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ABSTRACT 

 

Unit root tests are frequently employed by applied time series analysts to 

determine if the underlying model that generates an empirical process has a component 

that can be well-described by a random walk. More specifically, when the time series can 

be modeled using an autoregressive moving average (ܣܯܴܣ) process, such tests aim to 

determine if the autoregressive (ܴܣ) polynomial has one or more unit roots. The effect of 

economic shocks  do not diminish with time when there is one or more unit roots in the ܴܣ polynomial,  whereas the contribution of shocks decay geometrically when all the 

roots are outside the unit circle. This is one major reason for economists’ interest in unit 

root tests. Unit roots processes are also useful in modeling seasonal time series, where the 

autoregressive polynomial has a factor of the form (1 )s
z , and s is the period of the 

season. Such roots are called seasonal unit roots. Techniques for testing the unit roots 

have been developed by many researchers since late 1970s. Most such tests assume that 

the errors (shocks) are independent or weakly dependent.  Only a few tests allow 

conditionally heteroskedastic error structures, such as Generalized Autoregressive 

Conditionally Heteroskedastic (ܪܥܴܣܩ) error. And only a single test is available for 

testing multiple unit roots. In this dissertation, three papers are presented. Paper I deals 

with developing bootstrap-based tests for multiple unit roots; Paper II extends a 

bootstrap-based unit root test to higher order autoregressive process with conditionally 

heteroscedastic error; and Paper III extends a currently available seasonal unit root test to 

a bootstrap-based one while at the same time relaxing the assumption of weakly 

dependent shocks to include conditional heteroscedasticity in the error structure.
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1. INTRODUCTION 

 

Time series analysis is an important and challenging field of research in statistical 

science. It has broad applications in many areas, such as economics, finance, engineering, 

and bio-medical sciences. Extensive work has been done on aspects of estimation and 

forecasting of time series. The accuracy of the scientific inferences based on such 

estimation and forecasting is affected significantly by how well the nature of the 

underlying process that governs an empirical time series is identified. In particular, 

determining whether a process is stationary or not plays an important role in time series 

analysis. Stationarity in its weakest sense implies that the first and second moments of a 

time series remains constant over time. In such a situation, the future will behave very 

similar to the past and reliable forecasts based on past data can be easily obtained. 

Instances where an empirical time series shows behavior patterns that suggest non-

stationarity, however, is not that uncommon. For example, certain stock prices show 

“random walk” type behavior. Rather than make regular crossings of its mean value, 

these empirical processes make extended sojourns above and below the mean. Such 

behavior, which exhibit one very common type of non-stationarity, can be modeled by 

what is known as an integrated autoregressive moving average (ARIMA) process and are 

commonly known as “unit root processes” because the autoregressive polynomial 

associated with the process contains roots that are on the unit circle. Testing for the 

presence of one or more unit roots, therefore, plays a central role in empirical time series 

analysis, especially in areas such as economics and finance. Unit roots processes are also 

useful in modeling seasonal time series, where the autoregressive polynomial has a factor 

of the form (1 )s
z  where s is the period of the season. Such roots are called seasonal unit 
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roots. Testing for seasonal unit roots is also a widely used practice when modeling 

economic data. The work presented in this dissertation concerns unit root testing using 

the bootstrap resampling technique under three different scenarios, namely testing for 

multiple unit roots, testing for a single unit root, and testing for a seasonal unit root, the 

latter two under the assumption of a conditionally heteroskedastic error structure. 

To facilitate a clear understanding of unit root testing, and to illustrate the 

contribution of the work presented herein, fundamental concepts and definitions 

concerning stationary time series, nonstationary time series, and unit roots, are provided 

in Section 1.1. Most unit root testing procedures are developed for empirical time series 

with independent or weakly dependent errors, while two of the methods developed in this 

thesis extend this to errors with conditional heteroskedastic volatilities. The 

autoregressive conditional heteroscedastic (ܪܥܴܣ) and generalized autoregressive 

conditional heteroscedastic (ܪܥܴܣܩ) models are defined in Section 1.2. The historical 

background of the development of unit root testing procedures, including the utilization 

of the bootstrap resampling approach for unit root testing, is reviewed in Section 1.3. 

Although a large amount of work on unit root testing procedures are available in the 

literature, improvements are still possible and this area presents many unresolved issues 

one can work on. A few of these topics are tackled in the following work. Section 1.4 

briefly describes the outline and organization of the remaining portion of the dissertation. 
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1.1. UNIT ROOT PROCESSES 

 

The concepts of stochastic processes, time series, stationary time series, 

nonstationary time series, autoregressive moving average ሺ����ሺ࢖,  ሻሻ processes, andࢗ

unit roots, are introduced in this section. 

 

Definition 1.1.1. Stochastic Process: A stochastic process is a family of random 

variables {ܺ௧, ݐ א ܶ} defined on a probability space ሺߗ, ℱ, �ሻ, where ܶ denotes an index 

set, which is usually a set of real numbers. If  ܶ denotes a set of points in time, then {ܺ௧, ݐ א ܶ} is called a time series. In particular, if {ܶ ⊆ ℤ}, then {ܺ௧, ݐ א ܶ} is called a 

discrete time series. 

 

Note that  {ܺ௧}௧א� is sometimes used in place of {ܺ௧, ݐ א ܶ} to denote a time 

series. 

 

Definition 1.1.2. Stationary Time Series: The time series {ܺ௧, ݐ א ℤ}, is said to be 

stationary if for all  ݐ, ,ݎ ݏ א ℤ , ሺ݅ሻ ܧ[|ܺ௧|ଶ] < ∞; ሺ݅݅ሻ ܧ[ܺ௧] = ݉; ሺ݅݅݅ሻ ݒ݋ܥሺܺ௥ , ܺ௦ሻ = ,ݎሺ�ߛ ሻݏ = ݎሺ�ߛ + ,ݐ ݏ +  .ሻݐ
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Such stationarity is sometimes referred as weak stationarity, covariance 

stationarity, stationarity in the wide sense, or second-order stationarity. Otherwise, the 

time series {ܺ௧, ݐ א ℤ} is nonstationary. 

 

Definition 1.1.3. Autoregressive Moving Average ሺܣܯܴܣሺ݌, -ሻሻ Process: A realݍ

valued time series {ܺ௧}௧אℤ is said to be an autoregressive moving average (ܣܯܴܣሺ݌,  (ሻݍ
process with mean � if it is stationary and satisfies �ሺܤሻሺܺ௧ − �ሻ = ,௧ߝሻܤሺߠ ݐ א ℤ, 

where            �ሺݖሻ 2

1 21 ... p

pz z z        

 and                           ߠሺݖሻ = ͳ + ݖଵߠ + +…ଶݖଶߠ  ௤ݖ௤ߠ

are autoregressive and moving-average polynomials of orders ݌ and q, 

respectively, with no common roots; {ߝ௧}௧א� is a white noise error (innovations)  process 

with zero-mean and constant variance �ଶ; � =  is the back-shift ܤ ;ݐ ሺܺ௧ሻ for allܧ

operator defined such that  ܤ௞ܺ௧ = ܺ௧−௞  for all ݇ א ℕ, and ܤ଴ܺ௧ = ܺ௧ . 
If  ݌ = Ͳ, {ܺ௧}௧אℤ is called a pure moving average process of order  ܣܯ) ݍሺݍሻሻ,  

and if  ݍ = Ͳ, the time series is termed a pure autoregressive process of order ݌ ሺܴܣሺ݌ሻሻ. 
 

Definition 1.1.4. Unit Root Processes: Given a discrete time series, {ܺ௧}௧א� , that 

can be represented by the ARMA (p, q) model  �ሺܤሻሺܺ௧ − �ሻ = ,௧ߝሻܤሺߠ ݐ א ℤ, 
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suppose that  ݉ = ͳ is one of the roots of the characteristic equation based on the 

autoregressive polynomial given by 

                     �(m)
2

1 21 ... 0.p

pm m m                            

Then the time series is said to have a unit root. Moreover, if m=1 is a root of 

multiplicity  ݎ, then there are ݎ unit roots associated with the time series. A time series 

with one or more unit roots is sometimes called a unit root process. 

 

 A time series is nonstationary as long as one or more unit roots exist. If there is 

only one unit root, and all the other roots of the characteristic equation lie outside the unit 

circle (i.e. 1m  ), then the first difference, {ܺ௧ሺଵሻ = ܺ௧ − ܺ௧−ଵ: ݐ א ℤ}, of the process will 

be stationary. Similarly, in the presence of two unit roots, the second difference, {ܺ௧ሺଶሻ =ܺ௧ሺଵሻ − ܺ௧−ଵሺଵሻ : ݐ א ℤ}, would be stationary.  

Time series analysts routinely employ differencing to achieve stationarity, after 

which they can utilize the numerous estimation and forecasting techniques developed for 

stationary time series. If no unit roots are present, however, then differencing the 

stationary ARMA (p, q) process �ሺܤሻሺܺ௧ − �ሻ = ,௧ߝሻܤሺߠ ݐ א ℤ, would result in a new 

process { ௧ܻ: ݐ א ℤ} that satisfies 

          �ሺܤሻሺ ௧ܻሻ = ሺͳ − ,௧ߝሻܤሺߠሻܤ ݐ א ℤ, 
which has a unit root in the moving average polynomial ሺͳ − ݉ሻߠሺ݉ሻ. Not only does 

this result in a more complicated time series model, the unit root in the MA polynomial 

makes the time series non-invertible. Inevitability allows the representation of the time 

series by an infinite autoregressive process:  
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                                               ܺ௧ = ∑ �௝ܺ௧−௝∞௝=ଵ + , ௧ߝ ݐ א ℤ ,    
which in turn allows the approximation of the time series by a finite autoregressive 

process ܺ௧ = ∑ �௝ܺ௧−௝௣௝=ଵ + , ௧ߝ ݐ א ℤ , where p is chosen appropriately. Therefore, the 

testing of unit roots is crucial for determining if the time series needs to be differenced 

and if so, the number of times such differences should be taken.  

 

  MODELS ࡴ���ࡳ AND ࡴ��� .1.2
 

Many unit root testing procedures have been developed for empirical time series 

with independent errors or weakly dependent errors. Note that the term weakly dependent 

is used to describe the dependence structure of discrete time series {ε୲ ∶ � א ℤ} that are 

covariance stationary and have the property that  Covሺε୲, ε୲+hሻ → Ͳ as h → ∞, for 

all � א ℤ. Another assumption is that the conditional variance of  ε୲ given the past 

values {εj, j < �} is constant for all �. Not all error processes associated with time series, 

however, possess this homoscedastic property. In particular, some time series have errors 

whose conditional variance given the past depends on the variance of the errors in the 

recent past. In financial literature, these changes in variances are associated with 

changing market volatility. Thus this phenomenon is referred to as conditionally 

heteroskedastic volatility. The autoregressive conditional heteroskedastic (ARC�) and 

generalized autoregressive conditional heteroskedastic (GARC�) models were developed 

to describe the structure of such errors.  

The  ܪܥܴܣ models were first proposed by Engle (1982), and the ܪܥܴܣܩ models 

were developed by Bollerslev (1986).  These models have numerous applications in 
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econometrics and financial fields. In particular, they are employed to model the empirical 

time series whose error terms at any time point may have a variance that depends on past 

volatility. Specifically, ܪܥܴܣ models assume the variance of the current error term or 

innovation to be a function of the squares of the previous error terms; ܪܥܴܣܩ models 

assume the variance of the current error term to be a linear combination of the squares of 

the previous error terms and the variance of the previous error terms. The definitions of  ܪܥܴܣሺݍሻ and ܪܥܴܣܩሺ݌,  .ሻ are given belowݍ

 

Definition 1.2.1. Autoregressive Conditional Heteroscedastic Process of Order ݍ:  A time series {ߝ௧}௧אℤ  is said to be an autoregressive conditional heteroskedastic 

process of order ܪܥܴܣ ,ݍሺݍሻ,  if 
 ሺ݅ሻ ݎܽݒሺߝ௧ሻ = ℎ௧  , ݐ א ℤ; 
             ሺ݅݅ሻ ߝ௧ = √ ℎ௧ ௧ߟ   ,   where  ߟ௧  ~ ݅݅݀ ሺͲ,ͳሻ.  In addition, it is usually                      

assumed that   ܧ[ߟ௧ଷ] = Ͳ, [௧ସߟ]ܧ < � < ∞, ݐ א ℤ; 
 ሺ݅݅݅ሻ ℎ௧ =  ⍵ + ௧−ଵଶߝଵߙ + ௧−ଶଶߝଶߙ +⋯+ ௧−௤ଶߝ௤ߙ = ⍵+ ∑ ௧−௜ଶ௤௜=ଵߝ௜ߙ  ,  

where   ⍵ > Ͳ, ௜ߙ   ൒ Ͳ, ݐ   א ℤ. 

 

Note that in ܪܥܴܣሺݍሻ model, the error variance  ℎ௧  is actually a moving average 

 ሻ model can be estimated usingݍሺܪܥܴܣ The coefficients of the .ݍ process of order (ܣܯ)

ordinary least squares (ܧܵܮ). And the order or the lag length  ݍ of the ܪܥܴܣ errors can 

be tested by a methodology proposed by Engle (1982), which is based on the score test or 

the Lagrange multiplier test.  
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Definition 1.2.2. Generalized Autoregressive Conditional Heteroscedastic 

Process of Orders  ݌ And ݍ: A time series {ߝ௧}௧אℤ  is said to be a generalized 

autoregressive conditional heteroscedastic process of orders p and ܪܥܴܣܩ  ,ݍሺ݌,  ሻ,  ifݍ
 ሺ݅ሻ ݎܽݒሺߝ௧ሻ = ℎ௧  , ݐ א ℤ; 
 ሺ݅݅ሻ ߝ௧ = √ ℎ௧ , ௧ߟ    where  ߟ௧  ~ ݅݅݀ ሺͲ,ͳሻ. Usually, the assumptions that 

[௧ଷߟ]ܧ               = Ͳ, [௧ସߟ]ܧ < � < ∞, ݐ א ℤ  are also made. 

 ሺ݅݅݅ሻ ℎ௧ = ⍵ + ௧−ଵଶߝଵߙ +⋯+ ௧−௤ଶߝ௤ߙ +⋯+ଵℎ௧−ଵߚ+ =                             ௣ℎ௧−௣ߚ ⍵ + ∑ ௧−௜ଶ௤௜=ଵߝ௜ߙ + ∑ ௝ ℎ௧−௝௣௝=ଵߚ  ,    

where  ⍵ > Ͳ, ௜ߙ  ൒ Ͳ, ௝ߚ ൒ Ͳ, ݐ א ℤ. 

 

It’s obvious that in the ܪܥܴܣܩሺ݌, ሻ model, the error variance  ℎ௧ݍ  is an 

autoregressive moving average process of orders  ݌ and ܣܯܴܣ ,ݍሺ݌, terms  ℎ௧ ܪܥܴܣܩ is the order of the ݌ ,ሻ. More preciselyݍ  and ݍ is the order of the ܪܥܴܣ terms ߝ௧ଶ.  

In general, a good test for testing the heteroscedasticity in econometrics is the 

White test. Additional tests dealing with ܪܥܴܣ and ܪܥܴܣܩ errors have also been 

developed. Since many financial time series are known to have heteroskedastic 

volatilities, a specific ܪܥܴܣ or ܪܥܴܣܩ model can be applied to those time series during 

the unit root testing procedure. 
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1.3. TESTING FOR UNIT ROOTS 

 

A unit root test is not only used to determine whether or not a time series {ܺ௧}௧א� 

need to be differenced to obtain stationarity, but also has important applications in certain 

economic hypotheses. For example, Altonji and Ashenfelter (1980) used unit root tests to 

test an equilibrium hypothesis for wage movements; Nelson and Plosser (1982) applied 

unit root tests to describe the effect of monetary disturbances on macroeconomic series; 

Meese and Singleton (1982) explained the importance of unit root testing in the theory of 

linearized expectations by applying unit root tests to exchange rates. In addition, unit root 

tests can indicate if the shocks (ߝ௧ሻ to an economic system have a permanent impact on 

the future econometric pattern. Specifically, if at least one unit root exists, then each 

shock does have a permanent effect on the future forecasts; otherwise, the effect is 

transitory and could be ignored in the long run. For more details, see J. Franke et al. 

(2010, p. 244). As a result, during the passing decades many researchers have worked in 

this field and developed a wide variety of unit root tests. 

Among all the tests, the most commonly used unit root test for time series was 

introduced by Dickey and Fuller (1979) and are referred to as the Dickey-Fuller (ܨܦ) 

test. This test was developed for the first order autoregressive processes. Said and Dickey 

(1984) generalized the Dickey-Fuller test and applied it to ܣܯܴܣ models of unknown 

orders. Their test is called Augmented Dickey-Fuller (ܨܦܣ) test. Phillips (1987) and 

Phillips and Perron (1988) also developed their own tests based on ܨܦ and ܨܦܣ tests. 

These tests assumed the errors are either independent and identically distributed ሺ݅. ݅. ݀. ሻ 
or weakly dependent. All the above tests are actually not applicable to many empirical 
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processes that arise in financial and economic fields. More specifically, such tests neglect 

any underlying volatility structure of the errors. As a remedy to this situation, Ling and Li 

(1998, 2003), Ling, Li, and McAleer (2003) developed unit root tests under a Generalized 

Autoregressive Conditional Heteroskedastic (ܪܥܴܣܩ) error structure.  

While these asymptotic distribution-based tests were an improvement to existing 

tests as far as taking care of the underlying volatility structure is concerned, they share 

the serious size distortion and low power weaknesses that were present in DF, ADF, and 

related tests. In order to mitigate the size distortion and low power issue, common to 

most asymptotic tests, the bootstrap resampling procedure was introduced into ܴܣሺͳሻ 
unit root testing by Basawa et al. (1991). Ferretti and Romo (1996) and Datta (1996) also 

made their contributions to such tests. Moreover, if the bootstrap is applied to residuals 

obtained using a sieve which is an approximation of an infinite dimensional model by a 

sequence of finite dimensional models, it’s called a sieve bootstrap procedure. The sieve 

bootstrap was first introduced by B̈ݑhlmann (1997). Chang and Park (2003) considered a 

sieve bootstrap for a unit root test in models driven by general linear processes. Their 

sieve bootstrap-based ܨܦܣ unit root tests are shown to be consistent under very general 

conditions and the asymptotic validity of such tests was established theoretically. 

Significant improvements on finite sample performance of these tests as compared to 

asymptotic tests were demonstrated through Monte Carlo simulations. Until recently, 

however, the bootstrap-based unit root tests were available only for processes with 

conditionally homoscedastic error. 

Gospodinov and Tao (2011) were the first to develop a bootstrap approach to unit 

root tests for autoregressive (ܴܣ) time series with ܪܥܴܣܩሺͳ,ͳሻ errors and described how 
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this procedure can be carried out for ܴܣሺͳሻ processes. Zhong and Samaranayake (2014) 

adapted Gospodinov-Tao method to unit root tests for general ܴܣሺ݌ሻ processes. Their 

simulation results show that the proposed method has good size and power properties for 

higher order autoregressive processes even when the second largest root is close to unity. 

A more detailed exposition of this work is presented in this thesis.  

Although the above tests focus on the regular unit root testing in non-seasonal 

time series, a large portion of financial and economic time series possess substantial 

seasonality. Therefore, Box and Jenkins (1970) introduced their famous seasonal time 

series models based on an autoregressive moving average ሺܣܯܴܣሻ formulation. They 

and many other time series researchers influenced by their work used a seasonal 

differencing filter to obtain stationarity. Their formulation assumed that seasonal unit 

roots may exist in seasonal time series through a factor of the form (1 )s
Z  present in the 

autoregressive polynomial, where s denotes the period of the season. Consequently, unit 

root tests for seasonal time series were developed. The Dickey-Hasza-Fuller ሺܨܪܦሻ test 

and  (1990) ܻܩܧܪ test are two of them. The ܨܪܦ test was proposed by Dickey, Hasza 

and Fuller (1984) and the HEGY test was proposed by Hylleberg, Engle, Granger, and 

Yoo, (1990). The above seasonal unit root tests assume ݅. ݅. ݀. errors, and they all have 

serious size distortion and low power problems. To solve these problems, Psaradakis 

(2000) implemented a bootstrap-based unit root test for pure seasonal time series with 

independent errors and gained higher powers than the ܨܪܦ test. Psaradakis (2001) was 

the first to introduce the sieve bootstrap-based unit root test to non-seasonal time series 

with weakly dependent errors. Chang and Park (2003) also proposed their sieve bootstrap 

versions of the ܨܦܣ tests for non-seasonal unit roots. Psaradakis (2001) method is called 
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difference based because it calculates the residuals by fitting an ܴܣሺ݌ሻ model to the 

differenced non-seasonal time series, whereas the method proposed by Palm, Smeekes, 

and Urbain (2008) is acknowledged as residual based test because it computes the 

residuals by fitting the ܨܦ regression model to the differenced series. However, like most 

of the tests developed for testing non-seasonal unit roots, these tests didn’t consider any 

underlying volatility structure of the innovations in seasonal time series.  

All the tests reviewed above use the existence of a single unit root as the null 

hypothesis. And they all assume that the series have at most one unit root. If there are 

more than one unit root, the suggestion is to apply a sequence of Dickey-Fuller tests to 

the raw series and the differenced series repeatedly. Dickey and Pantula (1987) and Sen 

(1985) showed that if there are actually two unit roots, then the method of applying 

Dickey-Fuller tests to the raw and the differenced series repeatedly is not valid. As matter 

of fact, the Dickey-Fuller test is based on the assumption of at most one unit root, 

therefore, at least the first few tests in this sequence cannot be theoretically justified. In 

order to solve these problems and perform tests on a sound theoretical foundation, Dickey 

and Pantula (1987) proposed a strategy of carrying out the sequence tests in a different 

order. This strategy is recognized for its high power.  

 

1.4. OUTLINE AND ORGANIZATION 

  

As explained in Section 1.3, many procedures are available in the field of unit 

root testing. However, there are still new topics and difficult issues to work on, for 

example, the size distortion and low power problems of time series with conditional 

heteroskedastic errors, and the unit root testing of time series that exhibit both seasonal 
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behavior and conditional heteroskedastic errors. Even the only multiple unit root test 

proposed by Dickey and Pantula has some weaknesses, for example, the tables used to 

obtain the critical values in Dickey-Pantula tests are not extensive; the Dickey-Pantula 

method requires first testing ܪ௣ where ݌ is the order of the autoregressive process, even 

when it is reasonable to assume that the number of unit roots is less than ݌.  

This dissertation focuses on some of these topics and issues. The remaining 

portion of the dissertation is organized in the form of a series of three papers. Paper I is 

about developing a bootstrap version of Dickey-Pantula test for multiple unit roots, with 

special attention paid to the case of two unit roots. In Paper II, a bootstrap-based unit root 

test for higher order autoregressive process where the error process {ߝ௧ ∶ ݐ א ℤ} shows 

conditional heteroscedasticity is presented. Paper III accommodates ܪܥܴܣܩሺͳ,ͳሻ errors 

in seasonal time series and proposes a bootstrap-based seasonal unit root test by 

extending the ܨܪܦ test and using the residual-based method. Conclusions are presented 

after the three papers followed by the bibliography. 
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PAPER  

 

I. A BOOTSTRAP-BASED TEST FOR MULTIPLE UNIT ROOTS 

 

 

ABSTRACT 

 

A bootstrap-based test for determining if an autoregressive process has two unit 

roots is introduced. This contrasts with the standard procedure of determining the number 

of unit roots by first conducting a unit root test, then differencing the series if the null 

hypothesis of a unit root process is not rejected and repeating the unit root test on the 

differenced series. Specifically, we develop a bootstrap test based on a test proposed by 

Dickey and Pantula in 1987. A Monte Carlo simulation study is carried out to investigate 

the finite sample properties of the proposed test. Results show that the bootstrap-based 

Dickey-Pantula test has reasonable properties for moderate samples. 

 

Keywords: Integrated Processes; Unit root Tests; Multiple Unit Roots; 

Bootstrap; ܣܯܫܴܣ 
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1. INTRODUCTION 

 

 

When modeling empirical time series, it is sometimes necessary to perform unit 

root tests. One reason for carrying out such tests is to determine if the time series needs 

differencing to obtain stationarity. More importantly, unit root tests have been applied in 

the investigation of certain economic hypotheses. For example, Altonji and Ashenfelter 

(1980) used unit root tests to test an equilibrium hypothesis for wage movements; Nelson 

and Plosser (1982) applied unit root tests to describe the effect of monetary disturbances 

on macroeconomic series; Meese and Singleton (1982) explained the importance of unit 

root testing in the theory of linearized expectations by applying unit root tests to 

exchange rates. Also, over the last three decades, the unit root tests have drawn more and 

more attention in many research fields related to economics. In particular, such tests can 

imply whether or not the shocks to an economic system have a permanent effect on the 

future econometric pattern. Specifically, if at least one unit root exists, then each shock 

does have a permanent impact on the future forecasts; otherwise, the impact could be 

negligible in the long run. For more details, see J. Franke et al. (2010, p. 244).  

Given a discrete time series, {ܺ௧}௧א� , that can be represented by the ARMA (p, q) 

model  

 �ሺܤሻሺ ୲ܺ − μሻ = θሺܤሻε୲, ݐ א ℤ  , 
 

suppose that  ݉ = ͳ is one of the roots of the characteristic equation of the ܴܣሺ݌ሻ 
polynomial given by 
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Then the time series is said to have a unit root. Moreover, if m=1 is a root of 

multiplicity  ݎ, then there are ݎ unit roots associated with the time series. A time series is 

nonstationary as long as one or more unit roots exist. 

Practically, the existence of unit roots is often suspected by visual inspection of 

the autocorrelation function (ܨܥܣ) and data plots. As long as the ܨܥܣ decays slowly, the 

time series should be considered having at least one unit root and the operation of 

differencing the time series may be performed repeatedly to obtain a stationary time 

series. Many statistical tests for unit roots, including what is proposed herein, are based 

on autoregression tests of linear dependence. Such tests simply mitigate the subjectivity 

of visual inspection of autoregression plots; compared to visual inspection, these tests are 

more helpful in deciding close-call situations.  

The most commonly used unit root tests were developed by Dickey and Fuller 

(1979) and sometimes referred to as Dickey-Fuller (DF) tests. Dickey-Fuller tests are 

based on first-order auto-regressions, that is, an autoregressive model of order 1 (ܴܣ(ͳ)) 

is assumed. In addition, the errors of the model are assumed to be independent and 

identically distributed (݅. ݅. ݀.). However, in general, a time series can be a higher order ܴܣሺ݌ሻ with ݌ > ͳ and usually unknown.  Phillips (1987) and Phillips and Perron (1988) 

modified the Dickey-Fuller tests to be applicable to the case where the errors are weakly 

dependent rather than ݅. ݅. ݀.. Such a situation arises when the underlying process is ܴܣሺ݌ሻ or ܣܯܴܣሺ݌,  ሺͳሻ model is fitted. Said and Dickey (1984)ܴܣ ሻ but only anݍ

generalized the ܨܦ test to accommodate ܣܯܴܣ processes by using autoregressions with 
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lagged differences. They showed that these tests are valid for all finite ܣܯܴܣ procedures 

with unknown orders if we increase the number of lagged differences appropriately as the 

sample size grows. These unit root tests are more useful than the tests that assume ݌ = ͳ 

and is an alternative to the Phillips and Perron test. However, some researchers such as 

Leybourne and Newbold (1999) found that these unit root tests have serious size 

distortion and low power issues in finite samples, especially when the model has a 

moving average component. Subsequently, bootstrap and sieve bootstrap methods were 

introduced to improve the finite sample performance of some of the above tests.  

Basawa et al. (1991) applied a bootstrap process to ܴܣሺͳሻ unit root tests and 

showed that the unit root must be imposed on the generation of bootstrap samples to 

achieve consistency of the bootstrap unit root tests. Ferretti and Romo (1996) and Datta 

(1996) also made their contributions to such tests. If the bootstrap procedure is based on a 

sieve which is an approximation of an infinite dimensional model by a sequence of finite 

dimensional models, we get the sieve bootstrap procedure introduced by B̈ݑhlmann 

(1997). Specifically, we can approximate any linear process such as  ܣܯ ,ܴܣ or ܣܯܴܣ 

by a finite ܴܣሺ̂݌ሻ where ̂݌ increases with the sample size; and resample from the 

residuals of the approximated auto-regressions. Chang and Park (2003) considered a 

sieve bootstrap for the test of a unit root in models driven by general linear processes. 

Their bootstrapped versions of ܨܦܣ unit root tests are shown to be consistent under very 

general conditions and the asymptotic validity of such tests were established. Significant 

improvements on finite sample performance of the tests are also established by Monte 

Carlo simulations. 
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On the other hand, all of the above tests assumed that the series have at most one 

unit root. If there are more than one unit root, a sequence of Dickey-Fuller or Augmented 

Dickey-Fuller type tests may be applied to the raw series and the differenced series 

repeatedly. Intuitively, we expect that if there are more than one unit root, the test for one 

unit root will strongly indicate that the process needs to be differenced. Hence we expect 

that the null hypothesis of one unit root will be rejected (and the hypothesis of no unit 

root will be favored) less than 5% of the time when there are more than one unit root 

present. However, a simulation study done by Dickey and Pantula (1987) doesn’t support 

that intuition. Moreover, Sen (1985) showed that if there are actually two unit roots, then 

the method of applying Dickey-Fuller tests on the raw and the differenced series 

repeatedly is not valid. As matter of fact, since the Dickey-Fuller test is based on the 

assumption of at most one unit root, at least the first few tests in this sequence cannot be 

theoretically justified. In order to mitigate these problems and perform tests based on a 

sound theoretical foundation, Dickey and Pantula (1987) proposed a strategy of 

performing the sequence tests in a different order. In their paper, they propose a method 

for sequential testing of unit roots. These tests compare a null hypothesis of ݀ unit roots 

with an alternative of ݀ − ͳ unit roots. Specifically, one starts with the largest ݀ to test 

and work down if the null hypothesis of having ݀ unit roots is rejected. The sequential 

testing procedure stops when a null hypothesis cannot be rejected. This test is recognized 

for its simplicity (it uses existing � tables given in Fuller (1976)) and high power. 

However, the � tables used to obtain the critical values in Dickey-Pantula tests are not 

complete. For example, these tables include column df (݊), ܪ଴, ܪଵ, probabilities. But 

only certain degrees of freedoms are given there. In addition, Dickey-Pantula method 
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requires first testing ܪ௣ where ݌ is the order of the autoregressive process, even when it 

is reasonable to assume that the number of unit roots is less than ݌.  

Hence, we adjust Dickey-Pantula tests for multiple unit roots by initiating the 

sequential testing process with a value of  ݀ ൑  In addition, a bootstrap procedure is .݌

used to calculate the critical values for Dickey-Pantula multiple unit root tests. That is, 

our bootstrap-version Dickey-Pantula tests for multiple unit roots are not only a better 

alternative to the standard procedure of determining the number of unit roots by first 

performing a unit root test, then differencing the raw time series if the null hypothesis of 

a unit root process is not rejected and repeating the same unit root test on the differenced 

series, but also more practical compared to the original Dickey-Pantula tests because it 

does not depend on a limited number of tabulated critical values. 

The rest of the paper is organized as follows. Section 2 introduces Dickey and 

Pantulas’ tests and presents their asymptotic theories. The bootstrap version of their tests 

is described in Section 3. In Section 4, the Monte Carlo studies for this method are 

presented. The conclusion is given in Section 5. 
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2. DICKEY-PANTULA’S TESTS AND THEIR LIMITING DISTRIBUTIONS 

 

 

Assume the time series {ܺ௧} satisfy 

                               ܺ௧ = ∑ j
௣௝=ଵ ܺ௧−௝ + ݁௧,  ݐ א ℤ,                            (2.1) 

 

where {݁௧ } is a sequence of ݅. ݅. ݀. random variables with mean 0 and variance 1. To 

make the presentation simple, ݌ is restricted to 3. Extensions for cases where 3p   

follow naturally from what is presented here. Let 1m , 2m  and 3m  represent the roots of the 

characteristic equation 

                                      ݉ଷ − 1 ݉ଶ − 1 ݉− 1 = Ͳ.                                (2.2) 

 

Assume that |݉ଵ| ൒ |݉ଶ| ൒ |݉ଷ|. Consider the following four hypotheses: ܪ଴: |݉ଵ| < 1; ܪଵ: ݉ଵ = ͳ, |݉ଶ| < 1; ܪଶ: ݉ଵ = ͳ, ݉ଶ = 1, |݉ଷ| < 1; ܪଷ: ݉ଵ = ݉ଶ =  ݉ଷ = ͳ. That is, 

under ܪௗ, ݀ = Ͳ, ͳ, ʹ, ͵, there are ݀ unit roots. After a re-parameterization of model (2.1), 

we can write  

                                      ௧ܹ = ଵܺ௧−ଵߠ + ଶߠ ௧ܻ−ଵ + ଷܼ௧−ଵߠ + ݁௧,                   (2.3) 

 

where ௧ܻ = ܺ௧ − ܺ௧−ଵ, ܼ௧ = ௧ܻ − ௧ܻ−ଵ, ௧ܹ = ܼ௧ − ܼ௧−ଵ  , and the  ܪௗ′  are transformed ݏ

into: ܪଷ: ߠଵ = ଶߠ = ଷߠ = Ͳ; ܪଶ: ߠଵ = ଶߠ = Ͳ, ଷߠ < Ͳ; ܪଵ: ߠଵ = Ͳ, ଶߠ < Ͳ, ଷߠ < Ͳ; ܪ଴: 
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ଵߠ < Ͳ, ଶߠ  < Ͳ, ଷߠ < Ͳ. The reparameterization is useful because now we can use the 

usual regression tests for the thetas in (2.3). 

The procedure proceeds as follows: perform a regression of ௧ܹ over  ܺ௧−ଵ, ௧ܻ−ଵ 

and ܼ௧−ଵ to get the least squares estimates ̂ߠ௜  and the corresponding ݐ-statistics ݐ௜,�ሺ͵ሻ, ݅ =  ͳ, ʹ, ͵,  where   ݐ௜,�ሺ݌ሻ = �,௜ݐ = �̂�௦ሺ�̂�ሻ,  ݊ denotes the sample size, and ݏ(̂ߠ௜) is the 

standard error of ̂ߠ௜ obtained from the regression. 

Now, a sequential testing procedure is considered. We test the null hypothesis ܪଷ 

against the alternative hypothesis ܪଶ first by considering the ݐ-statistic ݐଷ,�∗ ሺ͵ሻ obtained 

by regression of  ௧ܹon ܼ௧−ଵ. Then, we can test the null hypothesis ܪଶ against the 

alternative hypothesis ܪଵ by considering the ݐ-statistic ݐଶ,�∗ ሺ͵ሻ obtained by regression of 

௧ܹ on ௧ܻ−ଵ and ܼ௧−ଵ. Moreover, let  ݐଵ,�∗ ሺ͵ሻ =  .ଵ,�ሺ͵ሻݐ
Pantula (1986) proved that the asymptotic distributions of the ݐௗ,�∗  statistics under ܪௗ for ݀ = ͳ, ʹ, ͵ can be characterized as the distribution of certain functional of a 

standard Brownian motion. In summary, Dickey and Pantula proposed the following 

sequential procedure for testing the hypotheses:  

 

1. Reject ܪଷ of three unit roots and go to Step 2 if  ݐଷ,�∗ ሺ͵ሻ  ൑  �̂�,�, where �̂�,� is 

given in Fuller (1976).      

2. Reject ܪଶ of two unit roots and go to Step 3 if  ݐଶ,�∗ ሺ͵ሻ  ൑  �̂�,�, where �̂�,� is 

given in Fuller (1976).  

3. Reject ܪଵ of one unit root in favor of ܪ଴ of no unit roots if   ݐଵ,�∗ ሺ͵ሻ  ൑  �̂�,�, 

where �̂�,� is given in Fuller (1976). 
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Note that these critical points are not available for all significance levels and 

sample sizes. Therefore, the bootstrap-based critical points may be an alternative. 
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3. THE BOOTSTRAP DICKEY-PANTULA TESTS 

 

 

In this section, we modify the Dickey-Pantula test in two ways. First we obtain 

the critical points using the bootstrap. Second, we observe that the Dickey-Pantula 

method requires first testing ܪ௣ where ݌ is the order of the autoregressive process, even 

when it is reasonable to assume that the number of unit roots is less than ݌. Therefore we 

modify their method to accommodate such cases by starting the sequential testing at a 

value of  ݀ ൑  .݌

Let’s assume 3 = ݌ for the simplicity of explanation, and the maximum number of 

unit roots, ݀, is assumed to be 2. Extension to other values of  ݌ and ݀ can be done quite 

easily. 

Define { ௧ܹ} as the third difference of {ܺ௧}, {ܼ௧} as the second difference of 

{ܺ௧}, { ௧ܻ} as the first difference of {ܺ௧}, where  ݐ =  ͳ, ʹ, … , ݊.  Then the transformed 

model is the same as Equation (2.3): ௧ܹ = ଵܺ௧−ଵߠ + ଶߠ ௧ܻ−ଵ + ଷܼ௧−ଵߠ + ݁௧ . Since we 

assume ݀ = 2 in this section, the hypotheses to test are: ܪଶ: ߠଵ = ଶߠ = Ͳ, ଷߠ < Ͳ; ܪଵ: ߠଵ = Ͳ, ଶߠ < Ͳ, ଷߠ < Ͳ; ܪ଴: ߠଵ < Ͳ, ଶߠ  < Ͳ, ଷߠ < Ͳ, where ߠ௜ , ݅ = ͳ, ʹ, ͵, are the 

coefficients used in the model (2.3). More precisely,  ܪ௜, ݅ = ͳ, ʹ, ͵,  represents the case 

where ݅ unit roots exist in the time series under consideration. The three roots of the 

characteristic polynomial associated with the time series are denoted by ݉௜,݅ = ͳ, ʹ, ͵.  
Now, to test  ܪଶ ݏݒ.  .଴  , we proceed as followsܪ ݎ݋  ଵܪ 
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1)  To get  ݐଶ,�∗ ሺ͵ሻ , fit the regression model: ௧ܹ = ଶߠ ௧ܻ−ଵ + ଷܼ௧−ଵߠ + ݁௧ . Then          

let  ݐଶ = ∗�,ଶݐ ሺ͵ሻ = �̂మ௦ሺ�̂మሻ . 
2)  Now, fit the model (under the null hypothesis): ௧ܹ = ଷܼ௧−ଵߠ + ݁௧. Obtain the 

centered residuals: ܴ݁ݏሺ݅ሻ = ݁̂௜ –   ݁̅̂, where  ݁̂௜ = ௜ܹ – ܹ̂௜ , ݅ =  ͳ, ʹ, … , ݊; 

and  ݁̅̂ =  ଵ�∑ ݁̂௜�௜=ଵ  .  
3)  Sample with replacement from all the centered residuals to obtain a bootstrap 

sample of errors,  {݁௧�௧}௧=ଵ�+ହ଴. 

4)  Then we can compute the bootstrap 

samples: {ܼ௧�௧}௧=ଵ�+ହ଴, { ௧ܹ�௧}௧=ଵ�+ହ଴, { ௧ܻ�௧}௧=ଵ�+ହ଴,   {ܺ௧�௧}௧=ଵ�+ହ଴  by using the 

recursive equations: ܼ଴�௧ = Ͳ; ܼ௧�௧ = (ͳ + ଷ)ܼ௧−ଵ�௧ߠ̂ +  ݁௧�௧, ݐ = ͳ, ʹ, … , ݊ +ͷͲ;  ௧ܹ�௧ = ܼ௧�௧ − ܼ௧−ଵ�௧ ;   ௧ܻ�௧ = ∑ ௝ܼ�௧;௧௝=ଵ  ܺ௧�௧ = ∑ ௝ܻ�௧  .௧௝=ଵ  

 5) Carry out the regression defined in Step 1) with the bootstrap samples obtained 

in Step 4) and calculate the bootstrap  ݐଶ-statistic, ݐଶ�௧ ,  as in Step 1). 

 6) Repeat Step 2) ~ Step 5) B times (e.g., 2,000 times) and determine the critical 

value  �ଶ�௧  which is the 5
th

 percentile of the B ݐଶ�௧ values.  

 7) If the ݐଶ from Step 1) is less than  �ଶ�௧, then reject the hypothesis of two unit 

roots and let ݆݁ݎଶ equal 1; otherwise, don’t reject and let ݆݁ݎଶ equal 0. 

 8) Repeat Step 1) ~ Step 7), M times (e.g., 2000 times) and calculate the 

significance level (empirical size) or the power of the test as                        ݈݁ݒ݈݁ ݂݁ܿ݊ܽܿ݅݅݊݃݅ݏ (or ݎ݁ݓ݋݌) = ∑௥௘௝మ�  .   
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The above procedure can be modified to test ܪଵ ݏݒ.   .଴  as wellܪ 

 i)  To get  ݐଵ,�∗ ሺ͵ሻ , fit the regression model: ௧ܹ = ଵܺ௧−ଵߠ + ଶߠ ௧ܻ−ଵ + ଷܼ௧−ଵߠ +݁௧ . Then let  ݐଵ = ∗�,ଵݐ ሺ͵ሻ = �̂భ௦ሺ�̂భሻ . 
 ii) Now, fit the model (under the null hypothesis): ௧ܹ = ଶߠ ௧ܻ−ଵ + ଷܼ௧−ଵߠ + ݁௧. 

Obtain all the centered residuals: ܴ݁ݏሺ݅ሻ = ݁̂௜ –   ݁̅̂, where  ݁̂௜ = ௜ܹ – ܹ̂௜ , ݅ =  ͳ, ʹ, … , ݊; and  ݁̅̂ =  ∑ ݁̂௜�௜=ଵ /݊ . 

 iii) Sample with replacement from all the centered residuals to obtain a bootstrap 

sample of errors,  {݁௧�௧}௧=ଵ�+ହ଴. 

 iv) Then we can compute the bootstrap 

samples: {ܼ௧�௧}௧=ଵ�+ହ଴, { ௧ܹ�௧}௧=ଵ�+ହ଴, { ௧ܻ�௧}௧=ଵ�+ହ଴,   {ܺ௧�௧}௧=ଵ�+ହ଴ easily by using the 

recursive equations: ଴ܻ�௧ = ଵܻ�௧ = Ͳ; ௧ܻ�௧ = (ʹ + (ଷߠ̂+ଶߠ̂ ௧ܻ−ଵ�௧ −ሺͳ+̂ߠଷሻ ௧ܻ−ଶ�௧ +  ݁௧�௧, ݐ = ʹ, ͵, … , ݊ + ͷͲ;  ܼ௧�௧ = ௧ܻ�௧ − ௧ܻ−ଵ�௧ ;   ௧ܹ�௧ = ܼ௧�௧ −ܼ௧−ଵ�௧ ; ܺ௧�௧ = ∑ ௝ܻ�௧  .௧௝=ଵ   

  v) Do the regression defined in Step i) with the bootstrap samples obtained in 

Step iv) and calculate the bootstrap  ݐଵ-statistic, ݐଵ�௧, as in Step i). 

        vi) Repeat Step ii) ~ Step v) B times (e.g., 2,000 times) and determine the 

critical value  �ଵ�௧ which is the 5
th

 percentile of the 2,000 ݐଵ�௧ values. 

          vii) If the ݐଵ from Step i) is less than  �ଵ�௧, then reject the hypothesis of one unit    

root and let ݆݁ݎଵ = ͳ; otherwise, don’t reject and let ݆݁ݎଵ = Ͳ. 

              viii) Repeat Step i) ~ Step vii), M times (e.g., 2000 times) and calculate the 

significance level (empirical size) or the power of the test as                                           ݈݁ݒ݈݁ ݂݁ܿ݊ܽܿ݅݅݊݃݅ݏ (or ݎ݁ݓ݋݌) = ∑௥௘௝భ�  .  



26 

 

 

 

The simulation results for testing  ܪଶ ݏݒ.  ଴ is similar to bootstrap-based tests for one unit root and hence the results areܪ  .ݏݒ ଵܪ  ଴ are given in Section 4. Testingܪ ݎ݋ ଵܪ 

not presented. 
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4. SIMULATION RESULTS 

 

 

In order to determine the finite sample properties of these tests we carried out the 

following setting of experiments: ݊ = 50 and 100; 2 = ݀ ;3 = ݌; the number of Monte 

Carlo simulations M = 2,000; the number of bootstrap samples B = 2,000. The exact 

hypotheses we are testing here is: ܪଶ ݏݒ.  or 0 unit 1 .ݏݒ ଴. That is, 2 unit rootsܪ  ݎ݋ ଵܪ 

root. We may use another notation, such as, ܪଵ∗: ߠଵ = ଶߠ = Ͳ, ଷߠ < Ͳ; ܪ଴∗: ߠଵ ൑ Ͳ,ߠଶ < Ͳ, ଷߠ < Ͳ. Results of the Monte Carlo study are given in Table 1. Note that ݉ଵ ,  ݉ଶ ,  and  ݉ଷ  denote the roots of the autoregressive polynomial for the case  ݌ = ͵, 

with the ordering ݉ଷ ൑ ݉ଶ ൑ ݉ଵ . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

 

 

            Table 4.1. The Results of Bootstrap Dickey-Pantula Tests 

n �૚ �૛ �૜ significance level power 

50 1.0 1.0 0.8 0.0610   

50 1.0 1.0 0.2 0.0630   

50 1.0 0.8 0.2   0.2860 

50 1.0 0.5 0.2   0.8200 

50 1.0 0.2 0.2   0.9760 

50 1.0 0.9 0.5   0.1155 

50 1.0 0.8 0.5   0.2385 

50 0.9 0.9 0.9   0.1205 

50 0.9 0.9 0.5   0.2110 

50 0.9 0.9 0.2   0.2380 

50 0.9 0.5 0.2   0.9200 

50 0.9 0.1 0.2   0.9950 

100 1.0 1.0 0.8 0.0595   

100 1.0 1.0 0.2 0.0530   

100 1.0 0.8 0.2   0.7705 

100 1.0 0.5 0.2   1.0000 

100 1.0 0.2 0.2   1.0000 

100 1.0 0.9 0.5   0.2780 

100 1.0 0.8 0.5   0.6630 

100 0.9 0.9 0.9   0.3100 

100 0.9 0.9 0.5   0.6605 

100 0.9 0.9 0.2   0.7405 

100 0.9 0.5 0.2   1.0000 

100 0.9 0.1 0.2   1.0000 

            

As seen from the results listed in Table 4.1, the bootstrap version of the Dickey-

Pantula tests is good at maintaining the size, even when the sample size is as small as 50. 
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When the sample size increases from 50 to 100, the empirical size gets slightly closer to 

the nominal significance level of 0.05.  It also shows reasonably good power, especially 

if the second root is not close to unity. More precisely, the further the second root is away 

from the unity, the higher the power can achieve. For example, consider  ݊ = ͷͲ. If  ݉ଵ = ͳ.Ͳ,݉ଶ = Ͳ.ͷ,݉ଷ = Ͳ.ʹ,  the power is 0.82; if  ݉ଵ = ͳ.Ͳ,݉ଶ = Ͳ.ʹ,݉ଷ = Ͳ.ʹ,  the 

power is 0.976. In both cases, the second root (݉ଶ) is not close to the unity and the 

powers are high; especially, the power increases from 0.82 to 0.976 when ݉ଶ decreases 

from Ͳ.ͷ to Ͳ.ʹ. However, if ݉ଶ is close to the unity, the power is low. For example, 

consider ݊ = ͷͲ again. If  ݉ଵ = ͳ.Ͳ,݉ଶ = Ͳ.ͺ,݉ଷ = Ͳ.ʹ,  the power is 0.286; if  ݉ଵ = ͳ.Ͳ,݉ଶ = Ͳ.ͻ,݉ଷ = Ͳ.ͷ,  the power is 0.1155; if  ݉ଵ = ͳ.Ͳ,݉ଶ = Ͳ.ͺ,݉ଷ =Ͳ.ͷ, the power is 0.2385; if  ݉ଵ = Ͳ.ͻ,݉ଶ = Ͳ.ͻ,݉ଷ = Ͳ.ʹ,  the power is 0.238; if  ݉ଵ = Ͳ.ͻ,݉ଶ = Ͳ.ͷ,݉ଷ = Ͳ.ʹ, the power is 0.92; if  ݉ଵ = Ͳ.ͻ,݉ଶ = Ͳ.ͻ,݉ଷ = Ͳ.ͻ, the 

power is 0.1205; if  ݉ଵ = Ͳ.ͻ,݉ଶ = Ͳ.ͻ,݉ଷ = Ͳ.ͷ, the power is 0.211. Whereas, if  ݉ଵ = Ͳ.ͻ,݉ଶ = Ͳ.ͳ,݉ଷ = Ͳ.ʹ, the power is 0.995. The same pattern can be observed for 

the cases of  ݊ = ͳͲͲ. Besides that, the power increases significantly as the sample size 

increases from 50 to 100, up to 1. 

We also made a brief comparison between our results with the results presented 

by Dickey and Pantula (1987). Part of the transformed Dickey-Pantula non-bootstrap test 

results are given in Table 4.2. 
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Table 4.2. Part of Transformed Dickey-Pantula 

Non-Bootstrap Test Results 

n �૚ �૛ �૜ sig level power 

50 1.0 1.0 1.0 0.0023 
 

50 1.0 1.0 0.9 0.0156 
 

50 1.0 1.0 0.7 0.0463  

50 1.0 1.0 0.0 0.0525  

50 1.0 0.9 0.7 
 

0.2287 

50 1.0 0.9 0.0 
 

0.3034 

50 1.0 0.7 0.0  0.9082 

50 1.0 0.5 0.0  0.9950 

50 0.9 0.9 0.9  0.3490 

50 0.9 0.9 0.5  0.6902 

 

It’s obvious that even for ݊ = ͷͲ, Dickey-Pantula’s test has relatively higher 

power than our bootstrap-based test. However, there is not much difference in 

significance level between these two methods.   
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5. CONCLUSION 

 

 

In summary, testing for two unit roots in a time series has not received as much 

attention as the case of testing for one unit root. The only procedure that tests for two unit 

roots using a single test was proposed by Dickey and Pantula in 1987. This test requires 

taking p differences of the time series where p is the order of the autoregressive process. 

We modify this test so that the percentile points are directly derived using the bootstrap. 

Preliminary results show that the bootstrap version of the Dickey-Pantula test has 

reasonably good small sample properties including both size and power. In the future, we 

may assume the value of ݌ is unknown and develop a sieve bootstrap-version of Dickey-

Pantula tests for multiple unit roots. 
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II. BOOTSTRAP-BASED UNIT ROOT TESTS FOR HIGHER ORDER 

AUTOREGRESSIVE MODELS WITH  ࡴ���ࡳሺ૚, ૚ሻ  ERRORS  

 

ABSTRACT 

Bootstrap-based unit root tests are a viable alternative to asymptotic distribution-based 

procedures and, in some cases, are preferable because of the serious size distortions 

associated with the latter tests under certain situations. While several bootstrap-based unit 

root tests exist for ARMA processes with homoscedastic errors, only one such test is 

available when the innovations are conditionally heteroskedastic. The details for the exact 

implementation of this procedure are currently available only for the first order 

autoregressive processes. Monte Carlo results are also published only for this limited 

case. In this paper we demonstrate how this procedure can be extended to higher order 

autoregressive processes through a transformed series used in augmented Dickey-Fuller 

unit root tests. We also investigate the finite sample properties for higher order processes 

through a Monte Carlo study. Results show that the proposed tests have reasonable power 

and size properties. 

 
Keywords Non-stationary, Conditional volatility, Residual bootstrap, Time series, Random walk 
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1.   INTRODUCTION 

  

The most commonly used unit root tests for time series were introduced by 

Dickey and Fuller [1] and are referred to as Dickey-Fuller (ܨܦ) tests. They were, 

however, developed for the first order autoregressive processes. Said and Dickey [2] 

generalized the Dickey-Fuller tests to be applicable to ܣܯܴܣ models of unknown orders. 

These tests are referred to as Augmented Dickey-Fuller (ܨܦܣ) tests. Alternatively, 

Phillips and Perron [3] provided a correction to the Dickey-Fuller tests to account for the 

presence of higher order terms. Specifically, Phillips and Perron tests accommodate 

innovations that are weakly dependent as well as heterogeneously distributed. 

The above tests, however, ignore any underlying volatility structure of the 

innovations. More recently, authors such as Ling and Li,[4,5] Ling, Li, and McAleer [6] 

have proposed unit root tests under Generalized Autoregressive Conditional 

Heteroskedastic  ሺܪܥܴܣܩ) innovations. Especially, Ling et al. [6] showed that under 

certain conditions, the unit root tests that take into account the ܪܥܴܣܩ structure of the 

innovations produce tests with higher power. One drawback of these newer tests is that, 

as in the case with the standard ܨܦ and ܨܦܣ tests, they show serious size distortions. 

Bootstrap-based tests have been proposed as an alternative to asymptotic distribution-

based tests in order to overcome this flaw. Gospodinov and Tao [7] were the first to adopt 

this bootstrap approach to obtain unit root tests for autoregressive (ܴܣ) time series with ܪܥܴܣܩ innovations and showed how this procedure can be implemented for first order 

processes. They also proved the asymptotic validity of the test for the ܴܣሺͳሻ case but 

indicated that these results can be extended to the general ܴܣሺ݌ሻ case. Their Monte Carlo 
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results, reported for the ܴܣሺͳሻ case with ܪܥܴܣܩሺͳ,ͳሻ errors, show that the bootstrap-

based tests do not exhibit the size distortions present in the asymptotic-based procedures. 

In this paper, we detail how the Gospodinov-Tao method can be adapted to conduct unit 

root tests for general ܴܣሺ݌ሻ processes with correctly specified order p and present results 

of a Monte Carlo study. The motivation is to show the applied practitioner a step-by-step 

procedure for implementing this important methodology to the general autoregressive 

model. In addition, the Monte Carlo study is employed not only to explore the size and 

power of the test when the order of the process is greater than one, but also to see if these 

properties are affected by other roots in the autoregressive polynomial. The results show 

that the proposed method has good size and power properties for higher order processes 

even when the second largest root is close to unity. 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

 

 

2.   BRIEF HISTORICAL REVIEW 

  

Ling and Li [4] considered the general nonstationary autoregressive moving 

average time series with general-order ܪܥܴܣܩ errors, and demonstrated that the 

maximum likelihood estimators (ܧܮܯs) of the relevant autoregressive coefficients are 

more efficient than the least-squares estimators (ܧܵܮs). They also developed the limiting 

distribution of the relevant local ܧܮܯs. Their results require that the fourth-order 

moments of the errors exist. Assuming that the eighth-order moments of the errors exist, 

Seo [8] independently derived the limiting distribution of the local ܧܮܯs in the 

nonstationary ܴܣሺ݌ሻ model. Additionally, Ling et al. [6] considered the ܧܵܮ and the two-

step local quasi-maximum likelihood estimator (quasi-ܧܮܯ) for the unit root ܴܣሺͳሻ 
processes with ܪܥܴܣܩሺͳ,ͳሻ errors. The relevant asymptotic distributions of the ܧܵܮ and 

the two-step quasi-ܧܮܯ were also derived. Correspondingly, Ling and Li [5] developed 

the one-step local quasi-ܧܮܯ and its asymptotic distribution for the unit root ܴܣሺͳሻ 
processes with ܪܥܴܣܩሺͳ,ͳሻ errors. The distributions obtained by Ling et al. [6] and Ling 

and Li [5] are the same as that reported in Ling and Li.[4] However, Ling et al. [6] and 

Ling and Li [5] assumed that the scaled conditional errors (the ratio of the error to its 

conditional standard deviation) follow a symmetric distribution. They also assumed that 

the second-order moments of the errors exist, which translates to ߙ + ߚ < ͳ in the case of ܪܥܴܣܩሺͳ,ͳሻ errors with parameters ߙ and  ߚ. These assumptions are recognized as the 

least restrictive ones in the research field of unit root tests with ܪܥܴܣܩ errors. 

While non-bootstrap-based unit root tests with both homoscedastic and 

heteroskedastic errors have been explored widely, their weaknesses have been also 
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identified. Leybourne and Newbold [9] found that the Phillips-Perron unit root tests have 

serious size distortion and low power issues in finite samples, especially when the model 

has a moving average component. In addition, Gospodinov and Tao [7] commented that 

the applications of the unit root tests developed for processes with ܪܥܴܣܩ errors have 

been restricted in financial time series because of several issues, such as the complicated 

calculating procedure needed for the ܧܮܯs of the main parameters and nuisance 

parameters, the substantial size distortions of the asymptotic distribution-based tests, and 

so on. 

Adaptation of bootstrap-based unit root tests for time series with ܪܥܴܣܩ errors 

seems a logical alternative to the existing asymptotic distribution-based tests because 

they do not have the size distortions exhibited by the latter. Cavaliere and Taylor [10] 

developed a bootstrap-based unit root test for time series with non-stationary volatility 

that satisfies the assumption that the time dependent volatility term t  follows the rule 

  ( )
st

w s   for  0,1s , where (.)w  is non-stochastic and strictly positive. They assumed 

that the time series  tX  is such that t t tX d Y  , with 1t t tY Y u   , 
0

t j t j

j

u c 





 , 

t t te  , where ~ (0,1)te iid  and td  is a trend component. While their formulation can 

be generalized to include the case where  te follows a ܪܥܴܣܩ process, the proposed 

bootstrap procedure does not model the underlying ܪܥܴܣܩ structure as was done by 

Gospodinov [11] who derived bootstrap results when testing for nonlinearity in models 

with a unit root and ܪܥܴܣܩ errors. Subsequently, Gospodinov and Tao [7] proposed a 

bootstrap-based unit root test for ܴܣሺͳሻ processes with ܪܥܴܣܩሺͳ,ͳሻ errors. Specifically, 
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they extended the results of Basawa et al.,[12,13] Ferretti and Romo,[14] Heimann and 

Kreiss,[15] and Park,[16] to unit root models, with conditional heteroscedasticity 

estimated by maximum likelihood methods. They also followed Ling and Li [5] and 

derived the consistency of the bootstrap distribution given the finite second-order 

moments of the errors and the symmetry of the standardized errors. One advantage of this 

method is that it does not require explicit estimation of the nuisance parameters involved 

in the distribution of the test statistic. Their simulation results show excellent size and 

power properties compared to Dickey-Fuller tests. Also, Gospodinov and Tao [7] suggest 

that the results can be easily extended to processes of higher order. They do not, however, 

describe how such an extension may be carried out. For example, one may employ the 

type of model used in Augmented Dickey-Fuller (ܨܦܣ) unit root test [2] or the version 

proposed by Phillips and Perron.[3] A detailed step-by-step procedure describing how 

Gospodinov-Tao test can be extended to the general ܴܣሺ݌ሻ case will be of help to the 

practitioner and that is the intent of this paper.  Moreover, the simulation results and the 

derivation of the consistency of the bootstrap distribution reported by Gospodinov and 

Tao [7] are limited to the first order autoregressive case. Our study aims to explore the 

performance of the test when applied to higher order models. Of special interest is how 

the size and power of the test is affected by other roots of the ܴܣ polynomial. 

In Sections 3 we provide the model formulation that will be employed to develop 

the test procedure for the general ܴܣሺ݌ሻ case and also provide reasons why a test based 

on the limiting distribution of the test statistic is unsuitable. In Section 4 we show in 

detail how the test proposed by Gospodinov and Tao [7] can be extended to the general 
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 ሻ case. The simulation results are given in Section 5. Section 6 provides concluding݌ሺܴܣ

remarks and discusses future work. 
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3.   MODEL FORMULATION AND THE ASYMPTOTIC DISTRIBUTION OF 
THE TEST STATISTIC 

 

The proposed procedure adopts the test presented by Gospodinov and Tao [7] to 

the general ܴܣሺ݌ሻ case with correctly specified p, using the model formulation employed 

by Said and Dickey.[2] Two equivalent formulations of autoregressive models with order ݌ are considered. Equation (1) is the classical format, and Equation (3) follows the 

Augmented Dickey-Fuller model. The complete model formulation is: 

 

= ௧ݕ                     �ଵݕ௧−ଵ + �ଶݕ௧−ଶ +…+  �௣ݕ௧−௣ + ݐ    , ௧ߝ = ͳ,  ʹ,  … ,  ܶ,            (1) 

                          ݉௣ −  �ଵ݉௣−ଵ − �ଶ݉௣−ଶ −…−  �௣−ଵ݉−�௣ = Ͳ,                         (2)      

௧ݕߘ    = ௧−ଵݕݎ + ௧−ଵݕߘଵߜ + ௧−ଶݕߘଶߜ +⋯+ ௧−௣+ଵݕߘ௣−ଵߜ + ݐ   , ௧ߝ = ͳ,  ʹ,  … ,  ܶ,    (3) 

௧ߝ    = √ ℎ௧ ௧ߟ   , ௧ߟ      ~ ݅݅݀ ሺͲ,ͳሻ , [௧ଷߟ]ܧ   = Ͳ, [௧ସߟ]ܧ < � < ݐ    ,∞ = ͳ,  ʹ,  … ,  ܶ,       (4)        

and     ℎ௧  =  ⍵ + ௧−ଵଶߝߙ +  ℎ௧−ଵߚ 
with   Ͳ <  ߱௟ < ⍵ <  ߱௨,  Ͳ < ௟ߙ  < ߙ < ,௨ߙ  Ͳ < ௟ߚ  < ߚ < ,௨ߚ  ߙ + ߚ < ͳ,            for ݐ = ͳ,  ʹ,  … ,  ܶ.                                                            (5)  

 

Note the assumption in (5) that the parameters ߱,  are bounded below and ߚ and ,ߙ

above by constants, which is stronger than what is prescribed in the standard ܪܥܴܣܩ 

formulation. This is used by Gospodinov and Tao [7] to prove their asymptotic results. 

They also required that ݕ଴ = Ͳ and that ℎ଴ is initialized from its invariant measure. 

Expression (2) gives the characteristic equation of the autoregressive model described in 

Equation (1), which is equivalent to  ∏ ሺ݉ − ௜ሻݎ = Ͳ௣௜=ଵ , where ݎ௜,  ݅ = ͳ, ʹ, … , ,݌  are 
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the roots of ܴܣሺ݌ሻ polynomial. We assume |ݎଵ| ൑ ͳ, and |ݎ௜| < ͳ, for ݅ ൒ ʹ. Note that the 

coefficient r  associated with the term ݕ௧−ଵ  in Equation (3) is zero when 1 1.r    We also 

let  ߩ =  ቀ  ଴ቁ, withߜݎ
0 1 2 1( ,  ,  ..., )

p
      , and let  ߜ = ሺ߱, ,ߙ  ሻ′. The hypothesis weߚ

test is ܪ଴: ݎ = Ͳ ܪ  .ݏݒଵ: ݎ < Ͳ. The test statistic we use is  

 

ሻݎሺ̂ݐ          = ሺ̂ݎ − Ͳሻ ቀ−∑ �మ௟�ሺ�,ఋሻ�௥మ�௧=ଵ ቁ�=� ̂ ,   ఋ=ఋ ̂

భమ ,                  (6)  

 

 

where         ݈௧(ߩ, (ߜ  = ݈௧ሺݎ, ,଴ߜ ߱, ,ߙ ሻߚ = − ଵଶ  ݈݊ ℎ௧ − ଵଶ  
ఌ�మℎ�   , ݐ   = ͳ, ʹ, … , ܶ, 

 

with ̂  and ̂  representing the maximum likelihood estimates (MLE) of   and   

respectively. Note that this is the “studentized” version of the ܨܦܣ test under the 

assumption of correctly specified p. Note that the test is a lower-tail test where the 

rejection region lies below the critical point. 

The limiting distribution of the maximum likelihood estimators of parameters of a 

process with roots on the unit circle that is more general than the model formulation 

given in (1), (4), and (5) was derived by Ling and Li [4] under the assumption that 

4

t
E       and that ߟ௧ ~ ݅݅݀ ሺͲ,ͳሻ .  This limiting distribution is expressed in terms of 

several complicated stochastic and deterministic components and therefore is not reported 

here for brevity. It suffices to note that the marginal limiting distribution of the MLEs of 

the autoregressive parameters can be characterized as that of a functional of stochastics 

integrals of Weiner processes and that it is dependent on the parameters ,  , and .    

There are several drawbacks to constructing a unit root test based on this limiting 
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distribution. These drawbacks can easily be seen by examining the limiting distributions 

of ሺ�̂ଵ − ͳሻ, obtained by Ling and Li [4, 5], and of ݐሺ̂ݎሻ given in ሺ͸ሻ,  obtained by 

Gospodinov and Tao [7], for the simpler ܴܣሺͳሻ case. Note that �ଵ − ͳ in the formulation 

given in [4, 5] is the same as r given in Equation (3). Moreover, in [5] Ling and Li 

showed that one can assume the less stringent condition 2

t
E      if the ߟ௧ are restricted 

to having a normal distribution. Ling and Li showed that under ܪ଴, 
 

          T ሺ�̂ଵ − ͳሻ 1
1 1

2

1 2 1

0 0

( ) ( ) ( )
L

w dw F w d   


   
   

   
     

      

   
where 1 2( ( ), ( ))w w   is a bivariate zero-mean Weiner process with covariance matrix 

 

 

  
2 2( 1) 2 2

1

( ) 1

,
1 (1/ ) ( / )

t

k

t t k t

k

E h

E h k E h
 

  







 


 
       


            (7) 

 

where [0,1]  , 2 2( 1) 2 2

1

(1/ ) 2 ( / )
k

t t k t

k

F E h E h  







    and 4
( ) 1

t
E   . When  ߟ௧ are 

normal, 2.   Applying a suitable transformation to the above result, the authors also 

showed that the above limiting distribution can be expressed as a functional of two 

independent Weiner processes 
1
( )B   and 

2
( )B  , and after further simplification showed 

that 
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 ncሺ�̂ଵ − ͳሻ L
1 1/2

1 1 1

2 2 2

1 1 1 1

0 0 0

( ) ( ) ( ) 1 ( )B dB B d B d        
 

 
     
     
     
    ,     (8) 

 

where  /F Kc   , K is the ሺʹ,ʹሻ௧ℎ element of   in (7), 2
( )

t
E h  ,  2 21/ K  , 

and   is a standard normal random variable independent of 
1

2

1

0

( )B d 
 
 
 
 . Note that 

2
[0,1]   and plays the role of a mixing parameter.   

Gospodinov and Tao [7] used the above result to obtain the limiting distribution of 

the t-statistic ݐሺ̂ݎሻ under the null hypothesis of ݎ = Ͳ for the ܴܣሺͳሻ case. Their results 

show that under the assumptions given in (4) with ݎ = Ͳ, 
 

ሻݎሺ̂ݐ   L

1

1 1

20

1/2
1

2

1

0

( ) ( )

1

( )

B dB
K

F
B d

  
 

 


 

 
 
 
       




 .           (9) 

 

Examination of the above results show that the limiting distributions of ሺ�̂ଵ − ͳሻ and of ݐሺ̂ݎሻ in particular, are (a) dependent on nuisance parameters ,  , and     and thus non-

pivotal, (b) these parameters appear in highly non-linear form, and in addition (c) they are 

present as part of infinite sums. Replacing these unknown parameters by their estimates 

can introduce bias and lead to severe size distortions [7] because of (b). Gospodinov and 

Tao [7] used a Monte Carlo study to illustrate these phenomena, and showed that size 

distortions increase as    approaches the unit boundary.  In addition, the infinite sums 
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the nuisance parameters appear in has to be truncated in order to obtain a computationally 

tractable form. Moreover, the critical points have to be obtained using an iterative 

numerical algorithm. Thus, the bootstrap approach to testing for unit roots is appealing 

even though the proposed method is somewhat computationally demanding. 

An important observation is that when the above test-statistic is obtained using 

straightforward least squares estimation of the autoregressive parameter �ଵignoring the 

GARCH structure of the error process  t , the limiting distribution reduces to that of  

 

    

1

1 1

0

1/2
1

2

1

0

( ) ( )

( )

B dB
K

F
B d

 

 


 
 
 
       




,         (10)  

 

which is the same as that of the Dickey-fuller test statistic. [1] Furthermore,   is a 

monotone decreasing function of K, which increases with  and   .  Thus, as the degree 

of the conditional heteroscedasticity in the error process increases, the limiting 

distribution tends more towards the standard normal as stated in [7], since the latter 

distribution has lower critical values. The net result is an increase in the power of the test 

when the underlying GARCH structure is accounted for when estimating the 

autoregressive parameters. Gospodinov and Tao [7] has shown that the bootstrap test 

statistic for the ܴܣሺͳሻ case has the same limiting distribution as that of the functional 

given in (9) and hence this advantage carries over to their bootstrap-based unit root test. 
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4.   PROPOSED BOOTSTRAP METHOD 

 

The main steps for performing a bootstrap-based unit root test on ܴܣሺ݌ሻ models 

with ܪܥܴܣܩሺͳ,ͳሻ errors are listed below: 

 

i) Use the least-squares estimates of  ߩ =
( 
  
 (௣−ଵߜ...ଵߜݎ
  .   as initial values for maximum 

likelihood estimation. Initial values for   can be obtained by fitting an ܣܯܴܣ ሺͳ, ͳሻ 
model to the squared residuals obtained by the least squares fit because these residuals 

are estimates of the  ߝ௧  and  2

t
  obeys ܽ݊ ܣܯܴܣ ሺͳ, ͳሻ process with ܴܣ and ܣܯ 

parameters )(    and  , respectively, with intercept  .  Use these initial values to 

obtain the maximum likelihood estimates (MLE) of both  ߩ and ߜ, and record them 

as ̂ߜ̂  ,ߩ, where ̂ߩ =
( 
  
 (௣−ଵߜ̂...ଵߜ̂ݎ̂
ߜ̂   ,    = (⍵̂, ,ߙ̂     . ′(ߚ̂ 

ii) Compute the test statistic,  

 

ሻݎሺ̂ݐ                                      = ሺ̂ݎ − Ͳሻ ቀ−∑ �మ௟�ሺ�,ఋሻ�௥మ�௧=ଵ ቁ�=�̂ ,   ఋ=ఋ̂
భమ

 ,     where 

               ݈௧ሺߩ, ሻߜ  = ݈௧(ݎ, ,ଵߜ ,ଶߜ … , ,௣−ଵߜ ߱, ,ߙ (ߚ = − ͳʹ  ݈݊ ℎ௧ − ͳʹ ௧ଶℎ௧ߝ    , ݐ   = ͳ, ʹ, … , ܶ. 
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iii) Compute  ߝ௧̂ = ௧ݕߘ − ௧−ଵݕݎ̂  − ∑ ௧−௝௣−ଵ௝=ଵݕߘ௝ߜ̂   ,   for ݐ = ݌ + ͳ, ݌ + ʹ, … , ܶ. 
iv) Compute ℎ̂௣−ଵ = ⍵̂ + ௣̂−ଶଶߝߙ̂ + , ℎ̂௣−ଶ ߚ̂    where ߝ௣̂−ଶଶ

 =  ℎ̂௣−ଶ = ଵ�∑ ௜̂ଶ�௜=௣+ଵߝ ;   
                     ℎ̂௧  = ⍵̂ + ௧̂−ଵଶߝߙ̂ + , ℎ̂௧−ଵ ߚ̂  ݐ   = ݌  + ͳ, ݌ + ʹ, … , ܶ.   
v) Let  ̂ߟ௧ =  

ఌ̂�√ℎ̂�   , and let  ߟ௧̃ be centered ̂ߟ௧ , for ݐ = ݌ + ͳ, ݌ + ʹ, … , ܶ.   
vi) Resample  ߟ௧∗ , ݐ   = ͳ,  ʹ,… , ʹܶ, from {±ߟ௧̃}୲=p+ଵ� . Note that {±ߟ௧̃}୲=p+ଵ�  contain both 

the ߟ௧̃ and the values ߟ௧̃ multiplied by -1. This ensures the symmetry of the underlying 

distribution that will be resampled. 

vii) Compute  ℎ௧∗ =  ⍵̂ + ሺ̂ߟߙ௧−ଵ∗ଶ + ∗ሻℎ௧−ଵߚ̂ 
 , and let ℎଵ∗ = ∗ଵ̂ଶ or  ℎଵߝ = ℎ̂ଵ, for  ݐ = ʹ, ͵,… , ʹܶ. 

viii) Compute ݕߘ௧∗ = ∑ ௧−௝∗௣−ଵ௝=ଵݕߘ௝ߜ̂ + √ℎ௧∗ߟ௧  ∗ , ݐ   = ʹ, ͵, … , ʹܶ,  with  ݕߘ௧−௝∗ = Ͳ if ݐ ൑ ݆.   That is, under ܪ଴: ݎ = Ͳ, we have 

 

∗௧ݕ                                           − ∗௧−ଵݕ = ∑ ∗௧−௝ݕ௝ሺߜ̂ − ∗௧−௝−ଵݕ ሻ௣−ଵ௝=ଵ +√ℎ௧∗ߟ௧  ∗ , ∗௧ݕ                                                                        = ∗௧−ଵݕ + ∑ ∗௧−௝ݕ௝ሺߜ̂ − ∗௧−௝−ଵݕ ሻ௣−ଵ௝=ଵ +√ℎ௧∗ߟ௧  ∗ ,    for 

ݐ                                             = ݌ + ͳ, ݌ + ʹ,  … , ʹܶ,  and  ݕଵ∗ = … = ∗௣ݕ  = Ͳ . 

 

ix) To reduce the effect of the initial conditions, drop the first  ܶ − ∗  ௧ݕ  values of ݌ . Also 

re-label t so the new values read from 1 to T. Fit ݕߘ௧∗ against  ݕ௧−ଵ∗  and ݕߘ௧−௝∗ , ݆ = ͳ, ʹ,. . ., ݌ − ͳ.  And estimate ݎ∗ and ߜ௝∗, ݆ = ͳ, ʹ, … , ݌ − ͳ,  using least squares. 
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x) Use the least-squares estimates as initial values and obtain ܧܮܯs of 

∗ߩ       =  

( 
  
∗௣−ଵߜ...∗ଵߜ∗ݎ ) 
   , ∗ߜ    = ሺ⍵∗, ,∗ߙ  .∗ߜ̂  and  ∗ߩ̂ ሻ′  , and denote these estimates as∗ߚ

xi) Compute the bootstrap test statistic, 

 

ሻ∗ݎሺ̂∗ݐ                                         = ሺ̂ݎ∗ − Ͳሻ ቀ−∑ �మ௟�∗ሺ�∗,ఋ∗ሻ�௥∗మ�௧=ଵ ቁ�∗=�̂∗, ఋ∗=ఋ̂∗భమ ,   where 

    ݈௧∗(ߩ∗, (∗ߜ  = ݈௧∗(ݎ∗, ,∗ଵߜ ,∗ଶߜ … , ∗௣−ଵߜ , ߱∗, ,∗ߙ (∗ߚ = − ଵଶ  ݈݊ ℎ௧∗ − ଵଶ ఌ�∗మℎ�∗ ݐ   ,  = ͳ, ʹ, … , ܶ.  
 

xii) Repeat Step vi) ~ xi) ܤ times, say ܤ = ͳ,ͲͲͲ, and calculate the lower ͷ௧ℎ percentile 

of  ݐ∗ሺ̂ݎ∗ሻ , ݐ଴.଴ହ∗  , then compare ݐ଴.଴ହ∗
 with ݎ̂)ݐሻ .  If ݎ̂)ݐሻ < ∗଴.଴ହݐ  , reject  ܪ଴ and let ݆݁ݎ 

equal 1; otherwise, do not reject and let ݆݁ݎ equal 0. 

xiii) Repeat Step i) ~ xii) ܯ times, say ܯ = ͳ,ͲͲͲ, and calculate the significance level 

(empirical size) or the power of the test as: ݈݁ݒ݈݁ ݂݁ܿ݊ܽܿ݅݅݊݃݅ݏ ሺor ݎ݁ݓ݋݌ሻ = ∑௥௘௝�  .        
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5.   SIMULATION RESULTS 
 

For brevity, we assume ݌ = ʹ here. To carry out the simulations, we used 

Expression (1) together with (4) and (5) to generate the raw time series {ݕ௧}௧=ଵଶ� , and then 

threw away the first ܶ values of the series. We also re-labeled t to go from 1 to T. Then fit 

model (3) to the remaining series of length ܶ and calculated the least-squares estimates of ݎ and other coefficients. The same goes for Step ix) under Proposed Bootstrap Method 

section.  

MATLAB was used to perform Monte Carlo simulations and bootstrap 

procedures. We considered two types of distributions for the centered and standardized 

error terms, one is standard normal and the other is ݐ-distribution with 7 degrees of 

freedom. The simulation results for ܶ = ʹͲͲ and ܶ = ͶͲͲ are given in Tables 5.1- 5.12. 

We did 1,000 simulations for both  ܶ =  ʹͲͲ and  ܶ =  ͶͲͲ cases. The sample sizes 

chosen are the same as those employed by Gospodinov and Tao.[7] Considering that 

there are approximately 250 trading days per year, say at the New York Stock Exchange, 

the sample size of 200 reflects stock return data from less than one year. As such, the 

sample sizes chosen are not unreasonably large.  

For the simulation we considered ܴܣሺʹሻ models with roots ݎଵ א {Ͳ.ͷ, Ͳ.ͻ, ͳ.Ͳ},ݎଶ א {Ͳ.ʹ, Ͳ.ͷ, Ͳ.ͻ}. The ሺߙ,  ,ሻ combinations considered are (0,0), (0.5,0.4), (0.25,0.7)ߚ

(0.399,0.6), (0.199,0.8), (0.7,0.25), (0.6,0.399), (0.8,0.199), (0.2,0.4) and (0.4,0.2). These 

combinations are very similar to those employed by Gospodinov and Tao.[7] As was 

done by the above authors, many of the ሺߙ,  ሻ combinations were intentionally selectedߚ

so that ߙ +  is close to 1 in order to demonstrate that the procedure works well even ߚ
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when these two parameters take values close to the ߙ + ߚ < ͳ threshold needed for 

stationarity of the ܪܥܴܣܩ process. Unreported results for cases where ߙ + ߚ ≪ ͳ show 

good power and size properties. To save space, results for all combinations are not 

reported but are available upon request from the first author. 

 

               Table 5.1. Estimated Coverage Probabilities for the Model with 

ߙ                                           = Ͳ, ߚ = Ͳ, and Normal Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.04   0.058   

1 0.5 0.04   0.057   

1 0.9 0.044   0.056   

0.9 0.2   0.993   1 

0.9 0.5   0.988   1 

0.9 0.9   0.757   0.991 

0.5 0.5   1   1 

0.5 0.2   1   1 

 

 

               Table 5.2. Estimated Coverage Probabilities for the Model with 

ߙ                                      = Ͳ.ͷ, ߚ = Ͳ.Ͷ, and Normal Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.041   0.054   

1 0.5 0.04   0.052   

1 0.9 0.053   0.047   

0.9 0.2   0.996   1 

0.9 0.5   0.992   1 

0.9 0.9   0.915   0.996 

0.5 0.5   1   1 

0.5 0.2   1   1 
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               Table 5.3. Estimated Coverage Probabilities for the Model with  

ߙ                                        = Ͳ.ʹͷ, ߚ = Ͳ.͹, and Normal Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.05   0.048   

1 0.5 0.054   0.047   

1 0.9 0.058   0.047   

0.9 0.2   0.99   1 

0.9 0.5   0.987   1 

0.9 0.9   0.853   0.998 

0.5 0.5   1   1 

0.5 0.2   1   1 

 

 

              Table 5.4. Estimated Coverage Probabilities for the Model with  

ߙ                                      = Ͳ.͵ͻͻ, ߚ = Ͳ.͸, and Normal Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.045   0.047   

1 0.5 0.047   0.045   

1 0.9 0.055   0.049   

0.9 0.2   0.995   1 

0.9 0.5   0.992   1 

0.9 0.9   0.921   0.998 

0.5 0.5   1   1 

0.5 0.2   1   1 

 

 

 
               Table 5.5. Estimated Coverage Probabilities for the Model with  

ߙ                                      = Ͳ.ͳͻͻ, ߚ = Ͳ.ͺ, and Normal Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.045   0.051   

1 0.5 0.048   0.054   

1 0.9 0.055   0.05   

0.9 0.2   0.989   1 

0.9 0.5   0.983   1 

0.9 0.9   0.827   0.999 

0.5 0.5   1   1 

0.5 0.2   1   1 
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               Table 5.6. Estimated Coverage Probabilities for the Model with  

ߙ                                      = Ͳ.͹, ߚ = Ͳ.ʹͷ, and Normal Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.051   0.056   

1 0.5 0.044   0.054   

1 0.9 0.056   0.05   

0.9 0.2   0.997   1 

0.9 0.5   0.997   1 

0.9 0.9   0.955   0.999 

0.5 0.5   1   1 

0.5 0.2   1   1 

 

 

               Table 5.7. Estimated Coverage Probabilities for the Model with  

ߙ                                      = Ͳ.͸, ߚ = Ͳ.͵ͻͻ, and Normal Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.054   0.056   

1 0.5 0.045   0.054   

1 0.9 0.05   0.053   

0.9 0.2   0.999   1 

0.9 0.5   0.999   1 

0.9 0.9   0.955   1 

0.5 0.5   1   1 

0.5 0.2   0.999   1 

 

 

                Table 5.8. Estimated Coverage Probabilities for the Model with  

ߙ                                        = Ͳ.ͺ, ߚ = Ͳ.ͳͻͻ, and Normal Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.045   0.048   

1 0.5 0.043   0.048   

1 0.9 0.05   0.048   

0.9 0.2   0.998   1 

0.9 0.5   0.999   1 

0.9 0.9   0.971   0.997 

0.5 0.5   1   1 

0.5 0.2   1   1 
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               Table 5.9. Estimated Coverage Probabilities for the Model with  

ߙ                                      = Ͳ.ʹ, ߚ = Ͳ.Ͷ, and Normal Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.044   0.056   

1 0.5 0.04   0.055   

1 0.9 0.04   0.06   

0.9 0.2   0.993   1 

0.9 0.5   0.989   1 

0.9 0.9   0.802   0.993 

0.5 0.5   1   1 

0.5 0.2   1   1 

 

 

             Table 5.10. Estimated Coverage Probabilities for the Model with  

ߙ                                      = Ͳ.Ͷ, ߚ = Ͳ.ʹ, and Normal Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.042   0.046   

1 0.5 0.043   0.046   

1 0.9 0.041   0.047   

0.9 0.2   0.994   1 

0.9 0.5   0.991   1 

0.9 0.9   0.86   0.993 

0.5 0.5   1   1 

0.5 0.2   1   1 

 

 

             Table 5.11. Estimated Coverage Probabilities for the Model with  

ߙ                                         = Ͳ.ͷ, ߚ = Ͳ.Ͷ, and 7ݐ Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.047   0.051   

1 0.5 0.043   0.048   

1 0.9 0.049   0.051   

0.9 0.2   0.994   1 

0.9 0.5   0.992   1 

0.9 0.9   0.947   0.997 

0.5 0.5   1   1 

0.5 0.2   1   1 
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              Table 5.12. Estimated Coverage Probabilities for the Model with  

ߙ                                          = Ͳ.Ͷ, ߚ = Ͳ.ʹ, and 7ݐ Errors �� Roots 
Sample Size 

200 400 

r1 r2 Size Power Size Power 

1 0.2 0.046   0.056   

1 0.5 0.049   0.057   

1 0.9 0.044   0.057   

0.9 0.2   0.989   1 

0.9 0.5   0.981   0.999 

0.9 0.9   0.808   0.989 

0.5 0.5   1   1 

0.5 0.2   1   1 

 

 

Specifically, simulation results show that the size of the tests ranges from 0.04 to 

0.058. These values are similar to what Gospodinov and Tao [7] obtained in the ܴܣሺͳሻ 
case for tests conducted under the nominal significance level of 5%. There is no 

discernible pattern with respect to the size of the test and the parameters of the model. 

Under normal errors with sample size 200, a size above 0.05 is obtained whenever ߙ +  ߚ

is close to 1 and  ݎଶ = Ͳ.ͻ, except in two cases (Tables 5.7 & 5.8) when the size equals 

0.05. Size greater than 0.05, however, is obtained in other situations as well for sample 

size 400. If the true significance level is 0.05, we expect approximate 95% confidence 

limits for the estimates based on 1,000 simulation runs to be approximately

  1/2

0.05 1.96 0.05 0.95 /1,000 0.05 0.0135    , and hence the slight deviations from 

0.05 we observe can very well be due to estimation error. What is more important is to 

note that severe size distortions are not present.  Simulation results for the ݐ-distribution 

case show similar behavior as far as size is concerned. Note that the theory was 

developed assuming the standardized errors to be symmetric. 
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The power of the test increases with decreases in  ݎଵ and ݎଶ. For example, in Table 

5.2, one sees that the power is 0.915 when  ݎଵ = ଶݎ  = Ͳ.ͻ but increases to 0.996 when  ݎଵ = Ͳ.ͻ but  ݎଶ = Ͳ.ʹ. The power is practically unity when   ݎଵ = ଶݎ  = Ͳ.ͷ or lower. 

This pattern holds irrespective of the underlying distribution considered in the simulation 

study. Power also increases with sample size as seen in all of the tables. Power is very 

close to one even in cases where  ݎଵ = ଶݎ  = Ͳ.ͻ when the sample size is 400. A more 

interesting result can be observed by comparing the power when  ݎଵ = ଶݎ  = Ͳ.ͻ under 

the non-heteroskedastic case (Table 5.1) to the power under  ߙ = Ͳ.ͷ, ߚ = Ͳ.Ͷ. Under 

homoscedastic errors the power is 0.757, which climbs to 0.915 under heteroskedasticity. 

A similar phenomenon is also observed when comparing results in Table 5.4 to those in 

Table 5.9. Table 5.9 looks at the case where ߙ = Ͳ.ʹ, ߚ = Ͳ.Ͷ  (so ߙ + ߚ  = Ͳ.͸) in 

contrast to Table 5.4 where ߙ = Ͳ.͵ͻͻ, ߚ = Ͳ.͸  (so ߙ + ߚ  = Ͳ.ͻͻͻ). Increasing ߙ +  ߚ 

seems to increase the power, especially for the case with  ݎଵ = ଶݎ  = Ͳ.ͻ. The power for 

this case given in Table 5.9 is 0.802 whereas the power reported for this case in Table 5.4 

is 0.921. This pattern is also evident under the ݐ-distribution as seen in Tables 5.11 and 

5.12. This is the same phenomenon observed by Ling et al.[6] Overall, the proposed 

method seems to work well for all cases, maintaining a reasonably near nominal size and 

producing good power.       
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6. CONCLUSION AND FUTURE WORK 

 

A bootstrap-based procedure for conducting unit root tests in higher order 

autoregressive models with ܪܥܴܣܩ errors was introduced. This procedure is based on 

the seminal work of two authors who detailed the implementation of the method for first 

order autoregressive processes. It was shown how this method can be extended to general 

autoregressive processes using a transformed series. Simulation results indicate that the 

proposed method mitigates the size distortion issue present in the asymptotic-based tests 

and achieves high powers at different combinations of the autoregressive roots and ܪܥܴܣܩ coefficients. An obvious future extension is to develop a bootstrap-based unit 

root test for the case where the underlying process is ܣܯܫܴܣ with unknown orders.  

Relaxation of the ܪܥܴܣܩ structure to include asymmetric effects of shocks can also be 

another potential extension.  
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III. BOOTSTRAP-BASED UNIT ROOT TESTING FOR SEASONAL TIME 

SERIES UNDER ࡴ���ࡳሺ૚, ૚ሻ ERRORS 

 

 

ABSTRACT 

 

We introduce a bootstrap-based test for a seasonal unit root of a time series with ܪܥܴܣܩሺͳ,ͳሻ errors. Seasonal time series based on autoregressive moving average 

formulation (ܣܯܴܣ) was first described by Box and Jenkins in 1970. In 1984, Dickey, 

Hasza and Fuller proposed their test (ܨܪܦ test) to determine if a seasonal unit root exists 

in a time series with independent and identically distributed ሺ݅. ݅. ݀. ሻ  errors. In 2000, 

Psaradakis carried out a bootstrap-based unit root test for pure seasonal time series with 

independent errors and gained higher powers than the ܨܪܦ test. His method is 

recognized as difference based because it calculates the residuals by fitting an ܴܣሺ݌ሻ 
model to the differenced time series, whereas the method proposed by Palm, Smeekes, 

and Urbain in 2008 is called residual based because it computes the residuals by fitting 

the Dickey-Fuller ሺܨܦሻ regression model to the differenced series. In 2014, Rupasinghe 

and Samaranayake developed their own bootstrap-based seasonal unit root tests using 

both difference based and residual based methods. Their test focused on the seasonal time 

series with weakly dependent errors and without considering any underlying conditional 

heteroskedastic error structure. In this paper, we consider extending the ܨܪܦ test and 

developing bootstrap-based unit root test for seasonal time series with ܪܥܴܣܩሺͳ,ͳሻ 
errors using the residual-based method. A Monte Carlo simulation study is carried out to 
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investigate the properties of the test. Results show that our bootstrap-based seasonal unit 

root test has reasonable small sample properties with respect to both size and power. 

 

Keywords:  Seasonal time series; ܪܥܴܣܩ; Nonstationary; Seasonal unit root; 

Bootstrap 
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1. INTRODUCTION 

 

 

Many financial and economic time series exhibit substantial seasonality. 

Therefore, Box and Jenkins (1970) introduced seasonal time series models based on 

autoregressive moving average ሺܣܯܴܣሻ formulation. They and many other time series 

analysts influenced by their work used a seasonal differencing filter that implies the 

presence of seasonal unit roots in the time series. The seasonal unit roots are different 

from the regular unit roots (latter known as units roots at zero), but their testing 

procedures share some common features. 

 Some unit root tests have been applied in the investigation of certain economic 

hypotheses; for example see Altonji and Ashenfelter (1980), Nelson and Plosser (1982), 

Meese and Singleton (1982). The Dickey-Fuller ሺܨܦሻ test proposed by Dickey and Fuller 

(1979) is the most commonly used testing procedure for the existence of at most one non-

seasonal unit root in the first order autoregressive, ܴܣሺͳሻ, processes. Said and Dickey 

(1984) generalized the ܨܦ tests to ܣܯܴܣ models and assumed the orders of the process 

are unknown. Such tests are referred to as Augmented Dickey-Fuller (ܨܦܣ) tests. Phillips 

(1987) and Phillips and Perron (1988) also developed their own tests based on ܨܦ test 

which is an alternative to the ADF test. All these tests assume that the innovations are 

either ݅. ݅. ݀. or weakly dependent, and ignore conditional heteroscedasticity in the errors 

that many financial and economic time series commonly exhibit. 

 To address this shortcoming, Ling and Li (1998, 2003), Ling, Li, and McAleer 

(2003) developed unit root tests under Generalized Autoregressive Conditional 



62 

 

 

 

Heteroskedastic (ܪܥܴܣܩ) innovations. However, as is the case with many other 

distribution-based unit root tests, both these newer tests suffer from serious size distortion 

issues. It’s recognized that the bootstrap approach is one way to mitigate this situation. 

As the only researchers to adopt such an approach for processes with conditionally 

heteroskedastic error, Gospodinov and Tao (2011) developed a bootstrap-based unit root 

test for autoregressive (ܴܣ) time series with ܪܥܴܣܩሺͳ,ͳሻ innovations and presented how 

this procedure can be carried out for ܴܣሺͳሻ. Their Monte Carlo results show that the 

bootstrap-based tests maintain their size reasonably well. Zhong and Samaranayake 

(2014) adapted Gospodinov-Tao method to unit root tests for general ܴܣሺ݌ሻ processes. 

The simulation results suggest that the proposed method has good size and power 

properties for higher order processes even when the second largest root is close to unity. 

Besides these tests, researchers have also developed unit root tests for seasonal 

time series. The standard seasonal unit root testing procedures include ܨܪܦ test and the ܻܩܧܪ test. The ܨܪܦ test was proposed by Dickey, Hasza and Fuller (1984) and is based 

on the following model 

 

        ௧ܻ = ߙ ௧ܻ−௦ +  ௧   ,                                                             (1.1)ݑ

 

where the ݑ௧ are either a stationary process with zero mean and constant variance or a 

martingale difference sequence following the regularity conditions stated in Phillips 

(1987) and Chan and Wei (1988). If ߙ = ͳ, the seasonal time series { ௧ܻ} has ݏ roots on 

the unit circle, one at frequency zero, one at frequency ߨ, with the others being complex 
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roots. Dickey, Hasza and Fuller (1984) proposed several regression-based tests for the 

null hypothesis  ߙ = ͳ in model (1.1).  (1990) ܻܩܧܪ developed another seasonal unit root test by introducing a 

factorization of the seasonal differencing polynomial ׏௦≡ ሺͳ −  ,௦). For exampleܤ

if ݏ = Ͷ, the ܻܩܧܪ test consists in estimating the following regression via �ܵܮ: 

 

ସ׏  ௧ܻ = ଵߨ ଵܹ,௧−ଵ + ଶߨ ଶܹ,௧−ଵ + ଷߨ ଷܹ,௧−ଶ + ସߨ ଷܹ,௧−ଵ +                 ௧ߝ
where                                          ଵܹ௧ = ሺͳ + ܤ + ଶܤ +  , ଷሻ ௧ܻܤ

                          ଶܹ௧ = −ሺͳ − ܤ + ଶܤ −  , ଷሻ ௧ܻܤ
  ଷܹ௧ = −ሺͳ −   ଶሻ ௧ܻ .                                                                       (1.2)ܤ

 

Notice that if ߙ = ͳ in (1.1), ଵܹ௧ , ଶܹ௧ , and ଷܹ௧ have unit roots only at frequency 

zero, ߨ and ߨ/ʹ respectively, which implies that  ߨ௜ = Ͳ, ݅ = ͳ, ʹ, ͵ correspondingly.  ܻܩܧܪ also proposed several test statistics for the null hypothesis of  ߨ௜ = Ͳ, ݅ = ͳ, ʹ, ͵ 

separately or jointly. 

These seasonal unit root tests only deal with ݅. ݅. ݀. errors. Although the ܻܩܧܪ 

tests are more flexible than the ܨܪܦ tests, they all have the weaknesses such as serious 

size distortion and low power that are associated with asymptotic distribution based 

seasonal unit root tests. To solve these problems, Psaradakis (2000) implemented a 

bootstrap-based unit root test for pure seasonal time series (that is a time series that 

satisfy (1.1) with no additional lag 
t j

Y 
 terms) with independent errors, and gained higher 

powers than the ܨܪܦ test. Psaradakis (2001) was also the first to introduce the sieve 
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bootstrap-based (residuals are obtained by fitting autoregressive approximations to the 

time series) unit root tests to non-seasonal time series with weakly dependent errors. 

Chang and Park (2003) also proposed their sieve bootstrap versions of the ܨܦܣ tests for 

non-seasonal unit roots.   Psaradakis (2001) method is called as difference based because 

it calculates the residuals by fitting an ܴܣሺ݌ሻ model to the differenced non-seasonal time 

series, whereas the method proposed by Palm, Smeekes, and Urbain (2008) is 

acknowledged as residual based because it computes the residuals by fitting the ܨܦ 

regression model to the differenced series. In addition, Rupasinghe and Samaranayake 

(2014) developed their bootstrap-based unit root tests for seasonal time series under 

weakly dependent error. Like most of the tests developed for testing non-seasonal unit 

roots, these tests didn’t consider any underlying volatility structure of the innovations. In 

this paper, we accommodate ܪܥܴܣܩሺͳ,ͳሻ errors to seasonal time series and propose a 

bootstrap-based seasonal unit root test by extending the ܨܪܦ test and using the residual-

based method. A Monte Carlo study is carried out to explore the finite sample properties 

of the test including both size and power. 

In Section 2, the seasonal time series under ܪܥܴܣܩሺͳ,ͳሻ errors is described. 

Section 3 introduced our bootstrap-based seasonal unit root test with ܪܥܴܣܩሺͳ,ͳሻ errors. 

The Monte Carlo simulation study and results are presented in Section 4. Section 5 

concludes with a summary of the simulation results and future work.  
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2. SEASONAL TIME SERIES UNDER ࡴ���ࡳሺ૚, ૚ሻ ERRORS 

 

 

There are plenty of formulations developed for seasonal time series. We use the 

seasonal time series defined by the following model 

 

                                       �ሺܤሻ ௧ܻ =   ௧ , whereߝ

      �ሺܤሻ = ሺͳ − ݐ  ሻ  , andܤ௦) ߰ሺܤߩ = ͳ, ʹ, … , ܶ.   (2.1)                                

 

Assume that the seasonality parameter ݏ > ͳ and the autoregressive polynomial ߰ሺܤሻ 
has all roots outside the unit circle. Let the order of ߰ሺܤሻ be  ݌଴ , then the order of �ሺܤሻ 
is  ݌଴ + ௞ܤ is used to define the “backshift operator” given by ܤ Here .ݏ ௧ܻ = ௧ܻ−௞ 

for  ݇ א ℕ଴ .  
 

Now                     �ሺܤሻ ௧ܻ = ௧ =>               ሺͳߝ − ሻܤ௦) ߰ሺܤߩ ௧ܻ = ሻ ሺͳܤ௧ =>                                     ߰ሺߝ − ௦) ௧ܻܤߩ = ሻܤ௧ =>                    ߰ሺߝ ௧ܻ − ௦ ௧ܻܤሻܤሺ߰ߩ = ሻܤ௧ =>                             ߰ሺߝ ௧ܻ − ሻܤሺ߰ߩ ௧ܻ−௦ = ௧ =>                (ͳߝ − ߰ଵܤ −⋯−  ߰௣బܤ ௣బ) ௧ܻ − ͳ)ߩ − ߰ଵܤ −⋯−  ߰௣బܤ ௣బ) ௧ܻ−௦ = ௧ =>    ሺߝ ௧ܻ − ߰ଵܤ ௧ܻ −⋯−  ߰௣బܤ ௣బ ௧ܻሻ − ሺߩ ௧ܻ−௦ −߰ଵܤ ௧ܻ−௦ −⋯−  ߰௣బܤ ௣బ ௧ܻ−௦ሻ = ௧ => ሺߝ ௧ܻ − ߰ଵ ௧ܻ−ଵ −⋯−  ߰௣బ ௧ܻ− ௣బሻ − ሺߩ ௧ܻ−௦ −߰ଵ ௧ܻ−௦−ଵ −⋯−  ߰௣బ ௧ܻ−௦− ௣బሻ =  ௧ߝ
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=>  ௧ܻ = ሺ߰ଵ ௧ܻ−ଵ +⋯+  ߰௣బ ௧ܻ− ௣బሻ + ሺߩ ௧ܻ−௦ − ߰ଵ ௧ܻ−௦−ଵ −⋯−  ߰௣బ ௧ܻ−௦− ௣బሻ + ௧ =>  ௧ܻߝ = ߩ ௧ܻ−௦ + ሺ߰ଵ ௧ܻ−ଵ  + ⋯+  ߰௣బ ௧ܻ− ௣బሻ + ሺ−߰ߩଵ ௧ܻ−௦−ଵ − ଶ߰ߩ ௧ܻ−௦−ଶ −⋯− ߩ  ߰௣బ ௧ܻ− ௦−௣బሻ +  ௧ߝ
That is,   

௧ܻ =  

ߩ    ௧ܻ−௦ + ሺ߰ଵ ௧ܻ−ଵ  + ⋯+  ߰௣బ ௧ܻ− ௣బሻ + ሺ�ଵ ௧ܻ−௦−ଵ+�ଶ ௧ܻ−௦−ଶ +⋯+ � ௣బ ௧ܻ− ௦−௣బሻ +  ௧ߝ
where         �௜ ௜߰ߩ− =  , ݅ = ͳ, ʹ, … , ݐ  ଴,  and݌  = ݏ  + ଴݌ + ͳ, ݏ  + ଴݌ + ʹ,… , ܶ.              (2.2)                             

 

If  ߩ = ͳ, that is, if there exists a seasonal unit root, then (2.1) can be transformed to  

                   ௧ܻ = ௧ܻ−௦ + ߰ଵ׏௦ ௧ܻ−ଵ + ߰ଶ׏௦ ௧ܻ−ଶ +⋯+  ߰௣బ׏௦ ௧ܻ− ௣బ +         ௧ߝ
or 

       ௧ܻ = ௧ܻ−௦ + ∑ ߰௜׏௦ ௧ܻ−௜ ௣బ௜=ଵ +  ௧                                                    (2.3)ߝ

                          

For example, if   ݌଴ = ͳ,  the model (2.1) and (2.2) become  

                            ௧ܻ = ߩ ௧ܻ−௦ +߰ଵ ௧ܻ−ଵ + �ଵ ௧ܻ−ଵ−௦ + ௧  , where  �ଵߝ =          ଵ  .       (2.4)߰ߩ−

                           ௧ܻ = ௧ܻ−௦ + ߰ଵ׏௦ ௧ܻ−ଵ +     ௧ .                                                           (2.5)ߝ

         

The seasonality of the seasonal time series is determined by ݏ, and ݏ ൒ ʹ. For example, ݏ = ʹ, ݏ = Ͷ, ݏ = ͹,   and ݏ = ͳʹ indicate that the underlying process follows semi-

annual, quarterly, weekly and monthly seasonal behaviors respectively. In particular, 
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ݏ = ͷ can be used to model the seasonal behavior of stock prices given that there are five 

trading days each week. 

Note that  �௜ ௜߰ߩ− =  , ݅ = ͳ, ʹ, … ,  ଴ . The model (2.2) is used in Section 3 and݌ 

Section 4. Also, we focus on the case where  ߝ௧  has ܪܥܴܣܩሺͳ,ͳሻ structure. That is, 

 

௧ߝ                 = √ ℎ௧ ߟ௧  , ௧ߟ      ~ ݅݅݀ ሺͲ,ͳሻ , [௧ଷߟ]ܧ   = Ͳ, [௧ସߟ]ܧ   < � < ݐ    ,∞ = ͳ,  ʹ,  … ,  ܶ;      
                                           ℎ௧ =  ⍵+ ௧−ଵଶߝߙ + ℎ௧−ଵ,               with Ͳߚ  <  ߱௟ < ⍵ <  ߱௨,  Ͳ < ௟ߙ  < ߙ < ,௨ߙ  Ͳ < ௟ߚ  < ߚ < ,௨ߚ  ߙ + ߚ < ͳ, ݐ   = ʹ,  ͵,  … ,  ܶ.        
                                                                                                                                   (2.6)    

                 

The term ሺͳ − ߩ  If .ݏ ௦)  in (2.1) signifies a seasonal component of periodܤߩ = ͳ, 

one obtains a seasonal unit root process, which means the effect of a particular seasonal 

value in a previous season on the corresponding seasonal value in the current season does 

not decay with time. Therefore, the null hypothesis of the seasonal unit root testing 

procedure derived from (2.1) ~ (2.6) is  ߩ = ͳ, whereas the alternative hypothesis 

is  |ߩ| < ͳ. The seasonal stationarity of the underlying process can be determined via 

such tests. 
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3. BOOTSTRAP-BASED SEASONAL UNIT ROOT TEST  

WITH ࡴ���ࡳሺ૚, ૚ሻ ERRORS 

 

 

In order to determine the existence of a seasonal unit root in a seasonal time series 

under ܪܥܴܣܩሺͳ,ͳሻ errors, we extended the ܨܪܦ test and developed a bootstrap-based 

testing procedure in which the residual-based method mentioned in Section 1 is applied. 

Assume that a realization  {ݕ௧}௧=ଵ�   is obtained from the model given in equation (2.2). 

The main steps for performing a residual-based seasonal unit root test based on the 

bootstrap method on ܴܣሺ݌଴ +   .ሺͳ,ͳሻ errors are listed belowܪܥܴܣܩ ሻ models withݏ

 

1) Use the least-squares estimates of  ߩ, ߰௜ ,  and �௜ , ݅ = ͳ, ʹ, … ,  ଴,  as initial values and݌ 

then employ maximum likelihood estimation (ܧܮܯ) to obtain the estimates of  ߩ, ߰௜ ,�௜ , ݅ = ͳ, ʹ, … , ߜ ଴,  and݌  = ሺ߱, ,ߙ , ௜ , �̂௜̂߰  , ߩ̂  ሻ′. Record these estimates asߚ ݅ =ͳ, ʹ, … , ߜ̂ ଴,  and݌  = (⍵̂, ,ߙ̂   . ′(ߚ̂ 
     Note: The initial estimates of  ߜ = ሺ߱, ,ߙ  ሻ′ can be obtained by least squares fitting ofߚ

the ܣܯܴܣ representation of the square of the residuals from the ܴܣሺ݌଴ +  ሻݏ
regression. Or use any value of ߜ that meets the assumptions as the initial estimates. 

The results are the same. 

 

2) Compute the test statistic, 
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ሻ ߩሺ̂ݐ     =  ሺ̂ߩ − ͳሻ* 

(−∑߲ଶ݈௧(ߩ, {߰௜}௜=ଵ ௣బ , {�௜}௜=ଵ ௣బ , �ଶߩ߲(ߜ
௧=ଵ )�=�̂,�భ=�̂భ,�మ=�̂మ ,…,� �బ=�̂�బ ,�భ=�̂భ,�మ=�̂మ,…,� �బ=�̂ �బ ,ఋ=ఋ̂

ଵଶ
 

 

    where            ݈௧(ߩ, {߰௜}௜=ଵ ௣బ , {�௜}௜=ଵ ௣బ , (ߜ = ݈௧(ߩ, ߰ଵ, ߰ଶ, … ,  ߰௣బ , �ଵ, �ଶ, … , � ௣బ , (ߜ
= − ͳʹ  ݈݊ ℎ௧ − ͳʹ ௧ଶℎ௧ߝ    ,    

    for  ݐ = ͳ, ʹ, … , ܶ. 
 

    Since  �௜ = ௜߰ߩ−   , ݅ = ͳ, ʹ, … ,  ଴  in equation (2.2), we actually compute the test݌ 

statistic  ݐሺ̂ߩ ሻ based on  ߩ = ,ߩ̂ ߰௜ = ߰̂௜, �௜ = ,௜̂߰ߩ̂− ݅ = ͳ, ʹ, … , ߜ ଴ , and݌ =  . ߜ̂
 

3) Compute  ߝ௧̂ = ௧ݕ − ௧−௦ݕߩ̂  − ∑ ߰̂௜ݕ௧−௜ ௣బ௜=ଵ + ∑ ௧−௦−௜ ௣బ௜=ଵݕ௜̂߰ߩ̂  ,  for ݐ = ݏ + ଴݌ + ͳ,ݏ + ଴݌ + ʹ,… , ܶ. Let ߝ௧̂ = Ͳ for ݐ = ͳ, ʹ, … , ݏ +  . ଴݌
 

4) Compute                             ℎ̂௦+௣బ = ⍵̂ + ௦̂+௣బ−ଵଶߝߙ̂ + , ℎ̂௦+௣బ−ଵ ߚ̂    where  

௦̂+௣బ−ଵଶߝ   =  ℎ̂௦+௣బ−ଵ = ͳܶ ∑ �௜̂ଶߝ
௜=௦+௣బ+ଵ ;   

                                   ℎ̂௧  = ⍵̂ + ௧̂−ଵଶߝߙ̂ + , ℎ̂௧−ଵ ߚ̂  ݐ   = ݏ  + ଴݌ + ͳ, ݏ + ଴݌ + ʹ, … , ܶ.   
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5) Let  ̂ߟ௧ =  
ఌ̂�√ℎ̂�   , and let  ߟ௧̃ be the centered ̂ߟ௧ , for ݐ = ݏ + ଴݌ + ͳ, ݏ + ଴݌ + ʹ, … ,

ܶ.   
 

6) Resample  ߟ௧∗ , ݐ   = ͳ,  ʹ,… , ʹܶ, from {±ߟ௧̃}୲=ୱ+௣బ+ଵ� . Note that {±ߟ௧̃}୲=ୱ+௣బ+ଵ�  contain 

both the  ߟ௧̃ and the values ߟ௧̃ multiplied by -1. This ensures the symmetry of the 

underlying distribution that will be resampled. 

 

7) Compute  ℎ௧∗ =  ⍵̂ + ሺ̂ߟߙ௧−ଵ∗ଶ + ∗ሻℎ௧−ଵߚ̂ 
 ,  for  ݐ = ʹ, ͵, … , ʹܶ.  And let ℎଵ∗ =  ଵ̂ଶ , orߝ

 ℎଵ∗ = ℎ̂ଵ . 

 

8) Compute         ݕ௧∗ = ∗௧−௦ݕ + ∑ ߰̂௜ݕ௧−௜∗ ௣బ௜=ଵ − ∑ ௜ ௣బ௜=ଵ̂߰ߩ̂ ∗௧−௦−௜ݕ + √ℎ௧∗ߟ௧  ∗ ,     
ݐ        = ݏ + ଴݌ + ͳ, ݏ + ଴݌ + ʹ, … , ʹܶ, using  

∗௧ݕ           = Ͳ  for  ݐ = ͳ, ʹ, … , ݏ +  . ଴݌
 

9) To reduce the effect of the initial conditions, drop the first  ܶ − ݏ − ∗  ௧ݕ  ଴ values of݌ . 

Also re-label t so that the new values read from 1 to T. Fit ݕ௧∗ against  ݕ௧−௦∗ ∗௧−௜ݕ ,   ,  and  ݕ௧−௦−௜∗ , ݅ = ͳ, ʹ, . . ., ,∗௜∗ ,  and �௜߰ , ∗ߩ  ଴.  And estimate݌ ݅ = ͳ, ʹ, … , ,଴݌  using 

least squares.  
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10) Use the least-squares estimates as initial values and obtain ܧܮܯs of  ߩ∗, {߰௜∗}௜=ଵ௣బ  ,{�௜∗}௜=ଵ௣బ  , and ߜ∗ = ሺ⍵∗, ,∗ߙ ௜=ଵ௣బ{∗௜̂߰} ,∗ߩ̂ ሻ′ , and denote these estimates as∗ߚ  , {�̂௜∗}௜=ଵ௣బ  , 
and ̂ߜ∗ = (⍵̂∗, ,∗ߙ̂  . ′(∗ߚ̂

     Note: The initial estimates of   ߜ∗ = ሺ⍵∗, ,∗ߙ ߜ̂  ሻ′  can use∗ߚ = (⍵̂, ,ߙ̂   obtained in ′(ߚ̂ 

Step 1). Or use any value of   ߜ∗  that meets the assumptions. The results are the same. 

 

11) Compute the bootstrap test statistic, 

 

ሻ∗ߩሺ̂∗ݐ                 = ሺ̂ߩ∗ − ͳሻቆ−∑ �మ௟�∗ቀ�∗,{��∗}�=భ �బ ,{��∗}�=భ �బ ,ఋ∗ቁ��∗మ�௧=ଵ ቇ�∗=�̂∗,�భ∗=�̂భ∗ ,�మ∗=�̂మ∗ ,…, ��బ∗ =�̂�బ∗ ,�భ∗=�̂భ∗,�మ∗=�̂మ∗,… ,��బ∗ =�̂�బ∗ , ఋ∗=ఋ̂∗
భమ     

      where 

                ݈௧∗(ߩ∗, {߰௜∗}௜=ଵ ௣బ , {�௜∗}௜=ଵ ௣బ , (∗ߜ = ݈௧∗(ߩ∗, ߰ଵ∗, ߰ଶ∗ , … , ߰௣బ∗ , �ଵ∗, �ଶ∗, … , �௣బ∗ ,   (∗ߜ
= − ͳʹ  ݈݊ ℎ௧∗ − ͳʹ ∗௧∗ଶℎ௧ߝ   ,    

      and   ݐ = ͳ, ʹ, … , ܶ. 
 

    Again, since  �௜ ௜߰ߩ− =  , ݅ = ͳ, ʹ, … ,       ଴  in equation (2.2), we compute the test݌ 

statistic  ݐ∗ሺ̂ߩ∗ሻ based   on  ߩ∗ = ,∗ߩ̂ ߰௜∗ = ߰̂௜∗,  �௜∗ = ,∗௜̂߰∗ߩ̂ ݅ = ͳ, ʹ, … ,  ଴, and݌

∗ߜ  =   . ∗ߜ̂
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12) Repeat Step 6) ~ 11) ܤ times, say ܤ = ͳ,ͲͲͲ, and calculate the lower ͷ௧ℎ percentile 

of  ݐ∗ሺ̂ߩ∗ሻ , ݐ଴.଴ହ∗  , then compare ݐ଴.଴ହ∗
 with ߩ̂)ݐሻ .  If ߩ̂)ݐሻ < ∗଴.଴ହݐ  , reject  ܪ଴ and let  ݆݁ݎ 

equal 1; otherwise, do not reject and let  ݆݁ݎ equal 0. 

 

13) Repeat Step 1) ~ 12) ܯ times, say ܯ = ͳ,ͲͲͲ, and calculate the significance level 

(empirical size) or the power of the test as:  ݈݈݁݁ݒ ሺor ݎ݁ݓ݋݌ሻ = ∑௥௘௝�  .    
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4. MONTE CARLO SIMULATION STUDY 

 

 

In this section, we assume ݌଴ = ͳ and  ݏ א {ͷ,ͳʹ} . The extension to other values 

of ݌଴ and ݏ is straightforward. Equation (2.2) is employed together with Equation (2.6) to 

generate the raw time series  {ݕ௧}௧=ଵଶ�  . That is, we performed Monte Carlo simulation 

study in the following procedure. We used Equation (2.2) and Equation (2.6) to 

generate  {ݕ௧}௧=ଵଶ�  , and then threw away the first  ܶ values of the series and re-labeled t to 

go from 1 to T. Then fit the Model (2.2) to the re-labeled time series of length T and 

calculated the least-squares estimates of  ߩ and other coefficients. The same goes for Step 

9) under Section 3.  

The Monte Carlo simulations and bootstrap procedures were carried out using 

MATLAB. Two types of distributions were assumed for the centered error terms, one is 

standard normal and the other is  ݐ-distribution with 7 degrees of freedom. The simulation 

results for ݏ = ͷ ,   ܶ = ͳͲͲ ,  ܶ = ʹͲͲ , and  ܶ = ͶͲͲ are given in Tables 4.1 ~ 4.4; 

Tables 4.5 ~ 4.8 include the results for  ݏ = ͳʹ ,   ܶ = ͳͲͲ ,  ܶ = ʹͲͲ , and  ܶ = ͶͲͲ. We 

did 1,000 simulations and 1,000 bootstraps for each test.  

The coefficients used are  ߩ א {Ͳ.ͷ, Ͳ.ͻ, ͳ.Ͳ}, ߰ଵ א {Ͳ.ʹ, Ͳ.ͷ, Ͳ.ͻ} , where ߩ 

actually represents the seasonal root. For both ݏ = ͷ  and ݏ = ͳʹ, ሺߙ,  ሻ combinationsߚ

considered are (0.5,0.4), and (0.4,0.2). The first ሺߙ,  ሻ combinations were intentionallyߚ

selected so that ߙ +  is close to 1 in order to demonstrate that the procedure works well ߚ

even when these two parameters take values close to the ߙ + ߚ < ͳ threshold needed for 

stationarity of the ܪܥܴܣܩ process. Unreported results for cases where ߙ + ߚ ≪ ͳ show 
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good power and size properties. To save space, results for all combinations are not 

reported but are available upon request from the first author. 

 

           Table 4.1. Estimated Coverage Probabilities for the Model with   
ݏ                   = ͷ, ߙ = Ͳ.ͷ, ߚ = Ͳ.Ͷ, and Normal Errors 

Coefficients 
Sample Size 

100 200 400 � �૚ Size Power Size Power Size Power 

1 0.2 0.044  0.048  0.062  

1 0.5 0.05  0.049  0.059  

1 0.9 0.052  0.054  0.058  

0.9 0.2  0.938  0.999  1 

0.9 0.5  0.94  0.999  1 

0.9 0.9  0.925  0.999  1 

0.5 0.5  1  1  1 

0.5 0.2  1  1  1 

 

 

 

 

         Table 4.2. Estimated Coverage Probabilities for the Model with  

ݏ                  = ͷ, ߙ = Ͳ.Ͷ, ߚ = Ͳ.ʹ, and Normal Errors 

Coefficients 
Sample Size 

100 200 400 � �૚ Size Power Size Power Size Power 

1 0.2 0.049  0.045  0.055  

1 0.5 0.048  0.046  0.055  

1 0.9 0.048  0.053  0.051  

0.9 0.2  0.885  0.997  1 

0.9 0.5  0.883  0.997  1 

0.9 0.9  0.85  0.997  1 

0.5 0.5  1  1  1 

0.5 0.2  1  1  1 
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          Table 4.3. Estimated Coverage Probabilities for the Model with 

ݏ             = ͷ, ߙ = Ͳ.ͷ, ߚ = Ͳ.Ͷ, and 7ݐ Errors 

Coefficients 
Sample Size 

100 200 400 � �૚ Size Power Size Power Size Power 

1 0.2 0.046  0.037  0.05  

1 0.5 0.044  0.038  0.049  

1 0.9 0.052  0.041  0.049  

0.9 0.2  0.959  1  1 

0.9 0.5  0.959  1  1 

0.9 0.9  0.948  1  1 

0.5 0.5  1  1  1 

0.5 0.2  1  1  1 

 

 

         Table 4.4. Estimated Coverage Probabilities for the Model with 

ݏ             = ͷ, ߙ = Ͳ.Ͷ, ߚ = Ͳ.ʹ, and 7ݐ Errors 

Coefficients 
Sample Size 

100 200 400 � �૚ Size Power Size Power Size Power 

1 0.2 0.057  0.053  0.057  

1 0.5 0.061  0.049  0.056  

1 0.9 0.057  0.054  0.052  

0.9 0.2  0.909  0.997  1 

0.9 0.5  0.908  0.997  1 

0.9 0.9  0.876  0.997  1 

0.5 0.5  1  1  1 

0.5 0.2  1  1  1 

 

 

        Table 4.5. Estimated Coverage Probabilities for the Model with 

ݏ                  = ͳʹ, ߙ = Ͳ.ͷ, ߚ = Ͳ.Ͷ, and Normal Errors 

Coefficients 
Sample Size 

100 200 400 � �૚ Size Power Size Power Size Power 

1 0.2 0.053  0.049  0.042  

1 0.5 0.053  0.05  0.043  

1 0.9 0.052  0.049  0.041  

0.9 0.2  0.899  0.999  1 

0.9 0.5  0.904  0.999  1 

0.9 0.9  0.898  0.999  1 

0.5 0.5  1  1  1 

0.5 0.2  1  1  1 
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        Table 4.6. Estimated Coverage Probabilities for the Model with 

ݏ                  = ͳʹ, ߙ = Ͳ.Ͷ, ߚ = Ͳ.ʹ, and Normal Errors 

Coefficients 
Sample Size 

100 200 400 � �૚ Size Power Size Power Size Power 

1 0.2 0.045  0.053  0.033  

1 0.5 0.047  0.054  0.033  

1 0.9 0.054  0.053  0.035  

0.9 0.2  0.821  0.997  1 

0.9 0.5  0.814  0.997  1 

0.9 0.9  0.815  0.996  1 

0.5 0.5  1  1  1 

0.5 0.2  1  1  1 

 

 

        Table 4.7. Estimated Coverage Probabilities for the Model with 

ݏ              = ͳʹ, ߙ = Ͳ.ͷ, ߚ = Ͳ.Ͷ, and 7ݐ Errors 

Coefficients 
Sample Size 

100 200 400 � �૚ Size Power Size Power Size Power 

1 0.2 0.04  0.048  0.048  

1 0.5 0.041  0.053  0.05  

1 0.9 0.042  0.052  0.05  

0.9 0.2  0.942  1  1 

0.9 0.5  0.948  1  1 

0.9 0.9  0.942  1  1 

0.5 0.5  1  1  1 

0.5 0.2  1  1  1 

 

 

        Table 4.8. Estimated Coverage Probabilities for the Model with 

ݏ             = ͳʹ, ߙ = Ͳ.Ͷ, ߚ = Ͳ.ʹ, and 7ݐ Errors 

Coefficients 
Sample Size 

100 200 400 � �૚ Size Power Size Power Size Power 

1 0.2 0.044  0.059  0.044  

1 0.5 0.044  0.061  0.047  

1 0.9 0.048  0.061  0.049  

0.9 0.2  0.864  0.999  1 

0.9 0.5  0.868  0.998  1 

0.9 0.9  0.857  0.999  1 

0.5 0.5  1  1  1 

0.5 0.2  1  1  1 
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It can be observed from the above results that the finite sample properties of the 

seasonal unit root test are pretty good and reasonable. In general, the size approaches 

0.05, the true significance level as the sample size increases from 100 to 400. The 

approximate 95% confidence limits for the estimated significance level based on 1,000 

simulation runs can be calculated as Ͳ.Ͳͷ ± ͳ.ͻ͸{ሺͲ.Ͳͷ × Ͳ.ͻͷሻ/ͳͲͲͲ}ଵ/ଶ = Ͳ.Ͳͷ ±Ͳ.Ͳͳ͵ͷ .  Most sizes we obtained are within the approximate 95% confidence limits 

except for three tests given under normal errors and  ݏ = ͳʹ, Ƚ = Ͳ.Ͷ, Ⱦ = Ͳ.ʹ, ݊ =ͶͲͲ . In addition, the seasonality, ݏ, has some effect on the size. As ݏ increases, say, from 

5 to 12, the size of the test gets a little bit more deviated from 0.05, especially if the 

sample size is small, say, ݊ = ͳͲͲ. For example, compare the results in Table 4.1 vs. 

Table 4.5, Table 4.2 vs. Table 4.6, and Table 4.3 vs. Table 4.7. The power of the test 

increases with an increase in |ͳ − ,|ߩ |ͳ − ߰ଵ|,  or the sample size ݊. It’s not obvious that 

the power of the test is affected by ݏ, ,ߙ ߙ or  ,ߚ +  though. The lowest power is 0.814 ߚ

obtained when testing the seasonal unit root on the time series with ݏ = ͳʹ, ߙ = Ͳ.Ͷ, ߚ =Ͳ.ʹ, ߩ = Ͳ.ͻ, ߰ଵ = Ͳ.ͷ, and ݊ = ͳͲͲ. The highest power is approximately 1.  

The pattern described above is similar under the normal and the ݐ-distribution. 

Overall, the simulation results show that the proposed methods work reasonably well for 

all combinations of the parameters and coefficients considered, maintaining a near 

nominal size and achieving high power.  
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5. CONCLUSION AND FUTURE WORK 

 

 

A bootstrap-based seasonal unit root test for seasonal time series with ܪܥܴܣܩሺͳ,ͳሻ innovations is explored by extending the ܨܪܦ test and employing the 

residual-based method. The Monte Carlo simulation results show that our bootstrap-

based seasonal unit root test achieves reasonable and good small sample properties 

regarding both size and power at different combinations of the seasonal roots, the regular 

autoregressive coefficients, and the ܪܥܴܣܩሺͳ,ͳሻ coefficients. Extensions that are 

planned are to develop a comprehensive bootstrap-based test to detect both seasonal and 

non-seasonal unit roots, and to develop a procedure where the knowledge of the order of 

the autoregression model is not needed.  
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SECTION 

 

2. CONCLUSION 

 

 Unit root testing is an important research field in time series analysis. It’s not only 

used to detect any possible non-stationarity existing in the time series, but also employed 

to investigate certain economic and financial hypotheses. The unit root testing procedures 

developed in the dissertation are based on a very efficient resampling approach, 

bootstrap. And different types of innovations of the time series are considered, including 

independent innovations, weakly dependent innovations, and innovations with 

conditionally heteroskedastic volatility. Monte Carlo simulations are carefully conducted 

for each model. The simulation results show that each testing procedure had good small 

sample properties with respect to size and power.  

In Paper I, testing for two unit roots in a time series with independent innovations 

is discussed. The bootstrap version of a sequential testing procedure proposed by Dickey 

and Pantula is presented with details. The Dickey-Pantula test requires taking p 

differences of the time series where p is the order of the autoregressive process, and the 

table of critical values used in the raw test is not complete. The bootstrap version of the 

raw test overcomes these restrictions. Preliminary results show that the bootstrap version 

of the Dickey-Pantula test is superior. In the future, we will assume the value of ݌ is 

unknown and develop a sieve bootstrap-version of Dikey-Pantula tests for multiple unit 

roots. 

In Paper II, a general bootstrap-based procedure for conducting unit root tests in 

higher order autoregressive models with ܪܥܴܣܩ errors was introduced. This procedure is 
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based on the seminal work of two authors who detailed the implementation of the method 

for first order autoregressive processes. Their method is extended to general 

autoregressive processes using a transformed series in the paper. Simulation results 

indicate that the proposed method mitigates the size distortion issue present in the 

asymptotic-based tests and achieves high powers at different combinations of the 

autoregressive roots and ܪܥܴܣܩ coefficients. In the future, developing a bootstrap-based 

unit root test for the case where the underlying process is ܣܯܫܴܣ with unknown orders 

may be considered.   

In Paper III, seasonal unit root testing is emphasized.  By extending the ܨܪܦ test 

and employing the residual-based method, a bootstrap-based seasonal unit root test for 

seasonal time series with ܪܥܴܣܩሺͳ,ͳሻ innovations is proposed. The Monte Carlo 

simulation results show that our bootstrap-based seasonal unit root test achieves 

reasonable and good small sample properties regarding both size and power at different 

combinations of the seasonal roots, the regular autoregressive coefficients, and the ܪܥܴܣܩሺͳ,ͳሻ coefficients. This work can be regarded as one part of detecting both 

seasonal and non-seasonal multiple unit roots in a more complicated bootstrap-based test, 

which will be pursued after my graduation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

MATLAB ALGORITHM FOR SECOND PAPER 
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%H0: r=0; H1: r<0 

 

B = 1000;  

M = 1000;  

d = 400;  

T = 400; 

aalpha = 0.05; 

 

rho1 = 0.5; 

rho2 = 0.2; 

 

r = rho1-1; 

delta1 = rho2; 

%delta1 can be any real number 

rr = r; 

ddelta1 = delta1; 

 

phi1 = rho1+rho2; 

phi2 = -1*rho1*rho2; 

 

alpha = 0.399;  

beta = 0.6;  

w = 1-alpha-beta;  
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theta0 = [rr;ddelta1;w;alpha;beta];  

Av = [0 0 0 1 1]; 

bv = 0.999999999; 

lbb = [-999999999;-999999999;0.000000001;0;0]; 

ubb = [999999999;999999999;1;0.999999999;0.999999999]; 

 

opts = optimset('Display', 'off', 'Algorithm', 'sqp'); 

 

y = zeros(d+T,1); 

h = zeros(d+T,1); 

eps = zeros(d+T,1); 

 

z = zeros(T,1); 

z_star = zeros(T,1); 

z1 = zeros(T,1); 

z1_star = zeros(T,1); 

z2 = zeros(T,1); 

z2_star = zeros(T,1); 

zx = zeros(T,2); 

zx_star = zeros(T,2); 

 

eps_ml = zeros(T,1); 

h_ml = zeros(T,1); 
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eps_star_ml = zeros(T,1); 

h_star_ml = zeros(T,1); 

 

yita_ml = zeros(T,1); 

cyita_ml = zeros(T,1); 

ccyita = zeros(2*T,1); 

yita_star = zeros(d+T,1); 

 

h_star = zeros(d+T,1); 

y_star = zeros(d+T,1); 

 

start1 = zeros(B,1); 

sst1 = zeros(B,1); 

rej1 = zeros(M,1); 

bpt1 = zeros(M,1); 

rawt1 = zeros(M,1); 

srt1 = zeros(M,1); 

 

allstart1 = zeros(B*M,1); 

 

mcstart1 = zeros(B,M); 

mcsst1 = zeros(B,M); 
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for MC = 1:M 

    rng('default'); 

    rng(MC); 

    yita = randn(d+T,1); 

     

    h(1) = 1; 

    for t=2:d+T 

        h(t) = w+(beta+alpha*(yita(t-1)^2))*h(t-1); 

    end 

     

    eps = sqrt(h).*yita; 

 

    y(1) = 0; 

    y(2) = 0; 

    for t=3:d+T 

        y(t) = phi1*y(t-1)+phi2*y(t-2)+eps(t); 

    end 

     

    z(1:T) = diff(y(d:d+T),1); 

    z1(1:T) = y(d:d+T-1); 

    z2(1:T) = diff(y(d-1:d+T-1),1); 

    zx = [z1 z2]; 

    rawlmf = LinearModel.fit(zx,z,'Intercept',false); 
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    r_ls = rawlmf.Coefficients.Estimate(1); 

    delta1_ls = rawlmf.Coefficients.Estimate(2); 

    rr = r_ls; 

    ddelta1 = delta1_ls; 

     

    [theta] = 

fmincon(@(theta)AR2Lgarch(theta,z,z1,z2),theta0,Av,bv,[],[]

,lbb,ubb,[],opts); 

     

    r_ml = theta(1); 

    rr_star = r_ml; 

    delta1_ml = theta(2); 

    ddelta1_star = delta1_ml; 

    w_ml = theta(3); 

    alpha_ml = theta(4); 

    beta_ml = theta(5); 

     

    for t=1:T 

        eps_ml(t) = z(t)-r_ml*z1(t)-delta1_ml*z2(t); 

    end 

     

    h_ml(1) = sum(eps_ml(1:T).^2)/T; %better results 
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    for t=2:T 

        h_ml(t) = w_ml+alpha_ml*eps_ml(t-

1)^2+beta_ml*h_ml(t-1); 

    end; 

     

    [srt1(MC),rawt1(MC)] = 

AR2tValue(z1,h_ml,alpha_ml,beta_ml,r_ml,eps_ml); 

         

    yita_ml = eps_ml./sqrt(h_ml); 

    cyita_ml = yita_ml-sum(yita_ml)/T; 

     

    theta0_star = 

[rr_star;ddelta1_star;w_ml;alpha_ml;beta_ml]; 

    for i=1:T 

        ccyita(2*i) = cyita_ml(i); 

        ccyita(2*i-1) = -1*cyita_ml(i); 

    end    

     

    for BC = 1:B 

        rng('default'); 

        rng(BC+M); 

        randomIndex = randi([1,2*T],d+T,1); 

        yita_star = ccyita(randomIndex); 
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        h_star(1) = 1; 

        for t=2:d+T 

            h_star(t) = w_ml+(beta_ml+alpha_ml*yita_star(t-

1)^2)*h_star(t-1); 

        end 

         

        eps_star = sqrt(h_star).*yita_star; 

 

        y_star(1) = 0; 

        y_star(2) = 0; 

        for t = 3:d+T 

            y_star(t) = (1+delta1_ml)*y_star(t-1)-

delta1_ml*y_star(t-2)+eps_star(t); 

        end 

                 

        z_star(1:T) = diff(y_star(d:d+T),1); 

        z1_star(1:T) = y_star(d:d+T-1); 

        z2_star(1:T) = diff(y_star(d-1:d+T-1),1); 

        zx_star = [z1_star z2_star]; 

        starlmf = 

LinearModel.fit(zx_star,z_star,'Intercept',false); 

        r_star_ls = starlmf.Coefficients.Estimate(1); 

        delta1_star_ls = starlmf.Coefficients.Estimate(2); 
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        rr_star = r_star_ls; 

        ddelta1_star = delta1_star_ls; 

      

        [theta_star] = 

fmincon(@(theta_star)AR2Lgarch(theta_star,z_star,z1_star,z2

_star),theta0_star,Av,bv,[],[],lbb,ubb,[],opts); 

        r_star_ml = theta_star(1); 

        delta1_star_ml = theta_star(2); 

        w_star_ml = theta_star(3); 

        alpha_star_ml = theta_star(4); 

        beta_star_ml = theta_star(5); 

    

        for t=1:T 

           eps_star_ml(t) = z_star(t)-r_star_ml*z1_star(t)-

delta1_star_ml*z2_star(t); 

        end 

         

        h_star_ml(1) = sum(eps_star_ml(1:T).^2)/T; %better 

results 

 

        for t=2:T 
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            h_star_ml(t) = 

w_star_ml+alpha_star_ml*eps_star_ml(t-

1)^2+beta_star_ml*h_star_ml(t-1); 

        end 

    

        [sst1(BC),start1(BC)] = 

AR2tValue(z1_star,h_star_ml,alpha_star_ml,beta_star_ml,r_st

ar_ml,eps_star_ml); 

         

        mcstart1(BC,MC) = start1(BC); 

        mcsst1(BC,MC) = sst1(BC); 

           

    end 

    bpt1(MC) = prctile(start1,aalpha*100); 

     

    if (rawt1(MC) < bpt1(MC)) 

        rej1(MC) = 1;  

    end 

    if (rawt1(MC) >= bpt1(MC)) 

        rej1(MC) = 0; 

    end 

  

end 
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sig1 = sum(rej1)/M; 

 

for MC = 1:M 

    for BC = 1:B 

        allstart1(BC+B*(MC-1)) = mcstart1(BC,MC); 

    end; 

end 

 

sig1 

%rawt1 

%allstart1 

 

 

function L2 = AR2Lgarch(theta,z,z1,z2) 

%qMLE's -1*likelihood: theta = [rho1;rho2;w;alpha;beta]; 

%H0:rho1=0; H1:rho1<0 

 

rho1 = theta(1);  

rho2 = theta(2);  

w = theta(3);  

alpha = theta(4);  

beta = theta(5); 
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n = length(z);%the length of time series considered is T, 

%not T+2, T=n 

  

eps = zeros(n,1); 

for i = 1:n 

    eps(i) = z(i)-rho1*z1(i)-rho2*z2(i); 

end 

eps2 = eps.^2; 

  

h = zeros(n,1); 

h(1) = sum(eps2)/n;   

for i = 2:n 

    h(i) = w+alpha*eps2(i-1)+beta*h(i-1); 

end 

  

sqrth = sqrt(h); 

x = eps./sqrth; %x is yita 

  

l = -0.5*log(h)-0.5*x.^2; 

L2 = sum(-1*l)/n; 

  

end 
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function [st,tstat] = AR2tValue(z1,h,alpha,beta,r,eps) 

%h=h_hat(1:T);alpha=alpha_hat;beta=beta_hat;phi=phi_hat; 

%eps=eps_hat(1:T); 

%zt=r*z1t+delta1*z2t+epst; 

%H0:r=0; H1:r<0 

  

n = length(z1); 

st = -1*z1(1)^2/h(1); 

%t=1 and 2 are considered only above 

 

for t=2:n 

    st1 = 0; 

    st2 = 0; 

    for i=1:t-1 

        st1 = st1+beta^(i-1)*eps(t-i)*z1(t-i); 

        st2 = st2+beta^(i-1)*z1(t-i)^2; 

    end 

    st = st-z1(t)^2/h(t)+(2*alpha^2/h(t)^2-

4*alpha^2*eps(t)^2/h(t)^3)*st1^2+4*alpha*eps(t)*z1(t)/h(t)^

2*st1+alpha/h(t)*(eps(t)^2/h(t)-1)*st2; 

end 

tstat = sqrt(-1*st)*r; 

end 



 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

MATLAB ALGORITHM FOR THIRD PAPER 
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S = 5; 

 

B = 1000; 

M = 1000; 

 

d = 100; 

T = 100; 

 

aalpha = 0.05; 

 

rho = 1; 

sai1 = 0.9; 

ksai1 = -1*rho*sai1; 

 

rrho = rho; 

ssai1 = sai1; 

kksai1 = ksai1; 

 

alpha = 0.5; 

beta = 0.4; 

w = 1-alpha-beta; 

 

theta0 = [rrho;ssai1;kksai1;w;alpha;beta]; 
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rawAv = [0 0 0 0 1 1]; 

rawbv = 0.999999999; 

rawlbb = [-1000;-1000;-1000000;0.000000001;0;0]; 

rawubb = [1000;1000;1000000;1;0.999999999;0.999999999]; 

 

opts = optimset('Display','off','Algorithm','sqp'); 

 

y = zeros(d+T,1); 

h = zeros(d+T,1); 

eps = zeros(d+T,1); 

 

z = zeros(T,1); 

z_star = zeros(T,1); 

 

zs1_star = zeros(T,1); 

 

z1 = zeros(T,1); 

z1_star = zeros(T,1); 

z4 = zeros(T,1); 

z4_star = zeros(T,1); 

z5 = zeros(T,1); 

z5_star = zeros(T,1); 

zx = zeros(T,2); 
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zx_star = zeros(T,2); 

 

eps_ml = zeros(T,1); 

h_ml = zeros(T,1); 

eps_star_ml = zeros(T,1); 

h_star_ml = zeros(T,1); 

 

yita_ml = zeros(T,1); 

cyita_ml = zeros(T,1); 

ccyita = zeros(2*T,1); 

yita_star = zeros(d+T,1); 

 

h_star = zeros(d+T,1); 

y_star = zeros(d+T,1); 

 

start1 = zeros(B,1); 

sst1 = zeros(B,1); 

rawt1 = zeros(M,1); 

srt1 = zeros(M,1); 

bpt1 = zeros(M,1); 

rej1 = zeros(M,1); 

 

allstart1 = zeros(B*M,1); 
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mcstart1 = zeros(B,M); 

mcsst1 = zeros(B,M); 

 

for MC = 1:M 

    rng('default'); 

    rng(MC); 

    yita = randn(d+T,1); 

     

    h(1) = 1; 

    for t=2:d+T 

        h(t) = w+(beta+alpha*(yita(t-1)^2))*h(t-1); 

    end 

     

    eps = sqrt(h).*yita; 

 

    for t=1:S+1 

        y(t) = 0; 

    end 

 

    for t = S+2:d+T 

        y(t) = rho*y(t-S)+sai1*y(t-1)+ksai1*y(t-S-

1)+eps(t); 

    end 
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    z(1:T) = y(d+1:d+T);  

    z1(1:T) = y(d:d+T-1); 

    z4(1:T) = y(d-S+1:d+T-S);     

    z5(1:T) = y(d-S:d+T-S-1); 

 

    zx = [z4 z1 z5]; 

    rawlmf = LinearModel.fit(zx,z,'Intercept',false);     

    rho_ls = rawlmf.Coefficients.Estimate(1); 

    sai1_ls = rawlmf.Coefficients.Estimate(2); 

    ksai1_ls = rawlmf.Coefficients.Estimate(3); 

    rrho = rho_ls; 

    ssai1 = sai1_ls; 

    kksai1 = ksai1_ls; 

 

    [theta] = 

fmincon(@(theta)rawSARLgarch(theta,z,z4,z1,z5),theta0,rawAv

,rawbv,[],[],rawlbb,rawubb,[],opts); 

 

    rho_ml = theta(1); 

    rrho_star = rho_ml; 

    sai1_ml = theta(2); 

    ssai1_star = sai1_ml; 

    ksai1_ml = theta(3); 
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    kksai1_star = ksai1_ml; 

    w_ml = theta(4); 

    alpha_ml = theta(5); 

    beta_ml = theta(6); 

     

    for t = 1:T; 

        eps_ml(t) = z(t)-rho_ml*z4(t)-

sai1_ml*z1(t)+rho_ml*sai1_ml*z5(t); 

    end 

    h_ml(1) = sum(eps_ml(1:T).^2)/T; 

 

    for t=2:T 

        h_ml(t) = w_ml+alpha_ml*eps_ml(t-

1)^2+beta_ml*h_ml(t-1); 

    end 

 

    [srt1(MC),rawt1(MC)] = 

rawSARtValue(z4,z5,h_ml,alpha_ml,beta_ml,rho_ml,sai1_ml,eps

_ml); 

         

    yita_ml = eps_ml./sqrt(h_ml); 

    cyita_ml = yita_ml-sum(yita_ml)/T; 
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    theta0_star = 

[rrho_star;ssai1_star;kksai1_star;w_ml;alpha_ml;beta_ml]; 

 

    for i = 1:T 

        ccyita(2*i) = cyita_ml(i); 

        ccyita(2*i-1) = -1*cyita_ml(i); 

    end    

     

    for BC = 1:B 

        rng('default'); 

        rng(BC+M); 

        randomIndex = randi([1,2*T],d+T,1); 

        yita_star = ccyita(randomIndex); 

        h_star(1) = 1; 

        for t=2:d+T 

            h_star(t) = w_ml+(beta_ml+alpha_ml*yita_star(t-

1)^2)*h_star(t-1); 

        end 

         

        eps_star = sqrt(h_star).*yita_star; 

         

        for t=1:S+1 

            y_star(t) = 0; 
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        end 

         

        for t=S+2:d+T 

            y_star(t) = y_star(t-S)+sai1_ml*(y_star(t-1)-

y_star(t-S-1))+eps_star(t); 

        end 

             

        z_star(1:T) = y_star(d+1:d+T);  

        z1_star(1:T) = y_star(d:d+T-1); 

        z4_star(1:T) = y_star(d-S+1:d+T-S); 

        z5_star(1:T) = y_star(d-S:d+T-S-1); 

        zx_star = [z4_star z1_star z5_star]; 

         

        starlmf = 

LinearModel.fit(zx_star,z_star,'Intercept',false);         

        rho_star_ls = starlmf.Coefficients.Estimate(1); 

        sai1_star_ls = starlmf.Coefficients.Estimate(2); 

        ksai1_star_ls = starlmf.Coefficients.Estimate(3); 

        rrho_star = rho_star_ls; 

        ssai1_star = sai1_star_ls; 

        kksai1_star = ksai1_star_ls; 
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        [theta_star] = 

fmincon(@(theta_star)rawSARLgarch(theta_star,z_star,z4_star

,z1_star,z5_star),theta0_star,rawAv,rawbv,[],[],rawlbb,rawu

bb,[],opts); 

        rho_star_ml = theta_star(1); 

        sai1_star_ml = theta_star(2); 

        ksai1_star_ml = theta_star(3); 

        w_star_ml = theta_star(4); 

        alpha_star_ml = theta_star(5); 

        beta_star_ml = theta_star(6);    

       

        for t=1:T 

           eps_star_ml(t) = z_star(t)-

rho_star_ml*z4_star(t)-

sai1_star_ml*z1_star(t)+rho_star_ml*sai1_star_ml*z5_star(t)

; 

        end 

         

        h_star_ml(1) = sum(eps_star_ml(1:T).^2)/T;  

 

        for t=2:T 
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            h_star_ml(t) = 

w_star_ml+alpha_star_ml*eps_star_ml(t-

1)^2+beta_star_ml*h_star_ml(t-1); 

        end 

    

        [sst1(BC),start1(BC)] = 

rawSARtValue(z4_star,z5_star,h_star_ml,alpha_star_ml,beta_s

tar_ml,rho_star_ml,sai1_star_ml,eps_star_ml); 

        mcstart1(BC,MC) = start1(BC); 

        mcsst1(BC,MC) = sst1(BC); 

           

    end 

 

    bpt1(MC) = prctile(start1,aalpha*100); 

     

    if (rawt1(MC) < bpt1(MC)) 

        rej1(MC) = 1;  

    end 

    if (rawt1(MC) >= bpt1(MC)) 

        rej1(MC) = 0; 

    end 

  

end 
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sig1 = sum(rej1)/M; 

 

for MC = 1:M 

    for BC = 1:B 

        allstart1(BC+B*(MC-1)) = mcstart1(BC,MC); 

    end; 

end 

 

sig1 

 

 

function L2 = rawSARLgarch(theta,z,z4,z1,z5) 

%qMLE's -1*likelihood: theta = 

%[rho;sai1;ksai1;w;alpha;beta]; 

%H0:rho=1; H1:|rho|<1 

%L2 or -1*L2 has to be real numbers 

 

rho = theta(1);  

sai1 = theta(2);  

w = theta(4);  

alpha = theta(5);  

beta = theta(6); 

n = length(z); 
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eps = zeros(n,1); 

for i = 1:n 

    eps(i) = z(i)-rho*z4(i)-sai1*z1(i)+rho*sai1*z5(i); 

end 

eps2 = eps.^2; 

  

h = zeros(n,1); 

h(1) = sum(eps2)/n;   

for i = 2:n 

    h(i) = w+alpha*eps2(i-1)+beta*h(i-1); 

end 

  

sqrth = sqrt(h); 

x = eps./sqrth; 

 

l = -0.5*log(h)-0.5*x.^2; 

L2 = sum(-1*l)/n; 

%cal the negative log likelihood with L2 - fmincon is used 

%to get Minimum Likelihood Estimates and we are looking for 

%Maximum Likelihood Estimates 

  

end 
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function [st,tstat] = 

rawSARtValue(z4,z5,h,alpha,beta,rho,sai1,eps) 

%h=h_hat(1:T);alpha=alpha_hat;beta=beta_hat;eps=eps_hat(1:T

%); 

%z=rho*z4+sai1*z1+ksai1*z5+epst; or 

%z=rho*z4+sai1*(z1-rho*z5)+epst, where ksai1=-1*rho*sai1. 

%If rho=1 or H0 holds, z=rho*z4+sai1*zs1+epst, where 

%zs1=z1-z5. 

%H0:rho=1; H1:|rho|<1 

%z4=y(t-s), z5=y(t-s-1) 

 

n = length(z4); 

st = -1*(sai1*z5(1)-z4(1))^2/h(1); 

%t=1 (and 2) are considered only above 

 

for t=2:n 

    st1 = 0; 

    st2 = 0; 

    for i=1:t-1 

        st1 = st1+beta^(i-1)*eps(t-i)*(sai1*z5(t-i)-z4(t-

i)); 

        st2 = st2+beta^(i-1)*(sai1*z5(t-i)-z4(t-i))^2; 

    end 
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    st = st-(sai1*z5(t)-z4(t))^2/h(t)+(2*alpha^2/h(t)^2-

4*alpha^2*eps(t)^2/h(t)^3)*st1^2+4*alpha*eps(t)*(sai1*z5(t)

-z4(t))/h(t)^2*st1+alpha/h(t)*(eps(t)^2/h(t)-1)*st2; 

end 

  

tstat = sqrt(-1*st)*(rho-1); 

  

end 
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