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ABSTRACT 

In this dissertation, I present three distinct topics on labor economics that can be read 

independently from one another. In the first chapter, using matched mother-child data from the 

National Longitudinal Survey of Youth, I investigate the impact of mothers’ involuntary job loss 

on children’s academic achievement. In the next chapter, I examine the impact of eye and hair 

color on wages-at-first-job after schooling. In addition, I investigate whether hair color has an 

impact on the wage-at-the-first-job if the individual resides among people who have similar 

features.  In the last chapter, I examine the impact of unemployment insurance benefit generosity 

on benefit duration and labor market transitions in Turkey with a regression discontinuity design. 
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CHAPTER 1. INTRODUCTION 

 

This dissertation consists of three distinct essays within the broad field of labor 

economics. In Chapter 2, I investigate the impact of mother’s involuntary job loss on her 

children’s academic achievement. In the next chapter, I examine the impact of hair and eye color 

on the first-job-after schooling. In Chapter 4, I study the impact of unemployment insurance 

generosity on unemployment duration, labor market transitions, cheating the system and 

rejecting services of the Employment Agency. 

 

1.1. MOTHERS’ INVOLUNTARY JOB LOSS AND CHILDREN’S ACADEMIC 

 ACHIEVEMENT 

 

This chapter investigates the impact of mother’s involuntary job loss on her children’s 

academic achievement. I utilize a matched mother-child data from the National Longitudinal 

Survey of Youth 1979. I define job displacement as an involuntary job loss due to plant closure. I 

find that mother’s job displacement has a negative impact on her children’s academic 

achievement, which is measured by PIAT math and reading test scores. In addition, the impact of 

the mother’s job displacement on her child’s test scores is different for single mother and 

married mother families. I find that there is a negative impact of mother’s job displacement on 

child’s both test scores for single mothers only. However, there is no evidence that job 

displacement affects test scores of the children of married mothers.  

I investigate two possible channels through which mother’s job displacement affects test 

scores: income and child behavioral problems. The results show that mother’s job displacement 

has a negative impact on her and the family’s income. In addition, her job displacement increases 

behavioral problems of the child. I find evidence that mother income and child’s behavioral 
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problems are channels through which mother’s job displacement affects math and reading test 

scores. 

1.2. IT PAYS OFF TO BE BLOND IN A NON-BLOND NEIGHBORHOOD: EYE 

COLOR, HAIR COLOR, ETHNIC COMPOSITION AND STARTING WAGES 

In Chapter 3, I investigate the impact of physical appearance, eye and hair color, on the 

wage at-the-first-job-after completing schooling. In addition, I investigate whether the impact of 

hair color persists if the individual resides among people who have the similar features. I utilize 

two data sets: National Longitudinal Survey of Youth 1979 and Census of Population 1980. The 

results show that having blonde hair has a positive impact on the wage-at-the-first-job 

particularly for females and whites. There is no evidence suggesting eye color has an effect on 

starting wages. 

In order to investigate whether the impact of hair color is still observed in a county where 

the majority of people have the similar features, I link ethnic origin/ancestry information 

collected by census to three anthropological studies classifying ethnic groups by their hair and 

eye color. If the share of light featured ethnic groups (ethnic groups that are identified by blonde, 

red hair and blue/green/hazel eyes) is greater than fifty-percent, the county is considered as 

“light-featured,” whilst it is considered as “dark-featured” if the share is less than fifty-percent. I 

find that blonde females residing in counties where brown/black hair is the common feature earn 

more compared to females with brown/black hair and residing in the same county. There is some 

evidence that individuals with brown/black hair and residing in a light-featured county get a 

wage penalty compared to their counterparts residing in a dark-featured county. 
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1.3. THE EFFECT OF UNEMPLOYMENT INSURANCE GENEROSITY ON 

 UNEMPLOYMENT DURATION AND LABOR MARKET TRANSITIONS: 

 EVIDENCE FROM TURKEY           

 

In Chapter 4, I investigate the impact of unemployment insurance generosity on 

unemployment duration, labor market transitions, cheating the system and rejecting services of 

the Employment Agency. Turkey has enacted the Unemployment Insurance Law around two 

decades ago. According the law, workers who pay premium for at least 600 days are eligible to 

receive unemployment insurance benefits (along with other criteria). If the worker has less than 

900-paid-premium-days, she is eligible to 6-month UI benefits. However, if she has 900 or more 

paid-premium-days, she is entitled to 8-month UI benefits. The two-month difference is 

considered as “benefit extension/generosity.” I utilize regression discontinuity design and use 

local linear regressions to investigate the relationship between benefit generosity and outcomes. 

The identification comes from the discontinuity of outcome variables at the cutoff, which is 900-

paid-premium-days.  

I find that the unemployment insurance generosity increases unemployment duration by 

0.7 weeks and decrease the probability of entering employment by six-percentage points in 

Turkey. These finding are greater than the findings of studies investigating the impact of benefit 

generosity on unemployment duration and probability of finding a job for developed countries. 

Many of the studies do not investigate transition to non-participation in the labor force. I find 

that benefit generosity has no impact on the probability of entering non-participation, however, 

there is evidence that it leads to a decrease in non-participation in the labor force for single 

benefit takers. Moreover, unemployment insurance generosity decreases the probability of 

cheating the UI system and rejecting the Turkish Employment Agency’s services.  

Chapter 5 summarizes the findings of these three studies.  
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CHAPTER 2.  MOTHERS’ INVOLUNTARY JOB LOSS AND CHILDREN’S 

ACADEMIC ACHIEVEMENT 

2.1. INTRODUCTION 

In families where women are income earners, the job loss of women is expected to affect 

the well-being of the family. Between 2007 and 2009, 6.9 million workers were displaced from 

their jobs in the U.S. and two-fifths of these displaced workers were women (Bureau of Labor 

Statistics, 2011).
1
 In this study, I use the National Longitudinal Survey of Youth 1979 (NLSY79)

and National Longitudinal Survey of Youth 1979 Child/Young Adult Survey (NLSY79-CS) to 

investigate the effect of mothers’ job displacement on children’s academic achievement during 

the period 1988-2002. Job displacement is defined as an involuntary job loss due to plant 

closure. The educational achievement of the child is measured by math and reading scores from 

the Peabody Individual Achievement Tests (PIATs). 

The negative impact of job displacement on income, consumption, health, and family 

structure has been well documented in the literature. For example, Kletzer and Fairlie (2003), 

Jocobson, LaLonde and Sullivan (1993), Stevens (1995), and Ruhm (1991a, 1991b) show that 

following job displacement, the earnings of workers decline by 10 to 25 percent. Furthermore, 

Browning and Crossley (2006) find that layoffs reduce family consumption by 4 to 10 percent. 

Ruhm (1991a, 1991b) concludes that displaced workers experience longer unemployment spells. 

Involuntary job loss not only affects income, but also affects family dynamics and health 

of the individual. Sullivan and von Wachter (2009) find that the mortality rate of employees who 

were displaced is higher compared to the workers who were not displaced. Although their study 

covers a small sample of workers from Pennsylvania, this result is significant in terms of the 

1
 http://www.bls.gov/cps/wlf-databook-2011.pdf 

http://www.bls.gov/cps/wlf-databook-2011.pdf
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impact of job displacement on parents’ health. Using two data sets, Americans’ Changing Lives 

Study and Wisconsin Longitudinal Study, Burgard, Brand and House (2007) find that 

involuntary job loss causes poorer physical health and it increases depressive symptoms. 

Following a job loss, the individual may experience marriage problems, often leading to 

separation or divorce (Charles and Stephens, 2004). 

 These negative effects of involuntary job loss may spread to children. The potential 

channels through which these effects reach and affect children can be classified under two main 

mechanisms: income and depression/stress. The decrease in family income due to displacement 

limits the financial resources available for children. Particular channels through which this effect 

works includes less spending on education, health, food, and social activities. Shea (2000), using 

the Panel Study of Income Dynamics and job loss as an exogenous shock to income, finds that 

parental income has a negligible effect on child’s future labor market earnings and years of 

schooling. However, Oreopoulos, Page and Stevens (2008) find that individuals whose father 

experienced job loss when they were children have lower annual earnings compared to children 

whose father did not experience job loss. Coelli (2011) investigates the impact of job loss on 

child’s educational outcomes by using the Canadian Survey of Labour and Income Dynamics 

and concludes that parental job loss decreases the probability of attending university and 

increases the probability of dropping out of high school. Dahl and Lochner (2012) investigate the 

effect of family income on child’s test scores by using the NLSY79, and find that a $1,000 

increase in family income leads to 2.1 and 3.6 percent of a standard deviation increase in math 

and reading test scores, respectively. 

 There are several potential reasons for a psychological disturbance following a job loss. 

For example, McLoyd (1989) defines the economic loss caused by job loss as a stressor and 
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“crisis-provoking event” for which parents were not prepared. In addition, parents may be 

stressed because being jobless may be associated with loss of social status and shame, or because 

they may be stressed during the process of looking for a new job.  As a result, a parent’s attitude 

towards children may change. For example, parents may pay less attention to a child’s needs, or 

they may be abusive. The new emotional and psychological environment at home may disturb 

the child. A child’s concentration at school and motivation for school and education related 

activities may decrease and the child’s expectations about the future may be impacted. On the 

other hand, there may be a positive effect of the mother being at home. Following a job 

separation, the mother may have additional time to spend with her children. The mother may be 

able to supervise children better, help with schoolwork, cook healthy foods at home, and increase 

interaction with her children. If the increase in time spent together is also quality time, then there 

may be a positive impact of job displacement on child development. Since the mother is usually 

the primary care giver of children in most cases, the extra time may increase child’s educational 

outcome.  

 Studies focusing on the impact of parental job displacement on child’s educational 

outcome generally find a negative effect. For example, Stevens and Schaller (2011) use Survey 

of Income and Program Participation and conclude that the job loss of parents increases the 

probability of grade repetition by 15-percent. Kalil and Ziol-Guest (2008) investigate the 

relationship between parental employment experiences and their children’s grade repetition and 

school suspension/expulsion. They find that the probability of grade repetition is two times 

higher and the probability of expulsion/suspension is two and a half times higher for children 

whose fathers experienced involuntary job loss, compared to children whose fathers did not lose 

their job. Rege, Telle and Votruba (2011), using data from Norway, find that parental job loss 
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has a negative effect on child’s school performance, which is measured by grade point averages 

(GPA) of graduating secondary school students.  

 The current chapter provides three contributions to the existing literature. First, there are 

not many studies focusing on the impact of mother’s job loss on child outcomes. Rege et al. 

(2011), and Kalil and Ziol-Guest (2008) are the only studies, to the best of my knowledge, which 

investigate the impact of mother’s job loss separately from the father’s job loss. Kalil and Ziol-

Guest (2008) find that the employment patterns of the mother do not affect academic progress. 

However, for a family in which both the mother and father work, economic welfare and family 

well-being may well be altered by not only the father’s but also by the mother’s job loss. 

Moreover, they focus on job separations that take place due to slack business and work 

conditions, being unable to find a job, labor dispute, illness or disability, and other reasons. The 

exogeneity of these reasons is open to debate. Rege et al. (2011) find a positive but statistically 

insignificant effect of mother’s displacement on the child’s 10
th

 grade GPA. Thus, the question 

whether mother’s job displacement plays a role in academic achievement of children requires 

further investigation. 

 Second, this study utilizes the exact timing of the displacement incidence of the mother 

and educational outcome of the child. NLSY provides a detailed work history of mothers
2
, which 

enables me to observe the date of the displacement. The administration date of the PIAT tests is 

the child’s interview date. Thus, I can measure three intervals with precision: first, the time 

interval between tests taken by children, second, the time interval between the displacement 

event and the test dates and third, the duration of unemployment following job displacement. In a 

particular survey year the child takes the test at the interview date. In order to observe the link 

                                                 
2
 The data does not provide information on father’s work history.  
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between mother’s job displacement and the child’s test score, I can distinguish whether the test 

was taken before or after the displacement incidence. Thus, using the detailed event dates in 

NLSY, I can accurately link the date of displacement to the date of the test.
3
  

 Third, in this study I employ a mother-child matched data set provided by the NLSY79 

and NLSY79-CS.
4
 The matched data set provides detailed demographic characteristics of the 

mother and the child, work history of the mother, and the child’s achievement test scores. 

Starting 1986, children who are five years and older are administered PIATs. There are three 

PIAT assessments: math, reading recognition and reading comprehension. In this study, I will 

focus on PIAT in mathematics (PIAT-Math) and in reading recognition (PIAT-Reading). Since 

the NLSY79-CS is a biennial survey, for children ages 5 to 14, it is possible to observe the 

achievement score of the same child for up to 5 periods.
5
  

  

                                                 
3
 Stevens and Schaller (2011) utilize the job loss that occurred in the year of grade repetition and 

one or more years prior to the grade repetition to investigate the impact of parental job loss. 

However, it might be the case that a parent lost her/his job at either the very beginning or end of 

the school year. The impact of the former is expected to be different than the latter. If the length 

of time between displacement and the test is not controlled for, the same weight will be 

attributed to the displacement that occurred in a closer date to test date and to the displacement 

that occurred in a distant time. Similarly, in Kalil and Ziol-Guest (2008), the timing of the 

displacement is set to be within a twenty-four month window, but the actual length of the time 

between involuntary job loss and education outcome is not considered. Another study 

investigating the link between parental unemployment and test scores is Levine (2011). He finds 

that father’s or mother’s unemployment does have much effect on children’s test scores.  

However, he does not separate unemployment by reasons. 
4
 To the best of my knowledge, the only study using the same data set to investigate the 

association between job displacement and child outcomes is Wightman (2009). Although the 

NLSY79 does not provide detailed work history for the fathers (spouses), he focuses on either 

parent’s job loss by considering fathers (spouses) who were not working in the previous year as 

displaced due to “any reason” This set up of involuntary job loss is problematic because job loss 

due to illness, being fired, seasonal jobs, etc. are not exogenous shocks.  
5
 If a child takes the test when s/he is 5 years old for the first time, s/he can take the test again at 

the ages 7, 9, 11 and 13. When s/he is 15, s/he is not administered the test. Note that the child 

might not necessarily take the test in consecutive survey years. 
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Using a matched mother-child sample from NLSY79, I find evidence that mother’s job 

displacement affects child’s reading and math scores negatively. The results are different for 

single and married mother samples. I find that job displacement of a single mother generates 

lower reading and math scores. This impact is due to displacement that occurred one year prior 

to the test date and lasted up to twelve months. I cannot find evidence that a married mother’s 

job displacement affects test scores. Controlling for child fixed-effects reduces the estimated 

impacts but statistical significance is retained for reading score. In addition, the falsification test 

supports the assumption that mother’s job displacement due to plant closure is exogenous. 

Finally, the results from the strategy introduced by Oster (2015) suggest that the results are 

causal. 

 The rest of the chapter proceeds as follows: Section 2 describes the empirical 

specification, Section 3 introduces the data and descriptive statistics, Section 4 presents the 

results and Section 5 concludes. 

 

2.2. EMPIRICAL SPECIFICATION 

Equation [1] depicts a child’s academic success (school performance) as a function of 

her/his own attributes and the family characteristics. 

 

                                           [1] 

 

where   is the academic achievement of the child,   is a vector of child characteristics and    is 

the parental investment which is a function of characteristics of parents, children, and family 

income. Z stands for the mother characteristics. Equation [2] represents parental investment as a 
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function of family income, Y, the quality and quantity of time spent with children,    , the 

characteristics of the child and the mother, X and Z respectively, and a family shock,  .  

 

                                                                         [2] 

 

  stands for the involuntary job loss of the mother. Job displacement might affect parental 

investment directly as depicted in Equation [2], but also indirectly through channels such as 

reduction in income, change in the quality and quantity of time spent with children and other 

unobserved channels. For example, uncertainty about the future, change in the family structure 

(e.g. divorce and separation) and the child’s perception about education following a job 

displacement might decrease the investment in children.  

 Family income consists of mother income (MI) and non-mother income (NMI). Mother’s 

income includes components such as income from her wages, salary, and tips, military income, 

income from farm and business and unemployment compensation. The other family income 

includes spouse or partner’s income from wages and salary, his income from military, income 

from farm and business, unemployment compensation, income of other family members, welfare 

payments, child support and alimony, and income from sources other than family members. 

Thus, family income is         , where          . Mother’s job displacement is 

expected to reduce mother’s income. These arguments indicate that family income, Y, can be 

represented as:                        

 

                                           [3] 
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 The quality and the quantity of time the mother spends with children,   , is a function of 

family income, displacement, and mother characteristics. Since family income consists of both 

mother and non-mother income I can write quality and quantity of time as: 

 

                                               [4] 

 

Substituting equations 3 and 4 into equation 2, and equation 2 into equation 1 yields a reduced 

form where                 . The estimation equation therefore is: 

 

            
       

         
       

                                       [5] 

 

where      stands for academic achievement of child i of mother j at time t, where t is the child’s 

test date.
6
        represents the mother’s job displacement.      is a vector of child characteristics 

which includes gender, race, birth order, age indicators, number of siblings, and the type of 

school the child attends.       is a vector of mother characteristics. This vector includes education 

status of the mother, mother’s age at birth of child i, whether the household resides in an urban 

area, and marital status of mother. There is no information on the father’s work history in the 

NLSY79. Thus, I cannot control for father’s work status. 

  Estimation of equation [5] will provide an unbiased estimate of the displacement 

coefficient under the assumption that involuntary job loss is independent of mother and child 

characteristics. This may be a strong assumption. In the literature, both layoffs and plant closures 

are utilized as exogenous reasons of job loss (for example Kletzer and Fairlie, 2003; Ruhm, 

                                                 
6
 If the child’s interview date is missing, the mother’s interview date is employed as child’s 

interview date.  
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1991a and 1991b; Charles and Stephens, 2004; etc). Involuntary job loss due to being laid off, 

however, might be correlated with the characteristics of the mother. For instance, a mother with 

relatively low productivity is more likely to be laid off instead of a mother with relatively high 

productivity. If the mother’s productivity is not related to the child’s test score, then layoffs can 

be used in the analysis. However, if mothers who are more productive at work are also more 

productive at home regarding home production, the productivity differences will have an impact 

on the test scores. Thus, I focus on displacements related to plant closures as indicators of 

involuntary job loss.
7
 Equation [5] includes year dummies in order to control for unobserved 

year effects,   .  

 

2.3. DATA 

To analyze the impact of mother’s job displacement on child’s educational outcome a 

child-mother matched data set is required. The National Longitudinal Survey of Youth 1979 

(NLSY79), and the National Longitudinal Survey of Youth 1979 Child/Young Adult Survey 

(NLSY79-CS) provide such a matching for mothers and their children. NLSY79 includes 12,686 

individuals, 6,403 males and 6,283 females, who were initially interviewed in 1979 and were 

aged 14-21 as of December 1978. The NLSY79 was conducted annually from 1979 to 1994, and 

biennially thereafter. The NLSY79-CS includes the children who were born to female 

respondents of NLSY79. NLSY79-CS survey started at 1986 and has been conducted biennially 

thereafter. 

                                                 
7
 Some studies include being fired or discharged as a reason of an involuntary job loss. For 

example Steven and Schaller (2011) and Wightman (2009) employ being fired a reason of 

involuntary job loss. Following Kletzer and Fairlie (2003) I exclude being fired/discharged from 

the analyses due to the same concerns I exclude layoffs. 
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 The NLSY79 provides information on earnings, marriage, demographic and many other 

characteristics of the mother. The NLSY79-CS provides information on child characteristics as 

well as several assessment measures such as academic achievement, temperament, motor and 

social development, and behavioral problems. 

 

2.3.1. Test Scores: Peabody Individual Achievement Tests 

Beginning in 1986, children who were aged five and above were administered the 

Peabody Individual Achievement Tests (PIAT) in mathematics (PIAT-Math), in reading 

recognition (PIAT-Reading), and in reading comprehension (PIAT-Comp).
8
 Children receive a 

PIAT-Comp only if they get a certain score on PIAT-Reading. Thus, I focus only on the PIAT-

Math and PIAT-Reading. The NLSY79 guides define PIAT-Math as a measure of child’s 

mathematical attainment as it is taught in mainstream education.
9
 It includes 84 questions that 

can be solved mentally. According to PIAT manual the mathematics test is designed to measure 

the ability of applying mathematical knowledge to solve practical problems (Dunn and 

Markwardt, 1970). Thus, it is not only measuring the knowledge of mathematics, but also the 

ability to use this knowledge. PIAT-Reading is defined as an oral reading test and measures word 

recognition and pronunciation ability, which are essential components of reading achievement.
10

 

It is also noted that reading ability is a sign of a “cultured person,” which might be accepted as 

an asset in the process of human capital accumulation. These measures are accepted as highly 

reliable and valid assessments of a child’s academic achievement and are utilized by many 

researchers as a measure of achievement (Todd and Wolpin, 2007; Dahl and Lochner, 2012).  

                                                 
8
 After 1994, the test is given to children aged 5-14 only. Thus, the sample consists of children of 

this age range. 
9
 http://www.nlsinfo.org/childya/nlsdocs/guide/assessments/PIATMath.htm  

10
 http://www.nlsinfo.org/childya/nlsdocs/guide/assessments/PIATReading.htm  

http://www.nlsinfo.org/childya/nlsdocs/guide/assessments/PIATMath.htm
http://www.nlsinfo.org/childya/nlsdocs/guide/assessments/PIATReading.htm
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 In this study, the standardized PIAT scores are utilized. PIAT scores have a mean of 100 

and standard deviation of 15. Since the NLSY79-CS is a biennial survey, for children aged 5-14 

it is possible to observe the achievement score of the same child for up to 5 periods. 

 

2.3.2. Mother’s Job Displacement  

One of the advantages of the NLSY79 is to have access to detailed work history of 

respondents. In each survey year, the respondents provide the start-end dates, and the reason for 

leaving each job for up to five jobs.
11

 Thus, from the work history it is possible to identify the 

exact date of a job loss.
12

 I define mother’s job displacement as job loss due to plant closure. The 

job displacement is measured by     , and t represents the date the PIAT was administered. 

     takes the value of one if the child’s mother is displaced any time within the 24-month period 

prior to the child’s test date. For each child, I create a 24-month window that has the test day as 

the starting point. For example, if the child takes the test on 12
th

 of March, 2000, the window in 

which the mother might experience job displacement begins at 3/12/1998 and ends at 3/12/2000. 

If the child’s mother j is displaced within this period,          takes the value of one. Because the 

children take the test on different dates, I restrict mothers of the control group to those who have 

three continuous years of work experience. Following the example given above, children in the 

control group have mothers who have been working continuously for three years (or 36 months) 

for 2000, 1999 and 1998 survey years. Thus,          takes the value of zero for these mothers. 

 

                                                 
11

 The work history is constructed by following NLSY79 updated Appendix 9, which explains 

linking the jobs through survey years. After 1998, the mother’s work history is known up to 11-

12 jobs. However, the reason why respondent left the job is not available for the jobs listed after 

the fifth. Thus, this information is not utilized in the study. 
12

 There is no information on fathers work history. Thus, I cannot control for the father’s 

employment status. 
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2.3.3.  Descriptive Statistics 

Table 2.1 reports descriptive statistics for the estimation sample by mother’s marital 

status and the definitions of the variables are given in Appendix A, Table A.1. The PIAT is given 

to children who are at least 5 years old, and beginning in 1994, the test was no longer given to 

children older than 14. Thus, the final estimation sample consists of children who are between 

the ages of 5 and 14. I exclude children who are not living with their mothers since the focus of 

the study is the interaction between mother and the child. Children who are in the age interval 5-

14 but who do not have a test score are excluded from the sample. In addition, since some of the 

child characteristics are not available for 1986 survey, this survey year is excluded from the 

analyses. Finally, children whose mothers are not in the labor force and do not satisfy displaced 

or non-displaced sample criteria are excluded. The final sample consists of 3,111 children 

between the ages of 5 and 14, living with the mother at the time of interview and have a test 

score.
13

 

 The average PIAT-Reading for the all mothers sample is 106. PIAT-Reading is 102 for 

children whose mother experienced a job displacement, and it is 106 for children whose mother 

was continuously working during the reference period. The entire sample average of PIAT-Math 

is 102 and the average for the displaced mothers sample is 99. The average for the PIAT-Math 

score is lower compared to reading test. Both reading and math test scores are lower for the 

single mother sample compared to the married mother sample and test scores are higher for non-

displaced mothers in both samples. Five-percent of the children in the all mothers sample have 

mothers who have experienced displacement during the period 1988-2002. For the single mother

                                                 
13

 There are 1,785 mothers and 199 of them experience an involuntary job loss before the child 

takes the test. On average, children have two test scores.  
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Table 2.1 

Descriptive Statistics 

Variables All Mothers  Single Mother Sample  Married Mother Sample 

 Entire 

Sample 
Displaced 

Non-

Displaced 

 Entire 

Sample 
Displaced 

Non-

Displaced 

 Entire 

Sample 
Displaced 

Non-

Displaced 

            

PIAT Achievement Tests          

            

PIAT-Reading 106.00 101.90 106.24  102.99 99.42 103.24  107.28 103.67 107.47 

 (14.29) (14.03) (14.27)  (14.54) (14.18) (14.54)  (14.00) (13.68) (13.98) 

PIAT-Math 102.46 98.97 102.66  99.33 95.55 99.58  103.79 101.42 103.93 

 (13.36) (13.41) (13.34)  (12.92) (12.11) (12.91)  (13.33) (13.79) (13.31) 

Displacement            

            

Job Displacement  0.05    0.07    0.04  

  (0.22)    (0.25)    (0.20)  

Unemployment Spell 4.14    4.49    3.87  

  (5.58)    (5.96)    (5.29)  

Child Characteristics          

            

First Born 0.44 0.42 0.44  0.42 0.45 0.41  0.44 0.39 0.45 

 (0.50) (0.49) (0.50  (0.49) (0.50) (0.49)  (0.50) (0.49) (0.50) 

White 0.53 0.45 0.53  0.33 0.38 0.33  0.61 0.49 0.61 

 (0.50) (0.50) (0.50  (0.47) (0.49) (0.47)  (0.49) (0.50) (0.49) 

Female 0.50 0.57 0.50  0.50 0.59 0.50  0.50 0.55 0.50 

 (0.50) (0.50) (0.50  (0.50) (0.49) (0.50)  (0.50) (0.50) (0.50) 

Number of Siblings 1.47 1.72 1.46  1.44 1.61 1.42  1.48 1.80 1.47 

 (0.98) (1.26) (0.96  (1.06) (1.33) (1.04)  (0.95) (1.20) (0.93) 

Public School 0.64 0.63 0.64  0.66 0.70 0.66  0.63 0.58 0.63 

 (0.48) (0.48) (0.48)  (0.47) (0.46) (0.48)  (0.48) (0.49) (0.48) 
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(Table 2.1 Continued)          

Variables All Mothers  Single Mother Sample  Married Mother Sample 

 Entire 

Sample 
Displaced 

Non-

Displaced 

 Entire 

Sample 
Displaced 

Non-

Displaced 

 Entire 

Sample 
Displaced 

Non-

Displaced 

          

Behavioral Problems 
(1)

          

            

BPI (Total Score) 103.22 105.24 103.04  105.43 109.34 105.10  102.35 102.56 102.25 

 (14.22) (15.40) (14.11)  (14.94) (15.32) (14.87)  (13.83) (14.91) (13.73) 

Anti-social 104.18 105.40 104.03  107.07 109.32 106.84  103.03 102.84 102.95 

 (13.40) (14.42) (13.29)  (14.06) (14.07) (13.99)  (12.96) (14.12) (12.84) 

Anxiety/Depression 101.39 103.60 101.25  102.74 106.70 102.47  100.85 101.58 100.77 

 (12.96) (13.02) (12.94)  (13.34) (13.35) (13.31)  (12.76) (12.44) (12.77) 

Headstrong 101.23 101.74 101.15  101.74 103.54 101.59  101.03 100.55 100.98 

 (12.89) (13.30) (12.85)  (13.02) (13.21) (12.98)  (12.83) (13.28) (12.79) 

Hyperactive 102.49 103.60 102.37  103.76 106.68 103.48  101.98 101.58 101.94 

 (13.58) (14.66) (13.50)  (14.15) (16.13) (13.96)  (13.31) (13.30) (13.30) 

Dependent 104.06 107.20 103.84  106.48 109.39 106.26  103.11 105.76 102.91 

 (13.12) (13.95) (13.04)  (13.50) (13.75) (13.46)  (12.85) (13.96) (12.76) 

Peer Conflict 103.00 103.84 102.92  103.97 106.52 103.77  102.62 102.08 102.59 

 (11.57) (12.55) (11.47)  (12.29) (14.14) (12.11)  (11.26) (11.10) (11.20) 

          

Mother  Characteristics          

            

Family Income 
(2)

 4,895 3,514 4,978  3,061 2,448 3,114  5,673 4,273 5,743 

 (2,646) (1,982) (2,657)  (1,928) (1,403) (1,955)  (2,523) (1,988) (2,525) 

Mother Income 
(2)

 2,349 1,509 2,400  2,240 1,482 2,301  2,395 1,529 2,441 

 (1,358) (997) (1,361)  (1,281) (967) (1,286)  (1,387) (1,020) (1,388) 

Non-Mother Income 
(2)

 2,546 2,005 2,578  821 965 813  3,278 2,744 3,303 

 (2,077) (1,623) (2,095)  (1,253) (1,110) (1,267)  (1,918) (1,525) (1,930) 

Urban 0.75 0.73 0.75  0.80 0.71 0.81  0.73 0.75 0.73 

 (0.43) (0.45) (0.43)  (0.40) (0.46) (0.40)  (0.45) (0.44) (0.44) 
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(Table 2.1 Continued)          

Variables All Mothers  Single Mother Sample  Married Mother Sample 

 Entire 

Sample 
Displaced 

Non-

Displaced 

 Entire 

Sample 
Displaced 

Non-

Displaced 

 Entire 

Sample 
Displaced 

Non-

Displaced 

High School or Less      0.50 0.73 0.49  0.59 0.78 0.58  0.46 0.69 0.45 

 (0.50) (0.45) (0.50)  (0.49) (0.42) (0.49)  (0.50) (0.46) (0.50) 

Age at Birth 26.07 24.62 26.14  25.14 24.14 25.22  26.46 24.95 26.52 

 (4.45) (4.47) (4.44)  (4.65) (4.72) (4.63)  (4.31) (4.27) (4.30) 

Single 0.30 0.42 0.29  - - -  - - - 

 (0.46) (0.49) (0.45)  - - -  - - - 

            

Note: Standard errors are in parentheses. The sample consists of children who are between the ages of 5 to 14, living with the mother at 

the time of the interview and have a test score. In addition, children whose mother does not satisfy displaced and non-displaced sample 

criteria are excluded. (1) The sample consists of children who are between the ages of 5 to 12. (2) The real income with base year 2000. 

 



 19 

sample, seven-percent of the children have a displaced mother (lost her job involuntarily), which 

is higher compared to married mother sample in which only four-percent of the children have a 

displaced mother.  

On average, in both single and married mother samples, forty-four-percent of children 

who have a displaced mother are first born. Thirty three-percent of children in single mother 

sample and sixty-one-percent of children in married mother sample are white. The number of 

siblings is similar for both samples, and the percentage of children with a displaced mother in 

public school for the single mother sample is higher. The behavioral problems index (BPI) is 

higher for single mother sample compared to married mother sample. The children with a 

displaced mother in the single mother sample are more antisocial, depressed, hyperactive and 

dependent compared to children in married mother sample. 

 Family income is expressed in real dollars (2000 prices) and is a monthly measure.  

Average family income is lower for single mother sample and mother income is the same for the 

single and the married mother samples. Other family income, non-mother income,
14

 is lower for 

single mothers, which is expected since there is no husband to support the mother. Other income 

might be obtained from welfare payments, child support and other sources such as other family 

members. For the married mother sample, non-mother income is greater than mother income. In 

both samples, the displaced mothers have lower earnings and lower family income. On average, 

seventy eight-percent of children with a displaced mother in the single mother sample have a 

mother who has no more than a high school education and this percentage is lower for married 

mother sample. In other words, mothers in the married mothers sample are more educated. 

                                                 
14

 The other family income includes income earned by husband, income of other family 

members, welfare payments, child support and income from sources other than family members. 
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2.4. RESULTS 

2.4.1. Mother’s Job Displacement and Child’s Test Scores 

The baseline estimation results from equation [5] are presented in Table 2.2. Columns 1 

and 2 show that the displacement coefficient is small, negative and statistically significant for 

both math and reading test scores. This result suggests that there is evidence that mother’s job 

displacement has a negative impact on child’s test scores. To be specific, the reading score is 

about seventeen-percent and math test is ten-percent of a standard deviation lower for children of 

displaced mothers compared to children of non-displaced mothers. Table 2.2 indicates that child 

and family characteristics are important determinants of the child’s achievement. The results are 

consistent with the previous studies examining the child’s education performance.
15

 On average, 

children with more siblings have relatively lower math and reading scores than children with 

fewer siblings. This might be due to the sharing of parental resources. As the number of siblings 

increases, the child has to share financial and time resources that a parent can devote to their 

children. If the child is the first born, the test scores are higher. The first child spends some time 

alone with parents as the receiver of all resources. Thus, it is possible for a firstborn to 

accumulate higher human capital compared to her/his siblings (See Behrman and Taubman, 

1986; Black, Devereux, and Salvanes, 2005). Females have higher test scores compared to males 

in reading. White children have higher test scores compared to non-white children and children 

in the public schools have lower test scores compared to the children who are in private, 

religious, and other types of schools. 

If the mother has a high school education or less, the test scores for her children are lower 

compared to the mothers who have higher education levels. This effect might be due to the better 

                                                 
15

See Haveman and Wolfe (1995) for a review of determinants of child’s educational 

attainments. 
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Table 2.2 

The Impact of Mother’s Job Displacement on PIAT Scores - All Mothers Sample 

Dependent Variables: PIAT scores   PIAT-Math PIAT-Reading 

   (1) (2) 

Job Displacement within 24-Month Window   -1.537* -2.549*** 

   (0.838) (0.889) 

Characteristics of Child     

   Number of Siblings   -0.775** -0.930** 

   (0.315) (0.366) 

   First Born   0.958** 2.441*** 

   (0.477) (0.536) 

   White   5.988*** 3.412*** 

   (0.565) (0.615) 

   Female   -0.340 2.879*** 

   (0.434) (0.477) 

   Public School   -1.590*** -2.296*** 

   (0.565) (0.586) 

Characteristics of Mother     

   High School or Less   -2.919*** -2.833*** 

   (0.541) (0.613) 

   Urban   0.414 0.492 

   (0.515) (0.575) 

   Age at Birth   0.249** 0.268** 

   (0.114) (0.135) 

   Single   -0.675 -0.616 

   (0.649) (0.786) 

   Non-Mother Income   0.684*** 0.880*** 

   (0.224) (0.248) 

Year and Age Effects   Yes Yes 

Observations   6,055 6,055 

Note: Robust, mother-clustered standard errors are in parentheses. * 10%, ** 5%, ***1%. 

 

supervision abilities of an educated mother or her attitudes towards education. For example, 

Leibowitz (1974) states that the quality of time spent with children increases with the parents’ 

education level. Mother’s age at birth is an important determinant of child’s achievement. 

Similar to the education level of the mother, age at birth may affect the supervision abilities. In 

addition, it is likely that children born at later ages will be planned. Thus, it is more likely that 

the woman would spend more resources on the child. The higher the mother’s age at birth, the 

higher are the child’s reading and math scores as compared to mothers who had the child at early 



 22 

ages. Residing in an urban area and being a single mother do not have significant effects on 

child’s test scores. The non-mother income has positive impact on both test scores.
16

  

A job displacement that occurs at different times prior to the child’s test date might have 

different impacts. Thus, it is important to control for the timing of the displacement. For 

example, a mother’s displacement that happened three months prior to the test date and a 

displacement that occurred twelve months prior to the test date might have different impacts on 

test scores. Furthermore, it is important to consider the length of the time the mother has spent 

jobless following her job displacement. To address these issues, I divided the 24-month period 

prior to child’s test date into two 12-month fixed displacement windows,   {           

   } 17 Three job displacement dummies are created to show the timing of the job displacement 

and the length of the unemployment spell following the job displacement. If the mother was 

displaced one year prior to the test date and experienced an unemployment spell of up to twelve 

months, the first job displacement dummy takes the value of one,    
          . In other 

words, this job displacement dummy consists of children whose mother experienced a period of 

unemployment due to job displacement up to 12 months prior to the test date. The second 

dummy takes the value of one if the mother was displaced two years prior to the test date and 

stayed unemployed for at least thirteen months,    
           . The third one takes the value 

of one if the mother was displaced two years prior to the test date and experienced an 

unemployment spell of up to twelve months. In this latter case, the mother’s joblessness period 

occurred and ended at least thirteen months prior to the test date. Thus, the first job displacement 

                                                 
16

Excluding non-mother income does not change the results presented in Table 2.2. The 

coefficients of job displacement increase to -1.47 and -2.46 for math and reading scores 

respectively. Thus, evidence suggests that non-mother income is not affected by the job 

displacement of the mother. 
17

 The mean of the time interval between the mother’s job displacement and the child’s test date 

is twelve months.  
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dummy shows the impact of a short run job displacement while the second and the third 

dummies show the impact of a long run job displacement. The control group includes children 

whose mothers were working continuously for three years - including the year the child took the 

test.   

The results are presented in Table 2.3. The impact of displacement on test scores is 

negative for math (column 1) and reading scores (column 2) in any window. However, the job 

displacement coefficients are not statistically significant for math test and statistically significant 

for reading score only in the short run. This negative impact of the mother’s job loss may be due 

to a decrease in quality and quantity of time spent with children or decrease in income. 

Following the displacement, the family might suffer sudden decreases in income. This loss might 

reduce the immediate financial resources as well as resources which might be available in the 

following year for the children. However, at the same time, the family might adjust the income 

by working more to compensate for mother’s job loss. This adjustment in the family resources 

may be the reason that mother’s job displacement has no impact on test scores in the long run.  

I re-do the analysis to see if the impact of the mother’s job displacement on her child’s 

test scores changes by mother’s marital status. In the case of single mothers there is no husband 

to compensate for the income loss due to a job loss and there is no emotional support after a job 

loss. Thus, the impact of a job displacement on the family might be different compared to a 

married mother’s job displacement. Table 2.4 shows the impact of job displacement on child’s 

test scores for single and married mother samples. The results in Panel A suggest that for the 

single mother sample, math and reading test scores are lower for children of displaced mothers 

(Panel A1). When I control for the unemployment spell following a job displacement, results 

show that a job displacement which was followed by an up to 12 months unemployment spell in
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Table 2.3 

The Impact of Mother’s Job Displacement followed by different Unemployment Spells on Child’s PIAT Scores 

All Mothers Sample 

Dependent Variables: PIAT scores PIAT- Math PIAT-Reading Children with  

Displaced Mothers % 

 (1) (2)  

    

Displacement 0-12 month before test date -1.471 -2.792** 2.44 

(Unemployment=0-12 months) (1.158) (1.205)  

Displacement 13-24 month before test date -1.950 -1.533 1.49 

(Unemployment=0-12 months) (1.349) (1.470)  

Displacement 13-24 month before test date -0.449 -2.987 0.51 

(Unemployment=13-24 months) (3.116) (3.205)  

Child and Mother Characteristics Yes Yes  

Year and Age Effects Yes Yes  

Observations 6,055 6,055  

Note: Robust, mother-clustered standard errors are in parentheses. The coefficients reported are the effects of the Mother’s Job 

Displacement on the child’s test scores. Child characteristics are whether child is first born, white, female, number of siblings and 

whether child attends to public school and mother characteristics are whether the mother has high school education or lower, whether 

mother resides in an urban area, mother’s age at first birth and non-mother income. * 10%, ** 5%, ***1%. 
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Table 2.4 

The Impact of the Mother’s Job Displacement on PIAT Scores by Mother’s Marital Status 

Dependent Variables: PIAT scores  PIAT-Math  PIAT-Reading Children with  

Displaced Mothers % 

Panel A: Single Mothers (N=1,799)      

Panel A1: 24-Month Window      

Job Displacement within 24-Month Window -3.106***  -3.474**  

  (1.113)  (1.460)  

Panel A2: Different Windows      

Displacement 0-12 month before test date  -2.891**  -4.221** 3.61 

(Unemployment=0-12 months)  (1.391)  (1.793)  

Displacement 13-24 month before test date  -2.624  -0.368 2.17 

(Unemployment=0-12 months)  (1.845)  (2.443)  

Displacement 13-24 month before test date  -5.352  -7.300* 0.89 

(Unemployment=13-24 months)  (3.556)  (4.358)  

      

Panel B: Married Mothers (N=4,256)      

Panel B1: 24-Month Window      

Job Displacement within 24-Month Window -0.088  -1.676  

  (1.173)  (1.128)  

Panel B2: Different Windows      

Displacement 0-12 month before test date  -0.102  -1.547 1.95 

(Unemployment=0-12 months)  (1.739)  (1.622)  

Displacement 13-24 month before test date  -0.906  -1.971 1.20 

(Unemployment=0-12 months)  (1.901)  (1.813)  

Displacement 13-24 month before test date  5.791  2.264 0.35 

(Unemployment=13-24 months)  (4.388)  (4.057)  

Child and Mother Characteristics  Yes  Yes  

Year and Age Effects  Yes  Yes  

Note: Robust, mother-clustered standard errors are in parentheses. The coefficients reported are the effects of the Mother’s Job 

Displacement on the child’s test scores. Child characteristics are whether child is first born, white, female, number of siblings and 

whether child attends to public school and mother characteristics are whether the mother has high school education or lower, whether 

mother resides in an urban area, mother’s age at first birth and non-mother income. * 10%, ** 5%, ***1%. 
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the first window has a negative impact on both math and reading scores and coefficients are 

statistically significant for both test scores in the single mother sample (Panel A2). In other 

words, job displacement affects reading and math test scores negatively in the short run. In 

addition, the reading score is lower if the unemployment following a job displacement lasted 

more than a year. For the married mother sample, the job displacement has a negative impact on 

both scores (Panel B1). Coefficients are statistically insignificant and are lower compared to 

single mother sample coefficients. A married and displaced mother might be spending more time 

with children and helping them out with schoolwork with less stress since they might have 

emotional and financial support of the husband, leading to a less stressful environment at home. 

 

2.4.2. Causality 

The negative association between mother’s job displacement and children’s test scores 

that is documented in the previous section is consistent with the hypothesis that involuntary job 

displacement of the mother affects the child’s test scores negatively. In this study, as in the 

literature, I assume that plant closure is an exogenous event and that mother’s characteristics are 

independent of her job displacement. However, this correlation might be due to unobserved 

mother and child characteristics such as ability or productivity. For instance, less productive or 

less educated mothers might have self-selected themselves into failing plants. In this section, I 

utilize three strategies to investigate whether the correlations documented in the previous section 

are causal. First, I check exogeneity of mother’s job displacement by employing a job 

displacement that occurred after the child took the test. Second, I estimate equation [5] by adding 

child fixed effects into the specification. Last, I employ the strategy discussed in Oster (2015), 

selection on unobservable variables, as a robustness check. 
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2.4.2.1. Exogeneity of Mother’s Job Displacement  

The descriptive statistics show that displaced mothers are less educated and they give 

birth at younger ages. This could invalidate the exogeneity assumption of plant closures. In order 

to test the exogeneity of job loss due to plant closures, I estimate job displacement which 

occurred within a 24-month period after the interview date (future job loss) on mother 

characteristics which are measured at the interview date. I employ future job displacement and 

interview date characteristics to investigate whether pre-displacement characteristics influence 

the displacement event as shown in equation [6]. 

 

             
      

                                                 [6] 

 

The existence of an association would mean that the assumption of exogeneity is not valid. Table 

2.5 presents the results of all, single and married mother samples that are obtained by estimating 

equation [6]. Although displaced mothers have different levels of education and age at birth 

compared to non-displaced mothers, impact of both variables are small and statistically 

insignificant as the rest of the control variables. Thus, the evidence shows that, for both single 

and married mother samples, mother characteristics do not explain job displacement of the    

mother. The evidence from this exogeneity tests shows that, for both single and married other 

samples, the job displacement of the mother due to plant closure may be an exogenous event.  

 

2.4.2.2.  Fixed Effects 

It is possible that unobserved ability of the mother, which might be affecting job 

displacement probability, is correlated with the ability of the child. In such a case, unobserved 
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Table 2.5 

Exogeneity Test 

Dependent Variable: Job Displacement within 24-month period after interview date 

  All Mother 

Sample 

 Single Mother 

Sample 

 Married Mother 

Sample 

Age   -0.003  -0.003  -0.003 

  (0.004)  (0.003)  (0.006) 

Age Square  0.000  0.000  0.000 

  (0.000)  (0.000)  (0.000) 

Mother Income  -0.003  -0.011  -0.001 

  (0.003)  (0.010)  (0.001) 

Non-Mother Income  0.001  0.002  0.000 

  (0.001)  (0.001)  (0.000) 

High School or Less  0.001  -0.003  0.003 

  (0.001)  (0.003)  (0.002) 

Urban  0.001  -0.002  0.002 

  (0.002)  (0.007)  (0.001) 

Age at Birth  0.000  0.000  -0.000 

  (0.000)  (0.001)  (0.000) 

White  0.001  0.002  0.001 

  (0.002)  (0.003)  (0.002) 

Single  0.004  -  - 

  (0.004)  -  - 

Number of Children  0.001  0.006  -0.001 

  (0.002)  (0.006)  (0.001) 

Observations  2,947  831  2,116 

Year Effects  Yes  Yes  Yes 

Note: Robust standard errors are in parentheses.  * 10%, ** 5%, ***1%. 

 

child characteristics will be associated with mother’s job displacement. The results from 

equation [5] with child fixed effects are shown in Table 2.6. Similar to previous results, 

coefficients of job displacement for reading and math test scores are negative, but only the 

coefficient for the reading score is statistically significant in the single mother sample (see Panel 

A). If the mother gets displaced, the child’s reading score decreases by thirteen-percent of a 

standard deviation. The results presented in Panel B, column (4) show that the impact of the job 

displacement on reading score seems to be working in the short run for the single mother sample. 
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Table 2.6 

The Impact of the Mother’s Job Displacement on PIAT Scores 

Fixed Effects Estimates 

Dependent Variables: PIAT scores All Mother  

Sample 

Single Mother  

Sample 

Married Mother  

Sample 

  PIAT-

Math 

PIAT-

Reading 

PIAT-

Math 

PIAT-

Reading 

PIAT-

Math 

PIAT-

Reading 

  (1) (2) (3) (4) (5) (6) 

Panel A: 24-Month Window         

Job Displacement within 24-Month Window  0.948 -0.800 -0.083 -1.917* 1.342 -0.523 

  (0.637) (0.620) (0.952) (1.014) (0.873) (0.781) 

        

Panel B: Different Windows        

Displacement 0-12 month before test date  1.101 -1.725* -0.729 -3.809*** 1.627 -0.476 

(Unemployment=0-12 months)  (0.983) (0.960) (1.086) (1.467) (1.411) (1.193) 

Displacement 13-24 month before test date  1.506 0.414 1.275 1.342 1.613 -1.162 

(Unemployment=13-24 months)  (1.051) (0.977) (1.745) (1.394) (1.484) (1.332) 

Displacement 0-12 month before test date  -0.305 -0.255 -1.909 -4.979 0.771 2.337 

(Unemployment=0-12 months)  (1.797) (1.964) (3.585) (3.024) (2.029) (1.693) 

        

Observations  4,834 4,834 1,344 1,344 3,490 3,490 

Child and Mother Characteristics  Yes Yes Yes Yes Yes Yes 

Year and Age Effects  Yes Yes Yes Yes Yes Yes 

Note: Robust, mother-clustered standard errors are in parentheses. The coefficients reported are the effects of the Mother’s Job 

Displacement on the child’s test scores. Child characteristics are whether child is first born, white, female, number of siblings and 

whether child attends to public school and mother characteristics are whether the mother has high school education or lower, whether 

mother resides in an urban area, mother’s age at first birth and non-mother income. * 10%, ** 5%, ***1%. 
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The coefficient of displacement for the math score is positive (Panel A, column 5) and the 

coefficient of reading score is negative (Panel A, column 6) for the married mothers sample. 

However, coefficients are statistically insignificant. 

 

2.4.2.3.  Selection on Observables 

The third strategy is from Oster (2015), which can be used to check the robustness of 

results. Adding observable controls and analyzing the movements in the coefficient of the 

variable of interest is one alternative way to check the robustness of results to omitted variable 

bias. However, Oster (2015) argues that coefficient movements are not sufficient to calculate this 

bias. R-squared movements should also be considered. Although I control for observable factors, 

the estimates might still be biased due to unobserved child and mother characteristics. 

To calculate the identified set, which would yield results as if the job displacement was 

randomized, first, an equation only with the variable of interest- job displacement of the mother- 

is estimated. The restricted coefficient and R-squared values are obtained from this estimation. 

Then, a second regression equation that includes all controls is estimated and unrestricted 

coefficient and R-squared values are obtained. Using these values and making an assumption on 

R-squared, which would be obtained if all unobservable variables were measured and included 

into the equation, and on the degree of proportionality, which measures the relative importance 

of unobservable variables, an identified set can be calculated. This set provides a range for the 

level of stability in non-randomized data if the treatment was assigned exogenously. When the 

inclusion of control variables moves the coefficient of interest towards zero, exclusion of zero 

implies that the results are robust.  
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The results from this strategy are presented in Table 2.7. The table shows identified sets 

for  ̃   , which means that observable variables are at least as important as the unobservable 

variables, and for two different bounds on     : 1.5  ̃ and 2.2  ̃. Inclusion of control variables 

affects the magnitude of the mother’s job displacement moving it the coefficients towards zero 

(columns 1 to 6) and all identified sets exclude zero regardless of the      boundary. For the 

single mother sample, the set is far from including zero. However, the identified set for PIAT-

Math for married mothers include zero with 2.2  ̃ boundary on maximum R-squared.  As Oster 

(2015) discusses, the 2.2  ̃ cutoff might be too aggressive and a smaller      might be more 

appropriate to use. In that case, 1.5  ̃ cutoff can be used to analyze the robustness. However, for 

the married mother sample even this cutoff seems to be too aggressive. From this table, it can be 

concluded that the relationship is causal at least for single mother sample. These two strategies, 

adding child fixed effects and selection on observables suggest that results reported in the 

previous section are causal. 

 

2.4.3. Discussion of Possible Channels 

Given that there is evidence that mother’s job displacement affects children’s test scores, 

in this part, I investigate the possible channels through which job displacement might affect test 

scores. I focus on two possible channels: income and child’s behavioral problems. 

 

2.4.3.1. Impact of Mother’s Job Displacement on Income  

As mentioned before, one of the effects of job displacement is the reduction in income. 

Table 2.8 shows the impact of mother’s job displacement on family income (from equation 3) 

and on its components. Panel A presents the results for single mother families. The mother 
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Table 2.7 

Coefficients of Mother’s Job Displacement in the Baseline and Controlled Estimation Equations and Identified Sets 

The Treatment Variable: Mother’s Job Displacement 

 Entire Sample Single Mothers Married Mothers 

 PIAT-Math PIAT-Reading PIAT-Math PIAT-Reading PIAT-Math PIAT-Reading 

 1 2 3 4 5 6 

Baseline Effect -2.926 -3.855 -3.740 -3.709 -1.645 -3.293 

 (0.753) (0.807) (1.170) (1.317) (0.968) (1.017) 

 {0.019} {0.012} {0.014} {0.012} {0.020} {0.012} 

Controlled Effect -1.537 -2.549 -3.105 -3.473 -0.087 -1.676 

 (0.754) (0.813) (1.174) (1.334) (0.981) (1.038) 

 {0.131} {0.114} {0.101} {0.086} {0.126} {0.110} 

Identified Set       

 ̃          [-1.537, -0.721]  [-2.549, -1.821] [-3.105,-2.738] [-3.473,-3.335] [-0.087, 0.845] [-1.676, -0.764] 

 ̃          [-1.537, 0.420] [-2.549, -0.802] [-3.105, -2.223] [-3.473,-3.140] [-0.087,2.150] [-1.676, 0.512] 

Note: Standard errors are in parentheses. The coefficients reported are the effects of the Mother’s Job Displacement on the child’s test 

scores. R-Squared is reported in the braces. The baseline regressions include year, age and sex dummies only.   
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Table 2.8 

The Effect of the Mother’s Job Displacement on Income Items by Mother’s Marital Status 

Dependent Variables: Income Components Monthly Log Mother 

Income 

Monthly Log 

Non-Mother Income 

Monthly Log Family 

Income 

Panel A: Single Mothers (N=1,230)     

Panel A1: 24-Month Window      

Job Displacement within 24-Month Window  -0.480*** 0.309* -0.200*** 

  (0.092) (0.161) (0.064) 

     

Panel A2: Different Windows     

Displacement 0-12 month before test date  -0.619*** 0.485** -0.220** 

 (Unemployment=0-12 months)  (0.142) (0.226) (0.096) 

Displacement 13-24 month before test date  -0.398*** 0.176 -0.264** 

 (Unemployment=0-12 months)  (0.152) (0.225) (0.111) 

Displacement 13-24 month before test date  -0.258 0.711** 0.043 

 (Unemployment=13-24 months)  (0.168) (0.347) (0.117) 

     

Panel B: Married  Mothers (N=2,777)     

Panel B1: 24-Month Window      

Job Displacement within 24-Month Window  -0.452*** -0.054 -0.195*** 

  (0.086) (0.075) (0.044) 

     

Panel B2: Different Windows     

Displacement 0-12 month before test date  -0.343*** -0.053 -0.203*** 

(Unemployment=0-12 months)  (0.091) (0.089) (0.063) 

Displacement 13-24 month before test date  -0.316*** -0.076 -0.201*** 

(Unemployment=0-12 months)  (0.095) (0.133) (0.072) 

Displacement 13-24 month before test date  -0.761 -0.499 -0.303 

(Unemployment=13-24 months)  (0.496) (0.486) (0.224) 

Mother Characteristics and Year Effects  Yes Yes Yes 

Note: Robust standard errors are in parentheses. The coefficients reported are the effects of the Mother’s Job Displacement on income. 

Mother Characteristics are mother’s age, age square, race of the mother, whether the mother has high school education or lower, 

whether mother resides in an urban area, mother’s age at first birth and number of children. * 10%, ** 5%, ***1%. 
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income is forty-eight-percent and family income is twenty-percent lower for displaced mothers 

compared to mothers who were not displaced (Panel A1). Non-mother income is thirty-one- 

percent higher for displaced mothers and the coefficient is statistically significant. This evidence 

suggests that there is a support coming from other family members or other sources for single 

mothers. It might be due to possible welfare payments, food stamps, etc. an unemployed single 

mother can obtain. In addition, for single mothers, motivation to find a new job to compensate 

for income loss, which cannot be compensated by a husband, might be stronger compared to 

married mothers.  

Panel B shows the impact of job displacement on income for the married mother sample. 

In married mother sample, displacement lowers mother income by approximately forty-five-

percent (Panel B1). The impact of the job displacement in the long run is greater than the 

unemployment in the short run. It might be the case that married mothers give up looking for a 

job since there might be compensation for some of the mother income loss. It is possible that 

after the mother is displaced, other family members might choose to work more to compensate 

for income loss. However, I cannot find evidence supporting it. The family income is twenty-

percent lower for displaced mothers in both samples. It decreases less than the decrease in 

mother income for both samples suggesting that there is some support coming from other family 

members, husband or the government, although I cannot find evidence supporting this claim for 

the married mother sample. The negative impact of job displacement on income that is reported 

here is consistent with the previous studies.         
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2.4.3.2.  Impact of Mother’s Job Displacement on Child’s Behavioral Problems 

Another possible channel is behavioral problems of children. Behavioral Problems Index 

(BPI) is based on twenty eight questions which were asked to mothers in each survey year. These 

questions are designed to measure the frequency, range and type of childhood behavioral 

problems for children age four and over in the past three months (NLSY Child Handbook, 1993) 

For each question, mothers are asked to choose whether the statement is often true (1), 

sometimes true (2) and not true (3). If the response is often or sometimes true the record takes 

the value of one and zero otherwise. Then these mother-reported responses are summed to create 

an overall BPI score. A higher BPI score represents a higher level of behavioral problems. There 

are six behavioral subscales created from these questions. These are antisocial, 

anxious/depressed, headstrong, hyperactive, immature dependency and peer conflict subscales.
18

 

The BPI overall score and each subscales are standardized measures with mean of 100 and 

standard deviation of 15. Similarly, the higher scores represent higher behavioral problems for 

each subscale.  

 Table 2.9.A shows the results of the analysis of the link between job displacement and 

child’s behavioral problems by estimating equation [4] for the single mother sample only. Since 

the standard score is available only for the children of age 5 to 12, children aged 13 and 14 are 

not in the sample. The results at Panel A suggest that the overall BPI score is approximately 

twenty-eight-percent of a standard deviation higher for children of displaced mothers compared 

to children of mothers who were not displaced. It might be due to change in home-environment, 

increase in stress and depression of mother or depreciation in the quality of time the mother 

spends with children. There might be no other family member to support the mother emotionally, 

                                                 
18

 Questions related to each subscale are presented in Table A.2 in Appendix A. 
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Table 2.9.A 

The Impact of the Mother’s Job Displacement on Child’s Behavioral Problems 

Single Mothers  

Dependent Variables: Behavioral Problems        

  BPI  

Score 

Anti-

social 

Anxiety/ 

Depression 

Headstrong Hyperactive Dependent Peer 

Conflict 

  (1) (2) (3) (4) (5) (6) (7) 

Panel A: 24-Month Window         

Job Displacement within 24-Month  4.139** 2.726* 3.886** 2.052 2.960* 2.770* 2.588 

Window  (1.776) (1.594) (1.634) (1.558) (1.759) (1.650) (1.731) 

         

Panel B: Different Windows         

Displacement 0-12 month before test date 4.068 3.183 3.347 1.624 2.780 3.434 3.400 

(Unemployment=0-12 months)  (2.582) (2.050) (2.434) (2.306) (2.455) (2.130) (2.407) 

Displacement 13-24 month before test date 5.186** 5.532* 5.365** 4.294* 0.350 1.024 2.025 

(Unemployment=0-12 months)  (2.605) (2.981) (2.595) (2.304) (2.450) (3.177) (2.771) 

Displacement 13-24 month before test date 7.401 2.901 6.629*** 1.644 8.675* 8.078** 2.888 

(Unemployment=13-24 months) (4.575) (4.459) (2.196) (3.748) (4.725) (3.970) (4.912) 

        

Observations 1,191 1,191 1,191 1,191 1,191 1,191 1,191 

Child and Mother Characteristics   Yes  Yes    Yes     Yes    Yes Yes Yes 

Year and Age Effects  Yes Yes Yes Yes Yes Yes Yes 

Note: Robust, mother-clustered standard errors are in parentheses. The coefficients reported are the effects of the Mother’s Job 

Displacement on child’s behavioral problems. Child characteristics are whether child is first born, white, female, number of siblings 

and whether child attends to public school and mother characteristics are whether the mother has high school education or lower, 

whether mother resides in an urban area, mother’s age at first birth and non-mother income. Children are at the ages of 5 to 12. * 10%, 

** 5%, ***1%. 
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thus the stress might be spreading to children. As a result, children of single displaced mothers 

might be absorbing the stress and emotional problems of the mother and reflecting these 

problems at home and school. The child may become more antisocial, treat other kids at school 

badly to release the stress overload, try to hurt others to get attention, etc. The child might get 

fearful about the future, feel unhappy because of the problems at home, have sudden changes in 

the mood and have difficulties concentrating on school work. S/he might become more 

dependent to the mother trying to get her attention, become more disobedient and nervous at 

home.  

When I examine the impact of mother’s job displacement on the six subscales of 

behavioral problems measuring different aspects of behavioral problems, results suggest that 

children of displaced mothers are more antisocial, feel depressed, more hyperactive and more 

dependent compared to children of non-displaced mothers. To be specific, anti-social score is 

eighteen-percent, anxiety/depression score is twenty-six-percent, hyperactive score is twenty-

percent and dependent score is eighteen-percent of a standard deviation higher for the children of 

displaced mothers compared to children of mothers who were not displaced. The coefficient of 

the short run job displacement is positive for all subscales, but statistically insignificant in all 

cases. The coefficients of the long run job displacement are also positive in all cases, 

representing a greater behavioral problem, and coefficients are statistically significant for all 

subscales (Panel B). The evidence suggests the longer the unemployment spell is, the greater the 

negative impact of mother’s job displacement on behavioral problems. There is no evidence that 

mother’s job displacement impacts child’s behavioral problems for the married mother sample 

(Table 2.9.B). However, results presented in Panel B suggest that a married mother’s involuntary 

job loss decreases behavioral problems of her child in the short-run.  
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Table 2.9.B 

The Impact of the Mother’s Job Displacement on Child’s Behavioral Problems 

Married Mothers  

Dependent Variables: Behavioral Problems        

  BPI 

Score 

Anti-

social 

Anxiety/ 

Depression 

Headstrong Hyperactive Dependent Peer 

Conflict 

  (1) (2) (3) (4) (5) (6) (7) 

Panel A: 24-Month Window         

Job Displacement within 24-Month  -0.976 -1.323 0.065 -0.804 -1.504 1.508 -0.707 

Window  (1.572) (1.443) (1.266) (1.323) (1.247) (1.434) (1.054) 

         

Panel B: Different Windows         

Displacement 0-12 month before test  -4.600** -4.059** -1.193 -3.493* -3.312* -1.715 -3.057*** 

date (Unemployment=0-12 months)  (2.178) (1.742) (1.735) (1.845) (1.742) (1.991) (1.005) 

Displacement 13-24 month before test 3.876 1.048 3.791* 2.418 1.275 6.017** 1.492 

date (Unemployment=0-12 months)  (2.375) (2.603) (2.012) (2.222) (2.051) (2.429) (1.999) 

Displacement 13-24 month before test  0.414 1.149 -2.182 -2.586 -0.697 5.197** -1.504 

date (Unemployment=13-24 months)  (3.307) (4.206) (3.320) (3.271) (3.510) (2.153) (2.436) 

        

Observations  3,016 3,016 3,016 3,016 3,016 3,016 3,016 

Child and Mother Characteristics Yes Yes Yes Yes Yes Yes Yes 

Year and Age Effects  Yes Yes Yes Yes Yes Yes Yes 

Note: Robust, mother-clustered standard errors are in parentheses. The coefficients reported are the effects of the Mother’s Job 

Displacement on child’s behavioral problems. Child characteristics are whether child is first born, white, female, number of siblings 

and whether child attends to public school and mother characteristics are whether the mother has high school education or lower, 

whether mother resides in an urban area, mother’s age at first birth and non-mother income. Children are at the ages of 5 to 12. * 10%, 

** 5%, ***1%. 
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2.4.3.3. Are Income and Child’s Behavioral Problems Channels Explaining the Impact of Job 

Displacement on Test Scores? 

 

Previous sections have shown that mother’s job displacement has a negative impact on 

family income and also on the child’s behavioral problems. To investigate whether income and 

behavioral problems are channels through which job displacement affects child’s test scores I 

include mother income and overall BPI score one at a time to the equation [5]. 

If income is a channel through which mother’s job displacement affects child’s test 

scores, adding mother income into equation [5] should alter the coefficient of job displacement. 

Results for single mother sample are presented in Table 2.10.A. The first two columns do not 

control for mother income or overall BPI score. Panel A, columns (3) and (4) show that after 

controlling for the mother income, the magnitude of the impact of job displacement decreases for 

both test scores, suggesting that mother’s income is a channel through which mother’s job 

displacement affects the child’s test scores. The result is the same for short run and long run job 

displacements. The coefficient of the short run job displacement, a job displacement which is 

followed by up to twelve months unemployment spell, decreases for both scores and becomes 

statistically insignificant for math score (Panel B). These results support the evidence that 

income is a channel through which mother’s job displacement affects test scores. This channel 

seems to be working in the short run since the coefficient of the long run job displacement 

slightly changes for both test scores after controlling for the mother income. Single mother’s 

income and also family income decreases due to the job displacement. Hence, the effect of job 

displacement on mother income might be spreading to children outcomes.  

Columns (5) and (6) present the results obtained from estimating equation [5] after 

controlling for both mother income and overall BPI score. The coefficient of job displacement 

decreases for both math and reading scores and becomes statistically insignificant for both scores  
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Table 2.10.A 

The Impact of the Mother’s Job Displacement on PIAT Scores:  

The Role of Income and Child’s Behavioral Problems 

Single Mothers 

Dependent Variables: PIAT scores PIAT- 

Math 

PIAT-

Reading 

 PIAT-

Math 

PIAT-

Reading 

PIAT- 

Math 

PIAT-

Reading 

  (1) (2)  (3) (4) (5) (6) 

Panel A: 24-Month Window         

Job Displacement within 24-Month Window  -3.116*** -3.469**  -2.337** -2.883* -2.248 -1.906 

  (1.113) (1.459)  (1.167) (1.555) (1.414) (1.715) 

         

Panel B: Different Windows         

Displacement 0-12 month before test date  -2.902** -4.219**  -1.819 -3.422* -1.742 -1.235 

(Unemployment=0-12 months)  (1.390) (1.792)  (1.506) (1.932) (1.715) (2.181) 

Displacement 13-24 month before test date  -2.638 -0.359  -2.124 0.018 -0.370 0.160 

(Unemployment=0-12 months)  (1.845) (2.442)  (1.860) (2.454) (2.593) (2.498) 

Displacement 13-24 month before test date  -5.362 -7.293*  -4.908 -6.959 -7.522* -6.214 

(Unemployment=13-24 months)  (3.554) (4.358)  (3.533) (4.422) (3.840) (4.532) 

         

Observations  1,801 1,801  1,801 1,801 1,191 1,191 

Mother Income  No No  Yes Yes Yes Yes 

BPI Total Score  No No  No No Yes Yes 

Child and Mother Characteristics  Yes Yes  Yes Yes Yes Yes 

Year and Age Effects  Yes Yes  Yes Yes Yes Yes 

Note: Robust, mother-clustered standard errors are in parentheses. The coefficients reported are the effects of the Mother’s Job 

Displacement on child’s test scores. Child characteristics are whether child is first born, white, female, number of siblings and whether 

child attends to public school and mother characteristics are whether the mother has high school education or lower, whether mother 

resides in an urban area, mother’s age at first birth and non-mother income. * 10%, ** 5%, ***1%. 
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(Panel A). Specifically, the magnitude of the impact of job displacement decreases from twenty-

one-percent to fifteen-percent of a standard deviation for math score and it decreases from 

twenty-three-percent to thirteen-percent of a standard deviation for the reading score after 

controlling for both mother income and overall BPI score. The results for married mother sample 

are shown in Table 2.10.B. 

The results suggest that income and behavioral problems are channels explaining the link 

between the mother’s job displacement and test scores. Since the sample size changes after 

controlling for BPI score, it is not possible to discuss which channel dominates the other. In other 

words, it is not clear whether the income effect is greater or lower compared to behavioral 

problems effect.  

 

2.5. CONCLUSION 

Using matched mother-child sample from the NLSY, I find evidence that the mother’s 

job displacement has a negative impact on the child’s test scores. The reading score is almost 

seventeen-percent lower for children of displaced mothers compared to children of mothers who 

were working continuously. The impact of job displacement on test scores is different for single 

and married mother samples. There is a negative impact of job displacement on child’s both test 

scores for single mothers. After controlling for the length of unemployment spell followed by a 

job displacement, I find that there is a negative impact on math and reading scores in the short 

run for the single mother sample. The math score is nineteen-percent and reading score is 

twenty-eight-percent of a standard deviation lower for children of displaced mothers compared to 

children whose mothers were not displaced. There is no evidence that job displacement affects 

child’s test scores for married mothers. Controlling for child fixed-effects, I find that estimated



 42 

Table 2.10.B 

The Impact of the Mother’s Job Displacement on PIAT Scores: 

The Role of Income and Child’s Behavioral Problems  

Married Mothers 

Dependent Variables: PIAT scores PIAT- 

Math 

PIAT-

Reading 

 PIAT-

Math 

PIAT-

Reading 

PIAT- 

Math 

PIAT-

Reading 

  (1) (2)  (3) (4) (5) (6) 

Panel A: 24-Month Window         

Job Displacement within 24-Month Window  -0.129 -1.702  0.216 -1.442 0.226 -1.084 

  (1.162) (1.116)  (1.161) (1.114) (1.398) (1.327) 

         

Panel B: Different Windows         

Displacement 0-12 month before test date  -0.163 -1.592  0.084 -1.400 -0.220 -1.587 

(Unemployment=0-12 months)  (1.700) (1.583)  (1.703) (1.566) (2.048) (1.877) 

Displacement 13-24 month before test date  -0.943 -1.988  -0.666 -1.772 0.511 -0.909 

(Unemployment=0-12 months)  (1.902) (1.814)  (1.876) (1.812) (2.191) (2.142) 

Displacement 13-24 month before test date  5.820 2.280  6.454 2.775 6.611 3.890 

(Unemployment=13-24 months)  (4.423) (4.079)  (4.009) (3.895) (4.111) (3.775) 

         

Observations  4,282 4,282  4,282 4,282 3,006 3,006 

Mother Income  No No  Yes Yes Yes Yes 

BPI Total Score  No No  No No Yes Yes 

Child and Mother Characteristics  Yes Yes  Yes Yes Yes Yes 

Year and Age Effects  Yes Yes  Yes Yes Yes Yes 

Note: Robust, mother-clustered standard errors are in parentheses. The coefficients reported are the effects of the Mother’s Job 

Displacement on child’s test scores. Child characteristics are whether child is first born, white, female, number of siblings and whether 

child attends to public school and mother characteristics are whether the mother has high school education or lower, whether mother 

resides in an urban area, mother’s age at first birth and non-mother income. * 10%, ** 5%, ***1%. 
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impact of displacement decreases for both test scores. The displacement coefficient is negative 

for both scores but only significant for the reading score. Falsification test suggest that plant 

closure may be an exogenous event and results from the Oster (2015)’s strategy show that results 

are causal.  

I also examined whether income and child’s behavioral problems are channels through 

which the job displacement might affect test scores. Job displacement of the mother has a 

negative effect on both family income and mother income and the child’s behavioral problems 

for the single mother sample. To be able to investigate whether mother income and child’s 

behavioral problems are channels which link mother’s job displacement and child’s test scores, 

mother income and overall BPI scores are added to the estimation equation for single mother 

sample. After adding mother income, coefficients of job displacement decrease for both test 

scores. Coefficients of short run and long run job displacements also decrease for both test scores 

and become statistically insignificant in the short run. After controlling for mother income and 

the overall BPI score, coefficients of job displacement decrease and become statistically 

insignificant for both test scores. The results suggest that mother income and child’s behavioral 

problems are channels through which mother’s job displacement affects math and reading test 

scores.  

  It can be concluded that child’s test scores are affected by the mother’s involuntary job 

loss. The negative impact of mother’s job displacement on test scores seems to be working 

through income and child’s behavioral problems channels. Contrary to Kalil and Ziol-Guest 

(2008) and Rege et al. (2011), I find evidence that mother’s job displacement has an impact on 

child’s educational achievement, which is measured by PIAT math and reading scores. 



 

 44 

CHAPTER 3. IT PAYS OFF TO BE BLOND IN A NON-BLOND NEIGHBORHOOD: 

EYE COLOR, HAIR COLOR, ETHNIC COMPOSITION AND STARTING WAGES 

 

3.1. INTRODUCTION 

There is a long lasting interest in wage discrimination in the labor economics literature. 

Along with gender and race, physical attributes of an individual also might lead to wage 

discrimination. In recent years, there is an increasing attention to relationship between labor 

market outcomes and physical characteristics such as beauty, height, and obesity. Economic 

studies show that beauty is positively related to labor market outcomes of individuals 

(Hamermesh and Biddle, 1994; Biddle and Hamermesh, 1998; Harper, 2000; Mobius and 

Rosenblat, 2006; Robins, Homer and French, 2011). Hamermesh and Parker (2005) for the US 

and Süssmuth (2006) for Germany find that more attractive teachers receive higher instructional 

ratings, which would lead to higher salaries of instructors. In these studies, attractiveness is 

typically measured by ratings given by others, based on photographs or one’s self-reported 

beauty ratings. There are some other physical characteristics that are utilized in the literature. 

Persico, Postlewaite and Silverman (2004) and Case and Paxon (2008) find that there is a wage 

premium for taller adults. Glied and Neidell (2010) show that teeth health, which is determined 

by exposure to fluoride, increases women’s earnings by approximately four percent. Goldsmith, 

Hamilton and Darity (2007) find that white-black wage gap increases as skin color darkens. 

Hersch (2008) shows that, on average, new immigrants who have lighter skin color earn more 

compared to immigrants with darker skin color.  

Eye and hair color also can be used to represent the looks of an individual; i.e. they can 

be used as dimensions of attractiveness. For example, having blue eyes and blonde hair 

represents a certain type of physical feature, which may be considered to be attractive. There are 
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some studies particularly focusing on labor market outcomes of blonde women. Using NLSY79, 

Johnston (2010) finds that there is a wage premium for blonde women. In an experimental design 

where waitresses are asked to wear blonde, red and brown/dark colored wigs, Gueguen (2012) 

finds that waitresses with blonde wigs receive more tips from male customers. Price (2008) 

examines whether female fund-raisers’ hair color affects fund raising success. He finds that 

blonde females raise more money compared to brunette fund-raisers.    

There are several explanations of the wage premium due to physical attractiveness in 

economics and also psychology literature. In the economic theory, employer discrimination, 

consumer discrimination and occupational sorting provide explanation for the wage 

discrimination due to physical attractiveness. The employers might want to hire more attractive 

individuals based on two reasons: productivity expectations and taste based discrimination. They 

might assume that attractive individuals are more productive or they might simply prefer to work 

with attractive colleagues, which is a taste-based discrimination (Becker-type discrimination). 

Another explanation of attractiveness premium is consumer discrimination that stems from 

consumers’ preference to interact with attractive workers. This type of discrimination might 

particularly be attributed to certain type of occupations that involves high volume of consumer-

worker interactions (e.g. waitresses, salesman, etc.). Hamermesh and Biddle (1994) and Biddle 

and Hamermesh (1998); Glied and Neidell (2010) show some evidence of consumer, employer 

discrimination and occupational sorting. 

There are two main groups of theories explaining the attractiveness effect in the 

psychology literature. These are the socialization and social expectancy theories and fitness-

related evolutionary theories. The socialization theory states that appearance creates stereotypes, 

different expectations from attractive and unattractive individuals and different treatments 
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towards them.
19

 One can link worker attractiveness and employers’ expectation of high 

productivity to social expectation theory. The roots of attractiveness effect start developing in the 

childhood. During childhood, attractive children might receive preferential treatment from 

teachers, parents or peers. It can be explained by fitness-related evolutionary theories that relate 

attractiveness with good-genes and differential parental treatment. Attractiveness, in this case, 

proxies health, quality and reproductive value. Thus, attractive children expected to be popular 

among their peers and teachers, and receive more parental investment due to their presumably 

high reproductive value. This differential treatment of attractive children might lead to 

developing higher cognitive and non-cognitive abilities such as test scores, confidence, 

personality, and social skills. Cognitive and non-cognitive skills contribute to human capital 

accumulation that, in return, is rewarded in the labor market (for example, Goldsmith, Veum and 

Darity, 1997; Heckman, Stixrud, and Urzua, 2006; Fortin, 2008; Drago, 2011).  

There are several studies supporting the claim that attractiveness lead to higher human 

capital accumulation through behaviors and traits acquired due to attractiveness. Mobius and 

Rosenblat (2006) show that physically attractive workers are more confident and have better 

communication skills. Kuhn and Weinberger (2005) find that men who had leadership positions 

in high-school earn more as adults. In their study, Persico, Postlewaite and Silverman (2004), 

find evidence that premium due to being tall is stemming from social club associations in high 

school. Results in Case and Paxson (2008) show that height premium is the result of the 

correlation between height and cognitive ability. In addition, there is evidence that attractiveness 

increase academic performance (Cipriani and Zago, 2011; Von Bose, 2013; Deryugina and 

                                                 
19

 Psychology approaches to relationship between attractiveness and treatment by perceivers with 

general socialization/social expectancy theories and fitness related evolutionary theories. See 

Langlois, Kalalanis, Rubenstein, Larson, Hallam and Smoot (2000) for detailed discussion of 

these theories. 
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Shurchkov, 2015). Mocan and Tekin (2010) report a higher criminal propensity for less attractive 

individuals. They show that this result might be due to hindered human capital development in 

high school. 

  In this chapter, I investigate whether eye and hair color have an impact on wage-at-the 

first-job the individual holds after her/his schooling. The literature investigating the effect of 

beauty or physical attributes on labor market outcomes focuses on wages people earn in their 

mid-thirties or examines the impact of these attributes on wages for high school or college 

graduates only. The first-job wage does not include premiums due to the human capital 

accumulated due to job experiences and/or training opportunities on the job. If there is a wage 

premium due to attractiveness, it should be more appropriately observed with the first-job after 

schooling. Everything else held constant, two individuals with different physical characteristics, 

one attractive and other not, might start at the same position with different wages. In the 

beginning, employers might not be able to observe these two individuals’ actual productivity. 

However, they might believe that attractive worker is more productive. In reality, unattractive 

individual might be more productive. In time, s/he might close the wage gap by performing 

better than the attractive colleague, by getting on the job trainings, or by seeking for other types 

of trainings more aggressively. Employing wage-at-the-first-job would eliminate the productivity 

gains obtained in the labor market. 

 I also investigate whether the wage premium due to eye color and hair color is still 

observed if the individual resides among people who have similar physical appearance. I assume 

that people of the same ethnic origin will have the same or similar physical attributes such as hair 

and eye color. For example, the hair and eye color of people of African, Hispanic and Asian 

descents are dark. However, people of European descents are more likely to have light-eye and 
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hair color and a greater variation is expected among people of European descents. If the 

individual has similar characteristics with her/his own ethnic group, s/he might not be considered 

as attractive. For instance, a woman with blonde hair and blue/green eyes might be considered to 

be attractive in an area where Italian descendants are the majority of the population.
20

 However, 

if this woman is of Scandinavian descent and residing in an area where Scandinavian 

descendants are the majority, she might not be considered as different or attractive since general 

population in that area is very likely to have similar attributes. Thus, the majority of one’s own 

ethnic group in the area might matter. However, focusing only on whether one’s own ethnic 

group constitutes the majority of a given area may not be the most appropriate measure to 

investigate the match between individual’s attractiveness and county’s eye/hair color attributes, 

which is the proxy for perception of attractiveness. One’s own ethnic group might be a minority 

but other ethnic groups in the area might have the same or similar features in terms of eye and 

hair color. For example, those of German ethnic heritage might be in minority in a county. 

However, if people of Scandinavian descents are in the majority, the whole county will be 

identified by light-eye and light-hair color. In that case, although one’s ethnic group is a 

minority, she might have the same attributes, eye and hair color, of the major ethnic group. In 

that case, having blue eyes and blonde hair might not be considered as different.  

I utilize three anthropological studies (Coon, 1939; Hulse, 1963; and Geipel, 1969) to 

determine eye and hair color features of each ethnic group in a county. Based on the information 

obtained from these three sources, I classify each ethnic group as light-featured or dark-featured. 

If people of the ethnic group predominantly have blue/green eyes and blonde/red hair, that group 

                                                 
20

 Based on the hair and eye color maps provided in Coon (1939); Hulse (1963); and Geipel 

(1969), Italian population has darker features such as brown/black eye and brown/black hair 

color. In addition, Scandinavian people have light-eye and light-hair.  
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is defined as “light-featured”. If people of the ethnic group predominantly have drown/black hair 

and brown/black eyes, then that group is a “dark-featured” one. Then, based on the proportions 

of people of light-featured and dark-featured ethnic groups in the county, I obtain a measure for 

the eye/hair color composition of each county. If the share of people of light-featured ethnic 

groups is greater than fifty-percent, I define that county to be “light-featured” and if the share is 

less than or equal to fifty-percent, I classify the county as “dark-featured”. 

Similarly, ethnic diversity is important in terms of how people perceive eye and hair 

color, or evaluate attractiveness. If the area in which the individual resides is very diverse in 

terms of ethnicity, the individual might be considered as attractive due to having light-eye and 

hair color because s/he might stand out in the crowd. However, it is also possible that in such an 

area, physical attributes might matter less because everybody has some degree of exoticism. If 

the individual lives in a neighborhood where ethnic diversity is low, people are more likely to 

have similar physical characteristics. In that case, an individual having the same hair/eye color as 

the rest of the population matters more.  

There are studies investigating the impact of cultural and ethnic diversity on wages. 

Longhi (2013) investigates the impact of cultural diversity, measured by ethnic composition at 

the district level, on wages and job satisfaction and finds that people residing in more diverse 

districts earn more compared to those residing in less diverse areas. Ethnic diversity might 

increase the productivity due to different skill set provided by different ethnic groups, and hence 

higher wages. However, it is also possible that diversity might decrease productivity due to 

miscommunication, mismanagement, transaction costs and conflicts. For example, in a multi-

national corporation context, Lazear (1999) discusses gains and costs of ethnic diversity. In a 

culturally diverse working place, workers can learn from one another when their information set 
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(especially culture-specific) is different and when they have different but related skill sets. Then, 

one can expect that in such a working environment productivity should increase. However, if 

workers cannot understand each other, all the gains that can be obtained in the 

ethnically/culturally diverse environment become irrelevant. In order to keep the gain, the 

corporations have to bear communication costs, which means hiring bilingual workers and pay 

them higher wages. Alesina and La Ferrara (2005) show that ethnic diversity might lead to 

higher economic growth and productivity. On the other hand, Ottaviano and Peri (2005, 2006) 

show that cultural diversity has a net positive impact on average city wages and productivity. 

Different from these studies, this study contributes to the literature by analyzing the impact of 

ethnic diversity and eye/hair color composition of the county on starting wages of the 

individuals. 

In this study, I find that having blonde/red hair generates four to six-percent point wage 

premium. The results are different for females and males. I find that having blonde/red hair has a 

positive impact on starting wages for females and white females. However, there is no evidence 

that hair color has an impact on starting wages for males. In addition, there is no evidence that 

eye color has an impact on starting wages of either females or males. Hair color, having 

blonde/red hair, still has a positive impact for females and white females after controlling for 

ethnic diversity. Ethnic diversity has a negative impact on wages of females, males and whites. 

In other words, as ethnic diversity increases, wages at the first-job increases. In order to 

investigate whether the positive impact of having blonde/red hair is still observed if the 

individual resides in a county where the majority of the population has similar features, I utilize 

detailed ethnic origin information collected in the census. In a dark-featured county, where 

people with brown/black hair are in majority, there is a wage premium for females with light-
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features (blonde/red hair) compared to females with dark-features (brown/black hair). For dark-

featured individuals, there is a wage penalty for residing in a light-featured county, where people 

with blonde/red hair are in majority.  

The eye/hair color composition of the “county” might be endogenous, potentially affected 

by unobservable individual, ethnic and location characteristics. Individual’s decision on where to 

reside might be affected by her personality, county and ethic characteristics. There might be 

some ethnic values taught to the individual that also might affect this decision. For example, 

some ethnicities might be more traditional and attribute high importance to the family ties 

leading the individual to reside in the area where she has many relatives. As a result, decision 

about where to reside might affect the wages and also the eye/color composition in the county. In 

that case, the coefficient estimates of the variable measuring the eye/hair color composition in 

the county would be biased. In order to determine whether results are causal, I follow two 

strategies. First, I employ the strategy in Oster (2015) where she introduces a strategy to check 

the robustness of results to omitted variable bias. Second, I use instrumental variables strategy 

and employ two instruments; state’s eye/hair color composition and the eye/color composition of 

the state based on the population under the age of 16. The results from these two strategies 

suggest that the relationship between color feature of the county and starting wages is causal. 

The rest of the chapter proceeds as follows: Section 2 introduces the empirical 

specification, Section 3 is the data and the descriptive statistics, Section 4 presents the results and 

robustness checks, and last section concludes.  
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3.2. EMPIRICAL STRATEGY 

To analyze the effect of eye and hair color on starting wage-at-the-first-job, I estimate the 

following regression equation:  

 

           
                                                       [1] 

 

     is the log of the wage-at-the-first-job after schooling is completed.           is a dummy 

variable taking the value of one if the individual has blue, green, or hazel eyes (light-eyes) and 

takes the value of zero if s/he has brown or black eyes (dark-eyes).            is a dummy 

variable which takes the value of one if the individual has blond or red hair (light-hair) and zero 

if s/he has brown or black hair (dark-hair).    is the set of observable characteristics which 

includes age, gender, marital status, race and parental education. Race is controlled for in order 

to account for the fact that some races have less variety in hair and eye color. For example, there 

is more variation in hair color for whites compared to non-whites (African American, Asian or 

Hispanic). In order to control for different economic conditions and unobservable factors in job-

start years, I include a set of first-job-start-year dummies,   . Individuals have different starting 

years at the first-job ranging from 1979-1994. 

Because an individual has no control over her/his “natural” eye and “natural” hair color, 

I consider these as exogenous characteristics that would help to identify a person’s physical 

appearance. For instance, an individual with red hair and green eyes can be considered as 

attractive/different since s/he has distinctive physical characteristics which might not be very 

common. “Natural” eye and hair color do not change over time (at least between the ages of 16 

to 30) and are independent of personal, family, region or interviewer attributes. For instance, 
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education or income levels of one’s parents, personality of the interviewer, unemployment rates 

in the county cannot alter “natural” hair or eye color of the individual. Throughout the study, I 

assume that individuals do not change their hair and eye color. It is possible that females with 

brown or black hair might dye their hair and change it to blonde, or individuals might wear 

green/blue contact lenses. This would introduce a measurement error in hair or eye color variable 

and lead to underestimation of the impact of having light-hair or having light-eyes. If the 

individual has blue/green/hazel eyes and/or blonde/red hair, s/he might be considered as 

attractive, hence gain a wage premium due to these features. In that case,    and    would be 

positive. 

In order to investigate whether the proportion of individuals with light/dark-eyes and 

light/dark-hair in the county where the individual is residing affects the wage premium due to 

hair and eye color, I introduce a measure of eye/hair color composition of the county where the 

individual resides.         takes the value of one if the proportion of individuals of “light-

featured” ethnic groups in the county is greater than fifty-percent. In order to examine if the 

impact of residing in a light or dark-featured county is different for individuals with blonde/red 

or brown/black hair I estimate the following regression equation: 

 

           
                           

                                                                              [2] 

 

Having brown/black hair in a light-featured county might have positive or negate impact on 

wages. The individual might be treated as different in a discriminative sense, and be punished for 

not having the feature of the general population. In such a case,   is expected to be negative. 



 

 54 

However, having a brown/black hair in that county might bring a wage premium (a positive sign 

on   ), if people of light-featured area consider having dark-features as attractive. In other 

words,    shows whether an individual with brown/black hair receives a premium among light-

featured individuals, or whether she receives a penalty due to not residing in a dark-featured 

county where dark-featured individuals are in majority.  

If the individual has blue/green/hazel eyes and blonde/red hair, s/he has light-features.
21

 

If s/he lives in an area where people of light-featured ethnicities are in majority, s/he might 

receive a wage premium compared to individuals with brown/black hair residing in the same 

area. This premium might be due to being similar to the majority of people. In that case, 

  becomes positive. However, she might not be considered as attractive in this area since the 

majority has light-features. In short,     shows the starting wage differences between individuals 

who have blonde/red hair and individuals with brown/black hair residing in a light-featured area. 

   shows the starting wage differences for individuals residing in a dark-featured area. A blonde 

person residing in a dark-featured area might stand out and receive a wage premium due to her 

different looks compared to an individual who has brown/black hair which is a common 

characteristic in this dark-featured area. In that case,   becomes positive.  

 

3.3. DATA 

I use two sources of data to analyze the effect of hair/eye color and the color feature of 

the region where the individual resides on the starting wage at the first-job an individual holds 

after completing schooling. The individual data are obtained from the National Longitudinal 

                                                 
21

 Although I cannot measure respondents’ skin color in the data, in general light-eye and light-

hair color are associated with lighter skin color (Coon, 1939). 



 

 55 

Study of Youth (NLSY79) and county and state-level data are obtained from 1980 census of 

population. 

 

3.3.1. National Longitudinal Study of Youth 

NLSY79 includes 12,686 individuals, 6,403 males and 6,283 females, who were initially 

interviewed in 1979 and were 14-21 years of age as of December 1978. The NLSY79 was 

conducted annually from 1979 to 1994, and biennially thereafter. It provides information on 

demographic characteristics, work history, education status and the date education degree(s) 

obtained, and family characteristics such as parents’ education status.  

NLSY79 provides detailed employment information for the respondents. The work 

history file enables me to link jobs across years. Thus, I can accurately observe start/stop dates 

and measure duration of employment for each job held by each individual. The first-job is 

identified as the one the individual started after completing schooling, worked at least for two 

months and worked at least twenty hours a week. The latter two restrictions are required in order 

to get the first stable job.  

In order to determine the first-job obtained after the schooling, I obtain the last date each 

individual was involved with school. If the s/he is a high school dropout, the last date of 

enrolment is counted as the last day of school. In addition, if the date of degree obtained or the 

date of last enrollment is missing, a date is assumed based on the enrollment status of the 

individual and months enrolled in school at each survey year. If the individual has a degree (high 

school, college, masters or higher) the date the highest degree obtained is the date schooling was 

completed. If s/he decides to pursue another degree and starts on that degree after two years 

obtaining the previous degree, the previous degree is employed as the date schooling was 
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completed. For example, if the individual gets her/his high school diploma in May 1985 and 

starts college in August 1987, the last date the individual is involved in school is May 1985. 

During this two-year period, the individual might get a job, observe the labor market, and then 

decide to return to school based on the experience s/he obtains while working.  

Additionally, the first-job is the one that starts within the first four-year period following 

schooling completion. For example, if the individual obtains her/his degree in May 1985, then 

the first-job should start by May 1989. In some cases the actual first-job cannot be observed due 

to missing information on hours worked and start/stop dates. This leads to a problem in 

determination of the first job. The four-year restriction reduces this problem. In addition, it drops 

individuals who decide to join in labor force many years after leaving school. Wages are 

expressed in real dollars (2000 prices). 

In the 1985 survey of NLSY79, the individuals were asked about their “natural” eye and 

hair color.
22

 Eye color ranges from light blue to black. If the individual has light blue, blue, 

green, hazel, or grey eyes,
23

 s/he “has light-eyes” and if s/he has brown or black eyes, s/he has 

“dark-eyes”. Hair color ranges from light blonde to black. If the individual has light blond, 

blond, red or grey hair, I consider this individual as having “light-hair”. If s/he has brown or 

black hair, then s/he is considered as having “dark-hair”.  

 

3.3.2. Census of Population 1980 

To measure ethnic diversity and to determine whether the individual resides among 

people of the same ethnic origin, county-level ancestry data from 1980 census of population are 

                                                 
22

 Out of 12,686 respondents, 10,876 of them replied to both of these questions by providing 

their natural hair and eye color, 2 of them refused to answer and 14 of them have invalid skip and 

there are 1,792 respondents who were not interviewed in 1985. 
23

 I added respondents who chose “other” to this group. 
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employed. In the census, detailed ancestry information is collected from individuals. There is 

over a hundred of different ancestry groups recorded. By utilizing this ancestry information, I 

calculate two measures for each county. First, to measure the ethnic diversity in the area where 

NLSY respondents reside, I create Herfindahl-Hirsch Index (HHI) based on the reported ancestry 

groups in each county. HHI takes a value between zero and one. The value of one indicates that 

diversity is zero, the county is homogenous, and people residing in that particular county have 

the same ethnic origin. In other words, higher values of HHI imply lower ethnic diversity. 

Second, I create a measure to determine eye/hair color composition of the county. If most 

of the people residing in the county have light-eyes and light-hair the county is defined as “light-

featured”. If most of the people in a county have “dark-eyes” and “dark-hair”, it is a “dark-

featured” county. However, eye and hair color information is not collected in the census, which 

makes it impossible to measure the exact share of people with light/dark-eyes and light/dark-hair. 

Thus, I use the proportion of people of light/dark-featured ethnic origins as a proxy for the 

eye/hair color composition of the county. I obtain this measure in two steps. 

First, I determine eye/hair color feature of ethnic groups by utilizing three 

anthropological studies: Coon (1939), Hulse (1963) and Geipel (1969). These studies provide 

maps showing the distribution of light-eyes and light-hair in Europe and surrounding regions. By 

using these maps, I determine which ethnic groups have light-eyes and light-hair and which have 

dark-eyes and dark-hair. Hulse (1963) shows the percentage of light-hair and eyes on the map 

whilst Coon (1939) and Geipel (1969) classify different regions of Europe as light, almost even 

or dark-featured. Based on these studies, I define an ethnic group as “light-featured” if the 

percentage of people with light-hair and/or eye in the region is greater than fifty-percent 

according to Hulse’s maps. If the percentage reported on maps is less than fifty-percent, then the 
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ethnic group is counted as “dark-featured”.
 24

 For example, in all these studies, the hair color and 

eye color are light at Scandinavia. To be specific, more than eighty-percent of the people of 

Scandinavia have light-eyes and light-hair. On the other hand, more than eighty-percent of the 

people of Italy have dark-eyes and dark-hair. Hence, the people of Italian heritage are counted as 

having dark-features whilst people who have Scandinavian origins counted as light-featured. 

Once the eye/hair color feature of a particular ethnic group is determined, I use this 

information to proxy the eye/color feature of a county. Using 1980 census of population, I 

calculate the proportion of people of the light-featured ethnic groups and proportion of people of 

the dark-featured ethnic groups in each county based on the first ancestry reported. If the 

majority of people residing in the county are from light-featured ethnic origins, then this county 

is “light-featured” and if the majority has dark-featured ethnic origins the county is “dark-

featured”. For example, if the share of people of Scandinavian origins is greater than fifty-

percent in the county, this county is a light-featured county. 

 

3.3.3. Descriptive Statistics 

Table 3.1 displays the descriptive statistics for the estimation sample.
25

 The final 

estimation sample consists of 5,458 respondents, whose first-job information is not missing and 

have information on the control variables. The average wage at the first-job after schooling is 

twelve dollars. Half of the sample is female. Wage at the first-job is eleven dollars for females 

and it is almost thirteen dollars for males. For both males and female samples, the average age is 

about twenty.  

                                                 
24

 See Table B.1 for an example of ethnic groups that are defined as light-featured or dark-

featured.  
25

 See Table B.2 in Appendix B for definitions of variables. 
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Table 3.1 

Descriptive Statistics 

 All Female Male White 
White 

Female 

White 

Male 

Wage at the First-job 12.05 11.20 12.87 13.00 11.88 14.11 

 (30.33) (22.17) (36.42) (38.95) (28.04) (47.27) 

Age 19.64 19.68 19.60 19.67 19.64 19.71 

 (2.26) (2.19) (2.32) (2.34) (2.21) (2.46) 

White 0.60 0.61 0.59 - - - 

 (0.49) (0.49) (0.49) - - - 

Female 0.49 - - 0.50 - - 

 (0.50) - - (0.50) - - 

Light-Eyes   0.42 0.43 0.41 0.66 0.66 0.65 

 (0.49) (0.49) (0.49) (0.48) (0.47) (0.48) 

Light-Hair   0.14 0.15 0.13 0.23 0.25 0.21 

 (0.35) (0.36) (0.33) (0.42) (0.43) (0.41) 

Light-Eyes & Light-Hair 0.12 0.13 0.11 0.20 0.22 0.18 

 (0.33) (0.34) (0.31) (0.40) (0.41) (0.39) 

Dark-Eyes & Light-Hair 0.02 0.02 0.02 0.03 0.03 0.03 

 (0.14) (0.14) (0.13) (0.16) (0.17) (0.16) 

Light-Eyes & Dark-Hair 0.30 0.29 0.30 0.45 0.45 0.46 

 (0.46) (0.46) (0.46) (0.50) (0.50) (0.50) 

Dark-Eyes & Dark-Hair 0.56 0.55 0.57 0.32 0.31 0.33 

 (0.50) (0.50) (0.49) (0.47) (0.46) (0.47) 

Mother Less than High School 0.37 0.36 0.37 0.27 0.27 0.26 

 (0.48) (0.48) (0.48) (0.44) (0.44) (0.44) 

Mother High School Graduate 0.39 0.41 0.38 0.47 0.47 0.47 

 (0.49) (0.49) (0.49) (0.50) (0.50) (0.50) 

Mother College Graduate 0.16 0.16 0.16 0.20 0.20 0.20 

 (0.37) (0.37) (0.36) (0.40) (0.40) (0.40) 

Mother Master’s Degree or more 0.02 0.02 0.02 0.03 0.03 0.03 

 (0.15) (0.15) (0.15) (0.17) (0.17) (0.16) 

Father Less than High School 0.33 0.32 0.34 0.28 0.27 0.29 

 (0.47) (0.47) (0.47) (0.45) (0.44) (0.45) 

Father High School Graduate 0.30 0.31 0.29 0.34 0.35 0.32 

 (0.46) (0.46) (0.45) (0.47) (0.48) (0.47) 

Father College Graduate 0.18 0.18 0.17 0.23 0.23 0.23 

 (0.38) (0.38) (0.38) (0.42) (0.42) (0.42) 

Father Master’s Degree or more 0.06 0.06 0.06 0.08 0.08 0.09 

 (0.24) (0.23) (0.24) (0.28) (0.27) (0.28) 

Light-Featured County 0.52 0.53 0.52 0.69 0.69 0.69 

 (0.49) (0.49) (0.49) (0.46) (0.46) (0.46) 

HHI  0.22 0.22 0.22 0.21 0.21 0.21 

 (0.13) (0.13) (0.12) (0.11) (0.11) (0.11) 

Observations 5,458 2,662 2,796 3,254 1,613 1,641 

Note: Standard Errors are in parentheses. 



 

 60 

Forty-two-percent of the sample has blue/green/hazel eyes (light-eyes). Among these 

individuals twelve-percent have blonde/red hair and thirty-percent have brown/black hair. 

According to these numbers, having both blue/green/hazel eyes and blonde/red hair is not a 

common feature among NLSY79 respondents. However, having blue/green/hazel eyes for 

individuals with blonde/red is a common feature. Fourteen-percent of the sample has blonde or 

red hair. Among individuals with blonde/red hair twelve-percent of them have blue/green/hazel 

eyes. Fifty-six-percent of respondents have brown/black eyes and hair and it is thirty-two-percent 

for the whites. Education levels of respondents’ parents are similar for female and male 

respondents and they are higher for white respondents.  

Half of the individuals in the sample are residing in a light-featured county. Almost 

seventy-percent of the white sample resides in light-featured counties. Ethnic diversity, HHI, is 

0.22, which implies that individuals in the sample are residing in relatively diverse counties. 

Figure 3.1 shows the color feature of counties in the US based on the share of ethnicities with 

light/dark-features.  

Table 3.2.A shows descriptive statistics by eye and hair color groups. Respondents with 

blue/green/hazel eyes, on average approximately one dollar, compared to respondents with 

brown/black eyes. However, the difference is statistically insignificant. If the respondent has 

blonde/red hair s/he earns almost five dollars more compared to individuals with brown/black 

hair on average. It seems that, having blonde hair matters more compared to having 

blue/green/hazel eyes. If the individual has both blonde/red hair and blue/green/hazel eyes, on 

average s/he earns around fourteen dollars per hour. If s/he has brown/black eyes and hair, then 

s/he earns eleven dollars per hour. Thus, we can expect that having blue/green/hazel eyes and/or 

blonde/red hair might have an impact on the wage-at-the-first-job. 
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Figure 3.1  

Color-Feature of Counties Based on the Share of Light/Dark-Featured Ethnicities 

 

Note: Yellow shows light-featured counties while brown represents dark-featured counties. Light yellow represents counties where the 

share of light-featured ethnic groups is greater than seventy-five-percent. Dark brown shows the counties where share of light-featured 

ethnicities is less than twenty-five percent. Out of 52 states, 9 of them are determined as light-featured and 43 of them as dark-featured 

with fifty-percent threshold. With the seventy-five-percent threshold, the number of states that are light-featured increases to 22.



 

 62 

Table 3.2.A 

 Descriptive Statistics by Eye and Hair Color 

 Eyes  Hair  

 
Light-Eyes Dark-Eyes  

Light-

Hair 

Dark-

Hair 
 

Wage at the First-job 12.47 11.75  16.24 11.37 *** 

 (22.83) (34.71)  (7.78) (8.74)  

Age 19.67 19.61  19.63 19.64  

 (2.35) (2.19)  (2.23) (2.26)  

White 0.94 0.35 *** 0.97 0.54 *** 

 (0.24) (0.48)  (0.17) (0.50)  

Female 0.50 0.48  0.54 0.48 *** 

 (0.50) (0.50)  (0.50) (0.50)  

Light-Eyes - -  0.86 0.34 *** 

 - -  (0.34) (0.47)  

Dark-Eyes - -  0.14 0.66  

 - -  (0.34) (0.47)  

Light-Hair 0.29 0.03 *** - -  

 (0.45) (0.17)  - -  

Dark-Hair 0.71 0.97  - -  

 (0.45) (0.17)  - -  

Mother Less than High School 0.27 0.44 *** 0.25 0.39 *** 

 (0.44) (0.50)  (0.43) (0.49)  

Mother High School Graduate 0.46 0.35 *** 0.48 0.38 *** 

 (0.50) (0.48)  (0.50) (0.49)  

Mother College Graduate 0.20 0.13 *** 0.21 0.15 *** 

 (0.40) (0.33)  (0.40) (0.36)  

Mother Master’s Degree or more 0.03 0.02 *** 0.03 0.02  

 (0.17) (0.13)  (0.16) (0.15)  

Father Less than High School 0.27 0.37 *** 0.27 0.34 *** 

 (0.44) (0.48)  (0.44) (0.47)  

Father High School Graduate 0.33 0.28 *** 0.35 0.29 *** 

 (0.47) (0.45)  (0.48) (0.45)  

Father College Graduate 0.24 0.13 *** 0.21 0.17 *** 

 (0.42) (0.34)  (0.41) (0.38)  

Father Master’s Degree or more 0.08 0.04 *** 0.10 0.05 *** 

 (0.27) (0.20)  (0.29) (0.22)  

Light-Featured County 0.70 0.40 *** 0.69 0.50 *** 

 (0.46) (0.49)  (0.46) (0.50)  

HHI  0.21 0.24 *** 0.21 0.23 *** 

 (0.11) (0.13)  (0.11) (0.13)  

Observations 2,275 3,184  766 4,693  

Note: Standard Errors are in parentheses. Light-Eyes: Blue/Green/Hazel Eyes, Dark-Eyes: 

Brown/Black Eyes, Light-Hair: Blonde/Red Hair and Dark-Hair: Brown/Black Hair. The means 

are statistically different across the two groups at * 10%, ** 5%, or ***1%. 
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Table 3.2.B and Table 3.2.C show descriptive statistics by eye and hair color for females 

and males, respectively. Females with blue/green/hazel eyes earn almost two dollars more 

compared to females with brown/black eyes (Table 3.2.B). The difference is greater, and almost 

four dollars, for blonde/red hair females compared to females with brown/black hair. The wage 

at the first-job for males with light eyes and dark eyes is the same. However, blond/red hair 

males, on average, earn six dollars more compared to males with dark hair (Table 3.2.C). Having 

light features (eyes and hair) seems to matter for females, while for males, only having light hair 

matters.  

 

3.4. RESULTS 

The results obtained from equation [1] are presented in Table 3.3. Column (1) shows that, 

on average the starting wages of individuals with blonde/red hair are four-percent higher 

compared to individuals with brown/black hair. This result suggests that having blonde/red hair 

has a positive impact on starting wages. I find that the coefficient of having blonde/red hair is 

positive for both females and males. However, it is statistically significant, only for females. If a 

female has blonde/red hair, she earns six-percent wage premium at the starting job (column 2). 

Columns (4) to (6) show the impact of eye and hair color on starting wages for whites. Column 

(4) shows that white individuals with blonde/red hair earn four-percent more compared to whites 

with brown/black hair. The evidence of six-percent wage premium due to having blonde/red hair 

is consistent with the existing studies that find four to ten-percent wage premium for attractive 

individuals (Hamermesh and Biddle, 1994; Mobius and Rosenblat, 2006; Fletcher, 2009; Robins 

et al. 2011). In addition, this result is consistent with the Johnston (2010)’s finding that white and 

blonde women earn seven-percent more compared to  
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Table 3.2.B 

 Descriptive Statistics for Females by Eye and Hair Color  

 Eyes  Hair  

 Light Dark  Light Dark  

Wage at the First-job 12.08 10.55 * 14.40 10.62 *** 

 (31.35) (11.26)  (51.45) (9.91)  

Age 19.67 19.69  19.58 19.70  

 (2.23) (2.16)  (2.21) (2.19)  

White 0.94 0.36 *** 0.96 0.54 *** 

 (0.23) (0.48)  (0.18) (0.50)  

Light-Eyes - -  0.86 0.35 *** 

 - -  (0.12) (0.48)  

Dark-Eyes - -  0.14 0.65 *** 

 - -  (0.12) (0.48)  

Light-Hair 0.31 0.04 *** - -  

 (0.46) (0.19)  - -  

Dark-Hair 0.69 0.96  - -  

 (0.46) (0.19)  - -  

Mother Less than High School 0.26 0.44 *** 0.24 0.39 *** 

 (0.44) (0.50)  (0.18) (0.49)  

Mother High School Graduate 0.46 0.36 *** 0.51 0.39 *** 

 (0.50) (0.48)  (0.25) (0.49)  

Mother College Graduate 0.21 0.13 ** 0.20 0.15 *** 

 (0.41) (0.33)  (0.16) (0.36)  

Mother Master’s Degree or more 0.03 0.02 ** 0.02 0.02  

 (0.17) (0.13)  (0.02) (0.15)  

Father Less than High School 0.26 0.37 *** 0.26 0.34 *** 

 (0.44) (0.48)  (0.19) (0.47)  

Father High School Graduate 0.35 0.29 *** 0.38 0.30 *** 

 (0.48) (0.45)  (0.24) (0.46)  

Father College Graduate 0.23 0.13 *** 0.20 0.17  

 (0.42) (0.34)  (0.16) (0.38)  

Father Master’s Degree or more 0.08 0.04 *** 0.10 0.05  

 (0.27) (0.20)  (0.09) (0.22)  

Light-Featured County 0.70 0.40 *** 0.71 0.50 *** 

 (0.46) (0.49)  (0.21) (0.50)  

HHI  0.16 0.18 *** 0.16 0.17 ** 

 (0.08) (0.12)  (0.01) (0.11)  

Observations 1,134 1,528  410 2,252  

Note: Standard Errors are in parentheses. Light-Eyes: Blue/Green/Hazel Eyes, Dark-Eyes: 

Brown/Black Eyes, Light-Hair: Blonde/Red Hair and Dark-Hair: Brown/Black Hair. The means 

are statistically different across the two groups at * 10%, ** 5%, or ***1%. 
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Table 3.2.C 

 Descriptive Statistics for Males by Eye and Hair Color  

 Eyes  Hair  

 Light Dark  Light Dark  

Wage at the First-job 12.86 12.87  18.35 12.07 *** 

 (7.91) (46.89)  (10.18) (7.43)  

Age 19.67 19.55  19.69 19.59  

 (2.47) (2.22)  (2.26) (2.34)  

White 0.93 0.35 *** 0.97 0.53 *** 

 (0.25) (0.48)  (0.17) (0.50)  

Light-Eyes - -  0.87 0.34 *** 

 - -  (0.34) (0.47)  

Dark-Eyes - -  0.13 0.66 *** 

 - -  (0.34) (0.47)  

Light-Hair 0.27 0.03 *** - -  

 (0.44) (0.17)  - -  

Dark-Hair 0.73 0.97  - -  

 (0.44) (0.17)  - -  

Mother Less than High School 0.27 0.44 *** 0.27 0.39 *** 

 (0.45) (0.50)  (0.44) (0.49)  

Mother High School Graduate 0.45 0.34 *** 0.45 0.37 *** 

 (0.50) (0.47)  (0.50) (0.48)  

Mother College Graduate 0.20 0.13 *** 0.21 0.15 *** 

 (0.40) (0.33)  (0.41) (0.36)  

Mother Master’s Degree or more 0.03 0.02  0.03 0.02  

 (0.17) (0.14)  (0.17) (0.15)  

Father Less than High School 0.28 0.38 *** 0.28 0.35 *** 

 (0.45) (0.48)  (0.45) (0.48)  

Father High School Graduate 0.31 0.27 ** 0.32 0.28  

 (0.46) (0.44)  (0.47) (0.45)  

Father College Graduate 0.24 0.13 *** 0.22 0.17 *** 

 (0.43) (0.34)  (0.42) (0.37)  

Father Master’s Degree or more 0.08 0.04 *** 0.10 0.05 *** 

 (0.28) (0.21)  (0.29) (0.23)  

Light-Featured County 0.69 0.40 *** 0.68 0.49 *** 

 (0.46) (0.49)  (0.47) (0.50)  

HHI  0.16 0.18 *** 0.16 0.17 ** 

 (0.08) (0.11)  (0.08) (0.10)  

Observations 1,141 1,656  356 2,441  

Note: Standard Errors are in parentheses. Light-Eyes: Blue/Green/Hazel Eyes, Dark-Eyes: 

Brown/Black Eyes, Light-Hair: Blonde/Red Hair and Dark-Hair: Brown/Black Hair. The means 

are statistically different across the two groups at * 10%, ** 5%, or ***1%. 
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Table 3.3 

Impact of Eye and Hair Color on Wages at the First-job 

Dependent Variable: Wages at the First-job     

 All Female Male White White 

Female 

White 

Male 

 1 2 3 4 5 6 

Blue-Green-Hazel Eye  0.004 -0.002 0.006 -0.005 -0.018 0.001 

 (0.018) (0.025) (0.026) (0.020) (0.027) (0.029) 

Blond-Red Hair 0.043** 0.055* 0.032 0.044** 0.058* 0.028 

 (0.021) (0.030) (0.031) (0.022) (0.031) (0.032) 

Female -0.150*** - - -0.156*** - - 

 (0.013) - - (0.018) - - 

White 0.041** 0.027 0.056** - - - 

 (0.019) (0.026) (0.026) - - - 

Single 0.135*** 0.178*** -0.075 0.151** 0.191** -0.144 

 (0.050) (0.058) (0.078) (0.071) (0.078) (0.125) 

Age 0.083* 0.047 0.093 0.122** 0.044 0.132* 

 (0.049) (0.084) (0.059) (0.058) (0.102) (0.071) 

Age Square -0.001 0.000 -0.001 -0.002 0.001 -0.002 

 (0.001) (0.002) (0.001) (0.001) (0.003) (0.002) 

Father        

  High School Graduate 0.016 0.011 0.019 0.013 -0.018 0.042 

 (0.016) (0.024) (0.021) (0.021) (0.030) (0.029) 

  College Graduate 0.048** 0.047 0.052* 0.052* 0.039 0.067* 

 (0.022) (0.032) (0.029) (0.027) (0.039) (0.037) 

  Master’s Degree or more 0.069* 0.094 0.053 0.051 0.065 0.034 

 (0.038) (0.061) (0.043) (0.044) (0.072) (0.051) 

Mother       

  High School Graduate 0.068*** 0.056** 0.080*** 0.083*** 0.109*** 0.057** 

 (0.016) (0.024) (0.022) (0.021) (0.032) (0.029) 

  College Graduate 0.090*** 0.148*** 0.036 0.102*** 0.184*** 0.026 

 (0.024) (0.036) (0.032) (0.031) (0.047) (0.040) 

  Master’s Degree or more 0.101** 0.112* 0.097 0.125** 0.120* 0.135 

 (0.045) (0.060) (0.064) (0.056) (0.073) (0.085) 

First-job Start Year Dummies   Yes            Yes             Yes              Yes             Yes            Yes 

Observations 5,458 2,662 2,796 3,254 1,613 1,641 

R-Square 0.23 0.21 0.23 0.26 0.24 0.25 

Note: Standard errors are clustered at the state-county-year-level. Dependent variable is hourly 

real wage in cents in 2000 prices. The first-job is the one in which respondent worked more than 

two months and for more than twenty hours in a week after completing the schooling. For 

parents’ education, being high school dropout is the control group. * 10%, ** 5%, ***1%. 
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white brunettes. The coefficient of having blonde/red hair is positive for males (columns 3 and 

6), however it is statistically insignificant. 

The coefficient of having blue/green/hazel eyes has mixed sign for different sample 

groups. It is positive for males (columns 3 and 6) and negative for females (columns 2 and 5). 

However, it is statistically insignificant for both males and females. Thus, while there is no 

evidence that eye and hair color have an impact on starting wages for males, hair color has 

impact on wages for females. Whites earn almost four and a half-percentage point more 

compared to non-whites.
26

 Females earn fifteen-percent less compared to males. These results 

are consistent with the previous studies investigating white and non-white and female-male wage 

gaps.
27

 Additionally, individuals with more educated parents earn more. More educated parents 

might be more able to help with schooling at early ages, motivate for higher level of education 

and assign stronger importance to education.  

Table 3.4.A presents the results from equation [2]. Ethnic diversity measure, HHI, has a 

negative sign and statistically significant for all samples. As HHI increases (ethnic diversity 

decreases), wage-at-the-first-job decreases. In other words, there is a positive relationship 

between wages and ethnic diversity. The result is consistent with the previous studies (Longhi, 

2013; Ottaviano and Peri, 2005 and 2006). In terms of magnitude, if a county goes from perfect 

heterogeneity (HHI=0) to perfect homogeneity (HHI=1), that would decrease the wages by 

twenty-five-percent to thirty-five-percent (columns 1-6).  

If the individual has dark-features and residing in a light-featured county, she might be 

considered as different/attractive and earn a wage premium. On the other hand, if there is a 

preference for light-featured individuals, then she might receive a wage penalty. The results in

                                                 
26

 Non-white group consists of African American, Asian and Hispanic origins. 
27

 See Altonji and Blank (1999) 
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Table 3.4.A 

Impact of Hair Color and Color Feature of the County on Wages at the First-job 

Share of Light-Featured Ethnicities>50% 

Dependent Variable: Wages at the First-job    

 All Female Male White White Female White Male 

 1 2 3 4 5 6 

Light Eyes 0.009 -0.008 0.021 -0.000 -0.029 0.023 

 (0.019) (0.024) (0.029) (0.021) (0.027) (0.034) 

HHI
(1)

 -0.256*** -0.286*** -0.236*** -0.271*** -0.348*** -0.215* 

 (0.056) (0.082) (0.076) (0.087) (0.126) (0.119) 

Light-FC 
(2) 

 -0.051*** -0.054** -0.044* -0.057** -0.036 -0.073** 

 (0.018) (0.025) (0.025) (0.023) (0.032) (0.033) 

Light Hair * Light-FC 0.046 0.073 0.017 0.046 0.056 0.027 

 (0.034) (0.047) (0.052) (0.035) (0.047) (0.053) 

Light Hair * (1-Light-FC) 0.050* 0.044 0.059 0.054* 0.069 0.038 

 (0.030) (0.042) (0.039) (0.032) (0.045) (0.043) 

All Other Controls Yes Yes Yes Yes Yes Yes 

First-job Start Year Dummies Yes Yes Yes Yes Yes Yes 

Observations 4,875 2,400 2,475 2,742 1,379 1,363 

R-Square 0.23 0.22 0.23 0.27 0.26 0.27 

Note: Standard errors are clustered at the state-county-year level. Dependent variable is hourly real wage in cents in 2000 prices. The 

first-job is the one in which respondent worked more than two months and for more than twenty hours in a week after completing the 

schooling. For parents’ education, being high school dropout is the control group. Other control variables are gender, race, age and 

parents’ education. * 10%, ** 5%, ***1%. (1) HHI is the measure of ethnic diversity. Higher values of HHI mean less diversity. (2) 

Light-FC takes the value of one if the share of people of light-featured ethnic origins is greater than fifty-percent. The reference group 

is dark-featured individuals residing in dark-featured counties. 
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Table 3.4.A, column (1), support the latter hypothesis. Among individuals with brown/black hair, 

the ones residing in light-featured counties earn five-percent less compared to their counterparts 

residing in dark-featured areas (column 1). This result suggests that there is a wage penalty for 

individuals with brown/black hair residing in light-featured counties.  

If the individual has light-features and resides in a light-featured county, it is possible that 

she might not be considered as attractive since people in that county are likely to have this 

feature. On the other hand, she might earn more compared to the ones who have dark-features if 

people still have a preference for light-featured individuals. Table 3.4.A, column (1) supports the 

latter hypothesis. Among individuals residing in light-featured counties, the ones with blonde/red 

hair earn almost five-percent more compared to individuals with brown/black hair. However, it is 

not statistically significant.  

A blonde individual might stand out in a dark-featured county and gain a wage premium 

due to her different looks. The coefficient for the interaction between light hair and dark-featured 

county is positive (column1). It implies that an individual with blonde/red hair and residing in 

dark-featured county earns five-percent more, compared to an individual with brown/black hair 

residing in the same county. The impact seems to be coming from the white individuals. In a 

dark-featured county blonde/red hair whites earn five-percent more compared to brown/black 

hair females (column 4). The results suggest that there is a wage premium for blonde whites. 

Table 3.4.B shows the results from equation [2] with state fixed effects. The ethnic 

diversity coefficient is still negative and statistically significant for the entire sample and males 

only (columns 1 and 3). The evidence suggests that ethnic diversity of the county has no impact 

on the wage-at-the-first-job for females and whites residing in the same state. The wage is not 

different for the brown/black hair individuals residing in dark-featured counties and their 
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Table 3.4.B 

Impact of Hair Color and Color Feature of the County on Wages at the First-job 

Share of Light-Featured Ethnicities>50% 

with State Fixed Effects 

Dependent Variable: Wages at the First-job    

 All Female Male White White Female White Male 

 1 2 3 4 5 6 

Light Eyes 0.013 0.000 0.019 0.010 -0.015 0.026 

 (0.019) (0.025) (0.030) (0.022) (0.028) (0.035) 

HHI 
(1)

 -0.144** -0.043 -0.251*** -0.130 -0.100 -0.128 

 (0.071) (0.114) (0.085) (0.103) (0.155) (0.125) 

Light-FC 
(2)

 -0.006 -0.018 0.012 -0.035 -0.055 -0.017 

 (0.023) (0.035) (0.031) (0.030) (0.044) (0.042) 

Light Hair * Light-FC 0.040 0.053 0.011 0.044 0.044 0.017 

 (0.034) (0.047) (0.052) (0.036) (0.048) (0.054) 

Light Hair * (1-Light-FC) 0.052* 0.062 0.051 0.057* 0.082* 0.035 

 (0.030) (0.042) (0.039) (0.032) (0.045) (0.044) 

All Other Controls Yes Yes Yes Yes Yes Yes 

First-job Start Year Dummies Yes Yes Yes Yes Yes Yes 

State Fixed Effects Yes Yes Yes Yes Yes Yes 

Observations 4,875 2,400 2,475 2,742 1,379 1,339 

R-Square 0.25 0.24 0.27 0.29 0.30 0.32 

Note: Standard errors are clustered at the state-county-year level. Dependent variable is hourly real wage in cents in 2000 prices. The 

first-job is the one in which respondent worked more than two months and for more than twenty hours in a week after completing the 

schooling. For parents’ education, being high school dropout is the control group. Other control variables are gender, race, age and 

parents’ education. * 10%, ** 5%, ***1%. (1) HHI is the measure of ethnic diversity. Higher values of HHI mean less diversity. (2) 

Light-FC takes the value of one if the share of people of light-featured ethnic origins is greater than fifty-percent. The reference group 

is dark-featured individuals residing in dark-featured counties. 
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counterparts residing in light-featured counties. In other words, after controlling for the state 

fixed effects, the wage penalty for the dark featured individuals residing in light-featured 

counties disappears for all samples.  

The counties classified as dark or light featured with fifty-percent threshold. To check the 

sensitivity of results to threshold selection, I provide estimation results from equation [2] with 

eighty-percent threshold.
28

 Results with a higher threshold, eighty-percent, are presented in Table 

3.4.C and Table 3.4.D. Results are robust for the entire sample and whites sample (columns 1 

and 4). Columns 2 and 5 show that there is a wage premium for females with blonde/red hair, 

compared to females with brown/black hair and residing in a dark-featured county. However, the 

wage penalty for individuals with brown/black hair residing in the light-featured counties 

disappears in specifications with (Table 3.4.C) and without state fixed effects (Table 3.4.D). 

Thus, it can be concluded that evidence shows that there is a wage premium of having blonde/red 

hair in a dark-featured county. The result is stemming from whites and white females. For the 

white females residing in a dark-featured county leads to six-to-eight-percent wage premium. 

The brown/black hair females residing in a light featured area do not have such a premium.  

  

3.4.1. Causality 

In the previous section, I find that there is a wage premium for blonde females residing in 

dark-featured counties. This result is consistent with the hypothesis that attractive people stand 

out in the crowd and earn more compared to individuals without these features. However, the 

color feature of the county might be endogenous since it is determined by the people’s selection 

on location to live. There might be some unobservable individual, location and ethnic

                                                 
28

 Results are robust to several alternative threshold selections at the range of sixty to ninety-five 

percent. 
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Table 3.4.C 

Impact of Hair Color and Color Feature of the County on Wages at the First-job 

Share of Light-Featured Ethnicities>80% 

Dependent Variable: Wages at the First-job    

 All Female Male White White Female White Male 

 1 2 3 4 5 6 

Light Eyes 0.004 -0.011 0.016 -0.005 -0.031 0.014 

 (0.019) (0.024) (0.029) (0.021) (0.027) (0.033) 

HHI 
(1)

 -0.274*** -0.315*** -0.245*** -0.318*** -0.406*** -0.240* 

 (0.059) (0.088) (0.078) (0.096) (0.142) (0.124) 

Light-FC 
(2)

 -0.002 -0.006 0.001 -0.001 0.005 -0.011 

 (0.039) (0.065) (0.043) (0.044) (0.072) (0.050) 

Light Hair * Light-FC 0.026 0.117 -0.077 0.018 0.099 -0.086 

 (0.080) (0.127) (0.119) (0.080) (0.128) (0.118) 

Light Hair * (1-Light-FC) 0.051** 0.055* 0.046 0.053** 0.060* 0.043 

 (0.024) (0.033) (0.036) (0.025) (0.034) (0.038) 

All Other Controls Yes Yes Yes Yes Yes Yes 

First-job Start Year Dummies Yes Yes Yes Yes Yes Yes 

Observations 4,875 2,400 2,475 2,742 1,379 1,363 

R-Square 0.23 0.22 0.23 0.27 0.26 0.27 

Note: Standard errors are clustered at the state-county-year level. Dependent variable is hourly real wage in cents in 2000 prices. The 

first-job is the one in which respondent worked more than two months and for more than twenty hours in a week after completing the 

schooling. For parents’ education, being high school dropout is the control group. Other control variables are gender, race, age and 

parents’ education. * 10%, ** 5%, ***1%. (1) HHI is the measure of ethnic diversity. Higher values of HHI mean less diversity. (2) 

Light-FC takes the value of one if the share of people of light-featured ethnic origins is greater than eighty-percent. The reference 

group is dark-featured individuals residing in dark-featured counties. 
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Table 3.4.D 

Impact of Hair Color and Color Feature of the County on Wages at the First-job 

Share of Light-Featured Ethnicities>80% 

with State Fixed Effects 

Dependent Variable: Wages at the First-job    

 All Female Male White White Female White Male 

 1 2 3 4 5 6 

Light Eyes 0.013 -0.000 0.020 0.009 -0.014 0.024 

 (0.019) (0.025) (0.029) (0.022) (0.028) (0.034) 

HHI 
(1)

 -0.148* -0.051 -0.259*** -0.086 -0.047 -0.097 

 (0.078) (0.127) (0.091) (0.123) (0.189) (0.146) 

Light-FC 
(2)

 0.011 -0.008 0.042 -0.032 -0.059 0.003 

 (0.049) (0.080) (0.058) (0.056) (0.090) (0.068) 

Light Hair * Light-FC 0.018 0.100 -0.114 0.012 0.090 -0.119 

 (0.083) (0.129) (0.125) (0.082) (0.129) (0.124) 

Light Hair * (1-Light-FC) 0.048** 0.054 0.041 0.053** 0.058* 0.037 

 (0.024) (0.033) (0.036) (0.026) (0.034) (0.039) 

All Other Controls Yes Yes Yes Yes Yes Yes 

First-job Start Year Dummies Yes Yes Yes Yes Yes Yes 

State Fixed Effects Yes Yes Yes Yes Yes Yes 

Observations 4,875 2,400 2,475 2,742 1,379 1,339 

R-Square 0.25 0.24 0.27 0.29 0.30 0.32 

Note: Standard errors are clustered at the state-county-year level. Dependent variable is hourly real wage in cents in 2000 prices. The 

first-job is the one in which respondent worked more than two months and for more than twenty hours in a week after completing the 

schooling. For parents’ education, being high school dropout is the control group. Other control variables are gender, race, age and 

parents’ education. * 10%, ** 5%, ***1%. (1) HHI is the measure of ethnic diversity. Higher values of HHI mean less diversity. (2) 

Light-FC takes the value of one if the share of people of light-featured ethnic origins is greater than eighty-percent. The reference 

group is dark-featured individuals residing in dark-featured counties. 
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characteristics which determine selection on location to live. For example, some ethnic groups 

might be less likely to migrate to other places for better job opportunities. Some unobserved 

ethnic characteristics might affect the labor market conditions of the location. For example, one 

ethnic group, let’s say German descents might be more productive compared to others. Then, 

wages would be higher for German descents in that location. The color features of German 

ethnic group then will affect the color feature of the region. In that case, the color feature of the 

county might be reflecting the productivity of the German descents, not the color feature per se. 

Borjas (1992 and 1995) points out that ethnic capital is an important factor affecting skills of a 

person and also labor market outcomes. In addition, some individuals might choose a location 

where people from their own ethnic group are abounded. Borjas (1992) finds evidence that 

people of a particular ethnic group reside among the people who are of the same ethnic 

background. In that case, the coefficient of the variable measuring the color feature of the county 

might be reflecting network effects. Thus, color feature of the county might be endogenous. The 

relationship between the color features of the county and the starting wages might be generated 

by unobservable individual, ethnic group and location characteristics. 

In this section, I follow two strategies to examine whether the associations documented in 

the previous section are causal. First, I use the strategy introduced by Oster (2015) to investigate 

whether the estimates are being driven by unobserved heterogeneity across individuals and 

counties. Second, I use two different instruments for eye/hair composition of the counties. 

 

3.4.2. Selection on Observables 

The first strategy I employ checks the robustness of results to omitted variable bias by 

utilizing the method in Oster (2015). This strategy considers both the movements in the 
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coefficient of the variable of interest and R-squared movements as control variables are included 

in the model. After controlling for observable factors, the estimates might still be biased due to 

unobserved individual and county characteristics associated with selection of county to reside.  

The idea behind selection on observables is based on the assumption that the relationship 

between eye/hair color composition of the county and observable variables is informative about 

the relationship between eye/hair color composition of the county and unobservable variables.
29

 

In other words, bias arising from the inclusion of observed variables is informative about the bias 

arising from unobserved variables. How informative observables are about unobservable 

variables is called degree of proportionality.  

Oster (2015) discusses that a set of coefficients that would yield results as if the eye/hair 

color composition of the county was randomized can be calculated by following the assumption 

of proportional selection on observed and unobserved variables. This set is called the “identified 

set”. The rationale behind the identified set is as follows. If the coefficient of the eye/hair color 

composition of the county is unchanged by inclusion of individual and county control variables, 

one can suggest that individuals are located in different counties randomly. If that is the case, 

then coefficient movements (as more controls are included) should be within the bounds of the 

identified set, which would yield results as if the eye/hair color composition of the county was 

randomized. In other words, this set provides a range for the level of the stability in the non-

randomized data. The identified set can be calculated by making assumptions on degree of 

proportionality and also on the maximum R-squared, which is obtained from the full regression 

with controls for eye/hair color composition of the county, observable variables and 

                                                 
29

 This assumption is called “proportional selection assumption”.  
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unobservable variables. The adjusted coefficient with maximum R-squared provides the upper 

bound for the identified set. 

The results from this strategy are presented in Table 3.5.A in Panels A and B. Panel A 

shows results without state fixed effects and Panel B presents the results with state fixed effects. 

The table shows identified sets for the assumption that observable variables are at least as 

important as unobservable variables, i.e. degree of proportionality equals one. Two different 

bounds on maximum R-Squared are employed in this study:     = 1.5 ̃ and     = 2.2 ̃.
 30

   ̃ 

is obtained from estimating equation [1] with full observable control variables and eye/hair color 

composition of the county. Inclusion of control variables affects the magnitude of the coefficient 

of color feature of the county and statistical significance change in some cases. Identified sets for 

all samples exclude zero regardless of the      boundary. Inclusion of coefficients moves the 

coefficient away from zero for almost all samples but whites and white females. In this case, I 

compare identified set with the 95% confidence interval obtained from the unrestricted 

(controlled) estimation equation. Identified set is not fully in the confidence interval, but they 

collapse. The results suggest that the relationship presented on Table 3.4 is causal. In the 

following part, I examine endogeneity by employing instrumental variable approach. 

 

3.4.3. IV Estimates 

The second strategy is to use instrumental variables to explain the role of hair color and 

color feature of the county on the wage-at-the-first-job after schooling. If individuals were 

distributed randomly across counties, then one would not expect a correlation between the color 

feature of the county and unobserved individual and region characteristics. However, individuals 

                                                 
30

 These boundaries are adopted from Oster (2015) where she obtains them in a randomized data 

context.  
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Table 3.5.A 

Coefficients of ‘Light-featured County’ in the Baseline and Controlled Estimation Equations and Identified Sets 

The Treatment Variable: Light-Featured County 

 All Female Male White White Female White Male 

 1 2 3 4 5 6 

Panel A: Without State Fixed Effects     

Baseline Effect -0.012         -0.029 0.005     -0.077*** -0.073*** -0.082*** 

 (0.015) (0.021) (0.019) (0.019) (0.028) (0.026) 

 {0.15} {0.15} {0.17} {0.19} {0.18} {0.21} 

Controlled Effect    -0.061***    -0.061***    -0.058*** -0.072 -0.060** -0.084*** 

 (0.016) (0.023) (0.021) (0.019) (0.028) (0.026) 

 {0.23} {0.21} {0.23} {0.27} {0.25} {0.27} 

Identified Set       

 ̃          [-0.135, -0.061] [-0.155, -0.061] [-0.125, -0.058] [-0.143, -0.072] [-0.122, -0.060] [-0.165, -0.084] 

 ̃          [-0.210, -0.061] [-0.285, -0.061] [-0.221, -0.058] [-0.243, -0.072] [-0.210, -0.060] [-0.283, -0.084] 

Year Fixed Effects Yes  Yes Yes Yes Yes Yes 

Panel B: With State Fixed Effects      

Baseline Effect -0.026 -0.001    0.052** -0.039 -0.065* -0.002 

 (0.020) (0.031) (0.019) (0.027) (0.040) (0.036) 

 {0.17} {0.19} {0.17} {0.22} {0.22} {0.27} 

Controlled Effect -0.009 -0.020 0.004    -0.041*** -0.067* -0.023 

 (0.021) (0.031) (0.021) (0.027) (0.040) (0.037) 

 {0.24} {0.24} {0.23} {0.28} {0.29} {0.32} 

Identified Set       

 ̃          [-0.071, -0.009] [-0.109, -0.020] [-0.051, 0.004] [-0.127, -0.041] [-0.189, -0.067] [-0.078, -0.023] 

 ̃          [-0.159, -0.009] [-0.234, -0.020] [-0.075, 0.004] [-0.248, -0.041] [-0.360, -0.067] [-0.155, -0.023] 

Year Fixed Effects Yes  Yes Yes Yes Yes Yes 

Note: Standard errors are in the parentheses. The coefficients reported belong to the variable “Light-Featured County” It takes the 

value of one if the share of individuals from light-featured ethnicities is greater than 50%, zero otherwise. * 10%, ** 5%, ***1%. 95% 

confidence intervals: whites [-0.114, -0.005]; white females [-0.110, -0.034]. 
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might choose to reside in counties with specific characteristics such as crime rates, racial 

discrimination, labor market conditions, etc. Thus, the instrument should be correlated with the 

color features of the county but uncorrelated with any labor market outcomes.  

First, I use state-level color features as an instrument for county color features. Changing 

the county of residence is easier compared to changing state of residence. Thus, individuals’ 

decision about where to live will be more endogenous for small areas. Dustmann and Preston 

(2001) argue that larger area ethnic composition may not be related to individual location choices 

and hence be beyond the control of individuals. However, larger area composition will be highly 

correlated to small area ethnic compositions. Second, I use share of children (under the age of 

16) of the light-featured ethnicities to reflect the color feature of the state and employ it to 

instrument the color feature of the county. The color feature of the state, which is determined by 

the share of children of the light-featured ethnicities, is going to be an instrument for the color 

feature of the county that is determined by the share of all individuals of the light-featured ethnic 

origins. Since children are not part of the labor force, the ethnic composition of population under 

age 16 should not have an impact on the labor market. The ethnicity information by age is 

obtained from 1980 census five percent sample. The ancestry information is more detailed in the 

individual level sample. However, it does not affect determination of the color feature of the 

region.  

The results are presented in the Table 3.5.B and Table 3.5.C. Table 3.5.B presents results 

with fifty-percent threshold for the county color feature. The coefficient of the light-featured 

county variable is greater with both instruments (Panel A and Panel B) compared to coefficients 

obtained by OLS (Tables 3.4.A to 3.4.D). It implies that there is a wage penalty for dark-featured 

individuals residing in light-featured counties compared to dark-featured individuals residing in
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Table 3.5.B 

IV Estimation: Impact of Hair Color and Color Feature of the County on Wages at the First-job 

Share of Light-Featured Ethnicities>50% 

 
All Female Male White 

White 

Female 

White  

Male 

 1 2 3 4 5 6 

Panel A: Instrument: State-level Color Feature     

Light-FC 
(1)

 -0.131*** -0.155*** -0.109** -0.090** -0.063 -0.117** 

 (0.033) (0.049) (0.045) (0.040) (0.057) (0.057) 

Blonde Hair* Light-FC 0.086* 0.145** 0.027 0.066 0.105 0.025 

 (0.050) (0.068) (0.076) (0.051) (0.068) (0.077) 

Blonde Hair* (1-Light-FC) 0.004 -0.036 0.046 0.029 0.013 0.038 

 (0.045) (0.067) (0.057) (0.048) (0.070) (0.061) 

Observations 4,875 2,400 2,475 2,742 1,379 1,363 

R-Square 0.23 0.21 0.23 0.27 0.26 0.25 

Panel B: Instrument: State-level Color Feature for 0-15 Age Group   

Light-FC 
(1)

 -0.143*** -0.153*** -0.137*** -0.135*** -0.096 -0.173*** 

 (0.037) (0.054) (0.050) (0.042) (0.061) (0.058) 

Blonde Hair* Light-FC 0.114** 0.183*** 0.039 0.104** 0.152** 0.047 

 (0.051) (0.070) (0.078) (0.052) (0.071) (0.079) 

Blonde Hair* (1-Light-FC) -0.032 -0.087 0.031 -0.022 -0.051 0.011 

 (0.045) (0.063) (0.061) (0.048) (0.067) (0.066) 

Observations 4,865 2,395 2,470 2,734 1,375 1,359 

R-Square 0.23 0.21 0.23 0.27 0.25 0.26 

Other Controls Yes Yes Yes Yes Yes Yes 

First-job Start Year Dummies Yes Yes Yes Yes Yes Yes 

Note: Standard errors are in parentheses. The tables report instrumental variable results. The dependent variable is hourly real wage in 

cents in 2000 prices. The first-job is the one in which individual worked more than two months and for more than twenty hours a week 

after completing the schooling. Other control variables are gender, race, age and parents’ education. First stage F-Statistics are above 

10 for all samples. * 10%, ** 5%, ***1%.  (1) Light-FC takes the value of one if the share of people of light-featured ethnic origins is 

greater than fifty-percent. The reference group is dark-featured individuals residing in dark-featured counties.  
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Table 3.5.C 

IV Estimation: Impact of Hair Color and Color Feature of the County on Wages at the First-job 

Share of Light-Featured Ethnicities>75% 

 
All Female Male White 

White 

Female 

White  

Male 

 1 2 3 4 5 6 

Panel A: Instrument: State-level Color Feature     

Light-FC 
(1)

 0.010 0.006 0.013 0.054 0.082 0.023 

 (0.064) (0.117) (0.073) (0.072) (0.119) (0.086) 

Blonde Hair* Light-FC -0.055 0.072 -0.238 -0.073 0.011 -0.258 

 (0.109) (0.161) (0.171) (0.110) (0.159) (0.173) 

Blonde Hair* (1-Light-FC) 0.067** 0.058 0.083* 0.073** 0.071* 0.084* 

 (0.031) (0.042) (0.047) (0.032) (0.043) (0.050) 

Observations 4,875 2,400 2,475 2,742 1,379 1,363 

R-Square 0.23 0.21 0.24 0.27 0.26 0.27 

Panel B: Instrument: State-level Color Feature for 0-15 Age Group   

Light-FC 
(1)

 0.021 0.030 0.017 0.056 0.091 0.018 

 (0.070) (0.131) (0.079) (0.077) (0.129) (0.093) 

Blonde Hair* Light-FC -0.046 0.099 -0.241 -0.058 0.044 -0.254 

 (0.115) (0.177) (0.172) (0.117) (0.174) (0.175) 

Blonde Hair* (1-Light-FC) 0.062* 0.046 0.083* 0.067** 0.058 0.083* 

 (0.032) (0.044) (0.047) (0.033) (0.044) (0.050) 

Observations 4,865 2,395 2,470 2,734 1,375 1,359 

R-Square 0.23 0.21 0.24 0.27 0.25 0.27 

Other Controls Yes Yes Yes Yes Yes Yes 

First-job Start Year Dummies Yes Yes Yes Yes Yes Yes 

Note: Standard errors are in parentheses. The tables report instrumental variable results. The dependent variable is hourly real wage in 

cents in 2000 prices. The first-job is the one in which individual worked more than two months and for more than twenty hours a week 

after completing the schooling. Other control variables are gender, race, age and parents’ education. First stage F-Statistics are above 

10 for all samples. * 10%, ** 5%, ***1%.  (1) Light-FC takes the value of one if the share of people of light-featured ethnic origins is 

greater than seventy-five-percent. The reference group is dark-featured individuals residing in dark-featured counties.  
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dark-featured counties. However, when the threshold is increased to seventy-five-percent, this 

effect disappears (Table 3.5.C, Panels A and B). 

The coefficients for the variable measuring the wage differences for blonde/red hair and 

brown/black hair individuals residing in dark-featured counties have mixed signs and statistically 

insignificant. In addition, the coefficients are lower in magnitude compared to OLS results 

(Table 3.5.B, Panels A and B). However, increasing the threshold to seventy-five-percent to 

determine the color feature of the county/state shows evidence that individuals with blonde/red 

hair earn more compared to their counterparts with brown/black hair residing at the same dark-

featured county (Table 3.5.C, Panels A and B). 

The coefficients measuring the wage differences for the individuals with blonde/red hair 

and brown/black hair in a light-featured county are also greater in magnitude (Table 3.5.B) with 

both instruments compared to OLS results presented in Tables 3.4.A through 3.4.D. Results 

suggest that blonde/red hair individuals earn eight-to-eighteen-percent more compared to their 

counterparts with brown/black hair individuals residing in the same light-featured county. 

However, when the threshold that determines whether the county is light or dark featured is 

increased to seventy-five-percent the coefficients of this variable become statistically 

insignificant.  

  

3.5. CONCLUSION 

As summarized in the introduction, being beautiful, tall, having white teeth and having 

light skin color have a positive impact on wages. The studies of Hamermesh and Biddle (1994 

and 1998) show that there is a wage premium for beautiful individuals and they find some 

evidence that it might be due to employer/customer discrimination and occupational sorting. As 
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Persico at al. (2004) shows, height affect participation in club activities and Case and Paxon 

(2008) show that taller individuals have higher cognitive abilities, both leading to positive labor 

market outcomes. Taller individuals might have had better nutrition while growing up, leading to 

better built body. In addition, individuals with attractive features might have had preferential 

treatment from their teachers and peers during schooling. Combined with these, it might also be 

the case that individuals with good physical characteristics might develop better non-cognitive 

skills. It has been well documented that cognitive and non-cognitive abilities have a positive 

effect on earnings (see for example, Goldsmith, Veum and Darity 1997; Bowles et al. 2001; 

Heckman et al 2006; Goldsmith et al. 1997; Drago, 2011).   

In addition to these characteristics, hair and eye color of an individual might have an 

impact on human capital formation and hence on labor market outcomes. Hair and eye color can 

be used as dimensions of exoticism. For example, if an individual has blonde/red hair and/or 

blue/green eyes, s/he might receive a wage premium due to having these features. However, if 

the individual is residing in a county where her/his hair and eye color is common, having these 

features- which are similar to the majority of the population- might not bring a wage premium. 

On the other hand, if the majority of the population has the opposite hair color, then, having 

these features might bring a wage premium or a wage penalty. 

In this chapter, I use NLSY79 and census of population 1980 to investigate the 

association between eye and hair color and wages at the first-job. I focus on wages at the first-job 

instead of wages individuals earn in their mid-thirties- or later- to eliminate the effect of 

trainings, on-the-job learning, and employers’ knowledge about the individual’s productivity. 

The wage-at-the-first-job only includes returns to human capital the individual accumulated 

before entering the labor market not the capital s/he accumulates on the job. In addition, once the 



 

 83 

individual starts working, in time, employers might observe the individuals actual productivity. It 

might lead to wage adjustments. Thus, using the wage at-the-first job will not reflect employers’ 

knowledge about the productivity but his/her expected productivity and also the employer’s 

preference about working with attractive/beautiful people.  

The natural eye and hair color of individuals is obtained from NLSY79, 1985 survey. If 

the individual has blue/green/hazel eyes s/he is considered as having “light-eyes” and if s/he has 

brown/black eyes s/he is considered as having “dark-eyes.” In addition, blonde/red hair is 

considered as “light-hair” and brown/black hair is as “dark-hair”. I find that there is 

approximately six-percent wage premium for blonde females and four-percent wage premium for 

whites. This result is consistent with the studies finding positive association between hair color 

and wages/earnings (Johnston, 2010; Gueguen 2012; Price, 2008). There is no evidence that hair 

color has an impact on wages at the first-job for males. In addition, there is no evidence that eye 

color affects wages. 

 Race is an important determinant of hair and eye color. Among non-white sample, the 

variation of hair and eye color is very low. Thus, in this study, I do not report the impact of hair 

and eye color on wages for the non-white sample. As it would be expected, there are very few 

non-white individuals who have light hair (blonde/red hair) and/or light eyes (blue/green eyes). 

In order to eliminate the impact of race on wages, I control for the race of the individual. 

However, to check whether the results are driven by the race differences, I estimate the 

regression equations only for white sample as well. The results suggest that, the main results 

presented in this chapter are driven by the variation of hair and eye color in the white sample and 

not driven by race differences. 
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After finding evidence that hair color has an impact on wage-at-the-first-job after 

schooling, I investigate whether there still is a wage premium due to having blonde/red hair 

(light-hair) for the individuals who reside in counties where “light-hair” or “dark-hair” is a 

common feature. In order to answer this question, I utilize three anthropological studies (Coon 

1939; Hulse, 1963; and Geipel, 1969) to determine the predominant hair color of each ethnic 

group. Based on these studies, I classify each ethnic group as “light-featured” if the majority of 

people of that particular ethnic group have blonde/red hair and as “dark-featured” if majority of 

its people have brown/black hair. Then, I use this information to determine whether individuals 

with light-hair constitute the majority at a county by using the detailed ancestry information 

collected in the 1980 census of population. If the share of individuals with light-featured ethnic 

origins is greater than fifty-percent, I define that county as being predominantly light-featured. If 

it is less than fifty-percent, then, the county is predominantly dark-featured. I find that females 

residing in predominantly dark-featured counties earn six-percent more compared to females 

with brown/black hair and residing in the same county. In addition, in a light-featured county, 

females with blonde/red hair earn five to seven-percent more compared to females with 

brown/black hair. However, results are statistically insignificant.  

I employed two different strategies to investigate whether the impact of having 

blonde/red hair on wages is causal. Whether the county is predominantly light or dark featured 

might be affected by the labor market conditions, ethnic and individual characteristics. In that 

case, the variable measuring whether the county is predominantly light or dark featured would 

reflect other factors that would affect both wage-at-the-first-job and also the county’s 

predominant hair color. To investigate this problem, first, I used the selection on observables 

strategy discussed in Oster (2015). This strategy examines whether the results are bias to the 
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omitted variable bias. It considers movements in coefficients and also in R-Squared to measure 

the bias arising from omitting variables. Second, I employed state level color feature and share of 

children of the light-featured ethnicities in the state as an instrument for county’s color feature. 

Investigation of endogeneity problem with both strategies suggests that the relationship between 

having blonde/red hair and wage-at-the-first-job might be causal.  

 In summary, having blonde/red hair has an impact on the wage at the first-job after 

completing schooling. Whether the county the individual resides is predominantly light or dark 

featured matters when analyzing the impact of hair color on wages. If a female with blonde/red 

hair resides in a predominantly dark-featured county, she earns a wage premium. The evidence 

of premium due to hair color for the wages at-the-first-job after schooling suggests that the wage 

premium is due to employer’s perceptions not because of the productivity differences. In 

addition, there is some evidence of a wage penalty for the individuals with brown/black hair and 

residing in a predominantly light-featured county.  
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CHAPTER 4. THE EFFECT OF UNEMPLOYMENT INSURANCE GENEROSITY 

ON UNEMPLOYMENT DURATION AND LABOR MARKET TRANSITIONS: 

EVIDENCE FROM TURKEY 

 

4.1. INTRODUCTION  

This chapter examines the impact of unemployment insurance (UI) generosity on 

unemployment benefit duration, labor market transitions (transition to employment or non-

participation in labor force), cheating the UI system and rejecting services of the Turkish 

Employment Agency. The UI benefit generosity is identified by using information on different 

lengths of benefit entitlement based the number of days UI premium is paid. Although there have 

been many studies that examine the relationship between UI generosity and unemployment 

duration for developed countries (the US and Europe), there are not many studies investigating 

this relationship for developing countries. This study contributes to the literature by examining 

the impact of UI generosity on unemployment duration for Turkey, a developing country.  

In Turkey, the duration of unemployment has increased during the last two decades, 

especially short-term unemployment. The share of 1-2-months unemployment duration in total 

unemployment has increased from 14-percent in 1991 to 33-percent in 2012. In the same period, 

the share of 3-5-months unemployment duration also jumped, from 19-percent to 26-percent 

(Figure 4.1, Panel A). However, the share of long-term unemployment decreased slightly over 

the years. Since 2002 individuals who lost their jobs involuntarily are potentially eligible for the 

UI benefits. After the enactment of the Turkish Unemployment Insurance Law in 1999, there is a 

clear jump in the share of unemployed workers who lost their jobs involuntarily in total number 

of workers in each unemployment duration period (Figure 4.1, Panel B). For example, in 1995 

there are 527 thousand workers who lost their job involuntarily and around 67-percent of them 

stay unemployed for almost up to a year. In 2012, the number of workers who lost their jobs
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Figure 4.1 

Share of Unemployed Workers by Unemployment Duration and Unemployment Rate  

1991-2012 

 

Note: TurkStat. The first reference line, 1999, represents the year “Unemployment Insurance Law” has enacted. The second reference 

line, 2002, shows the year the eligible workers first received UI benefit payments. Panel A: Share of Unemployment Duration in Total 

Unemployment by Unemployment Duration; Panel B: Share of Unemployed Workers who Involuntarily Lost Their Jobs in Total 

Number of Workers in Each Unemployment Duration; Panel C: Unemployment Rate. 
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involuntarily increases to 1,226 thousand. 81-percent of them remains unemployed for almost up 

to a year. Moreover, unemployment rate in Turkey has increased from around 8% in 2000 to 

around 13% on average afterwards (Figure 4.1, Panel C). However, it should be noted that in the 

beginning of the 2000s, Turkey experienced a financial crisis. It has been argued in the literature 

that the different unemployment rates between the US and Europe might be due to more 

generous UI systems in Europe (see Nickell, 1997 for discussion). Turkey has higher 

unemployment rates compared to both. However, some part of the increase in the unemployment 

duration might be attributed to the UI. Thus, from a policy maker’s standpoint, it is important to 

understand the role of UI benefits on unemployment duration.  

According to the basic job search theory, an increase in the unemployment compensation 

leads to longer unemployment periods because of the increase in reservation wages and decrease 

in the cost of unemployment.
31

 The existing literature shows that unemployment insurance 

generosity, in the form of benefit amounts and/or benefit durations, has a positive impact on the 

unemployment duration and negative effect on transition to employment from unemployment. 

The association between UI generosity and unemployment duration is mostly investigated for the 

US and Europe. 

In the US, since the Extended Unemployment Compensation Act in 1971, studies 

investigating the impact of extended UI benefits on unemployment duration find that longer 

benefit duration leads to longer unemployment spells. There is an extensive literature on the 

                                                 
31

 For instance, UI benefits might help unemployed workers to maintain their consumption and 

savings while searching for a job. Browning and Crossley (2001) find a small and marginally 

significant impact of a decrease in unemployment benefit on total expenditures. Gruber (1997) 

finds that in the absence of UI, the consumption would have fallen by twenty-two percent and it 

decreases by seven percent in the presence of the program. It suggests evidence that UI helps 

workers to smooth their consumption. 



 

 89 

topic. Thus, I will summarize the ones that are most closely related to this study.
32

 For example, 

Ehrenberg and Oaxaca (1976) find that 1-percent increase in the UI benefit replacement rate lead 

to 0.2-0.5 weeks longer unemployment duration for young males and females, respectively. In 

addition, they show that more generous unemployment benefits decrease the duration out of 

labor force. Moffitt (1985) uses both UI benefit amount and the change in benefit duration as 

generosity measures and finds that a 10-percent increase in benefit amount increases 

unemployment duration by a half week while one additional week of UI benefits leads to 0.15 

weeks longer unemployment duration. By analyzing benefit recipients and non-recipients Katz 

and Meyer (1990) shows a similar impact of longer UI benefits on unemployment duration. 
33

 

Gritz and MaCurdy (1997), find that one-week increase in the weeks of eligibility increases the 

unemployment duration about 0.1 week. Moffitt and Nicholson (1982) also find the same impact 

of UI generosity on unemployment duration. 

Card and Levine (2000) investigate the impact of extended benefits in New Jersey in 

1996 on unemployment benefit recipiency and duration. Contrary to existing evidence in the US, 

they find that extended benefits have no impact on the average unemployment duration. 

However, they show that the percentage of unemployed people exhausting their benefits increase 

modestly, by 1.5-percentage points. They also simulate the long-run effect of the benefit 

extension and suggest that one additional week of benefits would lead to 0.08 week increase in 

the number of weeks unemployed workers collect UI benefits. This evidence is similar to what 

the studies above find. 

                                                 
32

 For a detailed review of studies prior to 1991, see Atkinson and Micklewright (1991). 
33

 The results in the paper show that one-week increase in UI benefit duration increases 

unemployment duration by 0.16-0.20 weeks. 
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In a more recent study, Schwartz (2013) investigates the impact of 1991 Stand-by 

Extended Benefit Program (SEB) in the US. Different from the previous studies proving 

evidence from the US, he employs regression discontinuity design. The results show that one 

additional week of benefits lead to 0.06-0.13 weeks longer unemployment duration. This 

evidence is very similar to what previous studies find. Farber and Valletta (2013) use the 

extended benefits in the US in the 2000s and find that extended benefits has no effect on the 

probability of finding a job. However, they show that extended benefits lead to 7-percent higher 

expected unemployment duration during the Great Recession. In addition, benefit extensions 

decrease the probability of entering out of labor force.  

Studies from Europe mainly use the difference in length of UI benefit entitlement based 

on some eligibility criteria (e.g. age, region) to investigate the impact of UI generosity on 

unemployment duration and labor market transitions. For example, Hunt (1995) utilizes the law 

changes in the West Germany during 1980s to analyze the impact of UI generosity on 

unemployment duration. Due to changes in the law, the level of UI compensation and its 

duration changes for workers without children and workers aged over 41, respectively. Hunt 

(1995) finds evidence that longer UI benefit periods lead to longer unemployment durations for 

older workers compared to younger workers. In addition, she shows that longer benefit durations 

decrease the probability of transitions to employment and out of the labor force. In a study that 

makes use of regression discontinuity design, Caliendo, Tatsiramos and Uhlendorff (2013) find 

similar results for Germany. Germany increased the duration of UI benefits from 12 months to 

18 months at the age of 45 during 2000s.  They show evidence that probability of finding a job 

decreases by 23% (men) and 24% (women) by additional 6 months of benefit period.  
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Due to the availability of the detailed administrative data, there are several studies 

investigating the impact of UI generosity on unemployment duration for Austria. During the 

period 1988-to-1993, elderly workers in some regions across Austria received unemployment 

benefits for additional 179-weeks. Lalive and Zweimuller (2004) implement a difference-in-

difference-in-difference approach to investigate the impact of 179-week increase in the duration 

of unemployment benefits on unemployment duration. They find that an additional week of 

benefits increases the unemployment duration by 0.06 weeks and 179-week increase in benefit 

duration decreases transition to employment by 17%. Lalive (2008) investigates the impact of the 

same policy change on unemployment duration with a different identification strategy. They 

employ regression discontinuity design to identify the impact of UI generosity for men and 

women. They find that one additional week of UI benefit increases the unemployment duration 

of men by 0.09 weeks and of women by 0.32 weeks. In addition to these studies, Card, Chetty 

and Weber (2007) investigate the impact of benefit generosity on unemployment duration in 

Austria with an alternative structure of the Austrian UI Law. They use the differences in entitled 

benefit durations based number of months a worker was employed in the past 5 years to measure 

the generosity of UI. In Austria, workers with 36-month employment in the past 5 years receive 

20 weeks benefits while workers who have more than 36 months receive 10 extra weeks. They 

show that this additional 10-week UI benefits leads to 5-9% decrease in probability of finding a 

job. 

 In addition to its impact on unemployment duration, more generous UI benefit might 

increase the overall unemployment rates. The longer unemployment spells might lead to higher 

unemployment rates. Using variation in UI system across states, Moomaw (1998) finds that more 

generous UI systems are associated with higher unemployment rates. Schwartz (2013) utilizes 
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Stand-by Extended Benefit implemented in the US in 1991 and finds that extended benefit 

duration increases county unemployment rates by 14% in the states adopting the program. Farber 

and Valletta (2013) find that extended benefits during the Great Recession increased the 

unemployment rate by 0.4-percentage points, which is lower than what Schwartz (2013) finds.  

 As most of the existing studies, in this chapter, I examine the impact of UI generosity on 

unemployment duration and labor market transitions through changes in the duration of UI 

benefits. According to Turkish Unemployment Insurance Law, which is enacted in 1999, number 

of days a worker is entitled to UI benefits is a gradual function of the number of days the worker 

has paid UI premium in the last three years prior to losing her job. Workers with less than 900-

paid-premium-days in the last three years receive 6-months of UI benefits, while those who have 

900-paid-premium-days or more receive 8-months of UI benefits. The two-month difference in 

UI benefit qualification is considered as “extended benefits.” In Turkish UI system, after the 

benefits are exhausted there is no additional assistance provided to unemployed individuals.  

I employ a unique data set obtained from Turkish Employment Agency (ISKUR). The 

data set includes administrative records of all unemployed workers who are registered to the UI 

system, lost their jobs involuntarily between 2002 and 2012 and filed a claim to ISKUR for UI 

benefits. The data contain information on benefit taker characteristics such as age, gender, 

marital status, education levels, and the region of residence. In addition, information on the date 

benefit taker lost her job, why the job has ended, industry the she was working in, how many 

days of UI premium she has paid within three years prior to losing her job and the number of 

days she utilized UI benefits is available in the data. More importantly, data contains information 

that is not included in the data sets that are employed in the existing literature: whether UI 

benefits were stopped and if so what was the reason they were stopped and the amount of UI 
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benefits collected by the benefit taker. The detailed information on the reasons UI benefits are 

stopped allow me to measure different labor market states. 

Most of the studies summarized above make use of difference-in-difference approach. In 

this chapter, I employ regression discontinuity approach as the identification strategy. The 

empirical analysis uses the discontinuity in the benefit duration set by the UI Law to identify the 

causal effect of UI generosity on unemployment duration, labor market transitions, cheating the 

UI system and rejecting the services of the Agency. In other words, the identification comes 

from the sharp discontinuity in the maximum duration of UI benefit that workers are entitled to. 

The workers with less than 900 premium days are entitled to 6-month benefits while benefit 

takers who have paid more than 900 premium days are entitled to 8-month benefit periods. The 

former group is the control group and the latter is the treatment group. I utilize local linear 

regressions with a bandwidth of 60-paid-premium-days as the main estimation specification.  

The main identification assumption is that receiving longer UI benefits is determined 

only by the number of days a worker has paid UI premiums and not by her characteristics. In 

addition, the worker has no control over the threshold since the UI Law sets it. In order to check 

potential selection issues that might invalidate the identification strategy, I show two validation 

tests. First, I investigate whether the benefit takers can fully manipulate assignment to longer UI 

benefit periods. In other words, the running variable (paid-premium days) should be continuous 

at the cutoff. Second, I check whether predetermined benefit taker characteristics are balanced 

around the cutoff. It is important to capture the impact of UI generosity on unemployment 

duration but not the impact of some different benefit taker characteristics on the duration. Both 

exercises provide results suggesting that the regression discontinuity design is valid. 
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I find that extended benefits increase the unemployment duration by forty-one-days. In 

other words, one additional week of UI benefits lead to 0.7 weeks of unemployment duration. 

This is threefold of what existing literature finds for the developed countries. More generous 

benefits decrease the probability of transition to employment. The impact on the transition to 

employment is similar to the results of those studies. However, I find that extended benefits lead 

to higher probabilities of transition to non-participation in labor force. A few studies 

investigating transition to out of labor force find that more generous UI benefits lead to lower 

probabilities of entering out of labor force (for example van den Berg, 1990; Carling, Edin, 

Harkman and Holmlund, 1996; and Farber and Valletta, 2013). Different than the existing 

studies, the data allows me to investigate the impact of UI generosity on the probability of 

cheating the UI system, which is an illegal way of receiving UI benefits while working on a 

wage-earning job. I find that extended benefits decrease the probability of cheating by four-

percentage points. In addition, the Agency provides additional services such as job placement 

services and vocational development trainings. The penalty of refusing a job offer arranged by 

the Agency unjustifiably or not attending to trainings after agreeing to receive them is losing UI 

benefits. I find that extended benefits decrease the probability of rejecting the Agency’s services 

by two-percentage points. 

Moreover, I investigate whether the impact of generosity on outcomes is different for 

females and males and also for married and single benefit takers. The female labor market 

decisions are different than those of males. Extended benefits, on average, lead to ten-days 

longer unemployment duration for females. In addition, transition to non-participation in the 

labor force is more likely for females compared to males. Probability of cheating the system and 

rejecting services is lower for male benefit takers who are entitled to extended UI benefits 
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compared to their female counterparts. Furthermore, extended benefits increase the 

unemployment duration for almost additional three-days for married benefit takers compared to 

singles. In addition, the magnitude of the impact of UI benefit generosity on transition to 

employment is smaller for singles. These results suggest that married benefit takers utilize the UI 

benefits for longer periods compared to single benefit takers. They might be enjoying the UI 

benefits longer due to spousal support (both financial and emotional). For single benefit takers, 

extended benefits lead to lower probabilities of transition to non-participation in the labor force. 

However, for those who are married, it increases the probability of entering non-participation.  

In order to check the robustness of the results, I estimate the main specification equation 

with different bandwidth selections and polynomial degrees. First, I show that results are robust 

to alternative bandwidth selections. The coefficient estimates with the optimal bandwidths 

obtained by the approaches introduced by Calonico, Cattaneo and Titiunik (2014) and Imbens 

and Kalyanaraman (2012) yield the same results. In addition to optimal bandwidth selections, I 

show the coefficient estimates from alternative bandwidths of 30 and 90-paid-premium-days. In 

the main specification, it is assumed that the functional form is linear. In order to test the 

sensitivity of results to this assumption, I estimated the coefficient of UI benefit generosity with 

alternative specifications and with the parametric approach. The results from these alternative 

specifications suggest that results are robust to different model specifications. In addition, 

including benefit taker characteristics does not alter the magnitude or sign of the estimated 

coefficients. 

The rest of the chapter is as follows. Section 2 introduces the unemployment insurance 

system in Turkey and provides details on the UI benefit eligibility. Section 3 is the empirical 
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strategy and section 4 is the data and descriptive statistics. Section 5 presents the estimation 

results and section 6 is the robustness checks. Last, section 7 concludes. 

 

4.2. UNEMPLOYMENT INSURANCE SYSTEM AND BENEFIT ELIGIBILITY IN 

TURKEY 

 

In Turkey, Unemployment Insurance Law is enacted in 1999 and put into effect in June 

2000. Workers made the first UI premiums payments in 2000 and eligible workers received the 

first UI benefit payments in March 2002. Since the date the law has been put into effect, workers 

have to register to the social security system, and employers have to provide it to all their 

workers.  

The UI benefits are collected under Unemployment Insurance Fund. All payments and 

services are financed through these funds. The main source of UI funds is the UI premium. 

Workers pay 1% of their gross earnings as UI premium, employer contributes by paying 2% and 

government pays 1% of it. The Social Security Institution handles the collection of UI premiums 

and their transfer to the Unemployment Insurance Fund. It also is responsible for keeping the 

records while Turkish Employment Agency (ISKUR) is charged for all other services and 

procedures.  The services provided by the Agency are defined in the UI law as the payment of 

general health insurance premiums, distribution of UI compensation, providing job placement 

services and provision of vocational development and training courses. The Agency uses funds 

from the Unemployment Insurance Fund to make UI payments and provide all other services to 

the benefit takers. 

After losing the job, the worker has to apply to the Agency within 30-days to receive UI 

benefits. In a typical case, UI applications are finalized in the month the claim is filed. The first 

eligibility criterion for the UI is that the worker should be registered to the social security system 
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and the Turkish Employment Agency. Second, the worker should lose her job involuntarily, i.e. 

out of her will, intent or fault. Plant closure, privatization, end of a temporary job, and 

termination of the employment-contract by the employer or the employee under certain 

conditions (and defined by several different articles of the labor law) are covered under the 

definition of “involuntary job loss”. Third, the worker should have paid unemployment insurance 

premium for at least 600 days within the last three years immediately preceding the job loss. She 

also should have paid UI premium continuously within the last 120 days (immediately preceding 

the job loss) before the termination of the employment-contract. If the worker meets these 

criteria, she becomes eligible for unemployment insurance benefits for a certain period of time.  

The length of the unemployment insurance benefit depends on the number of days the 

worker pays the UI premiums. The Article 50 of UI Law states that if the worker has paid 

premiums for at least 600 days, she becomes eligible for 180 days (6-month) of UI benefit 

period. If the worker has paid UI premium for at least 900 or 1080 days, then the worker is 

eligible for 240 or 300 days (8-month or 10-month) of UI benefits, respectively. Figure 4.2 

shows the number of paid UI premium days and qualified days for UI benefits.  

Benefit takers receive the first UI benefit payment by the end of the month following the 

date they are entitled to UI benefits. Along with the UI benefit payments, benefit takers also 

receive other services that are intended to help benefit takers to leave unemployment for 

employment. These services include job placement services and providing training courses and 

vocational development courses. In addition, benefit takers and their families are covered by the 

general health insurance during UI benefit recipiency.  

The amount of UI benefit payment depends on the benefit taker’s gross earnings in the 

last four months (120 days) at the previous job. The UI payment amount is calculated as 40- 
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Figure 4.2 

Number of UI Premium Days and Qualified Days for UI Benefit 

 

Note: The Article 50 of Unemployment Insurance Law determines the number of days a worker 

receives Unemployment Insurance Benefit. According to the article, an insured unemployed 

worker who has paid unemployment insurance premiums for at least 600 days is entitled to 

receive UI benefits for 180 days. If the worker has paid unemployment insurance premiums for 

at least 900 days, she is entitled to receive UI benefits for 240 days. If she worked and paid 

unemployment insurance premiums for 1080 days, she is qualified to receive UI benefits for 300 

days. 

 

percent of daily average “gross” earnings. The upper limit is eighty-percent of the “gross” 

monthly minimum wage set for the employees older than sixteen years of age. UI payments are 

not subject to taxation or any other cuts.
34

 

                                                 
34

 There is a one-time 0.006% stamp tax collected on the UI benefit payments. However, the 

amount is negligible.   
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  The continuation of UI benefit recipiency within the entitled period depends on some 

conditions that benefit takers have to comply. Benefit takers do have to inform the Agency when 

they find a new wage-earning job within 15 days following the recruitment. If a benefit taker 

works illegally without registering to the UI system or fails to report the new job to the Agency, 

UI payment will be stopped. Additionally, the benefit taker will have to pay back the UI payment 

received since the start date of the new job along with the legal interest rate. The same sanction 

is applied if the worker fails to report recipiency of retirement pension. Moreover, if the benefit 

takers reject a job that the Agency finds (and is similar to the benefit taker’s previous job in 

terms of wages, working conditions and is in the area where the benefit taker resides) without 

any reasonable explanation, UI payments will be stopped. In addition, if the benefit taker rejects 

the vocational trainings or does not attend to trainings after accepting them, the Agency suspends 

UI payments. In this particular case, if the benefit taker changes her attitude, the Agency might 

restart the payments. However, the benefit taker will not be able to receive UI payments for the 

days she has lost. 

 

4.3. EMPIRICAL STRATEGY 

This section explains the empirical strategy and identification of the impact of UI 

generosity. In addition, I provide evidence on the validity of the identification strategy. 

 

4.3.1. Identification 

I utilize a sharp regression discontinuity design to estimate the causal effect of UI 

generosity on unemployment duration, transition to employment or non-participation, cheating 

and rejecting services. The discontinuity arises from the number of days UI premium is paid in 
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the last three years immediately preceding the job loss. Individuals who pay UI premium for less 

than 900 days are entitled to 6-month UI benefit period while individuals who pay more than 900 

days are entitled to 8-month UI benefit period. Assignment to more generous UI benefits 

(extended benefits) is measured as: 

 

                          {
           
           

 

 

   is the number of paid-premium-days and 900-paid-premium-days is the cutoff. In the sharp 

regression discontinuity design, the causal impact of UI benefit generosity on outcome variables 

is identified at 900-paid-premium-days cutoff.  

To estimate the causal effect of UI generosity, I follow Hahn, Todd and van der Klaauw 

(2001) and employ local linear regression.
35

 The estimation equation is of the form: 

 

                                                                [1] 

 

The data have sufficiently large observations to proceed with non-parametric approach. In 

addition, this specification allows different functional forms on both sides of the cutoff, 

    900 premium days.     is the number of days the benefit taker has paid UI premium 

within three years immediately preceding her job loss.    is the outcome variable. The outcome 

variables are unemployment duration, transition to employment, transition to non-participation in 

                                                 
35

 Hahn, Todd and van der Klaauw (2001) show that local linear estimator has advantages over 

standard kernel estimators and suggest that local linear estimator is a better choice than kernel 

estimators. However, employing kernel estimators provides similar results to the ones presented 

in the next section. This evidence can be interpreted as support to robustness of results obtained 

by local linear regressions.  
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labor force, cheating the UI system and rejecting services from the Turkish Employment 

Agency. The variable      is the variable of interest measuring the UI benefit generosity. It is 

an indicator variable taking the value of one if the worker is entitled to 8-month (       ) UI 

benefit period, and zero if she is entitled to 6-month (       ) UI benefit period. The 

coefficient    measures the average causal effect of UI generosity on outcomes at the 900-paid-

premium-day threshold,    . This is a sharp regression discontinuity design; hence it identifies 

the local average treatment effect.    and    measure the direct effects of the forcing variable on 

average outcome variable.  

For the local linear regression, the choice of optimal bandwidth is important. Across the 

outcome variables, the optimal bandwidths generated by Calonico, Cattaneo and Titiunik (2014) 

and Imbens and Kalyanaraman (2012) (CCT and IK hereafter) procedures fall between 40 to 71 

paid-premium days. For simplicity and to have the same sample across these outcomes, I chose 

60 paid-premium days as the default bandwidth. Table C.1 shows the optimal bandwidths 

obtained by CCT and IK methods. The next part discusses the validity of regression 

discontinuity design. 

 

4.3.2. Validity of RDD 

The quasi-random nature of the RD design bases on the assumption that individuals 

cannot manipulate the assignment variable, which is the eligibility to longer UI benefit periods. 

The assignment to treatment around the cutoff should be random. If this assumption does not 

hold, then RD design is no longer valid. Some workers might try to alter the timing of the job 

loss (e.g. layoff) by making a deal with the employer. For example, consider a worker who has 

890 paid-premium-days and being laid off today. She might ask her employer to keep lay-off on 
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hold for ten more days so that she can be eligible for 8-month UI benefit period instead of 6-

month period. However, during this extension, employer has to pay the worker’s wage.
36

 In 

addition, the worker has to be registered to the social security system during this extension. It 

means that not paying or paying a lower wage is not an option for the employer. Hence, keeping 

the worker for ten more days becomes costly. Thus, employer might choose not to give the 

extension to the worker. 

Figure 4.3 shows the distribution of paid-premium-days within the last three years 

immediately preceding the job loss relative to the 900-paid-premium-days cutoff. The density 

looks smooth at the cutoff suggesting that there is no manipulation of the assignment variable. It 

is worth noting that, actually there is a jump at the density at 0 (900 paid-premium days) cutoff. 

However, it is not unique. It happens on every thirty-day period or at the end of each one-month 

period. It is possible that these jumps are actually driven by the fact that employers let workers 

go at the end of the month that is generally the end of the contract-term. In general, contracts 

start on the 1
st
 of the month and end at the end of the month (on the 30

th
). The estimated 

discontinuity at the cutoff is statistically insignificant. This leads to the conclusion that the 

distribution of benefit takers around the cutoff is continuous and there is no significant 

manipulation of the assignment variable. The results are robust to different bandwidth selections. 

Estimated discontinuities for different bandwidth selections are presented in Table C.2. 

Another way of testing the validity of the RDD is to check whether pre-determined 

benefit taker characteristics are locally balanced on each side of the cutoff point (Lee and 

Lemieux, 2010). If a discontinuity was not observed at the cutoff point, it would indicate that 

assignment is a local random event. If workers who just miss the cutoff point are identical to the 

                                                 
36

 This wage includes employer’s contribution to UI fund for the worker. The employer is 

contributing to the UI by paying 2% of worker’s earnings as UI premium. 
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Figure 4.3 

Distribution of UI Premium Days Relative to the 900-Premium-Days Cutoff 

 

Note: Each circle indicates the number of unemployed individuals with a distance from their 

cutoff. Using each of these cells as an observation, the curve is predicted from Local Linear 

Regressions with a bandwidth of 60 days. The estimated control mean is 3,590 and the estimated 

discontinuity is -280.16 with p-value=0.449. The cutoff is normalized so that the zero represents 

900 paid-premium-days. 

 

workers who just make it, except that they are entitled to longer UI benefit periods, then 

difference in the mean outcomes can be attributed to the treatment. The available predetermined 

worker characteristics in the data are UI payment amount, gender, marital status and education. 

Table 4.1 presents coefficient estimates from the main regression specifications in which 

predetermined variables serve as dependent variables. I show that number premium days and 

these variables are not associated (columns 1 to 4). 
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Table 4.1 

Balance Around the Cutoff 

 

Gender 

(Female) 
Married 

High School 

Graduate 

Daily UI 

Benefit 

Amount 

Predicted 

Unemployment 

Duration 

 (1) (2) (3) (4) (5) 

PD>900 -0.005 0.011 -0.003 0.028 -0.007 

 (0.005) (0.007) (0.003) (0.063) (0.157) 

Observations 450,225 450,225 450,225 450,225 450,225 

       198,770 198,770 198,770 198,770 198,770 

       251,455 251,455 251,455 251,455 251,455 

Note: Estimated standard errors, clustered on year and premium days, are displayed in 

parentheses. Each coefficient on UI benefit generosity is estimated with local linear regression 

with a bandwidth of 60 days. The coefficients show the effect of being entitled to longer UI 

benefit periods on predetermined characteristics. * 10%, ** 5%, ***1%. 

 

In addition, to test whether predetermined variables are jointly discontinuous, I obtain the 

predicted values of the outcome variables by regressing each of them on a complete set of benefit 

taker characteristics. In Table 4.1 column (5), I show the result only for the main outcome, 

unemployment duration. It suggests that there is no discontinuity in the predicted unemployment 

duration.
37

 The results presented in Table 4.1 are robust to different bandwidth selections.
38

 

Figure 4.4 shows the discontinuity at the threshold for predetermined benefit taker 

characteristics.
39

 Tests provided in this section suggest that regression discontinuity design is 

valid.  

 

 

 

                                                 
37

 The results where joint discontinuity is tested using other dependent variables also support this 

evidence. The results are available upon request. 
38

 The results from the local linear regressions with optimal bandwidths chosen by IK and CCT 

are presented in Table C.3.  
39

 Figures for the predicted outcome variables are presented in Figure C.1 in Appendix C. 
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4.4. DATA AND DESCRIPTIVE STATISTICS 

4.4.1. Data 

I use an administrative data obtained from Turkish Employment Agency (ISKUR). The data 

include information on individuals who are unemployed, are in the social security system, lost 

their jobs involuntarily, and initiated a claim for UI benefits during the period 2002-2012. The 

registration to social security system is mandatory for all workers in Turkey. However, it is 

voluntary to register at the agency and file a claim for UI benefits.
40

 The observation period for 

each benefit taker starts with the recipiency of UI benefits and lasts until the UI benefits are 

stopped. The data include information on the reason UI benefits are stopped. Using this 

information creates the outcome variables. Exhaustion of UI benefit duration, finding a new job, 

working in a wage-earning job while receiving UI benefits, being eligible to 

retirement/retirement payments, military service, rejecting training services, rejecting jobs 

suggested by the Agency and death are among these reasons. Due to any of these reasons (except 

death), if the worker is no longer receiving UI benefits, it is assumed that unemployment benefit 

period has ended. Hence, the benefit taker transits from unemployment to employment or non-

participation in the labor force, or remains in unemployment. During the time the benefit taker 

receives the UI benefits, he is assumed to be unemployed. The length of UI benefit recipiency is 

the main outcome variable and it shows the duration of unemployment which is measured in 

days.  

The two main reasons of leaving unemployment are examined in the study. The first is 

the transition from unemployment to employment. It is an indicator variable taking value of one 

if the benefit taker finds a job within the first six-month period following her job loss. It takes the 

                                                 
40

 In 2012, there are over 2 million unemployed individuals registered to the agency. Twenty six 

percent of them initiated a claim for the UI benefits. 
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Figure 4.4 

The Effect of Unemployment Insurance Benefit Generosity on Pre-Determined Benefit Taker 

Characteristics 

 

Note: Each panel shows the unconditional means for pre-determined variables by each value of 

the running variable, paid-premium-days. Solid lines are fitted values of pre-determined 

characteristic from a local linear regression with a bandwidth of 60 days. If the benefit taker’s 

premium days are less than 900-days s/he is entitled to 6-month UI benefit period. If her/his 

premium days are greater than 900-days, the benefit taker is entitled to 8-month benefit period. 

The cutoff is normalized so that the zero represents 900 paid-premium-days. 

 

value of zero if she is unemployed in the first six-month period. The second is the transition to 

non-participation in labor force and shows whether the benefit taker leaves labor force in the first 

six-month period. It takes the value of one if s/he retires, joins to military for the mandatory 

service, is not ready for work or temporarily unable to work. In other words, it takes the value of 
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one if the benefit taker is not in the labor force. It takes the value of zero if the benefit taker 

transits to employment or remains in the unemployment.  

One other outcome of interest is whether the benefit taker cheats the system. According 

to the UI Law, the benefit taker has to report the new job to the agency within 15 days following 

the recruitment. If benefit taker fails/chooses to do so, she receives a wage from the new job and 

also the UI benefit, which is illegal. The variable measuring the probability of cheating the 

system takes the value of one if UI benefits are stopped because the benefit taker was caught 

working in a wage-earning job while receiving UI benefits. The variable takes the value of zero 

if the benefit taker reports the new job (transits to employment legally) or remains unemployed. 

Along with the UI payments, the Agency provides additional services (trainings and job 

placement) to help benefit takers move from unemployment to employment. If the benefit taker 

rejects trainings or suggested jobs, the UI benefits are stopped. The variable measuring the 

probability of rejecting services takes the value of one if the UI benefit is stopped due to these 

reasons. It takes the value of zero, if the benefit taker transits to employment or remains 

unemployed. Detailed definitions of the variables are provided in Table C.4. 

Benefit takers’ demographic characteristics, education, and the industry s/he was working 

in are available in the data. The unemployed workers who initiated a claim for UI benefits but 

were not eligible for UI benefits are excluded from the data since there is no information on their 

unemployment duration or labor market transitions. In addition, benefit takers who have missing 

information on demographic characteristics, unemployment duration and reason they left their 

jobs are dropped from the sample. The analyses focus on benefit takers who had at least 20-

months of labor market attachment at the time of their job loss. The final sample consists of 



 

 108 

around 1.8 million benefit takers who are at the ages of 16 to 65 and are entitled to 6-months or 

8-months UI benefit between years 2002-2012.  

 

4.4.2. Descriptive Statistics and Graphical Evidence 

Descriptive statistics are presented in Table 4.2. As it is mentioned above, workers who 

paid UI premium for less than 900 days are eligible for 6-months of UI benefits and workers who 

paid more than 900 days (and less than 1080 days) are eligible for 8-months of UI benefits. The 

control group consists of benefit takers who are entitled to 6-month and treated group covers 

benefit takers who are entitled to 8-month UI benefit period. On average, benefit takers in the 

control group had paid 811 days UI premium and benefit takers in the treated group had paid 

1,016 days. The number of paid-premium days is 116 days more than the 900 paid-premium 

days threshold for the treated and it is 89 days less than the threshold for the control group.  

The unemployment duration is on average 5.8 months. It is lower, around 5 months, for the 

benefit takers in the control group and it is around 6 months for the benefit takers in the treated 

group. As expected, the average unemployment duration is higher and probability of transition to 

employment is five-percentage point lower for the benefit takers who are entitled to more 

generous benefits. However, probability of transition to non-participation in labor force is one-

percentage point higher. Probability of cheating the system and probability of rejecting the 

services provided by the Agency are higher for the control group. The opportunity cost of 

cheating or rejecting help is higher for the treated group. 

Figure 4.5 presents graphical evidence of the impact of unemployment insurance 

generosity on outcome variables. In all figures, the forcing variable (paid-premium-days) is 

normalized so that 900
th

 day, the cut-off, is time zero. The fitted values from linear regressions  
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Table 4.2 

Descriptive Statistics 

 All Non-Treated Treated  

Variable Mean 

(Std.Dev.) 

Mean  

(Std.Dev.) 

Mean  

(Std.Dev.) 

 

Unemployment Duration 176.08 151.61 187.80    

 (68.95) (48.12) (74.14)  

Transition to Employment 0.416 0.449 0.397  

 (0.493) (0.497) (0.489)  

Transition to Non-Participation in Labor Force  0.022 0.016 0.031  

 (0.146) (0.125) (0.172)  

Cheating the System 0.077 0.111 0.063  

 (0.266) (0.314) (0.243)  

Rejecting Agency’s Services 0.016 0.030 0.010  

 (0.124) (0.170) (0.100)  

Number of Paid-Premium Days  949.37 810.69 1015.76  

 (109.65) (51.64) (53.74)  

Entitled 220.58 180 240  

 (28.07) - -  

The Daily UIB  7.155 6.617 7.413  

 (4.456) (6.362) (3.106)  

The Sum of UIB  1,264 1,000 1,390  

 (970) (1,173) (827)  

Reason UIB Ended/Cut     

   Reason 1 0.002 0.002 0.003  

 (0.051) (0.049) (0.052)  

   Reason 2 0.012 0.012 0.013  

 (0.111) (0.110) (0.112)  

   Reason 3 0.001 0.002 0.002  

 (0.043) (0.040) (0.044)  

   Reason 4  0.009 0.003 0.010  

 (0.088) (0.058) (0.988)  

   Reason 5  0.000 0.000 0.000  

 (0.013) (0.004) (0.016)  

   Reason 6 0.069 0.067 0.070  

 (0.254) (0.250) (0.256)  

   Reason 7 0.001 0.001 0.001  

 (0.031) (0.031) (0.031)  

   Reason 8 0.001 0.001 0.001  

 (0.027) (0.025) (0.028)  

   Reason 9 0.402 0.369 0.418  

 (0.490) (0.482) (0.493)  

   Reason 10 0.000 0.000 0.000  

 (0.015) (0.013) (0.016)  
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(Table 4.2 Continued) 

   Reason 11 0.000 0.000 0.000  

 (0.017) (0.016) (0.018)  

   Reason 12 0.006 0.009 0.005  

 (0.080) (0.093) (0.073)  

   Reason 13 0.495 0.534 0.476  

 (0.500) (0.499) (0.499)  

Age 33.508 32.513 33.985  

 (7.505) (7.748) (7.338)  

Female 0.271 0.288 0.263  

 (0.445) (0.453) (0.440)  

Married 0.725 0.674 0.749  

 (0.447) (0.469) (0.433)  

Education     

   Literate – No Degree 0.010 0.012 0.010  

 (0.101) (0.107) (0.098)  

   Illiterate – No Degree  0.005 0.004 0.005  

 (0.069) (0.070) (0.069)  

   Primary School  0.556 0.554 0.558  

 (0.497) (0.497) (0.497)  

   High School  0.303 0.294 0.307  

 (0.459) (0.455) (0.461)  

   2-Year College  0.049 0.054 0.047  

 (0.216) (0.225) (0.211)  

   4-Year College  0.073 0.079 0.070  

 (0.261) (0.270) (0.256)  

   Masters  0.003 0.003 0.003  

 (0.054) (0.054) (0.054)  

   PhD  0.000 0.000 0.000  

 (0.010) (0.009) (0.010)  

     

Observations 1,797,844 582,009 1,215,835  

Note: The sample consists of 1,797,844 individuals who are benefit takers between 2002 and 

2012.  582,009 are entitled to 6-month UI benefit period and 1,215,835 of them are entitled to 8-

month UI benefit period. The benefit takers in the sample are between the ages of 16 to 65 and 

have information regarding UI premium days and UI benefit duration and the outcome variables. 

 

are superimposed over outcome averages. The graphical presentation shows that there is a clear 

evidence of discontinuity in the outcome variables at the cutoff point of 900-paid-premium-days. 

It implies that factors other than the assignment itself are not playing a role explaining the 
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association. Thus, one may attribute this jump to the treatment. It suggests that estimation of the 

impact of UI generosity on these outcomes would yield a causal relationship. 

 

4.5. RESULTS 

4.5.1. Baseline Results 

This section presents the baseline estimation results of the impact of UI benefit 

generosity on unemployment duration and other outcome variables. Results are presented in 

Table 4.3. The estimated coefficients are obtained from local linear regressions that are specified 

as in equation (1). For all estimation equations, the bandwidth is 60-premium-days. The outcome 

variables, other than unemployment duration, are measured in the first six-month period 

following the job loss.  

The results in column (1) suggest that unemployment duration is forty-one-days longer 

among benefit takers who are entitled to 8-month benefit period compared to benefit takers who 

were entitled to 6-month benefit period. 2-month extended benefit recipiency increases the 

duration of unemployment for almost one and a half months. In other words, one additional week 

of potential unemployment benefit period leads to 0.7 weeks increase in compensated 

unemployment duration. For the US, studies find that one additional week of unemployment 

benefit period leads to 0.08-0.2 weeks longer unemployment duration (Schwartz, 2013; 

Ehrenberg and Oaxaca, 1976; Moffitt, 1985; Katz and Meyer, 1990). Some studies find no effect 

of UI benefit generosity on unemployment duration (Card and Levine, 2000). Lalive (2008) and 

Lalive and Zweimuller (2004) find that additional week of unemployment benefits lead to 0.06-

0.09 weeks longer unemployment periods in Austria. Ham and Rea (1987) show that the impact 

of one additional week of UI benefit is 0.26-0.33 weeks in Canada, which is higher, compared to 
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Figure 4.5 

The Effect of Unemployment Insurance Benefit Generosity on Outcomes 

 

Note: Each panel shows the unconditional means for outcome variables by each value of the 

running variable, paid-premium-days. Solid lines are fitted values of outcome from a local linear 

regression with a bandwidth of 60 days. If the benefit taker’s premium days are less than 900-

days she is entitled to 6-month UI benefit period. If her premium days are greater than 900-days, 

the benefit taker is entitled to 8-month benefit period. The cutoff is normalized so that the zero 

represents 900 paid-premium-days. 
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Table 4.3 

The Impact of UI Benefit Generosity on Unemployment Duration, Transition to Employment 

and Non-Participation, Probability of Cheating and Rejecting Services 

Local Linear Regressions 

  Transition to   

 

Unemployment 

Duration 

Employment Non-

Participation  Cheating  

Rejecting 

Services 

 (1) (2) (3) (4) (5) 

      

PD>900 41.112*** -0.063*** 0.003 -0.043*** -0.023*** 

 (0.916) (0.009) (0.003) (0.005) (0.002) 

      

Observations 450,441 392,599 274,919 303,274 281,919 

       198,862 192,843 195,889 119,189 109,176 

       251,579 199,756 79,030 184,085 172,743 

Note: Estimated standard errors, clustered on year and premium days, are displayed in 

parentheses. Estimates are based on local linear regression with a bandwidth of 60 days. The 

coefficients show the effect of UI generosity on outcomes. If the benefit taker’s premium days 

are less than 900-days s/he is entitled to 6-month UI benefit period. If her/his premium days are 

greater than 900-days, the benefit taker is entitled to 8-month benefit period. Regression 

equations do not include worker characteristics, year effects, and region or industry effects. * 

10%, ** 5%, ***1%. 

 

European and the US experiences. The impact of UI generosity on unemployment duration is 

almost four times greater for Turkey compared to the US.   

Column (2) shows the estimated discontinuity for the probability of transition to 

employment, i.e. probability of finding a job. The probability of finding a job for the benefit 

takers who are entitled to the extended UI benefits is lower.  In other words, probability of 

finding a job decreases by six-percentage point by additional two months of UI benefit period. 

This result is lower than the findings in the studies investigating the impact of UI benefit 

generosity on probability of finding a job for the US, Germany and Austria. For example, Card, 

Chetty and Weber (2007) finds that 10 weeks increase in the potential benefit duration leads to 5-

9% decrease in probability of finding a job. Similarly, Lalive and Zweimuller (2004) show that a 

179 weeks increase in the UI benefit duration decreases the probability of finding a job by 17% 
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(equivalent to 7.2% decrease, by two months of extended UI benefits). For Germany, Caliendo, 

Tatsiramos and Uhlendorff (2013) shows that probability of finding a job decreases by 7.6% 

(men) and 8% (women) by additional two months of benefit period. The results suggest that 

benefit takers in Turkey are experiencing longer unemployment durations compared to workers 

in developed countries. However, the negative impact of UI generosity on probability of finding 

a job is lower than of those countries. Another reason of leaving unemployment is entering non-

participation in the labor force. Column (3) suggests that UI benefit generosity has no impact on 

the probability of transition to non-participation in labor force. Carling, Edin, Harkman and 

Holmlund (1996) find that probability of transition to non-participation is lower among benefit 

recipients in Sweden. In addition, van den Berg (1990) finds a negative impact for Netherlands. 

The coefficient of benefit generosity has a positive sign in this study, implying that benefit 

generosity increases the probability of transition to non-participation. However, it is not 

statistically significant. 

Two other outcomes, which are not available in other studies, are probability of cheating 

the system and rejecting services provided by the Agency. For benefit takers, receiving UI 

benefits makes unemployment period less costly both financially and emotionally. Some of the 

lost income is compensated by the benefit and also job search process might be less stressful due 

to this support. The UI benefit payments are not high in Turkey. As it is mentioned above, the 

minimum a benefit taker can be paid (replacement rate) is 40-percent of her earnings. There is 

also an upper limit, which is 80-percent of the minimum wage in the market. However, for some 

benefit takers, even this amount might be too high to give up when a wage-earning job 

opportunity arrives. Receiving benefits and also working in a wage-earning job at the same time 

might be tempting. If benefit takers are caught exploiting UI benefits in this way, it is considered 
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as cheating the UI system. More generous UI benefits increase the opportunity cost of cheating 

the system. On the other hand, if the benefit taker is not caught, they can exploit the system for 

longer periods. Results in column (4) shows that, on average, benefit takers weigh the 

opportunity cost of cheating more heavily than possibility of exploiting the system. 2-months 

more generous Unemployment Insurance benefits lead to four-percentage points lower 

probabilities of cheating the system.
41

 

ISKUR provides trainings to help benefit takers gain/develop skills and it also assists 

them to find a job. If the benefit taker rejects the services the Agency provides, i.e. rejects 

trainings, not attending to trainings, rejects suggested jobs, her UI benefits are cut. Results 

presented in column (5) show that the probability of rejecting the Agency’s help is lower for the 

treated group. The probability of rejecting services of the Agency is two-percentage point lower 

for the benefit takers who are entitled to longer periods of UI benefit periods. As the UI becomes 

more generous, the opportunity cost of rejecting services increases for benefit takers. For 

example, assume that a benefit taker starts on trainings provided by the Agency in her fourth 

month of UI benefit recipiency. If the worker attends to courses for a month and then stops 

attending, the Agency cuts UI benefits. If the worker was entitled to 6-month period, she loses a 

month of UI benefits. However, if she is entitled to 8-months UI benefits, then she loses three 

months of UI benefits. In addition, if she rejects these services, she will not be able to benefit 

from other services like job search assistance the Agency provides.  

 

 

 

                                                 
41

 In other words, one additional potential week of UI benefits lead to 0.005-percentage point 

decrease in the probability of cheating the UI system.  
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4.5.2. Results by Gender and Marital Status 

Turkey is a developing country where female labor force participation is very low. In 

2012, the female labor force participation is approximately 30-percent while male participation 

rate is 71-percent.
42

 Thus, the female labor-supply decisions, and decisions during UI benefit 

recipiency might be different than of their male counterparts. In addition, due to child-

bearing/rearing decisions, female labor market experience might be different than males. During 

the benefit recipiency, for example, a female benefit taker might decide to have a baby.  

Table 4.4, Panels A and B show the estimation results for women and men, respectively. 

On average, more generous UI benefits lead to longer unemployment durations for female 

benefit takers (column 1). There is no difference in terms of probability of finding a job (column 

2). Column (3) shows that non-participation increases with UI generosity for females. UI benefit 

payments might serve as income source to females who would have exited the labor force in the 

absence of benefits. She might stop looking for a job, but still pretend to be in the labor force. 

Increase in generosity leads to lower probability of cheating the UI system for male benefit 

takers (column 4). This result suggests that for male benefit takers the opportunity cost is higher 

than female benefit takers.  

Moreover, decisions of a married or a single benefit taker might be different. A married 

benefit taker might be able to afford to stay unemployed for longer periods compared to a single 

benefit taker. Single benefit takers do not have the support of the husband/wife to compensate for 

the income loss. Hence, her job search process might be more aggressive than a married benefit 

taker’s. Results are shown in Table 4.4, Panel C for married benefit takers and in Panel D in the 

same table for single benefit takers. Married benefit takers stay unemployed for three more days 

                                                 
42
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Table 4.4 

The Impact of UI Benefit Generosity on Unemployment Duration, Transition to Employment 

and Non-Participation, Probability of Cheating and Rejecting Services 

by Gender and Marital Status- Local Linear Regressions 

  Transition to   

 

Unemployment 

Duration 

Employment Non-

Participation Cheating  

Rejecting 

Services 

 (1) (2) (3) (4) (5) 

Panel A: Female     

PD>900 48.411*** -0.068*** 0.008*** -0.020*** -0.021*** 

 (0.804) (0.010) (0.002) (0.004) (0.002) 

Observations 134,012 121,175 69,837 108,301 105,143 

       57,862 56,558 56,916 43,237 41,887 

       76,150 64,617 12,921 65,064 63,256 

Panel B: Male      

PD>900 38.304*** -0.056*** 0.000 -0.060*** -0.025*** 

 (1.214) (0.011) (0.003) (0.006) (0.002) 

Observations 316,429 271,424 205,082 194,973 176,776 

       141,000 136,285 138,973 75,952 67,289 

       175,429 135,139 66,109 119,021 109,487 

Test of the Coefficients      *** - * *** ** 

Panel C: Married     

PD>900 41.731*** -0.070*** 0.008** -0.045*** -0.021*** 

 (0.965) (0.009) (0.003) (0.005) (0.002) 

Observations 319,641 279,980 191,828 217,254 201,901 

       136,708 133,534 134,835 82,943 75,826 

       182,933 146,446 56,993 134,311 126,075 

Panel D: Single     

PD>900 39.581*** -0.045*** -0.008*** -0.038*** -0.027*** 

 (1.156) (0.012) (0.002) (0.007) (0.003) 

Observations 130,800 112,619 83,091 86,020 80,018 

       62,154 59,309 61,054 36,246 33,350 

       68,646 53,310 22,037 49,774 46,668 

Test of the Coefficients       ** *** *** - *** 

Note: Estimated standard errors, clustered on year and premium days, are displayed in 

parentheses. Estimates are based on local linear regression with a bandwidth of 60 days. The 

coefficients show the effect of UI generosity on outcomes. If the benefit taker’s premium days 

are less than 900-days s/he is entitled to 6-month UI benefit period. If her/his premium days are 

greater than 900-days, the benefit taker is entitled to 8-month benefit period. “Test of the 

Coefficients” is the test of the hypothesis that the coefficient of UI benefit generosity is the same 

across groups. Regression equations do not include worker characteristics, year effects, and 

region or industry effects. * 10%, ** 5%, ***1%. 
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on average compared to single benefit takers (column 1). In addition, married benefit takers who 

are entitled to extended benefits have a lower probability of finding a job compared to single 

benefit takers (column 2). These results suggest that, apart from the UI benefit, married benefit 

takers are using the UI benefits longer because of the possible spousal support. One interesting 

result is the different sign on the coefficient of the impact of UI generosity on non-participation 

in labor force for the married and single benefit takers (column 3). Married benefit takers might 

be able to afford to leave the labor force with more generous benefits. More generous UI benefits 

might increase the labor force attachment for single benefit takers because they do not have 

spousal support in case of an involuntary job loss. 

 

4.6. ROBUSTNESS CHECKS 

This section provides several robustness checks. First, local linear regressions are 

estimated with smaller and larger bandwidth selections. Second, I check the sensitivity of results 

to the functional form by employing higher order polynomials. Last, results from parametric 

analysis are provided.  

 

4.6.1. Adding Covariates and Bandwidth Selection 

I have shown above that benefit taker characteristics are balanced around the 900-paid-

premium-days cutoff. One additional way to check the robustness of results to predetermined 

characteristics is adding them into the regression equation. The results are shown in Table 4.5. It 

can be concluded that results are robust to inclusion of the benefit taker characteristics. It is also 

supportive evidence that benefit taker characteristics are balanced around the 900-paid-premium-

days cutoff. 
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Table 4.5 

The Impact of UI Benefit Generosity on Unemployment Duration, Transition to Employment 

and Non-Participation, Probability of Cheating and Rejecting Services  

Local Linear Regressions 

Benefit Taker Characteristics are Controlled for 

  Transition to   

 

Unemployment 

Duration 

Employment Non-

Participation Cheating  

Rejecting 

Services 

 (1) (2) (3) (4) (5) 

PD>900 40.473*** -0.045*** 0.002 -0.044*** -0.023*** 

 (0.542) (0.004) (0.002) (0.002) (0.001) 

      

Observations 450,441 392,599 274,919 303,274 281,919 

       198,862 192,843 195,889 119,189 109,176 

       251,579 199,756 79,030 184,085 172,743 

Characteristics Yes Yes Yes Yes Yes 

Year Effects Yes Yes Yes Yes Yes 

Region Effects Yes Yes Yes Yes Yes 

Industry Effects Yes Yes Yes Yes Yes 

Note: Estimated standard errors, clustered on year and premium days, are displayed in 

parentheses. Estimates are based on local linear regression with a bandwidth of 60 days. The 

coefficients show the effect of UI generosity on outcomes. If the benefit taker’s premium days 

are less than 900-days s/he is entitled to 6-month UI benefit period. If her/his premium days are 

greater than 900-days, the benefit taker is entitled to 8-month benefit period. The benefit taker 

characteristics include age, marital status, gender and education. * 10%, ** 5%, ***1%. 

 

As mentioned above in the identification section, bandwidth selection is a crucial step of 

estimating local linear regression. When choosing a larger or smaller bandwidth, there is a trade 

of between precision and bias. If the bandwidth is small the estimated treatment effect will be 

less biased even if the correct functional form over the running variable is not linear. On the 

other hand, if it is too large, then linear specification assumption will be more likely wrong. The 

estimated coefficients of the UI generosity might be biased with misspecification in large 

bandwidth selections. However, estimated coefficient becomes more precise because there are 

more observations utilized. I calculate optimal bandwidths for each outcome by using optimal 

bandwidth selection procedures introduced by Calonico, Cattaneo and Titiunik (2014) and 
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Imbens and Kalyanaraman (2012). The optimal bandwidths produced by each of these two 

procedures are presented in the Table C.1. I round the optimal bandwidths to integers. The 

results are presented in Table 4.6. Apart from a significant coefficient of non-participation in 

labor force for a smaller bandwidth, results are similar to the ones presented in Table 4.3. 

Evidence shows that results are not sensitive to alternative bandwidth selections.  

 

Table 4.6 

The Impact of UI Benefit Generosity on Unemployment Duration, Transition to Employment 

and Non-Participation, Probability of Cheating and Rejecting Services 

Local Linear Regressions 

with Optimal Bandwidth Selections 

  Transition to   

 

Unemployment 

Duration 

Employment Non-

Participation Cheating  

Rejecting 

Services 

 (1) (2) (3) (4) (5) 

PD>900 40.698*** -0.064*** 0.005*** -0.043*** -0.023*** 

 (0.879) (0.010) (0.001) (0.005) (0.002) 

CCT Optimal 

Bandwidth 
64 41 44 46 48 

      

PD>900 40.520*** -0.064*** 0.003 -0.038*** -0.022*** 

 (0.865) (0.009) (0.003) (0.004) (0.002) 

IK Optimal 

Bandwidth 
66 54 61 71 71 

Note: Estimated standard errors, clustered on year and premium days, are displayed in 

parentheses. Estimates are based on local linear regressions with the optimal bandwidths. The 

coefficients show the effect of UI generosity on outcomes. If the benefit taker’s premium days 

are less than 900-days she is entitled to 6-month UI benefit period. If her premium days are 

greater than 900-days, the benefit taker is entitled to 8-month benefit period. Regression 

equations do not include worker characteristics, year effects, and region or industry effects. * 

10%, ** 5%, ***1%. 

 

4.6.2. Higher Order Polynomials and Parametric Estimation 

The choice of functional form is an important issue in regression discontinuity design 

because misspecification leads to bias in the treatment effect (Lee and Lemieux 2010). In this 

section, I test whether different functional forms provide robust results. I also show these results 
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with alternative bandwidth selections. Table 4.7 provides local linear regression estimates up to 

polynomial degree of three with bandwidths of 30, 60 and 90 paid-premium-days. In addition, 

results where coefficient of UI generosity is assumed to be the same on both sides of the 

threshold are provided (columns 1, 3 and 5). Results are similar to the ones obtained from the 

main specification.  

The last robustness check is to obtain estimated coefficients of UI benefit generosity with 

parametric models. In application of RD design, parametric and non-parametric approaches are 

considered as complements. Thus, I present the results from parametric approach in Table 4.8. 

Results are very similar to the ones obtained by local linear regressions. It suggests that low 

order polynomial is a good approximation for the functional form of the running variable. 

Several robustness checks implemented in this section suggest that results obtained in the main 

specification defined by equation [1] and presented in Table 4.3 are robust to alternative model 

specifications and bandwidth selections. Models with interaction terms allow the coefficient of 

benefit generosity to be different below and above the 900-paid-premium-days cutoff. The 

highest polynomial order is degree of three. There are very slight changes in the coefficient of 

benefit generosity for each outcome variable. Statistical significance and the sign do not change 

for any of the outcome variables accept non-participation in the labor force. The coefficient of 

benefit generosity for non-participation in the labor force seems to be sensitive to bandwidth 

selections.  

 

4.7. CONCLUSION 

Using a unique data obtained from Turkish Employment Agency, I analyze the impact of 

UI benefit generosity on unemployment duration, transition to employment or non-participation 



 

 122 

Table 4.7 

The Impact of UI Benefit Generosity on Unemployment Duration, Transition to Employment 

and Non-Participation, Probability of Cheating and Rejecting Services  

Local Linear Regressions  

Different Bandwidth Selections and Polynomial Degrees  

Dependent 

Variable  
Linear 

Linear 

Interaction 
Quadratic 

Quadratic 

Interaction 
Cubic 

Cubic 

Interaction 

 (1) (2) (3) (4) (5) (6) 

Unemployment Duration      

PD>900; h=30 40.958*** 41.201*** 41.216*** 41.304*** 41.618*** 42.076*** 

 (1.488) (1.382) (1.415) (2.119) (2.069) (2.785) 

Observations 224,311 224,311 224,311 224,311 224,311 224,311 

       

PD>900; h=60 40.880*** 41.112*** 41.105*** 41.056*** 41.079*** 41.512*** 

 (0.970) (0.916) (0.925) (1.467) (1.365) (2.009) 

Observations 450,441 450,441 450,441 450,441 450,441 450,441 

       

PD>900; h=90 40.224*** 40.571*** 40.536*** 40.464*** 40.034*** 42.328*** 

 (0.766) (0.727) (0.732) (1.157) (1.059) (1.605) 

Observations 691,034 691,034 691,034 691,034 691,034 691,034 

Employment       

PD>900; h=30 -0.066*** -0.068*** -0.067*** -0.068*** -0.071*** -0.082*** 

 (0.013) (0.013) (0.013) (0.019) (0.018) (0.026) 

Observations 195,579 195,579 195,579 195,579 195,579 195,579 

       

PD>900; h=60 -0.062*** -0.063*** -0.063*** -0.066*** -0.066*** -0.074*** 

 (0.009) (0.009) (0.009) (0.014) (0.012) (0.018) 

Observations 392,599 392,599 392,599 392,599 392,599 392,599 

       

PD>900; h=90 -0.061*** -0.062*** -0.062*** -0.057*** -0.054*** -0.079*** 

 (0.007) (0.007) (0.007) (0.011) (0.010) (0.015) 

Observations 601,524 601,524 601,524 601,524 601,524 601,524 

Non-Participation       

PD>900; h=30 0.005*** 0.005*** 0.005*** 0.005* 0.005** 0.003 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) 

Observations 138,223 138,223 138,223 138,223 138,223 138,223 

       

PD>900; h=60 0.006*** 0.003 0.003 0.008*** 0.007*** 0.001 

  (0.001) (0.003) (0.003) (0.003) (0.002) (0.003) 

Observations 274,919 274,919 274,919 274,919 274,919 274,919 

       

PD>900; h=90 0.010*** 0.008*** 0.009*** 0.004* 0.006*** 0.004** 

  (0.001) (0.001) (0.001) (0.002) (0.001) (0.002) 

Observations 414,168 414,168 414,168 414,168 414,168 414,168 
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(Table 4.7 Continued) 

Dependent 

Variable 
Linear 

Linear 

Interaction 
Quadratic 

Quadratic 

Interaction 
Cubic 

Cubic 

Interaction 

 (1) (2) (3) (4) (5) (6) 

Cheating       

PD>900; h=30 -0.044*** -0.043*** -0.043*** -0.036*** -0.039*** -0.045*** 

  (0.006) (0.007) (0.007) (0.010) (0.008) (0.014) 

Observations 150,618 150,618 150,618 150,618 150,618 150,618 

       

PD>900; h=60 -0.042*** -0.043*** -0.043*** -0.041*** -0.043*** -0.040*** 

 (0.005) (0.005) (0.005) (0.007) (0.006) (0.010) 

Observations  303,274 303,274 303,274 303,274 303,274 303,274 

       

PD>900; h=90 -0.037*** -0.038*** -0.038*** -0.041*** -0.039*** -0.046*** 

  (0.004) (0.004) (0.004) (0.006) (0.005) (0.008) 

Observations 467,831 467,831 467,831 467,831 467,831 467,831 

Rejecting Services      

PD>900; h=30 -0.024*** -0.024*** -0.024*** -0.023*** -0.024*** -0.024*** 

  (0.002) (0.003) (0.003) (0.004) (0.003) (0.005) 

Observations 139,855 139,855 139,855 139,855 139,855 139,855 

       

PD>900; h=60 -0.023*** -0.023*** -0.023*** -0.023*** -0.024*** -0.026*** 

  (0.002) (0.002) (0.002) (0.003) (0.002) (0.004) 

Observations 281,919 281,919 281,919 281,919 281,919 281,919 

       

PD>900; h=90 -0.021*** -0.021*** -0.021*** -0.023*** -0.022*** -0.026*** 

 (0.001) (0.001) (0.001) (0.002) (0.002) (0.003) 

Observations  435,785 435,785 435,785 435,785 435,785 435,785 

       

Note: Estimated standard errors, clustered on year and premium days, are displayed in 

parentheses. Estimates are based on local linear regression with a bandwidth of 60 days. The 

coefficients show the effect of UI generosity on outcomes. If the benefit taker’s premium days 

are less than 900-days s/he is entitled to 6-month UI benefit period. If her/his premium days are 

greater than 900-days, the benefit taker is entitled to 8-month benefit period. Regression 

equations do not include worker characteristics, year effects, and region or industry effects. * 

10%, ** 5%, ***1%. 
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Table 4.8 

The Impact of UI Benefit Generosity on Unemployment Duration, Transition to Employment 

and Non-Participation, Probability of Cheating and Rejecting Services 

Parametric Regressions 

Different Polynomial Degrees 

 Linear 

Linear 

Interact. Quadratic 

Quadratic 

Interact. Cubic 

Cubic 

Interact. 

 (1) (2) (3) (4) (5) (6) 

Unemployment Duration     

PD>900 43.610*** 42.909*** 42.616*** 40.770*** 40.708*** 40.480*** 

 (0.612) (0.535) (0.517) (0.807) (0.780) (1.096) 

Observations 1,799,261 1,799,261 1,799,261 1,799,261 1,799,261 1,799,261 

       

Transition to Employment     

PD>900 -0.086*** -0.082*** -0.081*** -0.067*** -0.070*** -0.056*** 

 (0.005) (0.005) (0.005) (0.008) (0.007) (0.010) 

Observations 1,526,442 1,526,442 1,526,442 1,526,442 1,526,442 1,526,442 

       

Transition to Non-Participation     

PD>900 0.010*** 0.007*** 0.007*** 0.010*** 0.009*** 0.005*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) 

Observations 969,652 969,652 969,652 969,652 969,652 969,652 

       

Cheating      

PD>900 -0.037*** -0.039*** -0.040*** -0.042*** -0.041*** -0.038*** 

 (0.003) (0.003) (0.003) (0.004) (0.004) (0.006) 

Observations 1,218,953 1,218,953 1,218,953 1,218,953 1,218,953 1,218,953 

       

Rejecting Services      

PD>900 -0.019*** -0.019*** -0.020*** -0.022*** -0.021*** -0.023*** 

 (0.001) (0.001) (0.001) (0.002) (0.001) (0.002) 

Observations 1,141,736 1,141,736 1,141,736 1,141,736 1,141,736 1,141,736 

       

Note: Estimated standard errors, clustered on year and premium days, are displayed in 

parentheses. Estimates are based on local linear regression with a bandwidth of 60 days. The 

coefficients show the effect of UI generosity on outcomes. If the benefit taker’s premium days 

are less than 900-days s/he is entitled to 6-month UI benefit period. If her/his premium days are 

greater than 900-days, the benefit taker is entitled to 8-month benefit period. Regression 

equations do not include worker characteristics, year effects, and region or industry effects. * 

10%, ** 5%, ***1%. 

 

in labor force, cheating the UI system and rejecting services of the Agency. I find that UI 

generosity leads to longer unemployment durations. To be specific, one additional week of UI 
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benefits increases the unemployment duration by 0.7 weeks. This impact is greater than the 

impact of UI generosity in developed countries such as the US, Germany and Austria. Compared 

to the UI systems in the developed countries, the system in Turkey is relatively young. In 

addition, the unemployment rates are higher in Turkey. With higher unemployment rates, the 

probability of job offers coming might be lower. Thus, it might lead to longer unemployment 

duration periods. Additionally, benefit takers might be accepting the first offer they get due to 

high unemployment. However, decreased cost of unemployment with the benefit recipiency 

might create an incentive for benefit takers to search for jobs that are a best match for their skills 

or jobs that pay higher wages. In other words, it might change the job search behavior.  

  In addition to unemployment duration, I investigate the impact of generosity on transition 

from unemployment to employment and transition from unemployment to non-participation in 

labor force. I find evidence that UI generosity decreases the probability of transition to 

employment. To be specific, UI generosity decreases probability of finding a job in the first six-

month period by six-percentage points. The impact is lower than the evidence on the impact of 

UI generosity on transition to employment shown for developed countries. Benefit takers’ 

reservation wage might be increasing with the recipiency of the benefits. Thus, they might reject 

the job offers coming for jobs that would offer higher wages. In addition, the UI generosity does 

not have an effect on the probability of transition to non-participation labor force.  

 There are two outcomes measuring the behavior of benefit takers during the UI benefit 

recipiency. From the reasons UI benefit is stopped, I measure whether a benefit taker tries to 

cheat the system and rejects the services of the Agency. If the benefit taker starts working in a 

wage-earning job while still receiving UI benefits, her benefits are stopped. It might be tempting 

for workers to accept the first job offer arriving and not reporting the transition to employment to 
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the Agency. Thus, the worker might actually accept a job that pays lower than her reservation 

wage since UI benefit is compensating for the difference. However, it is only for a short period 

of time since UI benefit period is limited. Moreover, if caught, she will end up working in a job 

that pays lower than her reservation wage and pay the extra benefit amount utilized back with the 

legal interest. In other words, this decision is risky. I find evidence that UI generosity decreases 

the probability of benefit takers’ cheating the UI system. It suggests that benefit takers put more 

weight on the opportunity cost of cheating the UI system than the possibility of exploiting the 

system.  

 The UI premiums collected from the workers are used to finance the trainings and job 

finding services. The purpose of these services is to provide support for the benefit takers and 

help them leave unemployment for employment. In addition, these services might help benefit 

taker not only to find “a” job, but also find one that fits her skill sets best. If the worker rejects 

trainings or rejects the jobs that are arranged by the Agency, the UI benefits are stopped. Benefit 

takers might find the trainings provided not necessary if they do not understand the benefits these 

trainings might bring in the labor force. In addition, they might reject the jobs arranged by the 

Agency because they might think the wage is lower than their reservation wage. However, the 

cost of rejecting these job offers is being in the state of uncompensated unemployment. The 

Agency arranges jobs that are at least paying as well as the previous job. Thus, motivation for 

rejection might be different. I find evidence that more generous UI benefits decrease the 

probability of rejecting the services of the Agency. 

 The results are robust to several sensitivity checks. First, the benefit taker characteristics 

are included in the model. If the benefit takers around the cutoff are different from each other in 

terms of predetermined characteristics, then, the impact of UI benefit generosity measured at the 
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cutoff cannot be attributed to the generosity only. However, including the benefit characteristics 

into the main specification does not alter the coefficient of the UI benefit generosity. It suggests 

that the results in the main specification show the causal impact of UI benefit generosity on 

outcomes. Second, I show results with different bandwidth selections and polynomial degrees. 

Third, I present results from parametric estimations.  The robustness checks provide evidence 

that the results obtained from local linear regressions with 60-paid-premium-days are not 

sensitive to alternative model specifications and bandwidth selections.  

Although it is not possible to observe benefit takers’ entire work history, this unique data 

provides information on the unemployment duration, labor market transitions (transition to 

employment or non-participation in labor force) within the first six-months of potential benefit 

recipiency period. It would be a full picture of the impact of UI generosity on labor market 

outcomes if the data were to include information on the next job and job search activities. Thus, I 

cannot claim the impact of extended benefits or UI generosity is good or bad for the workers or 

the society. However, the results suggest that with more generous benefits, benefit takers do not 

engage in risky activities such as cheating the UI system or reject the services of the Agency. 

Thus, providing more generous benefits would help reduce the probability of the system being 

exploited.  

It would be interesting to see the long-run impact of UI generosity on unemployment 

duration. However, it should be kept in mind that UI benefit is a temporary relief, not a 

permanent one. The sort-term nature of the UI system in Turkey seems to be affecting 

unemployment duration and labor market transitions in the short-run. Some of the increase in the 

short-run unemployment duration (Figure 1, Panel A) might be attributed to the introduction of 

the UI benefits in the beginning of 2000s.  
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CHAPTER 5. CONCLUSION 

 

The three distinct essays in this dissertation investigate different topics in labor 

economics. In Chapter 2, I investigate the impact of mother’s involuntary job loss on her 

children’s academic achievement. I find that mother’s job displacement has a negative impact on 

her children’s academic achievement. The impact of job displacement on test scores is different 

for single mother and married mother samples. The job displacement of a single mother affects 

both math and reading scores negatively. To be specific, the math score is twenty-one-percent of 

a standard deviation and reading score is twenty-three-percent of a standard deviation lower for 

the children of single displaced mothers compared to children whose mothers are single and were 

not displaced. There is no evidence that a married mother’s job displacement has an effect on test 

scores.   

In order to examine the exogeneity of the mother’s job displacement and the causality of 

the results, a falsification test and selection on observables strategy are implemented and results 

with child fixed-effects are presented. If the mother is self-selecting herself into plants that are 

more likely to close down, then the evidence suggesting a negative impact of job displacement 

on test scores might be measuring productivity differences or unobserved differences in mother 

characteristics, but not the effect of the job displacement. Falsification test suggests that plant 

closure may be an exogenous event and results from the Oster (2015)’s strategy show that results 

are causal, at least for the single mother sample. Controlling for child fixed-effects, I find that 

estimated impact of displacement decreases for both test scores. The displacement coefficient is 

negative for both scores but only significant for the reading score.  

The two possible channels, income and child’s behavioral problems, through which job 

displacement might affect the child’s test scores are investigated in this chapter. Job 
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displacement of the mother has a negative effect on both family income and mother income, and 

also on the child’s behavioral problems for the single mother sample. In order to investigate 

whether mother income and child’s behavioral problems are channels linking mother’s job 

displacement and child’s test scores, mother income and overall BPI scores are added to the 

estimation equation one by one. After adding mother income, coefficients of job displacement 

decrease for both test scores. Coefficients of short run and long run job displacements also 

decrease for both test scores. For the single mother sample, after controlling for mother income 

and the overall BPI score, coefficients of job displacement decrease and become statistically 

insignificant for both test scores. The results suggest that mother income and child’s behavioral 

problems are channels through which mother’s job displacement affects math and reading test 

scores.  

In the next chapter, I examine the impact of hair and eye color on the first-job-after 

schooling. The results show that having blonde hair has a positive impact on the wage-at-the-

first-job, particularly for females and whites. The wage at the first job only includes returns to 

human capital the individual accumulated before entering the labor market. Once the individual 

starts working, employers would observe the individual’s actual productivity which might lead to 

wage adjustments. Thus, using the wage at-the-first-job would reflect employers’ expected 

productivity and also the employers’ preference about working with attractive/beautiful people.  

I investigate whether the effect of wage premium due to light hair, blonde/red hair, is still 

observed if the individual resides in a county where light-hair or dark-hair is a common feature. I 

utilize three anthropological studies (Coon 1939; Hulse, 1963; and Geipel, 1969) to determine 

the predominant hair color of each ethnic group. If the majority of the ethnic group’s people has 

blonde/red hair and blue/green eyes, that ethnic group is considered as a “light-featured” ethnic 



 

 130 

group. However, if the majority of its people have brown/black hair and eyes, then it is 

considered as a “dark-featured” ethnic group. Then, I link this information with ethnic origin 

data collected in the 1980 census to measure the color feature of the county. For example, if the 

share of people of light-featured ethnic origins is greater than fifty-percent, that county is 

considered as a “light-featured” county and if it is less than fifty-percent, then it is a “dark-

featured” county. I find evidence that blonde females residing in counties where brown/black 

hair is the common feature (dark-featured county) earn more compared to females with 

brown/black hair and residing in the same county. There is some evidence that individuals with 

brown/black hair and residing in a light-featured county get a wage penalty compared to their 

counterparts residing in a dark-featured county. 

The choice of location of residence might be affected by some unobserved ethnic and 

individual characteristics. In return, it affects the labor market conditions and also whether a 

county is predominantly light or dark featured. If these characteristics affect color feature of the 

county and the labor market conditions, then the variable measuring the color feature of the 

county might be endogenous. To investigate the causality of the results, selection on observables 

and instrumental variable strategies are utilized. State level color feature and color feature of the 

state measured by the ethnic origins of the children (younger than 16 years of age) are employed 

as instruments. Both these strategies suggest that the relationship between having blonde/red hair 

and wage-at-the-first-job might be causal. 

  In Chapter 4, I examine the impact of unemployment insurance generosity on 

unemployment duration and labor market transitions for Turkey, a developing country. I find that 

the unemployment insurance generosity increases unemployment duration by 0.7 weeks and 

decrease the probability of entering employment by six-percentage points in Turkey. Compared 
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to developed countries such as the US, Germany and Austria, the impact of UI generosity on 

unemployment duration is greater. It might be due to different labor market structures, size of the 

informal sector, and history of the UI system. In Turkey, as in many developing countries, size of 

the informal sector is large and the UI system is young. 

I find that benefit generosity has no effect on the probability of entering non-participation 

in the labor force; however, it leads to a decrease in non-participation in the labor force for single 

benefit takers. This evidence is in line with the job search theory. The UI benefit might be 

increasing the reservation wage which leads to lower probabilities of finding a job. In addition, 

the data allows me to investigate the impact of UI generosity on cheating the system and 

rejecting services of the Turkish Employment Agency. It might be the case that as the generosity 

of UI increases the opportunity cost of losing the benefits increases for the benefit taker. Hence, 

it leads to lower probabilities of cheating and rejecting the services. Indeed, I find evidence that 

unemployment insurance generosity decreases the probability of cheating the UI system and 

rejecting the Agency’s services. 

To investigate the robustness of the results, several sensitivity checks are implemented.  

The evidence from the frequency distribution of the running variable suggests that the RD design 

is valid. The discontinuity measured at the cutoff can be attributed to UI generosity if the benefit 

takers around the cutoff are different from one another in predetermined characteristics. 

Including benefit taker characteristics does not alter the results. In addition, there is no 

discontinuity at the cutoff for predetermined benefit taker characteristics. Moreover, results are 

robust to alternative bandwidth selections and specifications. The evidence from these sensitivity 

checks suggests that the results are causal. 
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APPENDIX A: SUPPLEMENTARY TABLES FOR CHAPTER 2 

 

Table A.1 

Definitions of Variables 

Variables Definition 

PIAT Achievement Tests  

PIAT-Reading = Standard Score for Reading Recognition. 

PIAT-Math = Standard Score for Math.  

Child Characteristics  

First Born = 1 if the child is the first born, 0 otherwise. 

White = 1 if White, 0 otherwise. 

Female = 1 if Child is Female, 0 otherwise. 

Number of Siblings = The number of siblings of the child. 

Public School = 1 if Public School, 0 otherwise. 

BPI (Total Std. Score) = Standard Score for Overall Behavioral Problems. 

Anti-social = Standard Score for Anti-social Subscale. 

Anxiety/Depression = Standard Score for Anxiety/Depression Subscale. 

Headstrong = Standard Score for Headstrong Subscale. 

Hyperactive = Standard Score for Hyperactive Subscale. 

Dependent = Standard Score for Dependent Subscale. 

Peer Conflict = Standard Score for Peer Conflict Subscale. 

Mother  Characteristics  

Job Displacement = 1 if the mother is displaced due to plant closure within (0-24)-month window prior to the child’s test      

date, 0 otherwise. 

Family Income = Real Monthly Family Income ($) (base year 2000) 

Mother Income = Real Monthly Mother Income ($) (base year 2000) 

Non-Mother Income = Real Monthly Income of all Other Family Members ($) (base year 2000) 

Urban = 1 if Mother is residing in Urban Area, 0 otherwise. 

High School or Less  = 1 if Mother is high school graduate or less, 0 otherwise. 

Age at Birth = Mother’s age when she gave birth to the child. 

Single = 1 if the mother is single, 0 otherwise. 
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Table A.2 

BPI Subscale Questions 

BPI SUBSCALES 

Antisocial Hyperactive 

Child Cheats and tells lies Child has difficulty concentrating/paying attention 

Child bullies or is cruel/mean to others Child is easily confused/in a fog 

Child does not feel sorry after misbehaving Child is impulsive- acts without thinking 

Child breaks thing deliberately Child has trouble with obsession etc. 

Child is disobedient at school Child is restless, overly active etc. 

Child has trouble getting along with teachers  

Anxiety/Depression Dependent 

Child has sudden changes in mood/feelings Child clings to adults 

Child feels/complains no one loves him/her Child cries too much 

Child is too fearful or anxious Child demands a lot of attention 

Child feels worthless or inferior Child is too dependent on others 

Child is unhappy, sad or depressed  

Headstrong  Peer Conflict 

Child is rather high strung, tense, nervous Child has trouble getting along with others 

Child argues too much Child is not liked by other children 

Child is disobedient at home Child is withdrawn, not involved with others 

Child is stubborn, sullen, or irritable  

Child has strong temper, loses it easily  
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APPENDIX B: SUPPLEMENTARY TABLES FOR CHAPTER 3 

 

 

Table B.1 

Light and Dark Featured Ethnicities- Example from NLSY79 Ethnic Groups 

Ethnic Origin Light/Dark-features Ethnic Origin Light/Dark-features 

Black Dark Chicano Dark 

Chinese Dark Mexican Dark 

English Light Mexican-American Dark 

Filipino Dark Puerto Rican Dark 

French Dark Other Hispanic Dark 

German Light Other Spanish Dark 

Greek Dark Polish Light 

Hawaiian, P.I. Dark Portuguese Dark 

Indian-American Dark Russian Light 

Asian Indian Dark Scottish Dark 

Irish Dark Vietnamese Dark 

Italian Dark Welsh Light 

Japanese Dark American - 

Korean Dark Other - 

Cuban Dark None - 
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Table B.2 

 Definitions of Variables 

Variables Definition 

Individual Characteristics  

Age Age at the time of First-job. 

Female = 1 if female, 0 otherwise. 

White = 1 if white, 0 otherwise. 

Single = 1 if the individual is single when the first job started, 0 otherwise. 

Wage at the First-job Log of real wage at the First-job R had after school. (2000 prices) 

Eye & Hair Color  

Blue/Green/Hazel Eye (Light-Eyes) = 1 if eye color is Blue, Green, Hazel, Grey, Other, 0 if Brown, Black. 

Blonde/Red Hair (Light-Hair) = 1 if hair color is Blond, Red, Grey, 0 if Brown, Black. 

Blue/Green/Hazel Eye & Blonde/Red Hair = 1 if eye color is blue/green/hazel AND hair color is blonde/red, 0 otherwise. 

Brown/Black Eye & Blonde/Red Hair = 1 if eye color is brown/black AND hair color is blonde/red, 0 otherwise. 

Blue/Green/Hazel Eye & Brown/Black Hair = 1 if eye color is blue/green/hazel AND hair color is brown/black, 0 otherwise. 

Brown/Black Eye & Brown/Black Hair = 1 if eye color is brown/black AND hair color is brown/black, 0 otherwise. 

Blue/Green/Hazel Eye & Blonde/Red Hair = 1 if eye color is blue/green/hazel AND hair color is blonde/red, 0 otherwise. 

Father Characteristics  

Less than High School = 1 if Father has less than High School Education.   

High School Graduate = 1 if Father graduated from High School. 

College Graduate = 1 if Father has college degree. 

Master’s Degree or more = 1 if Father has master’s degree or more. 

Mother Characteristics  

Less than High School = 1 if Mother has less than High School Education.  

High School Graduate = 1 if Mother graduated from High School. 

College Graduate = 1 if Mother has College Degree. 

Master’s Degree or more = 1 if Mother has Master’s Degree or more. 

County Characteristics  

Light-Featured County = 1 if the share of individuals of light-featured ethnic origins is greater than 50% in the 

county, 0 if less than or equal to 50%. 

HHI  HHI measured for the county where individual was residing at the year first-job started 

on 1980 census. anc=ancestry group (e.g. French, German,..) ∑ (
    

          
)
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APPENDIX C: SUPPLEMENTARY TABLES AND FIGURES FOR CHAPTER 4 

 

Table C.1 

Optimal Bandwidth Selection 

Variables IK CCT 

   

Predetermined Variables   

Gender 43.11 22.80 

Married 48.91 58.61 

High School Graduate 51.67 48.62 

Daily UI Benefit Amount 58.49 40.27 

   

Outcome Variables   

Unemployment Duration 66.04 63.87 

Transition to:   

 Employment 53.96 40.77 

 Non-Participation in the Labor Market  61.03 44.23 

Cheating 71.22 45.88 

Rejecting Services 71.14 48.40 

Note: CCT represents optimal bandwidth selection with Calonico, Cattaneo and Titiunik (2014) 

and IK represents selection with Imbens and Kalyanaraman (2012). 
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Table C.2 

Frequency of the Running Variable with Different Bandwidths 

Bandwidth Coefficient Control Mean P-Value 

                  -446.79 3,720 0.461 

                  -280.16 3,590 0.449 

                  -301.48 3,609 0.233 

                    -297.16 3,607 0.191 

                    280.43 3,029 0.327 

Note: Coefficient for the frequency of the running variable is estimated by using Local Linear 

Regressions. 
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Table C.3 

Balance Around the Cutoff with Optimal Bandwidths 

 

Gender 

(Female) 
Married 

High 

School 

Graduate 

Daily UI 

Benefit 

Amount 

Predicted 

Unemp. 

Duration 

 (1) (2) (3) (4) (5) 

Panel A: Optimal Bandwidth (IK)     

PD>900 -0.004 0.011 -0.005 -0.033 0.164 

 (0.006) (0.007) (0.004) (0.063) (0.243) 

Optimal Bandwidth (h) h=43 h=49 h=52 h=58 h=27 

N 314,855 358,163 380,516 424,836 195,240 

      142,206 161,187 170,862 189,586 88,658 

      172,649 196,976 209,654 235,250 106,582 

Panel B: Optimal Bandwidth (CCT)    

PD>900 0.006 0.012* -0.005 0.009 0.287 

 (0.008) (0.007) (0.004) (0.076) (0.278) 

Optimal Bandwidth (h) h=23 h=59 h=49 h=40 h=21 

N 167,215 432,729 358,130 294,204 153,677 

      76,059 192,768 161,177 132,865 69,797 

      91,156 239,961 196,953 161,339 83,880 

Note: Estimated standard errors, clustered on year and premium days, are displayed in 

parentheses. Each coefficient on UI benefit generosity is estimated with local linear regression 

with the optimal bandwidth. The coefficients show the effect of being entitled to longer UI 

benefit periods on predetermined characteristics. * 10%, ** 5%, ***1% 
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Table C.4 

Definitions of Variables 

Variables Definition 

Unemployed If the worker is receiving the UI benefits she is considered as unemployed.  

Outcome Variables  

Unemployment Duration The number of days the benefit taker received the unemployment insurance (UI) benefit. 

Transition to Employment = 1 if the benefit taker’s UI benefit is stopped because she finds a job within the first 6-month 

period, = 0 if s/he is unemployed in the first 6-month period. 

Transition to Non-Participation 

in Labor Force  

= 1 if the benefit taker’s UI benefit is cut within the first 6-month period due to finding a new job 

(reporting and not reporting cases) or she is unemployed, = 0 if the benefit is stopped due to not 

being ready to work, retirement, temporarily unable to work and military service. 

Cheating the System = 1 if the benefit taker’s UI benefit is stopped within the first 6-month period due to her failure to 

report a new job with pay, = 0 if s/he is unemployed in the first 6-month period or finds a new job. 

Rejecting ISKUR’s Services = 1 if the benefit taker’s UI benefit is cut within the first 6-month period because s/he rejected 

invitation, rejected training, or rejected suggested job, = 0 if s/he is unemployed in the first 6-

month period or finds a new job. 

Benefit Taker Characteristics    

Number of Paid-Premium Days The number of days the benefit taker paid UI premiums within last 3 years. 

Entitled Number of Days the benefit taker is entitled to receive UI Benefits. 

The Daily UIB  The amount daily UI Benefit the benefit taker received in Turkish Lira. (deflated by CPI, 2003 

prices) 

The Sum of UIB  The lump-sum amount of UI Benefit Received in Turkish Lira. (deflated by CPI, 2003 prices) 

Education  

   No Degree and Literate  =1 if the benefit taker has no degree but literate, = 0 otherwise. 

   No Degree and Illiterate =1 if the benefit taker is not literate, = 0 otherwise. 

   Primary School  =1 if the benefit taker has primary school degree (8-year education) , = 0 otherwise. 

   High School  =1 if the benefit taker is high school graduate, = 0 otherwise. 

   2-Year College  =1 if the benefit taker has 2-year college degree, = 0 otherwise. 

   4-Year College  =1 if the benefit taker has 4-year college degree, = 0 otherwise. 

   Masters  =1 if the benefit taker has a master’s degree, = 0 otherwise. 

   PhD  =1 if the benefit taker has a PhD degree, = 0 otherwise. 
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(Table 4.2 Continued)  

Variable Definition 

Age Age of the benefit taker. 

Female = 1 if the benefit taker is female, = 0 if male. 

Married = 1 if the benefit taker is married, = 0 if single. 

Reasons UI Benefit Stopped  

   Reason 1  Not Ready for Work 

   Reason 2  Rejecting Invitation 

   Reason 3  Rejecting Training 

   Reason 4  Started to Receive Retirement Payments 

   Reason 5 Became Eligible for Retirement Payments 

   Reason 6  Caught on Working on a Job with Pay  

   Reason 7  Temporarily Unable to Work 

   Reason 8  Not Attending to Trainings 

   Reason 9  Starting to a New Job 

   Reason 10 Death 

   Reason 11 Rejecting the Suggested Jobs 

   Reason 12 Military Service 

   Reason 13 Entitled Period of UI benefit is Exhausted (Unemployed) 
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Figure C.1 

The Effect of Unemployment Insurance Benefit Generosity on Predicted Outcomes 

 

Note: Each panel shows the mean predicted outcome variable by each value of the running 

variable, paid-premium-days. Predicted values are generated by regressing each outcome 

variable on the pre-determined benefit taker characteristics. Then, predicted values are regressed 

on the running variable to estimate the discontinuity at the threshold. Solid lines are fitted values 

of predicted outcomes from a local linear regression with a bandwidth of 60 days. If the benefit 

taker’s premium days are less than 900-days s/he is entitled to 6-month UI benefit period. If 

her/his premium days are greater than 900-days, the benefit taker is entitled to 8-month benefit 

period. 
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