we will see, the Riccati equation will

be used to find an optimal cost. As neither K nor S depend on x, they can be computed

and stored off–line. It should be noted that even for a time invariant plant the gain here

will be time varying, thus (4.94) is also called a time-varying state feedback.

Now the closed-loop plant is given by

x∆(t) = (A−BK(t))x(t), (4.95)

which can be used to find an optimal trajectory x∗ for any given x(t0). A block diagram

describing this control scheme appears in Figure 4.2.

Next, we will consider alternative forms of our Riccati equation (of the second form).

As we will see in this section and Section 5, these other forms will be much more useful

in finding an optimal cost than (4.93). First we want to rewrite our Riccati equation in

terms of the Kalman gain.



72

Figure 4.2. The free-final-state LQ regulator

Corollary 4.19. The Riccati equation (4.93) can be written in terms of the Kalman gain

as

−S∆(t) = ATSσ(t) + (I + µ(t)AT )Sσ(t)(A−BK(t)) +Q. (4.96)

Proof. This proof is a direct result from Corollary 4.17. Using (4.91), we have

−S∆ = Q+ ATS + (I + µAT )SσA

−(I + µAT )SσB(R + µBTSσB)−1BTSσ(I + µA)

= Q+ ATS + (I + µAT )SσA− (I + µAT )SσBK

= Q+ ATS + (I + µAT )Sσ(A−BK).

This gives the desired result.

Next, we will introduce another form of the Riccati equation in terms of the Kalman

gain. We will use this form to find an optimal cost.
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Corollary 4.20. The Riccati equation (4.93) can be written in terms of the Kalman gain

as

−S∆(t) = Q+ATSσ(t)+(I+µ(t)AT )Sσ(t)A−KT (t)(R+µ(t)BTSσ(t)B)K(t). (4.97)

Proof. Using (4.91), we have

−S∆ = ATSσ + (I + µAT )SσA− (I + µAT )SσBK +Q

= ATSσ + (I + µAT )SσA+Q

−(I + µAT )SσB(R + µBTSσB)−1(R + µBTSσB)K

= Q+ ATSσ + (I + µAT )SσA−KT (R + µBTSσB)K.

This concludes the proof.

Finally, we rewrite the Riccati equation in terms of the closed-loop plant matrix.

This form of the Riccati equation is called the (generalized) Joseph stabilized form.

Corollary 4.21. The Riccati equation (4.93) can be written in terms of the closed-loop

plant as

−S∆(t) = Q+ (A−BK(t))TSσ(t) + (I + µ(t)(A−BK(t))T )Sσ(t)(A−BK(t))

+KT (t)RK(t). (4.98)

Proof. Rewriting (4.97), we have

−S∆ = Q+ (A−BK +BK)TSσ + [I + µ(A−BK +BK)T ]SσA

−KT (R + µBTSσB)K

= Q+ (A−BK)TSσ + (I + µ(A−BK)T )Sσ(A−BK) +KTBTSσ(I + µA)

+(I + µ(A−BK)T )SσBK −KT (R + µBTSσB)K.
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Now using (4.91) yields

−S∆ = Q+ (A−BK)TSσ + (I + µ(A−BK)T )Sσ(A−BK) +KT (R + µBTSσB)K

+(I + µAT )SσBK − µKTBTSσBK −KT (R + µBTSσB)K

= Q+ (A−BK)TSσ + (I + µ(A−BK)T )Sσ(A−BK) +KT (R + µBTSσB)K

−µKTBTSσBK

= Q+ (A−BK)TSσ + (I + µ(A−BK)T )Sσ(A−BK) +KTRK.

This gives the result as desired.

We will use this form in Section 5.

Example 4.22. Here we rewrite the Riccati equation (4.98) for various time scales.

a. If T = R, then (4.98) becomes

−Ṡ(t) = Q+ (A−BK(t))TS(t) + S(t)(A−BK(t)) +KT (t)RK(t),

where K(t) = R−1BTS(t).

b. If T = Z, then (4.98) is given by

S(t)− S(t+ 1) = Q+ (A−BK(t))TS(t+ 1) +KT (t)RK(t)

+(I + (A+BK(t))T )S(t+ 1)(A−BK(t)),

where K(t) = (R +BTS(t+ 1)B)−1BTS(t+ 1)(I + A).

c. If T = hZ, then (4.98) turns into

S(t)− S(t+ h)

h
= Q+ (A−BK(t))TS(t+ h) +KT (t)RK(t)

+(I + h(A+BK(t))T )S(t+ h)(A−BK(t)),

where K(t) = (R + hBTS(t+ h)B)−1BTS(t+ h)(I + hA).
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d. If T = qN0 for q > 1, then (4.98) is given by

S(t)− S(qt)

(q − 1)t
= Q+ (A−BK(t))TS(qt) +KT (t)RK(t)

+(I + (q − 1)t(A+BK(t))T )S(qt)(A−BK(t)),

where K(t) = (R + (q − 1)tBTS(qt)B)−1BTS(qt)(I + (q − 1)tA).

Finally, now that we have an optimal control, let us determine the optimal cost.

Theorem 4.23. Let (4.94) be an optimal control that minimizes (4.61). Then the optimal

cost is given by

J∗(t) =
1

2
xT (t)S(t)x(t), t ≤ tf ,

provided that R + µ(t)BTSσ(t)B is invertible.

Proof. First note that

(xTSx)∆ = (xTS)∆x+ (xTS)σx∆

= (x∆)TSσx+ xTS∆x+ (xTS)σx∆

= (xTAT + uTBT )Sσx+ xTS∆x+ (x+ µx∆)TSσx∆

= (xTAT + uTBT )Sσx+ xTS∆x+
[
xT (I + µAT ) + µuTBT

]
Sσ(Ax+Bu).

Combining like terms gives us

(xTSx)∆ = xT
[
ATSσ + S∆ + (I + µAT )SσA

]
x+ uTBTSσ(I + µA)x

+xT (I + µAT )SσBu+ µuTBTSσBu.

Now the equation for the cost over [t, tf ] is given by

J(t) =
1

2
xT (t)S(t)x(t) +

1

2

∫ tf

t

[(xTSx)∆ + xTQx+ uTRu](τ)∆τ

=
1

2
xT (t)S(t)x(t) +

1

2

∫ tf

t

[xT (ATSσ + S∆ + (I + µAT )SσA+Q)x](τ)∆τ
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+
1

2

∫ tf

t

[uTBTSσ(I + µA)x+ xT (I + µAT )SσBu](τ)∆τ

+
1

2

∫ tf

t

[uT (R + µBTSσB)u](τ)∆τ.

Since S satisfies (4.97), the first integrand can be rewritten as

xT (t)KT (t)(R + µ(t)BTSσ(t)B)K(t)x(t). (4.99)

Then the cost function can be written as

J(t) =
1

2
xT (t)S(t)x(t) +

1

2

∫ tf

t

[xTKT (R + µBTSσB)Kx](τ)∆τ

+
1

2

∫ tf

t

[uTBTSσ(I + µA)x+ xT (I + µAT )SσBu](τ)∆τ

+
1

2

∫ tf

t

uT (R + µBTSσB)u(τ)∆τ

=
1

2
xT (t)S(t)x(t) +

1

2

∫ tf

t

[
xTKT (R + µBTSσB)Kx

]
(τ)∆τ

+
1

2

∫ tf

t

[uT (R + µBTSσB)Kx+ xTKT (R + µBTSσB)u](τ)∆τ

+
1

2

∫ tf

t

[
uT (R + µBTSσB)u

]
(τ)∆τ

=
1

2
xT (t)S(t)x(t) +

1

2

∫ tf

t

||Kx+ u||2(R+µBTSσB)(τ)∆τ,

where the integrand is the perfect square of a norm of Kx+u with respect to R+µBTSσB.

Letting u satisfy (4.94), the cost function over [t, tf ] is

J∗(t) =
1

2
xT (t)S(t)x(t).

This concludes the proof.

From Theorem 4.23, if the current state and S are known, we can determine the

optimal cost over [t, tf ] before we apply the optimal control or even calculate it!
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5. THE TRACKING PROBLEM

In this section, we will consider optimal problems that are natural extensions to those

we encountered in the last section. For Subsection 5.1, we will find an optimal control

where the cost function is in terms of the output. As a result, in order to consider the

state, we will make the assumption that the linear system associated the cost function is

completely observable. Again, we will assume that the initial state is known. Furthermore,

we will make the assumption that the final state is free, resulting in closed-loop control.

Next, in Subsections 5.2 and 5.3 we will consider a more general problem: tracking. In

Subsection 5.3, we will introduce an optimal control that contains a feedforward term.

The difference between feedback and feedforward control is given by the following

example. In the previous section, we considered heating a room to a desired temperature.

Assume that the state represents the temperature of the room and the control represents

the heating vent. Furthermore, suppose that it is snowing outside. If the control that heats

the room is based on the current temperature of the room, we have an example of state

feedback. As we have seen earlier, feedback control is simple to design. Unfortunately, this

control scheme can only account and correct errors after they have occurred. Now suppose

the heater reads the temperature outside instead. As a result, the control that heats the

room will be activated when it cools outside, rather than wait for the room to cool.

This is an example of feedforward control. By comparison, this control scheme not only

anticipates deviations in our model, but corrects them before they can occur. However,

the physics of the model must be well known in advance in order to use feedforward

control. The optimal control we find in Subsection 5.3 will contain both a feedback and

feedforward term.

Finally in Subsection 5.4, we will revisit the fixed final state case from Subsubsection

4.4.2. In this portion we will use the mechanics of the tracker to find an optimal control

in terms of the current state as well as some desired final reference signal. In this setting,
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we will consider a more general cost function, thus giving us a stronger result than the

one we have in Subsubsection 4.4.2.

5.1. OUTPUT QUADRATIC REGULATOR

In the previous section, we examined the LQR in terms of the state. For this section,

we will use the concept of observability to minimize a cost function in terms of the output

(see [2, 44]). First, let us consider the completely observable system

x∆(t) = Ax(t) +Bu(t), x(t0) = x0

y(t) = Cx(t).
(5.1)

Now assume the system is associated with the cost functional

J(t0) =
1

2
yT (tf )Fy(tf ) +

1

2

∫ tf

t0

(yTQy + uTRu)(τ)∆τ, (5.2)

where R > 0 and F , Q ≥ 0. Now before we find an optimal control that minimizes (5.2),

note that (5.2) can be rewritten in terms of the state as

J(t0) =
1

2
xT (tf )C

TFCx(tf ) +
1

2

∫ tf

t0

(xTCTQCx+ uTRu)(τ)∆τ. (5.3)

Comparing (5.3) with (4.61), note that S(tf ) and Q are replaced by CTFC and CTQC.

In the next theorem, we will show the correspondence between (4.61) and (5.2).

Theorem 5.1. Let F , Q ≥ 0 and let (5.1) be completely observable. Then the matrices

CTFC and CTQC are positive semidefinite.

Proof. Since F and Q are symmetric, CTFC and CTQC are symmetric as well. Also,

since (5.1) is assumed to be completely observable, CT cannot be zero. Now if Q ≥ 0,

then yTQy ≥ 0 for any choice of y, which means that xTCTQCx ≥ 0. But observability

implies that since each y is given by a unique x, then xTCTQCx ≥ 0 for all x. Therefore

CTQC ≥ 0.
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Next, we define the Hamiltonian to be

H(x, u, λ) =
1

2
(xTCTQCx+ uTRu) + λT (Ax+Bu).

Using the above Hamiltonian, the state and costate equations and stationary condition

are given by

x∆ = Hλ(x, u, λ
σ) = Ax+Bu,

−λ∆ = Hx(x, u, λ
σ) = CTQCx+ ATλσ,

and

0 = Hu(x, u, λ
σ) = Ru+BTλσ,

which yields

u = −R−1BTλσ (5.4)

If we assume that η1 and η2 satisfy the constraint

η∆
1 = Aη1 +Bη2, (5.5)

the second variation is given by

Φ̈(0) = ηT1 (tf )C
TFCη1(tf ) +

∫ tf

t0

[ηT1 C
TQCη1 + ηT2 Rη2](τ)∆τ. (5.6)

Note that if η3 6= 0, then (5.4) is an optimal control that locally minimizes (5.3). Now

since the final state is free,

φ(x(t), t) =
1

2
xT (t)CTF (t)Cx(t).
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Then the terminal condition on the costate is given by

λ(tf ) =
∂φ

∂x

∣∣∣∣
t=tf

= CTFCx(tf ). (5.7)

Next, we will use the sweep condition

λ(t) = S(t)x(t). (5.8)

Now we will use our sweep condition to derive a Riccati equation.

Theorem 5.2. Assume that
(
I + µ(t)BR−1BTSσ(t)

)
is invertible and that the condition

(5.8) holds. Then S satisfies a Riccati equation (of the second form)

−S∆ = ATSσ + (I + µ(t)AT )Sσ
(
I + µ(t)BR−1BTSσ

)−1 (
A−BR−1BTSσ

)
+CTQC,

S(tf ) = CTFC.

Proof. The proof here is same as for Theorem 4.15, just replace Q with CTQC.

Next, we will establish a control law similar to the state regulator.

Theorem 5.3. Let u∗ represent an optimal control that minimizes (5.3). Then u∗ can be

written in the form

u∗(t) = −K(t)x(t), (5.9)

where the matrix K(t) is given by (4.91) provided that R + µ(t)BTSσ(t)B is invertible.

Proof. The proof is identical to the proof of Theorem 4.18.

At first, it may be surprising that the optimal control here is written in terms of

the state rather than the output. However since the system is observable, each x can be

computed based on the knowledge of y. If the system were not observable, we could not

construct an optimal control since the state could not be determined from the output. The
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fact that x is generally of a larger dimension than y only complicates matters. However,

it should not be surprising that the feedback gain is same as before, since the proof for

Theorem 5.3 is identical to that of Theorem 4.18. Then under the influence of this control

law, the closed-loop system becomes

x∆(t) = (A−BK(t))x(t).

Now that we have an optimal input, we will find an optimal cost.

Theorem 5.4. Let (5.9) be an optimal control that minimizes (5.3). Then the optimal

cost is given by

J∗(t) =
1

2
xT (t)S(t)x(t), t ≤ tf ,

provided that R + µ(t)BTSσ(t)B is invertible.

Proof. The proof is the same as for Theorem 4.23.

Now that we have reconciled any conceptual issues with the input, we turn to a

more pressing question. While we needed the LQR in terms of the state to determine our

control law, what purpose does the output regulator serve? It turns out that the output

regulator is a special case of a more general concept: tracking. A block diagram of the

output regulator is given in Figure 5.1.

5.2. THE GENERAL TIME-VARYING CASE

In this subsection, we will study a natural extension to the LQR. We would like to

find an optimal control law that drives the plant to track a desired reference signal r(t)

over [t0, tf ]. Consider the system

x∆(t) = f(x(t), u(t))

y(t) = Cx(t).
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Figure 5.1. The optimal output regulator

Then the quadratic cost function close to this reference signal is

J(t0) =
1

2
(Cx−r)T (tf )P (Cx−r)(tf )+

1

2

∫ tf

t0

[(Cx−r)TQ(Cx−r)+uTRu](τ)∆τ, (5.10)

where P , Q ≥ 0 and R > 0. Note that

e(t) = y(t)− r(t) (5.11)

represents the error term. Now we define the Hamiltonian to be

H(t, x, u, λ) = L(t, x, u) + λTf(t, x, u). (5.12)

Then the state, costate, and stationary equations are given by

x∆(t) = Hλ(t, x(t), u(t), λσ(t)) = f(x(t), u(t)),

−λ∆(t) = Hx(t, x(t), u(t), λσ(t)) = fTx (t, x(t), u(t))λσ(t) + CTQCx(t)− CTQr(t),
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and

0 = Hu(t, x(t), u(t), λσ(t)) = Ru(t) + fTu (t, x(t), u(t))λσ(t).

Similarly, the boundary conditions are given by

 x(t0) = x0

λ(tf ) = CTP (Cx(tf )− r(tf )).
(5.13)

Note that the terminal condition for the costate is called an affine condition since it is

terms of the final state plus some additional term. Also, the input in this case depends

on x in a nonlinear matter. As a result, this control is in general a nonlinear feedback of

the state and costate.

5.3. THE LINEAR QUADRATIC CASE

In this subsection, we will make the blanketed assumption that the system is com-

pletely observable (see [2,44]). Now if we assume the plant is linear, then the Hamiltonian

becomes

H(x, u, λ) =
1

2
[(Cx− r)Q(Cx− r) + uTRu] + λT (Ax+Bu). (5.14)

Thus, the state, costate, and stationary equations are given by

x∆(t) = Ax(t) +Bu(t) = Ax(t)−BR−1BTλσ(t) (5.15)

−λ∆(t) = ATλσ(t) + CTQ(Cx(t)− r(t)) (5.16)

u(t) = −R−1BTλσ(t). (5.17)

If we assume that η1 and η2 satisfy the constraint

η∆
1 = Aη1 +Bη2, (5.18)
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the second variation is given by

Φ̈(0) = ηT1 (tf )C
TPCη1(tf ) +

∫ tf

t0

[ηT1 C
TQCη1 + ηT2 Rη2](τ)∆τ. (5.19)

Note that if η3 6= 0, then (5.17) is an optimal control that locally minimizes (5.10). Now

removing the input from the above equations, the forced Hamiltonian system driven by

−CTQr(t) becomes

 x

λ

∆

(t) =

 A −BR−1BT

−CTQC −AT

 x(t)

λσ(t)

+

 0

CTQ

 r(t). (5.20)

This additional term was not present when we were seeking a control in Section 4.

Remark 5.5. Since the final state is free, it is natural to assume that we can use the same

sweep condition as found in (5.8). Unfortunately, this condition cannot account for the

final reference signal. Instead, we will use an affine sweep condition

λ(t) = S(t)x(t)− v(t), (5.21)

where output v(t) of the adjoint of the closed-loop plant driven by r(t). This second term

anticipates the final reference signal.

Next we will use (5.21) to find equations for S and v.

Theorem 5.6. Assume that I + µ(t)BR−1BTSσ(t) is invertible. Furthermore, assume

that the condition (5.21) holds. Then S satisfies a Riccati equation (of the second form)

−S∆ = CTQC + ATSσ

+(I + µAT )Sσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
, (5.22)

S(tf ) = CTPC (5.23)

and v satisfies

−v∆ = [AT − (I + µA)Sσ(I + µBR−1BTSσ)−1BR−1BT ]vσ + CTQr, (5.24)
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v(tf ) = CTPr(tf ). (5.25)

Proof. First, we will rewrite the state equation solely in terms of x and v.

x∆ = Ax−BR−1BT (Sx− v)σ

= Ax−BR−1BTSσ
(
x+ µx∆

)
+BR−1BTvσ

= (A−BR−1BTSσ)x− µBR−1BTSσx∆ +BR−1BTvσ

=
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
x

+
(
I + µBR−1BTSσ

)−1
BR−1BTvσ, (5.26)

provided that I + µ(t)BR−1BTSσ(t) is invertible. Now rewriting (5.16), we have

−λ∆ = ATλσ + CTQCx− CTQr

= AT (Sx− v)σ + CTQCx− CTQr

= ATSσ(x+ µ(t)x∆)− ATvσ + CTQCx− CTQr.

Using (5.26), we have

−λ∆ = ATSσ(I + µ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
]x

+µATSσ
(
I + µBR−1BTSσ

)−1
BR−1BTvσ − ATvσ + CTQCx− CTQr

= [ATSσ + µATSσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
+ CTQC]x

+[−AT + µATSσ
(
I + µBR−1BTSσ

)−1
BR−1BT ]vσ − CTQr. (5.27)

However, note that by (5.26)

−λ∆ = −(Sx− v)∆

= −S∆x− Sσx∆ + v∆

= [−S∆ − Sσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
]x

−Sσ
(
I + µBR−1BTSσ

)−1
BR−1BTvσ + v∆. (5.28)
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When comparing (5.27) and (5.28), and combining like terms we have

−[S∆ + CTQC + ATSσ + (I + µAT )Sσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
]x

= v∆ + [AT − (I + µA)Sσ(I + µBR−1BTSσ)−1BR−1BT ]vσ + CTQr.

Then the above equation must be true for all t ≤ tf and for any choice of x(t0). Note

that S does not depend on x for any time t. It follows that the above equation must be

true for all values of x. As a result, this means that S must satisfy (5.22) while v satisfies

(5.24). This yields the result as desired.

Before we find an optimal control that minimizes (5.10), we will first introduce a

matrix that represents the feedforward gain.

Definition 5.7. A matrix-valued function

Kv(t) = (R + µ(t)BTSσ(t)B)−1BT . (5.29)

is called a feedforward gain, provided that R + µ(t)BTSσ(t)B is invertible.

Theorem 5.8. Let u∗ represent an optimal control that minimizes (5.10). Assume that

(R + µ(t)BTSσ(t)B) is invertible. Then u∗ can be written in the form

u∗(t) = −K(t)x(t) +Kv(t)v
σ(t), (5.30)

where K(t) represents is given by (4.91) and Kv(t) is given by (5.29).

Proof. Recall from (5.17) that we have

u∗(t) = −R−1BT (S(t)x(t)− v(t))σ

= −R−1BTSσ(t)[x(t) + µ(t)x∆(t)] +R−1BTvσ(t)

= −R−1BTSσ(t)[(I + µ(t)A)x(t) + µ(t)Bu(t)] +R−1BTvσ(t).
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Combining like terms, we have

(I + µ(t)R−1BTSσ(t)B)u(t) = −R−1BTSσ(t)(I + µ(t)A)x(t) +R−1BTvσ(t).

Now premultiplying by R, we have

(R + µ(t)BTSσ(t)B)u(t) = −BTSσ(t)(I + µ(t)A)x(t) +BTvσ(t).

Assuming that (R + µ(t)BTSσ(t)B) is invertible, we get

u = −(R + µ(t)BTSσB)−1BTSσ(I + µ(t)A)x+ (R + µ(t)BTSσB)−1BTvσ.

Then the feedback gain is given by

K(t) = (R + µ(t)BTSσ(t)B)−1BTSσ(t)(I + µ(t)A) (5.31)

while the feedforward gain is

Kv(t) = (R + µ(t)BTSσ(t)B)−1BT . (5.32)

This concludes the proof.

Such an optimal input is called an affine state feedback. It should be noted that the

gain of this additional term is independent of the state. This control (5.30) can also be

called a control-tracker law that minimizes (5.10). Now under the control-tracker law, the

closed-loop plant can be written as

x∆(t) = Ax(t) +B(−K(t)x(t) +Kv(t)v
σ(t))

= (A−BK(t))x(t) +B(R + µ(t)BTSσ(t)B)−1BTvσ(t). (5.33)

Now we want to rewrite our Riccati equation (of the second form) and output equa-

tion in terms of the Kalman gain.
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Corollary 5.9. The Riccati equation (5.22) can be written in terms of the Kalman gains

as

−S∆(t) = ATSσ(t) + (I + µ(t)AT )Sσ(t)(A−BK(t)) + CTQC (5.34)

while the output equation (5.24) is equivalent to

−v∆(t) = (A−BK(t))Tvσ(t) + CTQr(t). (5.35)

Proof. This proof is a direct result from Corollary 4.17. Using (4.91), we have

−S∆ = CTQC + ATS + (I + µAT )SσA

−(I + µAT )SσB(R + µBTSσB)−1BTSσ(I + µA)

= CTQC + ATS + (I + µAT )SσA− (I + µAT )SσBK

= CTQC + ATS + (I + µAT )Sσ(A−BK).

Similarly, using (4.91) we have

−v∆ = (AT −KTBT )vσ + CTQr

= (A−BK(t))Tvσ(t) + CTQr.

This yields our equivalent forms.

A block diagram of the affine control scheme is found in Figure 5.2. In the next

theorem, we will find an optimal cost function.

Theorem 5.10. Let (5.30) be an optimal control that minimizes (5.10). Then the optimal

cost is given by

J∗(t) =
1

2
xT (t)S(t)x(t)− xT (t)v(t) + w(t), t ≤ tf , (5.36)
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Figure 5.2. LQT as affine state feedback

where the auxiliary function w satisfies

−w∆(t) =
1

2
rT (t)Qr(t)− 1

2
vσT (t)BKv(t)v

σ(t)

w(tf ) =
1

2
rT (tf )Pr(tf ).

Proof. First note that

(xTSx)∆ = (xTS)∆x+ (xTS)σx∆

= (x∆TSσ + xTS∆)x+ (x+ µx∆)TSσx∆

= [(A−BK)x+BKvv
σ]TSσx+ xTS∆x

+[x+ µ(A−BK)x+ µBKvv
σ]TSσx∆

= xT (A−BK)TSσx+ vσTKT
v B

TSσx+ xTS∆x

+xT [I + µ(A−BK)T ]Sσ[(A−BK)x+BKvv
σ]

+µvσTKT
v B

TSσ[(A−BK)x+BKvv
σ]

= xT [(A−BK)TSσ + S∆ + (I + µ(A−BK)T )Sσ(A−BK)]x

+xT [I + µ(A−BK)T ]SσBKvv
σ + vσTKT

v B
TSσ[I + µ(A−BK)T ]x

+µvσTKT
v B

TSσBKvv
σ.
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Now using (4.72), the quadratic cost becomes

J(t) =
1

2
[Cx(tf )− r(tf )]TP [Cx(tf )− r(tf )] +

1

2

∫ tf

t

[(Cx− r)TQ(Cx− r)](τ)∆τ

+
1

2

∫ tf

t

[uTRu+ (xTSx)∆](τ)∆τ − 1

2
xT (tf )S(tf )x(tf ) +

1

2
xT (t)S(t)x(t).

From our boundary conditions (5.23) and (5.25), we have

J(t) =
1

2
xT (t)S(t)x(t)− 1

2
xT (tf )C

TPr(tf )−
1

2
rT (tf )PCx(tf ) +

1

2
rT (tf )Pr(tf )

+
1

2

∫ tf

t

[(Cx− r)TQ(Cx− r) + (xTSx)∆ + uTRu](τ)∆τ.

Now using the boundary conditions (5.23) and (5.25) and (5.30), we expand the integrand

to get

J(t) =
1

2
xT (t)S(t)x(t)− 1

2
xT (tf )v(tf )−

1

2
vT (tf )x(tf ) +

1

2
rT (tf )Pr(tf )

+
1

2

∫ tf

t

[
xT
[
(A−BK)TSσ + [I + µ(A−BK)T ]Sσ(A−BK)

]
x
]

(τ)∆τ

+
1

2

∫ tf

t

[
xT [S∆ + CTQTC +KTRK]x

]
(τ)∆τ

+
1

2

∫ tf

t

[
xT [(I + µ(A−BK))TSσB −KTR]Kvv

σ
]

(τ)∆τ

+
1

2

∫ tf

t

[
vσTKT

v [BTSσ(I + µ(A−BK))−RK]x
]

(τ)∆τ

+
1

2

∫ tf

t

[
vσTKT

v [R + µBTSσB]Kvv
σ
]

(τ)∆τ

+
1

2

∫ tf

t

[rTQr − xTCTQr − rTQCx](τ)∆τ.

Repeating the calculation shown to get (4.98), we can rewrite (5.34) as

−S∆(t) = (A−BK(t))TSσ(t) + [I + µ(t)(A−BK(t))T ]Sσ(A−BK(t))

+CTQTC +KT (t)RK(t). (5.37)



91

Therefore the first two integrands sum up to zero. Then J can be rewritten as

J(t) =
1

2
xT (t)S(t)x(t)− xT (tf )v(tf ) +

1

2
rT (tf )Pr(tf )

+

∫ tf

t

[
xT [(I + µ(τ)(A−BK))TSσB −KTR]Kvv

σ − xTCTQr
]

(τ)∆τ

+
1

2

∫ tf

t

[
vσTKT

v [R + µ(τ)BTSσB]Kvv
σ
]

(τ)∆τ +
1

2

∫ tf

t

(rTQr)(τ)∆τ.

Next, note that

(xTv)∆ = x∆Tvσ + xTv∆

= [(A−BK(t))x+BKv(t)v
σ]Tvσ − xT [(A−BK(t))Tvσ + CTQr]

= vσTKT
v (t)BTvσ − xTCTQr (5.38)

and

∫ tf

t

(xTv)∆(τ)∆τ = xT (tf )v(tf )− xT (t)v(t). (5.39)

Then adding and subtracting (5.39) to J yields

J(t) =
1

2
xT (t)S(t)x(t)− xT (t)v(t) +

1

2
rT (tf )Pr(tf )

+

∫ tf

t

[
xT [(I + µ(A−BK))T )SσB −KTR]Kvv

σ − (xTv)∆ − xTCTQr
]

(τ)∆τ

+
1

2

∫ tf

t

[
vσTKT

v (R + µBTSσB)Kvv
σ
]

(τ)∆τ +
1

2

∫ tf

t

(rTQr)(τ)∆τ

=
1

2
xT (t)S(t)x(t)− xT (t)v(t) +

1

2
rT (tf )Pr(tf )∫ tf

t

[
xT [(I + µ(A−BK))TSσB −KTR]Kvv

σ
]

(τ)∆τ +
1

2

∫ tf

t

(rTQr)(τ)∆τ

+
1

2

∫ tf

t

[
vσT [KT

v (R + µBTSσB)Kv −KT
v B

T −BKv(t)]v
σ
]

(τ)∆τ.

Now using the feedback gain (4.91), note that

(I + µ(t)(A−BK(t))T )Sσ(t)B = (I + µ(t)AT )Sσ(t)B − µ(t)KT (t)BTSσ(t)B
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= (I + µ(t)AT )Sσ(t)B(R + µ(t)BTSσ(t)B)−1(R + µ(t)BTSσ(t)B)

−µ(t)KT (t)BTSσ(t)B

= µ(t)KT (t)BTSσ(t)B +KT (t)R− µ(t)KT (t)BTSσ(t)B

= KT (t)R.

The cost can now be written as

J(t) =
1

2
xT (t)S(t)x(t)− xT (t)v(t) +

1

2
rT (tf )Pr(tf ) +

1

2

∫ tf

t

(rTQr)(τ)∆τ

+
1

2

∫ tf

t

[
vσT [KT

v (R + µBTSσB)Kv −KT
v B

T −BKv]v
σ
]

(τ)∆τ.

Using (5.29), the first integrand can be rewritten as

vσT [KT
v (R + µBTSσB)Kv −KT

v B
T −BKv]v

σ = vσT [KT
v B

T −KT
v B

T −BKv]v
σ

= −vσTBKvv
σ.

Finally, we define a function w such that w satisfies

−w∆(t) =
1

2
rT (t)Qr(t)− 1

2
vσT (t)BKv(t)v

σ(t)

w(tf ) =
1

2
rT (tf )Pr(tf ).

This concludes the proof.

Example 5.11. Let T = qN0 with q > 1. Now consider (5.1) associated with the cost

function (5.10). Then the state, costate, and stationary equations are given by

x∆(t) = Ax(t) +Bu(t) = Ax(t)−BR−1BTλ(qt)

−λ∆(t) = ATλ(qt) + CTQ(Cx(t)− r(t))

0 = BTλ(qt) +Ru(t),
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subject to the boundary conditions

 x(t0) = x0

λ(tf ) = CTP (Cx(tf )− r(tf )).

Next, we find that the feedback and feedforward gains are given to be

K(t) = (R + (q − 1)tBTS(qt)B)−1BTS(qt)(I + (q − 1)tA)

and

Kv(t) = (R + (q − 1)tBTS(qt)B)−1BT ,

respectively, so that the optimal control can be written in the form (5.30). Now under

the influence of the control-tracker law, the closed-loop plant can be written as

x∆(t) = (A−BK(t))x(t)−BKv(t)v(qt).

Then the closed-loop Riccati and output equations can be written as

S(t)− S(qt)

(q − 1)t
= ATS(qt) + (I + (q − 1)tAT )S(qt)(A−BK(t)) + CTQC

and

v(t)− v(qt)

(q − 1)t
= (A−BK(t))Tv(qt) + CTQr(t),

respectively. Now using (5.30), the optimal cost becomes

J∗(t) =
1

2
xT (t)S(t)x(t)− xT (t)v(t) + w(t),
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where w satisfies

w(t)− w(qt)

(q − 1)t
=

1

2
rT (t)Qr(t)− 1

2
vT (qt)BKv(t)v(qt)

w(tf ) =
1

2
rT (tf )Pr(tf ).

Example 5.12. (The Scalar LQT) Note that the scalar control system can be written as

x∆(t) = ax(t) + bu(t)

y(t) = cx(t).

Next, define the cost function to be

J(t0) =
1

2
p(cx(tf )− r(tf ))2 +

1

2

∫ tf

t0

[q(Cx− r)2 +Ru2](τ)∆τ.

where r represents the desired reference signal and R is the weighting constant on u. Now

the Hamiltonian is given by the scalar equation

H(x, u, λ) =
1

2
(q(cx− r)2 +Ru2) + λ(ax+ bu).

Note that the state and stationary equations are the same as in Example 4.4. However

the costate equation is now given by

−λ∆(t) = aλσ(t) + c2qx(t)− cqr(t),

where the terminal condition is given by λ(tf ) = c2px(tf )− cpr(tf ). Now assuming that

the costate is linear in x and v, we define

λ(t) = s(t)x(t)− v(t).
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Next, we use the sweep method to remove the costate from the state equation.

x∆ = ax− b2

R
(sx− v)σ

= ax− b2sσ

R
(x+ µx∆) +

b2

R
vσ

=

(
a− b2

R
sσ
)
x− µb2sσ

R
x∆ +

b2

R
vσ.

Pre-multiplying by R and combining like terms yields

x∆ =

(
aR− b2sσ

R + µb2sσ

)
x+

(
b2

R + µb2sσ

)
vσ,

provided that R + µb2sσ 6= 0. Now, note that

−λ∆ = a(sx− v)σ + c2qx− cqr

= asσx+ µasσ
[(

aR− b2sσ

R + µb2sσ

)
x+

(
b2

R + µb2sσ

)
vσ
]

−avσ + c2qx− cqr

=

[
asσ + µasσ

(
aR− b2sσ

R + µb2sσ

)]
x+

[
−a+ µasσ

(
b2

R + µb2sσ

)]
vσ

−cqr. (5.40)

But

−λ∆ = −(sx− v)∆

= −s∆x− sσx∆ + v∆

=

[
−s∆ − sσ

(
aR− b2sσ

R + µb2sσ

)]
x−

(
b2sσ

R + µb2sσ

)
vσ + v∆. (5.41)

Comparing (5.40) and (5.41) in terms of x, we have a Riccati equation

−s∆ = asσ + (1 + µa)sσ
(
aR− b2sσ

R + µb2sσ

)
+ c2q, s(tf ) = c2p.
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Similarly, (5.40) and (5.41) in terms of v and r yields the output equation

−v∆ =

[
a− (1 + µa)

(
b2sσ

R + µb2sσ

)]
vσ + cqr, v(tf ) = cpr(tf ).

Now the optimal control can by rewritten

u = − b

R
(sx− v)σ

= − b

R
[(1 + µa)x+ µ(t)bu] +

b

R
vσ

= −
(

(1 + µa)bsσ(t)

R + µb2sσ(t)

)
x+

b

R + µb2sσ
vσ.

This implies that the optimal control is of the form

u = −kx+ kvv
σ,

where the feedback gain is given by

k =
(1 + µa)bsσ

R + µb2sσ
(5.42)

and the feedforward gain is given by

kv =
b

R + µb2sσ
. (5.43)

Under the above control law, the closed-loop system becomes

x∆ = (a− bk)x+ bkvv
σ. (5.44)

Then the Riccati equation in terms of the closed-loop system is given by

−s∆ = asσ(t) + (1 + µa)sσ(a− bk) + c2q.
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Similarly, the output equation in terms of the reference signal is

−v∆ = (a− bk)vσ + cqr.

Note that just as in the vector case, the minimum cost is given by

J∗(t) =
1

2
s(t)x2(t)− x(t)v(t) + w(t), (5.45)

where w is a new auxiliary function that satisfies the equations

−w∆(t) =
1

2
qr2(t)− 1

2
bkv(t)v

2σ(t) (5.46)

w(tf ) =
1

2
pr2(tf ). (5.47)

Next, we consider the case in which we have a known disturbance (see [23,44]).

Example 5.13. In this example, we will consider the state equation

n∆ = An+Bu,

where n is the given state. Suppose that we want a more desirable state, r. Assuming

that r is known for t ≤ tf , when we plug the substitution x = n − r into the previous

state equation, we have

x∆ = n∆ − r∆

= An+Bu− r∆

= A(x+ r) +Bu− r∆

= Ax+Bu+ d,

where d = Ar− r∆ is a known disturbance. Let the cost function over [t0, tf ] be given by

J(t0) =
1

2
xT (tf )S(tf )x(tf ) +

1

2

∫ tf

t0

(xTQx+ uTRu)(τ)∆τ.
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The Hamiltonian here is given by

H(x, u, λ) =
1

2
(xTQx+ uTRu) + λT (Ax+Bu+ d).

Then the state, costate, and stationary equations are given by

x∆ = Hλ(x, u, λ
σ) = Ax+Bu+ d

−λ∆ = Hx(x, u, λ
σ) = ATλσ +Qx

0 = Hu(x, u, λ
σ) = BTλσ +Ru.

Similarly the boundary conditions are given by

 x(t0) = x0

λ(tf ) = S(tf )x(tf ).

Now we will assume our sweep condition is

λ = Sx− v. (5.48)

Next we want to find equations for S and v so that (5.48) is valid. Rewriting x∆ as before,

we have

x∆ =
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
x

+
(
I + µBR−1BTSσ

)−1
BR−1BTvσ + (I + µBR−1BTSσ)−1d.

Similarly, the costate equation can be rewritten as

−λ∆ = [ATSσ + µATSσ(I + µBR−1BTSσ)−1(A−BR−1BTSσ) +Q]x

+[−AT + µATSσ(I + µBR−1BTSσ)−1BR−1BT ]vσ

+µATSσ(I + µBR−1BTSσ)−1d. (5.49)
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But differentiating (5.48), we have

−λ∆ = −(Sx− v)∆

= [−S∆ − Sσ(I + µBR−1BTSσ)−1(A−BR−1BTSσ)]x

+[−Sσ(I + µBR−1BTSσ)−1BR−1BT ]vσ

−Sσ(I + µ(t)BR−1BTSσ)−1d+ v∆. (5.50)

Now comparing (5.49) and (5.50) we have

−[S∆ + ATSσ + (I + µAT )Sσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
+Q]x

= v∆ + [−AT + (I + µAT )Sσ(I + µBR−1BTSσ)−1BR−1BT ]vσ

+(I + µAT )Sσ(I + µBR−1BTSσ)−1d.

Then the above equation must be true for all t ≤ tf and for any x(t0). Also, S does not

depend on x for any time t. It follows that the above equation must be true for all values

of x. As a result, this means that S must satisfy

−S∆ = ATSσ + (I + µAT )Sσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
+Q.

Similarly, v must satisfy

v∆ = [−AT + (I + µAT )Sσ(I + µBR−1BTSσ)−1BR−1BT ]vσ

+(I + µAT )Sσ(I + µBR−1BTSσ)−1d. (5.51)

Finally, we find an optimal control to be

u∗ = −R−1BTλσ

= −R−1BTSσ[(I + µA)x+ µBu+ µd] +R−1BTvσ

= −(R + µBTSσB)−1BTSσ(I + µA)x

+(R + µBTSσB)−1BT (vσ − µSσd)
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= −Kx+Kv(v
σ − µSσd). (5.52)

The previous example can be referred to as a disturbance-rejection problem. In

Section 6, we will consider our state equation when we have an unknown, stochastic

disturbance. This leads us to the development of the Kalman filter on time scales.

5.4. REGULATOR WITH FUNCTION OF FINAL STATE FIXED

Recall in Subsubsection 4.4.2 we sought to find an optimal control that would drive

the final state to some fixed reference signal. In order to find this open-loop control, we

needed to know the value of the final costate. This in turn required the existence of the

inverse of some weighted controllability Gramian. However, note that in the development

of linear quadratic tracking thus far we have assumed that the final state has been free. As

a result, the optimal control with a function of the final state fixed will closely resemble the

control-tracker law (5.30). However we will need to consider a boundary value problem

similar to (5.40), which previously was only necessary to find the optimal cost. Now

consider the plant

x∆(t) = Ax(t) +Bu(t) (5.53)

associated with the cost functional

J(t0) =
1

2
xT (tf )S(tf )x(tf ) +

1

2

∫ tf

t0

(xTQx+ uTRu)(τ)∆τ, (5.54)

where R > 0 and S(tf ), Q ≥ 0. Now we seek an optimal control u∗ that not only

minimizes J(t0), but also guarantees

Ψ(x(tf ), tf ) = Cx(tf )− r(tf ) = 0, (5.55)
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where r(tf ) ∈ Rp and C are known. It should be noted that the state, costate, stationary

equations are the same as with the LQR. If we assume that η1 and η2 satisfy the constraint

η∆
1 = Aη1 +Bη2, (5.56)

the second variation is given by

Φ̈(0) = ηT1 (tf )S(tf )η1(tf ) +

∫ tf

t0

[ηT1 Qη1 + ηT2 Rη2](τ)∆τ. (5.57)

Note that if η3 6= 0, (5.17) is an optimal control that locally minimizes (5.54). Next we

assume the boundary conditions are given by

 x(t0) = x0

λ(tf ) = S(tf )x(tf ) + CTα,
(5.58)

where α is an unknown constant multiplier. Furthermore, we assume that r(tf ) = Cx(tf )

is a linear combination of x and α. In other words, r is given by

r(tf ) = U(t)x(t) + P (t)α, (5.59)

where U and P are still unknown. Next, we assume that we have the affine sweep condition

λ(t) = S(t)x(t) + V (t)α, (5.60)

where V is not necessarily a square matrix. Before we determine an optimal control, we

use the condition (5.60) to determine equations for S and V .

Theorem 5.14. Assume that
(
I + µ(t)BR−1BTSσ(t)

)
is invertible and that the condition

(5.60) holds. Then S satisfies a Riccati equation (of the second form)

−S∆ = Q+ ATSσ + (I + µAT )Sσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
, (5.61)
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for all t ≤ tf with boundary condition S(tf ) and V satisfies

−V ∆ = [AT − (I + µAT )Sσ(I + µBR−1BTSσ)−1BR−1BT ]V σ, (5.62)

V (tf ) = CT . (5.63)

Proof. First assume that
(
I + µ(t)BR−1BTSσ(t)

)
is invertible. Then the state equation

can be rewritten as

x∆ = Ax−BR−1BT (Sx+ V α)σ

= (A−BR−1BTSσ)x− µBR−1BTSσx∆ −BR−1BTV σα

=
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
x

−
(
I + µBR−1BTSσ

)−1
BR−1BTV σα.

Next, we rewrite the costate equation as follows

−λ∆ = AT (Sx+ V α)σ +Qx

= [ATSσ + µ(t)ATSσ(I + µ(t)BR−1BTSσ)−1(A−BR−1BTSσ) +Q]x

+[AT − µ(t)ATSσ(I + µ(t)BR−1BTSσ)−1BR−1BT ]V σα. (5.64)

Now differentiating (5.60), we have

−λ∆ = −(Sx+ V α)∆

= [−S∆ − Sσ(I + µBR−1BTSσ)−1(A−BR−1BTSσ)]x

+Sσ(I + µBR−1BTSσ)−1BR−1BT ]V σα− V ∆α. (5.65)

Comparing (5.64) and (5.65) and combining like terms, we have

[S∆ + ATSσ + (I + µAT )Sσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
+Q]x

= −[V ∆ + [AT − (I + µAT )Sσ(I + µBR−1BTSσ)−1BR−1BT ]V σ]α.
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Then the above equation must be true for all t ≤ tf and for any choice of x(t0) and α.

Note that S does not depend on x for any time t. Similarly, V does not depend on α. It

follows that the above equation must be true for all values of x. As a result, this means

that S must satisfy (5.61) while V satisfies (5.62). This concludes the proof.

Next, we will find an optimal control that minimizes our cost function.

Theorem 5.15. Let u∗ represent an optimal control that minimizes (5.54). Then u∗ can

be written in the form

u∗(t) = −K(t)x(t) +Kv(t)V
σ(t)α, (5.66)

where K(t) represents is given by (4.91) and Kv(t) is given by (5.29).

Proof. Using (5.17) and (5.60), we have

u∗(t) = −R−1BT (S(t)x(t) + V (t)α)σ(t)

= −R−1BTSσ(t)[(I + µ(t)A)x(t) + µ(t)Bu(t)] +R−1BTV σ(t)α

= −(R + µ(t)BTSσ(t)B)−1BTSσ(t)(I + µ(t)A)x(t)

−(R + µ(t)BTSσ(t)B)−1BTV σ(t)α

= −K(t)x(t) +Kv(t)V
σ(t)α. (5.67)

This gives the optimal control as desired.

Note that (5.66) is in terms of the current state whereas the optimal control (4.76)

in Subsubsection 4.4.2 was only in terms of a final state difference. Now under this control

law, the closed plant can be written as

x∆(t) = Ax(t) +B(−K(t)x(t)−Kv(t)V
σ(t)α)

= (A−BK(t))x(t) +B(R + µ(t)BTSσ(t)B)−1BTV σ(t)α. (5.68)

Next we want to rewrite our Riccati equation (of the second form) and output equation

in terms of the Kalman gain.
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Corollary 5.16. The Riccati equation (5.61) is equivalent to

−S∆(t) = ATSσ(t) + (I + µ(t)AT )Sσ(t)(A−BK(t)) +Q (5.69)

while the output equation (5.62) is equivalent to

−V ∆(t) = (A−BK(t))TV σ(t). (5.70)

Proof. This proof is a direct result from Corollary 4.17. Using (4.91), we have

−S∆ = Q+ ATS + (I + µAT )SσA

−(I + µAT )SσB(R + µBTSσB)−1BTSσ(I + µA)

= Q+ ATS + (I + µAT )SσA− (I + µAT )SσBK

= Q+ ATS + (I + µAT )Sσ(A−BK).

Similarly, using (4.91) we have

−V ∆ = (AT −KTBT )V σ = (A−BK(t))TV σ(t).

This yields our equivalent forms.

Now looking back at (5.66), note that the feedforward term represents the term that

anticipates the final state being equal to some final reference signal. As a result, we want

to rewrite the Lagrange multiplier α in terms of this final reference signal. This gives us

the following form of our optimal control.

Theorem 5.17. Let u∗ represent an optimal control that minimizes (5.54). Furthermore,

assume that (5.59) holds. Now suppose that

P (t) := −
∫ tf

t

V σT (τ)B(R + µ(τ)BTSσ(τ)B)−1BTV σ(τ)∆τ.
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is invertible. Then u∗ can be written in the form

u∗(t) = −(K(t)−Kv(t)V
σ(t)P−1(t)V T (t))x(t)−Kv(t)V

σ(t)P−1(t)r(tf ). (5.71)

Proof. Recall earlier that we assumed that r(tf ) = Cx(tf ) could be written as a lin-

ear combination of x and α as in (5.59). Note that P (tf ) = 0 and U(tf ) = C. Now

differentiating (5.59) and plugging in (5.68), we have

0 = [r(tf )]
∆

= U∆(t)x(t) + Uσ(t)x∆(t) + P∆(t)α

= [U∆(t) + Uσ(t)(A−BK(t))]x(t) + [P∆(t)− Uσ(t)BKv(t)V
σ(t)]α. (5.72)

Then the terminal value problem for U is given by

U∆(t) = −Uσ(t)(A−BK(t)), (5.73)

subject to U(tf ) = C. It follows from the boundary conditions that U(t) = V T (t) for

t ≤ tf . Similarly, we can find an equation for P by

P∆(t) = Uσ(t)BKv(t)V
σ(t)

= V σT (t)B(R + µ(t)BTSσ(t)B)−1BTV σ(t). (5.74)

Then

P (t) = −
∫ tf

t

V σT (τ)B(R + µ(τ)BTSσ(τ)B)−1BTV σ(τ)∆τ.

Now since P is a sort of weighted controllability Gramian, it is a natural to assume that

detP (t) 6= 0 for t ≥ t0. Then r can be written as

r(tf ) = V T (t)x(t) + P (t)α,
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which implies that

α = P−1(t)[r(tf )− V T (t)x(t)].

Finally, the optimal control in terms of r is given by

u∗(t) = −K(t)x(t)−Kv(t)V
σ(t)P−1(t)[r(tf )− V T (t)x(t)]

= −(K(t)−Kv(t)V
σ(t)P−1(t)V T (t))x(t)−Kv(t)V

σ(t)P−1(t)r(tf ).

This gives the optimal control as desired.

Note that just as in Subsubsection 4.4.2, the optimal control depends on the inverse

of a weighted controllability Gramian. If detP (t) = 0 for all t ∈ [t0, tf ], then the problem

is said to be abnormal and there is no solution. If we pick C = 0, the problem reduces to

the free final state case in Subsubsection 4.4.3. On the other hand, if we pick C = I, the

problem reduces to the fixed final state case similar to Subsubsection 4.4.2. However, in

Subsubsection 4.4.2, we found an optimal control where S(tf ) = Q = 0. As a result, we

have found a stronger result than the one we had in Subsubsection 4.4.2.
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6. THE KALMAN FILTER ON TIME SCALES

It is often desirable to estimate system states that can only be observed indirectly

or inaccurately by the given system. For instance, it is possible that noise from an

electromagnetic signal may corrupt some radio communication signal. In such a case, it

is necessary to determine a filter that not only removes the noise but retains relevant

information. What makes the Kalman filter attractive compared to other filters is that

it is designed to minimize the variance of the estimation error. While the Kalman filter

is most famous for its role in putting a man on the moon, it has numerous other useful

applications in engineering as well. These include analysis of economic systems (see [1,5])

and airborne target tracking systems (see [3, 47,48]).

In determining the best estimate for the state, there are two concerns that need to

be addressed. First, we know how the system behaves according to the state equation.

However the state is not immediately available to us. Therefore we want the expected

value of our state estimate to be equal to the true state’s expected value. As a result, this

will give us an estimate that is not biased in one way or another. Second, we want our

state estimate to vary as little as possible away from the true state. Mathematically, we

want to find an estimator that ensures that we have the smallest error covariance possible.

These two concepts together describe the theory of mean square estimation. As it turns

out, the Kalman filter is such an estimator.

In this section, we will consider the discrete and continuous cases of the Kalman

filter. We will restrict ourselves to studying processes that can be described by linear

systems. We will also assume that our process and measurement noises are independent

of each other. First, let us consider the discrete case as introduced by Kalman. In this

case, the filter becomes a recursive estimator. There are two phases for this filter design.

In the predict phase, the state is estimated from the previous time step to produce a new

state estimate at the current time step. Associated with this new estimate is a predicted

error covariance matrix. In the update phase, measurement information at the current

time step is used to refine our prediction to determine a new state estimate. This new
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estimate is now the sum of the previous state and the measurement (innovation) at the

current time step. For a more in depth introduction of this filter design, one should see

Maybeck’s book [46, Chapter 1] or Sorenson [51], which includes a detailed historical

perspective of least square estimation from Gauss to Kalman. A summary of this filter

can be found in Table 6.1.

System: x(t+ 1) = Ax(t) +Bu(t) +Gw(t), x(t0) = x0

Measurement: y(t) = Cx(t) + v(t)

Assumptions: x0 ∼ (x0, P0), w ∼ (0, Qδ(t− s)), v ∼ (0, Rδ(t− s)), which are

mutually uncorrelated, R > 0

Initialization

Initial estimate: x̂(t0) = x0

Error covariance: P (t0) = E[(x0 − x̂0)(x0 − x̂0)T ] = P0

Time update (the effect of system dynamics)

Estimate update: x̂(t+ 1|t) = Ax̂(t|t) +Bu(t)

Error covariance: P (t+ 1|t) = AP (t|t)AT +GQGT

Measurement update (the effect from measurement y)

Estimate update:

x̂(t+ 1|t+ 1) = Ax̂(t+ 1|t) +Bu(t) +K(t+ 1)[y(t+ t)− Cx̂(t+ 1|t)]
Error covariance update:

P (t+ 1) = AP (t)AT − AP (t)CT (R + CP (t)CT )−1CP (t)AT +GQGT

Kalman gain: K(t+ 1) = P (t+ 1|t)CT (R + CP (t+ 1|t)CT )−1

Table 6.1. The Kalman Filter for T = Z

While the discrete Kalman filter is usually written with separate time and mea-

surement updates, this is not necessarily always the case. In Table 6.2 we consider an

alternative form (the predictive case). Just as before the propagation of the error covari-

ance can be calculated recursively. However note that the equation for the error covariance

is not in terms of either the measurement or the input (see [14, 43]). As a result, it is

possible that both the error covariance and the Kalman gain can be computed a priori,
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meaning that terms can be determined before the filter is implemented. We write this

alternative form in delta notation,

System: ∆x(t) = Ax(t) +Bu(t) +Gw(t), x(t0) = x0

Measurement: y(t) = Cx(t) + v(t)

Assumptions: x0 ∼ (x0, P0), w ∼ (0, Qδ(t− s)), v ∼ (0, Rδ(t− s)), which are

mutually uncorrelated, R > 0

Initialization

Initial estimate: x̂(t0) = x0

Error covariance: P (t0) = E[(x0 − x̂0)(x0 − x̂0)T ] = P0

Estimate update:

∆x̂(t|t) = Ax̂(t|t− 1) +Bu(t) +K(t)[y(t)− Cx̂(t|t− 1)]

Kalman gain: K(t) = AP (t)CT (R + CP (t)CT )−1

Error covariance update:

∆P (t) = AP (t)AT − AP (t)CT (R + CP (t)CT )−1CP (t)AT +GQGT

Table 6.2. The (Predictive) Kalman Filter for T = Z

It should be noted that the continuous (Kalman–Bucy) filter can be derived from

the discrete filter. The filter for the continuous case is found in Table 6.3 below.

However, mathematically speaking, the filtering in continuous time is a more ad-

vanced problem than filtering in discrete time. While the discrete filter could be formu-

lated and solved with elementary probability theory and algebraic methods, this is not the

case for the continuous filter. Vector processes in discrete time can simply be interpreted

as a multidimensional random variable. As a result, the calculation of the stochastic dif-

ference equations and propagation of the error covariance is not numerically cumbersome.

White noise in discrete time does not pose any problems as well. Vector processes in

continuous time become much more tricky since the number of points considered becomes

a continuum (uncountable infinity). White noise also presents a problem as it forces the

filter to be formulated and solved using Ito differentials and Brownian motion if certain
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System: ẋ(t) = Ax(t) +Bu(t) +Gw(t), x(t0) = x0

Measurement: y(t) = Cx(t) + v(t)

Assumptions: x0 ∼ (x0, P0), w ∼ (0, Qδ(t− s)), v ∼ (0, Rδ(t− s)), which are

mutually uncorrelated, R > 0

Initialization

Initial estimate: x̂(t0) = x0

Error covariance: P (t0) = E[(x0 − x̂0)(x0 − x̂0)T ] = P0

Estimate update:
˙̂x(t) = Ax̂(t) +Bu(t) +K(t)[y(t)− Cx̂(t)]

Kalman gain: K(t) = P (t)CTR−1

Error covariance update:

Ṗ (t) = AP (t) + P (t)AT − P (t)CTR−1CP (t) +GQGT

Table 6.3. The Kalman Filter for T = R

precautions are not taken. Fortunately, since we will only consider the linear case, we can

avoid this issue.

While the error covariances in the discrete represent a sampling of the error covari-

ance in the continuous time, the same cannot be said regarding the gains. Also unlike

the discrete case, the continuous Kalman filter cannot be decomposed into separate time

and measurement updates. This is due to the fact that all of the error covariances in the

discrete case tend to the same error covariance in limit. As a result, we must also assume

that our measurement is given in “real-time.” Otherwise if the error covariance and gain

are known beforehand, they can be determined a priori. Despite their differences, both

filters look strikingly similar. Now we would like to extend the Kalman filter onto time

scales to unify both cases. Table 6.4 summarizes our results.

In this section, we will assume that there exists a δ(·, ·) such that

∫ tf

t0

∫ tf

t0

xT (τ1)Qδ(τ1, τ2)x(τ2)∆τ1∆τ2 =

∫ tf

t0

xT (τ)Qx(τ)∆τ. (6.1)

This assumption is valid for isolated time scales as well as the reals with δ being the usual

Dirac delta. Since the continuous Kalman filter cannot be decomposed into separate time
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System: x∆(t) = Ax(t) +Bu(t) +Gw(t), x(t0) = x0

Measurement: y(t) = Cx(t) + v(t)

Assumptions: x0 ∼ (x0, P0), w ∼ (0, Qδ(t, s)), v ∼ (0, Rδ(t, s)), which are

mutually uncorrelated, R > 0

Initialization

Initial estimate: x̂(t0) = x0

Error covariance: P (t0) = E[(x0 − x̂0)(x0 − x̂0)T ] = P0

Estimate update:

x̂∆(t) = Ax̂(t) +Bu(t) +K(t)[y(t)− Cx̂(t)]

Kalman gain: K(t) = (I + µ(t)A)P (t)CT (R + µ(t)CP (t)CT )−1

Error covariance update:

P∆(t) = AP (t) + (I + µ(t)A)P (t)AT

−(I + µ(t)A)P (t)CT (R + µ(t)CP (t)CT )−1CP (t)(I + µ(t)AT ) +GQGT

Table 6.4. The Kalman Filter for T

and measurement updates, the error covariance in our hybrid filter will be though the

integrator just as it is for the Kalman–Bucy filter. For this to be, it should be understood

that we will assume that the measurement is being updated in “real-time.” This means

that there is a measurement at the next available point in the time scale. To side step

this issue with the error covariances, we will first introduce the observer.

6.1. OBSERVERS

In this subsection, we use the terminology first introduced in the discrete and con-

tinuous cases by Luenberger [45]. Consider the linear system

x∆(t) = Ax(t) +Bu(t)

y(t) = Cx(t).
(6.2)

In Sections 4 and 5 concerning the LQR and LQT, it was assumed that the state can

be accurately measured. However, this is not always realistic. It is possible that the

measurement is incomplete or corrupted by noisy measurements. In this subsection, we

will introduce a system that estimates the state, which we will call an observer.
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Definition 6.1. The n-dimensional system

x̂∆(t) = F (t)x̂(t) +G(t)y(t) + I(t)u(t) (6.3)

is a (full order) observer for (6.2) if x̂(t0) = x(t0) implies that the solutions of (6.2) and

(6.3) are equal for any u for all t ≥ t0.

Theorem 6.2. The system (6.3) is an observer for (6.2) if and only if


F (t) = A−K(t)C

G(t) = K(t)

I(t) = B.

(6.4)

As a result, the observer is given by

x̂∆(t) = (A−K(t)C)x̂(t) +K(t)y(t) +Bu(t)

= Ax̂(t) +Bu(t) +K(t)[y(t)− Cx̂(t)]. (6.5)

Proof. First, assume that (6.3) is an observer for (6.2). Now let x be a solution to (6.2)

and let x̂ be a solution to (6.3). Now

x∆(t)− x̂∆(t) = (Ax(t) +Bu(t))− (F (t)x̂(t) +G(t)y(t) + I(t)u(t))

= (A−G(t)C)x(t)− F (t)x̂(t) + (B − I(t))u(t) (6.6)

= 0.

Then x̂(t) = x(t) for all u for t ≥ t0. Thus (6.4) is true.

Conversely, assume that (6.4) holds. Then

x∆(t)− x̂∆(t) = (Ax(t) +Bu(t))− ((A−K(t)C)x(t) +B(t)u(t) +K(t)Cx(t))

= (A−K(t)C)(x(t)− x̂(t)). (6.7)

Now if x̂(t0) = x(t0), then x̂(t) = x(t) for all u, t ≥ t0.
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The structure of (6.6) follows from plugging (6.4) into (6.3). Thus the full order

observer consists of a model of a systems with an extra driving force proportional to the

difference y(t)− ŷ(t) where ŷ = Cx̂(t). A block diagram for the observer scheme can be

found in Figure 6.1. Note, thus far the choice of the observer gain K(t) is still arbitrary.

Figure 6.1. The observer design

Next we consider a concept similar to state feedback: output feedback. In Section

4, we considered the linear system (6.2) under the influence of the control law

u(t) = −L(t)x(t), (6.8)

where x here could be accurately measured and L represents the state feedback gain (4.91)

found in Sections 4 and 5. As previously stated, this is not always the case. Therefore,

if the state is not available for measurement, it is a natural assumption that the observer

(6.5) can be joined by the estimated control law

u(t) = −L(t)x̂(t), (6.9)
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where L(t) is the same matrix as above. The block diagram in Figure 6.2 describes the

interconnection of the plant, the observer, and the estimated control law.

Figure 6.2. The output feedback design

Now substituting this control law into the observer, we get the controller equations

x̂∆(t) = (A−BL(t)−K(t)C)x̂(t) +K(t)y(t)

u(t) = −L(t)x̂(t).
(6.10)

Next, interconnecting the plant with the controller yields the closed-loop system

x∆(t)

x̂∆(t)

 =

 A −BL(t)

K(t)C A−K(t)C −BL(t)

x(t)

x̂(t)

 . (6.11)
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Note that the dimension of the above system is 2n, as the dimension of the state is n.

Next, we denote the error as

e(t) = x(t)− x̂(t). (6.12)

Now by using (6.2), (6.5), and (6.12), we get the error system

e∆(t) = (A−K(t)C)e(t). (6.13)

6.2. LINEAR STOCHASTIC SYSTEMS

Before we consider the Kalman filter on time scales, we will consider mean square

estimation as well as the propagation of means and variances. Some of the notation used

here can be found in Appendix A. In particular, we will denote the expected value of X

by E(X) as well as by X.

6.2.1. Mean-Square Estimation. In this portion, we will consider the argument

on mean-square estimation by Lewis [43]. We will consider a stochastic vector X ∈ Rn

that cannot be directly determined through measurement. While X is unknown, we

will assume we can find the initial statistics of X prior to our measurement. Through

measurement we can find another stochastic vector Z ∈ Rp that is in some way related to

X. Now by knowing Z, we can find some information on X through the joint statistics

of X,Z.

Given Z, we would like to determine an estimate X̂(Z) of the value of X such that

the estimation error

e = X − X̂ (6.14)

can be made small.
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Definition 6.3. Given an estimate X̂(Z), the mean-square error is the expected value

of the Euclidean squared norm of e,

J = E(eT e) = E[(X − X̂)T (X − X̂)]. (6.15)

The purpose of mean-square estimation can be stated as follows. First note that X̂

does not depend on X. Using all available information, we seek to find such an estimate

X̂ that minimizes

J = E(XTX)− X̂TX −XT
X̂ + X̂T X̂ = E(XTX)− 2X̂TX + X̂T X̂. (6.16)

Now suppose that before we determine a measurement Z, we know only the a priori

statistics of X. Differentiating with respect to X̂ and setting equal to 0 yields

∂J

∂X̂
= −2X + 2X̂ = 0, (6.17)

implying X̂ = X. Now note that

E(X −X) = X −X = 0. (6.18)

This leads us to the following definition.

Definition 6.4. An estimate X̂ is said to be unbiased if

E(X − X̂) = 0. (6.19)

This is equivalent to

E(X̂) = X. (6.20)
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Intuitively this tells us if only the statistics of X are known, the best estimate X̂ is

the mean of X. Then we can write the a priori error covariance as

Pe = E[eeT ] = E[(X − X̂)(X − X̂)T ] = E[(X −X)(X −X)T ], (6.21)

which is just the covariance of X. If this error covariance is small, then the associated

estimate is a good one.

Now suppose that in addition to knowing the statistics of X, we know a random

variable Z through measurement. We can call the estimate X̂(Z) after taking the mea-

surement the a posteriori estimate of X. Note that as Z changes, so does X̂. Now the

problem requires that we find an estimate X̂ that minimizes the conditional mean-square

error covariance

J ′ = E[(X − X̂(Z))T (X − X̂(Z))|Z]

= E(XTX|Z)− 2X̂(Z)E(X|Z) + X̂(Z)T X̂(Z). (6.22)

Again, differentiating with respect to X̂(Z) and setting equal to 0, we have

∂J ′

∂X̂
= −2X|Z + 2X̂(Z) = 0, (6.23)

implying that X̂(Z) = X|Z. Equation (6.23) is sometimes called the conditional mean

estimate of X. Note that this estimate is unbiased since

E((X − X̂)|Z) = E[(X−X|Z)|Z] = E[X|Z−E(X|Z|Z)] = E[X|Z−X|Z] = 0. (6.24)

Now the error covariance associated with the conditional mean estimate is given by

Pe = E[(X − X̂)(X − X̂)T ] = E[(X −X|Z)(X −X|Z)T |Z] = E[PX|Z ]. (6.25)

6.2.2. Propagation of Means and Variances. For the rest of this dissertation,

we will use lower case letters to denote vector-valued random variables. We also consider
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time scales such that the assumption in (6.1) is valid. Before we consider the means and

variances of the state and measurements, we categorize the vectors that comprise them

by the following definitions.

Definition 6.5. A random vector is said to be stationary if all of its statistical properties

do not vary with time. Processes whose statistical properties do change are referred to as

nonstationary.

The type of stationary processes we consider is white noise, which we define as

follows.

Definition 6.6. A random vector v is said to be a white random vector if and only if

a. E(v(t)) = 0;

b. E(v(t)vT (s)) = Rδ(t, s),

where δ(·, ·) is as in (6.1).

Next, we consider when two vectors are orthogonal to each other.

Definition 6.7. Two vector-valued functions w, v : T → Rm are said to be mutually

uncorrelated if

E[w(t)vT (s)] = 0

for any s, t ∈ T.

In this portion, we will assume that both the state and measurement are Gaussian

and examine how their statistics will vary with time. Now consider the linear stochastic

system

x∆(t) = Ax(t) +Bu(t) +Gw(t), x(t0) = x0,

y(t) = Cx(t) + v(t),
(6.26)

where
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a. the state x ∈ Rn is a nonstationary random variable with mean x and covariance

Px = E[(x− x)(x− x)T ].

b. the input u ∈ Rm is deterministic.

c. the output y ∈ Rp is a nonstationary random variable with mean y and covariance

Py = E[(y − y)(y − y)T ].

d. the process noise w ∈ Rl is stationary white noise with mean 0 and covariance

E[wwT ] = Qδ(t, s).

e. the measurement noise v ∈ Rp is stationary white noise with mean 0 and covariance

E[vvT ] = Rδ(t, s).

f. x0, w, and v are assumed to be mutually uncorrelated.

g. Px0 , Q, and R are all positive definite.

h. we can interchange the expectation and integration operations, i.e.,

E
[∫

S∆τ

]
=

∫
E[S]∆τ.

Theorem 6.8. [11, Theorem 5.24] The solution of the initial value problem

x∆(t) = Ax(t) +Bu(t) +Gw(t), x(t0) = x0 (6.27)

is given by

x(t) = eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ +

∫ t

t0

eA(t, σ(τ))Gw(τ)∆τ.

Corollary 6.9. The mean of the solution for (6.27) is given by

x(t) = eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ. (6.28)
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and the difference between the solution of (6.27) and its mean is given by

x(t)− x(t) = eA(t, t0)(x0 − x0) +

∫ t

t0

eA(t, σ(τ))Gw(τ)∆τ.

Proof. First, using the assumptions (a), (b), (d), and (h), we have

E(x(t)) = E
[
eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ +

∫ t

t0

eA(t, σ(τ))Gw(τ)∆τ

]
= eA(t, t0)x0 +

∫ t

t0

E[eA(t, σ(τ))Bu(τ)]∆τ +

∫ t

t0

E[eA(t, σ(τ))Gw(τ)]∆τ

= eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))Bu(τ)∆τ.

Then the difference between the solution of (6.27) and its mean is as given above.

Theorem 6.10. The covariance for the state is given by

P (t) = eA(t, t0)

[
P0 +

∫ t

t0

eA(t0, σ(τ))GQGT eTA(t0, σ(τ))∆τ

]
eTA(t, t0). (6.29)

Proof. Using the definition of covariance, Corollary 6.9 and the assumptions (a), (b), (d),

and (h), we have

P (t) = E[(x(t)− x(t))(x(t)− x(t))T ]

= E[eA(t, t0)(x0 − x0)(x0 − x0)T eTA(t, t0)]

+E
[
eA(t, t0)(x0 − x0)

∫ t

t0

wT (τ)GT eTA(t, σ(τ))∆τ

]
+E
[ ∫ t

t0

eA(t, σ(τ))Gw(τ)(x0 − x0)T eTA(t, t0)∆τ

]
+E
[ ∫ t

t0

∫ t

t0

eA(t, σ(τ1))Gw(τ1)wT (τ2)GT eTA(t, σ(τ2))∆τ1∆τ2

]
= eA(t, t0)P0e

T
A(t, t0) +

∫ t

t0

∫ t

t0

eA(t, σ(τ1))GQδ(τ2, τ1)GT eTA(t, σ(τ2))∆τ1∆τ2

= eA(t, t0)

[
P0 +

∫ t

t0

eA(t0, σ(τ))GQGT eTA(t0, σ(τ))∆τ

]
eTA(t, t0).

This shows (6.29) as desired.
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Note that the mean and covariance of the state should actually be considered as

conditional. Next we find the propagation of the state covariance matrix.

Corollary 6.11. The propagation of the state is given by

P∆(t) = AP (t)(I + µ(t)A)T + P (t)AT +GQGT . (6.30)

Proof. Using Theorem 2.20 part (a), we differentiate (6.29) to get

P∆(t) =

[
eA(t, t0)

[
P0 +

∫ t

t0

eA(t0, σ(τ))GQGT eTA(t0, σ(τ))∆τ

]]∆

eTA(σ(t), t0)

+eA(t, t0)

[
P0 +

∫ t

t0

eA(t0, σ(τ))GQGT eTA(t0, σ(τ))∆τ

]
(e∆
A(t, t0))T

= eA(σ(t), t0)eA(t0, σ(t))GQGT eTA(t0, σ(t))eTA(σ(t), t0)

+AeA(t, t0)

[
P0 +

∫ t

t0

eA(t0, σ(τ))GQGT eTA(t0, σ(τ))∆τ

]
eTA(t, t0)(I + µ(t)A)T

+eA(t, t0)

[
P0 +

∫ t

t0

eA(t0, σ(τ))GQGT eTA(t0, σ(τ))∆τ

]
eTA(t, t0)AT

= AP (t)(I + µ(t)A)T + P (t)AT +GQGT .

This concludes the proof.

Note that the mean of the measurement is given by

y(t) = Cx(t). (6.31)

Then the cross-covariance between the state and measurement is given by

Pxy(t) = E[(x− x)(y − y)T ]

= E[(x− x)[C(x− x) + v]T ]

= Px(t)C
T ,
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due to assumption (g) that x, v are uncorrelated. Finally, the covariance of the measure-

ment is

Py(t) = E[(y − y)(y − y)T ] = CPx(t)C
T +Rδ(t, s). (6.32)

6.3. THE LINEAR QUADRATIC ESTIMATOR

While it is convenient in theory to assume that the system is exactly known and

no modeling disturbances are present, nature is not always so cooperative. The Kalman

filter can be thought of as an observer in which the state is reconstructed from noisy

measurements. Although the initial state is not known, we will assume that the statistics

are known. We can symbolize this by

x0 ∼ (x0, P0). (6.33)

Now since the initial covariance is given by P0 = E[(x(t0) − x̂(t0))(x(t0) − x̂(t0))T ], it is

natural to assume that x̂(t0) = x(t0) so that the observer is unbiased. This is sometimes

referred to as the initialization of the filter.

Definition 6.12. Let the linear stochastic system be given by (6.26). Then an estimator

to (6.26) is given by

x̂∆(t) = Ax̂(t) +Bu(t) +K(t)[y(t)− Cx̂(t)], x̂(t0) = x(t0), (6.34)

where K(t) = (I + µ(t)A)P (t)CT (R + µ(t)CP (t)CT )−1 is a Kalman gain.

We will derive the form of this gain later on in this section. Now since x̂ is the state

estimate, we can call ŷ = Cx̂ the output estimate. Just as we desire x̂ to be close to x,

our observer is working properly if y− ŷ is made to be small. This difference is sometimes

called the residual or output estimation error. The observer (6.34) can be thought as the

measurement update of our state equation. As mentioned before, we will assume that
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this measurement is being updated in real-time. Thus, the Kalman gain can be thought

of as a “blending” factor that fuses the residual with the state estimate.

Lemma 6.13. Let (6.34) be the observer to the stochastic system (6.26). Then the error

system is given by

e∆(t) = M(t)e(t) +Gw(t)−K(t)v(t), (6.35)

where M(t) = A−K(t)C.

Proof. Taking the difference of (6.26) and (6.34), we have

e∆(t) = x∆(t)− x̂∆(t)

= (A−K(t)C)e(t) +Gw(t)−K(t)v(t)

= M(t)e(t) +Gw(t)−K(t)v(t).

This gives the result as desired.

Remark 6.14. Note that the solution to (6.35) is of the form

e(t) = x(t)− x̂(t) = eM(t, t0)e0 +

∫ t

t0

eA(t0, σ(τ))[Gw(τ)−K(τ)v(τ)]∆τ. (6.36)

Theorem 6.15. Let the solution to the error system (6.35) be (6.36). Then the error

covariance is given by

P (t) = eM(t, t0)

[
P0 +

∫ t

t0

eM(t0, σ(τ))GQGT eTM(t0, σ(τ))∆τ

+

∫ t

t0

eM(t0, σ(τ))K(τ)RKT (τ)eTM(t0, σ(τ))∆τ

]
eTM(t, t0). (6.37)

Proof. Expanding the definition of the error covariance and using assumptions (a) and

(d)–(h), we have

P (t) = E[(x(t)− x̂(t))(x(t)− x̂(t))T ]
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= E[eM(t, t0)e0e
T
0 e

T
M(t, t0)]

+E
[
eM(t, t0)e0

∫ t

t0

[wT (τ)GT − vT (τ)KT (τ)]eTM(t, σ(τ))∆τ

]
+E
[ ∫ t

t0

eM(t, σ(τ))[Gw(τ)−K(τ)v(τ)]e0)T eTM(t, t0)∆τ

]
+E
[ ∫ t

t0

∫ t

t0

eM(t, σ(τ1))[Gw(τ1)−K(τ1)v(τ1)][wT (τ2)GT − vT (τ2)KT (τ2)]×

eTM(t, σ(τ2))∆τ1∆τ2

]
= eM(t, t0)P0e

T
M(t, t0) +

∫ t

t0

eM(t, σ(τ))GQGT eTM(t, σ(τ))∆τ

+

∫ t

t0

eM(t, σ(τ))KRKT eTM(t, σ(τ))∆τ

= eM(t, t0)

[
P0 +

∫ t

t0

eM(t0, σ(τ))GQGT eTM(t0, σ(τ))∆τ

+

∫ t

t0

eM(t0, σ(τ))K(τ)RKT (τ)eTM(t0, σ(τ))∆τ

]
eTM(t, t0).

This concludes the proof.

Corollary 6.16. Let the error covariance be as found in (6.37). Then the propagation of

the error covariance is given by

P∆ = AP + (I + µA)PAT +K[R + µCPCT ]KT −K[CP + µCPAT ]

−[µAPCT + PCT ]KT +GQGT . (6.38)

Proof. Using Theorem 2.20 part (a), we differentiate the error covariance (6.37) to get

P∆(t) = eM(t, t0)

[
P0 +

∫ t

t0

eM(t0, σ(τ))GQGT eTM(t0, σ(τ))∆τ

+

∫ t

t0

eM(t0, σ(τ))K(τ)RKT (τ)eTM(t0, σ(τ))∆τ

]∆

eTM(σ(t), t0)

+eM(t, t0)

[
P0 +

∫ t

t0

eM(t0, σ(τ))GQGT eTM(t0, σ(τ))∆τ

+

∫ t

t0

eM(t0, σ(τ))K(τ)RKT (τ)eTM(t0, σ(τ))∆τ

]
(e∆
M(t, t0))T

= eM(σ(t), t0)eM(t0, σ(t))[GQGT +K(τ)RKT (τ)]eTM(t0, σ(t))eTM(σ(t), t0)

+M(t)eM(t, t0)

[
P0 +

∫ t

t0

eM(t0, σ(τ))GQGT eTM(t0, σ(τ))∆τ
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+

∫ t

t0

eM(t0, σ(τ))K(τ)RKT (τ)eTM(t0, σ(τ))∆τ

]
eTM(t, t0)(I + µ(t)M(t))T

+eM(t, t0)

[
P0 +

∫ t

t0

eM(t0, σ(τ))GQGT eTM(t0, σ(τ))∆τ

+

∫ t

t0

eM(t0, σ(τ))K(τ)RKT (τ)eTM(t0, σ(τ))∆τ

]
eTM(t, t0)MT (t)

= M(t)P (t)(I + µ(t)M(t))T + P (t)MT (t) +K(t)RKT (t) +GQGT

= (A−K(t)C)P (t)(I + µ(t)(A−K(t)C))T + P (t)(A−K(t)C)T

+K(t)RKT (t) +GQGT

= AP (t) + (I + µ(t)A)P (t)AT +K(t)[R + µ(t)CP (t)CT ]KT (t)

−K(t)[CP (t) + µ(t)CP (t)AT ]− [µ(t)AP (t)CT + P (t)CT ]KT (t) +GQGT .

This gives us the error propagation as desired.

Next, we find the gain using a technique found in Sorenson and Brown [16, 51] for

the discrete case.

Theorem 6.17. Suppose that the error propagation is as given in (6.38). Then a Kalman

gain can found to be in the form

K(t) = (I + µ(t)A)P (t)CT (R + µ(t)CP (t)CT )−1 (6.39)

provided that R + µ(t)CP (t)CT > 0.

Proof. First note that the term

K(t)[CP (t) + µ(t)CP (t)AT ] + [µ(t)AP (t)CT + P (t)CT ]KT (t)

is linear in K(t) while K(t)[R + µ(t)CP (t)CT ]KT (t) is quadratic in K(t). Now assume

that R + µ(t)CP (t)CT is positive definite. Next we define D(t) such that

D(t)DT (t) = R + µ(t)CP (t)CT . (6.40)
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Then (6.38) can be rewritten as

P∆(t) = AP (t) + (I + µ(t)A)P (t)AT +K(t)D(t)DT (t)KT (t)

−K(t)[CP (t) + µ(t)CP (t)AT ]− [µ(t)AP (t)CT + P (t)CT ]KT (t) +GQGT . (6.41)

Next, completing the square we get

P∆(t) = AP (t) + (I + µ(t)A)P (t)AT +K(t)D(t)DT (t)KT (t)

+(K(t)D(t)−N(t))(K(t)D(t)−N(t))T −N(t)NT (t) +GQGT . (6.42)

Now comparing (6.41) and (6.42), we have

K(t)[CP + µ(t)CPAT ] + [µ(t)APCT + PCT ]KT (t) = K(t)DNT +NDTKT (t),

which implies

N(t) = (I + µ(t)A)P (t)CT (DT (t))−1.

Then to minimize the diagonal terms of P∆(t), we want the middle terms of (6.42) to be

zero. Setting

K(t)D(t) = N(t),

we get

K(t) = N(t)D−1(t)

= (I + µ(t)A)P (t)CT (DT (t))−1D−1(t)

= (I + µ(t)A)P (t)CT (R + µ(t)CP (t)CT )−1.

This concludes the proof.
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Now given a Kalman gain in the form (6.39), it is possible to simplify our error

propagation. This form will gives us a Riccati equation (of the first form) as found in

(2.27).

Corollary 6.18. Let the Kalman gain be of the form (6.39). Then the error propagation

can be rewritten as a Riccati equation (of the first form)

P∆(t) = AP (t) + (I + µ(t)A)P (t)AT

−(I + µ(t)A)P (t)CT (R + µ(t)CP (t)CT )−1CP (t)(I + µ(t)AT ) +GQGT . (6.43)

Proof. Plugging (6.39) into (6.38), we get

P∆(t) = AP (t) + (I + µ(t)A)P (t)AT

+(I + µ(t)A)P (t)CT (R + µ(t)CP (t)CT )−1(R + µ(t)CP (t)CT )KT (t)

−(I + µ(t)A)P (t)CT (R + µ(t)CP (t)CT )−1CP (t)(I + µ(t)AT )

−(I + µ(t)A)P (t)CTKT (t) +GQGT

= AP (t) + (I + µ(t)A)P (t)AT

−(I + µ(t)A)P (t)CT (R + µ(t)CP (t)CT )−1CP (t)(I + µ(t)AT ) +GQGT .

This gives our Riccati equation as desired.

Note that the term −(I + µ(t)A)P (t)CT (R + µ(t)CP (t)CT )−1CP (t)(I + µ(t)AT )

represents the decrease in P (t) due to measurement. We can see this in the following

example.

Example 6.19. Assume that C = 0 such that there are no measurements. Then the

propagation of the error covariance of the linear stochastic system

x∆ = Ax+Bu+Gw

is given by

P∆ = AP (I + µA)T + PAT +GQGT .
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Since there are no measurements, the observer equation becomes

x̂∆ = Ax̂+Bu.

Therefore the estimator propagates according to the deterministic version of the system.

Next define W (t) = E(x(t)xT (t)). Now assume that u = 0. Then the optimal estimate is

given as x̂ = x. Now it follows that

P = E[(x− x)(x− x)T ] = W − xxT ,

such that

P∆ = W∆ − x∆xT − xσx∆T

= W∆ − AxxT − (I + µA)x(Ax)T

= W∆ − AW − (I + µA)WAT .

Now comparing equations, we have

W∆ = AW (I + µA)T +WAT +GQGT . (6.44)

Thus, with no measurement and under a deterministic input, W,P must satisfy the same

Lyapunov equation.

Now note the form of the Riccati equation

−S∆ = Q+ ATSσ

+(I + µAT )Sσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
= Q+ ATSσ + (I + µAT )SσA

−(I + µAT )SσB(R + µBTSσB)−1BTSσ(I + µA),
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along with the feedback gain

K(t) = (R + µ(t)BTSσ(t)B)−1BTSσ(t)(I + µ(t)A)

associated with the linear quadratic regulator (LQR). These equations appear to be the

duals to the Riccati equation (6.43) and gain (6.39) associated with the Kalman filter,

suggesting that there is a dual relationship between the LQR and the Kalman filter.

Intuitively we can see that both mirror two concepts we have shown are dual in Section 3.

The LQR mirrors the concept of controllability in that we are seeking an optimal control

such that some cost function is minimized. Similarly the LQE mirrors the concepts of

observability in that we are seeking an optimal estimate based on previously observed

measurements. A comparison of the Riccati equations and gains is given in Table 6.5.

LQR LQE

−S∆(t) P∆(t)

Sσ(t) P (t)

AT A

BT C

R > 0 R > 0

Q GQGT

Table 6.5. A comparison of the LQR and LQE

Finally, we show that when the final time tf is fixed, the optimal estimator problem

associated with

x∆(t) = Ax(t) +Gw(t), x(t0) = x0,

y(t) = Cx(t) + v(t)
(6.45)
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can be rewritten as an optimal regulator problem. Now in estimating x(tf ), we want to

find a number β from the measurement such that

E[(αTx(tf )− β)(αTx(tf )− β)T ] (6.46)

is a minimum where α is some constant vector. We will refer to β as the minimum variance

estimate of αTx(tf ). Note that since all random variables of (6.45) are assumed to be

Gaussian, we can derive β from linear operations of y. In other words, we assume that

there exists some function s(t;α, tf ) for [t0, tf ] such that

β =

∫ tf

t0

sT (τ ;α, tf )y(τ)∆τ. (6.47)

Now plugging in (6.47), we can show that

J = E

[(
αTx(tf )−

∫ tf

t0

sT (τ ;α, tf )y(τ)∆τ

)2
]

(6.48)

can be rewritten as quadratic performance index. This brings us to our next theorem.

Theorem 6.20. Let r be a deterministic solution of

r∆(t) = −AT rσ(t) + CT s(t), r(tf ) = α. (6.49)

Then (6.49) is associated with the cost function

J = rT (t0)P0r(t0) +

∫ tf

t0

(rσTGQGT rσ + sTRs)(τ)∆τ. (6.50)

Proof. First assume that r is of the same dimension as x. Then using the equations (6.45)

and (6.49), we have

(rTx)∆ = r∆Tx+ rσTx∆

= −rσTAx+ sTCx+ rσTAx+ rσTGw

= sTy − sTv + rσTGw.
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Integrating both sides from t0 to tf , we have

rT (tf )x(tf )−rT (t0)x(t0) =

∫ tf

t0

sT (τ)y(τ)∆τ−
∫ tf

t0

sT (τ)v(τ)∆τ+

∫ tf

t0

rσT (τ)Gw(τ)∆τ.

Now, rearranging terms we have

αTx(tf )−
∫ tf

t0

sT (τ)y(τ)∆τ = rT (t0)x(t0)−
∫ tf

t0

sT (τ)v(τ)∆τ +

∫ tf

t0

rσT (τ)Gw(τ)∆τ.

Recalling that x0, w, v are independent of each other by assumption (f), we can write

E

[(
αTx(tf )−

∫ tf

t0

sT (τ ;α, tf )y(τ)∆τ

)2
]

= E[(rT (t0)x(t0))2]

+E

[(∫ tf

t0

sT (τ)v(τ)∆τ

)2
]

+ E

[(∫ tf

t0

rσT (τ)Gw(τ)∆τ

)2
]
.

Next, we will calculate the expectations of each term on the right-hand side separately.

Thus,

E[(rT (t0)x(t0))2] = E[rT (t0)x(t0)xT (t0)r(t0)]

= rT (t0)E[x(t0)xT (t0)]r(t0)

= rT (t0)P0r(t0).

Also,

E

[(∫ tf

t0

sT (τ)v(τ)∆τ

)2
]

= E
[∫ tf

t0

∫ tf

t0

sT (τ1)v(τ1)vT (τ2)s(τ2)∆τ1∆τ2

]
=

∫ tf

t0

∫ tf

t0

sT (τ1)E[v(τ1)vT (τ2)]s(τ2)∆τ1∆τ2

=

∫ tf

t0

∫ tf

t0

sT (τ1)Rδ(τ1, τ2)s(τ2)∆τ1∆τ2

=

∫ tf

t0

sT (τ)Rs(τ)∆τ.
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Similarly,

E

[(∫ tf

t0

rσT (τ)Gw(τ)∆τ

)2
]

= E
[∫ tf

t0

∫ tf

t0

rσT (τ1)Gw(τ1)wT (τ2)GT rσ(τ2)∆τ1∆τ2

]
=

∫ tf

t0

∫ tf

t0

rσT (τ1)GE[w(τ1)wT (τ2)]GT rσ(τ2)∆τ1∆τ2

=

∫ tf

t0

∫ tf

t0

rσT (τ1)GQδ(τ1, τ2)GT rσ(τ2)∆τ1∆τ2

=

∫ tf

t0

rσT (τ)GQGT rσ(τ)∆τ.

Therefore,

J = rT (t0)P0r(t0) +

∫ tf

t0

(rσTGQGT rσ + sTRs)(τ)∆τ.

This gives the result as desired.

Now all of the terms on the right of (6.50) are deterministic. Then the goal of

this regulator problem is to find a function s such that (6.50) is minimized. Note that

this performance index has an initial weighting function rather than a terminal weighting

function. This is due to the fact that the equations that describe the optimal estimator

operate “forward in time,” whereas the equations that describe the optimal regulator

operate “backward in time.”
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7. CONCLUSIONS

In this portion, we will briefly discuss some open problems concerning the optimal

regulator and the optimal estimator on time scales. From Section 6, we determined an

optimal estimate for the linear stochastic system

x∆(t) = Ax(t) +Bu(t) +Gw(t), x(t0) = x0,

y(t) = Cx(t) + v(t).
(7.1)

As it stands, we have completely ignored the issue of stability. An optimal estimate, in

general does not imply anything about the stability of the error system

e∆(t) = (A−K(t)C)e(t). (7.2)

The same can be said of the optimal control we have found to minimize the performance

index with regard to the closed-loop system

x∆(t) = (A−BL(t))x(t), (7.3)

where x0 ∼ (x0, P0), w ∼ (0,Wδ(t, s)), v ∼ (0, V δ(t, s)), which are mutually uncorrelated.

It is worth mentioning that more conditions must be in place to consider each problem

in the steady-state sense. First, we can restrict ourselves to unbounded time scales with

bounded graininess (i.e., µmax <∞). Second, we must show that uniform controllability

and observability of the systems describing both the optimal regulator and optimal esti-

mator problem are sufficient conditions for stability. However, such conditions for stability

are overkill. These conditions must be further refined for two concepts slightly weaker

than controllability and observability; stabilizability and detectability, respectively.

Along with steady-state results, it is also of great interest to obtain spectral factor-

ization results in the frequency domain. It is also of interest to derive the Kalman gain
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and Riccati equation directly from a generalized, nonstationary form of the Wiener–Hopf

equation. Preliminary results, while not perfected, have been promising.

Similarly, we can extend our knowledge of the Kalman filter by considering the

following. In Section 6, we considered only the case where the process and measurement

noise were both white and uncorrelated. However this is not always the case. Also,

in this thesis we have restricted ourselves to linear systems. In future, we will explore

extending these results for nonlinear systems, namely the extended Kalman filter (EKF).

Likewise, we can derive other filtering problems similar in structure to the Kalman filter.

For instance, the inverse of the covariance matrix P (t) is called the information matrix.

Performing similar matrix calculations, we can generalize the information filter for time

scales.

Now that the LQR and LQE problems have been unified and extended to dynamic

equations on time scales, we can introduce another fundamental problem in optimal con-

trol. The linear quadratic Gaussian (LQG) problem concerns stochastic linear systems

disturbed by white noise, corrupted measurements of the state, and associated with a

quadratic cost function. This problem is essentially a combination of the LQR and LQE.

Consider the linear system (7.1) associated with the cost function

J(t0) = E
[

1

2
xT (tf )Fx(tf ) +

1

2

∫ tf

t0

(xTQx+ uTRu)(τ)∆τ

]
, (7.4)

where F , Q ≥ 0 and R > 0. The control objective then is to find an optimal control that

minimizes (7.4). Next we introduce the controller equations

x̂∆(t) = Ax̂(t) +Bu(t)K(t)[y(t)− Cx̂(t)], x̂(t0) = x0

u(t) = −L(t)x̂(t).
(7.5)

Next, define the error to be

e(t) = x(t)− x̂(t). (7.6)
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Now using the state-estimate feedback in (7.5), the closed-loop can be written as

x∆(t) = Ax(t)−BL(t)x̂(t) +Gw(t)

= (A−BL(t))x(t) +BL(t)e(t) +Gw(t).

Similarly, the error system can be written as

e∆(t) = x∆(t)− x̂∆(t)

= A(x(t)− x̂(t)) +Gw(t) +K(t)[Cx(t)− Cx̂(t)]

= (A−K(t)C)e(t) +Gw(t).

Now the closed-loop dynamics can be described by the system

x
e

∆

(t) =

A−BL(t) BL(t)

0 A−K(t)C

x
e

 (t). (7.7)

The system (7.7) describes the separability principle of the LQR and LQE. Intuitively,

this means that both can be designed and computed independent of each other. Again,

this implies that the LQR and LQE are dual problems of each other. Then the Kalman

filter estimates the state based previous measurements and is associated with the Riccati

equation

P∆ = AP + (I + µA)PAT − (I + µA)PCT (V + µCPCT )−1CP (I + µAT )

+GWGT ,

P (t0) = E(x0x
T
0 ).

Using the solution P , the Kalman gain becomes

K = (I + µA)PCT (V + µCPCT )−1. (7.8)
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Next, the Riccati equation that solves the LQR problem is given by

−S∆ = ATSσ + (I + µAT )Sσ
(
I + µBR−1BTSσ

)−1 (
A−BR−1BTSσ

)
+Q,

S(tf ) = F.

Using the solution S, the feedback gain becomes

L = (R + µBTSσB)−1BTSσ(I + µA). (7.9)

Finally, the equations (7.4) through (7.9) describe the LQG on time scales. An advantage

to the LQG is that the structure of the estimator is given by the process, therefore it does

not need to be known beforehand.
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In this section, we will consider some basic concepts from probability theory.

Definition A.1. Let the set Ω represent the sample space. Then a family F of subsets

of Ω is said to be a σ-algebra on Ω provided that

(i.) ∅ ∈ F ;

(ii.) if A ∈ F , then Ac ∈ F ;

(iii.) if An ∈ F for all n ∈ N, then
⋃
n∈N

An ∈ F .

Definition A.2. Let Ω be a set and let F be a σ-algebra of subsets of Ω. Then the

function P : F → [0, 1] is said to be a probability measure provided

(i.) 0 < P(·) ≤ 1;

(ii.) P(Ω) = 1;

(iii.) if An ∈ F for all n ∈ N are disjoint, then P

(⋃
n∈N

An

)
=
∑
n∈N

P(An).

Furthermore, the measure is said to be complete if

(iii.) A ∈ F , B ⊂ A with P(A) = 0, then B ∈ F and P(B) = 0.

Definition A.3. The Borel algebra is the smallest σ-algebra B of subsets of Rn containing

all open sets.

The triple (Ω,F ,P) is called a probability space (or Kolmogorov triple) where Ω is

any set, F is σ-algebra of subsets of Ω, and P is probability measure defined on F .

Definition A.4. Let (Ω,F ,P) be a probability space, then a function X : Ω → Rn is

called F -measurable if

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F for all B ∈ B.

X is also called a random variable.
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Definition A.5. Let X : Ω → Rn be a random variable. Then the σ-algebra generated

by X is given by

σ(X) = {X−1(B) : B ∈ B}.

This is the smallest σ-algebra of Ω with respect to which X is measurable.

Definition A.6. Let X : Ω→ Rn be a random variable. If

∫
Ω

|X(ω)|dP(ω) <∞, then

E(X) =

∫
Ω

X(ω) dP(ω) = X

is said to be the expected value of X.

We use both overbars and E(·) in this thesis to denote expectation. Next, we consider

the linearity property of expectation.

Theorem A.7. Let X, Y : Ω → Rn be two random variables and let α be a constant.

Then

E(αX + Y ) = αE(X) + E(Y ).

Definition A.8. Let X : Ω→ Rn be a random variable. If

∫
Ω

|X(ω)|2dP(ω) <∞, then

Var(X) = E(|X − E(X)|2) = E(X2)− (E(X))2

is said to be the variance of X.

Definition A.9. Let X, Y : Ω → Rn be two random variables. Then the covariance

between X and Y is given by

Cov(X, Y ) = E(X − E(X))E(Y − E(Y )) = E(XY )− E(X)E(Y ).

Theorem A.10. Let X, Y : Ω → Rn be two random variables and let α be a constant.

Then
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(i.) Var(αX) = α2 Var(X);

(ii.) Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y ).

Definition A.11. Let F be a σ-algebra and let A,B be two subsets (events) in F . Then

A,B are called independent if

P(A ∩B) = P(A)P(B).

Moreover, if P(B) > 0, then

P(A|B) =
P(A ∩B)

P(B)
.

Definition A.12. Let F be a σ-algebra and let G,H ⊂ F be sub-σ-algebras of F . Then

G,H are said to be independent if A,B are independent for any A ∈ G and B ∈ H.

Next, we consider when two random variables are independent.

Definition A.13. Let X, Y : Ω→ Rn be two random variables. Then X, Y are indepen-

dent if σ(X) and σ(Y ) are independent.

Theorem A.14. If X, Y are independent, then E(XY ) = E(X)E(Y ) provided that E(|X|)

and E(|Y |) are both finite.

Now we will consider conditional expectation.

Definition A.15. Let (Ω,F ,P) be a probability space and let G ⊂ F be a sub-σ-algebra

of F . Let X : Ω → Rn be a random variable where E(|X|) < ∞. Then the conditional

expectation of X given G is defined to be E(X|G) ≡ Y , where Y is a random variable

satisfying

(i.) E(|Y |) <∞;

(ii.) Y is G-measurable;

(iii.)

∫
A

Y dP =

∫
A

X dP for any A ∈ G.
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Next, we consider some basic properties of conditional expectation.

Theorem A.16. Let (Ω,F ,P) be a probability space and let G ⊂ F be a sub-σ-algebra of

F . Let X,Z : Ω→ Rn be two random variables, where E(|X|) and E(|Z|) are both finite,

and let α be a constant. Then

(i.) E(X|G) = X|G ≥ 0 a.s. if X ≥ 0;

(ii.) E(αX + Z|G) = αE(X|G) + E(Z|G);

(iii.) E(E(X|G)) = E(X);

(iv.) E(X|G) = X if X is G-measurable;

(v.) E(X|G) = E(X) if X is independent of G;

(vi.) E(ZX|G) = ZE(X|G) if Z is G-measurable.

Remark A.17. Let X,Z : Ω → Rn be two random variables. Then we can write the

conditional expectation of X given Z as

E(X|Z) = E(X|σ(Z)),

where σ(Z) is a σ-algebra generated by Z.

Definition A.18. Let (Ω,F ,P) be a probability space and let G ⊂ F be a sub-σ-algebra

of F . Let X : Ω → Rn be a random variable where E(|X|2) < ∞. Then the conditional

variance of X given G is defined to be a random variable E[(X − E(X|G))2|G].

Now we consider some basic properties of conditional variance.

Theorem A.19. Let (Ω,F ,P) be a probability space and let G ⊂ F be a sub-σ-algebra of

F . Let X : Ω→ Rn be a random variables where E(|X|2) is finite. Then

(i.) Var(X|G) ≥ 0 a.s. if X ≥ 0;

(ii.) Var(X|G) = E(X2|G)− (E(X|G))2;

(iii.) Var(E(X|G)) = E[E(X|G)2]− (E[E(X|G)])2;
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(iv.) E[Var(X|G)] = E[E(X2|G)]− E[(E(X|G))2].

Remark A.20. Let X,Z : Ω → Rn be two random variables. Then we can write the

conditional variance of X given Z as

Var(X|Z) = Var(X|σ(Z)),

where σ(Z) is a σ-algebra generated by Z.
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Symbol Description

T A Time Scale

R Set of Real Numbers

N Set of Natural Numbers

N0 N ∪ {0}

N2
0 The Set {0, 1, 4, 9, 16, . . .}

hZ The Set {. . . ,−2,−1, 0, 1, 2, . . .}

C Set of Complex Numbers

qZ The Set {. . . , q−2, q−1, 1, q, q2 . . .} for q > 1.

σ Forward Jump Operator

ρ Backward Jump Operator

µ Graininess Function

∆ Delta Derivative Operator

∆ Forward Difference Operator

E Expectation

Var Variance

R Set of Regressive Functions

A > 0 A Positive Definite Matrix

A ≥ 0 A Positive Semi-definite Matrix

⊕ Addition on Time Scales

	 Subtraction on Time Scales

� Multiplication on Time Scales

eA(·, ·) Matrix Exponential on Time Scales

WC [t0, tf ] Controllability Gramian

WO[t0, tf ] Observability Gramian

ΓC [A,B] Controllability Matrix

ΓO[A,C] Observability Matrix
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Symbol Description

J(·) Cost Function

K(·) Kalman Gain

Kv(·) Feedforward Gain

x State Vector

u Input Vector

y Output/Measurement Vector

λ Costate

r Reference Vector

e Error Vector
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