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Abstract

Cost efficiency of banks is a key indicator that provides valuable insight to researchers

and policymakers about the functioning of the financial intermediation process, as well as,

the overall performance of the entire financial system.

This thesis focuses on the cost efficiency of the European banking market for which we

identify fourteen nation-specific frontiers and also perform cross country comparisons under

a common frontier assumption. Our interest in the subject is twofold. At the nation level,

cost efficiency influences the relative competitiveness of banks, setting the profile of the

national banking industry with direct implications on economic growth. At the European

Union level, the financial, institutional and regulatory integration raise questions about the

existence of a common cost frontier or the presence of economies of scale as they could

encourage banks to take advantage of the single market and consolidate.

The empirical approach uses a more general Bayesian stochastic frontier model that

allows for a continuous shift from the individual frontiers of each country to the common

“European” frontier through varying priors.

Results show differences in the frontiers of the countries that we studied, and the selected

banks exhibit economies of scale greater than one more often than not, irrespective of size.
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Chapter 1

Introduction

The global character of the recent recession that followed in the wake of a profound

financial crisis has dramatically reaffirmed the existence of a highly interdependent and

sophisticated world financial system. At the same time, the crisis sends a clear signal that

an accurate and intimate understanding of the mechanism, as a whole, is vital in order

to ensure coordinated and consistent actions on the part of all key system participants.

In an increasingly globalized and integrated World, where economic and financial realities

transcend national borders, policymakers also need to secure an appropriate vantage point.

In the case of the European Union (EU) these aspects are particularly relevant and

topical. A political and economic community of 27 countries, the EU represents the world’s

largest economy,1. It functions as a hybrid system of supranational independent institutions2

in which decisions are made inter-governmentally and they are jointly agreed upon by the

member states.

The European Union must ensure the free movement of people, goods, services, and

capital and also have a common currency area for a subset of 17 countries, while preserving

27 distinct national identities.

1As of 2010, measured by total nominal Gross Domestic Product (GDP).
2Some of the key European Institutions include: the European Commission, the European Parliament,

the European Central Bank, and the Court of Justice of the European Union.
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Under these circumstances, the requirement to maintain a single market poses significant

challenges and raises unique questions regarding the economic and political coordination

along several key dimensions.

One issue of particular interest to European policy makers is the performance and de-

gree of integration of European System. As Berger (2007) was pointing out, cross-country

comparisons have often produced contradictory results and each of the two main approaches

have their own drawbacks.

One popular solution among the empirical studies is to pool together the data from

different countries and identify a common frontier. Each country’s average efficiency level

is estimated relative to a shared frontier. By doing so, this approach implicitly ignores the

differences in the legislative, economic and cultural reality across countries and may lead to

biased results.

A second group of researchers analyzes the efficiency at the level of each country by

developing individual country frontiers based on each nation’s bank data. Unfortunately,

analysis of the relative efficiencies is rendered difficult by the lack of a shared reference

frontier in this approach.

The third category of studies that Berger identifies looks at the differences in efficiency

levels between foreign owned and domestically owned banks within the same country. The

fact that they face the same frontier makes the comparison possible, but we don’t actually

see two banking systems being compared in this case.

This dissertation uses Bayesian methods applied to stochastic cost frontier models in

order to illustrate both the nation-specific and the common frontier approaches and also

presents a hybrid model that nests both models.
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There are a small number of studies that compare the efficiency of Eastern European

banking systems to their Western counterparts and in for this reason, we included in analysis

countries from the Eastern European block that either entered the EU or have applied. For

a selected group of banks we estimate economies of scale.

In our study we utilize Bureau van Dijk database of banks’ balance sheet and income

statement data for 14 European national banking markets from 2001 through 2009. The

dissertation provides an empirical analysis of the technologies employed by banks in these

14 nations and the efficiency of the banks.

Chapter 2 of the dissertation is a short overview of Bayesian analysis and stochastic

frontier models while chapter 3 presents the related banking literature. In chapter 4 we make

a detailed presentation of the data used. Chapter 5 presents the single frontier methodology,

results and conclusions. In chapter 6 we develop the common frontier, report the results and

draw conclusions. In chapter 7 we present the more general model that nests the previous

two approaches with results and conclusions while chapter 8 summarizes and concludes our

research and also talks about future research ideas.
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Chapter 2

Theoretical Background

2.1 Bayesian Analysis

2.1.1 Introduction

The Bayesian paradigm can be understood as a rationalist theory that studies personal

beliefs in the context of uncertainty and yields normative propositions that prescribe how an

individual should act in order to avoid certain kinds of undesirable behavioral inconsistencies.

As Bernardo and Smith (1994) argue, the Bayesian framework lends itself naturally to

Economics where “the expected utility maximization provides the basis for rational decision

making and [...] Bayes’ Theorem provides the key to the ways in which beliefs should fit

together in the light of changing evidence.”

From a technical point of view, the Bayesian approach is closely related to likelihood

methods; likelihood functions provide the basis for both classical and Bayesian statistical

inference. However under the Bayesian approach data is combined with “prior” knowledge,

incorporated in a formal manner, to produce posterior probability distributions for the

parameters of interest. Specifically, the researcher’s original beliefs, in the form of the

assumed priors for the parameters, are updated through a feedback mechanism, via Bayes’

Theorem, while taking into account the data.
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Mathematically, a Bayesian estimate of a parameter is derived as the value that minimizes

the posterior expected loss function. This parameter depends both on the loss function

employed, and on the assumed prior distribution. The probabilistic interpretation assigned

to parameters is specific to Bayesian analysis and it is the main distinguishing feature from

the non-Bayesian methods.

Jaynes (1985) concisely describes the Bayesian approach to statistical estimation as fol-

lows:

In Bayesian parameter estimation, both the prior and posterior distributions
represent, not any measurable property of the parameter, but only our own state
of knowledge about it. The width of the distribution is not intended to indicate
the range of variability of the true values of the parameter. To the contrary, it
indicates the range of values that are consistent with our prior information and
data, and which honesty therefore compels us to admit as possible values. What
is “distributed” is not the parameter, but the probability.

The Bayesian methodology can be seen as a set of theoretical and practical techniques for

quantifying uncertainty in inferences using probability models, statistical data analysis and

an optimal information processing rule - Bayes’ Theorem - that serves as the focal point of

Bayesian inference. Zellner (1988) explains that Bayes’ Rule uses efficiently all the available

information in the data, without adding any extraneous information and it “allows prior

information to be employed in a formal and reproductive manner”.

The basic building blocks of the Bayesian data analysis process are summarized as follows:

• Modeling - Specify the full probability model as a joint probability distribution for

all observable and unobservable quantities. In this step the researcher coherently

combines information from data, with objective knowledge from theory and subjective

knowledge in the form of prior distributions specified for the parameters;

• Estimation - Make conditional probabilistic statements regarding the parameterization

of the model by calculating and interpreting the appropriate posterior distribution.

5



The conditioning is made with respect to the structure of the model and the observed

data that combine to form the likelihood function, which is linked via Bayes’ Rule to

the prior distribution of the parameters and yields the associated posterior distribution.

• Analysis - Evaluate the fit of the model and the conceptual implications of the posterior

distribution obtained in the estimation stage. In particular, the researcher is concerned

with the critical evaluation of the inferred conclusions, their sensitivity to the modeling

assumptions made and how well the model fits the data.

2.1.2 Bayesian versus Non-Bayesian Approach - Costs and Bene-
fits

A very compelling benefit of the Bayesian approach, that sets it apart from the traditional

frequentist paradigm, is that it provides a unified treatment of inference and decision making,

while accounting for both parameter and model uncertainty. In this sense, the Bayesian

literature argues that Bayesian inference “provides the benefits of exact sample results,

integration of decision-making, estimation, testing, model selection and a full accounting of

uncertainty”, Rossi et al. (2007).

While frequentist inference makes exclusively pre-sample1 probability assertions, provid-

ing confidence intervals that bracket the true value of the parameter only in the long run,

with a given frequency, Bayesian inference delivers answers that are conditional on the ob-

served data as opposed to the distribution of estimators or test statistics over theoretical,

unobserved, samples.

Bayesian inference, thus, helps characterize uncertainty about parameter values given

the actual, observed, sample, serving as a guide to decision making.

1A 90% confidence interval brackets the true value of the parameter with probability .90 only before the
sample has been observed, after the probability is either zero or one.

6



For instance, under the Bayesian paradigm the researcher can make probabilistic state-

ments whether the parameter is in one region versus another, which is not possible in the

frequentist approach. Also, the Bayesian methodology can be applied to cases where the

frequentist definition of probability, as a long run relative frequency, proves infeasible, such

as for unique once-and-for-all phenomena or uncertain past events.

Another attractive benefit of using Bayesian methods follows from the fact that they

deliver, by integrating out the nuisance parameters, a finite sample posterior density which

can then be used to derive optimal, finite sample estimates of the parameters of interest

and make exact finite sample probability statements about their possible values. More-

over, Bayesian econometrics allows the direct computation of many complicated functions

of the underlying parameters, while capturing, in these objects, all the existing uncertainty

regarding the parameter values.

Integrating out the nuisance parameters is mathematically equivalent to averaging over

the conditional posterior densities of the desired parameters, given the nuisance parameters.

In the frequentist approach this is not possible and, the usual practice is to instead use

estimates of the nuisance parameters and give the resulting “operational” estimator an

asymptotic justification.

Bayesian methods generally yield exact finite sample results in many cases where non-

Bayesian methods have difficulties in producing optimal finite sample estimators or test

statistics with known distributions and, instead, they have to resort to approximate, large

sample, inference techniques. Examples of such situations include among others: cointe-

grated time series models, generalized method of moments problems, selection bias models,

and simultaneous equations model problems.

Furthermore, the Bayesian approach delivers good asymptotic results for both i.i.d. and

stochastically dependent observations, (see for example Jeffreys, 1998). It also has the added

benefit that the assumptions needed to derive asymptotic normality of posterior densities

7



centered at the maximum likelihood estimate are, in the case of the stochastically dependent

observations, weaker than those required for the asymptotic normality of the maximum

likelihood estimators.

Finally, Bayesian data analysis deals in a natural way with misspecified models (see Mon-

fort, 1996). Bayesian econometricians are mainly concerned with finding a good description

of the data. Thus, in this case the estimation transforms from being a process of research-

ing some ’true’ parameter values, into a selection instrument in the parameter space that

enhances the researcher’s ability to use the model as a language for expressing the regular

features of the data.

In a sense, the Bayesian approach emphasizes more the ’normality’ of lack of identifica-

tion, than the problems it creates. While, it is possible with Bayesian methods to always

achieve identification using non-flat priors, mechanical identification is not a goal in it-

self, and rather, as Manski (1999) put it, the researcher needs to be concerned with “what

conclusions can and cannot logically be drawn given empirically relevant combinations of

assumptions and data” - a principle that is subsumed in the Bayesian paradigm.

Regarding the costs of the Bayesian approach, the critiques raised in the non - Bayesian

literature generally focus on three aspects: the necessity to specify priors, the difficulties

associated with the use of a likelihood function and the computational burden the researcher

faces in obtaining posterior distributions for the parameters of interest.

While the first and the last of these disadvantages apply specifically to Bayesian meth-

ods, the limitations2 imposed by the likelihood function requirement are shared with the

maximum likelihood methods and.

Although, non-trivial these disadvantages are generally seen as of secondary importance

for a Bayesian exercise, considering that the integration of an even high dimensional function,

2The likelihood equations have to be specifically worked out for a given distribution and estimation
problem. Often the numerical estimation is computationally intensive, and the philosophical background is
less well established, especially in terms of probabilities and statistical measures of unique historical events

8



with potentially many flat surfaces, is, in some settings, considerably more tractable than

its maximization.

The requirement to specify a prior distribution for all unknown quantities in the model

(parameters and missing data3) has brought several objections from non-Bayesian econome-

tricians. The frequentist proponents present the choice of the prior as a limiting factor to

the objectivity of the scientific approach and criticized the lack of robustness of the Bayesian

procedures for their reliance on computationally convenient priors and the use of specific

priors in cases where that data and prior would conflict.

While the debate is still ongoing, the Bayesian (and even some of the non-Bayesian)

econometricians bring into question the objectivity of the frequentist inference. They point

out that the assumptions made in the frequentist approach, for instance in the model for-

mulating stage, introduce, informally, in the data analysis process considerable subjective

information, that reflects in fact the researcher’s prior beliefs.

In this sense, Tukey (1978), a non-Bayesian statistician, starkly emphasizes the normality

of having prior beliefs, be it formal or informal, in statistic analysis:

It is my impression that rather generally, not just in econometrics, it is consid-
ered decent to use judgment in choosing a functional form, but indecent to use
judgment in choosing a coefficient. If judgment about important things is quite
all right, why should it not be used for less important ones as well?

Furthermore, concerning the importance of priors in the Bayesian approach, Zellner

(2000) points out that Bayesian econometricians use diffuse (non-informative) and informa-

tive prior densities quite broadly. For hierarchical models, state space models, random effects

models, and random initial conditions for time series models, the distributions are introduced

for parameters that are actually “part of the model” and drawing a direct connection between

the priors used and the results of the estimation is, at best, an oversimplification.

3Allowing the data to play a role in determining the prior distribution characterizes the, so called,
empirical Bayes approach.

9



Finally, the computational advances in the 1990s, coupled with the software development

and implementation of various MCMC simulation techniques, have all but eliminated the

constraints on priors and models, and have greatly simplified the calculation of posterior

distributions. Although the robustness of the Bayesian methods, like of any other econo-

metrical approach for that matter, could still be seen as a fundamental issue in the academic

debate, their technical tractability no longer appears as a substantiated concern.

2.1.3 Bayes’ Theorem

Bayes’ theorem serves as the cornerstone of Bayesian statistics. It can be characterized

as an optimal information processing rule that uses efficiently all the available information

to obtain the posterior distribution of some unknown parameters, by combining in a formal

and reproductive manner, prior information with sample information summarized by the

likelihood function.

Let y be a random variable that is observed and θ be an unknown parameter drawn from

some distribution p(θ). From the definition of conditional probability it follows that:

Pr(θ|y) =
Pr(y, θ)

Pr(y)
. (2.1)

Moreover, the joint probability Pr(y, θ) can be written using the definition of conditional

probability again, as follows:

Pr(y, θ) = Pr(y|θ)Pr(θ) (2.2)

.

Substituting equation (2.2) in (2.1) gives equation (2.3), the univariate version of Bayes’

theorem.

10



Pr(θ|y) =
Pr(y|θ)Pr(θ)

Pr(y)
(2.3)

where Pr(θ) is the prior distribution of the possible θ values and Pr(θ|y) is the posterior

distribution of θ given the observed data y.

Alternatively, in the continuous multivariate case, Bayes’ Theorem has the following

form:

p(Θ|y) =
p(y|Θ)p(Θ)

p(y)
=
p(y|Θ)p(Θ)∫
p(y,Θ)dΘ

(2.4)

where Θ = (θ(1), θ(2), · · · , θ(k)) is a vector of k (potentially) continuous variables, p(Θ) is

the assumed prior distribution of the unknown parameters, p(y|Θ) = `(Θ|y) is the likelihood

function, and p(Θ|y) is the posterior distribution given the prior of the unknown parameter(s)

p(Θ) and the data y.

Since in equation (2.4) the term 1/p(y) is essentially a constant (with respect to Θ), the

posterior distribution can be written as:

p(Θ|y) ∝ `(Θ|y)p(Θ) (2.5)

where the symbol ∝ signifies that the posterior distribution is “proportional” (equal up

to a constant) to the likelihood augmented with the prior. Also, since the constant p(y)

normalizes p(y|Θ) · p(Θ) to one, it can be obtained by integration as follows:

p(y) =

∫
Θ

p(y|Θ) · p(Θ)dΘ (2.6)

.

The dependence of the posterior on the prior is useful in inferring how much information

on the unknown parameter values is contained in the data. In this sense, if the posterior is

highly dependent on the prior, then the data likely has little signal.

11



Alternatively, if the posterior distribution is relatively stable over a choice of priors, the

opposite will be true and the data contain significant information. Succinctly, this can be

seen by taking logs on equation 2.4 and dropping the normalizing constant:

log(posterior) ≈ log(likelihood) + log(prior) (2.7)

2.1.4 The Choice of a Prior

A defining feature of Bayesian analysis is the choice of a prior. For informative data the

posterior distribution is robust over a fairly wide range of priors. With non-informative data

the characteristics of the prior used, in particular its location (mean or mode) and preci-

sion (the inverse of the variance), become especially meaningful for the resulting posterior

distribution. Moreover, the family of the prior distribution is often chosen to simplify the cal-

culation of the posterior - specifically the class of conjugate priors comprises of distributions

that for specific likelihood functions give posteriors in the same distribution family4.

Diffuse Priors

An attractive benefit of the Bayesian methodology is that it can make use, in a formal

manner, of any existing information, empirical or theoretical, about the unknown parameters

of interest. This preexisting information serves to improve the estimation process and is

integrated by adopting appropriate, case specific, prior distributions commonly referred to

as informative priors for parts, or even the entire, parameter vector Θ.

Alternatively, if such information is not available, or deemed undesirable for the scope

of the research, the practice is to use instead uninformative or diffuse priors.

4For example a gamma prior with a Poisson likelihood returns a gamma posterior.
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The most common diffuse prior5 is just a constant, which implies that there is no evidence

to justify favoring any particular parameter value over another :

p(θ) = k =
1

b− a
for a ≤ θ ≤ b (2.8)

Applying Bayes’ Theorem it follows that the posterior distribution is a constant times

the likelihood, which can then be written as: p(θ|y) ∝ `(θ|y).

A special situation arises when the parameter of interest has a range over (0, ∞) or

(−∞, +∞), because a flat prior does not exist in the strict sense for such cases, since the

integral does not exist for any non-zero constant and is instead called an improper prior.

The use of diffuse priors is also appropriate for cases when the likelihood exhibits a

natural scale; that is the likelihood function has a form such that the data only influences

the unknown parameter vector by a translation on the scale of the function. For instance,

the likelihood function for a parameter Θ and data vector y can be written in data-translated

format as:

`(Θ|y) = g [h(Θ)− t(y)] (2.9)

where ` = g(z) is the likelihood function with z = h(Θ)− t(y) and the data y only appears

in the sufficient statistic t, such that different values of y with the same value of t(y) have

the same likelihood.

The natural scale for the unknown parameter Θ in this case is h(Θ) and a flat prior on

Θ of the form p [h(Θ)] = constant or p(Θ) ∝ |∂h(Θ)/∂Θ| (if transformed using the change

of variable method) should be used.

For cases when the natural scale of the likelihood function cannot be easily found, Jeffreys

(1998) has proposed a general prior based on the Fisher information I of the likelihood.

5It is interesting to note that classical results from frequentist statistics can be obtained using the Bayesian
methodology by assuming a flat prior.
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The Fisher information has the following form6:

p(Θ) ∝
√

det[I(θ|y)] (2.10)

with I(Θ|y)ij given by:

I(Θ|y)ij = −Ey
(
∂2 ln `(Θ|y)

∂θi∂θj

)
(2.11)

Conjugate Priors

The use of conjugate priors that for specific likelihood functions return a posterior distribu-

tion in the same family as the prior distribution allows for analytic tractability. While no

longer strictly necessary, thanks to the widespread availability of simulation techniques that

will be discussed later in this chapter, they are nevertheless technically convenient. Many

commonly used distributions like normal, gamma, exponential, Poisson, or binomial belong

to the exponential family, with a general form given by equation (12).

In general, if the likelihood is drawn from the exponential family, a conjugate prior, that

is also part of the exponential family, can be found such that the posterior distribution will

be similar to the prior, as follows:

Given the likelihood for a single observation (out of n):

`(yi|θ) = g(θ)h(y) exp

(
m∑
j=1

φj(θ)tj(yi)

)
(2.12)

and a prior

p(θ) ∝ [g(θ)]b exp

(
m∑
j=1

φj(θ)aj

)
(2.13)

6For a full derivation see Lee (1997).
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The posterior density is given by:

p(θ|y) ∝

[
n∏
i=1

`(yi|θ)

]
p(θ) =∝ [g(θ)]b+n exp

(
m∑
j=1

φj(θ)dj(y)

)
(2.14)

with

dj = aj +
n∑
i=1

tj(yi) (2.15)

.

In Table 2.1 the conjugate priors for some common likelihood functions from the expo-

nential family of distributions are presented.

Table 2.1: Conjugate Priors for Common Likelihood Functions

Likelihood Conjugate prior
Binomial Beta
Multinomial Dirichlet
Poisson Gamma
Normal

µ unknown, σ2 known Normal
µ known, σ2 unknown Inverse Chi-Square
Multivariate Normal

µ unknown, V known Multivariate Normal
µ known, V unknown Inverse Wishart

2.1.5 The Posterior Density Function

In Bayesian econometrics the full estimator for the unknown parameter (vector) of in-

terest is the posterior density function itself. In general, the posterior distribution can be

obtained through sampling algorithms such as Metropolis Hastings. The posterior density

is often presented as a frequency histogram constructed using samples generated from the

posterior distribution.
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Alternatively, the posterior distribution can be summarized in a variety of ways, for

example:

• Following maximum likelihood, the mode of the distribution can be given:

θ̂ = max
θ

[p(θ|y)] (2.16)

• The expected value of θ given the posterior,E[θ|y], can be used:

θ̂ = E[θ|y] =

∫
θp(θ|y)dθ (2.17)

• Or the median of the posterior distribution can be calculated, such that the estimator

satisfies Pr(θ > θ̂|y) = Pr(θ < θ̂|y) = 0.5:

∫ +∞

θ̂

p(θ|y)dθ =

∫ θ̂

−∞
p(θ|y)dθ =

1

2
(2.18)

Also it is worth noting that Bayesian analysis has the attractive advantage, over the

frequentist approach, of being capable to easily produce a (marginal) posterior density for a

subset of the unknown parameters by integrating out the nuisance parameters in the poste-

rior density function. For example, if the vector of the unknown parameters Θ is partitioned

into two parts Θ = (Θ1,Θ2), where Θ2 represents the vector of nuisance parameters, the

posterior distribution for Θ1 is given by:

p(Θ1|y) =

∫
Θ2

p(Θ1,Θ2|y)dΘ2 (2.19)
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2.1.6 Posterior Simulation

Obtaining the posterior distribution function can be, in many cases, difficult and com-

putationally intensive, requiring the calculation of high dimensional integrals or sampling

from complicated and, often, unknown distributions. Before the remarkable advances in

simulation techniques in the 1990s, in particular the development and implementation of

Markov Chain Monte Carlo (MCMC) methods, which will be discussed in this section in

some detail, the evaluation of the posterior distribution represented the major hurdle in the

empirical application of Bayesian analysis.

Initially, Bayesian econometricians had to rely on simple models that proved analytically

tractable or they were restricted to using specific priors and likelihood functions, part of

the so-called conjugate family that return a known posterior distribution, which attracted

significant criticism from the frequentist proponents for the apparent lack of robustness of the

Bayesian approach. In an attempt to alleviate the problem, several analytic approximation

methods,7 usually based on normal kernel expansions, were developed to calculate marginals

and expectations, but they had the major drawback of being computationally very intensive

and time consuming, in many cases requiring two function maximizations.

A major breakthrough and improvement happened in the 1980s, with the advent of

non-iterative numerical integration techniques (and also cheaper and more easily available

computational power) that delivered exact or approximate posterior distributions. Some

of the most widely used approaches were those based on quadrature rules (like Davis and

Rabinowitz 1984) and Monte Carlo methods: importance sampling (Geweke 1988, 1989) or

sampling/importance sampling (Rubin 1987; Gelfand and Smith 1990).

Nevertheless, an important limitation of the numerical integration techniques mentioned

was their inability to deal with higher dimensions.

7One of the most widely used was Laplace’s method, see DeBruijn (1961).
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In the end this was a major factor in the development and introduction in the 1990s

of sample based iterative simulation techniques, widely known as MCMC methods. These

techniques have proved to be both more efficient and more robust than their counterparts,

being capable of producing accurate samples even for high dimensional and complicated

posterior distributions.

Direct Simulation

For simple, nonhierarchical Bayesian models, especially if conjugate priors have been

assumed, or as a first approximation for more complicated problems, it is often convenient

to factor the distribution analytically and simulate it in parts. In general, the distribution of

a continuous parameter can be approximated as a discrete distribution on a grid of points,

by calculating the target density p(θ|y) at a set of evenly spaced values (θ1, · · · , θn) that

span a broad range of the parameter space for θ.

The continuous p(θ|y) is then approximated by the discrete density at (θ1, · · · , θn) with

probabilities p(θi|y)/
∑N

j=1 p(θj|y).

Given the computed grid values, a random draw from p(θ|y) is taken by drawing a

random sample U from the uniform distribution on [0,1] and then transforming it, using

the inverse cdf method, to obtain a sample from the discrete approximation. This method

requires the grid points to be fine enough to cover well the parameter space and for this

reason it does not work well for high-dimensional multivariate methods since for such cases

the computational cost imposed can easily become prohibitive.

In the class of direct simulation techniques, rejection sampling is a widely employed

method, which is often used as part of more complex simulation approaches and thus a brief

description would prove useful. Given a target density p(θ|y), rejection sampling requires a

positive function g(θ) defined for all θ where p(θ|y) > 0.
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The function g(θ) needs to satisfy all of the following:

• The function g(θ) has a finite integral (it does not necessarily have to integrate to one)

and random samples can be drawn from the probability density proportional to g

• The importance ratio p(θ|y)/g(θ) must have a known, finite, bound M .

The rejection sampling algorithm consists of two steps:

1. Draw a random sample for θ from the probability density proportional to g(θ)

2. Accept θ as a draw from p(θ|y) with probability8 p(θ|y)/Mg(θ). If the draw is rejected,

return to step 1.

The approximate density g(θ) should be chosen to be roughly proportional to p(θ|y).

Ideally g ∝ f in which case, for a suitable value of M , virtually every draw can be accepted

with probability one. Alternatively, if that is not the case, the value for the bound M has to

be set large enough, such that the acceptance probability in the first step of the algorithm

is very low.

Markov Chain Simulation

Markov Chain Monte Carlo (MCMC) simulation refers to a generic class of methods based

on drawing values of θ from approximate distributions and then adjusting these draws to

better match the target posterior distribution p(θ|y). These techniques are used when it is

not possible (or it is computationally inefficient) to draw θ directly from p(θ|y) and instead

it is more convenient to sample iteratively from a distribution that becomes, with each step,

closer to the posterior distribution.

8The boundedness condition on the importance ratio ensures that the acceptance probability cannot be
larger than one.
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Examples of problems that can be solved in the MCMC framework include: intractable

posterior distributions for which known generators fail, hierarchical models, censored models,

data augmentation and models with missing data.

The basic approach is built around the concept of Markov chain, which is defined as

a sequence of random variables (θ1, θ2, · · · , ) such that, for any t, the distribution of θt,

conditional on all previous θ’s, depends only on θt−1.

Succinctly, random samples are drawn sequentially forming a Markov chain, with the

distribution of the sampled draws depending only on the value drawn. The objective is

to create a Markov process whose invariant (stationary) distribution is the target posterior

density p(θ|y) and run the simulation long enough to ensure that convergence is achieved,

such that the current draws are arbitrarily close to the stationary distribution.

Gibbs sampler, Metropolis, and Metropolis-Hastings algorithms are representative meth-

ods in the class of MCMC techniques that effectively form the backbone of current empirical

Bayesian analysis and are each briefly discussed below.

The Metropolis and Metropolis-Hastings Algorithms

Metropolis-Hastings is a generic name for a family of algorithms in the Markov Chain

class that includes Metropolis and its generalization Metropolis-Hastings, which are used

extensively for constructing and sampling from transition distributions for arbitrary target

distributions. While these techniques are applicable to a wide range of problems from

various science fields, in Bayesian data analysis they prove particularly valuable for sampling

posterior distributions that are difficult or, even impossible, to sample from directly.

The Metropolis algorithm was initially proposed by Metropolis et al. (1953) to study

the equilibrium properties of large systems of particles in an atom.
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The algorithm is an adaptation of a random walk that uses an acceptance/rejection

rule to converge to the specified target distribution. It sequentially samples values of the

unknown parameters from an approximate distribution and then corrects the draws to get

closer to the target density p(θ|y), in a similar way to importance sampling with the one

exception that in this case the distribution of the draws depends on the previous value

drawn, which makes this method a Markov chain.

Briefly the algorithm can be described as follows:

1. Draw a starting point θ0 from a starting distribution p0(θ) typically based on approx-

imation of the target density, such that p(θ0|y) > 0.

2. For t = 1, 2, · · ·

• Sample a proposal θ∗ from a symmetric jumping (candidate) distribution Jt(θ
∗|θt−1),

with Jt(θ1|θ2) = Jt(θ2|θ1) for all θ1, θ2, and t. To ensure the efficiency of the al-

gorithm, the candidate distribution must be easy to sample and convenient for

the computation of the ratio r, covers the parameter space reasonably well and

has a reasonable rejection rate in the sense that the jumps are not rejected too

frequently, so the random walk spends a long time in one place.

• Compute the ratio of densities:

r =
p(θ∗|y)

p(θt−1|y)
(2.20)

• Set:

θt =


θ∗, with probability min(r, 1)

θt−1, otherwise

(2.21)
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The transition distribution Tt(θ
t|θt−1) can be characterized, given the current value for

θt−1, as a mixture of a point mass at θt = θt−1 and the jumping distribution Jt(θ
t|θt−1)

adjusted for the acceptance rate.

Metropolis-Hastings is a generalization of the Metropolis algorithm, developed by Hast-

ings (1970), which modifies the basic algorithm in two ways: it relaxes the symmetry re-

quirement on the jumping distribution and, to correct for asymmetry in the jumping rule,

it computes r as a ratio of ratios:

r =
p(θ∗|y)/Jt(θ

∗|θt−1)

p(θt−1|y)/Jt(θt−1|θ∗)
(2.22)

The Metropolis-Hastings algorithm, by allowing for asymmetric jumping rules, has the

attractive advantage over the classical Metropolis approach of being more efficient and in-

creasing the speed of the random walk and convergence.

The Gibbs Sampler

The Gibbs sampler, sometimes called alternating conditional sampling, is another core

Markov chain algorithm that is, besides Metropolis-Hastings, extensively used in multidi-

mensional problems. For Bayesian purposes the Gibbs sampler has proved to be particularly

useful in dealing with hierarchical models (Seltzer et al. 1996), censored models (Geweke

1992), the seemingly unrelated regression model of Zellner (1962) (Blattberg 1991 and Percy

1992) and models with missing data (Gelfand and Carlin 1993) among others.

Gibbs sampler represents a special case of the Metropolis-Hasting algorithm. Given the

parameter vector θ, divided into d subvectors, Gibbs sampler cycles, at every iteration t,

through all the components of θ, indexed by j, drawing each subset of parameters conditional

on the value of all others θt−1
−j .
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The candidate distribution Jj,t(·|·) at step j of iteration t only jumps along the jth

subvector with conditional posterior density of θj given θt−1
−j :

JGibbs
j,t (θ∗|θt−1) =


p(θ∗j |θt−1

−j , y), if θ∗−j = θt−1
−j

0, otherwise

(2.23)

where θt−1
−j = (θt1, · · · , θtj−1, θ

t
j+1, · · · , θtd) represents all components of θ, except for θj ,

at their current values.

The only jumps possible are to parameter vectors θ∗ that match θt−1 on all components

except the jth and the ratio r in this case is given by:

r =
p(θ∗|y)/JGibbs

j,t (θ∗|θt−1)

p(θt−1|y)/JGibbs
j,t (θt−1|θ∗)

=
p(θ∗|y)/p(θ∗j |θt−1

−j , y)

p(θt−1|y)/p(θt−1
j |θt−1

−j , y)
=
p(θt−1

j |y)

p(θt−1
j |y)

= 1 (2.24)

Gibbs sampler and the Metropolis algorithm are useful as preliminary steps for simulating

from complicated distributions that complement each other in empirical work. For instance,

if there are conditional posterior distributions in a model that can be sampled from directly,

while some cannot, then the parameters can be updated one a time using Gibbs sample

whenever possible and one dimensional Metropolis algorithm otherwise.

When the scalar parameters are highly correlated with each other, instead of breaking

down the parameter vector Θ into its individual components, very often it is practical to

block parameters together based on their correlation and update each block using either

the Gibbs sampler or a Metropolis jump of the parameters within that block. This practice

has the advantage of improving convergence speed, since if the parameters were treated

individually, the autocorrelation would decay very slowly, thus requiring a very large number

of iterations. The downside of blocking is that it requires drawings from a multivariate

distribution, which are technically more challenging to deal with, compared to an univariate

distribution.
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As for any method in the MCMC class, achieving convergence is a particularly important

issue, otherwise the simulations will misrepresent the target distribution and the inference

process will be flawed. Furthermore, since the early iterations resemble the starting approx-

imating distribution, it is recommended to use these as burn-in period of the sampler and

discard them after convergence has been reached.

A brief outline of some statistical tests commonly used to assess Markov chain conver-

gence is given below:

• Gelman-Rubin Diagnostics - is a one sided test based on a variance ratio test statistic.

It uses parallel chains with dispersed initial values to check for convergence to the

target distribution and compares the variances within each chain and between chains.

Rejection occurs when there are large deviations between these variances indicating

nonconvergence, which may be due to a multi-mode posterior distribution or because

the burn-in is not yet complete and a longer chain must be run.

• Geweke Diagnostics - is a two-sided test and evaluates convergence by comparing

means from the first and latter part of the Markov chain. Large absolute values of the

test statistic z indicate nonconvergence.

• Heidelberger-Welch Diagnostics - consists of two parts: a stationarity, one sided, test

based on the Cramer-von Mises statistic which tests the hypothesis that the chain

comes from a covariance stationary process and a half-width test that checks whether

the Markov chain sample size is appropriate. The stationary test can be performed

repeatedly on the same chain: if it passes, then the entire chain is considered stationary,

alternatively the first 10 percent of the chain is discarded and the test is repeated. The

process continues until either the chain passes or there is not enough data remaining

to construct a confidence interval. The part of the chain that is considered stationary

is then put through the half-width test.
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• Raftery-Lewis Diagnostics - is a test designed to find the number of samples needed

to reach a desired level of accuracy of the estimated percentiles. The usefulness of

this test is limited to percentiles and should not be used to asses the convergence of

a chain as a whole. Furthermore, the test is very sensitive to even small changes to

input variables such as the desired coverage probability or the cumulative probability

of interest. Rejection indicates that a longer Markov Chain is required.

Also another significant issue in the implementation of the Gibbs sampler is the potential

interdependence between draws. In order to obtain approximately independent draws from

the target distribution one simple practice is to discard every kth draw. Nevertheless, this has

a significant negative effect on the efficiency of the process. An alternative to this approach

is the multiple path method that requires the researcher to run p parallel simulations, and

keep the last value in each sequence. This method has the advantage that it can prove

helpful in checking the convergence of the chain by comparing the variances within and

between sequences9, which helps alleviate the efficiency cost that it imposes (only p data

points are used out of pn).

2.2 Stochastic Frontier Model

2.2.1 Introduction

The ability to formalize and measure the economic performance of producers is of

prime importance, considering the sum of all existing economic processes that ensure the

transformation of scarce resources into goods and services required to satisfy the diverse,

competing, and virtually unlimited needs and wants of human society.

The economic theory behind efficiency analysis stems from the seminal contributions

9If the variance within each sequence is significantly smaller than the variance between sequences suggests
that convergence has not been achieved yet.
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of Koopmans (1951) and Debreu (1951) on activity analysis. Farrell (1957) is the first

empirical work that, building on this theoretical background, has relaxed the classical as-

sumption of perfect input-output allocation and proposed a method to evaluate individual

firm (in)efficiency with respect to a benchmark technology given by a frontier function rep-

resenting efficient operations.

Farrell’s approach represents a clear departure from the concept of average firm per-

formance used in the econometric literature on production functions and efficiency of the

period. In his framework, efficiency is decomposed into two components: pure technical effi-

ciency and allocative efficiency that together give the overall level of efficiency, later referred

to in the literature as economic efficiency.

Pure technical efficiency reflects a firm’s ability to minimize the use of inputs for pro-

ducing a given amount of output and indicates the potential reduction in the use of inputs

by adopting the practices of the best-performance firms that are operating on the fron-

tier. Distance functions (Shephard 1953, 1970) can be used to study this type of efficiency

by measuring the distance of a given productive activity to the boundary of production

possibilities.

Allocative efficiency refers to the plant’s capacity to operate at its most efficient size by

using inputs in optimal proportions conditional on input prices and their marginal produc-

tivities.

Contingent on the behavioral assumptions made about the productive unit analyzed,

alternative representations of the structure of production technology can be generated using

duality theory in the form of cost, revenue and, respectively, profit frontiers which then

define the relative level of economic efficiency for a particular activity or unit.
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In practice, efficiency measurement implies, at a basic level, the comparison between

an indicator of the actual performance of a productive unit or activity and an empirical

approximation of the “best-practice” frontier. Depending on the method used to derive this

reference frontier, two main and competing estimation techniques can be distinguished in

the literature on efficiency measurement: the mathematical programming approach and the

econometric approach.

The mathematical programming approach or Data Envelopment Analysis (DEA) is non-

parametric and relies on mathematical linear programming to construct piecewise linear

segments of the best performance benchmark frontier from the observed data on inputs and

outputs, yielding a convex Production Possibility Set.

The theoretical fundaments of DEA stem from the seminal work of Farrell (1957), later

extended by Banker, Charnes and Cooper (1984), and Färe, Grosskopf, and Lovell (1985).

The widespread application of DEA techniques in empirical work began with the con-

tribution of Charnes, Cooper and Rhodes (1978) that proposed an input oriented model

and assumed constant returns to scale (CRS). The CRS assumption implies that all firms

analyzed are operating at an optimal scale which, taking into account imperfect competition

and financial constraints, is overly restrictive and may lead to an incorrect measure of (pure)

technical efficiency. Banker et al. (1984) have subsequently extended the original model to

allow for variable returns to scale (VRS).

In general under the DEA method it is possible to measure technical inefficiency either

as a proportional reduction in input usage to produce a certain output (an input-oriented

model) or as proportional increase in output given the existing input usage (an output-

oriented model). Although the two types of models estimate the same frontier and identify

the same set of efficient firms, they may give different efficiency measures, if the CRS as-

sumption does not hold.
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An important criticism raised against the DEA models stems from their non-stochastic

nature and refers to the difficulty of drawing statistical inference. Most studies assume

that any deviation from the frontier function is due to technical inefficiency, thus ignoring

the effect of any sampling noise on the efficiency of the estimators, leading to potentially

misleading conclusions.

As Simar and Wilson (1998) point out, the inherent complexity of the DEA estimators

for a multi-output, multi-input analysis further complicates the issue, leaving bootstrapping

as virtually the only feasible way to investigate the sampling properties of these estimators

and compute confidence intervals. Nevertheless, simulating the data generating process is

still a difficult endeavor, especially in the context of DEA, which requires the nonparametric

estimation of the boundary of a high dimensional object.

The econometric approach, as opposed to DEA, is stochastic and, at the expense of

having to make assumptions regarding the functional form of technology and inefficiency,

allows for statistical inference.

The analytical foundations of Stochastic Frontier Analysis lie in the works of Aigner,

Lovell and Schmidt (1977), Meeusen and van den Broeck (1977) and Battese and Corra

(1977) who simultaneously, and independently, developed a Stochastic Frontier Model (SFM).

The SFM features a composed error structure. Part of the error term models the ineffi-

ciency component, typically represented as a one sided distribution.

The other component of the error term captures the effect of exogenous shocks (statistical

noise), usually assumed to be normally distributed with mean zero.

Generically the stochastic frontier production function can be written as follows:

yi = f(xi, β) + εi, (2.25)
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where yi is the observed output, xi is the vector of inputs, β is a vector of unknown pa-

rameters and εi = ui − vi is the composite error term. The error component ui represents

statistical noise and it is typically assumed to be distributed independently and identically

as ui ∼ N(0, σ2
u), while vi denotes technical inefficiency and vi ≥ 0 thus all observed outputs

lie either on or below the stochastic frontier.

In the recent years, the distinction between DEA and the econometric approach has

become much less clear cut thanks to new methods that make use of flexible functional

forms, semiparametric and Bayesian techniques. These new applications reduce both the

risk of misspecification arising from a rigid parameterization and, at the same time, alleviate

the limitation of non-parametric estimation, providing a basis for statistical inference. As

Fried et al. (2008) put it, “the gap is no longer between one technique and the other, but

between best-practice knowledge and average practice implementation”

2.2.2 Stochastic Cost Frontier

Cost inefficiency is a mix of both technical and allocative inefficiency, and this makes

its estimation technically more involved than that of a stochastic production frontier. Formal

analysis of allocative inefficiency requires, besides more detailed data (information on input

prices, output quantities, total expenditure on inputs and, potentially, input quantities and

input cost shares) the estimation of a cost frontier based on an input oriented approach.

In particular, the use of an input oriented approach in the estimation of the stochastic

cost frontier implies that inputs no longer have to be treated equally, and thus knowledge

of quasi-fixed inputs can be used to derive a variable cost frontier instead.

The most important difference, though, stems from the ability to decompose cost inef-

ficiency, as opposed to pure technical inefficiency associated with production frontier, into

input-oriented technical inefficiency and input-allocative inefficiency.
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This can be particularly informative if there are different causes for the two inefficiencies.

Furthermore, cost efficiency cannot be greater than input oriented technical efficiency10

(since input efficiency is a necessary condition for cost efficiency) with the difference repre-

senting input allocative efficiency.

2.2.3 The Bayesian Stochastic Cost Frontier

The basic Stochastic Frontier framework with a composite structure of the error term

representing deviations from a theoretical frontier. It was originally introduced by Meeusen

and van den Broeck (1977) and Aigner, Lovell and Schmidt (1977). The model has been

extended by van den Broeck, Koop, Osiewalski, and Steel (1993) to incorporate Bayesian

methods. They argued that this new approach had several distinct advantages over the

classical methods. Most notably, it allowed the computation of exact finite sample results

for any parameter of interest and it also provided a very intuitive framework for model

comparisons. Initially they applied the method on an empirical example about electric utility

companies (cross sectional data) taken from Greene (1990), using Monte Carlo integration

with importance sampling.

Later, Koop, Osiewalski, and Steel in another 1993 paper refined the approach by using

Gibbs sampling instead11 to obtain a random sample from a joint distribution by taking

random draws from only conditional distributions. This was motivated by technical factors,

because the importance sampling integration proved to be computationally demanding and

thus not very well suited for the study of more involved research problems.

Another important theoretical contribution was made by Koop et al. (1993), who de-

rived conditional densities for the stochastic frontier model for various different sampling

distributions on the efficiency term: exponential as in Meeusen and van den Broeck (1977),

10 Also, estimates of input oriented technical efficiency are not necessarily the same with estimates output
oriented technical efficiency.

11Simple Monte Carlo integration was also suggested as a possible alternative to Gibbs sampling.
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half-Normal of Aigner, Lovell, and Schmidt (1977), truncated Normal of Stevenson (1980),

and gamma as in Greene (1990).

With a focus on Bayesian stochastic cost frontier analysis, Terrell (1996) proposed an

approach for imposing monotonicity and concavity restrictions on the set of prices where

inferences are drawn. The flexible form cost functions considered are translog, generalized

Leontief and symmetric generalized Leontief.

In 1997 the method was extended and applied by Koop et al. (1997) and Fernandez,

Osiewalski and Steel (1997) to the measurement of economic efficiency in panel data models,

where technical inefficiency is assumed to be time invariant. Lewis and Anderson (1998) and

Lewis, Springer and Anderson (2003) considered the case when mean economic inefficiency

differs across two groups.

More recently, using a Bayesian approach on a translog cost system, Kumbhakar and

Tsionas (2005) proposed a solution to the so-called “Greene problem”12 in a random effects

framework.

12Estimating technical and allocative inefficiency for a translog cost function (Greene, 1980) is challenging
as the translog functional form has many variables and they tend to exhibit multicollinearity.
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Chapter 3

Related Banking Literature

3.1 Comparisons of Banking Efficiency Across Coun-

tries

Starting with the seminal contributions of Aigner, Lovell and Schmidt (1977) and Meeusen

and van den Broek (1977) in the field of stochastic frontier models, over the past three

decades, there has been a veritable explosion in the number of empirical studies on firm

efficiency and productivity.

In particular, there is a very fast growing body of literature which focuses on banking

efficiency. The interest in the banking industry is largely motivated by the pivotal role,

within an increasingly (globally) integrated financial system, played by commercial banks in

the efficient allocation of financial resources that has strong implications on the functioning

of the entire economic mechanism.

Furthermore, it is particularly important, from a policy making point of view, to un-

derstand and evaluate potential vulnerabilities of the domestic banking system, as well as

foreign banking systems, especially considering the stability aspect of the global financial

system.
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A comprehensive review1 of the banking efficiency literature, given its remarkable rich-

ness, goes beyond the scope of this dissertation. Instead, we focus on highlighting the

research specialized in international comparisons of banking efficiency that is closely related

to our work and research agenda as it was summarized by Berger (2007). He classifies

the banking literature based on how the bank comparisons were conducted in three logical

categories:

(1) comparisons of the efficiencies of banks in different nations using a common frontier;

(2) comparisons of the efficiencies of banks in different nations using the same nation-

specific frontier for all domestic banks;

(3) comparisons of the efficiencies of foreign-owned versus domestically owned banks

within a nation, using a common, nation-specific, frontier.

The first of the three categories subsumes a large number of studies that share a common

approach regarding the efficient frontier found at the heart of the analysis; specifically this is

made of the best performing banks in the entire data set, regardless of nationality. Statistics,

such as average bank efficiency are then calculated and used to perform comparisons across

nations.

One of the early papers, representative for this batch, is Berg, Forsund, Hjalmarsson and

Suomien (1993) that studies commercial banks’ efficiency in Norway, Sweden and Finland

using Data Envelopment Analysis (DEA). The authors argue that, on average, Swedish

banks are more efficient than the ones from Norway or Finland.

The dominance of Swedish banks was confirmed later by Buck, Berg and Forsund (1995)

and Bergendahl (1995) in efficiency studies that also add Denmark to the mix..

An important caveat of these early cross-country studies is that they do not control,

rigorously, for differences in economic environment across nations.

1For a more detailed study of the literature and measurement methods see for example Berger and
Humphrey (1997) and Berger (2007) on which the presentation from this section is based.
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Most of them implicitly assume that the differences in banking efficiency can only arise

from different managerial practices and technologies available to the banking industry in

each country.

Essentially this eliminates any potential role for prudential supervisory and regulatory

requirements, market conditions, population density, quality of banking services provided or

competition for inputs and outputs in affecting the banks’ cost and profit performance. These

kind of environmental factors, besides having a logical connection to how banks conduct

their business, arguably manifest significant more heterogeneity across countries, especially,

when compared to things like the underlying technologies of the banking services production

which, for developed countries at least, should be fairly similar.

If it is indeed the case that country-specific variables are important in explaining efficiency

differences, performing an efficiency analysis based on a common frontier, in the absence of

appropriate controls, will tend to overestimate the inefficiency levels, making cross-country

comparisons suspect and difficult to interpret.

Furthermore, another, more general, limitation concerning the international compara-

bility of bank efficiency based on the common frontier approach is that, from a conceptual

point of view, a measure of the efficiency of domestic banks within their own borders is not

necessarily appropriate for characterizing their performance as foreign-owned institutions

in another country. Even without significant regulatory or economic differences, between

the domestic and foreign economy, an otherwise efficient bank might still face significant

difficulties in operating in a different country.

At empirical level some of these issues have become apparent, when studies started

producing contradicting results. For instance, Fecher and Pestieau (1993) applied DEA and

Distribution Free Approach (DFA) to 11 OECD countries including Sweden and Norway and

found that average bank efficiency in Norway is higher than in Sweden, effectively reversing

the ranking suggested by Berg et al. (1993).
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Also according to their results, U.S. banks appear to be relatively inefficient, holding

the second-lowest average efficiency among the 11 countries studied. This finding is again

puzzling and was challenged by other studies such as: DeYoung and Nolle (1996), or Hasan

and Hunter (1996), who argue that foreign-owned banks in the U.S. are in fact significantly

less efficient than domestic banks.

In an attempt to address some of the limitations of the early research outlined above,

later studies have introduced better controls to account for differences in economic environ-

ments. One of the earliest attempts was made by Allen and Rai (1996), who use Distribu-

tion Free Approach (DFA) and Stochastic Frontier Analysis (SFA) to carry out a banking

efficiency comparison across 15 developed countries, characterized by different regulatory

environments.

Accounting for regulatory differences, Allen and Rai (1996) distinguish between univer-

sal banking countries that permit the functional integration of commercial and investment

banking and separated banking countries that do not. They measure the inefficiency levels in

each group, and investigate for potential regularities by regressing bank specific inefficiency

measures against various bank and market characteristics.

Typically, the controls introduced refer to banking market conditions, such as population,

deposit and branching densities, regulations (risk, average equity capital ratio) and market

structures. For instance, Dietsch and Lozano-Vivas (2000) look at the French and Spanish

banking industries and control for three categories of environmental variables: the main

macroeconomic which determine the banking products demand characteristics conditions,

the structure and regulation of the banking industry, and the accessibility of banking services.

Their results show that the Spanish banks seem to suffer excess costs, or structural

disadvantages, compared to French banks, in order to adjust to environmental differences,

such as a lower density of population, a lower income level of their customers and a lower

rate of financial intermediation.

35



Similar studies include Lozano-Vivas, Pastor, and Hasan (2001), Lozano-Vivas, Pastor,

and Pastor. (2002), and Kwan (2003) among others.

The critique regarding the bias induced by environmental differences when using a com-

mon frontier can be, at least conceptually, alleviated to a certain degree when discussing

about banking systems in a group of countries characterized by relatively similar economic

conditions. While this approach might be easier to justify in the case of a union of nations;

like the European Union (e.g. Casu and Girardone (2006), Barros, Ferreira, and Williams

(2007), or Maudos and de Guevara (2007)), it has also been used for transition economies of

Eastern Europe ( e.g. Bonin, Hasan, and Wachtel (2005), Yildirim and Philippatos (2007))

or for countries in Southeast Asia (e.g. Hollo and Nagy (2006)).

The recent research, in this category, has taken an increasingly more critical approach

regarding the validity of the common frontier assumption in efficiency analysis. For instance,

Bos and Kolari (2005) estimate both common and separate frontiers for European and U.S.

banks and test the hypothesis that banks operate under the same cost and profit frontiers.

Their results confirm a common profit frontier, but not a cost frontier. In a similar spirit,

but only for Europe, Bos and Schmiedel (2007) investigate the existence of a single Western

European banking market using data on the commercial banking systems for 15 European

countries. Their methodology follows Battese, Rao, and O’Donnell (2004), and they argue

based on the stochastic meta-frontier results that conventional estimates using common

frontiers tend to underestimate cost and profit efficiency.

The second broad research category covers studies that focus on measuring the efficiency

of banks within a single nation against a best practice frontier determined for that particular

data set. Motivation wise, most of these single-nation studies address policy relevant issues

concerning the effects on banking efficiency of bank regulation (like DeYoung 1998), insti-

tution size or organization form (Hermalin and Wallace 1994 and Tulkens, 1993), sources of

productivity changes (Berger and Mester 2003), etc.
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An important limitation of this approach is that it can only provide information re-

garding the efficiency dispersion of banks within a country; it is not tractable to perform

multinational relative comparisons since each country is evaluated from the perspective of its

nation-specific frontier. Furthermore, like the first method, it does not include a mechanism

to measure efficiency advantages/disadvantages of a foreign-owned bank relative to domestic

banks.

While the policy implications, nation-wise, are still significant, this leaves out important,

topical, research and policy questions regarding the international expansion of financial

institutions, limiting the potential scope of these studies. Nevertheless, this method can still

shed some light on other topics such as the degree of market power or bank competition

that exists between countries. For instance, Berger, Hasan, and Klapper (2004) evaluate the

economic effects of the relative efficiency of community banks versus other banks using data

from 21 developed nations and 28 developing nations.

Finally, in terms of broadly quantifying the general level of scientific interest in the

field, according to the statistics given by Berger and Humphrey in their 1997 survey, this

particular area of research appears to enjoy considerable popularity: with 116 single country

studies analyzing banking activity in 21 different countries. While the U.S. and the Western

European countries were particularly well represented, and continue to be so in the more

recent studies, the number of countries investigated has been increasing steadily such that

at the present time virtually all developed nations are represented.

The last category of literature compares the efficiency of foreign-owned versus domestically-

owned banks operating in the same nation based on a common, nation-specific, frontier.

This method measures the ability of banks to operate in foreign countries and it specifically

targets banks that are operating internationally.

Regarding the reasons why a certain bank may decide to expand its activity abroad,

a potential efficiency advantage for such foreign-owned banks is that this would allow the
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subsidiary bank to continue and strengthen their business relationship with corporate agents,

who are already its customers. The result would be that the subsidiary bank has a dedicated

clientele and access to a new market, while the multinational customer enjoys the continued

benefit of a prolonged and, potentially, advantageous banking relationship with a specific

banker.

The empirical evidence in this sense is mixed: on the one hand there are studies that

suggest that at least some banking organizations do engage in the “follow your customer”

strategy by setting up offices in nations in which their home nation corporate customers

have foreign affiliates (e.g. Grosse and Goldberg, (1991); Ter (1995)), while, on the other

hand, there is evidence indicating that foreign-owned banks may not cater primarily to

firms headquartered in the home nation, and instead tend to focus mostly on other business

borrowers (for e.g. Seth, Nolle, and Mohanty,1998).

Another potential efficiency advantage that can justify entering a foreign banking market,

is risk diversification across nations and regions of the world. A reduction in risk and an

increase in the bank’s financial stability may raise profits through a decrease in the cost of

capital and risk management. While multinational evidence is limited, studies on banks’

geographical diversification within the U.S (such as Hughes, Lang, Mester, and Moon (1996))

and bank mergers and acquisitions (e.g. Akhavein, Berger, and Humphrey (1997)) show

substantial financial gains.

Furthermore, foreign-owned banks may also have an efficiency edge over domestic banks,

particularly in developing countries characterized by a large number of state-owned banks

in the system, in terms of managerial expertise and experience , access to capital, or ability

to make large loans. Supporting evidence is provided by studies such as: Barth, Caprio, and

Levine (1999) or Berger, Hasan, and Klapper (2004).

In terms of the efficiency disadvantages faced by foreign-owned banks studies such as

Buch (2003), Buch (2005), Choi, Francis, and Hasan (2006) and Buch and DeLong (2004)
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suggest that environmental factors like distance, culture, and high regulation tend to deter

cross border mergers and acquisitions. Berger and Udell (2002) and Stein (2002) also argue

that some of these foreign owned institutions are at a disadvantage because of the “sof”

information about local conditions.

In terms of the comparability, at international level, of the research on the efficiency

of foreign-owned versus domestically owned banks, results are quite mixed. Studies that

use U.S. banking data generally find that foreign-owned banks are significantly less efficient

on average than domestic banks (e.g., DeYoung and Nolle, 1996; Hasan and Hunter, 1996,

Hasan, and Hunter, 1998).

Papers using data on banks in other developed nations typically argue that foreign-owned

banks are roughly as efficient as domestically owned banks (e.g.,Vander 1996; Hasan and

Lozano-Vivas, 1998) or, in some cases, more efficient (Sturm and Williams, 2004). Results

are not differentiated by the nation of origin of the foreign-owned banks, neither in the case

of the US, nor of the other developed countries, thus limiting their applicability.

Regarding the developed nations, the most comprehensive studies use multiple nations

and identify the nation of origin of the foreign-owned banks. Their results generally sug-

gest that foreign-owned banks are, on average, less efficient than domestically owned banks.

However, foreign-owned banks headquartered in the U.S. are often more efficient than do-

mestically owned banks in many nations (e.g., Berger, DeYoung, Genay, and Udell, 2000).

The exact reasons for the relative success of U.S.-owned banks are still open to debate.
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3.2 Notes on European Banking Systems

The Single European Act was signed in February 1986 and came into effect in July

1987. Later, it served as the foundation of the Single Market Project that was developed and

introduced in a stepwise manner by the end of 1992. For banks, this translated into an EU-

wide banking permit, commonly referred to as the “European passport”. The introduction

of the Euro (in 1999 only as an accounting currency and then in circulation starting with

2002) followed up by the European Union’s action plan to create an integrated market for

financial services by 2005, opened the national markets and allowed for increased cross-

border competition.

Theoretically, in an environment that is expected to become more competitive, the ef-

ficient banks have a better chance of survival. They can also take advantage of the wider

market (benefiting from economies of scale). At the same time, the inefficient players can

expect to become targets of takeovers/mergers. Nevertheless, the historical evidence2 re-

garding the financial integration in the European Union is fairly mixed.

In the first years after the adoption of the Euro, banks and banking markets appeared to

consolidate especially at the local level with a very limited number of cross-border mergers

(Berger et al. 2003). Subsequently, there was a significant increase in cross-border mergers

and acquisitions, and a large share of these operations involved western European banks

acquiring stakes in other western European banks according to a 2006 Pricewaterhouse

Coopers report3. In the wake of the financial crisis, complicated by the more recent sovereign

debt troubles 4 the focus appears to have shifted yet again towards the national markets.

2Goddard et al. 2007
3http://www.pwc.com/en GX/gx/banking-capital-markets/pdf/banking consolidation.pdf
4Citing data released by the European Banking Authority in London, Bloomberg provides a list of

European banks with at least 500 million euro sovereign debt exposure http://www.bloomberg.com/news/
2011-12-08/european-banks-sovereign-debt-exposure-by-country-table-.html
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3.2.1 Germany

Germany is a founding member of the European Union and is part of the Eurozone

since its official launch in January 1999. Germany has a developed economy and financial

system, being the largest economy, by nominal GDP, in the EU area and the fourth largest

in the world.

Germany’s banking system, as characterized by Krahnen and Schmidt (2004), is repre-

sented by three “pillars”: private commercial banks, public sector banks, and cooperative

banks, that can be further differentiated by the ownership structure and business orienta-

tion. Overall, there are a large number (1,919 in 2010) of credit institutions that comprise

the system.

Privately owned commercial banks are the largest group, in terms of assets, with 36

percent of the total banking system assets. As of 2010 this segment includes: three large

banking groups (two domestic and one foreign), medium and small-sized banks and branches

of foreign banks. The large banking groups operate as universal banks, while the other banks

tend to be more regionally-focused.

The group of public sector banks, that includes savings banks (Sparkassen), comes next

with a 31 percent share of total banking assets. The general mandate of these banks is

to support regional economic development, subsidize local public goods and offer financial

services for the German public. They tend to have a well-developed network serving a diverse

customer base providing a complex selection of banking services, with a particular focus on

retail and small- and medium-sized enterprises.

A large group of cooperative banks, which are typically small, but very numerous, account

for approximately two thirds of the total number of credit institutions operating in Germany.

The cooperative banks provide regular banking services to the general public.
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Their main characteristic is that they are owned by their members, who are also their

most important clients (both as depositors and borrowers) representing roughly half of their

operations. Also, these banks operate under a mutual guarantee scheme and have a regional

focus. While the basic structure of the system has remained largely unchanged, the German

banking sector has experienced a significant amount of consolidation since 1990. The number

of banks in Germany has decreased by 44 percent. The process was concentrated especially

in the savings and cooperative sectors with the explicit purpose of attaining economies

of scale. The consolidation continued in the recent years, partly fueled by the financial

difficulties induced by the crisis, with some operations being of a cross-border nature. A

particularity of the system is the high level of public involvement, which is significantly

larger than in many other EU countries.

The effect of the financial crisis on the German banking sector was significant, mainly due

to exposures to toxic assets. A number of institutions, especially commercial and savings

banks experienced difficulties and required financial help. The Government implemented

various relief programs and has successfully managed the situation, stabilizing the German

financial sector.

3.2.2 France

France has, after Germany, the second largest economy by nominal GDP in the Eu-

ropean Union. It is one of the original six founding states of the European Economic

Community, the forerunner of the current EU, and is also member of Eurozone from its

onset, in January 1999.

The French banking system is dominated by a relatively small number of large univer-

sal banks offering a diverse selection of banking services, which suggests a high degree of

consolidation.
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In terms of assets, the nine largest banks cumulate approximately 75 percent of total

assets, while the first five banks are responsible for more than half of total deposit and

lending operations.

Regarding the ownership, the private commercial banks dominate the system - the com-

bined value of their assets being roughly five times larger than that of mutual and cooperative

banks together. Also, at the moment, foreign banks are not very well represented in retail

banking, with the possible exception of HSBC, but tend to have a stronger presence in

wholesale banking and securities trading.

According to France’s leading bank supervision institution, Autorité de Contrôle Pruden-

tiel (ACP), in January 2011, there were 678 credit institutions authorized to operate in the

country. These can be broadly classified into three categories: general-purpose credit institu-

tions, specialized credit institutions and investment service providers. The legal framework

governing the activity of these entities is compatible with the Union requirements, with over

70 percent of banking regulations being European in origin.

In January 2011, there were 370 general-purpose credit institutions registered with ACP.

This category includes commercial banks, as well as, mutual and cooperative banks that are

licensed to perform any type of banking operation. This includes foreign exchange activities,

transactions with precious metals, consulting services and equity investment.

The specialized credit institutions are typically restricted to a subset of banking services

decided by their level of authorization. For instance, the 18 municipal credit banks operating

in 2011 specialize in the issuance of pledge loans, while the financial companies (287, as of

January 2011) usually focus on one of the following broad types of activities: consumer loans

or corporate loans, lease financing, factoring, and guarantees.

Finally, the investment service providers offer both banking and financial services with

a focus on investment banking. They may also provide custody and administrative services

in financial instruments, wealth management and other such specialized services.
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While affected by the latest global economic downturn, the impact on French banks has

been largely contained. This was due in part to Government’s response, the comprehensive

supervision and proactive regulation and also to the sound business practices of the banks

themselves that focus on risk diversification.

3.2.3 Italy

One of the founding members of the European Union, Italy is part of both the Eurozone

and the Schengen area5.

During the 1990’s, the Italian banking sector went through a process of structural changes

marked by numerous mergers, takeovers (561 according to Heffernan, 2005) and privatiza-

tion6 that led to a decline in the number of banks (792 in 2004 as reported by Intesa San-

paolo’s website7, one of the big European banking groups) and allowed the remaining players

to enjoy the benefits of the economies of scale as the average size of the banks increased

significantly.

The majority of Italian banks have a cooperative structure and there are two different

types of them: “banche popolari” (BP, 38) and “banche di credito cooperativo” (BCC,

444). In terms of market share, they account approximatively for8 44 percent of loans and

31 percent of deposits in the Italian banking system. Specific to the Italian cooperative

banks is the one-person-one-vote principle that some perceive as a limitation to the free

circulation of capital. This has prompted the European Union to initiate infringement

procedures against Italy.

5signed in November 1990, implemented from October 1997
6the state’s share in the banking system went below 1 percent by 2004 and the domestic market is domi-

nated by joint stock companies - 80 percent, see http://www.imf.org/external/pubs/ft/wp/2007/wp0726.pdf
7http://www.group.intesasanpaolo.com/portalIsir0/isInvestor/PDF studi eng/CMFocus%20Italian%

20Banking%20Sector%20October2004.pdf
8see Gutiérrez (2008) at http://www.imf.org/external/pubs/ft/wp/2008/wp0874.pdf
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Governance structure aside, the cooperative banks operate in the banking market much

like any other player, in the pursuit of profits9 and some of them are also listed on the stock

market.

3.2.4 Netherlands

The Netherlands is a founding member of both the European Union (1952) and the

Eurozone (1999). It has a developed economy that ranks, in terms of nominal GDP, as

the ninth largest in the World and it is also one of the World’s major exporters (top 10).

Holland has important trade connections to Germany, France, and UK, especially through

its port city Rotterdam, as well as Belgium and Luxembourg - the three countries forming

the Benelux economic union.

The Netherlands’ open economy attracts a large volume of foreign investment and ben-

efits from a developed and internationally oriented financial system, with Amsterdam being

one of the leading financial capitals of the world. The financial system includes, in the order

of importance, three key sectors: banking, pensions, and insurance. At of the end of 2010,

the total value of banking assets was estimated10 at 382 percent of GDP, followed by the

pensions system with 135 percent of GDP and insurance with 69 percent of GDP.

According to the 2011 statistics of the Dutch Central Bank11, at the end of 2010 there

were 85 banks licensed to operate in the Netherlands. Besides these, there were also 35

branches of EU based banks and 5 branches of non-EU institutions active, as well as a large

number (497) of EU credit institutions12 providing cross-border services.

9Some differences do exist, as cooperative banks are subject to specific regulations that determine the
percentage of net profits to be allocated for legal reserves. Also from a legal point of view, they have limited
ownership rights and while they are part of a network structure, they can make independent decisions.

10IMF Country Report No. 11/206, www.imf.org/external/pubs/ft/scr/2011/cr11206.pdf, 2011
11De Nederlandsche Bank http://www.statistics.dnb.nl.
12Many of them originate in UK and France and have entered the Dutch financial market after the housing

boom in the 1990s.
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The foreign presence in the Dutch banking market has strengthened in the last years,

especially after the restructuring of ABN AMRO and in 2010 seven out of the largest 20

banks were owned by foreigners.

The global financial crisis had a significant negative effect on the Dutch economy as well

as the financial and the banking sector. Due to exposure to toxic assets, a tightening of

the inter-bank funding market and a worsening in business conditions (a consequence of the

economic downturn), a number of banks went bankrupt or merged(at the middle of 2012,

there were 78 licensed banks), while others were forced to restructure and/or required finan-

cial help from the Government, such as the Internationale Nederlanden Groep (International

Netherlands Group, ING).

The difficulties of ABN AMRO, the largest Dutch financial institution, and its take over

in 2007 by a consortium of Fortis, Royal Bank of Scotland, and Santander has altered the

balance of power in the Dutch financial system significantly. With a worsening in the global

financial conditions, this required exceptional measures from the Netherlands government,

who purchased in 2008 the Dutch banking parts from Fortis, in addition to their other, more

generic, measures aimed at improving the stability of the system.

Overall, the measures adopted appear to be effective and, from 2009, the Dutch banking

sector has returned to profitability. Also the capitalization of all large banks is adequate

and well above the legal minimum requirements. Nevertheless, there are still challenges

for the banking sector and potential vulnerabilities, stemming especially from the relatively

high level of indebtedness in the housing market and the banks’ cross-border operations

that expose the domestic system to the various current negative economic developments in

Europe.

3.2.5 Scandinavia
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Denmark

Denmark is a member state of the European Union since 1973, but it does not participate

to the Eurozone. The country, like the UK, is not under a legal obligation to adopt the Euro,

as it benefits from an opt-out in this sense, awarded in 1992. Nevertheless, for international

trade purposes13, the domestic currency is tied to the Euro, through the European exchange

rate mechanism. An attempt has been made by the Danish government in 2000 to adopt

the euro, but the proposal failed in a referendum vote.

According to the National Bank of Denmark14, in May 2012 there were 107 credit insti-

tutions active in the Danish banking sector, including commercial banks, savings banks and

cooperative banks. The number of banks has been decreasing steadily since 1980, when there

were approximately 300 institutions, typically through mergers and acquisitions. In the last

few years the trend has accelerated15. As a result of the financial crisis which affected the

balance sheet quality of several banks.

As a result of these structural changes the banking sector in Denmark is highly con-

centrated. At the end of 2011, the large banks accounted for approximately 85 percent of

all credit operations, with the rest being split in roughly equal parts between the medium

size and the small banks. Among the large institutions, banking groups such as the Danske

Bank group and Nordea Bank Danmark together were responsible for almost half of all bank

lending in Denmark. Overall, a large proportion of the lending done by the Danish banks is

to non-resident customers, especially in other Nordic countries, the UK and Ireland.

The Danish banking system appears not to have fully recovered from the effects of the

global recession. Bank earnings continued to be low in 2011, and in many cases had stagnated

or even decreased relative to 2010. Typically only the largest banks have seen an increase

13Many of Denmark’s major trade partners are Euro users, like Germany, Netherlands, or France.
14National Bank of Denmark, www.nationalbanken.dk, 2012.
15The group of medium sized banks appears to be affected the most, so the system is evolving towards a

structure with a few large banks and many small ones.
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in profits with the size of their operations and product diversification. This put them in a

better position to deal with the higher funding costs and reduction in lending volume faced

by the smaller banks. Overall, in the recent years banks have focused on managing risks by

reducing the level of their exposure and improving capital adequacy.

Sweden

Sweden joined the European Union in 1995, but decided, in 1997, not to become a

member of the Eurozone. This decision was reaffirmed in a referendum in 2003. From a

legal point of view, under the Maastricht Treaty, the country is obliged to eventually adopt

the Euro. Nevertheless this requires the candidate to first enter voluntarily the European

Exchange Rate mechanism, which Sweden has declined to do so far, effectively gaining a

de facto opt-out from the monetary union. Sweden’s financial system is among the most

developed in Europe and is a mix of the market-based Anglo-Saxon system and the bank-

based Continental European system. It consists of three types financial intermediaries:

credit institutions (mainly commercial banks), investors (such as pension funds or insurance

companies) and security companies

According to the National Bank of Sweden16 at the end of 2011, there were 115 banks (4

more than in 2010) operating in Sweden, out of which 37 were limited liability (one was the

subsidiary of a foreign bank), 27 foreign-owned branches, 49 savings banks (that typically

have a regional presence) and two co-operative banks.

Swedish banks, especially those that are part of large financial groups, follow the concept

of universal banks and fulfill a wide variety of operations.

16Riksbank, www.riksbank.se, 2012
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In general, the level of government ownership in the banking sector is quite low, with a

sizable17 participation in Nordea (the largest bank in the system).

In terms of assets, banks are the largest among all credit institutions. At the end of 2011,

total banking assets represented approximately 174 percent of GDP. The Swedish banking

market is highly concentrated18 with the country’s four largest banks groups: Skandinaviska

Enskilda Banken (SEB), Svenska Handelsbanken (SHB), Swedbank and Nordea accounting

for 75 per cent of the total banking assets and for almost half of the credit institutions’ total

lending.

Regarding the banks’ crediting activities, most of their loans are extended to the do-

mestic and foreign public. At the end of 2011, the total value of bank lending in Sweden

was approximately 2,501 billion SEK, or 41 percent of their total assets. Roughly 45 per-

cent of these loans were taken by Swedish non-financial companies, 34 percent by Swedish

households, 7 percent by the Swedish public sector, and 14 percent by the public abroad.

Starting in the early 2000s, the funding methods of the Swedish banks’ have changed,

as bank lending has increased at a faster pace than deposits, making banks increasingly

dependent on financial markets. These funds are not only less stable in terms of availability

than more traditional sources, but also tend to incur a higher intermediation cost, with

potential negative implications on the future bank performance.

Another risk factor stems from the increased internationalization of the banks’ activity,

which makes the system increasingly vulnerable to regional (negative changes in the Baltic

economies) or global developments, like the financial crisis at the end of the previous decade.

For the Swedish banking sector, the impact of the crisis was fairly significant.

17Overall, approximately 25 percent
18Initially bank legislation was quite restrictive in Sweden and large financial group were used as way

to circumvent this impediment. At the European level, the degree of concentration is only comparable to
countries like Belgium or Finland.
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It created difficulties in the funding markets, particularly the euro and dollar liquidity,

raised concerns about the quality of assets and brought a decline in the price of bank shares.

Nevertheless, the strong rebound of the domestic economy has helped alleviate many of the

negative effects, but the risk factors are still present. Overall the banking sector has proved

quite resilient to credit risk.

3.2.6 Switzerland

Switzerland is a developed Western European country, with a high level of income per

capita that is not a member of European Union. Nevertheless, it is still very closely tied to

the EU, through trade and financial links, regulated by a series of bilateral agreements. The

country’s legal framework is on par with the European norms in most economic aspects19.

The Swiss economy is dominated by the service sector with the financial segment playing

a key role in this respect. According to the Swiss Bankers Association (SBA)20 the total

value added in 2011 by the financial sector to GDP was approximately 10.3 percent.

Switzerland’s historical neutrality, coupled with the stability and performance of its

economy make the country a very attractive choice for foreign investors. Being able to

attract money cheaper than other countries is likely to have an impact on their cost structure.

Also, it is estimated21 that close to one third of the World’s off-shore funds are managed by

its well developed and diverse banking system, which is based on the concept of universal

banking. Swiss banks are mandated to perform, in addition to the usual basic deposit and

lending activities, asset and investment management, payment services, financial analysis

and underwriting operations.

19A notable exception is agriculture where Switzerland has in place a series of protectionist measures.
20Swiss Bankers Association, http://www.swissbanking.org/en, 2012.
21according to the Boston Consulting Group.
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According to the Swiss National Bank22 at the end of 2011 there were 312 banks in

Switzerland, a decline from the 327 recorded in 2008. These banks fall into one of the seven

broad categories identified by the SBA: large banks, cantonal banks, private banks, regional

and saving banks, Raiffeisen banks, foreign banks and other specialized types of banks.

The large banks offer all types of banking services, with a particular focus on investment

banking (capital market transactions, securities trading and financial engineering) and inter-

national operations. There are two banks included in this group UBS AG and Credit Suisse

Group, that together account for more than 50 percent of all banking assets in the system.

Each of them has an extensive branch network, both at home and abroad - especially in the

Americas and Europe.

The cantonal banks have a special statute and function under cantonal law, with the

canton typically holding a minimum of one-third of the bank’s capital and voting rights

(this requirement was relaxed in October 1999). At the end of 2009 there were 24 cantonal

banks with assets ranging from 2 billion CHF to 120 billion CHF. The smaller cantonal

banks tend to focus on savings and mortgages, while the larger ones are more diversified and

offer the entire spectrum of banking services. Private banks are individual enterprises23 that

focus almost exclusively on asset management with very little interest-income business. In

fact, these banks are exempt from the requirement to publish annual financial statements,

if they do not accept deposits from the public. Many private banks have a long tradition,

in some cases dating back to the 18th century, and thus they are among the oldest credit

institutions in the country. As of 2010, according to the SBA’s Compendium, there were 14

such institutions in Switzerland.

The regional and savings banks operate mainly in the savings and mortgage segments of

the market, and are similar, in this aspect, to the small cantonal banks.

22Swiss National Bank, www.snb.ch/ext/stats/bankench/pdf/deen/E Analysetext.pdf, 2012
23The owners have unlimited private liability terms of their personal assets.
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The main difference is that they put a much greater emphasis on developing close and

durable relations with their customers and, thus, they restrict their activities to a particular

region in order to be as familiar as possible with local economic and business conditions. At

the end of 2010, there were the 75 regional and savings banks, with the majority, 41, being

members of the RBA Holding group.

Raiffeisen banks are organized as co-operatives and, at the middle of 2011, there were

328 such banks forming the Raiffeisen Group. These banks operate both regionally and at

the national level, as part of their nationwide group. They conduct, besides the traditional

interest business, mortgage, savings and investments activities. They also have a presence

in the pension and insurance market through cooperation with the Helvetia Group.

The foreign banks are present in Switzerland either as independent credit institutions

(approximately 120 in 2009) which typically provide asset management, fund management

and distribution services, or as subsidiaries of their parent bank - very often based in other

European countries. There were almost 30 such entities in Switzerland in 2009, engaged

mainly capital market transactions.

Finally, in the generic category other banks are included very specialized institutions

that offer services in areas such as consumer financing, personal loans, asset management,

stock exchange, and securities trade. Usually these companies are set up as public limited

firms, under private law, and are managed in Switzerland.

Regarding the business models employed by the Swiss banks, it is generally true that the

large players subscribe to the integrated business approach, compatible with the universal

banking philosophy adopted by these credit institutions. The small banks often use a niche

strategy, where non-core business activities are outsourced, while the medium size banks fall

somewhere in between.
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3.2.7 United Kingdom

The United Kingdom is one of the world’s most globalized economies, with large

flows of foreign direct investment, in and out of the country. It sits at the center of the

global financial system, with London being the world’s largest financial center. In terms of

nominal GDP, the UK is Europe’s third largest economy (after Germany and France) and

the seventh-largest in the world.

UK is a member of the European Union since 1973, but like Denmark, it has chosen not

to join the Eurozone and it has obtained a special opt-out on this, so that the country is

legally exempt from the requirement to adopt the Euro. However, it may do so at a later

time, through a vote of the British Parliament or a referendum.

The banking sector plays a key role in the British financial system. Providing three

fundamental services: payments, intermediation and risk insurance, the British bank system

exhibits a high degree of concentration, especially in retail banking. The market is dominated

by five large banking groups: RBS, Barclays, HSBC, Lloyds Banking Group (LBG), and

Santander, as well as a mutual financial institution, Nationwide Building Society which,

together, account for almost 80 percent of all lending and deposit operations. As of 2010,

according to the Bank of England, there were approximately 300 banks and building societies

authorized to accept deposits in the country.

These large financial groups operate as universal banks and they offer a complex and

varied selection of services, ranging from securities underwriting and trading, to fund man-

agement, and general insurance. They also play an important role in the global financial

market, where institutions like Barclays, HSBC and RBS hold top ten positions in mar-

ket segments such as corporate and international bonds, foreign exchange and interest rate

swaps.
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In terms of assets, there has been a significant increase in overall banks’ balance sheets in

the past two decades. Cumulated in 2010, bank assets were more than five times larger than

the country’s annual GDP. Like in the case of market shares, a high degree of concentration

can be observed in this area as well - three of the top four largest banks hold more than 60

percent of total assets. The UK banking system is comparable, based on its size relative to

the economy, to Switzerland and the US.

The ongoing consolidation in the British banking sector and the expansion and diversi-

fication of banks’ activities appears to be consistent with the pursuit of economies of scale.

The financial deregulation the system experienced in the 1970s and 1980s, coupled with

technological advances, financial innovation and the globalization of markets can all be seen

as contributing factors to this behavior. Still the evidence in the literature on the matter is

mixed and inconclusive.

The British banking sector was affected by the global recession triggered by the financial

crisis, as the UK economy entered a recession in the second half of 2008 until the end of

2009. The drop in loan activity, as businesses slowed down, was further complicated by an

increase in costs due to provisions, risk management and exposure to toxic assets. In early

2012 UK has experienced a double-dip recession which raised new questions about structural

weakness in the British economy and a potential vulnerability of its financial system.

3.2.8 Emerging Economies

Croatia

Croatia is a former communist country that was part of the Republic of Yugoslavia

until 1991.24 In the early 1990s there were only 26, state owned, banks that operated in the

market.

24On June 25th 1991, the decision to separate was taken and independence was declared on October 8th.
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These banks were gradually privatized, but the insolvency of the debt ridden, state-

owned, enterprises had a negative influence on their balance sheet quality. In an effort to

address this problem, the government issued in 1991-92 the so called “big bonds”25 that

were used by state companies to repay their obligations to the banking system at nominal

value.

During the 1990s, due to a permissive legislative framework (especially in terms of min-

imum regulations and capital requirements), the number of banks has increased steadily,26

reaching 60 by 1997 and then decreasing to 43 by the end of 2000 following a domestic re-

cession (1998-1999)27. The downsizing of the Croatian banking system was a result, in part,

of international developments (the Kosovo war), but domestic factors like an insufficient

capital base, irresponsible management, corruption, cost inefficiency and inadequate credit

risk monitoring also played a major role.

According to the Croatian National bank28, as of January 2011, there were 32 licensed

banks in Croatia, most of these being foreign owned. The dependency of the banking sector

on external financing could make it vulnerable to risks originating in the EU (especially

given the recent economic developments in the area), despite the fact it had weathered the

financial crisis of 2008 quite well.

On December 9th 2011, Croatia signed the Treaty of Accession to become the 28th

member of the European Union. By the end of June 2013, the ratification process is expected

to be finalized, so in July 1st 2013 Croatia would become a full member of the Union.

25indexed at the producer price index and with a 20 years maturity period.
26It still had a high level of concentration as in 1995, the four largest banks accounted for almost 70

percent of the total assets in banking system.
27Together with a sharp decrease in external balances, this also lead to a tightening of fiscal and monetary

policies and the government’s decision to sell the remaining state-owned banks. According to a study done
by the Austrian National Bank, by the end of 2004, the privately owned banks were accounting for around
97 percent of the total assets and 91 percent of shares in the overall Croatian banking system.

28http://www.hnb.hr/
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The ascension process to the European Union created strong incentives for a better

management of the Croatian financial system and performance improvements. Nevertheless,

strong regulation and supervision have to be maintained in order to avoid the risk of a

systemic failure, especially if the parent-companies of the Croatian banks (most of them

Italian and Austrian) are affected by the sovereign debt crisis, thus limiting access to credit

and raising interest rates.

Poland

Poland is a developing economy, ranked as the six largest in the EU and with one of

highest, sustained, rates of growth in Europe. The country’s economy continued to grow

even during the latest global recession, albeit at a slower pace. The transition process from a

socialist planned economy to a market-oriented system has been accomplished in a relatively

short time interval in Poland, compared to many other former socialist countries, thanks to

an aggressive program of reforms implemented between 1992 and 1997.

Poland was therefore able to join the European Union in the first expansion wave in May

2004, but the country is not yet part of the Eurozone. While there is no official deadline

set for adopting the Euro in Poland, the authorities suggested their intention to meet the

required criteria by the end of 2015, implying that Euro could potentially be introduced in

2017.

Some of the key reforms adopted in the mid-1990s have targeted the financial system,

in general, and the banking system in particular. The Polish government has privatized a

number of banks, improved the level of capitalization overall, and also overhauled the legal

framework with the net effect of making the Polish banking system more competitive and

attractive to foreign investors.
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Currently, Poland has the largest and most developed financial system and banking sector

in Central and Eastern Europe. According to the National Bank of Poland, the banking

system comprised of 51 banks, 18 branches of foreign banks, a network of 578 cooperative

banks and 1800 small credit unions, in 2009. In terms of ownership, the foreign owners

controlled 37 commercial banks, which accounted for more than 70 percent of total banking

assets.

Between 1997 and 2006, a series of structural changes happened in the Polish banking

system. On the one hand, there was an accelerated process of mergers and acquisitions,

initiated by the early privatizations and driven by technological development that resulted

in increased concentration. On the other hand, during this entire period the state’s partic-

ipation in the system has been dramatically reduced in favor of foreign ownership, which

increased from 15 percent in 1997 to more than 66 percent at the end of 2006.

In terms of financial performance, the baking sector has steadily improved during the

period considered. The profitability of assets and equity has increased, while the average net

interest margin has dropped from 5.4 percent in 1997 to approximately 3.2 percent in 2006.

This may indicate that a higher concentration has enabled banks to achieve economies of

scale, while the integration in the EU and the reduction in entry requirements for foreign

banks, lead to increased competition and shifted the banks’ focus to improving efficiency.

The Polish banking system appears to have been largely insulated from the effects of the

global financial crisis. While the commercial banks initially reacted in 2009 by moderating

their lending activities, increasing interest rates and improving capital adequacy overall, the

fact that the economy continued to grow and the limited exposure of Polish banks to foreign

assets have allowed the system to resume growth in the later years.
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Romania

Romania is one of the two newest members (the other one being Bulgaria) of the

European Union, joining the rest of the twenty five member countries in 2007. As a former

communist country with a developing economy, the transition process to a market oriented

economy has been quite prolonged and it has affected the country’s European agenda.

Romania applied for membership to the European Union in 1993, became an Associate

State in 1995, with the intention to join the Union in 2004. Nevertheless, it was not able to

meet the required economic criteria at that time, becoming an Acceding Country instead,

and its admittance was delayed by three years until 2007. Romania is not yet part of the

Eurozone, but it intends to join before 2015.

Overall, the Romanian Financial System can be characterized as being still in a develop-

ment stage, especially when compared to some of its advanced European counterparts (Ger-

many, France). The foundation of the system was set in the early and mid-1990’s through

a series of reforms that ensured the transition from the former centralized framework.

The Romanian banking system plays a prominent role in the financial mechanism. It

was introduced in December 1990 and is designed as a two-tier system, consisting of the

National Bank of Romania and commercial banks.

According to the Annual Report, published by the National Bank of Romania, at the end

of 2011 there were 41 credit institutions operating in Romania. The data suggest that the

Romanian banking market is quite attractive to foreign capital, with 26 commercial banks

that have a majority of foreign-owned capital and 8 branches of foreign banks versus only 4

private banks with a majority of domestic owned capital and 2 banks with either fully or a

majority of state-owned capital. There is also a domestic cooperative bank network active.

The Romanian banking system is highly concentrated. The top five banks account for

54.6 percent of total banking assets.
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Also, in terms of market shares, the foreign banks dominate by far with 83 percent of total

assets, followed by credit institutions with a majority of Romanian private-owned capital

at 8.8 percent and then the state-controlled banks with 8.2 percent. Romania experienced

a significant economic downturn in 2009 and 2010 in the wake of the global financial crisis.

This translated into a considerable drop in lending activity, as banks became more concerned

about managing risks and the demand for credit from the economy declined. At the same

time the volume of provisions constituted by banks has increased, which negatively affected

their costs. In terms of capitalization, the banking system has maintained overall high levels

of capital adequacy and, at the end of 2011, the solvency ratio was 14.87

Serbia

Serbia, like Croatia, was part of the former Republic of Yugoslavia, but it did not choose

to break away in the early 1990s. Together with Montenegro, it formed, until 2003, the

Federal Republic of Yugoslavia and, later, until 2006, Serbia and Montenegro. In 2006

Montenegro chose, by referendum, to end their union and Serbia became an independent

state. In December 2009, Serbia applied for admittance to the European Union and, in

March 2012, was recognized as an official candidate.

At the end of the first quarter of 2010, according to the National Bank of Serbia29

there were 34 commercial banks operating in the country, with a combined labor force of

over 31,000 employees. Most of these banks (21) were foreign owned30 and, out of the 13

domestic banks, 8 were owned by state, while the rest were private. These are organized in

a national banking network that included over 2,600 business units, branches, branch offices

and teller units in 2010, in a slight decline from the previous year.

29National Bank of Serbia, www.nbs.rs/export/sites/default/internet/english/55/55 4/quarter report I
10.pdf.

30 The foreign banks are members of banking groups from 11 countries.
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The value of the banking sector assets in 2010 was estimated at RSD 2,237 billion, while

capital totaled RSD 470 billion. The foreign banks accounted for the majority of assets

and capital in the sector, while the domestic banks (state and private combined) held only

26 percent of total assets and 28 percent of both capital and banking sector employment.

Profits were split more evenly between the two groups, with a 47 percent share for the

domestic banks.

Overall the Serbian banking sector appears quite fragmented, with only modest concen-

tration in the various market segments31, thus showing great potential for future growth and

development.

The effects of the latest global recession on the country’s banking system were moderate,

with relatively small declines in activity and employment during 2009 and in the first part

of 2010. Nevertheless, the structure of foreign ownership in the sector, with a large share

of banking assets originating in countries32 like Italy (21 percent) and Greece (16 percent),

is potentially worrying, especially if the European sovereign debt crisis deepens in the near

future.

Slovenia

Slovenia became a member of the European Union in 2004 and, starting with 2007,

it has adopted the Euro as its national currency. According to its central bank (http:

//www.bsi.si/en/) at the end of 2011 there were 19 banks active in the Slovenian market,

which included eight subsidiary banks, three branches of foreign banks and three savings

banks. Out of the 19 banks that formed the Slovenian banking system, 11 were under

domestic ownership (with three being totally domestic) and eight banks were under majority

foreign ownership.

31The Herfindahl Hirschman Index of concentration has values well below moderate concentration (1000),
for all categories: lending, deposits, income, etc.

32Other important countries are Austria with 21 percent and France at 7 percent.
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The domestic banks also held the larger market share, 71 percent versus 28.9 percent,

for the foreign banks in 2007.

The fraction of the banks’ equity held by foreigners was approximately 39 percent in

2011. In terms of assets commercial banks have the highest share, roughly 70 percent of the

system’s total assets (EUR 48.8 billion at the end of 2011). Over the course of 2010 there

has been a 3.1 percent decline in bank assets, reflecting a reduction of debt towards the rest

of the world that was largely offset through funding from the Eurosystem.

The majority of the employees in the banking sector are women (74.1 percent) and the

personnel of the largest bank (Nova Ljubljanska banka) represent nearly 30 percent of all

employees in the banking sector. There is a preference for internal recruiting practices and

emphasis is placed on education and training.

The recent crisis affected the performance of the banking sector, mainly through a decline

in deposit and lending activities, as well as a worsening in the value and liquidity of eligible

collateral. The banks responded to the situation by reducing investments in securities, the

volume of loans to non-banking sector and increased attention to risk management.

A worsening European debt crisis coupled with a decline in economic growth in Slovenia

and its trading partners and the country’s dependency on foreign financing could have

important negative consequences on the banking system’s capacity to access low interest

rates loans and overall cost level.

Turkey

Turkey is an associate member of the European Union and has been an official can-

didate for full membership since December 1999. Negotiations between Turkey and the EU

have been ongoing since 2005 and it is expected that the country will not be able to join

before 2015.

Turkey is typically considered to be a newly industrialized country or, in some sources
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like the World Bank, an emerging market. It has a large economy (ranked in the top 17,

by nominal GDP) that has been growing at a fast pace for the past decade. Key industries

such as steel, energy, ship-building, telecommunications and financial services are all well

represented in the Turkish economy. The country also enjoys close financial and trade links

with the EU and is a member of EU Customs Union since 1995.

Before 1991, the regulations to establish private banks in Turkey were overly restrictive

which kept the number of deposit institutions low. A relaxation of the Government’s control

on the sector, in the early 1990s has led to a rapid increase in the number of banks. The

number reached 72 banks in 1998 and this increase was combined with a steady decline in

the balance sheet quality of many of these institutions.

The situation culminated in a financial crisis in 2001 that led to a profound restructuring

of the entire system. In the wake of this crisis, a wave of bank mergers and acquisitions

followed. This consolidated and sanitized the banking sector, reducing the number of active

banks to only 31 and inducing a significant increase in performance in the 2002-2008 period.

During this time, the value of bank assets increased from 57 percent of GDP to more than

80 percent, as well as the number of personnel and branches.

The current Turkish banking sector is considered to be one of the most developed and

secure in Eastern Europe and Middle East. It is the major component in Turkey’s financial

system and plays a key role in supporting its booming economy.

According to the National Bank of Turkey in 2009, there were 49 banks authorized to

operate in the country. The majority, 32 of them, were commercial banks, while 13 were de-

velopment and investment banks and the remaining 4 participation banks. The development

and investment banks are forbidden, to issue deposit and participation certificates.
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Overall, the value of all banking assets, at the end of 2008, was equivalent to 88 percent

of GDP. The majority of these assets were concentrated with the commercial and investment

banks - roughly 96 percent. In terms of ownership, the private commercial banks accounted

for 49 percent of all assets, while state banks represented 30 percent and foreign banks only

14 percent.

The effect of the global recession of 2008-2009, on the Turkish banking sector was more

limited than in many other European countries. After the 2001 domestic crisis, the system

had been strengthened considerably in terms of capital adequacy ratio, asset quality, risk

management (currency, liquidity, interest and maturity) as well as supervision, and all these

factors played an important role in insuring its resilience. Nevertheless, the increase in the

cost of external borrowing and currency liquidity had a moderate negative effect on bank

lending activities.
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Chapter 4

Data Description

This study utilizes banks’ balance sheet and income statement data for 14 European

national banking markets from 2001 until 2009. The data was obtained from the BankScope

Database (Bureau van Dijk Electronic Publishing) and refers to commercial, savings and

cooperative banks only1. The selected sample includes banks with at least $100 million in

total assets and after filtering out all missing, zero and unusual2 observations, consists of an

unbalanced panel with 13,970 observations. All monetary variables are expressed in millions

of U.S. dollars, adjusted for inflation (constant 2009 dollars).

The selected countries, namely Croatia, Denmark, France, Germany, Italy, Netherlands,

Poland, Romania, Serbia, Slovenia, Sweden, Switzerland, Turkey, and United Kingdom,

were picked in order to offer a picture as comprehensive as possible of the European banking

market in terms of legislation (EU members and non-EU countries), size of the economy and

of their national banking sector.

More specifically, France, Germany, Italy, Netherlands, Slovenia are members of the

European Union and are also part of the Eurozone. Sweden, Romania, Poland, Denmark,

UK are European Union members as well, but are not yet part of Eurozone.

1We have left out other types of banks such as real estate and mortgage banks, medium and long term
credit banks and investment banks since the operations of these specialized institutions can be, in many
cases, quite different from those of an archetypal (commercial) bank that we consider here.

2Negative values for equity or negative total operating expenses may suggest inaccuracies in the data
entry.
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Switzerland (neutral) is not part of either, while Turkey, Croatia and Serbia are EU

candidates. The corresponding ISO Alpha-2 country codes are given in Table 4.1.

Table 4.1: ISO Alpha-2 Country Codes

Country ISO Alpha-2 code
CROATIA HR

DENMARK DK
FRANCE FR

GERMANY DE
ITALY IT

NETHERLANDS NL
POLAND PL

ROMANIA RO
SERBIA RS

SLOVENIA SI
SWEDEN SE

SWITZERLAND CH
TURKEY TR

UNITED KINGDOM UK

In the sample, Germany has the highest number of bank year observations, 8,668, fol-

lowed by Italy with 1,818 and Switzerland with 1,188. Among the other countries, developed

economies from Western Europe are typically the best represented with a number of obser-

vations ranging from 527 for France to 344 for Sweden. An exception is the Netherlands with

only 134 bank year observations, which is comparable to developing European countries such

as Croatia (121), Romania (104) and Poland (93). At the low end of the spectrum there are

countries like Slovenia, Turkey and Serbia with around 80 bank year observations each.

In the banking literature, there is not a widespread consensus regarding the definition

of bank inputs and outputs, which largely depends on the particular role attributed by the

researcher to the bank. In defining these variables, the present study follows one of the more

commonly used methods, the so-called intermediation approach (Sealey and Lindley 1977),

which primarily views the bank as an intermediary between its depositors and borrowers

65



using deposits together with purchased inputs to produce various categories of bank assets

(loans and securities), measured by their dollar values.

To calculate the stochastic cost frontier, we consider two bank input prices represented

by the interest rate paid on deposit funds (avrate) calculated as the ratio between interest

expenses and total deposits, and the average wage of employees (avwage) given by personnel

expenses divided by the number of employees. Also, there are two bank outputs given by

total loans extended by the bank and total securities held. Finally, we also need total costs

which are defined as the sum of interest expenses and total operating expenses.

In order to ensure that the cost frontier is homogeneous of degree one, we use the average

interest rate paid on deposits funds (avrate) as a normalizing factor. To control for banks’

exposure to risk, the outputs and cost are normalized by total equity. To summarize the

variables, we include the box and whiskers diagrams for the normalized loans (Figure 4.1),

normalized securities (Figure 4.2) and normalized average wage (Figure 4.3).

Table 4.2 presents succinctly the definitions of the output, price, cost and other variables

used in our analysis, while tables 4.3, 4.4, 4.5 and 4.6 contain the summary statistics for

each of the 14 countries, as well as for the pooled sample.

The summary information suggests, at a glance, that there is a potentially significant de-

gree of heterogeneity between the various European banking markets. For instance, in terms

of equity volume, it appears that the banks with the highest equity level are concentrated

in the UK (3,387.06 million USD), Netherlands (2,850.34 million USD), France (2,362.64

million USD) followed by Turkey (1,713.08 million USD) and Poland (870.27 million USD).

The average level of bank equity for these five countries is almost five times larger than the

sample average (457.65 million USD).

At the same time, Germany and Eastern and Central European countries like Serbia,

Croatia, Slovenia and Romania seem to be dominated by banks with relatively small equity

level which is roughly one third to two thirds of what we observe for the overall sample.
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Figure 4.1: Box and Whiskers Diagram for loan/equity.
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Figure 4.2: Box and Whiskers Diagram for security/equity.
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Figure 4.3: Box and Whiskers Diagram for avwage/avrate.
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Table 4.2: Variable Definitions

Variable Description
Cost Total cost representing operating and interest expenses
Loans Dollar value of consumer, commercial and industrial, real estate

and other outstanding credits
Total securities Investments aggregate securities, equity investment and other in-

vestment
Wage Salaries and employee benefits divided by the number of full-time

employees
Rate Interest paid on transfers, savings, and retail time deposits divided

by the total dollar value of these deposits
Equity Dollar value of equity capital
Total deposits The dollar value of transaction, savings, and retail time deposits.
Profit before tax Profit before corporate income tax
Net income Net income from the bank’s income statement
Total assets Dollar value of balance sheet total assets
Interest expense Dollar value of interest paid on transaction, savings, and retail time

deposits
Personnel expenses Salaries and employee benefits
Total operating expense Dollar value of expenses resulting from the bank’s normal business

operations
Number of of employees Number of full time employees

Conversely, Sweden and Switzerland are close to the sample average with 440.12 and

431.1 million USD, respectively, while in Italy the average bank equity is roughly one and a

half times larger than that (611.11 million USD).

The data about the average number of bank employees corroborates with the information

regarding the national bank equity level. Again the average number of full time bank

employees in Poland (7,613.33), United Kingdom (6,437.62), Turkey (4,998.49), Netherlands

(4,200.67) and France (3,597.76) is significantly above the sample average of 931.78. The

other countries, with the exception of Romania (2,826.29), are much closer to the pooled

sample average, with some countries like Italy (1,077.40) and Serbia (993.59) being a bit

above, while the rest are at or below the average.
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Table 4.3: Summary Statistics of Variables by Country

Variable∗ FULL SAMPLE HR DK FR DE

Cost 413.9 93.2 297.41 2097.83 173.11
(s.d.) (3551.95) (139.87) (1267.63) (9087.73) (1893.58)
Loans 4479.64 904.49 5032.29 18987.22 1652.2
(s.d.) (35798.84) (1342.55) (23432.34) (72371.98) (11821.19)
Total securities 3460.45 208.43 1108.01 21391.77 1391.42
(s.d.) (47578.41) (359.43) (5327.17) (128661.1) (30514.22)

Wage† 76847.3 26805 94450.5 104348.7 66096.8
(s.d.) (50131.5) (8455) (37375.2) (99578.2) (38188)
Rate 3.2% 3.62% 2.92% 3.91% 2.97%
(s.d.) (1.98%) (1.16%) (3.7%) (2.41%) (0.87%)
Equity 457.65 162.14 380.6 2362.64 156.1
(s.d.) (3509.76) (245.88) (1300.21) (8793.16) (1218.89)
Total deposits 5606.97 1141.26 3450.07 25372.13 2417.81
(s.d.) (45473.68) (1666.21) (14912.78) (102081.4) (18181.9)
Profit before tax 63.3 21.62 51.28 256.61 16.06
(s.d.) (562.01) (38.27) (194.05) (1041.83) (212.98)
Net income 48.66 17.47 38.64 197.58 11.87
(s.d.) (447.45) (30.75) (142.26) (799.38) (194.93)
Total assets 10106.11 1588.92 7418.75 52972.01 3747.51
(s.d.) (97279.52) (2345.18) (33812.37) (260246.2) (45984.24)
Interest expenses 244.61 41.61 204.02 1331.48 105.72
(s.d.) (2251.25) (65.63) (985.02) (5944.98) (1352.2)
Personnel expenses 80.46 19.08 45.99 374.09 31.18
(s.d.) (710.1) (27.98) (150.81) (1576.37) (304.32)
Total operating expenses 169.29 51.59 93.39 766.35 67.39
(s.d.) (1396.04) (77.15) (314.97) (3342.17) (547.47)
No. of employees 931.78 736.6 458.15 3597.76 407.5
(s.d.) (6452.56) (1137.6) (1438.68) (14041.94) (1944.91)

Obs. 13970 121 375 527 8668

Notes: All financial variables are measured in millions of constant 2009 dollars, unless otherwise indicated.
∗ Given at their respective sample mean.

† Measured in 2009 dollars.
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Table 4.4: Summary Statistics of Variables by Country

Variable∗ FULL SAMPLE IT NL PL

Cost 413.9 394.71 2871.29 527.11
(s.d.) (3551.95) (3453.12) (9199.18) (693.5)
Loans 4479.64 5400.03 39684.24 5137.71
(s.d.) (35798.84) (43410.15) (125934.5) (7670.35)
Total securities 3460.45 1747.39 16010.28 2254.73
(s.d.) (47578.41) (19454.2) (65317.29) (2907.98)

Wage† 76847.3 91408.2 115426.4 43784.2
(s.d.) (50131.5) (20795.4) (50556) (46735.5)
Rate 3.2% 3.85% 5.7% 4.65%
(s.d.) (1.98%) (1.94%) (6.41%) (4.27%)
Equity 457.65 611.11 2850.34 870.27
(s.d.) (3509.76) (4761.41) (9261.18) (1309.27)
Total deposits 5606.97 4854.32 37971.74 7220.65
(s.d.) (45473.68) (38767.69) (130146.2) (9723.3)
Profit before tax 63.3 70.98 332.25 168.76
(s.d.) (562.01) (494.07) (1052.53) (290.65)
Net income 48.66 50.97 279.91 147.28
(s.d.) (447.45) (384.6) (896.85) (243.57)
Total assets 10106.11 8824.29 65307.07 9071.91
(s.d.) (97279.52) (74830.83) (213001.2) (11864.94)
Interest expenses 244.61 194.19 1983.9 215.45
(s.d.) (2251.25) (1900.06) (6475.94) (262.01)
Personnel expenses 80.46 89.03 422.62 134.65
(s.d.) (710.1) (696.3) (1447.39) (196.76)
Total operating expenses 169.29 200.52 887.39 311.65
(s.d.) (1396.04) (1613.71) (2871.59) (442.93)
No. of employees 931.78 1077.4 4200.67 7613.33
(s.d.) (6452.56) (9059.53) (14129.27) (14744.36)

Obs. 13970 1818 134 93

Notes: All financial variables are measured in millions of constant 2009 dollars, unless otherwise indicated.
∗ Given at their respective sample mean.

† Measured in 2009 dollars.

72



Table 4.5: Summary Statistics of Variables by Country

Variable∗ FULL SAMPLE RO RS SI

Cost 413.9 244.8 94.61 152.29
(s.d.) (3551.95) (305) (72.88) (218.1)
Loans 4479.64 1538 528.17 1718.92
(s.d.) (35798.84) (2206.46) (537.23) (2445.5)
Total securities 3460.45 183.22 23.47 607.26
(s.d.) (47578.41) (297.21) (31.08) (813.35)

Wage† 76847.3 21271.9 17291.2 43588.1
(s.d.) (50131.5) (9258.3) (4928.7) (15800.3)
Rate 3.2% 5.98% 4.44% 4.22%
(s.d.) (1.98%) (3.7%) (2.56%) (1.51%)
Equity 457.65 282.22 203.19 244.01
(s.d.) (3509.76) (336.77) (174.29) (266.32)
Total deposits 5606.97 2097.17 647.12 1937.41
(s.d.) (45473.68) (2619.68) (670.87) (2345.89)
Profit before tax 63.3 56.7 22.86 34.7
(s.d.) (562.01) (104.74) (25.8) (43.61)
Net income 48.66 47.53 21.41 26.5
(s.d.) (447.45) (87.93) (23.58) (32.81)
Total assets 10106.11 2716.66 964.44 2786.52
(s.d.) (97279.52) (3444.02) (927.42) (3890.68)
Interest expenses 244.61 116.61 28.83 78.01
(s.d.) (2251.25) (161.35) (31.63) (105.13)
Personnel expenses 80.46 51.13 16.76 32.14
(s.d.) (710.1) (60.36) (14.35) (51.92)
Total operating expenses 169.29 128.19 65.78 74.29
(s.d.) (1396.04) (150.55) (52.07) (115.81)
No. of employees 931.78 2826.39 993.59 889.25
(s.d.) (6452.56) (3320.4) (823.54) (1554.45)

Obs. 13970 104 80 84

Notes: All financial variables are measured in millions of constant 2009 dollars, unless otherwise indicated.
∗ Given at their respective sample mean.

† Measured in 2009 dollars.
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Table 4.6: Summary Statistics of Variables by Country

Variable∗ FULL SAMPLE SE CH TR UK

Cost 413.9 371.23 480.2 1522.81 2942.89
(s.d.) (3551.95) (1850.34) (4788.22) (2103.2) (9897.94)
Loans 4479.64 6270.99 3323.01 7238.61 38811.62
(s.d.) (35798.84) (30067.47) (23409.42) (10458.68) (135974.9)
Total securities 3460.45 2108.73 4308.13 4414.24 36427.17
(s.d.) (47578.41) (11852.27) (50231.61) (7494.8) (168499.3)

Wage† 76847.3 83825 116126.3 39983.7 125278
(s.d.) (50131.5) (19856.7) (56522.9) (16881.4) (124646.5)
Rate 3.2% 1.88% 2.17% 11.35% 4.7%
(s.d.) (1.98%) (1.11%) (1.69%) (4.35%) (4.39%)
Equity 457.65 440.12 431.1 1713.08 3387.06
(s.d.) (3509.76) (1936.25) (3243.25) (2717.75) (11233.17)
Total deposits 5606.97 4927.61 6756.76 9789.83 48590.92
(s.d.) (45473.68) (23785.11) (61927.33) (14464.46) (165894.8)
Profit before tax 63.3 78.8 76.52 377.43 681.11
(s.d.) (562.01) (373.81) (715.68) (605.82) (2366.75)
Net income 48.66 61.61 65.38 302.25 511.97
(s.d.) (447.45) (296.33) (636.41) (482.39) (1774.27)
Total assets 10106.11 10384.18 11546.25 14693.03 94439.96
(s.d.) (97279.52) (51004.14) (111077.2) (21814.03) (345911)
Interest expenses 244.61 250.48 272.9 959.24 1619.28
(s.d.) (2251.25) (1304.7) (2948.71) (1363.02) (5581.09)
Personnel expenses 80.46 63.11 133.08 209.06 569.4
(s.d.) (710.1) (300.51) (1286.68) (281.55) (2132.02)
Total operating expenses 169.29 120.75 207.29 563.57 1323.61
(s.d.) (1396.04) (575.49) (1917.07) (763.98) (4636.05)
No. of employees 931.78 719.17 614.06 4998.49 6437.62
(s.d.) (6452.56) (3371.21) (5331.12) (6027.37) (22842.99)

Obs. 13970 344 1188 84 350

Notes: All financial variables are measured in millions of constant 2009 dollars, unless otherwise indicated.
∗ Given at their respective sample mean.

† Measured in 2009 dollars.
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Consistent with the information on average bank equity, Germany, which had the lowest

equity value in the sample (approximately one third of the pooled sample average), also

has the lowest (average) number of employees per bank, 407.50, less than half the sample

average.

In terms of input prices, the United Kingdom, closely followed by Switzerland, and the

Netherlands, have the highest average annual wages of $125,278, $116,126.30 and $115,426.40,

respectively which are more than one and half times larger than the sample mean of

$76,847.30. At the opposite end of the spectrum there are countries like Croatia ($26,805),

Romania ($21,271.90) and Serbia ($17,291.20).

One potential explanation why countries like Romania, and to a lesser extent Poland,

that despite having a relatively modest level of average bank equity, are well above the

sample average in terms of employees, might very well lie in the relatively low cost of labor

in these countries and a tendency for overstaffing that characterizes many of the former

communist countries.

Regarding the interest rates, it appears that there is more homogeneity, in the sense

that the developed and developing countries, respectively, face pretty similar rates in their

own group. For developed countries like Sweden, Switzerland, Denmark and Germany the

average interest rate varies between 1.88 percent (the minimum) for Sweden to 2.97 percent

for Germany, well below the sample average of 3.20 percent.

For the second group that includes the developing countries and a few developed coun-

tries, such as France, UK and the Netherlands, the range of values is between 3.62 percent

for Croatia and 5.98 percent for Romania. A notable exception is Turkey that has an average

interest rate for the period considered of 11.35 percent, three and a half times higher than

the sample average, which is due to the very high inflation rates it had experienced in the

early 2000’s.
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In terms of costs, the highest values are for the banks in UK ( $2,942.89 million), the

Netherlands ($2,871.29 million), France ( $2,097.83 million) and Turkey ( $1,522.81 million)

sensibly above the sample mean of $413.90 million, while the lowest costs are registered by

the Croatian and Serbian banks with $93.20 and $94.61 million respectively. German and

Slovenian banks are also on the lower end of the cost spectrum with $173.11 and $152.29

million respectively, while the rest of the countries have costs much closer to the sample

average, ranging from $244.80 million, for Romania, to $527.11 million for Poland.

Regarding the outputs, in terms of loans the Dutch (39,684.24 million USD) and British

banks (38,811.62 million USD) register the highest average volume, almost nine times

larger than the sample average (4,479.64 million USD), followed next by the French banks

(18,987.22 million USD) and then the Turkish and Swedish banks with sensibly smaller fig-

ures, 7,238.61 million USD and 6,270.99 million USD, respectively. The average loan volume

for other developed countries is relatively close to the full sample mean, while the developing

countries, with the sole exception of Poland (5,137.71 million USD), are below the mean.

The lowest value, 528.17 million USD, for Serbia, represents only 11.79 percent of the mean.

Finally, for securities the situation looks fairly similar. The United Kingdom (36,427.17

million USD), France (21,391.77 million USD) and the Netherlands (16,010.28 million USD)

are still in the lead and several times above the sample average of (3,460.45 million USD).

With the exception of Turkey (4,414.24 million USD) and Switzerland (4,308.13 million

USD) all other countries have a volume of securities well below average. The developed

countries, and again Poland (2,254.73 million USD), are between two thirds and one third

of the full sample mean, while the developing economies are all below one third with the

lowest value held by Serbia (only 23.47 million USD)

Corroborating the information about costs with the revenues generated, by looking at

the profit before tax, it becomes apparent that yet again the leaders in terms of profitability

are the British ($681.11 million), Turkish ($377.43 million), Dutch ($332.25 million), French
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($256.61 million), and Polish banks ($168.76 million) that are all well above the sample

average of ($63.30 million). At the lower end we have countries such as Slovenia, Serbia,

Croatia and Germany with a profit before tax between ($34.70 million) and ($16.06 million)

for Germany.

77



Chapter 5

Measuring Efficiency in the Banking
Sector Using a Bayesian Single
Stochastic Cost Frontier Model

5.1 Introduction

In this chapter we use a stochastic cost frontier model and a Bayesian approach to

examine the inefficiency of the banking sector in various European countries by estimating

individual frontiers for each country. We have selected countries that differ significantly in

terms of legislation (EU members and non-EU countries), size of the economy and of the

banking sector in an attempt to get a more comprehensive picture of the European market.

The chapter describes the model specification and methodology, followed by empirical

results presentation and conclusions.

5.2 Model Specifications and Methodology

Beginning with the seminal contributions of Aigner, Lovell and Schmidt (1977) and

Meeusen and van den Broek (1977), the field of stochastic frontier models has produced a

vast number of empirical studies on firm efficiency and productivity.

In particular, there is a large literature which focuses on banking efficiency because of the

insight it offers into the bank’s performance. Under the assumption that higher efficiency
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is expected to “lead to improved financial products and services, a higher volume of funds

intermediated, greater and more appropriate innovations, a generally more responsive finan-

cial system, and improved risk-taking capabilities”1, it becomes important to understand

and evaluate banks’ behavior and performance.

As rational economic agents, the banks are assumed to pursue optimal behavior, mini-

mizing cost and/or maximizing profit. In a perfectly competitive market, the two objectives:

profit maximization and cost minimization are equivalent, but in imperfect competition (due

to market regulation, asymmetric information, etc.), analyzing both aspects of the problem

is not a redundant endeavor anymore.

This chapter focuses on measuring cost efficiency in the European banking sector relative

to different, individual cost frontiers for each country. We use a Bayesian stochastic frontier

approach to estimate individual cost frontiers for banks in different countries, using costs,

input prices and output levels from banks operating within their own countries. The model

provides a relative measure of inefficiency with respect to the benchmarked frontiers for each

analyzed country.

Begin with the basic stochastic cost function model:

ln(ci) = f(pi, qi) + vi + ui, (5.1)

where ci is the total observed cost of bank i, with i = 1, ..., N , N=total number of obser-

vations (banks), while f(pi, qi) represents the cost frontier of the efficient bank that faces a

set of input prices (pi) to produce certain levels of outputs (qi).

1If “efficiency profit gains are channeled into improved capital adequacy positions” as Molyneux et al.
(1997) point out.
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Using this model, a bank’s deviation from the cost frontier (f(pi, qi)) is explained on

the one hand by the statistical noise (ui is the symmetric error component) and on the

other hand by the presence of inefficiency (vi is the non-negative inefficiency component).

A measure of the bank’s inefficiency2 is constructed as follows:

CEi =
exp [f(pi, qi)] exp (ui)

ci
= exp (−vi) = ri. (5.2)

The translog cost function with multiple inputs and outputs is used3 to specify the cost

frontier as it is the most popular functional form used in the banking literature:4

f(p, q) = α0 +
2∑
j=1

αjln(qj) +
2∑

k=1

βkln(pk) +
1

2

2∑
j=1

2∑
k=1

αjkln(qj)ln(qk)

+
1

2

2∑
j=1

2∑
k=1

βjkln(pj)ln(pk) +
2∑
j=1

2∑
k=1

γjkln(qj)ln(pk)

(5.3)

where αjk = αkj for all j, k = 1, 2,
∑2

k=1 βk = 1,
∑2

k=1 βjk = 0, and
∑2

k=1 γjk = 0.

When it comes to choosing the inputs and outputs of a bank’s production function,

there is a significant debate about the dual nature of deposits. As explained by Berger

and Humphrey (1997)5, on the one hand the deposits “are paid for in part by interest

payments and the funds raised provide the institution with the raw material of ingestible

2following Kumbhakar and Lovell(2003).
3following Lewis and Terrell (2011)
4McAllister and McManus (1993), and Mitchell and Onvural (1996) found evidence that the translog

functional form does not fit the data very well when there is a wide range in the data in terms of banks’
output size which may be leading to differences in results on scale economies across studies. Nevertheless,
Berger and Mester (1997) investigated the sources in differences between the financial institutions in terms
of efficiency using data on U.S. banks over the 1990-1995 period and found that the efficiency estimates
are fairly robust to differences in methodology. Choices of cost or profit approach, translog or Fourier
specifications, made little difference in their empirical findings in terms of average industry efficiency or
rankings of individual firms.

5in their efficiency studies they find that efficiency is somewhat higher when deposits are specified as an
output.
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funds” exhibiting traits of an input, and on the other hand, they have output characteristics

since “they are associated with a substantial amount of liquidity, safekeeping, and payments

services provided to depositors.”

In our application, the banks are modeled as productive entities that are using labor and

purchased funds to produce loans, deposits and other earning assets. The input prices in

this case are the wage and the interest rates, while the outputs are loans and securities.

The price of labor (avwage) is computed as the personnel expenses per employee, while

the price of funds (avrate) is calculated as a ratio between the interest rate expenses and

total deposits. We normalize the total cost, loans, and securities by equity to control for

bank’s exposure to risk and we scale the normalized total cost and the price of labor by the

price of funds in order to guarantee the linear homogeneity of the cost function.

Inserting these variables into the translog cost function leads to the formula:

ln

(
cost

equity × avrate

)
= β1 + β2 × ln

(
avwage

avrate

)
+ β3 ×

[
ln

(
avwage

avrate

)]2

+ β4 × ln

(
loan

equity

)
+ β5 ×

[
ln

(
loan

equity

)]2

+ β6 × ln

(
security

equity

)
+ β7 ×

[
ln

(
security

equity

)]2

+ β8 ×

[
ln

(
avwage

avrate

)]
× ln

(
loan

equity

)

+ β9 ×

[
ln

(
avwage

avrate

)]
× ln

(
security

equity

)

+ β10 ×

[
ln

(
loan

equity

)]
×

[
ln

(
security

equity

)]

=
10∑
m=1

βmx.m

(5.4)
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where x.m = (x1m, x2m, ..., xNm)T = is the column vector that stacks all observations for the

m’s translog variable.

This allows us to rewrite the model as a linear composed error model for which we assume

that the inefficiency term follows an exponential distribution while the statistical noise is

normally distributed: 
yi = xi.β + vi + ui

vi ∼ EXP(λ)

ui ∼ N(0, σ2
u)

where xi. = (xi1, xi2, ..., xiM) is the 1 ×M row vector of translog variables written for each

observation i = 1, ..., N and yi is the logarithm of the normalized relative total cost for the

individual bank i, while β = (β1, β2, ..., βM)T is the column vector of the translog coefficients

that define the technology of the frontier. Given the model’s assumptions, exp(−vi) = ri is

the measure of bank efficiency.

In order to complete the specification of the statistical model and proceed to the empirical

work, we need to choose the priors6. Following Koop, Osiewalski and Steel (1994), we choose:

• a non-informative prior on β: π(β) ∝ 1.

• a gamma7 prior8 for σ−2
u : π(σ−2

u ) = fG(σ−2
u | τ2 ,

s2p
2

). By setting τ = 1 and s2
p = 0.10 we

choose a weak prior on σ2
u.

• a gamma prior for λ−1: π(λ−1) = fG(λ−1|1,−ln(r∗)), where r∗ is the prior mean for

efficiency. We set r∗ equal to 0.8759 for all countries.

6by choosing informative priors for λ−1 and σ−2
u , the posterior is ensured to be proper (integrate to one).

7where fG(.|ν1, ν2) is a gamma density with mean ν1/ν2 and variance ν1/ν
2
2

8following Fernandez, Osiewalski, and Steel (1997)
9following Koop, Osiewalski and Steel (1994) and van den Broek, Koop, Osiewalski and Steel (1994)
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The full conditional densities for this stochastic frontier model are also provided by Koop,

Osiewalski and Steel (1994):

• β|data,v, σ2
u, λ ∼ N(β̂, (XTX)−1σ2

u), where β̂ = (XTX)−1XTy∗, with y∗ = y − v.

• σ−2
u |data,v,β, λ is gamma: fG(σ−2

u |N+τ−2
2

,
SSE+s2p

2
) , where SSE = (y∗ − Xβ̂)

T
(y∗ −

Xβ̂).

• λ−1|data,v,β, σ2
u is gamma: fG(λ−1|N + 1,vT iN− ln(r∗)), where iN is a N × 1 vector

of ones.

• v|data,β, σ2
u, λ is drawn from a truncated normal distribution10: the inefficiency of

each bank, vi ∼ N(yi− xi.β− σ2
u

λ
, σ2

u)I(vi > 0), where v = (v1, ..., vN), i = 1, ..., N and

I(vi) > 0 is an indicator function that takes the value 1 if vi > 0 and 0 otherwise.

For all the results reported in this chapter, the Gibbs sampler is based on 5,000 burn

in samples and 55,000 Markov Chain Monte Carlo iterations. As start up values, we use a

vector of relatively small inefficiency parameters: v[0] = [0.05 0.05 ... 0.05]T , where v is of

dimension N × 1 and a low σ2
u

[0]
= 0.01. Results were not sensitive to the choice of starting

values.

5.3 Empirical Results

As stated earlier, the purpose of this chapter is to identify the individual cost frontiers

of the selected countries and determine the domestic banks’ X-efficiency relative to these

nation-specific frontiers 11. When data allows for it, separate results are reported for small,

medium, and large banks to allow for possible differences in technology by the size of the

bank.

10following Jondrow at al.(1983)
11the second approach as categorized by Berger (2007).
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Wherever there was a wide range in terms of bank size12, we split the samples as follows:

• if total assets are higher than 1,000 million dollars, the bank is labeled as large13.

• banks with total assets between 500 and 1,000 millions are of medium size.

• banks with total assets between 100 and 500 millions are considered small.

Tables 5.1 through 5.9 report the posterior mean and posterior standard deviation to-

gether with the 90% highest density region (HDR) for the technology parameters, not only

for the national and pooled frontiers independent of size, but also for small, medium and

large banks when possible.

One immediately sees the expected pattern that linear terms are much larger than inter-

actions and quadratic terms in tables 5.1 through 5.9. This reflects the difference in means

for the variables and is consistent with prior studies.

Recall that the frontier of interest specifies the relationship between cost and multiple

inputs and outputs. This, and the fact that quite different parameter vectors may imply

similar technologies during the region of interest in price/output space, makes direct in-

terpretation somewhat challenging even for a single country. For this application with 14

countries, the interpretation is complicated even more, particularly since the interesting re-

gion for the technology varies by country (for example, wages in Germany far exceed those

in Serbia).

In light of the challenges, figures 5.1 through 5.3, in which frontiers are drawn for each

country to provide a broad assessment of the degree to which technologies appear to vary

across countries. Holding loan/equity and security/equity variables constant at the median

values of the pooled dataset, the figure is constructed by varying avwage/avrate between its

minimum and maximum values.

12There are a multitude of approaches in the literature regarding bank size due to a lack of industry
standard. The thresholds for size category can follow the recommendations of the nation’s central bank (the
common classes are very small, small, medium, large and very large or megabanks), or the researcher can
establish his/her own cut-offs, depending on the availability of the data and the purpose of the investigation.

13the banks for which total assets are greater than 10 billion dollars are a special category of large banks
that will be referred to as megabanks.
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Table 5.1: Translog Parameters: Posterior Means and Standard Deviation, 90% H.D.R.∗

Parameters POOLED FRONTIER
ALL SMALL MEDIUM LARGE

β1 1.4610 1.3890 1.0520 1.5380
Post. S.D. (0.0193) (0.0336) (0.0463) (0.0347)
[H.D.R.] [1.4290,1.493] [1.3340,1.4450] [0.9740,1.1260] [1.4800,1.5950]

β2 0.2800 0.1172 0.4336 0.2533
Post. S.D. (0.01061) (0.0186) (0.0321) (0.0184)
[H.D.R.] [0.2626,0.2975] [0.0867,0.1478] [0.3817,0.4875] [0.2233,0.2839]

β3 0.0846 0.1459 0.0887 0.0361
Post. S.D. (0.0029) (0.0049) (0.0081) (0.0048)
[H.D.R.] [0.0798,0.08939] [0.1379,0.1539] [0.0752,0.1018] [0.0281,0.0440]

β4 0.3882 0.3898 0.4575 0.3535
Post. S.D. (0.0104) (0.0162) (0.0255) (0.0202)
[H.D.R.] [0.3711,0.4053] [0.3633,0.4167] [0.4173,0.5013] [0.3204,0.3869]

β5 0.0609 0.0745 0.0823 0.0549
Post. S.D. (0.0020) (0.0028) (0.0054) (0.0041)
[H.D.R.] [0.0576,0.0641] [0.0699,0.0790] [0.0733,0.0911] [0.0481,0.0616]

β6 0.2668 0.2456 0.3201 0.3604
Post. S.D. (0.0071) (0.0114) (0.0182) (0.0130)
[H.D.R.] [0.2552,0.2785] [0.2270,0.2643] [0.2902,0.3499] [0.3392,0.3819]

β7 0.0361 0.0417 0.0539 0.0359
Post. S.D. (0.0008) (0.0013) (0.0021) (0.0013)
[H.D.R.] [0.0347,0.0374] [0.0396,0.0439] [0.0505,0.0574] [0.0338,0.0380]

β8 -0.05534 -0.0186 -0.1029 -0.0136
Post. S.D. (0.0047) (0.0073) (0.0120) (0.0088)
[H.D.R.] [-0.0632,-0.0476] [-0.0307,-0.0067] [-0.1229,-0.0835] [-0.0281,0.0009]

β9 -0.0150 0.0105 0.0170 -0.0384
Post. S.D. (0.0032) (0.0055) (0.0080) (0.0052)
[H.D.R.] [-0.0203,-0.0097] [0.0015,0.0195] [0.0037,0.0301] [-0.0468,-0.0299]
β10 -0.0144 0.0090 -0.0218 -0.0599

Post. S.D. (0.0024) (0.0035) (0.0069) (0.0049)
[H.D.R.] [-0.0184,-0.0104] [0.0032,0.0148] [-0.0331,-0.0104] [-0.0680,-0.0518]

Obs. 13970 5305 2881 5784
No. banks 2819 1479 927 1269

Notes: ∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 5.2: Translog Parameters: Posterior Means and Standard Deviation, 90% H.D.R.∗

Parameters CROATIA DENMARK
ALL ALL SMALL LARGE

β1 1.8180 1.8810 0.4584 0.9195
Post. S.D. (0.5494) (0.2251) (0.4047) (0.3394)
[H.D.R.] [0.9074,2.7080] [1.5010,2.2390] [-0.2088,1.1270] [0.3653,1.4770]

β2 -0.4263 -0.1706 0.4619 0.6751
Post. S.D. (0.4902) (0.1928) (0.2374) (0.2804)
[H.D.R.] [-1.2420,0.3747] [-0.4807,0.1521] [0.0705,0.8520] [0.2147,1.1340]

β3 0.1572 0.1198 0.0960 -0.0521
Post. S.D. (0.1232) (0.0404) (0.0470) (0.0585)
[H.D.R.] [-0.0456,0.3592] [0.0521,0.1845] [0.0187,0.1732] [-0.1485,0.0433]

β4 0.3659 0.1363 1.4770 0.3481
Post. S.D. (0.6233) (0.1369) (0.3510) (0.1921)
[H.D.R.] [-0.6483,1.397] [-0.0847,0.3645] [0.9000,2.0540] [0.0348,0.6652]

β5 0.1287 -0.0370 -0.1055 0.0055
Post. S.D. (0.1815) (0.0281) (0.0822) (0.0373)
[H.D.R.] [-0.1708,0.4235] [-0.0831,0.0091] [-0.2409,0.0293] [-0.0568,0.0657]

β6 0.7201 0.5137 1.0370 0.4752
Post. S.D. (0.1331) (0.0921) (0.2397) (0.1258)
[H.D.R.] [0.5004,0.9384] [0.3632,0.6670] [0.6422,1.4300] [0.2694,0.6814]

β7 0.1043 0.03333 0.0302 0.0344
Post. S.D. (0.0186) (0.0104) (0.0381) (0.0160)
[H.D.R.] [0.0737,0.1347] [0.0160,0.0503] [-0.0324,0.0926] [0.0081,0.0609]

β8 0.4844 0.3231 -0.2040 0.1543
Post. S.D. (0.2693) (0.0653) (0.1001) (0.0974)
[H.D.R.] [0.0419,0.9305] [0.2152,0.4290] [-0.3668,-0.0379] [-0.0047,0.3150]

β9 -0.1049 -0.1264 -0.1177 -0.1571
Post. S.D. (0.0789) (0.0348) (0.0683) (0.0627)
[H.D.R.] [-0.2340,0.0248] [-0.1836,-0.0689] [-0.2307,-0.0051] [-0.2592,-0.0533]
β10 -0.3116 -0.1019 -0.4487 -0.1041

Post. S.D. (0.0864) (0.0340) (0.1010) (0.0373)
[H.D.R.] [-0.4532,-0.1693] [-0.1582,-0.0468] [-0.6142,-0.2833] [-0.1651,-0.0431]

Obs. 121 375 174 132
No. banks 26 78 51 39

Notes: ∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 5.3: Translog Parameters: Posterior Means and Standard Deviation, 90% H.D.R.∗

Parameters GERMANY
ALL SMALL MEDIUM LARGE

β1 1.3770 1.6360 1.1200 1.0560
Post. S.D. (0.0286) (0.0351) (0.0658) (0.0600)
[H.D.R.] [1.3300,1.4240] [1.5770,1.6920] [1.0090,1.2250] [0.9561,1.1540]

β2 0.5245 0.2014 0.5451 0.5215
Post. S.D. (0.0271) (0.0407) (0.0746) (0.0477)
[H.D.R.] [0.4801,0.5693] [0.1367,0.2699] [0.4239,0.6691] [0.4444,0.6011]

β3 -0.0133 0.0894 0.0530 -0.0455
Post. S.D. (0.0082) (0.0155) (0.0230) (0.0112)
[H.D.R.] [-0.0268,0.0002] [0.0634,0.1145] [0.0150,0.0910] [-0.0643,-0.0274]

β4 0.5231 0.4054 0.6803 0.6888
Post. S.D. (0.0135) (0.0143) (0.0476) (0.0377)
[H.D.R.] [0.5012,0.5455] [0.3822,0.4293] [0.6045,0.7605] [0.6284,0.7521]

β5 0.0486 0.0650 0.0354 0.0282
Post. S.D. (0.0022) (0.0026) (0.0091) (0.0068)
[H.D.R.] [0.0449,0.0521] [0.0606,0.0693] [0.0202,0.0502] [0.0166,0.0389]

β6 0.4973 0.3741 0.5194 0.6028
Post. S.D. (0.0133) (0.0142) (0.0295) (0.0195)
[H.D.R.] [0.4755,0.5192] [0.3510,0.3976] [0.4709,0.5677] [0.5707,0.6349]

β7 0.0298 0.0472 0.0257 0.0277
Post. S.D. (0.0014) (0.0027) (0.0024) (0.0019)
[H.D.R.] [0.0275,0.0321] [0.0429,0.0516] [0.0217,0.0296] [0.0245,0.0308]

β8 -0.0780 -0.0142 -0.1254 -0.0825
Post. S.D. (0.0076) (0.0105) (0.0258) (0.0153)
[H.D.R.] [-0.0906,-0.0654] [-0.0318,0.0027] [-0.1682,-0.0834] [-0.1082,-0.0579]

β9 -0.0745 -0.0556 -0.0530 -0.0427
Post. S.D. (0.0073) (0.0115) (0.0146) (0.0109)
[H.D.R.] [-0.0865,-0.0625] [-0.0748,-0.0368] [-0.0771,-0.0289] [-0.0608,-0.0248]
β10 -0.1276 -0.0802 -0.1349 -0.1754

Post. S.D. (0.0048) (0.0050) (0.0111) (0.0070)
[H.D.R.] [-0.1354,-0.1197] [-0.0885,-0.0720] [-0.1532,-0.1167] [-0.1869,-0.1639]

Obs. 8668 3111 2021 3536
No. banks 1471 823 562 630

Notes: ∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 5.4: Translog Parameters: Posterior Means and Standard Deviation, 90% H.D.R.∗

Parameters FRANCE NETHERLANDS
ALL LARGE ALL LARGE

β1 -0.5787 -0.6682 1.9450 1.9270
Post. S.D. (0.1357) (0.1344) (0.2310) (0.2684)
[H.D.R.] [-0.7989,-0.3537] [-0.8911,-0.4498] [1.5550,2.3130] [1.4690,2.3460]

β2 1.8690 1.9860 0.5145 0.5258
Post. S.D. (0.1120) (0.1441) (0.1627) (0.1738)
[H.D.R.] [1.6850,2.0520] [1.7520,2.2260] [0.2479,0.7837] [0.2421,0.8107]

β3 -0.1508 -0.2300 -0.0226 -0.0720
Post. S.D. (0.0244) (0.0331) (0.0600) (0.0665)
[H.D.R.] [-0.1911,-0.1108] [-0.2863,-0.1778] [-0.1226,0.0747] [-0.1816,0.0372]

β4 1.2550 1.2140 -0.0437 -0.0432
Post. S.D. (0.0855) (0.0811) (0.1077) (0.1213)
[H.D.R.] [1.1130,1.3960] [1.0820,1.3500] [-0.2196,0.1357] [-0.2411,0.1581]

β5 -0.0019 0.0086 0.0840 0.0839
Post. S.D. (0.0175) (0.0162) (0.0187) (0.0225)
[H.D.R.] [-0.0310,0.0269] [-0.0181,0.0350] [0.0527,0.1144] [0.0456,0.1194]

β6 0.2237 0.3135 -0.1013 -0.1045
Post. S.D. (0.0366) (0.0423) (0.0996) (0.1154)
[H.D.R.] [0.1638,0.2839] [0.2441,0.3837] [-0.2663,0.0627] [-0.2914,0.0851]

β7 0.0104 0.0115 0.0090 0.0143
Post. S.D. (0.0033) (0.0034) (0.0186) (0.0197)
[H.D.R.] [0.0049,0.0156] [0.0058,0.0169] [-0.0218,0.0391] [-0.0185,0.0460]

β8 -0.5363 -0.4847 -0.0266 -0.0184
Post. S.D. (0.0353) (0.0511) (0.0511) (0.0572)
[H.D.R.] [-0.5939,-0.4779] [-0.5686,-0.4008] [-0.1099,0.0585] [-0.1108,0.0770]

β9 -0.0062 -0.0195 0.0998 0.0991
Post. S.D. (0.0131) (0.0148) (0.0462) (0.0489)
[H.D.R.] [-0.0278,0.0156] [-0.0442,0.0045] [0.0234,0.1755] [0.0184,0.1790]
β10 -0.0795 -0.1027 0.0312 0.0272

Post. S.D. (0.0134) (0.0148) (0.0346) (0.0409)
[H.D.R.] [-0.1016,-0.0577] [-0.1270,-0.0786] [-0.0262,0.0876] [-0.0415,0.0922]

Obs. 527 452 134 118
No. banks 171 150 36 33

Notes: ∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 5.5: Translog Parameters: Posterior Means and Standard Deviation, 90% H.D.R.∗

Parameters ITALY
ALL SMALL MEDIUM LARGE

β1 0.6475 0.1996 0.3114 1.0020
Post. S.D. (0.0776) (0.2125) (0.1830) (0.0875)
[H.D.R.] [0.5165,0.7708] [-0.1494,0.5478] [0.0125,0.6137] [0.8534,1.1400]

β2 0.6200 0.8928 0.7452 0.5303
Post. S.D. (0.0733) (0.1653) (0.1513) (0.0861)
[H.D.R.] [0.5021,0.7420] [0.6227,1.1640] [0.4966,0.9955] [0.3942,0.6767]

β3 0.0789 0.0022 0.0803 0.0888
Post. S.D. (0.0206) (0.0386) (0.0328) (0.0310)
[H.D.R.] [0.0447,0.1125] [-0.0616,0.0654] [0.0252,0.1330] [0.0372,0.1388]

β4 0.2138 0.3796 0.2912 0.1235
Post. S.D. (0.0433) (0.1765) (0.1193) (0.0481)
[H.D.R.] [0.1453,0.2879] [0.0893,0.6690] [0.0947,0.4871] [0.0466,0.2050]

β5 0.1272 0.1540 0.1724 0.0975
Post. S.D. (0.0065) (0.0388) (0.0184) (0.0082)
[H.D.R.] [0.1163,0.1375] [0.0908,0.2182] [0.1420,0.2023] [0.0840,0.1108]

β6 0.3584 0.2859 0.7617 0.2843
Post. S.D. (0.0286) (0.0911) (0.0588) (0.0385)
[H.D.R.] [0.3112,0.4054] [0.1344,0.4348] [0.6648,0.8589] [0.2209,0.3473]

β7 0.0252 0.1348 0.0561 0.0122
Post. S.D. (0.0028) (0.0144) (0.0103) (0.0037)
[H.D.R.] [0.0206,0.0298] [0.1107,0.1579] [0.0388,0.0725] [0.0062,0.0183]

β8 0.0929 -0.0052 0.0136 0.1238
Post. S.D. (0.0240) (0.0659) (0.0629) (0.0303)
[H.D.R.] [0.0529,0.1315] [-0.1135,0.1036] [-0.0904,0.1173] [0.0729,0.1729]

β9 -0.0453 0.0410 -0.1323 -0.0212
Post. S.D. (0.0116) (0.0435) (0.0381) (0.0163)
[H.D.R.] [-0.0644,-0.0262] [-0.0299,0.1135] [-0.1943,-0.0698] [-0.0479,0.00564]
β10 -0.0772 -0.0586 -0.2211 -0.0830

Post. S.D. (0.0097) (0.0366) (0.0257) (0.0125)
[H.D.R.] [-0.0931,-0.0611] [-0.1180,0.0022] [-0.2632,-0.1790] [-0.1037,-0.0623]

Obs. 1818 745 355 718
No. banks 561 287 158 215

Notes: ∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 5.6: Translog Parameters: Posterior Means and Standard Deviation, 90% H.D.R.∗

Parameters POLAND ROMANIA SERBIA SLOVENIA
ALL ALL ALL ALL

β1 1.2580 2.3330 2.9580 0.6707
Post. S.D. (0.3549) (0.1742) (0.4669) (0.3750)
[H.D.R.] [0.6735,1.8410] [2.0440,2.6160] [2.2190,3.7500] [0.05512,1.2820]

β2 -0.2465 0.0511 1.0940 -0.1811
Post. S.D. (0.1380) (0.1946) (0.3519) (0.3340)
[H.D.R.] [-0.4733,-0.0191] [-0.2701,0.3711] [0.4963,1.6450] [-0.7262,0.3687]

β3 -0.0062 -0.0260 0.0342 0.2513
Post. S.D. (0.0288) (0.0558) (0.1216) (0.1121)
[H.D.R.] [-0.0536,0.0407] [-0.1190,0.0662] [-0.1823,0.2126] [0.0668,0.4333]

β4 1.5740 0.3902 0.1938 1.3100
Post. S.D. (0.4274) (0.1263) (0.3922) (0.3892)
[H.D.R.] [0.8706,2.2720] [0.1893,0.6026] [-0.4239,0.8529] [0.6691,1.9480]

β5 -0.3970 0.0400 0.0533 -0.1808
Post. S.D. (0.1306) (0.0542) (0.1419) (0.1091)
[H.D.R.] [-0.6095,-0.1823] [-0.0500,0.1277] [-0.1911,0.2741] [-0.3599,-0.0019]

β6 0.1195 0.2221 0.2612 -0.0111
Post. S.D. (0.1268) (0.0972) (0.1681) (0.2938)
[H.D.R.] [-0.0881,0.3269] [0.0609,0.3809] [-0.0024,0.5469] [-0.4900,0.4710]

β7 0.0236 0.0149 0.0203 0.2864
Post. S.D. (0.0161) (0.0127) (0.0169) (0.0793)
[H.D.R.] [-0.0028,0.0502] [-0.0060,0.0357] [-0.0061,0.0495] [0.1561,0.4173]

β8 0.2495 0.1920 -0.1436 0.0378
Post. S.D. (0.0688) (0.0881) (0.2447) (0.1714)
[H.D.R.] [0.1357,0.3625] [0.0476,0.3366] [-0.5399,0.2611] [-0.2435,0.3205]

β9 -0.0230 0.0059 0.0115 0.2618
Post. S.D. (0.0445) (0.0401) (0.0620) (0.1604)
[H.D.R.] [-0.0964,0.0501] [-0.0594,0.0722] [-0.0887,0.1142] [-0.0026,0.5253]
β10 0.0581 -0.0685 -0.0438 -0.1004

Post. S.D. (0.0697) (0.0453) (0.0667) (0.1691)
[H.D.R.] [-0.0555,0.1729] [-0.1427,0.0062] [-0.1511,0.0673] [-0.3773,0.1784]

Obs. 93 104 80 84
No. banks 28 23 25 17

Notes: ∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 5.7: Translog Parameters: Posterior Means and Standard Deviation, 90% H.D.R.∗

Parameters POOLED FRONTIER SWEDEN
ALL SMALL ALL SMALL

β1 1.4610 1.389 0.2531 -0.0807
Post. S.D. (0.0193) (0.0336) (0.4173) (0.5433)
[H.D.R.] [1.429,1.493] [1.3340,1.4450] [-0.4380,0.9333] [-0.9832,0.8128]

β2 0.2800 0.1172 -0.5513 -0.2416
Post. S.D. (0.01061) (0.0186) (0.2126) (0.2426)
[H.D.R.] [0.2626,0.2975] [0.0867,0.1478] [-0.8991,-0.1966] [-0.6398,0.1571]

β3 0.0846 0.1459 0.2098 0.2821
Post. S.D. (0.0029) (0.0049) (0.0417) (0.0510)
[H.D.R.] [0.0798,0.08939] [0.1379,0.1539] [0.1407,0.2780] [0.1975,0.3654]

β4 0.3882 0.3898 2.2810 2.3630
Post. S.D. (0.0104) (0.0162) (0.3713) (0.5596)
[H.D.R.] [0.3711,0.4053] [0.3633,0.4167] [1.6730,2.8930] [1.4390,3.2850]

β5 0.0609 0.0745 -0.5057 -0.2816
Post. S.D. (0.0020) (0.0028) (0.0844) (0.1610)
[H.D.R.] [0.0576,0.0641] [0.0699,0.0790] [-0.6447,-0.3684] [-0.5456,-0.0169]

β6 0.2668 0.2456 0.2813 0.2570
Post. S.D. (0.0071) (0.0114) (0.0799) (0.0950)
[H.D.R.] [0.2552,0.2785] [0.2270,0.2643] [0.1507,0.4133] [0.1014,0.4132]

β7 0.0361 0.0417 0.0238 0.0333
Post. S.D. (0.0008) (0.0013) (0.0043) (0.0056)
[H.D.R.] [0.0347, 0.0374] [0.0396,0.0439] [0.0166,0.0309] [0.0240,0.0424]

β8 -0.05534 -0.0186 0.2042 -0.1891
Post. S.D. (0.0047) (0.0073) (0.0753) (0.1221)
[H.D.R.] [-0.0632, -0.0476] [-0.0307,-0.0067] [0.0798,0.3282] [-0.3909,0.0124]

β9 -0.0150 0.0105 0.0429 -0.0023
Post. S.D. (0.0032) (0.0055) (0.0187) (0.0233)
[H.D.R.] [-0.0203,-0.0097] [0.0015,0.0195] [0.0121,0.0736] [-0.0408,0.0358]
β10 -0.0144 0.0090 -0.1121 -0.0198

Post. S.D. (0.0024) (0.0035) (0.0323) (0.0477)
[H.D.R.] [-0.0184,-0.0104] [0.0032,0.0148] [-0.1656,-0.0591] [-0.0980,0.0587]

Obs. 13970 5305 344 235
No. banks 2819 1479 61 48

Notes: ∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.

91



Table 5.8: Translog Parameters: Posterior Means and Standard Deviation, 90% H.D.R.∗

Parameters SWITZERLAND
ALL SMALL MEDIUM LARGE

β1 0.9152 0.7389 -0.8604 2.2740
Post. S.D. (0.1161) (0.1353) (0.3917) (0.1739)
[H.D.R.] [0.7262,1.1090] [0.5205,0.9641] [-1.4990,-0.2118] [1.9900,2.5610]

β2 0.1683 0.0597 1.7960 -0.5788
Post. S.D. (0.0655) (0.0680) (0.2537) (0.1132)
[H.D.R.] [0.0614,0.2773] [-0.0491,0.1733] [1.3640,2.1980] [-0.7594,-0.3881]

β3 0.1284 0.1650 -0.1577 0.2445
Post. S.D. (0.0117) (0.0115) (0.0438) (0.0248)
[H.D.R.] [0.1092,0.1475] [0.1457,0.1832] [-0.2270,-0.0823] [0.2026,0.2839]

β4 0.3608 0.4420 0.9494 -0.0922
Post. S.D. (0.0515) (0.0624) (0.1287) (0.1186)
[H.D.R.] [0.2747,0.4447] [0.3376,0.5431] [0.7370,1.1580] [-0.2873,0.1035]

β5 0.0522 0.0466 0.0531 0.1235
Post. S.D. (0.0058) (0.0062) (0.0177) (0.0192)
[H.D.R.] [0.0425,0.0617] [0.0363,0.0566] [0.0230,0.0813] [0.0911,0.1542]

β6 0.1466 0.0967 0.5830 0.4251
Post. S.D. (0.0399) (0.0475) (0.1606) (0.0917)
[H.D.R.] [0.0815,0.2130] [0.0197,0.1758] [0.3206,0.8471] [0.2735,0.5738]

β7 -0.0053 -0.0173 -0.0009 0.0341
Post. S.D. (0.0027) (0.0035) (0.0118) (0.0038)
[H.D.R.] [-0.0097,-0.0009] [-0.0230,-0.0117] [-0.0206,0.0180] [0.0276,0.0401]

β8 -0.0224 -0.0247 -0.3870 0.0565
Post. S.D. (0.0184) (0.0203) (0.0600) (0.0402)
[H.D.R.] [-0.0525,0.0081] [-0.0581,0.0086] [-0.4828,-0.2847] [-0.0095,0.1227]

β9 -0.0042 -0.0475 -0.1675 -0.0808
Post. S.D. (0.0176) (0.0177) (0.0599) (0.0350)
[H.D.R.] [-0.0335,0.0244] [-0.0767,-0.0188] [-0.2650,-0.0686] [-0.1382,-0.0231]
β10 -0.0733 -0.0658 -0.1144 -0.0544

Post. S.D. (0.0085) (0.0118) (0.0391) (0.0228)
[H.D.R.] [-0.0871,-0.0594] [-0.0853,-0.0467] [-0.1787,-0.0508] [-0.0898,-0.0150]

Obs. 1188 749 201 238
No. banks 221 170 69 44

Notes: ∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 5.9: Translog Parameters: Posterior Means and Standard Deviation, 90% H.D.R.∗

Parameters TURKEY UNITED KINGDOM
ALL ALL SMALL LARGE

β1 1.4140 1.5440 1.4880 1.6520
Post. S.D. (0.1965) (0.1427) (0.2153) (0.1806)
[H.D.R.] [1.0990,1.7460] [1.2830,1.7520] [1.1230,1.8310] [1.3370,1.9280]

β2 0.3001 0.3522 0.6687 0.1468
Post. S.D. (0.2443) (0.0836) (0.2470) (0.1186)
[H.D.R.] [-0.1021,0.7007] [0.2165,0.4907] [0.2638,1.0720] [-0.0434,0.3441]

β3 0.2389 -0.0085 -0.1146 0.0074
Post. S.D. (0.0995) (0.0266) (0.1441) (0.1441)
[H.D.R.] [0.0754,0.4024] [-0.0537,0.0333] [-0.3541,0.1228] [-0.0452,0.0564]

β4 0.6709 0.2576 -0.0879 0.1676
Post. S.D. (0.1959) (0.0415) (0.2410) (0.0589)
[H.D.R.] [0.3388,0.9804] [0.1900,0.3264] [-0.4823,0.3085] [0.0725,0.2647]

β5 0.0487 0.0623 0.4714 0.0790
Post. S.D. (0.0600) (0.0135) (0.1482) (0.0141)
[H.D.R.] [-0.0500,0.1475] [0.0402,0.0844] [0.2292,0.7148] [0.0556,0.1020]

β6 0.0724 0.3191 0.2537 0.3176
Post. S.D. (0.2163) (0.0444) (0.1288) (0.0585)
[H.D.R.] [-0.2826,0.4293] [0.2461,0.3918] [0.0407,0.4651] [0.2221,0.4145]

β7 -0.0198 0.0211 0.0109 0.0213
Post. S.D. (0.0699) (0.0058) (0.0279) (0.0060)
[H.D.R.] [-0.1352,0.0946] [0.0115,0.0307] [-0.0354,0.0569] [0.0114,0.0311]

β8 0.3035 0.0615 0.1040 0.1217
Post. S.D. (0.1216) (0.0280) (0.2158) (0.0347)
[H.D.R.] [0.0990,0.5002] [0.0158,0.1077] [-0.2514,0.4573] [0.0648,0.1784]

β9 -0.1627 -0.1003 -0.0087 -0.0853
Post. S.D. (0.1590) (0.0250) (0.1220) (0.0285)
[H.D.R.] [-0.4262,0.0981] [-0.1411,-0.0591] [-0.2088,0.1913] [-0.1321,-0.0387]
β10 -0.0650 -0.0711 -0.1069 -0.0774

Post. S.D. (0.1225) (0.0171) (0.0700) (0.0213)
[H.D.R.] [-0.2635,0.1381] [-0.0991,-0.0429] [-0.2212,0.0073] [-0.1125,-0.0426]

Obs. 84 350 87 226
No. banks 18 85 25 60

Notes: ∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Figure 5.1: Switzerland, Germany, Italy, France and the Pooled Frontiers Drawn at the Sample Median Values for loan/equity
and security/equity.
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Figure 5.2: Romania, Croatia, Slovenia, Poland, Serbia and Pooled Frontiers Drawn at the Sample Median Values for loan/equity
and security/equity.
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Figure 5.3: United Kingdom, Netherlands, Turkey, Sweden, Denmark and Pooled Frontiers Drawn at the Sample Median Values
for loan/equity and security/equity.
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Because the frontiers are drawn based on the range of the pooled data, each country’s

frontier points are also included on the graph. We look at all banks in each country, without

differentiating across bank sizes. Keeping in mind the fact that these are two dimensional

representations of four dimensional graphs obtained by fixing certain variables, we can still

see that there are differences in frontier shapes across the selected countries.

Germany’s cost frontier is closest to the pooled frontier, which is not surprising consid-

ering that more than half of the pooled observations are coming from the German banking

system. Higher deviations from the pooled frontier in the overall shapes are observed for

Romania, Serbia, Croatia, France, Italy, Turkey or Switzerland. It is also worth noting that

several of the frontiers clearly violate the concavity property of the cost function.

Before leaving the discussion of parameter values, some discussion of the posterior stan-

dard deviations and highest density regions is in order. Not surprisingly, the translog param-

eters results tables show that the 90 percent highest density regions are narrower and the

posterior standard deviation is smaller in the case of the countries with more observations

like Germany, Italy or Switzerland.

For countries like Romania, Serbia, Poland, Turkey that have 100 or less bank-year obser-

vations, the translog parameters exhibit wider 90 percent highest density regions and bigger

posterior standard deviations. To illustrate this finding, we show the posterior marginal den-

sities for the translog parameters of the Romanian and the pooled cost frontiers side by side

in figures 5.4 through 5.8. They correspond to the results from tables 5.1 and 5.6. In general,

irrespective of country and sample size, the marginal posterior distributions of the translog

parameters are smooth and do look normal. All the posterior marginal densities included in

this thesis were generated with R software, using the default settings of the density function.

According to the software’s website14, the density.default algorithm “disperses the mass of

the empirical distribution function over a regular grid of at least 512 points and then uses

14http://stat.ethz.ch/R-manual/R-devel/library/stats/html/density.html
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the fast Fourier transform to convolve this approximation with a discretized version of the

kernel and then uses linear approximation to evaluate the density at the specified points”.

The bandwidth is determined15 by the formula: b = max(x)−min(x)
2(1+log2 n)

, where n is the number of

data points.

When it comes to size, we observe that medium and large German banks have very

similar technologies (for the majority of the translog parameters, the posterior means are

close in value) and drive the values of the overall frontier, while for the pooled frontiers,

the technologies for medium and large banks are not that close anymore. Very different

technologies across sizes were identified in the cases of Switzerland, Italy and Denmark. The

samples for Netherlands, Romania, Poland, Slovenia, Turkey and France are dominated by

observations large banks, Croatia and Sweden have more small banks, while Serbia exhibits

a more balanced sample and for these countries. Due to the relatively small number of

observations for some bank categories, we focus on national frontiers, without splitting the

datasets. United Kingdom and Denmark have a split set with more small and large banks

that exhibit differences in technologies.

Figures 5.9 through 5.13 include the posterior marginal densities for the Italian translog

parameters according to bank size in order to illustrate the differences found in technologies

across bank sizes. While we cannot draw a general conclusion that one category is more or

less similar to another in terms of technology, as is the case for German banks, the results

for the overall Italian cost frontier independent of bank size seem to be driven in general by

the large banks.

15Venables and Ripley (2002) offer more information on the procedure, but in essence it allows for a
compromise between smoothing too much so that it gets rid of the true peaks and too little so that irrelevant
humps remain (Crawley, 2007). Other references for the density estimation algorithm used can be found at
the above mentioned web link.
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Figure 5.4: Posterior Marginal Densities for Translog Parameters β1 and β2.
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Figure 5.5: Posterior Marginal Densities for Translog Parameters β3 and β4.

100



Romania Pooled Frontier

−0.2 −0.1 0.0 0.1 0.2 0.3

0
2

4
6

 

posterior mean β5 = 0.04

D
en

si
ty

β5

0.055 0.060 0.065 0.070
0

50
10

0
15

0
20

0

 

posterior mean β5 = 0.061

D
en

si
ty

β5

−0.2 0.0 0.2 0.4 0.6

0
1

2
3

4

 

posterior mean β6 = 0.22

D
en

si
ty

β6

0.24 0.25 0.26 0.27 0.28 0.29

0
10

20
30

40
50

 

posterior mean β6 = 0.2668

D
en

si
ty

β6

Figure 5.6: Posterior Marginal Densities for Translog Parameters β5 and β6.
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Figure 5.7: Posterior Marginal Densities for Translog Parameters β7 and β8.
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Romania Pooled Frontier
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Figure 5.8: Posterior Marginal Densities for Translog Parameters β9 and β10.
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Figure 5.9: Posterior Marginal Densities for Translog Parameters β1 and β2 - Italy.
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Figure 5.10: Posterior Marginal Densities for Translog Parameters β3 and β4 - Italy.
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Figure 5.11: Posterior Marginal Densities for Translog Parameters β5 and β6 - Italy.
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Figure 5.12: Posterior Marginal Densities for Translog Parameters β7 and β8 - Italy.
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Figure 5.13: Posterior Marginal Densities for Translog Parameters β9 and β10 - Italy.
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To complete the analysis of technologies, we evaluate economies of scale16 for a group of

selected banks. For each country, we have picked banks from each of the size types (small,

medium and large), all from year 2007, such that their total assets were close to the median

value of the respective category and whenever possible, we included not only commercial

banks but also cooperative or savings banks.

The economies of scale were calculated not only with respect with the nation’s frontier

in the case of each bank, but also against the pooled frontier. The results are presented in

tables 5.10 through 5.15.

Keeping in mind the rule of thumb that cost scale economies are increasing if the sum

of output elasticities of costs is smaller than one, and decreasing if the sum is larger than

one, we take a look at the results in the above tables.

The small banks exhibit in general increasing economies of scales against both national

frontier(Table 5.10) and pooled frontier (Table 5.11) with a couple of exceptions. The

posterior mean for the economies of scale of the Croatian bank (Partner Banka) though less

than one (0.9) when computed against the national frontier, has a highest density region

that includes one, suggesting that the bank is facing close to constant returns. The Swedish

banks (Södra Hestra Sparbank and Vimmerby Sparbank AB) are in a similar situation as

the highest density regions for the economies of scale include one even though the posterior

means are slightly higher than one (1.04 and respectively 1.10). If the banks from the two

countries were to switch to the pooled frontier, there is potential for increasing savings by

expanding output.

The highest cost reduction by increasing output on the domestic market would be enjoyed

by the French bank (Bank Pouyanne) for which the economies of scale against the national

frontier have a posterior mean of 2.37 and while against the pooled frontier the value goes

down significantly (1.23), it still remains greater than one.

16see Appendix 2 for formula derivations.
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Table 5.10: Economies of Scale� for Selected Banks (Small): Posterior Means, Standard Deviation, and 90% H.D.R.∗

Bank name Country Specialization Total assets Post. mean Post. S.D. H.D.R.∗

Partner Banka dd HR Commercial Bank 252.39 0.90 0.13 [0.72 , 1.14]
Lollands Bank DK Commercial Bank 311.47 1.56 0.12 [1.38 , 1.77]
Sparekassen i Skals DK Savings Bank 269.60 1.45 0.12 [1.26 , 1.67]
Banque Pouyanne FR Commercial Bank 301.49 2.37 0.24 [2.02 , 2.80]
Volksbank Sandhofen eG DE Cooperative Bank 301.63 1.38 0.02 [1.35 , 1.41]
Sparkasse Froendenberg DE Savings Bank 309.73 1.46 0.02 [1.42 , 1.50]
Bankhaus Ludwig Sperrer DE Commercial Bank 289.56 1.37 0.01 [1.35 , 1.40]
Banca di Credito Cooperativo di Nettuno IT Cooperative Bank 258.94 1.17 0.04 [1.11 , 1.23]
Romanian International Bank SA RO Commercial Bank 202.80 1.57 0.52 [1.08 , 2.35]
Cacanska Banka AD, Cacak RS Commercial Bank 260.62 1.94 0.66 [1.26 , 2.99]
Södra Hestra Sparbank SE Savings Bank 257.34 1.04 0.05 [0.96 , 1.13]
Vimmerby Sparbank AB SE Commercial Bank 181.49 1.10 0.08 [0.99 , 1.24]
GRB Glarner Regionalbank CH Commercial Bank 296.76 1.54 0.09 [1.41 , 1.69]
Reliance Bank Limited UK Commercial Bank 368.12 1.67 0.13 [1.47 , 1.89]

Notes: ♦ Based on national frontiers (M1).
∗ Highest Density Region.

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%

confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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Table 5.11: Economies of Scale� for Selected Banks (Small): Posterior Means, Standard Deviation, and 90% H.D.R.∗

Bank name Country Specialization Total assets Post. mean Post. S.D. H.D.R.∗

Partner Banka dd HR Commercial Bank 252.39 1.28 0.01 [1.26 , 1.30]
Lollands Bank DK Commercial Bank 311.47 1.38 0.01 [1.36 , 1.40]
Sparekassen i Skals DK Savings Bank 269.60 1.46 0.02 [1.44 , 1.49]
Banque Pouyanne FR Commercial Bank 301.49 1.23 0.01 [1.20 , 1.25]
Volksbank Sandhofen eG DE Cooperative Bank 301.63 1.14 0.01 [1.12 , 1.16]
Sparkasse Froendenberg DE Savings Bank 309.73 1.06 0.01 [1.04 , 1.08]
Bankhaus Ludwig Sperrer DE Commercial Bank 289.56 1.16 0.01 [1.14 , 1.17]
Banca di Credito Cooperativo di Nettuno IT Cooperative Bank 258.94 1.49 0.02 [1.46 , 1.52]
Romanian International Bank SA RO Commercial Bank 202.80 1.67 0.06 [1.58 , 1.76]
Cacanska Banka AD, Cacak RS Commercial Bank 260.62 1.59 0.04 [1.53 , 1.66]
Södra Hestra Sparbank SE Savings Bank 257.34 1.41 0.02 [1.39 , 1.44]
Vimmerby Sparbank AB SE Commercial Bank 181.49 1.54 0.02 [1.50 , 1.57]
GRB Glarner Regionalbank CH Commercial Bank 296.76 1.43 0.02 [1.40 , 1.46]
Reliance Bank Limited UK Commercial Bank 368.12 1.25 0.01 [1.23 , 1.27]

Notes: ♦ Based on the pooled frontier (M1).
∗ Highest Density Region.

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%

confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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Table 5.12: Economies of Scale� for Selected Banks (Medium): Posterior Means, Standard Deviation, and 90% H.D.R.∗

Bank name Country Specialization Total assets Post. mean Post. S.D. H.D.R.∗

Medimurska banka dd HR Commercial Bank 534.82 1.05 0.12 [0.88 , 1.26]
Froes Herreds Sparekasse DK Savings Bank 691.59 1.56 0.11 [1.39 , 1.75]
Morsoe Bank DK Commercial Bank 714.60 2.08 0.30 [1.67 , 2.64]
Banque Chalus FR Commercial Bank 760.19 1.18 0.04 [1.11 , 1.26]
Raiffeisenbank Straubing eG DE Cooperative Bank 702.64 1.45 0.02 [1.42 , 1.48]
Sparkasse Mecklenburg-Strelitz DE Savings Bank 722.36 1.48 0.03 [1.44 , 1.52]
Frankfurter Bankgesellschaft AG DE Commercial Bank 562.49 1.59 0.03 [1.55 , 1.63]
Cassa rurale di Tuenno IT Cooperative Bank 680.70 1.11 0.03 [1.06 , 1.16]
Intesa Sanpaolo Romania SA RO Commercial Bank 729.28 1.95 0.56 [1.34 , 2.91]
Volksbank ad RS Commercial Bank 986.23 1.74 0.88 [1.18 , 2.68]
Postna Banka Slovenije dd SI Commercial Bank 921.97 0.76 0.36 [0.52 , 1.12]
Sparbanken Lidköping AB SE Commercial Bank 664.95 0.54 0.05 [0.47 , 0.63]
Roslagens Sparbank Roslagsbanken SE Savings Bank 683.14 0.78 0.05 [0.71 , 0.86]
Alternative Bank ABS CH Commercial Bank 686.45 1.99 0.20 [1.70 , 2.36]
Turkish Bank A.S. TR Commercial Bank 650.28 1.56 0.27 [1.20 , 2.05]
Arbuthnot Latham & Co. Ltd. UK Commercial Bank 619.52 1.76 0.19 [1.49 , 2.09]

Notes: ♦ Based on national frontiers (M1).
∗ Highest Density Region.

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%

confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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Table 5.13: Economies of Scale� for Selected Banks (Medium): Posterior Means, Standard Deviation, and 90% H.D.R.∗

Bank name Country Specialization Total assets Post. mean Post. S.D. H.D.R.∗

Medimurska banka dd HR Commercial Bank 534.82 1.20 0.01 [1.18 , 1.22]
Froes Herreds Sparekasse DK Savings Bank 691.59 1.33 0.01 [1.31 , 1.35]
Morsoe Bank DK Commercial Bank 714.60 1.26 0.01 [1.24 , 1.28]
Banque Chalus FR Commercial Bank 760.19 1.34 0.01 [1.32 , 1.36]
Raiffeisenbank Straubing eG DE Cooperative Bank 702.64 1.14 0.01 [1.12 , 1.16]
Sparkasse Mecklenburg-Strelitz DE Savings Bank 722.36 1.02 0.01 [1.01 , 1.04]
Frankfurter Bankgesellschaft AG DE Commercial Bank 562.49 1.22 0.01 [1.20 , 1.24]
Cassa rurale di Tuenno IT Cooperative Bank 680.70 1.28 0.01 [1.26 , 1.30]
Intesa Sanpaolo Romania SA RO Commercial Bank 729.28 1.24 0.02 [1.21 , 1.27]
Volksbank ad RS Commercial Bank 986.23 1.63 0.05 [1.55 , 1.71]
Postna Banka Slovenije dd SI Commercial Bank 921.97 1.01 0.01 [0.99 , 1.03]
Sparbanken Lidköping AB SE Commercial Bank 664.95 1.66 0.02 [1.62 , 1.70]
Roslagens Sparbank Roslagsbanken SE Savings Bank 683.14 1.63 0.03 [1.59 , 1.68]
Alternative Bank ABS CH Commercial Bank 686.45 1.30 0.02 [1.27 , 1.33]
Turkish Bank A.S. TR Commercial Bank 650.28 1.37 0.03 [1.32 , 1.41]
Arbuthnot Latham & Co. Ltd. UK Commercial Bank 619.52 1.19 0.01 [1.17 , 1.21]

Notes: ♦ Based on the pooled frontier (M1).
∗ Highest Density Region.

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%

confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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Table 5.14: Economies of Scale� for Selected Banks (Large): Posterior Means, Standard Deviation, and 90% H.D.R.∗

Bank name Country Specialization Total assets Post. mean Post. S.D. H.D.R.∗

Hrvatska Postanska Bank DD HR Commercial 2920.69 1.06 0.24 [0.78 , 1.49]
Skandinaviska Enskilda Banken DK Commercial 2770.29 0.95 0.10 [0.80 , 1.12]
Banque Populaire des Alpes FR Cooperative 10741.06 1.26 0.09 [1.12 , 1.41]
Société Bordelaise de Crédit Ind. et Comm. FR Commercial 8894.45 0.86 0.07 [0.75 , 0.98]
Kreissparkasse Limburg DE Savings 2119.09 1.43 0.02 [1.39 , 1.47]
Hamburger Volksbank eG DE Cooperative 2134.40 1.49 0.02 [1.46 , 1.53]
Thüringer Aufbaubank DE Commercial 2660.68 1.20 0.01 [1.18 , 1.23]
Banca Padovana Credito Cooperativo SC IT Cooperative 3232.59 1.04 0.02 [1.00 , 1.07]
Cassa di risparmio di Alessandria SpA IT Savings 3381.27 0.94 0.02 [0.91 , 0.98]
Banca Monte Parma SpA IT Commercial 3477.11 0.98 0.02 [0.95 , 1.02]
Staalbankiers NV NL Commercial 4380.10 2.57 0.82 [1.77 , 3.81]
Bank BPH SA PL Commercial 5347.76 1.10 0.19 [0.85 , 1.45]
Banca Romaneasca SA RO Commercial 2776.87 1.60 0.66 [1.06 , 2.47]
AIK Banka ad Nis RS Commercial 1457.16 1.82 0.85 [1.15 , 2.92]
Gorenjska Banka d.d. Kranj SI Commercial 2551.01 0.85 0.27 [0.58 , 1.26]
Färs & Frosta Sparbank AB SE Commercial 1702.99 1.35 0.11 [1.18 , 1.54]
ABN Amro Bank (Schweiz) AG CH Commercial 3294.00 2.43 0.23 [2.10 , 2.83]
Anadolubank A.S. TR Commercial 2702.80 1.67 0.41 [1.20 , 2.37]
JP Morgan International Bank Ltd UK Commercial 7361.90 1.58 0.18 [1.32 , 1.91]

Notes: ♦ Based on national frontiers (M1).
∗ Highest Density Region.

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%

confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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Table 5.15: Economies of Scale� for Selected Banks (Large): Posterior Means, Standard Deviation, and 90% H.D.R.∗

Bank name Country Specialization Total assets Post. mean Post. S.D. H.D.R.∗

Hrvatska Postanska Bank DD HR Commercial 2920.69 1.11 0.01 [1.09 , 1.13]
Skandinaviska Enskilda Banken A/S DK Commercial 2770.29 1.92 0.04 [1.86 , 1.99]
Banque Populaire des Alpes FR Cooperative 10741.06 1.53 0.02 [1.49 , 1.57]
Société Bordelaise de Crédit Ind. et Comm. FR Commercial 8894.45 1.41 0.03 [1.36 , 1.45]
Kreissparkasse Limburg DE Savings 2119.09 1.02 0.01 [1.00 , 1.03]
Hamburger Volksbank eG DE Cooperative 2134.40 1.19 0.01 [1.17 , 1.21]
Thüringer Aufbaubank DE Commercial 2660.68 1.05 0.01 [1.03 , 1.07]
Banca Padovana Credito Cooperativo SC IT Cooperative 3232.59 1.20 0.01 [1.18 , 1.21]
Cassa di risparmio di Alessandria SpA IT Savings 3381.27 1.27 0.01 [1.25 , 1.29]
Banca Monte Parma SpA IT Commercial 3477.11 1.15 0.01 [1.14 , 1.17]
Staalbankiers NV NL Commercial 4380.10 1.29 0.01 [1.27 , 1.31]
Bank BPH SA PL Commercial 5347.76 1.27 0.01 [1.25 , 1.29]
Banca Romaneasca S.A. RO Commercial 2776.87 1.32 0.02 [1.29 , 1.36]
AIK Banka ad Nis RS Commercial 1457.16 1.48 0.03 [1.42 , 1.54]
Gorenjska Banka d.d. Kranj SI Commercial 2551.01 1.30 0.01 [1.28 , 1.33]
Färs & Frosta Sparbank AB SE Commercial 1702.99 1.41 0.02 [1.38 , 1.44]
ABN Amro Bank (Schweiz) AG CH Commercial 3294.00 1.41 0.01 [1.38 , 1.43]
Anadolubank A.S. TR Commercial 2702.80 1.10 0.01 [1.07 , 1.12]
JP Morgan International Bank Ltd UK Commercial 7361.90 1.37 0.02 [1.34 , 1.41]

Notes: ♦ Based on the pooled frontier (M1).
∗ Highest Density Region.

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%

confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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General findings for the pooled technology implies lower economies of scale values for 9

out the 14 banks. Only the Italian, Swedish and Croatian banks appear closer to constant

returns against the pooled frontier while the Danish savings bank maintains the same value

of the economies of scale.

The economies of scale for the medium banks are presented in tables 5.12 (for the do-

mestic market) and 5.13 (for the pooled frontier). Against the national frontier, the Swedish

(Sparbanken Lidköping AB and Roslagens Sparbank Roslagsbanken) and the Slovenian

(Postna Banka Slovenije dd) banks have very low values for the economies of scales’ pos-

terior means (0.54, 0.78 and 0.76). Nevertheless, only the highest density regions for the

Swedish banks confirm the presence of diseconomies of scale while the highest density region

for the Slovenian bank includes one, suggesting that the bank might actually face constant

returns. When computed against the pooled frontier, while the Slovenian banks remains

in the region of constant returns, the Swedish banks exhibit increasing returns, the poste-

rior means for economies of scale increasing to 1.66 (Sparbanken Lidköping AB) and 1.63

(Roslagens Sparbank Roslagsbanken). The Croatian bank (Medimurska banka dd) has a

similar situation: with the domestic technology, there is no potential for decreasing cost by

increasing the output (the posterior mean of the economies of scale is 1.05 and the highest

density region includes 1), but by switching to the pooled frontier’s technology, the costs can

be reduced. The Italian and French banks register increasing scale economies domestically,

but their savings would improve on the pooled frontier. For all the other chosen banks, the

cost scale economies are greater than one on both cases, but they fare better against the

national frontier.

When it comes to the large banks, we observe posterior means for the economies of scale

lower than one when computed against the national frontier for only five of the selected

banks in four countries.
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In France, Société Bordelaise de Crédit Industriel et Commercial shows diseconomies

of scale with a posterior mean of 0.86, in Slovenia, the computed posterior mean for the

economies of scale at Gorenjska Banka d.d. Kranj is 0.85, in Denmark, for Sandkandinaviska

Enskilda Banken economies of scale posterior mean is 0.95 while in Italy, Banca Monte Parma

with 0.98 and Cassa di risparmio di Alessandria with 0.94 are really close to one. In only two

of this cases (Société Bordelaise de Crédit Industriel et Commercial and Cassa di risparmio

di Alessandria), the highest density regions do not include one, suggesting that the banks

truly exhibit diseconomies of scale. For the other three banks, the highest density regions

include one suggesting that they more likely have constant returns. For all the other selected

banks, the posterior means of the economies of scales are greater than one, though in the

case of the Polish (Bank BPH SA) and Croatian (Hrvatska Postanska Bank DD) banks, the

highest density regions are wider (lower number of observations) and include one. The two

outlier banks that would enjoy the highest savings by increasing their output are the Dutch

(Staalbankiers, 2.57) and the Swiss (ABN Amro Bank Schweiz, 2.43) banks.

When computed against the pooled frontier, the economies of scale for all the large

banks are greater than one. This means that the Société Bordelaise de Crédit Industriel et

Commercial and Cassa di risparmio di Alessandria are moving from decreasing to increasing

cost scale economies as they switch from the national to the pooled technology. Other banks

that would benefit from the change in technology are the ones from Croatia, Italy, Poland,

Slovenia and Sweden as the posterior means of the scale economies increases for them. For

all the other countries, the posterior means of the economies of scale decrease, but still

remain greater then one.

Figures 5.14 through 5.27 illustrate the estimated economies of scale for the large banks’

group as we draw side by side the posterior marginal densities for each bank based on both

the national and pooled frontiers.
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While the conditional distributions for the technology parameters are normal, there is no

expectation for the economies of scale as a nonlinear function of the β’s to have a symmetric

posterior marginal density. Nevertheless, the smoothed posterior marginal densities for the

large banks’ economies of scale are mostly symmetric in the case of the pooled frontier. They

are also narrow, having a low variance (as expected from the highest density region column

of tables 5.14 and 5.15). Both behaviors are explained by the large number of observations

used to estimate the pooled frontier (N = 13970, the total number of observations in the

dataset). As the countries frontiers are estimated based on a small number of observations

(sometimes less than 100, i.e. Poland, Serbia, Turkey), the plots of the posterior marginal

densities exhibit asymmetry for the national frontier for most of the countries (with the

exception of Italy and Germany, the two countries in the dataset with the most observations).
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Figure 5.14: Croatia - Posterior Marginal Density for Economies of Scale, Large Bank.
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Skandinaviska Enskilda Banken
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Figure 5.15: Denmark - Posterior Marginal Density for Economies of Scale, Large Bank.
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Figure 5.16: France - Posterior Marginal Density for Economies of Scale, Large Bank.
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Thüringer Aufbaubank
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Figure 5.17: Germany - Posterior Marginal Density for Economies of Scale, Large Bank.

Banca Monte Parma
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Figure 5.18: Italy - Posterior Marginal Density for Economies of Scale, Large Bank.
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Staalbankiers NV
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Figure 5.19: Netherlands - Posterior Marginal Density for Economies of Scale, Large Bank.
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Figure 5.20: Poland - Posterior Marginal Density for Economies of Scale, Large Bank.
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Banca Romaneasca
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Figure 5.21: Romania - Posterior Marginal Density for Economies of Scale, Large Bank.

AIK Banka ad Nis
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Figure 5.22: Serbia - Posterior Marginal Density for Economies of Scale, Large Bank.
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Gorenjska Banka d.d. Kranj
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Figure 5.23: Slovenia - Posterior Marginal Density for Economies of Scale, Large Bank.

Färs & Frosta Sparbank AB
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Figure 5.24: Sweden - Posterior Marginal Density for Economies of Scale, Large Bank.
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ABN Amro Bank (Schweiz) AG
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Figure 5.25: Switzerland - Posterior Marginal Density for Economies of Scale, Large Bank.

Anadolubank AS
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Figure 5.26: Turkey - Posterior Marginal Density for Economies of Scale, Large Bank.
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JP Morgan International Bank Ltd
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Figure 5.27: United Kingdom - Posterior Marginal Density for Economies of Scale, Large Bank.

In tables 5.16 and 5.18 we record the posterior means and the 90 percent highest posterior

density regions for the λ and σ2
u variables calculated for the countries of interest, while Table

5.17 contains the associated posterior means of the efficiency scores for each country, their

posterior standard deviation and the 5th and 95th quartiles. When computing the posterior

means of the efficiency scores, we use the 50,000 sampled values obtained through the Gibbs

sample algorithm from the marginal posterior distribution of the λ parameter to calculate

r̄ = E[exp(−λ)|data].

Looking at the overall results for each country, the most efficient banks relative to their

own frontier are the ones from Slovenia (with the posterior mean for λ of 0.0851, mean

efficiency score of 91.93 percent) and the least efficient ones are the ones from Switzerland

(with the posterior mean for λ of 0.5112, mean efficiency score of 59.86 percent) and Serbia

(with the posterior mean for λ of 0.5139, mean efficiency score of 60.28 percent).
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Table 5.16: λ - Posterior Means and Standard Deviation, 90% H.D.R.∗

Countries\Bank size Obs. No. banks λ Post. S.D. Q5 Q95

Pooled frontier all 13970 2819 0.1989 0.0058 0.1892 0.2084
small 5305 1479 0.2414 0.0108 0.2236 0.2591

medium 2881 927 0.2270 0.0113 0.2084 0.2457
large 5784 1269 0.1971 0.0082 0.1836 0.2108

CROATIA 121 26 0.1090 0.0499 0.0384 0.1989

DENMARK all 375 78 0.1899 0.0359 0.1326 0.2485
small 174 51 0.0894 0.0416 0.0345 0.1680
large 132 39 0.1490 0.0536 0.0542 0.2334

FRANCE all 527 171 0.4078 0.0333 0.3534 0.4630
large 452 150 0.3634 0.0306 0.3141 0.4141

GERMANY all 8668 1471 0.1601 0.0040 0.1536 0.1667
small 3111 823 0.1821 0.0064 0.1717 0.1928

medium 2021 562 0.1413 0.0069 0.1299 0.1527
large 3536 630 0.1564 0.0054 0.1475 0.1653

ITALY all 1818 561 0.2168 0.0097 0.2011 0.2330
small 745 287 0.1767 0.0126 0.1563 0.1977

medium 355 158 0.1528 0.0149 0.1290 0.1776
large 718 215 0.2516 0.0189 0.2208 0.2829

NETHERLANDS all 134 36 0.2002 0.1408 0.0424 0.4865
large 118 33 0.2459 0.1746 0.0417 0.5702

POLAND 93 28 0.0916 0.0469 0.0342 0.1823

ROMANIA 104 23 0.1598 0.0799 0.0457 0.3010

SERBIA 80 25 0.5139 0.1223 0.3099 0.6959

SLOVENIA 84 17 0.0851 0.0426 0.0318 0.1669

SWEDEN all 344 61 0.1408 0.0459 0.0616 0.2125
small 235 48 0.1118 0.0449 0.0421 0.1878

SWITZERLAND all 1188 221 0.5112 0.0291 0.4650 0.5609
small 749 170 0.4939 0.0303 0.4441 0.5437

medium 201 69 0.3739 0.0384 0.3133 0.4398
large 238 44 0.3869 0.0419 0.3180 0.4553

TURKEY 84 18 0.1863 0.0752 0.0577 0.3053

UNITED KINGDOM all 350 85 0.1653 0.1011 0.0396 0.3591
small 87 25 0.1556 0.1075 0.0420 0.3729
large 226 60 0.1583 0.0947 0.0396 0.3357

Notes:∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the marginal densities.

If total assets ≥1,000 millions dollars, the bank is large. Banks with total assets between 100 and 500

millions are small. Banks with total assets between 500 and 1,000 millions are of medium size.
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Table 5.17: Efficiency Score - Posterior Means and Standard Deviation, 90% H.D.R.∗

Countries\Bank size Obs. No. banks r†j Post. S.D. Q5 Q95

Pooled frontier all 13970 2819 0.8197 0.0048 0.8119 0.8276
small 5305 1479 0.7856 0.0085 0.7718 0.7997

medium 2881 927 0.7970 0.009 0.7821 0.8119
large 5784 1269 0.8211 0.0068 0.8099 0.8322

CROATIA 121 26 0.8979 0.0442 0.8196 0.9623

DENMARK all 375 78 0.8276 0.0297 0.7799 0.8758
small 174 51 0.9153 0.0374 0.8453 0.9661
large 132 39 0.8628 0.0464 0.7918 0.9473

FRANCE all 527 171 0.6655 0.0222 0.6294 0.7023
large 452 150 0.6957 0.0213 0.6609 0.7304

GERMANY all 8668 1471 0.8521 0.0034 0.8465 0.8576
small 3111 823 0.8335 0.0054 0.8246 0.8423

medium 2021 562 0.8683 0.0060 0.8584 0.8782
large 3536 630 0.8552 0.0046 0.8476 0.8628

ITALY all 1818 561 0.8051 0.0078 0.7921 0.8178
small 745 287 0.8381 0.0105 0.8206 0.8553

medium 355 158 0.8584 0.0127 0.8373 0.8790
large 718 215 0.7777 0.0147 0.7536 0.8019

NETHERLANDS all 134 36 0.8263 0.1086 0.6148 0.9585
large 118 33 0.7935 0.1303 0.5654 0.9592

POLAND 93 28 0.9135 0.0417 0.8334 0.9664

ROMANIA 104 23 0.855 0.0672 0.7401 0.9553

SERBIA 80 25 0.6028 0.0776 0.4986 0.7335

SLOVENIA 84 17 0.9193 0.0383 0.8463 0.9687

SWEDEN all 344 61 0.8696 0.0401 0.8085 0.9403
small 235 48 0.8951 0.0400 0.8287 0.9588

SWITZERLAND all 1188 221 0.5986 0.0174 0.5707 0.6281
small 749 170 0.6105 0.0185 0.5806 0.6414

medium 201 69 0.6886 0.0263 0.6441 0.7310
large 238 44 0.6798 0.0285 0.6343 0.7276

TURKEY 84 18 0.8324 0.0627 0.7369 0.944

UNITED KINGDOM all 350 85 0.8519 0.0829 0.6983 0.9612
small 87 25 0.8606 0.0855 0.6887 0.9588
large 226 60 0.8574 0.0785 0.7148 0.9611

Notes:∗ Highest Density Region, † Posterior mean of the efficiency score (r) for country j is reported.
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the marginal densities.

If total assets ≥1,000 millions dollars, the bank is large. Banks with total assets between 100 and 500

millions are small. Banks with total assets between 500 and 1,000 millions are of medium size.
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Table 5.18: σ2 - Posterior Means and Standard Deviation, 90% H.D.R.∗

Countries\Bank size Obs. No. banks σ2 Post. S.D. Q5 Q95

Pooled frontier all 13970 2819 0.1347 0.0025 0.1307 0.1387
small 5305 1479 0.1176 0.0045 0.1104 0.1250

medium 2881 927 0.0809 0.0039 0.0746 0.0873
large 5784 1269 0.1300 0.0035 0.1243 0.1358

CROATIA 121 26 0.0832 0.0157 0.0580 0.1100

DENMARK all 375 78 0.0939 0.0125 0.0743 0.1153
small 174 51 0.0989 0.0137 0.0771 0.1220
large 132 39 0.0528 0.0144 0.0318 0.0784

FRANCE all 527 171 0.0586 0.01121 0.0420 0.0785
large 452 150 0.0475 0.00901 0.0341 0.0633

GERMANY all 8668 1471 0.0329 0.0009 0.0314 0.0344
small 3111 823 0.0222 0.0012 0.0202 0.0243

medium 2021 562 0.0199 0.0012 0.0180 0.0221
large 3536 630 0.0337 0.0012 0.0317 0.0357

ITALY all 1818 561 0.0386 0.0024 0.0348 0.0427
small 745 287 0.0226 0.0024 0.0188 0.0267

medium 355 158 0.0181 0.0025 0.0143 0.0226
large 718 215 0.0518 0.0056 0.0433 0.0615

NETHERLANDS all 134 36 0.3548 0.0808 0.1998 0.4743
large 118 33 0.3521 0.1022 0.1668 0.5038

POLAND 93 28 0.1796 0.0303 0.1356 0.2338

ROMANIA 104 23 0.1144 0.0301 0.0658 0.1644

SERBIA 80 25 0.0988 0.0660 0.0336 0.2332

SLOVENIA 84 17 0.0808 0.0156 0.0578 0.1083

SWEDEN all 344 61 0.0602 0.0116 0.0418 0.0795
small 235 48 0.0577 0.0106 0.0398 0.0746

SWITZERLAND all 1188 221 0.0459 0.0095 0.0323 0.0630
small 749 170 0.0428 0.0090 0.0296 0.0590

medium 201 69 0.0323 0.0086 0.0203 0.0481
large 238 44 0.0350 0.0117 0.0202 0.0571

TURKEY 84 18 0.0564 0.0233 0.0240 0.0986

UNITED KINGDOM all 350 85 0.4026 0.0500 0.3111 0.4774
small 87 25 0.6093 0.1113 0.4442 0.8063
large 226 60 0.3134 0.0471 0.2306 0.3866

Notes:∗ Highest Density Region
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the marginal densities.

If total assets ≥1,000 millions dollars, the bank is large. Banks with total assets between 100 and 500

millions are small. Banks with total assets between 500 and 1,000 millions are of medium size.
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Slovenia is one of the most developed countries from the Central and South Eastern

Europe that joined the European Union in 2004, and adopted the Euro in 2007, with a

2009 GDP per capita at 88 percent of the European Union average17, so the results are not

surprising even though according to the International Monetary Fund (IMF) 2007 country

report, the banking industry suffers from over staffing especially in the state owned banks.

The wages, still low comparative to the European Union average, keep the costs low in spite

of a higher labor share. Nevertheless, our results show a higher mean efficiency compared to

the 2007 IMF estimate of 82.6 percent (computed with commercial banking data covering

years 1995 to 2005). As reported by Slovenia’s Central bank, the country’s banking system is

comprised of 20 major commercial banks (out of which 17 banks are included in our analysis

as in some years they registered total assets of more than 100 million dollars).

High mean efficiency scores are exhibited also by the following countries: Poland (above

90 percent), Denmark, Germany, Italy, Netherlands, Sweden, Romania, Turkey, UK and

Croatia (between 81 and 90 percent).

In Poland, the banking industry is dominated by domestic players that according to

the ECFIN 18 country focus report from May 2010 “were not involved in the purchase of

toxic international assets”, limiting themselves to providing standard banking services and

expanding the infrastructure, reason for which their banking system sailed relatively well the

financial crisis. The recession eventually lead reduction of the sector’s profits (that dropped

by 45 percent in 2009). On the other hand, the market has a big potential for growth19,

the fees and commission revenues are relatively high due to the low competitive pressure.

Nevertheless, the 2008 and 2009 effort to increase the number of agencies and branches is

expected to lead to higher future operational expense of the sector.

17in purchasing power standards, according to the Eurostat Tables
18Economic analysis from the European Commissions Directorate-General for Economic and Financial

Affairs
19since according to the same source 1.3 million accounts were opened in 2009 alone and more were

expected to be opened in the future.
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At the end of the spectrum, Serbia, a country that following World World I formed with

other Slavic nations the former Republic of Yugoslavia, reclaimed its independence in 2006

and in spite of several years of spectacular economic growth (from 6.3 percent in 2005, to 8.7

percent in 2008), it’s been plagued with a lot of the problems faced by transition economies:

corruption, high inflation rates, slow structural change of the economy (privatization of large

firms, including banks gained momentum only after 2004) and it remained very vulnerable

to external shocks. Under these circumstances, the low efficiency score is not surprising.

Low overall efficiency scores are also registered by France (66.55 percent), suggesting that

relatively to their own national frontier, there is a lot of room for improving cost efficiency.

The Dutch (σ̄2 = 0.3548), the English (σ̄2 = 0.4026) banks seem to be the least ho-

mogeneous relatively to their own frontier, while the German (σ̄2 = 0.0329), the Italian

(σ̄2 = 0.0386), the Turkish (σ̄2 = 0.0564) and the Swiss (σ̄2 = 0.0459) are the most homo-

geneous.

Previous investigations of the relationship between bank size and efficiency found slighter

higher cost efficiencies for the largest banks, while in terms of profit efficiency, the small banks

exhibited a higher level (Berger and Mester 1997)20.

For the countries that have enough observations to allow the analysis of cost frontiers

according to bank size, we do not find high differences in terms of cost efficiency between

the defined classes of banks. The medium and large size banks seem to be slightly more

efficient relative to their own frontier in Switzerland (mean efficiency score of 68.86 percent

and respectively 67.98 percent compared to the small banks that have a mean efficiency score

of 61.05 percent). In Italy the medium and small banks are slightly more efficient (mean

efficiency score of 83.81 percent and respectively 86.83 percent compared to the large banks’

mean efficiency score of 77.77 percent), while in Denmark, the small size banks are more

20using Translog an Fourier functional forms and data from 6,000 U.S. commercial banks that were in
continuous existence with complete information over the six-year period 1990-95.
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efficient relative to their own frontier (mean efficiency score of 91.53 percent), compared to

the large size banks that have a lower mean efficiency score (86.28 percent).

Germany and United Kingdom do not exhibit significant differences between the three

categories of bank size considered. In Germany, regardless of the size, the efficiency scores

are very similar (ranging from 83.35 percent for the small banks to 86.83 percent for the

medium banks), while in United Kingdom, the small banks have a mean efficiency score of

86.06 percent while the large banks have a mean efficiency score of 85.74 percent.

In Italy, the large banks (λ̄ = 0.2516) seem to bring down the results for the country’s

efficiency, the small (λ̄ = 0.1767) and medium banks (λ̄ = 0.1528) exhibiting higher cost

efficiency.

5.4 Posterior Marginal Densities for λ, Efficiency Score

and σ2

For completeness, this section contains marginal density plots for λ, σ2 and efficiency

score for each country (Figure 5.28 through Figure 5.41). Intuitively, there is no reason

to anticipate a priori that these density plots will be normally distributed. For example,

conditional densities for the λ’s are gamma and the posterior marginal density is based on

integrating over multiple parameters.

In general, the posterior marginal densities for λ tend to appear more asymmetric for

countries that are most efficient due to truncation of the inefficiency distribution or for those

with fewer observations. Also, given the properties of the gamma distribution and looking at

the formulas of the full conditional densities, it can be noted that the number of observations

from each country, the heterogeneity of the data will influence the shape of the posterior

marginal densities in terms of symmetry, smoothness, width.

In the case of the countries for which the data allowed a sample split according to bank
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size (Denmark - Figure 5.29, Germany - Figure 5.31, Italy - Figure 5.32, Switzerland - Figure

5.39 and UK - Figure 5.29), we drew plots for each of the considered scenarios (national

frontier, small banks, medium banks, and/ or large banks).

An interesting case that summarizes what we observe with these posterior marginal

densities is Denmark (Figure 5.29). If we look at the plots for λ and the efficiency score, we

observe relatively symmetric, almost normal distributions. As we split the data and draw the

plots for the large and small banks, we can see that the posterior marginal distributions for

the two parameters look asymmetric. This behavior can be explained on the one hand by the

lower number of observations in the split datasets according to bank size versus the national

frontier and on the other hand by the higher efficiency scores of the large and small banks

compared to the national frontier case that includes all banks. The asymmetric shapes can

be found in the λ and the efficiency score posterior marginal density plots for other countries

with low number of observations (Croatia - Figure 5.28, Netherlands - Figure 5.33, Poland -

Figure 5.34 or Slovenia - Figure 5.37). For countries like Romania (Figure 5.35), UK (Figure

5.41) or (Figure 5.40), the posterior marginal distributions of λ and the efficiency score show

lack of smoothness due to the small number of observations and possible clustering of banks

in certain areas of the frontiers.

The same symmetric, almost normal aspect we can also observe in the case of the pos-

terior marginal distributions for σ2, especially for the countries with a higher number of

observations.
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Figure 5.28: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Denmark
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Figure 5.29: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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France
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Figure 5.30: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 5.31: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Italy
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Figure 5.32: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Netherlands
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Figure 5.33: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Poland
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Figure 5.34: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Romania
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Figure 5.35: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Serbia
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Figure 5.36: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Slovenia
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Figure 5.37: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Sweden
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Figure 5.38: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Switzerland
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Figure 5.39: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Turkey
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Figure 5.40: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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United Kingdom
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Figure 5.41: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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5.5 Conclusions

This chapter focuses on an analysis of the efficiency of European banks based on indi-

vidual cost frontiers for 14 countries. When possible, we also investigate the possibility that

bank size may have an impact on the efficiency level.

Results for the technology parameters indicate substantial differences across countries

and bank size. Plots of the technology frontier for cost versus a single input price or output

holding other factors constant generally confirm the idea that the technologies appear to

differ across countries.

The presence of multiple frontiers is further pointed out by the difference in results

obtained for economies of scales computed for selected banks against the domestic frontier

versus the pooled frontier. We observe that in reference to a pooled frontier, the posterior

means of the economies of scale tend to consistently be higher than one even in the case

of the large banks, while with respect to the national frontier, we sometimes get smaller

returns to scale or highest density regions that include one. This suggests that the banks

could reduce costs by increasing output, which can translate into an increased number of

mergers/takeovers in the future especially if they decide to exploit the advantages of the

single market for financial services.

Nevertheless, in the wake of the recent economic and financial crisis, these advantages

in terms of reducing costs by increasing bank size might be offset by the risks of systemic

failures that this process could bring about as some banks might become “too big to fail”.

In terms of efficiency, we find that the most efficient banks relative to their own frontier

are the ones from Slovenia (mean efficiency score of 91.93 percent). Results suggest that the

least efficient banks are the ones from Switzerland (mean efficiency score of 59.86 percent)

and Serbia (mean efficiency score of 60.28 percent).
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Given that the frontiers may allow for substantial variation in cost structure across

countries, cross-country comparisons should be viewed with some caution. One nation could

appear quite efficient because its banks are clustered tightly around a high-cost frontier

while another could appear inefficient due to dispersion of costs around a lower cost frontier.

Furthermore, earlier results suggest substantial variation in frontiers across countries. To

address this issue, we explore measuring country specific efficiency versus common frontier

in Chapter 6.
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Chapter 6

Multiple Lambda Model: Comparing
the Cost Efficiency of Banks Across
Countries

6.1 Introduction

The last chapter contained estimates of efficiency based on allowing for different frontiers

in each country. In this chapter, the data is pooled - banks in all countries share a common

frontier. The basic approach is again a Bayesian stochastic frontier model, but modified in

this case to allow for both λ and σ2 to vary across country. Furthermore, we incorporate

an informative prior on the model parameters in preparation for a later model in chapter 7

(though the variances are set large enough to essentially mimic the diffuse prior from chapter

5). For a select group of banks, we derive the economies of scale.

After presenting the model specification and methodology, the chapter goes over the

empirical results and ends with conclusions. For completeness, section 6.4 includes posterior

marginal densities for λ, efficiency score, and σ2.
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6.2 Model Specifications and Methodology

Chapter 5 presents the basis of the stochastic cost frontier model that is also employed

in the current approach with some modifications. Because we are estimating a common

frontier, we assume a shared technology for all the countries in the dataset (the translog

parameters, β’s, are the same for all countries, with β= (β1, ..., β10)T the 10 × 1 common

technology vector).

Given that we work with the pooled dataset that stacks all the observations together, we

denote the N×10 independent variables matrix by X, with N = NHR+...+NUK =
∑14

j=1 Nj

total number of observations obtained by adding up the number of observations from each

country (i.e. NHR = N1 being the number of bank-year observations for Croatia, etc.).

The matrix X is obtained by stacking up the independent variables matrices from all the

countries (i.e. XHR = X1 for Croatia, XDK = X2 for Denmark, etc.) and y is the N × 1

stacked vector of total costs constructed similarly to X. Let Kj =
∑j

n=1Kn and K0 = 0.

The rows from 1 to K1 are the N1 stacked observations for Croatia (XHR) and in general,

the rows from Kj−1 + 1 to Kj are the Nj stacked observations for country j, for j = 1, ..., 14.

While we ignore the bank’s country of provenience when it comes to technology, we will

allow for differences between countries by including unequal variances in the model. The

data variance-covariance matrix (Σ) is assumed to be a N ×N diagonal matrix that is not

proportional to the identity matrix. The variance corresponding to the n’s observation is

inserted on row n. The covariance terms are equal to zero. As a result, we have 14 diagonal

matrices (ΣHR = Σu1 , ΣDK = Σu2 , etc.) of dimensions Nj × Nj, where j = 1, ..., 14 that

correspond to each country’s variance-covariance matrix (i.e. ΣHR = diag[σ2
HR], etc.). Note

that ΣHR = σ2
HR × I, where I is the identity matrix.
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The inefficiency terms, vij ∼ EXP (λj) follow exponential distributions, and we construct

v = (vHR,vDK , ...,vUK)T = (v1,v2, ...,v14)T , the stacked inefficiency vector of dimension

N × 1 (vHR = v1, etc.). Similarly, λ = (λHR, λDK , ..., λUK)T is the stacked vector of

inefficiency parameters with λHR = λ1, λDK = λ2, etc.

The statistical noises uij ∼ N(0, σ2
uj

) are assumed to be normally distributed, where i is

the bank-year index and j = 1, ..., 14 is the country index, with u = (uHR,uDK , ...,uUK)T =

(u1,u2, ...,u14)T the stacked vector of dimension N × 1.

X =


XHR

XDK

XFR
...

XUK

, y =


yHR
yDK
yFR

...
yUK

, Σ =


ΣHR 0 · · · 0

0 ΣDK 0 · · · 0
0 0 ΣFR 0 · · · 0
...

...
...

. . .
...

...
0 0 · · · 0 0 ΣUK



Using the notations defined above, the model can be written in matrix form as:

y = Xβ + v + u

.

We complete the model specification by choosing the priors1 and in doing so, we rely on

Koop, Osiewalski and Steel (1994), but also on Geweke (2005) and Gelman et al. (2004) as

follows:

• an informative prior for β ∼ N(βp, Hp
−1), where βp is a 10×1 vector of constants and

Hp is a 10× 10 positive definite matrix of constants. We specify βp = (0, 0, ..., 0)T as

the null vector and construct the prior precision matrix as a diagonal matrix such that

the prior variance on linear terms is equal to 10 and on the quadratic or interaction

terms is equal to 1 (Hp
−1 diagonal elements are [10, 10, 1, 10, 1, 10, 1, 1, 1, 1]) 2.

1when choosing informative priors for λj
−1 and σ−2

uj , the posterior is ensured to be proper (integrate to
one).

2because it is expected that the posterior means of the parameters from the quadratic and interaction
terms are smaller than the ones for the linear terms. The variance terms need to be chosen taking that into
account. Virtually all previous studies including the results in chapter 5 confirm this expectation.
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We introduce an informative prior for β as a reference and build up towards the next

chapter’s model that requires the use of an informative prior. Nevertheless, due to our

choice of constants for both βp and Hp, the results are similar to choosing a flat prior.

In other words, even though informative, the prior used is weak.

• a gamma3 prior4 for each σ−2
uj

, with j = 1, ..., 14: π(σ−2
uj

) = fG(σ−2
uj
| τj

2
,
s2pj
2

). By setting

for all j’s τj = 1 and s2
pj

= 0.10, we are choosing a weak prior on each σ2
uj

.

• a gamma prior for each λj
−1, with j = 1, ..., 14: π(λj

−1) = fG(λj
−1|1,−ln(r∗)), where

r∗ is the prior mean for efficiency. We set r∗ equal to 0.8755.

The full conditional distributions are derived based on the same references as used when

choosing the priors:

• β|data,v,Σ,λ ∼ N(β̄, H̄−1), where H̄ = Hp+XTΣ−1X and β̄ = H̄−1(Hpβp+XTΣ−1y∗),

with y∗ = y − v. If we denote Ĥ = XTΣ−1X and β̂ = (XTΣ−1X)−1XTΣ−1y∗, then it

can be observed that H̄ = Hp + Ĥ and β̄ = H̄−1[Hpβp + Ĥβ̂]. At a closer look, it turns

out that β̂ and Ĥ−1 are actually the GLS estimators for the model parameters and

variance, which intuitively makes sense for a model with unequal variance.

• σ−2
uj
|data, σ−2

u1
, ..., σ−2

uj−1
, σ−2

uj+1
, ..., σ−2

u14
,v,β, λ is gamma distributed, for each country j:

fG(σ−2
uj
|Nj+τ−2

2
,
SSEj+s2p

2
), where SSEj = (yj

∗ − Xjβ̄)
T

(yj
∗−Xjβ̄). In other words, σ2

uj

for country j will be sampled based on the observations for country j (rows Kj−1 + 1

to Kj of the X matrix).

• λj−1|data, λ1
−1, ..., λj−1

−1, λj+1
−1, ..., λ14

−1,v,β,Σ is gamma distributed: fG(λ−1|Nj+

1,vj
T iNj

− ln(r∗)), where iNj
is a Nj × 1 vector of ones. As before, λj for country j

will be sampled based on the observations for country j (elements Kj−1 + 1 to Kj of

the inefficiency vector, v).
3where fG(.|ν1, ν2) is a gamma density with mean ν1/ν2 and variance ν1/ν

2
2

4following Fernandez, Osiewalski, and Steel (1997)
5following Koop, Osiewalski and Steel (1994) and van den Broek, Koop, Osiewalski and Steel (1994).
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• vj|data,v1, ...,vj−1,vj+1, ...,v14,β,Σ, λ is drawn from a truncated normal distribu-

tion6: the inefficiency of each bank, vij ∼ N(yij − x
Nj

i β −
σ2
uj

λj
, σ2

uj
)I(vij > 0), where

i = Kj−1 + 1, ..., Kj is the bank-year index, j = 1, ..., 14 is the country’s index,

vj = (vKj−1+1, ..., vKj
)T is the Nj × 1 inefficiency vector for country j, x

Nj

i is the

i’s row of the X matrix (only the observations for country j) and I(vij) > 0 is an

indicator function that takes the value one if vij > 0 and zero otherwise.

For all the results reported in this study we used 5,000 burn in samples and 55,000

Markov Chain Monte Carlo iterations. As a start up values, we use a vector of relatively

small inefficiency parameters: v[0] = [0.05 0.05 ... 0.05]T , where v is of dimension N × 1 and

low σ2
uj

[0]
= 0.01.

6.3 Empirical Results

By estimating country specific efficiency relative to a common frontier, the results be-

come comparable and an argument can be made on whether the higher efficiency nations

might take advantage of the single market regulatory uniformization process to expand their

operations across borders.

We start the discussion of the results with a look at the technology parameters and

economies of scale, leaving the efficiency analysis at the end.

Tables 6.1 through 6.7 report the posterior means and standard deviation together with

the 90 percent highest density regions for the translog parameters obtained under the as-

sumption of common frontier (M2 or the first approach as identified by Berger, 2007) in

contrast to the pooled frontier and the country specific frontiers (M1, chapter 5).

6following Jondrow at al.(1983)
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Table 6.1: Translog Parameters: Posterior Means and Standard Deviation , 90% H.D.R.∗

Parameters M2
◦ M1

♦ pooled CROATIA DENMARK
β1 1.4410 1.4610 1.8180 1.8810

Post. S.D. (0.0234) (0.0193) (0.5494) (0.2251)
[H.D.R.] [1.4030 , 1.4800] [1.4290 , 1.4930] [0.9074 , 2.7080] [1.5010 , 2.2390]

β2 0.4431 0.2800 -0.4263 -0.1706
Post. S.D. (0.0192) (0.0106) (0.4902) (0.1928)
[H.D.R.] [0.4112 , 0.4745] [0.2626 , 0.2975] [-1.2420 , 0.3747] [-0.4807 , 0.1521]

β3 0.0542 0.0846 0.1572 0.1198
Post. S.D. (0.0047) (0.0029) (0.1232) (0.0404)
[H.D.R.] [0.0465 , 0.0620] [0.0798 , 0.0894] [-0.0456 , 0.3592] [0.0521 , 0.1845]

β4 0.4753 0.3882 0.3659 0.1363
Post. S.D. (0.0118) (0.0104) (0.6233) (0.1369)
[H.D.R.] [0.4559 , 0.4948] [0.3711 , 0.4053] [-0.6483 , 1.3970] [-0.0847 , 0.3645]

β5 0.0478 0.0609 0.1287 -0.0370
Post. S.D. (0.0020) (0.0020) (0.1815) (0.0281)
[H.D.R.] [0.0446 , 0.0511] [0.0576 , 0.0641] [-0.1708 , 0.4235] [-0.0831 , 0.0091]

β6 0.3536 0.2668 0.7201 0.5137
Post. S.D. (0.0087) (0.0071) (0.1331) (0.0921)
[H.D.R.] [0.3395 , 0.3681] [0.2552 , 0.2785] [0.5004 , 0.9384] [0.3632 , 0.6670]

β7 0.0269 0.0361 0.1043 0.0333
Post. S.D. (0.0010) (0.0008) (0.0186) (0.0104)
[H.D.R.] [0.0253 , 0.0284] [0.0347 , 0.0374] [0.0737 , 0.1347] [0.0160 , 0.0503]

β8 -0.0856 -0.0553 0.4844 0.3231
Post. S.D. (0.0057) (0.0047) (0.2693) (0.0653)
[H.D.R.] [-0.0950 , -0.0762] [-0.0632 , -0.0476] [0.0419 , 0.9305] [0.2152 , 0.4290]

β9 -0.0555 -0.0150 -0.1049 -0.1264
Post. S.D. (0.0041) (0.0032) (0.0789) (0.0348)
[H.D.R.] [-0.0622 , -0.0488] [-0.0203 , -0.0097] [-0.2340 , 0.0248] [-0.1836 , -0.0689]
β10 -0.0540 -0.0144 -0.3116 -0.1019

Post. S.D. (0.0029) (0.0024) (0.0864) (0.0340)
[H.D.R.] [-0.0588 , -0.0493] [-0.0184 , -0.0104] [-0.4532 , -0.1693] [-0.1582 , -0.0468]

Obs. 13970 13970 121 375
No. banks 2819 2819 26 78

Notes: ∗ Highest Density Region
♦ The results were obtained in the previous chapter using the pooled database , assuming common frontier
(model M1).
◦ The results were obtained using a multiple lambda model (common frontier , allowing for the
inefficiencies to differ for each country - model M2).
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 6.2: Translog Parameters: Posterior Means and Standard Deviation , 90% H.D.R.∗

Parameters M2
◦ M1

♦ pooled FRANCE GERMANY
β1 1.4410 1.4610 -0.5787 1.3770

Post. S.D. (0.0234) (0.0193) (0.1357) (0.0286)
[H.D.R.] [1.4030 , 1.4800] [1.4290 , 1.4930] [-0.7989 , -0.3537] [1.3300 , 1.4240]

β2 0.4431 0.2800 1.8690 0.5245
Post. S.D. (0.0192) (0.0106) (0.1120) (0.0271)
[H.D.R.] [0.4112 , 0.4745] [0.2626 , 0.2975] [1.6850 , 2.0520] [0.4801 , 0.5693]

β3 0.0542 0.0846 -0.1508 -0.0133
Post. S.D. (0.0047) (0.0029) (0.0244) (0.0082)
[H.D.R.] [0.0465 , 0.0620] [0.0798 , 0.0894] [-0.1911 , -0.1108] [-0.0268 , 0.0002]

β4 0.4753 0.3882 1.2550 0.5231
Post. S.D. (0.0118) (0.0104) (0.0855) (0.0135)
[H.D.R.] [0.4559 , 0.4948] [0.3711 , 0.4053] [1.1130 , 1.3960] [0.5012 , 0.5455]

β5 0.0478 0.0609 -0.0019 0.0486
Post. S.D. (0.0020) (0.0020) (0.0175) (0.0022)
[H.D.R.] [0.0446 , 0.0511] [0.0576 , 0.0641] [-0.0310 , 0.0269] [0.0449 , 0.0521]

β6 0.3536 0.2668 0.2237 0.4973
Post. S.D. (0.0087) (0.0071) (0.0366) (0.0133)
[H.D.R.] [0.3395 , 0.3681] [0.2552 , 0.2785] [0.1638 , 0.2839] [0.4755 , 0.5192]

β7 0.0269 0.0361 0.0104 0.0298
Post. S.D. (0.0010) (0.0008) (0.0033) (0.0014)
[H.D.R.] [0.0253 , 0.0284] [0.0347 , 0.0374] [0.0049 , 0.0156] [0.0275 , 0.0321]

β8 -0.0856 -0.0553 -0.5363 -0.0780
Post. S.D. (0.0057) (0.0047) (0.0353) (0.0076)
[H.D.R.] [-0.0950 , -0.0762] [-0.0632 , -0.0476] [-0.5939 , -0.4779] [-0.0906 , -0.0654]

β9 -0.0555 -0.0150 -0.0062 -0.0745
Post. S.D. (0.0041) (0.0032) (0.0131) (0.0073)
[H.D.R.] [-0.0622 , -0.0488] [-0.0203 , -0.0097] [-0.0278 , 0.0156] [-0.0865 , -0.0625]
β10 -0.0540 -0.0144 -0.0795 -0.1276

Post. S.D. (0.0029) (0.0024) (0.0134) (0.0048)
[H.D.R.] [-0.0588 , -0.0493] [-0.0184 , -0.0104] [-0.1016 , -0.0577] [-0.1354 , -0.1197]

Obs. 13970 13970 527 8668
No. banks 2819 2819 171 1471

Notes: ∗ Highest Density Region
♦ The results were obtained in the previous chapter using the pooled database , assuming common frontier
(model M1).
◦ The results were obtained using a multiple lambda model (common frontier , allowing for the
inefficiencies to differ for each country - model M2).
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 6.3: Translog Parameters: Posterior Means and Standard Deviation , 90% H.D.R.∗

Parameters M2
◦ M1

♦ pooled ITALY NETHERLANDS
β1 1.4410 1.4610 0.6475 1.9450

Post. S.D. (0.0234) (0.0193) (0.0776) (0.2310)
[H.D.R.] [1.4030 , 1.4800] [1.4290 , 1.4930] [0.5165 , 0.7708] [1.5550 , 2.3130]

β2 0.4431 0.2800 0.6200 0.5145
Post. S.D. (0.0192) (0.0106) (0.0733) (0.1627)
[H.D.R.] [0.4112 , 0.4745] [0.2626 , 0.2975] [0.5021 , 0.7420] [0.2479 , 0.7837]

β3 0.0542 0.0846 0.0789 -0.0226
Post. S.D. (0.0047) (0.0029) (0.0206) (0.0600)
[H.D.R.] [0.0465 , 0.0620] [0.0798 , 0.0894] [0.0447 , 0.1125] [-0.1226 , 0.0747]

β4 0.4753 0.3882 0.2138 -0.0437
Post. S.D. (0.0118) (0.0104) (0.0433) (0.1077)
[H.D.R.] [0.4559 , 0.4948] [0.3711 , 0.4053] [0.1453 , 0.2879] [-0.2196 , 0.1357]

β5 0.0478 0.0609 0.1272 0.0840
Post. S.D. (0.0020) (0.0020) (0.0065) (0.0187)
[H.D.R.] [0.0446 , 0.0511] [0.0576 , 0.0641] [0.1163 , 0.1375] [0.0527 , 0.1144]

β6 0.3536 0.2668 0.3584 -0.1013
Post. S.D. (0.0087) (0.0071) (0.0286) (0.0996)
[H.D.R.] [0.3395 , 0.3681] [0.2552 , 0.2785] [0.3112 , 0.4054] [-0.2663 , 0.0627]

β7 0.0269 0.0361 0.0252 0.0090
Post. S.D. (0.0010) (0.0008) (0.0028) (0.0186)
[H.D.R.] [0.0253 , 0.0284] [0.0347 , 0.0374] [0.0206 , 0.0298] [-0.0218 , 0.0391]

β8 -0.0856 -0.0553 0.0929 -0.0266
Post. S.D. (0.0057) (0.0047) (0.0240) (0.0511)
[H.D.R.] [-0.0950 , -0.0762] [-0.0632 , -0.0476] [0.0529 , 0.1315] [-0.1099 , 0.0585]

β9 -0.0555 -0.0150 -0.0453 0.0998
Post. S.D. (0.0041) (0.0032) (0.0116) (0.0462)
[H.D.R.] [-0.0622 , -0.0488] [-0.0203 , -0.0097] [-0.0644 , -0.0262] [0.0234 , 0.1755]
β10 -0.0540 -0.0144 -0.0772 0.0312

Post. S.D. (0.0029) (0.0024) (0.0097) (0.0346)
[H.D.R.] [-0.0588 , -0.0493] [-0.0184 , -0.0104] [-0.0931 , -0.0611] [-0.0262 , 0.0876]

Obs. 13970 13970 1818 134
No. banks 2819 2819 561 36

Notes: ∗ Highest Density Region
♦ The results were obtained in the previous chapter using the pooled database , assuming common frontier
(model M1).
◦ The results were obtained using a multiple lambda model (common frontier , allowing for the
inefficiencies to differ for each country - model M2).
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 6.4: Translog Parameters: Posterior Means and Standard Deviation , 90% H.D.R.∗

Parameters M2
◦ M1

♦ pooled POLAND ROMANIA
β1 1.4410 1.4610 1.2580 2.3330

Post. S.D. (0.0234) (0.0193) (0.3549) (0.1742)
[H.D.R.] [1.4030 , 1.4800] [1.4290 , 1.4930] [0.6735 , 1.8410] [2.0440 , 2.6160]

β2 0.4431 0.2800 -0.2465 0.0511
Post. S.D. (0.0192) (0.0106) (0.1380) (0.1946)
[H.D.R.] [0.4112 , 0.4745] [0.2626 , 0.2975] [-0.4733 , -0.0191] [-0.2701 , 0.3711]

β3 0.0542 0.0846 -0.0062 -0.0260
Post. S.D. (0.0047) (0.0029) (0.0288) (0.0558)
[H.D.R.] [0.0465 , 0.0620] [0.0798 , 0.0894] [-0.0536 , 0.0407] [-0.1190 , 0.0662]

β4 0.4753 0.3882 1.5740 0.3902
Post. S.D. (0.0118) (0.0104) (0.4274) (0.1263)
[H.D.R.] [0.4559 , 0.4948] [0.3711 , 0.4053] [0.8706 , 2.2720] [0.1893 , 0.6026]

β5 0.0478 0.0609 -0.3970 0.0400
Post. S.D. (0.0020) (0.0020) (0.1306) (0.0542)
[H.D.R.] [0.0446 , 0.0511] [0.0576 , 0.0641] [-0.6095 , -0.1823] [-0.0500 , 0.1277]

β6 0.3536 0.2668 0.1195 0.2221
Post. S.D. (0.0087) (0.0071) (0.1268) (0.0972)
[H.D.R.] [0.3395 , 0.3681] [0.2552 , 0.2785] [-0.0881 , 0.3269] [0.0609 , 0.3809]

β7 0.0269 0.0361 0.0236 0.0149
Post. S.D. (0.0010) (0.0008) (0.0161) (0.0127)
[H.D.R.] [0.0253 , 0.0284] [0.0347 , 0.0374] [-0.0028 , 0.0502] [-0.0060 , 0.0357]

β8 -0.0856 -0.0553 0.2495 0.1920
Post. S.D. (0.0057) (0.0047) (0.0688) (0.0881)
[H.D.R.] [-0.0950 , -0.0762] [-0.0632 , -0.0476] [0.1357 , 0.3625] [0.0476 , 0.3366]

β9 -0.0555 -0.0150 -0.0230 0.0059
Post. S.D. (0.0041) (0.0032) (0.0445) (0.0401)
[H.D.R.] [-0.0622 , -0.0488] [-0.0203 , -0.0097] [-0.0964 , 0.0501] [-0.0594 , 0.0722]
β10 -0.0540 -0.0144 0.0581 -0.0685

Post. S.D. (0.0029) (0.0024) (0.0697) (0.0453)
[H.D.R.] [-0.0588 , -0.0493] [-0.0184 , -0.0104] [-0.0555 , 0.1729] [-0.1427 , 0.0062]

Obs. 13970 13970 93 104
No. banks 2819 2819 28 23

Notes: ∗ Highest Density Region
♦ The results were obtained in the previous chapter using the pooled database , assuming common frontier
(model M1).
◦ The results were obtained using a multiple lambda model (common frontier , allowing for the
inefficiencies to differ for each country - model M2).
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 6.5: Translog Parameters: Posterior Means and Standard Deviation , 90% H.D.R.∗

Parameters M2
◦ M1

♦ pooled SERBIA SLOVENIA
β1 1.4410 1.4610 2.9580 0.6707

Post. S.D. (0.0234) (0.0193) (0.4669) (0.3750)
[H.D.R.] [1.4030 , 1.4800] [1.4290 , 1.4930] [2.2190 , 3.7500] [0.0551 , 1.2820]

β2 0.4431 0.2800 1.0940 -0.1811
Post. S.D. (0.0192) (0.0106) (0.3519) (0.3340)
[H.D.R.] [0.4112 , 0.4745] [0.2626 , 0.2975] [0.4963 , 1.6450] [-0.7262 , 0.3687]

β3 0.0542 0.0846 0.0342 0.2513
Post. S.D. (0.0047) (0.0029) (0.1216) (0.1121)
[H.D.R.] [0.0465 , 0.0620] [0.0798 , 0.0894] [-0.1823 , 0.2126] [0.0668 , 0.4333]

β4 0.4753 0.3882 0.1938 1.3100
Post. S.D. (0.0118) (0.0104) (0.3922) (0.3892)
[H.D.R.] [0.4559 , 0.4948] [0.3711 , 0.4053] [-0.4239 , 0.8529] [0.6691 , 1.9480]

β5 0.0478 0.0609 0.0533 -0.1808
Post. S.D. (0.0020) (0.0020) (0.1419) (0.1091)
[H.D.R.] [0.0446 , 0.0511] [0.0576 , 0.0641] [-0.1911 , 0.2741] [-0.3599 , -0.0019]

β6 0.3536 0.2668 0.2612 -0.0111
Post. S.D. (0.0087) (0.0071) (0.1681) (0.2938)
[H.D.R.] [0.3395 , 0.3681] [0.2552 , 0.2785] [-0.0024 , 0.5469] [-0.4900 , 0.4710]

β7 0.0269 0.0361 0.0203 0.2864
Post. S.D. (0.0010) (0.0008) (0.0169) (0.0793)
[H.D.R.] [0.0253 , 0.0284] [0.0347 , 0.0374] [-0.0061 , 0.0495] [0.1561 , 0.4173]

β8 -0.0856 -0.0553 -0.1436 0.0378
Post. S.D. (0.0057) (0.0047) (0.2447) (0.1714)
[H.D.R.] [-0.0950 , -0.0762] [-0.0632 , -0.0476] [-0.5399 , 0.2611] [-0.2435 , 0.3205]

β9 -0.0555 -0.0150 0.0115 0.2618
Post. S.D. (0.0041) (0.0032) (0.0620) (0.1604)
[H.D.R.] [-0.0622 , -0.0488] [-0.0203 , -0.0097] [-0.0887 , 0.1142] [-0.0026 , 0.5253]
β10 -0.0540 -0.0144 -0.0438 -0.1004

Post. S.D. (0.0029) (0.0024) (0.0667) (0.1691)
[H.D.R.] [-0.0588 , -0.0493] [-0.0184 , -0.0104] [-0.1511 , 0.0673] [-0.3773 , 0.1784]

Obs. 13970 13970 80 84
No. banks 2819 2819 25 17

Notes: ∗ Highest Density Region
♦ The results were obtained in the previous chapter using the pooled database , assuming common frontier
(model M1).
◦ The results were obtained using a multiple lambda model (common frontier , allowing for the
inefficiencies to differ for each country - model M2).
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 6.6: Translog Parameters: Posterior Means and Standard Deviation , 90% H.D.R.∗

Parameters M2
◦ M1

♦ pooled SWEDEN SWITZERLAND
β1 1.4410 1.4610 0.2531 0.9185

Post. S.D. (0.0234) (0.0193) (0.4173) (0.1169)
[H.D.R.] [1.4030 , 1.4800] [1.4290 , 1.4930] [-0.4380 , 0.9333] [0.7281 , 1.1130]

β2 0.4431 0.2800 -0.5513 0.1686
Post. S.D. (0.0192) (0.0106) (0.2126) (0.0652)
[H.D.R.] [0.4112 , 0.4745] [0.2626 , 0.2975] [-0.8991 , -0.1966] [0.0622 , 0.2766]

β3 0.0542 0.0846 0.2098 0.1287
Post. S.D. (0.0047) (0.0029) (0.0417) (0.0115)
[H.D.R.] [0.0465 , 0.0620] [0.0798 , 0.0894] [0.1407 , 0.2780] [0.1098 , 0.1476]

β4 0.4753 0.3882 2.2810 0.3592
Post. S.D. (0.0118) (0.0104) (0.3713) (0.0516)
[H.D.R.] [0.4559 , 0.4948] [0.3711 , 0.4053] [1.6730 , 2.8930] [0.2741 , 0.4441]

β5 0.0478 0.0609 -0.5057 0.0520
Post. S.D. (0.0020) (0.0020) (0.0844) (0.0058)
[H.D.R.] [0.0446 , 0.0511] [0.0576 , 0.0641] [-0.6447 , -0.3684] [0.0422 , 0.0615]

β6 0.3536 0.2668 0.2813 0.1464
Post. S.D. (0.0087) (0.0071) (0.0799) (0.0399)
[H.D.R.] [0.3395 , 0.3681] [0.2552 , 0.2785] [0.1507 , 0.4133] [0.0816 , 0.2125]

β7 0.0269 0.0361 0.0238 -0.0052
Post. S.D. (0.0010) (0.0008) (0.0043) (0.0027)
[H.D.R.] [0.0253 , 0.0284] [0.0347 , 0.0374] [0.0166 , 0.0309] [-0.0096 , -0.0009]

β8 -0.0856 -0.0553 0.2042 -0.0222
Post. S.D. (0.0057) (0.0047) (0.0753) (0.0184)
[H.D.R.] [-0.0950 , -0.0762] [-0.0632 , -0.0476] [0.0798 , 0.3282] [-0.0527 , 0.0081]

β9 -0.0555 -0.0150 0.0429 -0.0049
Post. S.D. (0.0041) (0.0032) (0.0187) (0.0177)
[H.D.R.] [-0.0622 , -0.0488] [-0.0203 , -0.0097] [0.0121 , 0.0736] [-0.0341 , 0.0242]
β10 -0.0540 -0.0144 -0.1121 -0.0730

Post. S.D. (0.0029) (0.0024) (0.0323) (0.0085)
[H.D.R.] [-0.0588 , -0.0493] [-0.0184 , -0.0104] [-0.1656 , -0.0591] [-0.0870 , -0.0591]

Obs. 13970 13970 344 1188
No. banks 2819 2819 61 221

Notes: ∗ Highest Density Region
♦ The results were obtained in the previous chapter using the pooled database , assuming common frontier
(model M1).
◦ The results were obtained using a multiple lambda model (common frontier , allowing for the
inefficiencies to differ for each country - model M2).
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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Table 6.7: Translog Parameters: Posterior Means and Standard Deviation , 90% H.D.R.∗

Parameters M2
◦ M1

♦ pooled TURKEY UNITED KINGDOM
β1 1.4410 1.4610 1.4140 1.5440

Post. S.D. (0.0234) (0.0193) (0.1965) (0.1427)
[H.D.R.] [1.4030 , 1.4800] [1.4290 , 1.4930] [1.0990 , 1.7460] [1.2830 , 1.7520]

β2 0.4431 0.2800 0.3001 0.3522
Post. S.D. (0.0192) (0.0106) (0.2443) (0.0836)
[H.D.R.] [0.4112 , 0.4745] [0.2626 , 0.2975] [-0.1021 , 0.7007] [0.2165 , 0.4907]

β3 0.0542 0.0846 0.2389 -0.0085
Post. S.D. (0.0047) (0.0029) (0.0995) (0.0266)
[H.D.R.] [0.0465 , 0.0620] [0.0798 , 0.0894] [0.0754 , 0.4024] [-0.0537 , 0.0333]

β4 0.4753 0.3882 0.6709 0.2576
Post. S.D. (0.0118) (0.0104) (0.1959) (0.0415)
[H.D.R.] [0.4559 , 0.4948] [0.3711 , 0.4053] [0.3388 , 0.9804] [0.1900 , 0.3264]

β5 0.0478 0.0609 0.0487 0.0623
Post. S.D. (0.0020) (0.0020) (0.0600) (0.0135)
[H.D.R.] [0.0446 , 0.0511] [0.0576 , 0.0641] [-0.0500 , 0.1475] [0.0402 , 0.0844]

β6 0.3536 0.2668 0.0724 0.3191
Post. S.D. (0.0087) (0.0071) (0.2163) (0.0444)
[H.D.R.] [0.3395 , 0.3681] [0.2552 , 0.2785] [-0.2826 , 0.4293] [0.2461 , 0.3918]

β7 0.0269 0.0361 -0.0198 0.0211
Post. S.D. (0.0010) (0.0008) (0.0699) (0.0058)
[H.D.R.] [0.0253 , 0.0284] [0.0347 , 0.0374] [-0.1352 , 0.0946] [0.0115 , 0.0307]

β8 -0.0856 -0.0553 0.3035 0.0615
Post. S.D. (0.0057) (0.0047) (0.1216) (0.0280)
[H.D.R.] [-0.0950 , -0.0762] [-0.0632 , -0.0476] [0.0990 , 0.5002] [0.0158 , 0.1077]

β9 -0.0555 -0.0150 -0.1627 -0.1003
Post. S.D. (0.0041) (0.0032) (0.1590) (0.0250)
[H.D.R.] [-0.0622 , -0.0488] [-0.0203 , -0.0097] [-0.4262 , 0.0981] [-0.1411 , -0.0591]
β10 -0.0540 -0.0144 -0.0650 -0.0711

Post. S.D. (0.0029) (0.0024) (0.1225) (0.0171)
[H.D.R.] [-0.0588 , -0.0493] [-0.0184 , -0.0104] [-0.2635 , 0.1381] [-0.0991 , -0.0429]

Obs. 13970 13970 84 350
No. banks 2819 2819 18 85

Notes: ∗ Highest Density Region
♦ The results were obtained in the previous chapter using the pooled database , assuming common frontier
(model M1).
◦ The results were obtained using a multiple lambda model (common frontier , allowing for the
inefficiencies to differ for each country - model M2).
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.
The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal
densities.
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As noted in the previous chapter’s results, we observe, as expected, larger values for

the posterior means of the translog parameters that correspond to the linear terms of the

cost function and lower values for the quadratic and interaction terms. While we expect

the technology of the common frontier (M2) to be different than the national frontiers, we

also point out that there are differences from the pooled frontier. This is not surprising

since the common frontier in this chapter and the pooled frontier in chapter 5 correspond to

different statistical models. To estimate the common frontier this time we employ a model

with unequal variances and we allow each country to individually deviate from the single

frontier (we have 14 σ2 and 14 λ parameters), while the pooled frontier does not take into

account the heterogeneity of the groups (one σ2 and one λ).

To visualize these differences, we plot the posterior marginal densities for β’s drawn for

the German frontier (M1), the pooled frontier (M1 pooled) and the common frontier (M2).

Figures 6.1 through 6.5 are a good illustration of the fact that the results for the technology

parameters are not exclusively driven by Germany as the country with half of the sample’s

observations and that taking into account the heterogeneity of the data (multiple λ’s and σ2

instead of one each) affects the technology. For a complete image of how technologies vary,

we also add Figure 6.6 in which frontiers are drawn for the pooled frontier, the common

frontier and the German frontier while holding loan/equity and security/equity variables

constant at the median values of the pooled dataset, as the avwage/avrate varies between

its minimum and maximum values. Both common and pooled frontiers visibly violate the

concavity property of the cost function.

Based on the common frontier technology, we examine the previously selected groups

of banks (small, medium and large) and again investigate the economies of scale. The

results are reported in tables 6.8 through 6.10. They include the posterior means, standard

deviation and 90 percent highest density regions for the economies of scale calculated based

on the common frontier’s technology.
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Figure 6.1: Posterior Marginal Densities for Translog Parameters β1 and β2 - Germany.
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Figure 6.2: Posterior Marginal Densities for Translog Parameters β3 and β4 - Germany.
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Figure 6.3: Posterior Marginal Densities for Translog Parameters β5 and β6 - Germany.
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Figure 6.4: Posterior Marginal Densities for Translog Parameters β7 and β8 - Germany.
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Figure 6.5: Posterior Marginal Densities for Translog Parameters β9 and β10 - Germany.
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All the small banks (Table 6.8) with the exception of the Romanian bank (Romanian

International Bank) exhibit increasing economies of scale and could reduce their costs by

increasing the output as the posterior means for the economies of scale range from 1.10

for the Serbian bank (Cacanska Banka) to 1.68 for the Italian cooperative bank (Banca di

Credito Cooperativo di Nettuno). For the Romanian bank (Romanian International Bank),

the posterior mean is 1.01 and the HDR includes one, suggesting constant returns.

The economies of scale estimates for most small banks remain close to the pooled frontier

results from chapter 5. There are significant changes in the case of the German, French and

Italian banks for which the posterior means of the economies of scale increase and for the

Croatian, Romanian and Serbian bank for which the economies of scale decrease.

Among the medium banks (Table 6.9), the Romanian (Intesa Sanpaolo Romania, 0.98)

and the Serbian bank (Volksbank, 1.03) exhibit constant returns, as the highest density

regions includes one. Very close to constant returns is also the Turkish Bank with posterior

mean of the economies of scale at 1.06 and highest density region of [1.02, 1.09]. All the other

medium banks selected could reduce their costs by expanding the output, the posterior means

of the economies of scale ranging from 1.10 for the Croatian bank (Medimurska banka) to

1.61 for the Swiss bank (Alternative Bank ABS). When comparing these results against

the chapter 5 estimates based on the pooled frontier, we observe that for 13 out of the 16

banks, there are significant changes. The economies of scale of the Danish (Froes Herreds

Sparekasse), German, Slovenian, Swiss and British banks increase when computed against

the common frontier instead of the pooled, while for the Croatian, Romanian, Serbian,

Swedish and Turkish banks they decrease.

As economies of scale are a nonlinear function of most of the technology parameters (β4

through β10), the differences that we obtain in the economies of scale estimates against the

pooled versus the common frontier, further illustrate the idea that the two frontiers are not

the same.
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Table 6.8: Economies of Scale� for Selected Banks (Small): Posterior Means, Standard Deviation, and 90% H.D.R.∗

Bank name Country Specialization Total assets Post. mean Post. S.D. H.D.R.∗

Partner Banka dd HR Commercial Bank 252.39 1.14 0.01 [1.12 , 1.16]
Lollands Bank DK Commercial Bank 311.47 1.41 0.01 [1.39 , 1.43]
Sparekassen i Skals DK Savings Bank 269.60 1.42 0.01 [1.40 , 1.45]
Banque Pouyanne FR Commercial Bank 301.49 1.44 0.02 [1.42 , 1.47]
Volksbank Sandhofen eG DE Cooperative bank 301.63 1.30 0.01 [1.28 , 1.32]
Sparkasse Froendenberg DE Savings Bank 309.73 1.26 0.02 [1.24 , 1.29]
Bankhaus Ludwig Sperrer DE Commercial Bank 289.56 1.29 0.01 [1.27 , 1.31]
Banca di Credito Cooperativo di Nettuno IT Cooperative Bank 258.94 1.68 0.02 [1.64 , 1.72]
Romanian International Bank SA RO Commercial Bank 202.80 1.01 0.02 [0.97 , 1.05]
Cacanska Banka AD, Cacak RS Commercial Bank 260.62 1.10 0.02 [1.06 , 1.13]
Södra Hestra Sparbank SE Savings Bank 257.34 1.48 0.02 [1.45 , 1.51]
Vimmerby Sparbank AB SE Commercial Bank 181.49 1.49 0.02 [1.45 , 1.53]
GRB Glarner Regionalbank CH Commercial Bank 296.76 1.48 0.02 [1.44 , 1.52]
Reliance Bank Limited UK Commercial Bank 368.12 1.24 0.01 [1.23 , 1.26]

Notes: ♦ Based on common frontier (M2).
∗ Highest Density Region.

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%

confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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Table 6.9: Economies of Scale� for Selected Banks (Medium): Posterior Means, Standard Deviation, and 90% H.D.R.∗

Bank name Country Specialization Total assets Post. mean Post. S.D. H.D.R.∗

Medimurska banka dd HR Commercial Bank 534.82 1.10 0.01 [1.08 , 1.12]
Froes Herreds Sparekasse DK Savings Bank 691.59 1.45 0.01 [1.42 , 1.47]
Morsoe Bank DK Commercial Bank 714.60 1.30 0.01 [1.28 , 1.32]
Banque Chalus FR Commercial Bank 760.19 1.31 0.01 [1.29 , 1.33]
Raiffeisenbank Straubing eG DE Cooperative bank 702.64 1.32 0.01 [1.30 , 1.35]
Sparkasse Mecklenburg-Strelitz DE Savings Bank 722.36 1.23 0.02 [1.21 , 1.26]
Frankfurter Bankgesellschaft AG DE Commercial Bank 562.49 1.47 0.02 [1.44 , 1.50]
Cassa rurale di Tuenno IT Cooperative Bank 680.70 1.23 0.01 [1.22 , 1.25]
Intesa Sanpaolo Romania SA RO Commercial Bank 729.28 0.98 0.02 [0.95 , 1.00]
Volksbank ad RS Commercial Bank 986.23 1.03 0.02 [0.99 , 1.07]
Postna Banka Slovenije dd SI Commercial Bank 921.97 1.23 0.02 [1.20 , 1.26]
Sparbanken Lidköping AB SE Commercial Bank 664.95 1.48 0.02 [1.45 , 1.52]
Roslagens Sparbank Roslagsbanken SE Savings Bank 683.14 1.51 0.03 [1.47 , 1.55]
Alternative Bank ABS CH Commercial Bank 686.45 1.61 0.03 [1.56 , 1.66]
Turkish Bank A.S. TR Commercial Bank 650.28 1.06 0.02 [1.02 , 1.09]
Arbuthnot Latham & Co. Ltd. UK Commercial Bank 619.52 1.37 0.01 [1.35 , 1.39]

Notes: ♦ Based on common frontier (M2).
∗ Highest Density Region.

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%

confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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Table 6.10: Economies of Scale� for Selected Banks (Large): Posterior Means, Standard Deviation, and 90% H.D.R.∗

Bank name Country Specialization Total assets Post. mean Post. S.D. H.D.R.∗

Hrvatska Postanska Bank DD HR Commercial 2920.69 1.13 0.01 [1.12 , 1.15]
Skandinaviska Enskilda Banken A/S DK Commercial 2770.29 1.79 0.03 [1.73 , 1.84]
Banque Populaire des Alpes FR Cooperative 10741.06 1.34 0.02 [1.30 , 1.38]
Société Bordelaise de Crédit Ind. et Comm. FR Commercial 8894.45 1.13 0.02 [1.09 , 1.17]
Kreissparkasse Limburg DE Savings 2119.09 1.21 0.01 [1.18 , 1.23]
Hamburger Volksbank eG DE Cooperative 2134.40 1.40 0.02 [1.37 , 1.42]
Thüringer Aufbaubank DE Commercial 2660.68 1.14 0.01 [1.12 , 1.16]
Banca Padovana Credito Cooperativo SC IT Cooperative 3232.59 1.24 0.01 [1.22 , 1.25]
Cassa di risparmio di Alessandria SpA IT Savings 3381.27 1.30 0.01 [1.28 , 1.32]
Banca Monte Parma SpA IT Commercial 3477.11 1.25 0.01 [1.23 , 1.27]
Staalbankiers NV NL Commercial 4380.10 1.42 0.02 [1.39 , 1.45]
Bank BPH SA PL Commercial 5347.76 1.29 0.01 [1.27 , 1.31]
Banca Romaneasca S.A. RO Commercial 2776.87 1.04 0.02 [1.01 , 1.06]
AIK Banka ad Nis RS Commercial 1457.16 1.04 0.02 [1.01 , 1.08]
Gorenjska Banka d.d. Kranj SI Commercial 2551.01 1.23 0.01 [1.21 , 1.25]
Färs & Frosta Sparbank AB SE Commercial 1702.99 1.47 0.02 [1.44 , 1.50]
ABN Amro Bank (Schweiz) AG CH Commercial 3294.00 1.56 0.02 [1.53 , 1.58]
Anadolubank A.S. TR Commercial 2702.80 0.95 0.01 [0.92 , 0.97]
JP Morgan International Bank Ltd UK Commercial 7361.90 1.62 0.03 [1.57 , 1.68]

Notes: ♦ Based on common frontier (M2).
∗ Highest Density Region.

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%

confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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The large bank results (Table 6.10) show that the majority of them would benefit from

increasing the output (posterior means for economies of scale being greater than one with

the exception of Turkey). None of the highest density regions includes one.

The selected banks have posterior means of economies of scale that range from 1.04 for

the Romanian (Banca Romaneasca) and Serbian (AIK Banka ad Nis, we observe that only

for 5 banks the posterior means remain close in values when calculated based on the common

frontier. For 7 banks (German, Dutch, Swiss, British and the Italian commercial bank), the

economies of scale increase, while for the other remaining 7 banks, the economies of scale

decrease when calculated against the common frontier.

As a visual presentation of the economies of scale for the large banks, we include the

plots of their smoothed posterior marginal densities (figures 6.7 through 6.20). The posterior

marginal densities are drawn for the common and the pooled frontiers side by side for

comparison and reference.

Though in this model we allow for heterogeneity in the data, in a statistical model with

fourteen λ’s and fourteen σ2’s, the technology parameters are estimated based on the pooled

dataset (N = 13, 970 observations) and as in the case of the pooled frontier, this leads to

mostly symmetric posterior marginal densities for the large banks’ economies of scale.

After looking at the technology parameters, we switch the discussion to the efficiency

estimates and report the results for λ (Table 6.11), the efficiency score (6.12) and σ2 (Table

6.13). The tables contain the posterior means, standard deviations and highest density

regions computed based on 50,000 points generated from the Gibbs sampling algorithm. We

include for comparisons the posterior means of the same parameters obtained in chapter 5

under the individual country frontier assumption.
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Figure 6.7: Croatia - Posterior Marginal Density for Economies of Scale, Large Bank.
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Figure 6.8: Denmark - Posterior Marginal Density for Economies of Scale, Large Bank.
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Société Bordelaise de Crédit Industriel et Commercial
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Figure 6.9: France - Posterior Marginal Density for Economies of Scale, Large Bank.

Thüringer Aufbaubank
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Figure 6.10: Germany - Posterior Marginal Density for Economies of Scale, Large Bank.
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Banca Monte Parma
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Figure 6.11: Italy - Posterior Marginal Density for Economies of Scale, Large Bank.
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Figure 6.12: Netherlands - Posterior Marginal Density for Economies of Scale, Large Bank.
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Figure 6.13: Poland - Posterior Marginal Density for Economies of Scale, Large Bank.
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Figure 6.14: Romania - Posterior Marginal Density for Economies of Scale, Large Bank.
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AIK Banka ad Nis

0.95 1.00 1.05 1.10

0
5

10
15

Common frontier

posterior mean ES = 1.041

D
en

si
ty

1.35 1.40 1.45 1.50 1.55 1.60 1.65

0
2

4
6

8
10

12

Pooled frontier

posterior mean ES = 1.48
D

en
si

ty

Figure 6.15: Serbia - Posterior Marginal Density for Economies of Scale, Large Bank.
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Figure 6.16: Slovenia - Posterior Marginal Density for Economies of Scale, Large Bank.
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Färs & Frosta Sparbank AB
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Figure 6.17: Sweden - Posterior Marginal Density for Economies of Scale, Large Bank.
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Figure 6.18: Switzerland - Posterior Marginal Density for Economies of Scale, Large Bank.
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Figure 6.19: Turkey - Posterior Marginal Density for Economies of Scale, Large Bank.
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Figure 6.20: United Kingdom - Posterior Marginal Density for Economies of Scale, Large Bank.
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Table 6.11: λ - Posterior Means and Standard Deviation , 90% H.D.R.∗

Country name Obs. No. banks λ M1
♦ λ M2

◦ Post. S.D. M2
◦ H.D.R. M2

◦

CROATIA 121 26 0.1090 0.5641 0.0620 [ 0.4670 , 0.6707 ]
DENMARK 375 78 0.1899 0.0320 0.0104 [ 0.0176 , 0.0509 ]
FRANCE 527 171 0.4078 0.0396 0.0132 [ 0.0209 , 0.0639 ]
GERMANY 8668 1471 0.1601 0.1749 0.0038 [ 0.1687 , 0.1811 ]
ITALY 1818 561 0.2168 0.0081 0.0014 [ 0.0059 , 0.0106 ]
NETHERLANDS 134 36 0.2002 0.0508 0.0222 [ 0.0231 , 0.0929 ]
POLAND 93 28 0.0916 0.2278 0.0629 [ 0.1252 , 0.3338 ]
ROMANIA 104 23 0.1598 0.9437 0.1143 [ 0.7659 , 1.1410 ]
SERBIA 80 25 0.5139 1.4210 0.1916 [ 1.1250 , 1.7550 ]
SLOVENIA 84 17 0.0851 0.0445 0.0171 [ 0.0218 , 0.0767 ]
SWEDEN 344 61 0.1408 0.0286 0.0087 [ 0.0163 , 0.0447 ]
SWITZERLAND 1188 221 0.5112 0.0152 0.0036 [ 0.0100 , 0.0216 ]
TURKEY 84 18 0.1863 0.2221 0.0458 [ 0.1485 , 0.2965 ]
UNITED KINGDOM 350 85 0.1653 0.0502 0.0196 [ 0.0245 , 0.0874 ]

Notes:
∗ Highest Density Region
♦ The results were obtained in the previous chapter using individual frontiers for each country (model M1).
◦ The results were obtained using a multiple lambda model (common frontier, allowing for the
inefficiencies to differ for each country - model M2).

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.

The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal

densities.

Dramatic decreases in efficiency are observed in the case of Croatia (as λ̄ increases from

0.109 to 0.564, r̄ - the mean efficiency score decreases from 89.79 percent to 57 percent),

Romania (as λ̄ increases from 0.16 to 0.94, r̄ decreases from 85.5 percent to 39.17 percent)

and Serbia (while it remains the least efficient, λ̄ increases from 0.51 to 1.42, its r̄ decreasing

from 60.28 to 24.59 percent). A more moderate decrease is registered in Poland, from a

mean efficiency score of 91.35 percent to 79.78 percent (λ̄ increases from 0.09 to 0.23) and

in Turkey from 83.24 percent to 80.17 percent (λ̄ increases from 0.19 to 0.22). The results

are not surprising since these countries are either former communist countries, plagued by

corruption and high costs due to over staffing that struggled through the 90’s to transition

to a market economy, or, in the case of Turkey, went through a financial crisis in the early

2000’s.
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Table 6.12: Efficiency Score - Posterior Means and Standard Deviation, 90% H.D.R.∗

Country name Obs. No. banks r†j M1
♦ r†j M2

◦ Post. S.D. M2
◦ H.D.R. M2

◦

CROATIA 121 26 0.8979 0.5700 0.0351 [ 0.5114 , 0.6269 ]
DENMARK 375 78 0.8276 0.9686 0.0100 [ 0.9503 , 0.9825 ]
FRANCE 527 171 0.6655 0.9613 0.0127 [ 0.9380 , 0.9793 ]
GERMANY 8668 1471 0.8521 0.8395 0.0032 [ 0.8343 , 0.8448 ]
ITALY 1818 561 0.8051 0.9920 0.0014 [ 0.9894 , 0.9940 ]
NETHERLANDS 134 36 0.8263 0.9507 0.0208 [ 0.9112 , 0.9771 ]
POLAND 93 28 0.9135 0.7978 0.0501 [ 0.7162 , 0.8823 ]
ROMANIA 104 23 0.8550 0.3917 0.0442 [ 0.3195 , 0.4649 ]
SERBIA 80 25 0.6028 0.2459 0.0461 [ 0.1729 , 0.3247 ]
SLOVENIA 84 17 0.9193 0.9566 0.0162 [ 0.9261 , 0.9784 ]
SWEDEN 344 61 0.8696 0.9718 0.0085 [ 0.9562 , 0.9838 ]
SWITZERLAND 1188 221 0.6000 0.9849 0.0035 [ 0.9786 , 0.9900 ]
TURKEY 84 18 0.8324 0.8017 0.0368 [ 0.7434 , 0.8620 ]
UNITED KINGDOM 350 85 0.8519 0.9512 0.0184 [ 0.9163 , 0.9757 ]

Notes:
∗ Highest Density Region
† Efficiency score for country j
♦ The results were obtained in the previous chapter using individual fro ntiers for each country (model
M1).
◦ The results were obtained using a multiple lambda model (common frontier, allowing for the
inefficiencies to differ for each country - model M2).

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.

The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal

densities.

The only country for which results do not vary much is Germany (the efficiency score

decreases a little from 85.21 percent under the national frontier assumption to 83.95 percent

under the common frontier assumption as λ̄ increases from 0.16 to 0.17). The most dramatic

changes are registered by Croatia, Romania, Serbia (for which the mean efficiency score

plummets), France and Switzerland (for which there is a significant increase in the mean

efficiency score).

All the other countries (Denmark, France, Italy, Netherlands, Slovenia, Sweden, Switzer-

land and UK) exhibit an increase of the mean efficiency score (as the posterior mean for λ

decreases) relative to the common frontier in comparison to the individual frontier.
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Table 6.13: σ2 - Posterior Means and Standard Deviation , 90% H.D.R.∗

Country name Obs. No. banks σ2 M1
♦ σ2 M2

◦ Post. S.D. M2
◦ H.D.R. M2

◦

CROATIA 121 26 0.0832 0.0567 0.0242 [ 0.0242 , 0.1015 ]
DENMARK 375 78 0.0939 0.2046 0.0152 [ 0.1810 , 0.2308 ]
FRANCE 527 171 0.0586 0.3014 0.0190 [ 0.2715 , 0.3339 ]
GERMANY 8668 1471 0.0329 0.0360 0.0009 [ 0.0345 , 0.0374 ]
ITALY 1818 561 0.0386 0.2612 0.0095 [ 0.2460 , 0.2771 ]
NETHERLANDS 134 36 0.3548 0.6351 0.0798 [ 0.5156 , 0.7753 ]
POLAND 93 28 0.1796 0.2721 0.0506 [ 0.1989 , 0.3628 ]
ROMANIA 104 23 0.1144 0.1258 0.0674 [ 0.0370 , 0.2526 ]
SERBIA 80 25 0.0988 0.3228 0.1757 [ 0.0849 , 0.6475 ]
SLOVENIA 84 17 0.0808 0.1264 0.0204 [ 0.0968 , 0.1632 ]
SWEDEN 344 61 0.0602 0.1458 0.0114 [ 0.1281 , 0.1655 ]
SWITZERLAND 1188 221 0.0470 0.3866 0.0175 [ 0.3586 , 0.4163 ]
TURKEY 84 18 0.0564 0.1085 0.0319 [ 0.0655 , 0.1674 ]
UNITED KINGDOM 350 85 0.4026 0.5486 0.0423 [ 0.4829 , 0.6211 ]

Notes:
∗ Highest Density Region
♦ The results were obtained in the previous chapter using individual frontiers for each country (model M1).
◦ The results were obtained using a multiple lambda model (common frontier , allowing for the
inefficiencies to differ for each country - model M2).

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm.

The end points of the 90% confidence region are the 5th and the 95th percentiles of the posterior marginal

densities.

The biggest increases in efficiency can be observed in the case of Switzerland (60 percent

to 98.49 percent) and France (r̄ increases from 66.55 percent to 96.13 percent). This is a

result more in par with what we have expected especially from the Swiss banks. In general we

observe an increase in the posterior mean of the σ2 parameter (Table 6.13) as we switch from

the national frontier to the common frontier, big changes being registered by Switzerland

(from 0.047 to 0.3866), Netherlands (from 0.3548 to 0.6351), Italy (from 0.0386 to 0.2612),

France (from 0.0586 to 0.3014) and Serbia (from 0.0988 to 0.3228) suggesting that the banks

from these countries may deviate from the assumed “European” common frontier.
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Another way to compare the countries in terms of bank efficiency is to perform pairwise

comparisons by looking at the relative group inefficiencies, calculated as a ratio of the λ

parameters of the two countries of interest.

Table 6.14 reports a matrix of these pairwise comparisons for all the 14 countries contain-

ing the posterior means of the λi/λj ratios, where i and j are country indexes. The highest

ratios are registered (as expected) by Romania (120.37 times more inefficient than the Italian

banks) and Serbia (181.4 times more inefficient than the Italian banks). Croatian banks are

71.99 times more inefficient than the Italian banks. For Germany (22.32), Poland (29.04)

and Turkey (28.35), the relative group inefficiencies are also relatively high compared to the

Italian banks. Much smaller ratios relative to the Italian banks are obtained for Denmark

(4.09), France (5.06), Netherlands (6.47), Slovenia (5.67), Sweden (3.66), Switzerland (1.94)

and UK (6.41).

In Table 6.15 we present the matrix results of the pairwise comparisons in terms of

probability computations that the inefficiency in country i is less or equal than inefficiency

in country j, (Pr[λi/λj ≤ 1]). As expected, the results confirm that Romania and Serbia

have the least efficient banking sector, while the Italian and Swiss banks have the most cost

efficient banks. For most countries, the pairwise comparisons from Table 6.15 indicate with

high probability (sometimes > 0.99) which has the more efficient banks (Croatia in compar-

ison to Romania or Serbia, Switzerland in comparison to all countries with the exception of

Italy, etc.). Less decisive results are obtained for just a few of the pairwise comparisons. For

example, the probability of the Swedish banks being more efficient than the Danish banks

is just 0.60, while the probability of the British banks being more efficient than the Dutch

banks is equal to 0.50. Slovenia and France, Slovenia and Netherlands, Denmark and France

are the pairs for which the probabilities of one banking system being more efficient than the

other suggest that they are very similar in terms of cost efficiency.
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Table 6.14: Relative Group Type Inefficiency - λi/λj
∗, Posterior Means

λi/λj
∗

HR DK FR DE IT NL PL RO RS SI SE CH TR UK
HR 1.00 19.57 15.96 3.23 71.99 13.28 2.71 0.61 0.40 14.65 21.63 39.07 2.67 13.02
DK 0.06 1.00 0.90 0.18 4.09 0.75 0.15 0.03 0.02 0.83 1.22 2.20 0.15 0.74
FR 0.07 1.37 1.00 0.23 5.06 0.93 0.19 0.04 0.03 1.03 1.51 2.76 0.19 0.91
DE 0.31 6.07 4.95 1.00 22.32 4.12 0.84 0.19 0.13 4.55 6.71 12.12 0.83 4.04
IT 0.01 0.28 0.23 0.05 1.00 0.19 0.04 0.01 0.01 0.21 0.31 0.56 0.04 0.19
NL 0.09 1.77 1.43 0.29 6.47 1.00 0.25 0.06 0.04 1.31 1.95 3.51 0.24 1.17
PL 0.41 7.90 6.44 1.30 29.04 5.35 1.00 0.24 0.16 5.89 8.73 15.73 1.06 5.26
RO 1.69 32.74 26.67 5.40 120.37 22.23 4.53 1.00 0.68 24.50 36.20 65.39 4.46 21.78
RS 2.50 49.30 40.20 8.10 181.40 33.50 6.80 1.50 1.00 36.90 54.50 98.50 6.70 32.80
SI 0.08 1.54 1.26 0.25 5.67 1.04 0.21 0.05 0.03 1.00 1.71 3.07 0.21 1.03
SE 0.05 0.99 0.81 0.16 3.66 0.67 0.14 0.03 0.02 0.75 1.00 1.99 0.14 0.66
CH 0.06 0.53 0.43 0.09 1.94 0.36 0.07 0.02 0.01 0.40 0.59 1.00 0.07 0.35
TR 0.40 7.70 6.27 1.27 28.35 5.22 1.05 0.24 0.16 5.75 8.51 15.37 1.00 5.11
UK 0.09 1.74 1.41 0.29 6.41 1.19 0.24 0.05 0.04 1.30 1.93 3.46 0.24 1.00

Notes:
∗ where i=row number , j=column number Posterior moments are computed based on 50,000 points generated from the Gibbs sampling
algorithm.
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Table 6.15: Efficiency Comparisons Across Countries - P[λi/λj ≤ 1]∗

P[λi/λj ≤ 1]∗ HR DK FR DE IT NL PL RO RS SI SE CH TR UK
HR > 0.99 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 > 0.99 > 0.99 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
DK > 0.99 > 0.99 0.68 > 0.99 < 0.01 0.78 > 0.99 > 0.99 > 0.99 0.74 0.40 0.03 > 0.99 0.81
FR > 0.99 0.32 > 0.99 > 0.99 < 0.01 0.66 > 0.99 > 0.99 > 0.99 0.57 0.24 0.02 > 0.99 0.66
DE > 0.99 < 0.01 < 0.01 > 0.99 < 0.01 < 0.01 0.80 > 0.99 > 0.99 < 0.01 < 0.01 < 0.01 0.86 < 0.01
IT > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 0.98 > 0.99 > 0.99
NL > 0.99 0.22 0.34 > 0.99 < 0.01 > 0.99 > 0.99 > 0.99 > 0.99 0.42 0.16 0.01 > 0.99 0.50
PL > 0.99 < 0.01 < 0.01 0.20 < 0.01 < 0.01 > 0.99 > 0.99 > 0.99 < 0.01 < 0.01 < 0.01 0.47 < 0.01
RO < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 > 0.99 0.99 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
RS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 > 0.99 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
SI > 0.99 0.26 0.43 > 0.99 < 0.01 0.58 > 0.99 > 0.99 > 0.99 > 0.99 0.20 0.01 > 0.99 0.59
SE > 0.99 0.60 0.76 > 0.99 < 0.01 0.84 > 0.99 > 0.99 > 0.99 0.80 > 0.99 0.06 > 0.99 0.86
CH > 0.99 0.97 0.98 > 0.99 0.02 0.99 > 0.99 > 0.99 > 0.99 0.99 0.94 > 0.99 > 0.99 0.99
TR > 0.99 < 0.01 < 0.01 0.14 < 0.01 < 0.01 0.53 > 0.99 > 0.99 < 0.01 < 0.01 < 0.01 > 0.99 < 0.01
UK > 0.99 0.19 0.34 > 0.99 < 0.01 0.50 > 0.99 > 0.99 > 0.99 0.41 0.14 0.01 > 0.99 > 0.99

Notes:
∗ where i=row number , j=column number
The probabilities are computed based on 50,000 points generated from the Gibbs sampling algorithm.
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6.4 Posterior Marginal Densities for λ, Efficiency Score,

and σ2

As in the previous chapter, we follow up with a visual presentation of the results for the

common frontier by including the graphs (Figure 6.21 through Figure 6.34) of the smoothed

posterior marginal densities for λ, σ2, and efficiency score.

The densities for λ or the efficiency score exhibit asymmetries if the posterior mean for λ

is close to zero, and evidently if the posterior mean for the efficiency score gets close to one

(as observed for Denmark, France, Italy, Netherlands, Slovenia, Sweden and Switzerland).

For the countries with high inefficiencies or a large number of observations, the densities for

λ and the efficiency score look more symmetric, almost normal (as in the case of Croatia,

Germany, Poland, Romania, Serbia or Turkey).

The posterior marginal densities for σ2 show asymmetries in the case of the countries

with less observations like Poland, Turkey, Serbia, Romania, Croatia, Netherlands, Slovenia

and look more symmetric for the countries with more observations like Germany, France, or

Italy.

Compared to the posterior marginal distributions for λ, σ2, and efficiency score drawn

based on the national frontiers (chapter 5), we observe that these plots are smoother. This

happens because even though the λ’s and the σ2’s are estimated based on each country’s

number of observations, the β’s are common to all countries and therefore estimated based on

the total number of observations (N = 13, 970). Looking at the full conditional distributions

for λ, σ2 and v, this is expected to have an impact on the shape, width and location of their

posterior marginal distributions.
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Figure 6.21: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Denmark
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Figure 6.22: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.23: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.24: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.25: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.26: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.27: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.28: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.29: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.30: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.31: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.32: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.33: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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Figure 6.34: Posterior Marginal Densities for λ, Efficiency Score and σ2.
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6.5 Conclusions

In this chapter we measure country specific efficiencies against a common frontier to

address the cross-country comparison problems raised by the previous individual country

frontier approach.

As pointed out by Berger (2007), even if this approach solves the problem of comparing

efficiencies that were estimated relative to different benchmark frontiers, it’s not without

downfalls. By assuming a common frontier, the impact that the different economic environ-

ments might have on the banks’ cost structure (due to regulations, culture etc.) is ignored or

difficult to control for. Previous research found that the assumption of a common technology

“induces a strong bias in cross country comparisons and may yield misleading results”7. We

find significant changes in efficiency levels when determined against the common frontier as

opposed to single frontier for most countries, with the exception of Germany, Slovenia and

Turkey.

We find that, by allowing for heterogeneity within the model (common frontier), the

results for the technology parameters differ from the case in which homogeneity is assumed

(the pooled model from chapter 5). Economies of scale computations for the same selected

banks as in chapter 5 confirm this idea. While the posterior means of the economies of

scale remain consistently greater than one for most banks, irrespective of bank sizes, they

are significantly different for the two models (M1 and M2). Still, we can conclude that the

majority of banks we selected could reduce costs by increasing output.

As the efficiency is determined with respect to a common frontier, we can now compare

the relative efficiency levels and we find that the most efficient banks are from Italy (99.2

percent), Switzerland (98.49 percent), Sweden (97.18 percent), Denmark (96.86 percent),

7Bos and Schmiedel (2007), Dietsch and Lozano-Vivas (2000), Bikker (2002).
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France (96.13 percent), Slovenia (95.66 percent), and UK (95.12 percent). The least efficient

banks are from Serbia (24.59 percent), Romania (39.17 percent) and Croatia (57 percent).

The results are not surprising when it comes to Romania, Serbia, Croatia or Switzerland

but the Italian, British and French banks have unexpectedly low costs.

The results for σ2 raise doubts about the validity of the common cost frontier assumption

which in turn raises the question of how best to tackle the task of international comparisons

of the banking systems. If the individual frontiers do not allow for comparisons of efficiencies

across countries and the common frontier approach risks forcing countries to share technology

against evidence to the contrary, is there a “middle ground”?

Next chapter introduces a model that nests both of these approaches and through the

use of an informative prior varied according our beliefs about the frontiers, the existence of

different “sub-frontiers” is permitted.
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Chapter 7

A More General Multi-Country
Bayesian Stochastic Cost Frontier

7.1 Introduction

The previous two chapters implemented Bayesian stochastic cost frontier models that

illustrate two approaches in the banking literature as summarized by Berger (2007) for

comparing efficiency across countries. In chapter 5, model M1, we identified 14 individual

country frontiers based on each country’s banks, investigating their efficiency relative to these

own-nation frontiers. Since we have 14 “reference frontiers” when determining the efficiency

levels, conclusions about relative efficiencies between countries are difficult to draw. In

chapter 6, model M2, a common frontier is drawn for all the countries by pooling together

the data and determining each country’s relative efficiency as a deviation from this shared,

single frontier. Comparisons across countries are now possible since the “reference frontier” is

the same. However, the common frontier implicitly assumes a similar regulation environment

and technology in all countries.

The present chapter introduces a Bayesian stochastic translog cost frontier with country

dummy variables and an informative prior that allows for a continuous shift from individual

country frontiers (M1) to a common frontier (M2). By varying the degree of precision on

the prior distribution of the frontier parameters (the β’s), the model nests both previous
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approaches. This methodology also permits us to investigate if indeed there are different

frontiers or if the countries share the same technology.

7.2 Model Specifications and Methodology

As before, this is another composite error model that constructs an efficient frontier

from which the individual firm deviates due to both inefficiency (incurring higher costs, vij)

and measurement error or luck (the random aspect, uij). The introduction of the dummy

variables are an allowance for deviations from the common frontier and are the main change

in this chapter. By using dummy variables, we can include all 14 frontiers in the model. As

a result, the number of technology parameters (β’s) increases from 10 to 140 as follows:

yij =
10∑
k=1

βikxik +
20∑

k=11

βikxikδHR +
30∑

k=21

βikxikδDK +
40∑

k=31

βikxikδFR

+
50∑

k=41

βikxikδIT +
60∑

k=51

βikxikδNL +
70∑

k=61

βikxikδPL +
80∑

k=71

βikxikδRO+

+
90∑

k=81

βikxikδRS +
100∑
k=91

βikxikδSI +
110∑

k=101

βikxikδSE +
120∑

k=111

βikxikδCH+

+
130∑

k=121

βikxikδTR +
140∑

k=131

βikxikδUK + uij + vij

where i = 1, ..., N (bank i), j is the country index (j = 1, .., 14) and δHR, δDK , δFR, δIT ,

δNL, δPL, δRO, δRS, δSI ,δSE, δCH , δTR, δUK are dummy variables that take the value one if

the bank i originates in the corresponding country and zero otherwise.

We used Germany as the reference country as it has the most observations, while the

rest of the countries follow in alphabetical order as before.
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This means that if we are interested in the frontier parameters for Germany, we focus on

β1 through β10 (β1,DE = β1, etc.). For all the other countries, the technology parameters are

obtained by adding to the reference country’s β, the value of the corresponding β parameter

that was paired with the country’s dummy as follows: β1,HR = β1+β11,..., β10,HR = β10+β20,

while β1,UK = β1 + β131,..., β10,UK = β10 + β140.

We define the following matrices and vectors:

Z =



XDE 0 0 0 · · · 0 0

XHR XHR 0 0 · · · 0 0

XDK 0 XDK 0 · · · 0 0

...
...

...
...

. . .
...

...

XUK 0 0 0 · · · 0 XUK


(N×140)

where XDE = X1, XHR = X2, XDK = X3, ..., XUK = X14 are the independent variables

matrices from all the countries, with N = NDE + NHR + ... + NUK the total number of

observations obtained by adding up the number of observations from each country (i.e.

NDE = N1 being the number of bank-year observations for Germany, NHR = N2 for Croatia,

etc.). LetKj =
∑j

n=1 Kn andK0 = 0. The rows from 1 toK1 are theN1 stacked observations

for Germany (XDE) and in general, the rows from Kj−1 + 1 to Kj are the Nj stacked

observations for country j, for j = 1, ..., 14.

β =


β1
...
β11
...

β140

, y =


yHR
yDK
yFR

...
yUK

, Σ =


ΣDE 0 · · · 0

0 ΣHR 0 · · · 0
0 0 ΣDK 0 · · · 0
...

...
...

. . .
...

...
0 0 · · · 0 0 ΣUK



Where Σ is the data variance-covariance N × N diagonal matrix in which the variance

corresponding to the n’s observation is inserted on row n.
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The covariance terms are equal to zero and above we wrote Σ in a meaningful fashion

using block diagonal matrices of dimensions Nj×Nj, j = 1, ..., 14 (ΣDE = Σu1 = diag[σ2
DE] =

diag[σ2
u1

], ΣHR = Σu2 = diag[σ2
HR] = diag[σ2

u2
], etc.) to convey the idea that while each

country has a different variance parameter, within the same country, the σ2
u’s are the same.

The statistical noises uij ∼ N(0, σ2
uj

) are still normally distributed, where i is the

bank index and j = 1, ..., 14 is the country index, with u = (uDE,uHR,uDK , ...,uUK)T =

(u1,u2,u3...,u14)T .

The inefficiency terms, vij ∼ EXP (λj) follow exponential distributions, and we construct

the N × 1 inefficiency vector v = (vDE,vHR,vDK , ...,vUK)T = (v1,v2,v3, ...,v14)T , while

λDE = λ1, λHR = λ2, λDK = λ3, etc.

Now, using the notations defined above, the model can be written in matrix form as:

y = Zβ + v + u

Note that this is not a classical matrix form notation of a dummy variables model as

matrix Z was obtained by already including the dummy information so that the model can

be re-written as a classical linear regression in order to simplify the formulas for the posterior

marginal distributions and make the connection to the previous models.

Further we specify the choice of priors to complete the presentation of the statistical

model and in doing so we follow Koop, Osiewalski and Steel (1994), but also Geweke (2005)

and Gelman et al. (2004).

• we use an informative prior for β ∼ N(βp, H
−1
p ), where βp is a 140 × 1 vector of

constants and Hp is a 140 × 140 positive definite matrix of constants. We specify

βp = (0, 0, ..., 0)T as the null vector and construct the prior precision matrix as a

diagonal matrix such that the prior variance on linear terms is equal to 10 and on

the quadratic or interaction terms is equal to 1 (in essence, H−1
p is a block diagonal
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matrix and on its diagonal we repeat 14 times the diagonal matrix with the elements

[10, 10, 1, 10, 1, 10, 1, 1, 1, 1]) 1. A new component of the prior is the scale factor, S

which is a constant used to multiply rows 11 through 140 of the prior precision matrix.

We will run the Gibbs sample for different values of the scale factor S: 0.1; 1; 1,000;

5,000; 10,000; 25,000; 50,000; 75,000; 100,000; 250,000; 500,000; 750,000; 1,000,000;

10,000,000 and 1,000,000,000. The higher the value for S, the stronger the prior.

The high magnitude priors push the frontiers together (they shrink into one common

frontier as in model M2), while the lower values (S = 1, S = 0.1) will generate

individual country frontiers like the first model. As observed by Knight, Hill and

Sirmans (1992), this is similar to the frequentist Stein rule estimators. In order to

avoid confusion, we will keep the generic notation Hp for the prior precision matrix

and mention separately the scale factor’s value every time it changes.

• a gamma2 prior3 for each σ−2
uj

, with j = 1, ..., 14: π(σ−2
uj

) = fG(σ−2
uj
| τj

2
,
s2pj
2

). By setting

for all j’s τj = 1 and s2
pj

= 0.10, we are choosing a weak prior on each σ2
uj

.

• a gamma prior for each λj
−1, with j = 1, ..., 14: π(λj

−1) = fG(λj
−1|1,−ln(r∗)), where

r∗ is the prior mean for efficiency. We set r∗ equal to 0.8754.

The full conditional distributions are derived based on the same references as used when

choosing the priors:

• β|data,v,Σ,λ ∼ N(β̄, H̄−1), where H̄ = Hp+ZTΣ−1Z and β̄ = H̄−1(Hpβp+ZTΣ−1y∗),

with y∗ = y − v.

1because as we have seen in the previous chapters and as it is expected, the posterior means of the
parameters from the quadratic and interaction terms are smaller than the ones for the linear terms, there-
fore the variance terms need to be chosen taking that into account. Nevertheless, this is still a relatively
uninformative prior considering the observed magnitude of the parameters for this model.

2where fG(.|ν1, ν2) is a gamma density with mean ν1/ν2 and variance ν1/ν
2
2

3following Fernandez, Osiewalski, and Steel (1997)
4following Koop, Osiewalski and Steel (1994) and van den Broek, Koop, Osiewalski and Steel (1994).
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If we denote Ĥ = ZTΣ−1Z and β̂ = (ZTΣ−1Z)−1ZTΣ−1y∗, then it can be observed that

H̄ = Hp + Ĥ and β̄ = H̄−1[Hpβp + Ĥβ̂]. As in the previous chapter, β̂ and Ĥ−1 are

none others than the GLS estimators for the model parameters and variance, which

intuitively makes sense for a model with unequal variance.

• σ−2
uj
|data, σ−2

u1
, ..., σ−2

uj−1
, σ−2

uj+1
, ..., σ−2

u14
,v,β, λ is gamma distributed with j as the coun-

try index: fG(σ−2
uj
|Nj+τ−2

2
,
SSEj+s2p

2
), where SSEj = (yj

∗ − Zjβ̄)
T

(yj
∗ − Zjβ̄). Zj is the

Nj×140 matrix obtained from Z, by retaining the rows from Kj−1 + 1 to Kj. In other

words, σ2
uj

for country j will be sampled based on the observations that pertain to it.

• λ−1
j |data, λ−1

1 , ..., λ−1
j−1, λ

−1
j+1, ..., λ

−1
14 ,v,β,Σ is gamma distributed:

fG(λ−1|Nj + 1,vj
T iNj
− ln(r∗)), where iNj

is a Nj × 1 vector of ones. As before, λj for

country j will be sampled based on the observations for country j (vector vj), which

are the Kj−1 + 1 to Kj elements of the inefficiency vector v.

• vj|data,v1, ...,vj−1,vj+1, ...,v14,β,Σ, λ is drawn from a truncated normal distribu-

tion5: the inefficiency of each bank, vij ∼ N(yij − z
Nj

i β −
σ2
uj

λj
, σ2

uj
)I(vij > 0), where

i is the bank-year index, with i = Kj−1 + 1, ..., Kj, and j is the country’s index.

vj = (vKj−1+1, ..., vKj
)T is the Nj × 1 inefficiency vector for country j, z

Nj

i is the i’s

row of the Z matrix and I(vij) > 0 is an indicator function that takes the value one if

vij > 0 and zero otherwise.

For all the results reported in this study we used 5,000 burn in samples and 55,000

Markov Chain Monte Carlo iterations. As a start up values, we use a vector of relatively

small inefficiency parameters: v[0] = [0.5 0.5 ... 0.5]T , where v is of dimension N × 1 and

low σ2
uj

[0]
= 0.01.

5following Jondrow at al.(1983)
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7.3 Empirical Results

The tables of results presented in this section for the translog parameters of the Swiss

frontier (Table 7.1), λ (Table 7.3), efficiency scores (Table 7.4), σ2 (Table 7.5) and economies

of scale for the selected large banks (Table 7.2) contain the posterior means, standard devi-

ations and highest density regions for the respective parameter or function of parameters of

interest from the individual frontier (M1, chapter 5), the hybrid model (M3) with varying

prior strength (for different scale factor values S = 1, S = 103, S = 104, S = 105, S = 107)

and the common frontier (M2, chapter 6).

In order to show that the hybrid model is nesting the previous 2 approaches from chapter

5 and chapter 6 we need to point out that as the scale factor S increases, we observe the

parameter values moving from one endpoint (M1) to the other (M2). Thus, while going

through the results tables, we will pay close attention to first and last pairs of columns.

The M1 (individual frontier results, chapter 5) and S = 1 (hybrid model with weaker prior)

columns should match. Also the S = 107 column (hybrid model with very strong prior) and

M2 column (the countries share a common frontier, chapter 6) should yield virtually the

same results.

Besides the overlapping of the endpoints, it is interesting to see how the convergence is

progressing and for this reason we included the columns of results for S = 103, S = 104,

S = 105.

To visually point out and track the convergence process, we also included graphs for

Switzerland’s translog parameters (Figure 7.1 through Figure 7.10), economies of scale for

the selected large banks (Figure 7.15 through Figure 7.28), λ (Figure 7.29 through Figure

7.42), efficiency score (Figure 7.43 through Figure 7.56) and σ2 (Figure 7.57 through Figure

7.70).
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The convergence graphs structure is threefold as we included:

• posterior marginal densities for the parameter or function of parameters of interest

(i.e. λ, economies of scale for the selected large banks) drawn for M1 and S = 1 (or

S = 0.1 in some cases) to show how well they superimpose;

• posterior marginal densities for the parameter or function of parameters of interest

drawn for M2 and S = 109 to show how well they superimpose;

• transition graphs that track the evolution of the posterior means, posterior 5th and

95th quantiles for the parameter or function of parameters of interest as the scale

factor S takes the following values 0.1; 1; 1,000; 5,000; 10,000; 25,000; 50,000; 75,000;

100,000; 250,000; 500,000; 750,000; 1,000,000; 10,000,000 and 1,000,000,000. This

graph is meant to trace the convergence path. In some cases we observe that as a

more informative prior is used (as S increases), even a small suggestion (for small

values of the scale factor) that the frontiers might be similar causes sharp movements

in the parameter’s value. Other times, a very strong prior (scale factor at least equal

to 1,000) is needed so that the frontiers are pushed together.

As before, we start the results presentation with a look at the technology parameters.

For practical reasons we include just the Swiss frontier6 table results (Table 7.1) and figures

(Figure 7.1 through Figure 7.10).

In the table we can observe that the M1 (national frontier) results column and the M3

with weaker prior (S = 1) column are virtually identical. The same is true for the last

2 columns that contain the results for M3 with very strong prior (S = 107) and for M2

(common frontier), the results are nearly identical.

6results tables and graphs for the remaining countries’ technology parameters are available upon request.
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Table 7.1: Translog Parameters: Posterior Means, Standard Deviation,and 90% H.D.R.∗ - Switzerland

Parameters M1
♦ S† = 1 S = 103 S = 104 S = 105 S = 107 M2

β1 0.9185 0.9125 1.1090 1.3050 1.4470 1.4400 1.4410
Post. S.D. (0.1169) (0.1152) (0.0695) (0.0349) (0.0282) (0.0236) (0.0234)
[H.D.R.] [0.728,1.113] [0.725,1.104] [0.996,1.223] [1.248,1.363] [1.398,1.492] [1.401,1.479] [1.403,1.480]

β2 0.1686 0.1688 0.1661 0.2560 0.4002 0.4425 0.4431
Post. S.D. (0.0652) (0.0650) (0.0452) (0.0273) (0.0258) (0.0194) (0.0192)
[H.D.R.] [0.062,0.277] [0.063,0.276] [0.092,0.241] [0.211,0.301] [0.353,0.438] [0.411,0.474] [0.411,0.475]

β3 0.1287 0.1285 0.1186 0.0886 0.0698 0.0547 0.0542
Post. S.D. (0.0115) (0.0114) (0.0093) (0.0064) (0.0047) (0.0047) (0.0047)
[H.D.R.] [0.120,0.148] [0.120,0.147] [0.103,0.134] [0.078,0.099] [0.062,0.078] [0.047,0.062] [0.047,0.062]

β4 0.3592 0.3618 0.3302 0.3143 0.3731 0.4728 0.4753
Post. S.D. (0.0516) (0.0512) (0.0342) (0.0204) (0.0149) (0.0119) (0.0118)
[H.D.R.] [0.274,0.444] [0.277,0.445] [0.274,0.386] [0.281,0.348] [0.348,0.397] [0.454,0.493] [0.456,0.495]

β5 0.0520 0.0522 0.0460 0.0364 0.0403 0.0476 0.0478
Post. S.D. (0.0058) (0.0058) (0.0050) (0.0039) (0.0036) (0.0020) (0.0020)
[H.D.R.] [0.042,0.062] [0.042,0.062] [0.038,0.054] [0.030,0.043] [0.034,0.046] [0.044,0.051] [0.045,0.051]

β6 0.1464 0.1457 0.2514 0.3688 0.3957 0.3561 0.3536
Post. S.D. (0.0399) (0.0401) (0.0336) (0.0207) (0.0156) (0.0087) (0.0087)
[H.D.R.] [0.082,0.213] [0.080,0.212] [0.196,0.307] [0.335,0.403] [0.372,0.423] [0.342,0.371] [0.340,0.368]

β7 -0.0052 -0.0052 -0.0059 -0.0019 0.0172 0.0266 0.0269
Post. S.D. (0.0027) (0.0026) (0.0028) (0.0027) (0.0022) (0.0010) (0.0010)
[H.D.R.] [-0.010,-0.001] [-0.010,-0.001] [-0.010,-0.001] [-0.006,0.003] [0.014,0.021] [0.025,0.028] [0.025,0.028]

β8 -0.0222 -0.0225 -0.0313 -0.0538 -0.0687 -0.0851 -0.0856
Post. S.D. (0.0184) (0.0183) (0.0135) (0.0082) (0.0058) (0.0058) (0.0057)
[H.D.R.] [-0.053,0.008] [-0.053,0.008] [-0.054,-0.009] [-0.067,-0.040] [-0.078,-0.059] [-0.095,-0.076] [-0.095,-0.076]

β9 -0.0049 -0.0040 -0.0513 -0.0920 -0.0827 -0.0564 -0.0555
Post. S.D. (0.0177) (0.0176) (0.0143) (0.0080) (0.0048) (0.0041) (0.0041)
[H.D.R.] [-0.034,0.024] [-0.033,0.025] [-0.075,-0.028] [-0.105,-0.079] [-0.091,-0.075] [-0.063,-0.050] [-0.062,-0.049]
β10 -0.0730 -0.0730 -0.0882 -0.1007 -0.0721 -0.0545 -0.0540

Post. S.D. (0.0085) (0.0085) (0.0076) (0.0058) (0.0055) (0.0029) (0.0029)
[H.D.R.] [-0.087,-0.059] [-0.087,-0.059] [-0.101,-0.076] [-0.110,-0.091] [-0.083,-0.064] [-0.059,-0.050] [-0.059,-0.049]

Notes: ∗ Highest Density Region.
♦ Based on national frontiers (M1).
†Si stands for a scale factor of order 10i.
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%
confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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The results columns for the hybrid model (M3) with S = 103, S = 104, S = 105 show

almost direct7 convergence for the parameters β1, β2, β3, β7, β8 and indirect8 convergence

for β4, β5, β6, β9 and β10.

While results table tell the convergence story, the figures 7.1 through 7.10 are even

more convincing. Each picture includes 3 plots. On the one hand we superimposed the

posterior marginal densities for M1 and M3 with weak prior (S = 1) and on the other hand,

we superimposed the posterior marginal densities for M2 and M3 with very strong prior

(S = 109). Both plots show perfect overlapping, confirming that the models convergence.

The transition graphs, drawn for different strength levels of the prior add interesting

information to the convergence story, as they confirm direct convergence for parameters: β1

(Figure 7.1), β2 (Figure 7.2), β3 (Figure 7.3), β7 (Figure 7.7) and β8 (Figure 7.8). In the

case of the translog parameters β4 (Figure 7.4), β5 (Figure 7.5), β6 (Figure 7.10), β9 (Figure

7.9) and β10 (Figure 7.10), the convergence is indirect.

The transition graphs also point out a previously mentioned idea: the posterior highest

density regions of the parameters are generally wider for model M1 than for model M2 for the

majority of the countries9, especially for the ones with very small number of observations.

Another thing to note about the transition graphs of the translog parameters for the

Swiss frontier is that the convergence process seems to be slow (it takes strong priors to

get the movement from M1 towards M2). Since it takes a strong prior to push the Swiss

frontier towards the common frontier, it follows that there is strong evidence in the data

that Switzerland has a different frontier than the common frontier.

7whenever the parameter’s estimates from the hybrid model remain within the bounds of the M1 and
M2 results as the prior’s strength is varied, we will call it direct convergence.

8if the parameter’s estimates from the hybrid model overshoot or drop below the margins defined by the
M1 and M2 results as the prior’s strength is varied, we will call it indirect convergence.

9less so for Germany as it has more than half of the sample’s observations
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Figure 7.1: Switzerland - Model Convergence, Translog Parameters: β1.
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Figure 7.2: Switzerland - Model Convergence, Translog Parameters: β2.
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Figure 7.3: Switzerland - Model Convergence, Translog Parameters: β3.
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Figure 7.4: Switzerland - Model Convergence, Translog Parameters: β4.
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Figure 7.5: Switzerland - Model Convergence, Translog Parameters: β5.
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Figure 7.6: Switzerland - Model Convergence, Translog Parameters: β6.
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Figure 7.7: Switzerland - Model Convergence, Translog Parameters: β7.
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Figure 7.8: Switzerland - Model Convergence, Translog Parameters: β8.
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Figure 7.9: Switzerland - Model Convergence, Translog Parameters: β9.
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Figure 7.10: Switzerland - Model Convergence, Translog Parameters: β10.
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Figures 7.11 through 7.14 offer a better understanding of the role that the priors have in

the hybrid model. As previously, we have drawn cost frontiers for a few countries (Switzer-

land, Germany, Italy and France) by holding loan/equity and security/equity constant at

the median values of the pooled dataset, and varying avwage/avrate between its minimum

and maximum values, and this time we did it for M3 at different values of the prior (S = 1,

S = 103, S = 105 and S = 5 × 105). As the strength of the prior increases (higher S), we

can see how frontiers are pushed together. When it comes to the shape of the frontiers, it

should be mentioned that the concavity property of the cost function is violated by most of

the frontiers depicted here. Also, it is apparent that for the chosen countries it takes a very

strong prior (S = 105) to get their frontiers close.

To complement the analysis of the translog parameters, we have calculated the economies

of scale for the same select group of large banks at different values of the prior. Table

7.2 contains the posterior means, standard deviations and highest density regions for the

economies of scale obtained with M1, M2 and M3 (at scale factor S = 1, S = 103, S = 105

and S = 107). The columns for M1 and M3 with uninformative prior (S = 1) are almost the

same. M2 and M3 with very informative prior (S = 107) also look very much alike. A more

complete image of the convergence is captured by figures 7.15 through 7.28. In the case of

the Slovenian, Serbian, Romanian and Dutch banks we notice that the posterior marginal

densities for economies of scale do not overlap perfectly in the case of M1 and M3 with weak

prior. Since M1 is defined as a model with a diffuse prior on the translog parameters while

M2 and M3 are both set up as models with normal priors on the β’s, it is more likely to find

small discrepancies in the case of M1 and M3.

The transition graphs also offer information about the convergence path. We observe

direct convergence in the case of the Danish (Figure 7.16), German (Figure 7.18), Dutch

(Figure 7.20), Polish (Figure 7.21), Romanian (Figure 7.22), Serbian (Figure 7.23) and

Turkish (Figure 7.27) banks.
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Figure 7.11: Swiss, German, Italian and French Frontiers Drawn for S = 1 at the Sample Median Values for loan/equity and
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Figure 7.12: Swiss, German, Italian and French Frontiers Drawn for S = 103 at the Sample Median Values for loan/equity and
security/equity.
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Figure 7.13: Swiss, German, Italian and French Frontiers Drawn for S = 105 at the Sample Median Values for loan/equity and
security/equity.
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Table 7.2: Economies of Scale for Selected Banks: Posterior Means, Standard Deviation, 90% H.D.R.∗

Bank name M1
� S = 1 S = 103 S = 105 S = 107 M2

◦

Hrvatska Postanska 1.063 1.081 1.021 1.109 1.132 1.132

Post. S.D. 0.2428 0.241 0.09303 0.02763 0.01073 0.01032

[H.D.R.] [0.7811,1.485] [0.7965,1.51] [0.8837,1.185] [1.064,1.156] [1.114,1.149] [1.116,1.15]

Skandinaviska Enskilda 0.9475 0.9457 1.074 1.711 1.784 1.786

Post. S.D. 0.09868 0.09823 0.08821 0.06386 0.03492 0.0349

[H.D.R.] [0.7987,1.122] [0.7976,1.118] [0.9418,1.23] [1.606,1.816] [1.728,1.842] [1.729,1.844]

Banque Populaire des Alpes 1.259 1.261 1.204 1.276 1.338 1.339

Post. S.D. 0.08915 0.09021 0.07212 0.04272 0.02203 0.02182

[H.D.R.] [1.122,1.414] [1.123,1.418] [1.093,1.328] [1.206,1.347] [1.303,1.375] [1.304,1.376]

Thüringer Aufbaubank 1.201 1.201 1.193 1.148 1.137 1.137

Post. S.D. 0.01464 0.01465 0.01393 0.01188 0.01172 0.01172

[H.D.R.] [1.177,1.225] [1.177,1.226] [1.171,1.217] [1.129,1.168] [1.118,1.156] [1.118,1.156]

Banca Monte Parma 0.9814 0.9812 1.018 1.722 1.263 1.249

Post. S.D. 0.02179 0.02184 0.02341 0.0484 0.01207 0.0113

[H.D.R.] [0.9463,1.018] [0.9462,1.018] [0.9806,1.058] [1.646,1.804] [1.243,1.283] [1.231,1.268]

Continued on next page
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Continued from previous page

Bank name M1
� S = 1 S = 103 S = 105 S = 107 M2

◦

Staalbankiers NV 2.568 2.568 2.073 1.475 1.42 1.42

Post. S.D. 0.8202 0.7356 0.3308 0.05195 0.01792 0.01743

[H.D.R.] [1.771,3.814] [1.768,3.822] [1.63,2.677] [1.392,1.563] [1.391,1.45] [1.392,1.449]

Bank BPH SA 1.101 1.113 1.275 1.272 1.287 1.287

Post. S.D. 0.1907 0.1939 0.1321 0.03197 0.0109 0.01053

[H.D.R.] [0.8511,1.447] [0.8604,1.463] [1.083,1.512] [1.221,1.326] [1.269,1.305] [1.27,1.305]

Banca Romaneasca 1.596 1.597 1.245 1.001 1.035 1.036

Post. S.D. 0.6646 0.5953 0.1552 0.03276 0.01702 0.01677

[H.D.R.] [1.061,2.471] [1.065,2.454] [1.022,1.524] [0.9483,1.056] [1.007,1.063] [1.009,1.064]

AIK Banka ad Nis 1.821 1.835 1.233 1.015 1.039 1.041

Post. S.D. 0.8483 2.186 0.1567 0.0307 0.02104 0.02099

[H.D.R.] [1.154,2.921] [1.163,2.91] [1.011,1.515] [0.9639,1.065] [1.005,1.074] [1.006,1.075]

Gorenjska Banka d.d. Kranj 0.8467 0.8634 1.186 1.233 1.225 1.226

Post. S.D. 0.2716 0.3299 0.08482 0.02757 0.01306 0.01279

[H.D.R.] [0.5845,1.263] [0.5976,1.281] [1.058,1.336] [1.188,1.279] [1.203,1.246] [1.205,1.247]

Färs & Frosta Sparbank 1.348 1.34 1.237 1.465 1.467 1.467

Post. S.D. 0.1112 0.1093 0.07263 0.04534 0.01979 0.01946

[H.D.R.] [1.183,1.544] [1.179,1.534] [1.125,1.363] [1.391,1.54] [1.435,1.5] [1.435,1.499]

Continued on next page
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Continued from previous page

Bank name M1
� S = 1 S = 103 S = 105 S = 107 M2

◦

ABN Amro Bank (Schweiz) AG 2.427 2.406 2.843 2.028 1.562 1.556

Post. S.D. 0.225 0.2177 0.2742 0.08605 0.01726 0.01669

[H.D.R.] [2.098,2.831] [2.09,2.799] [2.441,3.329] [1.9,2.181] [1.534,1.591] [1.529,1.584]

Anadolubank 1.666 1.666 1.448 0.9813 0.9471 0.9476

Post. S.D. 0.41 0.4183 0.1844 0.02334 0.01443 0.01422

[H.D.R.] [1.2,2.372] [1.2,2.37] [1.185,1.78] [0.9436,1.02] [0.9235,0.9709] [0.9246,0.9712]

JP Morgan Intl. Bank Ltd 1.58 1.587 1.744 1.687 1.624 1.623

Post. S.D. 0.1843 0.1846 0.1985 0.07304 0.03318 0.03267

[H.D.R.] [1.316,1.91] [1.322,1.918] [1.462,2.101] [1.573,1.811] [1.571,1.68] [1.571,1.678]

Notes: ∗ Highest Density Region
♦ The results were obtained using the national frontier obtained in the previous chapter (model M1).
◦ The results were obtained using a multiple lambda model (common frontier, allowing for the inefficiencies to differ for each country -
model M2).

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%

confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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For all the other banks (Croatian, Figure 7.15; French, Figure 7.17; Italian, Figure 7.19;

Swedish, Figure 7.25; Swiss, Figure 7.26; and British Figure 7.28), the convergence happens

indirectly (with the exception of the Italian and Swiss banks). Often, these are banks for

which the economies of scale do not change much from M1 to M2 (small range to move

within, making overshooting and indirect convergence more likely). The transition plots for

the Italian and Swiss banks suggest that probably at those specific levels of outputs and

input prices (corresponding to the banks), the Italian and the Swiss cost frontier are very

different than the common frontier.

Especially for the countries with a small number of observations (Romania, Turkey,

Serbia, etc.), we can easily see on the transition plots that the posterior highest density

regions that accompany model M1 results are wider than the ones obtained from M2 for the

economies of scale.

Another thing to notice about most of the countries with a small number of observations

(Poland, Romania, Netherlands, Serbia, Slovenia, Denmark) is that there are rapid adjust-

ments in the values of the economies of scale for relatively weak priors. In other words,

the economies of scale for these countries seem to be sensitive to the prior’s strength and

convergence is faster when the data provides less information.

Because of the high number of observations that we have from Germany, the relatively

rapid convergence for the economies of scale of the large bank could be considered a sign

that at that particular level of input prices and outputs, the German frontier is close to the

common frontier.

After analyzing the technology of the cost frontier by looking at its parameters and the

economies of scale of a select group of large banks, we check the convergence in models

for λ (table 7.3), efficiency scores (table 7.4) and σ2 (table 7.5). Again, the near perfect

superposition of the endpoints should be observed (columns M1 and S = 1, respectively

columns S = 107 and M2).
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Figure 7.15: Croatia - Model Convergence, Economies of Scale, Large Bank.
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Figure 7.16: Denmark - Model Convergence, Economies of Scale, Large Bank.
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Figure 7.17: France - Model Convergence, Economies of Scale, Large Bank.
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Thüringer Aufbaubank
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Figure 7.18: Germany - Model Convergence, Economies of Scale, Large Bank.

235



Banca Monte Parma SpA
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Figure 7.19: Italy - Model Convergence, Economies of Scale, Large Bank.
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Staalbankiers NV
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Figure 7.20: Netherlands - Model Convergence, Economies of Scale, Large Bank.
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Figure 7.21: Poland - Model Convergence, Economies of Scale, Large Bank.
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Banca Romaneasca
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Figure 7.22: Romania - Model Convergence, Economies of Scale, Large Bank.
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AIK Banka ad Nis
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Figure 7.23: Serbia - Model Convergence, Economies of Scale, Large Bank.
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Figure 7.24: Slovenia - Model Convergence, Economies of Scale, Large Bank.
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Figure 7.25: Sweden - Model Convergence, Economies of Scale, Large Bank.
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Figure 7.26: Switzerland - Model Convergence, Economies of Scale, Large Bank.
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Figure 7.27: Turkey - Model Convergence, Economies of Scale, Large Bank.
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Figure 7.28: United Kingdom - Model Convergence, Economies of Scale, Large Bank.
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As noted previously in chapter 6, two of the countries for which we observe very small

changes for both λ (table 7.3) and the efficiency score (table 7.4) are Turkey and Germany.

These are also countries that exhibit an indirect convergence between models M1 and M2.

A small range for variation could very well explain such an evolution. For all the other

countries, the convergence is direct.

The most dramatic increase in efficiency we notice in the case of Switzerland (from 59.86

percent to 98.47 percent) and it takes a strong prior (greater than 104) to see a significant

increase in the posterior mean for the efficiency score, suggesting a sluggish convergence

process. Using data over the period 1993-2004, Bos and Schmiedel (2007) estimate efficiency

scores for both profit and cost models (with a 3-input, 3-output translog specification) using a

single country, pooled and meta-frontiers (based on commercial banks data from 15 European

countries). For the pooled estimates they rely on a fixed effects frontier (Greene, 2005) with

country-specific fixed effects. They find higher efficiency results for Switzerland against

the single (86 percent) and meta-frontier (85.4 percent) than against the pooled frontier

(77 percent). Nevertheless, in a subsequent study (Bos, 2008), when using a different data

set (which includes commercial, cooperative and savings banks and spans the time period

1996-2005), estimated the mean efficiency score for Switzerland’s single cost frontier is 53

percent.

In conclusion, other studies also find Swiss banks to have low mean efficiency scores

relative to their own country frontier, while performing better against a common “European

frontier”.

Another noticeable increase in efficiency as we move from single frontier to common

frontier happens for France. Due to the more recent datasets that they are using, we

continue to cite cost efficiency results from Bos and Schmiedel (2007) and (Bos, 2008) or

Brissimis, Delis and Tsionas (2010).
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Table 7.3: λ - Posterior Means, Standard Deviation, and 90% H.D.R.∗

Parameters M1
♦ S† = 1 S = 103 S = 104 S = 105 S = 107 M2

λHR 0.1090 0.1076 0.1348 0.2756 0.4962 0.5641 0.5641

Post. S.D. (0.0499) (0.0514) (0.0532) (0.0506) (0.0580) (0.0620) (0.0620)

[H.D.R.] [0.038, 0.199] [0.037, 0.200] [0.052, 0.226] [0.196, 0.363] [0.406, 0.595] [0.467, 0.671] [0.467, 0.671]

λDK 0.1899 0.1904 0.1532 0.0568 0.0339 0.0310 0.0319

Post. S.D. (0.0359) (0.0368) (0.0509) (0.0223) (0.0112) (0.0100) (0.0104)

[H.D.R.] [0.133, 0.249] [0.129, 0.249] [0.056, 0.229] [0.027, 0.099] [0.019, 0.055] [0.018, 0.049] [0.018, 0.051]

λFR 0.4078 0.4075 0.0568 0.0566 0.0357 0.0390 0.0395

Post. S.D. (0.0333) (0.0326) (0.0256) (0.0285) (0.0123) (0.0131) (0.0132)

[H.D.R.] [0.353, 0.463] [0.355, 0.462] [0.026, 0.105] [0.025, 0.113] [0.020, 0.059] [0.021, 0.063] [0.021, 0.064]

λDE 0.1601 0.1600 0.1581 0.1598 0.1554 0.1744 0.1749

Post. S.D. (0.0040) (0.0039) (0.0039) (0.0037) (0.0041) (0.0038) (0.0038)

[H.D.R.] [0.154, 0.167] [0.154, 0.166] [0.152, 0.165] [0.154, 0.166] [0.149, 0.162] [0.168, 0.181] [0.169, 0.181]

λIT 0.2168 0.2166 0.2111 0.1761 0.0136 0.0081 0.0080

Post. S.D. (0.0097) (0.0095) (0.0096) (0.0113) (0.0031) (0.0014) (0.0014)

[H.D.R.] [0.201, 0.233] [0.201, 0.232] [0.196, 0.227] [0.158, 0.195] [0.009, 0.019] [0.006, 0.011] [0.006, 0.012]

Continued on next page
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Continued from previous page

Parameters M1
♦ S† = 1 S = 103 S = 104 S = 105 S = 107 M2

λNL 0.2002 0.2093 0.1909 0.0850 0.0484 0.0507 0.0508

Post. S.D. (0.1408) (0.1388) (0.1061) (0.0471) (0.0200) (0.0209) (0.0222)

[H.D.R.] [0.042, 0.487] [0.045, 0.485] [0.047, 0.380] [0.030, 0.178] [0.023, 0.086] [0.024, 0.090] [0.023, 0.093]

λPL 0.0916 0.0921 0.1189 0.1488 0.1650 0.2252 0.2278

Post. S.D. (0.0469) (0.0465) (0.0581) (0.0618) (0.0570) (0.0632) (0.0629)

[H.D.R.] [0.034, 0.182] [0.034, 0.181] [0.042, 0.229] [0.057, 0.259] [0.077, 0.264] [0.123, 0.331] [0.125, 0.334]

λRO 0.1598 0.1626 0.3339 0.5568 0.8748 0.9454 0.9437

Post. S.D. (0.0799) (0.0800) (0.0784) (0.0858) (0.1082) (0.1143) (0.1143)

[H.D.R.] [0.046, 0.301] [0.044, 0.301] [0.210, 0.465] [0.423, 0.704] [0.707, 1.062] [0.768, 1.143] [0.766, 1.141]

λRS 0.5139 0.5254 0.7532 1.1440 1.3720 1.4240 1.4210

Post. S.D. (0.1223) (0.1186) (0.1127) (0.1629) (0.1863) (0.1929) (0.1916)

[H.D.R.] [0.310, 0.696] [0.339, 0.702] [0.584, 0.952] [0.897, 1.430] [1.087, 1.698] [1.129, 1.758] [1.125, 1.755]

λSI 0.0851 0.0885 0.0732 0.0581 0.0450 0.0443 0.0445

Post. S.D. (0.0426) (0.0429) (0.0349) (0.0254) (0.0179) (0.0168) (0.0171)

[H.D.R.] [0.032, 0.167] [0.034, 0.170] [0.029, 0.140] [0.026, 0.107] [0.022, 0.079] [0.022, 0.076] [0.022, 0.077]

λSE 0.1408 0.1377 0.0780 0.0567 0.0292 0.0282 0.0286

Post. S.D. (0.0459) (0.0504) (0.0358) (0.0247) (0.0093) (0.0085) (0.0087)

[H.D.R.] [0.062, 0.213] [0.049, 0.216] [0.031, 0.146] [0.025, 0.105] [0.017, 0.047] [0.016, 0.044] [0.016, 0.045]

Continued on next page
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Parameters M1
♦ S† = 1 S = 103 S = 104 S = 105 S = 107 M2

λCH 0.5112 0.5138 0.4748 0.4024 0.0776 0.0154 0.0152

Post. S.D. (0.0291) (0.0284) (0.0277) (0.0278) (0.0870) (0.0035) (0.0036)

[H.D.R.] [0.465, 0.561] [0.467, 0.560] [0.430, 0.521] [0.358, 0.449] [0.016, 0.249] [0.010, 0.022] [0.010, 0.022]

λTR 0.1863 0.1815 0.2606 0.2899 0.2095 0.2227 0.2221

Post. S.D. (0.0752) (0.0779) (0.0652) (0.0489) (0.0509) (0.0462) (0.0458)

[H.D.R.] [0.058, 0.305] [0.053, 0.306] [0.154, 0.369] [0.214, 0.373] [0.123, 0.291] [0.149, 0.298] [0.149, 0.297]

λUK 0.1653 0.1464 0.1522 0.1354 0.0486 0.0464 0.0502

Post. S.D. (0.1011) (0.0895) (0.0771) (0.0588) (0.0200) (0.0181) (0.0196)

[H.D.R.] [0.040, 0.359] [0.041, 0.325] [0.050, 0.296] [0.047, 0.240] [0.023, 0.087] [0.022, 0.080] [0.025, 0.087]

Notes:
∗ Highest Density Region.
♦ Based on national frontiers (M1).
†Si stands for a scale factor of order 10i.
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%
confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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Whether they use the pooled (74.5 percent), single (72.5 percent) or the meta-frontier ap-

proach (72.2 percent), Bos and Schmiedel (2007) find the cost efficiency values of the French

banks to be within the 70-75 percent range. Computed against the own country’s frontier,

(Bos, 2008) finds the average cost efficiency of the French banks to be 82.7 percent. Using a

multitude of techniques 10, and commercial banks data for 1996-2003, Brissimis, Delis and

Tsionas (2010) estimate both the technical and allocative efficiency for the banking systems

from 13 European countries. For comparison, they find the average technical efficiency of

the French banks to be 89.48 percent.

Italy comes up in model M2 with a surprisingly high mean efficiency score (99.2 per-

cent). Bos and Schmiedel (2007) found the opposite result as the efficiency improves for

the Italian banks when computer against their own frontier (81.8 percent) rather than the

pooled frontier (76.1 percent).

In general, we find that most of the Western European countries fare better under the

common frontier assumption (with the exception of Germany for which the efficiency drops

by a negligible 1 percentage point) and this is what we would have expected. Therefore,

for Germany, Italy, Denmark, Sweden, France, Italy, Netherlands or United Kingdom, the

common frontier assumption paints a similar picture to the one we found when looking at

the single frontier results. These are cost efficient banking systems and it matters less if the

efficiency score is 85 percent or 90 percent. Switzerland’s case is definitely more intriguing.

As we move from weak to strong prior and thus from M1 (single frontier) to M2 (common

frontier), the other interesting evolution that needs to be mentioned is the spectacular drop

in efficiency registered by most of the Easter block countries: Serbia (from 60.28 percent to

24.59 percent), Romania (from 85.5 percent to 39.17 percent), Croatia (from 89.79 percent

to 57 percent), Poland (from 91.35 percent to 79.78 percent).

10maximum likelihood, Nelder and Mear simplex maximization technique, Metropolis-Hastings and
MCMC
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Table 7.4: Efficiency Score - Posterior Means, Standard Deviation,and 90% H.D.R.∗

Parameters M1
♦ S† = 1 S = 103 S = 104 S = 105 S = 107 M2

rHR 0.8979 0.8991 0.8751 0.7601 0.6099 0.5700 0.5700

Post. S.D. (0.0442) (0.0456) (0.0462) (0.0382) (0.0351) (0.0350) 0.0351

[H.D.R.] [0.820, 0.962] [0.819, 0.964] [0.798, 0.949] [0.696, 0.822] [0.551, 0.666] [0.511, 0.627] [0.511, 0.627]

rDK 0.8276 0.8272 0.8591 0.9450 0.9667 0.9695 0.9686

Post. S.D. (0.0297) (0.0305) (0.0441) (0.0209) (0.0108) (0.0096) 0.0100

[H.D.R.] [0.780, 0.876] [0.779, 0.879] [0.795, 0.945] [0.906, 0.974] [0.947, 0.982] [0.952, 0.983] [0.950, 0.983]

rFR 0.6655 0.6656 0.9451 0.9454 0.9650 0.9618 0.9613

Post. S.D. (0.0222) (0.0217) (0.0238) (0.0263) (0.0118) (0.0125) 0.0127

[H.D.R.] [0.629, 0.702] [0.630, 0.701] [0.900, 0.975] [0.894, 0.977] [0.943, 0.981] [0.939, 0.980] [0.938, 0.979]

rDE 0.8521 0.8521 0.8538 0.8523 0.8561 0.8400 0.8395

Post. S.D. (0.0034) (0.0033) (0.0033) (0.0032) (0.0035) (0.0032) 0.0032

[H.D.R.] [0.847, 0.858] [0.847, 0.858] [0.848, 0.859] [0.847, 0.857] [0.850, 0.862] [0.835, 0.845] [0.834, 0.845]

rIT 0.8051 0.8053 0.8097 0.8386 0.9865 0.9919 0.9920

Post. S.D. (0.0078) (0.0077) (0.0078) (0.0094) (0.0031) (0.0014) 0.0014

[H.D.R.] [0.792, 0.818] [0.793, 0.818] [0.797, 0.823] [0.823, 0.854] [0.981, 0.991] [0.989, 0.994] [0.989, 0.994]

Continued on next page
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Continued from previous page

Parameters M1
♦ S† = 1 S = 103 S = 104 S = 105 S = 107 M2

rNL 0.8263 0.8187 0.8308 0.9195 0.9530 0.9507 0.9507

Post. S.D. (0.1086) (0.1068) (0.0858) (0.0420) (0.0188) (0.0196) 0.0208

[H.D.R.] [0.615, 0.959] [0.616, 0.956] [0.684, 0.955] [0.837, 0.970] [0.918, 0.977] [0.914, 0.976] [0.911, 0.977]

rPL 0.9135 0.9130 0.8894 0.8634 0.8493 0.7999 0.7978

Post. S.D. (0.0417) (0.0414) (0.0504) (0.0526) (0.0479) (0.0504) 0.0501

[H.D.R.] [0.833, 0.966] [0.835, 0.967] [0.796, 0.959] [0.772, 0.944] [0.768, 0.926] [0.719, 0.885] [0.716, 0.882]

rRO 0.8550 0.8526 0.7183 0.5751 0.4194 0.3910 0.3917

Post. S.D. (0.0672) (0.0673) (0.0563) (0.0488) (0.0447) (0.0440) 0.0442

[H.D.R.] [0.740, 0.955] [0.740, 0.957] [0.628, 0.811] [0.494, 0.655] [0.346, 0.493] [0.319, 0.464] [0.320, 0.465]

rRS 0.6028 0.5956 0.4738 0.3228 0.2579 0.2453 0.2459

Post. S.D. (0.0776) (0.0748) (0.0523) (0.0512) (0.0468) (0.0462) 0.0461

[H.D.R.] [0.499, 0.734] [0.495, 0.713] [0.386, 0.558] [0.239, 0.408] [0.183, 0.337] [0.172, 0.324] [0.173, 0.325]

rSI 0.9193 0.9161 0.9300 0.9438 0.9561 0.9568 0.9566

Post. S.D. (0.0383) (0.0385) (0.0319) (0.0236) (0.0170) (0.0160) 0.0162

[H.D.R.] [0.846, 0.969] [0.843, 0.967] [0.869, 0.971] [0.899, 0.975] [0.925, 0.978] [0.927, 0.978] [0.926, 0.978]

rSE 0.8696 0.8725 0.9256 0.9452 0.9712 0.9722 0.9718

Post. S.D. (0.0401) (0.0441) (0.0327) (0.0231) (0.0090) (0.0083) 0.0085

[H.D.R.] [0.809, 0.940] [0.806, 0.952] [0.864, 0.970] [0.901, 0.976] [0.954, 0.984] [0.957, 0.984] [0.956, 0.984]

Continued on next page
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Parameters M1
♦ S† = 1 S = 103 S = 104 S = 105 S = 107 M2

rCH 0.5986 0.5985 0.6222 0.6690 0.9287 0.9847 0.9849

Post. S.D. (0.0174) (0.0170) (0.0172) (0.0186) (0.0765) (0.0035) 0.0035

[H.D.R.] [0.571, 0.628] [0.571, 0.627] [0.594, 0.651] [0.639, 0.699] [0.780, 0.984] [0.979, 0.990] [0.979, 0.990]

rTR 0.8324 0.8366 0.7722 0.7493 0.8120 0.8012 0.8017

Post. S.D. (0.0627) (0.0651) (0.0504) (0.0364) (0.0416) (0.0372) 0.0368

[H.D.R.] [0.737, 0.944] [0.737, 0.948] [0.692, 0.857] [0.689, 0.808] [0.748, 0.884] [0.742, 0.862] [0.743, 0.862]

rUK 0.8519 0.8671 0.8613 0.8749 0.9527 0.9548 0.9512

Post. S.D. (0.0829) (0.0738) (0.0648) (0.0509) (0.0189) (0.0171) 0.0184

[H.D.R.] [0.698, 0.961] [0.723, 0.960] [0.744, 0.952] [0.787, 0.954] [0.917, 0.977] [0.923, 0.978] [0.916, 0.976]

Notes:
∗ Highest Density Region.
♦ Based on national frontiers (M1).
†Si stands for a scale factor of order 10i.
Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%
confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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Slovenia is the only former communist country for which the mean efficiency score in-

creases (negligible though) as we move from M1 to M2 (from 91.93 percent to 95.66 percent).

The studies that take a look at the banking systems of former communist countries

from the Eastern European block are few and far in between and this is one reason why

we introduced them in our study. Fries and Taci (2005) looked at the cost efficiency of

15 Eastern European countries using data from the 1994-2001 time period by assuming a

common frontier and using country-level factors. They find slightly higher cost efficiency

when accounting for differences in the economic environment (use of country-level factors.

The reported efficiency levels are 72 percent for Croatia, 74 percent for Poland, 55 percent

for Romania and 78 percent for Slovenia.

Staikouras at. al. (2008) use 1998-2003 bank data from 6 South Eastern European

countries and for Romania they report an inefficiency level of 35.9 percent and for Croatia,

37.1 percent. These estimates are obtained based on a common frontier with country specific

variables.

Using a single country frontier approach, Bos (2008) finds the following average efficiency

levels: Croatia - 79.3 percent, Poland - 80.8 percent, and Slovenia - 84.3 percent.

The low efficiency levels for these countries are not surprising because in spite of the

transition to the market system that they all went through during the 1990’s, most of them

still face corruption problems or maintain too much personnel (over staffing) which leads to

higher labor costs in spite of the low wages.

The last tables of this chapter (table 7.5) records the convergence results for σ2 and as

mentioned before, an increase in the values of the posterior mean for σ2 can be observed for

countries like: Switzerland, Serbia, France and Netherlands.
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Table 7.5: σ2 - Posterior Means, Standard Deviation,and 90% H.D.R.∗

Parameters M1
♦ S† = 1 S = 103 S = 104 S = 105 S = 107 M2

σ2
HR 0.0832 0.0833 0.0825 0.0649 0.0537 0.0568 0.0567

Post. S.D. (0.0157) (0.0158) (0.0161) (0.0151) (0.0197) (0.0241) 0.0242

[H.D.R.] [0.058, 0.110] [0.058, 0.110] [0.057, 0.110] [0.042, 0.092] [0.027, 0.090] [0.024, 0.102] [0.0243, 0.102]

σ2
DK 0.0939 0.0937 0.1117 0.1579 0.1917 0.2045 0.2046

Post. S.D. (0.0125) (0.0128) (0.0176) (0.0126) (0.0145) (0.0153) 0.0152

[H.D.R.] [0.074, 0.115] [0.074, 0.116] [0.085, 0.142] [0.138, 0.179] [0.169, 0.217] [0.181, 0.231] [0.181, 0.231]

σ2
FR 0.0586 0.0589 0.2193 0.2587 0.2880 0.3007 0.3014

Post. S.D. (0.0112) (0.0109) (0.0147) (0.0179) (0.0187) (0.0189) 0.0190

[H.D.R.] [0.042, 0.079] [0.043, 0.078] [0.196, 0.244] [0.231, 0.289] [0.259, 0.320] [0.271, 0.333] [0.272, 0.334]

σ2
DE 0.0329 0.0329 0.0337 0.0343 0.0368 0.0360 0.0360

Post. S.D. (0.0009) (0.0009) (0.0009) (0.0009) (0.0010) (0.0009) 0.0009

[H.D.R.] [0.031, 0.034] [0.032, 0.034] [0.032, 0.035] [0.033, 0.036] [0.035, 0.038] [0.035, 0.038] [0.035, 0.037]

σ2
IT 0.0386 0.0387 0.0398 0.0570 0.1412 0.2535 0.2612

Post. S.D. (0.0024) (0.0024) (0.0024) (0.0040) (0.0052) (0.0092) 0.0095

[H.D.R.] [0.035, 0.043] [0.035, 0.043] [0.036, 0.044] [0.051, 0.064] [0.133, 0.150] [0.239, 0.269] [0.246, 0.277]

Continued on next page
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Continued from previous page

Parameters M1
♦ S† = 1 S = 103 S = 104 S = 105 S = 107 M2

σ2
NL 0.3548 0.3523 0.4166 0.5183 0.6062 0.6349 0.6351

Post. S.D. (0.0808) (0.0802) (0.0775) (0.0702) (0.0791) (0.0796) 0.0798

[H.D.R.] [0.200, 0.474] [0.202, 0.473] [0.291, 0.546] [0.412, 0.641] [0.488, 0.746] [0.516, 0.775] [0.516, 0.775]

σ2
PL 0.1796 0.1794 0.2280 0.2382 0.2689 0.2733 0.2721

Post. S.D. (0.0303) (0.0301) (0.0384) (0.0402) (0.0469) (0.0511) 0.0506

[H.D.R.] [0.136, 0.234] [0.136, 0.234] [0.172, 0.297] [0.179, 0.320] [0.200, 0.353] [0.200, 0.365] [0.199, 0.363]

σ2
RO 0.1144 0.1134 0.1066 0.0941 0.1063 0.1250 0.1258

Post. S.D. (0.0301) (0.0296) (0.0332) (0.0338) (0.0562) (0.0680) 0.0674

[H.D.R.] [0.066, 0.164] [0.066, 0.163] [0.059, 0.167] [0.048, 0.157] [0.032, 0.211] [0.036, 0.253] [0.037, 0.253]

σ2
RS 0.0988 0.0920 0.0707 0.1874 0.2695 0.3209 0.3228

Post. S.D. (0.0660) (0.0614) (0.0395) (0.1053) (0.1600) (0.1775) 0.1757

[H.D.R.] [0.034, 0.233] [0.032, 0.207] [0.026, 0.146] [0.057, 0.385] [0.066, 0.572] [0.082, 0.651] [0.085, 0.648]

σ2
SI 0.0808 0.0801 0.1143 0.1248 0.1284 0.1265 0.1264

Post. S.D. (0.0156) (0.0156) (0.0204) (0.0208) (0.0209) (0.0206) 0.0204

[H.D.R.] [0.058, 0.108] [0.057, 0.108] [0.085, 0.151] [0.095, 0.162] [0.098, 0.166] [0.097, 0.164] [0.097, 0.163]

σ2
SE 0.0602 0.0607 0.0934 0.1099 0.1333 0.1454 0.1458

Post. S.D. (0.0116) (0.0124) (0.0100) (0.0095) (0.0107) (0.0114) 0.0114

[H.D.R.] [0.042, 0.080] [0.041, 0.081] [0.077, 0.110] [0.095, 0.126] [0.117, 0.152] [0.128, 0.165] [0.128, 0.166]

Continued on next page

256256256



Continued from previous page

Parameters M1
♦ S† = 1 S = 103 S = 104 S = 105 S = 107 M2

σ2
CH 0.0459 0.0457 0.0619 0.0994 0.2793 0.3819 0.3866

Post. S.D. (0.0095) (0.0092) (0.0104) (0.0130) (0.0424) (0.0174) 0.0175

[H.D.R.] [0.032, 0.063] [0.032, 0.062] [0.046, 0.080] [0.079, 0.121] [0.195, 0.322] [0.354, 0.411] [0.359, 0.416]

σ2
TR 0.0564 0.0577 0.0504 0.0504 0.1121 0.1086 0.1085

Post. S.D. (0.0233) (0.0240) (0.0191) (0.0179) (0.0362) (0.0322) 0.0319

[H.D.R.] [0.024, 0.099] [0.024, 0.100] [0.025, 0.086] [0.027, 0.084] [0.064, 0.180] [0.065, 0.168] [0.066, 0.167]

σ2
UK 0.4026 0.4103 0.4136 0.4499 0.5074 0.5475 0.5486

Post. S.D. (0.0500) (0.0461) (0.0427) (0.0419) (0.0400) (0.0423) 0.0423

[H.D.R.] [0.311, 0.477] [0.330, 0.480] [0.342, 0.482] [0.383, 0.520] [0.446, 0.577] [0.482, 0.620] [0.483, 0.621]

Notes:
∗ Highest Density Region.
♦ Based on national frontiers (M1).
†Si stands for a scale factor of order 10i.

Posterior moments are computed based on 50,000 points generated from the Gibbs sampling algorithm. The end points of the 90%
confidence region are the 5th and the 95th percentiles of the posterior marginal densities.
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7.4 Posterior Marginal Densities and Convergence Paths

for λ, Efficiency Score and σ2

For completeness, in this section we include the plots for λ (figures 7.29 through 7.42),

efficiency score (figures 7.43 through 7.56) and σ2 (figures 7.29 through 7.42) to support the

idea that as the prior strength on the hybrid model is increased, we are continuously moving

from model M1 to model M2.

7.4.1 λ

When analyzing the plots for λ (figures 7.29 through 7.42), a few things should be noted.

Posterior marginal densities for M1 and the hybrid model with weak prior (M3 with

S = 1) overlap perfectly for most of the countries (with the exception of United Kingdom,

Sweden, Romania, Turkey and Croatia). On the one hand this can be explained by the

smaller number of observations that Romania, Turkey and Croatia have and on the other

hand, by the different nature of the priors used in model M1 and M3 that can lead to such

small discrepancies. In the case of United Kingdom, the almost bimodal look of the density

might be explained by the presence of clusters of banks in the data.

Posterior marginal densities for M2 and the hybrid model with very strong prior (S = 109)

superimposed support the idea of model convergence.

The convergence path is direct for all countries with the exception of Turkey and Germany

as noted from the results tables. The most likely explanation for this is the fact that for

Turkey and Germany there is a very small change in the posterior means’ values for λ making

them appear more sensitive to the prior’s strength, due to the scale of the axis.
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Figure 7.29: Croatia - Model Convergence, λ.
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Figure 7.30: Denmark - Model Convergence, λ.
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Figure 7.31: France - Model Convergence, λ.
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Figure 7.32: Germany - Model Convergence, λ.
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Figure 7.33: Italy - Model Convergence, λ.
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Figure 7.34: Netherlands - Model Convergence, λ.
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Figure 7.35: Poland - Model Convergence, λ.
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Figure 7.36: Romania - Model Convergence, λ.
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Figure 7.37: Serbia - Model Convergence, λ.
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Figure 7.38: Slovenia - Model Convergence, λ.

268



0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
2

4
6

8

λ

D
en

si
ty

M1
M3, scale=1

0.02 0.04 0.06 0.08

0
10

20
30

40
50

λ
D

en
si

ty

M2
M3, scale=109

−1 0 3 4 5 6 7 9

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

M1

M2

mean  λ
5thpercentile
95thpercentile

λ

log10(scale)

Figure 7.39: Sweden - Model Convergence, λ.
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Figure 7.40: Switzerland - Model Convergence, λ.
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Figure 7.41: Turkey - Model Convergence, λ.
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Figure 7.42: United Kingdom - Model Convergence, λ.
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7.4.2 Efficiency Score

The efficiency score is a function of λ (r = exp(−λ) and r̄ = E[exp(−λ)]), and looking at

the convergence plots for r (figures 7.43 through 7.56), we observe the same trends as we

did for λ.

Turkey and Germany are the only countries for which the convergence path is indirect.

They are also countries with very small variation in the posterior means of the efficiency

score, which means that as the prior strength changes, even the smallest variation in the

efficiency score would look significant as there is not much room for movement to begin with.

While the posterior marginal densities for M1 and M3 with weak prior (S = 1) do not

overlap perfectly in the case of Romania, Netherlands, Croatia, Sweden, United Kingdom

or Turkey, the differences are so small that we can still conclude that there is convergence.

The discrepancies can be explained either by the small number of observations in the case

of some of these countries (Romania, Croatia, etc.) or by the different nature of the priors

used in model M1 as opposed to model M3. As mentioned before, some of the countries

(like United Kingdom) might have some clustering in the data.

In some cases, it takes a relatively weak prior to cause movement from M1 towards M2

(i.e. France), but in many situations (i.e. Switzerland), the transition graphs show a sluggish

convergence as it takes very strong prior to cause adjustments in the parameter’s value.

Slow convergence can be an indicator that there is enough evidence in the data against

the assumption of a common frontier. When fast convergence is achieved (we see rapid

movement in the parameter’s values for weak priors), we should take under consideration

the fact that for small datasets, the prior might “dominate” the data. In other words, with

little information from the data, the results might be driven by the prior (i.e. Serbia).
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Figure 7.43: Croatia - Model Convergence, Efficiency Score.
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Figure 7.44: Denmark - Model Convergence, Efficiency Score.
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Figure 7.45: France - Model Convergence, Efficiency Score.
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Figure 7.46: Germany - Model Convergence, Efficiency Score.
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Figure 7.47: Italy - Model Convergence, Efficiency Score.
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Figure 7.48: Netherlands - Model Convergence, Efficiency Score.
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Figure 7.49: Poland - Model Convergence, Efficiency Score.
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Figure 7.50: Romania - Model Convergence, Efficiency Score.
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Figure 7.51: Serbia - Model Convergence, Efficiency Score.
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Figure 7.52: Slovenia - Model Convergence, Efficiency Score.
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Figure 7.53: Sweden - Model Convergence, Efficiency Score.
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Figure 7.54: Switzerland - Model Convergence, Efficiency Score.
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Figure 7.55: Turkey - Model Convergence, Efficiency Score.
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Figure 7.56: United Kingdom - Model Convergence, Efficiency Score.
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7.4.3 σ2

Figures 7.57 through 7.70 illustrate the hybrid model’s convergence in distribution and

mean to M1 and M2 and capture the convergence patterns as they trace the mean of σ2 for

each country with the variation of the prior scale.

As in the previous cases, we can observe that the posterior marginal densities for σ2 ob-

tained from the individual country frontier (M1) overlap almost exactly for all the countries

with the posterior marginal densities obtained with the multi-country hybrid model and a

weak prior (M3 with small scale factor). This allows us to conclude that with a weak prior,

model M3 converges to model M1.

The posterior marginal densities for σ2 derived under the common frontier assumption

(M2) are virtually identical for all countries with the posterior marginal densities derived

with the multi-country hybrid model when using a strong prior (M3 with big values for the

scale factor). We can therefore conclude that model M3 with a strong prior converges to

model M2.

The convergence path is indirect for Turkey, Romania and Germany. For these countries

it is also the case that the posterior mean of σ2 does not change much between models.

Because of the small range, it is more likely for them to get out of bounds. The biggest

changes for σ2 can be observed for Switzerland, Serbia and Italy. The increase in σ2 especially

for Switzerland and Italy as they have more observations might be interpreted as a sign that

they could have separate frontiers.

In some cases (Italy, Romania, Serbia) we notice that the highest density regions get

wider as the prior strength increases and we move from the single frontier to the common

frontier.
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Figure 7.57: Croatia - Model Convergence, σ2.
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Figure 7.58: Denmark - Model Convergence, σ2.
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Figure 7.59: France - Model Convergence, σ2.
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Figure 7.60: Germany - Model Convergence, σ2.

292



0.030 0.035 0.040 0.045 0.050

0
50

10
0

15
0

σ2

D
en

si
ty

M1
M3, scale=1

0.22 0.24 0.26 0.28 0.30

0
10

20
30

40

σ2
D

en
si

ty

M2
M3, scale=109

0 3 4 5 6 7 9

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

M1

M2

mean  σ2

5thpercentile
95thpercentile

σ2

log10(scale)

Figure 7.61: Italy - Model Convergence, σ2.
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Figure 7.62: Netherlands - Model Convergence, σ2.
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Figure 7.63: Poland - Model Convergence, σ2.

295



0.00 0.05 0.10 0.15 0.20 0.25

0
2

4
6

8
10

12

σ2

D
en

si
ty

M1
M3, scale=1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
1

2
3

4
5

6

σ2
D

en
si

ty

M2
M3, scale=109

0 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

M1

M2

mean  σ2

5thpercentile
95thpercentile

σ2

log10(scale)

Figure 7.64: Romania - Model Convergence, σ2.
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Figure 7.65: Serbia - Model Convergence, σ2.
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Figure 7.66: Slovenia - Model Convergence, σ2.
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Figure 7.67: Sweden - Model Convergence, σ2.
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Figure 7.68: Switzerland - Model Convergence, σ2.
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Figure 7.69: Turkey - Model Convergence, σ2.
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Figure 7.70: United Kingdom - Model Convergence, σ2.
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7.5 Conclusions

In this chapter we implement a hybrid model that allows us to shift continuously from

the individual cost frontiers of model M1 to the common cost frontier of model M2. Starting

with the stochastic cost frontier model from chapter 6, we add country dummy variables

to it and by varying the strength of the prior on the model’s parameters, we are able to

replicate the results from the previous two chapters.

With an uninformative prior on the variance of the translog parameters, the hybrid

model generates the same results as M1. With a strong prior on the variance of the translog

parameters, the hybrid model generates the same results as M2. In other words, the hybrid

model is nesting both of the previous approaches (individual and common frontiers) and de-

pending on how strong our belief is in favor of one approach or the other, we can accordingly

change our prior and obtain the desired results. To illustrate the convergence, we look at

posterior marginal densities for the translog parameters, economies of scale for select large

banks from each country, λ, efficiency score and σ2.

The convergence from M1 to M2 is direct more often than not, but there are situations

when as the prior gets more informative (and we are moving from individual frontiers to a

common frontier), the results go out of the bounds defined by M1 and M2. We find that

this happens especially when the difference between the 2 models is very small in terms of

parameters’ values. Also, we observe situations in which it takes a very strong prior for the

parameters’ results to start adjusting and move from their M1 to their M2 values. This slow

convergence can be seen as evidence coming from the data against the idea of a common

frontier.
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Chapter 8

Summary of Conclusions and Future
Research

This dissertation was motivated primarily by Allen Berger’s 2007 article on banking

efficiency comparisons. Among the numerous studies that have explored this subject, two

competing approaches that have often produced contradictory results stand out. They differ

with respect to the way frontiers are constructed and relative efficiencies determined. These

two empirical groups are either developing nation-specific frontiers or assuming a common

frontier that may be used to determine and compare efficiencies across countries. There are

drawbacks associated with each method.

The objective of this study is to present a Bayesian methodology that nests both of these

approaches. We build up towards the hybrid, more general model, by first analyzing the

cost efficiency of banks from 14 European countries against nation-specific frontiers (chapter

5), followed by the common frontier approach (chapter 6).

The technology differs significantly depending on our approach. Plots of the cost frontiers

and posterior marginal densities of the translog parameters show for the common frontier

that the technology is affected by the heterogeneity assumption (M2 versus M1 pooled) and

is not exclusively driven by Germany as the country with the most observations.
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The individual country frontiers appear to be quite different suggesting different technolo-

gies. Results also indicated that the cost function properties of monotonicity and concavity

in input prices are violated for many frontiers.

For a group of selected banks, we compute economies of scale and while the results

vary in magnitude depending on the approach, we find more often than not and for all

bank sizes that they remain greater than one. Therefore, we can conclude that banks are

not operating at their optimum level and could reduce average costs by increasing their

output. The subject of economies of scale has been a source of argument for a long time

as researchers have found contradictory results over the years. Mester (2010) pointed out

that while estimations based on older datasets (from 1980’s)1 tend to find diseconomies of

scale especially for the large banks, more recent datasets suggest that even large banks have

economies of scale greater than one. This study supports these findings.

The small number of studies that investigate the efficiency of the Eastern European

banking sectors, especially in comparison with their more developed Western counterparts

was another incentive to pursue this topic.

We found differences between the country specific efficiency levels and common frontier

estimations that are especially high in the case of the less developed countries from the

former Easter European block (Serbia, Romania, Croatia). In the case of Switzerland, we

find a much higher posterior mean efficiency score when assuming a common frontier than

we found by developing a Swiss frontier.

The last model presented in this thesis is a flexible solution that nests both of these

approaches (individual and common frontier). It has the advantage that through the use of

an informative prior varied according to our beliefs about the frontiers, it allows for different

“sub-frontiers” to exist.

1“For years the Federal Reserve had been concerned about the ever larger size of our financial institutions.
Federal Reserve research had been unable to find economies of scale in banking beyond a modest-sized
institution”(from Greenspan, 2010).
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With an uninformative prior on the variance of the translog parameters, the hybrid

model generates the nation-specific frontier results. With a strong prior on the variance

of the translog parameters, the hybrid model reproduces the same results as the common

frontier approach.

We also find that as the strength of the prior increases and we move from single frontiers

for each country towards a common “European frontier”, the convergence does not always

happen in a direct manner.

The fact that in some cases we need a very strong prior for the parameters’ results to

start adjusting and move from their single frontier values to their common frontier values

might be interpreted as evidence from the data against the idea of a common frontier.

The complexity of the convergence process suggests that our analysis could be improved

in future research by exploring the idea of Bayesian model averaging (BMA)2. A natural

follow-up would be to investigate3, at least in the case of the countries with more observations

if the efficiency levels changed over time by assuming time varying technical efficiency.

Another avenue for future research is to incorporate monotonicity and concavity condi-

tions4.

2see Hoeting et al., 1999.
3using Ghadge and Ramanathan (2012)
4see Terrell(1996) and McCausland(2008).
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Appendix 1 Gibbs Sampler for the Single Frontier Model

We start with the basic stochastic frontier model:

ln(ci) = f(pi, qi) + vi + ui,

where ci is the total observed cost of firm i, while f(pi, qi) represents the cost frontier of the

efficient firm that faces a set of input prices (pi) and produces certain levels of output (qi).

A firm’s deviation from the cost frontier (f(pi, qi)) is given by ui + vi , where ui is the

statistical noise (the symmetric error) and vi is the inefficiency (non-negative) for firm i.

A measure of the firm’s specific efficiency (ri) is calculated using the minimum cost

attainable in the environment characterized by the random shocks ui and the observed cost

for firm i as follows:5

CEi =
exp [f(pi, qi)] exp (ui)

ci
= exp (−vi) = ri

.

For the cost function we choose a translog functional form, having the following general

format:

f(p, q) = ln[c(p, q)] = a0 +
2∑
j=1

ajln(qj) +
2∑

k=1

bkln(pk) +
1

2

2∑
j=1

2∑
k=1

ajkln(qj)ln(qk)

+
1

2

2∑
j=1

2∑
k=1

bjkln(pj)ln(pk) +
2∑
j=1

2∑
k=1

cjkln(qj)ln(pk)

where ajk = akj for all j, k = 1, 2,
∑2

k=1 bk = 1,
∑2

k=1 bjk = 0, and
∑2

k=1 cjk = 0.

5following Kumbhakar and Lovell (2003).
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Using banking data, we construct6 the variables for the translog function. Banks are

productive entities that are using labor and purchased funds to produce loans, deposits and

other earning assets. The input prices in this case are the wage and the interest rates, while

the outputs are loans and securities.

The price of labor (avwage) is an averaged value of the personnel expenses per employee,

while the price of funds (avrate) is calculated as a ratio between the interest rate expenses

and total deposits. We normalize the total cost, loans, and securities by equity and we scale

the normalized total cost and the price of labor by the price of funds in order to guarantee

the linear homogeneity of the cost function.

The above constructed variables are plugged into the translog cost function and we obtain

the following formula:

ln

(
cost

equity × avrate

)
= β1 + β2 × ln

(
avwage

avrate

)
+ β3 ×

[
ln

(
avwage

avrate

)]2

+ β4 × ln

(
loan

equity

)
+ β5 ×

[
ln

(
loan

equity

)]2

+ β6 × ln

(
security

equity

)
+ β7 ×

[
ln

(
security

equity

)]2

+ β8 ×

[
ln

(
avwage

avrate

)]
× ln

(
loan

equity

)

+ β9 ×

[
ln

(
avwage

avrate

)]
× ln

(
security

equity

)

+ β10 ×

[
ln

(
loan

equity

)]
×

[
ln

(
security

equity

)]

=
10∑
m=1

βmx.m

.

6following Lewis and Terrell(2011)
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Therefore, we can define the following N × 1 vectors, with N=number of observations:

x.1 = (x11, x21, ..., xN1)T = (1, 1, ..., 1)T

x.2 = (x12, x22, ..., xN2)T = ln

(
avwage
avrate

)

x.3 = (x13, x23, ..., xN3)T =

[
ln

(
avwage
avrate

)]2

x.4 = (x14, x24, ..., xN4)T = ln

(
loan

equity

)

x.5 = (x15, x25, ..., xN5)T =

[
ln

(
loan

equity

)]2

x.6 = (x16, x26, ..., xN6)T = ln

(
security
equity

)

x.7 = (x17, x27, ..., xN7)T =

[
ln

(
security
equity

)]2

x.8 = (x18, x28, ..., xN8)T = ln

(
avwage
avrate

)
× ln

(
loan

equity

)

x.9 = (x19, x29, ..., xN9)T = ln

(
avwage
avrate

)
× ln

(
security
equity

)

x.10 = (x1,10, x2,10, ..., xN,10)T = ln

(
loan

equity

)
× ln

(
security
equity

)
.

In general, we have x.m = (x1m, x2m, ..., xNm)T , the N × 1 column vector that represents

the mth translog variable, where m = 1, ..., 10, and N=number of observations.

We also write the dependent variable as a N × 1 vector:

y = (y1, ..., yN)T = ln

(
cost

equity×avrate

)
.
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In order to rewrite the model in a simplified mode using matrix algebra, we need to

define:

• β = (β1, β2, ..., β10)T as the 10 × 1 column vector of the translog coefficients that

characterizes the technology of the frontier.

• xi. = (xi1, xi2, ..., xi10) as the 1 × 10 row vector of the translog variables written for

each observation i = 1, ..., N .

We now have a linear composed error model for which we assume that the inefficiency

term follows an exponential distribution while the statistical noise is normally distributed.


yi = xi.β + vi + ui

vi ∼ EXP (λ)

ui ∼ N(0, σ2
u)

where i refers to the bank i, with i = 1, ..., N .

The independent variables can now be grouped in a N × 10 matrix:

X = (xnm) n=1,...,N

m=1,...,M
=



x11 x12 · · · x1,10

...
...

. . .
...

xi2 xi2 · · · xi,10

...
...

. . .
...

xN1 xN2 · · · xN,10


(N×10)

.

Given the model’s assumptions, exp(−vi) = ri is the measure of bank ith’ efficiency, while

v = (v1, ..., vN)T is theN×1 column vector of inefficiencies for all banks and u = (u1, ..., uN)T

is the N × 1 column vector of random shocks.
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Using the above notations, the model can be rewritten in vector notation and simplified

to the common linear regression model:

y − v = y∗ = Xβ + u

,

with u ∼ N(0, σ2
uIN), where IN is the N × N identity matrix and y∗ = (y1

∗, ..., yN
∗)T ,

yi
∗ = yi − vi for i = 1, ..., N .

The parameter vector of interest is now θ = (β1, β2, ..., β10, σ
2
u) and the “observations”

y∗i are conditionally independent given θ, X for all i = 1, ..., N .

Following the Gibbs algorithm described by Kleit and Terrell (1998) and using the con-

ditional distributions derived by Koop, Osiewalski and Steel (1994) the procedure for a

Bayesian estimation of a stochastic frontier model is broken down below in a stepwise man-

ner:

Step 1: Choosing priors

1. A flat prior for β: π(β) ∝ 1.

2. A gamma prior7 for σ−2
u : π(σ−2

u ) = fG(σ−2
u | τ2 ,

s2p
2

) , where fG(.|ν1, ν2) is a gamma

density8 with mean ν1/ν2 and variance ν1/ν
2
2 .

In order to place very little weight on the prior9 for σ−2
u , small values are chosen for

the prior shape and location parameters: τ = 1 and s2
p = 0.10. An arbitrary starting

value is picked for the variance itself: e.g. (σ−2
u )

[0]
= 1.

7following Fernandez, Osiewalski, and Steel (1997)
8for a random variable X ∼ GAM(ν1, ν2), Bayesian texts and papers use the gamma density function

written as: fG(x|ν1, ν2) = ν2
ν1

Γ(ν1)x
ν1−1 exp(−ν2x).

9following Kleit and Terrell (2001)
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3. Small, constant values are chosen as the starting point for the inefficiency parameters,

e.g. v[0] = [0.05 ... 0.05]T (N×1).

4. A gamma prior for λ−1: π(λ−1) = fG(λ−1|1,−ln(r∗)), where r∗ is the prior mean for

efficiency. The initial value for the mean efficiency: r∗ = exp(−v∗) = 0.87510 is set to

be the same for all countries and considering the number of observations in the samples,

the results are not expected to be sensitive to the choice of r∗. Since λ = E[vi] = v∗,

we have a starting value for λ: λ[0] = −ln(r∗) ≈ 0.13

Step 2: Standard linear regression model - Bayesian approach

We focus on the following model:

y∗ = Xβ + u

with the traditional two-sided error u being normally distributed, u ∼ N(0, σ2
uIN).

The joint posterior density of interest is now:

p(θ|y∗) = p(β, σ2
u|y∗).

The choice of a gamma prior11 for σ2
u ensures the existence of a proper posterior12 and

taking into account the non-informative prior for β, we have the following conditional den-

sities from which we draw the parameters of interest:

1. conditional distribution of β given σ2
u and the “data” (y∗), p(β|σ2

u,y
∗)13 is normal,

N(β̂, σ2
u(X

TX)
−1

), where β̂ = (XTX)
−1
XTy∗, the OLS estimates for β.

10following Koop, Osiewalski and Steel (1994) and van den Broek, Koop, Osiewalski and Steel (1994)
11following Kleit and Terrell (2001).
12While in many Bayesian stochastic frontier models a non-informative prior on both β and σ2

u is usually
chosen: π(β, σ2

u) ∝ 1
σ2
u

, Fernandez, Osiewalski and Steel (1997) examine the existence of posterior distribu-

tion and moments under this assumption and find that in cross-sectional applications of this model it can
lead to improper priors.

13for the simplified OLS model. The actual conditional distribution of interest is p(β|σ2
u, λ,v,y).
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2. conditional distribution of σ2
u given β and the “data”, p(σ2

u|β,y∗)14 is inverse gamma

or, equivalently, the conditional distribution of the precision (reciprocal of variance,

1
σ2
u

= σ−2
u ) is gamma: p(σ−2

u |β,y∗) = fG(σ−2
u |N+τ−2

2
, SSE+sp2

2
), where SSE = ûT û =

(y − v −Xβ̂)
T

(y − v −Xβ̂).

Step 3: Inefficiencies

Using the conditional distributions for λ and v as derived by Koop, Osiewalski and Steel

(1994), we sample them as follows:

1. The conditional distribution for the parameter of the one-sided error term will not be

influenced by β or σ2
u, it depends only on v and the gamma prior:

p(λ−1|β, σ2
u,v,y) = fG(λ−1|N + 1,vT iN − ln(r∗)), where iN is a N × 1 vector of ones.

Using the properties of the gamma distribution, we get the following formula for the

inverse of the posterior mean efficiency E[λ−1] = N+1
vT iN−ln(r∗)

= N+1∑N
i=1 vi−ln(r∗)

.

This means that for a large enough sample, the posterior mean of λ gets close to its

maximum likelihood estimate given v which is equal to
∑N

i=1 vi
N

. The starting value for

the mean efficiency (r∗) increases slightly the posterior mean for λ, but even for very

low, unrealistic, average inefficiency levels (of 0.01 for example), the contribution of

the prior is irrelevant to the results with sample sizes of 100 observations or more.

2. As derived by Jondrow et al. (1983), the conditional distribution of the inefficiency

error for each firm (the vector v), p(v|β, σ2
u, λ,y) is truncated normal: TN(y−Xβ̂−

σ2
u

λ
, σ2

uIN), where TN is a normal probability distribution truncated below at zero and

IN is the N ×N identity matrix.

14for the simplified OLS model. The actual conditional distribution of interest is p(σ−2
u |β, λ,v,y).
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Since the conditional distribution for each parameter of interest is known and we can

directly draw from them, the Gibbs sampler15 for this problem is set up and the procedure

is described below:

1. Choose starting values for the variance of the two-sided statistical disturbance, e.g.

(σ2
u)

[0]
= 1 and the shape and location parameters of its prior distribution, τ = 1 and

s2
p = 0.10 (step 1.2).

2. Pick initial values for the inefficiency term v[0] its mean λ[0] (steps 1.3 and 1.4).

3. Sample β[1] given λ[0], v[0], (σ2
u)

[0]
and the data (y): step 2.1.

4. Draw (σ2
u)

[1]
conditional on λ[0], v[0], β[1] and the data (y) using the conditional dis-

tribution from step 2.2.

5. Sample λ[1] given v[0], the data (y) and the updated parameters of the frontier, β[1]

and of the symmetrical error, (σ2
u)

[1]
from the previous steps using the conditional

distribution from step 3.1.

6. Sample v[1] given λ[1], β[1], (σ2
u)

[1]
and the data, y (step 3.2).

7. Complete the posterior sample by repeating (3) through (6) while updating the pa-

rameters’ initial values with the values obtained at the previous iteration.

Using the Gibbs sampling method with 55,000 iterations out of which we discard the

first 5,000 to avoid sensitivity to the starting values, we generate a sample with 50,000

observations for each of the parameters of interest. As the number of iterations approaches

infinity, the sampler converges to the actual joint density of the parameters, but considering

the number of observations, the convergence is achieved relatively fast. 55,000 iterations

prove to be sufficient, the convergence tests (Gelman-Rubin and Geweke diagnostics) giving

satisfactory results.

15following Koop, Steel and Osiewalski(1992)

325



Appendix 2 Economies of Scale

A measure for scale economies in our two output model is calculated for each bank

following Caves, Christensen and Swanson (1981), based on the formula:

ESj = (
∑2

i=1
∂ln(c(pj ,qj))

∂lnqij
)−1, where j = 1, ..N , N=number of observations for the country

in question and i=1,2 the number of outputs.

∑2
i=1

∂ln(c(pj ,qj))

∂lnqij
= β4 +2β5lnq1j+(β8 +β9)(lnp1j− lnp2j)+β6 +2β7lnq2j+β10(lnq1j+lnq2j)

with lnq1j = ln(loan/equity)j = xj4, lnq2j = ln(security/equity)j = xj6

and lnp1j = ln(avwage)j, lnp2j = ln(avrate)j ⇒ lnp1j − lnp2j = xj2

The economies of scale are therefore a function of the model’s parameters, input prices

and output quantities:

ESj = 1
β4+β6+(β8+β9)xj2+(2β5+β10)xj4+(2β7+β10)xj6

When drawing inferences about economies of scale (ESj = f(β4, β5, β6, β7, β8, β9, β10))

or other functions of interest (let’s call them generically g(θ)) that can be expressed as

combination of the model’s parameters (in our case θ = (β4, β5, β6, β7, β8, β9, β10)), we use

the sample from the posterior generated by the Gibbs sampler.

In general, if the posterior density of the parameters, p(θ), is known, the posterior means

for any function of interest g(θ) are easy to compute as E[g(θ)] =
∫
g(θ)p(θ)dθ. Nevertheless,

since this integral cannot be computed analytically, we evaluate it numerically. By using the

Gibbs algorithm, we sampled n = 50, 000 values for each parameter θi from the posterior

(p(θ)) and the posterior mean for any function of interest can be calculated using the formula:

E[g(θ)] = 1
n

∑n
i=1 g(θi).
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