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ABSTRACT 

 

Networks of relationships play an important role in the social and economic operation of 

the labor market. Social connections have been shown to be crucial in influencing the transition 

and efficiency in the labor market because they can quickly spread information over large 

segments of society. In particular in ―small world‖ networks everyone can connect to others 

through very few intermediaries and information can spread far and fast over such a small-world 

network. The first chapter of this dissertation starts with the formal elements of social network 

analysis and graph theory. It then provides an overview of the emerging literature on models of 

small worlds. Networks characterized by very small characteristic path lengths, yet high 

clustering coefficients, are said to exhibit the small-world phenomenon.  

Since interactions or links in the academic labor market are observed easier than other 

labor markets, the second chapter investigates the labor market for academic economists from a 

social network perspective. The sample includes the top two hundred economics departments in 

the world and provides a separate analysis of the subset pertaining to North America. The data 

indicates the stronger links between higher ranked universities than between the universities in 

the higher and lower ranked universities. The obvious pattern of interaction in the network is that 

the top-ranked grantors place their Ph.D. economists mostly in group ranked below them.   

The small-world properties of this network are examined in the third chapter. The data 

confirms the small-world phenomenon in the economics academic network. Any two ranked 

universities can be connected through approximately three links only. Although it is shown that 

there is inequality in the placement of Ph.D. students, there are many centers of connections in 

the network. However, most of the influential universities in terms of centrality of the network 

are not the ones influential in granting doctoral degrees.    
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   CHAPTER 1: SURVEY OF MODELS OF THE SMALL-WORLD PHENOMENON 

 

1.1 Introduction 

 

Networks of relationships play an important role in the response to job opportunities because 

they can quickly spread information over large segments of society. Hence, the structure of a 

social network is a key factor in determining labor market interaction. This paper will study the 

structure and properties of such a network, as well as explore its role in the labor market.  

The infectious diseases, news and rumors can widely spread by interpersonal contact, 

from coast to coast, country to country, continent to continent over a social network, in which the 

average number of separation is very few or short links, faster than over a network, which has a 

hundred degrees of separation or too many links. In this paper, particular attention will be given 

to the network model for analyzing the small-world phenomenon proposed by Watts and 

Strogatz (1998) and Watts (1999a and 1999b). Using graph theory, the authors demonstrate that 

everyone in the world can be reached through a short chain of social acquaintances, a fact which 

results in subjective perceptions of a small world. Watts (1999b) defines a ―small‖ network as 

one in which ―almost every member of the network is somehow ‗close‘ to almost every other 

member, even those that are perceived as likely to be far away.‖ (p. 495) In other words, even if 

one travels to a completely strange place and encounters a local person with whom they have 

absolutely no friends in common, there still exist a small number of ―friends of friends‖ that 

bridge the social gap between them. The two essential, and related, properties of this ―'small 

world‖ network are:  

1. The average distance between each two members is much shorter than in a network 

generated by a random process. 
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2. The number of connections between members is much greater in comparison to a 

random network. 

This chapter is organized as follows: Section 2 will summarize briefly the existing 

literature dealing with the small-world network. Section 3 will introduce some basic notations in 

graph theory and their definitions. Their uses in explaining the small-world network 

phenomenon proposed by Watts and Strogatz (1998) and Watts (1999a and 1999b) will be 

reviewed. Sections 4 and 5 will illustrate the characteristics and applicability of small-world 

models that occur at a possible topology. A summary of the paper is presented in the last section. 

1.2 Literature Review 

 

The small-world phenomenon was first examined by Stanley Milgram (1967) through a curious 

social experiment. He addressed a number of letters to stockbrokers in Boston, Massachusetts 

and randomly distributed them to people in Nebraska, referred to as the starting participants. In 

an attempt to generate an acquaintance chain from each starter to the target, he instructed 

individuals to pass the letter down only to a first-name acquaintance of theirs. If the participant 

did not know the final addressee in person, he was not allowed to send the letter directly to them. 

Instead, he could send the letter to an acquaintance judged to be more likely to know the target. 

To prevent people from sending the document to someone who had already participated, the list 

of prior addressees was attached. All participants were volunteers. They were not paid or 

rewarded as an incentive for the completion of a chain. In order to keep track of a letter‘s 

progress and collect information at every level, Milgram asked each participant to fill out a 

―tracer‖ and mail it back to him. He found that the average ―chain length,‖ i. e., the number of 

intermediaries required to link the starter and the target, is about five. This resulted in his 

conclusion that Americans have only ―six degrees of separation‖ (as cited in Watts 1999b, p. 
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493) from anybody else. In other words, any two people in the United States of America can be 

connected through only six links. 

Although Milgram's findings were undermined because the experiment contained many 

possible sources of error, the small-world phenomenon remains a viable concept. It has been 

applied to social networks other than those based on kinship and friendship. After Brett C. 

Tjaden published a computer game, ―The Six Degrees of Kevin Bacon‖ on a University of 

Virginia's Web site based on the small-world problem, ―six degrees of separation‖ became a 

popular notion in the entertainment industry (Newman  2000).  

Tjaden used the Internet Movie Database (IMDB) to document connections between 

different actors. He postulated, facetiously, that the actor Kevin Bacon was somehow at the 

center of the movie actor network (as cited in Watts 1999a, p. 3). The Bacon-number represented 

the fewest number of steps, through roles in films, by which an individual actor or actress is 

separated from Kevin Bacon. As illustrated by Martin (2005), Kevin Costner had been in film 

with Kevin Bacon in JFK. Costner‘s Bacon-number is, then, one. Henry Winkler, on the other 

hand, had never been in a film with Kevin Bacon, but he appeared with Michael Keaton in Night 

Shift (1982) who had been in film with Kim Basinger in Batman (1989) who had been in film  

with Mickey Rourke in 9 ½ weeks (1986) who had been in film with Kevin Bacon in Diner 

(1982). This would yield a Bacon-number of four for Henry Winkler. Except, Henry Winkler 

had been in film with Clint Howard in Little Nickey (2000) and he appeared with Kevin Bacon 

in My Dog Skip (2000). So, Henry Winkler‘s Bacon-number is only two (see Figure 1.1). Thus, 

the Bacon-number measures the shortest path between two agents in the Hollywood network.  
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Figure 1.1: Sample of Bacon-number in Film Network  

 

Initially, Tjaden hypothesized that no-one who has ever been in movie in an American 

film has a Bacon-number greater than four but later found that the highest known Bacon-number 

is, in fact, eight (as cited in Watts, 1999a, p. 3).  

Another famous primary measurement of the small-world phenomenon is the Erdos-

number project. While the Bacon-number measures the distance between an individual and 

Kevin Bacon in Hollywood, Erdos-number, which was most likely first defined by Casper 

Goffman (1969), measures the collaborative distance between any mathematician and Paul 

Erdos, the great mathematician of the 20
th

 Century. Two mathematicians are considered to be 

connected if they have at least one joint paper together. Erdos published about 1401 papers in 

Mathematical Reviews and had 502 direct collaborators (Martin, 2005). These are the people 

with Erdos-number one. People who have collaborated with them, but not directly with Erdos, 

have Erdos-number two, and so forth. For example, Albert Einstein has Erdos-number two, since 

he did not collaborate with Paul Erdos, but he did publish joint research with Ernst Straus, who 

was one of Paul's major collaborators. (Grossman, 1996)  Both the Kevin Bacon Game and the 

Erdos-number Project verified that only a short chain of intermediate acquaintances connect any 

two people in the network, presenting particularly clear perspectives on the small-world 

phenomenon. 
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The small-world phenomenon was first examined mathematically by Manfred Kochen 

and Ithiel de Sola Pool (1978). Under the assumptions of independence of connections and no 

definite structure of the network, they calculated expected values of the probability (pi) that two 

randomly selected elements of a network would be connected via a shortest path consisting of i 

intermediaries. They estimated that any people is likely to be connected to any other with 

number of 2 intermediaries (three lengths of chain).  Kochen (1989) improved on Kochen and 

Pool‘s work and confirmed their conclusion that the world was probably as small as Milgram 

had shown.
1
  

Rapoport and Solomonoff (1951) was the one of the pioneer theoretical investigations of 

the small-world phenomenon. The study looked at distance in a social network. Under the 

assumption that every element had the same number of connections, Rapoport and Solomonoff 

developed the idea of a disease spreading in a randomly connected network. Starting from a first 

small infected set, they calculated the expected fraction of population to be affected eventually. 

The total infected fraction was then determined by exponentially projecting the spread of the 

disease ahead in time. The additional importance of this work lies in that the induction took into 

account some of the structural specifications of a social network. These include the tendency of 

people in the network to connect with others who bear similarities to them, the fact that 

connections are bilateral (people know each other), and that one‘s acquaintances tend to know 

each other directly, forming a dense cluster of ‗inter-acquainted‘ individuals.
2
  

Building on this study, more improved calculations were constructed by Ferraro and 

Sunshine (1964) and Skvoretz (1985).
3
 In their work, they accounted for the variable number of 

connections each person possesses in a social network. Common sense dictates that different 

                                                 
1
Both  Kochen and  Pool (1978) and Kochen (1989) was discussed by Watts (1999b, p. 497). 

2
 Rapoport and Solomonoff (1951) was discussed by  Watts (1999a, pp. 12-13).  

3
 Ferraro and Sunshine (1964) and Skvoretz (1985) were discussed by Watts, 1999a, pp. 13-14. 
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individuals‘ number of acquaintances may range widely. A person who becomes infected with 

the disease may have a number of connections equal, or less than, the person who infected him 

or her. This introduces fluctuations in the speed at which the disease spreads. Moreover, the 

spreading of the disease also depends on the strength of a person‘s social ties, as introduced by 

Granovetter (1973).  

Both Granovetter's strength of ties and Barnes‘ (1969) ―density‖ (as cited in Watts, 

1999a, p. 15), which measures how intense the connections in the network are, come very close 

to the concept of ―clustering,‖ a phenomenon defined by Duncan Watts and Steven Strogatz 

(1998) and Watts (1999a and 1999b). They were the first to propose an alternative model for the 

small-world phenomenon by using graph theory. They began by building an initial one-

dimension graph, which contains a specific number of elements n. Each element has k links to 

other elements. Then, they randomly rewired each link with probability p. They measured the 

fraction of connections in the graph to the possible number of connections, called ―the clustering 

coefficient.‖ They then measured the average shortest path by which each element can reach any 

other. This was referred to as ―the characteristic path length,‖ and was used to determine whether 

or not the graph describes a small-world network. The idea is that random rewiring introduces 

increasing amounts of ―disorder connections,‖ i. e. shortcuts between elements that super cede 

the sequential connections in the initial constructed graph. The chains between elements in the 

network get progressively shorter. Not only does the average path between elements in the 

network shrink dramatically after the introduction of shortcuts, it drops to a value which is 

almost as small as the probability that any member can meet anyone else by chance.  

Even though any element might be able to reach any other, even those in a remote cluster, 

through much shorter chains, the connections within each subset of elements remain unchanged. 
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This means that the introduction of shortcuts has a very small impact on the average density of 

connections in the entire graph. Thus, the clustering coefficient of a randomly rewired network 

can remain almost as high as the clustering coefficient in the initial graph. It is, in any case, far 

greater than the clustering coefficient in a network where no-one knows anyone else and can 

only encounter others by accident.  

It is this kind of network, with very small path length and high clustering that Watts and 

Strogatz called a ―small-world‖ network. They proceeded to investigate scientifically three 

practical cases: the network of actors in feature films, the electric power grid of the Western 

United States and the neural network of the nematode worm Caenorhabditis elegans. They found 

that all three networks exhibited a much higher degree of clustering and slightly higher 

characteristic path lengths relative to a network of strangers that meet by chance. Thus, they 

concluded that all three networks exhibit features of the small-world phenomenon. Following the 

theoretical groundwork established by Watts and Strogatz (1998) and Watt (1999a and 1999b), 

Zlatic et al. (2006) examined the Wikipedia network of articles and concluded that it also 

exhibits signature traits of the small-world phenomenon.  

1.3 Graph Theory and Network Definitions  

 

Real-life examples of small-world networks are currently studied as occurring at a possible 

topology somewhere between two extreme models. The two theoretical extremes are the 

abovementioned network of complete strangers who meet accidentally and the network where 

everyone knows everyone else. This section provides background information on graph theory 

and introduces some standard technical terms relevant to this kind of network analysis.  

 A graph G contains a set of elements in a network, shown as points in the graph and 

called vertices or nodes. The number of vertices in graph G is n. The total set of vertices in graph 
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G is V(G) = {1, 2, ..., n}. Vertices, representing the network‘s discrete elements, may stand for 

people, animals, computer terminals, organizations, institutes, etc. Any two vertices may be 

linked directly to each other by a line called edge or link, visible in the graph as the line segment 

connecting two vertices. E(G) is the total set of edges in graph G. An edge represents some sort 

of relationship between the connected elements, be it friendship, alliance, or the peculiar 

interplay between predator and prey. Figure 1.2 provides a simple example of a graph G 

containing a set of vertices V(G)={A,B,C,D,E} and a set of edges E(G)={eA,B, eB,C, eB,D , eB,E, 

eC,D, eD,E}. 

 

Figure 1.2: Graph G containing vertices and edges  

The vertices in graph G may be indirectly connected through a sequence of vertices and 

edges called a walk. A walk in which each point and each line are used only once is called a 

path. A closed path is a walk which begins and ends at the same vertex. A closed path with at 

least three distinct vertices is called a cycle. The path length is measured by the number of edges 

connecting the vertices to each other. Let d(e) be the sequential number of edges passing through 

vertices to connect one vertex to any other. In Figure 1.2, vertices A and C are not directly 

connected by an edge. Still, there exist an infinite number of walks from A to C. They are, 

however, connected through only three paths, illustrated in Figure 1.3. One possible path through 

which vertex A can reach vertex C is by using the two edges eA,B and eB,C. We can see in Figure 
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1.3a that if the sequential paths d1 and d2 are used, then the path length is 2. The second path 

(Figure 1.3b) shows that vertex A can reach vertex C by using two edges eA,B, eB,D and eD,C, 

through the sequential paths d1, d2 and d3, which would result in a path length of 3. Figure 1.3c 

illustrates a path from A to C with a length of 4. Therefore, the path length between vertices A 

and C can be 2, 3, or 4.  

 

a.                                              b.                                              c.     

Figure 1.3: A to C Paths and Path Length 

Distance (or geodesic distance) is the minimum number of edges traversed between 

vertex i to vertex j, denoted by d (i, j), i, j  V(G). In other words, distance is the shortest path 

length between one vertex and another. If vertex i cannot reach vertex j   in the graph (or no path 

between them), then d(i, j) = ∞. Figure 1.4 displays the geodesic distance of all vertices in graph 

G. For instance, the distance between vertices A and C is 2. That is d(A,C) =2. 

 

Figure 1.4: Geodesic distance 
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In graph G, the longest or maximum distance between any pair of vertices is called a diameter. It 

is denoted by D(G) where D(G) = maxi,jV(G)d(i, j). For the graph in Figure 1.4, the diameter 

equals 2 ( D(G)=2 ). 

A graph is said to be connected if any vertex can be reached by any other vertex in the 

graph. That is, any vertex can be reached by a finite number of connecting edges, forming a path 

in the graph. Vertices i and j may be connected either directly, or through a path formed by the 

set of intermediaries j1, j2, j3,…,jn. A complete graph is one in which each vertex is directly 

connected to every other vertex. The overall number of connections among vertices in the entire 

graph is a measure of the network density. The more vertices are connected to one another 

directly, the denser the graph will be. Density is more specifically defined as the proportion of 

actual edges to the possible number of edges in a completed graph. If the total number of vertices 

in the graph (its size) is n, then the total number of possible edges is n
2
-n. The density value is 

high if there are many vertices directly connected to one another, and approaches 1 if nearly all 

vertices are directly connected to one another. A completed graph has density equal to 1.  

Even if a graph is not connected, parts of it may be. A graph may be partitioned into 

various groups, called components. Within a component, all vertices can reach each other 

directly or indirectly, by paths. There is no path between all pairs of vertices in different 

components. Some isolated vertices and/or components will have no connection with the rest. 

Only the largest component is considered for social network analysis because the distance 

between two vertices inside the largest component can be measured in a finite number.  

Let the network partition of a given graph be denoted by CM(G). The graph can be 

divided into z components, CM(G)={CM1,CM2,…,CMz}, where z≥1. The graph is disconnected if 
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more than one component exists within it. A connected graph is composed of a single 

component.  

A component can be thought of as a connected subgraph, i.e., a selected subset of 

interconnecting vertices. A complete subgraph is known as a clique. A clique, then, is a subset of 

vertices in which every member is directly connected to every other. Within a single component, 

there may exist any number of cliques connected to each other. When a clique is under 

consideration as a section within its host component, it is referred to as local.   

The above framework attempts to capture the fact that, in social networks, members of 

the same clique are often acquainted with all other members. A one-to-one connection between 

two members of every social network is considered to be a relationship such as that between 

friends, neighbors, relatives, or coworkers.  

Montgomery (1991) argued that the pattern of social ties between individuals may be an 

essential factor in explaining labor market dynamics. After all, employee referrals are often 

crucial sources of employment information. They affect not only the response to job 

opportunities but also the screening of job applicants. Granovetter (1973) ventured that the 

strength of a tie between two people is a function of the amount of time spent together, 

emotional intensity, degree of intimacy, and reciprocal services. Strong ties are said to exist 

when two people knew each other well over long periods of time. They indicate an intimate 

relationship.  

Strong ties are considered more likely to possess the transitivity property because they 

suggest an affinity between two people of similar character, which often ‗overflows‘ to include a 

third person. A social network exhibits a number of triads in which each person knows the other 

two people. In any part of the graph where two edges connect three vertices, there is potential for 
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a triad to form. If strong ties connect A with B and with C, then B and C are more likely to 

connect to each other and complete the triad. Vertices connected by strong ties are more likely to 

be similar to each other, which means both vertices B and C are similar to A and therefore likely 

to build a direct relationship. Within the same community or clique, one-to-one ties connecting 

each pair of members tend to be strong and clustered.  

Weak ties are said to connect people who contact one another less frequently and whose 

relationships are acquainted or casual. Weak ties are less likely to possess the transitivity 

property. The vertex B, if connected to A by a weaker tie, is less likely to connect to vertex C 

which is connected to A by a similar weak tie. The chance of triad completion should be less in 

the case of A-B and A-C weak ties than strong ties (see Figure 1.5). 

 

a. Strong ties and triad completion         b. Triad is less likely to occur with weak ties 

Figure 1.5: Triad 

While edges connecting vertices within the same clique are viewed to be strong ties, 

edges spanning two different cliques, known as bridges, are considered to be weak. A bridge is 

defined as a link in a network that provides the only path between two vertices. If the bridge is 

removed, a new component (or subgraph) will be formed. This is because the bridge is the only 

route through which information can flow between two cliques in the network. However, in a 

large network such as a human society, there may be multiple routes connecting two vertices in 
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different cliques. With the increase of distance following the removal of a direct link, the 

communication between these two vertices may become costly and subject to distortion along 

the way.  

Figure 1.5a illustrates that vertices A and B are connected with a strong tie. A is 

simultaneously connected to C with a strong tie, creating the possibility of a tie between B and 

C. If a triad is formed, A can now choose to reach C by traversing through B, who will then 

connect to C. The path between A and B, thus is not a bridge. However, in Figure 1.5b, the ties 

between vertices A and B, and between A and C, are weak. A direct connection between B and C 

is unlikely. In this case, the path AB may perform the function of a bridge, as a sole connection 

between B and C, and their respective cliques. We can say then, that strong ties are less likely 

and weak ties are more likely to be bridges.  

How does this model inform our understanding of labor market dynamics within a social 

network? Here is an example illustrated by Bonacich (2006). A person‘s close friends are in his 

own social circle or subgroup, all connected by strong ties and likely to know one another. Since 

people connected by strong ties are more likely to share sources of information, the information 

they can provide in turn is quite homogenous. The tip a job seeker receives from friends or 

relatives is likely to be more than necessary. On the other hand, one‘s acquaintances are likely to 

move in different social circles or subgroups, only accessible through weak ties. Yet, it is 

through such ties that information between subgroups flows. Although a few weak ties may 

result in very little communication between two cliques, they can be highly effective in bridging 

social distance. This is so because a person‘s casual or remote acquaintances are much more 

likely to be exposed to different sources. The job seeker, then, can receive new information from 

them that is unavailable from his friends, relatives, or close acquaintances.  
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Granovetter (1973) made a case for ―the strength of weak ties.‖ He selected a random 

sample of professional, technical, and managerial job changers living in a Boston suburb and 

asked them how they arrived at the job information. He found that most employees had found 

their present jobs through an acquaintance that they seldom contact. He concluded that weak ties 

are an important resource in increasing a person‘s job mobility and exposure to new job 

opportunities.  

Quantitative measure of the strength of ties is based primarily on frequency, which is 

embedded in the definition of strength. In the case of collaborations between pairs of scientists, 

studied by Newman (2004), the frequency of co-authorship between two scientists, estimated as 

the number of co-authored papers over a given time period, can be used as a proxy for the 

strength of their tie. To refine this estimation, one needs to assign those papers different weight 

proportional to the time the two authors spent working together. If a paper has n co-authors then, 

while working on this paper, author i divides his time between his n-1 co-authors. The strength 

of tie between two authors working on a paper with n co-authors should be discounted by ,
1

1

n
 

for instance. If two authors wrote two papers together, but on one of them had 8 more co-authors, 

then the strength of their tie is given by 1+1(
9

1
) =1.11.  

Network graphs can also be presented by way of an adjacency matrix or adjacency list. 

Vertex i  is adjacent to j  if vertex i  is directly connected to vertex j  and not just connected to 

vertex j through other vertices. The adjacency matrix A(G) is an nn  matrix, where jiA ,  is the 

number of edges that vertex i   directly connects  to  vertex j . The adjacency list, then, is the list 

of vertices directly linked to each vertex i . Examples of graphs and their adjacency lists are 

presented in Figure 1.6. From any graph, we can derive an adjacency list and vice versa.  
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Figure 1.6: Graphs and their adjacency matrices 

The vertices adjacent to a particular vertex i are said to be its neighborhood. The neighborhood 

( )(i ) of a vertex i is the subgraph (S). It consists of the vertices adjacent to i, excluding i itself. 

In other words, the neighborhood of i is formed by all vertices with direct connections with 

vertex i.  

Let S be a connected subgraph of graph G.  The neighborhood ( )(S ) of the connected 

subgraph (S) is all vertices directly connect to any vertices in S. These all vertices are not 

included in S. If )(i =S, then ).())(( Si   The 1
st
 neighborhood of vertex i is the set of 

vertices directly connected to vertex i. The 2
nd

 neighborhood of vertex i is the set of vertices 

which connect to vertex i through the 1st neighborhood of vertex i. The j
th

 neighborhood of i is 

given by ).(ij  The 0
th

 neighborhood of vertex i is the vertex i itself. In the connected graph, 

each vertex i can have at most jmax neighborhoods and can sequentially disperse information 

throughout the graph through its friends from the 1
st
 neighborhood up to its thjmax  neighborhood.  

The number of the size of any vertex‘s neighborhood is called a degree. The number of 

vertices that vertex i  directly connects to is the degree of vertex i , denoted ik .  
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Let the set of vertices connected to i in graph G be }.1:)({)( ,  jii eGVjGV  Then, the degree 

of vertex i is .)()( GVk ii   The average degree of all vertices in graph G, denoted by ,k  is 

defined as .
)(

)(





GVi

i

n

GV
k

 

If it has a high degree as a result of being ―well-connected,‖ a vertex might be regarded 

as possessing centrality within a graph. However, the centrality of a given vertex is determined 

not only by the size of its immediate neighborhood but also by that of its distant ones. If i 

performs a crucial role as information channel between a large number of vertices in the graph, it 

can be seen as lying ―between‖ them. This is known as betweenness centrality. The betweenness 

centrality of vertex i, also known as node betweenness, is measured as the frequency of vertex i 

that falls in the shortest paths between other pairs of vertices. The greater this number is, the 

higher the node betweenness score of vertex i will be.  

In the collaboration network analyzed by Newman (2004), a few scientists have much 

higher node betweenness score than the majority. The distribution of node betweenness scores in 

the scientist collaboration network approximately follows a power law. Let q(x) be the 

probability distribution of the betweenness score. A power law relationship can be represented as 

,)(  Cxxq  where C and α are constants. The equation can be rewritten by taking logs of both 

side, ),log(log))(log( xCxq   and can be represented as a linear line on a log-log graph. The 

cumulative distribution Prob(X≥x)
4
 follows the power law as given by: 

Prob .
1

)( )1( 






 




x

C
dxCxxX

x

 The scale of cumulative distribution on a log-log graph, 

                                                 
4
 Newman (2005) demonstrated that the cumulative distribution under power law sometimes follows the Pareto 

distribution.  
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given by the power law, is also a straight line. The power law indicates that the probability of 

finding vertices with a large number of degrees is significant.   

Since the node betweenness score distribution of the scientist collaboration network is 

said to approximately follow a power law, this translates into a few influential individuals and a 

multitude of peripheral actors. Removal of any of these influential individuals from the network 

will cause it to be disconnected. Moreover, Goh et al. (2003) found that those few influential 

scientists tend to collaborate primarily with others of the same caliber.
5
  

1.3.1 Network Definitions 

 

A number of different types of network graphs will be presented by using the standard definition 

as  follows:  

In an undirected graph connections between vertices have no direction (no arrow on 

edges, as in Figures 1.1-1.6 and Figure 1.7a). This implies that relationships between two 

vertices are symmetric, or reciprocal. You are my friend and thus I am your friend. For instance, 

in Figure 1.7a, an arrowless line between points A and B represents that vertex A relates to 

vertex B the same way that vertex B relates to vertex A. Both act simultaneously as receivers and 

senders of information or goods. 

In a directed graph original, or source actors, reach target actors as represented by 

arrows. The two directions are counted as being distinct edges. The directed graph indicates the 

directional ties between two vertices. In Figure 1.7b, vertex A relates to vertex B, but vertex B 

does not relate to vertex A. Or, it can be interpreted that vertex A sends information or goods to 

vertex B without receiving anything in return. Vertex A is a sender (or source of information) 

while vertex B is a receiver (or target of information). 

                                                 
5
 Newman (2004, p.12) 
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For the directed graph, while the size of any vertex‘s receivers or targets of information 

can be measured and called ―out-degree‖, the size of senders or sources of information of any 

vertex can also be measured and called ―in-degree.‖ Let the set of all other vertices connected by 

vertex i be Vi(G)={jV(G): ei,j=1}, the out-degree of any vertex i, denoted as ,Out

ik  is 

)(GVk i

Out

i  . In other words, the out-degree, which is the number of connections from a vertex 

to all other vertices in the neighborhood, can be computed as the sum of ones within vertex i‘s 

row in the adjacency matrix.  

Let the set of all other vertices connecting to vertex i be Vi(G)={jV(G): ej,i=1}, the in-

degree of any vertex i, denoted as ,In

ik  is )(GVk i

In

i  . In other words, the in-degree of any 

vertex i, denoted as  is the number of connections received by vertex i from all other vertices 

and can be computed as the sum of ones within vertex i‘s column in the adjacency matrix.  

In an unweighted graph edges are not assigned any strength, or value, of ties. An 

adjacency matrix derived from an unweighted graph is also unweighted—it informs us only 

whether there exist edges between vertices or not. The connection between any pair of vertices 

ji,  V(G), would be }1,0{, jie , where 1, jie  means that there is a connection between them 

and 0, jie  means there is no connection between them. Examples of unweighted graphs are 

found in Figures 1.6 and 1.7a. In the latter, edges are unweighted, only indicating that vertices A 

and B are connected to each other. The amount of information shared between them is therefore 

implicitly considered to be equal. In other words, vertex A knows everything vertex B knows 

and vice versa.  

In a weighted graph (or valued graph) numerical values, such as the value of a 

relationship or frequency of interaction, the magnitude of goods or the information being 
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exchanged, are assigned to each connection. Entries in a derivative adjacency matrix are not 

simply zero or one, but can be any integer number. The weighted graph can be either directed or 

undirected. Figure 1.7b is an example of a weighted directed graph (or digraph), in which there is 

a set of integer values attached to each arrow. The weighted directed graph in Figure 1.7b 

represents both a directional and valued relationship, such as vertex A sending 2 units of goods 

to vertex B. B acts as a receiver from A but also serves in the capacity of a sender, relaying the 2 

units to vertex C.  

                    

a. Unweighted undirected graph               b. weighted directed graph 

Figure 1.7: Examples of directed, undirected, weighted and unweighted graphs 

An unweighted and undirected graph containing no loops (i. e. no edge starts and ends at 

the same vertex) and one in which no multiple edges exist between any two vertices is a simple 

graph. In other words, vertices i and j connect to each other with only one edge and vertex i has 

no edges to itself. Figure 1.7a is a simple graph. The adjacent matrix of a simple graph is a 

matrix with rows and columns labeled by graph vertices, in which all entries would be either 1 or 

0. If vertex i  is directly connected to vertex j , the entry is 1. If there is no direct connection 

between vertices i  and j , the entry value is 0. Since a simple graph is an undirected and an un-

looped graph, the adjacency matrix must have zeros on its main diagonal and must also be 

symmetric.  
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A sparse graph is a graph in which the number of edges connected to other vertices is 

much less than the number of possible edges in a completed graph of the same size. The 

maximum number of possible edges in a connected graph is denoted by M. The number of edges 

in the fully connected (completed) graph is 
2

)1(

2










 nnn
. The sparseness condition is met 

when M 
2

)1( 


nn
. 

A graph in which all the degrees of all vertices are equal (i. e., same number of neighbors 

as in: ,321 kkkkk n 
 
) is called a k-regular graph. A 0-regular graph consists of all 

isolated vertices. In a 1-regular graph, each vertex must connect to only one another vertex.  A 2-

regular graph is a cycle or ring.  A 3-regular graph and a 4-regular graph are called as a cubic, 

and a quartic graph, respectively. The relationship between the average degree ( k ), maximum 

number of edges (M), and the number of vertices ( n ) in a network is given by: M = 






 

2

kn
 or 

2
n

M
k  in any graph of size n where each vertex, or actor, has the same degree k. That this 

relationship is valid can be clearly seen in a 2-regular graph where 2,6  kn and M= 3
2

26



. 

A 4-regular graph with 4,6  kn  has M =12 (see Figures 1.8a and 1.8b). 

                                                            

a. 2-regular graph with 2,6  kn , M=3        b.  4-regular graph  with 4,6  kn , M =12   

Figure 1.8: k -regular graphs 
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An empty graph is one of size n containing n isolated vertices. There is no edge 

connecting any of the n vertices in the graph.  An empty graph is known as a  0-regular graph. 

A cycle graph is one containing at least one path that returns to its starting point.  In 

general, the cycle graph contains no self-loop.  Examples of a cycle graph include the triangle 

and square graphs. 

A tree graph is a simple, undirected, connected graph in which any two vertices are 

linked by only one path and no cycles.  The points of connections at the end of two or more 

segments in a tree graph are called forks and the segments are called branches. Final vertices at 

the end of tree graph are called tree leaves. A tree with one vertex at its center is called a central 

tree. This type of graph is relevant to the representation of certain kinds of social networks, such 

as the organization of institutional and social hierarchies.  

A Cayley tree is a tree graph in which each non-leaf vertex contains a fixed number of 

branches y, forming an y-Cayley tree.  

A path graph is a tree graph with n vertices where two vertices have a degree of 1 and 

the rest n-2 vertices have degrees of 2. The two vertices with degree 1 appear as the starting or 

ending points of the graph.  A path graph with 3 vertices is an example of a 2-Cayley tree. 

An n-star graph is a tree graph with n vertices in which one vertex, with a degree of n-1, 

plays the role of a center, connecting to all other vertices. The other n-1 vertices, having degrees 

of 1, are only connected to the center vertex. The star graph is considered as a y-Cayley tree with 

y+1 vertices in the graph. 

A Moore graph is a regular graph of vertex degree k > 2 in which the upper boundary of 

the number of reachable vertices in the graph is given by 





1

0

1)1(
D

d

dkk where d is the distance of 

any vertex to any other reachable vertices. The Moore Graph is constructed as the tree graph 
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which consists of branches and leaves. There is some number of vertices in the graph of size n, 

which are not met with any other vertices in the tree graph. Therefore, the Moore graph is 

considered as perfectly expanding in the sense that at the end of the tree graph none of its 

vertices are adjacent with each other. 

Watts and Strogatz (1998) and Watts (1999a, 1999b) analyzed the small-world 

phenomenon by utilizing graph theory. They limited their use to undirected, unweighted, sparse, 

and connected graphs. Under these constraints, the first property that a small-world network 

needs to have is that, with a fixed population size n , it must satisfy the condition .1 kn  

They measured the average distance, or characteristic path length (L), and defined the clustered 

characteristic of a graph, known as the clustering coefficient (C), in order to explain the 

properties of small-world networks. What follows are definitions and explanations of their 

analysis, accompanied by other related statistics.  

The characteristic path length, or the average distance in the entire graph, denoted by 

L(G) is the average of the average path lengths between any two vertices. Since any vertex i in 

the connected graph G of size n can reach any other n-1 vertex, an average distance between i 

and any other vertex j, denoted by L(i), is given by .
1
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length L(G) in the connected graph is computed from the average L(i) for every vertex, so that 
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The characteristic path length reflects the global structure of a network graph. Since the 

characteristic path length is the average number of edges that crosses over the path between any 

pair of vertices in graph G, it can be interpreted as an indicator of the average number of chains 

that connect any two people. In an unconnected graph, the characteristic path length is infinite. In 
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the real world, a global social network may not be fully connected. Another way of saying it is 

that there may be more than one component in it. In that case, in order to study the small-world 

phenomenon in a social network, the characteristic path length of its largest component, what 

Goyal et al (2004) called a ―giant component,‖ must be measured, relative to that of all other 

small components.   

In the case of a network with very large n, it is difficult to measure the average 

characteristic path length. Huber (1996) suggested that it is more efficient to measure the median 

path length, denoted by Lmedian, by using the random sampling technique (Watts 1999a, p29). In 

other words, estimating the median of path lengths obtained from randomly selected vertex pairs 

is more practical than estimating the average path length of a network with a great number of 

members.  

 To obtain Lmedian, first we must randomly select S samples containing nS vertices. We then 

estimate the shortest path length between each vertex (v) in that sample (S) to all other vertices in 

S, v  V(S). Thus, all distances within the random sample d(v,j) V(S) are calculated. Next, we 

calculate the average shortest path length connecting any vertex v in sample size nS with the 

remaining nS -1 vertices. Finally, the characteristic path length (L) can be assumed to 

approximate the median average distance Lmedian of all vertices v V(S): 

1

),(

)(,
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jvd
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 The clustering coefficient (C), capturing the peculiarity that an individual‘s friends often 

know one another, is quantified by using the concept of neighborhood. The clustering coefficient 

indicates what proportion of the neighborhood of vertex i, ( )(i ) is adjacent to each other. Let 

the number of edges in the neighborhood of vertex i be .))(( iE   Each vertex i has a number of 
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edges, or degree . The total number of possible edges in )(i  is .
2 







 ik
 Since we wish to 

calculate the clustering coefficient, we are only interested in ‗friends‘ of vertex i that know each 

other. We therefore include only those vertices in the neighborhood that have at least two edges: 

}.2),({)(  ikGViGVi The clustering coefficient of vertex i, formulated by Watts and 

Strogatz (1998) and Watts (1999a, 1999b) is: 
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C(i) is the proportion of total actual connections between a pair of any vertex‘s neighbors 

relative to all the possible connections within vertex i‘s neighborhood. Analogously, the 

clustering coefficient (C) of the whole graph, or network, is the proportion of total actual 

connections within all vertices‘ neighborhoods relative to all possible connections between 

vertices in the graph. The value of (C) should be equal to the averaged C(i) for each vertex in the 

graph. The clustering coefficient (C), can then be thought of as the probability that a pair of 

vertices in the graph will be connected directly, given that they share a mutual friend:  
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C=0 would imply an empty graph and mean that no neighbor of any vertex i is directly 

connected to any other neighbor of i. In other words, no friend of mine knows any other friend of 



 25 

mine. On the other hand, C=1 would imply a complete 
1k

n
 subgraph, or clique, in which every 

member knows every other member directly.  

The range of an edge )( , jiR  is the shortest path length between i and j in the absence of 

the edge (i, j). In other words, if there exists a direct link between any two vertices, jiR , is the 

second shortest path between them. Watts (1999a) called an edge (i, j) as r-edge if its range 

equals r. In the case where R(i , j) = 1 exists and R(i , j) = 2 is formed, the new path (i, j) tends to 

complete a triad in a highly clustered graph with strong ties. R-edges with r>2 do not necessarily 

complete triads. However, since they indirectly connect more widely separated vertices, a direct 

connection between the same pair would be called a shortcut. In Figure 1.9b, vertices i and j do 

not connect to any mutual vertex and r ≥ 7. The 1-edge (i, j) would then be a shortcut. It allows 

vertices i and j to meet directly instead of going through the sequential edges .,...,, ,,, 211 ivvvvj n
eee   

If two vertices u and w share vertex v as mutual friend, and the second shortest path 

length between them (other than the 2-edge through v) meets the condition ,2),( wudv  then 

Watts (1999a) said that u and w are contracted by v, and the pair (u,w) is  a contraction. In 

Figure 1.9c, both vertices u1 and w1 connect directly to vertex v. Although they are not directly 

connected to each other, they can connect indirectly through a number of vertices (such as u2, w2, 

and u3, w3). But those edges pass through at least two other vertices and have r ≥ 3. Because the 

2-edge through v, their only mutual friend, is the shortest path between u1 and w1, v is considered 

as their contractor. There is no shortcut, in Figure 1.9 c, connecting the pair of vertices (u1, w1), 

although they share a common friend v. A triad does not occur between these three vertices, 

which makes the contractor possible. 
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On the other hand, multiple triads are formed between vertices u1, u2 and v and between 

vertices w1, w2 and v. The pair (u1,w1) is not directly connected to each other but they are 

indirectly connected through other vertices in multiple triads via their only one mutual friend and 

contractor v. The set of vertices u and w is called a contraction. The number of vertex pairs that 

are not directly connected to each other but can connect through a common friend can be 

measured in order to investigate the role of contraction in a graph. 

 

a.                                          b.                                                 c. 

Figure 1.9: Triad, shortcut and contraction compared 

The fraction of all vertex pairs in the network that are not connected directly and have 

one mutual neighbor (contractor) relative to their neighborhood‘s possible edges, given by 

,
2

)1( kk
 is denoted by .  A high value of  means more contraction in a graph. For a graph 

G, with maximum possible number of edges ),
2

(
nk

M


  the fraction of the edges which 

perform as shortcuts relative to the total edges M is denoted by . Its value is indicative of the 

role of shortcuts in the graph. The higher the value of  , the more edges perform as shortcuts.  

 and   will both be useful in graphical representations of a small-world network. These 

two variables make the study of small-world network properties easier to understand because 
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they behave independently of the parameters used in model construction. At the same time, they 

are useful indicators of change within the network model. When one more shortcut occurs in the 

graph, reflected in an increase of ,  the clustering coefficient is decreased because one triad is 

deleted. The clustering coefficient, then decreases linearly with the increase in .   

If a shortcut occurs between two very remote vertices, it can reduce dramatically the 

characteristic path length L in the entire graph. Thus, a small increase in   may lead to a 

nonlinear reduction in L. The intensity of the small-world phenomenon, prevalent networks with 

high clustering coefficients and low characteristic path lengths, is then dependent on a high 

shortcut index .  

However, increase in the number of shortcuts is not the only change that can bring about 

reduction of the characteristic path length. If a decrease is observed, it may also be due to any 

two vertices being connected via a new mutual friend, or contractor. A sparse graph can become 

denser through contraction without a significant effect on the clustering coefficient. The term   

is just as essential in analyzing the phenomenon of small-world networks. 

Let us observe how contraction without shortcuts can take place within the structure of a 

social network. Each cluster in a social network consists of highly-interconnected, dense group of 

friends. But relationships between clusters may be rare. The distance between different clusters 

may be spanned by a single shortcut to another cluster. Alternatively, a bundle of edges from 

many individual members of one cluster may connect to a single vertex in another cluster as their 

common friend. Since many triads are formed, this connection is not a shortcut, but a contraction 

leading to an increase in Ψ. For example, when two strangers meet, a shortcut between their 

families is formed. But, if these two people get married and the bride meets everyone in the 
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groom‘s family, without their families having a chance to directly meet each other, then she 

becomes a contractor between members of the groom‘s family and her own (Figure 1.10).  

 

Figure 1.10: Edge connecting one single vertex in one clique to all vertices in another clique. 

Contraction can be considered a function of shortcut formation if shortcuts are created 

between two clusters already connected by contraction. Using the same example of marriage 

between two families, we can picture that the family of the bride meets the groom, and any 

member of the bride's family may directly meet a member of the groom's family at the wedding. 

The bride‘s brother (v), who is too shy to meet the groom‘s family directly, has k-b edges 

connecting him with other members of his family. When they meet the groom‘s people directly, a 

number of shortcuts (b) are formed to the groom‘s family. The connections of the bride‘s shy 

brother to the groom‘s family are expressed as contractions b(k-b).  

If the bride‘s family members ( bn  people) create shortcuts to the groom‘s family, the 

contraction will spread widely to )( bnkbn bb  contractions between the two families, and 

2

)1( bnbn bb 
 contractions within their own cluster. The sum total of contraction in this case is 

given by .
2

)1(
)(

bnbn
bnkbn bb

bb




 
The bundle of shortcuts is comprised of many individual 

shortcuts   reflected in each person‘s degree. Therefore, .kbnb   The total contraction can be 
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computed in term of shortcut as .
2

)()2( 2 kbkk 
 Therefore, the fraction of contraction over the 

neighborhood‘s possible edges )(  occurring when shortcut bundle is formed, is calculated over 

total contraction over the possible number of edges in the neighborhood )
2

)1(
(

kk
 as 

1

)2(
)(

2






k

kbk 
 . The contraction Ψ, thus, can be calculated in terms of the shortcut 

variable  . When shortcuts are created within a network, vertices can be directly connected, and 

the number of indirect contractions decreases.  

The initial topology of a graph, in which vertices and links between them are defined, is 

called a substrate. An initial graph can be a tree substrate, a star substrate, etc. The example in 

Figure 1.11a is a one-lattice graph of a k=2 substrate creating a ring substrate.  

A lattice graph is a highly regular, unweighted, undirected and simple graph in which 

every vertex i joins with only a few neighbors. A d-lattice graph refers to a d-dimensional 

Euclidian lattice graph. For example, a one-dimensional lattice graph, a two-dimensional lattice 

graph and a three-dimensional lattice graph are set of vertices arranged in a straight line, a square, 

and a cubic, respectively. A 1-lattice with k=2 is a one-dimensional structure in which each vertex 

connects to two other vertices in a row. The edges in this particular lattice graph form a ring. A 2-

lattice with k=4 is a two-dimensional square grid (Figure 1.11b). This kind of lattice graph is 

sometimes called a grid graph. 

The characteristic path length and clustering coefficient of a 1-lattice graph with k≥2 can 

be calculated using the following equations: 
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The characteristic path length and clustering properties of any 1-lattice graph are thus 

characterized by the following relationships: for sparse graph the length scales linearly increases 

in the increase in graph size and decreases with respect to  degree, but the clustering coefficient 

is independent of size of graph and is independent of degree when degree is large (
4

3
C ). 

 

a. 1-lattice with k=2                                                     b. 2-lattice with k=4 

Figure 1.11: d-lattice graphs    

 The 1-lattice is a good example of a completely ordered graph — one in which there is 

ordering of connections between the actors in the graph. For instance, if three individual actors 

,,, kji nnn where i<j<k, are ordered so that ni is adjacent to nj, and nj is adjacent to nk, but ni is not 

adjacent to nk then ordering is said to be incomplete. In Figure 1.11b, the 2-lattice with k=4 is 

one in which vertex 6 directly connects to the vertex 7 and the vertex 7 directly connects to the 

vertex 11, but vertex 6 does not directly connect to vertex 11. However, in the one-dimensional 

lattice network of Figure 1.11a, vertex 1 is adjacent to vertex 2, vertex 2 is adjacent to vertex 3, 

vertex 3 is adjacent to vertex 4, and the ordering is completed by vertex 4 adjoining to vertex 1. 

This is by far the simplest example of a completely ordered network. The opposite of the 

completely ordered graph is called a random graph, in which connections might be formed 
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between any vertex and any other vertices. A graph in which connections are incompletely 

ordered is also considered random, to a degree.  

1.4 Models of a Small World 

 

A network can be modeled as either completely or incompletely ordered. Real-world cases, such 

as technological networks, economic networks, social networks, or natural sciences networks, 

appear to fall somewhere between these two categories. Representations of small-world networks 

in the real world can occur at a possible topology between a completely ordered and a random 

graph. 

Many social network theories use the idea of ―social space.‖ The adjacency metric was 

constructed by measuring the distances of existing between people in the network.  This concept 

is extremely problematic due to difficulties in definition of  the space and the metric. Previous 

methods of characterizing human values and relationship are not consistent, and can become 

rather complicated. To avoid such problems, Watts and Strogatz (1998) and Watts (1999a) 

developed a simple, comprehensible, and sustainable social network model. It is based on the 

following assumptions: 

1. All networks can be represented only in terms of the connections between their 

elements.   

2. All elements are identical. 

3. All edges are equal and symmetry (i. e., lending themselves to representation in an 

unweighted and undirected graph such as the ones above). 

4. A new edge can be formed by the influence of the already existing pattern of edges. 

In other words, people gain new acquaintances through the introduction of a mutual 

acquaintance. 
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 These assumptions yield the simplicity of the model because it is not necessary to deal 

with the slippery question of space and metrics. We need to concern ourselves only with 

relations between actors, or vertices in the graph. The third assumption greatly simplifies the 

model in comparison to a real-world network. A social network falls somewhere between the 

completely connected network where everybody knows everybody else (sometimes called a 

caveman world), and the other extreme (known as a Solaria world), where everyone is a stranger 

and new friendships occur by chance. In the real-world, a social network obviously integrates 

many different circles of friends. Within the circle, most people are interconnected, but 

interactions across circles can be relatively rare. Most people in the real world have a chance to 

meet people from other groups through the connections of a friend (contractor).  

They explored the model of a small-world network, in which everyone can possibly meet 

or know everyone else directly or indirectly via a short distance. In their model clustering is high 

and disorder is introduced by randomly rewiring a completely ordered network. Their fourth 

assumption relieves them from having to burden the small-world model with explanations of 

how people in the real world can make a new friend or create a new connection. They found that 

rewired networks are highly clustered, like the ordered networks from which they had been 

derived, but at the same time have a small characteristic path length like random networks. In 

order to be able to follow their reasoning, we need to know more details about the completely 

ordered, random, and small-world models, presented side by side.  

1.4.1 Completely Ordered Models 

 

Watts (1999a and 1999b) proposed a regular network in which each vertex has the same number 

of edges (same degree) and adjoins a small number of neighbors in a highly clustered pattern. In 

a small, caveman community, my two friends cannot help but know each other well. Throughout 
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the cave we cohabit, everyone knows everyone else — it is a completely connected cluster. The 

regular network proposed by Watts is a caveman world. In it people become acquainted only 

through the introduction of one or more mutual friends. When they share no friends, the 

propensity to become connected directly is very small. Once they have only one mutual friend, 

the probability of becoming connected becomes suddenly high and plateaus there regardless of 

how many additional mutual friends they may acquire. Figure 1.12 illustrates this feature. The 

two axes represent the ordered extreme and the random extreme network model. The scale gives 

mutual friends as a fraction of total friends. For either extreme, the propensity to become friends 

starts from near zero, rises suddenly, and settles at one.  

 

Figure 1.12: Real-world networks lie between two extremes 

Source: Watts (1999b, p.504) 

             

In Watts‘ caveman model, where the total number of people is n, each person has k 

degrees and each cave has k+1 people, 1 knlocal  vertices. The network consists of many 

isolated 
1k

n
caves, or cliques, or 

1


k

n
nglobal   clusters. The clustering coefficient of each cave 

in the caveman model is one )1( CC  because everyone in the same cave knows each other. 

Hence all edges in a cave form the multiple triads, and there are no shortcuts in a cave or edges 
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between the caves (Figure 1.13a). The network is locally dense and globally sparse because, in 

the entire graph, the number of people is much greater than the average degree, n>>k. The 

caveman model does not satisfy the completely connected condition because it has more than 

one component. Watts turned this graph into a connected-caveman model by extracting one edge 

from each cave and using it to connect to a neighboring cave, such that all disconnected caves 

eventually form a single, unbroken loop. The connected-caveman model, a less extreme 

example, is used as a benchmark for ordered, highly clustered networks. Each cluster consists of 

,localn  which is the number of vertices in same cluster, and ,globaln  which is the number of 

clusters – their values are still the same as in the caveman world. However, in the connected-

caveman world, not every vertex has the same degree k because certain vertices in each cave 

have developed connections external to their locale:  

 

 

a. Caveman world                                  b. Connected- Caveman world 

Figure 1.13: Caveman and connected-caveman worlds 

Source: Watts (1999a, pp. 103-104) 

 

In Figure 1.13b, each cluster of the connected-caveman world has two vertices (type a) of 

k degree connecting only to vertices within the cluster, one vertex (type b) of k-1 degree 

connecting only to vertices within the cluster, one vertex (type c) of k+1 degree connecting to 
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vertices both inside and outside the cluster, and one vertex (type d) of k degree connecting to 

both vertices inside and outside. The clustering coefficient measures the ratio of directly 

connected members of one‘s neighborhood to the possible connections between them. Since 

members of one cluster now have different degrees, each vertex will yield a different clustering 

coefficient. Let Ca, Cb, Cc, and Cd denote the clustering coefficients of people type a, b, c, and d, 

respectively. The clustering coefficient in the connected-caveman world, denoted as CCC, is a 

weighted average of the coefficients of k+1 vertices, given by:  
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because edges k-1 are missing from the neighborhood of vertex d. The final result is:  
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It can be verified easily that, if each vertex  has sufficiently  high degree, the connected-caveman 

world will have a very high clustering coefficient ( CCC approaching one). 

When the caveman graph was modified into a connected caveman graph, shortcuts were 

introduced. The effective local degree, ,localk is the average number of connected edges which 

are part of triads within each cluster and not shortcuts. The effective clustering degree, 

,clusterk quantifies how many of vertex i‘s neighbors are connected to another neighbor of i: 

k
kk

k
kk

CC

CC

cluster

local

4
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2






 

The average degree of each vertex within each cluster in the connected-caveman model 

)(
CClocalk  is less than the average degree of each vertex in the caveman world ).(k  Similarly, the 

average effective clustering degree in the connected-caveman model 
CCclusterk  is less than in the 

caveman world )(k .  

The clustering coefficient, which is the proportion of actual direct connections in the 

neighborhood of each vertex to all possible connections, can be calculated in terms of localk  and 

clusterk as follows:  
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High clustering means a great number of non-shortcut connections between vertices. As 

we have already seen, the clustering coefficient in the caveman world of Figure 1.13a, in which 

everyone has degree k, is equal to one ( 1CC ). By comparison, the clustering coefficient of the 
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connected-caveman model )( CCC  is less than and very close to one ( 1,1  CCCC CC ) because 

its  localk  and clusterk  are less than k. In other words, if in each cluster all vertices have mutual 

friends, then there is a large number of dense edges that cannot be shortcuts. In addition, the 

equations above suggest that the clustering coefficient is based on localized clusters in a 

network. This makes it very different from the characteristic path length, which tells us about the 

―global‖ structure because it measures the ability of actors to reach any other actor in the 

network.  

Let us examine closely the characteristic path length in a connected-caveman model. The 

network consists of many connected clusters. Let localL  stand for characteristic path length within 

a single cluster, and globalL for the characteristic path length between clusters in the entire graph. 

Let locald  represent the average distance between pairs of vertices in the same cluster, and globald  

the average distance between two vertices who are members of different clusters. Since most of 

the vertices are directly connected to each other, localL is equivalent to .locald  For the degree is far 

greater than one ),1( k  .1locald  globald is influenced by localL  and globalL  because these 

quantify the path of a vertex traversing from one cluster to connect to a vertex in another cluster. 

When ,1 kn  globald  roughly approximates to .
)1(2 k

n
In the connected-caveman model, 

the number of vertex pairs connected in the same cluster is denoted by ,localN  the number of 

pairs connected across clusters is denoted by ,globalN  and the total number of pairs of vertices 

connected in the network is N. localN  is calculated as the number of pairs connected in one 

cluster multiplied by the number of clusters in the network. globalN  quantifies the number of 

edges which can traverse from one cluster to another cluster. As such, it represents the number of 
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clusters that connect to each other, as well as the number of vertices with connections outside 

their own cluster. The total number of edges in the network (N) is measured as the sum of the 

number of edges within each cluster, ,localN and the number of edges connecting clusters, .globalN  
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It can be seen that the number of edges in a cluster, ,localN  is equal to the possible 

number of edges and the total number of edges in the connected-caveman graph is equal the 

maximum number of edges in the fully connected graph or complete graph.  

The average distance between all pairs in a connected caveman graph )( CCL is given by: 
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It has been observed that characteristic path length (LCC) of the connected-caveman model 

approximates the distance between one vertex in one cluster and any other vertex in a different 

cluster ( globald ). In other words, when clusters are traversed by a single edge as in Figure 1.13b, 

CCL is dominated by .globald  Hence, the characteristic path length is said to be reflexive of the 

global structure of the graph. For ,1 kn  CCL  is large, and CCL  increases linearly with n.  
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1.4.2 Random Models 

 

Almost all of random graph theory analyses employ two models G(n, K) and G(n, p) along with 

the techniques proposed by Paul Erdos and Alfred Renyi in the 1950‘s and 1960‘s (as cited in 

Watts, 1999a and Newman, 2002). G(n, K) signifies a graph with n vertices and a number of 

randomly chosen edges K. G(n, p) signifies a random graph with n vertices in which the 

probability of random edges is expressed by p. According to Newman (2002), the most 

commonly used random graph is G(n, p) which consists of n vertices joined by links placed 

uniformly at random. Every one of the possible edges in the random model 






 

2

)1(nn
 may 

occur with independent probability 0<p<1. G(n, p) is, then, a labeled graph of n vertices in 

which each edge appears with probability independent of any other edge. Since the average 

number of edges in the graph is ,
2

)1( pnn 
 and since each edge connects two vertices, the 

average degree of a vertex is given by  ,
2

)1(2
np

n

pnn
k 


  for large n.  

Let us compare this model to the random graph denoted as G(n, K), which is a labeled 

graph of n vertices having K randomly chosen edges. Edges are independent of any other edges 

in the G(n, p) model whereas the number of randomly chosen edges in a G(n, K) model is fixed. 

Although it is more convenient to use G(n, p) in random graph analyses, in practice, G(n, K) and 

G(n, p) are proposed to be interchangeable (Watts 1999a, p.40). Because ,knpK   once the 

size of graph (n) is known, any random graph built by specifying p, can be also specified by k.  

There is evidence that the degree distribution among vertices in a random network is 

quite different from the degree distribution in real-world networks (Barrat and Weigt 2000, 

Newman 2002, 2004, and 2005). As noted by Newman (2002, p. 4), in an Erdos and Ranyi 
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random graph with the exact degree z, the binomial distribution gives the probability of a vertex 

as follow: 

  ,)1(
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1 znz

z pp
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         where n>>k>>1       

However, in graphs with very large n, the probability distribution will become a Poisson 

distribution, ,
!z

ek
p

kz

z



  where n>>kz. Both distributions are strongly peaked about the mean 

k, and fall off rapidly as they move away from the peak value. The probability of a vertex having 

a large k is negligibly small.  

Barabasi and Bonabeau (2003) observe that the connectivity in the World Wide Web 

network is dominated by a few highly connected web pages. They argue that the network‘s 

degree distribution follows the power law. Newman (2001, 2002, 2004, 2005) and Zlatic et al. 

(2006)  also found that many networks in the real world, such as the network of scientific 

collaboration, web hits, copies of books sold in America, Wikipedia, etc., appear to follow a 

power law distribution (with some deviations). This degree distribution is reflected in a linear tail 

appearing in log-log scales of cumulated distribution. The power law distribution gradually 

decays due to a small number of non-negligible vertices having very large degrees.  

In a random network, each vertex is connected to vertices existing anywhere in the 

network by chance. Insofar as no member has any propensity to connect to anyone in particular, 

the random network can be thought of as a ―Solaria.‖
6
 In this extreme case of a network, people 

can form new friendships with a stranger without regard for any mutual friends they may or may 

not already share. Figure 1.12 indicates that, within this kind of network, the propensity to 

become friends relative to the number of existing mutual friends curves near zero and stays near 

                                                 
6
 Watts (1999a, p. 44) 



 41 

zero up until all of a pair‘s friends are mutual. At that point, the curve suddenly increases to one. 

This is so because within this kind of network everyone is a stranger to one another and there is 

no increased chance to become friends unless everyone‘s friends have mutual friends. 

In Erdos and Renyi random graph, the probability of a pair of vertices becoming 

connected by an edge is higher if they have a mutual friend than if they do not have any mutual 

friends. Since the clustering coefficient (C), as defined by Watts and Strogatz (1998), can be 

thought of as the average probability that two neighbors of a given vertex are also direct 

neighbors, the clustering coefficient in the random models )( randomC can be viewed as
7
: 

n

k
pCrandom   

Obviously, under the sparseness condition (n>>k), randomC  is very small. Random models 

do a poor job of capturing the clustering property of networks. Since the clustering coefficient of 

a connected caveman network )( CCC  is very large and approaches the unity ),1( CCC   CCC  is 

certainly greater than .randomC  

n

k
CC randomCC   

For any random graph that has no single largest component and none of whose vertices 

are adjacent to each other, distance and characteristic path length are meaningless because there 

is no path between any pair of vertices. However, for a random graph that has a largest 

component, the distance and the characteristic length can be measured. Erdos and Renyi have 

expressed the characteristic length of a random graph whose n vertices are detached from any 

vertex within distance with an average degree k. In the limits of large n and k, the asymptotic 

                                                 
7
 As discussed and simplified by Newman (2002, p.2) 
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approximation of the characteristic path length is .
)ln(

)ln(
~

k

n
Lrandom

8
 For any n>>k>>1, the 

characteristic path length is small.  

Comparing random networks to connected caveman networks, we note that the 

characteristic path length in the former increases logarithmically with the graph size n. In the 

latter, it increases linearly. Also, for a connected-caveman model with large n, the more n is 

greater than k, the larger the characteristic path length is: .
)1(2 











k

n
LCC  If we were to 

compare the characteristic path length of these two extreme models, we would have: 
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L CCrandom           for any 1 kn  

This comparison reveals that the characteristic path length in random networks increases 

rather slowly. As n becomes larger, they lag further behind connected-caveman networks of the 

same size, whose characteristic path length grows much faster.  

Random models, which are locally disordered graphs, are characterized by a low 

clustering coefficient and, especially with large n, short characteristic path length. The 

characteristic path length in the random models is invariably much smaller than in same-sized 

connected-caveman models, which are highly ordered graphs with high clustering coefficients 

and large characteristic path lengths.   

In order to approximate the characteristic length in any random model, Watts (1999b) 

employed the Moore graph instead. Let S be the number of vertices included within a distance D 

(diameter). The shortest path between any vertex and any other within S must be shorter than D 

and is given by .)1(
1

1

1





D

d

dkkd  The number of vertices that can reach others in D steps by 

                                                 
8
 Newman (2002, p.9) 
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traversing through vertices belonging to S is: n-S-1. Therefore, the summation of all distances 

from any vertex to any other vertices in the Moore graph is: .)1()1(
1

1

1 DSnkkd
D

d

d 




  The 

average of the distances between all vertices, called characteristic path length, must be averaged 

over n-1 vertices. Hence, the computation of the characteristic path length in the Moore graph 

)( MGL  is: 
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Watts (1999a) claimed that even though the degree of vertex in the Moore graph is not 

exactly same  but increases in every steps,  the Moore graph can be a good approximation of a 

pseudo-random graph, i.e., a random graph created by constructing a ring of n vertices and 

randomly adding edges until there is a total of K edges. One important difference between a 

pseudo-random and a random graph is that, at ),ln(nk  the characteristic length of the former is 

distinguishable from the latter. Therefore, it seems reasonable to use a Moore graph construction 

to approximate the characteristic length of a random graph where .1)ln(  nk  When the 

average degree is greater or equal to ),ln(n  but far greater than one, the characteristic path length 

of the random graph )( randomL  can indeed approximate the characteristic path length of Moore 

graph (LMG).  

,MGrandom LL      where 1)ln(  nk  
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1.4.3 Application of Small-World Models  

 

In the real world, people become acquainted not only through introduction by a mutual friend, 

but also by bumping into complete strangers. A relationship can be formed both by 

recommendation and accident. Small-world networks, in which people can be connected by a 

brief chain of acquaintances, like the one suggested by Milgram (1967), or the network of movie 

actors, are commonplace. As Figure 1.12, real-world networks lie somewhere between the 

completely ordered and random network models. How does one go about modeling a real-life 

small-world network more precisely? 

Watts and Strogatz (1998) examined a possible small-world network by using what they 

called a ―random rewiring procedure.‖ They started rewiring a ring lattice (one-dimensional 

lattice) with n vertices and k degrees, by replacing the near-neighbor edges with edges to 

randomly selected vertices throughout the network, chosen uniformly with probability p. They 

measured alterations in both characteristic path length and clustering coefficient as the rewiring 

probability increased. They claimed that the small-world phenomenon occurs when the 

probability of random rewiring increases from p=0 to a value between 0<p<1. At p=0, there is 

no random rewiring and the lattice is unchanged. With p=1, the lattice is transformed into a 

completely random model, much like the Erdos-Renyi one (see Figure 1.14). With a probability 

of random rewiring near zero (p→0), the network is highly clustered and characteristic path 

length grows linearly with n because .1
2

~ 
k

n
L  The clustering coefficient would then be 

.
4

3
~C  At probability of random rewiring set near unity (p→1), the network is poorly dense  and 

L increases logarithmically with n because .
)ln(

)ln(
~

k

n
LL random  The clustering coefficient then 
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becomes .1~ 
n

k
CC random  The small-world phenomenon, thus, when cast into graph theory, 

occurs in a sparsely connected graph that exhibits a characteristic path length close to that of an 

asymptotic approximation of the random graph )( randomLL   with a much higher clustering 

coefficient ).( randomCC    

              

Figure 1.14: Random rewiring across the spectrum of probability 

Source: Watts and Strogatz (1998, p. 441) 

 

To conform with the small-world phenomenon, a network must be wired in such a way 

that any two vertices can be connected to each other by just a few links. For this property to 

occur, the following conditions (modified from Goyal et al., 2004) must be satisfied: 

1. ,1)ln(  nkn  would meet the condition of sparseness; k>>1 guarantees that 

the network is connected. 

2. The network must be connected or must have a giant component for the characteristic 

path length to be measured. 

3. .
)ln(

)ln(
~

k

n
LL random  That is, L must be almost as small as .randomL  

4. L must be on the order of ln(n) and should increase logarithmically with n, as in a 

random network, since there is some degree of randomness in a small-world network. 
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Even though the characteristic path lengths of some small-world networks are greater 

than those in their random counterparts, their value must be comparatively low. 

5. ,~
n

k
CC random  satisfies the condition that the clustering coefficient of a small-

world network is much greater than that of a random one.  

Watts and Strogatz (1998) tested this small-world model using the collaboration graph of 

film actors in Hollywood (n=226,000 and k= 61), the power grid of the western United States 

(n= 4,941 and k= 2.94) and the neural network of worm C.elegans (n= 282, k=14). The 

characteristic path lengths of these three networks are 3.65, 18.7, and 2.65, respectively. The 

clustering coefficients are 0.79, 0.80, and 0.28, respectively. The researchers compared the 

characteristic path length ( actualL ) and clustering coefficient ( actualC ) for these three networks to a 

Erdos-Renyi random model built theoretically with the same number of vertices (n) and the same 

average number of edges per vertex (k). Lrandom of the Erdos-Renyi networks were reasonably 

close, while the clustering coefficients were much lower than in the real-life networks (Table 

1.1). Watts and Strogatz concluded that because all three networks have actualL  randomL  and 

actualC >> randomC , they satisfy the conditions of the small-world property. Similarly, many other 

real-world networks analyzed by Newman (2002) can be shown to have actual clustering 

coefficients much higher than the magnitudes calculated from mirroring random models. 

 Table 1.1: Small-world vs. random networks 

 
actualL  randomL  actualC  randomC  

Film actors 3.65 2.99 0.79 0.00027 

Power grid 18.7 12.4 0.080 0.005 

C. elegans 2.65 2.25 0.28 0.05 

 Source: Watts and Strogatz (1998, p. 441) 
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Amaral et al. (2000) tested the statistical properties of a variety of diverse real-world 

networks for occurrences of the small world phenomenon. They proposed three classes of small-

world networks: scale-free, broad-scale, and single-scale.  

Scale-free networks are those whose degree distribution follows the power law no matter 

what their scale is. In other words, the shape of the degree distribution curve will follow the 

power law form (decaying slowly from a straight line on a log-log plot) regardless of the scale of 

measurement.    

Broad-scale networks are characterized by a connectivity distribution that obeys a power 

law until a sharp cutoff occurs. This type of small-world networks exhibits typical power law 

distribution on a small to medium scale. However, when large scales are reached, degree 

distribution is truncated. Figure 1.15 illustrates the log-log plot of a cumulative distribution in a 

broad-scale network. Initially, it manifests Power law decay but is truncated to Gaussian decay 

of tail when the number of connections becomes large. The movie actor network is considered a 

broad-scale network because it behaves this way when the number of collaborations exceeds a 

certain limit. 

Finally, single-scale networks are characterized by a connectivity distribution with a 

rapidly decaying tail. Degree distributions in this class of small-world networks do not follow a 

power law; instead, they decay much faster. In Figure 1.15, the tail of connectivity distribution in 

log-log plots of the electric power grid of southern California, the network of world airports, and 

the neuronal network of the worm C. elegans, are shown to decay exponentially, faster than if 

governed by a power law. The log-log plot of degree distribution in the friendship network of 

high-school students (Figure 1.15) seems to conform to a Gaussian distribution. Thus, all of the 

above examples are classified as single-scale networks.    
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Figure 1.15: Classes of small-world networks with degree distributions on a log-log plot. 

(Electric power grid, C.elegans neural network, Airport traffic, and School Friendship are all 

single-scale networks, while the movie actor network is broad-scale.) 

Source: Amaral et al. (2000, pp. 11150-51) 

 

Amaral et al. (2000) found two effects hindering these small-world networks from 

achieving a power law distribution of connectivity. One is the effect of aging vertices. A very 

highly connected vertex will eventually stop creating a new connection. An example from the 

Hollywood network would be a retired actor. Another effect is the cost of adding new links to a 

vertex, especially the physical cost or the limited capacity of a vertex to host new links. An 

example from the network of world airports would be space and time constraints that prevent 

certain airports from becoming a hub to more airlines.  

1.5 The Relational Model and the Small World Phenomenon 

 

A graph constructed by interpolation between a completely connected and an incompletely 

connected, or random, graph, can be built using two different construction algorithms. Based on 
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which algorithm was used as discussed by Watts (1999a and 1999b), the graph can belong to one 

of two categories: relational and spatial. The characteristic path length and clustering coefficients 

of both categories are determined only on n and k. However, the construction rule for a relational 

graph depends on distances between vertices that are computed only in terms of the network 

structure. New edge construction in this category is the function of preexisting edges.  

In a spatial graph, on the other hand, new edge construction is a function of physical 

distance in the graph. Thus, in general, it can be said that the small world phenomenon can occur 

only in a relational graph. A spatial graph, in which vertices are constrained by physical distance 

to access only nearby neighbors, cannot reach remote members easily. The following section will 

examine the relevance of the relational graph to representations of the small-world phenomenon.  

1.5.1 The Relational Graph  

 

To analyze the small world phenomenon, three following types of relational graph proposed by 

Watts (1999a and 1999b) can be constructed. First is the α-model, which is formed as an imitation 

of a real-world social network. Second is the β-model, which generalizes the α-graph by stripping 

inessential properties of social networks. Third is  -model, which combines the observed 

properties of the α- and β-models. Let us see how the features of a small-world network—high 

clustering and low characteristic path length— are manifested in those three models.  

1.5.1.1 The α-Model  

An α-model is constructed in order to include the character of connections in a social network. 

They have some level of order, but are neither completely ordered, as in the caveman world, nor 

incompletely ordered (or unordered) as in a random network. Because the level of ‗orderedness‘ in 

social networks falls between these extremes, they both need to be investigated. In a relative 

network construction algorithm, α is used as a parameter controlling for the probability of 
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connection (0≤p≤1) between any vertex and any other in the network, (0≤α≤∞). At α=0, all edges 

are formed in completely ordered. Increasing α, the propensity of connecting between any two 

vertices increases. This is why the result is called an α-model. To construct an α-model, the two 

extreme models are interpolated by a random rewiring procedure in the form of a graph with 

specified n, k, and α, and set p  to a very small value. 

Rewiring will take place after the probability that any vertex connects to any others )( , jiP  

is computed. Interpolation between the completely connected model and the random model is 

done by first fixing a vertex i and calculating jiR ,  which is a measure of vertex i‘s particular 

propensity to connect to vertex j. The jiR ,  can be computed as follows: 
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where  is the number of mutual friend of vertices i and j,  is average degree of the graph,  is 

a baseline probability for edge (i, j) to exist (

1
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n
p ), (meaning that  p is set when n is 

specified), and α is an adjustable parameter, 0≤α ≤∞. 0, jiR  if vertex i and vertex j are already 

connected. Next, the probability of connection between i and j is obtained by:   

 


il lijiji RRP ./ ,,,  jiP ,  ranges over the interval (0, 1). Then, they use jiP ,  in a uniform random 

process to connect vertices until the number of edges  )2/)(( nkM   has been constructed. If the 

value of α is changed, the value of Pi,j  is changed as well. The α-graph is constructed by increasing 

the value of α from 0 to 20. 
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The α-model was analyzed through a process of computer-based numerical experiments. 

For small α, the propensity of connection jiR ,  is dominated by p because the edge between 

vertices i and j could be formed only by the baseline random opportunity (p is set to be very small 

but non zero). When two consecutive edges are formed, two vertices now have a mutual friend and 

friendships in the network can start to expand. Potential triad formation now has a role in 

connecting network elements.  

As α progresses towards infinity (α→∞), all probabilities of connections, ,, jiP  will go to 

the uniform random limit value p showing that a large-α-graph would look like a random graph. In 

this α-model, the existing average edge degree k determines new link formation and clustering 

during the rewiring process. The number of vertices connected to the same component, thus, 

grows linearly only with respect to the average degree k. This might violate the sparseness 

condition. A violation will not occur if the graph is disconnected. However, characteristic path 

length cannot be measured in a disconnected graph so that point is moot. In order to avoid the 

sparseness violation problem and ensure that the connectivity condition is met, a connected 

substrate must be built before processing the rewiring construction algorithm. The ring substrate is 

preferred as the basic topology of this model. Unlike star, tree, and path substrates, which have 

centers, roots, and end points, respectively, the ring substrate has no ‗special‘ vertices and no more 

than the necessary edges to ensure a connected graph. The ring substrate can control for the 

sparseness violation problem even in the range of a very large α.  

To identify the moment when the small-world phenomenon appears, Watts and Strogatz 

(1998) and Watts (1999a and 1999b) built a low-lattice with a ring substrate and constructed α-

models with n=1000 and k=10, ,10 10p  and 0≤α≤20. Then, they measured L with respect to α 

(L(α)) and the clustering coefficient with respect to α (C(α)). The result was that, at a large value 
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of α, networks had short characteristic path length but still high clustering coefficient. The 

transition of the clustering coefficient from low to high marked the emergence of the small-world 

phenomenon. Figure 1.16 indicates that, as α increases, L(α) increases to a maximum and then 

drops rapidly to its asymptotic random model limits. The length would approach to the random 

limit when α≥11. There exists a class of graphs in the intermediate region of α, where the 

clustering coefficient is high but the characteristic path length is small and equivalent to random 

graphs. (high C and ).~ randomLL  This is the class of small-world networks. The breakdown of 

length scaling and clustering in an α-model is as follows: 

1. For α=0, both L(α) and C(α) are large. For fixed n and k, an increase in α causes both L(α) 

and C(α) to increase until they reach their maximum values at the small value of α.. When 

α is small, the properties of L(α) and C(α) are best explained with a 1-lattice graph.  

2. For intermediate α, once both L(α) and C(α) reach their maximum value, or cliff, they drop 

rapidly to small values, then lean towards the asymptotic limit. However, the clustering 

cliff clearly occurs after the length cliff. In this region of α, there exists the high clustered 

graph with low characteristic path length. This disparity makes the small-world 

phenomenon possible.  

3. For large α, L(α) decreases logarithmically with n and approaches the random model limits 

of 
)ln(

)ln(
~

k

n
Lrandom  and .~)(lim

n

k
C 

 
  In other words, a random graph can match a large-α 

graph in both characteristic path length and clustering properties.  

4. In addition, for small α, L(n,k,α) increases linearly with  increasing in n. In the large-α 

region, L(n,k,α) unsurprisingly scales with n again. L(n,k,α) decreases with increasing in  k 

at any level of α (both small or large). Moreover, as n becomes very large (in the order of 
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millions and billions of elements), there is distinctive difference in the characteristic path 

length of small-α and large-α ranges.  

 

Figure 1.16: Length and clustering in α-models 

Source: Watts (1999a, p.58) 

 

For robustness check, Watts (1999a) built a number of other α-models, using as substrate a 

2-dimensional lattice, a 2-Cayley tree substrate, a random substrate (in which edges are randomly 

linked until the whole graph is connected), and no-substrate at all (under the construction 

algorithm, this means considering only the value of α in order to obtain a connected graph). At low 

α, there are some discrepancies between these other kinds of substrates and a ring substrate. But 

when α is high enough,  the length of an α-model built on a ring substrate and of any other kind  

substrates do not show any difference. That is, for sufficiently high α, all substrates yield similar 

length values and clustering coefficients. Although the length of no-substrate graph is most similar 

to the length of ring substrate graph, it is similar only when the graph is connected and the value 

of α is low. In addition, a ring substrate yields the most variation in lengths (compared to others, a 

fixed n and k ring substrate exhibits the maximum length). It is therefore easier to observe and 

distinguish the behavior of characteristic path length in ring substrates. As a result, the ring 

substrate is the preferred topology in α-models capturing the small-world phenomenon. However, 

due to some discrepancies between ring substrate and other kinds of substrate in the α-model 
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(when the value of α is relatively low), there is a need to construct a more generalized model that 

is less complicated in terms of dependency on social motivation than the α-model. The β-model 

also uses a ring substrate as initial topology of the graph but differs in other important respects and 

affords more opportunities to theorize the small-world phenomenon.  

1.5.1.2 The β-Model 

 

Like the α-model, the β-model is an interpolation between the completely ordered and the 

completely random graph. It begins with a simple ring substrate stripped of social motivation such 

as mutual friends, acquaintance or other social circles. The building algorithm of a β-model starts 

with a perfect one-dimension lattice with k degree (  on either side) in which any chosen vertex i 

is connected to its nearest neighbor in a clockwise direction (i, i+1). In order to not duplicate 

connection in the graph in the rewiring process, a uniform distribution probability value r of one 

vertex i connecting to any other is initially generated. This probability is compared it to the 

probability of random rewiring β. If β≤ r, the edge (i, i+1) is unchanged, but if β> r, the edge (i, 

i+1) is deleted and uniformly randomly rewired such that vertex i connects to another vertex j with 

probability β over the entire graph. The value of β needs to be measured against the value of r 

because the rewiring edges cannot be self-connecting and cannot be the same as the initial edges. 

After a vertex i is considered, the procedure is redone  for the nearest neighbor to consider vertex i 

and vertex i+2, vertex i and vertex i+3, and so on, until all edges in the graph are rewired.  

The parameter β is the basic probability value used in the rewiring algorithm. As such, the 

parameter β can range from zero to one. The graph was observed at different values of β. When 

β=0, the 1-lattice graph does not change because all edges remain unchanged. When β=1, all edges 

are randomly connected. When 0<β<1, the graph was changed into a random graph. The result, 

visible in Figure 1.17, indicates the occurrence of the small-world phenomenon at low lengths and 
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high clustering coefficients. The β-graph captures the rapid transition of the characteristic length 

with respect to the probability of random rewiring L(β) and the clustering coefficient with respect 

to the probability of random rewiring C(β). As in the α-graph, all the ‗action‘ occurs very close to 

β=0. The length cliff and the cluster cliff in the small-β region occur as  in the α-model. However, 

in small   region, the length scale changes logarithmically with respect to n. In the α-model, for 

small   region, the length increases linearly with n. When the probability of random rewiring is 

high (β approaches unity, β→1), the characteristic length and clustering coefficient are 

transformed into the asymptotically random graph‘s values. The transition in characteristic length 

and clustering coefficient occurs at a value of β that is different from the value of α. Clustering, 

C(β), still stays at high value after the length L(β) becomes close to .randomL  In the large-n range, 

the existence of small-world graphs (sparsely connected, decentralized, clustered), seems clearer 

in the β-model than in the α- model. 

 

          Figure 1.17: Characteristic Length and Clustering Coefficient as functions of β 

Source: Watts (1999a, p70) 

 

Although the β-model and α-model are built using different construction mechanisms, both 

exhibit similar data structure when approaching limiting values and when rapid transitions occur. 

Since there is no social motivation in β-model, it can be interpreted much clearer than the α-
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model. As such, the β-model is more adept at illustrating the small world phenomenon than the α-

model. Regardless of the differences in these two models, there are parameters independent from 

network construction that makes the job of comparing them much easier. The remainder of this 

subsection compares the α and β models in term of shortcut,  , and contraction, Ψ. 

In a relational graph, the rewiring algorithm introduces shortcuts and contractions. Both 

are means of bridging the distance between remote vertices. The small-world phenomenon can be 

observed more clearly in terms of shortcuts and contractions than in terms of α or β values. Both 

the characteristic path length and the clustering coefficient, represented in terms of shortcut,  , 

and contraction, Ψ, can well explain the small-world phenomenon. Of the two, shortcuts provide 

the simpler means of accounting for it. In other words, characteristic path length and clustering 

coefficient, when computerized, produce less complicated results in terms of shortcuts than in 

terms of contractions. Even though it is more precise to capture the small-world phenomenon by 

contraction, shortcut is more practical.  

In rewiring, the first few shortcuts randomly introduced in a large graph connect two 

widely separated vertices, thereby making the distance between these two vertices much shorter. 

These first few shortcuts are likely to have as high impact as in a rapid drop of the graph‘s 

characteristic length. However, when the average distance in a graph has become smaller, new 

shortcuts have much less impact on the characteristic length because at this time it has already 

decreased to its asymptotic value. The introduced shortcut reduces triads in the graph. The 

clustering coefficient, defined as our friends knowing each other, is also reduced as a result of 

decreased triad formation. In a highly clustered graph, the deletion of one edge from a triad has 

less impact on the clustering coefficient. Since the network rewiring algorithm starts from a 

completely connected network with a very high clustering coefficient, the clustering coefficient, 
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then, remains high even when more shortcuts (the sufficiently small fraction of shortcuts) are 

created. Hence, the co-existence of low characteristic length and high clustering coefficient in a 

connected and sparse graph containing a sufficient small fraction (but not too small) of shortcuts is 

the environment where the small-world phenomenon occurs. 

In the initial ring substrate of an α-model, when an additional edge was randomly added, it 

acted as a bridge connecting two distant parts of the ‗rim.‘ This edge is classified as a shortcut 

because distant vertices on both sides of the substrate seem to be in communication through it 

even when they are not directly connected. In the low-β-model, the additional edge formed itself 

as a new real shortcut that connects formerly distant vertices. For very small  , then, both 

characteristic path length in terms of shortcut (L( )) and the clustering coefficient in terms of 

shortcut (C( )) in the α-model perform in ways different from the β-model. Once again, the 

visibility of the small-world phenomenon is greater in the β-model. Watts (1999a) found that, with 

all algorithm constructions including a 1-dimension lattice  -model, connected networks with a 

sufficiently but not too small   can yield small length and high clustering coefficient as seen in 

Figure 1.18: 

 

Figure 1.18: Characteristic length and clustering as functions of   
Source: Watts (1999b, p. 510) 
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Like shortcuts, contractions are able to bring distant vertices closer together, by 

introducing a common neighbor, or mutual friend, bridging the gap. Instead of forming their own 

edge as a shortcut, two remote vertices may be contracted by a randomly added edge. This new 

edge can contract distance in the graph with very little impact on clustering. Hence, analysis in 

terms of the fraction of contractions, Ψ, gives a clearer picture of the small-world phenomenon 

than analysis in terms of shortcuts. Watts (1999) concluded that, in a connected and sparse graph, 

low characteristic path length can coexist with high clustering coefficient over a large region of Ψ. 

This domain of small-world graphs is outlined in Figure 1.19.  

 

Figure 1.19: Characteristic length and clustering as functions of   

Source: Watts (1999b), p. 513. 

1.5.1.3 Transition in the Relational Graph 

 

The transition in this relational graph occurs when edges in the highly ordered graph, such as the 

connected-caveman network, are removed from one cluster to randomly connect vertices in 

different clusters. The random rewiring process shifts the local edge in one cave to be global edge 

connecting to another cave, as shown in Figure 1.20. This process introduces shortcuts into the 

graph. The local length increases but the global length decreases.  
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It is obvious that the new edge in a randomly rewired graph does not traverse from cluster 

to cluster by the connection of type c and type d vertices in neighboring clusters as it does in the 

connected-caveman graph. Many edges traverse through clusters in the network that are far apart. 

Those edges transform into global links. When edges are shifted randomly from local to global 

scale, we cannot say that the characteristic length L is dominated by .globald  Rather, we should say 

that L is determined by both the length that a vertex traverses through its own cluster )( localL and 

the length that it traverses globally to connect to a vertex in another cluster globalL . 

 

Figure 1.20: Randomly rewire the connected-caveman graph 

After rewiring, due to the influence of shortcuts, the characteristic path length of the 

relational graph (Lr), with k>2, decreases nonlinearly and can be approximated by the length of the 

Moore graph (LMG) where .
)ln(

)ln(

k

n
L    Hence, in a transitional graph, the characteristic path length 

could increase logarithmically with the size of (n) for  >0. The increase in shortcuts leads to a 

linear decrease in both localk  and .clusterk  The clustering coefficient of a relational graph (Cr), 

measured in terms of shortcuts, can approximate ).21(   And, for any large k, and small  , it is 

very high (  This confirms the observation we made in section 5.1.3 that after randomly 

rewiring a completed graph, the first few new shortcuts have a highly nonlinear impact on the 
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characteristic path length, L( ), but linear impact on the clustering coefficient, C( ). Thus, the 

small-world graph occurs at the introduction of these first few shortcuts. 

1.5.2 The Spatial Graph 

 

The construction rules for a relational graph presented above do not depend on any physical 

distance in the graph. This enables shortcuts and contractions introduced by the rewiring process 

to shrink distance throughout, without any constraint. The transitional process in a relational 

graph, thus, can exhibit the small-world phenomenon. However, if the graph construction 

algorithm was constrained by physical distances between vertices, a so-called spatial graph is 

produced. Spatial constraints in the construction algorithm prevent shortcuts or contractions from 

having significant influence in shrinking the characteristic length of the graph after rewiring. The 

small-world phenomenon is thus less likely to occur in a spatial graph. Still, an exhaustive study 

of small-world networks must review the spatial, as well as relational graph. Although global 

communications have affected the social networks of most societies, there still exist communities 

where physical distance between members is the crucial factor in forming relationships. 

A spatial graph is one that considers physical distance as determined by a graph parameter, 

ξ, called the spatial distance parameter. In the process of random rewiring, new edges are created 

as a function of the probability distribution of the spatial distance parameter. In other words, in a 

construction of spatial graph, the probability of connection between two vertices is co-determined 

by ξ.  

In the case of constructing a one-dimension graph using uniform distribution in rewiring 

edges, the physical distance between each vertex is ξ=w/2, where w is width of distribution. If 

normal distribution is chosen for the random rewiring algorithm, the spatial distance in the graph 

is ξ=3σ (i.e., the connection will be made within ±3σ of the initial vertex). Distribution of spatial 
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graph presents a characteristic known as ‗finite cutoff‘ because ξ is finite. Thus we ensure that 

new edges will occur only between vertices preexisting within the physical distance of ξ.  

In a spatial graph, vertex i can never connect directly farther than the external length scale 

specified by ξ. However, if the external length scale is long enough, vertices in the entire graph 

may become connected. Even though shortcuts and contraction occur, edges can connect the 

vertices only within external length scale ξ.  Before the length scale extends to be sufficient large, 

clustering in a spatial graph already decreases to its random limits. The characteristic path length 

as the function of external length displays in the same way as the clustering coefficient.   

Spatial networks, which are constructed under the assumption of a uniform distribution, 

limit vertices within a ξ radius. Since all new edges only occur in local scale, kklocal   and 

0globalk  . As the spatial distance ξ increases, the number of vertices connected in local scale 

increase, and the number of vertices in the global scale decreases since 12  localn  and 

12 




n
nglobal . Nevertheless, the increase in the size of graph (n) has a linear impact on .globaln  

Thus, globalL  linearly rises when n increases. After random rewiring, the characteristic path length 

of a spatial graph is the product of local and global lengths, when the connection occurs outside 

the local area. However, the characteristic path length in a spatial graph, SL , is most likely 

dominated by the global length. The characteristic path length in a spatial graph, SL , thus 

increases linearly with the size (n), but decreases monotonically with increase of the physical 

distance (ξ). 

 When a spatial graph is randomly rewired, every edge remains local. Shortcuts and 

contraction have a small impact on the length of the entire graph because they connect only 

vertices within the fixed external length. They might contract a pair of widely separated vertices, 
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but at a distance which is only a little further than the cutoff value (ξ). The clustering coefficient 

of a spatial graph, sC , then, can be calculated in terms of ξ. As 1k  and ,1  the clustering 

coefficient of the spatial graph varies as .


k
Cs   The clustering coefficient of a spatial graph 

decreases monotonically with the physical distance ξ, as the characteristic path length does. In 

addition, for n  , the clustering coefficient of spatial graph, sC , approximates the random 

graph limit value (
S

k
C

n
 ). For ξ=(k/2), the clustering coefficient of a spatial graph is equal to 

the clustering coefficient of a one-dimension lattice graph ( 1S latticeC C   ), which is a high value.   

Watts (1999a) compared the characteristic path length and clustering coefficient of a 

spatial graph with respect to the physical distance ( )(sL and )(sC ). The result is that 

)(sL and )(sC  are lined in the same pattern both in the numerical calculation and analytical 

approach. This means that, with the uniform distribution having a cutoff value, the small-world 

phenomenon of networks with low characteristic length and high clustering coefficients cannot 

occur in a spatial graph. 

However, if the spatial graph is constructed using infinite variance, or Cauchy distribution, 

instead of uniform, or Gaussian distribution, it will generate a broad range of graphs with high 

C(ξ) and low L(ξ). We can say, then, that spatial graphs with infinite cutoff, can exhibit the small 

world phenomenon. 

1.6 Summary 

 

Many economic situations cannot be explained by market mechanisms, but can be well explained 

by the network of relationships. The structure of social networks is, then, an important key in 

explaining market interactions. The small-world network, first studied by Milgram (1967), 
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describes the phenomenon that everyone in the world can be reached through a short chain of 

social acquaintances. Following his work there have been a number of discussions, both empirical 

and theoretical, examining the small-world phenomenon. This chapter studied the small-world 

model proposed by Watts and Strogatz (1998) and Watts (1999a and 1999b). Using techniques 

from graph theory, they interpolated between two extreme networks (completely connected and 

completely unconnected) by starting with a simple one-dimensional ring-lattice. Then, they 

randomly rewired some edges by a probability distribution and measured the so-called 

characteristic path length and clustering coefficient. They observed a sudden transition in the 

characteristic path length as the rewiring probability increased due to the role of the first few 

shortcuts. In contrast to the characteristic path length, the clustering coefficient remains high until 

a high rewiring probability is reached. The first few shortcuts have a significant impact in 

contracting the distance between two widely separated regions in the graph. Networks 

characterized by very small path lengths, yet high clustering coefficients, are said to exhibit the 

small-world phenomenon. Watts and Strogatz (1998) applied their model to real-world networks 

and identified the small-world phenomenon, as Milgram‘s social experiment did. The elements in 

the networks Watts and Strogatz studied empirically could communicate within even shorter 

chains than the ―six degrees of separation‖ Milgram had sensationally proposed in 1967.  
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CHAPTER 2: DATA DESCRIPTION AND PRELIMINARY ANALYSIS 

 

2.1 Introduction 

 

Most studies of job search or job mobility in classical labor economics theory neglect the social 

interaction process through which workers acquire jobs and employers hire workers. Even 

though personal ability is justly considered one of the main determinants of job mobility, a 

number of researchers have stressed the key role of social relationships. Social networks have 

been shown to be crucial in influencing labor market transitions and their efficiency. Granovetter 

(1973) noted that most workers found their jobs through personal contracts and argued that social 

connections are the leading source of information about job opportunities. Montgomery (1991) 

examined the role of social connections by studying how they influence screening and matching. 

Relationships formed within and outside of one‘s workplace frequently help workers acquire 

new positions. This indicates the importance of network relationships in the social and economic 

operation of the labor market. The network structure connects different agents and defines the 

nature of interaction between them. Network formation depends on the strategic decision-making 

by its participants – by strategically deciding whom to for a relationships with participants can 

improve their future chances of landing a new job.  

Empirical studies of networking in labor markets are hampered by data requirements. To 

properly examine the role played by social networks it is necessary to collect very detailed data 

where each agent‘s network relations are observed. To get full information on the network, such 

data are needed on every agent and on every relation connected to that agent. In extensive 

networks it is apparent that data requirements quickly preclude any empirical study. However, 

due to their particular nature academic labor markets are more conducive to studies of the role 
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played by social networks. Unlike other labor markets, particularly those involving private 

companies, it is very difficult to easily observe employees and collect information on themselves 

as well as their social relations. Given their public character, universities provide plenty of 

information on their employees, particularly the academic staff. Various types of information on 

faculty are published by universities themselves in their catalogs or on university web pages. In 

addition, faculty themselves typically post their own resumes on their web pages. One can then 

observe where they obtained their training, their specialization, their publication record, and their 

employment history (provided such information is included in resumes). Given the wealth of 

readily available information, academic labor markets are good candidates to help assess the 

importance of networking in labor markets.  

Networking is a very important determinant of finding an academic job upon completion 

of the Ph.D. degree. One of the standard advices new Ph.D. students receive is to talk to their 

advisors and determine who they know in universities which are advertising open positions and 

to ask them to contact those they know. This is a classic example of how networking is used in 

finding new jobs. In academic labor markets one can then examine the network created by 

interactions among universities. When Harvard University employs a graduate of Princeton 

University it creates a relationship or link between the two which may facilitate the flow of 

information in both directions which can be used in future hiring decisions. By collecting 

information of faculty employed by various universities and where each obtained their degrees, 

one can examine the education-employment network between universities.  

The goal of this chapter is to describe the education-employment network in the 

academic labor market for economists. The first section of this chapter will describe the data 

collected on two hundred departments of economics throughout the world. Next, we will offer a 



 66 

preliminary study of this data aimed at discussing the main trends and providing the first glimpse 

of the network between universities. Finally, a summary of our findings will be given.  

2.2 Data Description 

 

In order to investigate the economics labor market, the information on the top two hundred 

departments and their faculty was collected. Tom Coupe‘s (2003) ranking of departments was 

used to select the departments to be studied. Coupe‘s (2003) ranking is used as it was the most 

recent available worldwide ranking when data collection began. As discussed below, Coupe 

(2003) arrived at his ranking by using more measures than most other available rankings. This 

chapter and the next use the terms department, university, and institution interchangeably and all 

refer to departments of economics located at these universities. Also, to clarify the terminology, 

the top two hundred universities ranked by Coupe (2003) are referred to as the ranked 

universities. Since the list of ranked universities is by no means extensive and it is possible those 

universities hire graduates of universities which are not ranked, those universities are collectively 

referred to as unranked.  

In the past, most economics department rankings, such as the National Research Council 

(NRC) and the US News and World Report (USNWR), tended to be concentrated on 

departments‘ self-reported statistics, a subjective method. While the NRC and USNWR rankings 

are still widely used, over the last thirty years there have been several attempts by economists to 

provide more objective rankings of economics departments. These methods all attempt to 

evaluate departments‘ scholarly output using various measures. Some rankings focus only on 

departments in the US, while others rank economics departments throughout the world.  

Scott and Mitias (1996) rank US economics departments based on faculty publications. 

They use the Herfindal Index to rate the quality of journals. Similarly, Dusansky and Vernon 
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(1998) rank the top fifty US departments based on their publication records using several ways 

of measuring the impact of journals including Leband-Piette‘s (1994) impact factor, which rates 

journals using the average citation per published article. Kalaitzidakis et al. (2003), Coupe 

(2003), and Heck et al. (2006) are recent examples of worldwide rankings based on scholarly 

output. Both Kalaitzidakis et al. (2003) and Coupe (2003) ranked two hundred departments, 

while Heck et al. (2006) ranked 186. While Kalaitzidakis et al.‘s (2003) ranking method was 

based on journal citation analysis, which values frequently cited journals more, and focuses on 

30 journals to weight and count the faculty‘s publication pages, Heck et al. (2006) focused only 

on the elite eight journals, also referred to as the ‗Blue Ribbon‘ journals.
9
 Coupe (2003) used 11 

different publication-based methods to arrive at his ranking. He adopted many count-weighted 

approaches including focusing on publications in a limited number of journals (top ten journals), 

a bigger set of journals (seventy-one journals), and an even larger set of journals (258 journals). 

The final ranking is an average of all 11 methods. The strong point of Coupe‘s (2003) 

methodology stems from the idea that a high ranking should result from all 11 criteria.  

Methodology aside, the correlation of department rankings between Coupe (2003) and 

others is very high, especially for the top one hundred departments. The correlation of worldwide 

ranked department between Coupe (2003) and Kalaitzidakis et al. (2003) is 0.78 overall and 0.73 

in the top one hundred departments. The correlation between Coupe (2003) and Heck et al. 

(2006) is 0.80 in both cases. Moreover, for North American departments, the correlation between 

Coupe (2003) and Kalaitzidakis et al. (2003) and between Coupe (2003) and Heck et al. (2006) is 

very high, at 0.85 and 0.87, respectively. 

                                                 
9
 The Blue Ribbon Eight include: the American Economic Review, Econometrica, International Economic Review, 

Journal of Economic Theory, Journal of Political Economy, Quarterly Journal of Economics, Review of Economic 

Studies, and Review of Economics and Statistics. 
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Table 2.1 presents the correlation of rankings between Coupe (2003) and other recent 

rankings, including Roesster (2004) which is based on co-authorship and output evaluation. The 

correlation between Coupe (2003) and Roesster (2004) in both methods is high as well, 0.75 with 

co-authorship, and 0.80 with output ranking. As can be seen from all correlation, most rankings 

of departments are similar, not only in their ranking, but also in departments which are ranked. 

The use of Coupe‘s (2003) rankings, rather than a different one, will not result in radically 

different conclusions, particularly since a department‘s rank itself is not used in the analysis. 

Rather, Coupe‘s (2003) rank is used solely to select which departments are studied and is shown 

in Table 2.6 along with other information to be discussed at a later point.  

Data were collected during the 2005-2006 academic year from information published on 

university websites. Data include tenured and tenure-track faculty (assistant, associate, and full 

professors) for each economics department. It includes faculty with a terminal degree in 

economics. Faculty members with degrees in other fields are excluded. In addition, information 

on economists in other parts of the university, such as business schools, agricultural economics 

departments, public policy departments, and others were omitted. While this resulted in some 

prominent business schools with many economists (Chicago, Northwestern, University of 

Pennsylvania) being omitted from the study, collecting data on all economists employed by a 

single university would be much more difficult. It would entail combing the rosters of every unit 

within a university which could potentially hire an economist. While in certain cases such 

information is somewhat easily available (some business schools do provide faculty breakdown 

based on fields of specialization), in others it is more difficult to obtain it. In addition, since the 

main goal is to evaluate the labor market for academic economists, studying both production and  
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Table 2.1: Correlation between Coupe (2003) and Other Rankings 

  

Correlation Coefficient with Coupe 

(2003) 

Christian Roesster 

(2004) Network 

Rankings 

Worldwide (200) 0.75 

100 upper rank 0.75 

100 bottom rank 0.29 

North America 0.85 

100 upper rank 0.82 

100 bottom rank 0.25 

Christian Roesster 

(2004) Average 

Productivity Rankings 

Worldwide (196) 0.80 

100 upper rank 0.76 

100 bottom rank 0.43 

North America 0.87 

100 upper rank 0.82 

100 bottom rank 0.66 

Kalaitzidakis, Stengos, 

and Mamuneas (2003) 

Worldwide (200) 0.78 

100 upper rank 0.73 

100 bottom rank 0.26 

North America 0.85 

100 upper rank 0.82 

100 bottom rank 0.49 

Heck, Zaleski, and 

Dressler (2006) 

Worldwide (186) 0.80 

100 upper rank 0.80 

100 bottom rank 0.31 

North America 0.87 

100 upper rank 0.85 

100 bottom rank 0.37 

Scottand Mitias (1996) 

Wide 36 Journals 

(concentrate) 

100 US Departments 0.87 

Scottand Mitias (1996) 

Core 5 Journal (Stock) 
80 US Departments 0.17 

Dusansky and Vernon 

(1995) 
50 US Departments 0.65 

NRC Faculty Survey in 

1993 
50 US Departments 0.83 

USNWR Overall 

Survey in 1996 
50 US Departments 0.81 

 



 70 

placement, most units outside economics departments produce few economics Ph.D. Thus, their 

omission should result in a small bias. 

Information on each individual includes the university which granted the terminal degree, 

the current employer, and professorial rank. These three pieces of information are the minimum 

required for the analysis. For future use, where available the year of graduation, year of 

employment by current university, first employer and year, as well as fields of specialization 

were collected as well. The department which employed the individual when data were collected 

is referred to as ‗employer,‘ while the department which the individual graduated with the 

terminal degree to as the ‘grantor‘ or ‗producer.‘  

The sample consists of two hundred employer universities, of which 126 are located in 

North America, 57 in Europe, 7 in Asia, and 4 in Australia. The total number of individuals in 

these departments is 5,530, of which the minimum required information (employer, grantor, and 

rank) is available for 5,081 individuals (91.88 percent), which is the size of the sample analyzed. 

The 449 economists for whom the required information is not available are all employed by 

universities in Europe, Australia, and Asia. Complete information is available for every 

academic economist employed in North America. A total of 321 universities granted terminal 

degrees to economists in the sample. Almost 98 percent of faculty with the minimum required 

information are Ph.D. degree holders in economics. The remaining 109 individuals do not have a 

Ph.D. as their terminal degree. With this in mind, we will generally refer to Ph.D. as the terminal 

degree for all individuals. 

2.3 Preliminary Analysis 

 

Table 2.2 presents the number of degrees granted and individuals hired by the countries in which 

the employer and grantor universities are located. The United States produces and hires by far  
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Table 2.2: Grantor and Employer Countries in Ranked Universities 

Grantor 

Country 

Number of  

Graduates Percentage 

Employer 

Country 

Number of 

Hires Percentage 

Australia 78 1.54 Australia 166 3.27 

Austria 19 0.37 Austria 20 0.39 

Belgium 76 1.50 Belgium 52 1.02 

Canada 240 4.72 Canada 485 9.55 

China 1 0.02 China 94 1.85 

Czech 2 0.04 Denmark 42 0.83 

Denmark 38 0.75 France 120 2.36 

Finland 1 0.02 Germany 79 1.55 

France 141 2.78 Ireland 3 0.06 

Germany 98 1.93 Israel 56 1.10 

India 8 0.16 Italy 125 2.46 

Ireland 4 0.08 Japan 109 2.15 

Israel 27 0.53 Netherlands 114 2.24 

Italy 63 1.24 Norway 31 0.61 

Japan 64 1.26 Singapore 42 0.83 

Kazakhstan 1 0.02 Spain 146 2.87 

Netherlands 102 2.01 Sweden 49 0.96 

NewZealand 2 0.04 Switzerland 33 0.65 

Norway 25 0.49 UK 521 10.25 

Poland 1 0.02 USA 2794 54.99 

Russia 4 0.08 Total 5081 100.00 

Scotland 3 0.06    

Serbia 1 0.02    

Singapore 5 0.10    

Spain 74 1.46    

Sweden 57 1.12    

Switzerland 21 0.41    

Taiwan 1 0.02    

UK 529 10.41    

USA 3395 66.82    

Total 5081 100.00    

 

the largest number of academic economists, producing a total of 3,395 economists in the sample 

(66.82 percent) and hiring 2,794 (54.99 percent). The UK is a far second with 529 economists 

produced and 521 hired. Canada is a close third. Figure 2.1 presents links between employer and 
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Grantor Countries   Employer Countries 

Figure 2.1: Interactions between Countries as Employers and Grantors 
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grantor countries
10

. Employers are located in 20 and grantors in 30 countries. Each employer and 

each grantor is represented by a node. If a country both hired and produced economists it is 

represented by two nodes. Hiring countries are concentrated in the middle of the figure, while 

grantors are on the edges. The direction of the arrow points in the direction placement of 

produced economists. An arrow pointing from France to Germany means that a French Ph.D. 

was hired in Germany. There is no arrow in the opposite direction, meaning no German trained 

scholar was hired in France.  

Figure 2.2 shows interactions between continents, as both employers and grantors. The 

thicker line between North America and Europe indicates more interactions between these two 

continents compared to others. Information illustrated in Figure 2.2 is shown in Table 2.3 and 

2.4. 

 
Figure 2.2: Interactions between Continents as Employers and Grantors 

                                                 
10

 This, and all sequent network figures as well as calculations were obtained by using the software package  

Ucinet 6.   
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Rows show the total number of degrees granted on each continent, while columns show the total 

number of economists employed on each continent. In both tables, ‗N‘ indicates the actual 

number of economists. The only difference between the two tables is that Table 2.3 shows row 

percentages indicating the placement distribution across continents, while Table 2.4 shows the 

column percentages indicating the hiring distribution across continent. Take North America, for 

example. It produces a total of 3,635 economists, of whom 3,052 (83.96 percent) are hired by  

 

Table 2.3: Distribution of Economists in Ranked Universities (Row Distribution) 

 

Employer  

Asia Australia Europe 

North 

America 

Total 

Granting 

 Asia N       = 88 1 4 13 106 

  Row    % 83.02 0.94 3.77 12.26  

 Australia N       = 4 60 6 10 80 

  Row    % 5.00 75.00 7.50 12.50  

Grantor Europe N       = 13 28 1,015 204 1,260 

  Row    % 1.03 2.22 80.56 16.19  

 North America N       = 196 77 310 3,052 3,635 

  Row    % 5.39 2.12 8.53 83.96  

 Total  N       = 301 166 1,335 3,279 5,081 

  Row    % 5.92 3.27 26.27 64.53  

 

Table 2.4: Distribution of Economists in Ranked Universities (Column Distribution) 

 

Employer  

Asia Australia Europe 

North 

America Total  

 Asia N       = 88 1 4 13 106 

  Column % 29.24 0.60 0.30 0.40 2.09 

 Australia N       = 4 60 6 10 80 

  Column % 1.33 36.14 0.45 0.30 1.57 

Grantor Europe N       = 13 28 1,015 204 1,260 

  Column % 4.32 16.87 76.03 6.22 24.80 

 North America N       = 196 77 310 3,052 3,635 

  Column % 65.12 46.39 23.22 93.08 71.54 

 Total Employment N       = 301 166 1,335 3,279 5,081 
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North American universities, 310 (8.53 percent) are hired by European universities, 77 are hired 

by Australian universities, and 196 by Asian universities. The 3,052 North American trained 

economists hired by North American universities represent 93.08 percent of all economists hired 

by North American universities. North America hired 204 economists educated in Europe who 

represent 6.22 percent of all economists hired by North American Universities. Asia and 

Australia jointly account for less than one percent of academic economists in North America.  

This chapter, as well as the next one, will focus on analyzing the North American labor 

market for several reasons. First, as already mentioned there is complete coverage of North 

America. Full information is available for every economist employed by the 126 universities in 

North America, while some information is missing for some 450 economists in the other parts of 

the world. This is in part due to some of these universities not providing as much information on 

the English language versions of their web pages as they do in their native languages. North 

American departments tend to provide more information on their faculty than do their 

counterparts in Europe, Asia, and Australia. Second, departments outside of North America have 

a much higher tendency to hire their own graduates than do the North American departments 

(though exceptions exist on both sides). This may be a result of smaller labor markets in which 

departments operate and may not truly reflect the networking aspects. Third, the academic labor 

market in North America is very centralized, facilitate primarily through the efforts of the 

American Economic Association. While universities and graduates outside of North America 

participate in the North American market, their participation is limited relative to their numbers 

(both employment and number of economists produced). Labor markets on other continents are 

not as centralized. In addition, geographic distances and borders between countries outside of 

North America are likely to create these fragmented markets and result in different institutional 
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settings in these labor markets. However, to give a broader context and to assist further research, 

a description of the network of all ranked universities will also be presented.  

In addition to these two samples, the North American and full sample, two more samples 

must be created. Since the goal is to analyze the labor market from a network point of view, it is 

necessary to create ‗square‘ samples, where each department functions as both the employer and 

the grantor. Due to this restriction, the square samples will consist only of ranked departments 

worldwide and the relevant subsample of ranked departments within North America. For the few 

universities which do not grant Ph.D. degrees, such as Dartmouth College, granting activity is set 

to zero (i.e., they only employ economists, but do not place any). 

 Summary statistics for the various samples are provided in Table 2.5. The first column 

provides information for the entire network of all ranked universities. The faculty in ranked 

departments received their degrees from 321 departments. The second column provides 

information on the square version of the full network – keeping only ranked departments whose 

graduates were employed by ranked departments (all other economists and universities are 

dropped). Only 179 of the 200 top universities have granted degrees to 4,783 faculty members 

currently employed by the top 200 universities. They form 94.14 percent of all hires. Table 2.6 

shows the hiring and granting information for all ranked departments. Almost all top 10 

universities hire faculty with degrees from a ranked institution (UC Berkeley is the only 

exception).  

The average number, the median, and the standard deviation of Ph.D. hires from all 

grantors are not significantly different than hires from ranked grantors only (column 2 of Table 

2.5). The average faculty size of a ranked economics department is 25.41, and average number of 

faculty   hired from  ranked  departments is 23.92. That means, on average,   ranked departments  
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Table 2.5: Summary Statistics for Ph.D. Graduate Employment in Economics Departments 

 

Full 

Network 

Full Square 

Network  

North American 

Network 

North American 

Square Network 

Ranked 

Employers 

and All 

Grantors 

Ranked 

Employers 

and Ranked 

Grantors 

North America 

Ranked 

Employers and 

All Grantors 

North America 

Ranked 

Employers and 

North America 

Ranked 

Grantors 

1 Number of Employing 

Universities 200 200 126 126 

2 Number of Ph.D. 

Granting Universities 321 179 193 108 

3 Total Number of Faculty 5,081 4,783 3,279 3,026 

4 Average Faculty per 

Employing University 25.41 23.92 26.02 24.02 

5 

Median of Ph.D. Faculty 

per Employing 

University 

24 22 25 22 

6 
Standard Deviation of 

Faculty per Employing 

University 

12.05 11.42 10.63 9.81 

7 

Average Number of 

Placements per Ph.D. 

Grantor 

15.83 26.72 16.99 28.02 

8 
Median Number of 

Placements per Ph.D. 

Grantor 

3 12 3 9 

9 
Standard Deviation of 

Number of Placements 

per Ph.D. Grantor 

35.48 44.61 36.50 45.66 

10 

Number Hired from 

Non-Ranked Ph.D. 

Grantors 

298  71  

11 
Number Hired from 

Non-North America 

Ranked Ph.D. Grantors 

  182  

12 

Percentage of Hiring 

from Ranked 

Universities 94.14  92.28  
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employed only 1.5 faculty members trained by a non-ranked department. The median number of 

faculty per employer does not differ much from the mean. However, the average, the median, 

and the standard deviation of the number of placements per granting department in the full 

network is much different than those in the square sample of all ranked departments. The 

network formed by ranked universities whose alumni have been hired by another ranked 

institution is called the square ranked network. While the average number of placements per 

grantor in the full network is 15.83, the average number of placements per grantor in the square 

network is 26.72 individuals. Such differences are due to the few economists trained by the many 

unranked departments (298 economists received their terminal degree from 121 unranked 

departments). This indicates there is an unequal throughput for producing Ph.D. graduates. In 

other words, the ranked universities have the ability to produce more Ph.D. holders. By the same 

token, differences in program capacity may help explain why the standard deviation in the square 

ranked network is higher than that in the full network.  

Table 2.6 presents the role of each ranked university in granting and hiring of Ph.D. 

graduates. Harvard has granted degrees to 239 graduates who are presently employed by ranked 

universities. It itself employs 53 faculty members, all of whom are graduates of ranked 

universities, with 14 of them receiving their degree from Harvard. Self-hires account for 26.42 

percent of Harvard‘s faculty. On average, 11.73 percent of employed economists are self-hires.  

Such high average self hiring percentage is largely due to universities outside North America, as 

shown below. Table 2.6 illustrates production capacity differences across universities alluded to 

above. Placement of graduates in ranked universities is difficult and is very unevenly distributed 

(and at least to some extent correlated with total capacity which is unobservable in this study 

since we do not observe graduates who find jobs outside the academia). Only Massachusetts 
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Table 2.6: Hiring of All Ranked Departments 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

Number 

of 

Employed 

Faculty 

Number Hired 

from Non-

Ranked 

Universities 

Number 

Hired from 

Ranked 

Universities 

Percentage 

Hired from 

Ranked 

Universities 

Number of 

Self-Hires 

Percentage of 

Self-Hires  

1 Harvard 239 53 0 53 100.00 14 26.42 

2 Chicago 218 26 0 26 100.00 4 15.38 

3 Penn 114 32 0 32 100.00 2 6.25 

4 Stanford 183 35 0 35 100.00 5 14.29 

5 MIT 255 38 0 38 100.00 11 28.95 

6 UC Berkeley 200 56 1 55 98.21 4 7.27 

7 Northwestern 141 40 0 40 100.00 3 7.50 

8 Yale 169 45 0 45 100.00 7 15.56 

9 Michigan 78 57 0 57 100.00 1 1.75 

10 Columbia 70 48 0 48 100.00 1 2.08 

11 Princeton 173 52 1 51 98.08 9 17.65 

12 UCLA 62 44 0 44 100.00 1 2.27 

13 NYU 43 45 0 45 100.00 1 2.22 

14 Cornell 70 34 3 31 91.18 1 3.23 

15 LSE 115 50 1 49 98.00 2 4.08 

16 Wisc Madison 125 31 0 31 100.00 1 3.23 

17 Duke 46 32 0 32 100.00 2 6.25 

18 Ohio State 23 33 0 33 100.00 0 0.00 

19 Maryland 26 37 1 36 97.30 0 0.00 

20 Rochester 86 20 0 20 100.00 1 5.00 

21 UT Austin 16 35 0 35 100.00 1 2.86 

22 Minnesota 135 26 1 25 96.15 2 8.00 

23 UIUC 47 36 0 36 100.00 0 0.00 

24 UC Davis 17 29 2 27 93.10 0 0.00 
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Table 2.6 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

Number 

of 

Employed 

Faculty 

Number Hired 

from Non-

Ranked 

Universities 

Number 

Hired from 

Ranked 

Universities 

Percentage 

Hired from 

Ranked 

Universities 

Number of 

Self-Hires 

Percentage of 

Self-Hires  

25 Toronto 38 61 4 57 93.44 3 5.26 

26 Oxford 106 43 0 43 100.00 18 41.86 

27 UBC 54 33 0 33 100.00 4 12.12 

28 UCSD 58 37 1 36 97.30 0 0.00 

29 USC 14 23 1 22 95.65 0 0.00 

30 BU 24 36 2 34 94.44 0 0.00 

31 Penn State 22 25 0 25 100.00 1 4.00 

32 CMU 34 37 0 37 100.00 5 13.51 

33 Cambridge 73 21 3 18 85.71 9 50.00 

34 Florida 7 18 0 18 100.00 0 0.00 

35 Mich State 29 41 1 40 97.56 1 2.50 

36 Rutgers 10 33 0 33 100.00 1 3.03 

37 U Washington 35 25 0 25 100.00 0 0.00 

38 UNC 23 30 1 29 96.67 1 3.45 

39 TAMU 15 29 0 29 100.00 1 3.45 

40 Indiana 24 22 0 22 100.00 0 0.00 

41 Iowa 22 21 1 20 95.24 1 5.00 

42 Tel Aviv 5 20 0 20 100.00 2 10.00 

43 UVA 33 27 0 27 100.00 0 0.00 

44 UCL 24 37 4 33 89.19 4 12.12 

45 Hebrew 18 23 0 23 100.00 5 21.74 

46 Brown 56 27 0 27 100.00 0 0.00 

47 Tilburg 26 22 3 19 86.36 6 31.58 

48 Pitt 25 25 0 25 100.00 1 4.00 
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Table 2.6 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

Number 

of 

Employed 

Faculty 

Number Hired 

from Non-

Ranked 

Universities 

Number 

Hired from 

Ranked 

Universities 

Percentage 

Hired from 

Ranked 

Universities 

Number of 

Self-Hires 

Percentage of 

Self-Hires  

49 Warwick 26 28 1 27 96.43 5 18.52 

50 Arizona 6 23 0 23 100.00 0 0.00 

51 West Ontario 42 28 0 28 100.00 1 3.57 

52 JHU 43 14 0 14 100.00 0 0.00 

53 ANU 24 21 3 18 85.71 4 22.22 

54 Vanderbilt 8 29 0 29 100.00 0 0.00 

55 Queen's 43 32 0 32 100.00 4 12.50 

56 WUSTL 24 21 1 20 95.24 0 0.00 

57 Montreal 14 28 1 27 96.43 0 0.00 

58 Georgetown 4 28 0 28 100.00 0 0.00 

59 CO Boulder 12 29 1 28 96.55 0 0.00 

60 UGA 1 16 0 16 100.00 0 0.00 

61 VA Tech 16 13 1 12 92.31 0 0.00 

62 Purdue 46 21 3 18 85.71 0 0.00 

63 UC Irvine 4 25 0 25 100.00 0 0.00 

64 BC 15 28 0 28 100.00 0 0.00 

65 Iowa State 8 29 0 29 100.00 1 3.45 

66 Amsterdam 22 35 1 34 97.14 14 41.18 

67 NC State 10 26 1 25 96.15 1 4.00 

68 Erasmus 15 17 0 17 100.00 7 41.18 

69 Dartmouth 0 22 1 21 95.45 0 0.00 

70 Louvain 35 22 6 16 72.73 13 81.25 

71 U York 24 46 8 38 82.61 8 21.05 

72 ASU 3 29 1 28 96.55 0 0.00 
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Table 2.6 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

Number 

of 

Employed 

Faculty 

Number Hired 

from Non-

Ranked 

Universities 

Number 

Hired from 

Ranked 

Universities 

Percentage 

Hired from 

Ranked 

Universities 

Number of 

Self-Hires 

Percentage of 

Self-Hires  

73 Toulouse 32 38 6 32 84.21 10 31.25 

74 Essex 18 31 3 28 90.32 2 7.14 

75 Stockholm 14 20 0 20 100.00 5 25.00 

76 UCSB 13 29 1 28 96.55 0 0.00 

77 LBS 5 7 1 6 85.71 0 0.00 

78 Florida State 5 29 3 26 89.66 0 0.00 

79 UNSW 12 35 2 33 94.29 7 21.21 

80 Alberta 0 25 0 25 100.00 0 0.00 

81 McMaster 15 27 0 27 100.00 1 3.70 

82 Houston 2 22 0 22 100.00 0 0.00 

83 Syracuse 11 26 0 26 100.00 3 11.54 

84 UAB 24 41 7 34 82.93 9 26.47 

85 Nottingham 11 43 9 34 79.07 5 14.71 

86 HKUST 0 19 0 19 100.00 0 0.00 

87 Bonn 23 19 7 12 63.16 7 58.33 

88 York U 2 31 1 30 96.77 0 0.00 

89 Cal Tech 19 16 0 16 100.00 0 0.00 

90 LSU 3 14 1 13 92.86 1 7.69 

91 Southampton 12 14 0 14 100.00 2 14.29 

92 UConn 1 27 1 26 96.30 0 0.00 

93 Georgia State 3 31 0 31 100.00 3 9.68 

94 UKY 5 20 0 20 100.00 1 5.00 

95 GWU 2 32 0 32 100.00 1 3.13 

96 INSEE 0 10 2 8 80.00 0 0.00 
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Table 2.6 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

Number 

of 

Employed 

Faculty 

Number Hired 

from Non-

Ranked 

Universities 

Number 

Hired from 

Ranked 

Universities 

Percentage 

Hired from 

Ranked 

Universities 

Number of 

Self-Hires 

Percentage of 

Self-Hires  

97 SMU 4 18 0 18 100.00 0 0.00 

98 Notre Dame 3 26 0 26 100.00 2 7.69 

99 SSE 14 15 6 9 60.00 2 22.22 

100 SFU 7 34 0 34 100.00 0 0.00 

101 Oregon 5 19 0 19 100.00 0 0.00 

102 GMU 9 29 1 28 96.55 2 7.14 

103 Birkbeck 8 16 0 16 100.00 1 6.25 

104 VUA 10 10 0 10 100.00 4 40.00 

105 UMass 9 24 2 22 91.67 1 4.55 

106 S Carolina 1 16 0 16 100.00 1 6.25 

107 Paris I 51 41 10 31 75.61 30 96.77 

108 Bristol 5 5 0 5 100.00 1 20.00 

109 Melbourne 5 43 6 37 86.05 2 5.41 

110 UIC 1 21 0 21 100.00 1 4.76 

111 Copenhagen 31 42 7 35 83.33 26 74.29 

112 McGill 8 34 2 32 94.12 2 6.25 

113 Groningen 12 10 1 9 90.00 6 66.67 

114 Ch UHK 0 19 1 18 94.74 0 0.00 

115 ULB 17 10 0 10 100.00 10 100.00 

116 Newcastle uT 1 3 1 2 66.67 0 0.00 

117 Tulane 4 12 1 11 91.67 0 0.00 

118 American 5 22 1 21 95.45 2 9.52 

119 Mannheim 14 26 7 19 73.08 9 47.37 

120 Auburn 1 12 1 11 91.67 0 0.00 
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Table 2.6 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

Number 

of 

Employed 

Faculty 

Number Hired 

from Non-

Ranked 

Universities 

Number 

Hired from 

Ranked 

Universities 

Percentage 

Hired from 

Ranked 

Universities 

Number of 

Self-Hires 

Percentage of 

Self-Hires  

121 UPF 17 56 8 48 85.71 1 2.08 

122 Buffalo 6 20 2 18 90.00 1 5.56 

123 Manchester 20 34 3 31 91.18 7 22.58 

124 UCSC 4 23 0 23 100.00 1 4.35 

125 Monash 16 32 7 25 78.13 11 44.00 

126 Rice 12 21 0 21 100.00 1 4.76 

127 Tennessee 1 16 0 16 100.00 0 0.00 

128 Emory 0 16 0 16 100.00 0 0.00 

129 NU Singapore 0 42 5 37 88.10 0 0.00 

130 Laval 5 27 0 27 100.00 2 7.41 

131 C3MU 5 49 10 39 79.59 0 0.00 

132 Waterloo 3 23 1 22 95.65 3 13.64 

133 Wayne State 1 13 0 13 100.00 0 0.00 

134 Wisc Mil 3 22 0 22 100.00 0 0.00 

135 Missouri 3 15 0 15 100.00 0 0.00 

136 UC Riverside 4 19 2 17 89.47 0 0.00 

137 Alabama 1 13 0 13 100.00 0 0.00 

138 Quebec 2 28 1 27 96.43 0 0.00 

139 Albany 2 19 0 19 100.00 0 0.00 

140 Oslo 11 14 0 14 100.00 11 78.57 

141 Miami FL 0 16 0 16 100.00 0 0.00 

142 Maastricht 11 20 3 17 85.00 6 35.29 

143 Delaware 0 26 0 26 100.00 0 0.00 

144 Sydney 6 35 3 32 91.43 3 9.38 
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Table 2.6 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

Number 

of 

Employed 

Faculty 

Number Hired 

from Non-

Ranked 

Universities 

Number 

Hired from 

Ranked 

Universities 

Percentage 

Hired from 

Ranked 

Universities 

Number of 

Self-Hires 

Percentage of 

Self-Hires  

145 EHESS 25 20 4 16 80.00 5 31.25 

146 Vienna 14 20 6 14 70.00 8 57.14 

147 Munich 14 34 9 25 73.53 9 36.00 

148 East Anglia 3 6 1 5 83.33 0 0.00 

149 Geneva 2 7 0 7 100.00 0 0.00 

150 INSEAD 0 11 0 11 100.00 0 0.00 

151 Clemson 0 25 1 24 96.00 0 0.00 

152 Birmingham 3 21 2 19 90.48 1 5.26 

153 Guelph 2 24 2 22 91.67 1 4.55 

154 Hitots 9 22 2 20 90.91 9 45.00 

155 Tufts 1 22 0 22 100.00 0 0.00 

156 BYU 0 21 0 21 100.00 0 0.00 

157 Tokyo 32 55 3 52 94.55 25 48.08 

158 CU Lon 3 7 0 7 100.00 2 28.57 

159 Zurich 14 26 7 19 73.08 12 63.16 

160 Stony Brook 13 13 0 13 100.00 0 0.00 

161 Carleton 2 26 0 26 100.00 0 0.00 

162 Reading 8 25 4 21 84.00 7 33.33 

163 Academia S 0 35 7 28 80.00 0 0.00 

164 KUL 20 20 1 19 95.00 10 52.63 

165 Bar-Ilan 3 13 0 13 100.00 3 23.08 

166 EUI 27 12 1 11 91.67 0 0.00 

167 Bocconi 11 44 3 41 93.18 9 21.95 

168 Utah 6 21 2 19 90.48 4 21.05 
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Table 2.6 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

Number 

of 

Employed 

Faculty 

Number Hired 

from Non-

Ranked 

Universities 

Number 

Hired from 

Ranked 

Universities 

Percentage 

Hired from 

Ranked 

Universities 

Number of 

Self-Hires 

Percentage of 

Self-Hires  

169 Brandeis 1 21 0 21 100.00 0 0.00 

170 IUPUI 0 16 0 16 100.00 0 0.00 

171 Exeter 4 15 1 14 93.33 1 7.14 

172 Bologna 12 64 11 53 82.81 12 22.64 

173 Wyoming 3 10 0 10 100.00 2 20.00 

174 Nebraska 0 16 2 14 87.50 0 0.00 

175 WVA 3 19 0 19 100.00 0 0.00 

176 Kansas 3 21 0 21 100.00 0 0.00 

177 NHH 14 17 1 16 94.12 14 87.50 

178 Temple 1 24 3 21 87.50 0 0.00 

179 Glasgow 5 16 2 14 87.50 1 7.14 

180 SIUC 5 11 2 9 81.82 0 0.00 

181 Kansas State 0 16 1 15 93.75 0 0.00 

182 CUNY 9 58 1 57 98.28 4 7.02 

183 Oklahoma 1 14 2 12 85.71 0 0.00 

184 CWM 0 20 1 19 95.00 0 0.00 

185 Strathclyde 5 15 1 14 93.33 2 14.29 

186 Edinburgh 4 14 1 13 92.86 0 0.00 

187 UHK 1 21 0 21 100.00 1 4.76 

188 Wash State 4 12 0 12 100.00 0 0.00 

189 Uppsala 12 14 5 9 64.29 7 77.78 
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Table 2.6 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

Number 

of 

Employed 

Faculty 

Number Hired 

from Non-

Ranked 

Universities 

Number 

Hired from 

Ranked 

Universities 

Percentage 

Hired from 

Ranked 

Universities 

Number of 

Self-Hires 

Percentage of 

Self-Hires  

190 Osaka 12 25 5 20 80.00 10 50.00 

191 Tsukuba 1 7 0 7 100.00 0 0.00 

192 UNM 1 11 0 11 100.00 1 9.09 

193 UC Dublin 1 3 0 3 100.00 0 0.00 

194 CO Denver 0 10 0 10 100.00 0 0.00 

195 Rome LS 0 5 2 3 60.00 0 0.00 

196 Concordia 2 24 3 21 87.50 0 0.00 

197 SCU 0 13 0 13 100.00 0 0.00 

198 QMUL 5 24 3 21 87.50 0 0.00 

199 Montana State 1 13 0 13 100.00 1 7.69 

200 URI 0 10 0 10 100.00 0 0.00 

 Total 4,783 5,081 298 4,783 94.14 561 11.73 
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Institute of Technology, Harvard University, University of Chicago, and University of California 

at Berkeley have successfully placed more than 200 graduates each in other ranked university. 

Only an additional nine universities have placed more than 100 of their graduates in ranked 

universities. These top thirteen universities in terms of placement are responsible for training a 

full 45% of all economists hired by ranked universities in the square network (or 42% in the full 

network).  

The third and fourth columns of Table 2.5 present the statistics of the North American 

sample. The number of all grantors whose graduates have been hired at ranked North American 

universities is 197, but only 108 of them are located in North America. The number of faculty 

members in ranked North American universities holding degrees from ranked North American 

universities, referred to as the North American square ranked network, is 3,026, while the total 

number of faculty members in North America is 3,279. While the average size of a ranked 

department in North America is 26.02, an average of 24.02 faculty were trained by ranked North 

American universities. Within North American universities, the employment capacity varies less 

than in the full network, leading to smaller standard deviations in hiring (10.63 and 9.81 for the 

square network). As with all ranked universities, average and median number of faculty in North 

America are not very different. The median faculty size is 25, while the median number of 

faculty hired from ranked North American universities is 22. 

Since most faculty in North American universities received their degrees from other 

ranked North American universities, the average number of placed graduates per grantor is 16.99 

for all grantors and 28.02 for North American ranked grantors. The standard deviation of 

placement by North American universities is as high as among all ranked universities because 

North American universities are the majority of all granting universities and their placement and 
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production capacity varies greatly. Unsurprisingly, the large department can produce a large 

share of Ph.D. graduates. Harvard, for instance, has granted degrees to 196 Ph.D. graduates hired 

by top-ranking North American universities. The same number for Louisiana State University is 

only 3 (Table 2.7). 

North American universities employ few Ph.D. graduates from non-ranked Ph.D. 

grantors (71 faculty members). Only 182 of their faculty received their degree from a ranked 

department outside of North America. Faculty hiring from North American grantors amounts to 

92.28 percent of total faculty hiring (Table 2.5). Moreover, compared to all ranked universities, 

institutional self-hiring in North American ranked universities is much lower. Only 4.59 percent 

of faculty members in a North American university received their degree from their current 

employer as compared to 11.73 for all ranked universities.  

Figures 2.3 and 2.4 illustrate the histogram of the years when degrees were granted for 

those economists with available data. These figures are presented for illustrative purposes only, 

showing the range of years over which current academic economists obtained their degrees. 

There are relatively few economists still active who obtained their degree before 1960. There is a 

rapid growth in the number of degrees granted in the 1960s, followed by a much slower growth 

rate of degrees granted from 1970s through mid-1990s. From 1997 on there is a much more rapid 

growth in the number of degrees granted. These trends can be explained by retirement patterns 

and replacement needs, growth of universities due to the larger number of students attending, and 

various other factors which are outside the scope of this analysis.  

2.3.1 Tier Analysis 

 

In order to capture the interactions between universities in different layers of the top 200, they 

have been divided into 8 tiers, each with 25 members as shown in Table 2.8. The 25 top-ranked 
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Table 2.7: Hiring of North American Ranked Departments  

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

in all 

Ranked 

Universities  

Number of 

Placed 

Graduates in 

North 

American 

Ranked 

Universities 

Number 

of 

Faculty 

Number 

of Hires 

from 

North 

America  

Number of 

Hires from 

Ranked 

Non-North 

America 

Number of 

Hires from 

Non-Ranked 

Universities 

Percentage 

of Hires 

from North 

America 

Self-

Hires 

Percentage 

of Self-

Hires  

1 Harvard 239 196 53 51 2 0 96.23 14 27.45 

2 Chicago 218 193 26 26 0 0 100.00 4 15.38 

3 Penn 114 94 32 30 2 0 93.75 2 6.67 

4 Stanford 183 157 35 32 3 0 91.43 5 15.63 

5 MIT 255 214 38 35 3 0 92.11 11 31.43 

6 UC Berkeley 200 172 56 51 4 1 91.07 4 7.84 

7 Northwestern 141 117 40 38 2 0 95.00 3 7.89 

8 Yale 169 141 45 43 2 0 95.56 7 16.28 

9 Michigan 78 68 57 54 3 0 94.74 1 1.85 

10 Columbia 70 57 48 42 6 0 87.50 1 2.38 

11 Princeton 173 138 52 46 5 1 88.46 9 19.57 

12 UCLA 62 51 44 42 2 0 95.45 1 2.38 

13 NYU 43 25 45 41 4 0 91.11 1 2.44 

14 Cornell 70 51 34 29 2 3 85.29 1 3.45 

16 Wisc Madison 125 115 31 29 2 0 93.55 1 3.45 

17 Duke 46 42 32 30 2 0 93.75 2 6.67 

18 Ohio State 23 22 33 31 2 0 93.94 0 0.00 

19 Maryland 26 22 37 36 0 1 97.30 0 0.00 

20 Rochester 86 72 20 18 2 0 90.00 1 5.56 

21 UT Austin 16 15 35 35 0 0 100.00 1 2.86 

22 Minnesota 135 110 26 24 1 1 92.31 2 8.33 

23 UIUC 47 41 36 33 3 0 91.67 0 0.00 
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Table 2.7 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

in all 

Ranked 

Universities  

Number of 

Placed 

Graduates in 

North 

American 

Ranked 

Universities 

Number 

of 

Faculty 

Number 

of Hires 

from 

North 

America  

Number of 

Hires from 

Ranked 

Non-North 

America 

Number of 

Hires from 

Non-Ranked 

Universities 

Percentage 

of Hires 

from North 

America 

Self-

Hires 

Percentage 

of Self-

Hires  

24 UC Davis 17 11 29 24 3 2 82.76 0 0.00 

25 Toronto 38 33 61 50 7 4 81.97 3 6.00 

27 UBC 54 41 33 32 1 0 96.97 4 12.50 

28 UCSD 58 36 37 34 2 1 91.89 0 0.00 

29 USC 14 7 23 17 5 1 73.91 0 0.00 

30 BU 24 17 36 32 2 2 88.89 0 0.00 

31 Penn State 22 14 25 21 4 0 84.00 1 4.76 

32 CMU 34 30 37 37 0 0 100.00 5 13.51 

34 Florida 7 7 18 17 1 0 94.44 0 0.00 

35 Mich State 29 27 41 38 2 1 92.68 1 2.63 

36 Rutgers 10 9 33 32 1 0 96.97 1 3.13 

37 U Washington 35 32 25 24 1 0 96.00 0 0.00 

38 UNC 23 23 30 28 1 1 93.33 1 3.57 

39 TAMU 15 14 29 28 1 0 96.55 1 3.57 

40 Indiana 24 23 22 21 1 0 95.45 0 0.00 

41 Iowa 22 19 21 20 0 1 95.24 1 5.00 

43 UVA 33 32 27 27 0 0 100.00 0 0.00 

46 Brown 56 53 27 25 2 0 92.59 0 0.00 

48 Pitt 25 23 25 22 3 0 88.00 1 4.55 

50 Arizona 6 5 23 21 2 0 91.30 0 0.00 

51 West Ontario 42 34 28 25 3 0 89.29 1 4.00 
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Table 2.7 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

in all 

Ranked 

Universities  

Number of 

Placed 

Graduates in 

North 

American 

Ranked 

Universities 

Number 

of 

Faculty 

Number 

of Hires 

from 

North 

America  

Number of 

Hires from 

Ranked 

Non-North 

America 

Number of 

Hires from 

Non-Ranked 

Universities 

Percentage 

of Hires 

from North 

America 

Self-

Hires 

Percentage 

of Self-

Hires  

52 JHU 43 36 14 14 0 0 100.00 0 0.00 

54 Vanderbilt 8 6 29 27 2 0 93.10 0 0.00 

55 Queen's 43 38 32 30 2 0 93.75 4 13.33 

56 WUSTL 24 21 21 18 2 1 85.71 0 0.00 

57 Montreal 14 14 28 22 5 1 78.57 0 0.00 

58 Georgetown 4 1 28 25 3 0 89.29 0 0.00 

59 CO Boulder 12 12 29 28 0 1 96.55 0 0.00 

60 UGA 1 1 16 16 0 0 100.00 0 0.00 

61 VA Tech 16 12 13 10 2 1 76.92 0 0.00 

62 Purdue 46 41 21 18 0 3 85.71 0 0.00 

63 UC Irvine 4 2 25 24 1 0 96.00 0 0.00 

64 BC 15 10 28 24 4 0 85.71 0 0.00 

65 Iowa State 8 8 29 27 2 0 93.10 1 3.70 

67 NC State 10 10 26 24 1 1 92.31 1 4.17 

69 Dartmouth 0 0 22 21 0 1 95.45 0 0.00 

72 ASU 3 3 29 27 1 1 93.10 0 0.00 

76 UCSB 13 12 29 27 1 1 93.10 0 0.00 

78 Florida State 5 5 29 26 0 3 89.66 0 0.00 

80 Alberta 0 0 25 22 3 0 88.00 0 0.00 

81 McMaster 15 13 27 24 3 0 88.89 1 4.17 

82 Houston 2 2 22 20 2 0 90.91 0 0.00 
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Table 2.7 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

in all 

Ranked 

Universities  

Number of 

Placed 

Graduates in 

North 

American 

Ranked 

Universities 

Number 

of 

Faculty 

Number 

of Hires 

from 

North 

America  

Number of 

Hires from 

Ranked 

Non-North 

America 

Number of 

Hires from 

Non-Ranked 

Universities 

Percentage 

of Hires 

from North 

America 

Self-

Hires 

Percentage 

of Self-

Hires  

83 Syracuse 11 10 26 26 0 0 100.00 3 11.54 

88 York U 2 2 31 24 6 1 77.42 0 0.00 

89 Cal Tech 19 18 16 15 1 0 93.75 0 0.00 

90 LSU 3 3 14 13 0 1 92.86 1 7.69 

92 UConn 1 1 27 26 0 1 96.30 0 0.00 

93 Georgia State 3 3 31 31 0 0 100.00 3 9.68 

94 UKY 5 4 20 20 0 0 100.00 1 5.00 

95 GWU 2 1 32 32 0 0 100.00 1 3.13 

97 SMU 4 4 18 15 3 0 83.33 0 0.00 

98 Notre Dame 3 3 26 25 1 0 96.15 2 8.00 

100 SFU 7 2 34 31 3 0 91.18 0 0.00 

101 Oregon 5 5 19 16 3 0 84.21 0 0.00 

102 GMU 9 7 29 27 1 1 93.10 2 7.41 

105 UMass 9 9 24 21 1 2 87.50 1 4.76 

106 S Carolina 1 1 16 15 1 0 93.75 1 6.67 

110 UIC 1 1 21 21 0 0 100.00 1 4.76 

112 McGill 8 7 34 26 6 2 76.47 2 7.69 

117 Tulane 4 4 12 11 0 1 91.67 0 0.00 

118 American 5 5 22 20 1 1 90.91 2 10.00 

120 Auburn 1 1 12 11 0 1 91.67 0 0.00 

122 Buffalo 6 6 20 18 0 2 90.00 1 5.56 
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Table 2.7 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

in all 

Ranked 

Universities  

Number of 

Placed 

Graduates in 

North 

American 

Ranked 

Universities 

Number 

of 

Faculty 

Number 

of Hires 

from 

North 

America  

Number of 

Hires from 

Ranked 

Non-North 

America 

Number of 

Hires from 

Non-Ranked 

Universities 

Percentage 

of Hires 

from North 

America 

Self-

Hires 

Percentage 

of Self-

Hires  

124 UCSC 4 4 23 23 0 0 100.00 1 4.35 

126 Rice 12 9 21 19 2 0 90.48 1 5.26 

127 Tennessee 1 1 16 16 0 0 100.00 0 0.00 

128 Emory 0 0 16 16 0 0 100.00 0 0.00 

130 Laval 5 5 27 21 6 0 77.78 2 9.52 

132 Waterloo 3 3 23 22 0 1 95.65 3 13.64 

133 Wayne State 1 1 13 13 0 0 100.00 0 0.00 

134 Wisc Mil 3 2 22 22 0 0 100.00 0 0.00 

135 Missouri 3 3 15 15 0 0 100.00 0 0.00 

136 UC Riverside 4 0 19 17 0 2 89.47 0 0.00 

137 Alabama 1 1 13 13 0 0 100.00 0 0.00 

138 Quebec 2 2 28 22 5 1 78.57 0 0.00 

139 Albany 2 1 19 19 0 0 100.00 0 0.00 

141 Miami FL 0 0 16 16 0 0 100.00 0 0.00 

143 Delaware 0 0 26 26 0 0 100.00 0 0.00 

151 Clemson 0 0 25 24 0 1 96.00 0 0.00 

153 Guelph 2 2 24 19 3 2 79.17 1 5.26 

155 Tufts 1 0 22 20 2 0 90.91 0 0.00 

156 BYU 0 0 21 21 0 0 100.00 0 0.00 

160 Stony Brook 13 9 13 11 2 0 84.62 0 0.00 

161 Carleton 2 2 26 24 2 0 92.31 0 0.00 
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Table 2.7 Continued 

Coupe 

Rank Employer 

Number of 

Placed 

Graduates 

in all 

Ranked 

Universities  

Number of 

Placed 

Graduates in 

North 

American 

Ranked 

Universities 

Number 

of 

Faculty 

Number 

of Hires 

from 

North 

America  

Number of 

Hires from 

Ranked 

Non-North 

America 

Number of 

Hires from 

Non-Ranked 

Universities 

Percentage 

of Hires 

from North 

America 

Self-

Hires 

Percentage 

of Self-

Hires  

168 Utah 6 5 21 19 0 2 90.48 4 21.05 

169 Brandeis 1 0 21 21 0 0 100.00 0 0.00 

170 IUPUI 0 0 16 15 1 0 93.75 0 0.00 

173 Wyoming 3 3 10 9 1 0 90.00 2 22.22 

174 Nebraska 0 0 16 14 0 2 87.50 0 0.00 

175 WVA 3 3 19 19 0 0 100.00 0 0.00 

176 Kansas 3 3 21 21 0 0 100.00 0 0.00 

178 Temple 1 1 24 21 0 3 87.50 0 0.00 

180 SIUC 5 4 11 9 0 2 81.82 0 0.00 

181 Kan State 0 0 16 15 0 1 93.75 0 0.00 

182 CUNY 9 8 58 56 1 1 96.55 4 7.14 

183 Oklahoma 1 1 14 12 0 2 85.71 0 0.00 

184 CWM 0 0 20 19 0 1 95.00 0 0.00 

188 Wash State 4 4 12 12 0 0 100.00 0 0.00 

192 UNM 1 1 11 11 0 0 100.00 1 9.09 

194 CO Denver 0 0 10 10 0 0 100.00 0 0.00 

196 Concordia 2 0 24 20 1 3 83.33 0 0.00 

197 SCU 0 0 13 12 1 0 92.31 0 0.00 

199 Montana State 1 1 13 13 0 0 100.00 1 7.69 

200 URI 0 0 10 10 0 0 100.00 0 0.00 

 Total 3,601 3,026 3,279 3,026 182 71 92.28 139 4.59 
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Figure 2.3: Histogram of Year of Graduation in All Ranked Universities 

 
Figure 2.4: Histogram of Year of Graduation in North American Ranked Universities 

 

universities form Group 1, those ranked 26 to 50 form Group 2, 51 to 75 form Group 3, etc. It 

may be said that moving from top to bottom tier reflects a decline in quality, since the ranking 

order is based on faculty publications. Ranked North American universities are divided into 5 
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Table 2.8: Eight Groups in Square Ranked Network 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 

Harvard Oxford WOntario UCSB Oregon Rice Clemson Kansas 

Chicago UBC JHU LBS GMU Tennessee Birmingham NHH 

Penn UCSD ANU FLSt Birkbeck Emory Guelph Temple 

Stanford USC Vanderbilt UNSW VUAmsterdam NUSingapore Hitots Glasgow 

MIT BU Queen's Alberta UMass Laval Tufts SIUC 

UCBerkeley PennSt WUSTL McMaster SCarolina C3MU BYU KanSt 

Northwestern CMU Montreal Houston ParisI Waterloo Tokyo CUNY 

Yale Cambridge GTown Syracuse Bristol WayneSt CULon Oklahoma 

Michigan Florida COBoulder UAB Melbourne WiscMil Zurich CWM 

Columbia MichSt UGA Nottingham UIC Missouri StonyBrook Strathclyde 

Princeton Rutgers VATech HKUST Copenhagen UCRiverside Carleton Edinburgh 

UCLA UWash Purdue Bonn McGill Alabama Reading UHK 

NYU UNC UCIrvine YorkU Groningen Quebec AcademiaS WashSt 

Cornell TAMU BC CalTech ChUHK Albany KUL Uppsala 

LSE Indiana IowaSt LSU ULB Oslo Bar-Ilan Osaka 

WiscMad Iowa Amsterdam Southampton NewcastleuT MiamiFL EUI Tsukuba 

Duke TelAviv NCSt UConn Tulane Maastricht Bocconi UNM 

OhioSt UVA Erasmus GASt American Delaware Utah UCDublin 

Maryland UCL Dartmouth UKY Mannheim Sydney Brandeis CODenver 

Rochester Hebrew Louvain GWU Auburn EHESS IUPUI RomeLS 

UTAustin Brown UYork INSEE UPF Vienna Exeter Concordia 

Minnesota Tilburg ASU SMU Buffalo Munich Bologna SCU 

UIUC Pitt Toulouse NotreDame Manchester EAnglia Wyoming QMUL 

UCDavis Warwick Essex SSE UCSC Geneva Nebraska MontSt 

Toronto Arizona Stockholm SFU Monash INSEAD WVA URI 
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groups as shown in Table 2.9. Each of the first four groups contains 25 universities, while the 

fifth has 26 members. Interactions and links between different tiers in both samples are presented 

in Figures 2.5 and 2.6. Both schemes are derived from valued-edge graphs. The edges are valued  

Table 2.9: Five Groups in North American Square Ranked Network 

Group 1 Group 2 Group 3 Group 4 Group 5 

Harvard UCSD UGA Oregon Clemson 

Chicago USC VATech GMU Guelph 

Penn BU Purdue UMass Tufts 

Stanford PennSt UCIrvine SCarolina BYU 

MIT CMU BC UIC StonyBrook 

UCBerkeley Florida IowaSt McGill Carleton 

Northwestern MichSt NCSt Tulane Utah 

Yale Rutgers Dartmouth American Brandeis 

Michigan UWash ASU Auburn IUPUI 

Columbia UNC UCSB Buffalo Wyoming 

Princeton TAMU FLSt UCSC Nebraska 

UCLA Indiana Alberta Rice WVA 

NYU Iowa McMaster Tennessee Kansas 

Cornell UVA Houston Emory Temple 

WiscMad Brown Syracuse Laval SIUC 

Duke Pitt YorkU Waterloo KanSt 

OhioSt Arizona CalTech WayneSt CUNY 

Maryland WOntario LSU WiscMil Oklahoma 

Rochester JHU UConn Missouri CWM 

UTAustin Vanderbilt GASt UCRiverside WashSt 

Minnesota Queen's UKY Alabama UNM 

UIUC WUSTL GWU Quebec CODenver 

UCDavis Montreal SMU Albany Concordia 

Toronto GTown NotreDame MiamiFL SCU 

UBC COBoulder SFU Delaware MontSt 

    URI 

 

in terms of the number of faculty hiring or granting between the vertices or groups. Thus, the 

thickness of lines, or edges, between groups reflects tie strength. The patterns of interactions 

between groups in both networks are quite similar. Although each group connects directly to  
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Figure 2.5: Group Interactions in the Square Ranked Network 
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Figure 2.6: Group Interactions in the North American Square Ranked Network  

 

each other, the strength of ties varies. Every group connects to Group 1, the highest-rated group, 

with strong ties. The strongest tie is between Group 1 and Group 2. The ties between groups, 

except with Group 1, are moderate to weak. The weakest ties are connections between low-level 

groups. For example, the tie between Group 5 and Group 8 in theSquare Ranked Network 

(Figure 2.5), and the tie between Group 4 and Group 5 in the North American ranked network 

(Figure 2.6), are both weak. 
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Tables 2.10 and 2.11 present the summary information for each group in both networks. 

These tables provide information on total and average faculty size as well as the distribution of 

hiring and placement of graduates relative to the rank of the group. ‗Hiring (Placement) within‘ 

and refer to hiring (placement) within the same group, while ‗Hiring (Placement) within Self‘ 

refers to hiring own graduates. Several patterns are clear. The rank of a group is inversely 

proportional to faculty size. The highest ranked group (group 1) has the largest number faculty.  

Table 2.10: All Ranked Universities by Group 

 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

5 

Group 

6 

Group 

7 

Group 

8 

Faculty size 995 706 648 610 579 532 593 418 

Average size 39.8 28.24 25.92 24.4 23.16 21.28 23.72 16.72 

% Hiring above  65.99 67.92 78.03 66.22 85.22 79.04 86.23 

% Hiring within 86.34 22.97 19.80 11.60 27.03 11.29 20.04 13.77 

% Self-hiring 7.75 9.45 11.46 7.73 22.97 9.86 18.01 10.65 

% Hiring below 13.66 11.05 12.27 10.37 6.76 3.49 0.92  

% Placed above  10.14 14.88 21.94 23.85 44.53 31.64 39.08 

% Placed within 31.50 20.55 25.37 33.67 53.85 42.97 61.58 60.92 

% Placed within 

Self 2.83 8.45 14.68 22.45 45.77 37.50 55.37 47.13 

% Granting below 68.50 69.31 59.75 44.39 22.31 12.50 6.78  

 

Table 2.11: North American Ranked Universities by Group 

 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

5 

Faculty size 978 688 616 506 481 

Average size 39.12 27.52 24.64 20.24 18.5 

% Hiring above  77.25 85.04 90.77 95.40 

% Hiring within 91.13 16.90 10.39 7.51 4.60 

% Hiring within Self (Self-hiring) 8.65 2.69 2.46 3.65 2.91 

% Hiring below 8.87 5.85 4.58 1.72  

% Placed above  12.38 19.41 33.33 55.32 

% Placed within 37.40 20.08 34.71 44.87 44.68 

% Placed within Self 3.55 3.19 8.24 21.79 27.66 

% Placed below 62.60 67.54 45.88 21.79  
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This tendency is clearest in the North American ranked university network. The high-level 

groups are much larger in terms of faculty than lower-level groups. The size ratio between the 

highest and lowest groups in both samples is 2-to-1. In the North American ranked university 

network, Group 5 has the smallest average faculty size.  

Other patterns of hiring and granting are also clearer in the North American ranked 

university network (Table 2.11). Percentage of ‗hiring above‘ in Table 2.11 indicates that every 

group hires intensively from groups ranked above it. As should be expected, the lower the group 

the more it hires from groups above it. This is not surprising as departments try to hire the best 

faculty possible, which should directly translate in hiring graduates from higher ranked 

departments. The same reasoning applies to patterns in ‗hiring within‘ and ‗hiring below.‘ The 

lower the group, the lower the percentage of faculty hired within the group and below the group. 

That Group 1 has the highest percentage of hires within the group is not surprising since it has no 

universities above itself to hire from. This pattern is not as clear-cut across the eight groups of all 

ranked universities. This is mainly because of the higher tendency of universities outside of 

North America to hires their own graduates. Group 5 stands out the most, followed by Group 7 

and to some extent Group 3. As is seen in Table 2.10, universities in Group 5 hire by far the 

highest percentage of their faculty from their own graduates. Almost 23% of their faculty are 

their own graduates. In Group 7, 18% of faculty are self-hires. While Group 4 in the North 

American sample also breaks the trend for self hires, it does so by a much smaller margin.  

Certain patterns are present in the distribution of placement of graduates. As the rank of 

the group decreases, the percentage of graduates placed to higher groups  increases, while that of 

graduates placed to lower decreases. This is to a large extent due to the nature of the sample 

used. As the rank of the group decreases, the number of lower ranked universities observed 
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where graduates can be placed decreases, while the number of higher ranked universities where 

graduates can be placed increases. Given that all possible academic placements are not observed, 

the limits imposed by what is possibly observed in the sample results in the observed patterns.  

Percentages of ‗placement below‘ indicate that higher groups grant faculty to lower 

groups more than lower group grant faculty to higher ones. For example, Group 4 hires 90 

percent of its faculty from higher-ranked universities, while it is able to place 22% of its 

graduates to universities in Group 5. In addition, comparing placements above and below,  most 

universities place the majority of their graduates in lower ranked universities. This pattern is 

somewhat reduced in the lower half of ranked universities, but it is still the case that they place 

more graduates at their own level or below than in universities ranked above them. These 

findings are in line with Moore and Newman (1977)‘s ―downstream pattern,‖ which means that 

most new Ph.D. graduates are likely to find a job at a lower-level university than their grantor.  

Table 2.11 provides two more interesting facts. One is that lower groups place more 

graduates to other universities within the same group than higher groups do. For example, Group 

5 in the North American ranked network places 45% of its graduates within its own group, while 

Groups 1 and 2 place only 37% and 20% within their own groups. What is more, universities in 

lower groups more frequently place their graduates to themselves than the universities in higher-

level groups. Group 5 in Table 2.11 has the highest percentage of placement to self. The 

percentage of self-hiring to total Ph.D. granting of group 5 is 27.66 percent compared 3.55 in 

group 1. Both of these results are due to the low production capacity of the lowest ranked 

universities. Given their low rank and the few graduates they are able to place to ranked 

universities, they are much more likely to be able to place them within their own group, or to hire 

them themselves, than to place them in higher ranked departments.  
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2.3.2 Trivial Pursuits 

 

A university level analysis of the data presented in Tables 2.6 and 2.7 would just involve a 

repetition of the numbers shown there. Hence we provide an idiosyncratic collection of facts 

culled from those tables.  

In our sample MIT has placed the largest number of students in the ranked universities 

(255) followed by Harvard at 233 placements. The first non-North American institution is 

London School of Economics with 115 and placements. They are followed by Oxford with a 106 

placements. In the top 10 programs Michigan (rank 9) and Columbia (rank 10) have each placed 

less than a 100 students while the other 8 have all placed over 100 students. Focusing on 

continental Europe we institutions with highest placements are Paris I (51), Louvain (35), 

Toulouse (32), Copenhagen (31), European University Institute (27), Tilburg (26) and Bonn (23). 

In Australia, Australian National University has the highest number of placements with 24. In 

Asia, Tokyo University with 32 placements is the placement leader. Typically the number of 

placements decreases with the rank, but occasionally there are some exceptions like Queen Mary 

in London which despite its rank of 198 has placed 5 students in top ranked programs. Similarly 

from Table 2.7 we see that Stony Brook and CUNY are exceptions with 13 and 9 placements 

respectively. Explanations for these differences can range from the size of the program to 

locations to reputation of the institutions themselves. 

Our data on university faculty sizes is based on roster data available from the 

department‘s webpage. Note that this number can be misleading since in many universities 

economists may be spread over different departments. The single largest department in our 

sample is University of Bologna with faculty size of 64 followed closely by Toronto with 61 

members. While the smallest departments in our sample are from Newcastle upon Tyne and 
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University College Dublin with three members each, this conclusion is somewhat misleading as 

this number reports the number of faculty for whom the minimum required information is 

available. Thus, Newcastle upon Tyne and University College Dublin have mote than three 

faculty members, but do not report all needed information on the rest of the faculty. This is not 

an issue with North American departments as all needed information is available. In the North 

American sample there is a tie for this spot with both University of Colorado at Denver (rank 

194) and University of Rhode Island (rank 200) having 10 faculty members each.  

When we examine which ranked universities hire from non-ranked ones we find the 

presence of a language effect, which is likely a consequence of the segmented labor market 

outside of North America. University of Bologna has 11 members from non-ranked universities 

followed closely by Universidad Carlos III de Madrid and Paris I with 10 members each. Among 

universities where English is the sole language of instruction, this distinction goes to University 

of Nottingham with 9 of its 43 members being from non-ranked universities. In the North 

American sample Toronto (rank 25) has 4 of its 61 members hired from universities that are not 

ranked. Cornell (rank 14), Purdue (rank 62), Florida State (rank 78), Temple (rank 178) and 

Concordia (rank 196) each have 3 faculty members who obtained their doctoral degree from a 

non-ranked university. Among the top 10 schools only UC Berkley has a hire from a non-ranked 

university - Université Libre de Bruxelles. Princeton‘s one non-ranked hire is from the 

University of St. Gallen, while Cornell‘s non-ranked hires are from Heidelberg (2) and 

University of Aarhus (1).  

In the North American sample we also examine how often universities hire from ranked 

schools outside of North America. In terms of having an ―international flavor‖ Canadian 

universities seem to be doing better than their US counterparts. Of the US Universities, USC has 
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26% and Virginia Tech 23% of their hires from ranked universities outside North America. Six 

Canadian schools have more than twenty percent of their faculty members from ranked 

universities outside North America – McGill (24%), York (77%), Laval (78%), Montreal (79%), 

Quebec (79%) and Guelph (79%). 

Self-hiring is quite predominant in the top 10 universities with MIT having 29% of its 

own doctoral students on its faculty. Harvard comes next with 26% while Michigan (2%) and 

Columbia (2%) have the lowest percentages. Among the other American schools Carnegie-

Mellon has the highest number of self-hires at 14%, closely followed by Syracuse with 11%. 

Other universities with high self-hires are American University and Georgia State at 10% each. 

Among Canadian universities Waterloo has the largest number of self-hires (14%) followed by 

Queen‘s at 13% and UBC at 12%. In universities outside the US self-hires can be very high 

ranging from 42% at Oxford and 50% at Cambridge to over 90 percent in a few institutions. 

Paris I, which is the leading continental Europe university in placement, placed 30 of its 51 

graduates with itself, resulting in 75% of its faculty being self-hires. These differences with 

North America can be attributed to language barriers, reputation of institutions as well as to 

institutional factors such as segmented nature of academic labor markets outside North America.  

2.4. Summary 

 

The goal of this study is to examine the labor market for academic economists from a social 

network perspective. Studying social networks in labor markets present empirical challenges due 

to their stringent data requirements. This study solves this problem by studying the labor market 

for academic economists, examining the links created between universities when they hire 

faculty to staff their departments. Since universities readily publish information about their 

faculty and faculty do so themselves, it is easy to observe where each economist obtained his or 
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her terminal degree and which university employs them. If MIT employs a graduate of Princeton 

University, it creates a connection between the two universities which can facilitate the flow of 

information used for future hiring decisions of both universities. Hence, unlike other labor 

markets, the academic labor market is an example of a market where many interactions or links 

are observed. By studying the faculty of MIT and Princeton and where each was trained, one can 

start compiling information on the whole network. The more departments one examines, the 

more complete the picture of the network.  

This study examines the network created by hiring decisions of the top two hundred 

economics departments in the world as ranked by Coupe (2003), and focuses more closely on the 

subset of these located in North America (126 universities). Information on economists 

employed by these universities was collected from university websites. This chapter described 

the data end examined the basic patterns of hiring and placements between universities as well as 

continents where universities are located. North American universities, particularly the US, 

dominated the network. They both hire the most and produce the most academic economists. 

While departments are somewhat uniform in terms of the number of faculty they higher, they 

vary much more in their ability to produce and place their graduates in other ranked departments. 

Only thirteen universities account for over 40% of all academic economists in the network of 

two hundred universities.  

Universities in Australia, Europe, and Asia are much more likely to employ their own 

graduates than are North American ones. This is likely due to higher fragmentation of academic 

labor markets outside of North America which is dictated by smaller country size as well as 

geographic distances between universities which train academic economists. In all ranked 

universities 11.73 percent of faculty received their degrees from the same university which 
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employs them, while in North American universities only the corresponding figure is 4.59 

percent. In the US, employment of own graduates is most prominent in the highest ranked 

universities as well as the lowest ones. Highest ranked universities produce the best economists, 

so it is not surprising they tend to hire more from themselves as there is not better product 

available. Lowest ranked universities, on the other hand, might use the same argument, but in 

their case it is likely they are unable to attract as many candidates from better departments and 

are forced to employ their own graduates.  

Not surprisingly the lower ranked universities tend to hire more faculty from universities 

which are ranked above them. The lower the rank of a university, the smaller is the size of its 

faculty, the more they hire from hire ranked universities, and the less they hire from universities 

at their own level or below.  

Link between higher ranked departments are stronger than those between higher and 

lower ranked departments. This is because higher ranked departments tend to hire from 

themselves and not from lower ranked departments. In a sense, links between two high ranked 

departments are bidirectional or reciprocal, while those between a high and low ranked 

department are one directional. The next chapter will provide a more thorough description of the 

network created by university hiring decisions.  

There are three main conclusions of this chapter. When universities are divided in groups 

of 25 based on their ranking, every group tends to hire graduates from groups ranked above it. 

On the other hand, the top-ranked grantors place their graduates mostly in groups ranked below 

them. This corroborates the ―downstream pattern‖ found by Moore and Newman (1977). Second, 

the low-level groups hire fewer graduates from their own group but have high potential to place 

their own graduates to other members of the same group. This is due to the few graduates they 
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are able to place in the observed departments. While they hire many faculties from higher ranked 

departments, the few they are able to place are hired by universities in their own group. Third, 

the lower the level of a group, the more likely it is to hire its own graduates.   
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CHAPTER 3: SMALL WORLD IN THE LABOR NETWORK OF ACADEMIC 

ECONOMISTS 

 

3.1 Introduction 

 

An individual‘s connectedness within the social network can influence their job search and 

improve their job mobility. Interactions between agents in the social network follow relatively 

stable patterns. Knowledge about these interaction patterns can allow an individual to manipulate 

the network to his or her advantage. This individual can then choose to build connections for 

efficient input of information from every other member in the network. Social relationships 

between universities denoted by nodes, represented by links in the network, have been formed 

through sustained patterns of production and placement of Ph.D. graduates in the economics 

academic market. Every group of universities representing a similar quality level in the 

economics academic market can connect to every other and tends to place its graduates in a 

―downstream pattern‖ identified by Moore and Newman (1977). Most of the higher-ranking 

Ph.D. grantors place their products in lower-ranking groups.  On the other hand, every group is 

eager to hire Ph.D. faculty from a higher quality group.  

One surprising characteristic of the academic market for economists is that any ranked 

university can reach any other university through a maximum of seven links. This means that 

even when two different universities cannot directly connect to each other, they are indirectly 

connected through only a few links. Interactions between persons or institutions can spread 

information far and fast over a network with high clustering and short paths. Within that kind of 

network, everyone can connect to everyone through very few intermediaries. The economics 

academic market seems to be a good candidate for the so-called small-world network. This 
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chapter aims to investigate whether or not the structure and properties of the economics 

academic network can be formalized into the claim that it is indeed a small-world network.   

Since the structure of a social network determines, to a degree, economic interactions in 

the labor market, in addition to knowing the role of each agent and the number of participating 

agents, and the total network diameter, other structural characteristics of the network should be 

investigated. These include the density of relationships between members in the network, the 

inequality or reciprocity of connections, the central or most influential vertices, etc. Knowledge 

of these characteristics can be useful to agents who desire to maximize their influence.  

Before we proceed, it would help to provide an overview of the existing literature that has 

applied small-world network theory to the world of economics. After that, we will introduce the 

model and tools to test for small-world phenomenon in a social network. Finally, we will present 

the empirical results of applying this model to the economics academic network. 

3.2 Application in Economics 

 

In recent years there has been an explosion in research on the small-world phenomenon. 

However, the literature in economics on this topic is relatively small. Goyal et al. (2004) 

investigated what they perceived to be an emerging small-world network of increasing 

collaboration and distant co-authorships among economists. Goyal et al. (2005) tested the 

hypothesis of the strength of weak-ties in a small-world network of economics scholars. Even 

though they found evidence for the small world phenomenon, they refuted the hypothesis of the 

strength of weak-ties in the economics networks. Instead, they contended that the collaboration 

network of economists exhibits different properties and structure when compared to physics or 

medical science networks. First, the largest component in both the physics and medical science 

networks cover almost the whole population, while the largest component among economists 
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covers around a half of the population. Second, the characteristic distance in both physics and 

medical networks are very small compared to the characteristic path among economists. Trevio 

(2006) ranked economics department using data from the Google engine. Using a 

Multidimension Scaling (MDS), he also divided departments into clusters. Next we briefly 

summarize the main finding of each of these papers related to small-world network.  

Goyal et al. (2004) constructed distinct networks of collaboration among world 

economists who published in journals during three periods: 1970-1979, 1980-1989 and 1990-

1999. Six data sets were compiled, three from the set of all journals covered in Econlit and three 

from the set of journals by the Tinbergen Institute Amsterdam-Rotterdam (TI). The researchers 

represented individual economists as vertices in the network. Two persons were said to be 

connected to each other if they had published at least one paper together. Goyal et al. (2004) then 

examined the small-world properties in that collaboration network. The results from those six 

data sets indicated the presence of a small-world phenomenon in the collaboration network. 

Giant components not only existed, but had grown substantially from fifteen percent in the first 

period to forty percent in the third period. All six networks were connected. The number of 

authors was very large, while average degrees of connection overall, and in the giant component, 

were low, although they had increased over time.  

These findings confirmed the sparseness condition ( ). The average distance in 

the actual giant components had been very small throughout the three periods, smaller than the 

average in simulated random networks of corresponding size. Although the giant components 

grew during those three periods, Goyal et al. concluded that they had become significantly 

smaller in terms of path lengths. This seemed to comply with the condition of length that is small 

and logarithmically decreasing with respect to the population size (L(G) is of order ln(n)). When 
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they simulated the Erdős-Renyi random networks with size and average degree that were 

identical to the TI List networks, researchers were able to confirm that the clustering coefficients 

in the actual networks were much higher than in their random counterparts  

throughout all three periods. Thus, they concluded that collaborating economists are increasingly 

forming a small-world network. 

Going further, Goyal et al. employed the Lorenz Curve to investigate the degree 

distribution. They found a fat tail, indicating inequality in the degree of collaboration. Only 

twenty percent of the most-linked authors accounted for about sixty percent of all links. That 

meant that a handful of economists were much more connected than the majority. However, the 

Lorenz Curve also indicated a decrease in inequality over time. When the researchers made a 

Pareto plot of the degree distribution, the networks decayed under a power law instead of 

according to a binomial distribution. The author with the most links in the 1970‘s (25), had 35 in 

the 80‘s, and 54 in the 90‘s. This individual was one of the stars, central players which are very 

important as connectors in the network. The economists‘ world was spanned by a few inter-

linked stars. 

Next, Goyal et al. tried to come up with an explanation for the emerging economics small 

world. If one of the main reasons was an increase in inequality, then all calculated Gini 

coefficients must increase. Indeed, they found an increase in Gini coefficients for the giant 

component, which indicated an increase in inequality. By contrast, the Gini coefficient for the 

overall networks had decreased. Therefore, the researchers concluded that an increase in 

inequality is not the reason for the emerging small-world properties in the network of 

economists. One of the possible explanations came from analyzing every period‘s fat tails in the 

Pareto plot. It indicated an increase in the average degree of the fixed, inter-linked stars. These 
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stars brought many unconnected economists together, which led to an increased size of the giant 

component. Another possible explanation offered by several researchers is an increase in distant 

collaborations due to the drop in communication and travelling costs.  

Goyal et al. tried to estimate the relative importance of those two possible explanations 

by using a two-step procedure, controlling the size and creating remote links, in order to compare 

the 1970‘s to the 1980‘s and the 1980‘s to the 1990‘s. Remote link adjustment had a small 

impact in the form of a slight increase in the giant component. Keeping in mind that the average 

degree had increased over time, and that the average distance had decreased, the researchers 

concluded that the main driving force behind the emergence of small-world dynamics in the 

economics network was not only due to distant collaborations, but to an increase in the average 

degree at all levels of the collaboration structure.  

Goyal et al. (2005) tested Granovetter‘s argument about the strength of weak ties in the 

economics collaboration network. Weak ties are significant in the sense that they can build new 

and shorter paths connecting pairs of vertices. Removing weak ties from the network would 

break the shortest path and increase the average path length more than removing strong ties. In 

their 2005 study, Goyal et al. examined the transitivity property of strong-ties and the 

significance of weak ties. Only one part of the transitivity property of strong ties was supported 

by findings, while the other parts of the hypothesis were rejected.  

They measured the strength of a tie by counting the number of articles over a decade that 

was co-authored by a pair of associated economists. When an article was written by three co-

authors, a close triad was formed. First, researchers examined the transitivity properties by 

testing cases of triad incompletion and calculating the high probability of triad completion in the 

presence of two strong ties in a connected triple. They first looked at situations in the social 
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network where A has strong ties with both B and C, but C and B do not have, and do not form, a 

direct tie. Triad completions in connected triples having two strong ties were lower than 0.5 at 

every strong tie threshold. Based on these findings, Goyal et al. rejected the hypothesis of the 

transitivity property of strong ties. However, the logistic regression of random subsamples 

yielded a result that seemed to support the notion of transitivity of strong ties. The probability of 

completion in the case of two strong ties in a connected triple increased with respect to the 

average strength of those two strong ties but decreased with respect to the difference in the 

strength of the two ties. Thus, regression results supported the transitivity of strong ties in the 

economics collaboration networks. 

The researchers went on to examine the significance of weak ties by arbitrarily removing 

those that would break the shortest path between actors and would increase the average path 

length. For the hypothesis test, they calculated the link betweenness for a pair of vertices in the 

giant component and ran regressions of the random subsample in the three periods. They found 

that the strength of a tie has a significantly positive impact on link betweenness. In other words, 

in the collaborating economists‘ network, strong ties caused higher link betweenness. This 

undermined the hypothesis that arbitrarily removing weak ties would break the shortest path. 

Strong ties were found to be crucial in connecting both close and remote actors in the 

collaborative network. 

Next, the researchers simulated and compared the average distances and average size of 

the giant component after randomly deleting 50 strong, and then 50 weak ties. One result was 

that the size of giant component was larger when deleting strong ties than when weak ties were 

deleted. This supported the strength of weak ties. By contrast, another result showed that deleted 

strong ties led to larger distances than deleted weak ties, which did not support the hypothesis of 
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the strength of weak ties. Although the hypothesis that arbitrarily removing weak ties would 

break the shortest path was refuted, there remained a contradiction in the empirical tests 

presented in their paper. 

Goyal et. al (2005) attempted to account for these conflicting results by arguing that the 

collaborative economics network has different structure than the networks in Granovetter‘s 

theory. For one, significant inequality indicates that the economics network is connected by a 

small set of inter-linked stars, which have a much higher than average degree. The star connects 

economists with much lower degrees. Authors who are members of the star‘s neighborhood are 

unlikely to connect to each other directly. The star has high betweenness centrality. He or she 

connects to other individuals who play a star role. The link between two stars of a high degree 

has higher link betweenness and is stronger than other links. Hence, the structure of the 

economics network is characterized by a core-periphery dynamic in which actors within a clique 

are tied to the core of the clique with weak ties, which form local bridges of a less transitive 

nature. However, each clique connects to another through the strong tie between stars, which has 

more transitivity and high link betweenness. This kind of network, then, would satisfy the 

transitivity property but would not support the overall significance of weak ties.  

The economics network structure is different from the ones in Granovetter‘s theory, 

which are characterized as island networks. The actors within the island, or clique, are tied to 

each other with strong ties while each island connects to others with weak ties. In that case, the 

strong-ties within an island are more transitive and the link betweenness of weak ties, spanning 

the distance between cliques, is higher. Therefore, in island networks, the weak tie connecting 

entire communities as a bridge is more crucial. By contrast, in the network of collaborating 

economists, as an example of a core-periphery network, a weak tie connecting a single peripheral 
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player to another player in the periphery is not as important as a strong tie connecting different 

cliques. 

3.3 Model and Data 

 

For the purpose of investigating the small-world phenomenon in the economics academic labor 

market network, the model proposed by Watts and Strogatz (1998) and Watts (1999) is adopted. 

Data about the economics academic labor market network was as described in the previous 

chapter. This chapter will test the economics network to see whether it satisfies the following 

small-world properties (modified from Goyal et al., 2004): 

1. The number of vertices needs to be far greater than the average degree. for the 

,1)ln(  nkn  condition of sparseness to be met and k>>1 to guarantee that 

the network is connected. 

2. The network must be connected or have a largest component for the characteristic 

path length to be measured. 

3. The characteristic path length must be almost as small as the characteristic path 

length in a corresponding random network, .
)ln(

)ln(
~

k

n
LL random   

4. The clustering coefficient must be much greater than that in a corresponding random 

network: .~
n

k
CC random  

To compute the characteristic path length, clustering coefficient, and many structural 

characteristic of a network, as well as to construct random networks, the social network analysis 

program Ucinet 6 was utilized. 

This chapter will also construct a Lorenz curve, which gives a rough measure of the 

equality of the distribution of in-degree and out-degree of vertices in the network. This measure 



118 

 

is known as the Gini coefficient. Let the number of vertices in graph G be n. The set of ordered 

vertices in graph G is S, such that i< j if and only if the degree of vertex i, ki, is less than the 

degree of vertex j, kj, and ki<kj, for the vertices i, jS. The number of vertices in S is denoted by 

nS ( SnGS )( ). Total degree in S is denoted by K(nS), 
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hS  Then, the Lorenz curve for S is drawn by connecting the points (S(h), k(h)), where 

k(h) and S(h)  [0,1], for h=0, 1, 2,…,nS. The Lorenz curve maps the cumulative degree share on 

the vertical axis against the distribution of universities on the horizontal axis.  

The Gini coefficient can be easily viewed by the area between the 45 degree line and the 

Lorenz curve over the triangle area under the 45 degree line. If each individual university had the 

same degree, or perfect equality, the Lorenz curve of the graph would be straight and the Gini 

coefficient would be zero. The Gini coefficient of the network can be measured
11

 as follows: 

Gini(S) = 1- (area under Lorenz curve). Or, 
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 The Gini coefficient is modified from   http://www.techwranglers.net/dtree/gini.html. And,  it can be reduced to  

the form  as  in Goyal et  al. (2004, p. 5). 
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If only one university possessed the total degree K(n) in the network, Gini coefficient is 

equal to one due to the Lorenz curve drawn by the line passing through the points (0, 0), (1, 0) 

and (1, 1). This would mean perfectly inequality of the degree distribution in the network. A high 

Gini coefficient therefore means high inequality in the degree distribution in the network. 

It has been argued that the Gini coefficient has disadvantages when representing the 

inequality in a subgroup of the population, or a subgraph. That is, the Gini coefficient of a 

network cannot be summarized from Gini coefficients calculated from its subgroups. In addition 

to the Gini coefficient, the Theil Index of inequality is computed as well, which is summation 

across different subgroups. While the Gini coefficient includes everything that affects the degree 

distribution, the Theil Index allows for the decomposition of inequality within and between 

subgroups. The Theil Index can distinguish whether the inequality is due to any subgroup or not. 

It is the weighted average of degree relative to its mean.  

The Theil Index (as cited in Akita et al., 1999 and Collier, 1999)  is computed as follows. 

Let the number of vertices in graph G be n. The total degree in the network is denoted by K(n), 

,)(
1





n

i

iknK  and the mean degree of all vertices in graph G, denoted by ,k  is defined as 

n

k

k
GVi

i



)(

 Let graph G be divided into g subgraphs. The Theil Index of the overall graph, 

denoted by T, is given by: 
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Under perfect equality, everyone has the mean degree. Therefore, T=0 means no inequality. In 

perfect inequality, when one university has the total degree in the network and every other 

university has no degrees, T=ln(n). While there is no upper limit for inequality when given as a 

Gini coefficient, a higher value of the Theil Index corresponds to a higher level of inequality.  

Let the set of vertices in graph G be Z(G), Z(G)={Z1, Z2,…,Zg}, g>1 and there is no 

overlap between different subgraphs. The number of vertices in subgraphs Z1, Z2,…,Zg are n1, 

n2,..,nZ, respectively, where n1+n2+…+ng=n.   The total degrees in subgraphs Z1, Z2,…,Zg are 

K(n1), K(n2),…,K(ng), respectively. The shares of these subgraphs in graph G are s
1
, s

2
,…, s

g
, 

where s
1
+s

2
+…+s

g
=1. The average degrees in subgraphs Z1, Z2,…,Zg are k

1
, k

2
,…, k

g
,  

respectively.  The Theil Index for any subgraph b is, given by: 
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With g subgraphs, the Theil Index can be decomposed into Theil-within-group, denoted 

as T
within

, and Theil-between-groups, denoted by T
between

. The Theil-within-group is the 

inequality index relative to a group average. It is the weighted average of Theil indices between 

subgroups in the graph, where the weight is the degree share of each group in the total degree. 

The Theil-between-group is the Theil Inequality index relative to the entire graph average. Then, 

the Theil Index decomposition of inequality can be computed as follows: 

T= T
within

 +T
between 

b

g

b

bwithin TsT 
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3.4 Empirical Results 

 

Data used in this study was collected in April-July 2006 as described in Chapter 2. Due to the 

construction of the network, data is transformed into a square matrix, where each university 

functions as both the grantor and employer. This implies that some unranked universities who 

were able to place their graduates into ranked universities were dropped as their hiring decisions 

were not observed. The economics academic network is described by the grantor-employment 

matrix A, where Aij is the number of faculty graduating from university i and employed by 

university j. It is a weighted-directed-network, in which universities are the vertices and the 

number of Ph.D. graduates placed and hired form the edges, or links, between them. The network 

matrix constructed from the full sample of 200 ranked universities is referred to as the ―square 

ranked network.‖ Figure 3.1 shows the square ranked network. The arrow lines show the source 

and target of exchange (self-hires are not shown). The arrows indicate transfer from the grantor 

to the employer. The thickness of each line indicates tie strength. The figure shows that all 

universities in the network are connected. There is only one single component in the network and 

no isolated universities. Figure 3.2 shows Harvard University‘s neighborhood, its so-called ego 

network, which reveals a number of important features of the square ranked network. For 

instance, Harvard has placed eight Ph.D. graduates in MIT and four in Oxford. It employs 

thirteen Ph.D. graduates from MIT and one from Oxford. Although Harvard has bilateral 

relationships with both MIT and Oxford, the relationship with MIT is stronger. Single-direction 

relationships are exemplified by the fact that Harvard has placed twelve graduates at Columbia, 

seven at Boston University, and one at UC Riverside, but does not employ a single graduate of 

any of these institutions. Harvard, then, has stronger ties with Columbia than with Boston 

University, which is a stronger tie than that with UC Riverside.  
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Figure 3.1: Connections between Universities in Square Ranked Network 
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Figure 3.2: Harvard‘s Ego Network within the Square Ranked Network 
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When the network is divided into eight groups where each group approximates a quality 

level, with each level consisting of twenty-five universities, then Harvard, MIT, and Columbia 

are all in Group 1, the highest group. Oxford and Boston University fall into Group 2, which is 

ranked lower than Harvard. UC Riverside falls into Group 6, which is far below Group 1. The 

examples above indicate that the strongest relationships are formed within the same quality 

group, while relationships with lower levels are weaker. This pattern speaks to a hierarchy of 

placement and employment in the economics academic market.  

Figure 3.3 presents Oxford University‘s ego network. It provides an example of a 

European institution which hires its own products at a much higher rate. Oxford hires about 42 

percent of its faculty from within the square ranked network. Although it interacts with 

universities inside and outside Europe, there is a sense of stronger ties within Europe. For 

example, Oxford University has placed five graduates at University of College London (UCL), 

five at London School of Economics (LSE), and nine at Bologna, while placing only two at MIT, 

one at Harvard, and two at UC Berkeley. On the other hand, Oxford has hired five graduates of 

Cambridge, four of LSE, and four of UC Berkeley. 

The academic labor market in North America seems more uniform because universities 

on other continents have a much greater percentages of self-hiring, which causes high value in 

diagonals. The diagonal values in the valued graph are diagonal elements of the grantor-

employer matrix and refer to the number of self-hiring of each university. Chapter 2 discussed 

about self-hiring across universities. While within the North America, the single highest self-

hiring rate is less than 30% of total faculty, non-North American universities have much higher 

rates of self-hiring. Oxford hires 42% of its faculty from itself, while a half of faculty at 

Cambridge are graduates of Cambridge. This chapter, as the previous one, will focus on North
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Figure 3.3: Oxford‘s Ego Network within the Square Ranked Network 
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America‘s ranked university network composed of 126 US and Canadian universities. Figure 3.4 

shows the interaction between the 126 universities in the North American Square Ranked 

Network. Like the overall square ranked network, the North American square ranked network is 

connected and has only one component. The relationship between different universities in the 

North American Square Ranked Network seems denser than in the square ranked network. The 

reciprocal interactions are more present in the North American Square Ranked Network.  

In order to analyze and test for small-world properties in the academic network, its matrix 

was transformed to represent as an unweighted-directed-unlooped network. The transformed 

matrix Y consists of element Yij=1, if Aij>1, ij, Yij=0 if Aij=0, ij and Yii=0. This representation 

helps distinguish between in- and out-degree. Out-degree captures placement of graduates. In-

degree captures employment of graduates from one institution by another. The total number of 

faculty in the valued networks is 4,783 individuals in the square ranked network and 3,026 

individuals in the North American Square Ranked Network (see Table 3.1 and 3.2). After 

transforming networks from valued into unweighted networks, the total in-degree and out-degree 

connections are 2,646 and 1,739 in the ranked university network and the North American 

ranked university network, respectively.  

In the valued or weighted network the row summation is the number of graduates placed 

by a university, in the unweighted network it is the number of universities where one university 

was able to place its graduates – the number of degrees is less than the number of faculty in the 

networks. For example, Harvard placed 239 graduates in the overall square ranked network, 

representing a total of 90 universities (excluding Harvard itself). Harvard‘s out-degree in the 

valued network is 239 and only 90 in the unweighted network. Harvard‘s in-degree in the valued 

network is  53 (faculty size),  but only 15 in  the  unweighted network  (total number of different 
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Figure 3.4: Connections between Universities in North American Square Ranked Network
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Table 3.1: Real-World and Random Network of Ranked Universities Compared 

 

Real-World 

Network 

Random 

Network  

 

Square Ranked   

Network 

Erdos and 

Renyi's model 

Average of 100 

Random Graphs 

Total Universities 200 200 200 

Total Number of Faculty 4783   

Total In-Degree 2646  2667 

Average In-Degree  13.23 13.23 13.34 

Standard Deviation of In-Degree 5.4  3.53 

Total Out-Degree 2646  2667 

Average Out-Degree 13.23  13.34 

Standard Deviation of Out-Degree 21.13  4.14 

Density 0.07  0.07 

Standard Deviation of Density 0.24   

Characteristic Path Length 2.93 2.05 2.32 

Distance-Weighted Fragmentation 0.69  0.53 

Clustering Coefficient 0.24 0.07 0.07 

Weighted Clustering Coefficient 0.17  0.07 
Note: The square ranked network was transformed into an unweighted directed un-looped network. 100 Random graphs were generated, with the 
same density and size as the ranked university network. In-Degree for random network is the average employment value calculated from the set. 

Out-Degree value is average placement. 

universities able to place graduates at Harvard). Even though the number of in-degree and out-

degree for each university are different, in the square matrix the summation of these parameters 

are the same.    

3.4.1 Small-World Properties Examined  

 

The small-world properties will be examined in the order they were introduced earlier. Tables 

3.1 and 3.2 show the characteristics of the transformed square ranked network and the 

transformed North American square ranked network, respectively.  

 There are 200 total vertices in the square ranked network and 126 vertices in the North 

American square ranked network. The average in-degree and out-degree is 13.23 in the former 

and 13.80 in the latter. The average degree in the square ranked network is greater than 2.30, 

which is  the  logarithmic  value  of the  number  of vertices  in the network (ln(200) ≈ 2.30). The 
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Table 3.2: Real-World and Random Network in North America Compared 

 

Real-World 

Network 

Random 

Network  

North 

American 

Square Ranked 

Network 

Erdos and 

Renyi's Model 

Average of 100 

Random  Graphs 

Total Universities 126 126 126 

Total Number of Faculty 3026   

Total In-Degree 1739  1732 

Average In-Degree  13.80 13.80 13.80 

Standard Deviation of In-Degree 3.6  3.45 

Total Out-degree 1739  1732 

Average Out-degree 13.80  13.80 

Standard Deviation of Out-Degree 19.76  4.05 

Density 0.11  0.11 

Standard Deviation of Density 0.31   

Characteristic Path Length 2.80 1.84 2.09 

Distance-Weighted Fragmentation 0.67  0.48 

Clustering Coefficient 0.27 0.11 0.11 

Weighted Clustering Coefficient 0.20  0.11 
Note : The North America square ranked valued network was transformed into an unweighted directed un-looped network. 100 Random graphs 

were generated with the same density and size. In-Degree value for random network is the calculated average employment across all 100 random 

graphs. Out-Degree is average placement. 

average degree in the North American square ranked network is also greater than the logarithmic 

value of the number of vertices in the network (ln(126) ≈ 2.00). Both connected networks have a 

number of vertices far greater than the average degree. This number is also greater than their 

logarithmic values (n>>k>>ln(n)>>1). The first condition for a small world network is 

therefore satisfied in both the square ranked network and the North American square ranked 

network.  

Due to the fact that both the square ranked network and the North American square 

ranked network have only one single component, the characteristic path length pertains to each 

graph as a whole. The characteristic path length, which is the average of the shortest distance 

from one university to any other, is 2.80 in the North American square ranked network, a little 
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shorter than the 2.93 of the overall square ranked network. In other words, an economics 

department in one North American university can reach any other on the same continent with a 

slightly shorter chain than in the global ranked university network. Most top 10 ranked 

universities connect directly to each other. The maximum shortest path length between them, in 

both networks, is only 2. For example, the distance between Harvard and Chicago, University of 

Pennsylvania, and MIT is one. The distance between Chicago and MIT to Harvard is also one; 

from University of Pennsylvania to Harvard is two.  

The distance between lower ranked universities to the higher ones or within their same 

group of quality is longer. For example, the distance from University of Southern California 

(USC), located in Group 2, to Harvard is five, which is higher than distance to any other 

university in Group 2 but University of North Carolina (UNC) and Vanderbuilt. Since some 

universities are unable to place graduates at ranked universities, some distances in the network 

cannot be computed. Those universities, then, are considered to be somewhat disconnected. The 

distance weighted fragmentation, shown in Tables 3.1 and 3.2, calculates the distance weighted 

by the number of connected vertices. The distance weighted fragmentation in the North 

American square ranked network is 0.67, quite a bit smaller than 0.96 in the square ranked 

network. The distance weighted fragmentation of these real networks is quite close to random 

networks. Hence, in both networks the second condition for small-worlds is satisfied. 

Unsurprisingly, the density value in the North American ranked network (0.11) is greater 

than the value in the ranked university network (0.07), of which it is a subset. Within the North 

American ranked university network, the chance of sharing information or exchanging Ph.D. 

graduates is higher than in the ranked university network.  The standard deviation values of 

density in both networks differ only slightly.  
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The clustering coefficient in either network is higher than its density. This is because the 

clustering coefficient is measured with the local neighborhood, which is of much higher density 

than that of the overall network. However, the clustering coefficient of the square ranked 

network is 0.24, which is slightly smaller than the 0.27 of the North American square ranked 

network. In other words, the neighborhood of one university in the square ranked network relates 

to each other less than in the North American square ranked network. This fact might indicate 

that universities in North America rely on connections in the network more than universities 

outside of that continent. The North American square ranked network has a size weighted 

clustering coefficient to of 0.20, compared with 0.17 for the square ranked network. 

The characteristic path length and clustering coefficients of the respective Erdos and 

Renyi random networks are also given in Tables 3.1 and 3.2. The characteristic path length 

calculated for a random network with the same number of vertices and average degree as the 

square ranked network is 2.05 and 1.84 for the North American square ranked network. The 

characteristic path length in both real-world networks is not much greater than that in the Erdos 

and Renyi‘s random networks (2.93 and 2.80). Thus, it can be concluded that the third condition 

for a small-world phenomenon is satisfied by both networks.   

The clustering coefficient of an Erdos and Renyi random network with the same number 

of vertices and average degree is 0.07 for the ranked university network and 0.11 for the North 

American ranked network. Both clustering coefficients in the real-world networks are much 

higher than those of their random counterparts. Thus, the last condition for a small-world 

network is also satisfied. 

In order to make these above comparisons more reliable, one hundred Erdos and Renyi 

random networks with the same number of vertices and density values were constructed by using 
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Ucinet6. The average characteristics of these random networks are presented in Tables 3.1 and 

3.2. In Table 3.1, the average value of the characteristic path length and clustering coefficient of 

random networks are 2.32 and 0.07, respectively. In Table 3.2, the average value of the 

characteristic path length and clustering coefficient of random networks are 2.09 and 0.11, 

respectively. The third and fourth conditions are confirmed by comparisons with multiple 

random networks. Since they satisfy all conditions, both real-world networks can be said to 

exhibit properties of the small-world phenomenon. 

3.4.2 Inequality and Centrality of Small-World Networks 

 

Having established the small-world properties of the economics academic network, we can 

proceed to compare the entire network and its subgroups. The dividing principle for these 

subgroups is level of quality as determined by university rankings. Using this principle, eight 

groups of ranked universities and five groups of North American universities are constructed as 

described in Chapter 2. 

Table 3.3 presents a comparison between the eight groups and the entire ranked 

university network. Even though the number of universities in each group is equal, the total and 

average in- and out-degree are concentrated in the higher-quality groups, particularly Group 1. 

While the average in- and out-degree in the entire network is 13.23, the highest group average in- 

and out-degree of 11.44 belongs to Group 1. The second highest, belonging to Group 2, is only 

2.50. A similar comparison in the North American square ranked network, presented in Table 

3.4, outlines the same trend. It would seem, then, that some degree of inequality exists in both 

networks. 

The in-degree and out-degree distributions of both ranked university and North American 

ranked university networks are given as log-log plots in Figures 3.5-3.8. If the log-log plot of 
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Table 3.3: Compare Subgroups in Square Ranked Network 

 

Square Ranked  

Network 

Group

1 

Group

2 

Group

3 

Group

4 

Group

5 

Group

6 

Group

7 

Group

8 

Number of  Faculty in 

Networks 
4783 995 706 648 610 579 532 593 418 

Total  In-Degree 2646 286 63 45 17 17 5 6 9 

Total Out-Degree 2646 286 63 45 17 17 5 6 9 

Number of Universities 200 25 25 25 25 25 25 25 25 

Average In-degree 13.23 11.4 2.5 1.8 0.68 0.68 0.2 0.24 0.36 

Standard Deviation of 

In-Degree 
5.4 2.79 1.65 1.47 1.09 0.84 0.49 0.59 0.63 

Average Out-Degree 13.23 11.4 2.5 1.8 0.68 0.68 0.2 0.24 0.36 

Standard Deviation of 

Out-Degree 
21.16 7.8 2.52 1.57 1.09 0.676 0.49 0.51 0.63 

Density 0.066 0.48 0.105 0.075 0.028 0.028 0.008 0.01 0.02 

Standard Deviation of 

Density 
0.2491 0.5 0.307 0.263 0.166 0.165 0.091 0.09 0.12 

Characteristic Path 

Length 
2.93 1.5 3.189 2.907 1.19 1.838 1 1.143 1.357 

Clustering Coefficient 0.24 0.55 0.136 0.059 0.043 0.131 0 0.389 0 

Diameter 7 1 10 9 2 4 1 2 2 
Note: Prior to these calculations, the ranked university valued network and subgroups were transformed into an unweighted directed un-looped network. 
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Table 3.4: Compare Subgroups in the North American Square Ranked Network  

 

North American Square 

Ranked Network   

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

5 

Number of  Faculty in 

Networks 
3026 978 688 616 506 481 

Total  In-Degree 1739 280 72 39 15 8 

Total Out-Degree 1739 280 72 39 15 8 

Number of Universities 126 25 25 25 25 26 

Average In-Degree 13.8 11.2 2.88 1.56 0.6 0.31 

Standard Deviation Of 

In-Degree 
3.6 2.53 1.95 1.55 0.63 0.606 

Average Out-degree 13.8 11.2 2.88 1.56 0.6 0.31 

Standard Deviation Of 

Out-Degree 
19.76 7.84 2.94 1.92 0.75 0.54 

Density 0.11 0.4667 0.12 0.065 0.025 0.0123 

Standard Deviation of 

Density 
0.3134 0.4989 0.325 0.2465 0.156 0.1103 

Characteristic Path 

Length 
2.8 1.578 2.629 1.963 1.25 1.417 

Clustering Coefficient 0.267 0.54 0.211 0.128 0 0 

Diameter 8 4 7 5 2 3 
Note: Prior to these calculations, the North America ranked university valued network and subgroups were transformed into an unweighted 

network. 
 

the degree distribution is linear, it follows a power law distribution. The log-log plot of in-degree 

distribution in both networks, given in Figures 3.5 and 3.6, is not quite linear. In both figures, the 

tail decays faster than under the power law, and seems to fit the description of a Gaussian 

distribution. Because of this characteristic, both networks should be classified as single-scale. 

However, the log-log plot of out-degree distribution for both networks (Figures 3.7 and 3.8) 

initially seems to have a linear trend but is then truncated. Therefore, due to their out-degree 

distribution, both networks are instead classified as broad-scale.
12

  

                                                 
12

  For the classification of small-world networks as: scale-free, broad-scale and single-scaled by Amaral et. al. 

(2000) please refer to Chapter 2.  
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Figure 3.5: Log-Log Plot (P(X>a)) of In-Degree Distribution for Square Ranked Network 

 

 

 

 

 

Figure 3.6: Log-Log Plot (P(X>a)) of In-Degree Distribution for the North American Square 

Ranked Network 
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Figure 3.7: Log-Log Plot (P(X>a)) of Out-Degree Distribution for the Square Ranked Network 

 

 

 

 

 

Figure 3.8: Log-Log Plot (P(X>a)) of Out-Degree Distribution for the North American Square 

Ranked Network 
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Only one percent of universities in both networks have an out-degree exceeding 40. 

Judging from the degree distribution, this fact does not point to an inequality of employment, but 

it does spell inequality of placement among institutions. This inequality can be examined further 

by drawing a Lorenz curve and measuring the Gini coefficient and Theil index. 

  The Lorenz curves are also drawn for the in-degree of the ranked university network and 

North America ranked university network in Figures 3.9 and Figure 3.10, respectively. Both 

curves are quite close to the perfect equality line. Moreover, the Gini coefficients calculated for 

the in-degree of both networks are very small, at about 0.23 and 0.15, respectively (see Table 

3.5). This means that the universities in the ranked university network, and even more so in the 

North American university network, are quite equal in terms of in-degree. In other words, when 

hiring alone is considered, relationships between universities in the networks are more or less 

equal.  

 

Figure 3.9: Lorenz Curve of In-Degree for the Square Ranked Network 
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Figure 3.10: Lorenz Curve of In-Degree for the North American Square Ranked Network 

 

 

 

Table 3.5: Summary of Inequality Indices 

 

Square Ranked Network 

North American Square 

Ranked Network 

In-Degree Out-Degree In-Degree Out-Degree 

Gini Coefficient 0.231 0.689 0.146 0.675 

Theil Index  (overall)  0.096 0.972 0.029 0.828 

Within-Theil 0.084 0.296 0.029 0.208 

Between-Theil 0.012 0.676 0.005 0.619 

Theil Group 1  0.015 0.126 0.018 0.133 

Theil Group 2 0.034 0.612 0.028 0.172 

Theil Group 3 0.063 0.268 0.028 0.655 

Theil Group 4  0.084 0.462 0.023 0.485 

Theil Group 5  0.224 0.298 0.053 0.485 

Theil Group 6  0.108 0.570   

Theil Group 7 0.060 0.936   

Theil Group 8 0.140 0.658   
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On the other hand, the Lorenz curves of out-degree for both ranked university network 

and   North   American   ranked    university  network,  given  in  Figures 3.11  and 3.12,  diverge 

   

Figure 3.11: Lorenz Curve of Out-Degree of Square Ranked Network 

 

 

 

Figure 3.12: Lorenz Curve of Out-Degree for the North American Square Ranked Network 
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significantly from the perfect equality line. The Gini coefficient of out-degree for the former is 

about 0.69; for the latter it measures about 0.68 (see Table 3.5). Both the Lorenz curve and Gini 

coefficients indicate a high level of inequality in out-degree in both real-world networks. In other 

words, when placement of graduates is considered, relationships between universities in the 

networks are unequal.  

The Theil Index, presented in Table 3.5, supports similar conclusions about in-degree 

equality and out-degree inequality.  The overall Theil indices of in-degree for both the overall 

and North American square ranked networks are very small, which indicates equality among 

employers. But the Theil indices of out-degree indicate some inequality in placement of 

graduates. However, this inequality stems not from imbalance within the group, but from 

imbalance between groups. The inequality of out-degree in the ranked university network is 

highest in Group 7, which is of the second lowest quality. In the North American square ranked 

network, Group 3 exhibits greatest inequality. In this group, the highest out-degree belongs to 

Purdue, which can place its Ph.D. graduates to 32 universities. There are only three other 

universities which have out-degree greater than 10. Many can place to very few universities and 

four universities cannot place their Ph.D. graduates into the network at all. Group 1 in either 

network does not have any inequality in either placement or employment (see Figures 3.13 

through 3.20).  

When the networks are observed closely by group, the following features come to light: 

Group 1 and Group 2, the two highest groups, have higher densities than the entire network (see 

Table 3.3 and 3.4). For example, while the densities of Group 1 and Group 2 in North America 
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Figure 3.13: Theil Index of In-Degree for the Square Ranked Network  

 

 

 

 

 

Figure 3.14: Theil Index of In-Degree of All Eight Groups in the Square Ranked Network 
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Figure 3.15: Theil Index of Out-Degree in the Square Ranked Network 

 

 

 

 

 

Figure 3.16: Theil Index of Out-Degree of All Eight Groups in the Square Ranked Network 
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Figure 3.17: Theil Index of In-Degree of the North American Square Ranked Network  

 

 

 

 

 

Figure 3.18: Theil Index of In-Degree of All Five Groups in the North American Square Ranked 

Network 
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Figure 3.19: Theil Index of Out-Degree in the North American Square Ranked Network  

 

 

 

 

 

Figure 3.20: Theil Index of Out-Degree of All Five Groups in the North American Square 

Ranked Network 
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square ranked network are 0.47 and 0.12, respectively, the density of the entire network is 0.11.   

The order of density values is clarified in North American Square Ranked Network. They are 

ordered from the highest to the lowest value with the group quality ordering. The lowest density 

belongs to Group 5, which is the lowest quality, because most of universities in this group cannot 

place their Ph.D. within the same group at all. It is very rare ability in this group. Group 1 has the 

only clustering coefficient that is higher than the network‘s. These facts indicate closer ties 

within higher-level groups. Not only is the density of higher-level groups higher, the density of 

the local neighborhood is also higher. By contrast, the lowest-quality group has a near-zero 

clustering coefficient value because universities within this group have a very small chance of 

exchanging their graduates. 

Although the relationship within the North American Square Ranked Network is denser 

than the square ranked network, and has shorter average shortest path than the square ranked 

network, the diameter is higher (Table 3.3 and 3.4). The diameter in North American Square 

Ranked Network is eight, while in Square Ranked Network the diameter is seven. There are 

more channels of links in the square ranked network than North American Square Ranked 

Network.  One example of the maximum shortest path lengths in North America network is from 

UC Irvine to Yale. However, the route is reduced to three links in the square ranked network. In 

other words, UC Irvine does not directly grant connect to Yale, but can reach Yale with 8 edges 

(or links) in the North American Square Ranked Network but with 3 edges in the square ranked 

network. In the North American Square Ranked Network, any university can reach any other 

with at most 8 edges. When the non-North American universities are included in the network, 

they can play a role of a channel of connections in the network. Any university can indirectly 

connect to any other with shortest path through them.  In the square ranked network, any one 
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university can reach any other university with the maximum shortest path length of 7 edges, for 

example Laval can indirectly reach Harvard or UC Berkeley with 7 edges.  

In North American Square Ranked Network, the diameters of the highest quality group 

are shorter than the diameter of the entire network. The diameters of the lower group are very 

small because most the universities in the lower group are not likely to employ within the same 

group. There are many vertices in the network of lower groups that are disconnected and many 

distances that cannot be measured. The characteristic path length in the lower groups seems 

short, however, quite meaningless.  

Since there is a sense of hierarchy in the placement of Ph.D. graduates, it would pay to 

investigate the centrality of these networks in terms of node betweenness, which measures the 

number of shortest paths between other pairs of vertices that pass through any vertex. The higher 

the node betweenness score of any vertex implies its influential role as being central to the 

network. Tables 3.6 and 3.7 present node betweenness in the ranked university network and the 

North American ranked university network respectively. In the former, London School of 

Economics (LSE) has the highest node betweenness. In the latter, the university with highest 

node betweenness is Pittsburgh.  

In both networks, most universities with a high value of node betweenness are not 

members of Group 1. Of the top five universities based on the node betweenness score in square 

ranked network, only Pittsburgh is in North America. As discussed above, the square ranked 

network which includes the non-North American universities has a shorter diameter than North 

America ranked university. This indicates the important role of many non-North American 

universities as being central to the network in terms of node betweenness. Within top ten 
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Table 3.6: Node Betweeness in the Square Ranked Network 

Coupe Rank Employer Nodes Betweenness  Node Betweenness Rank 

1 Harvard 525.89 40 

2 Chicago 1337.11 8 

3 Penn 1393.70 6 

4 Stanford 560.12 36 

5 MIT 708.31 23 

6 UCBerkeley 671.11 25 

7 Northwestern 728.24 22 

8 Yale 531.88 38 

9 Michigan 361.28 55 

10 Columbia 653.75 28 

11 Princeton 914.67 17 

12 UCLA 700.18 24 

13 NYU 521.84 43 

14 Cornell 271.78 73 

15 LSE 2378.67 1 

16 WiscMad 352.17 57 

17 Duke 1031.05 12 

18 OhioSt 438.58 47 

19 Maryland 371.30 53 

20 Rochester 665.02 27 

21 UTAustin 81.76 115 

22 Minnesota 1323.24 9 

23 UIUC 895.72 18 

24 UCDavis 163.02 92 

25 Toronto 256.07 77 

26 Oxford 668.62 26 

27 UBC 279.50 70 

28 UCSD 994.56 13 

29 USC 136.17 99 

30 BU 64.94 122 

31 PennSt 732.45 21 

32 CMU 581.62 33 

33 Cambridge 228.39 84 

34 Florida 93.68 111 

35 MichSt 275.53 72 
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Table 3.6 Continued 

Coupe Rank Employer Nodes Betweenness  Node Betweenness Rank 

36 Rutgers 72.95 117 

37 UWash 307.29 65 

38 UNC 252.85 78 

39 TAMU 136.47 97 

40 Indiana 493.15 45 

41 Iowa 570.27 34 

42 TelAviv 9.29 155 

43 UVA 948.80 15 

44 UCL 874.13 19 

45 Hebrew 37.44 132 

46 Brown 372.87 52 

47 Tilburg 260.98 76 

48 Pitt 1934.88 3 

49 Warwick 597.65 32 

50 Arizona 80.99 116 

51 WOntario 1363.80 7 

52 JHU 71.03 118 

53 ANU 2365.52 2 

54 Vanderbilt 124.19 100 

55 Queen's 519.68 44 

56 WUSTL 170.98 89 

57 Montreal 224.64 85 

58 GTown 374.70 51 

59 COBoulder 171.33 88 

60 UGA 10.05 153 

61 VATech 141.98 94 

62 Purdue 1082.08 10 

63 UCIrvine 136.38 98 

64 BC 166.94 90 

65 IowaSt 523.32 42 

66 Amsterdam 822.59 20 

67 NCSt 567.17 35 

68 Erasmus 323.58 63 

69 Dartmouth 0.00 167 

70 Louvain 86.80 114 
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Table 3.6 Continued 

Coupe Rank Employer Nodes Betweenness  Node Betweenness Rank 

71 UYork 614.46 29 

72 ASU 60.89 123 

73 Toulouse 270.62 74 

74 Essex 388.10 50 

75 Stockholm 351.78 58 

76 UCSB 204.21 86 

77 LBS 12.81 152 

78 FLSt 278.29 71 

79 UNSW 524.24 41 

80 Alberta 0.00 167 

81 McMaster 161.80 93 

82 Houston 29.37 136 

83 Syracuse 137.74 96 

84 UAB 404.78 48 

85 Nottingham 1047.80 11 

86 HKUST 0.00 167 

87 Bonn 335.35 61 

88 YorkU 39.61 130 

89 CalTech 548.49 37 

90 LSU 249.13 79 

91 Southampton 60.28 124 

92 UConn 20.32 142 

93 GASt 0.00 167 

94 UKY 180.56 87 

95 GWU 117.14 104 

96 INSEE 0.00 167 

97 SMU 91.34 112 

98 NotreDame 8.89 156 

99 SSE 122.34 101 

100 SFU 355.43 56 

101 Oregon 242.62 81 

102 GMU 606.74 31 

103 Birkbeck 54.60 127 

104 VUA 41.21 129 

105 UMass 163.92 91 
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Table 3.6 Continued 

Coupe Rank Employer Nodes Betweenness  Node Betweenness Rank 

106 SCarolina 0.00 167 

107 ParisI 288.91 66 

108 Bristol 4.91 160 

109 Melbourne 1462.16 5 

110 UIC 0.00 167 

111 Copenhagen 280.51 69 

112 McGill 268.04 75 

113 Groningen 101.49 109 

114 ChUHK 0.00 167 

115 ULB 0.00 167 

116 NewcastleuT 0.78 166 

117 Tulane 27.55 137 

118 American 66.65 120 

119 Mannheim 23.56 140 

120 Auburn 282.73 67 

121 UPF 929.23 16 

122 Buffalo 43.37 128 

123 Manchester 1511.29 4 

124 UCSC 38.02 131 

125 Monash 56.64 125 

126 Rice 242.26 82 

127 Tennessee 20.25 143 

128 Emory 0.00 167 

129 NUSingapore 0.00 167 

130 Laval 13.14 151 

131 C3MU 138.98 95 

132 Waterloo 0.00 167 

133 WayneSt 2.06 164 

134 WiscMil 363.79 54 

135 Missouri 102.94 108 

136 UCRiverside 531.55 39 

137 Alabama 243.52 80 

138 Quebec 18.06 144 

139 Albany 25.68 138 

140 Oslo 0.00 167 
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Table 3.6 Continued 

Coupe Rank Employer Nodes Betweenness  Node Betweenness Rank 

141 MiamiFL 0.00 167 

142 Maastricht 118.89 103 

143 Delaware 0.00 167 

144 Sydney 65.07 121 

145 EHESS 350.57 59 

146 Vienna 96.49 110 

147 Munich 87.78 113 

148 EAnglia 2.75 163 

149 Geneva 14.99 148 

150 INSEAD 0.00 167 

151 Clemson 0.00 167 

152 Birmingham 55.19 126 

153 Guelph 15.72 147 

154 Hitots 0.00 167 

155 Tufts 16.45 146 

156 BYU 0.00 167 

157 Tokyo 35.43 134 

158 CULon 8.09 158 

159 Zurich 37.05 133 

160 StonyBrook 122.01 102 

161 Carleton 13.16 150 

162 Reading 240.33 83 

163 AcademiaS 0.00 167 

164 KUL 114.75 105 

165 Bar-Ilan 0.00 167 

166 EUI 324.76 62 

167 Bocconi 17.32 145 

168 Utah 110.26 106 

169 Brandeis 3.75 161 

170 IUPUI 0.00 167 

171 Exeter 24.89 139 

172 Bologna 0.00 167 

173 Wyoming 280.77 68 

174 Nebraska 0.00 167 

175 WVA 992.08 14 
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Table 3.6 Continued 

Coupe Rank Employer Nodes Betweenness  Node Betweenness Rank 

176 Kansas 69.14 119 

177 NHH 0.00 167 

178 Temple 13.27 149 

179 Glasgow 442.16 46 

180 SIUC 338.29 60 

181 KanSt 0.00 167 

182 CUNY 609.15 30 

183 Oklahoma 8.74 157 

184 CWM 0.00 167 

185 Strathclyde 21.46 141 

186 Edinburgh 32.28 135 

187 UHK 0.00 167 

188 WashSt 398.31 49 

189 Uppsala 1.63 165 

190 Osaka 9.99 154 

191 Tsukuba 5.59 159 

192 UNM 0.00 167 

193 UCDublin 3.34 162 

194 CODenver 0.00 167 

195 RomeLS 0.00 167 

196 Concordia 317.64 64 

197 SCU 0.00 167 

198 QMUL 103.92 107 

199 MontSt 0.00 167 

200 URI 0.00 167 

 

universities in the square ranked network, University of Pennsylvania has the highest node 

betweenness score and University of Michigan has the smallest node betweenness score. 

However, in the square ranked network University of Pennsylvania is ranked as number 8 

in terms of node betweenness and Michigan is ranked as number 50. There is no obvious pattern 

of centrality in terms of node betweenness. The standard correlation between Coupe‘s (2003) 

university ranking and the ranking based on node betweenness is about 0.60 in the square ranked 

network and 0.47 in North American Square Ranked Network shows there is no significant
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Table 3.7: Node Betweeness in the North American Square Ranked Network 

Coupe Rank Employer Nodes Betweenness  Node Betweenness Rank 

1 Harvard 215.95 30 

2 Chicago 874.84 4 

3 Penn 830.78 5 

4 Stanford 82.09 58 

5 MIT 165.72 38 

6 UCBerkeley 199.64 33 

7 Northwestern 188.53 35 

8 Yale 155.31 41 

9 Michigan 180.66 36 

10 Columbia 58.92 64 

11 Princeton 132.93 47 

12 UCLA 444.44 11 

13 NYU 151.49 44 

14 Cornell 59.60 62 

16 WiscMad 122.57 50 

17 Duke 194.23 34 

18 OhioSt 332.00 20 

19 Maryland 211.88 32 

20 Rochester 77.69 59 

21 UTAustin 56.32 66 

22 Minnesota 749.38 6 

23 UIUC 120.02 51 

24 UCDavis 33.93 79 

25 Toronto 87.31 57 

27 UBC 115.05 52 

28 UCSD 56.73 65 

29 USC 14.95 90 

30 BU 23.79 82 

31 PennSt 153.07 42 

32 CMU 337.83 19 

34 Florida 93.60 55 

35 MichSt 163.03 39 

36 Rutgers 43.14 71 

37 UWash 162.54 40 

38 UNC 256.65 25 
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Table 3.7 Continued 

Coupe Rank Employer Nodes Betweenness  Node Betweenness Rank 

39 TAMU 60.79 61 

40 Indiana 380.94 16 

41 Iowa 358.93 17 

43 UVA 682.12 7 

46 Brown 54.80 67 

48 Pitt 1731.92 1 

50 Arizona 38.00 73 

51 WOntario 427.05 13 

52 JHU 26.61 81 

54 Vanderbilt 63.64 60 

55 Queen's 228.81 28 

56 WUSTL 52.83 69 

57 Montreal 301.77 22 

58 GTown 22.87 84 

59 COBoulder 114.43 53 

60 UGA 7.30 98 

61 VATech 59.51 63 

62 Purdue 934.20 3 

63 UCIrvine 35.02 78 

64 BC 36.35 75 

65 IowaSt 492.97 10 

67 NCSt 587.14 8 

69 Dartmouth 0.00 109 

72 ASU 52.07 70 

76 UCSB 124.46 49 

78 FLSt 441.83 12 

80 Alberta 0.00 106 

81 McMaster 41.81 72 

82 Houston 18.12 89 

83 Syracuse 268.80 24 

88 YorkU 27.12 80 

89 CalTech 89.50 56 

90 LSU 350.96 18 

92 UConn 18.88 88 

93 GASt 0.00 107 
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Table 3.7 Continued 

Coupe Rank Employer Nodes Betweenness  Node Betweenness Rank 

94 UKY 147.31 46 

95 GWU 0.00 117 

97 SMU 103.90 54 

98 NotreDame 7.81 95 

100 SFU 9.38 94 

101 Oregon 224.08 29 

102 GMU 394.78 15 

105 UMass 35.73 76 

106 SCarolina 0.00 110 

110 UIC 0.00 103 

112 McGill 151.59 43 

117 Tulane 23.75 83 

118 American 35.51 77 

120 Auburn 213.04 31 

122 Buffalo 149.09 45 

124 UCSC 36.37 74 

126 Rice 53.05 68 

127 Tennessee 21.05 86 

128 Emory 0.00 120 

130 Laval 5.08 100 

132 Waterloo 0.00 113 

133 WayneSt 1.32 101 

134 WiscMil 9.84 93 

135 Missouri 303.28 21 

136 UCRiverside 0.00 105 

137 Alabama 246.92 26 

138 Quebec 13.00 91 

139 Albany 20.08 87 

141 MiamiFL 0.00 114 

143 Delaware 0.00 115 

151 Clemson 0.00 102 

153 Guelph 6.86 99 

155 Tufts 0.00 118 

156 BYU 0.00 104 

160 StonyBrook 22.71 85 
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Table 3.7 Continued 

Coupe Rank Employer Nodes Betweenness  Node Betweenness Rank 

161 Carleton 7.76 97 

168 Utah 244.06 27 

169 Brandeis 0.00 108 

170 IUPUI 0.00 112 

173 Wyoming 125.32 48 

174 Nebraska 0.00 111 

175 WVA 940.46 2 

176 Kansas 178.36 37 

178 Temple 10.93 92 

180 SIUC 408.35 14 

181 KanSt 0.00 116 

182 CUNY 555.50 9 

183 Oklahoma 7.76 96 

184 CWM 0.00 119 

188 WashSt 300.86 23 

192 UNM 0.00 121 

194 CODenver 0.00 122 

196 Concordia 0.00 123 

197 SCU 0.00 124 

199 MontSt 0.00 125 

200 URI 0.00 126 

 

relationship between the centrality role and quality of university in the network. Hence, even 

though universities in Group 1 are privileged in terms of placement, they are not influential or 

central in terms of node betweenness. Figures 3.21 and Figure 3.22 present node betweenness 

score  distribution  plotted  on  a  log-log  scale  for  the  square  ranked  network  and  the  North 

American square ranked network. The node betweenness distribution in the latter follows the 

power law approximately, more so than in the former. The square ranked network seems to have 

more nodes of centrality than the North American square ranked network. 
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Figure 3.21: Log-Log Plot (P(X>a)) of Node Betweeness Distribution in the Square Ranked 

Network 

 

 

 

Figure 3.22: Log-Log Plot (P(X>a)) of Node Betweeness Distribution in the North American 

Square Ranked Network 

 

 



158 

 

3.5 Summary  

 

Social relationships between universities in the network has formed the sustained pattern of 

Ph.D. granting and employment in the economics academic labor market. Every quality group of 

universities in the economics academic market can connect to every other. Interactions in the 

network exhibit its hierarchical structure or so-called ―downstream pattern‖ described by Moore 

and Newman (1977).  Higher ranked groups supply their graduates to lower ranked groups.  In 

other words, every group in the labor market for academic economists tends to hire graduates 

from groups ranked above it. This chapter further investigates interactions between each 

university in the network instead of just groups as in chapter 2. This chapter is interested in the 

structural characteristics of the economic academic labor market particularly whether it can be 

characterized as a small-world network or not. 

Empirical works on the small-world phenomenon are few. The small-world phenomenon 

properties was examined in the economics collaboration network by Goyal et al. (2004) and 

Goyal et al. (2005) finding evidence of an emerging of small-world phenomenon in the network 

of collaborating economists. Both the Lorenz curve construction and the degree distribution plot 

indicate the inequality of the degree of collaboration in the network and the network structure 

consists of a few stars as the centers of the network.  

This chapter found that the North American Square Ranked Network and the square 

ranked network are single component networks. The North American Square Ranked Network 

resembles the overall square ranked network. The economics academic networks exhibit the 

small-world phenomenon, with the characteristic path lengths close to those of random networks. 

While the clustering coefficient of North American Square Ranked Network is more than twice 

as high as in a comparable random network, the clustering coefficient of square ranked network 
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is more than four times as high. Any two universities can connect through only three links. 

Moreover, the maximum shortest path for any university to reach any other university is seven 

links.   

Most of universities employ their faculty from higher ranked universities. The 

connections of ranked universities to others in terms of ―employment‖ do not display any 

significant inequality. But, there is significant inequality in the degree of placement of 

economists in the academic labor market. It is due to the ―downstream pattern‖ in academic labor 

market. Top ranked universities can place their graduates in lower ranked universities, but very 

few lower ranked universities can place their graduates in higher ranked universities. Lower 

ranked universities, then, connect to their same quality grouped universities in terms of 

―granting.‖ Moreover, in observed universities, many universities do not produce many 

graduates and some universities cannot place their graduates in ranked universities at all. This 

inequality of granting connections, then, significantly comes from the inequality between the 

different groups of quality, not the inequality within the group.  

Even though the inequality of granting connections seems significant, there is no 

inequality of employment connections.  The structure of economics academic network is such 

that in terms of node betweenness there are many universities, particularly non-North American 

universities, that play a role as the centrals of these single component networks, for example 

London School of Economics,  Australian National University, Pittsburgh, Manchester, etc. 

These universities significantly reduce the paths between any two universities. It is hard to relate 

the influential universities in terms of node betweenness and the influential university in terms of 

placement in the academic network. Although most of these central universities are not 
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influential in terms of placement their graduates in the network, were the removed from the 

network, any two ranked universities would connected through more than three links.
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APPENDIX A: UNIVERSITY NAMES AND DETAIL 

 

Coupe 

Rank Abbreviation  University Name Country Continent 

1 Harvard U Harvard USA North America 

2 Chicago U Chicago USA North America 

3 Penn U Penn (UPA) USA North America 

4 Stanford U Stanford USA North America 

5 MIT MIT USA North America 

6 UCBerkeley UC Berkeley (U CA Berkeley) USA North America 

7 Northwestern Northwestern U USA North America 

8 Yale U Yale USA North America 

9 Michigan U MI Ann Arbor (Michigan) USA North America 

10 Columbia Columbia U USA North America 

11 Princeton Princeton U USA North America 

12 UCLA UCLA USA North America 

13 NYU NYU USA North America 

14 Cornell Cornell U USA North America 

15 LSE London School of Econ UK Europe 

16 WiscMad 
Wisconsin-Madison (U WI 

Madison) 
USA North America 

17 Duke Duke U USA North America 

18 OhioSt Ohio-State (oh State U) USA North America 

19 Maryland U MD College Park USA North America 

20 Rochester U Rochester USA North America 

21 UTAustin U TX Austin USA North America 

22 Minnesota U MN Twin Cities USA North America 

23 UIUC U IL Urbana Champaign USA North America 

24 UCDavis U CA Davis USA North America 

25 Toronto U Toronto Canada North America 

26 Oxford U Oxford UK Europe 

27 UBC U British Columbia Canada North America 

28 UCSD U CA San Diego USA North America 

29 USC U Southern CA USA North America 

30 BU Boston U USA North America 

31 PennSt Penn State U (PA State U) USA North America 

32 CMU Carnegie Mellon U USA North America 

33 Cambridge U Cambridge UK Europe 

34 Florida U Florida (U FL) USA North America 
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Coupe 

Rank Abbreviation University Name Country Continent 

35 MichSt Michigan State (MI State U) USA North America 

36 Rutgers Rutgers  U NJ USA North America 

37 UWash U Washington (UWA) USA North America 

38 UNC U NC Chapel Hill USA North America 

39 TAMU TX A&M U USA North America 

40 Indiana IN U, Bloomington (Indiana) USA North America 

41 Iowa U Iowa (U IA) USA North America 

42 TelAviv U Tel Aviv Israel Asia 

43 UVA U Virginia (UVA) USA North America 

44 UCL U College London (UCL) UK Europe 

45 Hebrew Hebrew U Israel Asia 

46 Brown Brown U USA North America 

47 Tilburg U Tilburg Netherlands Europe 

48 Pitt U Pittsburgh USA North America 

49 Warwick U Warwick UK Europe 

50 Arizona U Arizona (U AZ) USA North America 

51 WOntario U Western Ontario Canada North America 

52 JHU Johns Hopkins U USA North America 

53 ANU Australian National U (ANU) Australia Australia 

54 Vanderbilt Vanderbilt U USA North America 

55 Queen's Queens U, Canada Canada North America 

56 WUSTL Washington U, MO (WUSTL) USA North America 

57 Montreal U Montreal Canada North America 

58 GTown Georgetown U, DC USA North America 

59 COBoulder 
U Colorado Boulder (U CO 

Boulder) 
USA North America 

60 UGA U Georgia (UGA) USA North America 

61 VATech VA Polytechnic Institute& State U USA North America 

62 Purdue Purdue U in USA North America 

63 UCIrvine U CA Irvine USA North America 

64 BC Boston College USA North America 

65 IowaSt Iowa State (IA State U) USA North America 

66 Amsterdam U Amsterdam Netherlands Europe 

67 NCSt NC State U USA North America 

68 Erasmus Erasmus U Rotterdam Netherlands Europe 

69 Dartmouth Dartmouth College USA North America 

70 Louvain Catholic U Louvain Belgium Europe 
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Rank Abbreviation University Name Country Continent 

71 UYork U York, UK UK Europe 

72 ASU AZ State U (ASU) USA North America 

73 Toulouse U Toulouse I France Europe 

74 Essex U Essex UK Europe 

75 Stockholm U Stockholm Sweden Europe 

76 UCSB U CA Santa Barbara USA North America 

77 LBS London Business School UK Europe 

78 FLSt Florida State (FL State U) USA North America 

79 UNSW U New S Wales Australia Australia 

80 Alberta U Alberta Canada North America 

81 McMaster McMaster U Canada North America 

82 Houston U Houston USA North America 

83 Syracuse Syracuse U, NY USA North America 

84 UAB U Autonoma Barcelona Spain Europe 

85 Nottingham U Nottingham UK Europe 

86 HKUST Hongkong U of Science & Tech China Asia 

87 Bonn U Bonn Germany Europe 

88 YorkU York U Canada Canada North America 

89 CalTech CA Institute of Technology USA North America 

90 LSU LA State U USA North America 

91 Southampton U Southampton UK Europe 

92 UConn U Connecticut (U CT) USA North America 

93 GASt GA State U USA North America 

94 UKY U Kentucky (U KY) USA North America 

95 GWU George Washington U, DC USA North America 

96 INSEE INSEE France Europe 

97 SMU Southern Mathodist U USA North America 

98 NotreDame U Notre Dame IN USA North America 

99 SSE Stockholm School of Econ Sweden Europe 

100 SFU Simon Fraser U CN Canada North America 

101 Oregon U Oregon (U OR) USA North America 

102 GMU George Mason U, VA  USA North America 

103 Birkbeck Birkbeck College, U London UK Europe 

104 VUA 
Free U Amsterdam (Vrije U 

Amsterdam) 
Netherlands Europe 

105 UMass U MA Amherst USA North America 
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Rank Abbreviation University Name Country Continent 

106 SCarolina U South Carolina (USC) USA North America 

107 ParisI U Paris I France Europe 

108 Bristol U Bristol UK Europe 

109 Melbourne U Melbourne Australia Australia 

110 UIC U IL Chicago USA North America 

111 Copenhagen U Copenhagen Denmark Europe 

112 McGill McGill U Canada North America 

113 Groningen U Groningen Netherlands Europe 

114 ChUHK Chinese U Hong Kong  China Asia 

115 ULB Free U Brussels (ULB) Belgium Europe 

116 NewcastleuT U Newcastle upon Tyne UK Europe 

117 Tulane Tulane U USA North America 

118 American American U, Washington, DC  USA North America 

119 Mannheim U Mannheim Germany Europe 

120 Auburn Auburn U USA North America 

121 UPF U Pompeu Fabra (UPF) Spain Europe 

122 Buffalo SUNY Buffalo USA North America 

123 Manchester U Manchester UK Europe 

124 UCSC U CA Santa Cruz USA North America 

125 Monash Monash U, Australia Australia Australia 

126 Rice Rice U, Houston, TX USA North America 

127 Tennessee U TX Knoxville USA North America 

128 Emory Emory U USA North America 

129 NUSingapore U National Singapore Singapore Asia 

130 Laval U Laval Canada North America 

131 C3MU U Carlos III Madrid Spain Europe 

132 Waterloo U Waterloo, Waterloo, Ontario Canada North America 

133 WayneSt Wayne State U, MI USA North America 

134 WiscMil U WI Milwaukee  USA North America 

135 Missouri Missouri ( U MO Columbia) USA North America 

136 UCRiverside U CA Riverside USA North America 

137 Alabama U Alabama (U AL) USA North America 

138 Quebec U Quebec Montreal Canada North America 

139 Albany SUNY Albany USA North America 

140 Oslo U Oslo Norway Europe 
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141 MiamiFL U Miami, FL USA North America 

142 Maastricht U Maastricht Netherlands Europe 

143 Delaware Delaware (U DE) USA North America 

144 Sydney U Sydney Australia Australia 

145 EHESS EHESS France Europe 

146 Vienna U Vienna Austria Europe 

147 Munich U Munchen (Munich) Germany Europe 

148 EAnglia East Anglia UK Europe 

149 Geneva U Geneva Switzerland Europe 

150 INSEAD INSEAD France Europe 

151 Clemson Clemson U USA North America 

152 Birmingham U Birmingham UK Europe 

153 Guelph U Guelph Canada North America 

154 Hitots Hitotsubashi U Japan Asia 

155 Tufts Tufts U USA North America 

156 BYU Brigham Young U USA North America 

157 Tokyo U Tokyo Japan Asia 

158 CULon City U London UK Europe 

159 Zurich U Zurich Switzerland Europe 

160 StonyBrook SUNY Stony Brook USA North America 

161 Carleton Carleton U, Ottawa Canada North America 

162 Reading U Reading UK Europe 

163 AcademiaS Academia Sinica China Asia 

164 KUL Catholic U Leuven Belgium Europe 

165 Bar-Ilan Bar Ilan U Israel Asia 

166 EUI European U Institute, Firenze Italy Europe 

167 Bocconi U Bocconi Italy Europe 

168 Utah  U Utah (U UT) USA North America 

169 Brandeis Brandeis U USA North America 

170 IUPUI IN U Purdue U, Indianapolis USA North America 

171 Exeter U Exeter UK Europe 

172 Bologna U Bologna Italy Europe 

173 Wyoming U Wyoming (U WY0 USA North America 

174 Nebraska 
U Nebraska Lincoln (U NE 

Lincoln) 
USA North America 

175 WVA U West Virginia (WV U) USA North America 

 



169 

 

Coupe 
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176 Kansas U Kansas (U KS) USA North America 

177 NHH 
Norwegian School Econ & 

Business Admin. (NHH) 
Norway Europe 

178 Temple Temple U USA North America 

179 Glasgow U Glasgow UK Europe 

180 SIUC Southern IL U Carbondale (SIUC) USA North America 

181 KanSt Kansas State U (KS  State U) USA North America 

182 CUNY CUNY Baruch College USA North America 

183 Oklahoma U Oklahoma (U OK) USA North America 

184 CWM 
College of William & Mary 

(CWM) 
USA North America 

185 Strathclyde U Strathclyde UK Europe 

186 Edinburgh U Edinburgh UK Europe 

187 UHK U Hong Kong (UHK) China Asia 

188 WashSt Washington State U USA North America 

189 Uppsala Uppsala U, Sweden Sweden Europe 

190 Osaka Osaka U Japan Asia 

191 Tsukuba U Tsukuba, Japan Japan Asia 

192 UNM U New Mexico (U NM) USA North America 

193 UCDublin U College Dublin Ireland Europe 

194 CODenver UCO Denver USA North America 

195 RomeLS U Rome La Sapienza Italy Europe 

196 Concordia Concordia U Canada North America 

197 SCU Santa Clara U, CA USA North America 

198 QMUL Queen Mary  & Westfield College UK Europe 

199 MontSt Montana State U (MT State U) USA North America 

200 URI Rhode Island USA North America 
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APPENDIX B: DEGREE IN SQUARE RANKED NETWORK 

 

Ranked by Coupe University Name In-Degree Out-Degree 

1 Harvard 15 90 

2 Chicago 12 91 

3 Penn 17 73 

4 Stanford 12 89 

5 MIT 12 97 

6 UCBerkeley 13 94 

7 Northwestern 18 75 

8 Yale 14 90 

9 Michigan 19 47 

10 Columbia 17 45 

11 Princeton 18 87 

12 UCLA 20 44 

13 NYU 20 32 

14 Cornell 15 53 

15 LSE 17 65 

16 WiscMad 15 69 

17 Duke 15 39 

18 OhioSt 15 19 

19 Maryland 17 22 

20 Rochester 11 59 

21 UTAustin 17 14 

22 Minnesota 14 70 

23 UIUC 21 35 

24 UCDavis 15 15 

25 Toronto 20 19 

26 Oxford 12 49 

27 UBC 16 27 

28 UCSD 14 39 

29 USC 17 12 

30 BU 13 21 

31 PennSt 17 19 

32 CMU 22 26 

33 Cambridge 6 40 

34 Florida 13 6 

35 MichSt 18 25 
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Ranked by Coupe University Name In-Degree Out-Degree 

36 Rutgers 21 8 

37 UWash 15 28 

38 UNC 17 18 

39 TAMU 18 11 

40 Indiana 19 19 

41 Iowa 10 18 

42 TelAviv 11 3 

43 UVA 17 24 

44 UCL 15 18 

45 Hebrew 11 9 

46 Brown 12 48 

47 Tilburg 10 11 

48 Pitt 21 21 

49 Warwick 17 14 

50 Arizona 14 6 

51 WOntario 16 25 

52 JHU 10 34 

53 ANU 12 13 

54 Vanderbilt 19 8 

55 Queen's 16 25 

56 WUSTL 14 21 

57 Montreal 21 7 

58 GTown 21 4 

59 COBoulder 23 10 

60 UGA 12 1 

61 VATech 11 15 

62 Purdue 15 35 

63 UCIrvine 18 4 

64 BC 15 13 

65 IowaSt 19 7 

66 Amsterdam 13 6 

67 NCSt 18 8 

68 Erasmus 9 7 

69 Dartmouth 9 0 

70 Louvain 3 14 
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Ranked by Coupe University Name In-Degree Out-Degree 

71 UYork 17 12 

72 ASU 22 3 

73 Toulouse 10 18 

74 Essex 18 12 

75 Stockholm 7 9 

76 UCSB 17 11 

77 LBS 3 4 

78 FLSt 22 4 

79 UNSW 17 2 

80 Alberta 14 0 

81 McMaster 17 9 

82 Houston 17 2 

83 Syracuse 14 7 

84 UAB 16 9 

85 Nottingham 21 5 

86 HKUST 13 0 

87 Bonn 5 10 

88 YorkU 20 2 

89 CalTech 13 19 

90 LSU 11 2 

91 Southampton 10 4 

92 UConn 21 1 

93 GASt 20 0 

94 UKY 14 3 

95 GWU 20 1 

96 INSEE 3 0 

97 SMU 15 3 

98 NotreDame 18 1 

99 SSE 7 7 

100 SFU 20 6 

101 Oregon 17 5 

102 GMU 17 5 

103 Birkbeck 8 6 

104 VUA 4 6 

105 UMass 13 5 
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Ranked by Coupe University Name In-Degree Out-Degree 

106 SCarolina 14 0 

107 ParisI 1 10 

108 Bristol 2 4 

109 Melbourne 25 3 

110 UIC 13 0 

111 Copenhagen 9 5 

112 McGill 24 4 

113 Groningen 3 4 

114 ChUHK 15 0 

115 ULB 0 7 

116 NewcastleuT 2 1 

117 Tulane 10 4 

118 American 13 3 

119 Mannheim 8 2 

120 Auburn 7 1 

121 UPF 24 11 

122 Buffalo 10 5 

123 Manchester 18 13 

124 UCSC 13 3 

125 Monash 13 2 

126 Rice 16 9 

127 Tennessee 14 1 

128 Emory 13 0 

129 NUSingapore 27 0 

130 Laval 16 2 

131 C3MU 19 4 

132 Waterloo 10 0 

133 WayneSt 9 1 

134 WiscMil 16 3 

135 Missouri 13 3 

136 UCRiverside 12 4 

137 Alabama 11 1 

138 Quebec 18 2 

139 Albany 13 2 

140 Oslo 3 0 
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Ranked by Coupe University Name In-Degree Out-Degree 

141 MiamiFL 12 0 

142 Maastricht 7 5 

143 Delaware 20 0 

144 Sydney 20 3 

145 EHESS 9 12 

146 Vienna 4 5 

147 Munich 9 4 

148 EAnglia 4 2 

149 Geneva 7 2 

150 INSEAD 7 0 

151 Clemson 14 0 

152 Birmingham 13 2 

153 Guelph 15 1 

154 Hitots 6 0 

155 Tufts 14 1 

156 BYU 14 0 

157 Tokyo 14 2 

158 CULon 5 1 

159 Zurich 5 2 

160 StonyBrook 10 12 

161 Carleton 14 2 

162 Reading 10 1 

163 AcademiaS 17 0 

164 KUL 8 8 

165 Bar-Ilan 7 0 

166 EUI 9 18 

167 Bocconi 16 2 

168 Utah 9 2 

169 Brandeis 14 1 

170 IUPUI 16 0 

171 Exeter 10 2 

172 Bologna 20 0 

173 Wyoming 7 1 

174 Nebraska 12 0 

175 WVA 15 3 
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Ranked by Coupe University Name In-Degree Out-Degree 

176 Kansas 15 3 

177 NHH 2 0 

178 Temple 17 1 

179 Glasgow 11 2 

180 SIUC 8 5 

181 KanSt 12 0 

182 CUNY 24 5 

183 Oklahoma 9 1 

184 CWM 15 0 

185 Strathclyde 10 2 

186 Edinburgh 9 3 

187 UHK 16 0 

188 WashSt 11 3 

189 Uppsala 2 3 

190 Osaka 7 1 

191 Tsukuba 6 1 

192 UNM 9 0 

193 UCDublin 3 1 

194 CODenver 8 0 

195 RomeLS 3 0 

196 Concordia 15 2 

197 SCU 7 0 

198 QMUL 15 2 

199 MontSt 8 0 

200 URI 7 0 
Note: In-Degree and Out-Degree are measured in unweighted directed and un-looped networks. 
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APPENDIX C: DEGREE IN NORTH AMERICAN SQUARE RANKED NETWORK 

 

Ranked by Coupe University Name In-Degree Out-Degree 

1 Harvard 13 69 

2 Chicago 12 77 

3 Penn 16 56 

4 Stanford 10 70 

5 MIT 10 73 

6 UCBerkeley 10 74 

7 Northwestern 16 60 

8 Yale 13 70 

9 Michigan 17 40 

10 Columbia 12 34 

11 Princeton 14 68 

12 UCLA 18 38 

13 NYU 16 20 

14 Cornell 13 38 

16 WiscMad 13 64 

17 Duke 13 36 

18 OhioSt 13 18 

19 Maryland 17 19 

20 Rochester 9 48 

21 UTAustin 17 13 

22 Minnesota 13 57 

23 UIUC 18 31 

24 UCDavis 12 11 

25 Toronto 17 14 

27 UBC 15 20 

28 UCSD 12 26 

29 USC 13 7 

30 BU 12 14 

31 PennSt 13 12 

32 CMU 22 22 

34 Florida 12 6 

35 MichSt 17 23 

36 Rutgers 20 7 

37 UWash 14 25 

38 UNC 16 18 

 

 



177 

 

Ranked by Coupe University Name In-Degree Out-Degree 

39 TAMU 17 10 

40 Indiana 18 18 

41 Iowa 10 15 

43 UVA 17 23 

46 Brown 10 45 

48 Pitt 18 19 

50 Arizona 12 5 

51 WOntario 13 20 

52 JHU 10 28 

54 Vanderbilt 17 6 

55 Queen's 14 20 

56 WUSTL 12 18 

57 Montreal 17 7 

58 GTown 18 1 

59 COBoulder 23 10 

60 UGA 12 1 

61 VATech 9 12 

62 Purdue 15 32 

63 UCIrvine 17 2 

64 BC 12 8 

65 IowaSt 17 7 

67 NCSt 17 8 

69 Dartmouth 9 0 

72 ASU 21 3 

76 UCSB 16 10 

78 FLSt 22 4 

80 Alberta 12 0 

81 McMaster 14 7 

82 Houston 15 2 

83 Syracuse 14 6 

88 YorkU 17 2 

89 CalTech 12 18 

90 LSU 11 2 

92 UConn 21 1 

93 GASt 20 0 
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Ranked by Coupe University Name In-Degree Out-Degree 

94 UKY 14 2 

95 GWU 20 0 

97 SMU 13 3 

98 NotreDame 17 1 

100 SFU 18 1 

101 Oregon 14 5 

102 GMU 16 4 

105 UMass 12 5 

106 SCarolina 13 0 

110 UIC 13 0 

112 McGill 19 3 

117 Tulane 10 4 

118 American 12 3 

120 Auburn 7 1 

122 Buffalo 10 5 

124 UCSC 13 3 

126 Rice 14 6 

127 Tennessee 14 1 

128 Emory 13 0 

130 Laval 13 2 

132 Waterloo 10 0 

133 WayneSt 9 1 

134 WiscMil 16 2 

135 Missouri 13 3 

136 UCRiverside 12 0 

137 Alabama 11 1 

138 Quebec 15 2 

139 Albany 13 1 

141 MiamiFL 12 0 

143 Delaware 20 0 

151 Clemson 14 0 

153 Guelph 12 1 

155 Tufts 13 0 

156 BYU 14 0 

160 StonyBrook 8 8 
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Ranked by Coupe University Name In-Degree Out-Degree 

161 Carleton 12 2 

168 Utah 9 1 

169 Brandeis 14 0 

170 IUPUI 15 0 

173 Wyoming 6 1 

174 Nebraska 12 0 

175 WVA 15 3 

176 Kansas 15 3 

178 Temple 17 1 

180 SIUC 8 4 

181 KanSt 12 0 

182 CUNY 23 4 

183 Oklahoma 9 1 

184 CWM 15 0 

188 WashSt 11 3 

192 UNM 9 0 

194 CODenver 8 0 

196 Concordia 14 0 

197 SCU 6 0 

199 MontSt 8 0 

200 URI 7 0 
Note: In-Degree and Out-Degree are measured in unweighted directed and un-looped networks. 
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