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ABSTRACT

In the first section, we consider small sample equivalence tests for exponential-

ity. Statistical inference in this setting is particularly challenging since equivalence

testing procedures typically require a much larger sample size, in comparison to clas-

sical “difference tests”, to perform well. We make use of Butler’s marginal likelihood

for the shape parameter of a gamma distribution in our development of equivalence

tests for exponentiality. We consider two procedures using the principle of confidence

interval inclusion, four Bayesian methods, and the uniformly most powerful unbiased

(UMPU) test where a saddlepoint approximation to the intractable distribution of a

canonical sufficient statistic is used. We perform simulation studies to assess the bias

of various tests and show that all of the Bayes’ posteriors we consider are integrable.

Our simulation studies show that the saddlepoint-approximated UMPU method per-

forms remarkably well for small sample sizes and is the only method which consistently

exhibits an empirical significance level close to the nominal five percent rate.

In the second section, we consider small sample equivalence tests for mean-

to-variance ratio from two normal populations. In general, optimal equivalence tests

for the means of two homoskedastic normal populations do not exist unless the com-

mon population variance is known. However, we show that if one considers the mean-

to-variance ratio then there does exist a uniformly most powerful unbiased (UMPU)

equivalence testing procedure. Furthermore, our procedure involves an intractable con-

ditional distribution which we reproduce to a high degree of accuracy using saddlepoint

approximations. We also develop six competing equivalence testing procedures for the

mean-to-variance ratio. Four of these procedures are Bayesian and the remaining two

are based upon the principle of confidence interval inclusion. Small sample simulation

studies show that our UMPU method outperforms all competing methods by exhibiting

an empirical significance level which is not statistically significantly different from the

nominal five percent rate, for all simulation settings.



iv

ACKNOWLEDGMENTS

I would like to acknowledge my advisor, Prof. Robert Paige for his support

and guidance through my dissertation, as well as my graduate committee. I appreciate

all the help and adivice given to me by the faculty members of the Department of

Mathematics and Statistics, Missouri University of Science and Technology. Finally, I

would like to thank my parents, for their continued support and encouragement. It is

no doubt that I could not finish this effort without their assistance.



v

DEDICATION

I would like to dedicate this Doctoral dissertation to my parents, Yue Zhao

and Xinguang Liu. Without their continued support and counsel, I could not have

completed this process.



vi

TABLE OF CONTENTS

Page

ABSTRACT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DEDICATION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

SECTION

1. SMALL SAMPLE EQUIVALENCE TESTS FOR EXPONENTIALITY .. . . . 1

1.1. SADDLEPOINT-APPROXIMATED UMPU EQUIVALENCE TEST . . . 2

1.2. BAYESIAN EQUIVALENCE TESTS FOR EXPONENTIALITY .. . . . . . 4

1.3. PRINCIPLE OF CONFIDENCE INTERVAL INCLUSION .. . . . . . . . . . . . . 4

1.4. MONTE CARLO STUDIES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. OPTIMAL EQUIVALENCE TESTING FOR NORMAL POPULATIONS . . . 8

2.1. CHOICE OF EXPONENTIAL FAMILY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. SADDLEPOINT-APPROXIMATED UMPU EQUIVALENCE TEST . . . 15

2.3. BAYESIAN EQUIVALENCE TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4. PRINCIPLE OF CONFIDENCE INTERVAL INCLUSION .. . . . . . . . . . . . . 23

2.5. MONTE CARLO STUDIES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

APPENDICES

A. PROPERNESS OF POSTERIOR DISTRIBUTIONS FROM SECTION 1 . . . 28

B. PROOFS AND DERIVATIONS FOR SECTION 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

BIBLIOGRAPHY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



vii

LIST OF TABLES

Table Page

1.1 Empirical significance levels of equivalence tests for exponentiality . . . . . . . . . . 7

2.1 Empirical significance levels of equivalence tests for normal data . . . . . . . . . . . . 27



1. SMALL SAMPLE EQUIVALENCE TESTS FOR EXPONENTIALITY

With a test for exponentiality one would like to provide evidence that data comes

from a distribution which is at least close to exponential. Existing tests for exponen-

tiality are designed to provide evidence that data comes from a distribution which is

not exponential, and lack of such evidence from these tests is usually interpreted as

meaning that it is fine to assume the data follows an exponential distribution; see for

instance Henze and Meintanis (2005). Wellek (2010; sec. 1.2) points out that interpret-

ing a nonsignificant p-value as evidence in support of the null hypothesis generally fails

to yield a valid test procedure. This idea can be formulated as the truism “absence of

evidence is not evidence of absence”; see for instance Altman and Bland (1995).

With this in mind, it is worthwhile to consider “goodness of fit” rather than the

traditional “lack of fit” tests for exponentiality. Wellek (2010; sec. 1.2) makes the point

that a bonafide goodness of fit test should be formulated as an equivalence test where

the alternative hypothesis states that the data are consistent with the distribution of

interest modulo a minor difference which he refers to as tolerable difference.

We develop seven small sample (goodness of fit) equivalence tests for exponential-

ity of three different types. These types correspond to the three general small sample

approaches for constructing an equivalence test; see Wellek (2010; ch. 3). The first

approach relies upon the principle of confidence interval inclusion and involves the con-

struction of a 100 (1− 2α) % confidence interval, where α is the nominal significance

level for the test. The second approach is Bayesian in nature and the third approach

involves the construction of a uniformly most powerful unbiased (UMPU) test for equiv-

alence.

All of the approaches we develop depend upon Butler’s marginal likelihood for the

shape parameter in a gamma distribution (Butler, 2007, sec. 5.4.4) and two of these

make use of saddlepoint approximations which are remarkably accurate in approximat-

ing nonnormal distributions (Butler 2007). In particular, the UMPU equivalence test,

which we will discuss next, makes use of the Luganani and Rice (1980) saddlepoint
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approximation to the cumulative distribution function (CDF) of a canonical sufficient

statistic is used to obtain an approximate UMPU test possessing a significance level

that is consistently close to the nominal 5% level.

1.1. SADDLEPOINT-APPROXIMATED UMPU EQUIVALENCE TEST

The likelihood for a random sample X1, . . . , Xn from gamma distribution with

shape parameter θ > 0 and rate parameter λ > 0 is

L (θ, λ) ∝ exp {−λ
∑
xi + (θ − 1)

∑
ln (xi) + n [θ lnλ− ln Γ (θ)]} .

This corresponds to a regular exponential family with canonical sufficient statistics

T1 =
∑

ln (xi) and T2 =
∑
xi and canonical parameters −λ and θ, respectively. In

this setting an equivalence test for exponentiality can be formulated in terms of the

following null and alternative hypotheses:

H0 : θ ≤ θ1 or θ ≥ θ2 and Ha : θ1 < θ < θ2 (1.1)

where θ1 = 1− ε1 and θ2 = 1 + ε2 for tolerable deviations ε1, ε2 > 0.

The optimal UMPU test for the above hypotheses is constructed from the condi-

tional distribution of T1 given the observed value of T2; see Lehmann (1986, sec. 4.4)

and Wellek (2010; sec. 3.3). However, Butler (2007, sec. 5.4.4) notes that

P (T1 ≤ t1|T2 = t2, θ) = P (T1 − n ln (T2) ≤ t1 − n ln (t2) |T2 = t2, θ)

= P (T ≤ t|T2 = t2, θ)

= P (T ≤ t|θ)

where T =
∑

ln (xi/
∑
xi) and the fact that T is independent of T2 is used. As a result,

an UMPU equivalence test for exponentiality can be constructed from the unconditional

distribution of T . For n > 1, Butler (2007, sec. 5.4.4) develops a marginal likelihood



3

for θ of the form

LM (θ) ∝ exp {(θ − 1)T + ln Γ (nθ)− n ln Γ (θ)} (1.2)

which is also the likelihood for a regular exponential family with canonical sufficient

statistic T . Therefore, the level α UMPU equivalence test for exponentiality based upon

Butler’s marginal likelihood has a rejection region of the form:

C1 < T < C2

where

P (C1 < T < C2|θ = θi) = α (1.3)

for i = 1 and 2 (Lehmann, 1986, sec. 3.7). The determination of cut-off values C1

and C2 is hindered by the intractable distribution of T . Fortunately, Butler’s marginal

likelihood also provides a closed-form expression for the cumulant generating function

(CGF) of T :

KT (s) = n ln {Γ (s+ θ) \Γ (θ)} − ln {Γ [n (s+ θ) \Γ (nθ)]} .

This transform, in turn, provides easy access to highly accurate saddlepoint approxi-

mations to distribution of T . In particular, the Luganani and Rice (1980) saddlepoint

approximation to the CDF of T is given as

P̂ (T ≤ t; θ) =

 Φ(ŵ) + φ(ŵ) [ŵ−1 − û−1] , if t 6= E (T )

1
2

+K
(3)
T (0)

[
72πK

(2)
T (0)3

]−1/2

, if t = E (T )
(1.4)

where Φ (·) and φ (·) are the standard normal CDF and PDF functions respectively,

K
(i)
T (s) is the ith derivative of this CGF for i = 1, 2, 3, ŵ = sgn (ŝ)

√
2 [ŝt−KT (ŝ)],
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û = ŝ

√
K

(2)
T (ŝ) and saddlepoint ŝ is the solution to saddlepoint equation K

(1)
T (ŝ) = t.

This saddlepoint approximation is used to determine approximate (C1, C2) values.

1.2. BAYESIAN EQUIVALENCE TESTS FOR EXPONENTIALITY

Butler’s marginal likelihood is also the starting point for our Bayesian exponen-

tiality tests. Wellek (2010; sec. 3.2) considers the nominal level α Bayesian equivalence

test for which

P (θ1 < θ < θ2|x1, . . . , xn) ≥ 1− α (1.5)

leads to the rejection of the nonequivalence null in (1.1) as well as the double one-sided

Bayesian test where this condition is replaced with

P (θ1 < θ|x1, . . . , xn) ≥ 1− α and P (θ < θ2|x1, . . . , xn) ≥ 1− α. (1.6)

With each type of Bayesian test we considered two prior distributions on θ; a flat

prior, π (θ) ∝ 1, (Box and Tiao, 1973), and the objective Jeffreys’ prior (Berger, 1985);

π (θ) ∝
√
I (θ) =

√
nψ′ (θ)− n2ψ′ (nθ)

where I (θ) denotes the expected Fisher information for θ and ψ
′
(θ) is the trigamma

function which is defined as the second derivative of the log-gamma function. These

prior distributions were chosen in hopes that they would have a minimal impact on

the posterior distribution. It is shown in the appendix that both yield proper posterior

distributions for all n > 1.

1.3. PRINCIPLE OF CONFIDENCE INTERVAL INCLUSION

We also consider two methods which make use of the principle of confidence inter-

val inclusion; see Wellek (2010; sec. 3.1). This principle is equivalent to the intersection-

union test principle applied to equivalence null hypotheses; see Berger (1982). For
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methods of this type, a (1− 2α) 100% confidence interval
(
θ̂L, θ̂U

)
for θ of is generated.

The nominal level α test based on the confidence interval inclusion principle then rejects

nonequivalence null in (1.1) if
(
θ̂L, θ̂U

)
is contained in (θ1, θ2), the region corresponding

to the equivalence alternative hypothesis in (1.1). We consider two confidence interval

methods and take α = 0.05 for the sake of concreteness.

1.3.1. Large Sample Confidence Interval. First the 90% classical marginal

likelihood-based confidence of the form

θ̂ ± 1.645
[
I
(
θ̂
)]−1/2

(1.7)

where marginal maximum likelihood estimates (MMLE) θ̂ is the maximizer of the

marginal likelihood for θ.

1.3.2. Pivotal Confidence Interval. We also consider a 90% pivotal confidence

interval where the pivotal quantity is the CDF of canonical sufficient statistic T in (1.2).

For a further discussion of the pivotal CDF see Berger and Casella (2002, sec. 9.2.3).

Here, we determine a confidence interval for θ through the solution of the following

equations:

P
(
T ≤ t; θ̂L

)
= 0.95 and P

(
T ≤ t; θ̂U

)
= 0.05. (1.8)

This confidence interval has exact coverage under the assumptions of that the family of

approximated CDFs {P (T ≤ t; θ)} is stochastically decreasing in θ (Berger and Casella

2002, sec. 9.2.3). In practice, however, we use the saddlepoint approximation in (1.4)

in place of the true but intractable CDF P (T ≤ t; θ). Pivotal CDF confidence intervals

often yield lengths and coverage probabilities that compare favorably with those from
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basically any competing method; see Paige and Trindade (2008), and Paige, Trindade

and Fernando (2009).

1.4. MONTE CARLO STUDIES

In our simulation studies we took n = 10, 20 and 30, let tolerable differences

ε1 = ε2 = ε = 0.1, 0.2, 0.3, 0.4 and 0.5, and set θtrue, the true value of θ, to be θ1 =

1 − ε or θ2 = 1 + ε. Note that in Table 1.1 θtrue = 1 − ε and θtrue = 1 + ε are

represented as “−ε” and “ε”, respectively. For each combination of n, ε and θtrue values

we simulated 100,000 data sets from a gamma distribution with shape parameter θtrue

and rate parameter λ = 1. Note that this choice of λ was completely general since all of

the equivalence testing methods we consider originate from Butler’s marginal likelihood

for θ, and its canonical sufficient statistic T =
∑

ln (xi/
∑
xi) has a distribution which

is invariant under scalar transformations of the data. Table 1.1 presents the empirical

significance levels for the saddlepoint-approximated optimal UMPU (O) procedure; the

four Bayesian procedures, (1.5) with a flat prior (F1), (1.6) also with a flat prior (F2),

(1.5) with the Jeffreys’ prior (J1) and (1.6) using a Jeffreys’ prior (J2); the saddlepoint-

based CDF pivot method (CP) in (1.8) and the classical marginal likelihood method in

(1.7). Here, empirical significance levels for which the associated 95% Wald confidence

interval for proportions contains 0.05 are shown in bold.

We see that the saddlepoint-approximated optimal UMPU (O) procedure is re-

markably accurate in terms of significance level even for very small sample sizes. In fact,

it is only when n = 30 and very wide tolerable differences that any of the competing

methods are close to being unbiased. The poor performance of the confidence interval

methods is likely due to their wideness for small samples. The poor performance for

the Bayesian methods is probably due to the inability of the likelihood, with so little

data, to minimize the impact of the prior on the posterior.

1.5. CONCLUSIONS

We developed seven small sample equivalence tests for exponentiality from Butler’s

marginal likelihood for the shape parameter in a gamma distribution. We considered at



7

Table 1.1. Empirical significance levels of equivalence tests for exponentiality

Empirical significance levels for n = 10, 20 and 30
n ε O F1 F2 J1 J2 CP ML

10 −0.1 4.99 0.00 0.00 0.00 0.00 0.00 0.00
10 0.1 4.99 0.00 0.00 0.00 0.00 0.00 0.00
10 −0.2 5.09 0.00 0.00 0.00 0.00 0.00 0.00
10 0.2 5.15 0.00 0.00 0.00 0.00 0.00 0.00
10 −0.3 4.98 0.00 0.00 0.00 0.00 0.00 0.00
10 0.3 4.96 0.00 0.00 0.00 0.00 0.00 0.00
10 −0.4 5.05 0.00 0.00 0.00 0.00 0.00 0.00
10 0.4 4.87 0.00 0.00 0.00 0.00 0.00 0.00
10 −0.5 5.04 0.00 0.00 0.00 0.00 0.00 0.00
10 0.5 5.01 0.00 0.00 0.00 0.00 0.00 0.00

20 −0.1 5.01 0.00 0.00 0.00 0.00 0.00 0.00
20 0.1 5.04 0.00 0.00 0.00 0.00 0.00 0.00
20 −0.2 4.93 0.00 0.00 0.00 0.00 0.00 0.00
20 0.2 5.00 0.00 0.00 0.00 0.00 0.00 0.00
20 −0.3 5.14 0.00 0.00 0.00 0.00 0.00 0.00
20 0.3 4.95 0.00 0.00 0.00 0.00 0.00 0.00
20 −0.4 4.97 0.00 0.00 0.00 0.00 0.00 0.00
20 0.4 4.94 0.00 0.00 0.00 0.00 0.00 0.00
20 −0.5 5.15 4.49 6.57 0.00 3.34 3.30 1.25
20 0.5 4.84 1.34 2.39 0.00 3.92 3.90 3.43

30 −0.1 5.05 0.00 0.00 0.00 0.00 0.00 0.00
30 0.1 5.02 0.00 0.00 0.00 0.00 0.00 0.00
30 −0.2 5.01 0.00 0.00 0.00 0.00 0.00 0.00
30 0.2 5.07 0.00 0.00 0.00 0.00 0.00 0.00
30 −0.3 5.03 0.00 0.00 0.00 0.00 0.00 0.00
30 0.3 4.92 0.00 0.00 0.00 0.00 0.00 0.00
30 −0.4 5.02 0.00 4.73 0.00 2.51 2.49 1.10
30 0.4 4.94 0.00 2.32 0.00 3.08 3.06 2.44
30 −0.5 5.13 8.05 8.07 4.92 4.95 4.92 3.10
30 0.5 4.95 2.92 3.01 4.75 4.93 4.92 6.02

least one method from each of the three general small sample approaches for construct-

ing an equivalence test. The saddlepoint-approximated optimal UMPU procedure was

virtually unbiased in nearly all settings and is clearly superior to the six competing

methods.
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2. OPTIMAL EQUIVALENCE TESTING FOR NORMAL POPULATIONS

Tukey (1991) succinctly makes a strong argument for equivalence testing: “It

is foolish to ask ‘are the effects of A and B different?’ They are always different-

for some decimal place”. Wellek (2010, sec 1.2) makes the argument that optimal

equivalence tests are needed since equivalence testing requires much larger sample sizes

than “difference” testing which is much more common. We consider the practically

important problem of equivalence testing for two independent normal samples.

In general, optimal equivalence tests for the means of two homoskedastic normal

populations do not exist unless the common population variance is known; see Romano

(2005). If instead one considers standardized means then there exists a uniformly most

powerful invariant (UMPI) procedure, as described in Wellek (2010, sec. 6.1). Here the

non-equivalence null hypothesis is

H0 : ψ ≤ ψ1 or ψ ≥ ψ2

with associated equivalence alternative hypothesis

Ha : ψ1 < ψ < ψ2

where ψ is the distributional parameter;

ψ =
µ1 − µ2

σ

and, ψ1 < 0 and ψ2 > 0 are constants which describe to within what tolerance will the

standardized means be considered equivalent.

We show in section 2.1 that if one considers the mean-to-variance ratio, with

distributional parameter

ψ =
µ1 − µ2

σ2
,
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then there does in fact exist a uniformly most powerful unbiased (UMPU) equivalence

testing procedure. This procedure involves UMPU testing theory for regular exponential

families and, as is often the case for tests of this type, is based upon the intractable

conditional distribution of one canonical sufficient statistic given the observed values of

the others. In section 2.2 we reproduce this conditional distribution to a high degree

of accuracy using Skovgaard’s saddlepoint approximation to the conditional cumulative

distribution function (CDF); see Butler (2007, sec. 5.4.5). The development of the

resulting saddlepoint-based equivalence testing procedure involves a non-unique interest

parameter preserving (IPP) reparametrization of the likelihood function. However,

we show in section 2.1 that the underlying conditional exponential family for ψ is

invariant under the choice of IPP transformation and in section 2.2 we show that our

saddlepoint-based procedure is also invariant to the choice of IPP reparametrization.

We also develop six competing equivalence testing procedures for the mean-to-variance

ratio. The four Bayesian methods are discussed in section 2.3. Here we perform all

of the required integrations in closed-form up to a univariate integral which is easy to

approximate. We also establish the properness of our posterior distributions for the

two testing paradigms we consider and the improper flat and Jeffreys’ priors that we

assume. The two remaining procedures discussed in section 2.4 are based upon the

principle of confidence interval inclusion. Here the equivalence test is performed with

a (1− 2α) 100% confidence interval for ψ, where α is the nominal significance level for

the equivalence test. In section 2.5 we consider simulation studies which show that our

UMPU procedure outperforms all competing methods, for all simulation settings, by

exhibiting an empirical significance level which does not differ significantly from the

nominal 5% rate. Finally, we present concluding remarks in section ??.

2.1. CHOICE OF EXPONENTIAL FAMILY

First we discuss the appropriate choice of exponential family structure for the

equivalence tests we develop. We assume that we collect two independent random
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samples from a N (µ1, σ
2) population and a N (µ2, σ

2) population, respectively;

Y1,1, . . . , Y1,n1 ∼ i.i.d. N
(
µ1, σ

2
)

Y2,1, . . . , Y2,n2 ∼ i.i.d. N
(
µ2, σ

2
)

where i.i.d. is the abbreviation for “independent and identically distributed”. Recall

that the likelihood function for a univariate normal random variable W ∼ N (µ, σ2) is

L
(
µ, σ2

)
∝ 1√

σ2
exp

{
−(w − µ)2

2σ2

}

= exp

{
− 1

2σ2
w2 +

µ

σ2
w − µ2

2σ2
− lnσ2

2

}
= exp

{
θ0w

2 + θ1w + c (θ0, θ1)
}

where

c (θ0, θ1) =
θ2

1

4θ0

+
1

2
ln (−2θ0)

and  θ0

θ1

 =

 − 1
2σ2

µ
σ2

 .

The joint likelihood for the two independent normal random samples can be writ-

ten as

L
(
µ1, µ2, σ

2
)
∝ exp {θ0S1 + θ1S2 + θ2S3 + n1c (θ0, θ1) + n2c (θ0, θ2)} (2.1)

where

θ =


θ0

θ1

θ2

 =


− 1

2σ2

µ1
σ2

µ2
σ2

 and S =


S1

S2

S3

 =


∑
y2

1 +
∑
y2

2∑
y1∑
y2


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are the canonical parameters of this likelihood and the associated canonical sufficient

statistics.

That leads to the following expression for the likelihood function:

L (θ0, θ1, θ2) ∝ exp
{
θTS + n1c (θ0, θ1) + n2c (θ0, θ2)

}
. (2.2)

We are, however, primarily interested in making inference about

ψ =
µ1

σ2
− µ2

σ2
= θ1 − θ2.

Since this parameter is a linear function of θ1 and θ2 we can in fact rewrite our likelihood

function so that interest parameter ψ is a canonical parameter in the new likelihood

function with the resulting nuisance parameters denoted as λ1 and λ2. In the process

we will implicitly define a new set of canonical sufficient statistics which we shall de-

note as T1, T2 and T3. One possible reparametrization can be obtained by adding and

subtracting a θ2

∑
y1 term in the likelihood function and then rearranging the resulting

terms to yield

L (ψ, λ1, λ2) ∝ exp {ψT1 + λ1T2 + λ2T3 + c (ψ, λ1, λ2)} (2.3)

where


ψ

λ1

λ2

 =


µ1
σ2 − µ2

σ2

− 1
2σ2

µ1
σ2

 and


T1

T2

T3

 =


−
∑
y2∑

y2
1 +

∑
y2

2∑
y1 +

∑
y2


and

c (ψ, λ1, λ2) = n1c (λ1, λ2) + n2c (λ1, λ2 − ψ) .

Note that we shall henceforth refer to a reparametrization from original likelihood (2.2)

to a likelihood in which ψ is a canonical parameter as a primary reparametrization.
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Furthermore, we can write likelihood (2.3) in matrix-vector form as

L (γ) ∝ exp
{
γTT + c (γ)

}
(2.4)

where

γ =


ψ

λ1

λ2

 and T =


T1

T2

T3

 .

Optimal UMPU tests for ψ depend upon the conditional distribution of canonical

sufficient statistic T1 given the observed values of statistics T2 and T3;

f (t1|t2, t3, ψ) (2.5)

since it is known that this conditional distribution, which also has an exponential family

form, only depends upon interest parameter ψ; see Lehmann (1986, sec. 4.4).

Note however that the likelihood in (2.4) is but one of an uncountably infinite

number of likelihoods that can be gotten by reparametrizing the original likelihood

(2.2) so as to make ψ a canonical parameter. Butler (2007, sec. 5.1) provides a general

procedure for reparametrizing exponential family likelihoods. We use this procedure to

develop a characterization of all interest parameter (ψ) preserving (IPP) reparametriza-

tions.

Here after a choice of an appropriately chosen nonsingular matrix B we have for

likelihood (2.4) that

γTT = γTBB−1T =
(
BTγ

)T (
B−1T

)
.
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To preserve interest parameter ψ as a canonical parameter, this nonsingular BT matrix

must have the following form

BT =


1 0 0

a b c

d e f

 .

Note that the collection of all nonsingular matrices of this type;

M =




1 0 0

a b c

d e f

 : a, b, c, d, e, f ∈ R and bf 6= ce


form a group under matrix multiplication. Also, the reparametrizations determined by

the elements of M shall henceforth be referred to as secondary or IPP reparametriza-

tions.

Note also that the reparametrized likelihood in (2.4) is obtained from the original

likelihood in (2.2) via a transformation determined by a nonsingular matrix A;

θTS = θTAA−1S =
(
AT θ

)T (
A−1S

)
where

AT =


0 1 −1

1 0 0

0 1 0

 .

It follows that any reparametrization from original likelihood (2.2) to a likelihood

with a structure like (2.4) in which ψ is a canonical parameter can be generated from

AT by an appropriate choice of BT matrix. To see this note that for any BT ∈ M we
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have that


1 0 0

a b c

d e f




0 1 −1

A B C

D E F

 =


0 1 −1

Ab+ cD a+Bb+ cE −a+ Cb+ Fc

fD + Ae d+ fE +Be −d+ Ff + Ce

 .

Conversely, suppose you have a general primary reparametrization of the form

AT
g =


0 1 −1

A1 B1 C1

D1 E1 F1


then the answer to the question regarding existence a unique secondary reparametriza-

tion which generates this from primary reparametrization

AT =


0 1 −1

1 0 0

0 1 0


is simply given as

BT =


0 1 −1

A1 B1 C1

D1 E1 F1




0 1 −1

1 0 0

0 1 0


−1

=


1 0 0

−C1 A1 B1 + C1

−F1 D1 F1 + E1

 .

It turns out that, without lack of generality, we can restrict ourselves to the original

primary reparametrization from likelihoods (2.2) to (2.4) for the purpose of developing

optimal UMPU tests for ψ. This is because the conditional exponential family for ψ,

which is conditional distribution of T1 given observed values for T2 and T3, is invariant

under the the group of secondary reparametrizations in M as stated in the following

theorem.
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Theorem 2.1. The conditional exponential family for ψ is invariant under the choice of

IPP transformations in matrix group M or equivalently the choice of canonical sufficient

statistics in a reparametrized likelihood for which ψ is a canonical parameter.

Please see the appendices for the proof.

Next we consider saddlepoint approximations for f (t1|t2, t3;ψ) and the associ-

ated conditional CDF F (t1|t2, t3;ψ), and the application of the CDF approximation to

UMPU equivalence testing.

2.2. SADDLEPOINT-APPROXIMATED UMPU EQUIVALENCE TEST

From classical UMPU testing theory for regular exponential families (Lehmann,

1986, sec. 4.4) the size α test for hypotheses

H0 : ψ ≤ ψ1 or ψ ≥ ψ2 versus Ha : ψ1 < ψ < ψ2 (2.6)

rejects null hypothesis H0 and finds statistical evidence of equivalence if

c1 < t1 < c2

where cut-offs c1and c2 satisfy the following equations simultaneously

 P (c1 < T1 < c2|T2 = t2, T3 = t3, ψ = ψ1) = α

P (c1 < T1 < c2|T2 = t2, T3 = t3, ψ = ψ2) = α
.

Note that (PDF) f (t1|t2, t3;ψ) and CDF F (t1|t2, t3;ψ) are intractable and cannot be

evaluated in a closed form due to the intractable surface integral in the normalization

constant for f (t1|t2, t3;ψ).

The saddlepoint approximation to f(t1|t2, t3;ψ) is given in Butler (2007, sec 5.4.2)

as

f̂ (t1|t2, t3;ψ) = (2π)−1/2

 |j
(
ψ̂, λ̂1, λ̂2

)
|

|jλλ
(
ψ, λ̂1 (ψ) , λ̂2 (ψ)

)
|


−1/2

L
[
ψ, λ̂1 (ψ) , λ̂2 (ψ)

]
L
(
ψ̂, λ̂1, λ̂2

) (2.7)
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where ψ̂, λ̂1 and λ̂2 are the maximum likelihood estimates (MLEs) for their respective

parameters, and λ̂1 (ψ) and λ̂2 (ψ) are the conditional or constrained MLEs of λ1 and

λ2 for fixed ψ.

To numerically determine c1 and c2, we will use Skovgaard’s approximation to

conditional CDF F (t1|t2, t3;ψ) described in Butler (2007, sec 5.4.5) as

F̂ (t1|t2, t3;ψ) = P̂ (T1 < t1|T2 = t2, T3 = t3, ψ) (2.8)

= Φ (w) + φ (w)

(
1

w
− 1

u

)

where

w = sgn
(
ψ̂ − ψ

)√√√√√−2 ln
L
(
ψ, λ̂1 (ψ) , λ̂2 (ψ)

)
L
(
ψ̂, λ̂1, λ̂2

) ,

u =
(
ψ̂ − ψ

)√√√√√
∣∣∣j (ψ̂, λ̂1, λ̂2

)∣∣∣∣∣∣jλλ (ψ, λ̂1 (ψ) , λ̂2 (ψ)
)∣∣∣ ,

Φ (·) and φ (·) denote the PDF and CDF for a standard normal random variable, λ =

[λ1, λ2] and where sgn (·) denotes the sign function.

Next, we derive the likelihood quantities appearing in the above saddlepoint PDF

and CDF approximations. Recall the joint log-likelihood function for our setting;

L (ψ, λ1, λ2) ∝ exp {ψT1 + λ1T2 + λ2T3 + c (ψ, λ1, λ2)} .

To obtain MLEs ψ̂, λ̂1 and λ̂2 we compute the score equations as follows


∂L(ψ,λ1,λ2)

∂ψ
= 1

2λ1
(ψn2 + 2λ1T1 − λ2n2)

∂L(ψ,λ1,λ2)
∂λ1

= T2 + n1+n2

2λ1
− n2(ψ−λ2)2+n1λ22

4λ21

∂L(ψ,λ1,λ2)
∂λ2

= 1
2λ1

(2λ1T3 − ψn2 + λ2n1 + λ2n2)

 .
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Next we set each equation to zero and solve for the MLEs;


ψ̂

λ̂1

λ̂2

 =



(
T1+T3
n1

+
T1
n2

)
(n1+n2)

T2− (T1+T3)
2

n1
−
T2
1
n2

− n1+n2

2

[
T2− (T1+T3)

2

n1
−
T2
1
n2

]
T1+T3
n1

(n1+n2)

T2− (T1+T3)
2

n1
−
T2
1
n2


.

Note that by the invariance property for MLEs we can easily obtain the above results

using the MLEs for original likelihood (2.1) ;

µ̂1 = ȳ1

µ̂2 = ȳ2

σ̂2 =

∑
(y1 − ȳ1)2 +

∑
(y2 − ȳ2)2

n1 + n2

and


ψ̂

λ̂1

λ̂2

 =


µ̂1
σ̂2 − µ̂2

σ̂2

− 1
2σ̂2

µ̂1
σ̂2


Next we need to derive conditional MLEs λ̂1 (ψ) and λ̂2 (ψ). These are obtained by

solving the following set of equations in λ1 and λ2 for fixed ψ:


∂L(ψ,λ1,λ2)

∂λ1
= T2 − n1λ22

4λ21
+ n1

2λ1
− n2(λ2−ψ)2

4λ21
+ n2

2λ1
= 0

∂L(ψ,λ1,λ2)
∂λ2

= T3 + n1λ2
2λ1

+ n2(λ2−ψ)
2λ1

= 0
.

The solutions are

 λ̂1 (ψ)

λ̂2 (ψ)

 =

 −(n1+n2)2−
√

(n1+n2)4+4n1n2ψ2[(n1+n2)T2−T 2
3 ]

4[(n1+n2)T2−T 2
3 ]

n2ψ−2λ̂1(ψ)T3
n1+n2

 .
Here again details are provided in the appendices.
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The Fisher information matrix and the partial information matrix for λ1 and λ2

are given as follows;

j(ψ, λ1, λ2) =


−∂2L(ψ,λ1,λ2)

∂ψ2 −∂2L(ψ,λ1,λ2)
∂ψ∂λ1

−∂2L(ψ,λ1,λ2)
∂ψ∂λ2

−∂2L(ψ,λ1,λ2)
∂λ1∂ψ

−∂2L(ψ,λ1,λ2)

∂λ21
−∂2L(ψ,λ1,λ2)

∂λ1∂λ2

−∂2L(ψ,λ1,λ2)
∂λ2∂ψ

−∂2L(ψ,λ1,λ2)
∂λ2∂λ1

−∂2L(ψ,λ1,λ2)

∂λ22



=


− n2

2λ1
−n2(λ2−ψ)

2λ21

n2

2λ1

−n2(λ2−ψ)

2λ21
−n1λ22+n2(λ2−ψ)2−λ1(n1+n2)

2λ31
−n2ψ−n1λ2−n2λ2

2λ21

n2

2λ1
−n2ψ−n1λ2−n2λ2

2λ21
−n1+n2

2λ1



jλλ(ψ, λ1, λ2) =

 −∂2L(ψ,λ1,λ2)

∂λ21
−∂2L(ψ,λ1,λ2)

∂λ1∂λ2

−∂2L(ψ,λ1,λ2)
∂λ2∂λ1

−∂2L(ψ,λ1,λ2)

∂λ22


=

 −n1λ22+n2(λ2−ψ)2−λ1(n1+n2)

2λ31
−n2ψ−n1λ2−n2λ2

2λ21

−n2ψ−n1λ2−n2λ2
2λ21

−n1+n2

2λ1


Theorem 2.2. The conditional saddlepoint approximations to PDF and CDF are in-

variant under the choice of IPP transformations in matrix group M or equivalently the

choice of canonical sufficient statistics in a reparametrized likelihood for which ψ is a

canonical parameter.

Please see the appendices for the proof. However due to the reparametrization in-

variance described in theorems 1 and 2, it suffices to simply work with the primary

reparametrization given in (2.4) for the purpose of developing saddlepoint-approximated

UMPU equivalence test for ψ.

Wellek (2010, sec. 3.3) provides an algorithm for estimating cut-offs c1 and c2.

However, we developed an alternative approach which we found easier to implement

with saddlepoint approximations. Recall that we need to determine c1 and c2 that
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satisfy following two equations simultaneously:

F̂ψ1 (c2)− F̂ψ1 (c1) = α (2.9)

F̂ψ2 (c2)− F̂ψ2 (c1) = α (2.10)

where

F̂ψ1 (·) = F̂ (·|t2, t3;ψ1)

and

F̂ψ2 (·) = F̂ (·|t2, t3;ψ2) .

From the first equation we can solve for c2 as

c2 = F̂−1
ψ1

[
α + F̂ψ1 (c1)

]
. (2.11)

Plugging this solution into the second equation yields

F̂ψ2

{
F̂−1
ψ1

[
α + F̂ψ1 (c1)

]}
− F̂ψ2 (c1) = α.

The solution to this equation can be recast as the root of the following function:

G (c1) = F̂ψ2

{
F̂−1
ψ1

[
α + F̂ψ1 (c1)

]}
− F̂ψ2 (c1)− α

To find the root of G (c1) we perform a grid search followed by the bisection method to

generate a G (c1) value of order 10−6. We then determine c2 from our estimate for c1

via equation (2.11) .

2.3. BAYESIAN EQUIVALENCE TESTS

Wellek (2010; sec. 3.2) considers two types of nominal α level Bayesian equiva-

lence tests. The first type rejects the nonequivalence null in (2.6) when the posterior
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probability of the alternative hypothesis is sufficiently large

P (ψ1 < ψ < ψ2|x1, . . . , xn) ≥ 1− α. (2.12)

The second type is known as the double one-sided Bayesian test and it rejects the

nonequivalence null when

P (ψ > ψ1|x1, . . . , xn) ≥ 1− α and P (ψ < ψ2|x1, . . . , xn) ≥ 1− α. (2.13)

In our setting the sample data

[x1, . . . , xn] ≡ [y1,1, . . . , y1,n1 , y2,1, . . . , y2,n2 ] .

For each type of Bayesian test we considered two different prior distributions on

ψ; a flat prior, π (ψ, λ1, λ2) = 1, (Box and Tiao, 1973), and the objective Jeffreys’ prior

(Berger, 1985);

π (ψ, λ1, λ2) =
√

[det I (ψ, λ1, λ2)]

=
√

[det j (ψ, λ1, λ2)]

=

√
(n2

1n2 + n1n2
2)

8λ4
1

These improper prior distributions were chosen in hopes that they would have a

minimal impact on the posterior distribution. Moreover, it is shown in the appendix

that both yield proper posterior distributions provided that n1 > 1 or n2 > 1.

For notational convenience, in the integrals which follow, we will often use γ, λ and

x to denote [ψ, λ1, λ2], [λ1, λ2] and [x1, . . . , xn] respectively. The posterior distribution

of γ is given as

f (ψ, λ1, λ2|x) =
f (ψ, λ1, λ2,x)

f (x)
=

f (x|ψ, λ1, λ2) π (ψ, λ1, λ2)∫
γ

f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dγ



21

where

f (x|ψ, λ1, λ2) ∝ exp

{
γTT +

n1λ
2
2

4λ1

+
1

2
(n1 + n2) ln (−2λ1) +

n2 (λ2 − ψ)2

4λ1

}
.

To make inference about ψ one needs to integrate out nuisance parameters λ = [λ1, λ2]

to obtain the posterior distribution in ψ alone;

f (ψ|x) =

∫
λ

f (ψ, λ1, λ2|x) dλ =

∫
λ
f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dλ∫

γ

f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dγ
. (2.14)

The posterior probability in (2.12) is obtained by integrating posterior f(ψ|x) over the

alternative hypothesis region;

P (ψ1 < ψ < ψ2|x) =

∫ ψ2

ψ1

f (ψ|x) dψ =

∫ ψ2

ψ1

∫
λ
f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dλdψ∫

γ

f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dγ
.

In a similar fashion, the posterior probability in (2.13) is obtained by integrating pos-

terior f(ψ|x) over lower and upper portions of the alternative hypothesis region;

P (ψ > ψ1|x) =

∫ ∞
ψ1

f (ψ|x) dψ =

∫∞
ψ1

∫
λ
f (x|ψ, λ1, λ2)π (ψ, λ1, λ2) dλdψ∫

γ

f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dγ

P (ψ < ψ2|x) =

∫ ψ2

−∞
f (ψ|x) dψ =

∫ ψ2

−∞

∫
λ
f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dλdψ∫

γ

f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dγ
.

2.3.1. Two-Sided Bayesian Equivalence Procedure. For this procedure we

need to compute

P (ψ1 < ψ < ψ2|x) =

∫ ψ2

ψ1

f (ψ|x) dψ =

∫ ψ2

ψ1

∫
λ
f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dλdψ∫

γ

f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dγ
. (2.15)
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It is shown in the appendices that under a flat prior this posterior probability is

P (ψ1 < ψ < ψ2|x) =

∫∞
0
λ1

n1+n2+2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(Φ2 − Φ1) dλ1

Γ(n1+n2+4
2 )

{(n1+n2−2)s2p}
n1+n2+4

2

and under a Jeffreys’ prior it is

P (ψ1 < ψ < ψ2|x) =

∫∞
0
λ1

n1+n2−2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(Φ2 − Φ1) dλ1

Γ(n1+n22 )

{(n1+n2−2)s2p}
n1+n2

2

where s2
p is the pooled sample variance,

Φ1 = Φ

ψ1 + 2λ1(n1T1+n2T1+n2T3)
n1n2√

−2λ1(n1+n2)
n1n2


and

Φ2 = Φ

ψ2 + 2λ1(n1T1+n2T1+n2T3)
n1n2√

−2λ1(n1+n2)
n1n2

 .

For both cases, the single integral in the numerator is easily approximated numerically.

2.3.2. Double One-Sided Bayesian Equivalence Procedure. The two new

integrals we need to evaluate here are

∫ ∞
ψ1

∫
λ

f (x|ψ, λ1, λ2)π (ψ, λ1, λ2) dλ1dλ2dψ (2.16)

and

∫ ψ2

−∞

∫
λ

f (x|ψ, λ1, λ2)π (ψ, λ1, λ2) dλ1dλ2dψ. (2.17)
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It is shown in the appendices that under a flat prior these pairs of posterior probabilities

are

P (ψ < ψ2|x) =

∫∞
0
λ1

n1+n2+2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
Φ2dλ1

Γ(n1+n2+4
2 )

{(n1+n2−2)s2p}
n1+n2+4

2

and

P (ψ > ψ1|x) =

∫∞
0
λ1

n1+n2+2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(1− Φ1) dλ1

Γ(n1+n2+4
2 )

{(n1+n2−2)s2p}
n1+n2+4

2

.

Also, it is shown that for a Jeffreys’ prior this pair is

P (ψ < ψ2|x) =

∫∞
0
λ1

n1+n2−2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
Φ2dλ1

Γ(n1+n22 )

{(n1+n2−2)s2p}
n1+n2

2

and

P (ψ > ψ1|x) =

∫∞
0
λ1

n1+n2−2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(1− Φ1) dλ1

Γ(n1+n22 )

{(n1+n2−2)s2p}
n1+n2

2

.

2.4. PRINCIPLE OF CONFIDENCE INTERVAL INCLUSION

We also consider two methods which apply the principle of confidence interval

inclusion; see Wellek (2010, sec. 3.1). The confidence interval inclusion methods we

consider are equivalent to methods based upon the application of intersection-union

tests to an equivalence null hypothesis; Berger (1982). For methods of this type, a

(1− 2α) 100% confidence interval
(
ψ̂L, ψ̂U

)
for ψ of is generated. The procedures reject

the nonequivalence null in (2.6) if confidence interval
(
ψ̂L, ψ̂U

)
is contained in (ψ1, ψ2);

the region corresponding to the equivalence alternative hypothesis in (2.6). We consider

two confidence interval methods which condition upon the observed values of canonical

sufficient statistics T2 and T3.
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2.4.1. Conditionally Studentized Confidence Interval. The approximate

asymptotic variance of ψ̂ given the observed values for T2 and T3 is

V arψ

(
ψ̂
)

=

∣∣∣jλλ (ψ, λ̂1 (ψ) , λ̂2 (ψ)
)∣∣∣∣∣∣j (ψ, λ̂1 (ψ) , λ̂2 (ψ)
)∣∣∣

as described in Butler (2007, sec. 5.4.5). The conditionally studentized statistic for ψ

has an asymptotic standard normal distribution under null hypothesis H0 : ψ = ψ0 and

is given as

Zψ0 =
ψ̂ − ψ0√
V arψ0

(
ψ̂
) .

Note that the invariance of this statistic under the choice of interest parameter preserv-

ing transformations in matrix group M is shown in the appendix as part of the proof

for Theorem 2.

For the test of H0 : ψ = ψ0 we fail to reject the null hypothesis at 2α significance

if

|Zψ0| ≤ z1−2α

where z1−2α denotes (1− 2α)th quantile of the standard normal distribution. An associ-

ated (1− 2α) 100% confidence interval can be generated from conditionally studentized

statistic Zψ0 by simultaneously solving the following equations:

Zψ̂U = −z1−2α

Zψ̂L = z1−2α.

A grid search followed by the bisection method is used to solve these equations to an

error of 10−6.
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2.4.2. Pivotal Confidence Interval. We also consider a (1− 2α) 100% pivotal

confidence interval where the pivotal quantity is the conditional CDF of canonical suf-

ficient statistic T1 given the observed values of T2 and T3. For a further discussion of

the pivotal CDF method see Berger and Casella (2002, sec. 9.2.3). Here, we determine

a confidence interval for ψ through the solution of the following equations:

F (t1|t2, t3;ψL) = 1− α (2.18)

F (t1|t2, t3;ψU) = α

This confidence interval has exact coverage under the assumption that the family of

CDFs {F (t1|t2, t3;ψ)} is stochastically decreasing in ψ (Berger and Casella 2002, sec.

9.2.3). In practice, however, we use Skovgaard’s saddlepoint approximation in place in-

tractable CDF F (t1|t2, t3;ψ). Pivotal CDF confidence intervals often yield lengths and

coverage probabilities that compare favorably with those from basically any competing

method; see Paige and Trindade (2008) and Paige, Trindade and Fernando (2009).

2.5. MONTE CARLO STUDIES

In our simulation studies we assume that σ2 = 1 and took our common sample

size to be n = 10, 20 and 30. Here we assumed that Y1 has zero mean and Y2 has mean

−ε for

ε = 0.1, 0.2, . . . , 1.

This results in ψ values of

ψ = 0.1, 0.2, . . . , 1.

Furthermore, we set ψ1 = −ε and ψ2 = ε so that the true value of ψ is on the rightmost

boundary of the null hypothesis. For each combination of n and ε values we simu-

lated 100,000 data sets. Table 2.1 presents the empirical significance levels for the (i)
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saddlepoint-approximated optimal UMPU (O) procedure; (ii) the four Bayesian proce-

dures: the two-sided procedure with a flat prior (F1) and Jeffreys’ prior (J1), and the

double one-sided procedure with a flat prior (F2) and Jeffreys’ prior (J2) and (iii) the

saddlepoint-based CDF pivotal confidence interval method (C.I.1) and the confidence

interval generated from the conditionally studentized statistic for ψ (C.I.2). Here, the

empirical significance levels for which the associated 95% Wald confidence interval con-

tains nominal rate 0.05 are shown in bold.

We see that the saddlepoint-approximated optimal UMPU (O) procedure is re-

markably accurate in terms of significance level even for very small sample sizes. In fact,

it is only when n = 30 and very wide tolerable differences ε that any of the competing

methods are even close to being unbiased. The poor performance of the confidence in-

terval methods is likely due to their wideness for small samples. The poor performance

for the Bayesian methods is probably due to the inability of the likelihood, with little

data, to dominate the prior distribution.

2.6. CONCLUSIONS

We developed seven small sample equivalence tests from two independent normal

samples for distributional parameter

ψ = (µ1 − µ2) /σ2.

We considered at least one method from each of the three general small sample ap-

proaches for constructing an equivalence test. The saddlepoint-approximated optimal

UMPU procedure was virtually unbiased in nearly all settings and is clearly superior

to the other six methods.
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Table 2.1. Empirical significance levels of equivalence tests for normal data

Empirical significance levels for n = 10, 20 and 30
n ε O F1 J1 F2 J2 C.I.1 C.I.2

10 0.1 5.125 0.000 0.000 0.000 0.000 0.000 0.000
10 0.2 4.929 0.000 0.000 0.000 0.000 0.000 0.000
10 0.3 4.945 0.000 0.000 0.000 0.000 0.000 0.000
10 0.4 5.042 0.000 0.000 0.000 0.000 0.000 0.000
10 0.5 5.047 0.000 0.000 0.000 0.001 0.001 0.000
10 0.6 4.973 0.000 0.008 0.017 0.150 0.170 0.023
10 0.7 4.985 0.018 0.195 0.265 0.962 1.064 0.236
10 0.8 4.908 0.288 1.102 0.973 2.354 2.569 0.854
10 0.9 4.906 0.898 2.420 1.770 3.403 3.769 1.447
10 1.0 4.915 1.674 3.449 2.256 3.963 4.425 1.835

20 0.1 5.193 0.000 0.000 0.000 0.000 0.000 0.000
20 0.2 4.988 0.000 0.000 0.000 0.000 0.000 0.000
20 0.3 4.989 0.000 0.000 0.000 0.000 0.000 0.000
20 0.4 4.921 0.000 0.000 0.000 0.010 0.008 0.019
20 0.5 5.068 0.014 0.061 0.334 0.772 0.819 1.074
20 0.6 4.953 0.659 1.431 1.977 3.061 3.191 3.308
20 0.7 5.060 2.449 3.721 3.159 4.413 4.655 4.015
20 0.8 4.999 3.226 4.554 3.350 4.649 4.950 3.866
20 0.9 4.975 3.180 4.570 3.205 4.583 4.973 3.497
20 1.0 4.969 2.991 4.472 2.993 4.474 4.969 3.016

30 0.1 5.036 0.000 0.000 0.000 0.000 0.000 0.000
30 0.2 5.035 0.000 0.000 0.000 0.000 0.000 0.000
30 0.3 4.962 0.003 0.000 0.000 0.002 0.000 0.000
30 0.4 4.964 0.002 0.007 0.181 0.377 0.390 1.231
30 0.5 4.913 0.939 1.626 2.568 3.317 3.421 4.365
30 0.6 4.959 3.304 4.257 3.676 4.589 4.777 4.970
30 0.7 4.977 3.661 4.676 3.690 4.693 4.970 4.694
30 0.8 4.990 3.518 4.651 3.519 4.652 4.990 4.343
30 0.9 5.024 3.356 4.608 3.356 4.608 5.024 3.939
30 1.0 5.056 3.233 4.582 3.233 4.582 5.056 3.567



APPENDIX A

PROPERNESS OF POSTERIOR DISTRIBUTIONS FROM SECTION 1
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In this section we establish that the posterior distribution for θ is proper for both

the flat prior and the objective Jeffreys’ prior. For the flat prior, integrability of the

posterior from zero to a finite positive constant, call it c, is guaranteed since marginal

likelihood (1.7) is bounded and continuous in θ. To establish integrability from c to

infinity we need to consider the tail behavior of the posterior. Note that by Gauss’s

multiplication formula we have that

Γ (nθ) = (2π)
1
2

(1−n) nnθ−
1
2

n−1∏
k=0

Γ

(
θ +

k

n

)

and by equation 6.1.47 of Abramowitz and Stegun (1972)

Γ (x+ a)

Γ (x)
∼ xa

for a > 0 where “∼” denotes asymptotic equivalence meaning that for large enough x

the function on the left is essentially the same as the function on the right. As a result,

for n > 1,

Γ (nθ)

Γ (θ)n
∼ (2π)

1
2

(1−n) nnθ−
1
2

n−1∏
k=0

θ
k
n

= (2π)
1
2

(1−n) nnθ−
1
2 θ

1
2
n− 1

2

and the posterior is proportional to

exp {(θ − 1)T + ln Γ (nθ)− n ln Γ (θ)} ∼ nnθ−
1
2 θ

1
2
n− 1

2 exp {(θ − 1)T}

= θ
1
2
n− 1

2 e−
1
2

lnn−
∑

ln zieθ[n lnn+
∑

ln zi]

where zi = xi (
∑
xi)
−1 for i = 1, . . . , n. The well-known inequality of arithmetic and

geometric means (Abramowitz and Stegun, 1972, eqn. 3.2.1) states that the mean of

nonnegative real numbers is less than or equal to their arithmetic mean (with equality
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when all of the numbers are equal). Therefore, with probability one

n
√
z1 · · · zn <

z1 + z2 + ....zn
n

=
1

n

which implies that

∑
ln zi < −n lnn

and, as a result, the posterior asymptotically equivalent to a finite constant times a

gamma density and as such is integrable.

For the Jeffreys’ prior posterior integrability from a positive constant c to infinity

follows from the fact that Jeffreys’ prior approaches zero as θ → ∞ and posterior

integrability with a flat prior that was proven above. Posterior integrability from zero

to a finite constant, however, needs to be investigated since the trigamma function

approaches infinity as θ → 0.

Differentiation of Gauss’s multiplication formula yields equation 6.4.8 of Abramowitz

and Stegun (1972);

ψ
′
(nθ) = n−2

n−1∑
k=0

ψ
′
(
θ +

k

n

)

and, as a result, the following identity:

nψ
′
(θ)− n2ψ

′
(nθ) = (n− 1)ψ

′
(θ)−

n−1∑
k=1

ψ
′
(
θ +

k

n

)
.

From equation 6.4.10 of Abramowitz and Stegun (1972) we have that

ψ
′
(θ) =

∞∑
i=0

1

(θ + i)2 =
1

θ2
+
∞∑
i=1

1

(θ + i)2
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and

√
nψ′ (θ)− n2ψ′ (nθ) =

1

θ

√√√√(n− 1) + θ2

{
(n− 1)

∞∑
i=0

1

(θ + i)2 −
n−1∑
k=1

ψ′
(
θ +

k

n

)}
.

The reciprocal gamma function is an entire function (Abramowitz and Stegun, 1972,

ch. 6) with the following Taylor series expansion around zero

1

Γ (θ)
= θ + γθ2 + · · · = θ + o

(
θ2
)

where γ ≈ 0.5772 is Euler’s constant. From this we obtain

Γ (nθ)

Γ (θ)n
= (2π)

1
2

(1−n) nnθ−
1
2

n−1∏
k=1

Γ
(
θ + k

n

)
Γ (θ)

= θn (2π)
1
2

(1−n) nnθ−
1
2

n−1∏
k=1

Γ

(
θ +

k

n

)
+ o

(
θ2
)

and it is now easily verified that the posterior converges to zero as θ → 0 and is therefore

integrable from zero to infinity.



APPENDIX B

PROOFS AND DERIVATIONS FOR SECTION 2
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B.1. Proof of Theorem 2.1. A transformation BT in matrix group M equates

to the following changes in canonical parameters and sufficient statistics:

γ̃ = BTγ =


ψ

aψ + bλ1 + cλ2

dψ + eλ1 + fλ2

 =


ψ

λ̃1

λ̃2


with associated canonical sufficient statistics

T̃ = B−1T =


T1 − T3

ae−bd
ce−bf + T2

ce−bf (af − cd)

T3
e

ce−bf − f
T2

ce−bf

c T2
ce−bf − b

T3
ce−bf

 =


T̃1

T̃2

T̃3

 .

The associated likelihood function is

L (γ̃) ∝ exp
{
ψT̃1 + λ̃1T̃2 + λ̃2T̃3 + c

(
ψ, λ̃1, λ̃2

)}
= exp

{
γ̃T T̃ + c

(
B−T γ̃

)}
.

The optimal UMPU test for ψ depends upon the following conditional distribution:

f
(
t̃1|t̃2, t̃3, ψ

)
.

Therefore we need to show that

f
(
t̃1|t̃2, t̃3, ψ

)
= f (t1|t2, t3, ψ) .
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First note that

f (t1|t2, t3;ψ) = exp {ψt1 − c (ψ|t2, t3)− d (t1, t2, t3)}

= (2π)−(n1+n22 ) exp {ψt1 − c (ψ|t2, t3)}

= (2π)−(n1+n22 ) exp (ψt1)

exp {c (ψ|t2, t3)}

=
(2π)−(n1+n22 ) exp (ψt1)∫

{t1:(t1,t2,t3)∈S} (2π)−(n1+n22 ) exp (ψt1) dt1
(B.1)

where S is the joint support of (t1, t2, t3).

Note that

t1 = −
∑

y2

t2 =
∑

y2
1 +

∑
y2

2

t3 =
∑

y1 +
∑

y2.

Since the joint support S of (t1, t2, t3) is a complicated surface in R3 it appears that the

surface integral in (B.1) cannot be evaluated in closed-form.

Consider a reparametrization from matrix group M as determined by transforma-

tion matrix B. We can then reparametrize the joint likelihood function as

exp
{
γTT + c (γ)

}
∝ exp

{
γTBB−1T+c (γ)

}
= exp

{(
BTγ

)T (
B−1T

)
+c (γ)

}
= exp

{
γ̃T T̃ + c

(
B−T γ̃

)}
where

γ =


ψ

λ1

λ2

 ,T =


t1

t2

t3

 , γ̃ = BTγ =


ψ

λ̃1

λ̃2

 , and T̃ = B−1T =


t̃1

t̃2

t̃3

 .



35

The regular exponential family form for the density is

f
(
t̃1, t̃2, t̃3;ψ, λ̃1, λ̃2

)
= exp


 λ̃1

λ̃2

T  t̃2

t̃3

+ ψt̃1 + c
(
ψ, λ̃1, λ̃2

) .

Then the conditional distribution of T̃1 given T̃2 = t̃2 and T̃3 = t̃3 can be expressed as

f
(
t̃1|T̃2 = t̃2, T̃3 = t̃3;ψ

)
= exp

{
ψt̃1 + c

(
ψ, λ̃1, λ̃2

)}
=

exp
(
ψt̃1
)

exp
{
c
(
ψ, λ̃1, λ̃2

)}
=

exp
(
ψt̃1
)∫

{t̃1:(t̃1,t̃2,t̃3)∈S̃} exp
(
ψt̃1
)
dt̃1

.

Therefore it suffices to show that

exp
(
ψt̃1
)∫

{t̃1:(t̃1,t̃2,t̃3)∈S̃} exp
(
ψt̃1
)
dt̃1

=
exp (ψt1)∫

{t1 : (t1,t2,t3)∈S} exp (ψt1) dt1
. (B.2)

Recall that

t̃ = B−1t

so that

t̃1 = B−1
(1)t

where B−1
(1) denotes the first row of B−1.

Then the left-hand side of (B.2) can be written as

exp
(
ψt̃1
)∫

{t̃1:(t̃1,t̃2,t̃3)∈S̃} exp
(
ψt̃1
)
dt̃1

=
exp

(
ψB−1

(1)t
)

∫{
B−1

(1)
t : B−1t∈B−1S

} exp
(
ψB−1

(1)t
)
dB−1

(1)t
.
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Now consider the change variable for the right side of (B.2) in which we replace t with

Bt;

exp
(
ψB−1

(1)t
)

∫{
B−1

(1)
t : B−1t∈B−1S

} exp
(
ψB−1

(1)t
)
dB−1

(1)t
=

exp
(
ψB−1

(1)Bt
)

∫{
B−1

(1)
Bt : B−1Bt∈B−1BS

} exp
(
ψB−1

(1)Bt
)
dB−1

(1)Bt
.

But note that

B−1
(1)B =

[
1 0 0

]
so then

exp
(
ψB−1

(1)Bt
)

∫{
B−1

(1)
Bt : B−1Bt∈B−1BS

} exp
(
ψB−1

(1)Bt
)
dB−1

(1)Bt
=

exp (ψt1)∫
{t1 : (t1,t2,t3)∈S} exp (ψt1) dt1

.

�

B.2. Derivation of Conditional MLEs. Setting the score equations equal to

zero, we have


∂L(ψ,λ1,λ2)

∂λ1
= T2 − n1λ22

4λ21
+ n1

2λ1
− n2(λ2−ψ)2

4λ21
+ n2

2λ1
= 0

∂L(ψ,λ1,λ2)
∂λ2

= T3 + n1λ2
2λ1

+ n2(λ2−ψ)
2λ1

= 0

which yields

 4T2λ
2
1 − n1λ

2
2 + 2n1λ1 − n2 (λ2 − ψ)2 + 2n2λ1 = 0

2T3λ1 + n1λ2 + n2 (λ2 − ψ) = 0.

From the second equation, we obtain

λ2 =
n2ψ − 2T3λ1

n1 + n2

. (B.3)

Plugging this expression into the first equation and simplifying yields

4 (n1 + n2)
[
(n1 + n2)T2 − T 2

3

]
λ2

1 + 2 (n1 + n2)3 λ1 − n1n2ψ
2 (n1 + n2) = 0.
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Solving for λ1 we obtain two possible solutions

λ̂1 (ψ) =
− (n1 + n2)2 ±

√
(n1 + n2)4 + 4n1n2ψ2 [(n1 + n2)T2 − T 2

3 ]

4 [(n1 + n2)T2 − T 2
3 ]

. (B.4)

It is easy to show that

(n1 + n2)T2 − T 2
3 > 0

if n1 > 1 or n2 > 1.

Since

λ1 = − 1

2σ2
< 0

then the λ̂1 (ψ) is the negative solution given in (B.4);

λ̂1 (ψ) =
− (n1 + n2)2 −

√
(n1 + n2)4 + 4n1n2ψ2 [(n1 + n2)T2 − T 2

3 ]

4 [(n1 + n2)T2 − T 2
3 ]

.

Plugging this solution into (B.3) yields

λ̂2 (ψ) =
n2ψ − 2λ̂1 (ψ)T3

n1 + n2

.

B.3. Proof of Theorem 2.2. Consider the likelihood function obtained by

applying a transformation BT in matrix group M to primary reparametrization (2.4)

L (γ̃) ∝ exp
{
ψT̃1 + λ̃1T̃2 + λ̃2T̃3 + c

(
ψ, λ̃1, λ̃2

)}
= exp

{
γ̃T T̃ + c

(
B−T γ̃

)}
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where

T̃ = B−1T =


T1 − T3

ae−bd
ce−bf + T2

ce−bf (af − cd)

T3
e

ce−bf − f
T2

ce−bf

c T2
ce−bf − b

T3
ce−bf

 =


T̃1

T̃2

T̃3

 .

The associated log-likelihood is

` (γ̃) ∝ ψT̃1 + λ̃1T̃2 + λ̃2T̃3 + c
(
ψ, λ̃1, λ̃2

)
(B.5)

= γ̃T T̃ + c
(
B−T γ̃

)
.

The log-likelihood for primary reparametrization in (2.4) is

` (γ) ∝ γTT + c (γ) .

The score equations for this log-likelihood are

T+∇c (γ) = 0

where ∇ is the gradient symbol which represents the first partial derivative of c (·) w.r.t.

each element in γ. MLE γ̂ is the solution to above score equation which means that

T+∇c (γ̂) = 0.

The derivative of ` (γ̃) w.r.t. γ̃ can be expressed in the following way:

T̃ + B−1∇c
(
B−T γ̃

)
= B−1T + B−1∇c

(
B−T γ̃

)
= B−1

[
T+∇c

(
B−T γ̃

)]
(B.6)

using matrix derivative formulas from Harville (2000, sec.15.7).

Let ̂̃γ denote the MLE of γ̃, then

B−1
[
T+∇c

(
B−T ̂̃γ)] = 0.
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Since

T+∇c (γ̂) = 0

then it follows that

γ̂ = B−T ̂̃γ
and

̂̃γ = BT γ̂

due the uniqueness of MLEs in canonical exponential families. Note also that this result

is to be expected due to the invariance of MLEs. A similar argument shows that the

conditional MLEs follow the same idea, that is

 ̂̃λ1 (ψ)̂̃λ2 (ψ)

 = BT
(2)


ψ

λ̂1 (ψ)

λ̂2 (ψ)


where BT

(2) denotes the last two rows of BT .

Next we consider the likelihood quantities in Skovgaard’s CDF approximation

(2.8) and show that they are invariant under the interesting parameter ψ preserving

reparametrizations induced by transformations in matrix group M . Note that this result

will also establish invariance for the saddlepoint conditional PDF approximation (2.7) as

well since it depends upon the same likelihood quantities as Skovgaard’s approximation.

First we consider likelihood ratio

L
(
ψ, λ̂1 (ψ) , λ̂2 (ψ)

)
L
(
ψ̂, λ̂1, λ̂2

)
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which appears in the expression for the w parameter in (2.8) . We first show that the

maximized likelihood is invariant under reparametrizations in M. To see this note that

L
(̂̃γ) ∝ exp

{̂̃γT T̃ + c
(
B−T ̂̃γ)}

= exp
{(

BT γ̂
)T

T̃+c
(
B−TBT γ̂

)}
= exp

{
γ̂TT + c (γ̂)

}
= L (γ̂) .

The profile likelihood has similar invariance properties;

L
(
ψ, ̂̃λ1 (ψ) , ̂̃λ2 (ψ)

)
∝ exp

{ ̂̃γpT T̃ + c
(
B−T ̂̃γp)}

= exp
{(

BT γ̂p
)T

T̃+c
(
B−TBT γ̂p

)}
= exp

{
γ̂Tp T + c (γ̂p)

}
= L

(
ψ, λ̂1 (ψ) , λ̂2 (ψ)

)
where ̂̃γp and γ̂p are augmented MLE vectors defined as

̂̃γp =


ψ̂̃λ1 (ψ)̂̃λ2 (ψ)

 and γ̂p =


ψ

λ̂1 (ψ)

λ̂2 (ψ)

 .

Next consider the invariance of the ratio of determinants for the full and partial

Fisher information matrices;

∣∣∣j (ψ̂, λ̂1, λ̂2

)∣∣∣∣∣∣jλλ (ψ, λ̂1 (ψ) , λ̂2 (ψ)
)∣∣∣

which appears in the expression for the u parameter in (2.8).
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Recall from (B.6) that derivative of ` (γ̃) w.r.t. γ̃ can be expressed in the following

way:

∂` (γ̃)

∂γ̃
= B−1

[
T+∇c

(
B−T γ̃

)]
.

Therefore, again using results from Harville (2000, sec.15.7), we have that the Hessian

matrix for ` (γ̃) is given as

∂2` (γ̃)

∂γ̃∂γ̃T
= B−1

[
Hc
(
B−T γ̃

)]
B−T

where Hc (γ) is the Hessian matrix for c (γ) and is given as

Hc (γ) =
∂2` (γ)

∂γ∂γT
.

Therefore

∂2` (γ̃)

∂γ̃∂γ̃T
= B−1∂

2` (γ̃)

∂γ̃∂γ̃T
B−T

and

j
(
ψ, λ̃1, λ̃2

)
= B−1j (ψ, λ1, λ2) B−T .

To consider partial information matrix for λ̃ =
[
λ̃1, λ̃2

]
we first partition the full infor-

mation matrix for γ in the following way:

j (ψ, λ1, λ2) =

 jψψ (ψ, λ1, λ2) jψλ (ψ, λ1, λ2)

jλψ (ψ, λ1, λ2) jλλ (ψ, λ1, λ2)


where

jψψ (ψ, λ1, λ2) = −∂
2L (ψ, λ1, λ2)

∂ψ2
,
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jψλ (ψ, λ1, λ2) =
[
−∂2L(ψ,λ1,λ2)

∂ψ∂λ1
−∂2L(ψ,λ1,λ2)

∂ψ∂λ2

]
and

jλψ (ψ, λ1, λ2) = jTψλ (ψ, λ1, λ2) .

Note that

j
(
ψ, λ̃1, λ̃2

)
= B−1j (ψ, λ1, λ2) B−T

=

 1 A1×2

02×1 C2×2

 jψψ (ψ, λ1, λ2) jψλ (ψ, λ1, λ2)

jλψ (ψ, λ1, λ2) jλλ (ψ, λ1, λ2)

 1 01×2

AT
2×1 CT

2×2


=

 jψψ

(
ψ, λ̃1, λ̃2

)
jψλ̃

(
ψ, λ̃1, λ̃2

)
jλ̃ψ

(
ψ, λ̃1, λ̃2

)
jλ̃λ̃

(
ψ, λ̃1, λ̃2

)


where

jψψ

(
ψ, λ̃1, λ̃2

)
= jψψ (ψ, λ1, λ2)+Ajλψ (ψ, λ1, λ2)+jψλ (ψ, λ1, λ2) AT+Ajλλ (ψ, λ1, λ2) AT ,

jψλ̃

(
ψ, λ̃1, λ̃2

)
= [jψλ (ψ, λ1, λ2) + Ajλλ (ψ, λ1, λ2)] CT ,

jλ̃ψ

(
ψ, λ̃1, λ̃2

)
= jT

ψλ̃

(
ψ, λ̃1, λ̃2

)
and

jλ̃λ̃

(
ψ, λ̃1, λ̃2

)
= Cjλλ (ψ, λ1, λ2) CT .

Consider now the following ratio of determinants of the full and partial Fisher informa-

tion matrices for a secondary reparametrization;

∣∣∣j (ψ, λ̃1, λ̃2

)∣∣∣∣∣∣jλ̃λ̃ (ψ, λ̃1, λ̃2

)∣∣∣ .
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Recall that

j
(
ψ, λ̃1, λ̃2

)
= B−1j (ψ, λ1, λ2) B−T

so then

∣∣∣j (ψ, λ̃1, λ̃2

)∣∣∣ = |j (ψ, λ1, λ2)| |B|−2 .

Also

jλ̃λ̃

(
ψ, λ̃1, λ̃2

)
= Cjλλ (ψ, λ1, λ2) CT

which means that

∣∣∣jλ̃λ̃ (ψ, λ̃1, λ̃2

)∣∣∣ = |jλλ (ψ, λ1, λ2)| |C|2 .

However note that

|B| = |C|−1

so then it follows that∣∣∣j (ψ, λ̃1, λ̃2

)∣∣∣∣∣∣jλ̃λ̃ (ψ, λ̃1, λ̃2

)∣∣∣ =
|j (ψ, λ1, λ2)|
|jλλ (ψ, λ1, λ2)|

.

This result has a number of ramifications including the reparametrization invariance

of the u parameter in Skovgaard’s CDF approximation (2.8) and the invariance of the

approximate asymptotic conditional variance of ψ̂ given that T2 = t2 and T3 = t3 which

is given in Butler(2007, sec. 5.4.5) as

j−1
ψψ·λ =

∣∣∣jλλ (ψ, λ̂1 (ψ) , λ̂2 (ψ)
)∣∣∣∣∣∣j (ψ, λ̂1 (ψ) , λ̂2 (ψ)
)∣∣∣

= jψψ (ψ, λ1, λ2)− jψλ (ψ, λ1, λ2) j−1
λλ (ψ, λ1, λ2) jλψ (ψ, λ1, λ2)

]
ψ,λ̂1(ψ),λ̂2(ψ)

.
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This asymptotic conditional variance is used to define the conditionally studentized

statistic for ψ in section 2.4.

�

B.4.1. Two-Sided Bayesian Equivalence Procedure: Flat Prior. With a

flat improper prior π (ψ, λ1, λ2) = 1 we are able to evaluate most of our integrals in

closed-form. The denominator of (2.15) is given as

∫
γ

f (x|ψ, λ1, λ2) dγ =

∫ ∞
−∞

∫ ∞
−∞

∫ 0

−∞
f (x|ψ, λ1, λ2) dλ1dλ2dψ (B.7)

where

f (x|ψ, λ1, λ2) ∝ e
ψT1+λ1T2+λ2T3+

n1λ
2
2+n2(λ2−ψ)2

4λ1
+ 1

2
(n1+n2) ln(−2λ1)

.

One can integrate this function in closed-form over ψ and λ2 since the associated inte-

grands are proportional to a normal density.

First we integrate with respect to (w.r.t.) λ2. Separating out the portions of

f (x|ψ, λ1, λ2) which do not depend upon λ2 yields

∫ 0

−∞

∫ ∞
−∞

(−2λ1)
n1+n2

2 exp

{
ψT1 + λ1T2 +

n2ψ
2

4λ1

}
Iλ2 (ψ) dψdλ1

where

Iλ2 (ψ) =

∫ ∞
−∞

exp

{
n1 + n2

4λ1

λ2
2 +

(
T3 −

ψn2

2λ1

)
λ2

}
dλ2

is the inner integral w.r.t. λ2. Applying the well-known Gaussian integral identity, i.e.

∫ ∞
−∞

exp
{
−ax2 + bx

}
dx =

√
π

a
exp

{
b2

4a

}
for a > 0,
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to Iλ2 (ψ) yields the following closed-form expression:

Iλ2 (ψ) =

√
−4πλ1

n1 + n2

exp


−λ1

(
T3 − ψn2

2λ1

)2

n1 + n2

 .

This leads to the following integral in ψ and λ1;

∫ 0

−∞

∫ ∞
−∞

(−2λ1)
n1+n2

2

√
−4πλ1

n1 + n2

exp

ψT1 + λ1T2 +
n2ψ

2

4λ1

−
λ1

(
T3 − ψn2

2λ1

)2

n1 + n2

 dψdλ1.

Separating out the portions of the above integrand which do not depend upon ψ yields

∫ 0

−∞
(−2λ1)

n1+n2
2

√
−4πλ1

n1 + n2

exp

{
λ1T2 −

λ1T
2
3

n1 + n2

}
Iψ (λ1) dλ1

where the inner integral w.r.t. ψ is given as

Iψ (λ1) =

∫ ∞
−∞

exp

{
n1n2

4λ1 (n1 + n2)
ψ2 +

(
T1 +

n2T3

n1 + n2

)
ψ

}
dψ.

Applying the Gaussian integral identity to the above inner integral results in the fol-

lowing closed-form expression:

Iψ (λ1) =

√
−4πλ1 (n1 + n2)

n1n2

exp

{
−λ1 (n1 + n2)

n1n2

(
T1 +

n2T3

n1 + n2

)2
}

.

After some simplification we are left with a single integral only in λ1. Since its integrand

is proportional to a gamma density after a change of variable it can be evaluated in

closed-form. With the substitution z = −λ1 this integral is proportional to

∫ 0

−∞
(−λ1)

n1+n2+2
2 exp

{
−λ1 (T 2

1 n1 + T 2
1 n2 + T 2

3 n2 + 2T1T3n2 − T2n1n2)

n1n2

}
dλ1

=

∫ ∞
0

zα−1e−βzdz

=
Γ (α)

βα
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where

α =
n1 + n2 + 4

2

and

β = −T
2
1 n1 + T 2

1 n2 + T 2
3 n2 + 2T1T3n2 − T2n1n2

n1n2

.

Note in the above integration we assumed that β > 0 which is in fact always the case

in practice (provided that n1 > 1 or n2 > 1). To see this recall that


T1

T2

T3

 =


−
∑
y2∑

y2
1 +

∑
y2

2∑
y1 +

∑
y2

 .

It follows that

β = −T
2
1 n1 + T 2

1 n2 + T 2
3 n2 + 2T1T3n2 − T2n1n2

n1n2

(B.8)

=
∑

(y1 − ȳ1)2 +
∑

(y2 − ȳ2)2

= (n1 + n2 − 2) s2
p.

where s2
p is the pooled sample variance. Therefore the flat improper prior yields a proper

posterior distribution provided that n1 > 1 or n2 > 1.

In summary the denominator of posterior distribution (B.7) is given in closed-form

as

∫
γ

f (x|ψ, λ1, λ2) dγ = 2
n1+n2

2
4π
√
n1n2

Γ
(
n1+n2+4

2

)
{

(n1 + n2 − 2) s2
p

}n1+n2+4
2

.

The numerator of (2.15) is given as

∫ ψ2

ψ1

∫
λ

f (x|ψ, λ1, λ2) dλdψ =

∫ ψ2

ψ1

∫ ∞
−∞

∫ 0

−∞
f (x|ψ, λ1, λ2) dλ1dλ2dψ.



47

We first integrate w.r.t. λ2 in closed-form as before separating out the portions of the

resulting integrand which do not depend upon ψ yields

∫ 0

−∞
(−2λ1)

n1+n2
2

√
−4πλ1

n1 + n2

exp

{
λ1T2 −

λ1T
2
3

n1 + n2

}
Iψ (λ1) dλ1.

where the inner integral w.r.t. ψ is given as

Iψ (λ1) =

∫ ψ2

ψ1

exp

{
n1n2

4λ1 (n1 + n2)
ψ2 +

(
T1 +

n2T3

n1 + n2

)
ψ

}
dψ.

The integrand in the inner integral is proportional to a normal density in ψ and

as such can be evaluated in closed-form. Recall that for X ∼ N (µ, σ2)

P (x1 ≤ X ≤ x2) =
1√
2πσ

∫ x2

x1

exp

{
− (x− µ)2

2σ2

}
dx

= Φ

(
x2 − µ
σ

)
− Φ

(
x1 − µ
σ

)

where Φ (·) is the CDF for the standard normal density. As a result

∫ x2

x1

exp

{
− 1

2σ2
x2 +

µ

σ2
x

}
dx =

√
2πσ exp

(
µ2

2σ2

){
Φ

(
x2 − µ
σ

)
− Φ

(
x1 − µ
σ

)}
.

To evaluate inner integral

Iψ (λ1) =

∫ ψ2

ψ1

exp

[
n1n2

4λ1 (n1 + n2)
ψ2 +

(
T1 +

n2T3

n1 + n2

)
ψ

]
dψ.

we set-up the following correspondences:

n1n2

4λ1 (n1 + n2)
≡ − 1

2σ2

and

T1 +
n2T3

n1 + n2

≡ µ

σ2
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which yields

σ2 ≡ −2λ1 (n1 + n2)

n1n2

and

µ ≡ −2λ1 (n1 + n2)

n1n2

(
T1 +

n2T3

n1 + n2

)
≡ −2λ1 (n1T1 + n2T1 + n2T3)

n1n2

.

Therefore, we have that

∫ ψ2

ψ1

exp

{
n1n2

4λ1 (n1 + n2)
ψ2 +

(
T1 +

n2T3

n1 + n2

)
ψ

}
dψ

=

√
−4πλ1 (n1 + n2)

n1n2

exp


[
−2λ1(n1T1+n2T1+n2T3)

n1n2

]2

−4λ1(n1+n2)
n1n2

 (Φ2 − Φ1)

where

Φ1 = Φ

ψ1 + 2λ1(n1T1+n2T1+n2T3)
n1n2√

−2λ1(n1+n2)
n1n2


and

Φ2 = Φ

ψ2 + 2λ1(n1T1+n2T1+n2T3)
n1n2√

−2λ1(n1+n2)
n1n2

 .

Simplifying this expression and doing a sequence of change of variables z = −λ1 and

then λ1 = z yields :

∫ ψ2

ψ1

∫ ∞
−∞

∫ 0

−∞
f (x|ψ, λ1, λ2) dλ1dλ2dψ

= 2
n1+n2

2
4π
√
n1n2

∫ ∞
0

λ1

n1+n2+2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(Φ2 − Φ1) dλ1.
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Thus the two-sided posterior probability under the flat prior is

P (ψ1 < ψ < ψ2|x) =

∫∞
0
λ1

n1+n2+2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(Φ2 − Φ1) dλ1

Γ(n1+n2+4
2 )

{(n1+n2−2)s2p}
n1+n2+4

2

.

B.4.2. Two-Sided Bayesian Equivalence Procedure: Jeffreys’ Prior. As

before we first consider the denominator in (2.15). Since Jeffereys’ prior is flat in ψ and

λ2 integration over these parameters is performed in closed-form like in the previous

section. Recall the final univariate integral in λ1 to calculate the denominator for (2.15)

using a flat prior;

∫
γ

f (x|ψ, λ1, λ2) dγ = 2
n1+n2

2
4π
√
n1n2

∫ 0

−∞
(−λ1)

n1+n2+2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
dλ1.

For the Jeffreys’ prior computation we need to simply perform a sequence of change

of variables z = −λ1 and then λ1 = z and then multiply the resulting integrand by

Jeffereys’ prior

π (ψ, λ1, λ2) =

√
(n2

1n2 + n1n2
2)

8λ4
1

.

The resulting integral is proportional to the integral of a gamma density and may be

evaluated in closed-form to yield

∫
γ

f (x|ψ, λ1, λ2) dγ = 2
n1+n2+1

2
√
n1 + n2π

Γ
(
n1+n2

2

)
{

(n1 + n2 − 2) s2
p

}n1+n2
2

.

Here we assumed that the gamma scale parameter as in (B.8) is positive. Hence

the Jeffrey’s prior also yields a proper posterior distribution when n1 > 1 or n2 > 1.

With regards to the numerator recall the final univariate integral in λ1 to calculate

the numerator for (2.15) using a flat prior;

∫ ψ2

ψ1

∫
λ

f (x|ψ, λ1, λ2) dλdψ ∝
∫ ∞

0

λ1

n1+n2+2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(Φ2 − Φ1) dλ1.
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Multiplication of the above integrand by Jeffereys’ prior results in the following numer-

ator expression

∫ ψ2

ψ1

∫
λ

f (x|ψ, λ1, λ2) π (ψ, λ1, λ2) dλdψ

= 2
n1+n2+1

2
√
n1 + n2π

∫ ∞
0

λ1

n1+n2−2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(Φ2 − Φ1) dλ1.

In summary the posterior probability of the alternative hypothesis under Jeffereys’

prior is

P (ψ1 < ψ < ψ2|x) =

∫∞
0
λ1

n1+n2−2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(Φ2 − Φ1) dλ1

Γ(n1+n22 )

{(n1+n2−2)s2p}
n1+n2

2

.

B.4.3. Double One-Sided Bayesian Equivalence Procedure: Flat Prior.

To evaluate integrals (2.16) and (2.17) we can first integrate w.r.t. λ2, as in the two-

sided Bayesian equivalence calculations to yield

∫ ∞
ψ1

∫
λ

f (x|ψ, λ1, λ2) dλ1dλ2dψ =

∫ 0

−∞
(−2λ1)

n1+n2
2

√
−4πλ1

n1 + n2

e
λ1T2−

λ1T
2
3

n1+n2 I1
ψ (λ1) dλ1

with inner integral

I1
ψ (λ1) =

∫ ∞
ψ1

exp

{
n1n2

4λ1 (n1 + n2)
ψ2 +

(
T1 +

n2T3

n1 + n2

)
ψ

}
dψ

and

∫ ψ2

−∞

∫
λ

f (x|ψ, λ1, λ2) dλ1dλ2dψ =

∫ 0

−∞
(−2λ1)

n1+n2
2

√
−4πλ1

n1 + n2

e
λ1T2−

λ1T
2
3

n1+n2 I2
ψ (λ1) dλ1

with inner integral

I2
ψ (λ1) =

∫ ψ2

−∞
exp

[
n1n2

4λ1 (n1 + n2)
ψ2 +

(
T1 +

n2T3

n1 + n2

)
ψ

]
dψ.
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Applying the Gaussian identity to the inner integrals yields

I1
ψ (λ1) =

√
2π

√
−2λ1 (n1 + n2)

n1n2

exp


[

2λ1(n1T1+n2T1+n2T3)
n1n2

]2

−4λ1(n1+n2)
n1n2

Φ2

I2
ψ (λ1) =

√
2π

√
−2λ1 (n1 + n2)

n1n2

exp


[

2λ1(n1T1+n2T1+n2T3)
n1n2

]2

−4λ1(n1+n2)
n1n2

 (1− Φ1) .

After a sequence of change of variables z = −λ1 and then λ1 = z we then have

P (ψ < ψ2|x) =

∫∞
0
λ1

n1+n2+2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
Φ2dλ1

Γ(n1+n2+4
2 )

{(n1+n2−2)s2p}
n1+n2+4

2

and

P (ψ > ψ1|x) =

∫∞
0
λ1

n1+n2+2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(1− Φ1) dλ1

Γ(n1+n2+4
2 )

{(n1+n2−2)s2p}
n1+n2+4

2

.

B.4.4. Double One-Sided Bayesian Equivalence Procedure: Jeffreys’

Prior. The computations in this setting follow immediately from our previous results

to yield

P (ψ < ψ2|x) =

∫∞
0
λ1

n1+n2−2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
Φ2dλ1

Γ(n1+n22 )

{(n1+n2−2)s2p}
n1+n2

2

and

P (ψ > ψ1|x) =

∫∞
0
λ1

n1+n2−2
2 exp

{
−λ1 (n1 + n2 − 2) s2

p

}
(1− Φ1) dλ1

Γ(n1+n22 )

{(n1+n2−2)s2p}
n1+n2

2

.
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