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ABSTRACT

The concept of periodic functions defined on the real numbers or on the integers is

a classical topic and has been studied intensively, yielding numerous applications in every

kind of science. It is of importance that the real numbers and the integers are closed

with respect to addition. However, for a number q > 1, the so-called q-time scale, i.e.,

the set of nonnegative integer powers of q, is not closed with respect to addition, and

therefore it was not possible to define periodic functions on the q-time scale in an obvious

way. In this thesis, this important open problem has been resolved and the definition

of periodic functions defined on the q-time scale is given. Using this new definition

of periodic functions defined on the q-time scale, five distinct results involving periodic

solutions of various kinds of q-difference equations are presented, namely as follows. First,

Floquet theory for q-difference equations is established. Second, the Cushing–Henson

conjecture is proved for periodic solutions of the Beverton–Holt q-difference equation,

resulting in applications in the study of biology, in particular population models. Third,

stability for Hamiltonian q-difference systems is investigated. Fourth, the existence of

periodic solutions of a q-difference boundary value problem is examined by applying the

well-known Mountain Pass theorem. Fifth, the existence of positive periodic solutions of

higher-order functional q-difference equations is studied by applying the well-known fixed-

point theorem in a cone. Besides these five research papers that are based on the newly

introduced definition of periodic functions on the q-time scale, this thesis also contains

an introduction, a section on time scales calculus, a section on quantum calculus, and a

conclusion.
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1. INTRODUCTION

Differential equations began with Leibniz, the Bernoulli brothers, and others from

the 1680s, not long after Newton’s fluxional equations in the 1670s. In 1676, English

physicist Isaac Newton solved his first differential equation and was working with what

he called fluxional equations.

In 1693, German mathematician Gottfried Leibniz solved his first differential equa-

tion and that same year Newton published the results of previous differential equation

solution methods a year that is said to mark the inception for the differential equations

as a distinct field in mathematics.

Swiss mathematicians, brothers Jacob Bernoulli (1654-1705) and Johann Bernoulli

(1667-1748), in Basel, Switzerland, were among the first interpreters of Leibniz’ version

of differential calculus. They were both critical of Newton’s theories and maintained that

Newtons theory of fluxions was plagiarized from Leibniz’ original theories, and went to

great lengths, using differential calculus, to disprove Newtons Principia, on account that

the brothers could not accept the theory, which Newton had proven, that the earth and

the planets rotate around the sun in elliptical orbits. The first book on the subject of

differential equations, supposedly, was Italian mathematician Gabriele Manfredis 1707

On the Construction of First-degree Differential Equations, written between 1701 and

1704, published in Latin. The book was largely based on the views of the Leibniz and

the Bernoulli brothers. Most of the publications on differential equations and partial

differential equations, in the years to follow, in the 18th century, seemed to expand on

the version developed by Leibniz, a methodology, employed by those as Leonhard Euler,

Daniel Bernoulli, Joseph Lagrange, and Pierre Laplace.

For the recent era, there are many mathematicians who have studied and developed

the theory of differential and also difference equations as found in general. The study

about the periodic solutions of differential and difference equations is the one significant

topic in which we are familiar with. The search for periodic solutions and the examination

of their behavior are of interest not only from the purely mathematical point of view but
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also because the periodic regimes of real physical systems usually correspond to periodic

solutions in the mathematical description of these systems (see Auto-oscillation; Forced

oscillations; Oscillations, theory of; Non-linear oscillations; Relaxation oscillation). How-

ever, this is a very difficult problem, since there are no general methods for establishing

whether periodic solutions exist for a particular system. Various arguments and methods

are used in different cases. Many of them relate to perturbation theory, e.g., the harmonic

balance method and the Krylov-Bogolyubov method of averaging or the method of the

small parameter, and they also touch upon research on bifurcation. Others relate to the

qualitative theory of differential equations.

Differential or difference equations involving periodic functions play also an impor-

tant role in many applications which are called Floquet equations and the study of Floquet

equations is called Floquet theory. Although it is not necessary that a Floquet system

has a periodic solution, it is possible to characterize all the solutions of such system and

to give conditions under which a periodic solution does exist. In this work, we have also

presented Floquet theory for the q-difference equations. However, the periodicity of func-

tions defined on the q-time scale is unlike that on R and Z time scales because for any

s, t ∈ qN0 , s+ t is not necessarily in qN0 . In other words, qN0 is not closed under plus op-

eration. In this work, we define periodic functions on q-time scale that will be introduced

later. Furthermore, the geometrical interpreting of periodic functions is also considered

by calculating the integral of the periodic functions over some intervals and then the value

of those integrals becomes constants. Through this work we count on the periodicity idea

for the q-time scale to develop the five articles shown in the contents. As already men-

tioned, the Floquet theory is the one of five articles included in this work and it will be

described in more detail later. For the second article, we investigate the existence of the

periodic solutions of the Beverton–Holt equations on the q-time scale and present a couple

of Cushing–Henson conjectures which are analogue version of the difference or differential

equations. As well known the Beverton–Holt model is a classic population model which

has the applications for the population growth and delay. We continue the study of the

periodic solutions in the fourth and fifth articles, but for the fourth we concentrate on

the q-difference boundary value problem by applying the Mountain Pass Theorem while
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in the fifth one we look over the higher-order functional q-difference equations and seek

the positive periodic solutions for that given q-difference equations. In the third paper,

the stability theorems for the Hamiltonian q-difference equations are presented which are

developed from the continuous and discrete versions. The research of the stability of the

difference (differential) Hamiltonian equations has been studied by many authors, e.g.,

Răsvan [27] and [17] (Krein and Jakubovič [22]).

Throughout this work, we have presented many significant results, theorems, and

useful approaches dealing with the periodic solutions of the various q-difference equations

which are developed parallel to some portions which are related to the periodic solutions

of differential (difference) equations.
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2. INTRODUCTION TO TIME SCALES

The study of dynamic equations on time scales unifies both continuous and discrete

mathematical analysis. As a result, one can generalize a process to account for both cases,

or any combination of the two. Since its inception, this area of mathematics has gained a

great deal of international attention. Researchers have found applications of time scales

to include heat transfer, population dynamics, and economics. In further sections, our

results will be extended toward applications found in electrical engineering. For a more

in-depth study of time scales, see Bohner and Peterson’s books [5, 6].

2.1. BASIC DEFINITIONS

In this subsection, the basic results on time scales are introduced to be used in later

sections.

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of the real num-

bers.

This is some common examples of time scales.

Example 2.2. Some common time scales include

a. T = R and T = Z;

b. T = hZ := {hk : k ∈ Z} for h > 0;

c. T = qZ :=
{
qk : k ∈ Z

}
for q > 1;

d. T = 2Z :=
{

2k : k ∈ Z
}

;

e. the so-called harmonic numbers,

{
Hn =

n∑
k=1

1

k
: n ∈ N0

}
;

f. T = N2
0 := {n2 : n ∈ N0};

g. the Cantor set.

Any time scale that is a combination of any of the above sets is called a hybrid time

scale. On the contrary, sets such as (a, b) and C are not time scales.

Next, both the forward and the backward jump operators must be defined.
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Definition 2.3. For t ∈ T, the following statements are defined:

a. The forward jump operator σ : T→ T is given by

σ(t) := inf {s ∈ T : s > t} . (2.1)

b. The backward jump operator ρ : T→ T is defined as

ρ(t) := sup {s ∈ T : s < t} . (2.2)

Definition 2.4. For any function f : T→ R, the function fσ : T→ R is defined as

fσ(t) = f(σ(t)) for all t ∈ T, (2.3)

i.e., fσ = f ◦ σ.

Remark 2.5. Points in T are classified as follows. If σ(t) > t, then t is said to be right-

scattered. Similarly, if ρ(t) < t, then t is said to be left-scattered. If a point is both left-

scattered and right-scattered, then it is said to be isolated. On the contrary, if σ(t) = t,

then t is said to be right-dense. Similarly, if ρ(t) = t, then t is said to be left-dense. If

a point is both left-dense and right-dense, then it is said to be dense. Table 2.1 gives a

classification of points.

Definition 2.6. If T is a time scale with a left-scattered maximum m, then the set

Tκ = T \ {m}. Otherwise, Tκ = T.

Definition 2.7. The graininess function µ : T→ [0,∞) is defined by

µ(t) := σ(t)− t. (2.4)

Both the forward and the backward jump operators as well as the graininess function

for some common time scales are given in Table 2.2.
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Table 2.1. Classification of Points

t < σ(t) t is right-scattered

ρ(t) < t t is left-scattered

ρ(t) < t < σ(t) t is isolated

σ(t) = t t is right-dense

ρ(t) = t t is left-dense

ρ(t) = t = σ(t) t is dense

Table 2.2. Examples of Times Scales

T µ(t) σ(t) ρ(t)

R 0 t t

Z 1 t+ 1 t− 1

hZ h t+ h t− h

qN (q − 1)t qt
t

q

2N t 2t
t

2

N2
0 1 + 2

√
t (
√
t+ 1)2 (

√
t− 1)2

Hn
1

n+ 1
Hn+1 Hn−1

2.2. DIFFERENTIATION

The delta (or Hilger) derivative is defined in the following. Then some useful prop-

erties dealing with the delta derivative are presented, Bohner and Peterson [5, 6].
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Definition 2.8. Let f : T→ R. The delta derivative f∆(t) is the number (when it exists)

such that given any ε > 0, there is a neighborhood U of t such that,

∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]
∣∣ ≤ ε|σ(t)− s| for all s ∈ U.

Properties of the delta derivative are considered in the next two theorems.

Theorem 2.9 (See [5, Theorem 1.16]). Suppose f : T → R is a function; let t ∈ Tκ.

Then the following results are produced.

a. If f is differentiable at a point t, then f is continuous at t.

b. If f is continuous at t, where t is right-scattered, then f is differentiable at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
. (2.5)

c. If f is differentiable at t, where t is right-dense, then

f∆(t) = lim
s→t

f(t)− f(s)

t− s
. (2.6)

d. If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t). (2.7)

Remark 2.10. Note the following examples.

a. When T = R, then (if the limit exists)

f∆(t) = lim
s→t

f(t)− f(s)

t− s
= f ′(t).

b. When T = Z, then

f∆(t) = f(t+ 1)− f(t) = ∆f(t).
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c. When T = qZ for q > 1, then

f∆(t) =
f(qt)− f(t)

(q − 1)t
.

Next the linearity property as well as both the product and the quotient rules are

considered.

Theorem 2.11 (See [5, Theorem 1.20]). Let f, g : T → R be differentiable at t ∈ Tκ.

Then the following results are produced.

a. For any constants α and β, the sum (αf + βg) : T→ R is differentiable at t with

(αf + βg)∆(t) = αf∆(t) + βg∆(t). (2.8)

b. The product fg : T→ R is differentiable at t with

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f(t)g∆(t) + f∆(t)gσ(t). (2.9)

c. If g(t)g(σ(t)) 6= 0, then the quotient f/g : T→ R is differentiable at t with

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
. (2.10)

2.3. INTEGRATION

Now integrable functions on an arbitrary time scale will be considered. However,

the following two concepts must first be introduced.

Definition 2.12. A function f : T → R is said to be regulated if its left-sided and

right-sided limits exist at all left-dense and right-dense points in T, respectively.

Definition 2.13. A function f : T→ R is said to be rd-continuous if it is continuous at

right-dense points in T and its left-sided limits exist at left-dense points in T. The class
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of rd-continuous functions f : T→ R is denoted by

Crd = Crd(T) = Crd(T,R). (2.11)

From the previous two definitions, we have the following theorem.

Theorem 2.14 (See [5, Theorem 1.60]). Let f : T→ R.

a. If f is continuous, then it is also rd-continuous.

b. If f is rd-continuous, then it is also regulated.

c. The jump operator σ is rd-continuous.

d. If f is regulated or rd-continuous, then so is fσ.

e. Assume f is continuous. If g : T→ R is regulated or rd-continuous, so is f ◦ g.

Definition 2.15. A continuous function f : T → R is said to be pre-differentiable with

(region of differentiation) D, provided D ⊂ Tκ, Tκ \ D is countable and contains no

right-scattered elements of T, and f is differentiable at each point t ∈ D.

Next, we consider when the existence of pre-antiderivatives is guaranteed.

Theorem 2.16 (See [5, Theorem 1.70]). Let f : T → R be a regulated function. Then

there exists a function F which is pre-differentiable with region of differentiation D such

that

F∆(t) = f(t) for all t ∈ D.

Any such function F is called a pre-antiderivative of f .

Definition 2.17. Let f : T→ R be a regulated function and let F be a pre-antiderivative

of f . Then the Cauchy integral of f is given by

∫ b

a

f(t) ∆t = F (b)− F (a) for all a, b ∈ T.



10

Example 2.18. Let a, b ∈ T and f be rd-continuous. Note the following examples.

a. When T = R, then

∫ b

a

f(t) ∆t =

∫ b

a

f(t)dt.

b. When [a, b] contains only isolated points, then

∫ b

a

f(t) ∆t =



∑
t∈[a,b)

µ(t)f(t) if a < b

0 if a = b

−
∑

t∈[a,b)

µ(t)f(t) if a > b.

c. When T = Z, then

∫ b

a

f(t) ∆t =



b−1∑
t=a

f(t) if a < b

0 if a = b

−
a−1∑
t=b

f(t) if a > b.

c. When T = hZ, then

∫ b

a

f(t) ∆t =



b/h−1∑
k=a/h

hf(hk) if a < b

0 if a = b

−
a/h−1∑
k=b/h

hf(hk) if a > b.

In the following theorem, the basic properties of integration are considered on time scales.

Theorem 2.19 (See [5, Theorem 1.77]). If a, b, c ∈ T, α ∈ R, and f, g ∈ Crd, then

a.
∫ b
a
[f(t) + g(t)]∆t =

∫ b
a
f(t)∆t+

∫ b
a
g(t)∆t;

b.
∫ b
a
(αf)(t)∆t = α

∫ b
a
f(t)∆t;

c.
∫ b
a
f(t)∆t = −

∫ a
b
f(t)∆t;
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d.
∫ b
a
f(t)∆t =

∫ c
a
f(t)∆t+

∫ b
c
f(t)∆t;

e.
∫ b
a
[fσ(t)g∆(t)]∆t = (fg)(b)− (fg)(a) +

∫ b
a
f∆(t)g(t)∆t;

f.
∫ b
a
[f(t)g∆(t)]∆t = (fg)(b)− (fg)(a) +

∫ b
a
f∆(t)gσ(t)∆t;

g.
∫ a
a
f(t)∆t = 0.

Finally, a generalized form of the Leibniz rule is considered.

Theorem 2.20 (See [5, Theorem 1.117]). Let a ∈ Tκ, b ∈ T, and assume f : T×Tκ → R

is continuous at (t, t), where t ∈ Tκ with t > a. Additionally, assume that f∆(t, ·) is

rd-continuous on [a, σ(t)]. Suppose that for each ε > 0, there exists a neighborhood U of

t independent of τ ∈ [a, σ(t)] such that

|f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ U,

where f∆ denotes the derivative of f with respect to the first variable. Then

a. g(t) :=
∫ t
a
f(t, τ)∆τ implies g∆(t) =

∫ t
a
f∆(t, τ)∆τ + f(σ(t), t);

b. h(t) :=
∫ b
t
f(t, τ)∆τ implies h∆(t) =

∫ b
t
f∆(t, τ)∆τ − f(σ(t), t).

2.4. EXPONENTIAL FUNCTIONS

Exponential functions on time scales are introduced in this section. Regressive

functions on time scales are offered first.

Definition 2.21. The function p : T→ R is said to be regressive, provided that

1 + µ(t)p(t) 6= 0 for all t ∈ Tκ.

The set of all regressive and rd-continuous functions is denoted by

R = R(T) = R(T,R).
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Some special operations for regressive functions on time scales must also be con-

sidered. The next three definitions will be given to introduce several properties of the

exponential function on time scales.

Definition 2.22. Let p, q ∈ R. The “circle plus” addition ⊕ is then defined by

(p⊕ q)(t) = p(t) + (1 + µ(t)p(t))q(t) for all t ∈ Tκ. (2.12)

Definition 2.23. Let p, q ∈ R. The “circle minus” subtraction 	 is then defined by

(p	 q)(t) =
p(t)− q(t)

1 + µ(t)q(t)
for all t ∈ Tκ. (2.13)

Definition 2.24. Let n ∈ N and p ∈ R. The “circle dot” multiplication � is denoted

with

n� p = p⊕ p⊕ p⊕ ...⊕ p,

where n terms exist on the right-hand side of the equation.

The notion of the Hilger complex plane is introduced.

Definition 2.25. For h > 0, the Hilger complex numbers are defined by

Ch :=

{
z ∈ C : z 6= −1

h

}
.

When h = 0, let C0 = C.

The exponential function is expressed in terms of what is known as the cylinder

transformation whose range is the set Zh, defined as follows.

Definition 2.26. For h > 0, the strip is defined as

Zh :=
{
z ∈ C : −π

h
< Im(z) ≤ π

h

}
.

When h = 0, let Z0 := C.
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Definition 2.27. For h > 0, the cylinder transformation ξh : Ch → Zh is defined by

ξh(z) =
1

h
Log(zh+ 1),

where Log represents the principal logarithm function. For h = 0, ξ0(z) = z is defined for

all z ∈ C.

The generalized exponential function is given as follows.

Definition 2.28. If p ∈ R, then the exponential function is defined by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T, (2.14)

where the cylinder transformation ξh(z) is the same as in Definition 2.27.

Definition 2.29. If p ∈ R, then the linear dynamic equation

y∆(t) = p(t)y(t) (2.15)

is called regressive.

Theorem 2.30 (See [5, Theorem 2.33]). Suppose that equation (2.15) is regressive and

fix t0 ∈ T. Then the solution to the initial value problem

y∆(t) = p(t)y(t), y(t0) = 1 (2.16)

is given by ep(·, t0).

The following theorem addresses the uniqueness of the solution for (2.16).

Theorem 2.31 (See [5, Theorem 2.35]). If (2.15) is regressive, then the only solution of

(2.16) is given by ep(·, t0).

Some properties of the exponential function are stated as the following.

Theorem 2.32 (See [5, Theorem 2.36] and [6, Theorem 2.44]). If p, q ∈ R, then
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a. e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

b. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

c. e	p(t, s) = 1
ep(t,s)

;

d. ep(t, s) = 1
ep(s,t)

= e	p(s, t);

e. ep(t, s)ep(s, r) = ep(t, r);

f. ep(t, s)eq(t, s) = ep⊕q(t, s);

g.
ep(t, s)

eq(t, s)
= ep	q(t, s);

h.

(
1

ep(·, s)

)∆

= − p

eσp(·, s)
;

Theorem 2.33 (See [5, Theorem 2.39]). If p ∈ R and a, b, c ∈ T, then

[ep(c, ·)]∆ = −p[ep(c, ·)]σ

and

∫ b

a

p(τ)ep(c, σ(τ))∆τ = ep(c, a)− ep(c, b).

2.5. MATRIX EXPONENTIAL

Before introducing the matrix exponential, the notion of regressive matrices must

first be considered.

Definition 2.34. Let A be an m×n matrix-valued function defined on T. If every entry

of A is rd-continuous on T, then A is said to be rd-continuous on T.

It should be noted that the class of rd-continuous matrix-valued functions is abbre-

viated by

Crd = Crd(T) = Crd(T,Rm×n). (2.17)
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Remark 2.35. Consider the linear system of dynamic equations:

x∆(t) = A(t)x(t), (2.18)

where A is an n×n matrix defined on T. The vector-valued function v : T→ R is said to

be a solution of (2.18) provided that v∆(t) = A(t)v(t) holds for all t ∈ Tκ. The following

definition, however, is necessary to discuss this system subject to some initial condition.

Definition 2.36. Let A be an n × n matrix-valued function defined on T. A is said to

be regressive if I + µ(t)A(t) is invertible for all t ∈ Tκ, where I is the identity matrix.

The class of all rd-continuous and regressive matrix-valued functions is denoted by

R = R(T) = R(T,Rm×n). (2.19)

The system (2.18) is said to be regressive provided A ∈ R. The existence and uniqueness

theorems are offered as follows before considering the solution to an initial value problem

for (2.18).

Theorem 2.37 (See [5, Theorem 5.8]). Let A ∈ R be an n × n matrix-valued function

defined on T. Suppose that f : T → Rn, t0 ∈ T, and x0 ∈ R. Then the initial value

problem

x∆(t) = A(t)x(t) + f(t), x(t0) = x0 (2.20)

has a unique solution x : T→ Rn.

Next, two special operations will be introduced.

Definition 2.38. Let A and B be regressive n×n matrix-valued functions defined on T.

The “circle plus” addition ⊕ is then defined by

(A⊕B)(t) = A(t) + (I + µ(t)A(t))B(t) for all t ∈ Tκ. (2.21)
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The additive inverse 	 (read “circle minus”) is defined by

(	A)(t) = −[I + µ(t)A(t)]−1A(t)

= −A(t)[I + µ(t)A(t)]−1 for all t ∈ Tκ. (2.22)

Next, both the matrix exponential on the time scale T and some of its properties

will be considered.

Definition 2.39. Suppose A is regressive and rd-continuous. Then the unique n × n

matrix-valued solution to the IVP

X∆(t) = A(t)X(t), X(t0) = I

is called the matrix exponential function and is denoted by eA(·, t0).

Example 2.40. Assume that A is an n× n matrix.

a. If T = Z, then

eA(t, t0) =


t−1∏
τ=t0

[I + A(τ)] if A is never −I

(I + A)t−t0 if I + A is a constant and invertible.

b. If T = R, then

eA(t, t0) =


exp

{∫ t

t0

A(τ)dτ

}
if A is continuous and

A(s)A(t) = A(t)A(s) for all s, t ∈ T

eA(t−t0) if A(t) is constant.

c. If T = hZ, then

eA(t, t0) =


t/h−1∏
τ=t0

[I + hA(hτ)] if A is regressive

(I + hA)
t−t0
h if I + hA is a constant and invertible.
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d. If T = qN0 for q > 1, then

eA(t, 1) =
∏

τ∈T∩(0,t)

[I + (q − 1)τA(τ)].

Theorem 2.41 (See [5, Theorem 5.21]). Let eA(·, t0) be as in Definition 2.39. Then for

r, s, t ∈ T, the following results are derived:

a. eA(t, t) = e0(t, s) ≡ I.

b. eA(σ(t), s) = (I + µ(t)A(t))eA(t, s).

c. e−1
A (t, s) = eA(s, t) = eT	AT (t, s).

d. eA(t, s)eA(s, r) = eA(t, r).

Next the solution to linear systems will be found using a variation of parameters.

Theorem 2.42 (See [5, Theorem 5.24]). Let A ∈ R be an n × n matrix-valued function

on T and suppose that f : T → Rn is rd-continuous. Let t0 ∈ T and x0 ∈ Rn. Then the

solution of the initial value problem

x∆(t) = A(t)x(t) + f(t), x(t0) = x0

is given by

x(t) = eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ.

Theorem 2.43 (See [5, Theorem 5.27]). Let A ∈ R be an n × n matrix-valued function

on T and suppose that f : T → Rn is rd-continuous. Then for t0 ∈ T, x0 ∈ Rn, the

solution of the initial value problem

x∆(t) = −A(t)xσ(t) + f(t), x(t0) = x0
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is given by

x(t) = e	A(t, t0)x0 +

∫ t

t0

e	A(t, τ)f(τ)∆τ

= eTAT (t0, t)

[
x0 +

∫ t

t0

eTAT (τ, t0)f(τ)∆τ

]
.

Definition 2.44. A square matrix-valued function A is said to be symmetric if it is equal

to its transpose, i.e., A = AT .

Definition 2.45. A symmetric matrix-valued function A is said to be positive definite

(denoted A > 0) if xTAx > 0 for any nonzero vector x. A symmetric matrix-valued

function A is said to be positive semi-definite (denoted A ≥ 0) if xTAx ≥ 0 for any

nonzero vector x.

In the next lemma, a Lyapunov function on time scales associated with the au-

tonomous dynamic equation is considered.

x∆(t) = Ax(t). (2.23)

Definition 2.46. Let S ∈ C1
rd(T,Rn×n) be symmetric. A generalized Lyapunov function

is given by

xT (t)S(t)x(t). (2.24)

Lemma 2.47. The derivative of the generalized Lyapunov function is given by

(xTSx)∆(t) = xT (t)[ATS(t) + (I + µ(t)AT )S(t)A

+(I + µ(t)AT )S∆(t)(I + µ(t)A)]x(t). (2.25)

Proof. Using the product rule, we have

(xTSx)∆(t) = (xTS)∆(t)xσ(t) + (xTS)(t)x∆(t)

= [(xT )∆(t)S(t) + (xT )σ(t)S∆(t)]xσ(t) + (xTS)(t)Ax(t).
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Now using the simple useful formula (2.7), we have

(xTSx)∆(t) = [(xT (t)ATS(t) + (x+ µx∆)T (t)S∆(t)](x+ µx∆)(t) + (xTS)(t)Ax(t)

= [(xT (t)ATS(t) + xT (t)(I + µ(t)A)TS∆(t)](I + µ(t)A)x(t)

+(xTS)(t)Ax(t)

= xT (t)[ATS(t)(I + µ(t)A) + (I + µ(t)A)TS∆(t)(I + µ(t)A)]x(t)

+(xTS)(t)Ax(t)

= xT (t)[ATS(t) + (I + µ(t)AT )S(t)A

+(I + µ(t)AT )S∆(t)(I + µ(t)A)]x(t).

This gives the result as desired.
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3. QUANTUM CALCULUS

The purpose of this section is to outline some of basic definitions and concepts of

q-difference equations. Some of the material in this section is contained in monographs

by Bangerezako [2], Kac and Cheung [19], and in the books of Bohner and Peterson [5,6].

Definition 3.1. The q-derivative (or Jackson derivative [2]) of a function f : T → R is

defined by

Dqf(t) =
f(qt)− f(t)

(q − 1)t
.

We can also use the notation f∆ for the q-derivative of the function f .

Theorem 3.2. The q-derivatives of the product and the quotient of f and g are the

following, respectively,

(i) Dq(fg) = (Dqf)g + fσ(Dqg) = f(Dqg) + (Dqf)gσ,

(ii) Dq(
f
g
) = (Dqf)g−f(Dqg)

ggσ
= (Dqf)gσ−fσ(Dqg)

ggσ
.

It follows from Definition 3.1 that the q-derivative of f satisfies

fσ(t) = f(qt) = f(t) + (q − 1)tDqf(t) for t ∈ T. (3.1)

Example 3.3. The q-derivative of tn, where n is a positive integer is, qn−1
q−1

tn−1, the q-

derivative of 1
t

is − 1
qt2

, and the q-derivative of ln t is ln q
(q−1)t

.

After having the product rule and quotient rule of q-differentiation, one may wonder

about a quantum version of the chain rule. However, there does not exist a general chain

rule for q-derivative. An exception is the differentiation of a function of the form f(u(t)),

where u = u(t) = αtβ with α, β are constants. To see how the chain rule applies, we

consider

Dq[f(u(t))] = Dq[f(αtβ)] =
f(αqβtβ)− f(αtβ)

(q − 1)t
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=
f(αqβtβ)− f(αtβ)

αqβtβ − αtβ
· αq

βtβ − αtβ

(q − 1)t

=
f(qβu)− f(u)

(qβ − 1)u
· u(qt)− u(t)

(q − 1)t

= (Dqβf)(u(t)) ·Dqu(t). (3.2)

On the other hand, if for instance u(t) = t+ t2 or u(t) = sin t, the quantity u(qt) cannot

be expressed in terms of u in a simple manner, and thus it is impossible to have a general

chain rule. Next let us consider the q-antiderivative. As in the usual sense, we define the

indefinite integral as the following.

Definition 3.4. The indefinite integral of the function f is given by
∫
f(t)dqt = F (t)+C,

where C is an arbitrary constant and F is antiderivative of function f .

Also the definite integral of function f can be defined in the same manner as for Z.

Definition 3.5. Let f : qN0 → R and a, b ∈ qN0 such that a < b. The definite integral of

function f is given by

∫ b

a

f(t)dqt = (q − 1)

b/q∑
t=a

tf(t).

Definition 3.6. The exponential function ep(t, t0) on the time scale T = qN0 , where p is

regressive, is given by

ep(t, t0) =
∏

s∈[t0,t)

[1 + (q − 1)sp(s)]ift > t0.
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PAPER

I. FLOQUET THEORY FOR q-DIFFERENCE EQUATIONS

ABSTRACT

In this paper, we introduce ω-periodic functions in quantum calculus and study the first-

order linear q-difference vector equation for which its coefficient matrix function is ω-

periodic and regressive. Based on the new definition of periodic functions, we establish

Floquet theory in quantum calculus.
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1. INTRODUCTION

Floquet theory plays an important rôle in many applications such as in linear dy-

namic systems with periodic coefficient matrix functions. The study of Floquet theory

can be found in Kelley and Peterson [5], Hartman [4], and Cronin [3] for R, and for Z

in Kelley and Peterson [6]. Ahlbrandt and Ridenhour have studied Floquet theory on

periodic time scales [1].

In this paper, we are interested to study Floquet theory for q-difference equations,

namely dynamic equations on the so-called q-time scale, i.e.,

T := qN0 := {qt : t ∈ N0}, where q > 1.

We present a new definition (see Definition 3.1 below) of periodic functions on the q-time

scale and derive some Floquet theory based on the first-order linear equation, called a

Floquet q-difference equation,

x∆ = A(t)x, (1.1)

where

x∆(t) :=
x(qt)− x(t)

(q − 1)t
for t ∈ T,

A is an ω-periodic matrix function defined as in Definition 3.1 below, and A also is

regressive, i.e.,

I + (q − 1)tA(t) is invertible for all t ∈ T,

where I is the identity matrix.
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2. SOME AUXILIARY RESULTS

The following definitions and theorems are useful to prove the results in Sections 3

and 4 below.

Definition 2.1. Let m,n ∈ N0 with m < n, and f : qN0 → R. Then

∫ qn

qm
f(t)∆t := (q − 1)

n−1∑
k=m

qkf(qk).

Definition 2.2 (Matrix exponential function). Let t0 ∈ qN0 and A be an n×n regressive

matrix-valued function on qN0 . The unique matrix-valued solution of the initial value

problem

Y ∆ = A(t)Y, Y (t0) = I,

where I denotes the n × n identity matrix, is called the matrix exponential function (at

t0), and it is denoted by eA(·, t0).

For example, if A is an n× n regressive matrix-valued function on qN0 and s = qm,

t = qn with m,n ∈ N0 and m < n, then

eA(t, s) =
∏

τ∈qN0∩[s,t)

[I + (q − 1)τA(τ)]

=
n−1∏
k=m

[I + (q − 1)qkA(qk)],

(2.1)

where the matrix product is from the left to the right.

Theorem 2.3 (See [2, Theorem 5.21]). If A is a matrix-valued function on qN0, then

(i) e0(t, s) ≡ I and eA(t, t) ≡ I;

(ii) eA(t, s) = e−1
A (s, t);

(iii) eA(t, s)eA(s, r) = eA(t, r).
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Theorem 2.4 (Liouville’s formula [2, Theorem 5.28]). Let A be a 2×2 regressive matrix-

valued function on qN0. Assume that X is a matrix-valued solution of

X∆ = A(t)X, t ∈ qN0 .

Then X satisfies

detX(t) = etrA+(q−1)t detA(t, t0) detX(t0), t ∈ qN0 ,

where trA and detA denote the trace and the determinant of A, respectively.

In the last section, we shall show an example of a Floquet q-difference equation,

whose coefficient matrix function is defined in terms of trigonometric functions on qN0 .

Definition 2.5 (Trigonometric functions). Let p be a function defined on qN0 and suppose

1 + (q−1)tp(t) 6= 0 for all t ∈ qN0 . We define the trigonometric functions cosp and sinp by

cosp :=
eip + e−ip

2
and sinp :=

eip − e−ip
2i

.

In particular, we have Euler’s formula given by

eip(t, t0) = cosp(t, t0) + i sinp(t, t0),

and the identity [sinp(t, t0)]2 + [cosp(t, t0)]2 = 1 need not hold.
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3. PERIODIC FUNCTIONS

Let T be a periodic time scale with period T > 0, i.e., t + T ∈ T whenever t ∈ T.

Then a function f : T → R is called periodic if f(t + T ) = f(t) for all t ∈ T. This

definition applies for example to the prominent examples T = R and T = Z. However,

T = qN0 is not a periodic time scale. Thus we shall introduce the definition of ω-periodic

functions on qN0 as follows.

Definition 3.1. Let ω ∈ N. A function f : qN0 → R is called ω-periodic if

f(t) = qωf(qωt) for all t ∈ qN0 .

A first question concerns the geometrical meaning of ω-periodic functions on qN0 .

The following theorem and an example below address this issue.

Theorem 3.2. Let f be an ω-periodic function on qN0 and define

c :=

∫ qω

1

f(t)∆t.

Then

∫ qn+ω

qn
f(t)∆t = c for all n ∈ N0. (3.1)

Before we prove Theorem 3.2, let us see an example to better understand the defi-

nition of periodic functions on the q-time scale.

Example 3.3. Let c ∈ R. We define a function f : 2N0 → R recursively by

f(1) := c and f(2t) :=
f(t)

2
for all t ∈ 2N0 .

By Definition 3.1, f is 1-periodic. By Definition 3.1, we have

∫ 2

1

f(t)∆t = f(1) = c
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and

∫ 2n+1

2n
f(t)∆t = 2nf(2n) = 2n−1 · 2f(2n−1 · 2)

= 2n−1f(2n−1) = . . . = 2f(2) = f(1) = c.

Geometrically, Figure 3.1 shows that the areas under the graph of the function f on the

intervals [2n, 2n+1], n ∈ {0, 1, 2, 3, 4}, are all equal to the same constant c.

Figure 3.1. The constant area of the rectangles corresponding to the 1-periodic function
f on the intervals [2n, 2n+1], n ∈ {0, 1, 2, 3, 4}.

Proof of Theorem 3.2. We prove the statement using the principle of induction. From

Definition 2.1 and the assumption, we see that (3.1) holds for n = 0. Now let n ∈ N and

assume that (3.1) holds for n− 1, i.e., assume

∫ qn+ω−1

qn−1

f(t)∆t = c. (3.2)

Using Definition 2.1, Definition 3.1, again Definition 2.1, and (3.2), we obtain

∫ qn+ω

qn
f(t)∆t = (q − 1)

n+ω−1∑
k=n

qkf(qk)
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= (q − 1)

{
n+ω−2∑
k=n

qkf(qk) + qn+ω−1f(qn+ω−1)

}

= (q − 1)

{
n+ω−2∑
k=n

qkf(qk) + qn−1qωf(qωqn−1)

}

= (q − 1)

{
n+ω−2∑
k=n

qkf(qk) + qn−1f(qn−1)

}

= (q − 1)
n+ω−2∑
k=n−1

qkf(qk)

=

∫ qn+ω−1

qn−1

f(t)∆t

= c.

Hence (3.1) holds for n and the proof is complete.

Lemma 3.4. If B is an ω-periodic and regressive matrix-valued function on qN0, then

eB(t, s) = eB(qωt, qωs) for all t, s ∈ qN0 .

Proof. Suppose s = qm and t = qn for some m,n ∈ N0 with m < n. Using (2.1), Definition

3.1, and again (2.1), we obtain

eB(qωt, qωs) = eB(qω+n, qω+m)

=
ω+n−1∏
k=ω+m

{
I + (q − 1)qkB(qk)

}
=

n−1∏
k=m

{
I + (q − 1)qk+ωB(qk+ω)

}
=

n−1∏
k=m

{
I + (q − 1)qkqωB(qωqk)

}
=

n−1∏
k=m

{
I + (q − 1)qkB(qk)

}
= eB(t, s).

The proof is complete.
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Theorem 3.5. Let t0 ∈ qN0 and ω ∈ N. If C is a nonsingular k × k matrix constant,

then there exists an ω-periodic regressive matrix-valued function B on qN0 such that

eB(qωt0, t0) = C.

Proof. Let µi be the eigenvalues of C, 1 ≤ i ≤ k. For p ∈ {0, 1, 2, . . . , ω − 2}, define

Rp :=


J1 0 . . . 0

0 J2
. . .

...

...
. . . . . . 0

0 . . . 0 Jn


,

where either Ji is the 1× 1 matrix Ji = µi or

Ji =



µi 1 0 . . . 0

0 µi 1
. . .

...

...
. . . . . . . . .

...

...
. . . . . . µi 1

0 . . . 0 0 µi


,

1 ≤ i ≤ k, and define

Rω−1 :=
1

(q − 1)qω−1t0

{
ω−2∏
k=0

[
I + (q − 1)qkt0Rk

]−1
C − I

}
,

where I is the identity matrix and
ω−2∏
k=0

[
I + (q − 1)qkt0Rk

]−1
is the product starting from

the right to left. This gives

ω−1∏
k=0

[
I + (q − 1)qkt0Rk

]
= C,
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where
ω−1∏
k=0

[
I + (q − 1)qkt0Rk

]
is the product starting from the left to right. Moreover, Rp

are regressive for all p ∈ {0, 1, 2, . . . , ω − 1}. We define

B(qωm+jt0) :=
Rj

qωm
for all j ∈ {0, 1, 2, . . . , ω − 1} and all m ∈ N0.

Therefore B is ω-periodic and regressive on qN0 and

eB(qωt0, t0) =
ω−1∏
k=0

[
I + (q − 1)qkt0B(qkt0)

]
= C,

where
ω−1∏
k=0

[
I + (q − 1)qkt0B(qkt0)

]
is the product starting from the left to right.
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4. FLOQUET THEORY

In this section, we consider the Floquet q-difference equation (1.1) where A is a

regressive and ω-periodic matrix-valued function.

Lemma 4.1. Let t0 ∈ qN0 and suppose x is a solution of the Floquet q-difference equation

(1.1) satisfying the boundary condition

x(t0) = qωx(qωt0).

Then x is ω-periodic.

Proof. Define a function f on qN0 by

f(t) := qωx(qωt)− x(t) for all t ∈ qN0 .

Then f(t0) = 0 and

f∆(t) =
f(qt)− f(t)

(q − 1)t

=
qωx(qωqt)− x(qt)− qωx(qωt) + x(t)

(q − 1)t

= qωqω
x(qqωt)− x(qωt)

(q − 1)qωt
− x(qt)− x(t)

(q − 1)t

= qωqωx∆(qωt)− x∆(t)

= qωqωA(qωt)x(qωt)− A(t)x(t)

= A(t) [qωx(qωt)− x(t)]

= A(t)f(t).

By unique solvability of the initial value problem f∆ = A(t)f , f(t0) = 0, we conclude

f(t) = 0 for all t ∈ qN0 . By Definition 3.1, x is ω-periodic.

As usual, we call a matrix-valued function Φ a fundamental matrix of the Floquet

q-difference equation (1.1) provided it solves (1.1) such that Φ(t) is nonsingular for all
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t ∈ qN0 . The following results gives a representation for any fundamental matrix of the

Floquet q-difference equation (1.1).

Theorem 4.2. Suppose Φ is a fundamental matrix for the Floquet q-difference equation

(1.1). Define the matrix-valued function Ψ by

Ψ(t) := qωΦ(qωt), t ∈ qN0 .

Then Ψ is also a fundamental matrix for (1.1). Furthermore, there exist an ω-periodic

and regressive matrix-valued function B and an ω-periodic matrix-valued function P such

that

Φ(t) = P (t)eB(t, t0) for all t ∈ qN0 .

Proof. Assume Φ is a fundamental matrix for (1.1) and define Ψ as in the statement of

the theorem. Then

Ψ∆(t) =
Ψ(qt)−Ψ(t)

(q − 1)t

=
qωΦ(qωqt)− qωΦ(qωt

(q − 1)t

= qωqω
Φ(qqωt)− Φ(qωt)

(q − 1)qωt

= qωqωΦ∆(qωt)

= qωqωA(qωt)Φ(qωt)

= qωA(t)Φ(qωt)

= A(t)Ψ(t).

Since det Ψ(t) 6= 0 for all t ∈ qN0 , Ψ is a fundamental matrix for (1.1). Furthermore,

define now the nonsingular constant matrix C by

C := Φ−1(t0)Ψ(t0).
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The function D defined by D(t) = Ψ(t)− Φ(t)C, t ∈ qN0 , satisfies D(t0) = 0 and

D∆(t) = Ψ∆(t)− Φ∆(t)C = A(t)Ψ(t)− A(t)Φ(t)C = A(t)D(t)

and thus, by unique solvability of this initial value problem, we conclude

qωΦ(qωt) = Ψ(t) = Φ(t)C for all t ∈ qN0 . (4.1)

By Theorem 3.5, there exists an ω-periodic and regressive matrix-valued function B such

that

eB(qωt0, t0) = C. (4.2)

Now define the matrix-valued function P by

P (t) := Φ(t)e−1
B (t, t0), t ∈ qN0 .

Obviously, P is a nonsingular matrix-valued function on qN0 . Using (4.1), Theorem 2.3

(i), (ii), (4.2), and Lemma 3.4, we obtain

qωP (qωt) = qωΦ(qωt)e−1
B (qωt, t0)

= Φ(t)CeB(t0, q
ωt)

= Φ(t)CeB(t0, q
ωt0)eB(qωt0, q

ωt)

= Φ(t)eB(t0, t)

= Φ(t)e−1
B (t, t0)

= P (t)

for all t ∈ qN0 , i.e., P is ω-periodic.
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Theorem 4.3. Suppose Φ, P , and B are as in Theorem 4.2. Then x solves the Floquet

q-difference equation (1.1) if and only if y given by y(t) = P−1(t)x(t), t ∈ qN0, solves

y∆ = B(t)y.

Proof. Assume x solves (1.1). Then, as can be seen again by unique solvability of initial

value problems as in the proof of Theorem 4.2, we have

x(t) = Φ(t)x0 for all t ∈ qN0 , where x0 := Φ−1(t0)x(t0).

Define y by y(t) = P−1(t)x(t), t ∈ qN0 . Then

y(t) = P−1(t)Φ(t)x0 = P−1(t)P (t)eB(t, t0)x0 = eB(t, t0)x0,

which solves y∆ = B(t)y. Conversely, assume y solves y∆ = B(t)y and define x by

x(t) = P (t)y(t), t ∈ qN0 . Again by unique solvability of initial value problems, we have

y(t) = eB(t, t0)y0 for all t ∈ qN0 , where y0 := eB(t0, t)P (t0)y(t0).

It follows that

x(t) = P (t)y(t) = P (t)eB(t, t0)y0 = Φ(t)y0,

which solves (1.1).

Definition 4.4. Let Φ be a fundamental matrix for the Floquet q-difference equation

(1.1). The eigenvalues of qωΦ−1(1)Φ(qω) are called the Floquet multipliers of the Floquet

q-difference equation (1.1).

Remark 4.5. Since fundamental matrices for the Floquet q-difference equation (1.1) are

not unique, we shall show that the Floquet multipliers are well defined. Let Φ and Ψ be

any fundamental matrices for (1.1) and let

C := qωΦ−1(1)Φ(qω) and D := qωΨ−1(1)Ψ(qω).
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We show that C and D have the same eigenvalues. Since Φ and Ψ are fundamental

matrices of (1.1), we see as in the proof of Theorem 4.2 that there exists a nonsingular

constant matrix M such that

Ψ(t) = Φ(t)M for all t ∈ qN0 .

It follows that

D = qωΨ−1(1)Ψ(qω) = qωM−1Φ−1(1)Φ(qω)M = M−1CM.

Therefore C and D are similar matrices, and thus they have the same eigenvalues. Hence,

Floquet multipliers are well defined.

Remark 4.6. Note also that the proof of Theorem 4.2 shows that the matrix-valued func-

tion

qωΦ−1(t)Φ(qωt) = Φ−1(t)Ψ(t) ≡ Φ−1(1)Ψ(1) = qwΦ−1(1)Φ(qω)

does not depend on t ∈ qN0 , and therefore Floquet multipliers of the Floquet q-difference

equation (1.1) are also equal to the eigenvalues of qωΦ−1(t)Φ(qωt), where t ∈ qN0 is

arbitrary.

Theorem 4.7. The number µ0 is a Floquet multiplier of the Floquet q-difference equation

(1.1) if and only if there exists a nontrivial solution x of (1.1) such that qωx(qωt) = µ0x(t)

for all t ∈ qN0.

Proof. Assume µ0 is a Floquet multiplier of (1.1). Let t ∈ qN0 . By Remark 4.6, µ0 is an

eigenvalue of C := qωΦ−1(t)Φ(qωt), where Φ is a fundamental matrix of (1.1). Let x0 be

an eigenvector corresponding to the eigenvalue µ0, i.e., we have Cx0 = µ0x0. Define x by

x(t) = Φ(t)x0 for all t ∈ qN0 . Then x is a nontrivial solution of (1.1) and

qωx(qωt) = qωΦ(qωt)x0 = Φ(t)Cx0 = Φ(t)µ0x0 = µ0x(t).

Conversely, assume that there exists a nontrivial solution x of (1.1) such that qωx(qωt) =

µ0x(t) for all t ∈ qN0 . Let Ψ be a fundamental matrix of (1.1). Then x(t) = Ψ(t)y0 for
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all t ∈ qN0 and some nonzero constant vector y0. Furthermore, qωΨ(qωt) is a fundamental

matrix of (1.1). Hence

qωx(qωt) = µ0x(t) and qωΨ(qωt)y0 = µ0Ψ(t)y0.

Since qωΨ(qωt) = Ψ(t)D, where D := qωΨ−1(1)Ψ(qω) and Ψ(t)Dy0 = Ψ(t)µ0y0, it follows

that Dy0 = µ0y0, and hence µ0 is an eigenvalue of D.

Remark 4.8. By Theorem 4.7, the Floquet q-difference equation (1.1) has an ω-periodic

solution if and only if µ0 = 1 is a Floquet multiplier.
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5. APPLICATION AND AN EXAMPLE

Let p be defined by

p(q2nt) :=
1

q2n
and p(q2n+1t) :=

2

q2n+1
for all t ∈ qN0 and all n ∈ N0.

Then p is a 2-periodic regressive function on qN0 . Define

A(t) :=

 0 1
t

cosp(q
2t, t)

1
t

sinp(q
2t, t) 0

 , for all t ∈ qN0 (5.1)

with the given 2-periodic regressive function p. We apply Lemma 3.4 to show that the

coefficient matrix-valued function A is 2-periodic:

q2A(q2t) = q2

 0 1
q2t

cosp(q
4t, q2t)

1
q2t

sinp(q
4t, q2t) 0


=

 0
eip(q4t,q2t)+e−ip(q4t,q2t)

2t

eip(q4t,q2t)−e−ip(q4t,q2t)

2ti
0


=

 0 1
t

cosp(q
2t, t)

1
t

sinp(q
2t, t) 0


= A(t).

The solution of the Floquet q-difference equation x∆ = A(t)x, where A is defined as in

(5.1), satisfying the initial condition x(1) = x0, is x(t) = eA(t, 1)x0, t ∈ qN0 . If µ1 and µ2

are eigenvalues corresponding to the constant matrix

C := q2e−1
A (1, 1)eA(q2, 1) = q2eA(q2, 1),

then by applying Liouville’s formula (Theorem 2.4), we get

µ1µ2 = detC = det q2eA(q2, 1) = q4 det eA(q2, 1)
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= q4etrA+(q−1)t detA(q2, 1) det eA(1, 1)

= q4e (1−q) sinp cosp
t

(q2, 1).



39

6. REFERENCES

[1] C. D. Ahlbrandt and J. Ridenhour. Floquet theory for time scales and Putzer repre-
sentations of matrix logarithms. J. Difference Equ. Appl., 9(1):77–92, 2003. In honour
of Professor Allan Peterson on the occasion of his 60th birthday, Part II.

[2] M. Bohner and A. Peterson. Dynamic equations on time scales. Birkhäuser Boston
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II. THE BEVERTON–HOLT q-DIFFERENCE EQUATION

ABSTRACT

The Beverton–Holt model is a classical population model which has been considered in

the literature for the discrete-time case. Its continuous-time analogue is the well-known

logistic model. In this paper, we consider a quantum calculus analogue of the Beverton–

Holt equation. We use a recently introduced concept of periodic functions in quantum

calculus in order to study the existence of periodic solutions of the Beverton–Holt q-

difference equation. Moreover, we present proofs of quantum calculus versions of two

so-called Cushing–Henson conjectures.
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1. INTRODUCTION

The Beverton–Holt difference equation has wide applications in population growth

and is given by

xn+1 =
νKnxn

Kn + (ν − 1)xn
, n ∈ N0, (1.1)

where ν > 1, Kn > 0, and x0 > 0. We call the sequence K the carrying capacity and ν

the inherent growth rate (see Cushing and Henson [7]). The periodically forced Beverton–

Holt equation, which is obtained by letting the carrying capacity be a periodic positive

sequence Kn with period ω ∈ N, i.e., Kn+ω = Kn for all n ∈ N0, has been treated with

the methods found in [1,5,8,9]. For the Beverton–Holt dynamic equation on time scales,

one article has been presented by Bohner and Warth [6]. In [6], a general Beverton–Holt

equation is given, which reduces to (1.1) in the discrete case and to the well-known logistic

equation in the continuous case.

In this paper, we are studying a quantum calculus version of the Beverton–Holt

equation, namely, a Beverton–Holt q-difference equation. Using a recently by the authors

introduced concept of periodic functions in quantum calculus (see [3]), we are interested

to seek periodic solutions of the Beverton–Holt q-difference equation given by

x∆(t) = a(t)xσ(t)

(
1− x(t)

K(t)

)
, (1.2)

where

a(t) =
α

t
, (1.3)

K(t) = qωK(qωt) for all t ∈ T = qN0 , α ∈ R, ω ∈ N,

x∆(t) =
x(qt)− x(t)

(q − 1)t
, xσ(t) = x(qt), t ∈ T.
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By the definition of periodic functions on the q-time scale, i.e., on qN0 (see Definition

2.3 below), a is 1-periodic and K is ω-periodic. We approach the periodic solutions of

the Beverton–Holt q-difference equation (1.2) by some strategies presented in Section 3.

In Sections 4 and 5, we formulate and prove the first and the second Cushing–Henson

conjectures on the q-time scale, respectively.
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2. SOME AUXILIARY RESULTS

Definition 2.1. We say that a function p : qN0 → R is regressive provided

1 + (q − 1)tp(t) 6= 0 for all t ∈ qN0 .

The set of all regressive functions will be denoted by R.

Definition 2.2 (Exponential function). Let p ∈ R and t0 ∈ qN0 . The exponential function

ep(·, t0) on qN0 is defined by

ep(t, t0) =
∏

s∈[t0,t)

[1 + (q − 1)sp(s)] for t > t0.

Definition 2.3 (See [3]). A function f : qN0 → R is called ω-periodic if

f(t) = qωf(qωt) for all t ∈ qN0 .

Theorem 2.4 (See [4, Theorem 2.36]). If p ∈ R, then

(i) e0(t, s) = 1 and ep(t, t) = 1;

(ii) ep(t, s) = 1
ep(s,t)

;

(iii) ep(t, s)ep(s, r) = ep(t, r);

(iv) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(v)
(

1
ep(·,s)

)∆

(t) = − p(t)
ep(σ(t),s)

.

The integral on qN0 is defined as follows.

Definition 2.5. Let m,n ∈ N0 with m < n, and f : qN0 → R. Then

∫ qn

qm
f(t)∆t := (q − 1)

n−1∑
k=m

qkf(qk).
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Theorem 2.6 (Integration by parts, see [4, Theorem 1.77]). For a, b ∈ qN0 and f, g :

qN0 → R, we have

∫ b

a

fσ(t)g∆(t)∆t = f(b)g(b)− f(a)g(a) +

∫ b

a

f∆(t)g(t)∆t

and ∫ b

a

f(t)g∆(t)∆t = f(b)g(b)− f(a)g(a) +

∫ b

a

f∆(t)gσ(t)∆t.

Theorem 2.7 (Jensen’s inequality, see [10, Theorem 2.2]). Let a, b ∈ T and c, d ∈ R.

Suppose g, h : ([a, b] ∩ qN0) → (c, d) and
∫ b
a
|h(s)|∆s > 0. If F ∈ C((c, d),R) is convex,

then

F

(∫ b
a
|h(s)|g(s)∆s∫ b
a
|h(s)|∆s

)
≤
∫ b
a
|h(s)|F (g(s))∆s∫ b
a
|h(s)|∆s

.

If F is strictly convex, then “≤” can be replaced by “<”.
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3. THE BEVERTON–HOLT EQUATION

Throughout we assume

α 6= 1

q − 1
and α 6= −1,

i.e.,

λ := 1− (q − 1)α satisfies λ 6= 0 and λ 6= q.

This implies that

−a ∈ R and e−a(t, s) = λlogq(
t
s
) for all t, s ∈ qN0 .

In the dynamic equation (1.2), we substitute

x :=
1

u
.

Then, using the quotient rule [4, Theorem 1.20 (v)], (1.2) becomes

u∆(t) = −a(t)u(t) +
a(t)

K(t)
. (3.1)

The general solution of (3.1) is given [4, Theorem 2.77] by

u(t) = e−a(t, t0)u(t0) +

∫ t

t0

e−a(t, σ(s))
a(s)

K(s)
∆s, t ∈ qN0 , (3.2)

where t0 ∈ qN0 . Now, we require an ω-periodic solution x of (1.2). This means that x

satisfies x(t) = qωx(qωt) for all t ∈ qN0 . This implies that a solution u = 1
x

of (3.1) satisfies

qωu(t) = u(qωt) for all t ∈ qN0 . (3.3)
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Lemma 3.1. If (3.1) has a solution u satisfying (3.3), then

u(t0) =
1

qωλ−ω − 1

∫ qωt0

t0

e−a(t0, σ(s))
a(s)

K(s)
∆s.

Proof. Assume (3.1) has a solution u satisfying (3.3). Then

u(t0) = q−ωu(qωt0)

= q−ωe−a(q
ωt0, t0)u(t0) + q−ω

∫ qωt0

t0

e−a(q
ωt0, σ(s))

a(s)

K(s)
∆s

=
q−ω

1− q−ωe−a(qωt0, t0)

∫ qωt0

t0

e−a(q
ωt0, σ(s))

a(s)

K(s)
∆s

=
q−ω

1− q−ωλω
e−a(q

ωt0, t0)

∫ qωt0

t0

e−a(t0, σ(s))
a(s)

K(s)
∆s

=
λω

qω − λω

∫ qωt0

t0

e−a(t0, σ(s))
a(s)

K(s)
∆s

=
1

qωλ−ω − 1

∫ qωt0

t0

e−a(t0, σ(s))
a(s)

K(s)
∆s

Thus u satisfies the required initial condition.
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4. THE FIRST CUSHING–HENSON CONJECTURE

Now we state and prove the first Cushing–Henson conjecture for the Beverton–Holt

q-difference equation (1.2).

Conjecture 4.1 (First Cushing–Henson conjecture). The Beverton–Holt q-difference

model (1.2) with an ω-periodic carrying capacity K has a unique ω-periodic solution x

that globally attracts all solutions.

Using (3.2) and Lemma 3.1, the solution u of (3.1) can be written as

u(t) = e−a(t, t0)u(t0) +

∫ t

t0

e−a(t, σ(s))
a(s)

K(s)
∆s

=
1

qωλ−ω − 1

∫ qωt0

t0

e−a(t, σ(s))
a(s)

K(s)
∆s+

∫ t

t0

e−a(t, σ(s))
a(s)

K(s)
∆s

=

∫ qωt0

t0

h(t, s)

sK(s)
∆s,

(4.1)

where

h(t, s) := e−a(t, σ(s))(β + χ(t, s))α (4.2)

with

β :=
1

qωλ−ω − 1
and χ(t, s) :=


1 if s < t

0 if s ≥ t.

Theorem 4.2. Define x := 1
u

, where u is given in (4.1). Then x is an ω-periodic solution

of the Beverton–Holt q-difference equation (1.2).

Proof. To verify that the solution u of (3.1) indeed satisfies (3.3), we only prove that

f∆(t) = −a(t)f(t) and f(t0) = 0, where f is defined by f(t) = q−ωu(qωt) − u(t) for all

t ∈ qN0 . Hence u(qωt) = qωu(t) for all t ∈ qN0 which implies that the solution x of (1.2)

is ω-periodic.

Theorem 4.3. The solution x of (1.2) given in Theorem 4.2 is globally attractive.
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Proof. Let x be any solution of the equation (1.2). We have

|x(t)− x(t)| =

∣∣∣∣∣ 1

e−a(t, t0)u(t0) +
∫ t
t0
e−a(t, σ(s)) a(s)

K(s)
∆s

− 1

e−a(t, t0)u(t0) +
∫ t
t0
e−a(t, σ(s)) a(s)

K(s)
∆s

∣∣∣∣∣
=

∣∣∣∣∣ 1
e−a(t,t0)
x(t0)

+
∫ t
t0
e−a(t, σ(s)) a(s)

K(s)
∆s
− 1

e−a(t,t0)
x(t0)

+
∫ t
t0
e−a(t, σ(s)) a(s)

K(s)
∆s

∣∣∣∣∣
=

∣∣∣ 1
x(t0)
− 1

x(t0)

∣∣∣ |e−a(t, t0)|∣∣∣ e−a(t,t0)
x(t0)

+
∫ t
t0
e−a(t, σ(s)) a(s)

K(s)
∆s
∣∣∣ ∣∣∣ e−a(t,t0)

x(t0)
+
∫ t
t0
e−a(t, σ(s)) a(s)

K(s)
∆s
∣∣∣

≤

∣∣∣ 1
x(t0)
− 1

x(t0)

∣∣∣ |e−a(t, t0)|(∫ t
t0
e−a(t, σ(s)) a(s)

K(s)
∆s
)2

≤ ‖K‖2
∞

∣∣∣ 1
x(t0)
− 1

x(t0)

∣∣∣ |e−a(t, t0)|

(1− e−a(t, t0))2 ,

which due to [2, Theorem 2] tends to zero as t→∞.
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5. THE SECOND CUSHING–HENSON CONJECTURE

Now we state and prove the second Cushing–Henson conjecture for the Beverton–

Holt q-difference equation (1.2).

Conjecture 5.1 (Second Cushing–Henson conjecture). The average of the ω-periodic

solution x of (1.2) is strictly less than the average of the ω-periodic carrying capacity K

times the constant 1 + 1
α

.

In order to prove the second Cushing–Henson conjecture, we use the following series

of auxiliary results.

Lemma 5.2. We have

∫ v

u

e−a(t, σ(s))∆s =
ve−a(t, v)− ue−a(t, u)

1 + α
, (5.1)

where a is given by (1.3).

Proof. Using Theorem 2.4 (ii), (iv) and Theorem 2.6, we get

∫ v

u

e−a(t, σ(s))∆s =

∫ v

u

e∆s
−a(t, s)

a(s)
∆s

=
1

αq

∫ v

u

σ(s)e∆s
−a(t, s)∆s

=
1

αq

{
ve−a(t, v)− ue−a(t, u)−

∫ v

u

1

e−a(s, t)
∆s

}
=

1

αq

{
ve−a(t, v)− ue−a(t, u)−

∫ v

u

λe−a(t, σ(s))∆s

}
=

ve−a(t, v)− ue−a(t, u)

αq + λ

=
ve−a(t, v)− ue−a(t, u)

1 + α
,

which shows (5.1).

Lemma 5.3. We have

∫ v

u

e−a(t, s)

t2
∆t =

q

1 + α

{
e−a(u, s)

u
− e−a(v, s)

v

}
(5.2)
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where a is given by (1.3).

Proof. Using Theorem 2.4 and Theorem 2.6, we get

∫ v

u

e−a(t, s)

t2
∆t =

−1

α

∫ v

u

−a(t)e−a(t, s)

t
∆t

=
−1

α

∫ v

u

e∆t
−a(t, s)

t
∆t

=
−1

α

{
e−a(v, s)

v
− e−a(u, s)

u
−
∫ v

u

e−a(σ(t), s)

(
−1

tσ(t)

)
∆t

}
=
−1

α

{
e−a(v, s)

v
− e−a(u, s)

u

}
− λ

qα

∫ v

u

e−a(t, s)

t2

=
q

α + 1

{
e−a(u, s)

u
− e−a(v, s)

v

}
,

which shows (5.2).

Lemma 5.4. We have

∫ qωt0

t0

h(t, s)

t2
∆t =

α

(α + 1)s
, (5.3)

where h is given by (4.2).

Proof. Using Lemma 5.3 and βqωλ−ω − β − 1 = 0, we obtain

∫ qωt0

t0

h(t, s)

t2
∆t = αβ

∫ qωt0

t0

e−a(t, σ(s))

t2
∆t+ α

∫ qωt0

σ(s)

e−a(t, σ(s))

t2
∆t

(5.2)
=

αq

α + 1

{
β

(
e−a(t0, σ(s))

t0
− e−a(q

ωt0, σ(s))

qωt0

)
+

1

qs
− e−a(q

ωt0, σ(s))

qωt0

}
=

αq

α + 1

{
1

qs
+
e−a(q

ωt0, σ(s))

qωt0

(
βqωλ−ω − β − 1

)}
=

α

(α + 1)s
,

which shows (5.3).

Lemma 5.5. We have

∫ qωt0

t0

h(t, s)∆s =
αt

1 + α
, (5.4)
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where h is given by (4.2).

Proof. Using Lemma 5.2 and βqωλ−ω − β − 1 = 0, we obtain

∫ qωt0

t0

h(t, s)∆s = αβ

∫ qωt0

t0

e−a(t, σ(s))∆s+ α

∫ t

t0

e−a(t, σ(s))∆s

(5.1)
= αβ

(
qωt0e−a(t, q

ωt0)− t0e−a(t, t0)

1 + α

)
+ α

(
t− t0e−a(t, t0)

1 + α

)
=

α

1 + α

{
t+ t0e−a(t, t0)

(
βqωλ−ω − β − 1

)}
=

αt

1 + α
,

which shows (5.4).

Theorem 5.6. Let x be the unique ω-periodic solution of (1.2). If ω 6= 1, then

1

ω

∫ qωt0

t0

x(t)∆t <

(
1 +

1

α

){
1

ω

∫ qωt0

t0

K(t)∆t

}
. (5.5)

Proof. Since K is ω-periodic with ω 6= 1, tK(t) cannot be a constant. In addition,

F (x) = 1
x

is strictly convex. Thus we may use Jensen’s inequality (Theorem 2.7) for the

single inequality in the forthcoming calculation to obtain

∫ qωt0

t0

x(t)∆t =

∫ qωt0

t0

1

u(t)
∆t

=

∫ qωt0

t0

1∫ qωt0
t0

h(t,s)
sK(s)

∆s
∆t

=

∫ qωt0

t0

F

( ∫ qωt0
t0

h(t,s)
sK(s)

∆s∫ qωt0
t0

h(t, s)∆s

)
1∫ qωt0

t0
h(t, s)∆s

∆t

<

∫ qωt0

t0

∫ qωt0
t0

h(t, s)F
(

1
sK(s)

)
∆s(∫ qωt0

t0
h(t, s)∆s

)2 ∆t

=

∫ qωt0

t0

∫ qωt0
t0

h(t, s)sK(s)∆s(∫ qωt0
t0

h(t, s)∆s
)2 ∆t

(5.4)
=

∫ qωt0

t0

∫ qωt0
t0

h(t, s)sK(s)∆s(
αt

1+α

)2 ∆t

=

(
1 + α

α

)2 ∫ qωt0

t0

∫ qωt0

t0

h(t, s)sK(s)

t2
∆s∆t
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=

(
1 + α

α

)2 ∫ qωt0

t0

sK(s)

∫ qωt0

t0

h(t, s)

t2
∆t∆s

(5.3)
=

(
1 + α

α

)2 ∫ qωt0

t0

sK(s)
α

(α + 1)s
∆s

=
1 + α

α

∫ qωt0

t0

K(s)∆s,

which shows (5.5). The proof is done.

Theorem 5.7. If K is 1-periodic, then we have equality in (5.5), i.e.,

1

ω

∫ qωt0

t0

x(t)∆t =

(
1 +

1

α

){
1

ω

∫ qωt0

t0

K(t)∆t

}
. (5.6)

Proof. Since K is 1-periodic, we have

K(t) =
C

t
for some C > 0.

Now it is easy to check that x given by

x(t) :=
1 + α

α
K(t) =

(1 + α)C

αt

is 1-periodic and satisfies

x∆(t) = a(t)xσ(t)

(
1− x(t)

K(t)

)
for all t ∈ qN0 .

Hence, x is the unique 1-periodic solution of (1.2). Thus (5.6) holds.
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[5] M. Bohner, S. Stević, and H. Warth. The Beverton–Holt difference equation. In
Discrete dynamics and difference equations, pages 189–193. World Sci. Publ., Hack-
ensack, NJ, 2010.

[6] M. Bohner and H. Warth. The Beverton–Holt dynamic equation. Appl. Anal.,
86(8):1007–1015, 2007.

[7] J. M. Cushing and S. M. Henson. A periodically forced Beverton–Holt equation. J.
Difference Equ. Appl., 8(12):1119–1120, 2002.

[8] S. Elaydi and R. J. Sacker. Global stability of periodic orbits of nonautonomous
difference equations in population biology and the Cushing–Henson conjectures. In
Proceedings of the Eighth International Conference on Difference Equations and Ap-
plications, pages 113–126. Chapman & Hall/CRC, Boca Raton, FL, 2005.

[9] S. Elaydi and R. J. Sacker. Nonautonomous Beverton–Holt equations and the
Cushing-Henson conjectures. J. Difference Equ. Appl., 11(4-5):337–346, 2005.

[10] F.-H. Wong, C.-C. Yeh, and W.-C. Lian. An extension of Jensen’s inequality on time
scales. Adv. Dyn. Syst. Appl., 1(1):113–120, 2006.



54

III. STABILITY FOR HAMILTONIAN q-DIFFERENCE SYSTEMS

ABSTRACT

In this paper, we study stability of q-difference Hamiltonian systems with or without

parameter λ in quantum calculus. Based on a new definition of periodic functions in

quantum calculus, we obtain q-analogues of classical stability results in the continuous

case.
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1. INTRODUCTION

Stability analysis of the linear Hamiltonian system

x′(t) = JH(t)x(t), (1.1)

where H(t) = H∗(t) = H(T + t) and J =

 0 I

−I 0

, has been studied by Krĕın and

Jakubovič [5], and for the discrete version of (1.1) it has been found in Răsvan [6] and [3].

In this paper, we are interested in the study of q-difference Hamiltonian systems on the

q-time scale T := qN0 := {qt : t ∈ N0}, where q > 1,

x∆(t) = JH(t)
[
MTMxσ(t) +MMTx(t)

]
, (1.2)

where x∆ is as given in Definition 2.3,

J =

 0 I

−I 0

 , M =

0 0

I 0

 ,

I denotes the identity matrix, H(t) is a Hermitian matrix-valued function, and

H(t) = qωH(qωt) for every t ∈ T.

An equivalent equation of (1.2) is

x∆(t) = S(t)x(t), (1.3)

where

S(t) =
(
I − µ(t)JH(t)MTM

)−1 JH(t), (1.4)

S∗(t)J + J S(t) + µ(t)S∗(t)J S(t) = 0, (1.5)
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and µ(t) = (q − 1)t is the graininess function for all t ∈ T, see [2]. Also, if the Hermitian

matrix H(t) is given by

H(t) =

A(t) B∗(t)

B(t) C(t)


for all t ∈ T, then (1.2) becomes

x(qt) =

 D(t)B(t) + I D(t)C(t)

−µ(t)A(t){I +D(t)B(t)} −µ(t){A(t)D(t)C(t) +B∗(t)}+ I

x(t), (1.6)

where D(t) = µ(t)(I − µ(t)B(t))−1 for all t ∈ T. We see that the solution of (1.2) can

be constructed from (1.6) if the matrix I − µ(t)B(t) is invertible for all t ∈ T. Since the

stability of (1.2) is connected with the eigenvalues of its fundamental matrix at the end

point qω of the period, we shall discuss this issue in Sections 2 and 3. For convenience,

we give the following definition.

Definition 1.1. We call (1.2) Hamiltonian if it has the complex coefficients and U(qω)

is J -unitary, i.e., U∗(qω)JU(qω) = J . Moreover, (1.2) is called canonical if it has real

coefficients and U(qω) is J -orthogonal (or symplectic), i.e., UT (qω)JU(qω) = J , where

U(qω) represents a fundamental matrix at the end point qω of the period.
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2. PRELIMINARIES AND AUXILIARY RESULTS

Definition 2.1 (Matrix exponential function, Bohner and Peterson [2]). Let t0 ∈ T and

A be a regressive matrix-valued function on T, i.e., I +µ(t)A(t) is invertible for all t ∈ T.

The unique matrix-valued solution of the initial value problem

Y ∆ = A(t)Y, Y (t0) = I,

where I is identity matrix, is called the matrix exponential function (at t0), and it is

denoted by eA(·, t0).

Remark 2.2. Since the matrix-valued function S given in (1.3) is regressive, i.e.,

I + (q − 1)tS(t) 6= 0 for all t ∈ T,

we obtain

eS(t, 1) =
∏

τ∈T∩[1,t)

[I + (q − 1)τS(τ)] for all t ∈ T. (2.1)

Before we prove that the fundamental matrix eS(t, t0) of (1.3) is J -unitary for all

t ∈ T, Definition 2.3 and Theorem 2.4 are given as follows.

Definition 2.3 (See [4]). Let f : T→ R be a function. The expression

f∆(t) =
f(qt)− f(t)

(q − 1)t
, t ∈ qN0 ,

is called the q-derivative

The q-derivatives of the product and quotient of f, g : T→ R are given by

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ
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and (
f

g

)∆

=
f∆g − fg∆

ggσ
,

where fσ = f ◦ σ, gσ = g ◦ σ, σ(t) = qt for all t ∈ T.

Theorem 2.4 (Bohner and Peterson [2]). If A is a matrix-valued function on T, then

(i) e0(t, s) ≡ I and eA(t, t) ≡ I;

(ii) eA(t, s) = e−1
A (s, t);

(iii) eA(t, s)eA(s, r) = eA(t, r);

(iv) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s).

Lemma 2.5. If S is as in (1.4), then

e∗S(t, t0)J eS(t, t0) = J .

Proof. Let f(t) = e∗S(t, t0)J eS(t, t0). Obviously f(t0) = J . By applying the product rule

of the q-derivative and (i), (iii), and (iv) from Theorem 2.4, we have

f∆(t) = (e∆
S (t, t0))∗J eS(σ(t), t0) + e∗S(t, t0)J e∆

S (t, t0)

= (S(t)eS(t, t0))∗J (I + µ(t)S(t))eS(t, t0) + e∗S(t, t0)J S(t)eS(t, t0)

= e∗S(t, t0) [S∗(t)J + J S(t) + µ(t)S∗(t)J S(t)] eS(t, t0) = 0,

because S∗(t)J + J S(t) + µ(t)S∗(t)J S(t) = 0. This implies f(t) = J .

Let U(t) := eS(t, 1) for all t ∈ T. If we let {ρi} be the spectrum of U(qω), i.e., the

set of all eigenvalues of U(qω), then the spectra of U∗(qω) and U−1(qω) are the sets {ρi}

and
{

1
ρ i

}
, respectively. Since U∗(qω) = JU−1(qω)J −1, the sets {ρi} and

{
1
ρi

}
coincide.

Consequently, so do the sets {ρi} and
{

1
ρi

}
. Thus, if ρ is an eigenvalue of U(qω), then

so is 1
ρ
. The complex numbers ρ and 1

ρ
are symmetric with respect to the unit circle. In

general, we have the following.
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Lemma 2.6. For any matrix A such that A∗JA = J , the spectrum of A is symmetric

about the unit circle.

In case of the canonical system, the spectrum is symmetric with respect to both the

real axis and the unit circle, i.e., nonreal eigenvalues that are not on the unit circle are

partitioned into ρ, ρ, 1
ρ
, and 1

ρ
.

Definition 2.7. (i) The fundamental matrix U(qω) at the end point of the period is

called the monodromy matrix.

(ii) The eigenvalues of the monodromy matrix U(qω), i.e., the roots ρ of the character-

istic equation det (U(qω)− ρI) = 0 are called the multipliers of (1.2).

Theorem 2.8 (Lyapunov–Poincarè). The multipliers of the Hamiltonian (1.2) (or the

canonical (1.2)) equation allowing for their multipliers and the structure of the elementary

divisors, are symmetric about the unit circle.

We must consider the elementary divisors of the monodromy matrix U(qω) instead

of their spectrums to obtain more precise information. Let {(ρ− ρi)mi} be the set of the

elementary divisors of the monodromy matrix U(qω), i.e., det (U(qω)− ρI) = 0. Then the

set of the elementary divisors of the monodromy matrix U∗(qω) is {(ρ− ρi)mi}. Repeating

the above arguments, we see that the symmetry properties of the spectrum remain valid

when the elementary divisors are taken into consideration. In other words, if ρ0 is an

eigenvalue of the matrix U(qω) that is not on the unit circle (not on the imaginary axis)

and the corresponding elementary divisors are

(ρ− ρ0)m1 , (ρ− ρ0)m2 , . . . , (ρ− ρ0)mi ,

then the number ρ1 = 1
ρ0

is also an eigenvalue with the elementary divisors

(ρ− ρ1)m1 , (ρ− ρ1)m2 , . . . , (ρ− ρ1)mi ,

Thus the Lyapunov–Poincarè theorem holds.
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At the beginning, we mentioned periodic functions on the time scale T, and the

following is the formal definition.

Definition 2.9 (Bohner and Chieochan [1]). A function f : T→ R with

f(t) = qωf(qωt) for all t ∈ T

is called ω-periodic.

Definition 2.10. Let s, t ∈ T with t > s and f : T → R. Then the q-integral is defined

by ∫ t

s

f(τ)∆τ := (q − 1)
∑

τ∈[s,t)∩T

τf(τ).

Remark 2.11. For equation (1.2) such that H(t) is a complex symmetric matrix for all

t ∈ T and H is ω-periodic, we have the following results:

(i) UT (t)JU(t) = J for all t ∈ T.

(ii) If a number ρ is a multiplier of (1.2) with the complex symmetric H, then so is 1
ρ

and they have the same structure of the elementary divisors. Then its spectrum is

skew-symmetric with respect to the unit circle.

Lemma 2.12. The matrix S given as (1.4)is ω-periodic.

Proof. Since µ(qωt) = qωµ(t) for all t ∈ T and H is ω-periodic, we have

qωS(qωt) = qω
(
I − µ(qωt)JH(qωt)MTM

)−1 JH(qωt)

=
(
I − qωµ(t)JH(qωt)MTM

)−1 JH(t)

=
(
I − µ(t)JH(t)MTM

)−1
= S(t)

for all t ∈ T, i.e., the matrix-valued function S is ω-periodic.

Lemma 2.13. If x is a solution, U is a fundamental matrix, and the number ρ is a

multiplier of (1.2), then for any t ∈ T,

(i) U(t) is ω-periodic if and only if U(qω) = q−ωI,
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(ii) x(qωt) = ρx(t) for any t ∈ T, where U is ω-periodic.

Proof. First, we prove (i). Let

X∆(t) = S(t)X(t), X(1) = I

be the Hamiltonian matrix equation (with initial value) which is equivalent to (1.3). Then

its fundamental matrix U(t) is eS(t, 1). By the definition of the matrix exponential on the

q-time scale and Lemma 2.12, (i) holds. Next, we prove (ii). Let (ρ, x0) be an eigenpair

of the matrix U(qω). Since x(t) = U(t)x0 for all t ∈ T and by applying (i),

x(qωt) = U(qωt)x0 = q−ωU(t)x0 = q−ωU(t) · qωU(qω)x0 = U(t)ρx0 = ρx(t).

The proof is complete.

The following theorem is used in the proof of Theorem 4.6 in Section 4.

Theorem 2.14 (Smith–McMillan). Let U(s) = [Uik(s)] be an m×m matrix-valued func-

tion, where Uik(s) are the rational scalar functions U(s) = P (s)
l(s)

, where P (s) is an m×m

polynomial matrix of rank r, and l(s) is the least common multiple of the denominator of

all elements Uik(s). Then U(s) is equivalent to the matrix USM(s) given by

USM(s) = diag

(
ε1(s)

δ1(s)
,
ε2(s)

δ2(s)
, . . . ,

εr(s)

δr(s)
, 0, . . . , 0

)
,

where (εi(s), δi(s)) is a pair of monic and coprime polynomials for i = 1, 2, . . . , r. Fur-

thermore, εi(s) is a factor of εi+1(s) and δi(s) is a factor of δi−1(s).

The matrix USM is called the Smith–McMillan form of the matrix U .
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3. STRONG AND WEAK STABILITY

The terms of weak and strong stability of Hamiltonian q-difference equations are

defined as follows.

Definition 3.1. (i) The equation (1.2) is called weakly stable or stable if all its solutions

are bounded on T.

(ii) The equation (1.2) is called strongly stable if it is weakly stable and there is δ > 0

such that all solutions of any equation

x∆(t) = JH1(t)
[
MTMxσ(t) +MMTx(t)

]
,

where H1 is ω-periodic and Hermitian,

∫ qω

1

|H(t)−H1(t)|∆t < δ,

and the notation | · | means a matrix norm, are bounded on T.

We use the following terminologies given in Krĕın [5], Halanay and Răsvan [3], or

Răsvan [6].

(a) A vector v ∈ Cn is plus, minus, or null vector,

(b) A matrix U is J -decreasing or J -increasing,

(c) An eigenvalue ρ is of first, second, or mixed (indefinite) kind.

Proposition 3.2. All solutions of (1.2) are bounded on T if and only if all multipliers

of (1.2) have modulus one and they are simple type.

Proof. First, we assume that all solutions of (1.2) are bounded on T, and ρ1 and ρ2

are any multipliers of (1.2) which are not on the unit circle. Since U(qω) is J -unitary

and ρ1ρ2 6= 1, η∗J ξ = 0 for any ξ ∈ Lρ1 , η ∈ Lρ2 , where Lρi are the eigensubspaces

corresponding to the multipliers ρi (i = 1, 2). This implies U∗(qω)JU(qω) = 0 which
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gives a contradiction as U(qω) is J -unitary, and breaks up the bounded property of all

solutions. Thus all multipliers have modulus one.

Suppose there is a multiplier ρ of the equation (1.2) which is not simple. Then there

are two linearly independent solutions u and v of (1.2) corresponding to ρ such that

U(qω)u = ρu and U(qω)v = ρv + u.

Thus

u∗J v = u∗U∗(qω)JU(qω)v = ρu∗J (ρv + u) = |ρ|2u∗J v + ρu∗J u,

and then u∗J u = 0 because |ρ| = 1. This implies the Hamiltonian equation (1.2) is not

stable on T, which gives a contradiction. Hence ρ is simple.

Conversely, we assume that all multipliers of (1.2) have modulus one and they are

of simple type. Thus, for each multiplier ρ and its corresponding eigenvector u, iu∗J u

preserves the same sign on its eigensubspace while vanishing only at u = 0. By applying

Theorem 2.8 and matrix theory [5], this implies all solutions of (1.2) are bounded on

T.

Generally speaking, if the equation (1.2) is stable, then the matrix U(qω) is said to

be of stable type, i.e., all its eigenvalues have modulus one and they are simple.

Theorem 3.3 (Krĕın [5, Theorem 1.2]). If a J -unitary matrix U is of stable type, then

so are all J -unitary matrices V in some δ-neighborhood |U − V | < δ of it.

Theorem 3.4 (Yakubovich and Staržhinskii [7]). Let U0 be a J -unitary matrix having a

definite eigenvalue ρ0 on the unit circle, i.e., the eigenvalue ρ is the first or second kind.

Then

(i) the eigenvalue ρ0 is simple,

(ii) for any ε > 0, there exists a number δ > 0 such that for any J -unitary matrix U

satisfying the inequality |U−U0| < δ, all eigenvalues in the neighborhood |ρ−ρ0| < ε

lie on the unit circle and they are simple.
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Proposition 3.5 (Krĕın [5]). A sufficient condition for strong stability of the equation

(1.2) is that all its multipliers lie on the unit circle and they are definite.

Theorem 3.6 (See Bohner and Peterson [2]). Let y ∈ Crd, p ∈ R+, p ≥ 0, and α ∈ R.

Then

y(t) ≤ α +

∫ t

t0

y(τ)p(τ)∆τ for all t > t0

implies

y(t) ≤ αep(t, t0) for all t > t0.

Lemma 3.7. If f and g are any nonnegative functions on T, then

∫ qω

1

f(t)g(t)∆t ≤ 1

q − 1

(∫ qω

1

f(t)∆t

)(∫ qω

1

g(t)∆t

)
.

Proof. We have

(∫ qω

1

f(t)∆t

)(∫ qω

1

g(t)∆t

)
=

(
ω−1∑
i=0

µ(qi)f(qi)

)(
ω−1∑
j=0

µ(qj)g(qj)

)

=
ω−1∑
i=0

ω−1∑
j=0

µ(qi)f(qi)µ(qj)g(qj)

≥
ω−1∑
k=0

µ2(qk)f(qk)g(qk)

≥ (q − 1)
ω−1∑
k=0

µ(qk)f(qk)g(qk)

= (q − 1)

∫ qω

1

f(t)g(t)∆t.

Dividing by q − 1 completes the proof.

Theorem 3.8. If the Hamiltonian equation (1.2) is stable, then there exists some δ >

0 such that all Hamiltonian equations with the corresponding ω-periodic Hermitian H̃

matrices which satisfy ∫ qω

1

|H(t)− H̃(t)|∆t < δ,

are also stable.
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Remark 3.9. By Definition 3.1 and Theorem 3.8, the equation (1.2) is strongly stable.

Proof of Theorem 3.8. Let us consider the Hamiltonian equations

x∆(t) = S(t)x(t), w∆(t) = S̃(t)w(t), (3.1)

where

S(t) = (I − µ(t)JH(t)MTM)−1JH(t)

and

S̃(t) = (I − µ(t)J H̃(t)MTM)−1J H̃(t)

for all t ∈ T. Next we shall estimate the upper bound of
∣∣∣S(t)− S̃(t)

∣∣∣ for all t ∈ T∩[1, qω],

where | · | means a matrix norm. For convenience, we shall write S instead of S(t) and do

the same for the other functions. We have

∫ qω

1

|S − S̃|∆t =

∫ qω

1

|(I − µJHMTM)−1JH − (I − µJ H̃MTM)−1J H̃|∆t

=

∫ qω

1

|(I − µJHMTM)−1J (H− H̃) + (I − µJHMTM)−1J H̃

−(I − µJ H̃MTM)−1J H̃|∆t

≤ |J |
∫ qω

1

{|(I − µJHMTM)−1||H − H̃|+ |H̃||(I − µJHMTM)−1

−(I − µJ H̃MTM)−1|}∆t

≤ |J |
(∫ qω

1

|(I − µJHMTM)−1|∆t
)(∫ qω

1

|H − H̃|∆t
)

+|J |
(∫ qω

1

|H̃|∆t
)(∫ qω

1

|(I − µJHMTM)−1 − (I − µJ H̃MTM)−1|∆t
)

≤ m1

∫ qω

1

|H − H̃|∆t+m2,

where

m2 = |J |
(∫ qω

1

|H̃|∆t
)(∫ qω

1

|(I − µJHMTM)−1 − (I − µJ H̃MTM)−1|∆t
)
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and

m1 = |J |
∫ qω

1

|(I − µJHMTM)−1|∆t.

Assume U and V are any fundamental solution matrices for (3.1), respectively. Let us

consider a matrix Hamiltonian equation

Y ∆(t) = S(t)Y + F (t), Y (1) = I, (3.2)

where S is given as (3.1) and I is the identity matrix. The matrix solution of equation

(3.2) is given by (see Bohner and Peterson [2])

Y (t) = eS(t, 1) +

∫ t

1

eS(t, σ(τ))F (τ)∆τ

= eS(t, 1) + eS(t, 1)

∫ t

1

e−1
S (σ(τ), 1)F (τ)∆τ.

If F (t) = (S̃(t)− S(t))V (t) for all t ∈ T, then we have

V (t) = eS(t, 1) + eS(t, 1)

∫ t

1

e−1
S (σ(τ), 1)(S̃(τ)− S(τ))V (τ)∆τ

= U(t) + U(t)

∫ t

1

U−1(σ(τ))(S̃(τ)− S(τ))V (τ)∆τ.

Thus

|V (qω)− U(qω) ≤ |U(qω)|
∫ qω

1

|U−1(σ(τ))||S̃(τ)− S(τ)||V (τ)|∆τ.

Since U∆(t) = S(t)U(t) and U(1) = I, we have

U(t) = I +

∫ t

1

S(τ)U(τ)∆τ and |U(t)| ≤ α1 +

∫ t

1

|S(τ)||U(τ)|∆τ,

where α1 = |I|. By Theorem 3.6,

|U(t)| ≤ α1e|S|(t, 1) for all t ∈ T.

This gives

|U(qω)| ≤ α1e|S|(q
ω, 1) ≤ α1e

∫ qω
1 |S(τ)|∆τ .
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Also in the same way, for all t ∈ T,

|V (t)| ≤ α2e
∫ t
1 |S̃(τ)|∆τ ≤ α2e

∫ t
1 |S̃(τ)−S(τ)|∆τ+

∫ t
1 |S(τ)|∆τ ,

|U−1(t)| ≤ α3e
∫ t
1 |S(τ)|∆τ ,

where α2 and α3 are some real numbers. Hence by the inequality (3.2) and the previous

results,

|V (qω)− U(qω)| ≤ α1α2α3e
3
∫ qω
1 |S(τ)|∆τ+

∫ qω
1 |S̃(τ)−S(τ)|∆τ

∫ qω

1

|S̃(τ)− S(τ)|∆τ

< α1α2α3(m1δ +m2)e3
∫ qω
1 |S(τ)|∆τ+m1δ+m2

provided ∫ qω

1

|H(τ)− H̃(τ)|∆τ < δ

for some α1, α2, α3 ∈ R. Now U(qω) is J -unitary of the stable type and if

|V (qω)− U(qω)| < ε

for given ε > 0, then there is δ = δε by choosing from the inequality

α1α2α3(m1δ +m2)e3β+m1δ+m2 < ε

such that ∫ qω

1

|H(τ)− H̃|(τ)∆τ < δ,

where β =
∫ qω

1
|S(τ)|∆τ .
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4. BVP FOR HAMILTONIAN EQUATIONS WITH A PARAMETER

The following equation is the boundary value problem for Hamiltonian equation

(1.2) with parameter λ:

x∆(t) = λJH(t)
[
MTMxσ(t) +MMTx(t)

]
, x(1) = qωx(qω). (4.1)

Since sometimes we discuss the equation (4.1) without the given boundary condition, let

us denote that equation by (4.1)∗. We call the number λ satisfying (4.1) (or (4.1)∗) an

eigenvalue or characteristic value.

Definition 4.1. We say that H belongs to the class P(qω), and write H ∈ P(qω), if

(i) H(t) ≥ 0 for all t ∈ [1, qω] ∩ T, and

(ii)
∫ qω

1
H(t)∆t > 0.

The conditions (i) and (ii) mean that for any vector η ∈ Cn, η 6= 0, η∗H(t)η ≥ 0 for

all t ∈ [1, qω] ∩ T, and ∫ qω

1

η∗H(t)η∆t > 0.

Lemma 4.2. Suppose x(t;λ) =

y(t;λ)

z(t;λ)

 is a solution of equation (4.1)∗ and shortly

write x =

y
z

 for convenience. If H ∈ P(qω), then for any solution x = x(t;λ) 6= 0 of

(4.1)∗, the equality

y
z

∗ J
y
z


t=qω

−

y
z

∗ J
y
z


t=1

= (λ− λ)

∫ qω

1

yσ
z

∗H
yσ
z

∆t (4.2)

holds, where

∫ qω

1

yσ
z

∗H
yσ
z

∆t > 0. (4.3)
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Proof. Since,

y
z

∗ J
y
z

∆t

=

y
z

∗∆t

J

yσ
zσ

+

y
z

∗ J
y
z

∆t

=

y
z

∗∆t

J

 yσ

z + µz∆t

+

yσ − µy∆t

z

∗ J
y
z

∆t

=

y
z

∗∆t

J

yσ
z

+

y
z

∗∆t

J

 0

µz∆t

+

yσ
z

∗ J
y
z

∆t

−

µy∆t

0

∗ J
y
z

∆t

=

y
z

∗∆t

J

yσ
z

+

yσ
z

∗ J
y
z

∆t

=

λJH
yσ
z

∗ J
yσ
z

+

yσ
z

∗ J · λJH
yσ
z


= (λ− λ)

yσ
z

∗H
yσ
z

 ,

by integrating both sides of the above equality, we obtain (4.2). Since H ∈ P(qω), this

gives the inequality (4.3).

Remark 4.3. (i) A number λ is a root of the equation det(U(qω;λ)− q−ωI) = 0, where

U(qω;λ) is the fundamental matrix solution at the end point qω of the period for

(4.1).

(ii) λ = 0 is not eigenvalue of (4.1) because

U(t;λ) = eS(t;λ) =
∏
τ∈[1,t)

[I + µ(τ)S(τ ;λ)]

=
∏
τ∈[1,t)

[I + λ2µ(τ)(I − λµ(τ)JH(τ)MTM)−1JH(τ)]

and

det(U(qω;λ = 0)− q−ωI) = det(I − q−ωI) = (1− q−ω)n 6= 0,

where the number n is the dimension of the matrix considered.
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Theorem 4.4. If H ∈ P(qω), then all eigenvalues of (4.1) are real.

Proof. From the left side of (4.2) and with the boundary condition x(1) = qωx(qω), we

obtain

y(qω;λ)

z(qω;λ)

∗ J
y(qω;λ)

z(qω;λ)

−
y(1;λ)

z(1;λ)

∗ J
y(1;λ)

z(1;λ)


= (1− qω)

y(qω;λ)

z(qω;λ)

∗ J
y(qω;λ)

z(qω;λ)


= (1− qω)

(
y∗(qω;λ) z∗(qω;λ)

) z(qω;λ)

−y(qω;λ)


= 0.

Because of the inequality (4.3), the right side of the equation (4.2) is identical zero only

if λ = λ, i.e., λ is real.

Theorem 4.5. Let 0 < λ1 ≤ λ2 ≤ . . . be the positive eigenvalues of (4.1) and let

0 > λ−1 ≥ λ−2 ≥ . . . be the negative ones. Here it is assumed that each λj or λ−j

occurs in the sequences as given a number of times equal its multiplicity as a root of

(4.1). Suppose H1 and H2 are two Hermitian matrix-valued functions of the class P(qω)

with H1(t) ≤ H2(t) for all t ∈ [1, qω] ∩ T and denote λj(H) or λ−j(H) an eigenvalue

depending on H. Then λj(H1) ≥ λj(H2) and λ−j(H1) ≤ λ−j(H2) for all j ∈ N.

Proof. We shall only show that λj(H1) ≥ λj(H2) for all j ∈ N. For the second result, its

proof is as the proof of the first result. Let us consider the Hamiltonian boundary value

problem

x∆
ε (t) = λεJHε(t)

[
MTMxσε (t) +MMTxε(t)

]
, xε(1) = qωxε(q

ω), (4.4)

where Hε(t) = H1(t) + ε(H2(t)−H1(t)) for all t ∈ [1, qω] ∩ T, and 0 ≤ ε ≤ 1.

Assume Uε(t;λε) is a fundamental matrix solution of (4.4). By (2.1) with S = Sε,

thus

Uε(t;λε) = eSε(q
ω, 1),
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is a piecewise analytic function of the parameter ε, where

Sε(t;λε) = λε
(
I − µ(t)λεJHε(t)MTM

)−1 JHε(t).

If λε := λε(ε) = λj(Hε) is a positive eigenvalue of (4.4), then it is also a piecewise analytic

function of ε. Then we can choose a corresponding eigenvector ηε with

xε(t;λε) = Uε(t;λε)ηε

subject to the normalization

−
∫ qω

1

yσε
zε

∗ J
yε
zε

∆t

∆t = λε

∫ qω

1

yσε
zε

∗Hε

yσε
zε

∆t = 1, (4.5)

where xε(t;λε) =

yε(t;λε)
zε(t;λε)

, or shortly xε =

yε
zε

. By differentiating the first integral

of (4.5) with respect to ε,

∫ qω

1

yσε
zε

∗ J

yε
zε

∆t


∆ε

∆t+

∫ qω

1

yσε
zε

∗∆ε

J

yε
zε

∆t

∆t = 0, (4.6)

where ∆ε := ∂
∂ε
. Also by differentiating the second integral of (4.5) with respect to ε,

λε

∫ qω

1

yσε
zε

∗ (H2 −H1)

yσε
zε

∆t+
dλε
dε

∫ qω

1

yσε
zε

∗Hε

yσε
zε

∆t

+λε

∫ qω

1


yσε

zε

∗∆ε

Hε

yσε
zε

+

yσε
zε

∗Hε

yσε
zε

∆ε
∆t = 0. (4.7)
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Since −J

yε
zε

∆t

= λεHε

yσε
zε

 and by using the equation (4.6) together with the fact

yσε
zε

∆ε

:= ∂
∂ε

yσε
zε

 ≡
yσε
zε

, we obtain

λε

∫ qω

1


yσε

zε

∗∆ε

Hε

yσε
zε

+

yσε
zε

∗Hε

yσε
zε

∆ε
∆t = 0.

Thus the equation (4.7) becomes

dλε
dε

∫ qω

1

yσε
zε

∗Hε

yσε
zε

∆t = −λε
∫ qω

1

yσε
zε

∗ (H2 −H1)

yσε
zε

∆t,

but since from equation (4.5),

∫ qω

1

yσε
zε

∗Hε

yσε
zε

∆t =
1

λε
,

and H1 ≤ H2, hence

1

λε

dλε
dε

=
d

dε
(lnλε) = −λε

∫ qω

1

yσε
zε

∗ (H2 −H1)

yσε
zε

∆t ≤ 0,

i.e., the function λε is nonincreasing. Now recall λε := λε(ε) = λj(Hε), where Hε =

H1 + ε(H2−H1). Obviously, since λε(0) = λj(H1) and λε(1) = λj(H2), λj(H1) ≥ λj(H2)

for all j ∈ N. The proof in the case where λε is a positive eigenvalue is done. For the case

where λε := λ−j(Hε) is a negative eigenvalue, the following expression appears

d

dε
(ln |λε|) = |λε|

∫ qω

1

yσε
zε

∗ (H2 −H1)

yσε
zε

∆t ≥ 0,

which implies λε is nondecreasing.
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Theorem 4.6. The multiplicity kj of any eigenvalue λj of the equation (4.1) coincides

with the number dj of the linearly independent associated solutions of the equation (4.1).

Proof. Let V (λ) = U(qω;λ)− q−ωI and λj be a root of detV (λ) = 0. The number of the

linearly independent solutions of (4.1) for λ = λj is the number defect dj of the matrix

V (λ). Because V (λ) is rational matrix, the Smith–McMillan form can be applied for V (λ).

From Theorem 2.14, V (λ) = P (λ)
l(λ)

, and the Smith–McMillan form for V is

V SM(λ) = diag

(
ε1(λ)

δ1(λ)
,
ε2(λ)

δ2(λ)
, . . . ,

εr(λ)

δr(λ)
, 0, . . . , 0

)
.

But detV (λ) is a nonzero rational function, thus also detV SM(λ) is a nonzero rational

function, furthermore, dim(V ) = rank(P ) = r and

detV (λ) = C detV SM = C
ε1(λ)ε2(λ) . . . εdim(V )(λ)

δ1(λ)δ2(λ) . . . δdim(V )(λ)
, (4.8)

where C is a nonzero constant. If (λ−λj)|εk(λ), then λ−λj divides all polynomials εp(λ)

for all p > k. If the rank of V (λj) is rj and its defect is dj = dim(V )− rj, then λ−λj is a

divisor of the last dj polynomials εk(λ) in (4.8). Because detV (λ) is a one-to-one rational

function, this implies that εi(λ) for i ∈ {1, 2, . . . , dim(V )}, are simple polynomials. Hence

the multiplicity kj of λj is dj.
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5. STABILITY AND ANALYTIC PROPERTIES OF THE MULTIPLIERS

In this section, we shall discuss the strong stability for (4.1).

Definition 5.1. A point λ0 is called a λ-point of stability of the Hamiltonian equation

(4.1) if, for λ = λ0, all solutions of (4.1) are bounded on the time scale T. Furthermore,

if, for λ = λ0, all solutions of the equation of (4.1) having H(t) replaced H̃(t) which

is ω-periodic and Hermitian and sufficiently close to H(t) (in some well-defined sense),

are bounded on T. Then we call λ = λ0 a λ-point of strong stability of the Hamiltonian

equation (4.1).

The following consequences follow from Theorem 3.8.

(i) If we consider the Hamiltonian equation (4.1), we may obtain its neighborhoods

that obey Theorem 3.8 by modifying the parameter λ.

(ii) Since stability is expressed via the properties of the multipliers ρ(λ) and strong

stability, this means those properties of the multipliers ρ(λ) are preserved with

respect to the Hamiltonian perturbations. It is an important issue to discuss the

multipliers with respect to these perturbations.

We have already shown that an eigenvalue λ of the boundary value problem (4.1) with

H ∈ P(qω) is real. However, a complex eigenvalue λ of (4.1)∗ may occur and the following

theorem shows that the multipliers depending on the complex eigenvalue λ of (4.1) are

not on the unit circle.

Lemma 5.2. If H ∈ P(qω), then the monodromy matrix of (4.1)∗ is J -unitary, J -

increasing, or J -decreasing depending on whether Imλ is zero, positive, or negative.

Proof. For any vector η ∈ Cn, η 6= 0, the vector-valued function x(t;λ) = U(t;λ)η is

solution of the Hamiltonian equation (4.1)∗. With the given

x(t;λ) :=

y(t;λ)

z(t;λ)

 ,
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then by applying Lemma 4.2, we have

(U(qω)η)∗JU(qω)η − (U(1)η)∗JU(1)η

= −2iIm(λ)

∫ qω

1

yσ(t;λ)

z(t;λ)

∗H
yσ(t;λ)

z(t;λ)

∆t, (5.1)

where i means the imaginary number. Multiplying both sides of (5.1) by the imaginary

number i, we obtain

iη∗U∗(qω)JU(qω)η − iη∗Jη = 2Im(λ)

∫ qω

1

yσ(t;λ)

z(t;λ)

∗H
yσ(t;λ)

z(t;λ)

∆t. (5.2)

The left side of (5.2) is zero, positive, or negative depending on Im(λ). This completes

the proof.

Theorem 5.3. Consider the Hamiltonian equation (4.1) with the complex eigenvalue λ,

i.e., with Im (λ) 6= 0. Then half of the multipliers of (4.1) have moduli less than one and

the other half have their moduli larger than one provided H ∈ P(qω).

Proof. The proof is done by Lemma 5.2 and by Krĕın [5, Theorem 1.1].

Theorem 5.4. The points of strong stability of (4.1) form an open set which is nonempty

when (4.1) is of positive type, i.e., H ∈ P(qω).

Proof. The proof goes as in [3] and [5] and also by applying Theorem 3.8 with λ0H as H

and λH as H̃, λ 6= λ0. Thus if λ0 ∈ R is a point of strong stability, then the set of strong

stability points is open.

Let us consider the Hamiltonian equation (4.1). If it is stable, the monodromy

matrix is of stable type, i.e., all multipliers are simple and have modulus one which may

be first kind, second kind or mixed kind. The following are some interesting results.

(i) If all multipliers are simple with multiplicity one and the stability is strong for any

sufficiently small perturbation, the multipliers cannot leave the unit circle since they

will break up the symmetry of multipliers.



76

(ii) If there is a multiplier ρ0 having its multiplicity of at least two, there may be

taken away from the unit circle. In fact a newly appearing multiplier might be the

multiplier of a perturbed Hamiltonian equation. A meeting of multipliers of the

same kind will not move away from the unit circle, while the multipliers of different

kinds that meet on the unit circle may move off the unit circle under a suitable

perturbation.
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IV. EXISTENCE OF PERIODIC SOLUTIONS OF A q-DIFFERENCE

BOUNDARY VALUE PROBLEM

ABSTRACT

In this paper, we study a certain second-order q-difference equation subject to given

boundary conditions. Using a recently introduced concept of periodic functions in quan-

tum calculus, we establish the existence of solutions whose reciprocal square is periodic.

The proof of our main result relies on an application of the Mountain Pass Theorem.
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1. INTRODUCTION

Periodic solutions of difference (or differential) boundary value problems have been

studied in many papers such as [3, 4, 7–9]. There are many approaches when seeking

periodic solutions of difference (or differential) equations, such as critical point theory [5]

(which includes minimax theory and Morse theory), fixed point theory, and many more.

Throughout this paper, we consider the q-difference boundary value problem

x∆∆(t) +∇F (qt, x(qt)) = 0, t ∈ T := qN0

x(1) = q−ω/2x(qω), x∆(1) = qω/2x∆(qω),
(1.1)

where

x∆(t) =
x(qt)− x(t)

(q − 1)t
for t ∈ T,

F : T × Rm → R is continuously differentiable in the second variable and ω-periodic in

the first variable, i.e., F (t, u) = qωF (qωt, u) for all (t, u) ∈ T× Rm, ω ∈ N, and ∇F (t, u)

denotes the gradient of F (t, u) in u.

In Section 3, we show that, by applying the Mountain Pass Theorem (Theorem 2.5),

the problem (1.1) under certain hypotheses has at least one solution whose reciprocal

square is ω-periodic. For the differential boundary value problem,

x′′(t) +∇F (t, x(t)) = 0, t ∈ R,

x(0) = x(T ), x′(0) = x′(T ),
(1.2)

where T > 0, F : [0, T ] × Rm → R, the existence of T -periodic solutions under some

hypotheses was established by Zhang and Zhou [9], while Long [4] obtained a similar

result for the corresponding discrete boundary value problem. In both the continuous

case and the discrete case, a nonnegative function is periodic if and only if its reciprocal

square is periodic.
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2. PRELIMINARIES AND AUXILIARY RESULTS

The following definitions and results are useful in order to prove the theorems in

Section 3.

Definition 2.1 (Bohner and Peterson [2]). Let f : T→ R be a function. The expression

f∆(t) =
f(qt)− f(t)

(q − 1)t

is called the q-derivative of f .

Using the notation fσ(t) = f(qt), the q-derivatives of the product and quotient of

f, g : T→ R are given by

(fg)δ = f∆g + fσg∆ = fg∆ + f∆gσ

and (
f

g

)∆

=
f∆g − fg∆

ggσ
.

Definition 2.2 (Bohner and Peterson [2]). Let f : T → R and s, t ∈ T such that s < t.

Then ∫ t

s

f(ξ)∆ξ := (q − 1)
∑

τ∈[s,t)∩T

τf(τ)

is called the integral on T.

Definition 2.3 (Bohner and Chieochan [1]). A function f : T→ R with

f(t) = qωf(qωt) for all t ∈ T

is called ω-periodic.

Let E be a real Banach space. Bρ(0) and ∂Bρ(0) denote the open ball centered at

zero in E of radius ρ and the boundary of ball Bρ(0), respectively.
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Definition 2.4. Let I be a continuously Fréchet differentiable functional defined on E. I

is said to satisfy the Palais–Smale condition if any sequence {un} ⊂ E for which {I(un)}

is bounded and I ′(un)→ 0 as n→∞ possesses a convergent subsequence in E.

Theorem 2.5 (Mountain Pass Theorem [6]). Let J ∈ C1(E,R). Suppose J satisfies the

Palais–Smale condition, J(0) = 0,

(J1) there exist constants ρ, α > 0 such that J |∂Bρ(0) ≥ α, and

(J2) there is an e ∈ E|∂Bρ(0) such that J(e) ≤ 0.

Then J possesses a critical value c ≥ α which can be characterized by

c = inf
g∈Γ

max
u∈g[0,1]

J(u),

where Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

To prove the main theorems in Section 3, we introduce a functional for the problem

(1.1) in the following way. Let

S = {x = {x(t)} : x(t) ∈ Rm, t ∈ T ∪ {1/q}} .

and define the vector subspace of S

Eω =
{
x = {x(t)} ∈ S : x(t) = q−ω/2x(qωt), t ∈ T ∪ {1/q}

}
.

Now Eω can be equipped with the norm ‖ · ‖Eω and the inner product 〈·, ·〉Eω for any

x, y ∈ Eω by

‖x‖Eω :=

(∑
t∈Qω

|x(t)|2
) 1

2

and 〈x, y〉Eω :=
∑
t∈Qω

x(t) · y(t),

where

Qω =
{
qk : 1 ≤ k ≤ ω − 1

}
,
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| · | denotes the usual norm in Rm, and x(t) · y(t) denotes the usual scalar product in Rm.

It is simple to show that Eω is isomorphic to Rωm, and moreover, (Eω, 〈·, ·〉Eω) is a Hilbert

space. For any given number r > 1, we let

‖x‖r =

(∑
t∈Qω

|x(t)|r
) 1

r

for all x ∈ Eω. By Hölder’s inequality, ‖·‖r is a norm on Eω. Thus we have ‖·‖Eω = ‖·‖2.

Then there exist some constants C1 and C2 such that 0 < C1 ≤ C2 and

C1‖x‖r ≤ ‖x‖2 ≤ C2‖x‖r for all x ∈ Eω. (2.1)

Furthermore,

‖x‖1 ≤
√
ω‖x‖2 for all x ∈ Eω. (2.2)

Now the functional J on Eω is defined by

J(x) =

∫ qω

1

(
−1

2
|x∆(t)|2 + F (qt, x(qt))

)
∆t for all x ∈ Eω. (2.3)

By Definition 2.1 and 2.2, the functional J can be rewritten as

J(x) =
∑
t∈Qω

{
− 1

2(q − 1)t
[x2(t)− 2x(t)x(qt) + x2(qt)] + (q − 1)tF (qt, x(qt))

}
(2.4)

for all x ∈ Eω. Suppose

∇F (t, x) = f(t, x) ∈ C(T× Rm,Rm), where f = (f1, f2, . . . , fm)T .

Let

x = {x(t)} ∈ Eω, where x(t) = (x1(t), x2(t), . . . , xm(t))T ,
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and denote µ(t) := (q−1)t for all t ∈ T∪{1/q}. By the assumption, F (t, x) = qωF (qωt, x)

for all (t, x) ∈ T× Rm,

∂J(x)

∂xj(t)
= µ(t/q)

[
x∆∆
j (t/q) + fj(t, xj(t))

]
for all t ∈ Qω and j ∈ {1, 2, . . . ,m}. Therefore, x = {x(t)} ∈ Eω is a critical point of J ,

that is, J ′(x) = 0 if and only if for each j ∈ {1, 2, . . . ,m},

x∆∆
j (t/q) + fj(t, xj(t)) = 0

i.e., x∆∆(t) +∇F (qt, x(qt)) = 0 for all t ∈ Qω. Hence, if x ∈ Eω is a critical point of J ,

then it is a solution of (1.1), and the reciprocal square of x, i.e., 1/x2, is ω-periodic. Let

z = (z(1)T , z(q)T , . . . , z(qω−1)T )T with z(t) = (z1(t), z2(t), . . . , zm(t))T ∈ Rm

for all t ∈ Qω. We have

Pz =
(
z1(1), z1(q), . . . , z1(qω−1), z2(1), z2(q), . . . , z2(qω−1), . . .

. . . , zm(1), zm(q), . . . , zm(qω−1)
)T
,

where P is the ωm× ωm-matrix given by
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m 2m (ω − 1)m+ 1

P =



1 0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0 . . . 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 . . . 0 . . . 1 0 . . . 0

0 1 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 0 1 . . . 0 . . . 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 0 0 . . . 1 . . . 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 . . . 0 . . . 0 0 . . . 1



ω

2ω

(m−1)ω+1

Then the functional J given by (2.4) can be rewritten as

J(z) = −1

2
〈APz, Pz〉+

∑
t∈Qω

µ(t)F (qt, z(qt)) for all z ∈ Eω, (2.5)

where

A =


B 0

B

. . .

0 B


ωm×ωm
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and

B =
1

q − 1



[q]0 −1 0 0 . . . 0 −q−ω/2+1

−1 [q]1 −1
q

0 . . . 0 0

0 −1
q

[q]2 − 1
q2

. . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 − 1
qω−3 [q]ω−2 − 1

qω−2

−q−ω/2+1 0 0 0 . . . − 1
qω−2 [q]ω−1


ω×ω

,

and [q]0 = 1+q, [q]n = 1
qn−1 + 1

qn
, n ∈ {1, 2, . . . , ω−1}. Let D = P−1AP . Since P−1 = P T ,

DT = D and

J(z) = −1

2
〈Dz, z〉+

∑
t∈Qω

µ(t)F (qt, z(qt)) for all z ∈ Eω. (2.6)

By matrix theory, the matrices A and D have the same real eigenvalues with the same

multiplicities. It is simple to show that the matrix B is positive definite, i.e., all eigenvalues

of B are positive real numbers. This implies that each eigenvalue of the matrix B is also

an eigenvalue of the matrix D with multiplicity m.
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3. MAIN RESULTS

Throughout this section, we denote by λmin and λmax the minimum and maximum

eigenvalues of the matrix D given in (2.6), respectively, and let

∇F (t, x) = f(t, x) ∈ C(T× Rm,Rm).

We apply the Mountain Pass Theorem to prove the main theorems in this section.

Theorem 3.1. Suppose that F (t, z) satisfies the following:

(H1) there exists ω ∈ N such that F (t, z) = qωF (qωt, z) for any (t, z) ∈ T× Rm;

(H2) there is a constant M0 such that |f(t, z)| ≤M0 for all (t, z) ∈ T× Rm;

(H3) F (t, z)→∞ uniformly for all t ∈ T as |z| → ∞.

Then the problem (1.1) has at least one solution.

Lemma 3.2. Under the hypotheses of Theorem 3.1, the functional J satisfies the Palais–

Smale condition.

Proof. Suppose that {x(k)} ⊂ Eω is such that for all k ∈ N, |J(x(k))| ≤ M2 for some

M2 > 0, and J ′(x(k))→ 0 as k →∞. Then, for the sufficiently large k,

〈J ′(x(k)), x〉 ≥ −‖x‖2.

We have

−‖x(k)‖2 ≤ 〈J ′(x(k)), x(k)〉

= −〈Dx(k), x(k)〉+
∑
t∈Qω

µ(t)f(qt, x(k)(qt))x(k)(qt)

(H2)
≤ −λmin‖x(k)‖2

2 +M0(q − 1)qω−1
∑
t∈Qω

|x(k)(qt)|

= −λmin‖x(k)‖2
2 +M0(q − 1)qω−1

∑
t∈Qω\{qω−1}

|x(k)(qt)|+ q
ω
2 |x(k)(1)|
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≤ −λmin‖x(k)‖2
2 +M0(q − 1)q

3ω
2
−1
∑
t∈Qω

|x(k)(t)|

= −λmin‖x(k)‖2
2 +M0(q − 1)q

3ω
2
−1‖x(k)‖1

(2.2)

≤ −λmin‖x(k)‖2
2 +M0(q − 1)q

3ω
2
−1
√
ω‖x(k)‖2.

This gives

‖x(k)‖2 ≤
1

λmin

(
1 +M0(q − 1)q

3ω
2
−1
√
ω
)

for all k ∈ N, i.e., {x(k)} is bounded for all k ∈ N. Since Eω is finite dimensional, there

exists a convergent subsequence of {x(k)}. Hence J satisfies the Palais–Smale condition.

Proof of Theorem 3.1. By Lemma 3.2, the functional J satisfies the Palais–Smale condi-

tion. By hypothesis (H3), there exist ρ > 0 and R > 0 such that

ρ2 ≤ 2ω

4λmax

(q − 1)R and F (t, z) ≥ R for all (t, z) ∈ T× ∂Bρ(0) ∩ Eω.

Thus, for any z ∈ ∂Bρ(0) ∩ Eω, we have

J(z) = −1

2
〈Dz, z〉+

∑
t∈Qω

µ(t)F (qt, z(qt))

≥ −λmax

2
‖z‖2

2 + ω(q − 1)R

= −λmax

2
ρ2 + ω(q − 1)R

≥ 3ω

4
(q − 1)R.

Hence condition (J1) of the Mountain Pass Theorem holds. Because of ∇F (t, z) = f(t, z)

and the hypothesis (H2),

|F (t, z)| ≤M1 +M0|z| for all (t, z) ∈ T× Rm
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and for some number M1 > 0. Let y ∈ Eω be arbitrary. Then

J(y) = −1

2
〈Dy, y〉+

∑
t∈Qω

µ(t)F (qt, y(qt))

≤ −λmin

2
‖y‖2

2 +
∑
t∈Qω ]

µ(t)|F (qt, y(qt))|

≤ −λmin

2
‖y‖2

2 +
∑
t∈Qω

µ(t)(M1 +M0|y(qt)|)

≤ −λmin

2
‖y‖2

2 +M1(qω − 1) +M0q
ω−1(q − 1)

∑
t∈Qω

|y(qt)|

≤ −λmin

2
‖y‖2

2 +M1(qω − 1) +M0q
5ω
2
−1(q − 1)‖y‖1

(2.2)

≤ −λmin

2
‖y‖2

2 +M1(qω − 1) +M0q
5ω
2
−1(q − 1)

√
ω‖y‖2

= ‖y‖2
2

(
−λmin

2
+M0q

5ω
2
−1(q − 1)

√
ω

‖y‖2

)
+M1(qω − 1)→ −∞

as ‖y‖2 → ∞. Then there exists a sequence e ∈ Eω|∂Bρ(0) such that ‖e‖2 is sufficiently

large and

J(e) ≤ ‖e‖2
2

(
−λmin

2
+M0q

5ω
2
−1(q − 1)

√
ω

‖e‖2

)
+M1(qω − 1) ≤ 0.

Thus J satisfies condition (J2) of the Mountain Pass Theorem. Hence the proof is com-

plete.

Theorem 3.3. Suppose that F (t, z) satisfies (H1) and

(H4) there exist constants R1 and α ∈ (1, 2) such that 0 < zf(t, z) ≤ αF (t, z) for all

(t, z) ∈ T× Rm, |z| ≥ R1;

(H5) there exist constants β1, β2 > 0 and γ > 2 such that F (t, z) ≥ a1(t)|z|γ − a2(t) for

all (t, z) ∈ T×Rm, where the functions a1, a2 : T→ R+ are given by a1(t) = β1
t

and

a2(t) = β2
t

;

Then the problem (1.1) has at least one solution.

Lemma 3.4. Under the hypotheses of Theorem 3.3, the functional J satisfies the Palais–

Smale condition.
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Proof. Assume {x(k)} ⊂ Eω for all k ∈ N such that |J(x(k))| ≤ M5 for some M5 > 0 and

J ′(x(k))→ 0 as k →∞. Since lim
k→∞

J ′(x(k)) = 0, for sufficiently large k, we have

−1

2
‖x(k)‖2 ≤ −

1

2
〈J ′(x(k)), x(k)〉 ≤ 1

2
‖x(k)‖2.

Then

M5 +
1

2
‖x(k)‖2 ≥ J(x(k))− 1

2
〈J ′(x(k)), x(k)〉

=
∑
t∈Qω

µ(t)

(
F (qt, x(k)(qt))− 1

2
f(qt, x(k)(qt))x(k)(qt)

)
.

Let

A1 :=
{
t ∈ Qω : |x(k)(qt)| ≥ R1

}
and A2 :=

{
t ∈ Qω : |x(k)(qt)| < R1

}
,

where the constant number R1 is from (H4). Then

∑
t∈Qω

µ(t)

(
F (qt, x(k)(qt))− 1

2
f(qt, x(k)(qt))x(k)(qt)

)
=

∑
t∈Qω

µ(t)F (qt, x(k)(qt))− 1

2

∑
t∈A1

µ(t)f(qt, x(k)(qt))x(k)(qt)

−1

2

∑
t∈A2

µ(t)f(qt, x(k)(qt))x(k)(qt)

(H4)
≥

∑
t∈Qω

µ(t)F (qt, x(k)(qt))− α

2

∑
t∈A1

µ(t)F (qt, x(k)(qt))

−1

2

∑
t∈A2

µ(t)f(qt, x(k)(qt))x(k)(qt)

=
(

1− α

2

) ∑
t∈Qω

µ(t)F (qt, x(k)(qt))

+
1

2

∑
t∈A2

µ(t)
[
αF (qt, x(k)(qt))− f(qt, x(k)(qt))x(k)(qt)

]
.
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Since αF (t, z)−f(t, z)z is continuous with respect to (t, z), there exists a constant number

M6 > 0 such that |z| < R1, and then αF (t, z)−f(t, z)z ≥ −M6 for all t ∈ Qω. Therefore,

M5 +
1

2
‖x(k)‖2 ≥

(
1− α

2

) ∑
t∈Qω

µ(t)F (qt, x(k)(qt))− 1

2
M6(qω − 1)

(H5)
≥

(
1− α

2

) ∑
t∈Qω

µ(t)
[
a1(qt)|x(k)(qt)|γ − a2(qt)

]
− 1

2
M6(qω − 1)

≥
(

1− α

2

) β1

q
(q − 1)

∑
t∈Qω

|x(k)(qt)|γ − (q − 1)ω
β2

q

(
1− α

2

)
− 1

2
M6(qω − 1)

≥
(

1− α

2

) β1

q
(q − 1)‖x(k)‖γγ − (q − 1)ω

β2

q

(
1− α

2

)
− 1

2
M6(qω − 1)

≥
(

1− α

2

) β1

q
(q − 1)‖x(k)‖γγ −M7,

where

M7 = (q − 1)ω
β2

q

(
1− α

2

)
+

1

2
M6(qω − 1).

By the inequality (2.1), we have

M5 +
1

2
‖x(k)‖2 ≥

(
1− α

2

) β1

q
(q − 1)

‖x(k)‖γ2
Cγ

2

−M7.

Hence (
1− α

2

) β1

q
(q − 1)

‖x(k)‖γ2
Cγ

2

− 1

2
‖x(k)‖2 ≤M5 +M7.

This implies that {x(k)} is bounded for all k ∈ N because 2 < γ < ∞. Hence J satisfies

the Palais–Smale condition.

Proof of Theorem 3.3. By Lemma 3.4, J satisfies Palais–Smale condition. Let y be any

element in Eω. Then we have

J(y) = −1

2
〈Dy, y〉+

∑
t∈Qω

µ(t)F (qt, y(qt))

(H5)
≥ −λmax

2
‖y‖2

2 +
∑
t∈Qω

µ(t) [a1(qt)|y(qt)|γ − a2(qt)]

≥ −λmax

2
‖y‖2

2 +
β1

q
(q − 1)‖y‖γγ −

β2

q
ω(q − 1)
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(2.1)

≥ −λmax

2
‖y‖2

2 +
β1

q
(q − 1)

‖y‖γ2
Cγ

2

− β2

q
ω(q − 1)

= ‖y‖γ2
[
β1

q
(q − 1)

1

Cγ
2

− λmax

2‖y‖γ−2
2

]
− β2

q
ω(q − 1).

Since J(y) → ∞ as ‖y‖2 → ∞, there exists ρ > 0 sufficiently large such that for any

z ∈ T ∩ ∂Bρ(0),

J(z) ≥ ργ
[
β1

q
(q − 1)

1

Cγ
2

− λmax

2ργ−2

]
− β2

q
ω(q − 1) > 0.

Hence (J1) of the Mountain Pass Theorem holds. Next we prove that J satisfies (J2) of the

Mountain Pass Theorem. By integrating both sides of the inequality zf(t, z) ≤ αF (t, z)

given by (H4) for any (t, z) ∈ T×Rm such that |z| ≥ R1 > 0, we have F (t, z) ≤ b1|z|α+b2

for some constants b1, b2 > 0. Let x ∈ Eω be arbitrary. Then

J(x) = −1

2
〈Dx, x〉+

∑
t∈Qω

µ(t)F (qt, x(qt))

≤ −λmin

2
‖x‖2

2 + b1

∑
t∈Qω

µ(t)|x(qt)|α + b2(qω − 1)

≤ −λmin

2
‖x‖2

2 + b1(q − 1)qω−1

 ∑
t∈Qω\{qω−1}

|x(qt)|α + q
αω
2 |x(1)|α


+b2(qω − 1)

≤ −λmin

2
‖x‖2

2 + b1(q − 1)qω(1+α
2

)−1
∑
t∈Qω

|x(t)|α + b2(qω − 1)

= −λmin

2
‖x‖2

2 + b1(q − 1)qω(1+α
2

)−1‖x‖αα + b2(qω − 1)

(2.1)

≤ −λmin

2
‖x‖2

2 + b1(q − 1)qω(1+α
2

)−1‖x‖α2
Cα

1

+ b2(qω − 1).

It follows that J(x) → −∞ as ‖x‖2 → ∞. Then there exists a sequence e ∈ Eω|∂Bρ(0)

such that J(e) ≤ 0. So condition (J2) of the Mountain Pass Theorem holds. The proof is

complete.

Theorem 3.5. Suppose that F (t, z) satisfies (H1) and
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(H6) there exists a constant α ∈ (1, 2) such that 0 < zf(t, z) ≤ αF (t, z) for all (t, z) ∈

T× Rm, with |z| 6= 0;

(H7) there exist constants β > 0 and γ ∈ (1, α] such that F (t, z) ≥ a(t)|z|γ for all

(t, z) ∈ T× Rm, where the function a : T→ R+ is given by a(t) = β
t
.

Then the problem (1.1) has at least one solution.

Proof. Under the given assumptions, we can show as in the proof of Lemma 3.4 that J

satisfies Palais–Smale condition. Moreover, for any x ∈ Eω, we have

J(x) = −1

2
〈Dx, x〉+

∑
t∈Qω

µ(t)F (qt, x(qt))

(H7)
≥ −λmax

2
‖x‖2

2 +
∑
t∈Qω

µ(t)a(qt)|x(qt)|γ

≥ −λmax

2
‖x‖2

2 +
β

q
(q − 1)‖x‖γγ

(2.1)

≥ −λmax

2
‖x‖2

2 +
β

q
(q − 1)

‖x‖γ2
Cγ

2

.

Since there is a real number ρ > 0 such that ρ2−γ < β(q−1)
2qλmaxC

γ
2

, for all y ∈ T ∩ ∂Bρ(0), we

have

J(y) ≥ −β(q − 1)

4qCγ
2

ργ +
β(q − 1)

qCγ
2

ργ =
3β(q − 1)

4qCγ
2

ργ > 0.

So condition (J1) of the Mountain Pass Theorem holds. Next we show that J satisfies

(J2) of the Mountain Pass Theorem. By integrating the inequality zf(t, z) ≤ αF (t, z)

given by (H6), F (t, z) ≤ b3|z|α + b4 for some constants b3, b4 > 0. Then for any y ∈ Eω,

we have

J(y) = −1

2
〈Dy, y〉+

∑
t∈Qω

µ(t)F (qt, y(qt))

≤ −λmin

2
‖y‖2

2 +
∑
t∈Qω

µ(t) [b3|y(qt)|α + b4]

≤ −λmin

2
‖y‖2

2 + b3(q − 1)qω−1
∑

t∈Qω\{qω−1}

|y(qt)|α + q
αω
2 |y(1)|α + b4(qω − 1)

≤ −λmin

2
‖y‖2

2 + b3(q − 1)qω(1+α
2

)−1
∑
t∈Qω

|y(t)|α + b4(qω − 1)
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≤ −λmin

2
‖y‖2

2 + b3(q − 1)qω(1+α
2

)−1‖y‖α2
Cα

1

+ b4(qω − 1)→ −∞

as ‖y‖2 → ∞. It follows that there exist a real number ρ > 0 and a sequence e ∈

Eω ∩ ∂Bρ(0) such that if ‖e‖2 is sufficiently large, then J(e) ≤ 0. Thus condition (J2) of

the Mountain Pass Theorem holds.

Finally, we give an example illustrating Theorem 3.5.

Example 3.6. Let us consider the q-difference boundary value problem

z∆∆(t) + a
qt

(β1 + 2)z(qt)|z(qt)|β1 + b
qt

(β2 + 2)z(qt)|z(qt)|β2 = 0, t ∈ T,

z(1) = q−ω/2z(qω), z∆(1) = qω/2z∆(qω),
(3.1)

where a > 0, b ≥ 0, and −1 < β1 ≤ β2 < 0. Then we have

∇F (t, z) =
a

t
(β1 + 2)z|z|β1 +

b

t
(β2 + 2)z|z|β2

and

F (t, z) =
a

t
|z|β1+2 +

b

t
|z|β2+2

for all (t, z) ∈ T× Rm and some m ∈ N. It is clear that F satisfies (H1). Let α = β2 + 2

and γ = β1 + 2. It is simple to check that the assumptions (H6) and (H7) of Theorem 3.5

hold. Hence, for any given ω ∈ N, the problem (3.1) has at least one solution z, and then

the reciprocal square of the solution z, i.e., 1/z2, is ω-periodic.
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V. POSITIVE PERIODIC SOLUTIONS OF HIGHER-ORDER

FUNCTIONAL q-DIFFERENCE EQUATIONS

ABSTRACT

In this paper, using the recently introduced concept of periodic functions in quantum

calculus, we study the existence of positive periodic solutions of a certain higher-order

functional q-difference equation. Just as for the well-known continuous and discrete ver-

sions, we use a fixed point theorem in a cone in order to establish the existence of a

positive periodic solution.
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1. INTRODUCTION

The existence of positive periodic solutions of functional difference equations has

been studied by many authors such as Zhang and Cheng [2], Zhu and Li [5], and Wang

and Luo [6]. Some well-known models which are first-order functional difference equations

are, for example (see [6]),

(i) the discrete model of blood cell production:

∆x(n) = −a(n)x(n) + b(n)
1

1 + xk(n− τ(n))
, k ∈ N,

∆x(n) = −a(n)x(n) + b(n)
x(n− τ(n))

1 + xk(n− τ(n))
, k ∈ N,

(ii) the periodic Michaelis–Menton model:

∆x(n) = a(n)x(n)

[
1−

k∑
j=1

aj(n)x(n− τj(n))

1 + cj(n)x(n− τj(n))

]
, k ∈ N,

(iii) the single species discrete periodic population model:

∆x(n) = x(n)

[
a(n)−

k∑
j=1

bj(n)x(n− τj(n))

]
, k ∈ N.

This paper studies the existence of periodic solutions of the m-order functional q-difference

equations

x(qmt) = a(t)x(t) + f(t, x(t/τ(t))), (1.1)

x(qmt) = a(t)x(t)− f(t, x(t/τ(t))), (1.2)

where a : qN0 → [0,∞) with a(t) = a(qωt), f : qN0 × R → [0,∞) is continuous and ω-

periodic, i.e., f(t, u) = qωf(qωt, u), and τ : qN0 → qN0 satisfies t ≥ τ(t) for all t ∈ qN0 . A

few examples of the function a are given by a(t) = c, where c is constant for any t ∈ qN0 ,

and a(t) = dt, where dt are constants assigned for each t ∈ {qk : 0 ≤ k ≤ ω − 1}. By
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applying the fixed point theorem (Theorem 1.2) in a cone, we will prove later that (1.1)

and (1.2) have positive periodic solutions. The definition of periodic functions on the

so-called q-time scale qN0 has recently been given by the authors [1] as follows.

Definition 1.1 (Bohner and Chieochan [1]). A function f : qN0 → R satisfying

f(t) = qωf(qωt) for all t ∈ qN0

is called ω-periodic.

Theorem 1.2 (Fixed point theorem in a cone [3,4]). Let X be a Banach space and P be

a cone in X. Suppose Ω1 and Ω2 are open subsets of X such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and

suppose that Φ : P ∩ (Ω2 \ Ω1)→ P is a completely continuous operator such that

(i) ‖Φu‖ ≤ ‖u‖ for all u ∈ P ∩∂Ω1, and there exists ψ ∈ P \{0} such that u 6= Φu+λψ

for all u ∈ P ∩ ∂Ω2 and λ > 0, or

(ii) ‖Φu‖ ≤ ‖u‖ for all u ∈ P ∩∂Ω2, and there exists ψ ∈ P \{0} such that u 6= Φu+λψ

for all u ∈ P ∩ ∂Ω1 and λ > 0.

Then Φ has a fixed point in P ∩ (Ω2 \ Ω1).
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2. POSITIVE PERIODIC SOLUTIONS OF (1.1)

In this section, we consider the existence of positive periodic solutions of (1.1). Let

X :=
{
x = {x(t)} : x(t) = qωx(qωt) for all t ∈ qN0

}
and employ the maximum norm

‖x‖ := max
t∈Qω
|x(t)|, where Qω :=

{
qk : 0 ≤ k ≤ ω − 1

}
.

Then X is a Banach space. Throughout this section, we assume 0 < a(t) < 1/qm for all

t ∈ qN0 , where m ∈ N is the order of (1.1). We define l := gcd(m,ω) and h = ω/l.

Lemma 2.1. x ∈ X is a solution of (1.1) if and only if

x(t) =

qhm
h−1∏
i=0

a(qimt)

1− qhm
h−1∏
i=0

a(qimt)

h−1∑
i=0

f(qimt, x(qimt/τ(qimt)))
i∏

j=0

a(qjmt)

. (2.1)

Proof. From (1.1) and x ∈ X, we get

x(qmt)

a(t)
− x(t) =

f(t, x(t/τ(t)))

a(t)
,

x(q2mt)

a(qmt)a(t)
− x(qmt)

a(t)
=

f(qmt, x(qmt/τ(qmt)))

a(qmt)a(t)
,

x(q3mt)

a(q2mt)a(qmt)a(t)
− x(q2mt)

a(qmt)a(t)
=

f(q2mt, x(q2mt/τ(q2mt)))

a(q2mt)a(qmt)a(t)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
x(qhmt)

h−1∏
i=0

a(qimt)

− x(q(h−1)mt)
h−2∏
i=0

a(qimt)

=
f(q(h−1)mt, x(q(h−1)mt/τ(q(h−1)mt)))

h−1∏
i=0

a(qimt))

.

By summing all equations above and since x(t) = qωx(qωt) for all t ∈ qN0 , we arrive at

(2.1).
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In order to obtain a cone in the Banach space X, we define

M∗ := max

{
qhm

h−1∏
i=0

a(qimt) : t ∈ Qω

}
,

M∗ := min

{
qhm

h−1∏
i=0

a(qimt) : t ∈ Qω

}
,

and

δ :=
M2
∗ (1−M∗)

M∗(1−M∗)
.

Note 0 < δ < 1. Now we define the cone P and the mapping T : X → X by

P :=
{
y ∈ X : y(t) ≥ 0, y(t) ≥ δ‖y‖, t ∈ qN0

}
,

(Tx)(t) :=

qhm
h−1∏
i=0

a(qimt)

1− qhm
h−1∏
i=0

a(qimt)

h−1∑
i=0

f(qimt, x(qimt/τ(qimt)))
i∏

j=0

a(qjmt)

,

respectively. Since we have

qhmM∗
1−M∗

h−1∑
i=0

f(qimt, x(qimt/τ(qimt))) ≤ (Tx)(t)

≤ qhmM∗

M∗(1−M∗)

h−1∑
i=0

f(qimt, x(qimt/τ(qimt)))

for any x ∈ P , it follows that T (P ) ⊂ P . Define

ϕ(s) := max

{
qmtf(t, u)

1− qma(t)
: t ∈ Qω, δs ≤ u ≤ s

}
,

ψ(s) := min

{
qmδf(t, u(t))

(1− qma(t))u(t)
: t ∈ Qω, δs ≤ u ≤ s

}
.

Then both functions ϕ and ψ are continuous on R.

Theorem 2.2. Assume 0 < a(t) < 1/qm for all t ∈ qN0, where m is the order of the

functional q-difference (1.1). Suppose there exist two real numbers α, β > 0 with α 6= β
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such that ϕ(α) ≤ α and ψ(β) ≥ 1. Then (1.1) has at least one positive solution x ∈ X

satisfying

min{α, β} ≤ ‖x‖ ≤ max{α, β}.

Proof. Without loss of generality, we can assume α < β. Let

Ω1 := {x ∈ X : ‖x‖ < α} and Ω2 := {x ∈ X : ‖x‖ < β} .

First, we show

‖T (x)‖ ≤ ‖x‖ for all x ∈ P ∩ ∂Ω1. (2.2)

Let x ∈ P ∩ ∂Ω1. Then ‖x‖ = α and δα ≤ x(t) ≤ α for all t ∈ qN0 . Since

qmtf(t, u)

1− qma(t)
≤ ϕ(α) ≤ α

and

qhm
h−1∏
i=0

a(qimt)

1− qhm
h−1∏
i=0

a(qimt)

h−1∑
i=0

1− qma(qmit)

q(i+1)m
i∏

j=0

a(qjmt)

= 1

for all t ∈ qN0 , we obtain

(Tx)(t) =

qhm
h−1∏
i=0

a(qimt)

1− qhm
h−1∏
i=0

a(qimt)

h−1∑
i=0

f(qimt, x(qimt/τ(qimt)))
i∏

j=0

a(qjmt)

≤ α

t

qhm
h−1∏
i=0

a(qimt)

1− qhm
h−1∏
i=0

a(qimt)

h−1∑
i=0

1− qma(qmit)

q(i+1)m
i∏

j=0

a(qjmt)

≤ α = ‖x‖

for all t ∈ qN0 . Hence (2.2) holds. Next, we show that

x 6= Tx+ λ for all x ∈ P ∩ ∂Ω2, for some λ > 0. (2.3)
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Suppose (2.3) does not hold, i.e., there exist x∗ ∈ P ∩∂Ω2 and λ0 such that x∗ = Tx∗+λ0.

Let

χ := min{x∗(t) : t ∈ Qω.

Since x∗ ∈ P ∩∂Ω2, ‖x∗‖ = β and δβ ≤ x∗(t) ≤ β for all t ∈ qN0 . Thus we have χ = x∗(t0)

for some t0 ∈ Qω. Since

1 ≤ ψ(β) ≤ qmδf(t0, u)

(1− qma(t0))u

and

qhm
h−1∏
i=0

a(qimt0)

1− qhm
h−1∏
i=0

a(qimt0)

h−1∑
i=0

1− qma(qimt0)

q(1+i)m
i∏

j=0

a(qjmt0)

= 1,

we obtain

x∗(t0) = λ0 + Tx∗(t0)

= λ0 +

qhm
h−1∏
i=0

a(qimt0)

1− qhm
h−1∏
i=0

a(qimt0)

h−1∑
i=0

f(qimt0, x
∗(qimt0/τ(qimt0)))
i∏

j=0

a(qjmt0)

≥ λ0 +

qhm
h−1∏
i=0

a(qimt0)

1− qhm
h−1∏
i=0

a(qimt0)

h−1∑
i=0

(1− qma(qimt0))x∗(qimt0/τ(qimt0))

δqm
i∏

j=0

a(qjmt0)

≥ λ0 + β

qhm
h−1∏
i=0

a(qimt0)

1− qhm
h−1∏
i=0

a(qimt0)

h−1∑
i=0

1− qma(qimt0)

q(1+i)m
i∏

j=0

a(qjmt0)

= λ0 + β

≥ λ0 + χ > χ.

This gives a contradiction since x∗(t0) = χ and hence (2.3) holds. Therefore, by applying

Theorem 1.2, it follows that T has a fixed point x ∈ P ∩ (Ω2 \ Ω1). This fixed point is a

positive ω-periodic solution of (1.1).

Corollary 2.3. Assume 0 < a(t) < 1/qm for all t ∈ qN0. Suppose that one of the following

conditions holds:
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(i) lim
s→0+

ϕ(s)
s

= ϕ0 < 1 and lim
s→∞

ψ(s) = ψ∞ > 1,

(ii) lim
s→∞

ϕ(s)
s

= ϕ∞ < 1 and lim
s→0+

ψ(s) = ψ0 > 1.

Then (1.1) has at least one positive solution x ∈ X with ‖x‖ > 0.

Proof. It is sufficient to show only case (i). Since lim
s→0+

ϕ(s)
s

= ϕ0 < 1, we choose ε =

(1− ϕ0)/2 and there exists δ > 0 such that for all 0 < s < δ,

3ϕ0 − 1

2
<
ϕ(s)

s
<

1 + ϕ0

2
< 1.

Then α ∈ (0, δ) such that ϕ(α) < α. Since lim
s→∞

ψ(s) = ψ∞ > 1, we can choose ε =

(ψ∞ − 1)/2 and then we find β > 0 such that ψ(β) > 1. Hence, by Theorem 2.2, (1.1)

has at least one positive solution x ∈ X with ‖x‖ > 0.

Theorem 2.4. Assume 0 < a(t) < 1/qm for all t ∈ qN0. Suppose there exist N + 1

positive constants p1 < p2 < . . . < pN < pN+1 such that one of the following conditions is

satisfied:

(i) ϕ(p2k−1) < p2k−1, k ∈ {1, 2, . . . , [(N + 2)/2]} and

ψ(p2k) > 1, k ∈ {1, 2, . . . , [(N + 1)/2]},

(ii) ϕ(p2k) < p2k, k ∈ {1, 2, . . . , [(N + 1)/2]} and

ψ(p2k−1) > 1, k ∈ {1, 2, . . . , [(N + 2)/2]},

where [d] denotes the integer part of d. Then (1.1) has at least N positive solutions xk ∈ X

with

pk < ‖xk‖ < pk+1 for all k ∈ {1, 2, . . . , N}.

Proof. It is sufficient to show only case (i). Since ϕ, ψ : (0,∞) → [0,∞) are continuous

for each pair {pk, pk+1} and each k ∈ {1, 2, . . . N}, there exist pk < αk < βk < pk+1 for all

k ∈ {1, 2, . . . N} such that

ϕ(α2k−1) < α2k−1, ψ(β2k−1) > 1, k ∈ {1, 2, . . . , [(N + 2)/2]},

ϕ(α2k) < α2k, ψ(β2k) > 1, k ∈ {1, 2, . . . , [(N + 1)/2]}.
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By Theorem 2.2, (1.1) has at least one positive periodic solution xk ∈ X for every pair of

numbers {αk, βk} with pk < αk ≤ ‖x‖ ≤ βk < pk+1. The proof is complete.

By applying Theorem 2.2, we can easily prove the following two corollaries.

Corollary 2.5. Assume 0 < a(t) < 1/qm for all t ∈ qN0. Suppose that the following

conditions hold:

(i) lim
s→0+

ϕ(s)
s

= ϕ0 < 1 and lim
s→∞

ϕ(s)
s

= ϕ∞ < 1,

(ii) there exists a constant β > 0 such that ψ(β) > 1.

Then (1.1) has at least two positive solutions x1, x2 ∈ X with

0 < ‖x1‖ < β < ‖x2‖ <∞.

Corollary 2.6. Assume 0 < a(t) < 1/qm for all t ∈ qN0. Suppose that the following

conditions hold:

(i) lim
s→0+

ψ(s) = ψ0 > 1 and lim
s→∞

ψ(s) = ψ∞ > 1,

(ii) there exists a constant α > 0 such that ϕ(α) < α.

Then (1.1) has at least two positive solutions x1, x2 ∈ X with

0 < ‖x1‖ < α < ‖x2‖ <∞.



104

3. POSITIVE PERIODIC SOLUTIONS OF (1.2)

In this section, we discuss the existence of positive periodic solutions of (1.2).

Throughout this section, we assume a(t) > 1
qm

for all t ∈ qN0 , where m is the order

of the functional q-difference equation (1.2). The proofs of the following results are omit-

ted as they can be done similarly to the proofs of the corresponding results in Section

2.

Lemma 3.1. x ∈ X is a solution of (1.1) if and only if

x(t) =

qhm
h−1∏
i=0

a(qimt)

qhm
h−1∏
i=0

a(qimt)− 1

h−1∑
i=0

f(qimt, x(qimt/τ(qimt)))
i∏

j=0

a(qjmt)

for all t ∈ qN0.

We also define M∗ and M∗ as in Section 2 but we choose

δ∗ :=
M∗ − 1

M∗(M∗ − 1)
.

Clearly, δ∗ ∈ (0, 1). Then we define the cone

P :=
{
y ∈ X : y(t) ≥ 0, t ∈ qN0 , y(t) ≥ δ∗‖y‖

}
and the mapping T : X → X by

Tx(t) =

qhm
h−1∏
i=0

a(qimt)

qhm
h−1∏
i=0

a(qimt)− 1

h−1∑
i=0

f(qimt, x(qimt/τ(qimt)))
i∏

j=0

a(qjmt)

.

Thus Tx(t) = qωTx(qωt) and also T (P ) ⊂ P . Define

ϕ̃(s) := max

{
qmtf(t, u)

1− qma(t)
: t ∈ Qω, δ

∗s ≤ u ≤ s

}
,
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ψ̃(s) := min

{
qmδ∗f(t, u(t))

(1− qma(t))u(t)
: t ∈ Qω, δ

∗s ≤ u ≤ s

}
.

Theorem 3.2. Assume a(t) > 1/qm for all t ∈ qN0. Suppose there exist two real numbers

α, β > 0 with α 6= β such that ϕ̃(α) ≤ α and ψ̃(β) ≥ 1. Then (1.2) has at least one

positive solution x ∈ X with

min{α, β} ≤ ‖x‖ ≤ max{α, β}.

Corollary 3.3. Assume 0 < a(t) < 1/qm for all t ∈ qN0. Suppose that one of the following

condition holds:

(i) lim
s→0+

ϕ̃(s)
s

= ϕ̃0 < 1 and lim
s→∞

ψ̃(s) = ψ̃∞ > 1,

(ii) lim
s→∞

ϕ̃(s)
s

= ϕ̃∞ < 1 and lim
s→0+

ψ̃(s) = ψ̃0 > 1.

Then (1.2) has at least one positive solution x ∈ X with ‖x‖ > 0.

Theorem 3.4. Assume a(t) > 1/qm for all t ∈ qN0. Suppose there exist N + 1 positive

constants p1 < p2 < . . . < pN < pN+1 such that one of the following conditions is satisfied:

(i) ϕ̃(p2k−1) < p2k−1, k ∈ {1, 2, . . . , [(N + 2)/2]} and

ψ̃(p2k) > 1, k ∈ {1, 2, . . . , [(N + 1)/2]},

(ii) ϕ̃(p2k) < p2k, k ∈ {1, 2, . . . , [(N + 1)/2]} and

ψ̃(p2k−1) > 1, k ∈ {1, 2, . . . , [(N + 2)/2]},

where [d] denotes the integer part of d. Then (1.2) has at least N positive solutions

xk ∈ X, k ∈ {1, 2, . . . , N} with

pk < ‖xk‖ < pk+1.

Corollary 3.5. Assume a(t) > 1/qm for all t ∈ qN0. Suppose that the following conditions

are satisfied:

(i) lim
s→0+

ϕ̃(s)
s

= ϕ̃0 < 1 and lim
s→∞

ϕ̃(s)
s

= ϕ̃∞ < 1,

(ii) there exists a constant β > 0 such that ψ̃(β) > 1.
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Then (1.2) has at least two positive solutions x1, x2 ∈ X with

0 < ‖x1‖ < β < ‖x2‖ <∞.

Corollary 3.6. Assume a(t) > 1/qm for all t ∈ qN0. Suppose the following conditions are

satisfied:

(i) lim
s→0+

ψ̃(s) = ψ̃0 > 1 and lim
s→∞

ψ̃(s) = ψ̃∞ > 1,

(ii) there exists a constant α > 0 such that ϕ̃(α) < α.

Then (1.2) has at least two positive solutions x1, x2 ∈ X with

0 < ‖x1‖ < α < ‖x2‖ <∞.
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4. SOME EXAMPLES

In this section, we show some examples of equations of the form (1.1) and (1.2) and

apply the main results of the previous sections.

Example 4.1. Consider the q-difference equation

x(q3t) = ax(t) +
1

tx(q2t)
, (4.1)

where a is a constant with 0 < a < 1/q3, f(t, x) = 1/(tx), and τ(t) = 1/q2 for all t ∈ qN0 .

We have

lim
s→∞

ϕ(s)

s
= ϕ∞ = 0 < 1 and lim

s→0+
ψ(s) = ψ0 =∞ > 1.

By Corollary 2.3 (ii), (4.1) has at least one positive ω-periodic solution.

Example 4.2. Let q = 2, m = 4, ω = 5. Consider the q-difference equation

x(16t) = ax(t) + t99x100(4t) +
1

16000tetx(4t)
, (4.2)

where a is a constant with 0 < a < 1/20, f(t, x) = t99x100 + 1/(16000tetx), and τ(t) = 1/4

for all t ∈ qN0 . We have

lim
s→∞

ψ(s) = ψ∞ =∞ > 1 and lim
s→0+

ψ(s) = ψ0 =∞ > 1.

Since there exists α = 1/100 such that ϕ(α) < α, by Corollary 2.6, (4.2) has at least two

positive ω-periodic solutions.

Example 4.3. Consider the q-difference equation

x(q5t) = atx(t)− t2x3(qt), (4.3)
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where a(t) = at are constants assigned for each t ∈ Qω and a(t) = a(qωt) for all t ∈ qN0 .

We have τ(t) = 1/q, f(t, x) = t2x3,

lim
s→0+

ϕ̃(s)

s
= ϕ̃0 = 0 < 1 and lim

s→∞
ψ̃(s) = ψ̃∞ =∞ > 1.

By Corollary 3.3 (i), (4.3) has at least one positive ω-periodic solution.
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SECTION

4. CONCLUSION

We now summarize and comment on the new results and approaches presented in

our study of periodic solutions of q-difference equations.

In the our first paper, Floquet theory for q-difference equations, the basic Floquet

theory is derived on the q-time scale, in analogy with existing theories for the time scales

Z and R, for the Floquet equation, x∆ = A(t)x, where A is assumed to be regressive and

ω-periodic. The regressive property of A is seen to be necessary in the q-time scale setting

and the definition of periodicity for functions on a q-time scale is based on integration

in distinction with the standard approach taken for Z and R. The representation of the

fundamental matrix of the q-Floquet equation is presented in Theorem 4.2, and results

analogous to those which exist for Z and R are presented for the Floquet equation for the

q-time scale setting in Theorems 4.3 and 4.7.

The stability of solutions for Floquet equations in the q-time scale setting will be

considered in future works. For the present, we briefly sketch some issues that arise in

connection with this study: Suppose the q-Floquet equation, with some initial conditions

given, has n solutions and they are represented by an infinite sequence in t ∈ qN of points

(u1(t), . . . , un(t)) in Rn. In many applications of this subject, it is useful to know the

general location of those points for the large values of time t. Central to this study is the

consideration and analysis of several possibilities that arise: the sequence may converge

to a point or at least remain near a point; the sequence may oscillate among values near

several points; the sequence may become unbounded; or the sequence may remain in a

bounded set but jump around in a seemingly unpredictable fashion.

In our second paper, The Beverton–Holt q-difference equation, we consider

x∆(t) = a(t)xσ(t)

(
1− x(t)

K(t)

)
,

where a(t) = α
t

and K(t) = qωK(qωt) for all t ∈ T = qN0 , α a constant. Given that

a(t) = α
t

is 1-periodic, it follows from our definition of periodicity on the q-time scale that

the function a is also ω-periodic for any ω > 1. We have derived the periodic solutions
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of our Beverton–Holt q-difference equation and, as in the Z setting, the Cushing–Henson

conjectures for our Beverton–Holt q-difference equation have been presented. Other close

forms of the function a which generalize the Beverton–Holt q-difference equation remain

to be studied.

In our third paper, Stability for Hamiltonian q-difference systems, we have derived

the stability theory for Hamiltonian q-difference systems. Our work on locating zones

of stability for the Hamiltonian q-difference systems is based on the work of Krein and

Jakubovič [22], and Răsvan [17,27].

For Hamiltonian q-difference systems without the parameter, multipliers which have

modulus one and are of simple type indicate that the solutions of the Hamiltonian q-

difference system are bounded; in other words, the Hamiltonian q-difference system is

weakly stable. Furthermore, a sufficient condition for strong stability of the Hamiltonian

q-difference system is that all its multipliers lie on the unit circle and are definite.

A Hamiltonian q-difference system with parameter is stable if the monodromy matrix

is of stable type, i.e., all multipliers are simple and have modulus one which may be the

first kind, second kind, or mixed kind. If all multipliers are simple with multiplicity one,

and the stability is strong for a sufficiently small perturbation, the multipliers cannot

leave the unit circle since they will break up the symmetry of multipliers. Multipliers

possessing multiplicity of at least two, may be located away from the unit circle. A

meeting of multipliers of the same kind will not move away from the unit circle, while

multipliers of different kinds that meet on the unit circle may move off the unit circle

under a suitable perturbation. Given our definition of periodicity on the q-time scale, our

results in this paper are slightly different from their analogs in the Z and R settings.

In our fourth paper, Existence of periodic solutions of a q-difference boundary value

problem, we consider the second order q-difference BVP,

x∆∆(t) +∇F (qt, x(qt)) = 0,

x(1) = 1/qω/2x(qω), x∆(1) = qω/2x∆(qω),
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where F (t, u) is continuously differentiable in u and ω-periodic in t. Existence theorems

for solutions of our second order q-difference BVP subject to specific boundary conditions

have been proven by applying the Mountain Pass Theorem. In this context, dependence

on F is characterized. Explicit representations for periodic solutions associated with given

boundary conditions remains a topic to be explored. However, we have found that the

reciprocal square of the solutions of the second order q-difference are periodic where, in

general, they are not the solutions of our second order q-difference BVP.

In our fifth and final paper, Positive periodic solutions of higher-order functional

q-difference equations, we consider higher-order functional q-difference equations of the

form,

x(qmt) = a(t)x(t) + f(t, x(t/τ(t))).

We have obtained existence theorems for solutions of two higher-order functional q-

difference equations and found the closed forms of those solutions. In studying positive

solutions for these equations the following conditions on a were found to be significant:

0 < a(t) < 1/qm or a(t) > 1/qm must be held for all t ∈ qN0 , where m is the order of that

equations. Under these conditions, a(t) will get small or large depending on the order,

m, of the equation considered. In considering the high order of functional q-difference

equations, one must deal with very small or very large values of the function a which may

yield difficulties in numerical calculations; a topic for future exploration.
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