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ABSTRACT 

 

Forecasting electricity load is very important to the electric utilities as well as 

producers of power because accurate predictions can cut down costs by avoiding power 

shortages or surpluses. Of specific interest is the 24-hour daily electricity load profile, 

which provides insight into periods of high demand and periods where the use of 

electricity is at a minimum. Researchers have proposed many approaches to modeling 

electricity prices, real-time load, and day-ahead demand, with varying success. In this 

dissertation three new approaches to modeling and forecasting the 24-hour daily 

electricity load profiles are presented. The application of the proposed methods is 

illustrated using hourly electricity load data from the Atlantic City Electric (AE) zone, 

which is part of the Pennsylvania, New Jersey, and Maryland (PJM) electricity market.   

The first approach that is proposed can be used to make short-term forecasts of electricity 

load. This approach employs a hybrid technique utilizing autoregressive moving average 

method (ARMA) and cubic spline models. The second approach is suitable for obtaining 

long-term forecasts of the daily electricity load and employs cubic splines with time 

varying coefficients. These coefficients are modeled as a multivariate time series using a 

vector autoregressive model with exogenous variables to forecast the average daily 

electricity load profile for a future month. The last approach uses functional principal 

components to model the daily electricity load profile for each day as a linear 

combination of three eigenfunctions, with the coefficients of the day-specific linear 

combinations modeled as univariate time series using transfer functions.  The fitted 

models from the three approaches were applied to data from a subsequent year and the 

results show that these models perform quite well. 
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1. INRODUCTION 

 

 

The electricity load over a given time interval is defined the actual amount of 

electricity consumed, in megawatts, over that period in a specific geographic area. The 

geographic area is usually defined as the zone (region) covered by an Independent 

Transmission Systems Operator (ISO) or a Regional Transmission Systems Operator 

(RTO). The ISO’s and RTO’s are, in general, consortiums of electric utilities and 

producers, who buy and sell electricity for use in the region covered by these entities. In 

short, such consortiums act as an “electricity market” and the price of electricity is 

governed by production costs as well as the demand. The electricity load is sometimes 

referred to as the real-time load as opposed to electricity demand, which is the total 

amount of electricity that utilities in the market make bids for, hours or days ahead of the 

actual usage. Electricity load is the actual amount of electricity that is consumed and is 

driven by several factors such as consumer behavior as well as economic conditions and 

weather particular to that region at the time of use. Moreover, load varies across different 

hours of the day and different days of the week, thus making the electricity load a time 

varying quantity. For example, the hourly electricity load observed over several years 

would form a time series with segments of 24-hour daily profiles (also known as load 

curves) each of which is non-constant across the hours of the day. In addition, these daily 

profiles would change based on the day of the week. Additional seasonal patterns, that 

accommodate the evolution of winter daily profiles to those during summer, add more 

complexity to the time series. Effects of weather conditions, in particular temperature, 

complicate matters further. Thus, finding reliable models to forecast electricity load can 

be a challenging task. Such models are of practical importance to those in the public and 

private utility sectors as well as to traders in the electricity market. Currently there are 

nine electricity markets in the United States. They are: The California Independent 

System Operator – CAISO, The Midcontinent Independent System Operator – MISO, 

The Independent System Operator of New England – ISO-NE, The New York 

Independent System Operator – NYISO, The Northwest Electricity Market, The 

Pennsylvania-New Jersey-Maryland - PJM, The Southeast Electricity Market, The 
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Southwest Electricity Market, The Southwest Power Pool – SPP, and The Electric 

Reliability Council of Texas – ERCOT. Utilities and generators of electricity trade this 

commodity based on forecast of the load.  Therefore electric load modeling and 

forecasting has caught the interest of many researchers. 

 

 

 

Figure. 1.1 Electric Power Markets in the US1 

 

 

 There is a long history of research work aimed at developing hourly electricity 

load models. Many of the TRO’s and ISO’s as well as utility companies have tended to 

use multiple regression models with many weather related inputs for short-term 

predictions, but research has recently progressed to include more sophisticated 

approaches. For early classical work the reader is referred to Bunn and Farmer (1985) 

which summarized approaches that were used to make short-term forecasts of the load. 

An important reference that classifies different methods of load forecasting is Alfares and 

Nazeeruddin (2002). The authors classified the various approaches into nine classes 

                                                            
1 Federal Energy Regulatory Commission (DERC) website. http://www.ferc.gov/market-oversight/mkt-

electric/overview.asp 

http://www.ferc.gov/market-oversight/mkt-electric/overview.asp
http://www.ferc.gov/market-oversight/mkt-electric/overview.asp
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which are: (1) multiple regression, (2) exponential smoothing, (3) iterative reweighted 

least-squares, (4) adaptive load forecasting, (5) stochastic time series, (6) Autoregressive 

Moving Average models with exogenous inputs (ARMAX models) with the optimal 

model selectetion using the genetic algorithm, (7) fuzzy logic, (8) neural networks, and 

(9) expert systems. Alfares and Nazeeruddin also commented that while the pure time 

series approach is widely used, hybrid approaches, which combine several techniques, 

have become more common. For example, El-Keib et al. (1995) presented a hybrid 

approach where exponential smoothing was augmented with power spectrum analysis 

and adaptive autoregressive modeling. On the other hand, Dash, Liew, and Rahman 

(1995) utilized an expert system modeled fuzzy neural network and a hybrid neural 

network to forecast electricity load. Other publications that employed hybrid approaches 

are: Kim, Park, Hwang, and Kim (1995) Chow and Leung (1996), and Choueiki, Mount-

Campell, and Ahalt (1997). Alkhathami (2015) also discussed various forecasting 

methodologies for load forecasting. He also mentioned that the complex methods give 

more accurate results. The approaches presented in this dissertation can also be 

considered as the amalgamation of two or more methods as will be seen later.  

 In this introduction, we will limit our discussion to more recent publications that 

have some connection to the approaches that will be developed later. Research work that 

influenced our approach to electricity load modeling is the publication by Nowicka-

Zagrajek and Weron (2002), which proposed a two-steps procedure based on removing the 

trend and seasonal effects first and then fitting an autoregressive moving average (ARMA) 

model to the deseasonalized data to obtain day-ahead predictions. In contrast, Liu, Chen, 

and Harris (2006) developed a semi-parametric model for nonlinear time series data, with 

the model consisting of two components, namely a nonparametric component and 

parametric Autoregressive Integrated Moving Average (ARIMA) component, to forecast 

hourly electricity load.  A generalization of the logistic Smooth Transition Autoregressive 

(STAR) model for short term forecasting was developed by Amaral, Souza, and Stevenson 

(2008), which is a combination of periodic models with a smooth transition between the 

regimes. Dordonnat, Koopman, Ooms, Dessertaine, and Collet (2008) present periodic 

state space model with different equations and different parameters for each hour to for the 

forecasting of hourly electricity load. Four methods of forecasting were compared by 
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Kosiorowski (2014), which concluded that the moving functional median is the appropriate 

approach for functional time series that contain outliers and nonstationary functional time 

series. In comparison, the other three approaches, functional autoregressive, fully 

functional regression, and the method proposed by Hyndman & Shang (2011), work for 

stationarity functional time series, and the prediction of the Hyndman & Shang method 

was the best overall. Annamareddi, Gopinathan, and Dora (2013) proposed a hybrid model 

based on a wavelet transform technique and double exponential smoothing to forecast the 

electricity load. Another hybrid method for predicting the electricity load using Support 

Vector Regression (SVR) and Krill-Herd (KH) algorithm was proposed by Baziar and 

Kavousi-Fard (2015). The first step used training data, and the KH algorithm was used to 

optimize the SVR parameters. Consequently, in the second step, the optimized SVR was 

used to forecast the electricity load. 

 Two key publications in load forecasting that motivated the second modeling 

approach to be presented in this dissertation is by Harvey and Koopman (1993), which 

proposed time-varying splines to model intra-weekly load, and Cho, Goude, Brossat, and 

Yao (2013) which proposed a hybrid approach using generalized additive model and 

curve linear regression to model weekly and daily electricity load. In this paper, the idea 

of time varying spline coefficients proposed by Harvey and Koopman was adopted, but 

with several important differences from their proposed approach.  These differences are 

discussed in Section 3.5. The paper by Cho, Goude, Brossat, and Yao. (2013) used a 

generalized additive model to remove the trend and seasonal components from weekly 

data and then treated the residuals as a set of daily curves that are dependent on the 

previous days load curve or both the previous day’s load curve and the current day’s 

temperature curve. The authors then used a methodology related to functional canonical 

correlation analysis to reduce the modeling task to a univariate regression problem. The 

third approach proposed in this dissertation has some similarities with this model, but is 

relatively simpler to implement and uses functional principal component analysis to 

reduce the dimension of the problem. In addition, the method proposed in Cho et al. 

(2013) requires refitting of the model to obtain the load curve for a specific day of a 

given season. As the authors state, in order to forecast the load curve, say for 

“Wednesday, 2 April 2009,” one needs “all pairs of load curves on Tuesdays and 
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Wednesdays in April” in the training data set. The third approach proposed herein does 

not require such refitting, but is somewhat less flexible in modeling the seasonal variation 

in the shape of the load curve when compared to the methodology presented in Cho et al. 

(2013). It is however, a relatively simpler alternative that works well for short-term and 

long-term predictions, whereas the method given in Cho et al. (2013) is recommended 

only for making short-term (one-day-ahead) forecasts. 

 One of the new techniques that has been used in the last a few years is the 

functional principal component analysis (FPCA), which was adopted for the third 

approach presented in this dissertation.  There are a few studies that use the FPCA to 

forecast the electricity load or demand. Some examples are Hyndman and Shang (2009), 

Shang (2013), Kosiorowski (2014), and Cabrera and Schulz (2014).  Both Shang (2013) 

and Cabrera and Schulz (2014) worked on forecasting electricity demand and Shang’s 

work is closest to what is presented in this dissertation and the differences between what 

is adopted in this work and Shang’s work is discussed in Section 3.5. Cabrera and Schulz 

(2014) do not work directly on demand but on the generalized quantile function based on 

daily electricity demand and thus is not of direct interest. 

 Several authors compared the performance of different types of models and one of 

the earliest and most comprehensive comparisons was provided by Willis and Northcote-

Green (1984), which presents a comparison between fourteen methods used to forecast 

the electricity load, and concluded that the performance of the methods depends on the 

nature of the available data as well as several other factors. For example, the choice of a 

load forecasting method can be governed by computer resources that are available and 

the level of expertise of the users. Taylor and McSharry (2007) conducted an empirical 

comparison of some short-term forecasting methods. They used ten time series of 

intraday demand from ten European countries which were modeled using five different 

methods.  They showed that the double seasonal Holt-Winters exponential smoothing 

method performed best, followed by the principal component analysis (PCA) and the 

ARIMA approaches. On the other hand, a new alternative exponential smoothing method 

and the periodic autoregressive (PAR) model produced disappointing results. The similar 

results were obtained by Taylor (2008), which suggested that the double seasonal Holt-

Winters exponential smoothing method should be used for very short-term predictions, 
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such as ten to thirty minutes ahead. As pointed out previously, there is a distinction 

between electricity load and demand. Load (or real-time load) is the actual amount of 

electricity that was consumed over a given period (such as in one hour), whereas demand 

is the total amount of electricity that is traded at an electricity market for a given region 

for the same period in the next day. Even though demand and load are different 

quantities, approaches that are successful in modeling demand can also be successful in 

modeling real-time electricity load and vice-versa.   

 The electric utilities as well as electricity generators are interested in short term 

forecasting which includes forecasting a few minutes, hours, or days ahead. This is 

important for market organization reasons. Equally important is the long term forecasting 

of load from one year up to many years ahead. Commonly, regression models are used 

for modeling the short-term electricity demand; on the other hand, ARIMA is most 

commonly used model to forecast the long-term load. Many of the regression based 

models use several weather related variables, but such variables can also be utilized in 

other types of models are well. 

 The weather variables, mainly the temperature, have a significant effect on the 

electricity load and many publications used temperature in different forms such as 

minimum and maximum temperature, as wells as temperature and its quadratic term.  Other 

temperature derived variables utilized in modeling the load are heating and cooling degree 

days (HDD and CDD respectively). The most common definition of CDD is the maximum 

of {0, (Temperature in Fahrenheit – 65)} and that of HDD is the maximum of {0, (65 - 

Temperature in Fahrenheit)}. One of the papers that used several temperature derived 

variables is Valor, Meneu, and Caselles (2001). This paper employed the mean daily air 

temperature (in ᴼC) which was calculated as the arithmetic mean of the maximum and 

minimum daily temperature, and alternatively, the average of the 48 half-hourly values. 

Small differences were obtained between the two approaches. The temperature data were 

collected from four weather stations distributed across Spain, and weighted using the 

population in the weather station zones. The authors defined the temperature variable as 

𝑇𝐼𝑡 = ∑ �̅�𝑡𝑖𝑤𝑡𝑖
4
𝑖=1 , where �̅�𝑡𝑖 is the mean daily temperature on day t at weather station i, 

and 𝑤𝑡𝑖 is a population weight of the area assigned to each station, which is calculated as 

𝑤𝑡𝑖 =
𝑝𝑡𝑖

∑ 𝑝𝑡𝑖
4
𝑖=1

, where 𝑝𝑡𝑖 is the total population on day t assigned to weather station i.  The 
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authors also showed the presence of a significant trend related to demographic, social, and 

economic factors and incorporated seasonal factors such as holiday, weekly, and monthly 

effects into the model. 

 Momani (2013), using regression models, examined the relationship between the 

electricity demand and climate/non-climate factors, and showed that the consumption 

pattern is affected by demographic, technological, environmental, and national energy 

pricing. Cancelo, Espasa, and Grafe (2008) proposed two models for load forecasting, the 

short-term model based on weather and calendar data, and the long-term model based on 

population, gross state product (GSP), and price changes. Hor, Watson, and Majithia 

(2005) presented three basic models which proposed different parametrizations of 

temperature and humidity. Their three models included Gross Domestic Product (GDP), 

population growth, and some weather variables such as mean monthly wind speed, mean 

monthly sunshine hours, and monthly rainfall. In addition, they changed the temperature 

variables between the three models. In the first model, they included HDD, CDD, and 

enthalpy latent days (ELD)2, defined by 𝐸𝐿𝐷 =
1

21
∑ ∑ (𝛾ℎ)

21
ℎ=1 (𝑄 − 𝑄𝑏)

𝑁𝑑
𝑑=1  where Q is 

the hourly value of enthalpy (in kilojoules per kilogram) and 𝑄𝑏 is the enthalpy at the 

reference temperature of 25.6oC, 𝛾ℎ is indictor function that takes the value 1 if the hourly 

value of the temperature is above 25.6oC and a value 0 if the temperature is below this 

value or if 𝑄 − 𝑄𝑏 < 0. The second model included the monthly central England 

temperature (CET) and the mean monthly relative humidity. The third model included 

HDD, CDD, and the mean monthly relative humidity. The first and third models performed 

better than the second model. 

 In this dissertation, three approaches to building a load model were adopted, each 

targeting somewhat different goals. It was expected that some models will work better 

than the other models under certain conditions. The first approach was developed to 

capture the overall 24-hour electricity load profile specific for each season: Winter = 

{December, January, and February}, summer = {June, July, and August}, spring = 

{March, April, May} fall={September, October, and November}, and for weekdays and 

                                                            
2 Enthalpy Latent Days (ELD): An alternative metric for assessing the cooling load was established by the 
American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). The ELD accounts 
the possible humidity effects on air-conditioning demand.  
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weekends. This approach also accounted for the long-term trend due to economic factors 

and seasonal patterns in the total weakly load. In this method, the 24-hour load profile 

was captured through cubic splines, with data separated into seasons. The data was also 

separated into those from weekdays and those from weekends. Thus, each season and 

weekday/weekend combination had a separate model. A less flexible model that used 

dummy variables to separate effects due to weekdays and weekends was also built. The 

second approach to load modeling fitted cubic splines to the daily profile observed over 

each month and let the spline coefficients vary from month to month. The time series 

generated by the estimated spline coefficients were modeled using a Vector 

Autoregressive model with exogenous variables (VARX model). The VARX model 

contained lag variables to account for seasonality. The third approach employed 

functional principal components to model the daily profiles. The daily profile of each day 

was approximated as a linear combination of three eigenfunctions (Harmonics) and the 

associated coefficients of the linear combination (which are the eigencoefficients or 

scores) were modeled using transfer function time series. 

 The first two approaches to load modeling introduced herein were developed so as 

to provide the user with methodologies that are easy to implement with software that are 

widely available. The various steps used in each approach are based on regression and 

time series methodology that is easy to understand and implement by users who are not 

highly trained statisticians.  The third approach, while resorting to new functional 

principal component techniques that may be unfamiliar to some users of classical 

statistical methods, can be implemented using freely available open-source software. 

Even though it may be somewhat challenging to the average modeler of electricity load, 

the underlying steps are simple enough that given sufficient time for familiarization, the 

third approach will also provide an appealing alternative to those without a high level of 

training in statistics.  
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2. FACTORS AFFECTING ELECTRICITY LODA AND DATA 

 

 

2.1 THE FACTORS AFFECTING ELECTRICITY LOAD 

There are many factors that affect the electricity load, some in the short term and 

others in the long term. Fahad and Arbab (2014) described the impact of various factors 

on the short term load, and grouped those factors grouped into four categories, namely 

time, weather, economy, and random disturbances.  On the other hand, economic factors 

can also affect the load in the long term. Each of the broad categories these factors fall 

into are discussed in the following subsections. 

2.1.1 Economic Factors. Several economic and macroeconomic factors influence 

the long term electricity load and researchers have utilized these to obtain long term 

forecasts. For example, Bianco et al. (2009) developed different regression models to 

forecast annual electricity consumption in Italy using gross domestic product (GDP), 

gross domestic product per capita (GDP per capita) and population. Gross domestic 

product was also used as a regressor variable in Mohamed and Bodger (2005), which in 

addition employed average price of electricity and population as selected variables to 

forecast obtain long term forecasts of the load. 

Use of population figures as a predictor of electricity load seems obvious, because 

each individual in a population uses electricity to varying degrees but overall the total 

amount of electricity used is linked to the number of people living in the region under 

study. The price of electricity can also affect the load because higher prices would tend to 

depress per capita consumption of this commodity. On the other hand, the link between 

electricity load and gross domestic product may not be immediately apparent to a casual 

observer. The link between electricity load and gross domestic product is easily seen by 

examining Figure 2.1. It shows that the March 2013 New Jersey retail sales of electricity 

for commercial use is more than 50% of the retail sales for all sectors. Commercial 

electricity use is directly linked to industrial production and other such activities that 

contribute to gross domestic product, thus making GDP a predictor of electricity load. 



10 
 

 

Figure. 2.1 Retail Sales of Electricity to Ultimate Customers by end-use Sector 

for New Jersey, March 2013 

 

 

2.1.2 Time Related Factors. The changes in electricity load due to variations in 

human activity are time related. Such variations can be due to the 24-hour cycling 

between working, leisure, and sleeping periods. Other time related factors include day of 

the week, holidays, and seasonal changes in consumer behavior. Fig 2.2 gives the average 

load curve over 24 hours for January 2013 in the study area which covers South New 

Jersey. It shows that during weekdays there is a peak at 8:00 am when work usually 

starts, and a second peak at 7:00 pm when the most people are at home, cooking, using 

electronic devices such as Television. On the other hand, during weekends the first peak 

is at 10:00 am which is a shift of two hours compared with weekdays, but the second 

peak does not change. This may be because people get up at a later time on weekends and 

activities that consume electricity, such as cooking, are delayed.  During summer months, 

a slightly different pattern is observed. For July 2013, (Fig 2.3) we see that there is no big 

difference between weekdays and weekends, but the load curve is lowest at 6:00 am 

during weekdays, whereas during weekends this low point occurs at 8:00 am.  
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Figure. 2.2 The Average of a 24-hour of January Load Curve of Weekdays (blue solid) 

and Weekends (red dashed) 1993-2012 

 

 

 

Figure. 2.3 The Average of a 24-hour of July Load Curve of Weekdays (blue solid) 

and Weekends (red dashed) 1993-2012 
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2.1.3 Weather Related Factors. The weather variables, such as temperature, 

humidity, precipitation, and wind speed, have a significant place in electricity load 

forecasting. Out of these factors, the temperature plays a major role in load forecasting. 

Valor et al. (2001) discussed the relationship between electricity load and daily air 

temperature, but used heating and cooling degree days instead temperature because of the 

nonlinear relationship between load and temperature. Fig 2.4 shows quadratic 

relationship between hourly load and hourly temperature, and the inflection point of the 

curve is around 60 F . This temperature is normally encountered during spring and fall 

months which are traditionally termed “shoulder” months by those engaged in load 

modeling. In addition, we can observe that the load peaks coincide with high temperature, 

and that occurs during summer months. Fig 2.5 shows clearly the almost synchronous 

movement of load and temperature (plotted using with different scales) for the summer 

month of July 2013.  Such a highly linked relationship between hourly temperature and 

load is not seen during winter months as seen in Figure 2.6. 

 

 

 

Figure. 2.4 The Relationship between the Hourly Load and Hourly Temperature 

– South New Jersey 1993-2012 
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Figure. 2.5 The Average of 24-hour Load Curves (blue solid) 

and the Temperature (red doted) Jul. 2013 

 

 

 

Figure. 2.6 The Average of 24-hour Load Curves (blue solid) 

and the Temperature (red doted) Jan. 2013 
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2.1.4 The Electricity Load Curve over Different Regions. The 24-hour 

electricity load curve differs from region to region. The main reason for this difference 

are the weather variables, mainly temperature. Fig 2.7 shows the average of the 24-hour 

electricity load curve for three different regions, which are Atlantic City Electric zone 

(AECO or AE3), which is the study area, Pennsylvania Electric Company (PENELEC or 

PN4), and the south zone of the Electric Reliability Council of Taxes (ERCOT5).  

 

 

 

Figure. 2.7 The Average of 24-hour Load Curves from Mar. 2013  

for AE (blue), PN (red), and the South of ERCOT (green) 

 

 

 

                                                            
3 Atlantic City Electric, a subsidiary of Pepco Holdings, Inc. (PHI), delivers safe, reliable and affordable 

electric service to more than 545,000 customers in southern New Jersey. 
4 Pennsylvania Electric Company, is one of 10 electric utility operating companies in FirstEnergy Corp which 

is one of the nation’s largest investor-owned systems, based on 6 million customers served within a 65,000 

squared-mile area. 
5 Electric Reliability Council of Taxes (ERCOT), manages the flow of electric power to 24 million Taxes 

customers which connects more than 43,000 miles of transmission lines and 550 generation units. 
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2.2 DATA SOURCES 

The historical load dataset was obtained from the Pennsylvania-New Jersey-

Maryland RTO website (PJM6). The PJM market is the world’s largest wholesale 

electricity market and serves all parts of Delaware, Illinois, Indiana, Kentucky, Maryland, 

Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West 

Virginia, and the District of Columbia (see Figure 2.8). The data used in this dissertation 

cover a sub region of PJM, namely the Atlantic City Electric zone (AE) in southern New 

Jersey which is shown in Fig 2.9. This dataset includes hourly observations measured in 

megawatts (MW) over 20 years from January 1, 1993 through December 31, 2012 as 

shown in Fig 2.10. This data were used for modeling purposes (i.e. as training data), and 

the data from January 1, 2013 through December 31, 2013, shown in Fig 2.11, were used 

for the computing forecasting error (i.e. as test data). The economic data was obtained 

from Federal Reserve Bank of St. Louis7. Moreover, the weather data was obtained from 

the National Oceanic Atmospheric Administration (NOAA8) based on four weather 

stations in different locations of the study area. These stations are located in Atlantic 

City, Millville, Mount Holly, and Wildwood. The temperature data used in this study 

were computed as weighted average of the individual station data, with sub-area 

populations used as weights. 

The specific economic variables used in this study are: industrial production index 

in the US (IPI) which is an economic indicator that measures the amount of the output 

from manufacturing, mining, electric and gas industries; government employment in New 

Jersey (NJGOVTN), which is defined as the total body of employees in all government 

agencies apart from the military; home vacancy rate in New Jersey (NJHVAC), which is 

defined as the percentage of all available units in a rental property that are vacant or 

unoccupied at a particular time. 

                                                            
6 PJM Interconnection is a regional transmission organization (RTO) that coordinates the movement of 

wholesale electricity in all or parts of 13 states and the District of Columbia, an area that includes more than 

51 million people. 
7 The Federal Reserve Bank of St. Louis was established in 1914, after the creation of the Federal Reserve 

System in 1913. The Eighth Federal Reserve District is headquartered in St. Louis and has branches in Little 

Rock, AR., Louisville, KY., and Memphis, TN. 
8 The National Oceanic and Atmospheric Administration (NOAA) is an American scientific agency within 

the United States Department of Commerce focused on the conditions of the oceans and the atmosphere. 

NOAA warns of dangerous weather, charts seas and skies, guides the use and protection of ocean and coastal 

resources, and conducts research to improve understanding and stewardship of the environment. 

https://www.stlouisfed.org/about-us/resources/federal-reserve-system
https://www.stlouisfed.org/about-us/resources/federal-reserve-system
https://www.stlouisfed.org/little-rock
https://www.stlouisfed.org/little-rock
https://www.stlouisfed.org/louisville
https://www.stlouisfed.org/memphis
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States_Department_of_Commerce
https://en.wikipedia.org/wiki/Oceans
https://en.wikipedia.org/wiki/Earth%27s_atmosphere
https://en.wikipedia.org/wiki/Weather
https://en.wikipedia.org/wiki/Environment_%28biophysical%29
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Figure. 2.8 Map of PJM Regional Transmission Organization9 

 

 

 

                                                            
9 PJM website. https://www.pjm.com/~/media/about-pjm/pjm-zones.ashx 

https://www.pjm.com/~/media/about-pjm/pjm-zones.ashx
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Figure. 2.9 Map Service of Atlantic City Electric (AE) – Study Area10 

 

 

 

Figure. 2.10 The Hourly Load of AE over 20 Years 1993 – 2012 

                                                            
10 Atlantic City Electric (AE) website. http://www.atlanticcityelectric.com/connect-with-us/doing-business-
with-us/builders-and-inspectors/resources/service-area-map/  

http://www.atlanticcityelectric.com/connect-with-us/doing-business-with-us/builders-and-inspectors/resources/service-area-map/
http://www.atlanticcityelectric.com/connect-with-us/doing-business-with-us/builders-and-inspectors/resources/service-area-map/
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Figure. 2.11 The Hourly Load of AE in 2013 
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3. METHODOLOGY AND RELATED STATISTICAL TOOLS 

 

 

A brief overview of the main statistical curve fitting approaches used in this 

research is given in this chapter. In total three approaches were used. The first approach 

to modeling electricity load utilizes a variation of cubic splines and hourly temperature to 

model hourly electricity load for weekdays and weekends in a given season. Model 

parameters were estimated for the mean load curve separately for weekdays and weekend 

days within each season. This approach can be considered suitable for short term 

prediction (because of the need to have good estimates of hourly temperature) and will be 

termed the short-term approach. The second approach fitted a separate spline model for 

each month across the 20-year time period over which the training data set was observed. 

The number of knots and the position of knots remained unchanged from month to month 

but the spline coefficients were allowed to vary over time. The resulting spline coefficient 

estimates were then modeled using a vector autoregressive model with temperature and 

its square as exogenous variables. The forecast values of these spline coefficients were 

then used to construct load profiles for future days. This approach is suitable for long-

term forecasting (because only monthly temperature is needed and predictions are for the 

average load curve for a given month) and will be termed the long-term approach. The 

third approach employed functional principal component analysis (FPCA) to model the 

load profile for each day.  The last approach will be termed the FPCA approach. 

A brief over view of the statistical tools used in building models for each of the 

three approaches is given prior to describing the three main approaches taken to model 

the daily profile of electricity load.  These include a short introduction to spline modeling 

and functional principal component analysis. 

 

3.1 SPLINE MODELS 

 A spline model is a piece-wise defined function where the individual segments are 

connected using continuity and smoothness restrictions. They are useful in describing the 

relationship between a response variable and one or more independent variables when the 

relationship requires a flexible model.  Usually the segments of a spline function are low 
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order polynomials and the polynomial segments connect at a set of finite points known as 

knots.  There are several types of spline functions and in order to provide a more formal 

introduction, the following notation is introduced. To make the explanations simpler, 

only the case where there is a single independent variable is considered. 

 Let X and Y be jointly distributed random variables such that  

 

 | ( )E Y X x f x          (1) 

 

where Y is the dependent variable and X is the independent variable, in the regression 

sense. The task is to estimate the function f based on observed data 

( , ),  1,  2, , .i ix y i n  Suppose that the observed data indicate that simple forms such as 

linear and quadratic functions would not fit the data well and using a high-order 

polynomial does not necessarily provide a better fit and pose challenges in interpreting 

the coefficients of the large number of polynomial terms. As an alternative approach, one 

can segment the domain  ,  ba   of the function f into k + 1 segments  1,  i i i    i=1, 

…, k+1, where 0 a  , 1k b    and defined the piece-wise function 

 

    

1

1

( ) ( ) ( )
k

i

i
i

f x g x I x



     (2) 

 

where ig  is a function defined on i  for i=1, 2, …, k+1, and the 
iKI  are indicator 

functions that takes the value of one when the argument is in i  and zero otherwise, for 

i=1, 2, …, k+1. The points i , i=1, 2, …, k are called knots. Knots can be pre-specified 

prior to estimating the function f or let that data determine their positions. 

 To ensure the continuity of  f, the conditions 1( ) ( )i i i ig g   for i=1, 2, …, k. are 

imposed. In general, smoothness conditions are also imposed by letting one or more 

derivatives of the functions ig  match at the knots. Usually, the segment functions ig  are 
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selected to be low order polynomials and one of the commonly used are cubic 

polynomials. One reason given for this is that the human eye cannot detect discontinuity 

in the third derivative (Azzalini and Scarpa, 2012). 

3.1.1 Cubic Splines. In cubic splines, each of the functions ig  takes the form  

 

  2 3   for  1,2, , 1i i i i ig x a b x c x d x i k      .    (3) 

 

In the cubic spline setting, in addition to the continuity conditions 1( ) ( )i i i ig g   for 

i=1, 2, … , k., the following conditions are imposed on the functions ig  given in 

Equation (2):  

 

( ) ( )

1( ) ( )  for  1,2 and 1,2, , 1m m

i i i ig g m i k        (4) 

 

where 
( )m

ig  denotes the thm  derivative of the function ig . These are called natural or 

simple boundary conditions. The above conditions reduce the spline function given in 

Equation (3.1.1) to the following: 

 

2 3 3

1

( ) ( )
k

i i

i

f x a bx cx dx e x  



          (5) 

 

where [0, ) ( )x xI x  . In other words, the function f is expressed as a linear combination 

of the basis functions 
2 3 3

1 2 3 4 5 1( ) 1,  ( ) ,  ( ) ,  ( ) ,  ( ) ( )u x u x x u x x u x x u x x        , . . ., 

3

4( )k ku x   . 

Thus, if the number of segments k=4, there will be eight basis functions, one each for 

zero, first, second, and third powers of x, and functions of the form 
3( )ix   for the last 

k=4 segments of the interval [a, b]. In general for cubic splines the number of basis 

functions, called the degrees of freedom,  equals four degrees of freedom for each 
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segment of the interval [a, b] minus the number of constraints. So when k=4, the interval 

is divided into 5 segments, resulting in 20 degrees of freedom, but then there are 4 

continuity restrictions and 8 restrictions equating first and second derivatives at each 

knot, yielding a net degrees of freedom of 8.  If the second derivative restriction is 

removed, as was done in some parts of the analysis, the number of basis functions 

increases to 12. 

 An attractive feature of the cubic splines is that the coefficients a, b, c, d, and ie  

in Equation (3.1.2) can be estimated using least squares. These spline functions with 

fixed degrees of freedom are sometimes called regression splines. Another special type 

of cubic spline is the natural cubic splines. Natural cubic splines have the extra condition 

that 

 

    
( ) ( )

1 1( ) ( ) 0  for  2,m m

kg a g b m    

 

which is the same as saying that the function is linear beyond the region [a, b]. This is 

important if one is to avoid erratic behavior at the margins of the observed data. The 

above conditions can be part of the simple conditions mentioned earlier. If in addition 

( ) ( )

1 1( ) ( ) 0m m

kg a g b   for m=1, then we have what is termed as the clamped boundary 

conditions. This terminology arises out of the connection between a cubic spline and the 

shape taken by a thin flexible beam of wood with constant flexural stiffness when it is 

constrained to pass through points that corresponds to the knots in the cubic spline 

(Dancose and Angeles, 1990). 

 In this thesis, the daily profile of the hourly electricity load was modeled using 

cubic splines with the continuity restrictions and the first derivative restriction  

(1) (1)

1( ) ( )i i i ig g   for i=1, 2, …, k+1, but without the second derivative restriction

(2) (2)

1( ) ( ).i i i ig g    The lack of the second derivative restriction introduces more 

roughness into the model but allows the spline to better fit the data.  

3.1.2 Smoothing Splines. Another type of a spline model that is extensively used 

is the smoothing spline. Smoothing splines come closes to the observed data points from 
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among all functions that satisfy a pre-specified “smoothness” criterion. Specifically, 

given a set of data ( , ),i ix y i = 1, 2, …, n, a smoothing spline is the function f that satisfies: 

 

 
 ( 2)

2 2
(2)

1: [ , ] ;
( ) ( ) ,

n b

i i
a

if h a b h exists
y f x f u du

Min


 

  
    

  
     (6) 

 

for some fixed  . The quantity 
2

(2) ( )
b

a
f u du    is called the roughness penalty and 

is called the smoothing parameter. Larger values of    produces functions that are 

smoother than those for smaller values of  . The value of   may be optimized using 

the mean squared error obtained from fitting the estimated function to an independent 

data set.  

 An interesting result that connects smoothing splines to the natural cubic splines 

is given by the following theorem. 

Theorem 3.2.1: Let f satisfy the minimization criteria given in (6). Then f is a natural 

cubic spline with knots at every unique value in the set  ; 1,  2, , .ix i n   

Proof: See Wang (2011, p. 6) for an outline. 

 While smoothing splines could have been used in modeling the electricity load 

data, the cubic spline with a relaxed smoothness criterion was employed in this study 

because of the ease of estimating the coefficients using standard regression software. 

When modeling the hourly electricity load data, the domain of the spline function f is the 

interval [0, 24], representing the 24-hour period that defines each day. Letting t denote 

the day and x denote a time point in [0, 24], ( )tf x  will represent the expected value of 

the average electricity load for the hour ending at time x during day t. If ( )t iy x  denotes 

the observed electricity load at time ix  on day t, it is assumed that 

 

, ,( ) ( )t i t i t i t iy x y f x          (7) 
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where 
2

, independent (0, ) for 1,  2, , t i i t N    and 1, 2, , 24.i   Also note that the 

data set used in this study reports the average electricity load for the hour ending at time 

ix = 1, 2, …, 24. 

 

3.2 VECTOR AUTOREGRESSIVE MODEL WITH EXOGENOUS VARIABLES 

      (VARX) 

The Vector Autoregressive formulation (VAR) is a natural extension of the 

univariate autoregressive representation and is commonly used to model multivariate 

time series. An extension of the VAR model is the Vector Autoregressive Model with 

Exogenous Variables (VARX) formulation that allows one or more exogenous regressor 

variables to enter into the model.   The structure of the VARX model allows a linear 

function of past lags of the time series and past lags of the other variables to explain the 

current value of the time series. The Vector Autoregressive model with exogenous 

variable VARX( , )p s  is written as: 

 

*

1 0

,
p s

t i t i i t i t

i i

y y x  

 

           (8) 

 

where,  
'

1 , , ,  =1, 2, ,  t t kty y y t N , denote a k-dimensional time series, whose 

components are univariate time series of interest,  
'

1 , ,t t rtx x x  is an r-dimensional 

vector time series of exogenous variables,  
'

1 , ,t t kt    is a vector white noise 

process such that    '0 and t t tE E      is a finite positive definite matrix, 

 ' 0 for ,t sE t s       is a k k  matrix, and 
*

i  is a k r   matrix. Note that   in 

Equation (8) denote an intercept vector. 

For example, a (1,0)VARX  model for a 3-dimensional time series with two input 

variables is 

*

1 1 0 ,t t t ty y x         (9) 
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where,  
'

1 2 3, ,t t t ty y y y  and  
'

1 2, .t t tx x x  

The parameters of a VAR model are estimated using the maximum likelihood estimation 

(MLE) method. The likelihood function is determined using the Kalman filtering 

approach that provides a state-space formulation of the model.  In the VARX case, 

however, this approach produces a very large state-space model and hence the parameters 

of the VARX model are estimated using a two-step procedure. First the deterministic 

portion of the model that contains the constant term, any linear and quadratic trend 

components, seasonal dummies if present, and the coefficients of the exogenous 

variables, are estimated. Then fixing these parameters at the estimated value, the rest of 

the parameters are determined using the MLE method. 

3.2.1 Prediction Intervals for VARX Forecasts. The VARX model was 

employed in this work to obtain forecasts of spline coefficients that could then be used to 

construct the 24-hour load profile for a future day. In addition to point predictions, 

simultaneous forecast intervals were also obtained for the average load at each hour of 

future months. That is, assuming that the estimation was done over M observed months, 

simultaneous prediction intervals were obtained for the average load ,M h iY   for each of 

the hours 1,  2, , 24,i   for the future month M+h, h = 1, 2, …, 12. Note that what is 

referred to as the average load for a give hour is the load for that hour averaged over all 

days of that month.  

If there are d basis functions used in modeling the 24-hour load curve, then there 

are d estimated coefficients of the spline function. Also assume that the spline function 

has k knots and that only the equality of the first derivative at the knots is imposed.  Then 

a set of  1 100%  simultaneous confidence intervals about each ,M h iY  , using 

Scheffe’s method is given by: 

 

   , 1 ; ,
,n h m M h ed n d

Y d F s x V x s
  

       (10) 
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where,        
2 2 3 32 3

1 11,  ,  , , , , , , , ,k kx i i i i i i i   
     

 
 es  is the estimated 

standard deviation of the terms ,
ˆ ( )m i mY f i , m = 1, 2, …, M, i=1, 2, …, 24, and

M hV 
  

denotes the estimated variance-covariance matrix of the forecast coefficient vector. 

 

3.3 TRANSFER FUNCTION MODELS 

 A transfer function model is a statistical model that describes the behavior of a 

time series as a function of its past values as well as one or more independent variables 

and their lags. Whereas the ARIMA model is purely a univariate time series model, 

transfer function model deals with more than one time series.  

 The simple transfer function model is 

 

 
 

 

 

 
,

b

t t t t t

B B B
Y B X E X
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         (11) 

 

1,2, , ,t N  where   is a constant,   2

0 1 2

s

sB B B B          and 

  11 r

rB B B       are finite-order polynomial in B with degree s and r, and 

0 0  . Obviously,  B  and  B  are assumed to have no common factors. Also, 

  11 q

qB B B      ,   11 p

pB B B       are polynomial in B of degree q 

and p respectively, and  t is a sequence of independent and identically distributed 

random variables with mean zero and variance 2    20,t iid  . Usually t  is 

assume to be normal. The parameter b is called the time delay (or dead time) of the 

system; when 0b   the transfer function model is useful for predicting the turning points 

of tY    given those of tX . A transfer function model can have more than one input 

variables. For example such a model with two input variables is  given by 

 

 

 

 

 

 

 

1 2

1 2

1 2

1 2

.

b b

t t t t

B B B B B
Y X X

B B B

  
 

  
       (12) 



27 
 

 The above type of formulation was used in this research to model the 

eigencoefficients or scores that are generated by FPCA of the 24-hour load curve for each 

day of the 20 year observation period.   

 

3.4 FUNCTIONAL DATA ANALYSIS (FDA) 

 Functional data, that are usually high-dimensional data, can be observed in 

different fields and in many forms. Usually, functional data arises when repeated 

measurements are taken over a given domain. The functional data analysis is a set of 

modern techniques that allow you to perform statistical analysis on set of curves or 

multidimensional shapes. The main benefit of FDA is that we look at the functional data 

as a whole, and it does not require us to select a single dependent variable for study. We 

can use functional versions of common analysis methods (e.g. PCA, ANOVA) 

3.4.1 Functional Principal Component Analysis (FPCA). The principal 

component analysis (PCA) is a statistical technique that utilizes the variation in a 

multivariate dataset to identify a set of orthogonal linear combinations of the original 

variables that can be arrange in the order of the amount of total variation they explain as a 

percentage to the total variation explained by all the variables. This allows one to pick 

only a few of the linear combinations, which are called principal components, that 

explain a significant amount of variation in the data, thus reducing the dimension of the 

problem. Therefore, PCA is used often as a dimension reduction technique. That is, PCA 

allows one to reduce the number of dimension without loss much information. The first 

principal component explains the largest amount of the variance. The second explains the 

nest largest and so on.  

The idea of extension of the PCA to functional principal component analysis 

(FPCA) is a natural one. In FPCA, the data vectors are replaced by functions, and scalar 

products in vector space by scalar products in 2L  space. The first step in the FPCA is to 

use observed values of a function taken at discrete points in its domain to obtain a smooth 

function, using B-splines or some such smoothing technique.  Then the smoothed 

function is utilized to carry out the FPCA. To illustrate the FPCS methodology, assume 

that the observed data points ,( ,  ),  =1, 2, , ,  1, 2, , i t ix y i n t N  represent the 
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electricity loads, ,t iy , at time points ix  observed each hour i of day t. Assume that this 

data are generated by an underlying function  tf  which is the realization  of a stochastic 

process.  It is assumed that the observed data obeys the following relationship: 

 

  ,( ) ( ) ,   1,  2, ... , ,i t i t i t iy f x x t N        (13) 

 

where the ,t i  are independent identically distributed random variables with zero mean 

and unit variance and ( ) 't ix s  are multiplicative factors that enable the noise 

components ,( )t i t ix  to have different variances across t and i. The smoothed functions, 

say tS , obtained for each day t using B-splines or some other technique,  is assumed to be 

“close” to the respective functions .tf  Given a realization  tf  of a random function 

defined over a compact domain  0,   , we can write 

 

   ,

1

( ) ( ) ,    for 0,  t t k k

k

f x x x x   




             (14) 

 

where   is the population mean function, ,t k  is the kth principal component score, and 

k  is the kth functional principal component (Shang 2013). Note that in the context of 

load curve modeling, 24.   Similar to the dimension reduction performed in regular 

PCA, the first few functional principal components that explain a major portion of the 

total variation can be selected. Assuming that K components are selected, one can write, 

 

       ,

1

 for  1,2, , ,
K

t t k k t

k

f x x x e x t N  


      (15) 
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where 𝜇(𝑥) is the mean function estimated by    
1

1 N

t

t

x S x
N




  ,  1, , K   is the set 

of the first K functional principal components,  ,1 ,, ,t t K   is the set of uncorrelated 

principal component scores for day t,  te x  is the residual function with mean zero, and K  

the number of functional principal components used (K should be less than the number of 

nonzero eigenvalues of the (empirical) covariance operator). In this dissertation K = 3 

(number of hours per day) and N = 7302 (number of days in twenty years). 

3.4.1.1 Prediction from FPCA. The forecasting of h-step-ahead function N hf   is 

achieve through forecasting the principal component scores ,t K  for 1, ,k K  and 

1, ,t N N h    . The forecast of the electricity load at time x is given by (as shown in 

Hyndman and Shahid Ullah, 2007) 

 

       | | ,

1

| , ,
K

N h T N h T kN h k

k

Y x E Y x I x x   



         (16) 

 

where     1 , ,i N iI Y x X x  is the past curves,     1 , , Kt t    the fixed 

functional principal components, and | ,N h N k   denotes the h-step-ahead forecast of ,t k  

using univariate time series (transfer function model in this dissertation). 

3.4.1.2 Prediction intervals from FPCA. To build a prediction interval of the 

step-ahead value  |N h NX t , we need to find the forecast variance. Since the functional 

principal components and the error term are orthogonal (and each component is 

orthogonal to the other components), the overall forecast variance can be approximated 

by the simple sum of component variances, and it is given by 

 

         
2 2

2

| ,

1

| , ,
K

kN h N h N k N h

k

Var Y x I x u x x x     



              (17) 
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where  
2

x  the variance of the mean function which can be obtained from the 

smoothing method used, | ,N h N ku   is the variance of the thk  principal component scores, 

obtained from the time series model, which defines as  | , , 1, ,| , ,N h N k N h k k N ku Var    

,  
2

k x  is the variance of the thk  functional principal component,  x  is the variance of 

the model error which is estimated by averaging  
2

te x  for each x, and  2

N h x   is the 

variance or the observational error Hyndman and Shahid Ullah (2007). 

 The  100 1 %   point-wise prediction interval of  N hY x  is given as 

 

   | | , ,N h N N hY x Z Var Y x I         (18) 

 

where Z  is the  1 2   standard normal quantile, and assuming the various source of 

error are all normally distributed. 

 

3.5 A BRIEF DESCRIPTION OF THE THREE MODELING APPROACHES 

 A description of the three approaches used to model the daily electricity load 

profile is given in the following. Results of implementing these approaches are given in 

Chapter 4. 

3.5.1 Short-Term Approach. The first approach to modeling electricity load is 

suitable for short term forecasting and uses cubic splines to model the daily (24-hour) 

electricity use profile. The data set was separated into subsets, each representing one of 

the four seasons, namely winter, spring, summer, and fall. These subsets were further 

divided into data corresponding to weekdays and data corresponding to weekends. The 

hourly load data were modeled separately for each season by type of day combination, 

only after removal of the long term trend and the seasonal component.  

 The long-term trend was removed by first computing the hourly electricity load 

averaged over each of the 20 years in the training data set, and then using regression 

analysis to estimate the trend as a function of population and economic variables. The 

seasonal effects were then estimated from de-trended weekly data using a seasonal time 
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series approach. Details of the way the trend and seasonal variation was removed from 

the hourly data are given in Chapter 4. 

 An important point that should be stressed is that the removal of the seasonal 

variation only eliminated the effect of seasons on the overall average load level for a 

given season. It did not eliminate the differences in the shape of the daily load profiles 

across seasons. Each season potentially would still exhibit different load profiles. 

 Once the trend and the seasonal patterns in the load levels were removed from the 

hourly data, spline modeling was carried out. Each season by type of day combination 

employed the same number of knots but at different positions. Each of the above load 

models depend on temperature and since forecasts of temperature may not be reliable in 

the medium and long-term, these models are more appropriate for short term forecasting, 

such a few hours ahead or at most a few days ahead.     

3.5.2 Long-Term Approach. This approach focuses on long term forecasting, 

again using cubic splines, but with the number of knots and their positions remaining the 

same irrespective of the season or the type of day. For each month in the sample, a 

separate spline model was fitted, resulting in a set of spline coefficient estimates 

particular for that month. These spline coefficients, which formed a vector, were 

estimated using hourly load data for all the days for a given month. The estimated spline 

model coefficients are time-varying and the vectors of these estimates were modeled as a 

multivariate time series using a VARX formulation.  

 The above approach was motivated by the publication Harvey and Koopman 

(1993), but differs significantly from the approach suggested by these authors. They 

suggest using a multivariate random walk formulation to model the time-varying 

behavior of the spline coefficients. They also suggest incorporating this behavior into a 

state-space model and then carrying out the estimation of all parameters using this model.  

First, from initial inspection of the spline estimates obtained from the month-by-month 

modeling of the data, it became clear that the spline coefficients do not behave in a 

random walk fashion. Second, for the average practitioner, the method proposed in this 

dissertation is easier to understand and implement, even though somewhat cumbersome. 

In addition, Harvey and Koopman modeled the seasonality using the state-space 

approach. In this dissertation, stochastic seasonality is modeled through seasonal lag 
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terms in the VARX model, which is easier to understand and control. In addition, Harvey 

and Koopman used trigonometric functions to model the seasonal effects in their example 

where data from Puget Sound Power and Light over approximately 70 months was 

modeled. The approach presented here does not use a deterministic cyclical model and 

used a model that allows stochastic seasonality. The time series of the estimated spline 

coefficients also indicate that the stochastic seasonality approach is better because no 

deterministic sinusoidal seasonality is apparent in the data. 

3.5.3 The FPCA approach. The third approach employs FPCA to model de-

trended data. The resulting principal component scores were then modeled as time series 

using a transfer function formulation to forecast the principal components score for future 

days and use these scores to forecast the next year’s load. The idea of using FPCA to 

model and forecast electricity load or demand data is not new. For example Shang (2013) 

introduced the FPCA methodology construct a model for forecasting very short-term 

electricity demand. Five principal components were used and a penalized least squares 

method was developed by the author for updating point forecast. Shang does not, 

however, incorporate exogenous variables, such as temperature, in modeling the principal 

component scores. The above author employs pure ARIMA processes to model and 

forecast the scores.  The research presented herein, on the other hand, incorporates 

temperature, as well as dummy variables indicating weekends/weekdays when modeling 

the FPCA scores and employ the more flexible transfer functions to do so. Shang (2013) 

conducted the FPCA on each day of the week separately because of the belief that the 

demand profile is different for each day of the week. The approach taken in the research 

presented herein assumes that at least for the five weekdays, any changes in the profile 

will be reflected by different combination of FPCA scores. Shang also used bootstrap 

methods to build forecast intervals while less computationally intensive parametric 

methods are used in this research to construct prediction intervals. Moreover, the method 

proposed herein provides good load forecasts beyond short-term.  
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4. ANALYSIS AND EMPIRICAL RESULTS 

 

 

 Additional details of the three modeling approaches and the results obtained by 

fitting these models to the AE region of the PJM electricity market data are given in this 

chapter. In section 4.1, the results for the Short-Term Models are given. Section 4.2 

contains results for the Long-Term Models and Section 4.3 focuses on the results for the 

FPCA approach. 

 Let the time series  ( )tY x  denote the average electricity over one hour period 

ending at time x  on day ,t  where 1,  2, ....., t N  and [0,  24]x . When the load ( )tY x  is 

reported on the hour, say at hour 1, hour 2, etc., then one can represent the load by 

( ),  =1, 2, ... , 24.t iY x i   The hourly load data from the AE zone in the PJM market is 

reported on the hour and as such, for simplicity of notation, ,t iY  can be used in place of

( )t iY x , with the latter expression used when a functional form for Y is needed, as in the 

case of FPCA. 

 

4.1 SHORT TERM APPROACH 

In this approach to modeling electricity load, it will be assumed that ,t iY is a 

composite of structural components consisting of a long-term trend 𝜏𝑡, a seasonal 

component 𝑆𝑡, a weekly cycle 𝑤𝑡, a load function ( )if x , i=1, 2, … , 24, representing the 

hourly load, and an irregular stochastic component ,t iu . Thus ,t iY can be expressed as 

 

 , ,t i t t t i t iY S w f x u     , 

 

with t =, 1, 2, … , N and i =1, 2, …, 24. Each component in the above model was 

estimated separately.  

 The long-term trend was modeled using classical regression with select economic 

variables as regressors. The seasonal component was modeled using an ARMAX 

formulation with the average weekly temperature and its square as exogenous variables, 
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and the 24-hour load function was modeled by using a separate set of cubic splines for 

each season and for weekdays and weekends. Different spline models were used for each 

season because the 24-hour load within a season has almost the same pattern but differs 

across seasons. The weekdays were modeled separately within each season because they 

have quite different load patterns as well. 

4.1.1 Predicting Long-Term Trend. The first step was modeling the hourly 

average electricity load per year, 
*

,

,

1
N

l t i

t i

l

l

Y
N

    , using classical regression analysis. Note 

that in the above expression for the average load, l  denotes the year with 1,, 2, ... , 20,l   

and lN  denotes the total number of hours in that year. A stepwise selection method was 

used to determine the independent variables to be included in the model. Out of more 

than 20 economic plus population variables and the average monthly temperature, the 

following variables were selected: government employment in New Jersey (NJGOVTN), 

industrial production index in the US (IPI), home vacancy rate in New Jersey 

(NJHVAC), and the average temperature of September (Temp_Sep). The following 

results were obtained by multiple linear regression analysis. Tables 4.1.a, 4.1.b, and 4.1.c 

show the results of ANOVA table, the model fit statistics, and the parameter estimates, 

respectively, of the regression model for the annual load. 

 

 

Table 4.1. The Results for the Regression Model for Annual Load 

Analysis of Variance 

Source DF 
Sum of 

Squares 

Mean 

Square 
F Value Pr > F 

Model 4 117546 29386 310.41 <.0001 

Error 15 1420.06099 94.67073   

Corrected Total 19 118966    
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Table 4.1. The Results for the Regression Model for Annual Load (continued) 

Root MSE 9.72989 R-Square 0.9881 

Dependent Mean 1237.83958 Adj R-Sq 0.9849 

Coeff Var 0.78604  AIC 95.2545 

 

 

Table 4.1. The Results for the Regression Model for Annual Load (continued) 

Parameter Estimates 

Variable Label DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Intercept Intercept 1 -422.01120 91.16702 -4.63 0.0003 0 

NJGOVTN NJGOVTN 1 1.60946 0.10941 14.71 <.0001 2.42944 

NJHVAC NJHVAC 1 -36.77562 4.97535 -7.39 <.0001 1.04120 

IPI IPI 1 2.76858 0.34269 8.08 <.0001 2.39863 

Sep_M  Temp_Sep 1 7.24667 1.27613 5.68 <.0001 1.07907 

 

 

The regression model for the annual data is: 

 

*ˆ 422.01 36.78 +1.61 +2.77  +7.25 _l NJHVAC NJGOVTN IPI Temp Sep    . 

 

The selected independent variables explain 98.5% of the variation in the average 

annual load and the root mean square error (RMSE) is 9.7, which is small. Moreover, no 

serious multicollinearity among the independent variables was detected. The residual 

analysis is shown in the Figure 4.1, and there were not much of a concern because the 

model has performed a good job of predict the annual load. 
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Figure 4.1. Residual Analysis of the Annual Regression Model 

 

 

Figure 4.2 displays the average annual load (average is per hour) for the 20 years 

of training data and one year of test data and the average annual load predicted using the 

estimated regression model. The display shows very good in-sample agreement between 

the actual and predicted load and a reasonable agreement between the two for the test 

year. 
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Figure 4.2. The Annual Average of Hourly Load (blue solid) 

and the Predicted Load (red doted) 1993 - 2013 

 

 

4.1.2 Estimating Seasonal Variation in Data. The trend estimates for each year 

were transposed onto a weekly series, and a 52-week moving average was applied to this 

series to smooth the predictions from a step function to a smooth one (see Figure A.1 in 

the appendix). The smoothed trend, *

w , for week w,  was removed from weekly load data 

for that week by subtraction, with the process repeated for all weeks,  resulting in a 

smoothed weekly series. The de-trended weekly time series was then modeled using the 

subset ARMAX model. The Tables 4.2.a and 4.2.b present the results of the ARMAX 

model and model fit statistics, respectively. 
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Table 4.2. The Results for the Weekly ARMAX Model 

Maximum Likelihood Estimation 

Parameter Estimate Standard Error t Value 
Approx 

Pr > |t| 
Lag 

MU 1023.0 28.44590 35.96 <.0001 0 

MA1,1 0.75131 0.05985 12.55 <.0001 1 

MA1,2 -0.05634 0.01887 -2.99 0.0028 50 

MA1,3 0.71204 0.03706 19.22 <.0001 52 

MA1,4 -0.44034 0.04773 -9.22 <.0001 53 

MA1,5 -0.10499 0.02477 -4.24 <.0001 54 

AR1,1 1.12835 0.05735 19.67 <.0001 1 

AR1,2 -0.22648 0.03295 -6.87 <.0001 2 

AR1,3 0.76161 0.02714 28.06 <.0001 52 

AR1,4 -0.67333 0.03045 -22.11 <.0001 53 

T -50.35659 0.95800 -52.56 <.0001 0 

T2 0.53344 0.0092772 57.50 <.0001 0 

 

 

Table 4.2. The Results for the Weekly ARMAX Model (continued) 

Constant Estimate 10.07384 

Std Error Estimate 41.47282 

AIC 10765.41 

SBC 10824.81 

Number of Residuals 1043 
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The ARMAX model for the weekly average of de-trended load is: 

 

           

     

*

1 2 52 53 1 50

2

52 53 54

ˆ 1023 1.13 0.23 0.76 0.67 0.75 0.06

                0.71 0.44 0.11 50.36 0.53 ,

w w w w w w w

w w w

S L L Z Z

Z Z Z T T

     

  

      

    
 

 

where  w lag
L


 denotes the autoregressive lag term,  w lag

Z


 denotes the moving average 

lag terms, and T denotes the weekly average temperature. The residuals do not show any 

major autocorrelations and the test for white noise is shown in the Figure 4.3 on the 

bottom right hand corner shows no evidence that the residuals are anything other than 

white noise. 

 

 

 

Figure 4.3. Analysis of Residual for the Weekly ARMAX Model. 

 

 

 The check for normality of the residuals given in Figure 4.4 show some deviation 

from normality, but this is not much of a concern because the model performed an 

adequate job of extracting the seasonal component as indicated by white noise residual. 
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Figure 4.4. Normality Diagnostics of the Residuals of the Weekly ARMAX Model 

 

 

Figure 4.5 shows the weekly average load for the weeks for the test year and the 

actual weekly averages. These out-of-sample checks show that the seasonal (weekly) 

model provides a satisfactory estimation of the seasonal component. 

 

 

 

Figure 4.5. The Weekly Average of the Hourly Load (blue solid) 

and the Predicted Load (red dashed) 2013 
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4.1.3 Modeling the Hourly Load. At this point, the weekly smoothed trend *

w  

and the estimated seasonal component 
*ˆ
wS  was removed from the hourly data ,t iY and a 

new de-trended and de-seasonalized time series, *

,t iY , was obtained. The new times series 

was modeled using a cubic spline with different spline estimates obtained for each 

season, weekday, and weekend combination. Temperature and its interaction with spline 

coefficients were also fitted. 

Two scenarios were applied here. The first one modeled each season and each day 

type separately. We denoted this as Model 1. The second scenario modeled each season 

separately and ignored the day type but added a dummy variable for the day type. This 

approach is denoted as Model 2. 

4.1.3.1 The Results of Model 1. The general spline model used is: 

 

         

     

       

2 2 2 3 3* 2 3

, 0 1 2 3 4 1 5 2 6 3 7 1 8 2

3 2 22 3

9 3 10 11 12 13 14 1 15 2

2 3 3 3

16 3 17 1 18 2 19 3

           * * * * *

           * * * * ,

t iY b b i b i b i b i b i b i b i b i

b i b T b T i b T i b T i b T i b T i

b T i b T i b T i b T i

    

  

   

             

         

       

 

 

where i is the hour, 's  are the knots that change according to season, and  T is 

temperature. The following tables present the regression model results for each season. 

The tables 4.3, 4.4, 4.5, and 4.6 present the results of the regression model for each 

season and each type of day. The tables for weekdays and weekends for a given season 

are paired together for easy comparison. 
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Table 4.3. The Results for the Regression Model for the Winter Season 

Winter - Weekdays  Winter - Weekends 

Variable 
Parameter 

Estimate 
Pr > |t|  Variable 

Parameter 

Estimate 
Pr > |t| 

Intercept -43.94700 0.0003  Intercept 33.16159 0.0438 

h 43.00126 <.0001  h -68.74540 <.0001 

h2 -28.47236 <.0001  h2 10.86316 0.0456 

h3 3.90525 <.0001  h3 -0.34335 0.5244 

(h – 6)2 -72.28854 <.0001  (h – 5)2 4.53027 0.1994 

(h – 14)2 -42.29815 <.0001  (h – 12)2 21.97808 <.0001 

(h – 17)2 -103.8987 <.0001  (h – 17)2 -42.63870 <.0001 

(h – 6)3 -1.95948 <.0001  (h – 5)3 -0.98781 0.0461 

(h – 14)3 8.92152 <.0001  (h – 12)3 2.63976 <.0001 

(h – 17)3 -9.58272 <.0001  (h – 17)3 -0.96957 0.0194 

temp -2.89175 <.0001  temp -2.59769 <.0001 

T*h -0.71365 <.0001  T*h -0.15635 0.0027 

T* h2 0.17868 <.0001  T* (h – 5)2 0.06344 <.0001 

T* h3 -0.01462 <.0001  T*(h – 12)2 -0.56360 <.0001 

T* (h – 6)2 0.26047 <.0001  T*(h – 17)2 -0.67866 0.0005 

T*(h – 14)2 0.23657 <.0001  T*(h – 12)3 0.06180 <.0001 

T*(h – 17)3 0.02458 <.0001  T*(h – 17)3 -0.03642 0.0005 

       

RMSE 72.9606   RMSE 74.3877  

Adj-R2 0.7671   Adj-R2 0.7065  

AIC 260089.07   AIC 100750.97  
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Table 4.4. The Results for the Regression Model for the Spring Season 

Spring - Weekdays  Spring - Weekends 

Variable 
Parameter 

Estimate 
Pr > |t|  Variable 

Parameter 

Estimate 
Pr > |t| 

Intercept 93.65097 <.0001  Intercept -7.13119 0.6187 

h -150.22285 <.0001  h -48.84602 <.0001 

h2 68.15250 <.0001  h2 13.06001 <.0001 

h3 -8.97118 <.0001  h3 -0.74388 <.0001 

(h – 4)2 115.05545 <.0001  (h – 9)2 -13.54758 0.0001 

(h – 8)2 61.51265 <.0001  (h – 18)2 124.02630 0.0021 

(h – 19)2 -124.08785 <.0001  (h – 20)2 231.54827 0.0011 

(h – 4)3 -3.47963 0.0009  (h – 9)3 2.62643 <.0001 

(h – 8)3 13.74708 <.0001  (h – 18)3 -66.42324 <.0001 

(h – 19)3 9.48140 <.0001  (h – 20)3 65.77067 <.0001 

temp -2.50879 <.0001  temp -1.45289 <.0001 

T* h2 -0.41258 <.0001  T* h2 -0.22542 <.0001 

T* h3 0.07054 0.0001  T* h3 0.02324 <.0001 

T* (h – 4)2 -1.05263 <.0001  T* (h – 9)2 -0.43314 <.0001 

T* (h – 8)2 -1.02330 <.0001  T*(h – 18)2 -2.77329 <.0001 

T*(h – 19)2 1.75668 <.0001  T*(h – 20)2 -5.14219 <.0001 

T* (h – 4)3 0.06608 <.0001  T*(h – 9)3 -0.03102 <.0001 

T* (h – 8)3 -0.14706 <.0001  T*(h – 18)3 1.26328 <.0001 

T*(h – 19)3 -0.19409 <.0001  T*(h – 20)3 -1.22318 <.0001 

       

RMSE 73.5242   RMSE 84.0868  

Adj-R2 0.7496   Adj-R2 0.6247  

AIC 271284.41   AIC 111701.59  
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Table 4.5. The Results for the Regression Model for the Summer Season 

Summer - Weekdays  Summer - Weekends 

Variable 
Parameter 

Estimate 
Pr > |t|  Variable 

Parameter 

Estimate 
Pr > |t| 

Intercept -1031.8216 <.0001  Intercept -1121.8108 <.0001 

h 20.83889 0.6311  h 92.24404 0.0765 

h2 23.34519 0.0028  h2 -4.50357 0.5201 

h3 -2.15146 <.0001  h3 0.23011 0.4594 

(h – 9)2 -58.35710 <.0001  (h – 7)2 -50.56548 0.0002 

(h – 14)2 -52.55395 0.0212  (h – 12)2 79.89184 <.0001 

(h – 19)2 -55.43427 0.1113  (h – 20)2 -45.09066 0.0476 

(h – 9)3 13.63412 <.0001  (h – 7)3 0.75179 0.4427 

(h – 14)3 -10.04996 <.0001  (h – 12)3 -1.41147 0.3334 

(h – 19)3 -3.42800 <.0001  (h – 20)3 -5.65133 <.0001 

temp 12.30673 <.0001  temp 13.92763 <.0001 

T*h -1.67881 0.0056  T*h -2.61695 <.0001 

T* h2 -0.23403 0.0326  T* h2 0.15085 0.0283 

T* h3 0.03886 <.0001  T* (h – 7)2 1.43653 <.0001 

T*(h – 14)2 1.07409 0.0002  T*(h – 20)2 0.72256 0.0058 

T*(h – 19)2 1.20714 0.0053  T*(h – 7)3 -0.14516 <.0001 

T*(h – 9)3 -0.17607 <.0001  T*(h – 12)3 0.15275 <.0001 

T*(h – 14)3 0.09527 <.0001     

       

RMSE 121.682   RMSE 138.2348  

Adj-R2 0.8661   Adj-R2 0.8152  

AIC 303082.91   AIC 124226.62  
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Table 4.6. The Results for the Regression Model for the Fall Season 

Fall - Weekdays  Fall - Weekends 

Variable 
Parameter 

Estimate 
Pr > |t|  Variable 

Parameter 

Estimate 
Pr > |t| 

Intercept -124.73508 <.0001  Intercept -21.40477 0.3987 

h 49.54582 0.0001  h -27.84008 0.0282 

h2 -20.69335 <.0001  h2 7.44891 0.0016 

h3 2.88465 <.0001  h3 -0.32170 0.0803 

(h – 6)2 -62.12202 <.0001  (h – 8)2 -14.30060 0.3538 

(h – 15)2 106.77851 <.0001  (h – 10)2 5.40145 0.5837 

(h – 20)2 190.28792 <.0001  (h – 18)2 -147.68332 <.0001 

(h – 6)3 -1.41533 <.0001  (h – 8)3 -1.67366 0.6195 

(h – 15)3 -17.40696 <.0001  (h – 10)3 5.28608 0.1368 

(h – 20)3 4.95084 <.0001  (h – 18)3 5.18245 <.0001 

temp -0.55227 0.0901  temp -1.22595 0.0026 

T* h -0.95896 <.0001  T* h -0.87935 <.0001 

T* h2 0.05788 0.0049  T* h2 0.00681 <.0001 

T* (h – 6)2 0.31932 <.0001  T* (h – 8)2 0.68040 0.0036 

T*(h – 15)2 -1.29167 <.0001  T*(h – 18)2 1.72536 <.0001 

T*(h – 20)2 -3.25219 <.0001  T*(h – 8)3 -0.14824 0.0002 

T* (h – 6)3 -0.02245 <.0001  T*(h – 10)3 0.11613 0.0105 

T*(h – 15)3 0.23814 <.0001  T*(h – 18)3 -0.10069 <.0001 

       

RMSE 92.4018   RMSE 100.7796  

Adj-R2 0.7446   Adj-R2 0.6528  

AIC 282449.54   AIC 115156.88  
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4.1.3.2 The Results Model 2. The general spline model is: 
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where h is an hour,   is a knot that changes according to the season, T is temperature, and 

w is a weekend dummy variable. The Tables 4.7 and 4.8 present the regression model 

results for each season. Note that non-significant terms were dropped from the models and 

the results are for the reduced models. 
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Table 4.7. The Results for the Regression Model for the Winter and Spring Seasons 

Winter  Spring 

Variable 
Parameter 

Estimate 
Pr > |t|  Variable 

Parameter 

Estimate 
Pr > |t| 

Intercept -16.55248 0.1207  Intercept -28.71512 0.3281 

h 23.25116 0.0014  h 43.44180 0.1746 

h2 -20.66445 <.0001  h2 -18.69310 0.0568 

h3 2.96367 <.0001  h3 2.56499 0.0042 

(h – 6)2 -52.98180 <.0001  (h – 5)2 17.48659 <.0001 

(h – 15)2 -16.66555 <.0001  (h – 8)2 42.40157 <.0001 

(h – 17)2 -112.22096 <.0001  (h – 19)2 -123.9761 <.0001 

(h – 6)3 -1.83272 <.0001  (h – 5)3 -13.11806 <.0001 

(h – 15)3 13.03173 <.0001  (h – 8)3 11.98398 <.0001 

(h – 17)3 -12.65773 <.0001  (h – 19)3 9.16725 <.0001 

temp -2.76643 <.0001  temp -0.64997 0.2414 

T* h -0.64320 <.0001  T* h -2.15721 0.0003 

T* h2 0.13092 <.0001  T* h2 0.50905 0.0049 

T* h3 -0.00834 <.0001  T* h3 -0.04807 0.0027 

T*(h – 6)2 0.12037 0.0070  T*(h – 8)2 -0.96311 <.0001 

T*(h – 15)2 0.13705 0.0009  T*(h – 19)2 1.72975 <.0001 

T*(h – 17)3 0.01452 <.0001  T* (h – 5)3 0.18007 <.0001 

Weekend -49.01851 <.0001  T*(h – 8)3 -0.14305 <.0001 

    T*(h – 19)3 -0.18822 <.0001 

    Weekend -59.90003 <.0001 

       

RMSE 75.7805   RMSE 79.6872  

Adj-R2 0.7410   Adj-R2 0.7054  

AIC 363556.63   AIC 386694.58  
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Table 4.8. The Results for the Regression Model for the Summer and Fall Seasons 

Summer  Fall 

Variable 
Parameter 

Estimate 
Pr > |t|  Variable 

Parameter 

Estimate 
Pr > |t| 

Intercept -1131.9170 <.0001  Intercept -84.22522 <.0001 

h 115.72585 <.0001  h 40.45021 0.0004 

h2 1.12711 0.2755  h2 -17.21285 <.0001 

h3 -0.77157 <.0001  h3 2.41275 <.0001 

(h – 9)2 -83.52495 <.0001  (h – 6)2 -51.38721 <.0001 

(h – 14)2 -46.86818 0.0578  (h – 15)2 120.69047 <.0001 

(h – 19)2 -45.76871 0.1566  (h – 20)2 205.64318 <.0001 

(h – 9)3 13.02938 <.0001  (h – 6)3 -1.34485 <.0001 

(h – 14)3 -11.66866 <.0001  (h – 15)3 -18.15278 <.0001 

(h – 19)3 -3.20285 <.0001  (h – 20)3 4.97629 <.0001 

temp 13.81380 <.0001  temp -0.70591 0.0145 

T*h -2.73699 <.0001  T*h -0.99218 <.0001 

T* h3 0.02435 <.0001  T* h2 0.06113 0.0008 

T* (h – 9)2 0.30996 0.0564  T* (h – 6)2 0.30423 <.0001 

T*(h – 14)2 1.08035 0.0008  T*(h – 15)2 -1.37326 <.0001 

T*(h – 19)2 1.11159 0.0059  T*(h – 20)2 -3.36051 <.0001 

T*(h – 9)3 -0.17592 <.0001  T*(h – 6)3 -0.02131 <.0001 

T*(h – 14)3 0.11706 <.0001  T*(h – 15)3 0.24565 <.0001 

Weekend -55.87929 <.0001  Weekend -71.82423 <.0001 

       

RMSE 128.1746   RMSE 97.1472  

Adj-R2 0.8496   Adj-R2 0.7165  

AIC 428670.67   AIC 399798.26  
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 As seen from the above results, the models for each season is different from the 

others, reflecting changes in the daily load profiles across seasons.  The comparison 

between the two models (Model 1 which fitted separate regression models to weekdays 

and weekends and Model 2 which used a dummy variable to account for differences 

between weekdays and weekends) based on Akaike Information Criteria (AIC) and Root 

Mean Square Error (RMSE) is presented in Table 4.8. In addition, the Figures 4.6 and 4.7 

show the comparison between the two models based on the Coefficient of Variation (CV) 

for each month and each hour, respectively.  

 

 

Table 4.9. The Comparison between the Two Models 

Season Day Type 
RMSE AIC 

Model 1 Model2 Model 1 Model2 

Winter 
Weekdays 72.9606 72.9968 260089.07 260119.13 

Weekends 74.3945 74.7430 100751.11 100862.34 

Spring 
Weekdays 73.5242 73.4836 271284.41 271249.53 

Weekends 84.0868 84.2725 111701.59 111757.18 

Summer 
Weekdays 121.682 121.754 303082.91 303118.57 

Weekends 138.232 138.465 124225.17 124267.61 

Fall 
Weekdays 94.4033 92.4018 282449.53 282449.54 

Weekends 100.777 101.231 115155.18 115268.54 
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Figure 4.6. The Comparison between the CV of the Predicted Monthly Average Load of 

Model 1 (blue solid) and Model 2 (red doted). 

 

 

Figure 4.6 shows very close agreement between the two models when compared using 

the CV by month. There is a slight drop in the CV for Model 1 suggesting a slight gain in 

accuracy when the weekdays and weekends are modeled separately. Figure 4.7 given 

below shows the CV for the two models by each hour of the day. Again, Model 1 shows a 

slight advantage with the CV for Model 2 showing higher values for hours below 10 am. 

This may be because the load profile for weekends shows a two-hour shift in the morning 

and the use of the dummy variable is not sufficient to account for this difference in the 

shape of the load profile. 



51 
 

 

Figure 4.7. The Comparison between the CV of the Predicted Hourly Average Load of 

Model 1 (blue solid) and Model 2 (red doted). 

 

 

 

The Figures 4.8, 4.9, 4.10, and 4.11 provide a comparison between the two models with 

the actual load of the test year for four different weeks. Each figure shows a week from 

the middle of each season. The forecasts based on each model are very close to one 

another, which suggests that adding a dummy variable for the day type instead of 

building the extra models for the type of day provides satisfactory forecast overall, but 

for all seasons except summer, Model 2 yields forecasts that fall below the actual load 

during the weekends (last two days in the graph), especially in the morning period. 

However, except for the weekends, both models underestimate the afternoon peak in 

winter and spring. For the summer season (figure 4.10), the afternoon peak is 

overestimated by both models on Fridays. 
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Figure 4.8. The Comparison between the Actual Hourly Load (blue solid), 

the Predicted Hourly Load of Model 1 (red doted), 

and Model 2 (green dashed) – a Week in the Mid-Winter Season 

 

 

 

Figure 4.9. The Comparison between the Actual Hourly Load (blue solid), the Predicted 

Hourly Load of Model 1 (red doted), and Model 2 (green dashed) 

– a Week in the Mid-Spring Season 
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Figure 4.10. The Comparison between the Actual Hourly Load (blue solid), the Predicted 

Hourly Load of Model 1 (red doted), and Model 2 (green dashed) 

– a Week in the Mid-Summer Season 

 

 

 

Figure 4.11. The Comparison between the Actual Hourly Load (blue solid), the Predicted 

Hourly Load of Model 1 (red doted), and Model 2 (green dashed) 

– a Week in the Mid-Fall Season 
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Table 4.10. The Comparison between the CV of the Two Models 

for Each Season per Hour 

Hou

r 

Winter Spring Summer Fall 

Model

1 

Model

2 

Model

1 

Model

2 

Model

1 

Model

2 

Model

1 

Model

2 

1 0.0640 0.0678 0.0774 0.0818 0.0874 0.0899 0.0825 0.0921 

2 0.0610 0.0634 0.0764 0.0798 0.0925 0.0938 0.0770 0.0856 

3 0.0632 0.0648 0.0753 0.0798 0.0931 0.0930 0.0777 0.0861 

4 0.0654 0.0666 0.0786 0.0795 0.0926 0.0910 0.0810 0.0881 

5 0.0627 0.0631 0.0771 0.0773 0.0908 0.0892 0.0813 0.0854 

6 0.0590 0.0594 0.0774 0.0785 0.0868 0.0877 0.0807 0.0809 

7 0.0655 0.0747 0.0866 0.0934 0.0910 0.0924 0.0881 0.0928 

8 0.0619 0.0764 0.0763 0.0897 0.0964 0.0902 0.0879 0.0945 

9 0.0556 0.0642 0.0719 0.0804 0.1043 0.0978 0.0875 0.0877 

10 0.0630 0.0658 0.0777 0.0814 0.1037 0.1060 0.0921 0.0910 

11 0.0715 0.0712 0.0827 0.0837 0.0997 0.1009 0.0959 0.0970 

12 0.0759 0.0744 0.0901 0.0886 0.1021 0.1018 0.1050 0.1072 

13 0.0758 0.0759 0.0987 0.0964 0.1066 0.1044 0.1185 0.1201 

14 0.0734 0.0746 0.1047 0.1036 0.1013 0.0997 0.1319 0.1322 

15 0.0707 0.0723 0.1066 0.1071 0.0957 0.0951 0.1386 0.1382 

16 0.0686 0.0691 0.1103 0.1114 0.0928 0.0929 0.1436 0.1448 

17 0.0682 0.0695 0.1144 0.1147 0.0897 0.0906 0.1496 0.1504 

18 0.0716 0.0731 0.1181 0.1167 0.0869 0.0862 0.1562 0.1550 

19 0.0603 0.0616 0.1155 0.1153 0.0851 0.0854 0.1341 0.1349 

20 0.0587 0.0603 0.1058 0.1049 0.0829 0.0826 0.1158 0.1172 

21 0.0611 0.0619 0.0986 0.0974 0.0789 0.0781 0.1070 0.1094 

22 0.0615 0.0619 0.0895 0.0849 0.0795 0.0775 0.0964 0.0982 

23 0.0602 0.0603 0.0797 0.0743 0.0917 0.0884 0.0860 0.0884 

24 0.0603 0.0601 0.0775 0.0754 0.0854 0.0836 0.0810 0.0858 
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4.2 LONG TERM APROACH 

The long-term model was developed to predict beyond a few hours or days, but the 

ability to detect short-term variation from day to day was sacrificed. In short, the long-term 

model predicts the average daily load profile for a whole month rather than for a specific 

day.  The model uses a unique cubic spline curve for every month over the 20 years. The 

number of knots and the position of knots were kept constant from month to month, but 

the knot positions were selected through a trial and error process. This process used AIC 

and RMSE. Each set of knot positions yielded a set of 240 AIC values and 240 RMSE 

values. One set of knot positions were compared to another set of knot positions and the 

set that had a majority of AIC and RMSE values lower than the other set was selected. The 

process was repeated with another choice of knot positions in a recursive manner. In the 

future a more exhaustive and automated process could be implemented. 

Because the estimation of the spline coefficients was done separately for each 

month, the estimated coefficients varied from month to month. Examination of these 

estimates showed that the coefficient themselves are slowly varying time series. This 

provided a way to forecast spline coefficients for future months through time series 

modeling of the estimated coefficients. In general, this approach is similar to that proposed 

by Harvey and Koopman (1993), but differs in the fact that what is proposed in this 

dissertation is a long-term forecast model that predicts average load profile for a month at 

a time, and uses a two-step approach where splines coefficients are estimated separately 

for each month and modeling the resulting coefficient estimates in a subsequent step. This 

approach allows the estimation of the spline coefficients using simple regression models 

and enables the fitting of more complicated time series models without introducing too 

much complexity into the likelihood function.  

Since weekdays and weekends exhibit different load profiles, two load models were 

estimated for each month; one for weekdays and the other for weekends. Since the splines 

models are fitted separately for each month, one can use the load data  , | Month t iY t m . 

Instead of using 24-hour load data for each day, the average load for each hour i over the 

month m was used. These average loads will be denoted by ,m iY . 
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 4.2.1 Weekdays and Weekends Model. Since the 24-hours curve differs between 

weekdays and weekends, a specific model was used for each day type. The weekdays’ 

spline model employed is: 
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for i = 1, 2, … , 24 and m = 1, 2, .., 12. 

The weekends’ spline model is: 
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with i and m defined as before. 

For each of the above models, the ten model coefficients were estimated for each 

month.  The ten coefficients for each model were treated as a vector autoregressive process. 

When modeling this vector time series, temperature and squared temperature were added 

as exogenous variables. The SAS® procedure VARX was employed to model each of these 

vector time series.   

In addition to the separate models for weekdays and weekends, a combined model 

was also estimated using all seven days of the week. The estimated coefficients from this 

combined analysis were also modeled using the VARX procedure. 

4.2.2 Combined Model. In this approach, the following general spline model was 

fitted. 
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for i = 1, 2, … , 24 and m = 1, 2, .., 12. 
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4.2.3 Modeling Hourly Temperature. Since the VARX models employed to 

forecast the spline coefficients contain average monthly temperature as an exogenous 

variable, use of these models to predict the coefficients for a future month requires the 

future values for temperature. Thus a model for predicting the average monthly 

temperature would be needed. The ARMA subset model was used to forecast the monthly 

average temperature. The following table presents the results. 

 

 

Table 4.11. The Results for the Monthly Temperature ARMA Model 

Maximum Likelihood Estimation 

Parameter Estimate Standard Error t Value Approx 

Pr > |t| 

Lag 

MU 54.76245 0.22485 243.55 <.0001 0 

MA1,1 0.21638 0.05905 3.66 0.0002 1 

MA1,2 -0.48601 0.05205 -9.34 <.0001 5 

MA1,3 0.22560 0.05731 3.94 <.0001 12 

AR1,1 0.48979 0.0075249 65.09 <.0001 1 

AR1,2 -0.49774 0.0042286 -117.71 <.0001 5 

AR1,3 0.14351 0.0075218 19.08 <.0001 12 

 

 

Table 4.11. The Results for the Monthly Temperature ARMA Model (continued) 

Constant Estimate 47.33881 

Variance Estimate 8.580602 

Std Error Estimate 2.929267 

AIC 1214.316 

SBC 1238.68 

Number of Residuals 240 
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The ARMA model the average monthly temperature is: 

 

           1 5 12 1 5 12
54.7625 0.49 0.50 0.14 0.22 0.49 0.23 ,m m m m m m m

T T T T Z Z Z
     

        

 

where  m lag
T


 denotes the autoregressive lag term and  w lag

Z


 denotes the moving 

average terms. The residual analysis shows that the estimated model extracted almost all 

the information about the monthly average temperature present in the data because of the 

residuals passed the test for white noise. The residuals do not show any major 

autocorrelations and the test for white noise  shown in the Figure 4.12 on the bottom right 

hand corner shows no evidence that the residuals are anything other than white noise. 

 

 

 

Figure 4.12. Residual of the Weekly ARMA Model 

 

 

 The check for normality of the residuals given in Figure 4.13 show a little 

deviation from normality, but this is not much of a concern because the model has did an 

adequate job of predicting the monthly average temperature. 
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Figure 4.13. Normality Diagnostics of the Residual for the Monthly ARMA Model 

 Note that this model uses monthly average temperature data from the twenty 

previous years to forecast the monthly average temperature for twelve months for the 

next year. This is forecasts from one step to eleven steps ahead. As Figure 4.14 shows, 

the model provides reasonably accurate forecasts.  

 

 

 

Figure 4.14. The Comparison between the Actual Monthly Temperature (blue solid), 

the Predicted Monthly Temperature (red doted) - 2013 
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4.2.4 Vector Autoregressive Model with Exogenous Variable (VARX). The 

monthly spline coefficients were treated as a vector time series and the possibility of 

cross-correlation was allowed. Graphs of these coefficients are given in Figures A.3 

through A.12 in the appendix. Also, the average monthly temperature and its square were 

included as input variables. The information criteria for the weekday, weekend, and 

combined model are given in table 4.10. In addition, the figures 4.15, 1.16 and 4.17 

display a comparison between the actual monthly load weekday, weekend, and combined 

model of the test year, respectively, and the their predictions using VARX model 

included nowcasting (using the actual temperature) and forecasting (using predicted 

temperature) separately. These figures show very good predictions with some difference 

between nowcasting and forecasting temperature for a few months which are July, 

August, and September. 

 

 

Table 4.12 The Information Criteria Results of each VARX Model 

Weekdays Model  Weekends Model  Combined Model 

Information Criteria  Information Criteria  Information Criteria 

AICC -3.44664  AICC 3.328577  AICC -7.59225 

HQC -1.71372  HQC 5.140705  HQC -6.0795 

AIC -4.31484  AIC 1.934671  AIC -8.08213 

SBC 2.132762  SBC 9.881713  SBC -3.1186 

FPEC 0.013985  FPEC 7.538935  FPEC 0.000315 
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Figure 4.15. The Comparison between the Actual Monthly Weekdays Load (blue solid), 

the Predicted Monthly Load from the Weekdays Model with Nowcasting Temperature 

(red doted), and Forecasting Temperature (green dashed) – 2013 

 

 

 

Figure 4.16. The Comparison between the Actual Monthly Weekends Load (blue solid), 

the Predicted Monthly load of Weekends Model with Nowcasting Temperature (red 

doted), and Forecasting Temperature (green dashed) – 2013 
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Figure 4.17. The Comparison between the Actual Monthly Load (blue solid), the 

Predicted Monthly Load from the Whole Model with Nowcasting Temperature (red 

doted), and Forecasting Temperature (green dashed) – 2013 

 

 

4.2.5 Simultaneous Prediction Intervals for VARX mode. Scheffe’s method 

was used to calculate the prediction interval of the monthly average forecast load across 

the 24-hour time period representing the average hourly load for each month of the test 

year. The mathematical formula used for building the prediction intervals is given in 

Chapter 3. As Figures 4.18 – 4.10 shows, the prediction intervals are reasonable in the 

sense that they do not seem to spread out that much for later months of the year.  
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Figure 4.18. The Prediction Interval for the Weekdays Model – 2013 

 

 

 Figure 4.19 giving the prediction intervals for weekend load profiles show 

prediction bands that are quite wide and unusable. Part of the reason for this may be the 

small number of data points belonging to the weekends in each month. This lack of data 

can inflate the standard error of the spline coefficients, and since the predicted load for 

later hours are determined by not only the coefficients of the intercept, linear, quadratic, 

and cubic terms, but also by terms involving knots, the standard errors of this multitude 

of parameter estimates can inflate the width of the prediction intervals. Figure 4.20 

provides the intervals for predictions for combined weekend and weekday load profiles. 
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Figure 4.19. The Prediction Interval for the Weekends Model – 2013. 

 

 

 

Figure 4.20. The Prediction Interval for the Combined Model – 2013. 
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4.3 FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS APPROACH 

In the first approach (short term models), we observed that the knots’ locations in 

the spline curve differ according to the season or the type of day, so we used a specific 

spline curve for each season and each weekday or weekend. This means that eight models 

were built, with two models (weekday and weekend) for each of the four seasons. On the 

other hand, the second approach (long term models) used the same sets of knots at the same 

positions within each model irrespective of the season. A third approach is to assume that 

there are underlying fundamental “basis” curves, linear combinations of which can provide 

the seasonal and type of day variations. This is the FPCA approach. 

4.3.1 Removing the Trend. The FPCA could be performed on the original data 

without removing the long-term trend. It is possible that the trend would get incorporated 

into one or more of the principal component scores, which in turn could be modeled 

using time series approaches. This trend, however, can distort the estimate of the 

covariance operator which is used to determine the functional principal components. In 

addition, preliminary analysis showed that removing long-term trend prior to performing 

FPCA results in principal component scores that are easier to model using time series 

approaches. Therefore, the long-term trend was removed from the series by using the 

same technique that was employed in the first approach, which is to predict the average 

annual load using the linear regression analysis with select economic variables and 

subtracting the annual predicted average load from the hourly load. 

Figure 4.21 shows the daily load profiles for each day in the training sample. The 

graph shows an overall pattern, with some deviations from the norm clearly visible. 

Figures A.13 through A.16 in the appendix provides the observed daily load patterns by 

each season. Several steps are necessary to carry out FPCA on this data and then model 

the resulting PCA scores. These steps are described in subsections 4.3.2 through 4.3.4. 
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Figure 4.21. The Daily 24-hour Profile over 20 Years 

 

 

4.3.2 Creating a Basis and Smoothing the Data. The daily load data has to be 

smoothed into a functional object prior to submitting to FPCA. This was achieved 

through the use of B-splines. The first two approaches to modeling electricity load used 

only three knots because adding more knots will create complex models, but for the 

FPCA approach the principal aim is to smooth the data and so 4, 6, 8, 12 knots were 

employed to fit cubic splines. The resulting smoothed data were subjected to FPCA and 

in-sample predictions were made. The resulting root mean square error (RMSE) was 

employed to choose an optimal number of knots from the above list. Results showed that 

the difference in RMSE between using 8 or 12 knots was small, so 8 knots11 were used 

for the analysis. 

 

                                                            
11 Number of basis = number of knots + order – 2. Ramsay, J. O and others (2009). 
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Figure 4.22. The Comparison between the RMSE of the 8 Knots Model (blue solid) and 

the 12 Knots Model (red doted). 

 

 

4.3.3 Computing the Functional Eigenfunctions (Harmonics) and the Principal 

Component Scores. After smoothing the data by using cubic splines with eight knots and 

three basis functions, the eigenfunctions, the principal component scores, and the mean 

function was computed for the de-trended data using R software. The proposed model is: 

 

       ,

1

,     1,2, , ,
K

t t k k t

k

f x x x e x t N  


     

 

where N = 7302 (number of days) and k = 1, 2, …, 24 (number of hours per day). 

The first principal component explained most of the variation in the data; specifically 

92.7% of the variation.  The second and third principal components explained 4.8% and 

1.2% of the variation respectively, so the first three principal components explained 98.7% 

leaving only 1.3% unexplained. The reason that the first three principal components were 

used was not only because of the total percentage of variation explained combination, but 
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also because when in sample predictions were made using only the first two principal 

components, the prediction did not fit the actual hourly load for winter months very well, 

especially around the mid-day hours after first peak.  

Figure 4.23 shows the mean function, which can be taken as the overall load 

profile over the 24-hour period of an “average” day, irrespective of the season or the type 

of day. Figure 4.24 shows the first eigenfunction (Harmonic). It clearly emphasizes the 

late afternoon and early evening peaks. The second eigenfunction shown in Figure 4.25 

contributes to the morning peak, which may reflect people using electricity for morning 

chores as well as offices powering up to get ready for the day’s activities. The third 

eigenfunction accentuates the morning and evening peaks. It is worth noting that the 

mean curve resembles the general shape of the electricity load for weekdays during the 

late spring, summer and early fall periods. The two peaks are quite prominent during 

winter weekdays.  

 

 

 

Figure 4.23. The Mean Curve of the 24-hour Profile 
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Figure 4.24. The First Eigenfunction (Harmonic) Curve 

 

 

 

Figure 4.25. The Second Eigenfunction Curve 
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Figure 4.26. The Third Eigenfunction Curve 

 

 

4.3.4 Modeling the Principal Components. It was difficult to model the third 

principal component scores using an ARIMA time series structure, but the transfer 

function models provided good fit to the data from the first three principal component 

scores with independent variables included as input. The models that used to predict the 

principal component scores are: 

i. The first principal component (PC1) model 

 

 

   

   

2 7 364 365 366

2 7 364 365 2

2 2

1595.81 1 1.39 0.30 0.08 0.85 1.27 0.43

                  1 0.83 1.67 0.05 0.80 0.77 64.37 1.79

                  0.47 0.02 6.81 0.69 0.39

         

t t

t t

t t

Y B B B B B B Y

B B B B B Z B T

B T B B CDD

       

        

    

2         215.94 0.03 * 0.23 * ,t t t t tw w T w CDD  

 

where t = 1, 2, …, N, T denotes the daily average temperature, tCDD  denote the total of 

the Cooling Degree Day values for each hour on day t, and tw  is the weekend dummy for 
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day t. Note that 'stZ  are moving average components that will be estimated by the transfer 

function procedure. 

ii. The second principal component (PC2) model is 

 

 

 

   

2 7 364 365

2 364 365 366

2 2

1346.72 1 0.98 0.004 0.005 0.99 0.98

                  1 0.78 0.17 0.98 0.79 0.15

                  33.23 6.66 0.24 0.50 1.49 0.07

                  12

t

t

t t t

Y B B B B B Y

B B B B B Z

B T T B B CDD

      

     

       

 2.75 0.20 * .t t tw w CDD

 

 

iii. The third principal component (PC3) model is 

 

 

 

   

7 364 365

2 7 364 365 366

2 2 2

59.94 1 1.30 0.04 0.76 0.75

                  1 1.08 0.05 0.04 0.66 0.73 0.08

                  0.10 7.32 2.73 0.04 0.04 0.02

                  0.93 0.8

t t

t

t t

Y B B B B Y

B B B B B B Z

B B T B B T

      

      

      

   23 91.49 0.02 * 0.21 * .t t t t t tB CDD w w T w CDD  

 

 

 

Table 4.13. The Results for the Daily PC’s Scores Transfer Function Model 

Fit Statistics 

Fit Statistics PC1 Model PC2 Model PC3 Model 

Constant Estimate 0.466297 0.171331 -0.01215 

Variance Estimate 43444.1 14236.11 8629.324 

Std Error Estimate 208.4325 119.3152 92.89415 

AIC 98747.74 90693.18 86948.07 

SBC 98906.34 90824.2 87099.77 

Number of Residuals 7300 7300 7300 
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The above models were used to forecast the scores for each principal component score 

for one year ahead, then the forecast scores were multiplied by the eigenfunctions, and 

the mean function was added to obtain the forecasts of the 24-hour load profiles for each 

day of the test year (2013). These 24-hour profiles were then averaged by month to 

produce the composite graph given in Figure 4.27. The figure shows that the average of 

the point forecasts fit nicely with the average monthly forecasts, suggesting that the 

FPCA approach can be used successfully to conduct long-term forecasting of average 

monthly profiles.  

 

 

 

Figure 4.27. The Comparison between the Actual Monthly Load (blue solid) and the 

Predicted Monthly Load (red doted) – 2013. 

 

 

4.3.5 The Prediction Interval for the Hourly Load Forecast. The mathematical 

details on the procedure to compute prediction intervals for hourly load forecasts 

constructed based on the FPCA method are given in Section 3.4 and is not repeated here 

to conserve space. The resulting prediction intervals are given in figures 4.28 – 4.30. 
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Figure 4.28. The Prediction Interval from FPCA - a Week in the Mid-Winter Season 

 

 

 

Figure 4.29. The Prediction Interval from FPCA - a Week in the Mid-Spring Season 



74 
 

 

Figure 4.30. The Prediction Interval from FPCA - a Week in the Mid-Summer Season 

 

 

 

Figure 4.31. The Prediction Interval from FPCA - a Week in the Mid-Fall Season  
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5. MODEL COMPARISONS AND CONCLUSIONS 

 

 

In this dissertation three approaches to modeling the 24-hour daily electricity load 

profile were proposed. The first approach provides two models, each of which can be 

used to obtain short-term forecasts. The second model can be used to obtain only long-

term forecasts because it models the monthly average of 24-hour load profile. On the 

other hand, the third approach can be used to forecast the long-term and shot-term 

electricity load.  

The models arising out of the three approaches can be compared based on the 

coefficient of variation, which is prediction error normalized by the average load, say .X    

 

5.1 THE COMPARISON OF THE LONG-TERM ELECTRICITY LOAD 

FORECASTS 

The coefficient of variation (CV) was used to compare between the three 

approaches. CV is defined as follows: 

 

 for each modelRMSE
CV

X
  

 

where RMSE is the root of the mean square error which is defined as 
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 for each hour. 

 

5.1.1 Comparison of the Long-Term Electricity Load Forecasts by Month. 

The Table 5.1 and Fig 5.1 show a comparison between the coefficients of variation (CV) 

for the three models for each month of the forecasted year (2013). In general, the third 

approach presents the lowest CV over six months, the first approach presents the lowest 

CV over four months, and the second approach presents the lowest CV only over two 

months. Note that the first approach requires knowledge of the hourly temperature, the 
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second approach requires the knowledge of the monthly average temperature, and the 

third approach requires the knowledge of the daily average temperature. The results given 

below where obtained using the actual temperature so as to determine the prediction 

accuracy of the approaches without introducing the error due to predicting the 

temperature. Use of one-step prediction of temperature, however, does not make an 

appreciable difference in the forecast accuracy of the second approach. 

 

 

Table 5.1. The CV for the Long-Term Load of the Three Models by Month 

Month 

Approach 1 

Combined 

Model 

Approach 2 

Combined 

Model 

Approach  3 
The Best 

Approach 

1 0.021717 0.028516 0.012271 Approach  3 

2 0.029635 0.013771 0.023851 Approach  2 

3 0.037026 0.020604 0.030913 Approach  2 

4 0.045212 0.033577 0.030429 Approach  3 

5 0.02484 0.031073 0.039578 Approach  1 

6 0.020292 0.044454 0.034879 Approach  1 

7 0.065309 0.030394 0.018977 Approach  3 

8 0.061778 0.091617 0.068852 Approach  1 

9 0.02358 0.042546 0.026656 Approach  1 

10 0.032066 0.040796 0.028044 Approach  3 

11 0.04732 0.044529 0.027615 Approach  3 

12 0.030604 0.020227 0.017272 Approach  3 
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Figure 5.1. The CV of the Long-Term Load for the Three Models by Month; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) 

 

 

5.1.2 The Comparison of the Long-Term Electricity Load Forecasts by Hour. 

The Table 5.2 and Fig 5.2 show a comparison between the coefficients of variation (CV) 

for the three models for each month of the forecasted year (2013). The third approach 

presents the lowest CV over sixteen hours, the second first presents the lowest CV over 

eight hours, and the second approach does not present the lowest CV comparing with the 

others, but the CV of the first approach is lower than the CV of the second approach for 

the first twelve hours. Again, the results presented here are based on actual temperatures 

rather than forecasted temperature values. 
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Table 5.2. The CV for the Long-Term Load of the Three Models per Hour 

Month 

Approach 1 

Combined 

Model 

Approach 2 

Combined 

Model 

Approach  3 
The Best 

Approach 

1 0.051816 0.042275 0.031913 Approach  3 

2 0.057126 0.045251 0.02916 Approach  3 

3 0.060465 0.040975 0.029096 Approach  3 

4 0.065162 0.036733 0.027331 Approach  3 

5 0.064392 0.036701 0.024557 Approach  3 

6 0.059132 0.033509 0.021589 Approach  3 

7 0.06166 0.037209 0.020239 Approach  3 

8 0.050848 0.038925 0.018126 Approach  3 

9 0.048837 0.039595 0.025467 Approach  3 

10 0.05447 0.041731 0.035711 Approach  3 

11 0.04962 0.042578 0.041575 Approach  3 

12 0.04692 0.045453 0.043292 Approach  3 

13 0.044297 0.050384 0.043676 Approach  3 

14 0.039047 0.053643 0.043588 Approach  1 

15 0.031179 0.053296 0.043524 Approach  1 

16 0.026686 0.046265 0.043591 Approach  1 

17 0.026812 0.043568 0.040448 Approach  1 

18 0.034718 0.04454 0.034168 Approach  3 

19 0.024569 0.042784 0.027898 Approach  1 

20 0.021575 0.048052 0.026039 Approach  1 

21 0.026337 0.039071 0.028585 Approach  1 

22 0.028592 0.039543 0.031547 Approach  1 

23 0.040992 0.050775 0.034813 Approach  3 

24 0.04405 0.043335 0.034866 Approach  3 
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Figure 5.2. The CV of the Long-Term Load for the Three Models by Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) 

 

 

5.2 THE COMPARISON OF THE SHORT-TERM ELECTRICITY LOAD 

FORECASTS 

The coefficient of variation (CV) was used to compare between the effectiveness 

of the three approaches for short-term prediction. The formula for RMSE would change 

from what was previously used to the following: 

 

The RMSE for each month is defined by 
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, where lN    is the number of days for 

the given month. 
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5.2.1 The Comparison of the Short-Term Electricity Load per Month. The 

Table 5.3 and Fig 5.3 provide comparison between the coefficients of variation (CV) for 

the three models for each month of the forecasted year (2013). In general, the third 

approach presents the lowest CV over eight months, the first approach presents the lowest 

CV over four months. 

 

 

Table 5.3. The CV for the short-term load of the three models per month 

Month 

Approach 1 

Combined 

Model 

Approach 2 

Combined 

Model 

Approach  3 
The Best 

Approach 

1 0.080001 0.095418 0.047696 Approach 3 

2 0.052844 0.060892 0.053321 Approach 1 

3 0.069404 0.072015 0.067545 Approach 3 

4 0.070818 0.076308 0.078164 Approach 1 

5 0.122593 0.16125 0.07567 Approach 3 

6 0.065271 0.165652 0.068956 Approach 1 

7 0.09346 0.151676 0.064555 Approach 3 

8 0.104277 0.154339 0.10457 Approach 1 

9 0.144395 0.211306 0.075331 Approach 3 

10 0.074403 0.110849 0.069476 Approach 3 

11 0.078837 0.090176 0.058889 Approach 3 

12 0.059224 0.083436 0.056806 Approach 3 
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Figure 5.3. The CV of the Short-Term Load for the Three Models by Month; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) 

 

 

5.2.2 The Comparison of the Short-Term Electricity Load per Hour. The 

Table 5.4 and Fig 5.4 show a comparison between the coefficients of variation (CV) for 

the three models for each month of the forecasted year (2013). The third approach 

presents the lowest CV across all 24 hours. Additional illustrations comparing the three 

methods using CV for short-term predictions are given in Figures A.17 through A.28 in 

the appendix. Figures A.29 through A.32 provide a comparison of the load profiles 

obtained by each method to each other and the actual load.  
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Table 5.4. The CV for the short-term load for the three models per hour 

Month 

Approach 1 

Combined 

Model 

Approach 2 

Combined 

Model 

Approach  3 
The Best 

Approach 

1 0.091626 0.115105 0.0672 Approach 3 

2 0.096508 0.113674 0.064623 Approach 3 

3 0.099608 0.109262 0.061986 Approach 3 

4 0.103005 0.104262 0.059061 Approach 3 

5 0.10163 0.101208 0.055824 Approach 3 

6 0.096505 0.098419 0.053089 Approach 3 

7 0.095408 0.106685 0.063386 Approach 3 

8 0.086231 0.111089 0.066964 Approach 3 

9 0.084465 0.110969 0.063511 Approach 3 

10 0.090368 0.118429 0.069211 Approach 3 

11 0.091015 0.130623 0.076302 Approach 3 

12 0.093075 0.143651 0.081231 Approach 3 

13 0.096096 0.155636 0.084231 Approach 3 

14 0.097644 0.164279 0.085673 Approach 3 

15 0.097152 0.168072 0.086282 Approach 3 

16 0.096581 0.166599 0.085947 Approach 3 

17 0.095026 0.162091 0.082814 Approach 3 

18 0.092855 0.152938 0.074873 Approach 3 

19 0.084613 0.142942 0.068646 Approach 3 

20 0.078168 0.134138 0.062681 Approach 3 

21 0.074998 0.122618 0.059756 Approach 3 

22 0.07317 0.119154 0.060396 Approach 3 

23 0.078469 0.120694 0.064392 Approach 3 

24 0.082857 0.116402 0.068482 Approach 3 
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Figure 5.4. The CV of the Short-Term Load for the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) 

 

 

 The three approaches presented in this thesis add to the considerable literature 

available for modeling and forecasting electricity load profile. One advantage of two of 

the three approaches is that they can be implemented by standard statistical software 

packages and do not require extensive programming. These two methods yield good 

predictions for either the short-term or the long-term.  The third method uses a technique 

that is fairly new in the area of electricity load forecasting. It has some appealing features 

such as decomposing the electric load profile into eigenfunctions that correspond to the 

components that go into making a given days electricity load profile.  

 The models presented herein can be extended in several ways. The first approach 

can be modified by fitting separate models for each month rather than by season. In 

addition, separate models can be obtained for each day-of-the-week rather than for 

weekdays and weekends. Further improvements can be made by carrying out the de-

trending and seasonal adjustments in one step rather than in two. The second approach 

can be improved if a methodology can be developed to obtain monthly estimates of spline 
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coefficients simultaneously rather than one month at a time. This may be possible 

through a state-space approach suggested by Harvey and Koopman (1993), but care must 

be taken to ensure that the model is estimable when the amount of data is not large. The 

third approach has several avenues for improvement. Currently, no exogenous variables 

were included as inputs when conducting the FPCA estimation. Variables such as 

temperature and weekend/weekday dummies are some possibilities as variables for 

inclusion. Another modification is to allow the eigenfunctions to change gradually from 

year to year by including slowly varying economic factors when conducting the FPCA. 
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APPENDIX 

 

 

 In this appendix, additional figures and tables relevant to material presented in 

Chapters 4 and 5 of the main text are given. 

 

1. Graphs Related to the Short-Term Approach 

 Figure A.1 displays the predicted values obtained from regressing average annual 

load values against economic variables (in blue) and the weekly data obtained by 

applying a moving average (in red). Details of the procedure are given in sub-section 

4.1.2. Figure A.2 provides a comparison of actual and predicted weekly load. 

 

 

 

Figure A.1. The Weekly Step of the Annual Prediction (blue) 

 

and the Moving Average (red) 
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Figure A.2. The Weekly Average of the Hourly Load (blue solid) 

and the Predicted Load (red dashed) over 20 years 

 

 

2. Graphs Related to the Long-Term Approach 

 Figures A.3 through A.12 displays the spline coefficients estimates obtained by 

fitting cubic splines to hourly load data for each month. The graphs clearly show that a 

random-walk behavior suggested by Harvey and Koopman (1993) is not present and the 

spline coefficients behave more like seasonal time series. Figures A.4 through A.7 show 

an anomalous behavior of four of the ten spline coefficients around month 110, which 

corresponds to approximately November, 2001 through February 2002. The exact reason 

for this phenomenon is not apparent. Investigation of the load curves during this period 

show some anomalous behavior during weekdays but not weekends. 
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Figure A.3. The Time Series of the Spline Coefficient (b0) 

 

 

 

Figure A.4. The Time Series of the Spline Coefficient (b1) 
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Figure A.5. The Time Series of the Spline Coefficient (b2) 

 

 

 

Figure A.6 The Time Series of the Spline Coefficient (b3) 



89 
 

 

Figure A.7 The Time Series of the Spline Coefficient (b4) 

 

 

 

Figure A.8. The Time Series of the Spline Coefficient (b5) 
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Figure A.9. The Time Series of the Spline Coefficient (b6) 

 

 

 

Figure A.10. The Time Series of the Spline Coefficient (b7) 
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Figure A.11. The Time Series of the Spline Coefficient (b8) 

 

 

 

Figure A.12. The Time Series of the Spline Coefficient (b9) 
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3. Graphs Related to the Functional Principal Component Analysis Approach 

 These graphs show the de-trended daily observed load curve for each season. 

 

 

 
Figure A.13. The Daily 24-hour Profile over 20 Years – Winter Season 

 

 

 
Figure A.14. The Daily 24-hour Profile over 20 Years – Spring Season 
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Figure A.15. The Daily 24-hour Profile over 20 Years – Summer Season 

 

 

 

Figure A.16. The Daily 24-hour Profile over 20 Years – Fall Season 
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4. Graphs Related to the Comparison between the Three Approaches 

 

 

 
Figure A.17. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Jan. 

 

 

 
Figure A.18. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Feb. 
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Figure A.19. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Mar. 

 

 

 

Figure A.20. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Apr. 
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Figure A.21. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – May. 

 

 

 

Figure A.22. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Jun. 
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Figure A.23. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Jul. 

 

 

 

Figure A.24. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Aug. 
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Figure A.25. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Sep. 

 

 

 

Figure A.26. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Oct. 
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Figure A.27. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Nov. 

 

 

 

Figure A.28. The CV of the Electricity Load of the Three Models per Hour; 

Model 1 (blue solid), Model 2 (red doted), Model 3 (green dashed) – Dec. 
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Figure A.29. The Comparison between the Actual Load (blue - solid) and the three 

Approaches: Approach 1 (red), Approach 2 (green), and Approach 3 (gray) 

- a Week in the Mid-Winter Season 

 

 

 
Figure A.30. The Comparison between the Actual Load (blue - solid) and the three 

Approaches: Approach 1 (red), Approach 2 (green), and Approach 3 (gray) 

- a Week in the Mid-Spring Season 
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Figure A.31. The Comparison between the Actual Load (blue - solid) and the three 

Approaches: Approach 1 (red), Approach 2 (green), and Approach 3 (gray) 

- a Week in the Mid-Summer Season 

 

 

 
Figure A.32. The Comparison between the Actual Load (blue - solid) and the three 

Approaches: Approach 1 (red), Approach 2 (green), and Approach 3 (gray) 

- a Week in the Mid-Fall Season  
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