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Abstract

In this work, we begin with an investigation into the temporal correlation in default risk. We
first establish a link between the dynamics of house price changes and the dynamics of default
rates in the Gaussian copula framework by specifying a time series model for a common risk
factor. We show that the serial correlation propagates from the common risk factor to default rates.
In the second essay, we specify a model where the default correlation is stochastic. We find the
distribution of expected value of cash flows received by securitized investment vehicles is distorted
by the dynamics of default correlation. The third essay provides an empirical study on variance
risk premium, which is defined as the difference between implied variance and ex post realized
variance. We show that an individual stock’s variance risk premium and its two components can
be used to predict future equity premium. In the fourth essay, we derive asymptotic properties
of the quasi maximum likelihood estimator of smooth transition regressions. We show that the
estimator converges at the usual

√
T -rate and has an asymptotically normal distribution.
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Introduction

This dissertation includes four essays on credit risk and volatility. The first two parts examine the
dynamics of default correlation and its implication for risk management. The third part provides an
empirical study using variance risk premia to predict equity excess returns. The fourth part focuses
on smooth transition regressions, whose application can be found in credit risk and stochastic
volatility models.

The subprime crisis in 2007 started the worst global economic crisis since the Great Depression.
The trigger of the crisis was a large number of defaults in subprime mortgages that arrived in a
serially correlated manner. The first part of this dissertation examines the stochastic properties of
the default behavior of mortgages and that of cash flows received by mortgage backed securities
(MBS). We introduce the concept of vintage correlation and establish a link between the dynamics
of house price changes and the dynamics of default rates in the Gaussian copula framework by
specifying a time series model for a common risk factor. We show analytically and in simulations
that serial correlation propagates from the common risk factor to default rates. We simulate cash
flows received by MBS, which are securitized from pools of mortgages using a waterfall structure.
We find that subsequent vintages of these securities inherit temporal correlation from the common
risk factor.

In the second essay, we analyze the distribution of the expected value of cash flows in securi-
tized investment vehicles implied by a model in which default correlation is stochastic. We impose
different structures on the dynamics of default correlation including a regime-switching model and
a logistic transition model. We find that the dynamics of default correlation distort the distribution
of tranche prices. The distortion is affected by the sensitivity of tranche prices to change in default
correlation as well as the smoothness of the transition in default correlation.

The third essay provides an empirical study on the variance risk premia’ predictive power for
equity excess returns. We construct variance risk premium for individual stocks as the difference
between implied variance and ex post realized variance. We find that this variable has good pre-
dictive power for an individual stock’s equity premium. We then decompose variance risk premia
into two parts by using a Log-Linear Realized GARCH model. We show that this decomposition
significantly increases the return predictive power of variance risk premia.

An important innovation in the second essay of this dissertation is the usage of a logistic tran-
sition function in modeling the dynamics of default correlation. The logistic transition function
belongs to the group of smooth transition functions, which have been widely used in time se-
ries applications. In the fourth essay, we derive the asymptotic properties of the quasi maximum
likelihood estimator of logistic transition regressions when time is the transition variable. The con-
sistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator
converges at the usual

√
T -rate and has an asymptotically normal distribution.

1



Chapter 2. Temporal Correlation of Defaults
in Subprime Securitization

2.1 Introduction
From its beginning in the summer of 2007, the subprime crisis has plunged the world into one
of the worst recessions in history. At the center of the crisis is the subprime mortgage market,
where lenders provide mortgages to borrowers with poor credit standing. During the crisis, sub-
prime mortgages created at different times have defaulted one after another. The default arrivals
of these mortgages were serially correlated. Figure 2.1, lower panel, shows the time series of
serious delinquency rates of subprime mortgages from 2002 to 2009.1 This series obviously dis-
plays very high serial correlation. Defaults of subprime mortgages are closely connected to house
price fluctuations, as suggested, among others, by Gorton (2008).2 Most subprime mortgages are
Adjustable-Rate Mortgages (ARM). This means that the interest rate on a subprime mortgage is
fixed at a relatively low level for a “teaser” period, usually two to three years, after which it in-
creases substantially. Gorton (2008) points out that the interest rate usually resets to such a high
level that it “essentially forces” a mortgage borrower to refinance or default after the teaser period.
Therefore, whether the mortgage defaults or not is largely determined by the borrower’s access
to refinancing. At the end of the teaser period, if the value of the house is much greater than the
outstanding principal of the loan, the borrower is likely to be approved for a new loan since the
house serves as collateral. On the other hand, if the value of the house is less than the outstanding
principal of the loan, the borrower is unlikely to be able to refinance and has to default.

Gorton’s view is supported by data. Figure 2.1 displays two-year changes in the Case-Shiller
index (upper panel) and subprime ARM serious delinquency rates (lower panel) using quarterly
data from 2002 to 2009. It is clear that from 2002 to 2006, subprime delinquency rates declined as
home prices climbed steadily. The delinquency series reached its trough around the same time the
home price peaked. When the house price index started to drop in 2006, delinquency rates began
to increase significantly, which triggered the subprime crisis.

Therefore, the hypothesis that this paper examines is that the dynamics of defaults are inherited
from the dynamics of house prices. The aim of this paper is to formalize this relationship using the
industry-standard framework of a Gaussian copula, which was routinely used to price derivatives
constructed from subprime mortgages. To this end, we introduce the notion of vintage correla-
tion, which captures the correlation of default rates in mortgage pools issued at different times.

1By definition of the Mortgage Banker Association, seriously delinquent mortgages refer to mortgages that have
either been delinquent for more than 90 days or are in the process of foreclosure.

2For example, see also Bajari, Chu, and Park (2008), Daglish (2009), Hayre, Saraf, Young, and Chen (2008).
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Figure 2.1: Two-Year Changes in U.S. House Price and Subprime ARM Serious Delinquency
Rates
“U.S. home price two-year rolling changes” are two-year overlapping changes in the S&P Case-Shiller U.S. National
Home Price index. “Subprime ARM Serious Delinquency Rates” are obtained from the Mortgage Banker Association.
Both series cover the first quarter in 2002 to the second quarter in 2009.

Under certain assumptions, vintage correlation is the same as serial correlation. After showing
that changes in a housing index can be regarded as a common risk factor of individual subprime
mortgages, we specify a time series model for the common risk factor in the Gaussian copula
framework. We show analytically and in simulations that the serial correlation of the common risk
factor introduces vintage correlation into default rates of pools of subprime mortgages of subse-
quent vintages. In this sense, serial correlation propagates from the common risk factor to default
rates. In simulations of the price behavior of Mortgage-Backed Securities (MBS) over different
cohorts, we find that the price of MBS also exhibits vintage correlation, which is inherited from
the common risk factor of individual mortgages.

The main point of this paper is to provide a formal examination of one of the important causes
of the current crisis.3 Vintage correlation in default rates and MBS prices also has implications
for asset pricing. To price some derivatives, for example forward starting Collateralized Debt
Obligations (CDO), it is necessary to predict default rates of credit assets created at some future
time. Knowing the serial correlation of default probabilities can improve the quality of prediction.
For risk management in general, some credit asset portfolios may consist of credit derivatives of
different cohorts. Vintage correlation of credit asset performance affects these portfolios’ risks.
For instance, suppose there is a portfolio consisting of two subsequent vintages of the same-type
MBS. If the vintage correlation of the MBS price is close to one, for example, the payoff of the

3For different perspectives on the causes and effects of the subprime crisis, see also Caballero and Krishnamurthy
(2009), Crouhy, Jarrow, and Turnbull (2008), Figlewski (2009), Gorton (2009), Murphy (2008), Reinhart and Rogoff
(2008), and Reinhart and Rogoff (2009).

3



portfolio has a variance almost twice as big as if there were no vintage correlation.
The outline of the paper is as follows. In Section 2.2, we introduce the concept of vintage

correlation and give some examples to provide intuition. We then briefly describe the Gaussian
copula model. We show that changes in a house price index can be seen as a common risk factor in
the copula framework. Section 2.3 contains the main analytical results. It shows the link between
the serial correlation of the common risk factor and vintage correlation in default rates. Section
2.4 explores this link in two sets of simulations: First, a series of mortgage pools is simulated to
confirm our analytical results. Second, a waterfall structure is simulated to study the propagation
of serial correlation in MBS. In Section 2.5 we summarize the main conclusions.

2.2 Modeling Temporal Correlation in Subprime Securitiza-
tion

In this section, we introduce the concept of vintage correlation and give some examples to provide
intuition. We outline the Gaussian copula model. We show that changes in a house price index can
be seen as a common risk factor in the copula framework.

DEFINITION 1 (Vintage Correlation). Suppose we have a pool of mortgages created at each time
v = 1, 2, · · · , V . Denote the default rates of each vintage observed at a fixed time T > V as
p1, p2, · · · , pV , respectively. We define vintage correlation φj := Corr(p1, pj) for j = 2, 3, · · · , V
as the default correlation between the j − th vintage and the first vintage.

As an example of vintage correlation, consider wines of different vintages. Suppose there are
several wine producers that have produced wines of ten vintages from 2011 to 2020. The wines
are packaged according to vintages and producers, that is, one box contains one vintage by one
producer. In the year 2022, all boxes are opened and the percentage of wines that have gone bad is
obtained for each box. Consider the correlation of fractions of bad wines between the first vintage
and subsequent vintages. This correlation is what we call vintage correlation.

The definition of vintage correlation can be extended easily to the case where the base vintage is
not the first vintage but any one of the other vintages. Obviously, vintage correlation is very similar
to serial correlation. There are two main differences. First, the consideration is at a specific time
in the future. Second, in calculating the correlation between any two vintages, the expected values
are averages over the cross-section. That is, in the wine example, expected values are averages
over producers. In mortgage pools, they are averages over different mortgage pools. Only if we
assume the same stochastic structure for the cross-section and for the time series of default rates,
are vintage correlation and serial correlation equivalent. We do not have to make this assumption
to obtain our main results. Making this assumption, however, does not invalidate any of the results
either. Therefore, we use the terms “vintage correlation” and “serial correlation” interchangeably
in our paper.

To model vintage correlation in subprime securitization, we use the copula approach. The
Gaussian copula approach is widely used in industry to model default correlation across names. A
copula is a function that takes the marginal distribution functions of a set of variables as arguments
and returns the joint distribution of the variables. Thus, the copula approach provides a general
way to link univariate marginal distribution functions to their multivariate distribution function.

4



This feature makes it very useful for modeling multivariate correlations. Frees and Valdez (1998)
explain in detail how to specify a copula, and how to simulate a multivariate distribution once its
copula form is known.

The credit industry standard copula model was introduced by Li (2000) and is called the
default-time (or survival-time) Gaussian copula. This model is applicable to all types of CDO,
MBS, and almost all other credit derivatives that are derived from multiple assets with credit risk.
The idea behind Li’s model is that each credit asset has a default time (or survival time), after which
the mortgage defaults. Instead of modeling the correlation between default events of mortgages,
Li proposes a copula approach to capture the joint distribution of default times. A copula in this
case takes the marginal distribution of default times and returns their joint distribution.

The literature on credit risk pricing with copulas and other models has grown substantially in
recent years and an exhaustive review is beyond the scope of his paper. Bluhm, Overbeck, and
Wagner (2002), Schönbucher (2003), Duffie and Singleton (2003), and Lando (2004) are standard
monographs. Some modifications of the standard Gaussian copula model are discussed. For ex-
ample, Servigny and Renault (2002) and Das, Freed, Geng, and Kapadia (2006) provide empirical
evidence that asset correlation may be stochastic. Andersen and Sidenius (2005), Hull, Predescu,
and White (2009), and Berd, Engle, and Voronov (2007) allow default correlation to vary over
time. Copula models using distribution functions other than Gaussians have also been suggested.
For example, Andersen, Sidenius, and Basu (2003) and Frey and McNeil (2003) consider the stu-
dent t-copula. Schönbucher and Schubert (2001) and Laurent and Gregory (2005) discuss the
Clayton copula. The Marshall-Olkin copula has been considered by Lindskog and McNeil (2003)
and Giesecke (2003). A recent study by Beare (2010) explicitly addresses the temporal correlation
problem in copulas.

There are approaches to model default correlation other than default-time copulas. One method
relies on the so-called structural model, which goes back to Merton’s (1974) work on pricing
corporate debt. An essential point of the structural model is that it links the default event to some
observable economic variables. Hull and White (2001) extend the model to a multi-issuer scenario,
which can be applied to the pricing of corporate debt CDO. It is assumed that a firm defaults if
its credit index hits a certain barrier. Therefore, correlation between credit indices determines the
correlation of default events. The advantage of a structural model is that it gives economic meaning
to underlying variables. Other approaches to CDO pricing are found, for example, in Graziano and
Rogers (2009) and in Sidenius, Piterbarg, and Andersen (2008). Burtschell, Gregory, and Laurent
(2009) provide a comparison of common CDO pricing models.

In this paper, we adopt Li’s (2000) default time copula approach and extend it by adding a
time series model for a common risk factor. Each mortgage i of vintage v has a default time τv,i,
which is a random variable representing the time at which the mortgage defaults. If the mortgage
never defaults, this value is infinity. If we assume that the distribution of τv,i is the same across all
mortgages of vintage v, we have

Fv(s) = P[τv,i < s], ∀i = 1, 2, ..., N, (2.1)

where the index i denotes individual mortgages and the index v denotes vintages. We assume that
Fv is continuous and strictly increasing. Given this information, for each vintage v the Gaussian
copula approach provides a way to obtain the joint distribution of the τv,i across i. Generally, a
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copula is a joint distribution function

C (u1, u2, ..., uN) = P (U1 ≤ u1, U2 ≤ u2, ..., UN ≤ uN) ,

where u1, u2, ..., uN are N uniformly distributed random variables that may be correlated. It can
be easily verified that the function

C [F1(x1), F2(x2), ..., FN(xN)] = G(x1, x2, ..., xN) (2.2)

is a multivariate distribution function with marginal distribution functionsF1(x1), F2(x2),...,FN(xN).
Sklar (1959) proved the converse. He showed that for an arbitrary multivariate distribution func-
tionG(x1, x2, ..., xN) with continuous marginal distributions functions F1(x1), F2(x2),...,FN(xN),
there exists a unique C such that equation (2.2) holds. Therefore, in the case of default times, there
is a Cv for each vintage v such that

Cv [Fv(τv,1), Fv(τv,2), ..., Fv(τv,N)] = Gv(τv,1, τv,2, ..., τv,N). (2.3)

The joint distribution function Gv on the right-hand side of equation (2.3) is the object we want
to obtain. Since we assume Fv to be continuous and strictly increasing, we can find a standard
Gaussian random variable Xv,i such that

Φ(Xv,i) = Fv(τv,i) ∀v = 1, 2, ..., V ; i = 1, 2, ..., N, (2.4)

or equivalently,
τv,i = F−1

v (Φ(Xv,i)) ∀v = 1, 2, ..., V ; i = 1, 2, ..., N, (2.5)

where Φ is the standard normal distribution function. To see that this is correct, observe that

P[τv,i ≤ s] = P [Φ(Xv,i) ≤ Fv(s)]

= P
[
Xv,i ≤ Φ−1 (Fv(s))

]
= Φ

[
Φ−1 (Fv(s))

]
= Fv(s).

Substituting equation (2.4) into the left-hand side of equation (2.3), we have

Cv [Φ(Xv,1),Φ(Xv,2), ...,Φ(Xv,N)] = Gv(τv,1, τv,2, ..., τv,N). (2.6)

Since Φ(·) is the marginal distribution function for all Xv,i, the left-hand side of equation (2.6)
is equal to the joint distribution of Xv,i. The Gaussian copula approach assumes that this joint
distribution has a multivariate normal distribution function ΦN ,

Gv(τv,1, τv,2, ..., τv,N) = ΦN (Xv,1, Xv,2, ..., Xv,N) . (2.7)

Thus the joint distribution function of default times τv,i is obtained once the correlation matrix of
the Xv,i is known. A standard simplification in practice is to assume that the pairwise correlations
between different Xv,i are the same across i. Suppose that the value of this correlation is ρv for
each vintage v. Consider the following definition

Xv,i :=
√
ρvZv +

√
1− ρvεi ∀i = 1, 2, . . . , N ; v = 1, 2, . . . , V, (2.8)
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where εv,i are i.i.d. standard Gaussian random variables and Zv is a Gaussian random variable
independent of the εv,i. It can be shown easily that in each vintage v, the variables Xv,i defined in
this way have the exact joint distribution function ΦN .

Using the information above, for each vintage v, the Gaussian copula approach obtains the joint
distribution function Gv for default times as follows. First, N Gaussian random variables Xv,i are
generated according to equation (2.8). Second, from equation (2.5) a set of N default times τv,i
is obtained, which has the desired joint distribution function Gv. In equation (2.8), the common
factor Zv can be viewed as a latent variable that captures the default risk in the economy, and εi
is the idiosyncratic risk for each mortgage. The variable Xv,i can be viewed as a state variable for
each mortgage. The parameter ρv is the correlation between any two individual state variables. It
is obvious that the higher the value of ρv, the greater the correlation between the default times of
different mortgages.

In pricing derivatives created on subprime mortgages, Monte Carlo simulations are employed
to study the default behavior of mortgages by the method described above. In each simulation,
the default times for all mortgages are generated with the joint distribution Gv. Mortgage i is
said to default before time T , if its simulated default time τv,i is less than T . The value of ρv
can then be calibrated to market data. The market-implied ρv may vary over time. Indeed, this is
supported by empirical evidence provided by Servigny and Renault (2002) and Das, Freed, Geng,
and Kapadia (2006). This time dependence may capture dynamic correlation between default
events not explicitly captured in the default time copula approach. One way to explicitly model
the dynamics of defaults is to specify a stochastic process for default correlation. This approach is
called stochastic correlation (see for example Andersen and Sidenius (2005) and Hull, Predescu,
and White (2009)). Das, Freed, Geng, and Kapadia (2006) propose a model where the default
intensity is determined by the state of the economy, which follows a Markov process.

In this paper, we propose a time series model for the common risk factor Zv in the copula
framework and show that its serial correlation propagates to the default rates. To illustrate the
intuition behind our approach, we first give a structural interpretation for the common risk factor
Zv of subprime ARM.

Assume that we have a pool of N mortgages i = 1, . . . , N for each vintage v = 1, . . . , V .
Each individual mortgage within a pool has the same initiation date v and interest adjustment date
v′ > v. Let Yv,i be the change in the logarithm of the price Pv,i of borrower i’s (of vintage v) house
during the teaser period [v, v′]. Consider

Yv,i := logPv′,i − logPv,i = Hv + ev,i, (2.9)

where Hv := log Iv′ − log Iv is the change in the logarithm of a housing market index Iv, and
ev,i are i.i.d. normal random variables for all i = 1, 2, ..., N , and v = 1, 2, ..., V . As outlined in
the introduction, default rates of subprime ARM depend on house price changes during the teaser
period. If the house price fails to increase substantially or even declines, the mortgage borrower
cannot refinance, absent other substantial improvements in income or asset position. They have
to default shortly after the interest rate is reset to a high level. We assume that the default, if it
happens, occurs at time v′. Therefore, we assume that a mortgage defaults if and only if Yv,i < Y ∗,
where Y ∗ is a predetermined threshold. For example, if we set Y ∗ = 0, we are implicitly assuming
that if the house price increases, the mortgage borrower is able to refinance. Otherwise, they cannot
be approved for a new loan and have to default. Suppose we have a portfolio of N mortgages,

7



which satisfy the assumptions above. Now, if we assume a form of stationary stochastic process
for Hv, say an ARMA(p,q) process, we can simulate the default rates over time in the portfolio by
Monte Carlo simulation.

We can now give a structural interpretation of the common risk factorZv in the Gaussian copula
framework. Define

Z ′v :=
Hv

σH
, (2.10)

where σH is the unconditional standard deviation of Hv. Then we have

Yv,i = Z ′vσH + ev,i.

Further standardizing Yv,i, we have

X ′v,i :=
Yv,i
σY

=
Z ′vσH + ev,i

σY

=
σH√
σ2
H + σ2

e

Z ′v +
σe√

σ2
H + σ2

e

ε′v,i

where σe is the standard deviation of ev,i, and ε′v,i := ev,i/σe. The third equality follows from the
fact that

σY =
√
σ2
H + σ2

e .

Define

ρ′ :=
σ2
H

σ2
H + σ2

e

.

Then
X ′v,i =

√
ρ′Z ′v +

√
1− ρ′ε′v,i ∀i = 1, 2, . . . , N ; t = 1, 2, . . . , T (2.11)

Note that equation (2.11) has exactly the same form as equation (2.8). The default event is defined
as X ′v,i < X∗′ where

X∗′ :=
Y ∗√
σ2
H + σ2

e

.

Let
τ ′v,i := F−1

v

(
Φ(X ′v,i)

)
,

and
τ ∗′v := F−1

v (Φ(X∗′)) ,

then the default event can be defined equivalently as τ ′v,i ≤ τ ∗′. The comparison between equation
(2.11) and (2.8) shows that the common risk factor Zv in the Gaussian copula model for subprime
mortgages can be interpreted as a standardized change in a house price index.

In light of this structural interpretation, the common risk factor Zv is very likely to be serially
correlated across subsequent vintages. More specifically, we find that Z ′v is proportional to a
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moving average of monthly log changes in a housing price index. To see this, let v be the time of
origination and v′ be the end of the teaser period. Then,

Hv =

∫ v′

v

d log Iτ ,

where I is the house price index. For example, if we measure house price index changes quarterly,
as in the case of the Case-Shiller housing index, we have

Hv =
∑

τ∈[v,v′]

(log Iτ − log Iτ−1), (2.12)

where the unit of τ is a quarter. If we model this index by some random shock arriving each
quarter, equation (2.12) is a moving average process. Therefore, from equation (2.10) we know
that Z ′v has positive serial correlation.

2.3 Main Theorems - Vintage Correlation in Default Rates
Since the common risk factor is likely to be serially correlated, we examine the implications for
the stochastic properties of mortgage default rates. Most subprime ARM have a teaser period of
two years, therefore equation (2.12) suggests that a two-year house index change can be used as a
common risk factor for these mortgages. Figure 2.1 compares two-year changes in the Case-Shiller
index with subprime ARM serious delinquency rates. The two variables are highly and negatively
correlated with each other. To study this observation analytically, we specify a time series model
for the common risk factor in the Gaussian copula approach. We then determine the relationship
between the serial correlation of the default rates and that of the common risk factor.

PROPOSITION 1 (Default Probabilities and Numbers of Defaults). Let k = 1, 2, ..., N ,

Xk =
√
ρZ +

√
1− ρ εk, and X ′k =

√
ρ′Z ′ +

√
1− ρ′ ε′k (2.13)

with
Z ′ = φZ +

√
1− φ2 u, (2.14)

where ρ, ρ′ ∈ (0, 1), φ ∈ (−1, 1), and Z, ε1, ..., εN , ε′1, ..., ε
′
N , u are mutually independent standard

Gaussians. Consider next the number of Xk that fall below some threshold X∗, and the number of
X ′k below X ′∗:

A =
N∑
k=1

1{Xk≤X∗}, and A′ =
N∑
k=1

1{X′k≤X′∗}, (2.15)

where X∗ and X ′∗ are constants. Then

Cov(A,A′) = N2 Cov(p, p′), (2.16)

where

p = p(Z) := P[Xk ≤ X∗ |Z] = Φ

(
X∗ −

√
ρZ

√
1− ρ

)
, and p′ = P[X ′k ≤ X ′∗ |Z ′] = p′(Z ′).

(2.17)
Moreover, the correlation between A and A′ equals the correlation between p and p′, in the limit
as N →∞.
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Proof. We first show that
E[AA′] = E [E[A |Z]E[A′ |Z ′]] . (2.18)

Note thatA is a function of Z and ε = (ε1, . . . , εN), andA′ is a function (indeed, the same function
as it happens) of Z ′ and ε′ = (ε′1, . . . , ε

′
N). Now for any non-negative bounded Borel functions f

and g on RN , and any non-negative bounded Borel functions F and G on R × RN , we have, on
using self-evident notation,

E[f(Z)g(Z ′)F (Z, ε)G(Z ′, ε′)]

=

∫
f(z)g(φz +

√
1− φ2x︸ ︷︷ ︸
z′

)F (z, y1, ..., yN)G(z′, y′1, ..., y
′
N) dΦ(z, x,y,y′)

=

∫
f(z)g(z′)

[{∫
F (z, y1, ..., yN) dΦ(y)

}{∫
G(z′, y′1, ..., y

′
N) dΦ(y′)

}]
dΦ(z, x)

= E [f(Z)g(Z ′)E[F (Z, ε) |Z]E[G(Z ′, ε′) |Z ′]] .
(2.19)

This says that

E [F (Z, ε)G(Z ′, ε′) |Z,Z ′] = E[F (Z, ε) |Z]E[G(Z ′, ε′) |Z ′]. (2.20)

Taking expectation on both sides of equation (2.20) with respect to Z and Z ′, we obtain

E [F (Z, ε)G(Z ′, ε′)] = E [E[F (Z, ε) |Z]E[G(Z ′, ε′) |Z ′]] . (2.21)

Substituting F (Z, ε) = A, and G(Z ′, ε′) = A′, we have equation (2.18) and

E[AA′] = E [E[A |Z]E[A′ |Z ′]]
= E[NpNp′] = N2E[pp′],

(2.22)

The last line is due to the fact that conditional on Z, A is a sum of N independent indicator
variables and follows a binomial distribution with parameters N and Ep. Applying (2.21) again
with F (Z, ε) = A, and G(Z ′, ε′) = 1, or indeed, much more directly by repeated expectations, we
have

E[A] = NE[p], and E[A′] = NE[p′]. (2.23)

Hence we conclude that

Cov(A,A′) = E(AA′)− E[A]E[A′]

= N2E[pp′]−N2E[p]E[p′]

= N2 Cov(p, p′).

We have

Var(A) = E
[
E[A2 |Z]

]
−N2(E[p])2

= E[Np+N(N − 1)p2]−N2(E[p])2

= NE[p(1− p)] +N2 Var(p).
(2.24)
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Similarly,
Var(A′) = NE[p′(1− p′)] +N2 Var(p′).

Putting everything together, we have for the correlations:

Corr(A,A′) =
N2 Cov(p, p′)√

NE[p(1− p)] +N2 Var(p)
√
NE[p′(1− p′)] +N2 Var(p′)

=
Corr(p, p′)√

1 + E[p(1−p)]
N Var(p′)

√
1 + E[p′(1−p′)]

N Var(p)

= Corr(p, p′) as N →∞.

(2.25)

THEOREM 1 (Vintage Correlation in Default Rates). Consider a pool of N mortgages created
at each time v, where N is fixed. Suppose within each vintage v, defaults are governed by a
Gaussian copula model as in equations (2.1), (2.5), (2.7), and (2.8) with common risk factor Zv
being a zero-mean stationary Gaussian process. Assume further that ρv = Corr(Xv,i, Xv,j), the
correlation parameter for state variables Xv,i of individual mortgages of vintage v, is positive.
Then, Av and Av′ , the numbers of defaults observed at time T within mortgage vintages v and v′

are correlated if and only if φv,v′ = Corr(Zv, Zv′) 6= 0, where Zv is the common Gaussian risk
factor process. Moreover, in the large portfolio limit, Corr(Av, Av′) approaches a limiting value
determined by φv,v′ , ρv, and ρv′ .

Proof. Conditional on the common risk factor Zv, the number of defaults Av is a sum of N inde-
pendent indicator variables and follows a binomial distribution. More specifically,

P(Av = k|Zv) =

(
N

k

)
pkv(1− pv)N−k (2.26)

where pv is the default probability conditional on Zv, i.e.,

pv = P(τv,i ≤ τ ∗|Zv) = P(Xv,i ≤ X∗v |Zv),

with
X∗v = Φ−1(Fv(T )),

where Fv(T ) is the probability of default before the time T . Then

pv = P (Xv,i ≤ X∗v |Zv)

= P

(
εi ≤

X∗v −
√
ρtZv√

1− ρv

)
=

1√
2π

∫ X∗v−
√
ρtZv√

1−ρv

−∞
exp

(
−x

2

2

)
dx

= Φ (Z∗v ) ,

(2.27)

where

Z∗v =
X∗v −

√
ρvZv√

1− ρv
. (2.28)
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Similarly,
pv′ = Φ (Z∗v′) , (2.29)

where

Z∗v′ =
X∗v′ −

√
ρv′Zv′√

1− ρv′
. (2.30)

Note that if Zv and Zv′ are jointly Gaussian with correlation coefficient φv,v′ , we can write

Zv = φv,v′Zv′ +
√

1− φ2
v,v′ uv,v′ for t > j, (2.31)

where uv,v′ are standard Gaussians that are independent of Zv′ . Combining equation (2.28), (2.30)
and (2.31), we have

Z∗v = aφv,v′Z
∗
v′ +

X∗t − bφjX∗v′√
1− ρt

−

√
ρv(1− φ2

v,v′)
√

1− ρv
uv,v′ , (2.32)

where

a =

√
ρv(1− ρv′)
ρv′(1− ρv)

, b =

√
ρv
ρv′
.

Therefore,

Cov(pv, pv′) = Cov (Φ(Z∗v ),Φ(Z∗v′))

= Cov

Φ

aφv,v′Z∗v′ + X∗v − bφv,v′X∗v′√
1− ρv

−

√
ρv(1− φ2

v,v′)
√

1− ρv
uv,v′

 ,Φ (Z∗v′)

 .

(2.33)

Since a > 0 as ρv ∈ (0, 1), we know that the covariance and the correlation between pv and pv′ are
determined by φv,v′ , ρv, and ρv′ . They are nonzero if and only if φv,v′ 6= 0. Applying Proposition
1, we know that

Corr(Av, Av′) =
Corr(pv, pv′)√

1 + E[pv(1−pv)]

N Var(pv′ )

√
1 +

E[pv′ (1−pv′ )]
N Var(pv)

∀v 6= v′. (2.34)

Therefore, Av and Av′ have nonzero correlation as long as pv and pv′ do.

Equations (2.33) and (2.34) provide closed-form expressions for the serial correlation of default
rates pv of different vintages and the number of defaults Av. However, we cannot directly read
from equation (2.33) how the vintage correlation of default rates depends on the serial correlation
parameter φv,v′ in the common risk factor. The theorem below shows that this dependence is always
positive.

THEOREM 2 (Dependence on Common Risk Factor). Under the same settings as in Theorem
1, assume that both the serial correlation φv,v′ of the common risk factor and the individual state
variable correlation ρv are always positive. Then the numberAv of defaults in the vintage-v cohort
by time T is positively correlated with the number Av′ in the vintage-(v′) cohort. Moreover, this
correlation is an increasing function of the serial correlation parameter φv,v′ in the common risk
factor.
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Proof. We will use the notation established in Proposition 1. We can assume that v 6= v′. Recall
that in the Gaussian copula model, name i in the vintage-v cohort defaults by time T if the standard
Gaussian variable Xv,i falls below a threshold X∗v . The unconditional default probability is

P[Xv,i ≤ X∗v ] = Φ(X∗v ).

For the covariance, we have

Cov(Av, Av′) =
N∑

k,l=1

Cov(1[Xv,k≤X∗v ],1[Xv′,l≤X∗v′ ]
)

= N2Cov(1[X≤X∗v ],1[X′≤X∗
v′ ]

),

(2.35)

whereX,X ′ are jointly Gaussian, each standard Gaussian, with mean zero and covarianceE[XX ′] =
E[Xv,kXv′,l], which is the same for all pairs k, l, since v 6= v′. This common value of the covari-
ance arises from the covariance between Zv and Zv′ along with the covariance between any Xv,k

with Zv; it is
Cov(X,X ′) = φj

√
ρvρv′ . (2.36)

Now since X,X ′ are jointly Gaussian, we can express them in terms of two independent standard
Gaussians:

W1 := X,

W2 :=
1√

1− ρvρv′φ2
v,v′

[X ′ − φv,v′
√
ρvρv′X]. (2.37)

We can check readily that these are standard Gaussians with zero covariance, and

X = W1,

X ′ = φv,v′
√
ρvρv′W1 +

√
1− ρvρv′φ2

v,v′W2.
(2.38)

Let
α = φv,v′

√
ρvρv′ .

The assumption that ρ and φv,v′ are positive (and, of course, less than 1) implies that

0 < α < 1.

Note that the covariance between pv and pv′ can be expressed as

Cov(pv, pv′) = E(pvpv′)− E(pv)E(pv′)

= E
[
E
[
1{Xv,i≤X∗v}

∣∣Zv]E [1{Xv′,i≤X∗v′}∣∣∣Zv′]]− E(pv)E(pv′)

= E
[
1{Xv,i≤X∗v}1{Xv′,i≤X∗v′}

]
− E(pv)E(pv′)

= P [Xv,i ≤ X∗v , Xv′,i ≤ X∗v ]− E(pv)E(pv′)

= P
[
W1 ≤ X∗v , αW1 +

√
1− α2W2 ≤ X∗v′

]
− E(pv)E(pv′)

=

∫ X∗v

−∞
Φ

(
X∗v′ − αw1√

1− α2

)
ϕ(w1) dw1 − E(pv)E(pv′),
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where ϕ(·) is the probability density function of the standard normal distribution. The third equal-
ity follows from equation (2.21). The fifth equality follows from equation (2.38). The uncondi-
tional expectation of pv is independent of α, because

E(pv) = E (P(Xv,i ≤ X∗v |Zv))
= P(Xv,i ≤ X∗v )

= Φ(X∗v ).

(2.39)

It follows that

∂

∂α
Cov(pv, pv′) =

∫ X∗v

−∞
ϕ

(
X∗v′ − αw1√

1− α2

)
ϕ(w1)

∂
(
X∗
v′−αw1√
1−α2

)
∂α

dw1

=

∫ X∗v

−∞
ϕ

(
X∗v′ − αw1√

1− α2

)
ϕ(w1)

−w1 + αX∗v′

(1− α2)
3
2

dw1

= − 1

(1− α2)
3
2

∫ X∗v

−∞
(w1 − αX∗v′)ϕ

(
X∗v′ − αw1√

1− α2

)
ϕ(w1) dw1.

(2.40)

The last two terms in the integrand can be rewritten as

ϕ

(
X∗v′ − αw1√

1− α2

)
ϕ(w1) =

1

2π
exp

[
−(X∗v′ − αw1)2

2(1− α2)
− w2

1

2

]
=

1

2π
exp

[
−X

∗
v′

2 − 2αX∗v′w1 + w2
1α

2 + w2
1(1− α2)

2(1− α2)

]
=

1

2π
exp

[
−w

2
1 − 2αX∗v′w1 + α2X∗v′

2 +X∗v′
2(1− α2)

2(1− α2)

]
=

1

2π
exp

[
−(w1 − αX∗v′)

2 +X∗v′
2(1− α2)

2(1− α2)

]
.

(2.41)

Substituting equation (2.41) into (2.40), we have

∂

∂α
Cov(pv, pv′) = −

exp
(
−X∗

v′
2

2

)
2π (1− α2)

3
2

∫ X∗v

−∞
(w1 − αX∗v′) exp

[
−(w1 − αX∗v′)

2

2(1− α2)

]
dw1.

Make a change of variable and let
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w1 − αX∗v′√

1− α2
.

It follows that
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)
2π
√

1− α2
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exp

(
−X∗
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)
2π
√

1− α2
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[
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2

2(1− α2)

]

=
1

2π
√

1− α2
exp

(
−X

∗
v

2 − 2αX∗vX
∗
v′ +X∗v′

2

2(1− α2)

)
> 0.
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Thus, we have shown that the partial derivative of the covariance with respect to α is positive.
Since

α =
√
ρvρv′φv,v′ ,

with ρs and φv,v′ assumed to be positive, we know that the partial derivatives of the covariance with
respect to φv,v′ , ρv and ρv′ are also positive everywhere. Note that the unconditional variance of
pv is independent of φv,v′ (although dependent of ρs), which can be seen from equation (2.27). It
follows that the serial correlation of pv has positive partial derivative with respect to φv,v′ . Recall
equation (2.33), which shows that the covariance of pv and pv′ is zero for any value of ρs when
φv,v′ = 0. This result together with the positive partial derivatives of the covariance with respect
to φv,v′ ensure that the covariance and thus the vintage correlation of pv and pv′ is always positive.
From equation (2.34), noticing the fact that both the expectation and variance of pv are independent
of φv,v′ , we know that the correlation between Av and Av′ must also be positive everywhere and
monotonically increasing in φv,v′ .

So far we have shown that the vintage correlation of pv and thus At is positive and increasing
in φv,v′ . Due to the complexity of the analytical form of the vintage correlation, we resort to
numerical methods to study its exact magnitude. We generate plots of the vintage correlation of pv
as a function of φv,v′ . For simplicity, we assume ρv = ρv′ = ρ, and X∗v = X∗v′ = X∗. Different
values of X∗v ranging from −3 to 3 are implemented. Two of these plots can be seen in Figures
2.2 and 2.3. Others are omitted for brevity as they look very similar. In all these plots, vintage
correlation is always positive for φv,v′ ∈ (0, 1) and monotonically increasing in φv,v′ , matching
our theoretical findings. Moreover, the magnitude of vintage correlation is always close to φv,v′ ,
although when the absolute value of X∗v increases, the function becomes more convex.

2.4 Monte Carlo Simulations
In this section, we study the link between serial correlation in a common risk factor and vintage
correlation in pools of mortgages in two sets of simulations: First, a series of mortgage pools is
simulated to confirm the analytical results of Section 2.3. Second, a waterfall structure is simulated
to study temporal correlation in MBS.

2.4.1 Vintage Correlation in Mortgage Pools
We conduct a Monte Carlo simulation to study how serial correlation of a common risk factor
propagates into vintage correlation in default rates. We simulate default times for individual mort-
gages according to equations (2.1), (2.5), (2.7), and (2.8). From the simulated default times, the
default rate of a pool of mortgages is calculated.

In each simulation, we construct a cohort of N = 100 homogeneous mortgages in every month
v = 1, 2, . . . , 120. We simulate a monthly time series of the common risk factor Zv, which is
assumed to have an AR(1) structure with unconditional mean zero and variance one,

Zv = φZv−1 +
√

1− φ2 uv ∀v = 2, 3, . . . , 120. (2.42)

The errors uv are i.i.d. standard Gaussian. The initial observation Z1 is a standard normal random
variable. We report the case where φ = 0.95. We choose φ close to one due to the observation
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Figure 2.2: Correlation of pv and pv′ when X∗ = −2

Correlation between pv and pv′ as a function of φ for different scenarios of the cross-mortgage correlation parameter
ρ ∈ (0, 1). X∗ is set to −2 in all scenarios.

that the autocorrelation of the housing index is high.4 Each mortgage i issued at time v has a
state variable Xv,i assigned to it that determines its default time. The time series properties of Xv,i

follow equation (2.8). The error εi in equation (2.8) is independent of uv.
To simulate the actual default rates of mortgages, we need to specify the marginal distribution

functions of default times F (·) as in equation (2.1). We define a function F(·), which takes a
time period as argument and returns the default probability of a mortgage within that time period
since its initiation. We assume that this F(·) is fixed across different vintages, which means that
mortgages of different cohorts have a same unconditional default probability in the next S periods
from their initiation, where S = 1, 2, . . . . It is easy to verify that Fv(T ) = F(T −v). The values of
the function F(·) are specified in Table 2.1, for both subprime and prime mortgages. Intermediate
values of F(·) are linearly interpolated from this table. While these values are in the same range
as actual default rates of subprime and prime mortgages in the last ten years, their specification is
rather arbitrary as it has little impact on the stochastic structure of the simulated default rates. We
set the observation time T to be 144, which is two years after the creation of the last vintage, as we
need to give the last vintage some time window to have possible default events. For example, in
each month from January 1998 to December 2007, 100 mortgages are created. Then in December
2009, we examine the default rates of these mortgages within each vintage.

We need to consider two cases, subprime and prime. For the subprime case, every vintage is
given a two-year window to default, so the unconditional default probability is constant across vin-
tages. On the other hand, prime mortgages have decreasing default probability through subsequent
vintages. For example, in our simulation, the first vintage has a time window of 144 months to

4Other values of φ are also tried, but not reported here. The results are all consistent with our theoretical findings.
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Figure 2.3: Correlation of pv and pv′ when X∗ = 0

Correlation between pv and pv′ as a function of φ for different scenarios of the cross-mortgage correlation parameter
ρ ∈ (0, 1). X∗ is set to 0 in all scenarios.

default, the second vintage has 143 months, the third has 142 months, and so on. Therefore, older
vintages are more likely to default by observation time T than newer vintages. This is why the
fixed ex-post observation time of defaults is one difference that distinguishes vintage correlation
from serial correlation.

We construct a time series τv,i of default times of mortgage i issued at time v according to
equation (2.5).5 Time series of default rates Āv are computed as:

Āv(τ
∗
v ) =

#{mortgages for which τv,i ≤ τ ∗v }
N

.

In the subprime case, τ ∗v = 24 is set to be constant. In the prime case, τ ∗v = T − v varies across
vintages.

The simulation is repeated 1000 times. For the subprime case, the average simulated default
rates are plotted in Figure 2.4. For the prime case, average simulated default rates are plotted in
Figure 2.5. Note that because of the decreasing time window to default, the default rates in Figure
2.5 have a decreasing trend.

In the subprime case, we can use the sample autocorrelation and partial autocorrelation func-
tions to estimate vintage correlation, because the unconditional default probability is constant
across vintages, so that averaging over different vintages and averaging over different pools is
the same. In the prime case, we have to calculate vintage correlation proper. Since we have
1000 Monte Carlo observations of default rates for each vintage, we can calculate the correlation

5Note that this is not a time series of default times for a single mortgage, since a single mortgage defaults only once
or never. Rather, the index i is a placeholder for a position in a mortgage pool. In this sense, τv,i is the time series of
default times of mortgages in position i in the pool over vintages v.

17



0 20 40 60 80 100 120
0.08

0.1

0.12
Default Rates Across Vintages

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

Lag

Vintage Correlation

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

Lag

Sample Partial Autocorrelation Function

Figure 2.4: Serial Correlation in Default Rates of Subprime Mortgages

between two vintages using those samples. For the partial autocorrelation function, we simply
demean the series of default rates and obtain the usual partial autocorrelation function.

We plot the estimated vintage correlation in the second rows of Figure 2.4 and 2.5 for subprime
and prime cases, respectively. As can be seen, the correlation of the default rates of the first vintage
with older vintages decreases geometrically. In both cases, the estimated first-order coefficient of
default rates is close to but less than φ = 0.95, the AR(1) coefficient of the common risk factor.
The partial autocorrelation functions are plotted in the third rows of Figures 2.4 and 2.5. They
are significant only at lag one. This phenomenon is also observed when we set φ to other values.
Both the sample autocorrelation and partial autocorrelation functions indicate that the default rates
follow a first-order autoregressive process, similar to the specification of the common risk factor.
However, compared with the subprime case, the default rates of prime mortgages seem to have
longer memory.

The similarity between the magnitude of the autocorrelation coefficient of default rates and
common risk factor can be explained by the following Taylor expansion. Taylor-expanding equa-
tion (2.27) at Z∗v = 0 to first order, we have

pv ≈
1

2
+

1√
2π
Z∗v (2.43)

Since pv is in this sense approximately a linear transformation of Z∗v , which is a linear transfor-
mation of Zt, it approximately follows a stochastic process that has the same serial correlation as
Zt.
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Figure 2.5: Serial Correlation in Default Rates of Prime Mortgages

2.4.2 Vintage Correlation in Waterfall Structures
Using the Gaussian copula approach, we have already shown that the time series of default rates in
mortgage pools inherits vintage correlation from the serial correlation of the common risk factor.
We now study how this affects the performance of assets such as MBS that are securitized from
the mortgage pool in a so-called waterfall.

The basic elements of the simulation are:

1. a time line of 120 months and an observation time T = 144;

2. a mortgage contract with a principal of $1 and a maturity of 15 years. The annual interest
rate on the mortgage loan is 9%. Fixed monthly payments are received until the mortgage
defaults or is paid in full. In each month, a pool of 100 such mortgages is created.

3. A pool of 100 units of MBS is securitized from the mortgage cohort in each month. Every
unit of MBS has a principal of $1. There are four tranches in our structure: the senior tranche,
the mezzanine tranche, the subordinate tranche, and the equity tranche. The senior tranche
consists of the top 70% of the face value of all mortgages created in each month (that is, there
are 70 units of senior MBS); the mezzanine tranche consists of the next 25%; the subordinate
tranche consist of the next 4%; the equity tranche has the bottom 1%. Each senior MBS pays
an annual interest rate of 6%; each mezzanine MBS pays 15%; each subordinate MBS pays
20%. The equity tranche does not pay interest but retains residual profits, if any.

The basic setup of the simulation is illustrated in Figure 2.6. For a cohort of mortgages issued at
time v and the MBS derived from it, the securitization process works as follows. At the end of each
month, each mortgage either defaults or makes a fixed monthly payment. The method to determine
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Figure 2.6: Simulated Mortgages and MBS

default is the same that we have used before: mortgage i issued at time v defaults at τv,i, which
is generated by the Gaussian copula approach according to equations (2.1), (2.5), (2.7), and (2.8).
We consider both subprime and prime scenarios, as in the case of default rates. For subprime
mortgages, we assume that each individual mortgage receives a prepayment of the outstanding
principal at the end of the teaser period if it has not defaulted, so the default events and cash flows
only happen within the teaser period. For the prime case, there is no such restriction. Again,
we assume the common risk factor to follow an AR(1) process with first-order autocorrelation
coefficient φ = 0.95. The cross-name correlation coefficient ρ is set to be 0.5. The unconditional
default probabilities over time are obtained from Table 2.1.

If a mortgage has not defaulted, the interest payments received from it are used to pay the
interest specified on the MBS from top to bottom. Thus, the cash inflow is used to pay the senior
tranche first (6% of the remaining principal of the senior tranche at the beginning of the month).
The residual amount, if any, is used to pay the mezzanine tranche, after that the subordinate tranche,
and any still remaining funds are collected in the equity tranche. If the cash inflow passes a tranche
threshold but does not cover the following tranche, it is prorated to the following tranche. Any
residual funds after all the non-equity tranches have been paid add to the principal of the equity
tranche. Principal payments are processed analogously. We assume a recovery rate of 50% on
the outstanding principal for defaulted mortgages. The 50% loss of principal is deducted from
the principal of the lowest ranked outstanding MBS. This means that the equity tranche covers
the principal loss first. If there is no principal left in the equity tranche, the subordinate tranche
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Table 2.1: Default Probabilities Through Time (F (τ)).

Subprime
Time (Month) 12 24 36 72 144
Default Probability 0.04 0.10 0.12 0.13 0.14

Prime
Time (Month) 12 24 36 72 144
Default Probability 0.01 0.02 0.03 0.04 0.05

covers the remaining loss and so on upwards. In order to capture MBS price performance through
time, we calculate the present value of all cash flows received from each MBS tranche and average
across 1000 simulations. This results in a time series of expected present values and can be viewed
as a proxy for tranche price evolution.

Before we examine the vintage correlation of the present value of MBS tranches, we look at
the time series of total principal loss across MBS tranches. In our simulations, no loss of princi-
pal occurred for the senior tranche. The series of expected principal losses of other tranches and
their sample autocorrelation and sample partial autocorrelation are plotted in Figures 2.7 and 2.8
for subprime and prime scenarios respectively. We use the same method to obtain the autocorre-
lation functions for prime mortgages as in the case of default rates. The correlograms show that
the expected loss of principal for each tranche follows an AR(1) process, although the estimated
coefficients are smaller than φ = 0.95, the first-order autocorrelation coefficient of Zv, in all cases.

The series of present values of cash flows for each tranche and their sample autocorrelation and
partial autocorrelation functions are plotted in Figures 2.9 and 2.10 for subprime and prime sce-
narios, respectively. The senior tranche displays a significant first-order autocorrelation coefficient
due to losses in interest payments although there are no losses in principal. The partial autocor-
relation functions, which have significant positive values for more than one lag, suggest that the
cash flows may not follow an AR(1) process due to the high non-linearity. However, the estimated
vintage correlation still decreases over vintages, same as in an AR(1) process, which indicates that
our findings for default rates can be extended to cash flows.

2.5 Conclusions
Default rates of subprime mortgages exhibit temporal correlation. Default events of subprime-
mortgages depend on house price changes that are serially correlated, and this serial correlation
is inherited by the sequence of defaults. We model a house price index by a common risk factor
in a Gaussian copula model. Analytical findings and simulations show that credit assets inherit
correlation of defaults across different vintages of initiation from serial correlation in the common
risk factor. The same is true in waterfall structures, used in mortgage-backed securities and col-
lateralized debt obligations. Simulation results demonstrate that when the common risk factor of
different cohorts of individual mortgages is serially correlated, the price of the MBS securitized
from these mortgages also displays serial correlation. These findings are consistent with the view
that the current financial crisis, which was triggered by a large and serially correlated arrival of
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Figure 2.7: Serial Correlation in Principal Losses of Subprime MBS
The first row plots the vintage correlation of the principal loss of each tranche. The correlation is estimated using the
sample autocorrelation function. The second row plots the partial autocorrelation functions.

subprime mortgage defaults, has its origin in the decline of the housing market.
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Figure 2.8: Serial Correlation in Principal Losses of Prime MBS
The first row plots the vintage correlation of the principal loss of each tranche. The correlation is estimated using the
correlation between the first and subsequent vintages, each of which has a Monte Carlo sample size of 1000. The
second row plots the partial autocorrelation functions of the demeaned series of principal losses.
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Figure 2.9: Cash Flows from Subprime MBS
The first row plots the vintage correlation of the cash flow received by each tranche. The correlation is estimated using
the sample autocorrelation function. The second rows plot the partial autocorrelation functions.
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Figure 2.10: Cash Flows from Prime MBS
The first row plots the vintage correlation of the cash flow received by each tranche. The correlation is estimated using
the correlation between the first and subsequent vintages, each of which has a Monte Carlo sample size of 1000. The
second row plots the partial autocorrelation functions of the demeaned series of cash flow.
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Chapter 3. Impact of Correlation Fluctua-
tions on Securitized Structures

3.1 Introduction
The financial crisis precipitated by the subprime mortgage fiasco has focused attention on the use
of Gaussian copula methods in pricing and risk managing CDOs involving subprime mortgages.
Gorton (2008) has analyzed the role of structured mortgage backed securities (MBS) vehicles in
the subprime crisis. In this paper we study, both theoretically and numerically, Gaussian default
modeling and its sensitivity to changes in default correlation over time. Our method avoids some
typical pitfalls of using copulas over extended time periods by using the notion of vintage of
a portfolio, rather than its age, an important distinction. In brief, this means we examine, at a
fixed time, a sequence of portfolios which have been issued at different initiation times, hence of
different vintages, in the past. The different vintages across time are connected through a serial
correlation parameter, which we hold fixed for this study. An extensive study of vintage correlation
is carried out in Hillebrand, Sengupta, and Xu (2010).

One concern about the simple Gaussian copula model of Li (2000), which assumes a static cor-
relation of default between different assets in the portfolio, is that the value of default correlation
migrates over time (for example, see Servigny and Renault (2002) and Das, Freed, Geng, and Ka-
padia (2006)). To address this concern, Andersen and Sidenius (2005), Berd, Engle, and Voronov
(2007), and Hull, Predescu, and White (2009) allow default correlation to vary. The dynamics of
default correlation have important implications for risk management. As is shown by Andersen
and Sidenius (2005), introducing dynamics into default correlation changes the loss distribution of
CDO tranches. It is natural to ask then, how exactly default correlation dynamics affect the distri-
bution of CDO tranche prices. It is of interest to know if the manner in which default correlation
changes matters. We explore a model where the default correlation changes more smoothly than
the simple regime switching scenario of Andersen and Sidenius (2005). We also study how tranche
price distributions are affected when we introduce dynamics into both default correlation and the
state variable.

As mentioned before, we consider MBS tranches of many subsequent vintages. Both the state
variable and default correlation are assumed to be stochastic across vintages. We examine the
impact of the dynamics of the state variable and default correlation on tranche prices, as measured
roughly through the expected value of cash flows. We also allow the smoothness of the change
in default correlation to vary and inspect its impact on the tranche price distribution. We find
that some of our results depend on the sensitivity of the tranche price to the change in default
correlation, which in turn depends on the seniority of the MBS tranche. To study the impact of a
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change in default correlation, we slice the full investing spectrum of an MBS into a large number of
thin tranches, which we refer to as ‘high-frequency’ tranching. The presence of such thin tranches
in subprime MBS portfolios has been noted by Gorton (2008). Through a set of Monte Carlo
simulations, we are able to study the impact of the dynamics of default correlation on the prices of
such tranches.

This paper is organized as follows. Section 3.2 describes a typical MBS vehicle and our models.
We conduct a set of Monte Carlo simulations in Section 3.3 to examine the prices of a two-tranche
MBS. We assume a regime-switching model for the default correlation and study the effects on the
distribution of tranche prices. We then impose a more general logistic transition structure on the
dynamics of default correlation. This model nests, as one limit point, the constant default correla-
tion model and, as another limit point, the regime-switching default correlation model. In Section
3.4, we study an MBS with high-frequency tranching. We numerically estimate the sensitivities of
the tranche prices to a change in default correlation in a static model. We explore how dynamic
default correlation affects the serial correlation and overall distributions of tranche prices.

3.2 Description of the Products and Models
The function of an MBS vehicle is to allocate capital from investors with a spectrum of risk tol-
erance to borrowers. Suppose there are investors labeled by interest rates r1 < . . . < rI that they
seek, and there are borrowers whose risk levels qualify them for loan rates of r′1 < . . . < r′B.
An MBS portfolio pools together the funds from the investors and issues mortgage loans to the
borrowers from this pool (of course, the same considerations apply to other asset-backed loans).
More accurately, the interest rates ri label tranches of the portfolio, which the investors may pur-
chase. The allocation of risk of defaults in the loans to the different investors/tranches is a critically
important task in the structuring of such an investment vehicle. An active market place in the se-
curities (investments) would generate market-implied rates ri, or, more precisely, tranche prices,
but pricing any derivative product for such tranches would require a good model of the correlated
default behavior of the mortgages. Errors in the modeling of such default behavior would show
up either as arbitrage opportunities or, more seriously, as market instabilities. Copula models for
default correlation have proved to be most useful in practice, despite serious theoretical drawbacks.
More theoretically sound models may require a large number of parameters to be estimated, and
each such parameter would itself be a source of possible error in risk management.

In this paper we consider V portfolios, issued at time instants

T1 < T2 < . . . < TV ,

with the j-th portfolio consisting of N mortgages. We assume, as an idealized situation, that
each mortgage has a maturity of only one period. If the mortgage defaults during that period, all
principal is lost. Otherwise, the mortgage receives full principal value at maturity. We construct
two or more tranches of MBS from each portfolio of mortgages.

In principle, the labels Tv might indicate something other than time (geographic or industry
sector, for instance). However, we will refer to v, as the vintage of the portfolio, and for the
purpose of this paper the vintage interpretation is more appropriate than are other interpretations
of v. The performance of the MBS are examined at a certain time, say time T . The expected value
of the cash flow received by each tranche of MBS of vintage v is calculated conditional on the
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information available at vintage v. This conditional expected value of cash flows can be regarded,
in this simplified setup, as the price of the MBS.

The default behavior of mortgage i in the portfolio of vintage v is governed by a random
variableXv,i. IfXv,i is below a threshold cv, then mortgage i in vintage v has defaulted. Therefore,
the default probability of a mortgage is

P(Xv,i < cv) = Fv,i(cv), (3.44)

where Fv,i is the standard cumulative distribution function of Xv,i. There is no model yet.
In the one-factor Gaussian copula model, there are independent standard Gaussian variables Zv

and εv,1, . . . , εv,N , such that
Xv,j =

√
ρvZv +

√
1− ρv εv,j. (3.45)

Thus the assumption is that the variablesXv,j are jointly Gaussian, with each being standard Gaus-
sian, and have the following specific correlation structure:

E[Xv,iXv,j] = ρv ∈ [0, 1]. (3.46)

Recall that for jointly Gaussian variables, each of mean 0, the joint distribution is completely
determined by the pairwise covariances.

Following Anderson and Sidenius (2005), we will allow the possibility that the correlation
parameter ρv is dependent on the stochastic state variable Zv, and then take

Xv,j =
√
ρvZv + κεv,j +m, (3.47)

where κ and m are parameters that ensure Xv,j has mean 0 and variance 1. Intuitively, Zv can
be viewed as a state variable that determines the conditional default probability for mortgages of
vintage v. For these variables, we assume the following serial correlation behavior: the variables
Z1,..., ZV are also jointly Gaussian with correlations

E[ZvZv′ ] = φ2
v,v′ ∈ [0, 1], (3.48)

where φv,v′ ≥ 0.
In the case of continuous-time vintage v ∈ [0, V ], the process

v 7→ Zv

is Gaussian, with Zv having mean 0 and variance 1 for each v. For instance, Zv = a(v)Bb(v), for a
Brownian motion v 7→ Bv, and a(·) and b(·) are suitable functions which determine the correlation
φv,v′ .

In this paper, for simplicity, we always assume that Zv follows an AR(1) process of the form:

Zv = φZv−1 +
√

1− φ2uv, v = 0, 1, · · · , V (3.49)

where Z0 and uv are all standard Gaussian variables.
Note that unlike the ‘traditional’ use of the copula model, we do not apply the copula model to

one portfolio over different time instants; instead we are considering different portfolios issued at
different times (thereby of different vintages).

We have studied this model extensively in Hillebrand, Sengupta, and Xu (2010), the main
results of which may be summarized as:
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1. Default rates exhibit vintage correlation if and only if the state variable Zv has serial corre-
lation. Moreover, in the large portfolio limit, the vintage correlation approaches a limiting
value determined by the magnitude of serial correlation and the value of default correlation.

2. Vintage correlation of default rates is positively correlated with serial correlation in the state
variable Zv.

In the present paper we explore situations where there may be stochastic fluctuation in the
default correlation parameter ρv with respect to the vintage parameter v in particular, a transition
between a high correlation regime and a low correlation regime. We then examine the impact on
the tranche prices, as measured through the expected value of cash flows.

3.3 Impact of Dynamics of Default Correlation on Low-Frequency
Tranches

3.3.1 Constant Default Correlation
In this section, we study the impact of dynamics in the state variable on MBS tranche price distri-
butions. For this purpose, we hold the default correlation constant and let the state variable vary
across vintages.

We construct 2500 vintages by simulating one path of the state variables Zv, where v =
1, 2, . . . , 2500. For each vintage, we simulate a cohort of N = 100 homogenous mortgages. Each
mortgage has a principal of $1. To reduce computational burden, these mortgages are assumed to
have a life time of one period. A mortgage is assumed to receive no cash flow if a default event
happens during its life time and to receive full principal otherwise.

From each cohort of mortgages, we construct 100 units of mortgage backed securities (MBS).
Each unit of the MBS has a principal of $1. There are two tranches of our simplified MBS.
The senior tranche consists of the top 50% of the face value of all mortgages created in each
vintage. The equity tranche consists of the bottom 50%. The prices of each tranche of vintage v
are simulated as the expected value of the cash flow received by each tranche conditional on the
value of Zv. The underlying procedure of the simulation is:

1. A series of 2500 state variables Zv is simulated with i.i.d standard Gaussian distribution.

2. For each Zv, the default behavior of a cohort of N = 100 mortgages are simulated according
to equations (3.44) and (3.47). The unconditional default probability for each mortgage is
fixed at 50%, meaning we keep cv in equation (3.44) fixed at 0. At this stage, we keep the
default correlation parameter ρv = 0.5 constant. The cash flows received by each tranche of
MBS at each vintage are calculated according to the simulated mortgage default behavior.

3. Step (2) is repeated 100000 times, and the expected values of the cash flows received by
each tranche of MBS for each vintage are estimated. These expected values can be viewed
as the tranche prices.

Note that in our simulation, we only simulate one series of Zv. This implies that the simulated
series of prices follows one realization of the path of tranche prices observed at a later date T .
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Figure 3.11: Histograms of Tranche Prices when Zv Has Different Values of Serial Correla-
tion
In these figures, we plot the histogram of tranche prices across vintages. The tranche price is simulated as the expected
value of cash flow received by a certain tranche of a certain vintage. In our simulations, we construct 2500 vintages, so
there are 2500 prices for each tranche. In the first column, the state variable Zv is white noise. In the second column,
Zv follows an AR(1) process described in equation (3.49) with φ = 0.5. In both columns, ρv = 0.5 assumes to be
constant across vintages. The unconditional default probability is assumed to be 50%.

Therefore, the unconditional distribution of these prices is comparable to the distribution of a
series of observed historical prices of MBS of subsequent vintages. The histograms of tranche
prices are shown in the first column of Figure 3.11.

We then let Zv be serially correlated according to equation (3.49), where φ = 0.5. The his-
togram of the simulated tranche prices in this case are shown in the second column of Figure 3.11.
Comparing the two columns of the figure, it appears that there is no significant difference in the
two cases. This finding is verified by the Quantile-Quantile (QQ) plot of the price distributions
shown in Figure 3.12. In the first column of this figure, we display the QQ plot of the distribution
of tranche prices when Zv is not serially correlated against the tranche price distribution when Zv
is serially correlated. It can be seen from the figure that the two distributions are very similar.
This result indicates that the dynamics in Zv do not affect the unconditional distribution of tranche
prices.

3.3.2 Regime-Switching Default Correlation
We now allow the default correlation parameter ρv to vary stochastically across vintages. To model
the dynamics of ρv, we follow Andersen and Sidenius (2005) and use a regime-switching model.
Specifically, we set

ρv = ρl · 1{Zv≥Z∗} + ρu · 1{Zv<Z∗}, (3.50)
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Figure 3.12: QQ Plot: φ = 0 Versus φ = 0.5

In these figures, we display the quantile-quantile plot of tranche prices when Zv has no serial correlation (horizontal
axis) versus tranche prices when Zv follows an AR(1) process where the first order coefficient φ = 0.5 (vertical axis).
In the first column, the value of ρv is constant across all vintages. In the second column, the value of ρv varies across
vintages according to equation (3.50), where ρl = 0.3, ρu = 0.7. The unconditional default probability is assumed to
be 50%.

where ρl = 0.3, ρu = 0.7, Z∗ = 0. This means that the value of ρv assumes a lower value 0.3 when
the state variable Zv is positive and assumes a higher value 0.7 when the state variable is negative.
This is consistent with the empirical finding that default correlation tends to be higher when the
overall economy is in a bad state. Compared with our previous model, the mean of ρv remains the
same. In doing this, we insulate the impact on default behavior caused by the dynamics of ρv from
that caused by a change in the absolute level of ρv.

Note that the tranche price can be positively or negatively correlated with the value of default
correlation according to the seniority of the tranche. (For example, Meng and Sengupta (2011)
provide a detailed analysis of the sensitivities of tranche prices to change in default correlation.)
This means that the dynamics of ρv described above have different impact on prices of different
tranches. Since the price of a tranche is generally positively correlated with the value of Zv, the
dynamics of ρv exaggerate the effect of Zv on tranches whose prices are negatively correlated with
default correlation. For example, the price of a senior tranche is generally negatively correlated
with the value of default correlation. When the value of Zv is high, not only the conditional default
probability is low but the default correlation is also low if ρv follows equation (3.50). Thus in this
case, a senior tranche benefits from a small ρv as well as a low conditional default probability.
Similarly, the dynamics of ρv alleviate the effect of Zv on tranches whose prices are positively
correlated with default correlation. This may in turn affect the overall distribution of tranche
prices.

Since ρv is now assumed to be a random variable that is dependent on Zv, the state variable for
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Figure 3.13: The Histograms of Tranche Prices Over Vintages
In these figures, we plot the histogram of tranche prices across vintages, where the state variable Zv is assumed to
follow an AR(1) process with the first order coefficient φ = 0.5. The tranche price is simulated as the expected value
of cash flow received by a certain tranche of a certain vintage. In our simulations, we construct 2500 vintages, so there
are 2500 prices for each tranche. In the first column, the value of ρv is fixed at 0.5. In the second and third columns,
the value of ρv is changing between 0.3 and 0.7 according to equation (3.53). In the fourth column, the value of ρv

assumes a regime-switching model specified by equation (3.50), where ρl = 0.3, ρu = 0.7. The unconditional default
probability is assumed to be 50%.

each vintage,Xv,j in equation (3.45) no longer has an unconditional standard Gaussian distribution.
In the model for the state variable in equation (3.47), which we repeat here:

Xv,j =
√
ρvZv + κεv,j +m,

where Z0 and εv,j are standard Gaussian variables, we now use the parameters (see Andersen and
Sidenius (2005))

κ =
√

1− Var(
√
ρvZv), (3.51)

and
m = −E(

√
ρvZv). (3.52)

The first and fourth columns in Figure 3.13 compare the histograms of tranche prices in the case
where ρv is constant and in the case where ρv varies according to equation (3.50). As can be seen,
for the senior tranche, when ρv varies, the likelihood of either receiving full payment or receiving
nothing increases. In other words, the distribution of senior tranche prices has fatter tails when
ρv varies than when it is constant. For the equity tranche however, the exact opposite happens.
The likelihood of either getting full payment or receiving no payment decreases. These results
are intuitive. Since the price of a senior tranche is negatively correlated with ρv, the dynamics
of ρv, modeled by equation (3.50), amplified the effect of Zv on tranche prices, increasing the
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Figure 3.14: QQ Plot of Constant ρv vs Varying ρv
In these figures, we display the quantile-quantile plot of tranche prices when default correlation is constant versus
tranche prices when default correlation is stochastic. In all figures, the horizontal axis denotes the case where ρv is
constant. The vertical axis denote the case where ρv varies across vintages. In the first column, the value of ρv has
a logistic transition model according to equation (3.53), where γ = −1. In the second column, the value of ρv has
a logistic transition model according to equation (3.53), where γ = −5. In the third column, the value of ρv has a
regime-switching model and varies between 0.3 and 0.7 according to equation (3.50). The state variable Zv is assumed
to follow anAR(1) process where the first order coefficient φ = 0.5. The unconditional default probability is assumed
to be 50%.

probabilities of either a very high or very low default rate. For the equity tranche, its price is
positively correlated with default correlation. Thus, the assumed dynamics of default correlation
alleviate the effect of Zv, making the tranche less likely to receive either zero or full payment.
These findings are also supported by Figure 3.14. In the third column of Figure 3.14, we display
the QQ plot of the distribution of tranche prices when ρv is constant against the distribution of
tranche prices when ρv assumes a regime-switching model. It is clear from this figure that when ρv
is stochastic relative to when ρv is constant, the equity tranche price has a distribution with thinner
tails while the senior tranche price has a distribution of fatter tails. We also notice that the same
can be concluded if Zv does not have serial correlation. This can be seen from the first and fourth
columns in Figures 3.15 and the third column in Figure 3.16, where we set Zv to have no serial
correlation.

Again, the dynamics of Zv do not seem to affect the unconditional distribution of prices even
when ρv is stochastic. This can be seen in Figure 3.17. In the first column of the figure, we fix the
autocorrelation parameter of Zv to be zero, so Zv is a series of white noises. In the second column,
Zv follows an AR(1) process with φ = 0.5. In both columns, we allow ρv to change according to
equation (3.50). Note that even though the state variable Zv has different serial correlations, the
distributions of tranche prices are almost identical between the two columns. The QQ plot of the
two distributions, which can be seen in the second column of Figure 3.12, confirms that these two
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Figure 3.15: The Histograms of Tranche Prices Across Vintages
The state variable Zv is assumed to have no serial correlation. The tranche price is simulated as the expected value of
cash flow received by a certain tranche of a certain vintage. In our simulations, we construct 2500 vintages, so there
are 2500 prices for each tranche. In the first column, the value of ρv is fixed at 0.5. In the second and third columns,
the value of ρv is changing between 0.3 and 0.7 according to equation (3.53). In the fourth column, the value of ρv

assumes a regime-switching model specified by equation (3.50), where ρl = 0.3, ρu = 0.7. The unconditional default
probability is assumed to be 50%.

distributions are indeed the same. This is likely due to the fact that a change in serial correlation
only affects the conditional distribution ofZv but not its unconditional distribution. Therefore, only
the conditional distribution of tranche prices changes while the unconditional distribution remains
the same.

3.3.3 Logistic Transitional Default Correlation
A regime-switching model for ρv as described in the last section is intuitive, consistent with em-
pirical findings, and allows efficient calibration to market prices. (See for example, Andersen and
Sidenius (2005).) However, it does have one major drawback in that the true default correlation
is unlikely to assume just two values. To address this issue, we allow the default correlation pa-
rameter to change between two values “smoothly”, meaning that ρv is a smooth function of Zv.
Specifically, we assume a logistic transition model for the default correlation parameter ρv,

ρv = ρl + (ρu − ρl)
1

1 + exp(−γ(Zv − c))
. (3.53)

With this setup, ρv can take any values between ρl and ρu according to the value of Zv. When
the value of γ is negative, the value of ρv decreases smoothly towards ρl as Zv increases. As
Zv decreases, ρv increases smoothly towards ρu. Note that γ determines the smoothness of the
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Figure 3.16: QQ Plot of Constant ρv vs Varying ρv
In these figures, we display the quantile-quantile plot of tranche prices when default correlation is constant versus
tranche prices when default correlation is stochastic. In all figures, the horizontal axis denotes the case where ρv is
constant. The vertical axis denotes the case where ρv varies across vintages. In the first column, the value of ρv has
a logistic transition model according to equation (3.53), where γ = −1. In the second column, the value of ρv has
a logistic transition model according to equation (3.53), where γ = −5. In the third column, the value of ρv has a
regime-switching model and varies between 0.3 and 0.7 according to equation (3.50). The state variable Zv is assumed
to have no serial correlation. The unconditional default probability is assumed to be 50%.

transition of ρv. The smaller the absolute value of γ, the smoother is the transition. For γ → −∞,
this model converges to the regime-switching model described in the sections above. On the other
hand, when γ is zero, it degenerates into the constant ρv model.

In our paper, we fix ρl = 0.3, ρu = 0.7, and c = 0. Note that by using this specification, we
manage to keep the mean value of ρv = 0.5. The relationship between ρv and Zv when γ = −1,−5
can be seen in Figure 3.18. We follow the same steps as in Sections 3.3.2 except that we replace
the regime-switching model for ρv with the logistic transition model. We let Zv follow an AR(1)
process according to equation (3.49) with φ = 0.5.

The histograms of the tranche prices are displayed in the second and third columns of Figure
3.13. The QQ plots of the distributions of tranche prices when ρv assumes logistic transition
models against the distribution of tranche prices when ρv is constant are displayed in the first and
second columns of Figure 3.14. As can be seen, compared with the case where ρv is constant, the
equity tranche prices exhibit thinner tails while the senior tranche prices exhibit fatter tails. This
is consistent with our findings in Section 3.3.2. Also note that the greater the absolute value of γ
in equation (3.53), or in other words, the less smooth the transition of ρv, the thinner the tails of
the distribution of equity tranche prices, and the fatter the tails of the distribution of senior tranche
prices. As the absolute value of γ increases to infinity, the tranche prices converge in distribution
to those when ρv follows a regime-switching model. As the absolute value of γ decreases to 0, the
tranche prices converge in distribution to the those when ρv is constant.
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Figure 3.17: Histograms of Tranche Prices when Zv Has Different Values of Serial Correla-
tion
In these figures, we plot the histogram of tranche prices across vintages. The tranche price is simulated as the expected
value of cash flow received by a certain tranche of a certain vintage. In our simulations, we construct 2500 vintages, so
there are 2500 prices for each tranche. In the first column, the state variable Zv is white noise. In the second column,
Zv follows an AR(1) process described in equation (3.49) with φ = 0.5. In both columns, ρv assumes a regime
switching model as is described in equation (3.50). The unconditional default probability is assumed to be 50%.

We also consider the case where Zv does not have serial correlation. The results are shown in
the second and third columns of Figure 3.15. Their QQ plots are shown in the first and second
columns of Figure 3.16. As can be seen, the pattern of the histograms of tranche prices when Zv
are white noise is very similar to the case where Zv has serial correlation. This is also consistent
with our findings in Section 3.3.2.

3.4 Impact of Dynamics of Default Correlation on High-Frequency
Tranches

We study now the situation where the full risk spectrum for investors is subdivided into a large
number tranches each of thin width. We call such a situation high frequency tranching. As pointed
out by Gorton (2008), subprime MBS portfolios included very thin tranches.

3.4.1 Sensitivity of High-Frequency Tranche Prices to Default Correlation
As illustrated in the section above, imposing dynamics on default correlation has different effects
on the price distribution of different tranches. This is because the sensitivity of tranche prices to
a change in default correlation is different for each tranche. For example, holding everything else
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Figure 3.18: Relationship Between ρv and Zv
In this figure, 10000 Zv are generated with i.i.d standard Gaussian distribution. The corresponding values of ρv are
calculated according to equation (3.53), where ρl = 0.3, ρu = 0.7, c = 0.

constant, the value of an equity tranche increases when default correlation increases, while the
value of a senior tranche decreases.

Since the sensitivity of price with respect to default correlation of a tranche with arbitrary
seniority and size is unclear, we cannot deduce from Section 3.3 the impact of the dynamics of
default correlation on an arbitrary tranche. To better understand how a change in default correlation
affects tranche prices, we slice each MBS portfolio into many thin tranches instead of just two
tranches. We estimate numerically the prices of all these high-frequency tranches of a fixed vintage
for different values of default correlation. These prices can be used to calculate the price of any
larger tranche that consists of a set of small tranches by simply summing up the prices of these
smaller tranches.

Specifically, we slice each MBS into 100 equal-sized small tranches. Each tranche has a prin-
cipal of $1 at initiation. For different values of ρv, the expected values of cash flows received
by these tranches are estimated using Monte Carlo simulation. Figure 3.19 shows the case where
we fix the unconditional default probability at 50%. The figure shows that the prices of all the
tranches of relatively high seniority decrease as ρv increases and the prices of tranches of relatively
low seniority increase as ρv increases.

We also estimated the high-frequency tranche prices when the unconditional default probabil-
ity assumes other values. These can be found in Figure 3.20. In all cases, the tranche price is
positively correlated with default correlation when the tranche seniority is below a certain level,
which we call transition level. The tranche price is negatively correlated with default correlation
when the seniority is above that level. The position of the transition level (its distance from the
bottom tranche) is determined by the unconditional default probability. The higher the uncondi-
tional default probability, the higher the transition level. In other words, the price as a function of
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Figure 3.19: The Sensitivity of Tranche Price to ρ

seniority has a transition with locus at a certain threshold whose position is positively correlated
with the value of unconditional default probability.

3.4.2 Sensitivity of High Frequency Tranche Prices to Dynamic Default Cor-
relation

In the previous section, we have fixed the vintage v and analyzed the relationship between high-
frequency tranche prices and default correlation in a static manner. Now we introduce the vintage
dimension into the analysis. extending results in Sections 3.3.1 and 3.3.2 to the case of 100 high-
frequency tranches of MBS rather than just two tranches.

Again, we generate 2500 vintages of mortgages whose unconditional default probability is
fixed at 50%. We assume the state variable Zv to be serially correlated. We assume that Zv follows
an AR(1) process described in equation (3.49), where the AR(1) coefficient φ = 0.5. We first
let the default correlation parameter ρv = 0.5. The expected values of the cash flow received by
each tranche at each vintage v = 1, 2, · · · , 2500 are estimated using Monte Carlo simulations. We
present here series of prices of five representative tranches (out of 100 tranches in total) — the
tranches at 10% level from the bottom of the portfolio, at 30% level, at 50% level, at 70% level,
and at 90% level.

We then let ρv change across vintages and examine how the dynamics of ρv affect the distribu-
tion of tranche prices across vintages.In Figure 3.21, we compare the histograms of tranche prices
when the default correlation parameter ρv is fixed at 0.5 and when ρv switches between 0.3 and 0.7
according to equation (3.50) or (3.53). The corresponding QQ plots are shown in Figure 3.22. We
can see from this figure that the distributions of tranche prices are obviously different for a constant
ρv and for a varying ρv. Furthermore, the differences in distribution vary across tranches. For ex-
ample, for a thin slice of MBS tranche created at the 50% level from the bottom of a mortgage pool,
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Figure 3.20: The Sensitivity of Tranche Price to ρ

the distribution of its tranche prices across vintages have thinner left tail when ρv is time-varying
compared with when ρv is constant. On the other hand, for a thin MBS tranche at 90% level of
a mortgage pool, the distribution of its tranche prices has fatter tails when ρv is dynamic relative
to when ρv is constant. Also notice that when ρv has a logistic transition structure, the resulting
tranche prices converge in distribution to constant-ρv tranche prices as γ approaches zero. They
converge in distribution to regime-switching-ρv tranche prices as γ decreases to negative infinity.

A noteworthy observation is that for certain tranches, such as the 90% tranche in Figure 3.21,
the distortion of the price distribution caused by the dynamics of ρv is relatively small. This fact
suggests that for certain tranches, the simple Gaussian copula model is good enough to model
tranche prices as long as it correctly specifies the mean value of default correlation. On the other
hand, for certain tranches such as the 50% tranche, the distortion of price distribution from the
baseline model is relatively big, suggesting that a simple Gaussian Copula model is inappropriate to
capture the distribution of tranche prices when default correlation is indeed varying across vintages.

This observation also holds when Zv does not exhibit serial correlation. This can be seen in
Figure 3.23 and 3.24 where we set Zv to be a series of i.i.d. standard Gaussian variables.

3.5 Conclusion
We find that introducing dynamics into the state variable does not affect the distribution of tranche
prices across vintages. On the other hand, the dynamics of default correlation do influence the
distribution of tranche prices. The smoothness of the change of default correlation also matters. If
the default correlation changes smoothly according to the value of Zv, the distortion tends to be
small, and vice versa.

The distortions of distributions caused by the dynamics of default correlation parameter ρv is
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Figure 3.21: The Histograms of High-Frequency Tranche Prices Over Vintages
In the first column, the value of ρv is fixed at 0.5. In the second and third column, the value of ρv changes between
0.3 and 0.7 according to equation (3.53), with γ = −1 in the second column and γ = −5 in the third column. In the
fourth column, the value of ρv switches between 0.3 and 0.7 according to equation (3.50). The state variable Zv is
assumed to follow an AR(1) process where the first order coefficient φ = 0.5. The unconditional default probability
is assumed to be 50%.

determined by seniority of the tranche. In general, if the tranche price is positively correlated with
default correlation, the distribution of the price of the tranche tends to have fatter tails when ρv
is negatively correlated with the conditional default probability. The exact opposite is true for a
tranche whose price is negatively correlated with default correlation.

The findings above prompt us to study the sensitivity of high-frequency tranching prices to
change in default correlation. We find that the tranche price as a function of the seniority is a tran-
sition with locus at a threshold whose distance from the bottom of the MBS portfolio is positively
correlated the unconditional default probability.

The results in this paper have important implications for risk management. If the default cor-
relation changes across vintages either in a regime-switching model or in a logistic transition, our
findings suggest that a Gaussian copula model that assumes a constant default correlation ρv un-
derestimates the default risk of a senior tranche while overestimating the default risk for an equity
tranche, even if it correctly characterizes the mean value of ρv and the true unconditional default
probability.
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Figure 3.22: QQ Plot of Constant ρv vs Varying ρv
In these figures, we display the quantile-quantile plot of high-frequency tranche prices when default correlation is
constant versus tranche prices when default correlation is stochastic. In all figures, the horizontal axis denotes the case
where ρv is constant. The vertical axis denotes the cases where ρv varies across vintage. In the first column, the value
of ρv has a logistic transition model according to equation (3.53), where γ = −1. In the second column, the value of
ρv has a logistic transition model according to equation (3.53), where γ = −5. In the third column, the value of ρv

has a regime-switching model and varies between 0.3 and 0.7 according to equation (3.50). The number in percentage
in front of each row indicates the position of that tranche. For example, the number 10% on the first row means that
the tranche of that row is located at the 10% position from the bottom of the MBS portfolio. The state variable Zv is
assumed to follow an AR(1) process where the first order coefficient φ = 0.5. The unconditional default probability
is assumed to be 50%.
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Figure 3.23: The Histograms of High-Frequency Tranche Prices Over Vintages
In the first column, the value of ρv is fixed at 0.5. In the second and third column, the value of ρv changes between
0.3 and 0.7 according to equation (3.53), with γ = −1 in the second column and γ = −5 in the third column. In the
fourth column, the value of ρv switches between 0.3 and 0.7 according to equation (3.50). The state variable Zv is
assumed to have no serial correlation. The unconditional default probability is assumed to be 50%.
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Figure 3.24: QQ Plot of Constant ρv vs Varying ρv
In these figures, we display the quantile-quantile plot of high-frequency tranche prices when default correlation is
constant versus tranche prices when default correlation is stochastic. In all figures, the horizontal axis denotes the case
where ρv is constant. The vertical axis denotes the cases where ρv varies across vintage. In the first column, the value
of ρv has a logistic transition model according to equation (3.53), where γ = −1. In the second column, the value of
ρv has a logistic transition model according to equation (3.53), where γ = −5. In the third column, the value of ρv

has a regime-switching model and varies between 0.3 and 0.7 according to equation (3.50). The number in percentage
in front of each row indicates the position of that tranche. For example, the number 10% on the first row means that
the tranche of that row is located at the 10% position from the bottom of the MBS portfolio. The state variable Zv is
assumed to have no serial correlation. The unconditional default probability is assumed to be 50%.
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Chapter 4. Predicting Equity Premia with
Variance Risk Premia

4.1 Introduction
Whether equity premia are predictable is an everlasting topic in finance. While many return predic-
tors such as price-earning ratio, dividend-price ratio, and book-to-market ratio have been proposed
in the past, the predictive power of these variables are usually low. The prediction regression’s
in-sample R-squares are often below 1% when monthly data are used (for example, see Welch and
Goyal (2008)). A recent paper by Bollerslev, Tauchen, and Zhou (2009) however, finds that the
variance risk premium of the S&P500 can explain a large portion of variations in excess market
returns. The good predictive power of the market variance risk premium for return prompts us to
test the forecast power of individual stock’s variance risk premia for monthly equity premia.

Similar to the definition of equity premia, variance risk premium is the difference between
risk neutral and objective expectation of future variance. Bollerslev, Tauchen, and Zhou (2009)
construct variance risk premium as the difference between model-free implied variance and ex post
realized variance. Model-free implied variance was introduced by Britten-Jones and Neuberger
(2000). It is the variance of the underlying asset implied by observed option prices under no-
arbitrage conditions. Unlike Black-Scholes implied variance, the derivation of model-free implied
variance requires no assumption of the option pricing model. Jiang and Tian (2005) propose a
simple method to numerically calculate model-free implied variance from observed option prices.

Bollerslev, Tauchen, and Zhou (2009) use the sum of five-minute intraday squared returns as
the measure for ex post realized variance. While model-free implied variance can be viewed as a
good approximation of risk neutral expectation of future variance (for example, see Jiang and Tian
(2005) and Bollerslev, Gibson, and Zhou (2008)), the ex post realized variance is likely not a good
proxy for objective expectation of future variance. This prompts us to decompose their measure
of variance risk premium into two components. The first component is defined as the difference
between implied and expected value of realized variance. The second component represents the
difference between expected value and ex post realized variance.

In this paper, we test the predictive power of variance risk premia for returns using individual
stock data. The usage of individual stock data has advantages and disadvantages. The major dis-
advantage is that we do not have access to the data of model-free implied variances for individual
stocks. We have to use Black-Scholes implied variance as a substitute, which is an biased esti-
mate of risk neutral expectation of future variance and contains less information than model-free
implied variance (Day and Lewis (1992), Lamoureux and Lastrapes (1993), and Jiang and Tian
(2005)). The main advantage is that the sample size increases significantly as the number of stocks
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increases. This helps to avoid spurious results that can easily results from a small sample size.
Despite the fact that we use the Black-Scholes implied variance instead of the model-free im-

plied variance, we find that the variance risk premia constructed as the difference between implied
variance and ex-post realized variance of individual stocks have predictive powers for an individ-
ual stock’s monthly excess returns. Also, the forecast accuracy increases greatly when the first two
lags of the variance risk premia are included as additional predictors. Moreover, each component
of the variance risk premium serves as a predictor by itself. When both components and their
first two lags are used as explanatory variables, they can explain about 8% of the variations in the
monthly equity premium.

The outline of the paper is as follows. In Section 4.2, we describe the data we use in the chapter.
We examine the predictive power of variance risk premia and theirs lags in Section 4.3. In Section
4.4, we decompose the variance risk premium into two parts and show their predictive power for
returns. Section 4.5 explores a method to estimate the impact of the two components on future
equity premia without suffering measurement errors introduced in the decomposition process. In
Section 4.6 we summarize the main conclusions.

4.2 Data Description
We use non-overlapping monthly data. The whole sample period is from January 1995 to July
2009. The sample period in which we study the predictive power of variance premium on equity
return is from January 2000 to July 2009. We focus on our study on stocks which were/are in the
Dow Jones Industrial Average (DJIA) index during the sample period. We leave out the stocks
whose NYSE ticker symbol had changed during the period.6 The ticker symbols and names of the
selected stocks are listed in Table 4.2. To ensure the non-overlapping property, we only use the
implied variance data on the last trading day of each month. We use realized kernels computed
from two-minute intraday return data as daily realized variance. Our choice of kernel is Tukey-
Hanning with order 2 introduced by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008). The
average daily value is used for the realized variance in each month. We list the description and
source of each variable below. Summary statistics of these variables are given in Table 4.3.

1. Book-to-Market Ratio:

The book value is the difference between total assets and total liabilities of a firm. The
data of total assets and total liabilities are extracted from the Standard & Poor’s Compustat
North America database. These are quarterly data. We linearly interpolate to obtain monthly
values.

The market value is the product of number of outstanding common shares and current stock
price. The data of number on the outstanding common shares are extracted from the Com-
pustat database. These are quarterly data. We linearly interpolate to obtain monthly values.

The book-to-market ratio is the ratio of book value to market value for each stock. Following
Kothari and Shanken (1997) and Welch and Goyal (2008), for the months from March to

6A change in a stock’s ticker symbol implies that the corresponding company has merged with another company.
When this happens, the stock’s realized variance series exhibits a structure break at the time of the mergence, which
poses difficulty for us to estimate LRGARCH model.
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Table 4.2: List of Stocks.

Ticker Name Implied Variance Realized Variance Variance Premium Equity Premium (%)
AA Alcoa Inc 7.302 5.495 1.794 −1.364
AXP American Express Co 6.019 4.843 1.160 −0.416
BA Boeing Co 3.921 2.723 1.193 0.073
CAT Caterpillar Inc 4.308 3.324 0.965 0.268
DD DuPont Co 3.124 2.596 0.529 −0.450
DIS Disney Walt Co 4.457 2.950 1.522 0.041
GE General Electric Co 4.196 3.428 0.746 −1.269
HD Home Depot Inc 4.490 3.407 1.097 −0.900
IBM Int’l Business Machines 2.896 1.913 0.992 −0.259
INTC Intel Corp 5.801 3.866 1.969 −0.779
JNJ Johnson & Johnson 1.798 1.328 0.479 −0.053
KO Coca Cola Co 1.866 1.421 0.451 0.032
MCD McDonalds Corp 3.251 2.251 1.008 0.848
MMM Minnesota Mining & Mfg Co 2.401 1.709 0.697 0.018
MO Philip Morris Cos Inc 3.012 1.901 1.123 0.723
MRK Merck & Co Inc 3.360 2.637 0.694 −0.637
MSFT Microsoft Corp 3.642 2.440 1.209 −0.346
PFE Pfizer Inc 2.944 2.107 0.836 −0.977
PG Procter & Gamble Co 1.694 1.267 0.427 0.276
UTX United Technologies Corp 3.102 2.158 0.951 0.484
WMT Wal Mart Stores Inc 2.546 1.881 0.675 −0.278

December, this is computed by dividing book value at the end of the previous year by market
value at the end of the current month. For the months of January and February, this is
computed by dividing book value at the end of two years ago by market value at the end of
the current month.

2. Dividend-Price Ratio:

The dividend data are extracted from the Compustat database. We use a one-year moving
average of these data as our variable for dividends. The dividend price ratio is the log dif-
ference between dividends and current price. The dividend-yield ratio is the log difference
between dividends and lagged price.

3. Dow Jones Industrial Average Index Log Return:

The DJIA log-return variable is constructed using DJIA index monthly close price data,
which are obtained from Compustat North America database. The DJIA log-return variable
is scaled by

√
T , where T is the number of trading days in the month. It is scaled this way

to match the scaled version of the realized variance variable.

4. Earning-Price Ratio:

The earning data are extracted from the Compustat database. We use a one-year moving
average of these data as our variable for earning. The earning price ratio is the ratio between
earning and current price.

5. Equity Premium:
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Table 4.3: Summary Statistics.

Variable Sample Start Sample End Mean Std. Dev. Min Max
Book-to-mkt ratio Jan. 2000 Jul. 2009 0.266 0.171 −0.052 2.377
Dividend-price ratio Jan. 2000 Jul. 2009 −4.156 1.041 −10.000 −1.917
DJIA Log Return Jan. 2000 Jul. 2009 −0.197 0.460 −15.153 10.079
Earning-price ratio Jan. 2000 Jul. 2009 0.054 0.028 −0.217 0.215
Equity premium Jan. 1995 Jul. 2009 −0.065 1.891 −14.073 13.583
Implied variance Jan. 2000 Jul. 2009 4.177 4.036 0.431 45.875
Realized variance Jan. 1995 Jul. 2009 2.862 3.474 0.163 62.730
V P Jan. 2000 Jul. 2009 1.087 2.201 −29.083 21.979
V Pa Jan. 2000 Jul. 2009 1.187 1.936 −8.305 27.440
V P b Jan. 2000 Jul. 2009 −0.101 1.531 −29.387 6.056

Equity premium is the difference between monthly stock log-return and market risk-free
rate. The risk-free rate is the one-month average U.S. treasure bill rate. Data are collected
from the Center for Research in Security Prices (CRSP) database.

The equity premium variable is scaled by
√
T , where T is the number of trading days in the

month. It is scaled this way to match the scaled version of realized variance variable.

6. Implied Variance:

Original data of implied volatility are obtained from Bloomberg under the variable name
“History PUT IMP VOL”. The description of the data from Bloomberg is:

RK075 - HIST PUT IMP VOL (Hist. Put Implied Volatility) Implied volatility
calculated from a weighted average of the volatilities of the two closest options.
For all securities, the contract used is the closest pricing contract month that is
expiring at least 20 business days out from today.

These daily data are collapsed to monthly data by keeping only the last entry of the previous
month as the value for last month. The raw data represent the implied volatility for the
coming year. To use these data in the paper, we first square them to obtain implied variance
variable. We then divide this variable by 252 to get average daily implied variance.

7. Realized Variance:

We use trade and quote data to construct daily realized variance according to Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2008). The trade and quote data are obtained from
the Trade and Quote (TAQ) database through Wharton Research Data Service (WRDS).
The monthly variable of realized variance represents the sample average of daily realized
variance.
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Figure 4.25: Variance Risk Premium and Its Components
The figure shows variance risk premium variable we constructed according to equation (4.54) and its two components
defined in equation (4.55). The sample period extends from January 2000 to July 2009.

4.3 Variance Risk Premium
Following Bollerslev, Tauchen, and Zhou (2009), we start by constructing a series of variance
premia for each stock i according to the equation:

V Pi,t = IVi,t −RVi,t−1, (4.54)

where IVi,t is the implied variance of stock i at the last trading day of month t − 1, normalized
to daily value; RVi,t−1 is the average realized variance of stock i in month t − 1. This definition
ensures that the predictor is observable at time t. Summary statistics of this variable are given in
Table 4.3. The cross sectional mean of the series over time is plotted in Figure 4.25. The time
series mean of the variance risk premium for each individual stock is listed in Table 4.2. It is
noteworthy that all of the stocks in our sample have positive variance risk premia on average.

We run a pooled linear regression using V Pi,t as explanatory variable to forecast individual
stock excess return. The result is given in Column A of Table 4.4. Robust clustered standard errors
(Rogers (1993)) are reported in all of our pooled OLS regressions7. The estimated coefficient of
variance risk premium is positive and significant at 5% level. This implies that a positive (negative)
variance risk premium leads to higher (lower) excess return for individual stocks. The changes in
variance premium explain about 0.7% of the variations in future monthly returns. This finding is
consistent with Bollerslev, Tauchen, and Zhou (2009) who also report a positive coefficient of the
variance risk premium when using monthly data of S&P500 index.

7Bollerslev, Tauchen, and Zhou (2009) show that, with finance panel data set like the one we have for this paper,
clustered standard errors are unbiased as they account for the residual dependence created by the firm effect, while
standard and panel data version of Newey-West (Newey and West (1987)) error estimators are biased.
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Table 4.4: Predictive Power of Variance Risk Premium.

Column A B C D E
R2 0.007 0.038 0.005 0.011 0.055
Coeff.(S.E.)
V Pt 0.073(0.027) 0.041(0.026) - - 0.061(0.024)
V Pt−1 - 0.125(0.028) - - 0.140(0.026)
V Pt−2 - 0.061(0.034) - - 0.078(0.034)
V P ′t - - - 0.001(0.009) -
V P ′t−1 - - - 0.037(0.016) -
V P ′t−2 - - - 0.007(0.012) -
Book-to-mkt ratio - - −0.270(0.234) - −0.755(0.212)
Dividend-price ratio - - 0.127(0.055) - 0.204(0.051)
Earning-price ratio - - 0.675(2.384) - 2.679(1.623)
Sample size 2145 2373 2394 2331 2373

This table reports estimated coefficients from pooled OLS regressions. The dependent variable is the equity premium
of individual stocks. The sample period extends from January 2000 to July 2009. Robust-clustered standard errors are
reported in the parentheses.8 Variable V P is constructed according to equation (4.54). Variable V P ′ is the difference
between implied variance and ex-post squared return. Other explanatory variables are defined in Section 4.2.

The current value of the variance risk premium by itself is a good predictive factor for individ-
ual stock returns. For comparison, we use more conventional predictive variables such as book-to-
market ratio, earning-price ratio, and dividend-price ratio to forecast equity premium. The result
can be seen in Column C of Table 4.4. Variance risk premia explain more variations in individual
stock excess returns than all those three traditionally popular predictors combined.

Moreover, when we include lagged values of variance risk premia as explanatory variables,
the forecast accuracy increases significantly. The regression result is given in Column B of Table
4.4. The R2 equals 3.8% in this case, indicating a better monthly stock return predictive power
for variance risk premium than most other predictors in the literature. (For example, see Welch
and Goyal (2008).) The predictive power of lagged values of variance risk premia implies it has
both short run and long run impacts on excess return. Similar findings have been proposed by
Adrian and Rosenberg (2008) who find that volatility risk can be broken into short run and long
run components to predict equity premia. It is noteworthy that most of the predictive power of
variance risk premium stems from its first order lag. In this regression, neither the current value of
variance risk premium nor its second order lag has estimated coefficients significant at 5% level,
while the first lag of variance risk premium has a coefficient significant at 1% level.

Note that the usage of realized variance constructed by high frequency data is crucial in fore-
casting excess return as is pointed out by Bollerslev, Tauchen, and Zhou (2009). To test the robust-
ness of our finding, we create another measure of variance risk premium with name V P ′, using
monthly sums of squared returns to replace RVi,t−1 in equation (4.54). The regression result is
reported in Column D of Table 4.4. While V P ′i,t and its first two lags still have predictive power,
it is much lower than that of V Pi,t and its lags. Moreover, the estimated coefficients before V P ′i,t
and V P ′i,t−2 are not statistically significant.

We also conduct the “kitchen-sink” regression where we use both variance risk premia and
conventional predictive variables as explanatory variables. The result is reported in Column E of
Table 4.4. We find that adding conventional predictors into the regression does not reduce the
predictive power of variance risk premia. On the contrary, the predictive power of variance risk
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premia appears to increase in this case. The coefficients of current variance risk premium and its
two lags are all significant at 5% level and their magnitudes are greater than before.

4.4 Variance Risk Premium Decomposition
While we have created a variance risk premium variable that serves as a good return predictor,
the variable we construct according to equation (4.54) is slightly different from the conventional
definition of variance premium. Similar to the definition of the equity premium, the variance risk
premium should be defined as the difference between risk neutral and objective expectations of
future variance. While the implied variance in equation (4.54) can be viewed as a proxy for risk
neutral expectation of the future stock return variance, the lagged value of realized variance is
past variance rather than an expected value of future variance. In light of this, we decompose our
variance risk premium variable in the following way:

V Pi,t = IVi,t −RVi,t−1 = (IVi,t − R̂Vi,t) + (R̂Vi,t −RVi,t−1), (4.55)

where R̂Vi,t is the conditional expectation of realized variance for stock i in month t:

R̂Vi,t = E(RVi,t|Ft−1). (4.56)

where Ft−1 denotes the collection of information up to time t− 1. We define

V P a
i,t := IVi,t − R̂Vi,t; V P b

i,t := R̂Vi,t −RVi,t−1. (4.57)

This decomposition is quite straightforward. The first component, V P a is by definition the
actual variance risk premium if implied variance can be viewed as risk neutral expectation of future
variance. The second component, V P b is the expected change in future variance. While the first
part clearly has the potential to predict stock excess returns, the second part has also been found to
have return predictability in the literature (for example, see Adrian and Rosenberg (2008)).

In order to test the predictive power of each part, an essential task is to have a measure of the
expectation of future realized variance. If we set the expectation as the realized variance in the past
month so that

R̂Vi,t = RVi,t−1, (4.58)

our decomposition in equation (4.55) degenerates back to equation (4.54). However, a single
lagged value of realized variance is likely a very noisy measure of expectation for future variance.
It is better to utilize all the historical information available. There are many existing models for
predicting future variance using historic stock price data, such as ARCH and GARCH. For exam-
ple Day and Lewis (1992) and Lamoureux and Lastrapes (1993) used GARCH to predict future
variances and compare them to implied variances. In this paper, we apply a model called Log
Realized GARCH (LRGARCH). It is a model introduced by Hansen, Huang, and Shek (2011),
which is used to jointly model return and realized measures of variance. One of the advantages of
this model over ARCH and GARCH is that it can predict future realized variance by incorporating
the information of both stock returns and historical realized variance.

We use a LRGARCH(1, 1) model with the following structure:

ri,t = µ+
√
hi,tzi,t, (4.59)
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log(hi,t) = ω + β log(hi,t−1) + γ log(RVi,t−1), (4.60)

log(RVi,t) = ξ + φ log(hi,t) + τ1zi,t + τ2(z2
i,t − 1) + σuei,t. (4.61)

where ri,t is stock i’s excess return in month t, and ei,t are assumed to be i.i.d standard Gaussian
variables. The numbers µ, ω, β, γ, ξ, φ, τ1, τ2, σu are model parameters. The realized variance in
the next period can be predicted as follows:

R̂Vi,t = E(RVi,t|Ft−1) =
exp(ξ + φ log(hi,t) + 0.5σ2

u + 0.5τ 2
1 − τ2)√

(1− 2τ2)
. (4.62)

To obtain R̂Vt, we need to estimate the LRGARCH model for each stock. In order to have
enough degrees of freedom to estimate the LRGARCH parameters properly, we assume that these
parameters are constant across stocks. We use a rolling window of 5 years to estimate the model
at each month and obtain R̂Vt.9 Once we have R̂Vt, we use them to decompose V P into V P a

and V P b according to equation (4.55). The plots of the cross-sectional means of the two series are
shown in Figure 4.25. Table 4.3 shows that V P a is positive on average while V P b has a mean close
to zero. The predictive powers of V P a and V P b are tested by running pooled OLS regressions.
The results are given in Table 4.5.

When V P a
t is used as the only predictor, it can explain 0.5% of the variations in individual

stock excess return (Column C of Table 4.5). Correspondingly, V P b
t explains 0.1% of future return

variations. Both of them have positive coefficient. However, their coefficient are not significant
at 5% level. Jointly, V P a

t and V P b
t explain 0.7% of variations in equity premium (Column G of

Table 4.5), indicating a similar predictive power as V Pt.
Even though the current values of V P a and V P b lack significant predictive power, when lagged

values of them are added as additional predictors, their predictive power increases sharply. Vari-
able V P a

t and its two lags explain 5.3% of changes in future excess return (Column D of Table
4.5), which is better than V P and its two lags. This implies that constructing variance risk pre-
mium variable using predicted realized variance instead of ex-post realized variance improves its
predictive power. Variable V P b

t and its two lags explain 2% of changes in future excess return
(Column D of Table 4.5). Put together, these two components and their lags exhibit very good
predictive power. This is shown in Column H of Table 4.5. As can be seen, after we decompose
V Pt and its lagged value into two parts, the R2 increases from 3.7% to 8.4%.

Examining the estimated coefficients before the explanatory variables, we notice that the reason
behind the jump in forecast accuracy is that the lags of V P a

t and V P b
t have opposite effects on

future excess return. For example, the first lag of V P a
t has a large positive impact on future return

while the first lag of V P a
t has a small negative impact. When they are summed together, the two

forces offset each other, resulting in a small positive impact on future return from the first lag of
V Pt. Therefore, the decomposition of V P is crucial for a better forecast of the equity premium.

4.5 Modified Log-linear Realized GARCH Model
While we have found outstanding return predictive power from the two components of the vari-
ance risk premium, there is one concern in the approach above. Since we need to estimate an

9We have data for stock excess return and realized variance back to January 1995.
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LRGARCH first to decompose V P into two parts, additional estimation errors are introduced into
the process. Simply speaking, the objective expectation of future variance R̂Vi,t obtained from
the two-step procedure contains significant measure errors. This may cause our estimation of the
predictive power of each component of the variance risk premium to be biased. To address this
issue, we design a procedure that combines estimation and prediction in one step.

We modify the LRGARCH model to include predictors in the return function. Specifically, the
model we propose is the following:

rt = µ+ Xa +
√
htzt, (4.63)

log(hi,t) = ω + β log(hi,t−1) + γ log(RVi,t−1), (4.64)

log(RVi,t) = ξ + φ log(hi,t) + σuei,t.
10 (4.65)

where X is a row vector of return predictors and a is a column vector of parameters. When we
use two components of variance premium and their lags as forecast variables, the return function
becomes

rt = µ+
3∑
j=1

aj(V P
a
t−j+1) +

3∑
j=1

bj(V P
b
t−j+1) +

√
htzt. (4.66)

where
V P a

i,t = IVi,t − R̂Vi,t; V P b
i,t = R̂Vi,t −RVi,t−1, (4.67)

where

R̂Vi,t = E(RVi,t|Ft−1) =
exp(ξ + φ log(hi,t) + 0.5σ2

u√
(1− 2τ2)

. (4.68)

Estimating the vector a this way, we eliminate the measurement error problem associated with the
predicted value of R̂Vi,t.

Using different variables as predictors, we estimate our model by maximum likelihood. The
results are reported in Table 4.6. In Column A, we can see that V Pt and its first lags have a positive
impact on excess return. Now the current value of V P has a negative but small and insignificant
coefficient. The magnitude of the estimated coefficient of its first lag is positive and significant and
slightly larger than that in the pooled OLS regression. Overall, V Pt and its lags explain 3.1% of the
variations in excess return. The R2 is only slightly lower than that in the pooled OLS regression.
Note that the pooled OLS regression achieves the highest R2 possible as it minimizes the sum of
squared residuals.

When V P a
t and its lags are used as regressors in the return function (Column B in Table 4.6),

the result is also similar to that of the pooled OLS regression. V P a
t now has a negative and

significant coefficient. In the pooled OLS regression, this coefficient is negative and insignificant.
Overall, V P a

t is estimated to explain 4.2% of the variations in equity premium.
The estimated impact of V P b

t and its lags on excess return is somewhat different from what
the pooled OLS regression shows. In this case, V P b

t has a positive but insignificant coefficient
while in the pooled OLS the estimated coefficient is positive and significant. The coefficient of

10We have removed the leverage function from the measurement funciton (equation (4.65)). This is because when
variance risk premia enter into the return function, the measurement function contains log(RVi,t) on the left-hand
side and expected value of RVi,t on the right-hand side implicitly if the leverage function remains. This renders the
underlying data generation process impossible.
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V P b
t−1 is now positive but small and statistically insignificant while that coefficient is negative and

significant in the pooled OLS. Despite those discrepancy, the main predictive power of V P b still
comes from its second order lag which has a large positive coefficient. This is the same as in the
OLS regression. Overall, V P b

t is estimated to explain 1.8% of variations in future excess return.
When both components of V Pt and their lags are used as predictors, the forecast accuracy

again increase sharply. In Column D of Table 4.6, we see that those variables can explain 7.3% of
variations in excess return. According to the best of our knowledge, no other variables have been
found in the literature to have such a good predictive power for monthly stock excess returns.

According to Bollerslev, Tauchen, and Zhou (2009) and Bollerslev, Gibson, and Zhou (2008),
the variance risk premium can predict stock returns because it is likely a proxy for time-varying
risk aversion. While we use individual stock variance risk premia as predictors in this paper,
it is possible that individual variance risk premia only serve as an approximation of the market
variance risk premium. Therefore, they are also proxies for market risk aversion. They can predict
individual stock equity premia because they can affect variations in the market risk premium.

To test the theory above, we form a new variable by subtracting Dow Jones Industrial Average
index monthly log-returns from individual stock monthly log-returns. The resulting variable can
be viewed as a proxy for idiosyncratic excess returns. If individual stocks’ variance risk premia can
predict equity premia only because they serve as proxies for market risk aversion, they should have
no predictive power on idiosyncratic excess returns. We use pooled OLS to test the forecast power
of variance risk premium variables on idiosyncratic excess returns. The results are reported in
Table 4.7. It can be seen that the predictive power of variance premia has decreased sharply. V Pt,
V P a

t , and V P b
t each alone have no predictive power for idiosyncratic excess returns. However,

the second order lag of V P a still has significant predictive power. When we use V P a
t , V P b

t , and
their first two lags as predictors, they can explain about 2% of the variations in idiosyncratic excess
return.

The findings above have two important implications. First, an individual stock’s variance risk
premium can predict excess returns mainly because it is correlated with market risk aversion or
maybe some other market risk factors. Second, an individual stock’s variance risk premium seems
to also represent certain idiosyncratic characteristics of each stock. Thus, it appears to have some
forecast power for the part of equity premium that is in excess of market risk premium.

4.6 Conclusion
In sum, we find that an individual stock’s variance risk premium constructed as the difference
between implied variance and ex post realized variance has good predictive power for the equity
premium. The forecast accuracy can be greatly improved if this variable is properly decomposed
into two parts. The predictive power of the variance risk premium mainly stems from its correlation
with certain market risk factors such as time-varying risk aversion. Nevertheless, an individual
stock’s variance risk premium also represents certain idiosyncratic characteristics of that stock, and
can explain future variations in the equity premium in excess of the market premium. Also, forecast
accuracy increases when lags of the variance risk premium are added as additional predictors.
This implies that there exist both short-run and long-run effects of variance risk premia on excess
returns.
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Table 4.6: Modified LRGARCH Model.

Column A B C D
R2 0.031 0.043 0.018 0.073
Coeff.(S.E.)
V Pt −0.024(0.027) - - -
V Pt−1 0.157(0.027) - - -
V Pt−2 0.004(0.025) - - -
V Pat - −0.062(0.032) - −0.053(0.032)
V Pat−1 - 0.247(0.035) - 0.272(0.036)
V Pat−2 - −0.093(0.031) - −0.106(0.032)

V P bt - - 0.035(0.053) 0.163(0.055)
V P bt−1 - - 0.043(0.052) −0.016(0.055)

V P bt−2 - - 0.147(0.045) 0.152(0.045)
µ −0.114(0.043) −0.060(0.041) −0.017(0.030) −0.109(0.043)
ω 0.270(0.029) 0.266(0.029) 0.273(0.029) 0.276(0.029)
β 0.269(0.024) 0.276(0.023) 0.272(0.024) 0.269(0.024)
γ 0.626(0.030) 0.615(0.030) 0.627(0.030) 0.602(0.030)
ξ −0.325(0.051) −0.330(0.052) −0.330(0.051) −0.349(0.054)
φ 1.045(0.043) 1.059(0.044) 1.040(0.043) 1.085(0.047)
σ2
u 0.212(0.006) 0.212(0.006) 0.212(0.006) 0.211(0.006)

Sample size 2415 2415 2415 2415

This table reports estimated coefficients of modified LRGARCH model defined in equations (4.63) to (4.66). The
sample period extends from January 2000 to July 2009. The coefficients are estimated by maximum likelihood.
Hessian matrix are calculated numerically to obtain the standard errors for the estimated coefficients.
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Chapter 5. Asymptotic Theory for Regres-
sions with Smoothly Changing Parameters

5.1 Introduction
In this paper, we derive the asymptotic properties of the quasi maximum likelihood estimator
(QMLE) of smooth transition regressions (STR) when time is the transition variable and the regres-
sors are stationary. The consistency of the estimator and its asymptotic distribution are examined.

Nonlinear regression models have been widely used in practice for a variety of time series ap-
plications; see Granger and Teräsvirta (1993) for some examples in economics. In particular, STR
models, initially proposed in its univariate form by Chan and Tong (1986), and further developed
in Luukkonen, Saikkonen, and Teräsvirta (1988) and Teräsvirta (1994,1998), have been shown to
be very useful for representing asymmetric behavior.11 A comprehensive review of time series
STR models is presented in van Dijk, Teräsvirta, and Franses (2002).

In most applications, stationarity, weak exogeneity,12 and homoskedasticity have been imposed.
In these cases, the standard method of estimation is nonlinear least squares (NLS), which is equiv-
alent to quasi-maximum likelihood or, when the errors are Gaussian, to conditional maximum
likelihood. The asymptotic properties of the NLS are discussed in Mira and Escribano (2000),
Suarez-Fariñas, Pedreira, and Medeiros (2004), and Medeiros and Veiga (2005). Lundbergh and
Teräsvirta (1998) and Li, Ling, and McAleer (2002) consider STR models with heteroskedastic
errors. Chan, McAleer, and Medeiros (2005) study the properties of the QMLE when the errors
follow a GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model. Saikkonen
and Choi (2004) consider the case of STR models with cointegrated variables when the transition
variable is integrated of order one, and Medeiros, Mendes, and Oxley (2009) analyze a similar
model but with stationary transition variables. The case with endogenous regressors is considered
in Areosa, McAleer, and Medeiros (in press).

An important case to consider is time as transition variable in STR models. Lin and Teräsvirta
(1994) and Medeiros and Veiga (2003) consider this type of specification to construct models
with parameters that change smoothly over time. Strikholm (2006) use this transition variable to
determine the number of breaks in regression models. However, the asymptotic properties of the
QMLE in this case have not been fully understood. If time is the transition variable, asymptotic

11The term “smooth transition” in its present meaning first appeared in Bacon and Watts (1971). They presented
their smooth transition model as a generalization of models of two intersecting lines with an abrupt change from one
linear regression to another at some unknown change point. Goldfeld and Quandt (1972, pp. 263–264) generalized
the so-called two-regime switching regression model using the same idea.

12With respect to the parameters of interest.
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theory of the QML estimator cannot be achieved in the standard way, because as the sample size
T goes to infinity, the proportion of finite sub-samples goes to zero. Our solution to this problem
is to scale the transition variable t so that the location of the transition is a certain fraction of
the total sample rather than a fixed sample point. This modification allows asymptotic theory of
the QML estimator. Andrews and McDermott (1995) and Saikkonen and Choi (2004) use similar
transformations.

The outline of this paper is as follows. Section 5.2 describes the model and asymptotic prop-
erties of the QMLE. Monte Carlo simulations are presented in Section 5.3. Section 5.4 concludes
the paper. All proofs are presented in the Appendix.

5.2 Model Definition and Estimation

5.2.1 The Model
We consider the following time series regression with time-varying parameters

yt = x′tβ0 +
M∑
m=1

x′tβmf [γm(t− cm)] + εt, t = 1, 2, . . . , T, (5.69)

where εt is a martingale difference sequence with variance σ2
ε . xt is a vector of pre-determined

regressors. The function f is the logistic transition function which has the form

f [γ(t− c)] =
1

1 + e−γ(t−c) , t = 1, 2, . . . , T. (5.70)

where γ > 0 controls the smoothness of the transition and c ∈ {1, 2, . . . , T} is a location pa-
rameter. The loci cm ∈ {1, 2, . . . , T} in (5.69) are change-points. Note that when γm −→ ∞,
m = 1, . . . ,M , model (5.69) becomes a linear regression with M structural breaks occurring at
the cm.

5.2.2 Embedding the Model in a Triangular Array
Asymptotic theory for the QML estimator of the model defined above cannot be achieved the
standard way. Consider model (5.69) with M = 1. As T → ∞, the proportion of observations in
the first regime goes to zero. Since for T large,

f [γ(t− c)] = f
[
Tγ(T−1t− T−1c)

]
≈ 1{T−1t>0},

the parameter vector β0 that governs the first regime as well as the transition parameters γ and c
vanish from the model and become unidentified. Figure 5.26 illustrates this. In the simulation, γ
is set to be 0.2, c is equal to 50. In the upper plot of the figure, c is in the middle of the sample;
in the lower plot (T = 1000), the second regime dominates. QML estimation of model (5.69)
will be dominated by the second regime as the sample size increases. As the sample size goes to
infinity, the first regime vanishes and its parameters become unidentified in the estimation. In order
to obtain asymptotic theory for the estimator, the proportion of sub-samples in two regimes (before
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Figure 5.26: Same unscaled logistic transition functions with different sample sizes T = 100
& 1000. γ = 0.2; c = 50.

and after the transition) should remain constant as T goes to infinity. In other words, the shape of
the plot of the time series should remain qualitatively the same as T grows. For this purpose, we
scale the logistic transition function as

f

[
γ

(
T0

T
t− c

)]
= f

[
T−1γ (T0t− Tc)

]
; t = 1, . . . , T ; c ∈

[
T0

T
, T0

]
. (5.71)

where T0 is the actual sample size in any given data situation. Accordingly,

yt = x′tβ0 +
M∑
m=1

x′tβmf

[
γm

(
T0

T
t− cm

)]
+ εt. (5.72)

Note that a given small-sample situation is embedded in this sequence of models at T = T0.
As can be seen in (5.71), with this scaling the slope of the logistic function is decreasing with T
while the locus of the transition is increasing with T . The scaling of the time counter, T0, remains
constant. Therefore, the proportions of observations in the first regime, during the transition, and
in the last regime remain the same as T grows, and the parameters in these groups of observations
remain identified.

5.2.3 Assumptions
We denote the data-generating parameter vector as

θ0 = (β′0,0,β
′
1,0, . . . ,β

′
M,0, γ1,0, . . . , γM,0, c1,0, . . . , cM,0, σ

2
ε,0)′,
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where the (second) 0-subscript indicates the data-generating character.
We write εt(θ) such that the notation can be used for both the residuals from the estimation

and the data-generating errors:

εt (θ) = yt − g(xt;β,γ, c)

where β = (β0, . . . ,βM)′;γ = (γ1, . . . , γM)′; c = (c1, . . . , cM)′ and

g(xt;β,γ, c) = x′tβ0 +
M∑
m=1

x′tβmf

[
γm

(
T0

T
t− cm

)]
.

We use the shorthand notation εt,0 := εt(θ0), for the data-generating errors and εt = εt(θ) for the
residual evaluated at any θ.

We consider the following assumptions.

ASSUMPTION 1 (Parameter Space). The parameter vector θ0 is an interior point of Θ, a compact
real parameter space.

ASSUMPTION 2 (Errors).

1. εt,0 is a martingale difference sequence with constant variance σ2
ε > c > 0.

2. E|εt,0|q <∞ for q ≤ 4.

3. xt and εt,0 are independent.

ASSUMPTION 3 (Stationarity and Moments).

1. xt = (xA,t,xB,t)
′, where xA,t consists of stationary and ergodic exogenous variables and

xB,t is a set of lagged values of yt. The autoregressive polynomial in each regime associated
to xB,t has all roots outside the unit circle.

2. E ‖xA,t‖q <∞ for q ≤ 4, where ‖·‖ is the Euclidean vector norm.

3. 1
T

∑T
t=1 (xtx

′
t) converges in probability to Ω = E (xtx

′
t), which is symmetric positive defi-

nite.

ASSUMPTION 4 (Transition Function). g(xt;β,γ, c) is parameterized such that the parameters
are well defined.

Assumption 1 is standard in the literature and is not too restrictive in the present case as we
expect β0 to be finite, γ0 is positive and finite, and c0 ∈ [0, 1]. Assumption 2 is also standard.
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5.2.4 Quasi Maximum Likelihood Estimator
The quasi log-likelihood function is given by

LT (θ) =
1

T

T∑
t=1

`t(θ),

where
`t(θ) = −1

2

(
log 2π + log σ2

ε + ε2
tσ
−2
ε

)
.

The parameter vector is estimated by quasi maximum likelihood as

θ̂T = argmax
θ∈Θ

LT (θ), (5.73)

where Θ is the parameter space.

THEOREM 3 (Consistency). Under Assumptions 1 through 4, the quasi maximum likelihood esti-
mator θ̂T is consistent:

θ̂T
p→ θ0.

The proof is provided in the Appendix.

THEOREM 4 (Asymptotic Normality). Under Assumptions 1 through 4, the quasi maximum like-
lihood estimator θ̂T is asymptotically normally distributed:

√
T
(
θ̂T − θ0

)
d→ N

[
0, A(θ0)−1B(θ0)A(θ0)−1

]
, (5.74)

where

A(θ0) = −E

(
∂2`t
∂θ∂θ′

∣∣∣∣∣
θ0

)
,

B(θ0) = E

(
∂`t
∂θ

∣∣∣∣∣
θ0

∂`t
∂θ′

∣∣∣∣∣
θ0

)
.

PROPOSITION 2 (Covariance Matrix Estimation). Under Assumptions 1 through 4,

AT
p→ A, BT

p→ B,

where

AT (θ) = − 1

T

T∑
t=1

∂2`t
∂θ∂θ′

,

and

BT (θ) =
1

T

T∑
t=1

∂`t
∂θ

∂`t
∂θ′

,

andA,B as defined in Theorem 4.
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5.3 Small Sample Simulations
We conduct a set of Monte Carlo simulations in order to evaluate both the small-sample properties
and the asymptotic behavior of the QMLE. In particular, we consider the following models with
three limiting regimes:

Model A – Independent and identically distributed (IID) regressors:

yt = x′tβ0 +
2∑

m=1

x′tβmf

[
γm

(
t

T
− cm

)]
+ εt,

yt = 1 + x+ (−1− 2x)f

[
30

(
t

T
− 1

3

)]
+ (1 + 3x)f

[
30

(
t

T
− 2

3

)]
+ εt,

where {xt} is a sequence of independent and normally distributed random variables with
zero mean and unit variance, xt ∼ NID(0, 1), and {εt} is either a sequence of NID(0, 1) or
Uniform(−2, 2) random variables.

Model B – Dependent regressors:

yt = x′tβ0 +
2∑

m=1

x′tβmf

[
γm

(
t

T
− cm

)]
+ εt,

yt = 0.5 + 0.4yt−1 + (−0.5 + 0.5yt−1)f

[
30

(
t

T
− 1

3

)]
+ (0.5− 1.7yt−1)f

[
30

(
t

T
− 2

3

)]
+ εt,

where {εt} is either a sequence of NID(0, 1) or Uniform(−2, 2) random variables.

Different values of T are used, ranging from 100 to 5000 observations. For each value of T ,
1000 Monte Carlo simulations are repeated. When the errors are normally distributed, the esti-
mators are maximum likelihood estimators. On the other hand, when the errors are uniformly
distributed, the error distribution is misspecified and we have a quasi maximum likelihood estima-
tion setup. For sample sizes up to 300 observations, the estimation procedure did not converge in
less than 5% of the replications. These cases were discarded. The parameters γ are chosen in order
to keep the transitions neither too smooth nor too sharp; see Figure 5.27.

The results are presented in Figures 5.28–5.39. Figures 5.28–5.31 show the average bias and
the mean squared error (MSE) as a function of the sample size. Apart from the slope parameter,
the average biases are rather small for all sample sizes, models, and error distributions. Further-
more, the MSE, as expected, converges to zero as the sample size increases. With respect to the
slope parameter, the MSE is quite high for very small samples (100–300 observations) but also
goes to zero as the sample size increases. The bias is also large in small sample, but turns to be
negligible for larger sample sizes. The large biases and MSE are mainly caused by few very large
estimates (less than 1% of the cases). For example, for Model A with Gaussian errors and 100 ob-
servations, the average bias and MSE for the first slope parameter (γ̂1) are, respectively 908.82 and
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Figure 5.27: Transition function for Models A and B with 1000 observations.

106, 447, 280.55. On the other hand, the median bias is just 13.00. For 500 observations and the
same model, the average bias and MSE are 19.28 and 155, 859.76, respectively. The median bias
is just 0.66 when T = 500. This pattern is somehow expected, as it is quite difficult to estimate the
slope parameters in small samples. On the other hand, the location (c) and the linear parameters
(β) are estimated quite precisely.

Figures 5.32–5.35 present the distribution the standardized QMLE of the linear parameters of
the model (β). Some interesting facts emerge from the graphs. First, even in very small samples,
the estimate β̂0 has a distribution close to normal for all models and error distributions. Second,
the distributions of β̂1 and β̂2 have some outliers in small samples, but, as expected, they are close
to normal for very large samples (T = 5, 000).

Turning to the location parameter, Figures 5.36–5.39 show the distribution of the standardized
QMLE for c. It is quite remarkable that even for T = 100, the empirical distributions are close to
normal.
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5.4 Conclusion
In this paper, we propose asymptotic theory for the QML estimator of a logistic smooth transi-
tion regression model with time as the transition variable. Although asymptotic theory cannot be
achieved in the standard way as the transition variable is not stationary, after proper scaling, we
show that the QML estimator is consistent and asymptotically normal. The estimator is shown
to converge to the true value of the parameter at the speed of

√
T . We explore the small sample

behavior in simulations.
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Figure 5.28: Bias and mean squared error (MSE) of the QMLE of the parameters of Model
A with gaussian errors.
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Figure 5.29: Bias and mean squared error (MSE) of the QMLE of the parameters of Model
A with uniform errors.
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Figure 5.30: Bias and mean squared error (MSE) of the QMLE of the parameters of Model
B with gaussian errors.
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Figure 5.31: Bias and mean squared error (MSE) of the QMLE of the parameters of Model
B with uniform errors.

67



−10 −5 0 5 10
0

0.2

0.4

β
01

T = 100

 

 

std. qmle
N(0,1)

−20 −10 0 10 20
0

0.5

1

β
02

−20 −10 0 10
0

0.5

1

β
11

−10 0 10 20
0

0.5

1

β
12

−30 −20 −10 0 10
0

2

4

β
21

−10 0 10 20 30
0

1

2

β
22

−5 0 5 10
0

0.2

0.4

T = 250

β
01

−10 −5 0 5 10
0

0.2

0.4

β
02

−30 −20 −10 0 10
0

1

2

β
11

−10 0 10 20 30
0

1

2

β
12

−30 −20 −10 0 10
0

2

4

β
21

−10 0 10 20 30
0

2

4

β
22

−5 0 5
0

0.2

0.4
T = 5000

β
01

−5 0 5
0

0.2

0.4

β
02

−5 0 5
0

0.2

0.4

β
11

−5 0 5
0

0.2

0.4

β
12

−10 −5 0 5
0

0.2

0.4

β
21

−5 0 5
0

0.2

0.4

β
22

1

Figure 5.32: Distribution of the standardized QMLE of the linear parameters of Model A
with gaussian errors.
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Figure 5.33: Distribution of the standardized QMLE of the linear parameters of Model A
with uniform errors.
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Figure 5.34: Distribution of the standardized QMLE of the linear parameters of Model B
with gaussian errors.
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Figure 5.35: Distribution of the standardized QMLE of the linear parameters of Model B
with uniform errors.
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Figure 5.36: Distribution of the standardized QMLE of the location parameters for Model A
with gaussian errors.

72



−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
1

T = 100

 

 

std. qmle
N(0,1)

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
2

−5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
T = 250

c
1

−10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

c
2

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
T = 5000

c
1

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

c
2

1

Figure 5.37: Distribution of the standardized QMLE of the location parameters for Model A
with uniform errors.

73



−5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

c
1

T = 100

 

 

std. qmle
N(0,1)

−5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
2

−5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
T = 250

c
1

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c
2

−5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
T = 5000

c
1

−5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c
2

1

Figure 5.38: Distribution of the standardized QMLE of the location parameters for Model B
with gaussian errors.
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Figure 5.39: Distribution of the standardized QMLE of the location parameters for Model B
with uniform errors.
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Chapter 6. Summary and Conclusion

The four essays included in my dissertation contribute to the literature of econometric modeling
of risk and volatility. The first two essays study the dynamics involved in credit default risk. The
third essay explores the return predictive power of variance risk premia. The fourth essay derives
asymptotic properties of the QMLE of a specific type of logistic transition regressions.

In the first essay, we establish a link between the dynamics of default rates and that of the com-
mon risk factor. We find that default rates inherit inter-vintage correlation from the common risk
factor. For example, if the common risk factor is an AR(1) time series, default rates of mortgages
also display AR(1) structure over different vintages. This result is shown both analytically and in
simulations under a Gaussian copula framework. Furthermore, the expect values of cash flows re-
ceived by securities structured from the defaultable asset (such as MBS) are shown to have similar
temporal correlation.

In the subprime market, we identify the monthly common risk factor to be a moving average
of monthly log changes in a housing price index. This explains why default rates of subprime
mortgages of subsequent vintages display a very high value of correlation, which we define as
vintage correlation. The introduction of vintage correlation is important in the literature, not only
because it illustrates the source of the subprime crisis, but because it has practical implications for
risk management in general. Traditionally, the modeling of temporal correlation in default rates
focuses on the serial correlation of default probability of a single asset. This is often done by
modeling the dynamics of default intensity. However, the correlation of default rates between two
different vintages of assets has been largely ignored in the literature. Neglecting vintage correlation
can lead to underestimation of the portfolio risk, if the portfolio consists of credit risk of different
vintages.

In the second essay, we examine how the dynamics of default correlation affect the distribution
of tranche prices in securitized investment vehicles. We assume that the default correlation exhibits
vintage correlation, which is affected by the conditional default probability. We construct regime
switching models as well as logistic transition models for the dynamics of default correlation. We
find that the distributions of tranche prices in securitized investment vehicles are distorted by the
dynamics of default correlation. The shape of distortion is determined by seniority of the tranche.
In general, if the tranche price is positively correlated with default correlation, the distribution of
the price of the tranche tends to have fatter tails when default correlation is negatively correlated
with the conditional default probability. The exact opposite is true for a tranche whose price is
negatively correlated with default correlation.

The results in this essay also have important implications for risk management. If the default
correlation changes across vintages either in a regime-switching model or in a logistic transition
one, our findings suggest that a Gaussian copula model that assumes a constant default correlation
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underestimates the default risk of a senior tranche while overestimating the default risk for an
equity tranche.

In the third essay, we construct monthly series of variance risk premia for 21 Dow Jones stocks
during the period from 2000 to 2009. We find that variance risk premia can be used to predict
individual stocks’ equity premia. Their predictive power is greater than those of conventional
return predictors such as price earning ratio and book to market ratio. Furthermore, we apply a
Log-linear Realized GARCH model to forecast future realized variance and use it to decompose
the variance risk premium into two components. Both of these two components are shown to have
predictive powers for equity premia. The combination of these two components and their first two
lags explain about 8% of variations in monthly equity premia.

In the literature, the predictive power of variance risk premium is attributed to its correlation
with a stochastic macro economic factor such as the degree of risk aversion. While we confirm
that the correlation to macro economic factor is likely the most important source of variance risk
premia’ predictive power, we find evidences that variance risk premium also represents certain id-
iosyncratic characteristics of a stock, which can explain part of future variations in equity premium
in excess of market premium.

In the fourth essay, we propose asymptotic theories for the QML estimator of a logistic transi-
tion regression model with time as the transition variable. Logistic transition functions have been
widely applied in models where a smooth transition rather than an abrupt change in a coefficient
or variable is required. An important case is when time is used as the transition variable. However,
if this is the case, asymptotic theory of the QML estimator cannot be achieved in the standard way,
because as the sample size T goes to infinity, the proportion of finite sub-samples goes to zero.
Our solution to this problem is to scale the transition variable t so that the location of the transition
is a certain fraction of the total sample rather than a fixed sample point. we show that the QML
estimator is consistent and asymptotically normal. The estimator is shown to converge to the true
value of the parameter at the speed of

√
T .
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VAN DIJK, D., T. TERÄSVIRTA, AND P. H. FRANSES (2002): “Smooth Transition Autoregressive
Models - A Survey of Recent Developments,” Econometric Reviews, 21, 1–47.

WELCH, I., AND A. GOYAL (2008): “A Comprehensive Look at the Empirical Performance of
Equity Premium Prediction,” Review of Financial Studies, 21(4).

82



Appendix: Proofs for Chapter 5

.1 Proof of Consistency
Proof of Theorem 3. We establish the conditions for consistency according to Theorem 4.1.1 of
Amemiya (1985). We have θ̂T

p→ θ0 if the following conditions hold:

1. Θ is a compact parameter set.

2. LT (θ, εt) is continuous in θ and measurable in εt.

3. LT (θ) converges to a deterministic function L(θ) in probability uniformly on Θ as T →∞.

4. L(θ) attains a unique global maximum at θ0.

Item (1) is given by Assumption 1. Item (2) holds by definition of the quasi-maximum likeli-
hood estimator (5.73) from the definition of the normal density. For item (3) we refer to Theorem
4.2.1 of Amemiya (1985): This holds for i.i.d. data if E supθ∈Θ |`t(θ)| <∞ and `t(θ) is continu-
ous in θ for each εt. The extension to stationary and ergodic data using the same set of assumptions
is achieved in Ling and McAleer (2003, Theorem 3.1). We haveE supθ∈Θ |`t(θ)| <∞ by Jensen’s
inequality and E sup |φ(εt,θ)| <∞, where φ denotes the normal density function. The finiteness
of the last expression follows from the assumption that σ2

ε > c > 0 for some constant c. The log
density log φ(εt,θ) is continuous in θ for every εt.

Consider Item (4). By the Ergodic Theorem, E`t(θ) = L(θ). Rewrite the maximization
problem as

max
θ∈Θ

E [`t (θ)− `t(θ0)] .

Now, for a given number σ2
ε ,

E [`t (θ)− `t (θ0)] = E log

[
φ(εt,θ)

φ(εt,θ0)

]
,

= E

[
−1

2
log

σ2
ε

σ2
ε,0

− 1

2

(
ε2
t

σ2
ε

−
ε2
t,0

σ2
ε,0

)]
,

= −1

2
log

σ2
ε

σ2
ε,0

− 1

2

[
E(ε2

tσ
−2
ε )− 1

]
. (75)

We show that Eε2
t (θ) ≥ Eε2

t,0 = σ2
ε,0 and that (75) attains an upper bound at θ = θ0 uniquely.

Consider
Eε2

t (θ) = E [yt − g(xt;β,γ, c)]
2 .
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Substituting for yt = g(xt;β0,γ0, c0) + εt,0 and rearranging, we obtain

Eε2
t (θ) = E [g(xt;β0,γ0, c0) + εt,0 − g(xt;β,γ, c)]

2 ,

≥ Eε2
t,0 = σ2

ε,0.

The inequality holds from Assumption 2 (3). We have established that for any given σ2
ε , the

objective function (75) attains its maximum of

−1

2

(
log

σ2
ε

σ2
ε,0

+
σ2
ε,0

σ2
ε

− 1

)
at β = β0, γ = γ0, c = c0. Define x = σ2

ε/σ
2
ε,0, then

f(x) = −1

2

(
log x+

1

x
− 1

)
attains its maximum of 0 at x = 1, therefore the maximizer is σ2

ε = σ2
ε,0. This shows thatE(`t(θ)−

`t(θ0)) is uniquely maximized at θ = θ0.

.2 Proof of Asymptotic Normality
REMARK 1.

1. In this proof, terms will sometimes involve expectations of cross-products of the typeE(XY ),
whereX and Y are correlated random variables. Note that by the Cauchy-Schwarz inequal-
ity, we have

EXY ≤
(
EX2

) 1
2
(
EY 2

) 1
2 ,

and thus in order to show that the cross-product has finite expectation, it suffices to show
that both random variables have finite second moments.

2. By the same token, if both X and Y have finite second moments,

E(X + Y )2 ≤ EX2 + EY 2 + 2
(
EX2

) 1
2
(
EY 2

) 1
2 ,

≤ K(EX2 + EY 2),

for some K <∞.

In the outline of the proof we follow Theorem 4.1.3 of Amemiya (1985). Therefore we have to
establish the conditions

1. ∂2`t
∂θ∂θ′

exists and is continuous in an open neighborhood of θ0.

2. AT (θ∗T )
p→ A(θ0) for all sequences θ∗T

p→ θ0.

3.

B(θ0)−
1
2

1√
T

[rT ]∑
t=1

∂`t
∂θ

∣∣∣∣∣∣
θ0

d→ W (s), s ∈ [0, 1],

where W is standard Brownian motion on the unit interval.
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Item (1) is shown in Lemma 3. Item (2) needs consistency of θ̂T for θ0, which we established in
Theorem 3. It further needs uniform convergence ofAT toA, i.e.

sup
θ∈Θ
|AT (θ)−A(θ)| p→ 0.

We use Ling and McAleer (2003, Theorem 3.1) to establish this, which achieved invocation of the
Ergodic Theorem without having to show finiteness of third order derivative information. We show
the uniform convergence in Lemma 4.

Item (3) uses Billingsley (1999, Theorem 18.3) and needs (a) that {∂`t/∂θ|θ0,Ft} is a sta-
tionary martingale difference sequence and (b) that B(θ0) exists. Both with be proved in Lemma
3. The first two lemmas show a few technical properties of g(xt;β,γ, c) that are needed in the
following.

LEMMA 1. The transition function given by Equation (5.71) is bounded, and so are its first and
second derivatives with respect to γm and cm, ∀m = 1, 2, . . .M .

Proof. We will use shorthand notation f for f
[
γm
(
T0

T
t− cm

)]
below unless otherwise stated.

Defining am(t) := T0

T
t − cm, t = 1, 2 . . . , T , it is easy to verify that −∞ < −cm < am(t) ≤

T0 − cm <∞. Since the transition function has the range (0, 1), it is clearly bounded. For the first
derivative of f with respect to γm, ∀m = 1, 2, . . .M ,∣∣∣∣ ∂f∂γm

∣∣∣∣ =

∣∣∣∣ am(t)e−γmam(t)

(1 + e−γmam(t))2

∣∣∣∣ ≤ |am(t)f | <∞.

The first inequality follows from the fact that 1+e−γmam(t) > e−γmam(t) > 0. The second inequality
holds because both am(t) and f are bounded. For the second derivative of f with respect to cm,
∀m = 1, 2, . . .M , ∣∣∣∣ ∂2f

∂γ2
m

∣∣∣∣ =

∣∣∣∣∣2am(t)2e−2γmam(t)

(1 + e−γmam(t))
3 +

am(t)2e−γmam(t)

(1 + e−γmam(t))
2

∣∣∣∣∣ ,
≤

∣∣∣∣∣2am(t)2e−2γmam(t)

(1 + e−γmam(t))
3

∣∣∣∣∣+

∣∣∣∣∣ am(t)2e−γmam(t)

(1 + e−γmam(t))
2

∣∣∣∣∣ ,
≤
∣∣∣∣ 2am(t)2

1 + e−γmam(t)

∣∣∣∣+

∣∣∣∣ am(t)2

1 + e−γmam(t)

∣∣∣∣ ,
=
∣∣3am(t)2f

∣∣ <∞.
The second inequality follows from the fact that 1 + e−γmam(t) > e−γmam(t) > 0, the last inequality
holds because both am(t) and f are bounded. The proof of the boundedness of the first and second
derivatives of f with respect to cm is almost identical to the one above and is omitted for brevity.

LEMMA 2.
Let ξ := (β,γ, c), then

1. E
∥∥∥ ∂
∂ξ
g(xt;β,γ, c)

∥∥∥2

<∞.
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2. E
∥∥∥ ∂2

∂ξ∂ξ′
g(xt;β,γ, c)

∥∥∥2

<∞, where ‖·‖ denotes the standard vector and matrix norms.

Proof. We will prove the statements element by element. For statement (1),

E

∥∥∥∥ ∂

∂β0

g(xt;β,γ, c)

∥∥∥∥2

= E ‖xt‖2 <∞

by Assumption 3 (2).

E

∥∥∥∥ ∂

∂βm
g (xt;β,γ, c)

∥∥∥∥2

= E ‖xtf‖2 ≤ E ‖xt‖2 <∞,

by the fact that |f | < 1.

E

∥∥∥∥ ∂

∂γm
g(xt;β,γ, c)

∥∥∥∥2

= E

∥∥∥∥x′tβm ∂f

∂γm

∥∥∥∥2

,

≤ E ‖xt‖2 ‖βm‖
2

∣∣∣∣ ∂f∂γm
∣∣∣∣2 <∞

by Lemma 1, Assumption 1, and Assumption 3 (2). Similarly,

E

∥∥∥∥ ∂

∂cm
g(xt;β,γ, c)

∥∥∥∥2

= E

∥∥∥∥x′tβm ∂f

∂cm

∥∥∥∥2

,

≤ E ‖xt‖2 ‖βm‖
2

∣∣∣∣ ∂f∂cm
∣∣∣∣2 <∞.

For statement (2),

E

∥∥∥∥ ∂2

∂β0∂β
′
0

g(xt;β,γ, c)

∥∥∥∥2

= 0,

E

∥∥∥∥ ∂2

∂βm∂β
′
m

g(xt;β,γ, c)

∥∥∥∥2

= 0,

E

∥∥∥∥ ∂2

∂γ2
m

g(xt;β,γ, c)

∥∥∥∥2

= E

∥∥∥∥x′tβm ∂2f

∂2γ2
m

∥∥∥∥2

,

≤ E ‖xt‖2 ‖βm‖
2

∣∣∣∣ ∂2f

∂γ2
m

∣∣∣∣2 <∞.
For the second inequality, we use the fact that

∣∣∣ ∂2f
∂γ2
m

∣∣∣ is bounded from Lemma 1.
Similarly,

E

∥∥∥∥ ∂2

∂c2
m

g(xt;β,γ, c)

∥∥∥∥2

= E

∥∥∥∥x′tβm ∂f

∂2c2
m

∥∥∥∥2

,

≤ E ‖xt‖2 ‖βm‖
2

∣∣∣∣∂2f

∂c2
m

∣∣∣∣2 <∞.
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LEMMA 3.

1. The sequence
{
∂`t
∂θ

∣∣
θ0
,Ft
}
t=1,...,T

is a stationary martingale difference sequence. Ft is the

sigma-algebra given by all information up to time t.

2.

sup
θ∈Θ

E

∥∥∥∥∂`t∂θ

∥∥∥∥ <∞,
3.

sup
θ∈Θ

E

∥∥∥∥∂`t∂θ

∂`t
∂θ′

∥∥∥∥ <∞.
Proof. For part (1) of the proof, all derivatives are evaluated at θ = θ0. The nought-subscript is
suppressed to reduce notational clutter. Let ξ = (β,γ, c), as before.

E

(
∂`t
∂ξ

∣∣∣∣Ft−1

)
= E

(
− εt
σ2
ε

∂εt
∂ξ

∣∣∣∣Ft−1

)
= E

(
εt
σ2
ε

∂

∂ξ
g(xt;β,γ, c)

∣∣∣∣Ft−1

)
= 0,

since g(xt;β,γ, c) is independent of εt and its derivatives are bounded (Lemma 2).

E

(
∂`t
∂σ2

ε

∣∣∣∣Ft−1

)
= E

(
− 1

2σ2
ε

+
1

2

ε2
t

σ4
ε

∣∣∣∣Ft−1

)
= 0,

since εt has mean zero and variance σ2
ε .

For part (2) and (3) of the proof, the expressions are evaluated at any θ ∈ Θ if not otherwise
stated. The data-generating parameters will be explicitly denoted by a nought-subscript. The
process yt is data and thus evaluated at θ0 throughout.

We first consider the gradient vectors of ξ,

E

∥∥∥∥∂`t∂ξ
∥∥∥∥ = E

∥∥∥∥ εtσ2
ε

∂

∂ξ
g(xt;β,γ, c)

∥∥∥∥ ,
≤

(
E

∣∣∣∣ εtσ2
ε

∣∣∣∣2
) 1

2
(
E

∥∥∥∥ ∂∂ξg(xt;β,γ, c)

∥∥∥∥2
) 1

2

,

≤
(
Eε2

t

c

) 1
2

(
E

∥∥∥∥ ∂∂ξg(xt;β,γ, c)

∥∥∥∥2
) 1

2

<∞.

The finiteness of the second factor follows from Lemma 2 (1). For the first factor, note that

ε2
t =

(
yt − x′tβ0 −

M∑
m=1

x′tβmf [γm(t− cm)]

)2

,

=

(
x′t(β0,0 − β0) +

M∑
m=1

x′t
[
βm,0f (γm,0(t− cm,0))− βmf (γm(t− cm))

])2

.
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Therefore, there exists K ∈ N such that

ε2
t ≤ K

∣∣x′t(β0,0 − β0)
∣∣2 +K

M∑
m=1

∣∣x′t (βm,0f [γm,0(t− cm,0)]− βmf [γm(t− cm)]
)∣∣2 ,

≤ KL ‖xt‖2 +KL
M∑
m=1

‖xt‖2 ,

= KL(M + 1) ‖xt‖2 ,

where L is some positive constant. The existence of such L is guaranteed by the compactness of
the parameter space and the fact that f is bounded. Using Assumption 3 (2), it is clear that Eε2

t is
bounded.

For σ2
ε ,

E

∣∣∣∣ ∂`t∂σ2
ε

∣∣∣∣ = E

∣∣∣∣ 1

2σ2
ε

− 1

2

ε2
t

σ4
ε

∣∣∣∣ ,
≤ 1

2σ2
ε

+
1

2
E

∣∣∣∣ ε2
t

σ4
ε

∣∣∣∣ ,
=

1

σ2
ε

<∞.

This shows statement (2) of Lemma 3. Statement (3) use similar techniques in the proof. We
will only show the case of γm, which requires most work. The rest of the proof will be omitted for
brevity.

E

∣∣∣∣ ∂`t∂γm

∂`t
∂γ′m

∣∣∣∣ = E

∣∣∣∣∣ ε2
t

σ4
ε

(
∂f

∂γm

)2

x′tβmβ
′
mxt

∣∣∣∣∣ ,
≤

(
E

∣∣∣∣ ε2
t

σ4
ε

∣∣∣∣2
) 1

2 (
E |x′tβmβ′mxt|

2
) 1

2

∣∣∣∣ ∂f∂γm
∣∣∣∣2 ,

≤
(
Eε4

t

c3

) 1
2 (
E ‖xt‖4 ‖βm‖

4) 1
2

∣∣∣∣ ∂f∂γm
∣∣∣∣2 <∞.

The finiteness of E ‖xt‖4 follows from Assumption 3 (2). ‖βm‖
4 is finite due to Assumption

1. Lemma 1 ensures that the last factor is bounded. To see the finiteness of the first factor, recall
in part (2) we have shown that

ε2
t ≤ KL(M + 1) ‖xt‖2 .

It follows that
ε4
t ≤ (KL)2(M + 1)2 ‖xt‖4 .

Therefore,
Eε4

t ≤ (KL)2(M + 1)2E ‖xt‖4 <∞

by Assumption 3
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LEMMA 4. The function

gt(θ) := − ∂2`t
∂θ∂θ′

−A(θ)

where

A(θ) = −E ∂2`t
∂θ∂θ′

is absolutely uniformly integrable:

E sup
θ∈Θ
‖gt(θ)‖ <∞;

it is continuous in θ and has zero mean: Egt(θ) = 0.

Proof. ¿From the triangular inequality,

E sup
θ∈Θ
‖gt(θ)‖ ≤ E sup

θ∈Θ

∥∥∥∥ ∂2`t
∂θ∂θ′

∥∥∥∥+ E sup
θ∈Θ
‖A(θ)‖ .

If E supθ∈Θ ‖∂2`t/∂θ∂θ
′‖ < ∞, A(θ) exists and by the Ergodic Theorem, there is pointwise

convergence. Thus showing absolute uniform integrability reduces to showing that

E sup
θ∈Θ

∥∥∥∥ ∂2`t
∂θ∂θ′

∥∥∥∥ <∞.
Proving finiteness of the expected value of the supremum consists of repeated application of the
Lebesgue Dominated Convergence Theorem (Shiryaev (1996, p. 187), Ling and McAleer (2003),
Lemmas 5.3 and 5.4). We will show the statement for second derivatives element by element,
starting with β0,

∂2`t
∂β0∂β

′
0

= −xtx
′
t

σ2
ε

.

According to Assumption 2 (1) there exists a constant c such that σ2
ε > c > 0, therefore

sup
θ∈Θ

∥∥∥∥ ∂2`t
∂β0∂β

′
0

∥∥∥∥ ≤ ∥∥∥∥xtx′tc
∥∥∥∥ .

By Assumption 3 (3),

E sup
θ∈Θ

∥∥∥∥ ∂2`t
∂β0∂β

′
0

∥∥∥∥ ≤ E∥∥∥∥xtx′tc
∥∥∥∥ <∞.

For βm,m = 1, 2, . . . ,M ,

sup
θ∈Θ

∥∥∥∥ ∂2`t
∂βm∂β

′
m

∥∥∥∥ = sup
θ∈Θ

∥∥∥∥xtx′tf 2

σ2
ε

∥∥∥∥ ≤ sup
θ∈Θ

∥∥∥∥xtx′tf 2

c

∥∥∥∥ ≤ ∥∥∥∥xtx′tc
∥∥∥∥ .

The last inequality follows from the fact that |f | ≤ 1. Therefore,

E sup
θ∈Θ

∥∥∥∥ ∂2`t
∂βm∂β

′
m

∥∥∥∥ ≤ E ‖xtx′t‖c
<∞.

89



We next examine the second derivatives of the log likelihood with respect to σ2
ε ,∣∣∣∣ ∂2`t

∂(σ2
ε)

2

∣∣∣∣ =

∣∣∣∣ 1

2σ4
ε

− ε2
t

σ6
ε

∣∣∣∣ ≤ ∣∣∣∣ 1

2σ4
ε

∣∣∣∣+

∣∣∣∣ ε2
t

σ6
ε

∣∣∣∣ ,
sup
θ∈Θ

∣∣∣∣ ∂2`t
∂(σ2

ε)
2

∣∣∣∣ ≤ 1

2c2
+

1

c3
sup
θ∈Θ

ε2
t .

In order to show E supθ∈Θ

∣∣∣ ∂2`t
∂(σ2

ε)2

∣∣∣ < ∞, it is sufficient to show that E supθ∈Θ(ε2
t ) < ∞. Recall

we have already proved in Lemma 3 (2) that

ε2
t ≤ KL(M + 1) ‖xt‖2 .

It follows that
E sup

θ∈Θ
(ε2
t ) ≤ KL(M + 1)E ‖xt‖2 <∞.

To show that E supθ∈Θ

∣∣∣∂2`t
∂γ2
i

∣∣∣ <∞, consider

∣∣∣∣∂2`t
∂γ2

m

∣∣∣∣ =

∣∣∣∣∣∣∣
−
(
x′tβm

∂f
∂γm

)2

+ εt

(
x′tβm

∂2f
∂γ2
m

)
σ2
ε

∣∣∣∣∣∣∣ ,
≤ 1

c

(
∂f

∂γm

)2

|x′tβm|
2

+
1

c

∣∣∣∣ ∂2f

∂γ2
m

∣∣∣∣ |εt| |x′tβm| ,
≤ L

c

(
∂f

∂γm

)2

‖xt‖2 +
1

c

∣∣∣∣ ∂2f

∂γ2
m

∣∣∣∣ |εt| |x′tβm| ,
where L is some positive constant. The second term on the right side can be written as

1

c

∣∣∣∣ ∂2f

∂γ2
m

∣∣∣∣ |εt| |(x′tβm)| = 1

c

∣∣∣∣ ∂2f

∂γ2
m

∣∣∣∣
∣∣∣∣∣x′t(β0,0 − β0) +

M∑
m=1

x′t(βm,0fm,0 − βmfm)

∣∣∣∣∣ |x′tβm| ,
=

1

c

∣∣∣∣ ∂2f

∂γ2
m

∣∣∣∣ ∣∣x′t(β0,0 − β0)
∣∣ |x′tβm|+

∣∣∣∣∣
M∑
m=1

x′t(βm,0fm,0 − βmfm)

∣∣∣∣∣ |x′tβm| ,
≤ 1

c

∣∣∣∣ ∂2f

∂γ2
m

∣∣∣∣K ‖xt‖2 ,

where K is some positive constant. Again, the compactness of the parameter space, boundedness
of f , and stationarity of xt ensures the existence of K and L. It follows that∣∣∣∣∂2`t

∂γ2
i

∣∣∣∣ ≤
(
L

c

(
∂f

∂γi

)2

+
1

c

∣∣∣∣∂2f

∂γ2
i

∣∣∣∣K
)
‖xt‖2 .

The finiteness of the derivatives of f was shown in Lemma 1. Thus,

E sup
θ∈Θ

∣∣∣∣∂2`t
∂γ2

i

∣∣∣∣ ≤
(
L

c

(
∂f

∂γi

)2

+
1

c

∣∣∣∣∂2f

∂γ2
i

∣∣∣∣K
)
E ‖xt‖2 <∞.

90



The proof that E supθ∈Θ

∣∣∣∂2`t
∂c2i

∣∣∣ <∞ closely resembles the proof above and is omitted for brevity.

Proof of Theorem 4. The proof establishes the conditions of Theorem 4.1.3 of Amemiya (1985)
with a generalization due to Ling and McAleer (2003, Theorem 3.1). We need consistency of θ̂T
for θ0, which was shown in Theorem 3. Then we show

B(θ0)−
1
2

1√
T

[rT ]∑
t=1

∂`t
∂θ

∣∣∣∣∣∣
θ0

d→ W (s), s ∈ [0, 1],

whereW (r) isN -dimensional standard Brownian motion on the unit interval. This is condition (C)
in Theorem 4.1.3 of Amemiya (1985). The convergence follows from Theorem 18.3 in Billings-
ley (1999) if (a)

{
∂`t
∂θ

∣∣
θ0
,Ft
}

is a stationary martingale difference, and (b) B(θ0) exists. Both
conditions were shown in Lemma 3.

To satisfy condition (B) of Theorem 4.1.3 of Amemiya (1985), we have to establish

AT (θ∗T )
p→ A(θ0)

for any sequence θ∗T
p→ θ0,

AT (θ∗T ) = − 1

T

T∑
t=1

∂2`t
∂θ∂θ′

∣∣∣∣∣
θ∗T

,

and

A(θ0) = −E ∂2`t
∂θ∂θ′

∣∣∣∣
θ0

is non-singular. Conditions for the double stochastic convergence can be found in Theorem 21.6
of Davidson (1994). We need to show

1. consistency of θ̂T for θ0 (Theorem 3), and

2. uniform convergence ofAT toA in probability, i.e.

sup
θ∈Θ
|AT (θ)−A(θ)| p→ 0.

We prove uniform convergence of AT using Theorem 3.1 of Ling and McAleer (2003), who gen-
eralize Theorem 4.2.1 of Amemiya (1985) from i.i.d. data to stationary and ergodic data. This
allows the immediate invocation of the Ergodic Theorem without having to check finiteness of
third derivatives of `t as in Andrews (1992, Theorem 2). To apply Theorem 3.1 of Ling and
McAleer (2003) we need that

gt(θ) = − ∂2`t
∂θ∂θ′

−A(θ)

is continuous in θ (this also establishes condition (A) of Theorem 4.1.3. of Amemiya (1985) along
the way), has expected value Egt(θ) = 0 and is absolutely uniformly integrable:

E sup
θ∈Θ
|gt(θ)| <∞.

This was shown in Lemma 4. Thus, we have established all conditions for asymptotic normality
according to Theorem 4.1.3 of Amemiya (1985).
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Proof of Proposition 2. The proof of uniform convergence in probability of AT to A is given in
Lemma 4 and Theorem 4. We need to show uniform convergence of BT to B. We employ
Theorem 3.1 of Ling and McAleer (2003) again and show that

ht(θ) :=
∂`t
∂θ

∂`t
∂θ′
−B(θ),

is absolutely uniformly integrable, continuous in θ, and has expected value Eht(θ) = 0. The
detailed proof is in complete analogy to Lemma 4 and is omitted for brevity.
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