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ABSTRACT 

This research uses quasi-Monte Carlo sampling experiments to examine the properties of 

pretest and positive-part Stein-like estimators in the random parameters logit (RPL) model 

based on the Lagrange Multiplier (LM), likelihood ratio (LR) and Wald tests. First, we 

explore the properties of quasi-random numbers, which are generated by the Halton 

sequence, in estimating the random parameters logit model. We show that increases in the 

number of Halton draws influence the efficiency of the RPL model estimators only slightly. 

The maximum simulated likelihood estimator is consistent and it is not necessary to increase 

the number of Halton draws when the sample size increases for this result to be evident. In 

the second essay, we study the power of the LM, LR and Wald tests for testing the random 

coefficients in the RPL model, using the conditional logit model as the restricted model, 

since we found that the LM-based pretest estimator provides the poor risk properties. We 

claimed that the power of LR and Wald tests decreases with increases in the mean of the 

coefficient distribution. The LM test has the weakest power for presence of the random 

coefficient in the RPL model. In the last essay, the pretest and shrinkage are showed to 

reduce the risk of the fully correlated RPL model estimators significantly. The percentage of 

correct predicted choices is increased by 2% using the positive-part Stein-like estimates 

compared to the results using the pretest and fully correlated RPL model estimates with using 

the marketing consumer choice data. 
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CHAPTER 1 INTRODUCTION 

 

The conditional logit model is frequently used in applied econometrics. The related 

choice probability can be computed conveniently without multivariate integration. The 

Independence from Irrelevant Alternatives (IIA) assumption of the conditional logit model is 

inappropriate in many choice situations, especially for the choices that are close substitutes. The 

IIA assumption arises because in logit models the unobserved components of utility are 

independent and identically Type I extreme value distributions. This is violated in many cases, 

such as when unobserved factors that affect the choice persist over time.  

Unlike the conditional logit model, the random parameters logit (RPL) model, also called 

the mixed logit model, does not impose the IIA assumption. The RPL model can capture random 

taste variation among individuals and allows the unobserved factors of utility to be correlated 

over time as well. However, the choice probability in the RPL model cannot be calculated 

exactly because it involves a multi-dimensional integral which does not have closed form 

solution. The integral can be approximated using simulation. The requirement of a large number 

of pseudo-random numbers during the simulation leads to long computational times. In this 

dissertation, we focus on the properties of pretest estimators and positive-part Stein-like 

estimators in the random parameters logit model based on Lagrange multiplier (LM), likelihood 

ratio (LR) and Wald test statistics. The outline of this dissertation as follows: in the second 

chapter, we introduce quasi-random numbers and construct Monte Carlo experiments to explore 

the properties of quasi-random numbers, which are generated by the Halton sequence, in 

estimating the RPL model. In the third chapter, we use quasi-Monte Carlo sampling experiments 

to examine the properties of pretest estimators in the RPL model based on the LM, LR and Wald 

tests. The pretests are for the presence of random parameters.  We explore the power of the LM, 
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LR and Wald tests for random parameters by calculating the empirical percentile values, size and 

rejection rates of the test statistics, using the conditional logit model as the restricted model. In 

the fourth chapter, the number of random coefficients in the random parameters logit model is 

extended to four and allowed to be correlated to each other. We explore the properties of pretest 

estimators and positive-part Stein-like estimators which are a stochastically weighted convex 

combination of fully correlated parameter model estimators and uncorrelated parameter model 

estimators in the random parameters logit (RPL) model. The mean squared error (MSE) is used 

as the risk criterion to compare the efficiency of positive part Stein-like estimators to the 

efficiency of pretest and fully correlated RPL model estimators, which are based on the 

likelihood ratio (LR), Lagrange multiplier (LM) and Wald test statistics. Lastly, the accuracy of 

correct predicted choices is calculated and compared with the positive-part Stein-like, pretest and 

fully correlated RPL model estimators using marketing consumer choice data.  
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CHAPTER 2 USING HALTON SEQUENCES IN THE RANDOM 

PARAMETERS LOGIT MODEL 

2.1 Introduction 

In this chapter, we construct Monte Carlo experiments to explore the properties of quasi-

random numbers, which are generated by the Halton sequence, in estimating the random 

parameters logit (RPL) model. The random parameters logit model has become more frequently 

used in applied econometrics because of its high flexibility. Unlike the multinomial logit model 

(MNL), this model is not limited by the Independence from Irrelevant Alternatives (IIA) 

assumption. It can capture the random preference variation among individuals and allows 

unobserved factors of utility to be correlated over time. The choice probability in the RPL model 

cannot be calculated exactly because it involves a multi-dimensional integral which does not 

have closed form.  The use of pseudo-random numbers to approximate the integral during the 

simulation requires a large number of draws and leads to long computational times.  

 To reduce the computational cost, it is possible to replace the pseudo-random numbers by 

a set of fewer, evenly spaced points and still achieve the same, or even higher, estimation 

accuracy. Quasi-random numbers are evenly spread over the integration domain. They have 

become popular alternatives to pseudo-random numbers in maximum simulated likelihood 

problems.  Bhat (2001) compared the performance of quasi-random numbers (Halton draws) and 

pseudo-random numbers in the context of the maximum simulated likelihood estimation of the 

RPL model. He found that using 100 Halton draws the root mean squared error (RMSE) of the 

RPL model estimates were smaller than using 1000 pseudo-random numbers. However, Bhat 

also mentioned that the error measures of the estimated parameters do not always become 

smaller as the number of Halton draws increases.  Train (2003, p. 234) summarizes some 

numerical experiments comparing the use of 100 Halton draws with 125 Halton draws. He says, 
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“…the standard deviations were greater with 125 Halton draws than with 100 Halton draws….” 

Its occurrence indicates the need for further investigation of the properties of Halton sequences 

in simulation-based estimation.” It is our purpose to further the understanding of these properties 

through extensive simulation experiments. How does the number of quasi-random numbers, 

which are generated by the Halton draws, influence the efficiency of the estimated parameters? 

How should we choose the number of Halton draws in the application of Halton sequences with 

the maximum simulated likelihood estimation? In our experiments, we vary the number of 

Halton draws, the sample size and the number of random coefficients to explore the properties of 

the Halton sequences in estimating the RPL model. The results of our experiments confirm the 

efficiency of the quasi-random numbers in the context of the RPL model. We show that increases 

in the number of Halton draws influence the efficiency of the random parameters logit model 

estimators by a small amount. The maximum simulated likelihood estimator is consistent. In the 

context of the RPL model, we find that it is not necessary to increase the number of Halton 

draws when the sample size increases for this result to be evident.  

 The plan of the remainder of the first chapter is as follows. In the following section, we 

discuss the random parameters logit specification. Section 2.3 introduces the Halton sequence. 

Section 2.4 describes our Monte Carlo experiments. Section 2.5 presents the experimental 

results. Some conclusions are given in Section 2.6.  

2. 2 The Random Parameters Logit Model 

The random parameters logit model, also called the mixed logit model, was first applied 

by Boyd and Mellman (1980) and Cardell and Dunbar (1980) to forecast automobile choices by 

individuals. As its name implies, the RPL model allows the coefficients to be random to capture 

the preferences of individuals. It relaxes the IIA assumption, that the ratio of probabilities of two 

alternatives is not affected by the number of other alternatives. The random parts of the utility in 



5 

 

the RPL model can be decomposed into two parts: one part having the independent, identical 

type I extreme value distribution, and the other, representing individual tastes, can be any 

distribution. The related utility associated with alternative i  as evaluated by individual n  in the 

RPL model is written as: 

(2.1) '

ni n ni niU x    

where 
nix  are observed variables for alternative i  and individual n , 

n  is a vector of coefficients 

for individual n  varying over individuals in the population with density function ( )f  , and 
ni  is 

iid extreme value, which is independent of 
n  and 

nix . The distribution of coefficient 
n is 

specified by researchers. David A. Hensher and Willian H. Greene (2003) discussed how to 

choose an appropriate distribution for random coefficients. Here, the random coefficients 
n  can 

be separated into their mean   and random component 
nv .  

(2.2) ni ni n ni niU x v x       

Even if the elements of 
nv  are uncorrelated, the random parts of utility 

ni , where ,ni n ni niv x     

in the RPL model are still correlated over the alternatives. The variance of the random 

component can be different for different individuals.  The RPL model becomes the probit model, 

if 
ni  has a multivariate normal distribution. If 

n  is fixed, the RPL model becomes the standard 

logit model: 

(2.3) ni ni niU x      

The probability that the individual n choose alternative i  is: 

(2.4) ( ) ( ) ( )ni ni nj ni ni nj nj nj ni ni njP P U U i j P x x i j P x x i j                       
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Marschak is the first person that provided the nonconstructive proof to show that the Type I 

extreme value distribution of random part of utility 
ni  can lead to logistic distribution of the 

difference between two random terms ( )ni nj  . The proof was developed by E. Holman and A. 

Marley and completed by Daniel McFadden (1974). So the choice probability 
niP  of conditional 

logit model has a succinct and closed form: 

(2.5) ( )
ni

nj

x

ni ni x

j

e
P L

e




  

  

Since 
n  is random and unobserved in the RPL model, the choice probability 

niP  cannot be 

calculated as it is in the standard logit model. It must be evaluated at different values of 
n  and 

the form of the related choice probability is: 

(2.6)  ( )
ni

nj

x

ni nix

j

e
P f d E L

e




   


 

The density function ( )f   provides the weights, and the choice probability is a weighted average 

of ( )niL   over all possible values of
n .  Even though the integral in (2.6) does not have a closed 

form, the choice probability in the RPL model can be estimated through simulation.  The 

unknown parameters ( ) , such as the mean and variance of the random coefficient distribution, 

can be estimated by maximizing the simulated log-likelihood function. With simulation, a value 

of   labeled as r  representing the rth draw, is selected randomly from a previously specified 

distribution.  The standard logit ( )niL   in equation (2.6) can be calculated with r . Repeating 

this process R  times, the simulated probability of individual n  choosing alternative i  is obtained 

by averaging ( )r

niL  : 
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(2.7) 
1

1
( )

R
r

ni ni ni n
r

P P L
R 

    

For a given mean and variance of a random coefficient distribution, the simulated probability niP  

is strictly positive and twice differentiable with respective to the unknown parameters  .  The 

wonderful property of logit choice probability is that the log-likelihood function with this kind of 

choice probability is globally concave (McFadden, 1974). Therefore the simulated log-likelihood 

function (SLL) is: 

(2.8) 
1 1

( ) ln
N J

ni ni
n i

SLL d P
 

   

where 1nid   if individual n chooses alternative i  and zero otherwise. Each individual is 

assumed to make choices independently and only make the choice once. The value of estimates 

that maximizes the SLL is called the maximum simulated likelihood (MSL) estimate. 

 The method used to estimate the probability 
niP  in (2.7) is called the classical Monte Carlo 

method. It reduces the integration problem to the problem of estimating the expected value on 

the basis of the strong law of large numbers. In general terms, the classical Monte Carlo method 

is described as a numerical method based on random sampling. The random sampling here is 

pseudo-random numbers.  In terms of the number of pseudo-random numbers N , it only gives 

us a probabilistic error bound, also called the convergence rate, 1/2( )O N   for numerical 

integration, since there is never any guarantee that the expected accuracy is achieved in a 

concrete calculation (Niederreiter, 1992, p.7).  The useful feature of the classical Monte Carlo 

method is that the convergence rate of the numerical integration does not depend on the 

dimension of the integration. With the classical Monte Carlo method, it is not difficult to get an 

unbiased simulated probability niP  for 
niP . The problem is the simulated log-likelihood function 
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in (2.8) is a logarithmic transformation, which causes a simulation bias in the SLL which 

translates into bias in the MSL estimator. To decrease the bias in the MSL estimator and get a 

consistent and efficient MSL estimator, Train (2003, p.257) shows that, with an increase in the 

sample size N , the number of pseudo-random numbers should rise faster than N . The 

disadvantage of the classical Monte Carlo method in the RPL model estimation is the 

requirement of a large number of pseudo-random numbers, which leads to long computational 

times.  

2.3 The Halton Sequences 

 To reduce the computational cost, quasi-random numbers are being used to replace the 

pseudo-random numbers in MSL estimation, leading to the same or even higher accuracy 

estimation with many fewer points.  The essence of the number theoretic method (NTM) is to 

find a set of uniformly scattered points over an s -dimensional unit cube.  Such set of points 

obtained by NTM is usually called a set of quasi-random numbers, or a number theoretic net.  

Sometimes it can be used in the classical Monte Carlo method to achieve a significantly higher 

accuracy. The Monte Carlo method with using quasi-random numbers is called a quasi-Monte 

Carlo method. In fact, there are several classical methods to construct the quasi-random numbers. 

Here we use the Halton sequences proposed by Halton (1960).  

 The Halton sequences are based on the base- p  number system which implies that any 

integer n  can be written as: 

(2.9) 2

1 2 1 0 0 1 2

M

M M Mn n n n n n n n p n p n p       

where [log ] [ln / ln ]n

pM n p   and 1M   is called the number of digits of n , square brackets 

denoting the integral part, p  is base and can be any integer except 1, 
in  is the digit at position i , 
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0 i M  , 0 1in p    and ip  is the weight of position i . For example, with the base 10p  , the 

integer 468n   has 
0 1 28, 6, 4n n n   . 

 Using the base- p number system, we can construct one and only one fraction   which is 

smaller than 1 by writing n  with a different base number system and reversing the order of the 

digits in n . It is also called the radical inverse function defined as the follows: 

(2.10) 1 2 1

0 1 2 0 1( ) 0. M

p M Mn n n n n n p n p n p        
 

Based on the base- p  number system, the integer 468n   can be converted into the binary 

number system by successively dividing by the new base 2: 

10468 
8 7 6 5 4 3 2 1 0

21 2 1 2 1 2 0 2 1 2 0 2 1 2 0 2 0 2 111010100                   

Applying the radical inverse function, we can get an unique fraction for the integer 468n   with  

base 2p  : 

3 5 7 8 9

2 2 10(111010100) 0.001010111 1 2 1 2 1 2 1 2 1 2 0.169921875                  

The value 
100.169921875  is the corresponding fraction of 

20.001010111 in the decimal number 

system.  

 The Halton sequence of length N  is developed from the radical inverse function and the 

points of the Halton sequence are ( )p n  for 1,2n N , where p  is a prime number.  The k -

dimensional sequence is defined as: 

(2.11) 
1 2

( ( ), ( ), ( ))
kn p p pn n n      
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Where 
1 2, , kp p p

 
are prime to each other and are chosen from the first k  primes.  By setting 

1 2, , kp p p
 
to be prime to each other we avoid the correlation among the points generated by any 

two Halton sequences with different base- p . 

 In applications, Halton sequences are used to replace random number generators to 

produce points in the interval [0, 1]. The points of the Halton sequence are generated iteratively. 

As far as a one-dimensional Halton sequence is concerned, the Halton sequence based on prime 

p  divides the 0-1 space into p  segments and systematically fills in the empty space by dividing 

each segment into smaller p  segments iteratively.  This is illustrated below. The numbers below 

the line represents the order of points filling in the space.  

0      1/8      ¼       3/8     1/2     5/8     ¾       7/8     1  

|          |          |          |          |          |          |          |          |        

          4        2        6        1        5        3        7   

The position of the points is determined by the base which is used to construct the iteration. A 

large base implies more points in each iteration or long cycle.  Due to the high correlation among 

the initial points of the Halton sequence, the first ten points of the sequences are usually 

discarded in applications (Train, 2003, p.230). Compared to the pseudo-random numbers, the 

coverage of the points of the Halton sequence are more uniform, since the pseudo-random 

numbers may cluster in some areas and leave some areas uncovered. This can be seen from 

Figure 1, which is similar to the graph in Fang and Wang (1994).  In Figure 2.1, the top one is a 

plot of 200 points taken from uniform distribution of two dimensions using pseudo-random 

numbers. The bottom one is a plot of 200 points obtained by the Halton sequence. The latter 

scatters more uniformly on the unit square than the former. Since the points generated from the 

Halton sequences are deterministic points, unlike the classical-Monte Carlo method, quasi-Monte 
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Carlo provides a deterministic error bound instead of probabilistic error bound.  It is also called 

the discrepancy in the literature of number theoretic methods. The smaller the discrepancy, the 

more evenly the quasi-random numbers are spread over the domain.  The deterministic error 

bound of quasi-Monte Carlo method with the k -dimensional Halton sequence is 1( (ln ) )kO N N , 

which represented in terms of the number of points used and shown smaller than the probabilistic 

error bound of classical-Monte Carlo method [refer to Appendix A].  For example, as shown in 

Appendix A, if we increase the length of the Halton sequence from N to N and let 2N N  , the 

discrepancy is 2( (2ln ) )kO N N .  This implies that, unlike the pseudo-random numbers, the 

increases in the number of points generated by the Halton sequence can’t surely improve the 

discrepancy, especially for the high dimensional Halton sequence.  In applications, Bhat (2001), 

Train (2003), Hess and Polak (2003) and other researchers discussed this issue by showing the 

high correlation among the points generated by the Halton sequences with any two adjacent 

prime numbers.  

 

Figure 2.1 200 points generated by a pseudo-random number Generator and the Halton Sequence 
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With high dimensional Halton sequences, usually 10k  , a large number of points is 

needed to complete the long cycle with large prime numbers. In addition to increasing the 

computational time, it will also cause a correlation between two adjacent large prime-based 

sequences, such as the thirteenth and fourteenth dimension generated by prime number 41 and 43 

respectively. The correlation coefficient between two close large prime-based sequences is 

almost equal to one. This is shown in Figure 2.2, which is based on a graph from Bhat (2003). To 

solve this problem, number theorists such as Wang and Hickernell (2000) scramble the digits of 

each number of the sequences, which is called a scrambled Halton sequences. Bhat (2003) shows 

that the scrambled Halton sequence performs better than the standard Halton sequence, or the 

pseudo-random sequence, in estimating the mixed probit model with a 10-dimensional integral. 

In this chapter, we analyze the properties of the Halton sequence when estimating the RPL model 

with a low dimensional integral. In the next section we will describe our experiments and find 

the answers to the above questions. 

 

Figure 2.2: 200 points of two-dimension Halton sequence generated with prime 41 and 43 
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2.4 The Quasi-Monte Carlo Experiments with Halton Sequences  

 Our experiments begin from the simple RPL model which has no intercept term and 

only one random coefficient.  Then, we expand the number of random coefficient to four by 

adding the random coefficient one by one.  In our experiments, each individual faces four 

mutually exclusive alternatives with only one choice occasion.  The associated utility for 

individual n  choosing alternative i  is: 

(2.12) 
ni n ni niU x     

The explanatory variables for each individual and each alternative 
nix  are generated from 

independent standard normal distributions. The coefficients for each individual 
n  are generated 

from normal distribution 2( , )N   .  These values of 
nix  and 

n  are held fixed over each 

experiment design.  The choice probability for each individual is generated by comparing the 

utility of each alternative:  

(2.13) 
1

0

r r

r n ni ni n nj nj

ni

x x
I

Otherwise

        
 


  i j   

The indicator function r

niI  represents whether individual n  chooses alternative i  or not based on 

the utility function.  The values of errors are generated from iid extreme value type I distribution, 

r

ni
 
representing the rth draw. We calculate and compare the utility of each alternative using these 

values of errors. This process is repeated 1000 times. The choice probability 
niP  for each 

individual n  choosing alternative i  is: 

(2.14) 
1000

1

1

1000

r

ni ni
r

P I


   
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The dependent variables 
niy  are determined by these values of simulated choice probabilities. 

Our generated data are composed of the explanatory and dependent variables 
nix  and 

niy  which 

are used to estimate the RPL model parameters. In our experiments, we generate 999 Monte 

Carlo samples ( )NSAM  with specific true values that we set for the RPL model parameters.  The 

reason that we generate 999 Monte Carlo samples is that it will be convenient to calculate the 

empirical 90
th

 and 95
th

 percentile value of the LR, Wald and LM statistics in the following 

chapter.
 
During the estimation process, the random coefficients 

n  
in (2.7) are generated by the 

Halton sequences instead of pseudo-random numbers. First, we generate the k-dimensional 

Halton sequences of length 10N R  , where N  is sample size, R  is the number of the Halton 

draws assigned to each individual and 10 is the number of Halton draws that we discard due to 

the high correlation [Morokoff and Caflisch (1995), Bratley, et al. (1992)]. Then we transform 

these Halton draws into a set of numbers 
n  with normal distribution using the inverse transform 

method. With the inverse transform method, the random variables have independent multivariate 

normal distribution 
n  which are transformed from the k -dimensional Halton sequences, have 

the same discrepancy as the Halton sequences generated from the k -dimensional unit cube. So 

the smaller discrepancy of the Halton sequences leads to the smaller discrepancy of 
n . To 

calculate the corresponding simulated probability niP  in (2.7), the first R points are assigned to 

the first individual, the second R points are used to calculate the simulated probability niP
 
of the 

second individual, and so on.  

 To examine the efficiency of the estimated parameters using Halton sequences, the root 

mean squared error (RMSE) of the RPL model estimates is used as the error measure.  And we 

also compare the average nominal standard errors to the Monte Carlo standard deviations of the 
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estimated parameters, which are regarded as the true standard deviations of estimated 

parameters.  They are calculated as follows using one parameter as an example: 

 MC average
1

ˆ ˆ /
NSAM

i
i

NSAM


    

 MC standard deviation (s.d.) of ̂  =
2

1

ˆ ˆ( ) ( 1)
NSAM

i
i

NSAM


    

 Average nominal standard error (s.e.) of ̂  =
1

ˆvar( )
NSAM

i
i

NSAM


  

 Root mean square error (RMSE) of ̂  = 2

1

ˆ( )
NSAM

i
i

NSAM


   

where  and ˆ
i  

are the true parameter and estimates of the parameter, respectively. To explore 

the properties of the Halton sequences in estimating the RPL model, we vary the number of 

Halton draws, the sample size and the number of random coefficients. We also do the same 

experiments using the pseudo-random numbers to compare the performance of the Halton 

sequence and pseudo-random numbers in estimating the RPL model. To avoid different 

simulation errors from the different process of probability integral transformation, we use the 

same probability integral transformation method (CDFNI procedure, see Gauss help manual) 

with Halton draws and pseudo-random numbers.  

2.5 The Experimental Results 

In our experiments, we increase the number of random coefficients one by one.  For each 

case, the RPL model is estimated using 25, 100, 250 and 500 Halton draws.  We use 2000 

pseudo-random numbers to get the benchmark results which are used as the “true” results to 

compare the others.  Table 2.1 and Table 2.2 show the results of the one random coefficient 

parameter logit model using Halton draws.  Tables 2.3 and 2.4 present the results using 1000 and 

2000 pseudo-random numbers.  From Table 2.1 and Table 2.2, for the given number of 
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observations, increasing the number of Halton draws from 25 to 500 only changes the RMSE of 

the estimated mean of the random coefficient distribution by less than 3%, and influences the 

RMSE of the estimated standard deviation of the random coefficient distribution by no more than 

8%. With increases in the number of Halton draws, the RMSE of the estimated parameters does 

not always decline. It is also true for the pseudo-random numbers. With the given number of 

observations, the percentage change of the RMSE of estimated parameters is less than 2.5% with 

increases in the number of pseudo-random numbers. The RMSE of ̂  and ˆ
 using 500 Halton 

draws is closer to the benchmark results than that using 25 Halton draws.  However, the RMSE 

of the estimated mean of the random coefficient is lower using 25 Halton draws than it using 

1000 pseudo-random numbers.  With 100 Halton draws, we can reach almost the same efficiency 

of the RPL model estimators as using 2000 pseudo-random numbers. The results are consistent 

with Bhat (2001).  The ratios of the average nominal standard errors of estimated parameters to 

the Monte Carlo standard deviations of estimated parameters are stable with increases in the 

number of Halton draws.  At the same time, for the given number of Halton draws, increasing the 

number of observations decreases the RMSE of the RPL estimators. 

 Tables 2.5-2.12 present the results of two independent random coefficients logit model 

using Halton draws and pseudo-random numbers. We set the mean and the standard deviation of 

the new random coefficient as 1.0 and 0.5 respectively.  Because the larger ratio of the parameter 

mean to its standard deviation makes the simulated likelihood function flatter and leads estimates 

hard to converge to the maximum value, the value of the ratio is controlled around 2.  We use the 

same error measures to explore the efficiency of each estimator for each case.  After including 

another random coefficient, the mean of each random coefficient is overestimated by 3%.  The 

RMSE of the RPL estimator is stable in the number of Halton draws.  However, the RMSE of the 

RPL estimator using 500 Halton draws is not always closer to the benchmark results than those 
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using 25 Halton draws.  This phenomenon happens more frequently with the increases in the 

number of random coefficients.  For a given number of Halton draws, the RMSE of the RPL 

model estimator decreases in the number of observations.   

With the increases in the number of random coefficients, the computational time 

increases greatly using pseudo-random numbers rather than using quasi-random numbers.  

Tables 2.13-2.40 show the results of three and four independent random coefficients logit 

models. The results are similar to the one and two random coefficients cases. Train (2003, p. 

228) discusses that the negative correlation between the average of two adjacent observation’s 

draws can reduce errors in the simulated log-likelihood function, like the method of antithetic 

variates.  However, this negative covariance across observations declines with in the number of 

observations, since the length of Halton sequences in estimating the RPL model is determined by 

the number of observations N and the number of Halton draws R  assigned to each observation 

and the increases in N  will decrease the gap between two adjacent observation’s coverage.  So 

Train (2003, p.228) suggests increasing the number of Halton draws for each individual when the 

number of observations increases.  But, based on our experimental results with low dimensions, 

we find that, with increases in the number of observations, increasing the number of Halton 

draws for each individual does not improve the efficiency of the RPL model.  

2.6 Conclusions 

In this paper we study the properties of the Halton sequences in estimating the RPL 

model with one to four independent random coefficients. The increases in the number of points 

generated by the Halton sequence can’t surely improve the discrepancy, especially for the high 

dimensional Halton sequence. For low dimensional integrals the theoretical discrepancy for 

Halton sequences in estimating the k -dimensional integrals decreases in the length of the Halton 

sequences.  With low dimensional integrals, we expected the improvement in the efficiency of 
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the RPL model estimators by increasing the number of Halton draws for each individual, 

especially when there is an increase in the number of observations.  However, there is no 

evidence in any of our experiments to show that the increases in the number of Halton draws can 

significantly influence the efficiency of the RPL model estimators.  The efficiency of the RPL 

model estimator is stable in the number of Halton draws. It implies that it is not necessary to 

increase the number of Halton draws with increases in the number of observations. In our 

experiments, using 25 Halton draws can achieve the same estimator efficiency as using 1000 

pseudo-random numbers. This result doesn’t change by increasing the number of observations. 

These results are also true for the correlated random coefficients cases, since the correlated 

distribution can be transformed into independent one by using the Cholesky decomposition.  
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Table 2.1 

The mixed logit model with one random coefficient (a) 

1.5, 0.8     

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator ̂     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    1.468  1.477  1.477  1.477 

Monte Carlo s.d.    0.226  0.233  0.232  0.233 

Average nominal s.e.    0.236  0.237  0.237  0.237 

Average nominal s.e./MC s.d.  1.044  1.017  1.022  1.017 

RMSE      0.228  0.234  0.233  0.234 

 

Observations = 500 

Monte Carlo average    1.578  1.582  1.585  1.585 

Monte Carlo s.d.    0.163  0.163  0.163  0.163 

Average nominal s.e.    0.165  0.166  0.165  0.165 

Average nominal s.e./MC s.d.  1.012  1.018  1.012  1.012 

RMSE      0.181  0.183  0.184  0.183 

 

Observations = 800 

Monte Carlo average    1.521  1.533  1.535  1.534 

Monte Carlo s.d.    0.125  0.125  0.125  0.125 

Average nominal s.e.    0.128  0.129  0.129  0.129 

Average nominal s.e./MC s.d.  1.024  1.032  1.032  1.032 

RMSE      0.127  0.129  0.129  0.129 
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Table 2.2 

The mixed logit model with one random coefficient (b) 

1.5, 0.8     

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator ˆ
     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average   0.594  0.606  0.602  0.601 

Monte Carlo s.d.   0.337  0.372  0.375  0.377 

Average nominal s.e.    0.417  0.447  0.465  0.473 

Average nominal s.e./MC s.d.  1.237  1.202  1.240  1.255 

RMSE      0.395  0.419  0.424  0.426 

 

Observations = 500 

 

Monte Carlo average    0.728  0.740  0.743  0.743 

Monte Carlo s.d.   0.236  0.243  0.242  0.243 

Average nominal s.e.    0.245  0.249  0.248  0.249 

Average nominal s.e./MC s.d.  1.038  1.025  1.025  1.025 

RMSE      0.246  0.250  0.249  0.250 

 

Observations = 800 

 

Monte Carlo average    0.741  0.763  0.766  0.766 

Monte Carlo s.d.   0.177  0.173  0.172  0.172 

Average nominal s.e.    0.183  0.182  0.181  0.182 

Average nominal s.e./MC s.d.  1.034  1.052  1.052  1.058 

RMSE      0.187  0.177  0.176  0.176 
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Table 2.3 

The mixed logit model with one random coefficient (c) 

1.5, 0.8     

Classical-Monte Carlo Estimation  

    Number of Random Draws 

Estimator ̂     1000  2000 

 

Observations = 200 

 

Monte Carlo average    1.479  1.483 

Monte Carlo s.d.    0.229  0.233 

Average nominal s.e.    0.236  0.239 

Average nominal s.e./MC s.d.  1.031  1.026 

RMSE      0.230  0.234 

 

Observations = 500 

Monte Carlo average    1.584  1.590 

Monte Carlo s.d.    0.162  0.163 

Average nominal s.e.    0.165  0.166 

Average nominal s.e./MC s.d.  1.019  1.018 

RMSE      0.182  0.187 

 

Observations = 800 

Monte Carlo average    1.531  1.536 

Monte Carlo s.d.    0.124  0.125 

Average nominal s.e.    0.129  0.129 

Average nominal s.e./MC s.d.  1.040  1.032 

RMSE      0.128  0.130 
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Table 2.4 

The mixed logit model with one random coefficient (d) 

1.5, 0.8     

Classical-Monte Carlo Estimation  

    Number of Random Draws 

Estimator ˆ
     1000  2000 

 

Observations = 200 

 

Monte Carlo average   0.614  0.618 

Monte Carlo s.d.   0.354  0.368 

Average nominal s.e.    0.424  0.435 

Average nominal s.e./MC s.d.  1.198  1.182 

RMSE      0.400  0.410 

 

Observations = 500 

 

Monte Carlo average    0.740  0.754 

Monte Carlo s.d.   0.235  0.241 

Average nominal s.e.    0.240  0.242 

Average nominal s.e./MC s.d.  1.021  1.004 

RMSE      0.242  0.245 

 

Observations = 800 

 

Monte Carlo average    0.758  0.768 

Monte Carlo s.d.   0.172  0.173 

Average nominal s.e.    0.182  0.181 

Average nominal s.e./MC s.d.  1.058  1.046 

RMSE      0.177  0.175 
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Table 2.5 

The mixed logit model with two random coefficients (a) 

11 1.0, 0.5; 1.5, 0.8          

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator 
1̂     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    1.002  1.011  1.007  1.009 

Monte Carlo s.d.    0.168  0.176  0.174  0.175 

Average nominal s.e.   0.188  0.190  0.188  0.188 

Average nominal s.e./MC s.d.  1.119  1.080  1.080  1.074 

RMSE      0.168  0.176  0.174  0.175 

 

Observations = 500 

Monte Carlo average    1.018  1.029  1.029  1.031 

Monte Carlo s.d.    0.107  0.111  0.111  0.111 

Average nominal s.e.   0.122  0.125  0.125  0.125 

Average nominal s.e./MC s.d.  1.140  1.126  1.126  1.126 

RMSE     0.108  0.115  0.115  0.115 

 

Observations = 800 

Monte Carlo average    1.007  1.020  1.018  1.019 

Monte Carlo s.d.    0.083  0.086  0.086  0.086 

Average nominal s.e.   0.095  0.097  0.097  0.097 

Average nominal s.e./MC s.d.  1.145  1.128  1.128  1.128 

RMSE     0.083  0.089  0.088  0.089 
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Table 2.6 

The mixed logit model with two random coefficients (b) 

11 1.0, 0.5; 1.5, 0.8          

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator 
1

ˆ
     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average   0.433  0.431  0.409  0.414 

Monte Carlo s.d.   0.315  0.350  0.358  0.358 

Average nominal s.e.   0.460  0.515  0.544  0.542 

Average nominal s.e./MC s.d.  1.460  1.471  1.520  1.514 

RMSE     0.322  0.357  0.369  0.368 

 

Observations = 500 

 

Monte Carlo average    0.487  0.503  0.504  0.506 

Monte Carlo s.d.   0.221  0.229  0.230  0.230 

Average nominal s.e.   0.282  0.290  0.290  0.292 

Average nominal s.e./MC s.d.  1.276  1.266  1.261  1.270 

RMSE     0.222  0.229  0.230  0.230 

 

Observations = 800 

 

Monte Carlo average    0.460  0.478  0.474  0.473 

Monte Carlo s.d.   0.184  0.191  0.194  0.196 

Average nominal s.e.   0.222  0.222  0.228  0.234 

Average nominal s.e./MC s.d.  1.207  1.162  1.175  1.194 

RMSE     0.189  0.192  0.196  0.197 
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Table 2.7 

The mixed logit model with two random coefficients (c) 

11 1.0, 0.5; 1.5, 0.8          

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator ̂     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    1.557  1.566  1.561  1.562 

Monte Carlo s.d.    0.260  0.264  0.260  0.261 

Average nominal s.e.   0.279  0.280  0.278  0.277 

Average nominal s.e./MC s.d.  1.073  1.061  1.069  1.061 

RMSE     0.266  0.272  0.267  0.268 

 

Observations = 500 

Monte Carlo average    1.518  1.533  1.531  1.532 

Monte Carlo s.d.    0.167  0.167  0.166  0.167 

Average nominal s.e.   0.176  0.179  0.178  0.178 

Average nominal s.e./MC s.d.  1.054  1.072  1.072  1.066 

RMSE     0.168  0.170  0.169  0.170 

 

Observations = 800 

Monte Carlo average    1.511  1.534  1.531  1.533 

Monte Carlo s.d.    0.124  0.127  0.127  0.128 

Average nominal s.e.   0.137  0.141  0.140  0.141 

Average nominal s.e./MC s.d.  1.105  1.110  1.102  1.102 

RMSE     0.124  0.132  0.131  0.132 
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Table 2.8 

The mixed logit model with two random coefficients (d) 

11 1.0, 0.5; 1.5, 0.8          

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator ˆ
     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average   0.874  0.894  0.882  0.883 

Monte Carlo s.d.   0.338  0.330  0.326  0.328 

Average nominal s.e.   0.369  0.367  0.367  0.369 

Average nominal s.e./MC s.d.  1.092  1.112  1.126  1.125 

RMSE     0.345  0.343  0.336  0.338 

 

Observations = 500 

 

Monte Carlo average    0.816  0.843  0.834  0.838 

Monte Carlo s.d.   0.221  0.212  0.213  0.213 

Average nominal s.e.   0.237  0.232  0.233  0.233 

Average nominal s.e./MC s.d.  1.072  1.094  1.094  1.094 

RMSE     0.222  0.216  0.215  0.216 

 

Observations = 800 

 

Monte Carlo average    0.771  0.811  0.804  0.807 

Monte Carlo s.d.   0.163  0.161  0.161  0.161 

Average nominal s.e.   0.185  0.185  0.185  0.185 

Average nominal s.e./MC s.d.  1.135  1.149  1.149  1.149 

RMSE     0.165  0.161  0.161  0.161 
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Table 2.9 

The mixed logit model with two random coefficients (e) 

11 1.0, 0.5; 1.5, 0.8          

Classical-Monte Carlo Estimation  

    Number of Random Draws 

Estimator 
1̂     1000  2000 

 

Observations = 200 

 

Monte Carlo average    1.010  1.012 

Monte Carlo s.d.    0.173  0.175 

Average nominal s.e.    0.190  0.189 

Average nominal s.e./MC s.d.  1.098  1.080 

RMSE      0.173  0.176 

 

Observations = 500 

Monte Carlo average    1.026  1.034 

Monte Carlo s.d.    0.110  0.111 

Average nominal s.e.    0.124  0.126 

Average nominal s.e./MC s.d.  1.127  1.135 

RMSE      0.113  0.116 

 

Observations = 800 

Monte Carlo average    1.015  1.022 

Monte Carlo s.d.    0.085  0.086 

Average nominal s.e.    0.096  0.097 

Average nominal s.e./MC s.d.  1.129  1.128 

RMSE      0.086  0.089 
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Table 2.10 

The mixed logit model with two random coefficients (f) 

11 1.0, 0.5; 1.5, 0.8          

Classical-Monte Carlo Estimation  

   Number of Random Draws 

Estimator 
1

ˆ
     1000  2000 

 

Observations = 200 

 

Monte Carlo average   0.429  0.426 

Monte Carlo s.d.   0.333  0.342 

Average nominal s.e.    0.507  0.502 

Average nominal s.e./MC s.d.  1.523  1.468 

RMSE      0.341  0.350 

 

Observations = 500 

 

Monte Carlo average    0.499  0.516 

Monte Carlo s.d.   0.219  0.220 

Average nominal s.e.    0.281  0.276 

Average nominal s.e./MC s.d.  1.283  1.255 

RMSE      0.219  0.221 

 

Observations = 800 

 

Monte Carlo average    0.465  0.481 

Monte Carlo s.d.   0.186  0.187 

Average nominal s.e.    0.221  0.216 

Average nominal s.e./MC s.d.  1.188  1.155 

RMSE      0.189  0.188 
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Table 2.11 

The mixed logit model with two random coefficients (g) 

11 1.0, 0.5; 1.5, 0.8          

Classical-Monte Carlo Estimation  

   Number of Random Draws 

Estimator ̂     1000  2000 

 

Observations = 200 

 

Monte Carlo average    1.562  1.562 

Monte Carlo s.d.    0.258  0.261 

Average nominal s.e.    0.277  0.278 

Average nominal s.e./MC s.d.  1.074  1.065 

RMSE      0.266  0.268 

 

Observations = 500 

Monte Carlo average    1.531  1.531 

Monte Carlo s.d.    0.165  0.166 

Average nominal s.e.    0.177  0.178 

Average nominal s.e./MC s.d.  1.073  1.072 

RMSE      0.168  0.169 

 

Observations = 800 

Monte Carlo average    1.532  1.532 

Monte Carlo s.d.    0.126  0.127 

Average nominal s.e.    0.140  0.140 

Average nominal s.e./MC s.d.  1.111  1.102 

RMSE      0.130  0.131 
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Table 2.12 

The mixed logit model with two random coefficients (h) 

11 1.0, 0.5; 1.5, 0.8          

Classical-Monte Carlo Estimation  

   Number of Random Draws 

Estimator ˆ
     1000  2000 

 

Observations = 200 

 

Monte Carlo average   0.881  0.889 

Monte Carlo s.d.   0.316  0.327 

Average nominal s.e.    0.357  0.369 

Average nominal s.e./MC s.d.  1.130  1.128 

RMSE      0.326  0.338 

 

Observations = 500 

 

Monte Carlo average    0.834  0.841 

Monte Carlo s.d.   0.208  0.214 

Average nominal s.e.    0.228  0.233 

Average nominal s.e./MC s.d.  1.096  1.089 

RMSE      0.210  0.218 

 

Observations = 800 

 

Monte Carlo average    0.807  0.808 

Monte Carlo s.d.   0.158  0.161 

Average nominal s.e.    0.182  0.185 

Average nominal s.e./MC s.d.  1.152  1.149 

RMSE      0.158  0.162 
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Table 2.13 

The mixed logit model with three random coefficients (a) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8             
 

Quasi-Monte Carlo Estimation  

     Number of Halton Draws 

Estimator 
1̂     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    1.014  1.007  1.018  1.010 

Monte Carlo s.d.    0.230  0.222  0.285  0.228 

Average nominal s.e.   0.249  0.247  0.258  0.247 

Average nominal s.e./MC s.d . 1.083  1.113  0.905  1.083 

RMSE     0.230  0.222  0.285  0.228 

 

Observations = 500 

Monte Carlo average    1.001  1.028  1.041  1.033 

Monte Carlo s.d.    0.142  0.157  0.161  0.158 

Average nominal s.e.   0.149  0.164  0.165  0.162 

Average nominal s.e./MC s.d.  1.049  1.045  1.025  1.025 

RMSE      0.142  0.159  0.166  0.161 

 

Observations = 800 

Monte Carlo average    1.031  1.074  1.083  1.081 

Monte Carlo s.d.    0.109  0.126  0.128  0.126 

Average nominal s.e.   0.120  0.134  0.135  0.135 

Average nominal s.e./MC s.d.  1.101  1.063  1.055  1.071 

RMSE     0.113  0.146  0.152  0.150 
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Table 2.14 

The mixed logit model with three random coefficients (b) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8             
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator
1

ˆ
     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    0.809  0.806  0.812  0.806 

Monte Carlo s.d.    0.355  0.346  0.401  0.350 

Average nominal s.e.   0.396  0.400  0.421  0.404 

Average nominal s.e./MC s.d.  1.115  1.156  1.050  1.154 

RMSE     0.470  0.462  0.508  0.464 

 

Observations = 500 

Monte Carlo average    0.615  0.664  0.672  0.657 

Monte Carlo s.d.    0.197  0.227  0.237  0.234 

Average nominal s.e.   0.250  0.267  0.274  0.274 

Average nominal s.e./MC s.d.  1.269  1.176  1.156  1.171 

RMSE      0.228  0.280  0.293  0.282 

 

Observations = 800 

Monte Carlo average    0.613  0.668  0.674  0.667 

Monte Carlo s.d.    0.181  0.197  0.200  0.198 

Average nominal s.e.   0.211  0.222  0.224  0.224 

Average nominal s.e./MC s.d.  1.166  1.127  1.120  1.131 

RMSE     0.214  0.259  0.265  0.259 
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Table 2.15 

The mixed logit model with three random coefficients (c) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8             
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator
2̂     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    2.364  2.320  2.349  2.327 

Monte Carlo s.d.    0.477  0.438  0.657  0.467 

Average nominal s.e.   0.494  0.478  0.505  0.478 

Average nominal s.e./MC s.d.  1.036  1.091  0.769  1.024 

RMSE     0.496  0.473  0.674  0.498 

 

Observations = 500 

Monte Carlo average    2.402  2.435  2.469  2.453 

Monte Carlo s.d.    0.331  0.347  0.354  0.347 

Average nominal s.e.   0.337  0.362  0.362  0.357 

Average nominal s.e./MC s.d.  1.018  1.043  1.023  1.029 

RMSE      0.345  0.353  0.355  0.350 

 

Observations = 800 

Monte Carlo average    2.375  2.441  2.469  2.465 

Monte Carlo s.d.    0.241  0.265  0.271  0.267 

Average nominal s.e.   0.250  0.271  0.276  0.275 

Average nominal s.e./MC s.d.  1.037  1.023  1.018  1.030 

RMSE     0.271  0.271  0.273  0.269 
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Table 2.16 

The mixed logit model with three random coefficients (d) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8             
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator
2

ˆ
     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    0.916  0.848  0.871  0.845 

Monte Carlo s.d.    0.497  0.454  0.573  0.484 

Average nominal s.e.   0.526  0.543  0.565  0.570 

Average nominal s.e./MC s.d.  1.058  1.196  0.986  1.178 

RMSE     0.573  0.574  0.661  0.600 

 

Observations = 500 

Monte Carlo average    1.069  1.061  1.085  1.068 

Monte Carlo s.d.    0.352  0.339  0.317  0.317 

Average nominal s.e.   0.343  0.351  0.337  0.336 

Average nominal s.e./MC s.d.  0.974  1.035  1.063  1.060 

RMSE      0.375  0.366  0.337  0.343 

 

Observations = 800 

Monte Carlo average    1.093  1.117  1.137  1.129 

Monte Carlo s.d.    0.251  0.246  0.236  0.232 

Average nominal s.e.   0.246  0.249  0.246  0.245 

Average nominal s.e./MC s.d.  0.980  1.012  1.042  1.056 

RMSE     0.272  0.259  0.245  0.242 

 

 

 

 

 

 

 

 

 

 



35 

 

Table 2.17 

The mixed logit model with three random coefficients (e) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8             
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator ̂     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    1.395  1.373  1.386  1.375 

Monte Carlo s.d.    0.296  0.266  0.377  0.289 

Average nominal s.e.   0.300  0.288  0.302  0.287 

Average nominal s.e./MC s.d.  1.014  1.083  0.801  0.993 

RMSE     0.314  0.294  0.393  0.314 

 

Observations = 500 

Monte Carlo average    1.458  1.49  1.506  1.495 

Monte Carlo s.d.    0.200  0.215  0.221  0.215 

Average nominal s.e.   0.213  0.231  0.232  0.228 

Average nominal s.e./MC s.d.  1.065  1.074  1.050  1.060 

RMSE      0.204  0.215  0.221  0.215 

 

Observations = 800 

Monte Carlo average    1.531  1.578  1.594  1.592 

Monte Carlo s.d.    0.160  0.178  0.182  0.179 

Average nominal s.e.   0.171  0.185  0.188  0.187 

Average nominal s.e./MC s.d.  1.069  1.039  1.033  1.045 

RMSE     0.163  0.194  0.204  0.201 
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Table 2.18 

The mixed logit model with three random coefficients (f) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8             
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator ˆ
     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    0.344  0.308  0.294  0.279 

Monte Carlo s.d.    0.327  0.320  0.404  0.369 

Average nominal s.e.   0.512  0.571  0.650  0.647 

Average nominal s.e./MC s.d.  1.566  1.784  1.609  1.753 

RMSE     0.561  0.587  0.647  0.638 

 

Observations = 500 

Monte Carlo average    0.668  0.715  0.725  0.711 

Monte Carlo s.d.    0.306  0.322  0.330  0.329 

Average nominal s.e.   0.355  0.386  0.371  0.373 

Average nominal s.e./MC s.d.  1.160  1.199  1.124  1.134 

RMSE      0.333  0.333  0.338  0.340 

 

Observations = 800 

Monte Carlo average    0.674  0.747  0.757  0.759 

Monte Carlo s.d.    0.235  0.250  0.247  0.249 

Average nominal s.e.   0.268  0.269  0.265  0.267 

Average nominal s.e./MC s.d.  1.140  1.076  1.073  1.072 

RMSE     0.266  0.255  0.251  0.252 
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Table 2.19 

The mixed logit model with three random coefficients (g) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8               

Classical-Monte Carlo Estimation  

   Number of Random Draws 

Estimator 
1̂     1000  2000 

 

Observations = 200 

 

Monte Carlo average    1.008  1.021 

Monte Carlo s.d.    0.231  0.236 

Average nominal s.e.    0.249  0.251 

Average nominal s.e./MC s.d.  1.078  1.064 

RMSE      0.231  0.237 

 

Observations = 500 

Monte Carlo average    1.031  1.042 

Monte Carlo s.d.    0.156  0.158 

Average nominal s.e.    0.162  0.164 

Average nominal s.e./MC s.d.  1.038  1.038 

RMSE      0.158  0.164 

 

Observations = 800 

Monte Carlo average    1.072  1.088 

Monte Carlo s.d.    0.125  0.127 

Average nominal s.e.    0.133  0.136 

Average nominal s.e./MC s.d.  1.064  1.071 

RMSE      0.144  0.154 
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Table 2.20 

The mixed logit model with three random coefficients (h) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8               

Classical-Monte Carlo Estimation  

    Number of Random Draws 

Estimator 
1

ˆ
     1000  2000 

 

Observations = 200 

 

Monte Carlo average   0.804  0.821 

Monte Carlo s.d.   0.352  0.348 

Average nominal s.e.    0.403  0.395 

Average nominal s.e./MC s.d.  1.145  1.135 

RMSE      0.465  0.473 

 

Observations = 500 

 

Monte Carlo average    0.648  0.674 

Monte Carlo s.d.   0.231  0.222 

Average nominal s.e.    0.270  0.258 

Average nominal s.e./MC s.d.  1.169  1.162 

RMSE      0.274  0.282 

 

Observations = 800 

 

Monte Carlo average    0.649  0.676 

Monte Carlo s.d.   0.196  0.189 

Average nominal s.e.    0.224  0.216 

Average nominal s.e./MC s.d.  1.143  1.143 

RMSE      0.247  0.258 
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Table 2.21 

The mixed logit model with three random coefficients (i) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8               

Classical-Monte Carlo Estimation  

   Number of Random Draws 

Estimator 
2̂     1000  2000 

 

Observations = 200 

 

Monte Carlo average    2.328  2.347 

Monte Carlo s.d.    0.477  0.490 

Average nominal s.e.    0.482  0.487 

Average nominal s.e./MC s.d.  1.010  0.994 

RMSE      0.507  0.513 

 

Observations = 500 

Monte Carlo average    2.442  2.463 

Monte Carlo s.d.    0.340  0.346 

Average nominal s.e.    0.354  0.358 

Average nominal s.e./MC s.d.  1.041  1.035 

RMSE      0.344  0.348 

 

Observations = 800 

Monte Carlo average    2.446  2.466 

Monte Carlo s.d.    0.265  0.266 

Average nominal s.e.    0.272  0.275 

Average nominal s.e./MC s.d.  1.026  1.034 

RMSE      0.270  0.268 
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Table 2.22 

The mixed logit model with three random coefficients (j) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8               

Classical-Monte Carlo Estimation  

    Number of Random Draws 

Estimator 
2

ˆ
     1000  2000 

 

Observations = 200 

 

Monte Carlo average   0.850  0.861 

Monte Carlo s.d.   0.474  0.486 

Average nominal s.e.    0.550  0.556 

Average nominal s.e./MC s.d.  1.160  1.144 

RMSE      0.589  0.592 

 

Observations = 500 

 

Monte Carlo average    1.059  1.061 

Monte Carlo s.d.   0.300  0.313 

Average nominal s.e.    0.326  0.337 

Average nominal s.e./MC s.d.  1.087  1.077 

RMSE      0.331  0.342 

 

Observations = 800 

 

Monte Carlo average    1.110  1.120 

Monte Carlo s.d.   0.229  0.232 

Average nominal s.e.    0.242  0.248 

Average nominal s.e./MC s.d.  1.057  1.069 

RMSE      0.246  0.246 
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Table 2.23 

The mixed logit model with three random coefficients (k) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8               

Classical-Monte Carlo Estimation  

    Number of Random Draws 

Estimator ̂     1000  2000 

 

Observations = 200 

 

Monte Carlo average    1.380  1.393 

Monte Carlo s.d.    0.300  0.309 

Average nominal s.e.    0.294  0.295 

Average nominal s.e./MC s.d.  0.980  0.955 

RMSE      0.323  0.327 

 

Observations = 500 

Monte Carlo average    1.491  1.503 

Monte Carlo s.d.    0.213  0.214 

Average nominal s.e.    0.229  0.228 

Average nominal s.e./MC s.d.  1.075  1.065 

RMSE      0.213  0.214 

 

Observations = 800 

Monte Carlo average    1.582  1.594 

Monte Carlo s.d.    0.179  0.178 

Average nominal s.e.    0.187  0.187 

Average nominal s.e./MC s.d.  1.045  1.051 

RMSE      0.197  0.201 
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Table 2.24 

The mixed logit model with three random coefficients (l) 

1 21 21.0, 0.5; 2.5, 1.2; 1.5, 0.8               

Classical-Monte Carlo Estimation  

    Number of Random Draws 

Estimator ˆ
     1000  2000 

 

Observations = 200 

 

Monte Carlo average   0.314  0.344 

Monte Carlo s.d.   0.366  0.368 

Average nominal s.e.    0.584  0.526 

Average nominal s.e./MC s.d.  1.596  1.429 

RMSE      0.609  0.585 

 

 

Observations = 500 

 

Monte Carlo average    0.711  0.732 

Monte Carlo s.d.   0.324  0.318 

Average nominal s.e.    0.372  0.354 

Average nominal s.e./MC s.d.  1.148  1.113 

RMSE      0.336  0.325 

 

 

Observations = 800 

 

Monte Carlo average    0.758  0.768 

Monte Carlo s.d.   0.249  0.243 

Average nominal s.e.    0.269  0.260 

Average nominal s.e./MC s.d.  1.080  1.070 

RMSE      0.252  0.245 

 

 

 

 

 

 

 



43 

 

Table 2.25 

The mixed logit model with four random coefficients (a) 

1 21 21.0, 0.5; 2.5, 1.2        
 

    33 3.0, 1.5; 1.5, 0.8        
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator 
1̂     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    1.166  1.105  1.100  1.103 

Monte Carlo s.d.    0.667  0.460  0.458  0.495 

Average nominal s.e.   0.473  0.432  0.435  0.444 

Average nominal s.e./MC s.d.  0.709  0.939  0.950  0.897 

RMSE     0.687  0.472  0.469  0.505 

 

Observations = 500 

Monte Carlo average    0.910  0.974  0.952  0.950 

Monte Carlo s.d.    0.168  0.212  0.183  0.182 

Average nominal s.e.   0.174  0.207  0.196  0.195 

Average nominal s.e./MC s.d.  1.036  0.976  1.071  1.071 

RMSE      0.190  0.214  0.189  0.189 

 

Observations = 800 

Monte Carlo average    0.867  0.946  0.948  0.943 

Monte Carlo s.d.    0.107  0.146  0.146  0.141 

Average nominal s.e.   0.129  0.160  0.162  0.159 

Average nominal s.e./MC s.d.  1.206  1.096  1.110  1.128 

RMSE     0.171  0.156  0.155  0.152 
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Table 2.26 

The mixed logit model with four random coefficients (b) 

1 21 21.0, 0.5; 2.5, 1.2        
 

 33 3.0, 1.5; 1.5, 0.8        
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator
1

ˆ
     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    0.432  0.326  0.297  0.312 

Monte Carlo s.d.    0.576  0.427  0.423  0.448 

Average nominal s.e.    0.636  0.711  0.774  0.816 

Average nominal s.e./MC s.d.  1.104  1.665  1.830  1.821 

RMSE      0.580  0.461  0.469  0.485 

 

Observations = 500 

Monte Carlo average    0.463  0.508  0.467  0.474 

Monte Carlo s.d.    0.301  0.326  0.314  0.314 

Average nominal s.e.    0.370  0.425  0.446  0.439 

Average nominal s.e./MC s.d.  1.229  1.304  1.420  1.398 

RMSE      0.303  0.326  0.316  0.315 

 

Observations = 800 

Monte Carlo average    0.393  0.513  0.503  0.502 

Monte Carlo s.d.    0.208  0.278  0.278  0.273 

Average nominal s.e.    0.320  0.352  0.375  0.374 

Average nominal s.e./MC s.d.  1.538  1.266  1.349  1.370 

RMSE      0.234  0.278  0.278  0.273 
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Table 2.27 

The mixed logit model with four random coefficients (c) 

1 21 21.0, 0.5; 2.5, 1.2        
 

   33 3.0, 1.5; 1.5, 0.8        
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator
2̂     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    2.729  2.603  2.598  2.606 

Monte Carlo s.d.    1.530  1.099  1.106  1.255 

Average nominal s.e.   1.051  0.970  0.994  1.022 

Average nominal s.e./MC s.d.  0.687  0.883  0.899  0.814 

RMSE     1.547  1.104  1.110  1.259 

 

Observations = 500 

Monte Carlo average    2.084  2.213  2.170  2.162 

Monte Carlo s.d.    0.356  0.461  0.391  0.389 

Average nominal s.e.   0.350  0.425  0.402  0.396 

Average nominal s.e./MC s.d.  0.983  0.922  1.028  1.018 

RMSE      0.547  0.543  0.512  0.515 

 

Observations = 800 

Monte Carlo average    2.099  2.277  2.286  2.270 

Monte Carlo s.d.    0.224  0.327  0.321  0.304 

Average nominal s.e.   0.269  0.347  0.349  0.340 

Average nominal s.e./MC s.d.  1.201  1.061  1.087  1.118 

RMSE     0.459  0.396  0.385  0.381 
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Table 2.28 

The mixed logit model with four random coefficients (d) 

1 21 21.0, 0.5; 2.5, 1.2        
 

   33 3.0, 1.5; 1.5, 0.8        
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator
2

ˆ
     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    1.364  1.280  1.270  1.273 

Monte Carlo s.d.    1.203  0.944  0.901  1.020 

Average nominal s.e.   0.930  0.945  0.948  1.001 

Average nominal s.e./MC s.d.  0.773  1.001  1.052  0.981 

RMSE     1.214  0.947  0.903  1.022 

 

Observations = 500 

Monte Carlo average    0.838  0.927  0.907  0.897 

Monte Carlo s.d.    0.360  0.412  0.384  0.378 

Average nominal s.e.   0.382  0.436  0.428  0.424 

Average nominal s.e./MC s.d.  1.061  1.058  1.115  1.122 

RMSE      0.511  0.494  0.483  0.484 

 

Observations = 800 

Monte Carlo average    0.910  1.033  1.045  1.031 

Monte Carlo s.d.    0.246  0.313  0.298  0.289 

Average nominal s.e.   0.285  0.333  0.327  0.323 

Average nominal s.e./MC s.d.  1.159  1.064  1.097  1.118 

RMSE     0.380  0.355  0.335  0.335 
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Table 2.29 

The mixed logit model with four random coefficients (e) 

1 21 21.0, 0.5; 2.5, 1.2        
 

   33 3.0, 1.5; 1.5, 0.8        
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator
3̂     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    3.097  3.017  2.999  3.009 

Monte Carlo s.d.    1.661  1.253  1.237  1.438 

Average nominal s.e.   1.194  1.144  1.159  1.193 

Average nominal s.e./MC s.d.  0.719  0.913  0.937  0.830 

RMSE     1.663  1.253  1.237  1.437 

 

Observations = 500 

Monte Carlo average    2.730  2.928  2.869  2.856 

Monte Carlo s.d.    0.468  0.612  0.515  0.508 

Average nominal s.e.   0.455  0.558  0.529  0.520 

Average nominal s.e./MC s.d.  0.972  0.912  1.027  1.024 

RMSE      0.540  0.616  0.531  0.528 

 

Observations = 800 

Monte Carlo average    2.751  2.992  3.004  2.983 

Monte Carlo s.d.    0.286  0.416  0.411  0.389 

Average nominal s.e.   0.340  0.442  0.448  0.436 

Average nominal s.e./MC s.d.  1.189  1.063  1.090  1.121 

RMSE     0.379  0.416  0.410  0.389 
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Table 2.30 

The mixed logit model with four random coefficients (f) 

1 21 21.0, 0.5; 2.5, 1.2        
 

   33 3.0, 1.5; 1.5, 0.8        
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator
3

ˆ
     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    1.468  1.515  1.494  1.488 

Monte Carlo s.d.    0.978  0.904  0.827  0.902 

Average nominal s.e.   0.835  0.877  0.860  0.870 

Average nominal s.e./MC s.d.  0.854  0.970  1.040  0.965 

RMSE     0.978  0.903  0.826  0.902 

 

Observations = 500 

Monte Carlo average    1.248  1.408  1.379  1.363 

Monte Carlo s.d.    0.324  0.418  0.365  0.360 

Average nominal s.e.   0.353  0.417  0.398  0.394 

Average nominal s.e./MC s.d.  1.090  0.998  1.090  1.094 

RMSE      0.411  0.428  0.385  0.385 

 

Observations = 800 

Monte Carlo average    1.325  1.495  1.504  1.487 

Monte Carlo s.d.    0.218  0.279  0.271  0.260 

Average nominal s.e.   0.262  0.321  0.320  0.315 

Average nominal s.e./MC s.d.  1.202  1.151  1.181  1.212 

RMSE     0.279  0.279  0.271  0.261 
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Table 2.31 

The mixed logit model with four random coefficients (g) 

1 21 21.0, 0.5; 2.5, 1.2        
 

   33 3.0, 1.5; 1.5, 0.8        
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator ̂     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    1.895  1.804  1.810  1.816 

Monte Carlo s.d.    1.001  0.727  0.787  0.974 

Average nominal s.e.    0.746  0.679  0.712  0.735 

Average nominal s.e./MC s.d.  0.745  0.934  0.905  0.755 

RMSE      1.076  0.787  0.846  1.024 

 

Observations = 500 

Monte Carlo average    1.411  1.507  1.474  1.468 

Monte Carlo s.d.    0.236  0.303  0.257  0.253 

Average nominal s.e.    0.242  0.295  0.277  0.272 

Average nominal s.e./MC s.d.  1.025  0.974  1.078  1.075 

RMSE      0.252  0.303  0.258  0.255 

 

Observations = 800 

Monte Carlo average    1.384  1.504  1.508  1.497 

Monte Carlo s.d.    0.147  0.221  0.213  0.201 

Average nominal s.e.    0.181  0.234  0.235  0.228 

Average nominal s.e./MC s.d.  1.231  1.059  1.103  1.134 

RMSE      0.187  0.221  0.213  0.201 
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Table 2.32 

The mixed logit model with four random coefficients (h) 

1 21 21.0, 0.5; 2.5, 1.2        
 

 33 3.0, 1.5; 1.5, 0.8        
 

Quasi-Monte Carlo Estimation  

Number of Halton Draws 

Estimator ˆ
     25  100  250  500 

 

Observations = 200 

 

Monte Carlo average    1.101  0.917  0.921  0.923 

Monte Carlo s.d.    1.120  0.752  0.756  0.870 

Average nominal s.e.    0.856  0.763  0.794  0.832 

Average nominal s.e./MC s.d.  0.764  1.015  1.050  0.956 

RMSE      1.159  0.760  0.765  0.878 

 

Observations = 500 

Monte Carlo average    0.543  0.617  0.561  0.553 

Monte Carlo s.d.    0.328  0.378  0.336  0.335 

Average nominal s.e.    0.366  0.420  0.421  0.415 

Average nominal s.e./MC s.d.  1.116  1.111  1.253  1.239 

RMSE      0.416  0.420  0.412  0.416 

 

Observations = 800 

Monte Carlo average    0.515  0.613  0.612  0.596 

Monte Carlo s.d.    0.225  0.312  0.298  0.288 

Average nominal s.e.    0.295  0.367  0.362  0.355 

Average nominal s.e./MC s.d.  1.311  1.176  1.215  1.233 

RMSE      0.363  0.363  0.352  0.353 
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Table 2.33 

The mixed logit model with four random coefficients (i) 

1 21 21.0, 0.5; 2.5, 1.2        
 

   33 3.0, 1.5; 1.5, 0.8        
 

Classical-Monte Carlo Estimation  

Number of Halton Draws 

Estimator 
1̂     1000  2000 

 

Observations = 200 

 

Monte Carlo average    1.105  1.120 

Monte Carlo s.d.    0.435  0.587 

Average nominal s.e.    0.435  0.468 

Average nominal s.e./MC s.d.  1.000  0.797 

RMSE      0.447  0.599 

 

 

Observations = 500 

Monte Carlo average    0.946  0.950 

Monte Carlo s.d.    0.176  0.180 

Average nominal s.e.    0.192  0.195 

Average nominal s.e./MC s.d.  1.091  1.083 

RMSE      0.184  0.187 

 

 

Observations = 800 

Monte Carlo average    0.933  0.934 

Monte Carlo s.d.    0.137  0.139 

Average nominal s.e.    0.157  0.158 

Average nominal s.e./MC s.d.  1.146  1.137 

RMSE      0.153  0.154 
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Table 2.34 

The mixed logit model with four random coefficients (j) 

1 21 21.0, 0.5; 2.5, 1.2        
 

 33 3.0, 1.5; 1.5, 0.8        
 

Classical-Monte Carlo Estimation  

Number of Halton Draws 

Estimator
1

ˆ
     1000  2000 

 

Observations = 200 

 

Monte Carlo average    0.342  0.355 

Monte Carlo s.d.    0.439  0.534 

Average nominal s.e.    0.764  0.803 

Average nominal s.e./MC s.d.  1.740  1.504 

RMSE      0.466  0.553 

 

 

Observations = 500 

Monte Carlo average    0.470  0.471 

Monte Carlo s.d.    0.303  0.308 

Average nominal s.e.    0.438  0.441 

Average nominal s.e./MC s.d.  1.446  1.432 

RMSE      0.305  0.310 

      

     Observations = 800 
Monte Carlo average    0.483  0.468 

Monte Carlo s.d.    0.261  0.272 

Average nominal s.e.    0.380  0.384 

Average nominal s.e./MC s.d.  1.456  1.412 

RMSE      0.261  0.273 
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Table 2.35 

The mixed logit model with four random coefficients (k) 

1 21 21.0, 0.5; 2.5, 1.2        
 

   33 3.0, 1.5; 1.5, 0.8        
 

Classical-Monte Carlo Estimation  

Number of Halton Draws 

Estimator
2̂     1000  2000 

 

Observations = 200 

 

Monte Carlo average    2.598  2.649 

Monte Carlo s.d.    0.982  1.495 

Average nominal s.e.    0.979  1.065 

Average nominal s.e./MC s.d.  0.997  0.712 

RMSE      0.987  1.502 

 

Observations = 500 

Monte Carlo average    2.153  2.169 

Monte Carlo s.d.    0.371  0.385 

Average nominal s.e.    0.390  0.399 

Average nominal s.e./MC s.d.  1.051  1.036 

RMSE      0.508  0.508 

 

Observations = 800 

Monte Carlo average    2.251  2.261 

Monte Carlo s.d.    0.298  0.304 

Average nominal s.e.    0.338  0.340 

Average nominal s.e./MC s.d.  1.134  1.118 

RMSE      0.388  0.386 
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Table 2.36 

The mixed logit model with four random coefficients (l) 

1 21 21.0, 0.5; 2.5, 1.2        
 

   33 3.0, 1.5; 1.5, 0.8        
 

Classical-Monte Carlo Etimation  

     Number of Halton Draws 

Estimator
2

ˆ
     1000  2000 

 

Observations = 200 

 

Monte Carlo average    1.279  1.338 

Monte Carlo s.d.    0.836  1.258 

Average nominal s.e.    0.942  1.028 

Average nominal s.e./MC s.d.  1.127  0.817 

RMSE      0.839  1.264 

 

 

Observations = 500 

Monte Carlo average    0.877  0.921 

Monte Carlo s.d.    0.350  0.377 

Average nominal s.e.    0.407  0.418 

Average nominal s.e./MC s.d.  1.163  1.109 

RMSE      0.476  0.469 

 

 

Observations = 800 

Monte Carlo average    0.995  1.031 

Monte Carlo s.d.    0.277  0.291 

Average nominal s.e.    0.315  0.324 

Average nominal s.e./MC s.d.  1.137  1.113 

RMSE      0.344  0.336 
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Table 2.37 

The mixed logit model with four random coefficients (m) 

1 21 21.0, 0.5; 2.5, 1.2        
 

    33 3.0, 1.5; 1.5, 0.8        
 

Classical-Monte Carlo Estimation  

     Number of Halton Draws 

Estimator 3̂     1000  2000 

 

Observations = 200 

 

Monte Carlo average    2.977  3.045 

Monte Carlo s.d.    1.116  1.625 

Average nominal s.e.    1.129  1.235 

Average nominal s.e./MC s.d.  1.012  0.760 

RMSE      1.116  1.625 

 

 

Observations = 500 

Monte Carlo average    2.850  2.856 

Monte Carlo s.d.    0.494  0.504 

Average nominal s.e.    0.515  0.522 

Average nominal s.e./MC s.d.  1.043  1.036 

RMSE      0.516  0.524 

 

 

Observations = 800 

Monte Carlo average    2.966  2.965 

Monte Carlo s.d.    0.383  0.386 

Average nominal s.e.    0.434  0.434 

Average nominal s.e./MC s.d.  1.133  1.124 

RMSE      0.385  0.387 
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Table 2.38 

The mixed logit model with four random coefficients (n) 

1 21 21.0, 0.5; 2.5, 1.2        
 

   33 3.0, 1.5; 1.5, 0.8        
 

Classical-Monte Carlo Estimation  

     Number of Halton Draws 

Estimator
3

ˆ
     1000  2000 

 

Observations = 200 

 

Monte Carlo average    1.471  1.524 

Monte Carlo s.d.    0.768  0.988 

Average nominal s.e.    0.840  0.905 

Average nominal s.e./MC s.d.  1.094  0.916 

RMSE      0.768  0.988 

 

 

Observations = 500 

Monte Carlo average    1.373  1.373 

Monte Carlo s.d.    0.359  0.361 

Average nominal s.e.    0.392  0.396 

Average nominal s.e./MC s.d.  1.092  1.097 

RMSE      0.381  0.382 

 

 

Observations = 800 

Monte Carlo average    1.494  1.490 

Monte Carlo s.d.    0.261  0.261 

Average nominal s.e.    0.316  0.316 

Average nominal s.e./MC s.d.  1.211  1.211 

RMSE      0.261  0.261 
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Table 2.39 

The mixed logit model with four random coefficients (o) 

1 21 21.0, 0.5; 2.5, 1.2        
 

 33 3.0, 1.5; 1.5, 0.8        
 

Classical-Monte Carlo Estimation  

Number of Halton Draws 

Estimator ̂     1000  2000 

 

Observations = 200 

 

Monte Carlo average    1.803  1.839 

Monte Carlo s.d.    0.678  1.015 

Average nominal s.e.    0.692  0.750 

Average nominal s.e./MC s.d.  1.021  0.739 

RMSE      0.742  1.070 

 

 

Observations = 500 

Monte Carlo average    1.466  1.467 

Monte Carlo s.d.    0.250  0.251 

Average nominal s.e.    0.270  0.272 

Average nominal s.e./MC s.d.  1.080  1.084 

RMSE      0.252  0.253 

 

 

Observations = 800 

Monte Carlo average    1.489  1.488 

Monte Carlo s.d.    0.200  0.200 

Average nominal s.e.    0.226  0.227 

Average nominal s.e./MC s.d.  1.130  1.135 

RMSE      0.200  0.200 
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Table 2.40 

The mixed logit model with four random coefficients (p) 

1 21 21.0, 0.5; 2.5, 1.2        
 

 33 3.0, 1.5; 1.5, 0.8        
 

Classical-Monte Carlo Estimation  

Number of Halton Draws 

Estimator ˆ
     1000  2000 

 

Observations = 200 

 

Monte Carlo average    0.916  0.945 

Monte Carlo s.d.    0.696  0.941 

Average nominal s.e.    0.784  0.832 

Average nominal s.e./MC s.d.  1.126  0.884 

RMSE      0.705  0.952 

 

 

Observations = 500 

Monte Carlo average    0.578  0.544 

Monte Carlo s.d.    0.328  0.331 

Average nominal s.e.    0.391  0.420 

Average nominal s.e./MC s.d.  1.192  1.269 

RMSE      0.396  0.418 

 

 

Observations = 800 

Monte Carlo average    0.617  0.585 

Monte Carlo s.d.    0.283  0.283 

Average nominal s.e.    0.333  0.352 

Average nominal s.e./MC s.d.  1.177  1.244 

RMSE      0.337  0.355 
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CHAPTER 3 PRETEST ESTIMATION IN THE RANDOM PARAMETERS 

LOGIT MODEL 

3.1 Introduction 

In this chapter, we use quasi-Monte Carlo sampling experiments to examine the 

properties of pretest estimators in the random parameters logit (RPL) model. The pretests are for 

the presence of random parameters. We study the Lagrange multiplier (LM), likelihood ratio 

(LR) and Wald tests, using conditional logit as the restricted model. If the model coefficients are 

not random, then the mixed logit model reduces to the simpler conditional logit model. The most 

commonly used test procedures for this purpose are the Wald (or t-) test and the likelihood ratio 

test for the significance of the random components of the coefficients. The problem is that in 

order to implement these tests the mixed logit model must be estimated. It would be much faster 

to implement a Lagrange multiplier test, as the restricted estimates come from the conditional 

logit model, which is easily estimated.  

We use quasi-Monte Carlo experiments in the context of one and two parameter choice 

models with four alternatives to examine the risk properties of pretest estimator based on LM, 

LR and Wald tests. We explore the power of the three tests for the random parameters by 

calculating the empirical 90th and 95th percentile values of the three test statistic distributions 

and examine rejection rates of the three tests by using the empirical 90th and 95th percentile 

values as the critical values for 10% and 5% significance level. We find the pretest estimators 

based on the LR and Wald statistics have RMSE that is less than that of the random parameters 

logit model when the parameter variance is small, but that RMSE of the pretest estimators is 

worse than that of the random parameters logit model over the remaining parameter space. The 

LR and Wald tests exhibit properties of consistent tests, with the power approaching one as the 

specification error increases. The power of LR and Wald tests decreases with increases in the 
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mean of the coefficient distribution reflecting an increase in model signal-to-noise ratio.  The 

ratios of LM-based pretest estimator RMSE to that RMSE of the random parameters logit model 

rise and become further away from one with increases in the standard deviation of the parameter 

distribution as a result of the general failure of the LM test in this application.  

 The plan of the chapter is as follows. In Section 3.2, we show and summarize the mean 

squared error properties of the pretest estimator based on LM, LR and Wald tests, and the size 

corrected rejection rates of these three tests. Some conclusions and recommendations are given 

in Section 3.3.  

3.2 Pretest Estimators  

Even though the mixed logit model is highly flexible, it requires the use of time- 

consuming simulation to obtain empirical estimates.  It is desirable to have a specification test to 

determine whether the mixed logit is needed or not. The likelihood ratio (LR) and Wald tests are 

the most popular test procedures used for testing the significance of coefficient estimates. The 

problem is that in order to implement these tests the mixed logit model must be estimated. It is 

much faster to implement a Lagrange Multiplier (LM) test. It is interesting and important to 

examine the power of these three tests for the presence of the random coefficients in the mixed 

logit model.  We use quasi-Monte Carlo experiments in the context of one and two parameters 

choice model with four alternatives to examine the properties of pretest estimators in the random 

parameters logit model with LR, LM and Wald tests.  

3.2.1 One Parameter Model Results 

In the one random parameter model, we set four different values for the parameter mean, 

 {0.5, 1.5, 2.5, 3.0}.  Corresponding to each value of the mean  , we set six different values 

for the standard deviation of the parameter distribution,    {0, 0.15, 0.3, 0.8, 1.2, 1.8}. We 
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control the ratio of the parameter mean to its standard deviation around 2 to avoid the simulated 

likelihood function to be so flat that hard to converge to the maximum value. The restricted and 

unrestricted estimates come from the conditional logit and mixed logit model respectively. The 

LR, Wald and LM tests are constructed based on the null hypothesis 0 : 0H   against the 

alternative hypothesis 1 : 0H   . The inverse of information matrix in the Wald and LM tests is 

estimated using BHHH (outer product of gradients). 

Figure 3.1 shows the ratio of pretest estimator RMSE of   relative to the random 

parameters logit model estimator RMSE of   using the LR, Wald and LM tests at a 25% 

significance level. We choose a 25% significance level because 5% pretests are not optimal in 

many settings, such as 5% pretest is too small for the estimator which is a combination of OLS 

and GLS (see Fomby and Guilkey, 1978), and this is also true in our experiments.  Under a one-

tailed alternative hypothesis, the distribution of LR and Wald 2   test statistics has a mixture of 

chi-square distributions.  In the one parameter case, the 1 2   quantile of the standard chi-square 

is the critical value for significance level   (Gourieroux and Monfort, 1995, p.265).  For the 

25% significance level the critical value is 0.455.  Figure 3.1 shows that the pretest estimators 

based on the LR and Wald statistics have RMSE that is less than that of the random parameters 

logit model when the parameter variance is small, but that RMSE is worse than that of the 

random parameters logit model over the remaining parameter space.  The LR and Wald tests 

exhibit properties of consistent tests, with the power approaching one as the specification error 

increases, so that the pretest estimator is consistent. But the ratios of LM-based pretest estimator 

RMSE of   to that RMSE of the random parameters logit model rise and become further away 

from one with increases in the standard deviation of the parameter distribution.  The poor 

properties of the LM-based pretest estimator arise from the poor power of the LM test in our 
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experiments. It is interesting that even though the pretest estimator based on the LR and Wald 

statistics are consistent, the maximum risk ratio based on the LR and Wald tests increases in the 

parameter mean  .  The range over which the risk ratio is less than one also increases in the 

mean of the parameter distribution  .  It implies that the power of LR and Wald tests for testing 

random coefficients are sensitive to the parameter mean and standard deviation in the context of 

the RPL model and leads us to explore the power of these three tests for presence of random 

coefficients in the RPL model.  

 

Figure 3.1: Pretest Estimator RMSE  Mixed Logit Estimator RMSE  :  

One Random Parameter Model 
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To explore the power of these three tests for the presence of the random coefficient in the 

mixed logit model further, we calculate the empirical 90th and 95th percentile value of the LR, 

Wald and LM statistic distributions given the different combinations of means and standard 

deviations of the parameter distribution in the one random parameter model.  The results in Table
 

3.1 show that the Monte Carlo 90
th

 and 95
th

 percentile values of the three test statistic 

distributions change with the changes in the mean and standard deviation of parameter 

distribution.  In general, the Monte Carlo critical values with different parameter means are 

neither close to 1.64 and 2.71 (the 1 2   quantile of standard chi-square statistics for 10% and 

5% significance level respectively) nor to the usual critical values 2.71 and 3.84.  When 0.5 

and 0  , the 90
th

 and 95
th

 empirical percentiles of LR, Wald and LM in our experiments both 

are greater than the asymptotic critical values 1.64 and 2.71.  With increases in the true standard 

deviation of the coefficient distribution, the 90
th

 and 95
th

 empirical percentiles increase for the 

LR and Wald statistics, indicating that these tests will have some power in choosing the correct 

model with random coefficients. The corresponding percentile values based on the LM statistics 

decline, meaning that the LM test has declining power.  An interesting feature of Table 3.1 is that 

most empirical percentile values based on the LR and Wald statistic distributions decrease in the 

parameter mean  . Since the parameter mean should not influence the power of LR and Wald 

tests, it implies that the power of tests may be affected by the ratio of parameter mean to 

parameter standard deviation, which is also called the signal-to-noise ratio.   

The results based on the empirical percentiles of the LR, Wald and LM statistic 

distributions imply the rejection rates of the three tests will vary depending on the mean and 

standard deviation of the parameter distribution.  To get the rejection rate for the three tests, we 

choose the “correct” chi-square critical values 1.64 and 2.71 for 10% and 5% significance levels 

with one degree of freedom.  Table 3.2 provides the percentage of rejecting the null hypothesis 
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0  , using critical value 1.64 and 2.71.  When the null hypothesis is true, most empirical 

percentage rates of LR test rejecting the true null hypothesis are less than the nominal rejection 

rates 10% and 5%, and become further away from the nominal rejection rates with increases in 

the parameter mean .  All empirical rejection rates of Wald and LM tests given a true null 

hypothesis are greater than the related expected percentage rates.  The size of the LR test is too 

large, and the size of LM and Wald tests is too small. 

 Figure 3.2 contains graphs based on the results of Table 3.2.  From Figure 3.2, we can see 

the changes in the rejection rates of these three tests with increases in the mean and standard 

deviation of the parameter distribution respectively. We find the rejection frequency of the LR 

and Wald statistics declines in the mean of the parameter distribution.  

Due to the different sizes of the three tests, power comparisons are invalid.  We use the 

Monte Carlo percentile values for each combination of parameter mean and standard deviation as 

the critical value to correct the size of the three tests. Table 3.3 provides the size corrected 

rejection rates for the three tests. The size corrected rejection rates for the LR and Wald tests 

increase in the standard deviation of the coefficient distribution as expected.  Based on the 

results, there is not too much difference between these two size corrected tests.  As expected the 

power of these two tests still declines with increases in the parameter mean.  In our experiments, 

at the 10% and 5% significance levels, the LM test shows the weakest power for the presence of 

the random coefficient among the three tests.  Graphs in Figure 3.3 are based on the results of 

Table 3.3.  After adjusting the size of the test, the power of LR test declines slowly in the 

parameter mean.  The results of the power of these three tests are consistent with the results of 

pretest estimators based on these three tests.  
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Table 3.1: 90
th

 and 95
th

 Empirical Percentiles of Likelihood Ratio, Wald and Lagrange Multiplier Test Statistical Distributions 

One Random Parameter Model 

     LR-90
th
  LR-95

th
  Wald-90

th 
 Wald-95

th
 LM-90

th
 LM-95

th 

0.5 0.00    1.927    3.267    4.006    5.917  2.628  3.576 

0.5 0.15    1.749    2.755    3.850    5.425  2.749  3.862 

0.5 0.30    2.239    3.420    4.722    6.210  2.594  3.544 

0.5 0.80    6.044    7.779    9.605  11.014  2.155  3.043 

0.5 1.20  12.940  15.684  14.472  15.574  1.712  2.344 

0.5 1.80  26.703  31.347  19.225  19.950  1.494  2.041 

1.5 0.00    1.518    2.668    3.671    5.672  2.762  3.972 

1.5 0.15    1.541    2.414    3.661    5.443  3.020  4.158 

1.5 0.30    1.837    3.364    4.361    6.578  3.048  4.308 

1.5 0.80    5.753    7.451    8.603  10.424  2.496  3.489 

1.5 1.20  11.604  13.953  12.930  13.974  1.825  2.376 

1.5 1.80  24.684  28.374  17.680  18.455  1.346  1.947 

2.5 0.00    0.980    1.727    2.581    4.017  2.978  4.147 

2.5 0.15    1.020    1.858    2.598    4.256  2.976  4.317 

2.5 0.30    1.217    2.235    2.751    4.616  3.035  4.429 

2.5 0.80    2.766    4.667    6.387    8.407  3.119  4.315 

2.5 1.20    6.321    8.643    9.700  11.598  2.714  3.832 

2.5 1.80  18.018  20.828  14.895  15.822  2.189  3.275 

3.0 0.00    1.042    1.720    2.691    4.264  3.455  4.594 

3.0 0.15    1.040    1.941    2.548    4.878  3.285  4.441 

3.0 0.30    1.260    2.114    3.068    5.124  3.164  4.324 

3.0 0.80    2.356    3.167    4.915    7.106  3.073  4.198 

3.0 1.20    4.610    6.570    8.086  10.296  2.917  4.224 

3.0 1.80  13.261  15.622  12.960  14.052  2.579  3.478 

Note: *Testing 0 : 0H   ; One tail critical values are 1.64 (10%) and 2.71 (5%), compared to the usual values  

2.71 and 3.84 respectively.
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Table 3.2: Rejection Rate of Likelihood Ratio, Wald and Lagrange Multiplier Test Statistic Distributions 

 One Random Parameter Model 

̂  ˆ
  *ˆ( )se    *ˆ( )se    LR-10%** LR-5%** Wald-10%** Wald-5%** LM-10%** LM-5%** 

0.5 0.00 0.123  0.454  0.122  0.065  0.219  0.155  0.204  0.095 

0.5 0.15 0.125  0.461  0.113  0.051  0.233  0.164  0.200  0.101 

0.5 0.30 0.125  0.460  0.143  0.072  0.281  0.214  0.184  0.093 

0.5 0.80 0.135  0.416  0.472  0.348  0.665  0.587  0.161  0.061 

0.5 1.20 0.153  0.391  0.816  0.722  0.916  0.882  0.109  0.036 

0.5 1.80 0.195  0.438  0.996  0.989  1.000  0.999  0.084  0.021 

1.5 0.00 0.242  0.593  0.092  0.048  0.199  0.139  0.215  0.102 

1.5 0.15 0.243  0.586  0.090  0.042  0.215  0.148  0.225  0.116 

1.5 0.30 0.243  0.567  0.115  0.068  0.236  0.160  0.233  0.119 

1.5 0.80 0.247  0.439  0.390  0.264  0.582  0.461  0.184  0.083 

1.5 1.20 0.261  0.391  0.777  0.659  0.897  0.816  0.116  0.037 

1.5 1.80 0.291  0.443  0.995  0.990  0.999  0.996  0.075  0.016 

2.5 0.00 0.416  0.910  0.058  0.022  0.143  0.090  0.216  0.111 

2.5 0.15 0.416  0.889  0.064  0.023  0.146  0.095  0.221  0.122 

2.5 0.30 0.410  0.853  0.070  0.031  0.159  0.101  0.221  0.119 

2.5 0.80 0.392  0.714  0.176  0.106  0.335  0.235  0.229  0.121 

2.5 1.20 0.392  0.537  0.471  0.342  0.641  0.539  0.221  0.100 

2.5 1.80 0.412  0.453  0.949  0.898  0.985  0.959  0.166  0.068 

3.0 0.00 0.519  1.131  0.052  0.028  0.139  0.099  0.229  0.140 

3.0 0.15 0.508  1.062  0.060  0.026  0.140  0.096  0.248  0.128 

3.0 0.30 0.514  0.975  0.076  0.030  0.162  0.113  0.237  0.130 

3.0 0.80 0.489  0.910  0.135  0.074  0.256  0.190  0.226  0.117 

3.0 1.20 0.478  0.701  0.304  0.199  0.465  0.389  0.221  0.114 

3.0 1.80 0.479  0.505  0.808  0.714  0.909  0.858  0.217  0.095 

  *The average nominal standard errors of estimated parameter mean and standard deviation  

  **Testing 0 : 0H    ; One-tail critical values are 1.64 (10%) and 2.71 (5%)
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Figure 3.2 The Rejection Rate of LR, Wald and LM Tests: Testing 0 : 0;H    One-tail critical 

values are 1.64 (10%) and 2.71 (5%): One Random Parameter Model 

3.2.2 Two Parameter Model Results 

We expand the model to two parameters. The mean and standard deviation of the added 

random parameter 2  are set as 1.5 and 0.8 respectively.  We use four different values for the 

first parameter mean, 1 ={0.5, 1.5, 2.5, 3.0}.  For each value of the mean 1 , we use six 

different values for the standard deviation, 
1

 ={0, 0.15, 0.3, 0.8, 1.2, 1.8}.  To find the 90
th

 and 
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95
th

 empirical percentiles of LR, Wald and LM test statistic distributions, we set 
1 2

0      

first.  In the two parameters model, the LR, Wald and LM tests are constructed based on the joint 

null hypothesis 
10 : 0H   and 

2
0   against the alternative hypothesis 

11 : 0H   or 
2

0  or 

1
0   and 

2
0  . Figure 3.4 shows the ratios of the pretest estimator RMSE of 1  and 2  to 

the random parameters logit model estimator RMSE of 1  and 2  based on the joint LR, Wald 

and LM tests at a 25% significance level. Here we use 2 2

1 1

1 1
(1) (2)

2 2
    , the weighted chi-

square statistics, as the critical value for 25%, significance level, 2.048 (Gourieroux and 

Monfort, 1995, p.261).   The joint LR and Wald tests show properties of consistent tests. The 

maximum risk ratio based on the joint LR and Wald tests still increases in the parameter mean. 

In the two parameter model, the pretest estimators based on the joint LR and Wald statistics have 

larger RMSE than that of the random parameters logit model.  The properties of the joint LM-

based pretest estimator are also poor in two parameter model.  Table 3.4 reports the 90
th

 and 95
th

 

empirical percentiles of the joint LR, Wald and LM test statistic distributions. They are different 

with different combinations of parameters mean and standard deviations. When the parameters 

standard deviations are zero, 
1 2

0     , the empirical 90
th

 and 95
th

 percentile value of the joint 

LR test statistic distribution are all less than the according weighted chi-square statistic critical 

values 3.655 and 4.916.  However, the empirical 90
th

 and 95
th

 percentile value of the joint Wald 

test statistic distribution are all greater than the according weighted chi-square statistic critical 

values.  Both of them increase with increases in the parameters standard deviations as expected.  

The Monte Carlo empirical percentiles of the joint LM test statistic distributions are also greater 

than the weighted chi-square statistics and are not sensitive to parameters standard deviations.  

Then we use the weighted chi-square statistic critical values 3.655 and 4.916 to find the rejection 

rate of these three tests.     
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Table 3.3: Size Corrected Rejection rates of LR, Wald and LM Test Statistic Distributions: 

One Random Parameter Model 

             LR -10% LR -5% Wald -10% Wald -5% LM -10% LM -5% 

0.5 0.00 0.100 0.050 0.100 0.050 0.100 0.050 

0.5 0.15 0.094 0.035 0.093 0.036 0.108 0.060 

0.5 0.30 0.121 0.055 0.123 0.056 0.099 0.049 

0.5 0.80 0.431 0.287 0.498 0.336 0.066 0.028 

0.5 1.20 0.792 0.676 0.834 0.746 0.040 0.016 

0.5 1.80 0.995 0.980 0.999 0.991 0.022 0.005 

1.5 0.00 0.100 0.050 0.100 0.050 0.100 0.050 

1.5 0.15 0.100 0.043 0.098 0.047 0.112 0.056 

1.5 0.30 0.124 0.068 0.124 0.067 0.115 0.058 

1.5 0.80 0.407 0.269 0.383 0.240 0.078 0.031 

1.5 1.20 0.788 0.663 0.758 0.616 0.035 0.014 

1.5 1.80 0.995 0.990 0.995 0.988 0.011 0.005 

2.5 0.00 0.100 0.050 0.100 0.050 0.100 0.050 

2.5 0.15 0.101 0.060 0.100 0.056 0.099 0.052 

2.5 0.30 0.119 0.069 0.110 0.065 0.103 0.057 

2.5 0.80 0.256 0.166 0.242 0.173 0.104 0.051 

2.5 1.20 0.565 0.460 0.544 0.444 0.082 0.037 

2.5 1.80 0.971 0.942 0.961 0.931 0.062 0.022 

3.0 0.00 0.100 0.050 0.100 0.050 0.100 0.050 

3.0 0.15 0.099 0.058 0.096 0.059 0.089 0.046 

3.0 0.30 0.120 0.071 0.114 0.080 0.083 0.042 

3.0 0.80 0.197 0.133 0.192 0.121 0.079 0.042 

3.0 1.20 0.403 0.294 0.392 0.282 0.072 0.041 

3.0 1.80 0.873 0.803 0.859 0.764 0.051 0.031 

Testing 0 : 0H   ; using Monte Carlo percentile values as the critical values to adjust the size the LR, Wald and LM tests
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      Figure 3.3 The Size Corrected Rejection Rates: One Random Parameter Model 
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Figure 3.4 Pretest Estimation RMSE  Mixed Logit Estimation RMSE  : 

 Two Random Parameter Model, RMSE of 2 2
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Table 3.4: 90
th

 and 95
th

 Empirical Percentiles of Likelihood Ratio, Wald and Lagrange Multiplier Test Statistical Distributions  

Two Random Parameter Model 

   1     
1

      2     
2

     LR-90
th
  LR-95

th
  Wald-90

th
  Wald-95

th
  LM-90

th
   LM-95

th
 

0.5 0.00 1.5 0.0   2.771    4.157    5.054    6.923  4.725  6.345 

0.5 0.15 1.5 0.8 13.583  17.001  13.148  14.118  4.164  5.242 

0.5 0.30 1.5 0.8 13.504  16.043  13.060  14.156  4.208  5.420 

0.5 0.80 1.5 0.8 14.961  17.867  12.496  13.157  4.052  5.062 

0.5 1.20 1.5 0.8 19.940  23.966  13.536  14.305  4.168  5.215 

0.5 1.80 1.5 0.8 29.429  32.083  15.208  16.081  3.989  5.218 

1.5 0.00 1.5 0.0   2.515    3.467    4.681    5.749  5.057  6.610 

1.5 0.15 1.5 0.8 12.645  15.466  11.961  13.448  5.991  7.689 

1.5 0.30 1.5 0.8 11.955  14.415  11.498  12.641  5.881  7.444 

1.5 0.80 1.5 0.8 12.341  14.569  11.022  12.017  4.480  5.601 

1.5 1.20 1.5 0.8 15.529  17.472  11.760  12.860  4.478  5.699 

1.5 1.80 1.5 0.8 22.300  25.700  13.321  14.155  4.682  5.639 

2.5 0.00 1.5 0.0   2.682    3.699    4.268    5.739  5.254  6.415 

2.5 0.15 1.5 0.8 10.449  13.120    9.820  11.137  4.920  6.368 

2.5 0.30 1.5 0.8   9.998  12.437    9.707  10.986  5.051  6.230 

2.5 0.80 1.5 0.8 10.388  12.690    9.554  10.657  4.714  6.092 

2.5 1.20 1.5 0.8 14.168  17.001  10.527  11.433  4.552  5.829 

2.5 1.80 1.5 0.8 21.625  24.694  12.815  13.704  4.994  6.248 

3.0 0.00 1.5 0.0   2.979    4.553    4.199    5.907  5.334  6.995 

3.0 0.15 1.5 0.8   9.185  11.450    8.493  10.215  4.434  5.923 

3.0 0.30 1.5 0.8   8.384  10.388    8.262  9.7540  4.245  5.418 

3.0 0.80 1.5 0.8   8.219  10.083    8.499  10.010  4.486  5.716 

3.0 1.20 1.5 0.8 13.704  15.917  10.058  10.967  4.972  6.353 

3.0 1.80 1.5 0.8 20.939  23.476  12.454  13.282  5.273  6.544 
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Table 3.5 shows the rejection rates of the three joint tests based on the weighted chi-square 

statistic critical values for 10% and 5% significance level.  The results are consistent with the 

Table 3.4.  When the null hypothesis is true, the joint LR test reject the true null hypothesis less 

frequently than the nominal rejection rates 10% and 5%.  And the Monte Carlo rejection rates of 

the joint Wald test are greater than the nominal rejection rates 10% and 5%.  They become closer 

to the nominal rejection rates with increases in the parameter mean 1 .  Figure 3.5 shows the 

graphs based on the results of Table 3.5. They almost have the same trends as the one parameter 

case.  The rejection frequency of the joint LR and Wald statistics decreases in the mean of the 

parameter distribution 1 .   

To compare the power of these three joint tests in the two parameters case, we also 

correct the size of the three joint tests using the Monte Carlo empirical critical values for 10% 

and 5% significance level. Table 3.6 provides the size corrected rejection rates for the three joint 

tests. Figure 3.6 presents the graphs based on the Table 3.6. As in the one parameter case, the 

joint LM test shows the weakest power for the presence of the random coefficient. The power of 

the joint LR and Wald tests decreases in the mean of the parameter distribution 1.  

3.3 Conclusions and Discussion 

. There are two major findings regarding testing for the presence of random parameters 

from our Monte Carlo experiments, neither of which we anticipated. First, the LM test should not 

be used in the random parameters logit model to test the null hypothesis that the parameters are 

randomly distributed across the population, rather than being fixed population parameters. In the 

one parameter model Monte Carlo experiment, the size of the LM test is approximately double 

the nominal level of Type I error. 
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Table 3.5: Rejection Rate of Likelihood Ratio, Wald and Lagrange Multiplier Test Statistic Distributions 

Two Random Parameter Model 

1   
1

   2   
2

   LR-10%  LR-5%  Wald-10% Wald-5% LM-10%  LM-5% 

0.5 0.00 1.5 0.0 0.064  0.032  0.169  0.105  0.164  0.088 

0.5 0.15 1.5 0.8 0.761  0.658  0.923  0.867  0.140  0.063 

0.5 0.30 1.5 0.8 0.750  0.636  0.923  0.850  0.141  0.076 

0.5 0.80 1.5 0.8 0.825  0.721  0.953  0.908  0.132  0.054 

0.5 1.20 1.5 0.8 0.967  0.942  0.990  0.982  0.136  0.057 

0.5 1.80 1.5 0.8 1.000  0.998  1.000  1.000  0.120  0.060 

1.5 0.00 1.5 0.0 0.045  0.026  0.147  0.087  0.191  0.105 

1.5 0.15 1.5 0.8 0.652  0.532  0.806  0.707  0.296  0.167 

1.5 0.30 1.5 0.8 0.618  0.489  0.785  0.673  0.260  0.153 

1.5 0.80 1.5 0.8 0.708  0.594  0.871  0.756  0.168  0.070 

1.5 1.20 1.5 0.8 0.862  0.768  0.954  0.898  0.161  0.080 

1.5 1.80 1.5 0.8 0.986  0.964  0.997  0.993  0.189  0.080 

2.5 0.00 1.5 0.0 0.051  0.014  0.129  0.068  0.206  0.118 

2.5 0.15 1.5 0.8 0.543  0.416  0.704  0.552  0.193  0.100 

2.5 0.30 1.5 0.8 0.503  0.356  0.660  0.505  0.215  0.114 

2.5 0.80 1.5 0.8 0.530  0.394  0.679  0.529  0.172  0.087 

1.5 1.20 1.5 0.8 0.827  0.728  0.898  0.813  0.185  0.085 

2.5 1.80 1.5 0.8 0.974  0.956  0.992  0.977  0.231  0.109 

3.0 0.00 1.5 0.0 0.074  0.040  0.137  0.071  0.190  0.120 

3.0 0.15 1.5 0.8 0.466  0.346  0.604  0.435  0.143  0.083 

3.0 0.30 1.5 0.8 0.427  0.304  0.575  0.391  0.146  0.068 

3.0 0.80 1.5 0.8 0.372  0.252  0.514  0.362  0.182  0.077 

3.0 1.20 1.5 0.8 0.716  0.596  0.847  0.722  0.206  0.104 

3.0 1.80 1.5 0.8 0.985  0.955  0.990  0.972  0.215  0.118 
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Figure 3.5: The Rejection Rate of LR, Wald and LM Tests: Two Random Parameter Model
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Table 3.6: Size Corrected Rejection Rates of LR, Wald and LM Test Statistic Distributions 

Two Random Parameter Model 

1   
1

   2   
2

   LR-10%  LR-5%  Wald-10% Wald-5% LM-10%  LM-5% 

0.5 0.00 1.5 0.0 0.100  0.050  0.100  0.050  0.100  0.050 

0.5 0.15 1.5 0.8 0.846  0.718  0.857  0.714  0.074  0.025 

0.5 0.30 1.5 0.8 0.833  0.707  0.843  0.695  0.079  0.024 

0.5 0.80 1.5 0.8 0.887  0.792  0.907  0.740  0.065  0.028 

0.5 1.20 1.5 0.8 0.983  0.959  0.979  0.928  0.068  0.023 

0.5 1.80 1.5 0.8 1.000  1.000  1.000  0.994  0.068  0.027 

1.5 0.00 1.5 0.0 0.100  0.050  0.100  0.050  0.100  0.050 

1.5 0.15 1.5 0.8 0.752  0.672  0.722  0.625  0.157  0.084 

1.5 0.30 1.5 0.8 0.734  0.638  0.697  0.585  0.146  0.074 

1.5 0.80 1.5 0.8 0.831  0.727  0.781  0.661  0.064  0.027 

1.5 1.20 1.5 0.8 0.932  0.876  0.912  0.840  0.071  0.025 

1.5 1.80 1.5 0.8 0.996  0.990  0.994  0.985  0.076  0.021 

2.5 0.00 1.5 0.0 0.100  0.050  0.100  0.050  0.100  0.050 

2.5 0.15 1.5 0.8 0.668  0.542  0.623  0.450  0.084  0.047 

2.5 0.30 1.5 0.8 0.625  0.499  0.573  0.379  0.094  0.043 

2.5 0.80 1.5 0.8 0.634  0.526  0.612  0.443  0.069  0.034 

2.5 1.20 1.5 0.8 0.894  0.821  0.861  0.742  0.071  0.036 

2.5 1.80 1.5 0.8 0.988  0.974  0.984  0.962  0.085  0.042 

3.0 0.00 1.5 0.0 0.100  0.050  0.100  0.050  0.100  0.050 

3.0 0.15 1.5 0.8 0.562  0.380  0.532  0.298  0.072  0.024 

3.0 0.30 1.5 0.8 0.517  0.335  0.495  0.279  0.055  0.020 

3.0 0.80 1.5 0.8 0.448  0.286  0.450  0.251  0.059  0.027 

3.0 1.20 1.5 0.8 0.777  0.626  0.784  0.620  0.080  0.034 

3.0 1.80 1.5 0.8 0.992  0.966  0.985  0.940  0.096  0.036 
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Figure 3.6: The Size Corrected Rejection Rates: Two Random Parameter Model 
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Then, the rejection rate decreases as the degree of the specification error rises, which is in direct 

contrast to the properties a consistent test. This is the most troubling and disappointing finding, as 

the LM test is completed in a fraction of a second, while LR and Wald tests requiring estimation of 

the mixed logit model are time consuming to estimate even with a limited number of Halton draws. 

This outcome resulted despite our use of the now well established adjusted chi-square critical value 

for one-tail tests on the boundary of a parameter space. This outcome is also not due to 

programming errors on our part, as our Gauss code produces estimates and LM test statistic values 

that are the same, allowing for convergence criteria differences, as those produced by NLOGIT 4.0. 

In the one parameter problem the likelihood ratio test had size close to the nominal level, while the 

Wald test rejected the true null hypothesis at about twice the nominal level.    

Our second finding is that LR and Wald test performance depends on the “signal-to-noise” 

ratio, that is, the ratio of the mean of the random parameter distribution relative to its standard 

deviation. When this ratio is larger the LR and Wald tests reject less frequently the null hypothesis 

that the parameter is fixed rather than random. Upon reflection, this makes perfect sense. When the 

parameter mean is large relative to its standard deviation then the test will have less ability to 

distinguish between random and fixed parameters. The “skinny” density function of the population 

parameter looks like a “spike” to the data. When the ratio of the mean of the random parameter 

distribution relative to its standard deviation is large it matters less whether one chooses conditional 

logit or mixed logit, from the point of view of estimating the population mean parameter. This 

shows up in lower size-corrected power for the LR and Wald tests when signal is large relative to 

noise. It also shows up in the risk of the pretest estimator relative to that of the mixed logit 

estimator. For the portion of the parameter space where the relative risk is greater than one, as the 
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signal increases relative to noise the relative risk function increases, indicating that pretesting is a 

less preferred strategy.  

In the one parameter case the LR test is preferred overall. For the case when the signal-to-

noise ratio is not large the empirical critical values, under the null, are at least somewhat close to the 

one-tail critical values 1.64 (10%) and 2.71 (5%) from the mixture of chi-square distributions. 

When the signal-to-noise ratio increases the similarity between the theoretically justified critical 

values and the test statistic percentiles becomes less clear. The Wald test statistic percentiles are not 

as close to the theoretically true values as for the LR test statistic. The LM test statistic percentiles 

under the null are between those of the LR and Wald test statistic distribution, but not 

encouragingly close to the theoretically true values.  

In the two random parameters case, we vary the value of one standard deviation parameter, 

staring from 0, while keeping the other standard deviation parameter fixed at a nonzero parameter. 

We observe however, that the empirical percentiles of the joint LR test statistics are less than the 

weighted chi-square percentile values 3.655 (10%) and 4.916 (5%). Once again the rejection rate 

profile of the LM test is flat, indicating that it is not more likely to reject the null hypothesis at 

larger parameter standard deviation values. The “size corrected” rejection rates are not strictly 

correct. In them we observe that the LR and Wald tests reject at a higher rate at higher signal-to-

noise ratios. Further, in the two parameters case the relative risk of the pretest estimator based on 

the LR and Wald test statistics are always greater than one. The pretesting strategy is not to be 

recommended under our Monte Carlo design.   

Interesting questions arising from the Monte Carlo experiment results are: (1) Why does the 

power of LR and Wald tests for the presence of the random coefficient declines in the parameter 
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mean and (2) How can we refine the LM test in the setting of the random parameters logit model. 

The Lagrange Multiplier test is developed by Aitchison and Silvey (1958) and Silvey (1959) in 

association with the constrained optimization problem. In our setting, the Lagrangian function is: 

ln ( ) ( ( ) )L c q      

where ln ( )L  is the log-likelihood function, which subject to the constraints ( ( ) ) 0c q   . The 

related first-order conditions are: 

 

ln ( ) ( )
0

( ) 0

L c

c q

   
  

 
   

 

Under the standard assumptions of the LM test, we know  

1ˆ( ) ~ (0, ( ) )n N I    

and  

1/2 1( ) ( )ˆ ~ 0, ( )
'

c c
n N I       

   
   

 

Based on the first-order conditions of the Lagrangian function, we have 

1 1
ˆ ˆ ˆ ˆ( ) ( ) ln ( ) ln ( )ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ

c c L L
I I        

    
   

  

From the above results, the LM statistic has the asymptotic 2  distribution. The asymptotic 

distribution of the LM statistic is derived from the distribution of Lagrange multiplier, which 

essentially based on the asymptotic normality of the score vector. In the Lagrangian function, the 

log-likelihood function is subject to the equality constraints. The weak power of the LM test for the 

presence of the random coefficient is caused by the failure of taking into account the properties of 

the one-tail alternative hypothesis. Gourieroux, Holly and Monfort (1982) and Gourieroux and 

Monfort (1995) extended the LM test to the Kuhn-Tucker multiplier test and showed that it is 
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asymptotically equivalent to the LR and Wald tests. However, computing the Kuhn-Tucker 

multiplier test is complicated. In the Kuhn-Tucker multiplier test, the duality problem replaces the 

two optimization problems with inequality and equality constraints, which is shown as follows: 

0 0
0 0 1 0

ˆ ˆ( ) ( )1 ˆ ˆ ˆmin ( ) ( ) ( )
g g

I
n





   
    

 
 

Subject to 0  where 0̂ and 0̂ are the equality constrained estimators. Compared to the 

standard LM test, the Kuhn-Tucker multiplier test uses 0ˆ( )  to adjust the estimated Lagrange 

Multiplier 0̂ . How to refine the LM test in the random parameters logit model is our future 

research.  
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CHAPTER 4 SHRINKAGE ESTIMATION IN THE RANDOM 

PARAMETERS LOGIT MODEL 

4.1 Introduction 

In this chapter we explore a problem that may exist in any correlated random parameters model. 

When the random coefficients are correlated, the parameters we estimate in the random parameters 

logit model are the mean   and covariance matrix  of random coefficients’ distributions. In the 

covariance matrix  , there are K  variances and ( 1) / 2K K   covariance terms that need to be 

estimated, when the number of correlated random coefficients is K . Allowing the random 

parameters to be correlated introduces potentially many new parameters which may be difficult to 

estimate. For the purpose of estimating marginal effects of changes in an explanatory variable, or 

for prediction, is the estimation of the more general model advantageous? Many applied workers 

will test the significance of the covariance parameters before deciding to rely on the fully correlated 

random parameter model instead the model in which the parameters are random but uncorrelated, 

which introduces only K  additional parameters to estimate. Does using a pretesting strategy 

improve postestimation inferences? Judge and Bock (1978) investigate in depth this question for the 

linear model and conclude that over much of the parameter space the estimation mean-squared error 

is worse for the pre-test estimator than the unconstrained model. This same phenomenon appears in 

nonlinear models, as demonstrated by Kim and Hill (1995).  

 An alternative to choosing between an unrestricted model and a restricted one on the basis of 

a pretest is shrinkage estimation. A shrinkage estimator is a stochastically weighted combination of 

an estimator of a fully unrestricted model and a model upon which a set of constraints is imposed. 

The stochastic weighting factor is a function of a test statistic for the validity of the imposed 

constraints. When the test statistic is small, indicating that the constraints are compatible with the 
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data, the unrestricted estimator is “shrunk” towards the restricted estimator. When the test statistic is 

large, suggesting that the constraints are not valid, the unrestricted estimator is “shrunk” less 

towards the restricted estimator. In the linear model Judge and Bock (1978) show that a positive 

part Stein-like estimator has lower risk than the unrestricted least squares estimator over the entire 

parameter space under certain design related conditions, making the unrestricted least squares 

estimator inadmissible. Furthermore, the shrinkage estimator has lower mean-squared error than the 

pretest estimator over much, but not all of the parameter space. This idea has been applied with 

success in nonlinear models: Adkins and Hill (1989) examine shrinkage estimators in the probit 

model; Kim and Hill (1995) provide results for the nonlinear regression model with a particular 

application to the Box-Cox regression model; Sapra (1993) examines the Poisson regression model; 

and Ahmed and Nicol (2010) examine the nonlinear regression model.   

 We apply these ideas to correlated random parameters models. A positive part Stein-like 

estimation rule will be applied to shrink the estimators from a fully correlated random parameters 

model towards the estimator from a restricted random parameters model that constrains the 

correlations among parameters to be zero. In particular we examine the behavior of pretest and 

shrinkage estimators in the context of the random parameters logit model. In this model estimation 

of the covariance parameters is especially difficult. (Ruud, 1996, p. 7) concludes “…that there is a 

region of the parameter space of the simulated random parameters logit model where the likelihood 

is quite flat with respect to all of the covariance parameters.” This feature leads to numerical 

difficulties when using iterative quadratic hill climbing algorithms. Convergence to a local 

maximum, much less a global maximum, of the log-likelihood function may be slow or impossible. 

The numerical difficulties are manifest in even the uncorrelated random parameters logit model, as 

documented recently by Chang and Lusk (2011). In addition the flatness of the log-likelihood 
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affects the precision of estimation of the maximum simulated likelihood estimator since the 

asymptotic variance is the inverse of the information measure which is related to the curvature of 

the log-likelihood function. Relatively flat log-likelihoods result in effects similar to collinearity in 

the linear model, where estimates are imprecisely estimated and subject to large changes when the 

model or data are altered.  

 Using extensive simulations, we find that estimating the fully correlated random parameters 

model leads to generally higher mean-squared for population mean parameters, important functions 

of those parameters and predictions than using Stein-like shrinkage estimator. The shrinkage 

estimator also has lower mean-squared error than the pretest estimator in our experiments, which 

also improves on the fully correlated random parameters model. In addition, we find that the 

positive-part Stein-like estimators with more shrinkage dominate those with less. Using marketing 

consumer choice data, we find the percentage of correct predicted choices is higher using the 

positive-part Stein-like estimator than it using the pretest estimator.  

 The plan of this chapter is as follows. In the following section we present in some detail the 

correlated random parameters logit model estimators. In Section 3 we describe pretest and Stein-

like estimators. This is followed by a description of our Monte Carlo simulation design and results. 

The marketing consumer choice data and results are presented in Section 5, and we end with 

conclusions, recommendations and extensions.  

4.2 The Correlated Random Parameters Logit Model Estimation 

When K random coefficients in the RPL model are correlated to each other, there are K variances 

and ( 1) / 2K K  covariance terms. Instead of estimating the elements of covariance matrix of 

random coefficients   directly, the Cholesky factors of  , which defined as a lower triangular 
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matrix A such that 'AA  , are estimated and the standard deviations of the random coefficient 

distribution are calculated based on the estimated Cholesky elements. Taking the number of random 

coefficients 4K   as an example, the related coefficient covariance matrix and Cholesky factors 

are: 

(4.1)

 

2
11 11 21 31 411 12 13 14

2
21 22 22 32 4221 2 23 24

2
31 32 33 33 4331 32 3 34

2
41 42 43 44 4441 42 43 4

'

a a a a a

a a a a a
AA

a a a a a

a a a a a

        
     
           
        
     
        

 

With the Cholesky factors A , the random coefficients 
n  can be written as 

n SNb A    , where b is 

the mean vector and 
SN are generated from independent standard normal distribution. Using one 

observation as example, then the random coefficients for this individual is: 

(4.2a)  

,1111 1

,221 222 2

,331 32 333 3

,441 42 43 444 4

SN

SN

SN

SN

ab

a ab

a a ab

a a a ab

      
             
      
     
         

 

Therefore we can write each coefficient as 

(4.2b) 

1 1 11 ,1

2 2 21 ,1 22 ,2

3 3 31 ,1 32 ,2 33 ,3

4 4 41 ,1 42 ,2 43 ,3 44 ,4

SN

SN SN

SN SN SN

SN SN SN SN

b a

b a a

b a a a

b a a a a

   

     

       

         

 

The parameter means and each element of the Cholesky factors can be estimated by maximizing the 

simulated log-likelihood function.  

The estimated standard deviations of the parameter distribution based on the estimated Cholesky 

factors are: 
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(4.3) 2ˆ ˆ ˆ( )i ij ij
j

f a a      , 1,2,3,4i j   

The parameters in the
 
fully correlated RPL model are:

  

(4.4) 1 11 21 , 1( , , , , , , , , )f k kk k ka a a a      

When the lower triangular matrix A  becomes diagonal matrix, the coefficient covariance matrix is 

diagonal matrix and the fully correlated RPL model reduces to the simpler uncorrelated RPL model 

and the related parameters are:  

(4.5) 
1 11( , , , , , )u k kka a    or  

11( , , , , , )
kk     

 

 

4.3 The Pretest and Stein-like Estimators in the Random Parameters Logit 

Model 

Stein-rule estimators, following the work of Stein (1956) and James and Stein (1961), and combine 

sample information with non-sample information in a way that improves the precision of the 

estimation process and the quality of subsequent predictions. The Stein rule estimator is a weighted 

average of the restricted and unrestricted estimators, the weight being a function of the magnitude 

of the test statistic used to test the restrictions.  It “shrinks” the unrestricted estimator towards the 

restricted estimator, and the test statistic determines the extent of shrinkage.  Shrinkage estimators 

are biased, but may have lower estimation or prediction mean squared error, or risk. It is well 

known that the Stein-rule estimator outperforms the maximum likelihood estimator (MLE) in the 

context of the normal linear regression model under certain conditions. There have been a number 

of studies on Stein-like estimation in the context of nonlinear models.  Adkins and Hill (1989) use 

the approximate normality of MLE to construct a Stein-rule estimator for the probit model by 

replacing the elements of the Stein-rule used in the classical normal linear regression model with the 
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estimates of the probit model. They find that when the sample size is small (50 observations), the 

Stein-like estimator outperforms the MLE in the sense that it has smaller risk over the range of 

parameters considered.  For larger samples, the performance of all the estimators examined 

improves.  The positive-part Stein-like estimation rule is superior to MLE and other Stein-rule 

alternatives for small to moderate degrees of hypothesis error. Kim and Hill (1995) propose a 

positive-part Stein-like estimator for the Box-Cox model and derive the asymptotic risk functions of 

the maximum likelihood estimator, the restricted maximum likelihood estimator, the pretest 

estimator, and the positive-part rule under a sequence of local alternatives 0 : /H R r T    , 

where   is a vector of constants defining the degree of hypothesis error. They show that under 

information matrix weighted quadratic loss the risk of the shrinkage estimator for any 0c   is 

smaller than the risk of the maximum likelihood estimator, where c  is a constant controlling the 

degree of shrinkage. 

 If we use the likelihood ratio (LR), Lagrange multiplier (LM) or Wald test to test whether 

the coefficient variance-covariance matrix is a diagonal matrix or not, the pretest estimator * is: 

  (4.6) * u

f

u cif

u cif





 
  

 
    

where u is the LR, LM or Wald test statistic for testing the coefficient covariance matrix is diagonal 

matrix or not, and c is the critical value of chi-square distribution with J degrees of freedom and 

significance level  .  

 Following Kim and Hill (1995), the shrinkage or the positive-part Stein-like estimator   is 

a stochastically weighted convex combination of fully correlated RPL model estimates  ˆ
f  and 

correlated RPL model estimates ( ˆ
u ): 



88 

 

(4.7) ˆ ˆ(1 )u fc c        

where ( , )1 ( )(1 / )ac I u a u   and ( , ) ( )aI u is the indicator function of test statistic u . The shrinkage 

constant c depends on test statistic u . The constant a , chosen by the user, controls the amount of 

shrinkage towards the uncorrelated RPL model estimates. The shrinkage estimator  becomes the 

uncorrelated RPL model estimator 
u  when the test statistic u is less than the value of a . The larger 

the value of a , the more weight give to the uncorrelated RPL model estimates.  In our experiments, 

we set 2a J  and 2 ( 2)a J   respectively to analyze how the value of a influences the 

efficiency of the shrinkage estimator.  

4.4 The Monte Carlo Experiments and Results 

The Monte Carlo experiments are under the context of the RPL model which has no intercept term. 

To satisfy the sufficient condition for minimaxity of the Stein-rule estimator, which requires the 

number of restrictions strictly greater than 2, we set four random coefficients in the RPL model. The 

random coefficients can be correlated to each other. Each individual still faces four mutually 

exclusive alternatives on one choice occasion. The explanatory variables for each individual and 

each alternative 
nix  are generated from independent standard normal distributions. The coefficients 

for each individual 
n  are generated from multivariate normal distribution ( , )N   . The mean and 

variance of random coefficients are set as 1. The covariance elements of random coefficients are set 

as the same value and changed from 0 to 0.8 to study how they influence the efficiency of the RPL 

model estimators.  

That is, we specify: 
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(4.8) 

1

1

1

1



   
 
  
  
   
 
   

  where 
 
= 0, 0.1, 0.4, 0.6, 0.8 

The correlation 
cov( , )

var( ) var( )

i j

i j

 
 

 
and cov( , )i j  =0, 0.1, 0.4, 0.6, 0.8. Since the variances of the 

random coefficients are all equal to one, the covariance terms of random coefficients are equal to 

the correlation.  

 The values of 
nix  and 

n  are held fixed over each experiment design. The dependent 

variable values 
niy  are determined by comparing the utility of each alternative:  

 (4.9) 
1

0

n ni ni n nj nj

ni

x x
y

Otherwise

       
 


  i j   

The explanatory variable 1niy   if individual n  chooses alternative i  and is 0 otherwise. The values 

of the random errors 
ni  are generated from i.i.d. extreme value type I distribution. In the 

experiments, we choose the estimation sample size 200N   and generate 999 Monte Carlo samples 

with specific mean and covariance matrix that we set for the four random coefficients distribution in 

each experiment design. Since using much fewer quasi-random numbers generated by Halton 

sequences can achieve the same or even higher estimation accuracy as using pseudo-random 

numbers and can reduce the computational time greatly, the Halton draws are also used here to 

simulate the choice probability of the RPL model and 100 Halton draws are assigned to each 

individual in this four random parameter model.  

 To study how the covariance elements of the random coefficients influence the estimator 

efficiency, we calculate the ratio of the mean squared error (MSE) of the uncorrelated RPL model 

estimates to those of the fully correlated RPL model estimates. The mean squared error of 
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uncorrelated and fully correlated RPL model estimates with parameter mean is calculated as 

follows: 

(4.10) Mean Squared Error (MSE) of  
4 2

1 1

ˆ ˆ /
NSAM

k k
n k

NSAM
 

 
    

 
   

 The likelihood ratio (LR), Wald and Lagrange multiplier (LM) tests are used to choose 

between the uncorrelated RPL model and the fully correlated RPL model by testing the null 

hypothesis: 
0 12 13 23 14 24 34: 0, 0, 0, 0, 0, 0H              against the alternative hypothesis that at 

least one of covariance elements is not zero. Since the covariance elements are calculated through 

the estimated Cholesky factors shown in (4.10) instead of being estimated directly, we construct the 

Wald test to test the joint null hypothesis through testing the Cholesky factors: 

21 31 32 41 42 430, 0, 0, 0, 0, 0.a a a a a a        

(4.11) 

12 21 11

13 31 11

23 31 21 32 22

14 41 11

24 41 21 42 22

34 41 31 42 32 43 33

a a

a a

a a a a

a a

a a a a

a a a a a a

 

 

  

 

  

   

 

 Table 4.1 provides the ratios of the MSE of uncorrelated RPL model estimates to that of 

correlated RPL model estimates with the covariance elements increasing from 0 to 0.8. The results 

are all less than one. The uncorrelated RPL model estimators’ risks are almost one third of those of 

the correlated RPL model estimators, even though the random coefficients are correlated. The ratio 

of the MSE of uncorrelated RPL model estimates to that of the fully correlated RPL model 

estimates reaches to the smallest value when the random coefficients are uncorrelated. However, 

when the correlation of the random coefficients increases a little bit to 0.1, the ratio reaches to the 
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highest value in our Monte Carlo experiments which is close to the ratio with highly correlated 

random coefficients, =0.8.  When we look at the MSE of uncorrelated and fully correlated RPL 

model estimator respectively, the uncorrelated RPL model estimator has bigger MSE with =0.1 

and 0.8.  The MSE of fully correlated RPL model reaches the highest value when =0.1. It implies 

that the uncorrelated RPL model estimator may have relative bigger risk when the random 

coefficients weakly or highly correlate to each other.  With the correlation of the random 

coefficients increases from 0.4 to 0.8, the ratios of MSE of uncorrelated RPL model estimates to the 

MSE of fully correlated RPL model estimates increase as expected.  The MSE of the estimated 

mean and standard deviation of the random coefficient distribution with using the correlated RPL 

model is almost as twice as those using the uncorrelated RPL model when the covariance of random 

coefficients is 0.8.  

Table 4.1: The MSE of Uncorrelated RPL model Estimates   the MSE of  Correlated RPL Model Estimates                      

   cov( , )i j   MSE of ˆ
u MSE of ˆ

f       MSE of 2ˆ
u

 MSE of
2ˆ

f
  

         0.0  0.237            0.139    

        0.1  0.449            0.452    

        0.4  0.260            0.269    

        0.6  0.303            0.402    

        0.8  0.402            0.403    

 

The covariance elements introduce the noise during the estimation and make the estimated mean 

and standard deviation of the fully correlated RPL model coefficient distrubtions have greater risk 

than those of the uncorrelated RPL model.  Following Ruud’s (1996) suggestion, we included two 

fixed coefficients in the fully correlated RPL model. However, adding fixed coefficients doesn’t 

reduce the risk of the fully correlated RPL model estimators greatly.  It leads us to try to improve 
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the efficiency of the fully correlated RPL model estimators by using the pretest and positive-part 

Stein-like estimators.  

 To study how the pretest and positive-part Stein-like estimators reduce the risk of the fully 

correlated RPL model estimators, we calculate the MSEs of the estimated parameters mean, 

parameters variance, parameters covariance and all estimated parameters with the pretest, positive-

part Stein-like and fully correlated RPL model estimators respectively.  With the results of MSE, we 

calculate the average relative loss for parameters mean, variance, covariance and all of them based 

on the pretest and positive-part Stein-like estimators.  

(4.12) Average Relative Loss (ARL) of    
24 4 2

1 1 1

1ˆ ˆ ˆ/
NSAM

k k fk k
n k k NSAM  

   
        

   
    

Figure 4.1 shows results based on the estimated parameters mean. In Figure 4.1, the ratios of the 

LR, LM and Wald based positive-part Stein-like, pretest estimator MSE to the fully correlated RPL 

model estimator MSE are all less than one. It implies that the risks of the estimated parameters 

mean based on the positive-part Stein-like and pretest estimators are all smaller than those with the 

fully correlated RPL model estimators. At the same time, the estimated parameters mean of the 

positive-part Stein-like estimator with the shrinkage constant 2 ( 2)a J   outperforms the 

estimated parameters mean of the positive-part Stein-like estimator with 2a J  , where J is the 

degree of freedom 6, and pretest estimator. When the correlation of random coefficients increases to 

0.1, the ratio of the positive-part Stein-like estimator and pretest estimator MSE to the fully 

correlated RPL model estimator MSE increases, except for the ratio of the LR based pretest 

estimator. It means when the random coefficients of RPL model are weakly correlated to each other, 

the average relative loss of the pretest estimator and positive-part Stein-like estimator may increase. 

With the correlation of random coefficients increases further to 0.8, the average relative loss of the 
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pretest and positive-part Stein-like estimators decreases first and then increases as expected. With 

increases in the correlation of the random coefficients, LR, LM and Wald tests reject the null 

hypothesis more frequently. The pretest estimator chooses the fully correlated RPL model estimator 

more frequently as well.   

 

Figure 4.1: The Ratios of LR, LM and Wald based Pretest, Shrinkage Estimator MSE  

          to the Fully Correlated RPL Model Estimator MSE (estimated parameters mean) 
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With the given value of the shrinkage constant a , the positive-part Stein-like estimator gives more 

weights of the correlated RPL model estimates when the value of test statistic u used to test the null 

hypothesis increases. So the average relative loss of the pretest estimator and positive part Stein-like 

estimator approaches to one with increases in the correlation of the random coefficients. Compared 

to the ratios of the LR and LM based pretest and positive-part Stein-like estimators MSE to the fully 

correlated RPL model estimator MSE, the ratios of the Wald-based pretest, positive-part Stein-like 

estimators approach to one slowly with increases in the correlation of random coefficients.  Since 

the Wald test uses the unconstrained estimator and the BHHH estimator of information matrix, the 

larger risk of the fully correlated RPL model estimator influences the power of the Wald test for 

testing the null hypothesis. With the given shrinkage constant a , the Wald based positive-part 

Stein-like estimator shrinks each correlated RPL model estimator more towards the uncorrelated 

RPL estimator and lead to a smaller average relative loss compared to those of LR and LM based 

positive-part Stein-like estimators.   

 Figure 4.2 shows the results based on the estimated parameters variance which are similar to 

the results of the estimated parameters mean. For the pretest and positive-part Stein-like estimators 

based on the Wald test, the ratios of the positive-part Stein-like, pretest estimator MSE to the fully 

correlated RPL model estimator MSE become move further away from one when the correlation of 

the random coefficients increases to 0.8. It implies that even the uncorrelated RPL model is 

misspecified, the estimated parameters variance has smaller risk than that with using the fully 

correlated RPL model.  Figure 4.3 presents the results with estimated parameters covariance. The 

differences between the ratios of the pretest and Stein-rule estimators MSE to the fully correlated 

RPL model estimator MSE become larger than the previous two cases. As the same as the estimated 

parameters mean and variance, the ratios of the Stein-rule estimator with 2 ( 2)a J    are less than 
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those of the Stein-rule estimator with 2a J  . The average relative loss of the positive-part Stein-

like estimator is less than the average relative loss of the pretest estimator. Based on the results in 

Figure 4.3, it implies the risk of the estimated covariance using the correlated RPL model may even 

greater than that using the uncorrelated RPL model.  Figure 4.4 provides the results based on the 

whole uncorrelated and fully correlated RPL model estimators, 
1 11( , , , , , )u k kka a    and 

1 11 21 , 1( , , , , , , , , )f k kk k ka a a a     . 

 

Figure 4.2: The Ratios of LR, LM and Wald based Pretest, Shrinkage estimator MSE to the Fully 

Correlated RPL Model Estimator MSE (estimated variance of the coefficient distribution) 
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Figure 4.3: The Ratios of LR, LM and Wald based Pretest, Shrinkage Estimator MSE to the Fully 

Correlated RPL Model Estimator MSE (estimated parameters covariance) 
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According to all of these results, the positive-part Stein-like estimators outperform the pretest 

estimators in the fully correlated RPL model and the positive-part Stein-like estimator with 

greater shrinkage constant 2 ( 2)a J    providing smaller risk than the positive-part Stein-like 

estimator with 2a J  .  Both the positive-part Stein-like and pretest estimators have smaller 

risk than the fully correlated RPL model estimator. The Wald based pretest and positive-part 

Stein-like estimators have smaller average relative loss than those based on the LR and LM test 

statistics.  

 According to the central limit theorem, the average relative loss of estimated RPL model 

estimator is asymptotically normal distributed.  We construct a t-test for the average relative loss of 

the pretest and positive-part Stein-like estimators with the null hypothesis 
0 : 1H ARL   against 

the alternative hypothesis 
1 : 1H ARL   to test whether the mean squared error of the pretest and 

positive-part Stein-like estimators are significantly smaller than that of the fully correlated RPL 

model estimator.  The following shows how to construct the t-test for the average relative loss of 

the pretest and positive-part Stein-like estimators: 

(4.12) ( 1) / ( )t ARL se ARL   

and 

(4.13) ( )se ARL  of 2

1

ˆ ( ) / [( 1) ]
NSAM

i
i

RL ARL NSAM NSAM


      

(4.14) RL of 
4 4

2 2

1 1

ˆ ˆ ˆ( ) / ( )k k fk k
k k 

        

the ARL and the standard error of the ARL are calculated as in (4.13) and (4.14) respectively. If

1.645t   , the null hypothesis is rejected at 0.05 significance level and we can claim that the risk 

of the pretest and positive-part Stein-like estimators is significantly smaller than the risk of the 

fully correlated RPL model estimator.  
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Figure 4.4: The Ratios of LR, LM and Wald based pretest, Shrinkage Estimator MSE to the 

Fully Correlated RPL Model Estimator MSE 
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 Table 4.2 shows the results of the t-test of the average relative losses of the pretest and 

positive-part Stein-like estimators. From Table 4.2, we can see most of the average relative 

losses of the pretest and positive-part Stein-like estimators are significantly less than one at 0.01 

significance level.  Since the relative losses of the pretest are little bit larger than those of two 

positive-part Stein-like estimators, we also construct t-tests to test the null hypothesis 

Stein pretestAPL APL  against the alternative hypothesis Stein pretestAPL APL .  If * 1.645t   , we reject 

the null hypothesis at 0.05 significance level and claim that the average relative loss of the 

positive-part Stein-like estimators is significantly smaller than the average relative loss of the 

pretest estimators.  

(4.15)  * 2 2( ) / ( ) ( )Stein pretest Stein pretestt ARL ARL se ARL se ARL    

 From Table 4.3, we can see most of the results are significant. When the correlation of 

the random coefficients is 0.1, the average relative loss of the estimated parameters mean and 

variance using the positive-part Stein-like estimator with shrinkage constant 2a J  is not 

significantly smaller than that using the pretest estimator. However, the average relative loss of 

all the estimated parameters using the positive-part Stein-like estimator with shrinkage constant 

2a J  is significantly smaller than that with the pretest estimator at 0.10 significance level.  

When the correlation of the random coefficients is 0.1, the average relative loss of the estimated 

variance using the positive-part Stein-like estimator with shrinkage constant 2( 2)a J  is also 

only significantly smaller than that using the pretest estimator at 0.10 significance level. The 

results imply that when the random coefficients are weakly correlated, positive-part Stein-like 

estimators with bigger shrinkage constant will significantly reduce the risk compared to pretest 

estimators. Based on Table 4.2 and 4.3, we conclude that positive-part Stein-like estimators can 

significantly reduce the risk, using MSE as the risk function, than pretest estimators.   
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                            Table 4.2:   The t-test of the Average Relative Loss for the Pretest and Shrinkage Estimators 

 

 

  

 

     

                  ARL of ̂                 ARL of 2ˆ
ii                 ARL of ˆ

ij            ARL of 
2ˆ ˆ ˆ, ,ii ij    

    cov pretest shrinkage1 shrinkage2 pretest shrinkage1 shrinkage2 pretest shrinkage1 shrinkage2 pretest shrinkage1 shrinkage2 
 

0.0 0.731*** 0.495*** 0.303*** 0.672*** 0.389*** 0.189*** 0.714*** 0.300*** 0.056*** 0.676*** 0.381*** 0.176*** 

 
   (0.105)    (0.097)   (0.113)  (0.038)    (0.031)    (0.042)  (0.013)   (0.005)    (0.002)   (0.022)    (0.019)   (0.023) 

 

0.1 0.647*** 0.598*** 0.478*** 0.651*** 0.581*** 0.472*** 0.534*** 0.231*** 0.033*** 0.643*** 0.557*** 0.442*** 

 
    (0.050)      (0.036)      (0.052)    (0.083)       (0.065)       (0.086)     (0.014)      (0.008)       (0.007)      (0.053)       (0.041)      (0.055) 

             0.4 0.791** 0.557*** 0.373*** 0.687*** 0.498*** 0.345*** 0.638*** 0.331*** 0.116*** 0.683*** 0.483*** 0.324*** 

 

   (0.110)      (0.088)      (0.151)    (0.049)       (0.033)       (0.061)     (0.020)      (0.018)       (0.025)      (0.019)       (0.016)      (0.025) 

 

0.6 0.879** 0.613*** 0.443** 0.766*** 0.592*** 0.479*** 0.479*** 0.253*** 0.111*** 0.736*** 0.556*** 0.439*** 

 
   (0.120)       (0.080)       (0.255)     (0.061)       (0.031)       (0.069)     (0.019)     (0.016)       (0.024)      (0.018)       (0.014)      (0.024) 

             0.8 0.905*** 0.735*** 0.583*** 0.834*** 0.670*** 0.534*** 0.760*** 0.389*** 0.165*** 0.822*** 0.624*** 0.474*** 

 
   (0.002)      (0.014)      (0.041)     (0.005)       (0.008)       (0.019)      (0.003)      (0.007)       (0.016)      (0.004)       (0.006)      (0.012) 

             

                         Note: ***0.01 significance level, **0.05 significance level, * 0.10 significance level; the t-test statistic for the average relative loss of the pretest and shrinkage estimators 
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      Table 4.3: The t-test for the Difference of the Average Relative Loss between the Pretest and Shrinkage Estimators 

 

     

 

ARL of ̂  ARL of 
2ˆ
ii  ARL of ˆ

ij       ARL of 
2ˆ ˆ ˆ, ,ii ij    

     cov shrinkage1 shrinkage2 shrinkage1 shrinkage2 shrinkage1 shrinkage2 shrinkage1 shrinkage2 

   

0.0 0.495** 0.303*** 0.389*** 0.189*** 0.300*** 0.056*** 0.381*** 0.176*** 

  
 

    (0.097)   (0.113)   (0.031)   (0.042)   (0.005)   (0.002)   (0.019)   (0.023) 

   

0.1    0.598   0.478***   0.581    0.472* 0.231*** 0.033***   0.557* 0.442*** 

  
 

   (0.036)   (0.052)   (0.065)   (0.086)   (0.008)   (0.007)   (0.041)   (0.055) 

  

           0.4 0.557**   0.373** 0.498*** 0.345*** 0.331*** 0.116*** 0.483*** 0.324*** 

  
 

   (0.088)   (0.151)   (0.033)   (0.061)   (0.018)    (0.025)    (0.016)   (0.025) 

   

0.6 0.613**   0.443*   0.592* 0.479*** 0.253*** 0.111*** 0.556*** 0.439*** 

  
 

    (0.080)   (0.255)   (0.031)    (0.069)   (0.016)   (0.024)   (0.014)   (0.024) 

  

           0.8 0.735*** 0.583*** 0.670*** 0.534*** 0.389*** 0.165*** 0.624*** 0.474*** 

  
 

  (0.014)    (0.041)   (0.008)   (0.019)   (0.007)   (0.016)   (0.006)   (0.012) 

               

  Note: ***0.01 significance level, **0.05 significance level, * 0.10 significance level; the t-test statistic for difference  

between the average relative loss of the shrinkage and pretest estimators 
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Both of them significantly reduce the risk than the fully correlated RPL model estimator. In the 

next section, we compare the accuracy of the predicted choice with the pretest and positive-part 

Stein-like estimator using marketing consumer choice data. 

 

4.5 The Pretest and Stein-like Estimators with Marketing Consumer Choice 

Data 

4.5.1 Consumer Choice Data 

In this section we use marketing consumer choice data, which is a scanner panel data, to obtain 

the pretest, positive-part Stein-like, uncorrelated and fully correlated RPL model estimates and 

calculate the predicted choices with these four types of estimates. The original data are available 

from the University of Chicago’s Kilts Center. It was collected from nine stores across two 

markets over a 123-week period. The sorted data is kindly provided by Professor Danny 

Weathers, Marketing Department of Louisiana State University. Each household has a choice of 

four brands of 6.5-ounce cans of light tuna: StarKist-water, StarKist-oil, Chicken of the Sea-

water and Chicken of the Sea-oil. The explanatory variables are: choice-specific constants, BR1, 

BR2 and BR3 for the first three brands; NETPRICE, the actual price paid by households, which 

is the price of the canned tuna minus the coupon value, two dummy variables indicating whether 

the brand was on featured in sales papers or displayed in stores at the time of purchase; 

LOYALTY, a variable measuring brand loyalty suggested by Guadagni and Little (1983). 

 , 1 , 1(1 )ijt ij t ij tloyalty loyalty d       

where ijtloyalty presents the loyalty of household i  for brand j  on purchase occasion t ,   is the 

carryover parameter and it is between zero and one. , 1ij td   is equal to 1 if household i  purchased 

brand j  at occasion 1t  and 0 if otherwise.  
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 We select the households that made six purchases. The first five purchases of each 

household are used to estimate the parameters. The last purchase of each household is used to 

calculate the accuracy of the predicted choices based on the estimated parameters. The software 

NLOGIT 4.0 is used to conduct the LR test of testing the uncorrelated coefficients and estimate 

the uncorrelated and fully correlated RPL model estimates. Then we use Gauss to calculate the 

pretest, positive-part Stein-like estimates based on the LR test for uncorrelated coefficients. 

4.5.2 Empirical Results 

With the tuna fish data, the LR, LM and Wald statistics all reject the null hypothesis that the 

random coefficients are independent to each other.  Table 4.4 provides the fully correlated RPL 

model estimates. Most of them are significant at 1% level. The positive values of three 

alternative specific constants imply that the brand preference will increase the probability of 

purchasing the related brand relative to the base brand, which is Chicken of the Sea-oil. In the 

RPL model, the estimated means of random coefficients determine the sign of marginal effect of 

the related explanatory variables.  In our example, the estimated means of all the random 

coefficients have the expected signs. The estimated standard deviations of random coefficient 

distributions are all significant at 1% level. These imply that the coefficients of NETPRICE, 

FEATURE, DISPLAY and LOAYLTY do vary in population. The estimated mean and standard 

deviation of NETPRICE coefficient’s distribution imply that most of the households put negative 

value on the NETPRICE. The distribution of the coefficient of FEATURE has estimated mean of 

2.322 and estimated standard deviation of 1.733. It implies that making the brand featured is a 

positive factor for 91% of the households and a negative factor only for 9% of the households. 

Using the same way, we also can find that 64% of the households put a positive coefficient on 

DISPLAY and 36% of the households put negative coefficient on it. It tells us that making the 



104 

 

brand featured can more efficiently attract the households to buy the products than displaying the 

brand in stores.  

  Table 4.4: The Fully Correlated Random Parameters Logit Model 

Variable          Parameter      Estimate Std. Error 

BR1 Fixed coefficient    1.560*** 0.188 

BR2 Fixed coefficient    0 .758** 0.190 

BR3 Fixed coefficient    0 .811***  0.149 

 

NETPRICE Mean of coefficient  -19.380***  2.817 

 Std. dev. of coefficient    11.340*** 2.696 

 

FEATURE Mean of coefficient    2.322*** 0.416 

 Std. dev. of coefficient    1.733***  0.437 

 

DISPLAY Mean of coefficient    1.062***  0.544 

 Std. dev. of coefficient    3.029***  0.931 

 

LOYALTY Mean of coefficient    2.189***  0.193 

 Std. dev. of coefficient    1.582***  0.283 

Note: ***Significant at 0.01 level, **Significant at 0.05 level 

 

Table 4.5 shows the results of the pretest and positive-part Stein-like estimates calculated 

with using equation (4.6) and (4.7) based on the LR statistic. Since the LR test rejects the null 

hypothesis, the pretest estimate is equivalent to the fully correlated RPL model estimate. The 

values of positive-part Stein-like estimates with constant 2 ( 2)a J   , where 6J  , are smaller 

than those of the positive-part Stein-like estimates with constant ( 2)a J  and the pretest 

estimates. The pretest, positive-part Stein-like estimates and fully correlated RPL model estimate 

provide the same accuracy of the predicted choices 71%. Using the positive-part Stein-like 
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estimate with constant 2 ( 2)a J    improve the accuracy of the predicted choices by around 

2%. Even though there is not too much difference between the fully correlated RPL model 

estimate and the positive-part Stein-like estimates, the shrinkage estimation still can improve the 

accuracy of the predicted choices. It also implies that applying uncorrelated RPL model 

estimates may provide more slightly accurate predicted choices than using fully correlated RPL 

model estimates. However, it will not provide the correlation information of the random 

coefficients which is sometimes important for the policy-makers.  

Table 4.5: Parameter Estimates for the Fully Correlated Random Parameters Logit Model 

Variable Parameter Pretest  Stein1 Stein2 

 

BR1 Fixed coefficient 1.560 1.513 1.505 

BR2 Fixed coefficient 0.758 0.720 0.713 

BR3 Fixed coefficient 0.811 0.787 0.783 

 

                    NETPRICE   Mean of coefficient               -19.380          -18.744       -18.635 

 Std. dev. of coefficient 11.340 11.575 11.811 

 

FEATURE Mean of coefficient 2.322 2.182 2.158 

 Std. dev. of coefficient 1.733 1.573 1.414 

 

DISPLAY Mean of coefficient 1.062 1.043 1.039 

 Std. dev. of coefficient 3.029 2.922 2.815 

 

LOYALTY Mean of coefficient 2.189 2.224 2.231 

 Std. dev. of coefficient 1.582 1.576 1.569 

 

Accuracy of the Predicted Choices          0.714 0.714 0.732 

 

 Note: Stein1 with constant ( 2)a J   and Stein2 with constant 2( 2)a J   
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4.6 Conclusions 

According to our Monte Carlo experiment results, the uncorrelated RPL model estimators have 

smaller estimation risk than the fully correlated RPL model estimators. The positive-part Stein-

like estimators with higher constant a  outperform those with a smaller a  and it also 

outperformances the pretest estimators. The pretest and positive-part Stein-like estimators both 

perform better than the fully correlated RPL model estimators. With the marketing consumer 

choice data, the positive-part Stein-like estimator with larger constant a  improve the percentage 

of correct predicted choices by 2% compared to the results with pretest and fully correlated RPL 

model estimates. In our Monte Carlo experiments, the ratios of the MSE of estimated mean and 

standard deviation with the uncorrelated RPL model to those with the fully correlated RPL 

model close to one when the correlation between the random coefficients is closer to one. Using 

the shrinkage estimation can reduce the risk of the fully correlated RPL model estimator by 

shrinking the fully correlated RPL model estimate towards the uncorrelated RPL model estimate 

and improve the percentage of correct predicted choices.   
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CHAPTER 5 CONCLUSION 

As a generalization of the conditional logit model, the random parameters logit model does not 

impose the Independence from Irrelevant Alternatives (IIA) assumption and the unobserved 

factors of utility are not limited to the normal distribution and can be correlated over time. The 

random parameters logit model has become popular and is used in marketing, transportation, 

labor market and political science research. However, there are few studies analyzing the 

efficiency of the random parameters logit model estimators and testing the random parameters in 

the random parameters logit model.  

 This dissertation uses the quasi-Monte Carlo experiments to study the properties of the 

pretest and positive-part Stein-like estimators in the random parameters logit model. We explore 

the power of the likelihood ratio, Lagrange multiplier and Wald tests for testing the random 

parameters in the RPL model, using the conditional logit model as the restricted model. Even 

though the RPL model is a very flexible model, its disadvantage is that the related choice 

probability cannot be calculated exactly, because it involves a multi-dimensional integral which 

does not have closed form. The use of pseudo-random numbers to approximate the integral 

during the simulation requires a large number of draws and leads to long computational times. 

With pseudo-random numbers, to make the simulated log-likelihood function asymptotically 

equivalent to the log-likelihood function on the exact probabilities, the number of draws should 

rise faster than the square root of the sample size (Hajivassiliou and Ruud, 1994; McFadden and 

Train, 2000). To reduce the huge computational time, in our Monte Carlo experiments, the quasi-

random numbers generated by Halton sequences are used to replace the pseudo-random 

numbers.  To study the asymptotic properties of the maximum simulated likelihood estimator 

with using the quasi-random numbers, we vary the number Halton draws, the sample size and the 

number of random coefficients. We find that increases in the number of Halton draws influence 
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the efficiency of the random parameters logit model estimators only slightly. The maximum 

simulated likelihood estimator is consistent. These results are also true for the correlated random 

coefficients cases, since the correlated distribution can be transformed into independent ones by 

using Cholesky decomposition. Our results provide the guide of how to choose the Halton 

numbers in the random parameters logit model estimation.  

 In the third chapter, the pretest estimation in the random parameters logit model is 

constructed based on the likelihood ratio, Lagrange multiplier and Wald tests, using the 

conditional logit model as the restricted model. The poor risk properties of the LM-based pretest 

estimator make us to explore the power of the LR, LM and Wald tests for testing the random 

coefficients in the random parameters logit model. After calculating the empirical 90th and 95th 

percentile values of the LR, LM and Wald test statistic distributions, we examine rejection rates 

by using the empirical 90th and 95th percentile values as the critical values for 10% and 5% 

significance level. We find that the power of LR and Wald tests decreases with increases in the 

mean of the coefficient distribution. The results of power of these three tests are essentially 

consistent with the results of the related pretest estimation. The weak power of the LM test for 

the presence of the random coefficient is caused by the failure of taking into account the 

properties of the one-tailed alternative hypothesis. Even though the Kuhn-Tucker multiplier test 

adjusts the estimated Lagrange multipliers to make the test asymptotically equivalent to the LR 

and Wald tests, computing the Kuhn-Tucker multiplier test is complicated. This chapter raises 

the issue of how to testing the random coefficients in the random parameters logit model, 

especially when the number of the random coefficients is greater than three. Not just in the non-

linear case, this problem also happens in the linear model, such as how to test the individual and 

time effects in the random effect model. Since the dimension of the random coefficients can be 

high, testing the random coefficients becomes very difficult. However, with more and more 
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applications of the random parameters logit model, how to test the random coefficients become 

very important and will be our future research. 

 The last contribution of this dissertation is exploring the risk properties of the pretest and 

positive-part Stein-like estimators in the fully correlated random parameters logit model, using 

the mean squared error of estimation as the risk function. The positive-part Stein-like estimators 

with higher shrinkage constant a  outperform those with less shrinkage and the pretest 

estimators. The pretest and positive-part Stein-like estimators both perform better than the fully 

correlated RPL model estimators. The average relative losses of the pretest and shrinkage 

estimators compared to that of the fully correlated RPL model estimator are significantly less 

than one at 0.05 significance level. The average relative losses of the shrinkage estimators are 

significantly less than those of the pretest estimator at 0.05 significance level. Even though the 

positive-part Stein-like estimators improve the predictive probability only 2% in the marketing 

example we considered, it doesn’t mean that the positive-part Stein-like estimators will not 

improve the accuracy of predictive probability greatly with other data. It also confirm the 

statement of Hensher and Greene (2001) that the high quality data is required if the analyst want 

to take advantage of this advanced discrete choice model.   
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APPENDIX: THE DISCREPANCY OF HALTON SEQUENCES 

Based on the base- p number system, any positive integer n can be written as: 

2

1 2 1 0 0 1 2

M

M M Mn n n n n n n n p n p n p       

where [log ] [ln / ln ]n

pM n p  , square brackets denoting the integral part, p is base and can be 

any integer except 1, 
in is the digit at position i , 0 i M  , 0 1in p   . 

For each positive integer n , we can construct unique fraction by the radical inverse function. 

 1 2 1

0 1 2 0 1( ) 0. M

p M Mn n n n n n p n p n p        
 

To expand to k  fractions, setting 
1 2, , , kp p p to be prime to each other and 

1 2max( , , , )kn p p p , 

then we have: 

 
1 2

( ( ), ( ), , ( ))
kp p pn n n  

 

For each fraction ( )
ip n , 1 i k  , we have: 

 1

1 2 1

1,0 1,1 1,2 1, 1,0 1,1 1,( ) 0. M

p M Mn n n n n n p n p n p        
 

 2

1 2 1

2,0 2,1 2,2 2, 2,0 2,1 2,( ) 0. M

p M Mn n n n n n p n p n p        
 

   

 
1 2 1

,0 ,1 ,2 , ,0 ,1 ,( ) 0.
k

M

p k k k k M k k k Mn n n n n n p n p n p        
 

For an arbitrary positive fraction A , 0 1A  , which is supposed to be non-terminate, then A  is 

written as: 

0 1 20. MA a a a a  

If ( )p n A  , one of the following conditions must be satisfied: 

(1)  
0 0a n  

(2)  
0 0 1 1,a n a n   
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( M )  
0 0 1 1 2 2 1 1, , , ,M M M Ma n a n a n a n        

( 1M  ) 
0 0 1 1 1 1, , , ,M M M Ma n a n a n a n      

( 2M  ) 
0 0 1 1 1 1, , , ,M M M Ma n a n a n a n      

The above conditions can be rewritten in the form of congruence: 

(1)   
0 (mod )n n p , 

0 00 n a   

(2)  2

0 1 (mod )n a n p p  ,  
1 10 n a   

   

( M )  2 1

0 1 2 1 (mod )M M M

M Mn a a p a p n p p 

      , 
1 10 M Mn a    

( 1M  ) 1 1

0 1 1 (mod )M M M

M Mn a a p a p n p p 

     , 0 M Mn a   

( 2M  ) 1 2

0 1 1 (mod )M M M

M Mn a a p a p a p p 

     , 
M Mn a  

Lemma 1.1 The number of solutions of the congruence 

 (mod )x a m ,  1 x n   

is equal to  n m h ,where 1h  or 0h   

Based on the Lemma 1.1, the numbers of solutions of the above congruence are: 

(1)   0 ( )a n p   

(2)  
2

1( )a n p   
   

   

( M )  1( )
M

Ma n p
   
   

( 1M  ) 
1

( )
M

Ma n p
   

   
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( 2M  ) 
2

( )
M

n p
     

   

Where 0 1 , can take different value. 

So the total number of n  satisfying ( )p n A   is: 

  2 1

0 1( ) ( ) ( )M

Ma n p a n p a n p               

Theorem 1.1  (The Chinese Reminder Theorem CRT)  If 
1 2, , , nm m m are pairwise relatively 

prime and greater than 1, and 
1 2, , , na a a  are any integers, then there is a solution x  to the 

following simultaneous congruences: 

ix a (mod )im  

 If x and x are two solutions, then (mod )x x M , where 
1 2 nM m m m . 

Let ( )S A denote the number of integers n in the sequences 1,2, , N satisfying the following 

conditions simultaneous: 

1
( ) ,p n A 

2
( ) ,p n A  , ( )

kp n A   

Based on the Lemma 1.1 and Theorem 1.1,  

1 2

1 2

11 1

, 1
1 1 1 1

( ) ( )( )
k

i

i

k

MM M k
m

i m i
m m m i i

S A b N p
 


   

 
    

 
      

Where ln lni i
M N p  , 1 2i im M    and , ,i m i mb a , but when 2i im M  , , 1 1

ii mb   , square 

brackets denoting the integral part. 

Let V represent the volume of hyper-brick defined by the arbitrary point
1( , )kA A A , 0 1iA  (

1,2, ,i k ). Then 
1 2 kV A A A . 

Theorem 1.2 The k -dimensional Halton sequences 

 
1 2

( ( ), ( ), ( ))
kn p p pn n n    
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generated from base 
1 2, , , kp p p ,which are pairwise prime to each other and chosen from the 

first k  primes, 1,2, ,n N , where 
1 2max( , , , )kN p p p , have discrepancy 

 
(ln )k

N k

N
D C

N
  

Proof. 
[0,1)

sup ( )N
A

D S A N V


 

1 1 1

, 1 , 1 , 1
1 1 1 1 1 11 1 1 1

i i i

i i i

k k k

k k k k
m m m

i m i i m i i m i
m m m m m mi i i i

NV N a p N a p a N p
     

  

  
        

      
        

     
        

 

So 
1 2

1 2 1

11 1

, 1 , 1
1 1 1 1 11 1 1 1

( ) ( )( )
k

i i

i i

k k

MM M k k k k
m m

i m i i m i
m m m m mi i i i

S A NV b N p a N p
   



 
       

    
       

    
       

 

( )S A  represent the number of the points, which are generated by the k -dimensional Halton 

sequences of length N , falling in the hyper-brick defined by A .  If we increase V and keep 

( )S A unchanged, the discrepancy 
ND will increase.  

Since 

1

1

1 1 1

, 1
1 1 1 1

11

, 1 , 1
1 1 2 21 1 1 1

i

i

k

k

i i

i i

k k k

k k
m

i m i
m m i i

MM k k k k
m m

i m i i m i
m m m M m Mi i i i

a N p

a N p a N p

 



   

  
 

 
        

  
  
  

     
      

     

   

        

and  

1 1 1 1

, 1
2 2 2 21 1 1 1

( 1)i i

i

k k k k

k k k k
m m

i m i i i
m M m M m M m Mi i i i

a N p p N p
   

 


          

     
      

     
      

 

1
1 1 1 1

1
1 1i

i

k k k k
Mi

i i iM
i i i ii

p
N p p N p

p




   

          
            

         
   

 

We have: 

1 2

1 2

11 1

, 1
1 1 1 1 1 1 1

( )

( ) 1
k

i i i

i

k

MM M k k k k
m m M

i m i i i i
m m m i i i i i

S A NV

a N p N p p N p
 

 


      



          
              

          
       
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1 2

1 2

11 1

, 1
1 1 1 1 1 1 1

( ) 1
k

i i i

i

k

MM M k k k k
m m M

i m i i i i
m m m i i i i i

a N p N p p N p
 

 


      

        
           

        
       

 

Since 
1

0 1i i

k
m m

i i
i i

N p N p




   
     
   

   and 
1 1

0 1 1i

k k
M

i i
i i

p N p


 

    
       

    
   

Let . ,i m i mc a , except for , , 1
i ii M i Mc a  , then we have: 

 
1

1

11

, 1
1 1 1

( )
k

i

k

MM k

i m
m m i

S A NV c



  

 
   

 
    

Since, . ,i m i mc a  for 1 i im M  , and , , 1
i ii M i Mc a   , for 1,i im M   we can get:  

,0 1,
ii m ic p  

 

  for 1 i im M 

  

,0 ,
ii m ic p 

 

  for 1i im M 

  

And 

 
1

sup ( ) 1
k

i i i
A i

S A NV M p p


        

Since 
1 2max( , , , )kN p p p  and ln lni i

M N p  , then 1 ln lni i
M N p    and

 

  
1 1

2 1ln
sup ( ) ( 1) ln

ln ln

k k
k i

i i
A i ii i

pN
S A NV p p N

p p 

   
       

   
   

So 

1

2 1( ) (ln ) (ln )
sup

ln

k kk
i

N k
A i i

pS A N N
D V C

N N p N

 
    

 
  

The theorem is proved. 

Lemma 1.2 Let 2N N   and 
1 2max( , , , )kN p p p , under the assumption of Theorem 1.2, k -

dimensional Halton sequences 
1 2

( ( ), ( ), ( ))
kn p p pn n n      , where 1,2, ,n N has the 

discrepancy:
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2

(2ln )k

N k

N
D C

N
   

Proof  

 
1 2

1 2 1

11 1

, 1 , 1
1 1 1 1 11 1 1 1

( ) ( )( )
k

i i

i i

k k

LL L k k k k
l l

i l i i l i
l l l l li i i i

S A N V b N p a N p
   

 

 
       

    
         

    
         

 
1 2

1 2

11 1

, 1
1 1 1 1 1 1 1 1

( ) 1
k

i i i

i

k

LL L k k k k k
l l L

i l i i i i
l l l i i i i i

a N p N p p N p
 

  


       

          
               

          
         

 
1 2

1 2

11 1

, 1
1 1 1 1 1 1 1 1

( ) 1
k

i i i

i

k

LL L k k k k k
l l L

i m i i i i
l l l i i i i i

a N p N p p N p
 

  


       

        
              

        
         

 
1

1

11

, 1
1 1 1

k

i

k

LL k

i l
l l i

c



  

 
  

 
  

 

Where . ,i m i mc a  for 1 i il L  , and , , 1
i ii M i Mc a   , for 1i il L 

 

So  

  
1

sup ( ) 1
k

i i i
A i

S A N V L p p


      
 

Since 2N N 
1 2max( , , , )kN p p p  and ln lni i

L N p   , then ln ln ln lnii i
N p L N p         and 

  
2

1 1

2 1ln
sup ( ) ( 1) 2ln

ln ln

k k
k i

i i
A i ii i

pN
S A N V p p N

p p 

   
       

   
   

So we can get: 

 
2 2

1

2 1( ) (2ln ) (2ln )
sup

ln

k kk
i

N k
A i i

pS A N N
D V C

N N p N




 
    

  
  

The Lemma is proved.  
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