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Abstract
Small area estimation focuses on borrowing strength across area in order to develop a

reliable estimator when the auxiliary information is available. The traditional methods for

small area estimation borrow strength through linear models that provide links to related

areas, which may not be appropriate for some survey data. We examine the empirical best

unbiased linear prediction method and hierarchical Bayes method with the Louisiana Health

Insurance Survey (LHIS), and a hierarchical Bayes method with probit model to fit the LHIS

data by using the single year data in 2013. This approach results in a lower level of posterior

standard deviations compared to the other two estimates. Furthermore, we also construct

an informative Bayesian prior on the repeated cross-sectional data set 2003-2013, and show

a continuous shift from the single year estimates to the pooled estimates. Simulation studies

are given to examine the performance of various approaches.
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Chapter 1. Introduction
Sample surveys are widely used in providing estimates for both the entire population of

interest and for a variety of sub-populations (domains or small areas). Small areas can be

defined by geographic areas such as state, county, health service area, or socio-demographic

groups such as race, gender or types of industry, in which case they are referred to as domains.

The purpose of small area estimation is to produce reliable estimates of characteristics of

interest such as means, counts, quantiles for areas or domains for which only small samples

or no samples are available. Due to the growing demand for reliable small area statistics

for both public and private sectors, small area estimation is becoming important in survey

sampling. However, the traditional direct survey estimates for small areas are unlikely to

be accepted due to the large standard errors. This makes it necessary to “borrow strength”

from related areas to get more accurate estimates for the area with relatively small sample

size.

The issue of providing health insurance coverage to children and adults has long been a

topic of interest to U.S. policymakers. The pattern of health insurance coverage for adults

varies over years. The variations are caused due to the changing of economic environments,

insurance policy or people’s behavior. For instance, starting from 2001, the number of unin-

sured Americans increased, primarily because of a decline in employer-sponsored insurance,

while the drop in employer coverage was not offset by an increase in public coverage. During

the economic recession, health insurance coverage decreased significantly. More recently, on

March 23, 2010, the Patient Protection and Affordable Care Act is signed into law. The Con-

gressional Budget Office (2011) has projected that the implementation of health insurance

reforms in the Affordable Care Act (ACA) will reduce the number of uninsured Americans

by 33 million in 2020, from 56 to 23 million people. Beginning in 2014, most Americans

were required to have health insurance coverage meeting certain minimum requirements and
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would be subject to financial penalties if they did not comply. Estimates of the number of

uninsured persons will be a key ingredient in measuring the effectiveness of the Affordable

Care Act, particularly if some states deviate from others with regard to some parts of the

legislation such as the expansion of Medicaid eligibility.

In Chapter 2, we provide a literature review of the existing approaches to small area

estimation. These approaches are usually assumed to be related through some type of linear

model. For the linear model, the existing approaches borrow strength by using data from

related areas to estimate the interested parameters. Among those linear models, some rely

on the direct estimator while the corresponding estimator might become problematic since

the direct estimator is either not available or not reliable. Due to the small sample size in

some of the sub-populations, it is hard to find a good estimate of the precision of the indirect

estimators, as well as the model based estimators. In practice, the assumption of an explicit

linking model between variables may not be appropriate for some complicated situations.

In Chapter 3, we introduce a Bayesian approach to small area estimation. We illustrate

how to obtain the reliable estimates by applying the hierarchial Bayesian methods, as well

as the hierarchical Bayesian methods with a probit model for a binary dependent variable.

Given the existing information, we need to apply the Gibbs Sampling and Markov chain

Monte Carlo (MCMC) techniques to compute approximately the desired posterior expecta-

tions.

In Chapter 4, we employ the Louisiana Health Insurance Survey (LHIS) to estimate the

uninsured rates for both adults and children in each of the 64 parishes in Louisiana. The

Louisiana Health Insurance Survey starts from 2003, and consists of a series of surveys de-

signed to provide the most accurate and comprehensive assessment of Louisiana’s uninsured

populations every two years. Compared to existing traditional direct estimates, our methods

perform better in terms of posterior standard errors. Starting from a single survey year, we

also apply the hierarchial Bayesian method with probit model on cross-sectional data with

informative prior.
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Chapter 5 contains the simulation procedures and results. To examine the efficiency of

our hierarchical Bayesian method with probit model, we generate a data set with different

coefficients by employing individuals’ information over the past six survey years. Under

this circumstance, our estimates show that the flat informative prior impacts the estimates

heavily compared to the restricted informative prior. Chapter 6 completes the thesis by

summarizing the main findings of my work.
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Chapter 2. Small Area Estimation
2.1 History of Small Area Estimation

The history of small area statistics goes back to the eleventh century England. The use of

maps to understand the prevalence of a disease for small areas has been used for a long time

(Marshall, 1991). The research on small area estimation has received considerable attention

in recent years due to growing demand for reliable small area statistics by various federal

and local government agencies (such as U.S. Census Bureau, U.S. Bureau of Labor Statistics,

Statistics Canada). Over the years, many statisticians have introduced various programs to

meet this demand.

A small area usually refers to a subgroup of population from which samples are drawn.

The subgroup might be a geographical region such as county or a census division, or a group

obtained by cross-classification of demographic factors such as age, race or gender. The

importance of reliable small area statistics cannot be over-emphasized as these are needed

in regional planning and fund allocation in many federal and local government programs.

For example, in both developed and developing countries, governmental policies increasingly

demand income and poverty estimates for small areas. In fact, in the U.S. more than $130

billion in federal funds per year are allocated based on these estimates (Jiang and Lahiri,

2006). In addition, states utilize these small area estimates to divide federal funds and their

own funds to areas within the state. These funds cover a wide range of community necessities

and services including education, public health, and numerous others. Therefore, there is

a growing need to improve the methods by which there estimates are made to provide an

increased level of accuracy.

Small area estimation attempts to solve the problem of providing reliable estimates of

one or several variables of interest in areas where the information available on those variables
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is not sufficient to provide a valid estimate on its own. The information is usually collected

by conducting a survey in some or all areas. The survey may involve the collection of

information from the areas themselves or some of the individuals living in those areas, whose

data are later used to provide area-based estimates.

Most surveys provide very little information on a particular small area of interest since

surveys are generally designed to produce statistics for larger populations. Thus, direct

design-based estimators are unreliable since only a few observations are available from the

particular small area of interest. The main idea to improve on a design-based survey esti-

mator is to use relevant supplementary information, usually available from various adminis-

trative records, in conjunction with the sample survey data.

For the past few decades, sample surveys have taken the place of a complete census as

a more cost-effective means of obtaining information on wide-raging topics of interest at

frequent intervals over time. Sample survey data can be used to derive reliable estimators of

totals and means for large areas. However, the usual direct survey estimators for a small area,

based on data only from the sample units in the area, are likely to yield unacceptable large

standard errors due to the small size of the sample in the area. Sample sizes for small areas

are typically small because the overall sample size in a survey is usually determined to provide

specific accuracy at a much higher level of aggregation than that of small areas. The use of

survey data in developing reliable small area statistics with the census and administrative

data has received more attention recently.

Due to a growing demand for reliable small area statistics from both the public and

private sectors, the amount of attention being paid to small area estimation has increased

significantly. For example, there may exist geographical subgroups within a given population

that are far below the average in certain respects and need a definite upgrade. An identifi-

cation of such regions is needed, since one would like to have statistical data at the relevant

geographical levels. Small area statistics are also needed in the apportionment of government

funds, and in regional and city planning. Furthermore, there are demands from the private
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sector since policy makers for many businesses and industries rely on local socioeconomic

conditions. Therefore, the demand for small area statistics can arise from various sources.

2.2 Traditional Methods

Small area estimation methods can be divided broadly into “design-based” and “model-based”

methods. The “design-based” methods often use a model for the construction of the estima-

tors, while the bias, variance and other properties of the estimators are evaluated under the

randomization distribution. The randomization distribution of an estimator is the distribu-

tion over all possible samples that could be selected from the target population of interest

under the sampling design used to select the sample, with the population measurements

considered as fixed parameters. The “model-based” method normally uses either the fre-

quentist approach or the Bayesian methodology, and in some cases the combination of those

two approaches, which is known as “Empirical Bayes” in the literature. Different from the

“design-based” method, the “model-based” method is usually conditioned on the selected

sample, and the inference is with respect to the underlying model.

2.2.1 Classical Demographic Methods

In this section, I provide a brief review of classical demographic methods for local estimation

of population and other characteristics of interest in postcensal years. These methods use

current data from administrative registers in conjunction with related data from the last

census.

Purcell and Kish (1979) categorize the methods for local estimation of population and

other characteristics of interest in postcensal years under the general heading of Symptomatic

Accounting Techniques (SAT). Such techniques utilize current data from administrative reg-

isters in conjunction with related data from the latest census. The diverse registration data,
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such as the numbers of births and deaths, existing and new housing units and school enroll-

ments, whose variations are strongly related to changes in population totals.

The vital rate method uses only birth and death data. In a given year t, the annual

numbers of births bt, and deaths dt are determined for a local area. The crude birth rates

r1t and death rates r2t for that local area are estimated by:

r1t = r10(
R1t

R10

), r2t = r20(
R2t

R20

),

where r10 and r20 denote the crude birth and death rates for the local area in the latest census

year (t = 0) respectively. R1t, R2t and R10, R20 denote the crude birth and death rates in the

current and census years for a larger area, which contains the local area, respectively. The

population pt for the local area at year t is estimated by:

pt =
1

2
(
bt
r1t

+
dt
r2t

).

However, as pointed out by Marker (1983), the success of the vital rates method depends

heavily on the validity of the assumption that the ratios r1t/r10 and r2t/r20 for the local area

are approximately equal to the corresponding rates R1t/R10 and R2t/R20 for the larger area.

The component method is considered as an extension of the vital rates method. The sums

are computed independently, particularly by taking census values, adding births, subtracting

deaths, and adding an estimate of net migration. Let b0t, d0t and m0t denote the numbers

of births, deaths and net migration in the local area during time period [0, t] respectively.

Net migration m0t is the sum of immigration i0t minus emigration e0t. Hence, the current

population pt is expressed as:

pt = p0 + b0t − d0t +m0t,

where p0 is the baseline census population.
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The estimation methods mentioned above can be identified as special cases of multiple

linear regression (Marker, 1983). Regression symptomatic procedures also use multiple linear

regression for estimating local area population, utilizing symptomatic variables as indepen-

dent variables in the regression equation. Two such procedures are the ratio correlation and

the difference correlation methods (Rao, 2003).

2.2.2 Ratio Correlation and Difference Correlation Methods

Let 0, 1, and t(> 1) denote two consecutive census years and the current year, respectively.

Let pia and sija be the population size and the value of jth symptomatic variable (j = 1, ..., p)

for the ith local area (i = 1, ...,m) in the year a (= 0, 1, t). Let pia/Pa and sija/Sja be the

corresponding proportions, where Pa =
∑

i pia and Sja =
∑

i sija are the values for the larger

area.

The change in proportional values Ui of the independent variables between census years

0 and 1 for the ith area, are related to the corresponding changes in proportional values zij

of the symptomatic variables for the jth symptomatic variable and the ith area, through

multiple linear regression:

Ui = γ0 + γ1zi1 + ...+ γpzp1 + ui,

where ui are the random errors assumed to be uncorrelated with zero means and constant

variance σ2
u. In the ratio correlation method ratios are used to measure the changes:

Ui =
pi1/P1

pi0/P0

, zij =
sij1/Sj1
sij0/Sj0

.

The difference correlation method uses differences to measure the changes:

Ui = pi1/P1 − pi0/P0, zij = sij1/Sj1 − sij0/Sj0.
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2.2.3 Traditional Synthetic Estimation

Next, I provide a brief discussion of traditional synthetic estimation and related methods

under the design based framework. Gonzales (1973) describes synthetic estimates as follows:

“An unbiased estimate is obtained from a sample survey for a large area; when this estimate

is used to derive estimates for subareas under the assumption that the small areas have the

same characteristics as the large area, we identify these estimates as synthetic estimates.”

The synthetic estimation method is traditionally used for small area estimation, because of

its simplicity, applicability to general sampling designs and potential of increased accuracy

in estimation by borrowing information from similar small areas (Rao, 2003).

Suppose the population is partitioned into large domains g with reliable estimators Ŷ ′·g

of totals Y·g can be calculated from the survey data. The domain g is divided into several

small areas i, so that Y·g =
∑

i Yig, where Yig is the total for cell (i, g). Assume that auxiliary

information in the form of totals Xig is also available. A synthetic estimator of small area

total Yi =
∑

g Yig is given by:

Ŷ S
i =

∑
g

(Xig/X·g)Ŷ
′

·g,

where X·g =
∑

iXig (Ghangurde and Singh, 1977). The above estimator has the desirable

consistency property that
∑

i Ŷ
S
i equals the reliable direct estimator Ŷ ′ =

∑
g Ŷ

′
·g of the

population total Y .

The direct estimator Ŷ ′·g used in synthetic estimation is typically a ratio estimator of the

form

Ŷ
′

·g = [(
∑
l∈s·g

wlyl)/(
∑
l∈s·g

wlxl)]X·g = (Ŷ·g/X̂·g)X·g,

where s·g denotes the sample in the large domain g and wl is the sampling weight attached

to the lth element. Hence, the synthetic estimator reduces to Ŷ S
i =

∑
iXig(Ŷ·g/X̂·g).
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If Ŷ ′·g is approximately design unbiased, the design bias of Ŷ S
i is given by

E(Ŷ S
i )− Yi

.
=
∑
g

Xig(Y·g/X·g − Yig/Xig),

which is not zero unless Yig/Xig = Y·g/X·g for all g. In the special case where the auxil-

iary information Xig equals the population count Nig, the latter condition is equivalent to

assuming that the small area means Ȳig in each group g equal the overall group mean Ȳ·g.

In fact, synthetic estimators for some small areas can be heavily biased in the design based

framework.

A natural way to balance the potential bias of a synthetic estimator against the instability

of a direct estimator is to take a weighted average of those two. The composite estimators

of the small area totals Yi could be written as:

ŶiC = φiŶi1 + (1− φi)Ŷi2,

where Ŷi1 is a direct estimator, Ŷi2 is a synthetic estimator and φi is a suitable chosen weight

(0 ≤ φi ≤ 1).

The designed MSE of the composite estimator is given by

MSEp(ŶiC) = φ2
iMSEp(Ŷi1) + (1− φi)2MSEp(Ŷi2) + 2φi(1− φi)Ep(Ŷi1 − Yi)(Ŷi2 − Yi).

By minimizing the designed MSE with respect to φi, the optimal weight φi as follows:

φ∗i =
MSEp(Ŷi2)− Ep(Ŷi1 − Yi)(Ŷi2 − Yi)

MSEp(Ŷi1) + MSEp(Ŷi2)− 2Ep(Ŷi1 − Yi)(Ŷi2 − Yi)

≈ MSEp(Ŷi2)/[MSEp(Ŷi1) + MSEp(Ŷi2)],

assuming that the covariance term Ep(Ŷi1−Yi)(Ŷi2−Yi) is small relative to MSEp(Ŷi2). The

approximate optimal φ∗i is between 0 and 1. Hence, the approximate optimal weight φ∗i
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depends only on the ratio of the MSEs. Such that

φ∗i = 1/(1 + Fi),

where Fi = MSEp(Ŷi1)/MSEp(Ŷi2).

2.3 An Example in the Small Area Estimation

Consider the following example, in which there are four parishes P1, P2, P3 and P4. Without

loss of generality, assuming parish P1 has only a small sample available, when the other three

parishes have large samples available. Suppose that in the sample we observe the proportion

of uninsured rate for parish P1 is 0.1, while for parishes P2, P3 and P4 are 0.21, 0.22 and

0.24, respectively. Now, we focus on the estimation of the proportion of uninsured rate for

parish P1.

Due to the small sample size, although the direct estimate of uninsured for parish P1 is

an unbiased estimate, it may come with a large variance. An other option to estimate the

uninsured rate for parish P1 could be pooling the data for four parishes. The pooled estimate

is the total number of uninsured persons divided by the total number of individuals, who

are sampled in all four parishes. Compared with the former estimate, this estimate is much

more reliable, because of the large sample size. However, the latter estimate is biased since

it is based on the data from other parishes.

Therefore, it is desirable to obtain estimates which are intermediate between the direct

estimate and the pooled estimate.

For each parish, the individuals are sampled independently from a distribution particular

to that parish, and we also view the means of these parish distributions as coming from an

overall distribution on the parish means. In detail, let pi be the true population uninsured

rate for parish i, for i = 1, ..., N . Let p̂i be the estimate of pi, and let ni be the sample size
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for parish i. The model is defined as following:

Given pi, p̂i
ind∼ Binomial(pi, ni), i = 1, ..., N, (2.1a)

Givenµ, τ, probit(pi)
ind∼ TN(µ, τ 2), i = 1, ..., N, (2.1b)

where µ and τ are unknown parameters estimated from the data, and TN(a, b) denotes a

normal distribution truncated to lie in the region (a, b). Once µ and τ are estimated, we

could obtain the estimates of pi, for i = 1, ..., N .

The estimates from the above model are called “composite estimates.” In the example,

the estimate for parish P1 will be bigger than the direct estimate 0.10, since the composite

estimates apply the information from other parishes, while the other parishes have the higher

uninsured rates comparing to Parish 1. This effect is enhanced for the larger parishes P2, P3

and P4, and it would be enhanced even further if there were more of these large parishes. The

intuition behind this is that the information on parishes P2, P3, and P4 gives us information

on the overall distribution on parish means, which in turn gives us information on parish P1.

However, there are two aspects of weak points regarding the composite estimates, which are

accuracy and obtaining confidence intervals. In terms of accuracy, the composite estimate

borrows information from other parishes to come up with an estimate for parish P1, which

is more accurate. Compared with the direct estimate, the composite estimate has smaller

variance, but it is not unbiased. Second, it is difficult to obtain the confidence intervals for

the composite estimate, since the standard approach for obtaining confidence intervals from a

point estimate requires the point estimate to be unbiased, or at least nearly so. Some models

give accurate point estimates (such as the random effect model); however, it is difficult to

derive a formula for the confidence interval.
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2.4 Basic Small Area Estimation Models

Traditional methods of indirect estimation are based on implicit models that provide a link

to related small areas through supplementary data. In this section, we explore small area

models that make specific allowance for area variation.

We assume that unit-specific auxiliary data xij = (xij1, ..., xijp)
T are available for each

population element j in each small area i. It is often sufficient to assume that only population

means X̄i are known. The variable of interest yij is assumed to be related to xij through a

one-fold random effect model:

yij = xTijβ + vi + eij; i = 1, ..., Ni, j = 1, ...,m. (2.2)

The area-specific effects vi are assumed to be independent and identically distributed random

variables satisfying Em(vi) = 0, Vm(vi) = σ2
v(≥ 0), where Em denotes the model expectation

and Vm is the model variance. Hence, we denote this assumption as vi ∼ (0, σ2
v). In the model,

define eij = kij ẽij with known constants kij, and ẽij are iid random variables independent

of vi’s and Em(ẽij) = 0, Vm(ẽij) = σ2
e . In addition, normality of the vi’s and eij’s is often

assumed. The interested parameters are the small area means Ȳi or the totals Yi.

We assume that a sample si of size ni is taken from the Ni units in the i-th area (i =

1, ...,m) and that the sample values also obey the assumed model. The latter assumption

is satisfied under simple random sampling from each area or more generally for sampling

designs that use the auxiliary information xij in the selection of the sample si. Furthermore,

we write the model in the matrix form as

yPi = XP
i β + vi1

P
i + ePi , i = 1, ...,m (2.3)

where XP
i is Ni × p, 1Pi , ePi are Ni × 1 vectors and 1Pi = (1, ..., 1)T .
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We write the small area mean Ȳi as

Ȳi = riȳi + (1− ri)Ȳ ∗i (2.4)

where ri = ni/Ni and ȳi and Ȳ ∗i denoting the means of the sampled and non-sampled

elements, respectively. It follows from the above equation that estimating the small area

mean Ȳi is equivalent to estimating the realization of the random variable Ȳ ∗i given the

sample data yi and auxiliary data XP
i .

If the population size Ni is large, then we can take the small area means as

Ȳi = X̄T
i β + vi + Ēi (2.5)

where Ēi is the mean of the Ni errors eij (Ēi ≈ 0) and X̄i is the known mean of XP
i . It

follows from the equation that the estimation of Ȳi is equivalent to the estimation of a linear

combination of β and the realization of the random variable vi.

2.5 Empirical Best Linear Unbiased Prediction Estimates

Small area means or totals can be expressed as linear combinations of fixed and random ef-

fects. Best linear unbiased prediction (BLUP) estimators of such parameters can be obtained

in the classical frequentist framework, by appealing to general results on BLUP estimation.

BLUP estimators minimize the MSE among the class of linear unbiased estimator and do

not depend on normality of the random effects. But they depend on the variances and co-

variances of random effects, which can be estimated by the method of fitting constants or

method of moments. Using the estimated components in the BLUP estimator we could ob-

tain a two-stage estimators, which is referred to as the empirical BLUP (EBLUP) estimator

(Harville, 1991).
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Suppose that the sample data follow the general linear mixed model

y = Xβ + Zv + e. (2.6)

Here y is the n × 1 vector of sample observations, X and Z are known n × p and n × h

matrices of full rank, and v and e are independently distributed with mean 0 and covariance

matrices G and R depending on some variance parameters δ = (δ1, ..., δq)
T . We assume that

δ belongs to a specified subset of Euclidean q-space such that Var(y) = V (δ) = R+ZGZT is

nonsingular for all δ belonging to the subset, where Var(y) denotes the variance-covariance

matrix of y.

Next, we list a special case of the above general linear mixed model, which may cover

many small area models considered in the literature. For this model

y =col1≤i≤m(yi) = (yT1 , ..., y
T
m), X = col1≤i≤m(Xi),

Z =diag1≤i≤m(Zi), v = col1≤i≤m(vi), e = col1≤i≤m(ei),

where m is the number of small areas, Xi is ni × p, Zi is ni × hi and yi is an ni × 1 vector

with
∑
ni = n and

∑
hi = h. Furthermore,

R =diag1≤i≤m(Ri),

G =diag1≤i≤m(Gi).

Hence, V has a block diagonal structure

V = diag1≤i≤m(Vi) (2.7)

with

Vi = Ri + ZiGiZ
T
i . (2.8)
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Therefore, the model could be decomposed into m sub-models, such as

yi = Xiβ + Zivi + ei, i = 1, ...,m. (2.9)

We are interested in estimating linear combinations µi = 1Ti β +mT
i vi, i = 1, ...,m.

The BLUP estimator of µi is:

µ̃Hi = ti(δ, yi) = 1tiβ̃ +mT
i ṽi, (2.10)

where

ṽi = GiZ
T
i V
−1
i (yi −Xiβ̃),

and

β̃ = (
∑
i

XT
i V

−1
i Xi)

−1(
∑
i

XT
i V

−1
i yi).

The MSE of the BLUP estimator is:

MSE(µ̃Hi ) = g1i(δ) + g2i(δ) (2.11)

with

g1i(δ) = mT
i (Gi −GiZ

T
i V
−1
i ZiGi)mi,

and

g2i(δ) = dTi (
∑
i

XT
i V

−1
i Xi)

−1di,

where

dTi = 1Ti − bTi Xi,

with

bTi = mT
i GiZ

T
i V
−1
i .
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Replacing δ by an estimator of δ̂, we get the EBLUP estimator

µ̂Hi = ti(δ̂, yi) = 1Ti β̂ +mT
i v̂i. (2.12)

In the following part, we consider the basic unit level model and spell out EBLUP es-

timation, using the general results for the general linear mixed model with block diagonal

covariance structure.

Take the i-th small area mean as µi = X̄T
i β+vi, if the population sizeNi of the small areas

are sufficiently large. In this case, we use the sample part of the model, yij = xTijβ + vi + eij,

j = 1, ..., ni, i = 1, ...,m which could be written in matrix notation as

yi = Xiβ + vi1ni + ei, i = 1, ...,m (2.13)

to make inference on Ȳi, by appealing to the general results.

The model (2.13) is a special case of the general model (2.9) with block diagonal covari-

ance structure. We have,

yi = yi, Xi = Xi, Zi = 1ni ,

vi = vi, ei = ei, β = (β1, ..., βp)
T ,

where yi is the ni × 1 vector of sample observations yij from the ith area. Furthermore,

Gi = σ2
v , Ri = σ2

ediag1≤j≤ni(k
2
ij),

so that

Vi = Ri + σ2
v1ni1

T
ni
.
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Also, µi = X̄T
i β+ vi so that 1i = X̄i and mi = 1. The matrix Vi can be inverted explicitly as

V −1i =
1

σ2
e

[diagj(aij)−
γi
ai·
aia

T
i ] (2.14)

using the following standard result on matrix inversion:

(A+ uvT )−1 = A−1 = A−1uvTA−1/(1 + vTA−1u). (2.15)

Here we have

aij = k−2ij , ai· =
∑
i

aij, ai = (ai1, ..., aini)
T (2.16)

and

γi = σ2
v/(σ

2
v + σ2

e/ai·). (2.17)

Making the above substitution in the general formula (2.10) and noting that (σ2
v/σ

2
e)(1−γi) =

γi/ai. We get the BLUP estimator of µi as

µ̃H
i = X̄T

i β̃ + γi(ȳia − x̄Tiaβ̃), (2.18)

where ȳia and x̄ia are weighted means given by

ȳia = Σjaijyij/ai·, x̄ia = Σjaijxij/ai·, (2.19)

and β̃ is the BLUE of β:

β̃ =
(
ΣiX

T
i V

−1
i Xi

)−1(
ΣiX

T
i V

−1
i yi

)
, (2.20)

where

XT
i V

−1
i Xi = Ai = σ−2e

(
Σjaijxijx

T
ij − γiai·x̄iax̄Tia

)
, (2.21)
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and

XT
i V

−1
i yi = σ−2e

(
Σjaijxijyij − γiai·x̄iaȳia

)
. (2.22)

The BLUP estimator (2.18) can also be expressed as a weighted average of the “survey

regression” estimator ȳia + (X̄i − x̄ia)T β̃ and the regression synthetic estimator X̄T
i β̃:

µ̃H
i = γi[ȳia + (X̄i − x̄ia)β̃] + (1 + γi)X̄

T
i β̃. (2.23)

The weight γi (0 ≤ γi ≤ 1) measures the model variance σ2
ν , relative to the total variance

σ2
v + σ2

e/ai·. If the model variance is relatively small, then γi will be small and more weight

is attached to the synthetic component. Similarly, more weight is attached to the survey

regression estimator as ai· increases. Note that ai· is of order O(ni) and it reduces to ni if

kij = 1 for all (i, j). Also, in the latter case the survey regression estimator is approximately

design-unbiased for µi under simple random sampling, provided the total sample size n =

Σini is large.

In the case of general k′ijs, it is model-unbiased for µi conditional on the realized local

effect vi, provided β̃ is conditionally unbiased for β. On the other hand, the BLUP estimator

(2.23) is conditionally biased due to the presence of the synthetic component X̄T
i β̃. Under

simple random sampling and kij = 1 for all (i, j), the BLUP estimator is design-consistent

for Ȳi as ni increases because γi → 1.

The MSE of the BLUP estimator could be obtained either directly or from the general

result (2.11) by letting δ = (σ2
v , σ

2
e)
T . It is given by

MSE(µ̃H
i ) = E(µ̃H

i − µi)2 = g1i(σ
2
v , σ

2
e) + g2i(σ

2
v , σ

2
e), (2.24)

where

g1i(σ
2
v , σ

2
e) = ri(σ

2
e/ai·) (2.25)
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and

g2i(σ
2
v , σ

2
e) = (X̄i − γix̄ia)T

(
ΣiAi

)−1
(X̄i − γix̄ia) (2.26)

with Ai given by (2.21). The first term, g1i(σ2
v , σ

2
e), is of order O(1), whereas the second term,

g2i(σ
2
v , σ

2
e), is of order O(m−1) for large m, assuming the following regularity conditions:

(i) kij and ni are uniformly bounded.

(ii) Elements of Xi are uniformly bounded such that Ai is of order O(1).

The leading term of the MSE of the BLUP estimator is given by g1i(σ2
v , σ

2
e) = γi(σ

2
e/ai·).

Comparing this term to σ2
e/ai·, the leading term of the MSE of the sample regression es-

timator, it is clear that the BLUP estimator provides considerable gain in efficiency over

the sample regression estimator γi is small. Therefore, models with smaller γi, which is the

sample variance relative to the total variance, should be preferred, provided they provide an

adequate fit in terms of residual analysis and other model diagnostics (Rao, 2003).

The BLUE β̃ and its covariance matrix (ΣiX
T
i V

−1
i Xi)

−1 can be calculated using ordinary

least squares (OLS) by first transforming the model (2.13) with correlated errors uij = vi+eij

to a model with uncorrelated errors u∗ij. The transformed model is given by

k−1ij (yij − τiȳia) = k−1ij (xij − τix̄ia)Tβ + u∗ij, (2.27)

where τi = 1 − (1 − γi)1/2 and the u∗ij’s have mean zero and constant variance σ2
e (Stukel

and Rao, 1997). If kij = 1 for all (i, j), equation (2.27) reduces to the transformed model of

Fuller and Battese (1973). In practice, τi is estimated from the data.

The BLUP estimator (2.23) depends on the variance ratio σ2
v/σ

2
e , which is unknown in

practice. Replacing σ2
v and σ2

e by estimators σ̂2
v and σ̂2

e , we obtain and EBLUP estimator

µ̂H
i = γ̂i|[ȳia + (X̄i − x̄ia)T β̂] + (1− γ̂i)X̄T

i β̂, (2.28)

where γ̂i and β̂ are the values of γi and β̃ when (σ2
v , σ

2
e) is replaced by (σ̂2

v , σ̂
2
e).
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Chapter 3. Bayesian Analysis
3.1 Basic Theory

Bayesian econometrics is based on simple rules of probability, which is one of the chief

advantages of the Bayesian approach. Bayesian methods can be used in estimating the

parameters of a model, comparing different models, or obtaining predictions from a model.

Hence, the researchers can use Bayesian methods to learn about a phenomenon by using

data.

To motivate the simplicity of the Bayesian approach, let us consider two random variables,

A and B. The rules of probability imply:

p(A,B) = p(A|B)p(B)

where p(A,B) is the joint probability of A and B occurring, p(A|B) is the probability of

A occurring conditional on B having occurred, and p(B) is the marginal probability of

B. Alternatively, we can reverse the roles of A and B and get an expression for the joint

probability of A and B:

p(A,B) = p(B|A)p(A).

Equating these two expressions for p(A,B) and rearranging provides us with Bayes’s Rule,

which lies as the core theory in Bayesian Econometrics:

p(B|A) =
p(A|B)p(B)

p(A)
. (3.1)

In economics, we work with models which depend upon parameters. For the regression

model, the researchers are interested in estimating the coefficients. In this case, the coef-

ficients are the parameters under study. Let y be a vector of matrix of data and θ be a
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vector or matrix which contains the parameters for a model that seeks to explain y. We

are interested in learning about θ based on the data y. We could rewrite the core theory of

Bayesian as:

p(θ|y) =
p(y|θ)p(θ)
p(y)

, (3.2)

where p(θ) is the assumed prior distribution of the unknown parameters θ, p(y|θ) = l(θ|y)

is the likelihood function. Bayesians treat p(θ|y) as being of fundamental interest, which is

the posterior distribution given the prior of the unknown parameters p(θ) and the data y.

Intuitively, the Bayesian approach addresses the question, Given the data, what do we know

about θ? After establishing the p(θ|y) as the fundamental interest for the econometrician

interested in using data to learn about parameters in a model, we return to equation (3.2).

Since we are only interested in learning about θ, the term p(y) is essentially a constant with

respect to θ. We can write the posterior distribution as:

p(θ|y) ∝ p(y|θ)p(θ), (3.3)

where the symbol ∝ signifies that the posterior distribution is “proportional” to the likelihood

augmented with the prior.

3.2 Empirical Bayes Methods

In the previous chapter, we discuss the Empirical Best Linear Unbiased Prediction, which is

applicable to linear models. However, the linear mixed models are designed for continuous

variables, while they are not suitable for handling binary or count data. Empirical Bayes

and hierarchical Bayes methods are applicable in handling binary and count data, which will

be discussed in the following two sections.

Morris (1983) lists an excellent account of the Empirical Bayes approach, which could be

summarized as follows:
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Step 1. Obtain the posterior density, f(µ|y, λ) of the small area parameters of interest µ,

given the data y, using the conditional density f(y|µ, λ1) of y given µ and the density

f(y|µ, λ2) of µ, where λ = (λT1 , λ
T
2 )T denotes the vector of model parameters.

Step 2. Estimate the model parameters, λ, from the marginal density, f(y|λ).

Step 3. Use the estimated posterior density, f(µ|y, λ̂), for making inferences about µ, where λ̂

is an estimator of λ.

Assuming normality, the linear mixed model with block diagonal covariance structure

may be expressed as

yi|vi
ind∼ N(Xiβ + Zivi, Ri) (3.4)

vi
ind∼ N(0, Gi), i = 1, ...,m, (3.5)

where Gi and Ri depend on variance parameters δ. The Bayes estimator of realized µi =

1Ti β +mT
i vi is given by the conditional expectation of µi given yi, β and δ:

µ̂i
B(β, δ) = E(µi|yi, β, δ) = 1Ti β +mT

i v̂i
B (3.6)

where

v̂i
B = E(vi|yi, β, δ) = GiZ

T
i V
−1
i (yi −Xiβ)

and Vi = Ri + ZiGiZ
T
i . The results (3.6) follow from the posterior distribution of µi given

yi:

µi|yi, β, δ
ind∼ N(µ̂i

B, g1i(δ)), (3.7)

where g1i(δ) is given by equation (2.11).

The estimator µ̂B depends on the model parameters β and δ which are estimated from

the marginal distribution

yi
ind∼ N(Xiβ, Vi), i = 1, ...,m. (3.8)

23



Denoting the estimators as β̂ and δ̂, we obtain the empirical Bayes estimator of µi from µBi

for B and δ̂ for δ:

µ̂i
HB(β̂, δ̂) = 1Ti β̂ +mT

i v̂i
B(β̂, δ̂). (3.9)

Therefore, the EB estimator µ̂iEB is identical to the EBLUP estimator (2.12).

3.3 Hierarchical Bayes Methods

In the hierarchical Bayes (HB) approach, a subjective prior distribution f(λ) on the model

parameters λ is specified. Moreover, given the data y, the posterior distribution f(µ|y) of

the small area parameters of interest µ is obtained. Using Bayes theorem, the two-stage

model, f(y|µ, λ1) and f(y|µ, λ2), is combined with the subjective prior on λ = (λT1 , λ
T
2 )T

to arrive at the posterior f(µ|y) by using the Bayes theorem. Here inferences are based on

f(µ|y). In particular, a parameter of interest, say φ = h(µ), is estimated by its posterior

mean φ̂HB = E[h(µ)|y]. The posterior variance V [h(µ)|y] is used as a measure of precision

of the estimator, provided they are finite.

The Hierarchical Bayes approach is straightforward, and its inferences are “exact.” But

the inferences require the specification of a subjective prior f(λ) on the model parameters

λ. Priors on λ might be informative, when based on substantial prior information, such as

previous studies judged relevant to the current data set y.

On the other hand, diffuse (or noninformative) priors are designed to reflect lack of infor-

mation about λ. One may take different choices for a diffuse prior, and some diffuse improper

priors could lead to improper posteriors. Moreover, under the frequentist framework, it is

desirable to select a diffuse prior that leads to well-calibrated inferences for the sake of va-

lidity. In practice, both the frequentist bias E(φ̂HB − φ) of the HB estimator φ̂HB and the

relative frequentist bias of the posterior variance as an estimator of MSE (φ̂HB) should be

small (Browne and Draper, 2006).

Datta, Fay and Ghosh (1991) applied the hierarchical Bayes approach to the estimation
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of small area means Ȳ ’s, under general mixed linear models. In the HB approach, a prior

distribution on the model parameters is specified, which is equivalent to assuming β has

a uniform distribution. Then, the posterior distribution of the parameters of interest is

obtained, and the interested parameter is estimated by its posterior mean and its precision

is measured by its posterior variance.

Applying Bayes theorem, we have

f(µ, λ|y) =
f(y, µ|λ)f(λ)

f1(y)
, (3.10)

where f1(y) is the marginal density of y:

f1(y) =

∫
f(y, µ|λ)f(λ)dµdλ. (3.11)

The desired posterior density f(µ|y) is obtained from (3.10) as

f(µ|y) =

∫
f(µ, λ|y)dλ (3.12)

=

∫
f(µ|y, λ)f(λ|y)dλ. (3.13)

It follows from (3.13) that f(µ|y) is a mixture of conditional densities f(µ|y, λ). Here

f(µ|y, λ) is used for EB inferences.

It is clear from (3.10) and (3.12) that the evaluation of f(µ|y) and associated posterior

quantities, such as E[h(µ)|y], involves multi-dimensional integrations. However, it is possible

to simply analytically perform integration with respect to some of the components of µ and

λ. If the reduced problem involves only one- or two-dimensional integration, it can use direct

numerical integration to calculate the desired posterior quantities. For complex problems,

Markov Chain Monte Carlo (MCMC) methods are broadly used to evaluate high dimen-

sional integrals, which will be discussed in the following section. The required regularity

conditions will be also be discussed later. The MCMC methods have the desired properties
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that overcome the computational difficulties to a large extent, while these methods generate

samples from the posterior distribution.

3.4 Markov Chain Monte Carlo Methods

Obtaining the posterior distribution function is difficult and computationally intensive, re-

quiring the calculation of high dimensional integrals or sampling from unknown distribution.

Before the 1990s, the evaluation of the posterior distribution represented the major issue

in the empirical application of Bayesian analysis. The development and implementation of

Markov Chain Monte Carlo (MCMC) methods have overcome the computational difficulties

to a large extent.

3.4.1 Markov Chain

Let η = (µT , λT )T be the vector of small area parameters µ and model parameters λ. It is in

general not feasible to draw independent samples from the joint posterior f(η|y) because of

the intractable denominator f1(y). MCMC methods avoid this difficulty by constructing a

Markov chain {η(k), k = 0, 1, 2, · · · } such that the distribution of η(k) converges to a unique

stationary distribution equal to f(η|y), denoted by π(η). Therefore, after a sufficiently large

“burn-in,” say d, we can regard η(d+1), · · · , η(d+D) as D dependent samples from the target

distribution f(η|y), regardless of the starting point η(0).

To construct a Markov Chain, we need to specify a one-step transition probability

P (η(k+1)|η(k)) which depends only on the current “state” η(k) of the chain, which means

that the conditional distribution of η(k+1) given η(0), · · · η(k) does not depend on the previous

{η(0), · · · η(k−1)}. Meanwhile, the transition kernel must satisfy the stationarity condition:

∫
π(η(k))P (η(k+1)|η(k))dη(k) = π(η(k+1)). (3.14)
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Equation (3.14) shows that if η(k) is from π(·), then η(k+1) will also be from π(·). Stationarity

is satisfied if the chain is “reversible”:

π(η(k))P (η(k+1)|η(k)) = π(η(k+1))P (η(k)|η(k+1)). (3.15)

It follows from (3.15) that the stationary distribution of the chain generated by P (·|·) is π(·).

It is also necessary to make sure that P (k)(η(k)|η(0)), which denotes the distribution of η(k)

given η(0), converges to π(η(k)) regardless of η(0). Thus the chain needs to be “irreducible” and

“aperiodic” (Rao, 2003). Irreducibility means that from all starting points η(0) the chain will

eventually reach any nonempty set in the state space with positive probability. Aperiodicity

means that the chain is not permitted to oscillate between different sets in a periodic manner.

For an irreducible and aperiodic chain, the following theorem holds:

h̄D =
1

D

d+D∑
k=d+1

h(η(k))→p E[h(η)|y], (3.16)

as D → ∞, where →p denotes convergence in probability. Therefore, for sufficiently large

D, we are able to obtain an estimator h̄D, of E[h(η)|y] with adequate precision.

3.4.2 Gibbs Sampler

The Gibbs Sampler, also called alternating conditional sampling, is another core of the

Markov Chain algorithm. In order to generate the samples η(k), following Rao (2003), we par-

tition η into suitable blocks η1, · · · , ηr. Some of the blocks may contain only single elements,

while others contain more than one element. For instance, consider the basic unit level model

with µ = (θ1, · · · , θm)T = θ and λ = (βT , σ2
ν)
T . In this case η may be partitioned as η1 = β,

η2 = θ1,· · · ,ηm+1 = θm,ηm+2 = σ2
ν , hence r = m + 2. The following set of Gibbs conditional

distributions is needed: f(η1|η2, · · · , ηr, y), f(η2|η1, η3,· · · , ηr, y),· · · , f(ηr|η1,· · · , ηr−1, y). The

Gibbs sampler uses these conditional distributions to construct a transition kernel, P (·|·),
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such that the stationary distribution of the resulting Markov Chain is π(η) = f(η|y). This

result follows from the fact that f(η|y) is uniquely determined by the set of Gibbs condi-

tionals.

For the standard conditional distribution, such as normal inverse-gamma, samples can

be generated directly from the conditional distribution. Otherwise, Metropolis-Hastings (M-

H) rejection sampling, can be used to generate samples from the conditional distribution.

Therefore, the Gibbs sampler represents a special case of M-H algorithm.

The Gibbs sampling algorithm involves the following steps:

Step 0. Choose a starting point η(0) with components η(0)1 , · · · , η(0)r ; set k = 0. For example,

we could use REML or moment estimates of model parameters λ and EB estimates of

µ as starting values.

Step 1. Generate η(k+1) = (η
(k+1)
1 , · · · , η(k+1)

r ) as follows:

draw η
(k+1)
1 from f(η1|η(k)2 , · · · , η(k)r , y);

draw η
(k+1)
2 from f(η2|η(k+1)

1 , η
(k)
3 , · · · , η(k)r , y);

· · · ;

draw η
(k+1)
r from f(ηr|η(k+1)

1 , · · · , η(k+1)
r−1 , y).

Step 2. Set k = k + 1 and go to Step 1.

Steps 1 and 2 constitute one cycle for each k. The sequence {η(k)} generated by the Gibbs

sampler is a Markov chain with stationary distribution π(η) = f(η|y) (Gelfand and Smith,

1990).

3.4.3 Choice of a Prior

Diffuse priors f(λ), reflecting a lack of information about the model parameters λ, are

commonly used in the HB approach to small area estimation. For informative data, the
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posterior distribution is robust over a wide range of priors. On the other hand, for non-

informative data, the characteristics of the prior used, such as location (mean) and precision

(the inverse of the variance), become especially meaningful for the posterior distribution.

For instance, if the diffuse is improper, such that
∫
f(λ)dλ = ∞, then the Gibbs sampler

could lead to seemingly reasonable inferences about a nonexistent posterior f(µ, λ|y). As

pointed out by Natarajan and McCulloch (1995), Hobert and Casella (1996), this happens

when the posterior is improper and yet all the Gibbs conditionals are proper.

Consider the simple nested error model without covariates:

yij = µ+ vi + eij,

where vi
iid∼ N(0, σ2

v) and eij
iid∼ N(0, σ2

e). Hill (1965) points out that, if we choose an

improper prior of the form f(µ, σ2
v , σ

2
e) = f(µ)f(σ2

v)f(σ2
e) with f(µ) ∝ 1, f(σ2

v) ∝ σ−2v and

f(σ2
e) ∝ σ−2e , then the joint posterior of µ, v = (v1, · · · , vm)T , σ2

v and σ2
e is improper. On

the other hand, all the Gibbs conditionals are proper for this choice of prior. Particularly,

σ−2v conditional on all others follows a gamma distribution, while σ−2e conditional on all

others also follows a gamma distribution. Meanwhile, µ conditional on others follows normal

distributions, as well as vi.

Following Gilks et al. (1995), we use diffuse proper priors of the form µ N(0, σ2
0),

σ−2v G(a0, a0) and σ−2e G(a0, a0) as default priors, where σ2
0 is chosen very large (say 10,000)

and a0 very small (say 0.001) to reflect lack of prior information on µ, σ2
v and σ2

e
1. The pos-

terior resulting from the above prior remains proper as σ2
0 → ∞, but it becomes improper

as a0 → 0. Therefore, the posterior is nearly improper for very small a0, and this feature

can affect the convergence of the Gibbs sampler (Rao, 2003).
1Note that G(a, b) denotes a gamma distribution with shape parameter a and scale parameter b and that

the variance of G(a0, a0) is 1/a0 which becomes very large as a0 → 0.

29



3.5 Basic Unit Level Model

In this section, following Rao’s (2003) study, we apply the HB approach to the basic unit

level model (2.13) with equal error variances (that is, kij = 1), assuming a prior distribution

on the model parameters (β, σ2
v , σ

2
e).

We first consider the case of known σ2
ν and σ2

e , and assume a “flat” prior on β: f(β) ∝ 1.

We rewrite (2.13) as a HB model:

(i) yij|β, vi, σ2
e
ind∼ N(xTijβ + vi, σ

2
e), j = 1, . . . , ni; i = 1, . . . ,m

(ii) vi|σ2
v
iid∼ N(0, σ2

v), i = 1, . . . ,m

(iii) f(β) ∝ 1.

We then extend the results to the case of unknown σ2
v and σ2

e in the above HB model, with

replacing the condition (iii) by

f(β, σ2
v , σ

2
e) = f(β)f(σ2

v)f(σ2
e) ∝ f(σ2

v)f(σ2
e). (3.17)

where f(σ2
v) and f(σ2

e) are the priors on σ2
v and σ2

e . For simplicity, we take µi = X̄T
i β + vi

as the i-th small area mean, assuming the population size, Ni, is large.

3.5.1 Known σ2
v and σ2

e

Ideally, assume σ2
v and σ2

e are known, and a flat prior of β, the HB and BLUP approaches

under normality leading to identical point estimates and measures of variability. This result

is valid for a general linear mixed model with known variance parameters. Hence, the HB

estimator of µi is given by:

µ̃HB
i (σ2

v , σ
2
e) = E(µi|y, σ2

v , σ
2
e) = µ̃H

i , (3.18)
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where y is the vector of sample observations and µ̃H
i is the BLUP estimator given by (2.18).

Similarly, the posterior variance of µi is

V (µi|σ2
v , σ

2
e , y) = M1i(σ

2
v , σ

2
e) = MSE(µ̃Hi ), (3.19)

where M1i(σ
2
v , σ

2
e) is given by (2.24).

3.5.2 Unknown σ2
v and σ2

e

Practically, σ2
v and σ2

e are unknown and it is necessary to take account of the uncertainty

about σ2
v and σ2

e by assuming a prior on σ2
v and σ2

e . The HB model is given by (i) and (ii) and

the equation given by (3.17). We obtain the HB estimator of µi and the posterior variance

of µi as

µ̂HB
i = E(µi|y) = Eσ2

v ,σ
2
e
[µ̃HB
i (σ2

v , σ
2
e)] (3.20)

and

V (µi|y) = Eσ2
v ,σ

2
e
[M1i(σ

2
v , σ

2
e)] + Vσ2

v ,σ
2
e
[µ̃HB
i (σ2

v , σ
2
e)], (3.21)

where Eσ2
v ,σ

2
e
and Vσ2

v ,σ
2
e
, denote the expectation and variance with respect to the posterior

distribution f(σ2
v , σ

2
e |y), respectively.

For the basic unit level model, the posterior f(σ2
v , σ

2
e |y) could be obtained from the

restricted likelihood function LR(σ2
v , σ

2
e) as

f(σ2
v , σ

2
e |y) ∝ LR(σ2

v , σ
2
e)f(σ2

v)f(σ2
e). (3.22)

Under flat priors f(σ2
v) ∝ 1 and f(σ2

e) ∝ 1, the posterior f(σ2
v , σ

2
e |y) is proper and pro-

portional to LR(σ2
v , σ

2
e). Evaluation of the posterior mean (3.20) and the posterior variance

(3.21), using f(σ2
v , σ

2
e |y) ∝ LR(σ2

v , σ
2
e), involves two-dimensional integration.

If we assume a diffuse gamma prior, G(ae, be) with ae ≥ 0 and be > 0, then it is possible
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to integrate out σ2
e with respect to f(σ2

v , σ
2
e |y), where τv = σ2

v/σ
2
e . The evaluation of (3.20)

and (3.21) is now reduced to single-dimensional integration with respect to the posterior of

τv, f(τv|y). Datta and Ghosh (1991) expressed f(τv) as f(τv|y) ∝ h(τv) and obtained an

explicit expression for h(τv), assuming a gamma prior on τ−1v : G(av, bv) with ae ≥ 0 and

be ≥ 0; note that av is the shape parameter and bv is the scale parameter.

Next we apply Gibbs sampling to the basic unit level model, assuming the prior (3.17)

on β, σ2
v , σ

2
e with σ−2v ∼ G(av, bv), av ≥ 0, bv > 0 and σ−2e ∼ G(ae, be), ae ≥ 0, be > 0.

The precision parameter of each of the variance components is assumed to follow an

inverse gamma distribution with different parameters, σ2
e ∼ IG(λ1, τ1) and σ2

v ∼ IG(λ2, τ2).

The joint posterior distribution function is as follows,

f(β, σ2
v , σ

2
e |yij, 1 ≤ j ≤ n, 1 ≤ i ≤ m) =

m∏
i=1

[

ni∏
j=1

(
1

σ2
e

)
1
2 e
− 1

2σ2e
(yij−xTijβ−vi)2(

1

σ2
v

)
1
2 e
− 1

2σ2v
v2i ]

×[

p∏
l=1

(
1

h2l
)
1
2 e
− 1

2h2
l

β2
l
](

1

σ2
e

)λ1+1e
− τ1
σ2e (

1

σ2
v

)λ2+1e
− τ2
σ2v (3.23)

Solving for the marginal posterior distribution from equation (3.23) gives the following

conditions.

β|yij, vi, σ2
v , σ

2
e ∼ Np(Λσ

−2
e

m∑
i=1

ni∑
j=1

(yij − vi)xij,Λ) (3.24)

vi|yij, β, σ2
v , σ

2
e ∼ N((ni +

σ2
e

σ2
v

)−1
ni∑
j=1

(yij − xTijβ), (
ni
σ2
e

+
1

σ2
v

)−1) (3.25)

σ2
e |yij, β, vi, σ2

v ∼ G(λ1 +
1

2

m∑
i=1

ni, τ1 +
1

2

m∑
i=1

ni∑
j=1

(yij − xTijβ − vi)2) (3.26)

σ2
v |yij, β, vi, σ2

e ∼ G(λ2 +
m

2
, τ2 +

1

2

m∑
i=1

v2i ) (3.27)

where Λ = (σ−2e
∑m

i=1

∑ni
j=1 xijx

T
ij +H−1)−1.
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In the first stage of our estimation, we use equation (3.24) to (3.27) in Gibbs sampling

(Gelfard and Smith, 1990) to simulate the marginal posterior distributions of σ2
e , σ

2
u. In

particular, we set λ1 = 1, τ1 = 0.002, λ2 = 1, and τ2 = 0.002.

The Gibbs sampling is based on these conditions:

(1) Set y∗[0] = y and apply the starting values for σ2[0]
e and σ2[0]

v ;

(2) Draw β[1]|y∗[0], σ2[0]
e , σ

2[0]
v from equation (3.24);

(3) Using the drawn β[1] and the initial values for σ2[0]
e and σ2[0]

v , draw and update v[1]i with

equation (3.25);

(4) Draw and update σ2[1]
e conditional on initial σ2[0]

v and the updated values of β[1], v
[1]
i ;

(5) Draw and update σ2[1]
v given new values of β[1], v

[1]
i and σ2[1]

e .

The process is repeated 25,000 times to product 25,000 draws for each conditional marginal

posterior, and the first 5,000 draws were burnt.

Next, the Markov Chain Monte Carlo (MCMC) methods are used to generate samples

from the posterior distribution, and then used in the simulated samples to approximate the

desired posterior quantities.

Denote the MCMC samples from a single large run by {β(k), v(k), σ
2(k)
v , σ

2(k)
e , k = d +

1, . . . , d + D}. The marginal MCMC samples2 {β(k), v(k)} can be used directly to estimate

the posterior mean of µi as

µ̂HB
i =

1

D

d+D∑
k=d+1

µ
(k)
i , (3.28)

where µ(k)
i = X̄T

i β
(k) + v

(k)
i . Similarly, the posterior variance of µiis estimated as

V (µi|y) =
1

D − 1

d+D∑
k=d+1

(µ
(k)
i − µ̂HB

i )2. (3.29)

2The sequence {β(k), v(k)} generated by the Gibbs sampling is a Markov Chain with stationary distribu-
tion, see Gelfand and Smith (1990), Rao (2003).
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Alternatively, Rao-Blackwell estimators of the posterior mean and the posterior variance of

µi may be used to obtain:

µHB
i =

1

D

d+D∑
k=d+1

µ̃HB
i (σ2(k)

v , σ2(k)
e ) = µ̃

(HB)
i (·, ·), (3.30)

and

V (µi|y) =
1

D

d+D∑
k=d+1

[g1i(σ
2(k)
v , σ2(k)

e ) + g2i(σ
2(k)
v , σ2(k)

e )]

+
1

D − 1

d+D∑
k=d+1

[µ̃HB
i (σ2(k)

v , σ2(k)
e )− µ̃HB

i (·, ·)]2. (3.31)

3.6 Hierarchical Bayes Method with Probit Model

The probit model is commonly used when the dependent variable is a qualitative one in-

dicating an outcome in one of two categories. It is usually motivated as arising when an

individual is making a choice (Koop, 2003).

The individual i gets some utility from alternative 0 and another level of utility from

alternative 1. The utility depends on a variety of individual specific characteristics, hence,

the key result is the difference between the individuals utility from alternative 1 and utility

from alternative 0.

Let y∗ = (y∗1, ..., y
∗
N)T denote the dependent variable. The model is written as

y∗i = xTi β + ei (3.32)

where xi = (1, xi2, ..., xik)
T . The difference in utility y∗i depends on observed individual

characteristics xi, a vector of unobserved parameters β, and the random error component ei.

However, y∗i cannot be observed. Instead, we observe the individual’s choice yi, set equal to

one if alternative 1 is chosen and 0 if alternative 0 is picked.
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For the probit model, the relationship between y and y∗ takes the form

yi =


1 if y∗i > 0

0 if y∗i ≤ 0

. (3.33)

Choosing a distribution for the error ei completes the basic model.

To complete the statistical model, specify the prior of β as β ∼ N(βp,Σp), where βp is a

k×1 vector and Σp is the k×k covariance matrix. Let Hp = Σ−1p denote the prior precision.

The conditional density of β given y∗ is:

β|y∗, h ∼ N(β̄, H̄−1) (3.34)

where H̄ = Hp + h(x′x), β̄ = H̄−1(Hpβp + hx′y∗) = H̄−1(Hpβp + h(x′x)β̂), and β̂ =

(x′x)−1x′y∗.

The conditional density for y∗ is a truncated normal where the truncation depends on y:

y∗i |yi, β, h ∼


TN(0,∞)(x

′
iβ, h

−1) if yi = 1

TN(−∞,0)(x
′
iβ, h

−1) if yi = 0

(3.35)

where TN(a,b) denotes a normal distribution truncated to lie in the region (a, b).

In addition to parameter estimates, it is useful to present information about the choice

probabilities. These can be derived from the posterior of the parameters by noting that, for

any particular values of the parameters,

Pr(yi = 1|β, h) = Pr(y∗ > 0|β, h)

= Pr(x′iβ + ei > 0|β, h)

= Pr(
√
hei > −

√
hx′iβ|β, h). (3.36)
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Since the errors are assumed to be normally distributed, the last term in (3.36) is simply one

minus the cumulative distribution function of the standard normal (i.e.
√
hei is N(0, 1)). If

we define Φ(a) as the cumulative distribution function of the standard normal distribution,

then the probability of choosing alternative 1 is 1− Φ(−
√
hx′iβ).

Furthermore, equation (3.36) illustrates an identification problem which is said to occur

if multiple values for the model parameters give rise to the same value for the likelihood

function. In the probit model, there are an infinite number of values for β and h which

yields exactly the same model. The standard solution is to set h = 1.

After the adjustment of the latent variable, we apply the Gibbs sampling and MCMC

method described in section 3.4.
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Chapter 4. Application: Insurance Cover-
age for Louisiana Parishes

4.1 Introduction

The issue of providing insurance coverage to children and adults has long been a topic of

interest to U.S. policymakers. Estimates of the number of uninsured persons will be a key

ingredient in measuring the effectiveness of the Affordable Care Act (ACA), particularly if

some states deviate from others with regard to the some parts of the legislation such as the

expansion of Medicaid eligibility1.

The Congressional Budget Office (2011) has projected that the implementation of health

insurance reforms in the Affordable Care Act (ACA) will reduce the number of uninsured

Americans by 33 million in 2020, from 56 to 23 million people. Although this still falls

short of universal coverage, the number of uninsured people will be reduced by more than

half. Most of the coverage gains will come from expending Medicaid to everyone below

133% of the poverty line (138% with income disregards) and from creating health insurance

exchanges. Principally, knowing about who will remain uninsured will assist safety net

providers and programs, organizations, and support systems to determine further needs for

uninsured access and also the optimal structures for achieving those needs. Beginning in

2014, most Americans will be required to have health insurance coverage meeting certain

minimum requirements and will be subject to financial penalties if they do not comply. For

those people who cannot afford insurance, or some other specialized circumstances, such as

people who are Native Americans, prisoners or have religious objections, exemptions will be

granted. Medicaid eligibility will expand greatly for adults in many states; however, only
1The Supreme Court ruling on the Affordable Care Act allowed states to opt out of the law’s Medicaid

expansion. Until January 27, 2015, there were 28 states that accepted Medicaid expansion; however, the
state of Louisiana is not expanding Medicaid at this time.
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small or zero increases will be seen for children. Due to the Children’s Health Insurance

Program (CHIP), children’s eligibility levels for public coverage are already much higher

than for adults (Buettgens et al., 2011).

In this section, we estimate the uninsured rates for children and adults by using three

methodologies in small area estimation as mentioned in the previous sections. The purpose

of small area estimation is obtaining reliable estimates from subpopulations (such as district,

county, state, sex, race, sex-race combination, etc.) when the data has few observations in

some of the subpopulation (Datta and Ghosh, 1991; Datta et al., 1996, 2000, 2002; Rao

2003). Starting from direct estimates obtained from survey data, we describe a range of

Bayesian hierarchical models that incorporate different types of random effects and show

that these give improved estimates. Although implementation of complex Bayesian models

requires computationally intensive Markov Chain Monte Carlo simulation algorithms (Gilks

et al., 1995), there are still a number of potential benefits of the Bayesian approach for

small area estimation. The Bayesian approach can handle different types of target variables

(such as continuous, dichotomous, categorical), different random effects structures (such as

independent, spatially correlated), areas with no direct survey information, models to smooth

the survey sample variance estimates and so on (Gomez-Rubio et al., 2008).

4.2 Data

The Louisiana Health Insurance Survey (LHIS), which starts from 2003, is a series of surveys

designed to provide the most accurate and comprehensive assessment of Louisiana’s unin-

sured populations every two years. Each round of the LHIS has been based on more than

10,000 Louisiana households (roughly 27,000 Louisiana residents), which allows researchers

to estimate the uninsured populations for each parish2, the Department of Health and Hos-

pitals’ nine regions, and also for specific subpopulations (e.g. children under 200% of federal
2The state of Louisiana is divided into 64 parishes (French: paroisses) in the same way the 48 other states

of the United States are divided into counties.
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poverty). Each round of the LHIS has also incorporated methodological improvements to

ensure that the survey results reflect the best understanding of how to estimate uninsured

populations. For example, the 2007 LHIS incorporated an innovative methodological tool to

adjust uninsured estimates for the Medicaid undercount at the individual level. The 2009

LHIS incorporated uninsured estimates from a cell phone sample to improve coverage of cell-

only households. This improvement helps researchers to estimate the uninsured rate more

accurately, since national surveys estimate there are 31.6% households that are cell-only. The

prior research also indicates that cell-only households are more likely to be younger, poorer,

ethnic minorities, and uninsured. Therefore, the 2011 LHIS expands coverage of cell-only

households by increasing the cell phone sample from 500 to 2,000 completed interviews,

which is an improvement.

The LHIS survey gauges uninsured status through a household-level approach in which

individual respondents are asked to report on the health insurance status of each member of

the household. To assure reporting is as accurate as possible, initial respondents are screened

to make sure they are the most knowledgeable person in the household about family health

care and health insurance. Once the most knowledgeable person in the household has been

selected, respondents are asked to identify all members of the household covered by particular

types of insurance including employer sponsored insurance, privately purchased insurance,

Medicaid or LaCHIP, Medicare, or military insurance. Respondents are asked to verify

uninsured status for any individual in the household not identified as having some form of

insurance coverage. Only household members who are identified as not having any form of

insurance coverage and who are verified as uninsured are included in the final estimate of the

uninsured population. Moreover, the probability of being selected into the final sample was

dependent on the parish in which the respondent resided. To account for this, the results

were weighted to adjust for sampling differences across parishes. Specifically, the sampling

weight was constructed as the parish population according to the 2010 Census divided by the

number of individuals sampled in the parish. Because differences in response rates among
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different segments of the population may also result in biased estimates of uninsured rates,

the data were weighted to match demographic characteristics as estimated by the most

recently available U.S. census data.

Figure 4.1: Uninsured Children 2003 - 2011

Figure 4.1 shows the percent of uninsured children in the state of Louisiana over the past

10 years. Both the uninsured children and uninsured medicaid eligible children have been

declining over the years. The uninsured rates for children who are eligible for Medicaid are

slightly higher than over all uninsured rates in each survey year except year 2007. From 2003-

2011, the percent of uninsured children declined from 11.1% to 3.5% translating into 101,162

fewer uninsured children in Louisiana3. There is a similar decline pattern in the percent

of uninsured Medicaid eligible children from 12.9% in 2003 to 3.8% in 2011. Recently, the

percent of uninsured children decreased slightly to 4.4%, 5,542 fewer children uninsured than

in 2011. For children who are eligible for Medicaid, the uninsured rate increased to 4.5%, an

overall increase of 6,592 children since 2011.

Figure 4.2 is the map for the Department of Health & Hospitals (DHH) regions in

Louisiana. The state of Louisiana is divided into 9 DHH regions geographically. In terms of
3The calculation is based on the estimates of population, which is provided by United States Census

Bureau. Source: Louisiana’s Uninsured Population: A Report from the 2013 Louisiana Health Insurance
Survey (Barnes et al., 2013).
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Figure 4.2: Department of Health & Hospitals (DHH) regions in Louisiana

median household income, the wealth levels are similar within each regions. For instance,

East Carroll Parish in the Northeast Region (Region 8) has the lowest median household in-

come, roughly $25,321, while the median household income is $44,874 over the entire state4.

On the other hand, St. Tammany Parish in the Northshore Region (Region 9) has the high-

est median household income at $60,799. Meanwhile, East Baton Rouge Parish, which is

the location of the state capital, has a median household income as $48,506.

Figure 4.3 lists the regional variation in uninsured rates for children over the past five

years. Comparing survey year 2009 and 2011, the uninsured rates went down in every

region with the notable exception of the Northshore region (Region 9), a region that already

had the lowest uninsured rate in the state, where the shift in uninsured rates was barely

perceptible. This slightly increasing uninsured rate may lead to a small decrease in our

estimate of the number of uninsured children. In other regions, uninsured rates declined
4Source: United States Census Bureau, the median household income from 2009 to 2013.
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Figure 4.3: Regional Variation in Uninsured Rates for Children

over years, especially in the Central region (Region 6) where the uninsured rate for children

dropped from 6.1% in 2009 to 3.1% in 2011. The smallest decline occurred in the Baton

Rouge region (Region 2) where the uninsured rates dropped from 4.5% in 2009 to 3.1% in

2011. After that, the uninsured rates for children increased to the level of 2009. Overall, in

the past five years, the uninsured rates have slightly decreased. The statewide uninsured rate

decreased about 0.5%. In terms of uninsured population, the number of uninsured children

has decreased by 5,924. As we mentioned earlier, Children’s Health Insurance Program

(CHIP) provides health insurance to families with incomes that are modest but too high to

qualify for Medicaid. Due to the expansion of the CHIP and Medicaid, the uninsured rate

for children has dramatically decreased since 2003, and stays fairly stable after 2009.

Figure 4.4 shows the percent of uninsured non-elderly adults (19-64) in Louisiana over the

past decade. Different from children, the number of uninsured adults has no clear decreasing

pattern. In the recent surveys, the health insurance coverage for adults is slightly decreased

by 1.6% (in particularly, the uninsured adults decrease from 633,943 to 622,033 since 2011).

The trend among uninsured adults under 200% of federal poverty is quite similar. The

proportion of uninsured adults under 200% of the federal poverty level is around one third
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Figure 4.4: Uninsured non-elderly adults 2003 - 2011

over years. Because adults do not have the same social safety net as children, their uninsured

rates show a much stronger relationship to economic conditions in Louisiana, which include

a lower unemployment rate in 2013 than in 2011.

The health insurance status is highly correlated with personal characteristics, such as

race, income, poverty, education, age, etc. For instance, the health insurance coverage

is relatively low for African American, poorer, less educated and younger adults. In the

following, we will present the differences in health insurance coverage status across gender,

race, income, poverty, age, and education. First of all, there are only minor differences in

insurance status depending on gender, while male adults and female children are slightly more

likely to be uninsured. However, the gender-based differences in health insurance coverage

are small for both adults and children. Next, we discuss the different behaviors of health

insurance coverage by race. About 32% of African-American non-elderly adults are uninsured

compared to 17.7% of Caucasians. Notably, uninsured rates for African-Americans have

increased more dramatically than for Caucasians. In 2013, 29.6% of African-Americans were

uninsured compared to 16.8% of Caucasians. The differences are small among children: 4.0%

of African American children and 3.0% of Caucasian children are uninsured. Uninsured rates

for African American and Caucasian children have steadily declined since 2005 when 7.9%
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of African American children and 6.4% of Caucasian children were reported as uninsured.

In 2013, 5.2% of African American and 4.0% of Caucasian children had no health insurance

coverage. The uninsured patterns are similar for children when we consider the different

level of income and poverty. It turns out that the level of income and poverty do not affect

children as much as adults. As we mentioned earlier, this may be caused by the availability

of Medicaid/LaCHIP programs.

For adults, income is also an important predictor of uninsured status either when mea-

sured as household income or in relation to federal poverty guidelines. But there are less

clear relationships between income and insurance status for children. From the LHIS survey,

the highest uninsured rates for children occur in income ranges between $65,000 and $74,999,

which is high enough to be ineligible for public assistance but perhaps still low enough that

budget constrained families are less likely to purchase insurance. About 6% of children in

this income range are uninsured. For adults, being uninsured is strongly related to income.

Forty-six percent of adults earning between $10,000 and $14,999 are uninsured compared to

6.3% of adults earning $95,000 or more. When we examine the uninsured status relative to

federal poverty, it shows a similar pattern, which accounts for family size in determining the

sufficiency of available financial resources. For adults, being uninsured is strongly correlated

with poverty. For example, nearly 47.2% of adults between 50-100% of FPL are uninsured.

For children, the greatest risk for being uninsured is to fall outside the range of Medicaid

eligibility: 5.8% of children between 200-300% of federal poverty are uninsured compared to

just 1.7% between 150-200% of FPL.

Besides the income and poverty level, education is also strongly associated with uninsured

rates for adults, such that less educated respondents are considerably more likely to be

uninsured. There exists a steady decline in uninsured rates with education increases. Forty-

four percent of respondents with less than a high school education were uninsured, 29.1%

with a high school education, 19.6% with some college, while the uninsured rates are 10.0%

and 7.3% for those with a college degree and with a graduate degree, respectively.
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Furthermore, age is also associated with uninsured status as young children are least likely

to be uninsured. Younger adults (19-29) are most likely to be uninsured. Overall, uninsured

rates for adults decrease as age increases. Relative to 2011, uninsured rates have increased

significantly for adults age 30 and older while they have remained relatively stable for younger

adults (19-29). This stability may reflect the impact of the Patient Protection and Affordable

Care Act as younger adults are able to remain covered through a parent’s employer-sponsored

insurance policy through age 26. For children, because of Medicaid/LaCHIP programs,

young children (0-5) are least likely to be uninsured. Only 2.4% of children 0-5 have no

health insurance coverage as are 3.2% of children between 6-13 and 4.6% of children between

14-18.

4.3 Variable Definitions

As we mentioned earlier, the health insurance coverage is highly related to several personal

characteristics. Most of the variables are categorical ones. The primary variables of our

interest are listed below:

1. Black. A binary variable indicating the race of the adults/children. If the race is

Africa-American, “Black” takes the value of 1. Otherwise, “Black” takes the value of 0.

2. Female. A binary variable indicating the gender of the adults/children. If the person

is female, “Female” takes the value of 1. Otherwise, “Female” takes the value of 0.

3. Working percent. A continuous variable ranging between 0 and 1, indicates the percent

of working age adults in the family who are employed.

4. Income. A continuous variable indicating the household income5.
5In order to match other relatively small values variables, we adjust the income variable as the Household

income/10,000.
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5. Poverty. A binary variable indicating the poverty level of adults’/children’s family. If

the adult/child lives in a family below 185% of the federal poverty line, “Poverty” takes

the value of 1. Otherwise, “Poverty” takes the value of 0.

6. Age. A numerical variable which reported the age of the adults being interviewed in

the survey.

7. Age Group(i). i = 1, 2, 3. A binary variable indicating the age group for children. If

the child’s age is between 5 and 9, “Age group (1)” takes the value of 1. If the child’s

age is between 10 and 14, “Age group (2)” takes the value of 1. If the child’s age is

between 14 and 18, “Age group (3)” takes the value of 1. Otherwise, “Age group (i)”

takes the value of 0.

8. Parish. A factor identifying the parish which the resident belongs to. The 64 parishes

start from “Acadia Parish”, “Allen Parish”, ..., “East Baton Rouge Parish”,...,“Winn

Parish”.

4.4 Model Setup

In this section, we specify three estimators of uninsured rate for 64 parishes in the state of

Louisiana, which are the best linear unbiased prediction estimators (EBLUP), hierarchical

Bayes estimators (HB), and hierarchical Bayes method with probit model, as we described in

Chapter 3. We use a nested error linear regression model with cross sectional data at parish

level. The model develop is based on the basic unit level nested error regression model by

Battese et al. (1988) and extensions by Prasad and Rao (1999) and You and Rao (2003).

Suppose that the i−th parish or small area population size Ni for i = 1, 2, ..., 64 is known

to us. We use µi to denote the percentage of health insurance coverage of adults/children

for parish i. We are interested in estimating µi for each parish.

The top parts of Table 4.1 and Table 4.2 list the sample summary statistics of 64 parishes
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Table 4.1: Summary statistics by parish for adults 2013

Survey Sample
Variable Obs Mean Std. Dev. Min Max

% Black 64 0.2652 0.1503 0.0000 0.6706
Household income 64 66036 18678 24484 106522
% Female 64 0.5497 0.0315 0.4902 0.6706
% P185 64 0.3998 0.1106 0.1845 0.6404
Working Percent 64 0.6056 0.0686 0.3820 0.7255
Age 64 46.15 1.97 42.72 50.84
ni 64 230 170 85 896
Population
Variable Obs Mean Std. Dev. Min Max

% Black 64 0.3207 0.1454 0.0150 0.6930
Household income 64 41196 9062 25267 66173
% Female 64 0.4918 0.0406 0.2870 0.5240
% P185 64 0.7098 0.1245 0.4610 0.9500
Working Percent 64 0.6571 0.0849 0.4120 0.8070
Age 64 44.07 1.09 41.80 47.00
Ni 64 45165 62199 2809 290720

in Louisiana for adults and children in the survey year 2013, respectively, while the bottom

parts list the population summary statistics which come from the sources U.S. Department

of Labor: Bureau of Labor Statistics and U.S. Census Bureau. The number of observations

ni in each parish range between 85 (in East Carroll Parish) to 896 (in East Baton Rouge

Parish) for adults, and range from 21 (in East Carroll Parish) to 290 (in East Baton Rouge

Parish) for children.

Comparing the top and bottom parts in Table 4.1, there are some variations between

survey sample means x̄ and population means X̄. For instance, the average of black adults

rates is 26.52% in the survey sample, while the rate is roughly 32% from the U.S. Census

Bureau. As we have seen from the bottom part of Table 1, the rates of black adults range

from 1.5% (Cameron Parish) to 69.3% (East Carroll Parish) within 64 parishes, while the

rates of black adults from the survey sample range from 0 (Cameron Parish) to 67.06%
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Table 4.2: Summary statistics by parish for children 2013

Survey Sample
Variable Obs Mean Std. Dev. Min Max

% Black 64 0.3172 0.1851 0.0000 0.7667
Household income 64 67001 20792 19014 106761
% Age 5-8 64 0.2637 0.0576 0.0714 0.4054
% Age 9-13 64 0.2904 0.0687 0.1053 0.5000
% Age 14-18 64 0.2595 0.0490 0.1515 0.3667
% Female 64 0.4848 0.0629 0.3030 0.6271
Poverty 64 0.4729 0.1493 0.2093 0.8571
Working percent 64 0.6496 0.0861 0.4405 0.8426
ni 64 84 63 21 290
Population
Variable Obs Mean Std. Dev. Min Max

% Black 64 0.3662 0.1630 0.0330 0.7380
Household income 64 41196 9062 25267 66173
% Age 5-8 64 0.2690 0.0112 0.2190 0.2940
% Age 9-13 64 0.2676 0.0137 0.2160 0.2890
% Age 14-18 64 0.2046 0.0212 0.1750 0.3340
% Female 64 0.4868 0.0072 0.4600 0.4980
Poverty 64 0.6357 0.1015 0.3910 0.9500
Working percent 64 0.6571 0.0849 0.4120 0.8070
Ni 64 18515 23824 1281 113177
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(East Carroll Parish). For the variable household income, the average of survey sample

means is about 66,036 over all parishes, while the average of household income from the U.S.

Department of labor is only 41,196. The summary statistics are based on the means of each

parish, that may have caused the variations. The details of sample means for each parish

are available in the Appendix.

Table 4.3 provides the estimates of β in equation (2.2) for three methodologies, as well as

the marginal effects for the hierarchical Bayes method with probit model. The first column

is the estimates from ordinary least squares regression. The estimates show that holding

other variables constant, the African-American people are more likely to be uninsured by

5.4%. Notably, uninsured rates for African-Americans have increased more dramatically than

for Caucasians. In 2009, 27.6% of African-Americans were uninsured compared to 15.8%

of Caucasians. The uninsured rates for African-Americans is 29% compared to 18.2% of

Caucasians in survey year 2013. The gender based differences in uninsured rates are relatively

small: 0.3% lower for female adults. Considering the percentage of working adults, the higher

the portion of working adults, the lower the probability of uninsured. Overall, uninsured

rates for adults decrease as age increases. Relative to 2011, uninsured rates have increased

significantly for adults at age 30 and older while they have remained relatively stable for

younger adults (19-29). This stability may reflect the impact of the Patient Protection

and Affordable Care Act as younger adults are able to remain covered through a parent’s

employer-sponsored insurance policy through age 26. From the estimates, with a one-year

increase of adult’s age, the probability of being uninsured decreases by 0.34%. For adults,

income is also an important predictor of uninsured status either when measured as household

income or in relation to federal poverty guidelines. For instance, 46% of adults earning

between $10,000 and $14,999 are uninsured compared to 6.3% of adults earning $95,000 or

more. When we examine the uninsured status relative to federal poverty, it shows a similar

pattern, which accounts for family size in determining the sufficiency of available financial

resources. For adults, being uninsured is strongly correlated with poverty. For instance,
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nearly 47.2% of adults between 50-100% of FPL are uninsured.

Table 4.3: Estimates of β for adults

Adults 2013 OLS Estimate HB Estimate HB_Probit Marginal Effect

Constant 0.2771*** 0.2768*** -0.5311 -0.1688

(0.0169) (0.0166) (0.0616)

Black 0.0538*** 0.0537*** 0.1811 0.0567

(0.0083) (0.0077) (0.0289)

Family income -0.0025*** -0.0024 -0.0192 -0.0061

(0.0004) (0.0036) (0.0023)

Female -0.0034 -0.0035 -0.0153 -0.004

(0.0061) (0.0063) (0.0256)

Poverty 0.2188*** 0.2188*** 0.7454 0.236

(0.0094) (0.0069) (0.0338)

Working Percent -0.0060 -0.0061 -0.028 -0.0089

(0.0105) (0.0069) (0.0395)

Age -0.0034*** -0.0034*** -0.0137 -0.0044

(0.0002) (0.0001) (0.0009)

Note: Numbers in parentheses are standard errors and posterior standard deviations.

* Statistically significantly different from zero at the 10% level.

** Statistically significantly different from zero at the 5% level.

*** Statistically significantly different from zero at the 1% level.

The estimates in Table 4.3 shows that, if the adult is living in a family below 185% of

the federal poverty line, he or she is more likely to be uninsured by 21.9%.
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Table 4.4: Estimates of β for children

Children 2013 OLS Estimate HB Estimate HB_Probit Marginal Effect

Constant 0.0445*** 0.0445*** -1.6474 -0.1697

(0.0107) (0.0149) (0.1333)

Black 0.0104 0.0104 0.1447 0.0149

(0.0072) (0.0073) (0.0762)

Family income -0.0008** -0.0008 -0.0306 -0.032

(0.0004) (0.0053) (0.0091)

Age 5-8 0.0024 0.0024 0.0341 0.0035

(0.0079) (0.0098) (0.0988)

Age 9-13 0.0104 0.0103 0.1177 0.0121

(0.0080) (0.0071) (0.0966)

Age 14-18 0.0162* 0.0162** 0.1529 0.0157

(0.0085) (0.0066) (0.0984)

Female -0.0055 -0.0054 -0.0483 -0.0050

(0.0056) (0.0061) (0.0621)

Poverty 0.0194** 0.0194*** 0.0653 0.0067

(0.0081) (0.0050) (0.0980)

Working Percent -0.0155 -0.0154*** -0.1146 -0.0118

(0.0094) (0.0037) (0.0936)

Note: Numbers in parentheses are standard errors and posterior standard deviations.

* Statistically significantly different from zero at the 10% level.

** Statistically significantly different from zero at the 5% level.

*** Statistically significantly different from zero at the 1% level.
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The pattern is quite similar for children. Uninsured rates for African American and

Caucasian children have steadily declined since 2005 when 7.9% of African American children

and 6.4% of Caucasian children were reported as uninsured. In 2013, 5.0% of African-

American and 3.6% of Caucasian children were uninsured. The African-American child

is more likely to be uninsured by 1%, while a female child is less likely to be uninsured,

although both of them are insignificant. Different from adults, the uninsured probabilities

have no trend over age categories for children. Furthermore, the more adults working in the

household, the less likely to have a child uninsured.

We could observe similar patterns of uninsured rates for children as adults when we

consider the different level of income and poverty. It turns out that the level of income

and poverty do not affect children as much as adults. It may because of the availability

of Medicaid/LaCHIP programs6. Again, the household income has a negative impact on

a child’s uninsured probabilities. From the LHIS survey, the highest uninsured rates for

children occur in income ranges between $65,000 and $74,999, which is high enough to be

ineligible for public assistance but perhaps still low enough that budget constrained families

are less likely to purchase insurance. About 6% of children in this income range are uninsured.

The second columns in Tables 4.3 and 4.4 list the estimate of β for hierarchial Bayes meth-

ods for adults and children, respectively. The third columns are the estimates of hierarchical

Bayes method with probit model. Different from the linear regression model, coefficients of

a probit model rarely have any direct interpretation. In our study, the coefficient signs of

hierarchical Bayes methods with a probit model are the same as the OLS estimates and the

hierarchical Bayes method.
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Figure 4.5: Uninsured Rates for Adults age 19-65 (2013)

4.5 Results

Figure 4.5 shows a map of the estimated uninsured rates for adults in survey year 2013. The

uninsured rates rage from an estimated 14.5% (as in Cameron Parish) to an estimated 36.0%

(as in West Carroll Parish). Figure 4.6 shows the mean household income by parish. These

two maps show a similar pattern. For instance, Figure 4.5 shows higher uninsured rates in

the northeastern DHH region, high poverty parishes of Louisiana, and lower uninsured rates

throughout the wealthier I-10 corridor. In terms of parish, unsurprisingly, St. Tammany

Parish, the parish with the highest household income, has the lowest estimated uninsured

rate for adults over the entire state. On the other hand, Madison Parish, the parish with

the lowest household income, has one of the highest uninsured rate for adults.
6The Louisiana ChildrenŠs Health Insurance Program (LaCHIP) provides health coverage to uninsured

children up to age 19. It is a no-cost health program that pays for hospital care, doctor visits, prescription
drugs, shots and more.
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Figure 4.6: Mean Household Income by Parish (2013)

The estimated uninsured rates for children have a different pattern than the adults.

Figure 4.7 shows the uninsured rates for children under 19 by parish in survey year 2013. It

shows that there is no systematic geographic pattern of high uninsured rates among children.

As mentioned earlier, while poverty tends to be present in geographic clusters, Medicaid and

LaCHIP enrollments offset the pattern of low employer and private insurance coverage in

poor parishes.

Table 4.5 and Table 4.6 list the three estimates as well as the mean square error (pos-

terior standard deviation) of uninsured adults and children for 64 parishes in Louisiana,

respectively. We also convert the estimated uninsured rate into the estimates of the number

of uninsured for adults and children based on the information of the population7. Consider

the EBLUP estimates, the probability of adults’ uninsured rate ranges from 12.79% (as in

Cameron Parish) to 44.15% (as in West Carroll Parish). In terms of an uninsured person,

the range is between 601 (as in Cameron Parish) to 82,996 (as in East Baton Rouge Parish).
7We calculate the uninsured adults and children based on the estimates of uninsured rates from Hierar-

chical Bayes method with probit Model.
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Figure 4.7: Uninsured Rates for Children under Age 19 (2013)

Comparing the estimates between the hierarchical Bayes estimates and hierarchical Bayes

method with probit model, the uninsured rates are quite similar for adults. The uninsured

rate from the hierarchical Bayes method with probit model ranges from 14.51% to 36.01%,

which is narrower than the EBLUP estimates. The mean square error (posterior standard

deviation) is a measure of the desirability of efficiency. For adults, the mean square error

(posterior standard deviation) is of a similar magnitude for each parish among the three

methodologies.

As can be seen in the first column in Table 4.6, the EBLUP method provides some

negative estimates, which is the disadvantage of the EBLUP method. For instance, the

EBLUP method estimates the uninsured rate for children in East Carroll Parish is -1.07%,

while the estimates are -0.25% in LaSalle Parish, and -0.3% in Madison Parish. The negative

uninsured rates are unrealistic. This is the reason that we explore a better method to estimate

the uninsured probabilities for children. The second and third column of Table 8 provides the
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hierarchical Bayes estimates and hierarchical Bayes method with probit model of uninsured

rates for children. In terms of posterior standard deviation, the latter perform better than

the regular hierarchical Bayes method. Therefore, we calculate the uninsured children based

on the hierarchical Bayes method with probit model. Overall, in the survey year 2013, the

estimates of uninsured rates for children range between 1.6% (as in LaSalle Parish) and 8.77%

(as in Bienville Parish), in terms of uninsured children, the number of uninsured children

rage from 58 (as in Cameron Parish and Tensas Parish) to 5,379 (as in Orleans Parish).

Next, we discuss the behavior of coefficients in the hierarchical Bayes method. As we

discussed in Section 3.4, the Markov Chain Monte Carlo methods construct a stationary dis-

tribution. Hence, after a sufficiently large “burn-in,” we can regard the small area parameters

as dependent samples from the target distribution, regardless of the starting point. Figure

4.8 shows the β’s distributions after 500 warmups. We observe that all the βs converge to a

stable values after 5,000 iterations.
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Figure 4.8: β’s distribution after 500 warmups
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Table 4.5: Estimates of Uninsured Adults in 2013

parish_name
Sample

mean
EBLUP MSE HB

Posterior

std.dev.
HB_Probit

Posterior

std.dev.

Sample

Size

19-64

population

Uninsured

19-64

Acadia 0.2430 0.3234 0.0254 0.3115 0.0235 0.2813 0.0263 214 38633 10866

Allen 0.1975 0.2704 0.0296 0.2738 0.0249 0.2494 0.0265 157 16473 4109

Ascension 0.1495 0.2222 0.0214 0.2227 0.0193 0.1889 0.0197 301 70066 13236

Assumption 0.1679 0.2207 0.0324 0.2433 0.0274 0.2247 0.0259 131 14276 3208

Avoyelles 0.1970 0.3040 0.0265 0.3046 0.0229 0.2877 0.0270 198 25354 7294

Beauregard 0.1856 0.2427 0.0266 0.2444 0.0230 0.2157 0.0232 194 22023 4750

Bienville 0.2458 0.2721 0.0342 0.2753 0.0272 0.2553 0.0277 118 8220 2099

Bossier 0.1590 0.2107 0.0199 0.2145 0.0199 0.1894 0.0185 346 76251 14440

Caddo 0.2285 0.2990 0.0161 0.2933 0.0168 0.2692 0.0186 534 158369 42639

Calcasieu 0.1799 0.2655 0.0151 0.2595 0.0166 0.2336 0.0169 617 120197 28079

Caldwell 0.2824 0.3324 0.0324 0.3092 0.0270 0.2768 0.0299 131 6152 1703

Cameron 0.0882 0.1279 0.0367 0.1647 0.0297 0.1451 0.0226 102 4142 601

Catahoula 0.1964 0.3191 0.0351 0.3134 0.0281 0.2936 0.0311 112 6402 1880

Claiborne 0.3060 0.3586 0.0320 0.3492 0.0268 0.3322 0.0306 134 10854 3606

Concordia 0.2047 0.2949 0.0329 0.3010 0.0272 0.2853 0.0293 127 12280 3503

DeSoto 0.2640 0.2721 0.0331 0.2758 0.0268 0.2516 0.0270 125 16259 4091

East Baton Rouge 0.1596 0.3124 0.0130 0.3061 0.0190 0.2855 0.0172 896 290720 82996

East Carroll 0.2353 0.3169 0.0403 0.3418 0.0307 0.3366 0.0341 85 4681 1576

East Feliciana 0.2544 0.3444 0.0348 0.3375 0.0281 0.3100 0.0314 114 13025 4038

Continued on next page
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Table 4.5 – Continued from previous page

parish_name
Sample

mean
EBLUP MSE HB

Posterior

std.dev.
HB_Probit

Posterior

std.dev.

Sample

Size

19-64

population

Uninsured

19-64

Evangeline 0.2671 0.3461 0.0307 0.3313 0.0260 0.3087 0.0298 146 20091 6201

Franklin 0.2991 0.3931 0.0359 0.3652 0.0297 0.3308 0.0342 107 11843 3918

Grant 0.2701 0.3266 0.0317 0.3074 0.0267 0.2747 0.0294 137 14278 3922

Iberia 0.1803 0.2817 0.0245 0.2776 0.0220 0.2555 0.0245 233 44621 11402

Iberville 0.1511 0.3081 0.0317 0.3127 0.0260 0.2952 0.0300 139 21598 6376

Jackson 0.1926 0.2573 0.0319 0.2634 0.0261 0.2377 0.0268 135 9681 2301

Jefferson 0.1409 0.2623 0.0150 0.2584 0.0163 0.2259 0.0177 646 274951 62111

Jefferson Davis 0.1437 0.2220 0.0288 0.2278 0.0245 0.2043 0.0239 167 18545 3788

LaSalle 0.1469 0.2277 0.0175 0.2235 0.0184 0.1973 0.0177 463 9195 1814

Lafayette 0.1449 0.2484 0.0170 0.2430 0.0191 0.2112 0.0183 490 147813 31220

Lafourche 0.1766 0.2734 0.0196 0.2636 0.0199 0.2349 0.0206 368 60934 14312

Lincoln 0.1931 0.2623 0.0261 0.2677 0.0258 0.2398 0.0243 202 32163 7713

Livingston 0.2164 0.2805 0.0194 0.2700 0.0182 0.2388 0.0214 365 82068 19594

Madison 0.2913 0.3583 0.0365 0.3569 0.0289 0.3389 0.0325 103 7730 2620

Morehouse 0.2207 0.3301 0.0309 0.3296 0.0255 0.3128 0.0299 145 16315 5104

Natchitoches 0.2500 0.3235 0.0334 0.3157 0.0267 0.2954 0.0297 124 24450 7223

Orleans 0.2103 0.2795 0.0160 0.2830 0.0188 0.2644 0.0180 542 248136 65601

Ouachita 0.2048 0.2683 0.0174 0.2647 0.0188 0.2393 0.0189 454 95082 22755

Plaquemines 0.1443 0.2198 0.0377 0.2389 0.0291 0.2115 0.0274 97 14640 3097

Pointe Coupee 0.1885 0.3161 0.0338 0.3135 0.0274 0.2880 0.0306 122 13431 3869

Continued on next page
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Table 4.5 – Continued from previous page

parish_name
Sample

mean
EBLUP MSE HB

Posterior

std.dev.
HB_Probit

Posterior

std.dev.

Sample

Size

19-64

population

Uninsured

19-64

Rapides 0.2179 0.3075 0.0169 0.2987 0.0183 0.2735 0.0199 491 79689 21796

Red River 0.2294 0.3458 0.0357 0.3389 0.0280 0.3191 0.0325 109 5300 1691

Richland 0.2358 0.3342 0.0335 0.3278 0.0272 0.3047 0.0309 123 12532 3819

Sabine 0.3404 0.3922 0.0312 0.3532 0.0280 0.3118 0.0336 141 14060 4384

St. Bernard 0.2613 0.3257 0.0353 0.3137 0.0284 0.2879 0.0302 111 26896 7745

St. Charles 0.1214 0.2127 0.0259 0.2202 0.0227 0.1906 0.0223 206 33347 6355

St. Helena 0.2247 0.3016 0.0394 0.3152 0.0305 0.3025 0.0322 89 6643 2010

St. James 0.1343 0.2114 0.0321 0.2386 0.0275 0.2188 0.0276 134 13272 2904

St. John Baptist 0.1838 0.3277 0.0320 0.3317 0.0268 0.3143 0.0315 136 28063 8820

St. Landry 0.1535 0.2713 0.0234 0.2755 0.0218 0.2553 0.0247 254 48942 12493

St. Martin 0.1545 0.2784 0.0252 0.2789 0.0227 0.2604 0.0252 220 32637 8499

St. Mary 0.1881 0.2732 0.0262 0.2811 0.0246 0.2664 0.0256 202 32916 8768

St. Tammany 0.1279 0.1964 0.0152 0.1962 0.0171 0.1649 0.0149 602 146545 24169

Tangipahoa 0.2553 0.3407 0.0205 0.3310 0.0190 0.3100 0.0239 329 77521 24028

Tensas 0.2900 0.3795 0.0371 0.3694 0.0293 0.3540 0.0333 100 2809 994

Terrebonne 0.1467 0.2595 0.0216 0.2563 0.0213 0.2267 0.0222 300 69821 15827

Union 0.1769 0.2837 0.0326 0.2859 0.0268 0.2621 0.0287 130 13384 3508

Vermilion 0.0905 0.1789 0.0263 0.1953 0.0239 0.1748 0.0227 199 35410 6191

Vernon 0.1538 0.2153 0.0236 0.2264 0.0211 0.2049 0.0215 247 34099 6986

Washington 0.2746 0.3469 0.0311 0.3443 0.0258 0.3304 0.0302 142 27955 9237

Continued on next page
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Table 4.5 – Continued from previous page

parish_name
Sample

mean
EBLUP MSE HB

Posterior

std.dev.
HB_Probit

Posterior

std.dev.

Sample

Size

19-64

population

Uninsured

19-64

Webster 0.2609 0.3040 0.0292 0.2937 0.0247 0.2650 0.0268 161 24236 6423

West Baton Rouge 0.1268 0.2228 0.0312 0.2421 0.0260 0.2161 0.0268 142 15380 3324

West Carroll 0.3790 0.4415 0.0333 0.3910 0.0304 0.3601 0.0368 124 6711 2417

West Feliciana 0.1649 0.2325 0.0377 0.2548 0.0295 0.2233 0.0281 97 11076 2474

Winn 0.2391 0.3118 0.0316 0.3026 0.0261 0.2787 0.0284 138 9390 2617
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Table 4.6: Estimates of Uninsured Children in 2013

parish_name
Sample

mean
EBLUP MSE HB

Posterior

std.dev.
HB_Probit

Posterior

std.dev.

Sample

Size

U19

population

Uninsured

Children

Acadia 0.0253 0.0228 0.0230 0.0498 0.0475 0.0318 0.0131 79 17527 557

Allen 0.0417 0.0469 0.0294 0.0718 0.0561 0.0477 0.0196 48 6077 290

Ascension 0.0672 0.0701 0.0188 0.1201 0.0747 0.0526 0.0167 119 32273 1698

Assumption 0.1277 0.1204 0.0296 0.1350 0.0525 0.0722 0.0259 47 5837 422

Avoyelles 0.0345 0.0332 0.0220 0.0593 0.0432 0.0379 0.0144 87 10564 401

Beauregard 0.0588 0.0617 0.0222 0.0869 0.0584 0.0472 0.0166 85 9744 460

Bienville 0.1282 0.1228 0.0324 0.1226 0.0479 0.0877 0.0326 39 3468 304

Bossier 0.0079 0.0078 0.0183 0.0544 0.0626 0.0203 0.0091 126 31876 648

Caddo 0.0505 0.0499 0.0140 0.0918 0.0516 0.0421 0.0114 218 66674 2808

Calcasieu 0.0616 0.0627 0.0143 0.0953 0.0548 0.0516 0.0131 211 51134 2639

Caldwell 0.0303 0.0391 0.0351 0.0676 0.0574 0.0408 0.0185 33 2454 100

Cameron 0.0333 0.0328 0.0366 0.0718 0.0643 0.0335 0.0163 30 1730 58

Catahoula 0.1176 0.1140 0.0287 0.1288 0.0516 0.0769 0.0268 51 2476 190

Claiborne 0.0588 0.0494 0.0345 0.0826 0.0437 0.0490 0.0202 34 3390 166

Concordia 0.0161 0.0284 0.0261 0.0576 0.0449 0.0382 0.0162 62 5426 207

DeSoto 0.0943 0.0874 0.0279 0.1102 0.0479 0.0611 0.0216 53 6925 423

East Baton Rouge 0.0172 0.0249 0.0122 0.0774 0.0644 0.0236 0.008 290 113177 2675

East Carroll 0.0000 -0.0107 0.0463 0.0540 0.0429 0.0437 0.0205 21 2045 89

East Feliciana 0.0213 0.0241 0.0297 0.0696 0.0504 0.0351 0.0154 47 4400 155

Continued on next page
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Table 4.6 – Continued from previous page

parish_name
Sample

mean
EBLUP MSE HB

Posterior

std.dev.
HB_Probit

Posterior

std.dev.

Sample

Size

U19

population

Uninsured

Children

Evangeline 0.0000 0.0056 0.0314 0.0407 0.0457 0.0314 0.0149 42 9563 301

Franklin 0.0714 0.0464 0.0421 0.0853 0.0466 0.0499 0.0211 28 5538 276

Grant 0.0000 0.0054 0.0309 0.0365 0.0490 0.0286 0.014 43 5250 150

Iberia 0.0278 0.0353 0.0199 0.0703 0.0548 0.0310 0.0119 108 20777 645

Iberville 0.0862 0.0955 0.0269 0.1294 0.0535 0.0661 0.0234 58 7838 518

Jackson 0.0526 0.0476 0.0336 0.0744 0.0463 0.0449 0.0189 38 3888 175

Jefferson 0.0519 0.0557 0.0136 0.0963 0.0602 0.0453 0.0119 231 101097 4578

Jefferson Davis 0.0169 0.0221 0.0265 0.0497 0.0539 0.0307 0.0138 59 8757 268

LaSalle 0.0000 -0.0025 0.0196 0.0356 0.0636 0.0159 0.008 173 3713 59

Lafayette 0.0464 0.0511 0.0168 0.0946 0.0673 0.0417 0.013 151 57866 2415

Lafourche 0.0847 0.0883 0.0190 0.1165 0.0650 0.0664 0.0197 118 24886 1653

Lincoln 0.0435 0.0492 0.0249 0.0814 0.0511 0.0457 0.0172 69 12135 554

Livingston 0.0442 0.0464 0.0153 0.0799 0.0609 0.0392 0.0117 181 36726 1439

Madison 0.0000 -0.0031 0.0406 0.0475 0.0404 0.0410 0.0193 25 3127 128

Morehouse 0.0244 0.0230 0.0317 0.0593 0.0400 0.0424 0.0184 41 7173 304

Natchitoches 0.0217 0.0285 0.0301 0.0630 0.0465 0.0377 0.0164 46 10835 409

Orleans 0.0817 0.0814 0.0143 0.1263 0.0491 0.0644 0.0148 208 83488 5379

Ouachita 0.0363 0.0407 0.0149 0.0770 0.0565 0.0372 0.0115 193 42998 1601

Plaquemines 0.0000 0.0075 0.0332 0.0634 0.0652 0.0274 0.0137 37 6700 183

Pointe Coupee 0.0000 0.0106 0.0321 0.0561 0.0541 0.0318 0.0153 40 5696 181

Continued on next page
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Table 4.6 – Continued from previous page

parish_name
Sample

mean
EBLUP MSE HB

Posterior

std.dev.
HB_Probit

Posterior

std.dev.

Sample

Size

U19

population

Uninsured

Children

Rapides 0.0482 0.0536 0.0160 0.0856 0.0548 0.0455 0.0134 166 35638 1622

Red River 0.1000 0.0887 0.0303 0.1151 0.0475 0.0667 0.0236 50 2387 159

Richland 0.0000 0.0057 0.0325 0.0455 0.0467 0.0317 0.0152 39 5590 177

Sabine 0.0000 0.0097 0.0321 0.0447 0.0506 0.0299 0.0146 40 6225 186

St. Bernard 0.0625 0.0651 0.0356 0.0866 0.0515 0.0486 0.0209 32 10700 520

St. Charles 0.0317 0.0359 0.0258 0.0863 0.0634 0.0349 0.0146 63 14464 505

St. Helena 0.0526 0.0605 0.0329 0.0892 0.0428 0.0529 0.0212 38 2863 151

St. James 0.0612 0.0617 0.0291 0.1086 0.0577 0.0459 0.0186 49 5784 266

St. John Baptist 0.1538 0.1444 0.0253 0.1698 0.0501 0.0873 0.0265 65 12547 1095

St. Landry 0.0354 0.0389 0.0195 0.0679 0.0463 0.0386 0.0137 113 23741 917

St. Martin 0.0235 0.0348 0.0223 0.0686 0.0547 0.0354 0.0145 85 14424 511

St. Mary 0.0253 0.0300 0.0231 0.0633 0.0505 0.0337 0.0137 79 14340 483

St. Tammany 0.0175 0.0178 0.0137 0.0710 0.0768 0.0219 0.0078 228 62108 1362

Tangipahoa 0.1043 0.1030 0.0192 0.1260 0.0488 0.0740 0.0205 115 33018 2442

Tensas 0.0333 0.0268 0.0366 0.0661 0.0409 0.0453 0.0195 30 1281 58

Terrebonne 0.0328 0.0387 0.0188 0.0747 0.0642 0.0341 0.0124 122 30163 1029

Union 0.1034 0.0987 0.0373 0.1050 0.0504 0.0590 0.0249 29 5427 320

Vermilion 0.0361 0.0452 0.0225 0.0749 0.0599 0.0419 0.0162 83 16100 675

Vernon 0.0602 0.0644 0.0225 0.0863 0.0531 0.0513 0.0179 83 15027 771

Washington 0.1429 0.1314 0.0313 0.1284 0.0426 0.0790 0.0276 42 12283 970

Continued on next page
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parish_name
Sample

mean
EBLUP MSE HB

Posterior

std.dev.
HB_Probit

Posterior

std.dev.

Sample

Size

U19

population

Uninsured

Children

Webster 0.0303 0.0273 0.0252 0.0562 0.0438 0.0371 0.0148 66 10126 376

West Baton Rouge 0.0233 0.0362 0.0310 0.0847 0.0640 0.0374 0.0169 43 6256 234

West Carroll 0.0189 0.0214 0.0280 0.0474 0.0442 0.0332 0.0149 53 2985 99

West Feliciana 0.0222 0.0267 0.0303 0.0833 0.0655 0.0342 0.0156 45 2737 94

Winn 0.0667 0.0699 0.0265 0.0823 0.0428 0.0533 0.0191 60 3524 188
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4.6 Model Specification for Cross-sectional Data

In the previous section, we estimate the health insurance coverage for 64 parishes in Louisiana

by employing the single survey year 2013. As we mentioned in the previous section, the LHIS

data is a biannual survey that was conducted each year since 2003, which allows us to pool

data from every year together in order to get a significant increase of sample size. However,

the hypothesis test rejects the null hypothesis that parishes have equal coefficients over all

years. Next, we use an informative prior which allows for a continuous shift from single year

estimates to pooled year estimates.

The regression model is written as follows,

yij =
6∑

k=1

βikxik +
11∑
k=7

βij ∗Dyear +
17∑

k=12

βikxik ∗D2003

+
23∑

k=18

βikxik ∗D2005 +
29∑

k=24

βikxik ∗D2007

+
35∑

k=30

βikxik ∗D2009 +
41∑

k=36

βikxik ∗D2011 + vi + eij

(4.1)

where i = 1, ..., 64, j = 1, ...mi, D2003, ..., D2011 are dummy variables that takes the value one

if the individual is collected in that particular year.

We use survey year 2013 as the reference year. This means that if we are interested in the

parameters for year 2013, we focus on β1 through β6. For all other years, the parameters β are

obtained by adding to the reference year’s β. For instance, the values of the corresponding

β parameters for variables in survey year 2003 are the β values β1,2003 = β1 +β7 +β12, which

is the estimate coefficient for variable “black” in survey year 2003.
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We define the following matrices and vectors,

Z =



X1,2003 0 0 0 · · · 0 0

X1,2005 X1,2005 0 0 · · · 0 0

X1,2007 0 X1,2007 0 · · · 0 0

...
...

...
... . . . ...

...

X64,2011 0 0 0 · · · 0 X64,2011


(4.2)

where X1,2003, X1,2005, · · · , X1,2011, · · · , X64,2011 are the independent variables matrices from

all years and all parishes, with N = N1,2003 + · · · + N1,2013 +N2,2003 + · · · + N64,2013, the

number of individuals obtained by adding up the number of individuals for each parish.

LetKi =
∑mi

n=1Kj andK0 = 0. The rows from 1 toK1 are theN1, N1 = N1,2003+, · · · , N64,2003,

stacked observations for the survey year 2003. The rows fromK1+1 toK2 are the N2 stacked

observations for the survey year 2005, and so on. Therefore, we have

β =



β1

β2
...

β41


, y =



y1,2003

y1,2005
...

y64,2011


, Σ =



Σ1,2003 0 0 · · · 0

0 Σ1,2005 0 · · · 0

...
...

... . . . ...

0 0 0 · · · Σ64,2011


(4.3)

where Σ is the data variance-covariance N ∗N diagonal matrix in which the variance corre-

sponding to the n’s individual is inserted in row n. The covariance terms are equal to zero.

The error term eij ∼ N(0, σ2
e) are still normally distributed.

We define an informative prior for β ∼ N(βp, H
−1
p ), where βp is a 41∗1 vector of constants,

and Hp is a 41*41 positive definite matrix of constants. We specify βp = (0, 0, · · · , 0)T as the

null vector and construct the prior precision matrix as a diagonal matrix. We also define a

scale factor S, which is a constant used to multiply rows 7 to 41 of the prior precision matrix.

Next, we run the Gibbs sampler for different values of the scale factor S, S=0.0001; 0.001;

0.01; 0.1; 1; 10; 100; 1,000; 10,000; 100,000; 1,000,000; 100,000,000; and 1,000,000,000. The
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larger the value of scale factor S, the stronger the prior. Intuitively, the magnitudes of the

scale factor indicate the level of the mixture of the model. For instance, the small value of S,

S = 1 or smaller, will generate the basic model as we described earlier. With the increasing

of the scale factor S, the models are pushed to the pooled estimates over all years.

Therefore, the four conditional distributions are derived based on the same references as

we discussed in section 3.4.

The process is repeated 25,000 times to product 25,000 Markov Chains Monte Carlo

iterations with 5,000 “burn-in” draws.

4.7 Empirical Results for Cross-sectional Data

In this section, we present the results in graphs. We illustrate the impacts of the informative

priors on the estimates.

Figure 4.9 shows the estimates of the coefficients for the cross-term of the independent

variable “female” and each survey year. The horizontal axis lists the logarithm of the scale

factor which ranges from −5 to 9. We can observe that under the informative prior, with the

increasing the strength of the prior, the estimated coefficients converge to zero eventually.

For the variable “female,” the convergence starts from scale factor S = 0, and roughly close

to zero when the scale factor S = 1, 000.

Figure 4.10 lists the convergence of the cross term of the independent variable “poverty”

and different survey years. Similar to the variable “female,” the convergence starts from the

scale factor S = 0, and close to zero once the scale factor increases to S = 1, 000. We also

provide the 90% highest density regions in the graph. The graph also points out that the

posterior highest density regions of the parameters are generally wider for weak scale factors,

while the regions are much smaller for stronger scale factors.

Figure 4.11 shows the variation of the cross-term of independent variable “income” and

each survey years. Different from the previous two variables, the cross-terms of income and
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year convergence to zero with both positive and negative starting values. For instance, with

the base as survey year 2013, the starting points are all negative except year 2007. Given

the estimated coefficients of the variable “income” is negative, the individual’s uninsured

probabilities decrease with the increasing of the household income. For the survey year

2007, holding other variables constant, the impact of household income on an individual’s

uninsured probabilities are smaller than the impact of the year 2013, while for other years,

the impact of household income are slightly larger on individual’s uninsured probabilities.

Figure 4.12 shows the convergence of the most different variable “age.” In the model,

variable “age” has the maximum magnitudes relative to other variables8. As with other

variable, the convergence starts from scale factor S=0, which is equivalent to no strength

on the prior. After a large fluctuation, the variable converges to zero until the scale factor

S=1 billion. Under this circumstance, estimates of uninsured rates of the population may

be impacted heavily due to the convergence speed of the “age” variable. We also illustrate

the impact of variable “age” on the estimates of uninsured rates.

Figure 4.13 shows the estimates of selected variables’ convergence over the informative

prior. We observe that when the prior’s strength is small (S=0.00001), the estimates are

close to the cross-sectional estimates (survey year 2013), which reflect the column L1 in Table

4.7. With the increasing strength of the prior, the estimates converge to pooled estimates

over the year 2003-2013, which is listed in the last column (L2) in Table 4.7.

8As mentioned earlier, the variable household income has been adjusted as household income/10,000.
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Figure 4.9: Estimates of βFemale in different survey years for adults
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Figure 4.10: Estimates of βPoverty in different survey years for adults
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Figure 4.11: Estimates of βIncome in different survey years for adults
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Figure 4.12: Estimates of βAge in different survey years for adults
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Figure 4.13: Parameters with 95% highest density region for adults
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Table 4.7 lists the posterior means and standard deviations together with the 95% percent

highest density regions9 for the parameters in the survey year 2013. Column L1 lists the

results for the single year estimates from the earlier section, while the last column L2 indicates

the pooled estimates over years 2003 to 2013. We also plot the graphs for each variable to

illustrate the continuous shift from single year estimates to pooled year estimates.

Figure 4.14 to Figure 4.21 lists the estimates for the uninsured rates for each parish

under the sequence of informative prior S. First of all, the uninsured rates increased with

the increased strength of the prior. As we mentioned earlier, the varying strength of the

informative prior could be considered as the shrinking of the pooled estimator towards cross-

sectional results. Therefore, the convergence for each parish shows that the uninsured rates

are higher for the pooled estimator. Secondly, the convergence of the uninsured rates for

each parish has certain fluctuation. For instance, most of them experience a local maximum

at scale factor S=100 and a local minimum at scale factor S=100,000. As we mentioned

earlier, this may be caused by the relatively large magnitudes of variable “age.” As well as

the adult’s graph, the estimates of uninsured rates for children (Figure 4.22 to Figure 4.29)

also converge to the pooled estimates with the increasing of the prior’s strength. However,

since there is no large magnitudes variable for children (like the variable “age” for adults),

the convergence is smooth over the increasing of the prior’s strength.

9Posterior moments are computed based on 25,000 points generated from the Gibbs sampling algorithm
with the first 5,000 as the burn-in samples. The end points of the 95% confidence region are the 2.5th and
the 97.5th percentiles of the posterior marginal densities.
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Table 4.7: Posterior Means, Standard Deviation, and 95% Highest Density Region (Adults)

Variables L1 S=0.0001 S=0.01 S=1 S=10 S=100 S=1,000 S=100,000 S=10,000,000 S=1,000,000,000 L2
Constant -0.5311 -0.5544 -0.5541 -0.5404 -0.4506 -0.2167 -0.1162 -0.1019 -0.0832 -0.0552 -0.0549
Post. S. D (0.0616) (0.0648) (0.0647) (0.0661) (0.0577) (0.0389) (0.0253) (0.0219) (0.0217) (0.0208) (0.0207)
[H.D.R.] [-0.6518,-0.4104] [-0.6813,-0.4274] [-0.6808,-0.4274] [-0.6699,-0.4108] [-0.5637,-0.3375] [-0.2929,-0.1405] [-0.1658,-0.0666] [-0.1448,-0.0589] [-0.1258,-0.0406] [-0.096,-0.0143] [-0.0954,-0.0144]
Black 0.1811 0.1892 0.1892 0.1889 0.1841 0.1789 0.1927 0.2032 0.213 0.2127 0.2124

Post. S. D (0.0289) (0.0295) (0.0294) (0.0291) (0.0283) (0.0241) (0.0152) (0.0101) (0.0102) (0.01) (0.01)
[H.D.R.] [0.1245,0.2377] [0.1314,0.247] [0.1316,0.2468] [0.1319,0.246] [0.1286,0.2396] [0.1316,0.2262] [0.1629,0.2225] [0.1834,0.223] [0.193,0.233] [0.193,0.2323] [0.1929,0.2319]
Income -0.0192 -0.0237 -0.0235 -0.0235 -0.0239 -0.0256 -0.0285 -0.0298 -0.0291 -0.0292 -0.0292

Post. S. D (0.0023) (0.0023) (0.0024) (0.0024) (0.0024) (0.0022) (0.002) (0.0014) (0.001) (0.001) (0.001)
[H.D.R.] [-0.0237,-0.0147] [-0.0283,-0.0191] [-0.0282,-0.0187] [-0.0282,-0.0189] [-0.0285,-0.0192] [-0.0298,-0.0213] [-0.0323,-0.0246] [-0.0325,-0.027] [-0.0311,-0.0271] [-0.0311,-0.0273] [-0.0312,-0.0272]
Female -0.0153 -0.0226 -0.0196 -0.0203 -0.0253 -0.0412 -0.054 -0.0599 -0.0592 -0.0565 -0.0565

Post. S. D (0.0256) (0.027) (0.0261) (0.0266) (0.0259) (0.0221) (0.0142) (0.0092) (0.009) (0.0092) (0.0091)
[H.D.R.] [-0.0655,0.0349] [-0.0755,0.0303] [-0.0709,0.0316] [-0.0723,0.0318] [-0.0761,0.0254] [-0.0844,0.0021] [-0.0817,-0.0262] [-0.0779,-0.0418] [-0.0768,-0.0416] [-0.0746,-0.0384] [-0.0744,-0.0386]
P185 0.7454 0.7796 0.7786 0.7719 0.7293 0.6075 0.522 0.5011 0.489 0.4566 0.4555

Post. S. D (0.0338) (0.0354) (0.0346) (0.0346) (0.0332) (0.0257) (0.0169) (0.0125) (0.0123) (0.0117) (0.0117)
[H.D.R.] [0.6792,0.8116] [0.7102,0.8491] [0.7109,0.8464] [0.704,0.8398] [0.6643,0.7943] [0.5571,0.6579] [0.4888,0.5552] [0.4766,0.5255] [0.4649,0.5131] [0.4337,0.4795] [0.4325,0.4785]

Working Percent -0.028 -0.0251 -0.0251 -0.0309 -0.0637 -0.1357 -0.1434 -0.1481 -0.1673 -0.1705 -0.1695
Post. S. D (0.0395) (0.0414) (0.0405) (0.0397) (0.0377) (0.0284) (0.0179) (0.0143) (0.0136) (0.0128) (0.0126)
[H.D.R.] [-0.1054,0.0494] [-0.1063,0.056] [-0.1045,0.0542] [-0.1088,0.047] [-0.1376,0.0102] [-0.1913,-0.0801] [-0.1785,-0.1083] [-0.1762,-0.1201] [-0.194,-0.1406] [-0.1956,-0.1453] [-0.1943,-0.1448]
Age -0.0137 -0.014 -0.014 -0.0141 -0.0147 -0.0163 -0.0169 -0.0171 -0.0159 -0.0155 -0.0155

Post. S. D (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0007) (0.0006) (0.0004) (0.0004) (0.0003) (0.0003)
[H.D.R.] [-0.0155,-0.0119] [-0.0158,-0.0122] [-0.0159,-0.0122] [-0.0159,-0.0123] [-0.0165,-0.013] [-0.0178,-0.0149] [-0.018,-0.0158] [-0.018,-0.0163] [-0.0167,-0.0152] [-0.0162,-0.0148] [-0.0162,-0.0148]
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Figure 4.14: Estimates for parishes based on informative priors (adults)
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Figure 4.15: Estimates for parishes based on informative priors (adults)
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Figure 4.16: Estimates for parishes based on informative priors (adults)
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Figure 4.17: Estimates for parishes based on informative priors (adults)
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Figure 4.18: Estimates for parishes based on informative priors (adults)
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Figure 4.19: Estimates for parishes based on informative priors (adults)
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Figure 4.20: Estimates for parishes based on informative priors (adults)
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Figure 4.21: Estimates for parishes based on informative priors (adults)
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Figure 4.22: Estimates for parishes based on informative priors (children)
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Figure 4.23: Estimates for parishes based on informative priors (children)
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Figure 4.24: Estimates for parishes based on informative priors (children)
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Figure 4.25: Estimates for parishes based on informative priors (children)
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Figure 4.26: Estimates for parishes based on informative priors (children)
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Figure 4.27: Estimates for parishes based on informative priors (children)
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Figure 4.28: Estimates for parishes based on informative priors (children)
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Figure 4.29: Estimates for parishes based on informative priors (children)
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Figure 4.30: Parameters with 95% highest density region for children
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Table 4.8: Posterior Means, Standard Deviation, and 95% Highest Density Region (Children)

Variables L1 S=0.0001 S=0.01 S=1 S=10 S=1,000 S=100,000 S=10,000,000 S=1,000,000,000 L2
Constant -1.6474 -1.8015 -1.7846 -1.7298 -1.5945 -1.2696 -1.1016 -1.056 -1.0541 -1.0171
Post. S. D (0.1333) (0.1832) (0.1874) (0.1579) (0.0946) (0.0328) (0.0286) (0.0284) (0.0287) (0.0314)
[H.D.R.] [-1.9087,-1.3861] [-2.1606,-1.4424] [-2.1519,-1.4173] [-2.0393,-1.4203] [-1.7799,-1.4091] [-1.3339,-1.2053] [-1.1577,-1.0455] [-1.1117,-1.0003] [-1.1104,-0.9978] [-1.0786,-0.9556]
Black 0.1447 0.1763 0.1699 0.1516 0.0912 0.0081 0.0523 0.0645 0.0645 0.0692
Post. S. D (0.0762) (0.0837) (0.0852) (0.077) (0.0628) (0.0223) (0.018) (0.0182) (0.0178) (0.0224)
[H.D.R.] [-0.0047,0.2941] [0.0122,0.3404] [0.0029,0.3369] [0.0007,0.3025] [-0.0319,0.2143] [-0.0356,0.0518] [0.017,0.0876] [0.0288,0.1002] [0.0296,0.0994] [0.0253,0.1131]
Income -0.0306 -0.069 -0.0644 -0.0571 -0.0409 -0.0439 -0.0211 -0.017 -0.0169 -0.0159
Post. S. D (0.0091) (0.0275) (0.0221) (0.0164) (0.0097) (0.0049) (0.0022) (0.0019) (0.0019) (0.0024)
[H.D.R.] [-0.0484,-0.0128] [-0.1229,-0.0151] [-0.1077,-0.0211] [-0.0892,-0.025] [-0.0599,-0.0219] [-0.0535,-0.0343] [-0.0254,-0.0168] [-0.0207,-0.0133] [-0.0206,-0.0132] [-0.0206,-0.0112]
Age 0-4 0.0341 0.0402 0.0385 0.0247 0.0247 0.0973 0.098 0.093 0.0927 0.0991
Post. S. D (0.0988) (0.1128) (0.1115) (0.1025) (0.0751) (0.0277) (0.0237) (0.0238) (0.0236) (0.0427)
[H.D.R.] [-0.1595,0.2277] [-0.1809,0.2613] [-0.18,0.257] [-0.1762,0.2256] [-0.1225,0.1719] [0.043,0.1516] [0.0515,0.1445] [0.0464,0.1396] [0.0464,0.139] [0.0154,0.1828]
Age 5-9 0.1177 0.1656 0.1624 0.1413 0.1127 0.0777 0.0866 0.0856 0.0855 0.0902
Post. S. D (0.0966) (0.1165) (0.1103) (0.1016) (0.0732) (0.0268) (0.0225) (0.0222) (0.0226) (0.0278)
[H.D.R.] [-0.0716,0.307] [-0.0627,0.3939] [-0.0538,0.3786] [-0.0578,0.3404] [-0.0308,0.2562] [0.0252,0.1302] [0.0425,0.1307] [0.0421,0.1291] [0.0412,0.1298] [0.0357,0.1447]
Age 10-14 0.1529 0.2357 0.23 0.2137 0.1889 0.2297 0.2084 0.1991 0.1982 0.2115
Post. S. D (0.0984) (0.114) (0.1137) (0.0993) (0.0737) (0.0278) (0.0239) (0.0235) (0.0238) (0.0262)
[H.D.R.] [-0.04,0.3458] [0.0123,0.4591] [0.0071,0.4529] [0.0191,0.4083] [0.0444,0.3334] [0.1752,0.2842] [0.1616,0.2552] [0.153,0.2452] [0.1516,0.2448] [0.1601,0.2629]
Female -0.0483 -0.07 -0.0668 -0.0666 -0.0726 -0.0517 -0.023 -0.0235 -0.0236 -0.0258
Post. S. D (0.0621) (0.068) (0.0701) (0.0664) (0.0577) (0.0203) (0.0159) (0.0157) (0.0158) (0.0271)
[H.D.R.] [-0.17,0.0734] [-0.2033,0.0633] [-0.2042,0.0706] [-0.1967,0.0635] [-0.1857,0.0405] [-0.0915,-0.0119] [-0.0542,0.0082] [-0.0543,0.0073] [-0.0546,0.0074] [-0.0789,0.0273]
P185 0.0653 0.173 0.1624 0.1473 0.123 0.1314 0.1096 0.0829 0.082 0.0146
Post. S. D (0.098) (0.1122) (0.116) (0.1038) (0.0741) (0.0258) (0.022) (0.0219) (0.0219) (0.0183)
[H.D.R.] [-0.1268,0.2574] [-0.0469,0.3929] [-0.065,0.3898] [-0.0561,0.3507] [-0.0222,0.2682] [0.0808,0.182] [0.0665,0.1527] [0.04,0.1258] [0.0391,0.1249] [-0.0213,0.0505]
Working Pct -0.1146 -0.0984 -0.106 -0.1231 -0.196 -0.3466 -0.4833 -0.5371 -0.5384 -0.531
Post. S. D (0.0936) (0.0949) (0.0937) (0.09) (0.0723) (0.0278) (0.0226) (0.0212) (0.0214) (0.0249)
[H.D.R.] [-0.2981,0.0689] [-0.2844,0.0876] [-0.2897,0.0777] [-0.2995,0.0533] [-0.3377,-0.0543] [-0.4011,-0.2921] [-0.5276,-0.439] [-0.5787,-0.4955] [-0.5803,-0.4965] [-0.5798,-0.4822]
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Chapter 5. Simulation and Results
In this chapter, we construct a series of simulations. Starting from a basic simulation,

we explore the performances of the three methodologies as we discussed earlier in small area

estimation (such as the empirical best linear unbiased predictions, hierarchical Bayes method

and hierarchical Bayes method with a probit model). The simulation on the informative

priors derive the impacts of varying coefficients in the cross-sectional situation.

5.1 Simulation Model Setup

In the first simulation, we consider five small areas with two independent variables. Ni

denotes the population size for each small area. We generate Ni from a uniform distribution.

Ni ∼ Uniform[50, 200], i = 1, ..., 5.

Define (yij, xij1, xij2) is the jth observation in the ith small areas. Particularly, we assume

x1 ∼ N(µ = 1, σ = 0.5) and x2 ∼ N(0.5, 0.32). The interested parameter yij’s are generated

through the following model:

Model 1 : yij = 0.5xij1 + xij2 + vi + eij (5.1)

where vi ∼ N(0, 1) and eij ∼ N(0, 1). Hence, the population mean of dependent variable

µi ∼ N(µ = 1, σ = 0.15), i = 1, ..., 5.

We list the direct estimates, EBLUP estimates and HB estimates in the following table,

as well as the true values.

The first column in Table 5.1 represents the label of the small area; the second column
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Table 5.1: Results of simulation for Model 1

Small
Area Ni Method True

Value
Point

Estimate
Standard
Deviation 95% credible intervals

1 64 Direct 2.1063 1.4719 1.3016 -1.0792 4.0231
2 72 1.4104 0.7516 1.1704 -1.5424 3.0457
3 87 1.1913 0.9572 1.2780 -1.5476 3.4620
4 108 0.8731 0.4357 1.1498 -1.8179 2.6892
5 196 1.8975 1.2516 1.1510 -1.0044 3.5075
1 64 EBLUP 2.1063 2.1001 0.1411 1.8235 2.3767
2 72 1.4104 1.1504 0.1276 0.9003 1.4004
3 87 1.1913 1.2408 0.1214 1.0029 1.4787
4 108 0.8731 0.9087 0.1122 0.6887 1.1287
5 196 1.8975 1.6881 0.0869 1.5178 1.8584
1 64 HB 2.1063 2.0201 0.1346 1.7563 2.2839
2 72 1.4104 1.2307 0.1216 0.9924 1.4690
3 87 1.1913 1.2177 0.115 0.9923 1.4431
4 108 0.8731 0.879 0.108 0.6673 1.0907
5 196 1.8975 1.7399 0.0848 1.5737 1.9061

represents the sample size of each small area; the third column indicates the estimation

methods; the fourth column lists the true values of the population. The following two

columns list the point estimates and standard deviation (posterior standard deviation). The

last two columns list the 95% credible intervals for each estimation. Comparing with the

direct estimates, the EBLUP and HB estimations provide the narrower credible intervals.

However, two out of five credible intervals in the EBLUP estimations did not contains the

true values. Therefore, the HB estimation performs the best among three methodologies.

Next, in consistency with our data set, we consider the binary dependent variable. Hence,

we rewrite the first model as the probit model.

Model 2 : y∗ij = 0.5 ∗ xij1 + xij2 + vi + eij (5.2)
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yij =


1 if y∗ij > 0

0 if y∗ij ≤ 0

. (5.3)

Again, we list the information and results for model 2 in Table 5.2. Similar to the results for

model 1, the EBLUP and HB estimations provide much smaller credible intervals relative

to direct estimates. Three out of five credible intervals in the EBLUP estimation did not

contains the true values. Moreover, the point estimates for the first small area is greater

than one, which is unrealistic. Therefore, the HB estimation performs the best among three

methodologies.

Table 5.2: Results of simulation for Model 2

Small Area Ni Method True
Value

Point
Estimate

Standard
Deviation 95% credible intervals

1 64 Direct 0.9115 0.8750 0.3333 0.2217 1.5283
2 72 0.817 0.7361 0.4438 -0.1338 1.6060
3 87 0.7775 0.8391 0.3696 0.1147 1.5635
4 108 0.7122 0.6389 0.4826 -0.3069 1.5847
5 196 0.888 0.8622 0.3463 0.1836 1.5409
1 64 EBLUP 0.9115 1.0152 0.0507 0.9158 1.1147
2 72 0.817 0.8201 0.0459 0.7301 0.9102
3 87 0.7775 0.8974 0.0436 0.8120 0.9828
4 108 0.7122 0.7622 0.0405 0.6829 0.8416
5 196 0.888 0.9796 0.0313 0.9184 1.0409
1 64 HB 0.9115 0.9151 0.028 0.8602 0.9700
2 72 0.817 0.8004 0.0275 0.7465 0.8543
3 87 0.7775 0.8239 0.0267 0.7716 0.8762
4 108 0.7122 0.7679 0.0369 0.6954 0.8404
5 196 0.888 0.9111 0.0207 0.8705 0.9517

5.2 Model setup for LHIS data set

In this section, we employed the modified the Louisiana Health Insurance Survey (LHIS)

data set. As we mentioned earlier, the LHIS data set is a biannual data set which starts
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from 2003 and provides the most accurate and comprehensive assessment of Louisiana’s

uninsured populations every two years. The economic environment has changed over the

past decade. In particular, in the state of Louisiana, the effects of Hurricane Katrina1, in

August 2005, were catastrophic and widespread. The LHIS data set was collected during the

summer of 2005, hence, the LHIS data in survey year 2005 reflect the insurance status before

the Hurricane Katrina. Therefore, we could consider that public health insurance status are

quite similar in the survey year 2003 and 2005. After that, the economy in Louisiana, as

well as the health insurance states are in recovery from the disaster.

Later, the United States housing bubble affected many parts of the U.S. housing market

in over half of American states. The credit crisis resulting from the bursting of the housing

bubble is the primary cause of the 2007-2009 recession in the United States. During the

recession, job loss was more pronounced, and it was often paired with a loss of health

insurance coverage. After the long and deep recession, the economic recovery began in

mid-2009.

As we mentioned in the previous chapter, we are planing to combine different data sets

together in order to reach an increasing sample set. In our simulation, we combine the years

2003 and 2005 together, leave year 2007 and year 2009 separate, while year 2011 and 2013

are combined as one group. In particular, except survey year 2011, we specify a unique

coefficient for the independent variable “Poverty,” which indicates whether the adult lives in

a family below 185% of the federal poverty line2.

Following equation (2.9), the model is set up as follows:

y∗i = Xiβ + vi + ui, i = 1, ...,m. (5.4)
1Hurricane Katrina made landfall in Louisiana on August 29, 2005, as a Category 3 hurricane. The storm

was large and had an effect on several different areas, for instance, all counties in Mississippi and Louisiana,
22 counties in Western Alabama and 11 counties in Florida.

2The health insurance coverage of children is different from that of adults. Due to the Children’s Health
Insurance Program (CHIP), the children’s health insurance coverage is less sensitive to the economic envi-
ronment. Therefore, in this Chapter, we only apply the simulation on adults.
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where Xi is the matrix containing the individual’s information, β is the specified coefficients,

vi is the area-specific effect, and ui ∼ N(0, 1). For the cross-sectional data, we follows the

regression model (69) to specify the coefficients.

yij =
6∑

k=1

βikxik +
11∑
k=7

βij ∗Dyear +
17∑

k=12

βikxik ∗D2003

+
23∑

k=18

βikxik ∗D2005 +
29∑

k=24

βikxik ∗D2007

+
35∑

k=30

βikxik ∗D2009 +
41∑

k=36

βikxik ∗D2011 + vi + eij

(5.5)

where i = 1, ..., 64, j = 1, ...mi, D2003, ..., D2011 are dummy variables that take the value

one if the individual is collected in that particular year. Hence, the following table lists the

values of each βik.

Table 5.3: Simulation Coefficients

Variables 2003 2005 2007 2009 2011 2013
Constant 0.4551 0.4978 0.5718 0.4926 0 -0.5544
Black 0 0 0.0615 0.0337 0 0.1892
Income 0 0 0.0089 -0.0338 0 -0.0237
Female 0 0 0.0370 -0.0717 0 -0.0226
Poverty -0.4 -0.4 -0.4 -0.4 0 0.7796
Working Percent 0 0 -0.2230 0.1257 0 -0.0251
Age 0 0 -0.0012 -0.0038 0 -0.0140

Furthermore, for the binary dependent variable, we need to specify the observed depen-

dent variable yij as:

yij =


1 if y∗ij > 0

0 if y∗ij ≤ 0

. (5.6)
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5.3 Simulation Results

In this section, we present the results from the simulation. The Figures 5.1 - 5.4 show

the convergence of the estimates for variables Age, Working percent, Income and Poverty,

respectively. All the estimates converge to zero with the increasing of the strength of the

scale factor S, roughly after scale factor becomes 100,000. Furthermore, similar to the raw

data set, the Bayesian informative prior shrink the pooled estimates to the cross-sectional

estimates. As listed in Figure 5.5, the selected estimate plots for parishes show that the

trend is not smooth around scale level S=100; 1,000; and 10,000. Based on the principles of

the scale factor, the larger the scale factor S, the stronger the prior. The non-smooth trend

may be caused by the relatively large value of variables “Age” and “Income”3.

Practically, we could specify a particular value for scale factor S, in order to get the

estimates for the health insurance coverage for each parish. Furthermore, due to the different

performances of the strength of the scale factor S, we could specify a set of scale factors. For

instance, we construct a more strength scale factor on variable “Age”, and a strength scale

factor on variable “Income”, while a plain scale factor on others.

3During the regression, we use the adjusted household income as household income/10,000. But it is still
quite large relative to other variables.
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Figure 5.1: Simulation Results for βAge

101101101



Figure 5.2: Simulation Results for βWorkingPercent
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Figure 5.3: Simulation Results for βIncome
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Figure 5.4: Simulation Results for βPoverty
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Figure 5.5: Estimates for selected parishes
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Chapter 6. Summary of Conclusions
In most practical applications, sample sizes are not large enough to allow direct estima-

tion, while sample surveys provide a cost effective way of obtaining estimates for character-

istics of interest at both population level and subpopulation level. When direct estimates

are not possible, one has to rely upon alternative methods that depend on the availabil-

ity of population level information. Small area estimation provides the possibilities of the

estimation.

In this dissertation, we explore three methodologies, such as the empirical best linear

unbiased predictions, hierarchical Bayes method and hierarchical Bayes method with a probit

model in small area estimation. We apply these methodologies to the Louisiana Health

Insurance Survey (LHIS), and estimate the health insurance coverage for adults and children

for the 64 parishes since 2003 in Louisiana. Among the three methods, the estimates are

similar for adults. On the other hand, the estimates of health insurance coverage for children

show that the hierarchical Bayes estimation with a probit model performs better for the

binary dependent variable. The simulation results also show that direct estimators and

traditional estimators will become problematic when the direct estimator is either unavailable

or unreliable.

Furthermore, we also propose a Bayesian informative approach for cross-sectional data.

The results show that the informative prior in essence shrinks the pooled estimation towards

the cross-sectional estimation significantly and improves the performance of the estimation.

The simulation results also indicate that adults’ health insurance coverage has changed due to

the changes in the economic environment, such as economic recession, and nature disasters,

such as hurricanes, while almost no impact was seen in children’s health insurance coverage

due to the Louisiana Children’s Health and Insurance Program.
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Appendix
In the appendix, we include the number of individuals from the Louisiana Health Insur-

ance Survey for reference.

Table A1: Number of individuals for each survey year (Children)

parish_name
Year

Overall
2003 2005 2007 2009 2011 2013

Acadia 46 152 130 131 125 79 663

Allen 69 99 68 98 114 48 496

Ascension 149 53 113 138 155 119 727

Assumption 216 69 51 92 69 47 544

Avoyelles 143 110 90 121 90 87 641

Beauregard 133 120 129 90 141 85 698

Bienville 13 46 62 79 54 39 293

Bossier 11 119 119 178 188 126 741

Caddo 234 233 331 310 276 218 1602

Calcasieu 495 354 301 456 357 211 2174

Caldwell 9 37 117 67 43 33 306

Cameron 2 56 36 65 41 30 230

Catahoula 54 45 47 42 47 51 286

Claiborne 28 44 52 56 71 34 285

Concordia 95 65 88 92 55 62 457

DeSoto 31 53 54 76 52 53 319

East Baton Rouge 976 629 568 504 498 290 3465

East Carroll 30 29 126 25 71 21 302

East Feliciana 67 14 116 76 77 47 397

Evangeline 240 124 97 99 68 42 670

Franklin 15 64 74 48 44 28 273

Continued on next page
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Table A1 – Continued from previous page

parish_name
Year

Overall
2003 2005 2007 2009 2011 2013

Grant 34 78 37 70 86 43 348

Iberia 164 164 112 169 153 108 870

Iberville 158 39 76 78 71 58 480

Jackson 6 70 60 70 48 38 292

Jefferson 71 353 328 503 343 231 1829

Jefferson Davis 187 91 93 93 102 59 625

LaSalle 22 92 70 93 72 173 522

Lafayette 173 284 260 338 297 151 1503

Lafourche 157 187 141 173 210 118 986

Lincoln 24 80 73 76 87 69 409

Livingston 166 211 222 250 281 181 1311

Madison 39 54 50 44 39 25 251

Morehouse 123 40 76 80 84 41 444

Natchitoches 90 90 83 115 99 46 523

Orleans 1418 375 516 315 271 208 3103

Ouachita 166 199 208 168 200 193 1134

Plaquemines 43 53 154 73 46 37 406

Pointe Coupee 51 22 81 48 56 40 298

Rapides 78 261 181 271 322 166 1279

Red River 31 43 74 52 74 50 324

Richland 140 62 73 69 51 39 434

Sabine 13 87 62 55 89 40 346

St. Bernard 113 75 60 42 48 32 370

St. Charles 88 87 92 132 148 63 610

St. Helena 13 17 157 34 41 38 300

St. James 167 13 56 28 50 49 363

St. John Baptist 152 75 143 92 75 65 602

St. Landry 523 152 133 149 133 113 1203

St. Martin 286 142 74 125 113 85 825
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parish_name
Year

Overall
2003 2005 2007 2009 2011 2013

St. Mary 357 84 150 124 89 79 883

St. Tammany 259 304 345 450 452 228 2038

Tangipahoa 252 192 166 277 204 115 1206

Tensas 1 10 64 16 37 30 158

Terrebonne 217 216 193 216 178 122 1142

Union 14 53 50 62 47 29 255

Vermilion 97 153 128 110 115 83 686

Vernon 40 149 76 131 218 83 697

Washington 120 117 136 134 89 42 638

Webster 100 111 83 110 82 66 552

West Baton Rouge 0 76 35 101 80 43 335

West Carroll 10 50 67 33 47 53 260

West Feliciana 34 6 168 53 44 45 350

Winn 91 45 87 56 54 60 393

Total 9344 7577 8262 8521 8061 5387 47152

Table A2: Number of individuals for each survey year (Adults)

parish_name
Year

Overall
2003 2005 2007 2009 2011 2013

Acadia 59 385 248 301 306 214 1513

Allen 131 188 180 204 217 157 1077

Ascension 235 152 205 220 434 301 1547

Assumption 342 178 118 216 164 131 1149

Avoyelles 309 207 208 269 264 198 1455

Beauregard 213 288 250 255 321 194 1521

Bienville 23 106 156 166 117 118 686

Bossier 28 282 297 335 465 346 1753
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Year
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Caddo 399 671 669 643 754 534 3670

Calcasieu 922 869 717 944 967 617 5036

Caldwell 14 131 270 183 142 131 871

Cameron 4 125 112 120 131 102 594

Catahoula 97 89 86 141 143 112 668

Claiborne 53 107 163 168 158 134 783

Concordia 174 123 185 185 173 127 967

DeSoto 50 139 116 177 148 125 755

East Baton Rouge 1752 1465 1178 1095 1276 896 7662

East Carroll 42 42 188 76 91 85 524

East Feliciana 155 38 240 185 181 114 913

Evangeline 465 226 143 214 202 146 1396

Franklin 23 147 172 154 166 107 769

Grant 52 127 100 175 196 137 787

Iberia 225 405 195 357 374 233 1789

Iberville 281 128 145 205 180 139 1078

Jackson 24 166 169 145 154 135 793

Jefferson 134 906 694 1308 1004 646 4692

Jefferson Davis 373 230 189 234 225 167 1418

LaSalle 38 154 161 237 189 463 1242

Lafayette 318 621 516 645 745 490 3335

Lafourche 318 395 301 421 524 368 2327

Lincoln 70 206 183 193 235 202 1089

Livingston 211 420 379 482 609 365 2466

Madison 84 119 126 129 99 103 660

Morehouse 209 130 165 153 165 145 967

Natchitoches 133 209 192 237 232 124 1127

Orleans 2227 1037 1355 840 687 542 6688

Ouachita 250 399 459 304 490 454 2356
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Plaquemines 69 115 296 137 124 97 838

Pointe Coupee 79 49 198 127 138 122 713

Rapides 139 603 356 582 634 491 2805

Red River 58 122 163 130 179 109 761

Richland 188 124 154 193 126 123 908

Sabine 45 190 153 145 182 141 856

St. Bernard 195 199 107 122 137 111 871

St. Charles 149 176 243 305 390 206 1469

St. Helena 12 47 419 95 125 89 787

St. James 246 47 131 89 134 134 781

St. John Baptist 307 151 329 197 227 136 1347

St. Landry 848 350 280 317 302 254 2351

St. Martin 540 319 180 301 284 220 1844

St. Mary 638 199 246 250 215 202 1750

St. Tammany 374 757 735 948 1051 602 4467

Tangipahoa 336 511 304 533 564 329 2577

Tensas 10 47 154 66 83 100 460

Terrebonne 380 474 372 494 492 300 2512

Union 29 119 143 153 153 130 727

Vermilion 109 324 263 270 316 199 1481

Vernon 43 340 193 232 396 247 1451

Washington 181 255 261 305 235 142 1379

Webster 170 289 175 263 232 161 1290

West Baton Rouge 0 164 81 219 205 142 811

West Carroll 18 110 172 112 125 124 661

West Feliciana 69 29 380 122 122 97 819

Winn 178 123 238 169 150 138 996

Total 15847 17843 17956 19192 20249 14748 105835
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