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Abstract
This dissertation comprises of three distinct studies that contribute to the field of

economic growth in India. First, we investigate patterns of growth at the district

level (second level administrative units) using radiance calibrated night lights data for

2000-2010. We examine growth both at the aggregated district level, as well as along

the rural and urban dimensions. We find evidence of both absolute and conditional

convergence, with convergence among rural areas being the primary driver. However,

there is no evidence of convergence among urban areas.

Moving further along similar lines, we explore the effect of credit shocks, gener-

ated by scheduled commercial banks, on economic growth in districts of India during

the years 2000-2010. We exploit the variation in the initial sectoral credit shares

to predict the district level credit supply shock using a shift share instrument. We

find a strong association between credit growth and growth in economic activity, but

when controlled for the district specific demand shocks, the predicted supply shock

effect fails to be statistically significant.

Lastly, we study distortions in input and output markets as the sources of mis-

allocation in the Indian manufacturing sector, using data from both formal and

informal firms. We consider output, capital, raw material, energy, and service sector

distortions in a monopolistically competitive framework to measure the aggregate

dispersion in total factor revenue productivity (TFPR). Decomposing the variance

in TFPR, we show that the raw material and output distortions play the major role

in defining aggregate misallocation.

vi



Chapter 1
Introduction
Economic liberalization in 1991 resulted in a dramatic shift in economic policy land-

scape of the Indian economy. The country has experienced substantial growth along

with structural transformation over the last couple of decades. During 1990-2013,

the share of agriculture in total GDP declined from 28.5% to 13.9%, whereas the

total value of services increased from 49% to 67%. This structural transformation

combined with an average annual growth of 6.5% placed India, along with the other

BRIC countries, in the lime light as an “emerging giant” (Panagariya [2008]).

Despite the apparent structural transformation, the majority of the population

in India continues to live in rural areas. Specifically, according to the 2011 census, the

rural share of population was 68%. Additionally, despite the fall in agricultural share

in GDP, almost 72% of the rural population was engaged in agricultural activities.

The rest of the population working outside the agriculture sector are mostly employed

in the unorganized industry or service sector. Employment in the organized sector

has remained stagnant at around 10% of the working population.

Panagariya [2008] has attributed this slow structural transition to the stagnation

in the manufacturing output at 17% as a share of GDP between 1990-2004. He fur-

ther argues that the slower growth in labor intensive organized manufacturing sector

compared to the skilled labor and capital intensive services create the barrier to over-

all structural transition in India and promotes what economists aptly called “jobless

growth” (Subramanian [2009]). This argument becomes more relevant when we look
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at the growing share of service sector GDP compared to a decline in manufacturing

share to 12% in 2013-14.

The rural-urban “dualism” is further reflected in human capital attainment –

58% of rural population is literate compared to the 74% of the urban population.

In terms of infrastructure, 93% of the households in urban areas had an electricity

connection whereas only 55% of households in rural areas had the same. The unequal

distribution of opportunity across the sectors and regions has become one of the main

concerns for policy makers.

Moreover, India’s growth continues to be skewed at the subnational level as well.

The issue of increasing state level inequality is extensively addressed in the litera-

ture. Shetty [2003] shows that the state-wise GINI coefficient increased from .209

to .292 during 1980-2000 for all states whereas for the 16 major states, the GINI

leaps up from .167 to .224. Several papers including Das [2012], Kumar and Subra-

manian [2012], Ghate and Wright [2012] have documented that the initially richer

states grew faster than poorer ones, implying state level divergence. Additionally,

Bandyopadhyay [2004, 2012] argue that the states in India were converging to a bi-

modal distribution during 1965-1998. To reduce this skewness in regional growth,

the Indian government has introduced a series of policy reforms. Along with employ-

ment generation projects, there have been numerous reforms in education, health,

electricity, finance, and other infrastructures, in rural as well as urban areas. Major

programs like MGNREGA (Mahatma Gandhi National Rural Employment Guaran-

tee Act) and SGRY (Sampoorna Gramin Rojgar Yojana ) have been implemented to

generate employment. On the other hand Golden Quadrilateral, PMGSY (rural road
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project), SSA (compulsory elementary education), NHM (National Health Mission)

are steps towards better infrastructure and overall development. Additionally, finan-

cial inclusion and growth in credit generation has been a leading agenda towards

reducing inequality by loosening credit constraints.

Interestingly, if we drill down further to the second level administrative units

(i.e., districts), the evidence of inequality becomes more controversial. Contrary to

the literature of state level divergence, few recent papers (such as Singh et al. [2013],

Das et al. [2013, 2015]) document conditional convergence in Indian districts. The

former find evidence of convergence among the Indian districts conditioned upon road

connection and access to finance. Das et al. [2013, 2015], on the other hand, find

convergence conditional to geographic remoteness, urbanization, trade and migration

costs, and the distance from urban agglomerations.

The second chapter of this dissertation makes a contribution towards the regional

literature by exploring growth in the districts of India over the period of 2000-2010.

More specifically, we examine the extent of convergence, if any, both at the aggre-

gated district level, as well as along rural and urban dimensions. In the third chapter,

we investigate the extent of such regional growth that can be associated with credit

supply shocks. The fourth chapter provides a more comprehensive insight to the

organized and unorganized manufacturing sector in India. We study resource misal-

location as the source of variation in total factor productivity extending the model

by Hsieh and Klenow [2009].

A key challenge in measuring sub-national, specifically district-level, economic

growth rates in India is the absence of GDP data. Even when available, GDP is
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measured poorly in developing countries due to poor statistical infrastructure and

the presence of informal sector Henderson et al. [2012]. Furthermore, GDP data,

aggregated at the country or at the state level, does not provide us much insight

about the rural and urban dualism mentioned above. To overcome such issues,

we use radiance-calibrated satellite-based night-lights data collected from National

Geophysical Data Center. Since its introduction by Henderson et al. [2012] into the

literature, the use of night lights has become widespread in development economics

research, mainly due to its availability at a highly detailed level. Moreover, the

use of night light as a measure of economic activity allows us to exploit some recent

contributions (e.g., Zhou et al. [2015], Storeygard [2016]) that use them to distinguish

between urban and rural areas.

Using a standard Barro-style growth regression framework, we find evidence of

both absolute and conditional convergence among Indian districts. The absolute rate

of convergence of 1.8% is comparable to Barro’s “iron law” of 2% convergence rate

over the countries. On the other hand, conditioned upon the initial demographic

variables, human capital and infrastructure controls, and state dummies, we find

that districts in India have been converging at 3%, a rate greater than Barro [2015]’s

1.7% conditional convergence rate for a panel of countries post 1960. Furthermore,

our result exceeds the 2% regional convergence rate documented by Gennaioli et al.

[2014] for first level administrative units suggesting that the rate of convergence is

more pronounced in the fine grained level.

Although we find clear evidence of convergence, the state level policies and en-

dowments seem to play a crucial role in district level growth. Specifically, almost
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half of the district growth can be attributed to state specific characteristics. The

twin findings of important role of state specific characteristics along with district

level convergence seem to indicate that while the disparity between the states is in-

creasing over time, the within state inequality has diminished. On the other hand,

investigation of district specific initial conditions reveal that the districts with better

infrastructure and human capital endowment tend to surge ahead. One of the main

contribution of this work is to study the convergence pattern of rural and urban com-

ponents of the districts separately. We find that the growth pattern of the overall

districts are largely picking up the dynamics of the rural parts. However, there is no

evidence of convergence in the urban areas during our study period.

While the array of initial controls explain very little of urban growth, per-capita

initial credit along with population density and higher education has a significant

positive relationship with growth in urban lights. Initial credit plays a significant role

in defining growth even in the rural counterparts in the districts unless we introduce

state specific dummies. This association along with the ever growing emphasis on

financial inclusion and upsurging credit to GDP ratio (Figure 3.1) throughout the

last couple of decades poses an interesting scenario. In the third chapter, we explore

the extent to which the supply shock in credit generation affect the regional economic

growth during 2000-2010, using the same satellite night light data.

A body of literature has documented the role of credit supply channel in explain-

ing various economic outcomes. Greenstone et al. [2014] has explored the impact of

credit supply shock on overall and small business employment over 1997-2011. They

found evidence that predicted lending shocks have affected both country level and
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small business employment negatively during the Great Recession but there has not

been any association otherwise. Amiti and Weinstein [2013] has shown a substantial

impact of credit supply shock on the investment decisions of the firm. On a similar

note, Paravisini et al. [2015] established that in trade, credit supply shocks have a

significant impact on the intensive margin of export but does not affect the extensive

margin. Moreover the association between growth and credit has been established

in a recent study by Clark et al. [2017] who finds that bank loan should be weighed

more in explaining economic growth in China.

In light of this literature, first, we look at the association between per-capita

credit growth and the per-capita growth in economic activity and find a positive and

significant relationship. We find that an increase in overall per-capita credit growth

rate by 1% is associated with approximately .1 percentage point increase in growth

of economic activity. However, it is hard to distinguish the supply channel of the

credit origination from the demand driven credit shock. We use the modified shift

share approach introduced by Greenstone et al. [2014], which predicts the supply

shock in credit by exploiting the initial share of the sectoral credit multiplied by the

estimated supply growth in the respective sector. Such predicted growth, although

strongly associated with actual growth in credit, fails to affect growth in economic

activity during our study period.

After discussing the various facets of regional growth, this dissertation explores

the variation in productivity deriving from misallocation in factor resources using

the data from Indian firms. A body of literature including Banerjee and Duflo

[2005], Restuccia and Rogerson [2008], Hsieh and Klenow [2009] argues that in poor
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countries, productivity differences generates from misallocation of resources across

firms. The fourth chapter of this dissertation provides an insight of the misallocation

and total factor productivity variation in Indian manufacturing sector in an effort to

extend the model provided by Hsieh and Klenow [2009].

Total factor productivity (TFP), being a residual in the production process, is

not observed directly. It is difficult to measure firm-level TFP due to the across firm

variation in unit of production. Instead we measure the variation in Total Factor

Revenue Productivity (TFPR), which by definition is the product of output price

and physical TFP of a firm. We exploit the intuition, well established in literature

(Restuccia and Rogerson [2008], Hsieh and Klenow [2009], Chatterjee [2011]), that

TFPR should be equalized for all firms within an industry, to measure the misallo-

cation in factor resources. We measure productivity using gross output approach by

including raw materials, energy, and service sector intermediate inputs as factors of

production along with capital and labor. The inclusion of these factors separately

into production process enables us to give a more detailed representation of factor

market distortion as the source of misallocation. The firm level data from formal

and informal manufacturing in India has been used to decompose factor market dis-

tortions by considering each factor input distortion separately. We find that the

distortion in the output market and raw material market explains the lion’s share of

the variation in TFPR.

India, being a large emerging economy, has inspired voluminous research over the

last few decades. This dissertation adds to the existing body of literature exploring

economic growth in India. We address the following three aspects – regional conver-

7



gence, growth, and productivity variation in India – albeit with certain limitations,

which can provide motivations for further research in this area. For example, our

analysis explains very little of the urban growth patterns, and it would be of interest

to further investigate factors explaining this. Furthermore, it may be helpful to do a

spatial analysis on the district growth pattern to determine if the growth of a district

is affected by its neighbours. In addition, we hope to explore sectoral credit growth

for consecutive years to understand the short run effects of the credit supply channel.
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Chapter 2
Local Growth and Convergence in
India (2000-2010)

2.1 Introduction

Despite having recorded high growth rates since the introduction of economic reforms

in 1991, the lopsided sub-national distribution of this growth in India remains a major

concern. At the state level, GDP per capita of the richer states such as Gujarat

stood at around 4.7 times that of Bihar in 2011. Several papers including Das [2012]

and Ghate and Wright [2012] have documented that the initially richer states grew

faster than poorer ones implying divergence. Kumar and Subramanian [2012] also

document the continued divergence among Indian states in the same period as our

study. The disparity is more pronounced at greater levels of disaggregation. At the

district (i.e. second level administrative units) the domestic product per capita of

Sheohar, a poor district in Bihar, a poor state, is barely a tenth that of Ludhiana, a

district in the relatively rich state of Punjab in 2010-11.

In this chapter, we explore the determinants of local growth patterns in India

using data for 518 districts for the period of 2000 to 2010. We use the standard

Barro style growth regression framework, controlling for a variety of socio-economic

demography, infrastructure, human capital, climate and time invariant state char-

acteristics to investigate patterns of convergence among districts. Drilling further

down we also examine the extent of convergence, if any, among rural areas of the

districts and urban areas separately. Despite rapid growth, India remains primarily
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a rural country. According to the 2011 census, 68 percent of the population resided

in rural areas. Within the rural population, the vast majority relied on agriculture.

Further, almost 72 percent of the rural population was engaged in agricultural activ-

ities. “Dualism” is also reflected in human capital attainment - 58 percent of rural

population is literate whereas more than 74 percent of the urban population can read

and write. In terms of infrastructure, 93 percent of the households in urban areas of

the country had an electricity connection whereas only 55 percent of households in

rural areas had the same.

Summarizing, we find evidence of both absolute and conditional convergence

among Indian districts. The absolute rate of convergence of 1.8 percent is comparable

to Barro’s “iron law” of 2 percent convergence rate over the countries even though

we use night lights and not GDP. On the other hand, conditioned upon the initial

demographic variables, human capital and infrastructure controls, and state fixed

effects, we find that districts in India have been converging at 3 percent, a rate greater

than Barro [2015]’s 1.7 percent conditional convergence rate for a panel of countries

post 1960. Furthermore, our result exceeds the 2 percent regional convergence rate

documented by Gennaioli et al. [2014] for first level administrative units suggesting

that the rate of convergence is more pronounced in the fine grained level.

While there is clear evidence of convergence, the time invariant state character-

istics explain approximately half of the district growth. In other words, state level

policies and endowments continue to exert a significant effect on district growth.

The twin findings of an important role for state effects but conditional convergence

at the district level seems to indicate that while states gotten ahead leaving other

10



states behind, in general within state variation has diminished over time. As far as

initial conditions are concerned, we find a strong role for infrastructure and literacy

rates. Districts that had higher initial values have surged ahead during this time

period. Further, when we break up districts into their rural and urban components,

and examine growth separately, what we find to be true at the aggregate, seems to

largely pick up the dynamics of rural growth. There is no evidence of convergence

in the urban areas and the exhaustive array of controls in our study explains very

little of urban growth. Finally, we also make a foray into examining the associa-

tion between rural growth and some major public programs that were undertaken

during this time period. We look at the amount of spending on the much publi-

cized Mahatma Gandhi National Rural Employment Guarantee Scheme (henceforth,

MNREGS), the Pradhan Mantri Gram Sadak Yojana - a major rural road project

(henceforth, PMGSY), and Rajiv Gandhi Gramin Vidyutikaran Yojana - a large

scale rural electricity project (henceforth, RGGVY). While a large literature has

emerged evaluating the success and failures of these schemes (and certainly the stud-

ies are more rigorous than what we do), we fail to find any significant association

between these schemes and rural growth in the districts. One respect in which our

data is different from many of the others is that we look at the expenditures rather

than actual outcomes of these projects. For example, most of the current literature

measures the magnitude of the employment guarantee scheme in terms of the num-

ber of work-days generated. However, from a cost-benefit perspective, looking at

expenditures per capita can be as informative.
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2.2 Related Works

While there is an abundance of studies on convergence, a recent update by Barro

[2015] documents conditional convergence at 1.7 percent annually for a panel of

countries post 1960. At the subnational level, Gennaioli et al. [2014] use 1,528 first-

level administrative units of 83 countries to show a comparable regional convergence

of 2 percent, conditioned upon geography, human capital along with political and

socio-economic condition. For the United States, the recent literature, such as that of

Ganong and Shoag [2013] note a decrease in income convergence. They attribute this

to a fall in migration of population from poor to wealthy areas due to the changing

relationship between housing prices and income. Chanda and Panda [2016] observe

divergence in the service sector productivity across US states but convergence in the

goods producing sectors.

Within India, several studies (such as Kumar and Subramanian [2012], Bandy-

opadhyay [2004, 2012], Ghate [2008], Das [2012], Ghate and Wright [2012]) do not

find convergence at the state level. Bandyopadhyay [2004, 2012] finds evidence that

the Indian states were converging to a bimodal distribution during 1965-1998. She

argues that such polarization strongly depends on the infrastructure and macroeco-

nomic variables, such as capital investment and fiscal deficit. Ghate [2008] and Das

[2012], on the other hand, show evidence of divergence among Indian states. Kumar

and Subramanian [2012] find continued state level divergence during the period of

our study (2000-09). According to their findings, the rate of divergence between

the states during this period is 1.7 percent, 55 percent greater than a 1.1 percent

divergence rate at the 1990s.

12



In contrast to this literature, Singh et al. [2013], and Das et al. [2013, 2015] doc-

ument conditional β-convergence in Indian districts. The former uses district level

domestic product data obtained from individual state governments, for 210 Indian

districts distributed over 9 states. They find evidence of convergence conditioned

upon road connection and access to finance. Das et al. [2013, 2015], on the other

hand, find conditional convergence among the Indian districts but not absolute β-

convergence or σ- convergence. They use proprietary district level domestic product

data from a private research firm, Indicus, for 2001 and 2008 to estimate condi-

tional convergence taking into account geographic remoteness, urbanization, trade

and migration costs, and the distance from urban agglomerations.

In addition to providing insights into convergence across Indian districts and

investigating it along rural and urban dimensions, our research is also motivated by

a separate literature examining the effects of large scale ambitious public projects

that were aimed at reducing poverty or developing infrastructure in rural areas. For

example, Zimmermann [2013] studies the role of MGNREGS as an alternative form

of employment and a safety net in rural labor markets. She finds a small impact

of MGNREGS on overall employment and casual wages, but the effect is greater

after a bad rainfall shock. Klonner and Oldiges [2013] on the other hand finds

that scheme increased household cosnumption for marginalised groups - scheduled

caste and scheduled tribes. In similar vein, Aggarwal [2015] explores the association

between PMGSY and poverty alleviation in rural districts of India, and finds that

better road connection induces the adoption of modern agricultural technology but

raises the drop-out rate among the teenagers who join the labor force instead.
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A key challenge in measuring sub-national, specifically district-level, economic

growth rates in India, and also other developing countries, is the absence of GDP

data. Even when available, GDP is measured poorly in developing countries for sev-

eral reasons Henderson et al. [2012]. First, the statistical collection capacity is weaker

in some regions of the country making official GDP data unreliable. Second, prices of

same products over different regions vary significantly, making it harder to establish

a uniform price level. Third, a significant share of economic activity is performed

in informal sectors, where it is harder to measure production and the government

agencies need to make estimates to fill in the missing data. To overcome such issues,

we use radiance calibrated satellite based night lights data collected from National

Geophysical Data Center. Since its introduction by Henderson et al. [2012] into the

literature, the use of night lights has become widespread in development economics

research to capture economic activity at a highly detailed level (of approximately

0.86 sq. km at the equator). Further, it has the added advantage that it allows us to

draw on some recent contributions that use them to distinguish between urban and

rural areas (e.g., Zhou et al. [2015], Storeygard [2016]).

The rest of this chapter is organized as follows. Section 2.3 provides the data

and empirical methodology. In Section 2.4 we discuss our regression results. Section

2.5 incorporates some of rural public projects as additional control variables in our

regression framework. Section 2.6 concludes with suggestion for further research.
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2.3 Data and Empirical Methodology

2.3.1 Night Lights (NTL) Data

We first briefly describe the collection and creation of district level night lights mea-

sures. The raw night lights data measures average stable lights for a geographical

location, scanned by OLS (Operation Linescan System) instruments flown on the

US government’s Defense Meteorological Satellite Program (DMSP) satellites in an

instant during 8:30 and 10:00 pm local time on all cloud free nights within a year.

Each satellite year dataset reports the intensity of light by a 6 bit Digital Number

(DN) for each 30 arc second grid which is approximately .86 kilometre at equator.

DN is an integer that measures the stable light taking value from 0 to around 63

where 0 means no light and 63 is the highest light observed. The light detecting sen-

sors onboard these satellites are amplified to detect moonlit clouds making them very

sensitive in detecting low level lights. However, the amplifier saturates the sensors

while measuring brightly lit places such as metropolitan cities, making the DN value

top-coded. To get rid of such problems, the global radiance calibrated night lights

dataset provided by National Geophysical data centre (NGDC), combines high mag-

nification settings for the low light regions, whereas low magnification settings for the

brightly lit places. Consequently, the top-coding of DN values for brightly lit places

are eliminated without losing substantial information on low light areas. The radi-

ance calibrated light does not have any theoretical upper bound of DN. The brightest

pixel on earth has a DN value of 2379.62 (Krause and Bluhm [2016]). We use this

radiance calibrated light data also used in Elvidge et al. [1999], Ziskin et al. [2010],

and Henderson et al. [2016], among other studies. The raw radiance-calibrated night
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lights data is available at the NOAA’s National Geophysical Data Center (NGDC)

almost annually 2000 to 2010. For this chapter, we use the data for 2000, 2005 and

2010. The data is aggregated to the district level for each year using spatial maps

downloaded from the Global Administrative Areas website (www.gadm.org).

Figure 2.1: Kernel Density of log Night Lights for Total (a), Rural areas (b), Urban
areas (c)

Next, we need to distinguish between rural and urban areas. We are aware of

two strategies that use night light data. Storeygard [2016] uses DN value greater

than 0 to represent urban area whereas Small et al. [2011] note that any area with

DN value less than approximately 12 can be characterized as a dim light area and
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corresponds to low density population and agricultural land. Zhou et al. [2015] follow

the latter and use DN value equal to 12 as a threshold to distinguish urban area from

rural area. They cross-check the data with remote sensed images of the land satellite

(MODIS) and show that areas with DN value less than and equal to 12 correspond

to higher frequency of agricultural land. As rural areas of Indian districts primarily

have an agriculture based economy, we also adopted a DN value less than 12 in 2000

to identify a rural area. Figure (2.1) shows the kernel densities of total, rural and

urban light for years 2000 and 2010. As is clear from the figures, there is a rightward

shift for all of them, but for rural areas we also see a clear tendency towards a less

spread out distribution.

One important caveat for our study is that the census definition of rural and

urban areas is different from the way rural and urban lights are constructed. The

former relies more on administrative classifications. To ensure that the construction

of our rural and urban level values of lights per capita is not driven by inconsis-

tent data, we compare the share of rural night lights in total lights for each district

with the census based calculations of the share of rural population to total popu-

lation. The kernel density for both variables are displayed in Figure (2.2) for the

beginning and terminal years. It is clear that the distribution of both shares is very

similar. The correlation stands at .77 approximately, for 518 districts in our study

for 2000-01. The small gaps between the red and blue lines in the graph indicates

occasional inconsistencies. For example, according to our estimates, Kinnaur in Hi-

machal Pradesh has very low but positive urban lights. However, the 2001 census

does not show any urban populations in that district. To avoid such anomalies, we
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Figure 2.2: Rural share in Night Lights & census population in 2000-01(a) & 2010-
11(b)

drop districts with either zero urban light or zero urban populations when examining

urban growth (and likewise for rural areas when studying rural growth).

As a further check on the validity of using night lights data to proxy district

level economic activity, we compare it to district level GDP data from Planning

Commission of the Government of India for the year 2000.1 Panel (a) of Figure

1The Government of India, for a limited period of time undertook an exercise to estimate GDP
data at the district level. Data for most states during 1999-2005 is available here.
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Figure 2.3: Correlation between GDP and Night Lights without(a) and with (b)
state fixed effects

(2.3) shows the correlation between logarithm of district level GDP and logarithm of

district level night lights, whereas panel (b) shows the same after controlling for the

state fixed effects. Both panels indicate a strong positive correlation: 0.84 in panel

(a) and 0.70 in panel (b), using 481 districts for which DDP data is available.

For most of this chapter, we use radiance calibrated night light data for the years

2000 and 2010, selected due to their close proximity to the census years of 2001 and
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2011. This ensures we have adequate data for additional district level controls. In a

subsection of this chapter, we also break up the study into two sub-periods of 2000-

2005 and 2005-2010 though for many demographic variables we need to interpolate

initial values for 2005. Over the ten year period, 47 new districts were created. While

there were 593 districts in 2001, by 2011 there were 640. To ensure consistency, we

summed up the data of the new districts to the district of origin if the new district

was created dividing a single district. If the new district was carved out from multiple

districts, we dropped both the new and the district of origin to avoid complications.

We also decided to drop the state of Assam as more than 50 percent of districts in

the state were redrawn. Our baseline regressions include 518 districts.

2.3.2 Empirical Methodology

To investigate the presence of absolute convergence, we estimate Equation (2.1):

gyi,t,t−k
= βyi,t−k + εi,t,t−k (2.1)

where gyi,t,t−k
is the average growth rate of night light per capita of district i between

years t(2010) and t−k(2000) and and yi,t−k is the logarithm of initial lights per person

in district i. ε is district specific random shocks. β in equation 1 represents the rate of

absolute convergence. A negative β suggests an inverse relationship between initial

condition and the growth rate implying convergence between the regions whereas

the magnitude of β measures the rate of convergence. We use the above equation

to look at aggregated, rural and urban convergence. Absolute convergence entails

that the growth rate of areas with poorer initial conditions will be higher. In other
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words, inequality between districts will reduce even without any influence of other

factors. As is well known, this is not something that is observed in cross-country

data. On the other hand, at the cross country level ‘conditional convergence’ often

holds, implying that the growth rate of region converge to a long run (steady-state)

growth rate conditioned on variables that explain the long run values. Therefore, to

examine conditional convergence among districts, as well as rural and urban regions,

we estimate the following equation:

gyi,t,t−k
= βyi,t−k + ηXi + fj + εi,t,t−k (2.2)

Where β gives us the rate of conditional convergence controlling for district char-

acteristics. ε is district specific random shocks similar to equation 1. Xi represents

district specific control variables for ith district, whereas η estimated the coefficient

of such controls. The Xi in our study includes initial district specific demographic

characteristics such as literacy rates, higher education attainment rates, scheduled

cast and scheduled tribe population shares, working population shares as well as

geographic variables such as population density and rainfall. It also includes infras-

tructure variables such as net irrigated land, connectivity to paved roads, access to

finance, and electricity connections. A negative β implies convergence in growth pat-

tern conditional on the district specific characteristics. and a higher magnitude of β

suggests a higher rate of conditional convergence. Finally, time invariant state char-

acteristics such as institutions, governance etc. might explain disparities in growth

rates of the districts. To take into account such variations, we also examine the

consequences of adding state fixed effects, fj, to both equations 2.1 and 2.2. We
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discuss the sources and construction of the control variables further in Appendix A

at the end of this dissertation.

2.3.3 Data Summary and Correlation

Table (2.1) shows the summary of dependent and explanatory variables in our study.

The overall district sample uses 518 districts, whereas the total observations in rural

and urban areas are 506 and 474 respectively.2 The main variable of interest is the

‘Initial light’ defined as logarithm of per-capita light in the year of 2000 for growth

regressions of 2000-05 and 2000-10. Additionally 2005-10 growth regressions use log

per-capita night lights of 2005 as initial light. Both night lights growth and initial

lights are estimated for the overall district as well as rural and urban areas of the

districts separately.

The data for shares of population that belong to a scheduled caste (SC pop.

share), scheduled tribe (ST pop. share), are of working age (Working pop.share), are

literate (Literate pop. share), have higher education (Higher edu. share); fraction

of households that have electricity connections (Electricity connection), and credit

per capita (Log Credit p.c.) can be calculated for urban and rural areas separately.

Population density (Overall pop. Density) and rainfall per square kilometre (Log

Rainfall per sq km.) are for the entire district. For paved roads (Log HH with paved

roads), we use the whole district and also apply the same variable for rural areas

without further modification. In urban areas, roads are usually “paved” (even though

a significant portion might be abysmal by any objective standard). As a result even

though it is measured at the overall district level, it primarily reflects differences in

2514 out of 518 districts in our study has rural population and light data, but we have data for
Net irrigated area for only 506.
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Table 2.1: Data Summary
Total Rural Urban

VARIABLES Observation Mean Observation Mean Observation Mean
Lights Growth p.c. (2000-10) 518 0.01 514 0.02 474 -0.01
Lights Growth p.c. (2000-05) 518 -0.07 514 -0.09 474 -0.02
Lights Growth p.c. (2005-10) 518 0.11 514 0.14 474 -0.01
Log Initial Light p.c. (2000) 518 -4.28 514 -4.31 474 -4.17
Log Initial Light p.c. (2005) 518 -4.61 514 -4.77 474 -4.23
SC Pop. Share 518 0.15 514 0.17 474 0.13
ST Pop. Share 518 0.15 514 0.17 474 0.05
Working Pop. share 518 0.41 514 0.43 474 0.31
Literate Pop. share 518 0.53 514 0.49 474 0.67
Higher Edu. Share 518 0.07 514 0.04 474 0.16
Electricity Connection 518 0.54 514 0.48 474 0.82
Log Rainfall per sq km. 518 -3.72 514 -3.74 486 -3.761
Log Credit p.c. 518 -4.27 514 -5.13 474 -3.04
Rural Percent 518 0.78
Overall Pop. Density 518 0.01 514 0.01 474 0.01
Log HH with Paved Roads 518 4.00 514 4.00
Log Net Irrigated Area 506 4.05



rural development. Similarly, net irrigated area (Log Net irrigated area) is used for

rural samples only. The share of rural population in total population (Rural Percent)

is only used in the overall district regression as an inverse measure of urbanization.

Apart from the expected differences in means between urban and rural areas of

districts, a highlight of this table is the average growth rates in lights per capita.

We can see that the average growth rate in urban areas was actually negative while

the average growth rate in rural areas was 2% points. This is not because of any

particular outlier. In the case of urban areas, exactly half experienced positive growth

in lights per capita while the remaining experienced negative growth. In the case of

rural areas, 348 of the 518 districts experienced positive growth while the remaining

170 experienced negative growth. Thus underlying our sample are very disparate

experiences when using light data.

Tables 2a, 2b, and 2c show the correlations among dependent and independent

variables for total, rural and urban areas respectively. From Table 2a we can see

that the initial lights per capita has a negative correlation with growth in lights

per capita thus providing some prima facie evidence of absolute convergence. The

correlation between all of the control variables and growth in lights per capita is not

as compelling. We can also observe from column (2) that the initial lights per capita

is also negatively correlated with rural share of the population and rainfall while

it positively correlated with working age population share, literacy rates, higher

education attainment, electricity connection, roads and credit. Interestingly, the

relationship between lights per capita and the share of the population that belongs

to scheduled castes is positive while for scheduled tribes is negative. In other words,
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Table 2a: Correlations: Total District (Rural+Urban)

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
1 Lights Growth p.c. (2000-10)
2 Log Initial Light p.c. (2000) -0.35*
3 Rural Percent 0.03 -0.33*
4 Overall Pop. Density 0.04 -0.05 -0.44*
5 SC Pop. Share -0.13* 0.21* 0.03 0.00
6 ST Pop. Share 0.13* -0.23* 0.19* -0.14* -0.61*
7 Working Pop. Share 0.03 0.26* 0.20* -0.21* -0.22* 0.42*
8 Literate Pop. Share 0.05 0.46* -0.50* 0.15* 0.00 -0.13* 0.03
9 Higher Edu. Share 0.06 0.28* -0.74* 0.43* -0.03 -0.22* -0.23* 0.70*
10 Log Rainfall per sq km. 0.10* -0.40* -0.04 0.32* -0.18* 0.13* -0.23* 0.15* 0.23*
11 Electricity Connection 0.05 0.64* -0.54* 0.09* -0.07 -0.09* 0.27* 0.67* 0.55* -0.11*
12 Log HH with Paved Roads 0.12* 0.36* -0.27* 0.06 0.01 -0.10* 0.04 0.33* 0.31* -0.06 0.40*
13 Log Credit p.c. -0.01 0.50* -0.74* 0.35* 0.11* -0.33* -0.09* 0.61* 0.75* 0.01 0.67* 0.35*

Note. The correlations are shown for 518 districts. * represents significance at 5 percent level
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Table 2b: Correlations: Rural Areas

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
1 Rural lights growth p.c.
2 Log Initial Rural Light p.c. -0.35*
3 Overall Pop. Density -0.03 -0.31*
4 Rural SC Pop. Share -0.13* 0.15* 0.25*
5 Rural ST Pop. Share 0.12* -0.17* -0.40* -0.62*
6 Rural Working Pop. Share -0.03 0.43* -0.60* -0.23* 0.37*
7 Rural Literate Pop. Share 0.12* 0.41* -0.02 0.05 -0.14* 0.12*
8 Rural Higher Education 0.17* 0.13* 0.17* -0.01 -0.19* -0.12* 0.69*
9 Log Rainfall per sq km. 0.13* -0.43* 0.32* -0.16* 0.12* -0.30* 0.16* 0.28*
10 Rural Electricity Connection 0.06 0.64* -0.24* -0.02 -0.08 0.41* 0.58* 0.36* -0.14*
11 Log HH with Paved Roads 0.15* 0.35* -0.05 0.04 -0.10* 0.11* 0.31* 0.29* -0.08 0.38*
12 Log Net Irrigated Area -0.35* 0.28* 0.25* 0.49* -0.51* -0.21* -0.12* -0.14* -0.48* 0.01 0.04
13 Log Rural Credit p.c. 0.07 0.48* -0.10* 0.22* -0.20* 0.23* 0.37* 0.26* -0.13* 0.57* 0.32* 0.09

Note. The correlations are shown for 506 districts. * represents significance at 5 percent level
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Table 2c: Correlations: Urban Areas

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1. Urban Lights Growth p.c. (2000-10) 1
2. Log Initial Urban Light p.c. (2000) 0.1* 1
3. Overall Pop. Density 0.16* -0.04 1
4. Urban SC Pop. Share 0.16* 0.22* -0.04 1
5. Urban ST Pop. Share -0.13* -0.16* -0.09 -0.36* 1
6. Urban Working Pop. Share 0.09 0.19* 0.03 0.05 0.14* 1
7. Urban Literate Pop. Share 0.01 0.27* 0.04 -0.07 0.22* 0.44* 1
8. Urban Higher Edu. Share 0.07 0.06 0.03 -0.02 0.00 0.02 0.15* 1
9. Log Rainfall per sq km. 0.07 -0.31* 0.37* -0.19* 0.15* 0.06 0.20* 0.02 1
10. Urban Electricity Connection 0.02 0.53* 0.03 -0.01 0.08 0.40* 0.52* 0.08 -0.23* 1
11. Log Urban Credit p.c. 0.17* 0.33* 0.28* 0.01 -0.18* 0.28* 0.39* -0.06 0.12* 0.37*

Note. The correlations are shown for 474 districts. * represents significance at 5 percent level



the simple correlation seems to indicate that districts with larger scheduled caste

populations have already been faring better than those with large scheduled tribe

affiliations. This is not surprising since from Table (2.1), we can see that rural

areas tend to have larger scheduled tribe population shares while scheduled caste

population shares are more consistent across both urban and rural areas. If we look

at the percentage of the population that is rural in 2001, we can also see that it

is negatively correlated with many of the control variables such as literacy rates,

population density, higher education attainment, electricity connections, roads and

credit. In other words, the table reinforces some of the prior perceptions one might

have about the rural-urban dichotomy in India. Finally, the table also indicates that

roads, credit, and electricity are all correlated with each other and credit is also

correlated with education.

Similarly, Table 2b for rural areas shows negative correlation between the log of

initial lights per capita and growth in lights per capita. The infrastructure variables

are positively correlated with each other -showing that the rural areas in a district

with better electricity connection also have higher access to credit. Moreover, a

positive correlation can be observed between infrastructure variables and education

variables. In the case of Table 2c, contrary to the previous tables, a low but positive

correlation is depicted between initial urban lights per capita and subsequent growth

rates. Beyond that, the pattern of correlation in urban areas is similar to that of

their rural counterparts.
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2.4 Results

2.4.1 Growth Regressions

In this section we present our basic empirical results for the overall districts as well

as rural and urban areas separately. Equations (2.1) & (2.2) are estimated taking

average growth in night lights per capita in the districts between 2000 and 2010 as

the dependent variable and initial lights per capita as the main variable of interest.

Additionally, we take into account the state fixed effects to control for state level

factors. Andhra Pradesh is the baseline state in our study. To mitigate the problem

of heteroskadasticity robust standard errors are used in all the regressions.

• Overall District Growth:

The regression results for the overall district for the period of 2000-10 is pre-

sented in Table (2.3). The first column shows the most parsimonious version of our

models, regressing the growth in lights per capita on the logarithm of initial lights

per capita. The β- coefficient is significant at 1 percent with a magnitude of -.018 and

the standard deviation is .004. This result indicates absolute convergence among the

districts. In the second column, we consider the effect of adding demographic vari-

ables. We include rural population shares, population density, shares of SC and ST

populations, and share of working population. The convergence coefficient remains

significantly negative with a higher magnitude (-.024) than in column (1). The coef-

ficient of the rural percentage is negative and significant at 1 percent level, whereas

the working population has a significant positive effect. population density, SC and

ST population share do not have significant impact on growth. Table 2a indicates

that initial lights per capita is correlated with a range of infrastructure and education
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Table 2.3: District Growth, 2000-2010

VARIABLES (1) (2) (3) (4) (5) (6) (7)
Dependent Variable: Overall Night Lights Growth per capita
Log Light p.c. (2000) -0.018*** -0.024*** -0.043*** -0.023*** -0.024*** -0.031***

(0.004) (0.005) (0.008) (0.006) (0.005) (0.006)
Rural Percent -0.053*** 0.047** -0.037** 0.010

(0.015) (0.019) (0.016) (0.019)
Overall Pop. Density -0.074 0.105 -0.058 0.139

(0.074) (0.109) (0.105) (0.101)
SC Pop. Share -0.008 0.037 0.046 0.019

(0.026) (0.023) (0.040) (0.032)
ST Pop. Share -0.009 0.012 0.022 0.023

(0.015) (0.015) (0.023) (0.019)
Working Pop. Share 0.153** 0.056 -0.026 -0.000

(0.065) (0.049) (0.042) (0.040)
Literate Pop. Share 0.071** 0.113***

(0.032) (0.035)
Higher Edu. Share -0.017 -0.034

(0.109) (0.105)
Log Rainfall per sq km. -0.009** -0.014***

(0.005) (0.004)
Electricity Connection 0.070*** 0.043**

(0.018) (0.020)
Log HH with Paved Roads 0.014*** 0.007***

(0.003) (0.003)
Log Credit p.c. 0.007** 0.001

(0.003) (0.003)
State Fixed Effect No No No Yes Yes Yes Yes

Constant -0.063*** -0.107*** -0.372*** 0.023*** -0.057*** -0.030 -0.278***
(0.017) (0.040) (0.085) (0.002) (0.020) (0.029) (0.079)

Observations 518 518 518 518 518 518 518
Adjusted R-squared 0.124 0.154 0.318 0.480 0.547 0.554 0.607

Note: The results presented here refer to the entire district, i.e. rural + urban.
Robust standard errors are given in the parenthesis.
∗∗∗ shows p− value < .01 , ∗∗ shows .01 < p− value < .05 and ∗ shows .05 < p− value < .1
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variables in addition to demographic characteristics. In other words, even though

initial lights is negatively correlated with subsequent growth, it might be correlated

with other omitted variables that we have not controlled for. In the third column, we

incorporate the human capital accumulation and infrastructure variables along with

those used in column (2) to take into account such initial variations. We use initial

literacy rates and share of the population with higher education (completed higher

secondary or more) as indicators of human capital accumulation, whereas, infrastruc-

ture includes share of households with electricity connections and access to paved

roads, along with logarithm of credit per capita. Finally, we also include rainfall

to control for climate variation over the districts. In line with our expectations, all

the infrastructure variables have positive and significant effects on growth together

with share of literate population. Higher education is insignificant and so are other

demographic variables. Interestingly, the convergence coefficient increases to -.043

with inclusion of above controls indicating that many of these variables reflect long

run steady state conditions. The percentage of rural population in a district changes

signs from column (2) and becomes positively significant but as we shall see below

this is not robust. The coefficient of the logarithm of rainfall per square km. is neg-

atively significant. Finally, the addition of human capital, infrastructure and rainfall

doubles the adjusted R-square.

Since there is evidence that states have diverged during this time period, our

findings of convergence at the district level might be misleading if we do not account

for state fixed effects. From Column (4) onwards, we introduce state fixed effects.

Adding state fixed effects is also important since a large number of policies are
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made at the state level. As a precursor, we run a regression of growth in lights

per capita on only state dummies in column (4) to show the extent to which the

state fixed effects explain growth in districts. The adjusted R-square depicts that

48% percent of district growth can be explained by state specific characteristics. In

other words, while districts have experienced very heterogenous growth rates, almost

half of the growth seems to be driven by variables at the state level. Column (5)

presents regression similar to column (1) with the state fixed effects. The convergence

coefficient remains significant at 1 percent with the magnitude of -.023. The Adjusted

R- square increases to 55% percent with inclusion of initial lights.

In column (6) & (7) we present the regressions similar to second and third column

including state fixed effects. The β- coefficient in column (6) is close to the same in

column (5). Similar to column (2), the percentage of rural population is negative and

significant. All other demographic variables remain insignificant. Column (7) shows

the broadest specification of our models where we include all the control variables

along with the state effects. The convergence coefficient is still negative and signifi-

cant with around 3 percent rate of convergence though it is lower than what we see

in column (3). In other words, even though states might be diverging, within states

there seems to have been a tendency towards convergence. Electricity connection,

paved road connections and share of literate population are consistently positive and

significant reflecting importance of infrastructure and human capital accumulation

for economic growth. The coefficient of credit per capita reduces considerably in size

and is insignificant in column (7). An interesting observation is that the coefficient

of the literate population share increases in magnitude (from .071 to .113), while

32



the coefficients of the infrastructure variables fall (electricity connection: .070 to

.043, paved road connection: .014 to .007, Credit: .007 to .001) with introduction of

the state effects. This result suggests that to some extent, state has a role to play

in building district level infrastructure, however human capital accumulation varies

even within states, and has influenced the growth of districts. Rainfall per square

km. affects growth negatively - similar to column (3). In a primarily rural country

like India, where agriculture mainly depends upon rainfall, this result is surprising

and may suggest that the growth in the past decade was mainly in non- agricultural

sector, where heavy rainfall might even be harmful for economic activity. Another

possibility is that excess rainfall might be bad for economic growth even in agricul-

ture. However, since we use logarithmic values, our results should not be sensitive to

this scenario. Moreover, in our study, we do not include Assam, one of the rainiest

states and with high agricultural production.

• Rural Growth:

As mentioned earlier, the rural-urban dualism is prominent in India from de-

mographic and socio-economic perspectives. Being a primarily rural country with

68 percent of the population residing in rural areas, rural growth has been a major

concern for economists in India. Since 1991, several policies as well as massive public

spending projects have been introduced to reduce disparity between rural and urban

areas. In light of this, we explore whether initially poorer rural areas have been

closing the gap with their richer counterparts.

In Table (2.4) we consider growth in rural night lights per capita as the depen-

dent variable to examine rural convergence (or divergence). In comparison to Table
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Table 2.4: Rural Growth, 2000-2010
VARIABLES (1) (2) (3) (4) (5)

Dependent Variable: Rural Night Lights Growth per capita
Log Initial Rural Light p.c. (2000) -0.019*** -0.044*** -0.026*** -0.033***

(0.004) (0.007) (0.006) (0.006)
Overall Pop. Density -1.084 -0.369

(0.713) (0.636)
Rural SC Pop. Share 0.023 0.014

(0.023) (0.031)
Rural ST Pop. Share -0.005 0.017

(0.014) (0.016)
Rural Working pop. Share -0.034 -0.054

(0.042) (0.037)
Rural Literate Pop. Share 0.092*** 0.122***

(0.034) (0.036)
Rural Higher Edu. share -0.024 -0.134

(0.158) (0.144)
Log Rainfall per sq km. -0.018*** -0.017***

(0.005) (0.005)
Rural Electricity Connection 0.053*** 0.040**

(0.013) (0.017)
Log HH with Paved Roads 0.015*** 0.008***

(0.003) (0.003)
Log Net Irrigated Area -0.012*** -0.005***

(0.002) (0.002)
Log Rural Credit p.c. 0.011*** 0.005

(0.003) (0.003)
State Fixed Effect No No Yes Yes Yes

Constant -0.065*** -0.246*** 0.030*** -0.059*** -0.203***
(0.016) (0.067) (0.002) (0.019) (0.067)

Observations 506 506 506 506 506
Adjusted R-squared 0.126 0.416 0.504 0.579 0.636

Note. Robust Standard errors are given in the parenthesis.
∗∗∗ shows p− value < .01 , ∗∗ shows .01 < p− value < .05 and ∗ shows .05 < p− value < .1

34



(2.3), we exclude the rural population share from the set of demographic controls,

but include net irrigated area as a rural infrastructure variable in an otherwise com-

parable set of controls. The demographic and human capital controls along with

credit data are calculated for rural areas using values for rural areas provided by

the census along with rural populations. Population density, rainfall per sq km.,

paved road connection and net irrigated area are the only variables that we could

not distinguish for rural areas due to data limitations.

Similar to Table (2.3), column (1) of Table (2.4) reports the regression of rural

night lights growth per capita on logarithm of initial rural lights per capita. The

coefficient shows significant convergence in night lights with a rate of 1.9 percent.

Interestingly this is very close to the absolute convergence coefficient of for the entire

districts that we found in the earlier table. The adjusted R-square is at .125 depict-

ing that initial lights per capita alone explains 12.5 percent of growth in rural areas.

In column (2) we incorporate all district specific controls to estimate conditional

convergence in rural areas. Similar column (3) in the earlier table, the rural con-

vergence coefficient increases to -.044 - very close to that of overall district growth.

Population density has a negative and significant coefficient. Note that the popu-

lation density incorporates the rural and urban areas which may distort the sign of

the coefficient. The share of literate population and the infrastructure variables such

as electricity connection, paved road connection, and rural credit are significantly

positive consistent to our findings for overall districts. Surprisingly, even for rural

areas where agriculture is the primary occupation, rainfall per sq km along with net

irrigated area are negative and significant. It is quite possible that areas with higher
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rainfalls continued to focus on farming while growth happened in more productive

rural non-farming occupations.

Column (3) presents the regression of the dependent variable only on state dum-

mies. Similar to the previous table, the state fixed effects solely explain more than 50

percent of the rural growth. In column (4), we run the regression similar to column

(1) but with state fixed effects. The rural convergence coefficient remains significant

at 1 percent level with a magnitude of -.026. Column (5) shows the regression results

with all our district levels controls along with the state fixed effects. The coefficient

for initial lights drops as they did for in the earlier table but is again very similar in

magnitude. Population density and rural credit per capita lose significance once we

introduce the state effects. However, the variables significant in column (2), such as

share of literate population, infrastructure variables other than credit, rainfall and

net irrigated area are still significant with the same signs. It is interesting to note

that similar to the overall district regressions, the coefficients of the infrastructure

variables reduce in magnitude once we introduce state fixed effect, however, at the

same time, the coefficient of the share of literate population increases. To summarize,

rural district growth patterns are very similar to that of the entire district. From

hindsight, some may view this as unsurprising given the extent of rural population

shares in India. However, given the rapid growth in India during this time period,

the strong correspondence might appear as surprising to others.

• Urban Growth:

The correlation between urbanization and per capita incomes remains one of

the strongest patterns in development at the country level Gollin et al. [2016]. The
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strong relationship between urbanization and development is also observed at the

sub-national level Chanda and Ruan [2015]. Urbanization can take various patterns-

the growth of new towns or existing towns; or the continued expansion of large

cities that reinforce their advantages in a period of rapid growth. Here we do not

distinguish between these types of growth. For the regression analysis, we take the

same controls used in the rural growth regressions, but calculated for urban areas.3

Paved roads and net irrigated area have been excluded as since they largely capture

differences in rural areas.

We report the regression result taking urban night lights growth per capita as

the dependent variable in Table 2.5. Similar to the previous regression tables, we

report the absolute convergence coefficient in column (1). The coefficient is positive

and small (.003) but significant at 10 percent level, indicating absolute divergence

among the urban areas. Also, the adjusted R-square is very low (.006) indicating

that initial light explains very little of subsequent urban growth. Next, we include

urban controls along with overall population density and rainfall. The β-coefficient

still remains very small and becomes insignificant. Population density is positive and

significant implying a district with higher population per km shows higher growth in

light. Recall that population density is a district level variable. The variable likely

picks up the benefits to agglomeration in some districts. Some indication of this

comes from Table 2a - districts that have higher population densities also have lower

population shares. This is not surprising and certainly reflects some initial degree of

agglomeration. Finally, the share of the scheduled caste population in urban areas

3Similar to rural areas, population density and rainfall per sq km has not been distinguished for
rural and urban areas. We use overall district data for these two variables.
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Table 2.5: Urban Growth, 2000-2010

VARIABLES (1) (2) (3) (4) (5)

Dependent Variable: Urban Night Lights Growth per capita
Log Initial Urban Light p.c. (2000) 0.003* 0.002 0.003 0.002

(0.001) (0.002) (0.002) (0.002)
Overall Pop. Density 0.154*** 0.125*

(0.057) (0.073)
Urban SC Pop. Share 0.078** 0.046

(0.032) (0.029)
Urban ST Pop. Share -0.006 0.019

(0.017) (0.031)
Urban Working Pop. Share 0.052 0.063

(0.045) (0.054)
Urban Literate Pop. Share -0.034 -0.002

(0.026) (0.031)
Urban Higher Edu. share 0.014** 0.010**

(0.006) (0.004)
Log Rainfall per sq km. 0.002 -0.000

(0.002) (0.002)
Urban Electricity Connection -0.007 0.015

(0.017) (0.025)
Log Urban Credit p.c. 0.005 0.006*

(0.003) (0.003)
State Fixed Effect No No Yes Yes Yes

Constant 0.006 0.023 -0.004 0.007 -0.025
(0.006) (0.024) (0.003) (0.009) (0.034)

Observations 474 474 474 474 474
Adjusted R-squared 0.006 0.068 0.197 0.195 0.220

Note: Robust standard errors are given in the parenthesis. ∗∗∗ shows p− value < .01 ,
∗∗ shows .01 < p− value < .05 and ∗ shows .05 < p− value < .1

has significant positive effect on urban growth. Unlike rural areas, the coefficient of

higher education in the urban area is positive and significant showing accumulation
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of human capital in above secondary level has a role to play in urban growth. This

result is in contrast with the rural area where only literate population share has a

significant effect on growth. Thus while education is important for both areas, it is

clear that the thresholds are important. This is a useful result particularly given the

recurring ambiguity of the role of various education attainment measures in growth

regressions.

Column (3) presents the extent to which the the state dummies can explain urban

growth. The adjusted R-square is as low as 19.7 percent even with state dummies,

which rises to 22 percent once we include initial light and other controls in column

(5). In other words, unlike rural growth where states effects were more important,

urban areas seem to be less driven by state factors. In column (5) we present the

broadest model specification with all the controls and state effects. The coefficient

of initial light is still insignificant implying absence of conditional convergence. Only

population density and higher education along with urban credit are positively sig-

nificant at 10 percent level. The lack of significance of other infrastructure variable

and low R-square might indicate the presence of omitted variable problem. Accord-

ing to Das et al. [2015], convergence depends upon proximity to capital cities. Also,

urban regions might be growing because of the benefits they reap from other infras-

tructure projects such as access to the national highway system or perhaps access to

international trade. We plan to investigate the determinant of urban growth further

as future research, but at this stage what we see is that a range of initial conditions

are not useful in understanding patterns of urban growth.
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2.4.2 Rural and Urban Spillovers

So far we have not discussed the issue of spillovers. There are two types of spillovers

– one is the standard theoretical notion of urban growth leading to in-migration and

as a result leading to not just urban growth but also raising the productivity of

adjoining rural areas as the marginal product of labor increases. Secondly, from an

econometric viewpoint, there might be an omitted variable problem of spillovers in

growth from adjoining areas. Here we consider the first kind of spillover. To see why

this might be important consider Figure 2.4.

Clearly, the logarithm of night lights per capita in the rural and urban areas

are positively correlated (using 477 observation the correlation is .57 without and

.36 with state effects).4 We examine the extent of rural urban spillovers in Table

2.6. As a straightforward exercise, we look at growth in rural, urban and overall

districts separately like before but control for initial light per capita from both rural

and urban areas in an effort to estimate the spillover effects on convergence. The

control variables (other than population density, rainfall, paved road connection and

irrigated area) in Table 2.6 represents total, rural and urban values in respective

regressions.

In first column of Table 2.6, we present regression using night lights growth

as dependent variable where main independent variables of interest are initial lights

(2000) per capita for both rural and urban areas. In line with our previous results, the

coefficient of initial rural light is negative and significant showing that the rural initial

condition affects district growth negatively. On the other hand, the initial urban light

4We use the districts with positive rural and urban lights. Delhi is an outlier with very low rural
lights and high urban lights, hence dropped from the scatter diagram.
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Figure 2.4: Relationship between Urban and Rural Night Lights in 2000, without
(a) and with (b) state effects

does not affect district growth. The control variables behave similar to Table 2.3,

where literate population and paved road connections are still positively significant

whereas electricity connection and credit per capita lost significance. Column (2)

shows the similar regression for rural areas but also controlling for initial light of

urban areas in that district. Rural convergence is still present, though the rate of

convergence falls from 3.4 to 2.3 percent. Urban initial light does not affect rural
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Table 2.6: Rural-Urban Spillovers

VARIABLES (1) (2) (3)

Dependent variable:

Total p.c.

Growth

(2000-10)

Rural p.c.

Growth

(2000-10)

Urban p.c.

Growth

(2000-010)

Log Initial Rural Light p.c. (2000) -0.021*** -0.023*** 0.008***

(0.004) (0.004) (0.003)

Log Initial Urban Light p.c. (2000) -0.002 -0.003 -0.001

(0.002) (0.002) (0.003)

Rural Percent -0.007

(0.017)

Overall Pop. Density -0.885 -0.456 1.826***

(0.595) (0.546) (0.463)

SC Pop. Share -0.017 -0.015 0.032

(0.027) (0.028) (0.032)

ST Pop. Share -0.014 -0.006 0.007

(0.014) (0.013) (0.054)

Working Pop. Share 0.005 -0.056 0.035

(0.036) (0.035) (0.058)

Literate Pop. Share 0.060** 0.067*** 0.022

(0.025) (0.025) (0.036)

Higher Edu. Share 0.012 -0.066 0.010**

(0.089) (0.113) (0.005)

continued on next page · · ·
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VARIABLES (1) (2) (3)

Dependent variable:

Total p.c.

Growth

(2000-10)

Rural p.c.

Growth

(2000-10)

Urban p.c.

Growth

(2000-010)

Log Rainfall per sq. km. -0.005** -0.007*** -0.001

(0.002) (0.002) (0.002)

Electricity Connection 0.023 0.023* -0.011

(0.015) (0.013) (0.028)

Log HH with Paved Roads 0.007** 0.008**

(0.003) (0.003)

Log Credit p.c. 0.002 0.006** 0.002

(0.003) (0.003) (0.005)

Log Net Irrigated Area -0.003

(0.002)

State Fixed Effect Yes Yes Yes

Constant -0.144*** -0.098*** -0.005

(0.032) (0.034) (0.039)

Observations 478 474 470

Adjusted R-squared 0.572 0.585 0.191

Note: The independent variables in the rural and urban regressions takes the value rural and urban controls
respectively. Only ‘Density’, ‘Rainfall’ and ‘Paved roads’ has not been classified between rural and urban

areas. Robust standard errors are given in the parenthesis.
∗∗∗ shows p− value < .01 , ∗∗ shows .01 < p− value < .05 and ∗ shows .05 < p− value < .1



growth. The third column shows the urban growth regressions taking into account

the initial rural lights per capita of the district. Interestingly, the initial rural light

has a positive coefficient which is significant at the 1 percent level implying higher

growth in urban areas for districts where the rural areas were better off. In other

words, districts that were doing better in the rural areas also seem to have made a

successful transition into urban growth. As far as the remaining control variables are

concerned we continue to see a consistent pattern- of the asymmetric area-specific of

education and the role of population density in urban growth.

2.4.3 Examining Sub-Periods

The above sections show the evidence of convergence in rural areas that reflected in

convergence of overall district whereas not much can be inferred about the urban

growth. One might be interested in looking at the different sub-periods to explore if

the convergence among the districts or specifically, rural areas were consistent over

the decade. Also, several reform projects were implemented after 2005 which might

affect the growth pattern and thus change our result for the later half of the decade.

We divide the time period of our study to see if the convergence results as shown in

the last sections hold for both part of the decade. The growth rate night lights for

2000-05 and 2005-10 are used separately as dependent variables to run the regressions

similar to the last section. Table (2.7) shows the result of the regressions for rural

and urban areas along with the overall district. Column (1) & (2) shows the result

of growth regressions for overall districts whereas column (3) & (4), and (5) & (6)

show the same for rural and urban areas respectively. The independent variables,

though shown in the same table, take rural and urban values in rural and urban
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regressions. Only population density, rainfall per sq km and paved road connections

have not been classified between urban and rural areas, thus take the same values in

all regressions. Due to data limitations, we control for the initial demographic, socio-

economic, and infrastructural conditions measured at the beginning of the decade

for both period regressions in our study.

The evidence of convergence is consistent in rural areas and overall districts

with our previous results. The magnitude of the rates of convergence are greater

in the second part of the decade in both cases showing that areas with lower night

lights in 2005 grew at around 5 percent faster than their counterparts. Interestingly,

the urban areas seem to diverge in the first half of the decade and converge in the

later half. However, for the second period the rate of convergence is far lower than

we we observe in rural areas. Given the diametrically opposite experiences with

urbanization in the two sub-periods, it is not surprising that the effect for the entire

ten year period is insignificant.

Among the control variables, rural percent has a positively significant coefficient

in 2005-10 regression, suggesting a rural bias in district level growth during the pe-

riod. Working population has negative effect on growth in the rural areas and overall

district during the first half and flips sign in the later half of the decade. In line with

our expectation, share of literate population has significant positive effect on rural

growth over both periods whereas initial population share with higher education in

urban areas affect urban growth favorably in the first part of the decade. This result

strengthens the case for increasing investment in education further. Infrastructure

variables such as connection to paved roads has positive and significant effect on
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Table 2.7: Different Sub-periods

VARIABLES (1) (2) (3) (4) (5) (6)

Dependent variable:

Total p.c.

Growth

(2000-05)

Total p.c.

Growth

(2005-10)

Rural p.c.

Growth

(2000-05)

Rural p.c.

Growth

(2005-10)

Urban p.c.

Growth

(2000-05)

Urban p.c.

Growth

(2005-10)

Log Initial Light p.c. (2000) -0.032*** -0.042*** 0.008**

(0.011) (0.010) (0.004)

Log Initial Light p.c. (2005) -0.055*** -0.056*** -0.009***

(0.009) (0.010) (0.003)

Rural Percent -0.051 0.076**

(0.036) (0.030)

Overall Pop. Density 0.116 0.209 0.413 -2.268** 0.172** 0.138

(0.151) (0.160) (0.994) (1.059) (0.087) (0.132)

SC Pop. Share 0.004 0.063 -0.015 0.061 0.129** -0.005

(0.062) (0.051) (0.052) (0.053) (0.053) (0.051)

ST Pop. Share 0.066* -0.014 0.047 -0.018 -0.025 0.113**

(0.039) (0.021) (0.032) (0.022) (0.055) (0.049)

Working Pop. Share -0.211*** 0.210*** -0.210*** 0.104 0.000 0.121

(0.069) (0.070) (0.062) (0.070) (0.085) (0.093)

Literate Pop. Share 0.126* 0.135*** 0.207*** 0.094* -0.065 0.050

(0.070) (0.050) (0.072) (0.049) (0.062) (0.051)

Higher Edu. Share 0.036 -0.119 -0.324 -0.007 0.031*** -0.008

(0.184) (0.161) (0.278) (0.177) (0.007) (0.006)

continued on next page · · ·
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VARIABLES (1) (2) (3) (4) (5) (6)

Dependent variable:

Total p.c.

Growth

(2000-05)

Total p.c.

Growth

(2005-10)

Rural p.c.

Growth

(2000-05)

Rural p.c.

Growth

(2005-10)

Urban p.c.

Growth

(2000-05)

Urban p.c.

Growth

(2005-10)

Log Rainfall per sq km. -0.022*** -0.013*** -0.027*** -0.014*** -0.002 -0.001

(0.008) (0.004) (0.009) (0.005) (0.003) (0.003)

Electricity Connection 0.060 0.076** 0.084** 0.043 0.101** -0.081**

(0.046) (0.036) (0.037) (0.032) (0.041) (0.041)

Log HH with Paved Roads 0.006 0.012*** 0.006 0.015***

(0.005) (0.004) (0.005) (0.005)

Log Net Irrigated Area -0.004 -0.006*

(0.004) (0.004)

Log Credit p.c. 0.009 -0.005 0.007 0.008 0.014*** 0.002

(0.007) (0.005) (0.006) (0.006) (0.005) (0.005)

State Fixed Effect Yes Yes Yes Yes Yes Yes

Constant -0.231 -0.522*** -0.329*** -0.277*** -0.004 -0.064

(0.153) (0.093) (0.127) (0.082) (0.060) (0.061)

Observations 518 518 506 506 474 474

Adjusted R-squared 0.497 0.505 0.524 0.415 0.386 0.153

Note: The independent variables in the rural and urban regressions takes the value rural and urban controls
regressions takes the value rural and urban controls respectively. Only ‘Density’, ‘Rainfall’ and ‘Paved roads’
has not been classified between rural and urban areas. Robust standard errors are given in the parenthesis.

∗∗∗ shows p− value < .01 , ∗∗ shows .01 < p− value < .05 and ∗ shows .05 < p− value < .1



rural growth during 2005-10 whereas the share of households with electricity connec-

tion affects rural growth favorably during the first half. This result might reflect the

effect of public policy reforms taken during the period in the respective sectors. We

will discuss that in more details in next section of this chapter.

2.5 Public Projects and Rural Growth

While the previous sections presented evidence of rural convergence leading to the

overall district convergence, one might be concerned that rural growth during the

past decade may not reflect the standard neoclassical approach but the fruits of large

scale publicly financed projects implemented in Indian districts during this period.

Specifically, the growth in night lights may reflect the rapid increase in electricity

connections due to rural electrification project which was targetted at poorer dis-

tricts. Alternatively it might reflect economic growth due to the economic spillovers

from MGNREGS etc. To investigate further, we consider the effect of expenditures

on three large scale infrastructure and poverty reduction projects initiated by central

government during our study period. A large body of literature has already investi-

gated the association of rural poverty alleviation and district level growth with the

reform policies initiated during last two decades. Among them MGNREGS or rural

employment generation scheme has been popular in literature. Zimmerman (2012),

Imbart & Papp (2013), and Bhargava [2014] find significant effect of MGNREGS on

rural labor market, wages and adoption of agricultural technology. In similar vein, a

couple of recent papers by Aggarwal (2015), and Asher and Novosad [2016] examine

the effect of rural roads project (PMGSY) on agricultural advancement and sectoral

allocation of labor respectively. We consider the spending on rural employment gen-
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eration project (MGNREGS), Rural road project (PMGSY) and a rural electricity

project (RGGVY) in our regression framework to examine if convergence still holds.

Unlike most of the existing literature, we measure the effectiveness of these projects

through incurred or sanctioned expenditures rather than physical outcomes. At best

our exercises are suggestive - there is no clear identification. However, our main pur-

pose here is to see if some of the convergence effects are driven by omitted variables.

We should also note that these are certainly not exhaustive. Most importantly we

do not have sufficient data on a number of education and health projects as well

as some rural credit expansion schemes. However since most of the education and

health projects are targeted to school age children, it is not clear that they would

have had a significant short-term impact on growth anyways. We briefly describe

the projects below before discussing the results.

• MGNREGS (Rural Employment Generation Project):

We begin with Mahatma Gandhi National Rural Employment Guarantee Scheme

based on Mahatma Gandhi National Rural Employment Guarantee Act (NREGA

2005) which is one of the largest public development schemes in the world. Envisioned

to secure the livelihood of the households in the rural areas of India, MGNREGS was

chartered as means to provide a legal guarantee of 100 days of public-sector wage em-

ployment in every fiscal year for adult members of the household who volunteered to

enroll for unskilled manual labor. It was implemented in three phases which started

with phase one implementation of 200 most backward districts in 2006. 130 more

districts were incorporated in phase two in 2007. In 2008, phase three of the pro-

gram included all remaining rural districts in the country. While it was initiated to
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reduce rural poverty and involved employing rural workers in public projects during

low season for agriculture, it could have the potential effect of crowding out private

investment by raising wages. Thus the growth effects may be ambiguous. As our

control variable, we take the disbursed labor and material expenditure data for each

districts from the Ministry of Rural Development (MoRD). There has been consider-

able controversy about administrative waste in the program. Thus, if any effects show

up in our regressions, it would be an overestimate of the effect of the program.5 The

public data portal of MGNREGA shows physical and monetary variables reported

by the districts to MoRD. We use the data from 2006, the year of introduction of

the program, till 2010. The variable is constructed as total expenditure in a district

per unit of rural population.

• PMGSY (Rural Road Project):

Pradhan Mantri Gram Sadak Yojana (PMGSY) was launched in December 2000

to provide connectivity by construction of all weather road (operable throughout

the year) in the eligible unconnected habitations in rural India. The priority and

eligibility for inclusion of the unconnected habitation under the program were based

on population of the area. All unconnected habitations with a population of 1000

persons and above were planned to be covered in first three years (2000-2003), while

all unconnected habitations with a population of 500 persons and above were to be

covered by the end of the Tenth Plan Period (2007).6 The data for PMGSY has

been obtained from Online Management, Monitoring and Accounting System (OM-

5We could not include administrative expenses due to inconsistencies in the website.
6 Any habitation in the Hill States (North-East, Sikkim, Himachal Pradesh, Jammu and Kash-

mir, Uttaranchal), the Desert Areas (identified in the Desert Development Programme), and the
tribal areas would be eligible to be covered if the population of the area was 250 persons and above.
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MAS) website where the district level summary of annual sanctioned expenditure

is provided from 2000 to present. We take the data relevant to our study period

(2000-2010). The control variable construction is given in the Data Appendix A.

• RGGVY (Rural Electrification Project):

Rajiv Gandhi Grameen Vidyut Yojana (RGGVY) was initiated in 2005 with

three objectives, firstly, to electrify all unelectrified villages and habitations and

intensify the process in already electrified villages; secondly, to equip all rural house-

holds with electricity connection; and thirdly, to provide free electricity connections

to all below poverty line households. The Rural Electrification Corporation Limited

was appointed by Ministry of Power of the Indian government to serve as the nodal

agency to implement the scheme. RGGVY was started in 2005 with a mandate to

attain the National Common Minimum Programme (NCMP) goal of providing elec-

tricity to all households by 2010, which then extended to 2012 in 11th five year plan.

However, due to slow implementation pace, the program had been extended in the

12th five year plan (2012-17) where it has been subsumed in Deen Dayal Upadhyay

Gram Jyoti Yojana (DDUGJY) as the rural electrification component of the pro-

gram. RGGVY data is obtained from the Ministry of Power website provided by

Government of India. The description of the variable used is given in Appendix A.

2.5.1 Results

A summary of total expenditures in these projects per unit of rural population is

presented in Table 2.8. The unit of the expenditure per capita is expressed in rupees.

The table shows that total disbursed labor and material cost of NREGA per unit of

rural population is around Rs. 1474.16 whereas the annual sanctioned expenditure
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Table 2.8: Rural Public Projects: Expenditures per capita (in Rs.)

Variable Obs Mean Duration
Years used
in this study

NREGA (Labor and material cost) 506 1474.16 2005 - present 2005-2010
PMGSY (Road expenditure) 506 1704.45 2000 - present 2000-2010
RGGVY (Sanctioned electricity
expenditure)

506 708.90 2005 - 2012 2005-2010

Table 2.9: Correlations: Public Project Expenditures per capita
Variable Obs (1) (2)
Log Total Expenditure in PMGSY per capita 506
Log Total Expenditure in NREGA per capita 506 0.33*
Log Total Expenditure in RGGVY per capita 506 0.68* 0.37*

per capita of PMGSY Rs. 1704.45. Unlike the other two projects, we used plan-wise

data for RGGVY where most of the districts received grant only once during our

study period. The total expenditure per unit of rural population during our study

period is around Rs. 708.90. It is important to note that both NREGA and RGGVY

have been started at the second half of the decade and the data we use is for the

period of 2005-06 to 2010, whereas the data for the PMGSY data is for 2000-2010.

The correlations between the logarithm of project expenditure per capita are

presented in Table 2.9. We find significant correlations between all three project

expenditures. The infrastructure projects, road and electricity expenditure have a

correlation as high as .68 whereas the correlation coefficient of such projects with

NREGA are .33 and .37 respectively. The correlations are in line with our expecta-

tion, as all of the project were implemented by prioritizing poorer districts.

In Table 2.10, we show the regression results for the rural areas with the same

specification as column (5) of Table 2.4 but now controlling for the expenditure on
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Table 2.10: Growth Effects of Rural Public Projects

VARIABLES (1) (2) (3) (4)

Dependent variable: Rural Night Lights Growth per capita

Log Initial Rural Light (2000) p.c. -0.033*** -0.032*** -0.035*** -0.033***

(0.006) (0.006) (0.007) (0.006)

Log PMGSY Exp. p.c. 0.002

(0.004)

Log NREGA Exp. p.c. -0.004**

(0.001)

Log RGGVY Exp. p.c. 0.001

(0.003)

Log Combined Exp. p.c. -0.004

(0.004)

Overall Pop. Density -0.318 -0.469 0.215 -0.503

(0.657) (0.621) (0.904) (0.641)

Rural SC Pop. Share 0.015 0.028 -0.006 0.019

(0.031) (0.031) (0.038) (0.030)

Rural ST Pop. Share 0.015 0.024 0.019 0.021

(0.017) (0.017) (0.020) (0.017)

Rural Working Pop. Share -0.057 -0.051 -0.045 -0.050

(0.038) (0.037) (0.043) (0.038)

Rural Literate Pop. Share 0.122*** 0.113*** 0.134*** 0.122***

(0.036) (0.036) (0.042) (0.036)

continued on next page · · ·
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VARIABLES (1) (2) (3) (4)

Dependent variable: Rural Night Lights Growth per capita

Rural Higher Edu. share -0.124 -0.124 -0.154 -0.133

(0.143) (0.144) (0.198) (0.147)

Log Rainfall per sq km -0.017*** -0.017*** -0.020*** -0.017***

(0.005) (0.005) (0.005) (0.005)

Rural Electricity Connection 0.043** 0.034** 0.051** 0.039**

(0.018) (0.017) (0.023) (0.018)

Log HH with Paved Roads 0.008*** 0.008*** 0.009** 0.008***

(0.003) (0.003) (0.003) (0.003)

Log Net Irrigated Area -0.005** -0.006*** -0.007*** -0.006***

(0.002) (0.002) (0.003) (0.002)

Log Rural Credit p.c. 0.005 0.004 0.009** 0.005

(0.003) (0.003) (0.004) (0.003)

State Fixed Effect Yes Yes Yes Yes

Constant -0.194*** -0.215*** -0.208*** -0.216***

(0.069) (0.067) (0.069) (0.067)

Observations 500 504 413 506

Adjusted R-squared 0.635 0.638 0.620 0.635

Note: The unit of project investment given in Rs. Lakh. Robust standard errors are given in the parenthesis.
∗∗∗ shows p− value < .01 , ∗∗ shows .01 < p− value < .05 and ∗ shows .05 < p− value < .1



reform projects. In column (1), (2) & (3) we include logarithm of total expenditure

per capita in the rural road project (PMGSY), rural employment project (NREGA)

and rural electricity project (RGGVY) respectively. There are no significant effects

of infrastructure development projects such as PMGSY and RGGVY on rural night

lights growth. The coefficient of expenditure on NREGA is perversely, negative and

significant at the 10 percent level. The convergence coefficient remains at around

3.3 percent, close to our basic regression results in the rural areas. Similarly, initial

human capital and infrastructure such as literate population, household share with

paved road connection, rural electricity connection have significantly positive coeffi-

cients. Rainfall per square km. and net irrigated area on the other hand negatively

affect rural growth as before. Rural credit per capita is only significant in column

(3) when we include the electricity expenditure only.

As the correlation between the project expenditures is significant, it is possible

that the total expenditure on all three projects combined may have influenced rural

growth in a district even when the individual project expenditures does not have

any significant impact on the same. We present rural regression with the sum of the

project expenditures per capita in column (4). The coefficient of the sum of project

expenditure is still insignificant and there is very little change in the convergence

coefficient and other control variables. These results emphasize our claim that the

initial conditions has a major role in explaining rural growth, thus strengthening the

case of rural convergence. Nonetheless a more careful treatment of identification is

warranted before we can reach any firm conclusion about these projects.
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2.6 Conclusion

Our analysis of the pattern and determinants of local growth using 518 districts in

India enables certain findings. First, we find evidence of both absolute and condi-

tional convergence in the overall districts primarily driven by rural convergence. The

convergence rate stands at around 3%, greater than Barro’s “iron law”. There is no

evidence of convergence in the urban area. Second, the initial measure of human

capital along with Access to road, credit and electricity connection are strongly as-

sociated with both urban and rural growth. In the case of human capital literacy

rate plays a role in defining the rural growth whereas, higher education is related

to urban growth. Moreover, State effects explain almost half of the district level

growth. However, the range of initial conditions used in our study explain very little

of urban growth. Finally, we fail to find any significant evidence to associate three

major rural reform projects with rural growth. Although a more careful treatment of

identification are necessary to draw any conclusion about these projects, this result

strengthens our case of rural convergence.

We conclude with certain limitations that can lead to future research. This

chapter uses data for 2000, 2005 and 2010 to measure long run growth where it may

be useful to collect the data for consecutive years to calculate annual growth rate.

Furthermore, our analysis explains very little of urban growth pattern. An obvious

step forward is to gather more informations on urban areas, for example, proximity to

capital cities, urban infrastructure projects, to recognize the determinants of urban

growth. Finally, it may be helpful to do a spatial analysis on the district growth

pattern to determine if the growth of a district is affected by its neighbours.
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Chapter 3
Effect of Credit Supply Shock on
Growth

3.1 Introduction

The importance of bank credit as a share of GDP has increased steadily over last

couple of decades in India. Additionally, several government initiatives have been

taken to increase credit generation and other financial services. For example, the

Prime Minister Jan Dhan Yojana, a financial inclusion project, prompted 180 million

new accounts within a year of its launching in 2014. There is evidence in the literature

that negative credit shocks affects economic activity (Bernanke and Blinder [1992],

Chodorow-Reich [2014], Iyer et al. [2014]). However, the magnitude and mechanism

of such impact is less understood ([Paravisini et al., 2015]). In this chapter, we

investigate the effect of bank credit shock on regional economic growth using district-

level outstanding credit data of 511 districts in India from 2000-2010.

We find evidence of positive and significant association between per capita credit

growth and the per capita growth in economic activity over our study period. How-

ever, it is hard to distinguish between the supply side growth in credit and demand

driven credit shocks. To disentangle these effects, we use the shift share instrument to

estimate predicted growth controlling for the district specific demand shock in credit.

For identification, we exploit the heterogeneity of initial sectoral share of outstand-

ing credit, which is originated by the scheduled commercial banks. While there is a

significant and positive relationship between the predicted shock in the credit supply
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and the overall credit growth in the district, the predicted credit supply shock fails

to affect economic growth.

3.2 Background

To provide some context, we first look at the national trends in credit origination in

India over the past two decades. Figure 3.1 shows the trend in overall credit-to-GDP

ratio from 1996 to 2012.

Figure 3.1: National trend in credit to GDP ratio

Starting at around 20%, there has been a steady rise in the ratio over most of the

period. There was a slight decline in 2010, but subsequently experienced increase in

credit as a percent of GDP upto 53.5%. This steady upward trajectory implies that

credit growth has outpaced economic growth during this time period.

Taking one step further, we explore the growth in national credit in different

sectors over the period of our study. The trend in real sectoral credit is presented in

Figure 3.2.
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Figure 3.2: National trend in real sectoral credit relative to Agriculture

Figure 3.3: National trend in real sectoral credit to GDP ratio

There has been a substantial growth in professional service sector, personal loans,

and financial sector credit. Credit in trade, industry, and unspecified other credits

grew at a much lower rate. A more comprehensive understanding about the sectoral
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Table 3.1: Sectoral Growth in GDP & Credit (2000-2010)
Growth rate of GDP Growth rate of Credit

Agriculture 0.03 0.15
Industry 0.08 0.14
Trade 0.09 0.09
Finance 0.10 0.21
Transport 0.08 0.21

credit is presented in Figure 3.3. We could match the sectoral credit with sectoral

GDP for agriculture, trade, transport, industry, and finance. The line showing credit-

to-GDP ratio in industries (for example, mining and manufacturing), lies well above

the same for all other sectors, and additionally, it is growing at a steady rate from

2004 onwards. For the other three sectors (i.e., agriculture, finance, and transport),

the ratio has increased slightly. Table 3.1 shows the national growth in sectoral GDP

and sectoral credit for the matched sectors.

The national trend in overall and sectoral credit depicts an ever growing depen-

dence on credit. Greenstone et al. [2014] has explored the impact of credit supply

shock on overall and small business employment over 1997-2011. Using a modified

shift share approach, they showed that the predicted lending shocks are associated

with significant but small decline in both country level and small business employ-

ment during the Great Recession. However, they fail to find any evidence of the

credit supply shock on employment in “normal times”. Amiti and Weinstein [2013]

has shown a substantial impact of credit supply shock on the investment decisions

of the firm. Paravisini et al. [2015] established that in trade, credit supply shock

has a significant impact on the intensive margin of export but does not affect the

extensive margin. In close association, we explore the impact of credit supply shock
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on economic growth in Indian districts. As mentioned in the previous chapter of this

dissertation, the main concern in measuring regional growth in economic activity in

a developing country like India, is the lack of sub-national GDP data. Even when

present, the measurement quality of the data is questionable at best. We use radi-

ance calibrated satellite night light data to measure the growth in economic activity

similar to the previous chapter.

The rest of the chapter is organized as follows. Section 3.3 provides the data

sources, and Section 3.4 explains the empirical methodology. In Section 3.5, we

discuss our regression results. Finally, we conclude in Section 3.6.

3.3 Data

3.3.1 Night Light Data

We use radiance calibrated light data (used in the previous chapter) collected from

NOAA’s National Geophysical Data Center (NGDC) for the years 2000 and 2010.

3.3.2 Credit Data

The main variable of interest is district level credit for the years 2000 and 2010. We

use the data collected from ‘Basic Statistical Returns’ published by the Reserve Bank

of India . The data consists of the outstanding credit originated by the scheduled

commercial banks to various sectors of the economy. The main credit sectors in our

data are defined as agriculture, industry, transportation, personal, professional and

other services, trade, finance, and all other credits. We summed up the sectoral

credit to find overall credit in each district. Figure 3.4 shows the average share of

the sectoral credit relative to the total credit in the districts for 2000 and 2010. It

is evident that agriculture (27%) and industry (25%) captures the lion’s share of
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Figure 3.4: Distribution of credit among main sectors in 2000 & 2010

the credit originated by the scheduled commercial banks in 2000, whereas service

and finance sector credit share are among the lowest. The share of agriculture tends

to increase even higher to 33%, while the share of industrial credit falls to 17 % in

2010. Among others, there has been an increase in the share of personal loan (17

% to 27%) and service sector credit (3% to 5 %). At the same time, the share of

credit in trade, transport, and other unspecified sector has declined over the decade.

Figure 3.5 presents the real growth rate among the sectoral credit (for the districts in

this chapter) more extensively. It is interesting to note that the average growth rate

is highest for the two sectors with lowest initial share, namely, finance and service.

Growth in personal loan and agriculture is also substantial in line with the findings

from Figure 3.4.

Next, we calculate the yearly growth rate of total credit over 2000 and 2010. As

the nominal credit data collected from RBI is not comparable between the years, we
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Figure 3.5: Average growth rate of sectoral credit (2000-2010)

estimate the real credit at 2004-05 price, using state level GDP deflators, calculated

from the state GDP data, published by RBI. Figure 3.6 shows the kernel density of

log total credit in 2000 and 2010. There is a pronounce rightward shift in the density

functions from 2000 to 2010.

Our primary focus in this chapter is to explore the relationship between credit

growth and the growth in economic activity. We find positive correlation of .28

among the variables, whereas the correlation goes down to .13 if we control for the

state characteristics. Figure 3.7 show the scatter plot of the relationship with (Panel

B) and without (Panel A) controlling for state dummies.

For the rest of this chapter, we use credit and radiance calibrated night light data

for 2000 and 2010. As in the previous chapter, these years were selected to ensure that

we have adequate data for additional district level controls taken from the census

of 2001 and 2011. Table 3.2 shows the summary of the dependent, independent
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Figure 3.6: Kernel Density of log Total Credit for 2000 and 2010

and control variables. As mentioned earlier, we summed up the data from the new

district created during this 10 year period with the district of origin, to maintain

consistency, if the district of origin is singular. If the new district was carved out

from multiple districts, we dropped both the new and the district of origin. We

also drop the state of Assam as more than 50 percent of districts in the state were

redrawn. Moreover, the credit data is available for 560 districts out of 593 in 2000,

whereas credit data for 631 districts is available for the year 2010. After eliminating

the missing observations, our baseline regressions include data from 511 districts.

The main variable of interest is the ‘Per capita credit growth’ between 2000 and

2010, defined as the average annual log change in total credit net of log change in

population . Similarly, the dependent variable ‘Per capita light growth’ measure

the log change in light net of log change in population per year. We use data for

shares of population that belong to a scheduled caste (SC pop. share), scheduled

64



Figure 3.7: Correlation between per capita credit growth and per capita light growth
(A) without and (B) With controlling state dummies

tribe (ST pop. share), are of working age (Working pop.share), are literate (Literate

pop. share), have higher education (Higher edu. share); fraction of households

that have electricity connections (Electricity connection) collected from census 2001.

Rainfall per square kilometre (Log Rainfall/sq km.) is collected from the University
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Table 3.2: Summary Statistics
Variable Obs Mean Std. Dev.
Per capita light growth 511 0.01 0.04
Per capita credit growth 511 0.12 0.05
Log initial light per capita 511 -4.28 1.00
Log area (sq me) 511 22.02 0.86
Share of SC pop. 511 0.15 0.08
Share of ST pop. 511 0.15 0.25
Share of working pop. 511 0.41 0.07
Share of literate pop. 511 0.53 0.12
Share of higher educated 511 0.07 0.04
Log rain/sqkm 511 -3.66 1.15
HH with electricity 511 0.55 0.27

of Delaware website. We can see that the average growth rate in light per capita 1.1

percent, whereas the average per capita growth rate in credit remains at around 12

percent. It is interesting to note that 338 out of 511 districts in our study experience

positive light growth whereas 507 districts experience positive credit growth.

3.4 Empirical Design

Our empirical design is based on the observation that the credit growth rate among

the sectors varies substantially. Table 3.3 shows the variation in sectoral credit

growth. While the growth in financial and service sector credit are as high as 21.3%

and 18.7% respectively, growth in trade and industry credit are around 9%.

Furthermore, we exploit the heterogeneity in proclivity of each sector in the dis-

tricts, measured by initial credit share, for our identification strategy. We assume

that the borrowers of a certain sector cannot easily relocate to another sector depend-

ing upon the credit supply in that sector. Table 3.4 shows the summary statistics of

the sectoral credit share among the districts. It is evident that the standard deviation
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Table 3.3: Credit Growth in Sectors
Sectors Growth rate of sectoral credit
Agricuture 12.99
Finance 21.33
Industry 8.70
All other 1.17
Personal 16.73
Service 18.91
Trade 9.03
Transport 7.05
Total 13.29

Table 3.4: Sectoral credit share
2000 2010

Sectors Obs Mean SD Mean SD
Agricuture 511 0.27 0.15 0.33 0.19
Finance 511 0.01 0.02 0.01 0.02
Industry 511 0.25 0.17 0.19 0.16
All Other 511 0.08 0.06 0.03 0.03
Personal 511 0.17 0.07 0.27 0.14
Service 511 0.03 0.03 0.05 0.05
Trade 511 0.16 0.07 0.11 0.06
Transport 511 0.03 0.03 0.02 0.02

among the agricultural and industry shares are the highest, whereas the variation in

the share are lower for the finance, service and transport sectors.

Next, we investigate the relationship between per capita growth rate of credit

and night light using the following primary equation.

gi,t,t−k
ntl = βgi,t,t−k

credit + γXi + εi,t,t−k (3.1)

Where gi,t,t−k
ntl is the average growth rate of night light per capita and gi,t,t−k

credit

is the growth rate of credit in district i between years t(2010) and t − k(2000). Xi
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represents district specific control variables for ith district, whereas γ estimates the

coefficient of such controls. ε is district specific random shocks. β is the main

parameter of interest representing the relationship between credit growth and night

light growth. However, estimation of equation (3.1) is unlikely to produce unbiased

estimation of β because, the unobserved district characteristics may affect the growth

in economic activity and also be correlated with the credit growth. Moreover, the

credit growth can be viewed as the equilibrium of increase in demand and supply

in the credit market. It is difficult to distinguish the supply shocks apart from the

demand shocks. To overcome such identification issues and separate out the credit

supply effect, we build a shift share instrument following Greenstone et al. [2014].

First, we estimate equation (3.2)

gij,t,t−k
credit = di + sj + eij (3.2)

where the gij,t,t−k is the credit growth rate in district i and sector j. We use the initial

share of credit in district i and sector j (csij), to weight the equation. di in equation

(3.2) is the district specific dummies to control for the demand shocks in the districts

during our study period. The main parameters of interests are the coefficients (ŝj)

of the sector specific dummies sj. ŝj represents the weighted credit growth rate that

can be attributed to sector j relative to the reference sector, in our case, agriculture.

We estimate (ŝj) for each sector and re center the weighted coefficients to it’s mean.

Once we have the sector specific supply shock in credit, we replace the sectoral

credit growth rate in equation 3.2 by the same. The new modified shift share in-

strument ZS
i , which represents the predicted credit supply shock in the economy, is
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defined by the following equation:

ZS
i =

∑
j

(csij × ŝj) (3.3)

The methodology of modified shift share instrument, presented in 3.3, to purge the

demand shock has been used in literature. Khwaja and Mian [2008] has used such

instrument to separate out firm specific demand shock for bank-firm lending data

in Pakistan. Amiti and Weinstein [2013] has used the same methodology for the

Japanese data to investigate the supply side effect of financial shock on firm level

investment.

The exclusion restriction for the validity of the instrument can be written as :

Cov(ZS
i εi,t,t−k) = 0 (3.4)

Intuitively, the identifying assumption is now weaker than the previous case. It

requires that the sectors with below average supply shock are not systematically dis-

tributed in the districts with below average credit shock. To validate our assumption,

we calculate the correlation between the coefficient of district fixed effects and the

initial credit share weighted sector fixed effect from equation 3.2. We find no cor-

relation between the fixed effects, thus validating our assumption that the districts

with low credit growth are not systematically exposed to the sectors with low supply

shock.
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3.5 Results

In this section we present our basic empirical results using ordinary least square and

IV regression methods. We estimate equation 3.1 with and without the instrument

specified in the previous section. Additionally, we use state dummies to control for

state level factors. Andhra Pradesh is the baseline state in our study. Moreover, to

mitigate the problem of heteroskadasticity, robust standard errors are used in all the

regressions.

3.5.1 Ordinary Least Square

First, we present the ordinary least square regression estimation in Table 3.5. The

first column shows the most parsimonious model regressing per capita light growth

on growth in credit per capita. The coefficient is significant at 1% level showing that

a percent increase in credit growth is associated with .25 percentage point growth

in light with a standard deviation of .040. Column (2) includes socio-demographic

factors along with rainfall and electricity connection. The coefficient of credit growth

is significant and a little lower (.24) than the first column. Initial light is negatively

significant demonstrating convergence among the districts consistent with the first

chapter of this dissertation. Additionally, electricity connection is positive and sig-

nificant showing that a high initial electricity connection in a district is positively

associated with per capita light growth. Next, we regress the variable of interest

along with only state dummies to explore the extent of light growth per capita has

been explained by state characteristics. The credit growth coefficient falls to .091

but remain significant at 1%. The adjusted R2 jumps up to .49 from .085 (in column

1) as we include the state dummies. The fourth column of Table 3.5 presents the
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Table 3.5: OLS Regression

(1) (2) (3) (4)

VARIABLES
Light

growth
per capita

Light
growth

per capita

Light
growth

per capita

Light
growth

per capita

Credit growth per capita 0.254*** 0.244*** 0.091*** 0.097***
(0.040) (0.039) (0.035) (0.032)

Log per capita initial light -0.025*** -0.019***
(0.003) (0.003)

Log area 0.004 0.004
(0.004) (0.004)

SC pop. share 0.030 -0.001
(0.020) (0.028)

ST pop. share -0.007 -0.008
(0.011) (0.012)

Working pop. share 0.006 -0.031
(0.033) (0.037)

Literate pop. share 0.033 0.063***
(0.025) (0.024)

Share of higher educated 0.050 -0.005
(0.064) (0.062)

Log rain/sqkm -0.001 -0.003
(0.003) (0.003)

Electricity connection 0.045*** 0.028*
(0.011) (0.014)

State dummies No No Yes Yes

Constant -0.018*** -0.255*** 0.049*** -0.177**
(0.005) (0.082) (0.005) (0.089)

Observation 511 511 511 511
Adjusted R2 0.085 0.234 0.497 0.558

Robust standard errors are given in the parenthesis.
∗∗∗ shows p − value < .01 , ∗∗ shows .01 < p − value < .05 and ∗ shows
.05 < p− value < .1
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broadest model specification including both district characteristics and state dum-

mies. The coefficient of credit growth remains significant with a magnitude of .097

and a standard deviation .03. Initial light and electricity connection continues to

show the same sign as column (2) although the magnitude of the coefficient drops

with introduction of state dummies. Share of literate population becomes significant

at 1% level in column (4).

3.5.2 First Stage Regressions

Next, we calculate predicted credit growth rate from equation 3.3 and present the

relationship of such predicted growth and the actual credit growth in the districts.

Table 3.6 shows the first stage regressions. The first column presents the uni-variate

regression of original credit growth on the predicted credit growth. The coefficient

with a magnitude of .74 shows strong positive association significant at 1% level.

The second column includes the district characteristics whereas column (3) & (4)

repeats the regression on column (1) & (2) respectively along with state dummies.

The positive and significant relationship between predicted and original credit growth

persists all through the models. The fourth column shows the highest magnitude of

the coefficient at .949.

Having established a significant positive relationship between the instrument and

the variable of interest, we turn to the first stage statistics for the validity of our

instrument. Table 3.7 shows the 1st stage statistics from an uni variate regression

when the endogeneous regressor credit growth per capita is instrumented by per

capita predicted growth. Kleibergen-Paap F statistics is at 20.34 above the critical

rule of thumb value of 10 validating our instrument. Cragg-Donald F statistics for
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Table 3.6: First Stage Regression

(1) (2) (3) (4)

VARIABLES
Credit
growth

per capita

Credit
growth

per capita

Credit
growth

per capita

Credit
growth

per capita

Zi 0.744*** 0.928*** 0.660*** 0.949***
(0.165) (0.195) (0.181) (0.215)

Log per capita initial light -0.002 0.005
(0.004) (0.004)

Log area 0.008 0.002
(0.006) (0.007)

SC pop. share -0.034 -0.074*
(0.031) (0.040)

ST pop. share 0.040** -0.002
(0.015) (0.022)

Working pop. share 0.012 -0.012
(0.046) (0.044)

Literate pop. share -0.024 -0.077*
(0.033) (0.045)

Share of higher educated 0.119 0.354**
(0.112) (0.159)

Log rain/sqkm 0.006 -0.001
(0.005) (0.006)

Electricity connection 0.024* -0.004
(0.013) (0.023)

State dummies No No Yes Yes

Constant 0.116*** -0.062 0.143*** 0.138
(0.002) (0.107) (0.002) (0.136)

Observation 511 511 511 511
Adjusted R2 0.055 0.136 0.271 0.286

Robust standard errors are given in the parenthesis.
∗∗∗ shows p − value < .01 , ∗∗ shows .01 < p − value < .05 and ∗ shows
.05 < p− value < .1
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Table 3.7: First Stage Statistics for the Uni-variate Regression
Underidentification test (Kleibergen-Paap rk LM statistic): 12.936
Chi-sq(1) P-val = 0.0003
Weak identification test (Cragg-Donald Wald F statistic): 30.551
(Kleibergen-Paap rk Wald F statistic): 20.340
Stock-Yogo weak ID test critical values: 10% maximal IV size : 16.38
Instrumented: Per capita credit growth
Excluded instruments: ZS

i

the weak identification test is 18.925, above the Stock and Yogo (2005) critical value

(16.38) of 10 % maximal IV size. Consequently, we can reject the null hypothesis of

weak identification. Also, the Kleinbergen -Paap rk LM statistics has a p-value less

than .05 implying that the statistics is significant and we reject the null hypothesis

that the model is unidentified.

3.5.3 IV Regressions

Next, we turn to the IV regression. Table 3.8 presents the results for the reduced

form regression of per capita light growth on the instrument. The first column shows

the uni-variate regression without any control. The coefficient is negative at a mag-

nitude of .09 and standard deviation of .17 but it fails to be statistically significant.

As we have mentioned earlier, the first stage F-state for the univariate regression is

at 20.34, validating the instrument. The effect of predicted credit supply shock be-

comes positive in column (2) when we introduce district specific characteristics.The

magnitude of the coefficient falls to .07 and still is not statistically significant. Sim-

ilar to our OLS regression in table 3.5, the logarithm of initial per capita light is

negatively significant and electricity connection has positive and significant associa-

tion with light growth. The F-stat in column (2) is 22.60 which is higher than the
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Table 3.8: IV Regression

(1) (2) (3) (4)

VARIABLES
Light

growth
per capita

Light
growth

per capita

Light
growth

per capita

Light
growth

per capita

ZS
i -0.093 0.073 -0.061 0.022

(0.175) (0.138) (0.186) (0.129)
Log per capita initial light -0.025*** -0.018***

(0.003) (0.003)
Log area 0.005 0.004

(0.004) (0.004)
SC pop. share 0.026 -0.005

(0.021) (0.027)
ST pop. share -0.002 -0.007

(0.012) (0.012)
Working pop. share 0.012 -0.031

(0.035) (0.035)
Literate pop. share 0.037 0.061***

(0.025) (0.023)
Share of higher educated 0.041 0.006

(0.066) (0.060)
Log rain/sqkm 0.000 -0.003

(0.004) (0.003)
Electricity connection 0.050*** 0.027*

(0.012) (0.014)
State dummies No No Yes Yes

Constant 0.022 -0.274*** 0.069*** -0.168*
(0.021) (0.082) (0.025) (0.090)

Observation 511 511 511 511
Adjusted R2 -0.077 0.197 0.474 0.552
First stage F 20.340 22.607 13.235 19.433

Note that ZS
i is the predicted credit supply growth in equation 3.3

Robust standard errors are given in the parenthesis.
∗∗∗ shows p − value < .01 , ∗∗ shows .01 < p − value < .05 and ∗ shows
.05 < p− value < .1
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rule of thumb 10, demonstrating the validation of our instrument. Column (3) shows

the regression with only state dummies. The coefficient of the instrument is negative

and insignificant but the R2 increases to .47 validating our earlier claim that state

fixed effects play a major role in explaining the light growth in the districts. The

fourth column shows the broadest regression taking into account district character-

istics along with state dummies. The coefficient of the predicted credit shock is low

at .02. The coefficient fails to be statistically significant. The R2 in this specification

is around .59 and the F-stat for the first stage rises to 22.61.

It is interesting to note that the coefficients of our instrument for all the model

specifications are very close to zero and fail to be statistically significant. This result

implies that the positive impact of credit growth on economy mainly derives from

the demand side. When we separate out the growth in supply of credit, we fail to

establish any significant impact. Our result is in line with Greenstone et al. [2014]

in saying that in normal times (except for a financial crisis), credit supply channel

fails to become an important determinant of economic activity.

3.5.4 Excluding Personal Loan

So far we have explored the relationship between growth in total credit and economic

activity represented by night time light. While there is heterogeneity in sectoral share

in credit, on average a substantial percentage (17 %) of total credit is originated

as ‘personal loan’. Moreover, the average growth rate in such loan is as high as

16.7 % (see figure 3.5). Personal loan may impact economic activity by enhancing

consumption and investment and reducing the credit constraint of households. In

this section, we repeat the same exercise from previous sections eliminating personal
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Table 3.9: OLS Regression excluding Personal Loan

(1) (2) (3) (4)

VARIABLES
Light

growth
per capita

Light
growth

per capita

Light
growth

per capita

Light
growth

per capita

Credit growth per capita 0.168*** 0.193*** 0.086*** 0.093***
(0.036) (0.032) (0.029) (0.025)

Log per capita initial light -0.026*** -0.019***
(0.003) (0.003)

Log area 0.005 0.004
(0.004) (0.004)

SC pop. share 0.025 -0.002
(0.021) (0.028)

ST pop. share 0.003 -0.007
(0.011) (0.012)

Working pop. share 0.002 -0.031
(0.034) (0.037)

Literate pop. share 0.040 0.063***
(0.025) (0.024)

Share of higher educated 0.039 -0.001
(0.065) (0.063)

Log rain/sqkm 0.001 -0.003
(0.004) (0.003)

Electricity connection 0.049*** 0.026*
(0.012) (0.014)

State dummies No No Yes Yes

Constant -0.006 -0.281*** 0.053*** -0.176**
(0.004) (0.083) (0.003) (0.088)

Observation 511 511 511 511
Adjusted R2 0.044 0.219 0.499 0.560

Note that the dependent variable credit growth rate per capita does not include
personal loan
Robust standard errors are given in the parenthesis.
∗∗∗ shows p − value < .01 , ∗∗ shows .01 < p − value < .05 and ∗ shows
.05 < p− value < .1
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loan from our data in an attempt to explore the effect of lending shock that is not

associated with such personal consumption or investment.

Table 3.9 shows the OLS regression after dropping personal loan. The coefficient

of the uni-variate regression falls from .23 to .16 but remains significant at 1% level

when we eliminate personal loan. When we control for socio- economic and geo-

graphic factors in column (2), the association between credit growth and economic

growth increases to .19. Inclusion of state dummies in column (3) and (4) reduces the

coefficient to around .08 and .09 respectively. Similar to the previous case, literate

population and share of household with electricity connection is positively associated

with light growth whereas the initial light has a significant negative coefficient in the

fourth column. Additionally, the R2 shows that the credit growth along with district

characteristics and state dummies can explain 60 percent of the growth in satellite

night light.

In Table 3.10 we present the 1st stage regression excluding personal loans. The

coefficient of predicted growth on actual credit growth remains positive significant.

In column 1, the uni-variate regression shows a percent increase in predicted growth

is associate with a .63 % growth in actual credit growth. The coefficient goes down

to .56 % when we include district specific characteristics. In column 3, as we in-

clude state dummies, the coefficient goes further down to .37 and becomes level of

significance goes up to 10 %. When we include both state dummies and district

characters, the association between predicted and actual credit growth is positive

at a magnitude of .65 and significant at 5%. Further, we look at the first stage

statistics derived from the uni-variate regression presented in Table 3.11. The test
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Table 3.10: First Stage Regression excluding Personal Loan

(1) (2) (3) (4)

VARIABLES
Credit
growth

per capita

Credit
growth

per capita

Credit
growth

per capita

Credit
growth

per capita

ZS
i (No personal loan) 0.635*** 0.561** 0.370* 0.654**

(0.196) (0.230) (0.217) (0.265)
Log per capita initial light 0.002 0.006

(0.004) (0.005)
Log area 0.005 0.001

(0.007) (0.008)
SC pop. share -0.009 -0.063

(0.036) (0.047)
ST pop. share -0.010 -0.002

(0.019) (0.025)
Working pop. share 0.050 -0.018

(0.056) (0.057)
Literate pop. share -0.029 -0.052

(0.038) (0.051)
Share of higher educated 0.095 0.266

(0.133) (0.186)
Log rain/sqkm 0.001 -0.003

(0.006) (0.007)
Electricity connection 0.014 0.003

(0.016) (0.028)
State dummies No No Yes Yes

Constant 0.103*** -0.015 0.096*** 0.107
(0.002) (0.130) (0.003) (0.164)

Observation 511 511 511 511
Adjusted R2 0.031 0.035 0.188 0.191

Robust standard errors are given in the parenthesis.
∗∗∗ shows p − value < .01 , ∗∗ shows .01 < p − value < .05 and ∗ shows
.05 < p− value < .1
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Table 3.11: First Stage Statistics for the Uni-variate Regression excluding Personal
Loan
Underidentification test (Kleibergen-Paap rk LM statistic): 7.655
Chi-sq(1) P-val = 0.0057
Weak identification test (Cragg-Donald Wald F statistic): 17.467
(Kleibergen-Paap rk Wald F statistic): 10.518
Stock-Yogo weak ID test critical values: 10% maximal IV size : 16.38
Instrumented: Per capita credit growth
Excluded instruments: ZS

i (No personal loan)

statistics under-identification and weak identification test are still significant reject-

ing the null hypothesis of both under-identification and weak- identification. The

Kleibergen-Paap rk Wald F-statistics is at 10.518, above the critical value of 10.

Next, we present the corresponding IV regression in Table 3.12. The instrument

ZS
i is the predicted credit growth excluding the personal loan component. The first

column of Table 3.12 shows the uni-variate regression of Light growth on the pre-

dicted credit growth. Contrary to our baseline result, we find significant negative

coefficient. Although, the first stage F statistics is at 10.52 which is just above the

critical rule of thumb for a valid instrument. As we include district specific charac-

teristics in the model, the coefficient of the predicted credit growth loses statistical

significance. Additionally the First stage F - statistics fall to 5.94 undermining the

validity of our instrument. We find similar result repeating the model in column (1)

& (2) including state dummies. Column (4) shows the regression including all the

control variables and state dummies. The coefficient of predicted credit growth is

very low at .01 and fail to be significant. The first stage F- statistics is at around 6

and the R2 leaps up to .25.
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Table 3.12: IV Regression excluding Personal Loan

(1) (2) (3) (4)

VARIABLES
Light

growth
per capita

Light
growth

per capita

Light
growth

per capita

Light
growth

per capita

ZS
i (No personal loan) -0.508* -0.237 -0.225 0.010

(0.304) (0.294) (0.373) (0.200)
Log per capita initial light -0.025*** -0.018***

(0.004) (0.003)
Log area 0.007 0.004

(0.005) (0.004)
SC pop. share 0.024 -0.006

(0.025) (0.028)
ST pop. share -0.004 -0.007

(0.014) (0.012)
Working pop. share 0.030 -0.031

(0.048) (0.035)
Literate pop. share 0.036 0.061**

(0.029) (0.024)
Share of higher educated 0.036 0.008

(0.084) (0.062)
Log rain/sqkm 0.000 -0.003

(0.004) (0.003)
Electricity connection 0.055*** 0.026*

(0.013) (0.014)
State dummies No No Yes Yes
Constant 0.063** -0.282*** 0.081** -0.167*

(0.032) (0.094) (0.034) (0.095)
Observation 511 511 511 511
Adjusted R2 -0.701 -0.079 0.369 0.550
First stage F stat 10.518 5.945 2.901 6.099

Note that ZS
i is the predicted credit supply growth in equation 3.3 dropping

personal loan
Robust standard errors are given in the parenthesis.
∗∗∗ shows p − value < .01 , ∗∗ shows .01 < p − value < .05 and ∗ shows
.05 < p− value < .1
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The instrumental variable regressions excluding personal loan fail to establish

a significant relationship between credit supply growth and growth in economic ac-

tivity. Unlike the previous section, the instrument fails to be valid except for the

uni-variate regression. Even when it is valid, the coefficient of the instrument is

showing an adverse sign at 10% level of significance.

3.6 Conclusion

Our investigation of the effect of credit supply shock on growth of economic

activity has three fold results. First, we find a strong association between credit

growth and economic growth using ordinary least square regression. An 1% increase

in credit is associated with a .1% growth in satellite night light, a measure of economic

activity. Second, we use a shift share approach to estimate predicted growth to

isolate the supply shock in credit from the district specific demand shocks. There is

a strong association between the predicted credit shock and the actual credit shock.

Lastly, we fail to find and association between predicted credit supply shock and

economic growth. We repeated the whole process dropping personal loans to find

similar results.
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Chapter 4
Measuring the Effect of
Misallocation on Productivity in
Indian Manufacturing: A Gross
Output Approach

4.1 Introduction

According to World Bank data, the per capita income of US was 34 times higher

than that of India in 2013. Explaining such differences is one of the fundamental

problems in growth economics. Klenow and Rodriguez-Clare [1997], and Hall and

Jones [1999] demonstrated the disparity in Total Factor Productivity (TFP) as the

primary source behind cross country income differences. Another debate in this area

is about the source of TFP differences among rich and poor nations. Banerjee and

Duflo [2005], Restuccia and Rogerson [2008], and Hsieh and Klenow [2009] argued

that in poor countries, some of the TFP differences are generated from misallocation

of resources across firms. In this chapter, we follow the aforementioned notion that

resource misallocation is a primary source of variation in TFP. We include interme-

diate inputs such as raw material, energy and services in the model given by Hsieh

and Klenow [2009] to obtain the extent of misallocation that originates from factor

market distortions in a developing country like India.

There are two known approaches in measuring firm’s output – Value Added and

Gross Output. The former excludes intermediate inputs, whereas the latter includes

them. While measuring physical TFP, one can adopt either of the two approaches.
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The difference between the two measures of TFP is more pronounced at the firm or

industry level rather than in aggregate output. van der Wiel [1999], Gullickson and

Harper [1999], Hulten [2001], and Cobbold [2003] have demonstrated the benefits of

gross output approach over that of value added. The productivity manual published

by Organisation for Economic Co-operation and Development [2001] concludes that

the gross output approach is more appropriate for productivity measurement be-

cause it reduces productivity measurement bias. Based on these findings we extend

the Hsieh Klenow model to measure productivity using gross output approach by

including raw materials, energy, and service sector intermediate input as factors of

production. The inclusion of these factors separately into production process enables

us to give a more detailed representation of factor misallocation.

TFP, being a residual in the production process, is not observed directly. It

is difficult to measure firm-level TFP as the unit of production varies across the

firms. Therefore, we measure the variation in Total Factor Revenue Productivity

(TFPR), which by definition is the product of output price and physical TFP of a

firm. In the absence of any factor market misallocation, TFPR should be equalized

for all firms within an industry. The intuition behind this claim is as follows: if

a firm has high TFP, the marginal cost as well as the price for that firm will be

proportionally lower compared to a low TFP firm in a particular industry, thus

equalizing the TFPR. We use this intuition given by Restuccia and Rogerson [2008],

and Hsieh and Klenow [2009] to build our empirical results by using data from both

formal and informal manufacturing sector firms in India for the year 2005-06. In

such a developing country, the informal sector plays an extensive role in shaping the

84



economy. The informal manufacturing sector in India consists of around 17 million

firms that provide 82 percent of total employment in that sector. Hence, it seems

rather appropriate to include informal sector data for our empirical analysis.

Our work has the closest resemblance to that of Chatterjee [2011]. To the best of

our knowledge, this is the only available work which also uses gross output approach

in measuring TFPR, and also considers informal firms for India. We extend her work

by including the service sector inputs and the energy inputs in the model separately.

In India, the cost share of service inputs is around 12 percent and that of energy

is around 9 percent for the formal manufacturing sector. Exclusion of these factor

inputs might lead to misleading measurements of output and productivity. We also

include distortion in energy and that in service sector to verify whether some of the

variation in firm-level TFPR is attributed to these factors. We find that there is

very little variation in TFPR due to energy input distortion. The service inputs

misallocation is more pronounced in the dispersion of TFPR.

Furthermore, we decompose factor market distortions by considering each factor

input distortion separately. This exercise facilitates us in distinguishing the level

of misallocation in each factor market and to identify corresponding potential gain

from reallocation. We find that the distortion in the output market and raw material

market explains the lion’s share of the variation in TFPR. Our result is in line with

that of Chatterjee [2011], however, we find the variances of factor distortions to be

larger than that in her result. Another interesting result is that the distortions when

taken from several factor markets together, reduces the variation in TFPR. This

surprising result is the subject of further research.
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4.2 Related Works

Our work is related to a large body of literature that has accumulated through the last

few decades. Hsieh and Klenow [2009] argue that in a monopolistically competitive

framework, misallocation of the factor markets can result in a large difference in TFP

as well as output among the firms within an industry. For example, a capital market

distortion caused by the disparity in access to cheap credit will result in differences in

the marginal product of capital among firms. Hsieh and Klenow argued that in such

a situation, the aggregate economy will be better off by allocating more capital to the

firm with the higher marginal product of capital. Using firm-level data from India

and China, they calculated the TFP gain from the reallocation of capital, equalizing

TFPR within the industry, to be 30 to 50 percent in China and 40 to 60 percent in

India. We follow the same intuition in our work. We include raw materials, energy,

and service sector inputs as factors of production and find the effect of distortion in

all those inputs on firm level TFPR. Our goal is to find the empirical measurement

of distortion in individual factor markets on aggregate TFPR.

Restuccia and Rogerson [2008] demonstrates the effect of factor distortion on

TFP. They state that the different taxes and policies in firms create disparity in

prices and lead to 30 to 50 percent decrease in output and TFP in developing coun-

tries. Midrigan and Xu [2010] argues that the financial frictions cause variation in

TFP across firms through two channels. In particular, financial friction distorts en-

try decisions and technological adoption of the producers. Furthermore, it creates

disparity in return to capital among the producers. Fernald and Neiman [2010] devi-

ated from standard set up of monopolistic competition to show that in a two-sector
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economy with heterogeneous financial policies and monopoly power, there will be a

divergence between TFP, measured in terms of quantity and that in terms of real

factor prices.

There is a body of literature based on Hsieh and Klenow framework. Camacho

and Conover [2010] used Hsieh and Klenow methodology to measure the productiv-

ity differences through misallocation in resources for Colombian industries. Taking

USA as the benchmark economy, they found a wide TFPR distribution for Colom-

bia, that implies large resource misallocation across firms. They also calculated the

reallocation of labor and capital among firms would have improved aggregate TFP

by 47 to 55 percent. Another paper by Kalemli-Ozcan and Sørensen [2014] measures

the TFP dispersion through capital misallocation for 10 African countries using the

World Bank enterprise survey data. They argued that access to finance as one of

the main source of substantial capital misallocation. Dias, Dias et al. [2014] extends

Hsieh-Klenow model to include intermediate input and measure TFP disparity tak-

ing firm-level data from Portugal. They consider data from all the sectors of the

economy. Consequently, the endogeneous intermediate input in their model takes

into account goods produced by all the sectors. In India it is rather difficult to find

firm level data for sectors other than manufacturing, thus we take aggregate input

produced by other sectors as exogenously given in our model. Dias et al. found huge

misallocation across industries. According to them, in the absence of misallocation

within industries, there would have been a 48 to 79 percent gain in value added

output during 1996 to 2011.
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The most closely related work to our research is the paper by Chatterjee [2011],

which tries to extend Hsieh-Klenow framework for both formal and informal manufac-

turing sector of India. Chatterjee also included intermediate input market distortion

in the model as a source of variation in TFP. She assumes that the economy has

an intermediate input aggregated from a fraction of the total production by each

existing firm. the data is taken from ASI for formal firms and NSSO for informal

sector firms, similar to that of our case. As both of these surveys primarily focus on

manufacturing sector firms, the aggregated intermediate input produced from these

firms will take into account only manufacturing sector products. In consequence, she

ignores inputs from other sectors such as energy and services in her model. However,

we consider an aggregated energy and service inputs to be exogenously given in our

model apart from the combined raw material produced by the existing firms. In the

next section, we extend the model of Hsieh and Klenow to measure the degree of

misallocation in the economy.

The rest of this chapter is organized as follows: we present a theoretical model

to show how TFPR is affected by firm level distortion in Section 4.3. The data is

described in Section 4.4. We analyze our empirical results and decomposition of

the variance of TFPR in Section 4.5. In Section 4.6, we construe some relationship

between firm size and misallocation in factor markets. We conclude in Section 4.7.

4.3 Model

We consider a static one period model without uncertainty, used by Hsieh and Klenow

[2009]. We assume that the economy consists of J manufacturing industries indexed

as j = 1, 2, · · · , J . Each industry consists of Nj monopolistically competitive firms
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indexed as i = 1, 2, · · · , Nj. Each firm produces differentiated product, and thus

has substantial market power. The firms have heterogeneous productivity Aij exoge-

nously given, and an endowment of capital Kij, labor Lij, raw material Mij, energy

Eij, and service sector input Zij. Firms combine the factors together to produce a

good with a Cobb-Douglas production function. The firm’s production function is

as follows

Yij = AijK
αKj

ij L
αLj

ij M
αMj

ij E
αEj

ij Z
αZj

ij ,

where
∑
S

αSj = 1 and S ∈ {K,L,M,E, Z}.

We consider only manufacturing sector firms in the model because we could find

data only for manufacturing sector in India for our empirical analysis. For the sim-

plicity of the model, we assume that all raw materials coming from the manufacturing

sector are aggregated in a single raw material M, whereas all energy inputs and ser-

vice sector inputs are aggregated in factor inputs E and Z respectively. We consider

M as endogenously determined whereas energy and service sector inputs along with

capital and labor are exogenously given in our model.

Here, we deviate from the work of Chatterjee [2011], which considers one inter-

mediate input M, has been aggregated combining fractions of production from each

existing firms. As she also studies only the manufacturing firms, this endogeneity

assumption implies that the sole intermediate good regarded in her model consists

only of manufacturing products, thereby ignoring any other sector. On the contrary,

we consider an interdependent structure of different sectors of the economy. There

are other sectors that produce energy and services which are used as intermediate
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inputs in production process of manufacturing firms. These sectors also use manufac-

turing goods as intermediate inputs in their production. Those intermediate inputs

produced by manufacturing firms that are used in other sectors is considered as a

part of consumption good in our model. We assume that all firms in an industry have

same cost share of factor inputs αSj, but there is variation in factor shares between

the industries.

In this chapter, we measure the misallocation in resources that affect firm level

TFPR. Distortion in an input or output market does not always uniformly increase

(or, decrease) the marginal product of the factors of production (MPF) for all firms.

As firms equalize price with the marginal product of factor inputs, a firm facing

taxes will have higher MPF for service inputs than the firms facing subsidies. The

intuition behind the entire literature based on Hsieh and Klenow (2009) originates

from the hypothesis that the aggregate productivity will be larger if the factors can

be reallocated from lower MPF firms to that of higher MPF firms.

We assume several kinds of factor market distortions in our model. Some ele-

ments that change MPF for all inputs by the same proportion are denoted as output

distortion (τY ij). tax on output of a firm affects all the inputs proportionally, thus

can be identified as an example of output distortion. Moreover, if the distortion

creates a discrepancy in only the marginal product of capital, we call it capital dis-

tortion (τKij) in accordance with Hsieh and Klenow. Similar remarks hold for raw

material distortion (τMij), energy distortion (τEij,) and service sector input distor-

tion (τZij). For an instance, price differentiation in the electricity between small and

large businesses is perceived as energy distortion as it affects only the marginal prod-
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uct of energy. It is to be noted that we do not consider labor distortion separately,

but that every other distortion affects the respective MPF, relative to the marginal

productivity of labor.

Each firm produces a single good Yij that is to be used both as final consumption

good and as intermediate raw materials. Cij and Xij denote the final consumption

good and intermediate raw material respectively, that are produced by the ith firm

from the jth industry.

Firms face a downward sloping demand schedule that resulted from the assump-

tion of differentiated product environment in a monopolistically competitive market.

So, the industry’s final good appears to be a CES aggregation of all firm’s final goods

represented as,

Yj =

( Nj∑
i=1

Y

ρ− 1

ρ
ij

) ρ

ρ− 1

where ρ > 1 is the elasticity of substitution. For simplicity, we assume elasticity

of substitution is the same over all industries. This assumption follows from the

literature. Each industry’s output is sold as consumption good Cj and intermediate

raw material Xj as was the case with firm level output.

We further assume that the market of consumption good and raw material,

produced by each industry, is perfectly competitive. So, the final consumption good

is aggregated from industry level consumption good by a Cobb-Douglas production

function.
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C =
J∏
j=1

C
θj
j , where

J∑
j=1

θj = 1

The intermediate raw material is produced endogenously by aggregating each

industries’ production of raw material, again using a Cobb-Douglas production func-

tion as follows.

M =
J∏
j=1

X
λj
j , where

J∑
j=1

λj = 1

In the above two equations, θj and λj are the factor shares of each industry

in total consumption and total intermediate raw material production respectively.

Each firm chooses intermediate raw material from the aggregated M according to

their productivity.

The aggregate quantity of other inputs such as energy E and services Z are

exogenous in our model. Given that, each firm chooses the optimal amount Eij and

Zij based on its production function. The industry aggregates Ej and Zj are given

by the sum over each firm’s usage in that industry.

Now, we try to solve the model for optimal factor resources and output by

maximizing profit for firm, industry, and economy. We assume that the total factor

resources are limited in the manufacturing sector by the aggregate usage of the firms

in the sector. For each S ∈ {K,L,M,E, Z}, we write the aggregate factor resources
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as in the following equation:

S =
J∑
j=1

Nj∑
i=1

Sij

Next, we solve for the equilibrium to identify the effects of distortion on productivity.

4.3.1 Equilibrium Analysis

In this section, we present a comprehensive equilibrium structure for the firms, the

industries, and the economy. The equilibrium consists of the quantities of the con-

sumption good and the intermediate raw material produced at the firm, industry,

and the aggregate economy level. It also takes into account the optimal amount

of capital, labor, raw material, energy, and services, which are used by each firm.

The input markets and final good markets clear at equilibrium. We now solve the

optimization problems for each market.

• Final Good Problem:

We assume a representative firm produces a final good Y that is used in con-

sumption C and in raw material M for further production. C is produced using the

consumption goods Cj produced by the industries. We assume C to be a numeraire

commodity with unit price P . Likewise, Pj represents the price for industry output

Yj. We do not distinguish between price of final good Cj and raw material Xj, pro-

duced by each industry, on the assumption that both are fractions of the same good,

and are subjected to same cost and market structure. So, the optimization problem

for the final consumption good is given by
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max
Cj

PC −
J∑
j=1

PjCj (4.1)

subject to

C =
J∏
j=1

Cj
θj (4.2)

• Intermediate Raw Material Problem:

The fraction of the good produced by the representative firm, that used as the

intermediate raw material, is produced using raw materials produced by each in-

dustry. Price of the aggregated intermediate raw material M is given by pm. The

representative firm optimizes the production of M as follows.

max
Mj

pmM −
J∑
j=1

PjXj (4.3)

subject to

M =
J∏
j=1

X
λj
j (4.4)

we solve the final good’s problem from equation 4.1 and 4.2 and the intermediate

raw material’s problem from equation 4.3 and 4.4 to find out the prices set by the
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representative firms. We get the market clearing price of the final good as

P =
J∏
j=1

(Pj
θj

)θj
= 1 (4.5)

and the intermediate raw material’s price as

pm =
J∏
j=1

(Pj
λj

)λj
(4.6)

The second equality in equation 4.5 follows from our assumption that C is nu-

meraire good. Both prices are functions of the industry price (Pj) and the share of

each industry in producing the same good (θj and λj, respectively).

• Industry’s Problem:

The final good produced by each industry Yj is used as both final consumption

good Cj and intermediate raw material Xj. We assume that Cj and Xj are fractions

of the same good, and hence, faces the same optimization problem. Furthermore,

Cij and Xij are fraction of firm’s output Yij; therefore, we assume that they are

produced using the same production function, and that they also incur the same

marginal cost. It is safe to assume that the firms charge the same price Pij for both

parts of their output. We represent the industry’s problem as

max
Yj

PjYj −
J∑
j=1

PijYij (4.7)
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subject to

Yj =

( Nj∑
i=1

Y

ρ− 1

ρ
ij

) ρ

ρ− 1 (4.8)

We get the market clearing industry price to be

Ps =

( Nj∑
i=1

P 1−ρ
ij

)1/(1−ρ)

(4.9)

• Firm’s Problem:

To allow for factor misallocation in the input and output markets, we consider

several types of distortions. We assume that there exists an output distortion (τY ij)

that affects marginal product of each factor of production by the same proportion.

We also consider capital distortion (τKij), raw material distortion (τMij), energy dis-

tortion (τEij), and service sector input distortion (τZij) that affects marginal prod-

uct of capital, raw material, energy, and service inputs respectively, relative to the

marginal product of labor. Each firm solves the following profit maximization prob-

lem to choose optimal capital, labor, raw material, energy, and service inputs.

max
Yij

PijYij(1− τY ij)− wLij − r(1 + τKij)Kij − pm(1 + τMij)Mij

−pe(1 + τEij)Eij − pz(1 + τZij)Zij (4.10)
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subject to

Yij = AijK
αKj

ij L
αLj

ij M
αMj

ij E
αEj

ij Z
αZj

ij (4.11)

Solving firm i’s problem,

K∗
ij =

(ρ− 1

ρ

)αKj(1− τY ij)PijYij
(1 + τKij)r

(4.12a)

L∗
ij =

(ρ− 1

ρ

)αLj(1− τY ij)PijYij
w

(4.12b)

M∗
ij =

(ρ− 1

ρ

)αMj(1− τY ij)PijYij
(1 + τMij)pm

(4.12c)

E∗
ij =

(ρ− 1

ρ

)αEj(1− τY ij)PijYij
(1 + τEij)pe

(4.12d)

Z∗
ij =

(ρ− 1

ρ

)αZj(1− τY ij)PijYij
(1 + τZij)pz

(4.12e)

Optimal quantities of factor inputs contain both output distortion and distortion

in their respective factor market. Combining the equations 4.12a–4.12e with firm’s

objective function in equation (4.10), we get the market clearing price for each firm

to be

Pij =

(ρ− 1

ρ

)(MC

ε

)(1 + τKij)
αKj(1 + τMij)

αMj(1 + τEij)
αEj(1 + τZij)

αZj

(1− τY ij)Aij
(4.13)
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where

ε =
∏
S

α
αSj

Sj

MC = rαKjwαLjpαMj
m pαEj

e pαZj
z

Note that the firm level price in the expression 4.13 comprises of the marginal

cost of production, mark up, distortions, and reciprocal of the firm level productivity.

Given the assumptions that the firms in an industry have same factor shares and

input costs, we can infer that in the absence of distortions, price of each firm in

an industry would have been inversely proportional to the TFP of the firm. This

inference goes in line with our conjecture that all firms in an industry will have same

revenue productivity in the absence of any misallocation in factor resources.

Now, we define firm level total revenue productivity as TFPRij = PijAij. Solving

TFPRij from equation 4.13

TFPRij =
ρ

ρ− 1

MC

ε

(1 + τKij)
αKij(1 + τMij)

αMij(1 + τEij)
αEij(1 + τZij)

αZij

(1− τY ij)
(4.14)

Revenue productivity given by equation 4.14 is a measure of firm level distor-

tion. Variation in TFPRij gives us the degree of misallocation in input and output

markets. We build our empirical findings on this intuition, and try to measure the

extent of variation in firm level revenue productivity in presence of distortions.

Now, we define marginal revenue products of factor inputs for an industry as the

weighted average of value of firm level marginal revenue products, where the weight
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is taken as share of the firm’s output in the industry, as presented in the following

equation:

MRPSj =
PS

Ns∑
i=1

(1− τY ij)PijYij
(1 + τSij)PjYj

(4.15)

Note that S consists of all factor inputs such as K, L, M, E, and Z. PS denotes

the corresponding factor prices r, w, pm, pe, and pz respectively, and τSij indicate

the corresponding factor distortions. Also note that we did not take labor distortion

implying τLij to be zero.

We define industry level total factor revenue productivity (TFPRj) to be pro-

portional to geometric average of the average marginal revenue products of factor

inputs in the industry (given in equation 4.15).

TFPRj =
ρ

ρ− 1

MC

ε

[ 1

Nj∑
i=1

(1− τY ij)PijYij
(1 + τKij)PjYj

]αKj
[ 1

Nj∑
i=1

(1− τY ij)PijYij
PjYj

]αLj

[ 1

Nj∑
i=1

(1− τY ij)PijYij
(1 + τMij)PjYj

]αMj
[ 1

Nj∑
i=1

(1− τY ij)PijYij
(1 + τEij)PjYj

]αEj
[ 1

Nj∑
i=1

(1− τY ij)PijYij
(1 + τZij)PjYj

]αZj

(4.16)
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4.3.2 Allocation of Factors in Industry

We now solve for the allocation of factor resources for each industry. We aggregate

factor resources used by all the firms in an industry using their marginal product to

get the following:

Sj =

Nj∑
i=1

Sij = S
αSjθj/MRPSj

J∑
j=1

αSjθj/MRPSj

(4.17)

Recall that S ∈ {K,L,M,E, Z} and S =
∑J

j=1 Sj are aggregate supplies of

factor inputs in the economy. Also recall that θj is the share of each industry in

producing final consumption good. Note that factor accumulations of each industry

is affected by factor distortions only through the corresponding marginal revenue

products. This result is the consequence of the Cobb-Douglas aggregation in industry

level. Combining the industry level factor inputs (4.17) and the revenue productivity

(4.16), we can derive

PjYj = TFPRjK
αKj

j L
αLj

j M
αMj

j E
αEj

j Z
αZj

j (4.18)

Combining industry price Pj from (4.9) and firm’s price Pij from (4.13) together with

firm level revenue prodictivity from (4.14), we can simplify

Pj =

[ Nj∑
i=1

(TFPRij

Aij

)(1−ρ)] 1

1− ρ (4.19)
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Equating (4.18) and (4.19), we get

Yj = TFPjK
αKj

j L
αLj

j M
αMj

j E
αEj

j Z
αZj

j (4.20)

where

TFPj =

[ Nj∑
i=1

(AijTFPRj

TFPRij

)ρ−1] 1

1− ρ (4.21)

So, the total factor productivity of each firm is a function of firm level TFP,

TFPR, and industry level revenue productivity. Now, we can write final consumption

outcome of the economy as

C∗ =
J∏
j=1

(
TFPjK

αKj

j L
αLj

j M
αMj

j E
αEj

j Z
αZj

j

)θj
(4.22)

And intermediate good of the economy will be

M∗ =
J∏
j=1

(
TFPjK

αKj

j L
αLj

j M
αMj

j E
αEj

j Z
αZj

j

)λj
(4.23)

Following Hsieh and Klenow [2009], we now assume that TFP (Aij) and revenue

productivity (TFPRij) are jointly log normally distributed to depict the effect of

firm level distortion on productivity of an industry. By this assumption, logarithm
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of firm level TFP can be expressed as

log TFPj =
1

1− ρ
log

( Nj∑
i=1

A
(ρ−1)
ij

)
−
ρ

2
Var(log TFPRij) (4.24)

Equation (4.21) shows that the factor distortions reduce overall productivity of

an industry through the variance of firm level TFPR. On the basis of this finding,

we will now proceed to show how the factor distortions are contributing to firm

level TFPR variation. Note that we consider the number of firms are unaffected by

factor market distortions. This assumption is elaborated in more detail in Hsieh and

Klenow [2009].

4.4 Data

We use data for formal manufacturing sector from the Annual Survey of Industries

(ASI) collected by the Central Statistical Organization of India. ASI is the primary

source of industrial statistics in India, referring to the factories defined in accordance

with the Factories Act 1948. ASI data acts as an annual survey for formal manufac-

turing firms with more than fifty workers and a random one-third sample survey of

firms with more than ten workers (with power) or more than twenty workers (without

power). We use 62nd round of ASI data collected in the year of 2005-06.

We also take into account data for unorganized manufacturing sector collected

by National Sample Survey Organization (NSSO) of India for the year 2005-06. The

NSSO collects firm level data for informal manufacturing sector in India every five

years. The data set includes small manufacturing firms along with some service sector

firms and some unincorporated proprietary firms. These firms are not registered
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Table 4.1: Informal Firm Distribution

No. of labor No. of firm
Cumulative %
of value added

1 31874 1.6
2 23734 4.4
3 9468 6.9
4 4685 9.1
5 2601 11.6
6 1948 17.8
7 1349 21.8
8 1054 26.0
9 732 31.0
10 648 37.0
10 to 20 1648 57.4
20 to 30 327 62.8
30 to 50 185 73.0
50 to 100 92 95.0
more then 100 61 100.0

under the Factories Act 1948, thus are not included in ASI data. We found that

the data for informal sector consists of a large number of firms that uses one or

two workers. These firms had missing value of most of the variables we take into

consideration. Also, they contribute a very small percentage of the total value added.

Table 4.1 summarizes the distribution of informal firms and corresponding cu-

mulative percentages of the contribution in the total value added, according to the

number of employees. There are over thirty thousand one-employee-firms, which

contributes only 1.6 percent of the total value added and almost none of them had

data for labor and capital. In our analysis, we do not include such firms. We only

consider the informal firms that uses at least six employees, and set the cut off to

be six employees on the basis of a substantial market share of such firms. To keep

the two data set comparable, we only consider the manufacturing industries from
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Table 4.2: Distribution of Firms: ASI vs NSSO
ASI Data NSSO Data

No. of employees No. of firms No. of employees No. of firms
1 to 10 4663 6 to 10 3026
10 to 20 7683 10 to 20 1605
20 to 50 7272 20 to 50 432
50 to 100 3838 50 to 100 79
100-500 7695 100-500 31

500 and above 2254 500 and above 5

informal sector data that were covered by ASI in its formal counterpart.

Table 4.2 shows the distribution of firms in our analysis. There are around

31 thousand formal sector firms taken from ASI data whereas number of informal

sector firms from NSSO data is around 5 thousand. For our analysis, we had to

drop some observations from both sectors due to missing data. Formal firms consists

of all sizes while informal firms are mostly small. To simplify our analysis, we use

2-digit industry level data developed by National Industrial Classification (NIC). We

consider 23 different industries including food and beverage, hardware, wood, paper,

printing, computer and machinery, and etc. (see table 4.3)

Hsieh and Klenow [2009] used value added method to measure productivity and

distortion in capital and output. They did not incorporate raw material, service or

energy inputs in the production function. We will first replicate their results using

value added method, then extend the model to incorporate intermediate inputs as

factors of production. This extension will lead us to adopt Gross Output Method

instead. We use nominal revenue of the firm as our output variable.
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Table 4.3: Factor Shares : India vs US
Industry Capital Labor Raw Material Energy Service Input

India US India US India US India US India US
Food & beverage 0.07 0.12 0.16 0.15 0.62 0.57 0.09 0.03 0.08 0.13
Tobacco 0.04 0.12 0.41 0.15 0.40 0.57 0.03 0.03 0.13 0.13
Textile 0.08 0.10 0.18 0.23 0.54 0.53 0.11 0.03 0.11 0.11
Wearing apparel 0.08 0.11 0.27 0.34 0.43 0.32 0.05 0.02 0.20 0.21
Leather 0.06 0.11 0.18 0.34 0.58 0.32 0.08 0.02 0.12 0.21
Wood & furniture 0.10 0.07 0.19 0.24 0.55 0.53 0.09 0.03 0.09 0.14
Paper 0.06 0.14 0.12 0.21 0.67 0.46 0.08 0.08 0.08 0.12
Publishing 0.08 0.05 0.21 0.32 0.52 0.39 0.05 0.02 0.15 0.23
Petroleum prod 0.05 0.28 0.11 0.03 0.67 0.67 0.57 0.01 0.11 0.01
Chemical 0.06 0.19 0.16 0.17 0.61 0.40 0.07 0.06 0.11 0.19
Rubber/plastic 0.06 0.13 0.12 0.22 0.65 0.49 0.10 0.02 0.09 0.14
Non-metal mineral 0.10 0.16 0.21 0.29 0.44 0.31 0.15 0.08 0.09 0.16
Basic metal 0.05 0.14 0.08 0.20 0.68 0.39 0.14 0.10 0.07 0.17
Fabricated metal 0.07 0.14 0.18 0.31 0.59 0.37 0.08 0.02 0.11 0.17
Machinary/equip 0.05 0.11 0.17 0.28 0.61 0.45 0.05 0.01 0.14 0.15
computing machine 0.06 0.17 0.17 0.37 0.60 0.24 0.03 0.01 0.14 0.20
Electric machine 0.06 0.11 0.14 0.27 0.67 0.47 0.05 0.01 0.10 0.14
Communication machine 0.06 0.11 0.19 0.27 0.61 0.47 0.04 0.01 0.12 0.14
Medical instrument 0.05 0.17 0.20 0.33 0.55 0.31 0.05 0.01 0.16 0.18
Motor vehicle 0.05 0.10 0.17 0.25 0.59 0.51 0.06 0.01 0.13 0.14
Transport equipment 0.06 0.10 0.15 0.25 0.63 0.51 0.06 0.01 0.12 0.14
Furniture 0.11 0.11 0.22 0.31 0.56 0.40 0.06 0.01 0.10 0.17
Recycling 0.10 0.17 0.17 0.33 0.54 0.31 0.10 0.01 0.11 0.18



The variables, other than firm’s revenue, that we use for our analysis are firm’s

industry (2-digit NIC), labor compensation, net book value of fixed capital stock,

rent on capital, intermediate input costs, fuel and energy costs. We assume that

the service input cost is same as the residual cost. We use the labor compensation

including wages, bonuses and benefits to be a proxy for labor input. Capital is

measured by the average of net book value of capital at the beginning and the end

of the year. We deviate from Hsieh and Klenow [2009], Chatterjee [2011] as well as

other previous researches, based on the measurement of the rental cost for capital.

All other literature in this field have taken an exogenous percentage of capital to be

the rental cost, whereas, we measure the same by variables such as rent for machinery,

building, land, interest paid on loan, and etc, which have been taken from the ASI

data for formal sector. For informal firms though, the NSSO data does not explicitly

provide the rent of capital. We measured rental cost from the residual of value

added after subtracting total labor cost. The costs of raw materials, and energy

are calculated explicitly from the cost of inputs of production. Service input costs

consist of transport and communication, insurance charges, license cost, and other

operative expenses.

The elasticity of substitution (ρ) is assumed to be constant in our model. Based

on the previous literature in this field, we take the value of ρ to be equal to 3. In

most part of our empirical analysis, we will use US factor shares for corresponding

industries as a benchmark to identify the effect of distortion on productivity. We took

the factor share data for US industries from Bureau of Economic Analysis (BEA)

governed by US Department of Commerce.
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4.5 Empirical Analysis

Our identification strategy is similar to that of Hsieh and Klenow [2009] and Chat-

terjee [2011]. We establish our identification of distortions based on the rationale

that in absence of distortion, revenue factor shares of output will be proportional to

the parameters αKj, αLj, αMj, αEj, and αZj in a market with monopolistic competi-

tion. As we assume distortion in factor markets, the revenue shares will give a biased

estimation of the parameters. We can validate this from the first order conditions of

the firms.

fsj =
ρ

ρ− 1

pfSij

PijYij

(1 + τSij
)

(1− τYij)
(4.25)

where fsj = {αKj, αLj, αMj, αEj, αZj} and pf = {r, w, pm, pe, pz}. Also reall that S

consists of all factor inputs and τSij
denotes corresponding distortions.

In presence of distortions, we cannot identify the misallocation in resources sep-

arately from the bias in the parameters. Following Hsieh and Klenow [2009], we take

into account US factor shares for our analysis. The strategy is based on the assump-

tion that US factor market is less distorted than that in India and the technology

used in the industries are same for both the countries. A more detailed discussion on

the assumptions are presented in Chatterjee [2011]. Factor shares for both countries,

described in Table 4.3, represent the average of the cost share for each factor in each

industry.

Figure 4.1 illustrates the bias in the factor share in Indian industries with respect

to US as a benchmark. Any deviation from the 45 degree line shows misallocation
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Figure 4.1: Factor share for US and India

in the corresponding factor markets in India. We found a similar pattern in capital,

labor and raw material shares presented in Chatterjee [2011]. It is evident from the

diagram that cost shares of capital labor and service input are significantly higher

in US than India, whereas share of raw material and energy are higher in the latter.

Next, we would like to see within industry variation in average revenue per worker

which is measured by average revenue productivity of labor. Figure 4.2 illustrates
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Figure 4.2: Logarithm of ARPL Distribution

the distribution of logarithm of firm’s Average Revenue Product of Labor (ARPL)

deviated from industry mean, log(ARPLij/ARPLj). We trim 1 percentile from both

end to avoid outliers. The horizontal axis is showing log(ARPLij/ARPLj), whereas

vertical axes measures the density of the firms. There is a substantial variation in

average revenue product of labor within industry. The variance is measured as 3.76.

4.5.1 Value Added vs. Gross Output Approach

Our goal in this section is to measure the variation in firm level TFPR as an indicator

of misallocation in factor market. Our variable of interest is logarithm of firm level

TFPR as a deviation from industry TFPR, log(TFPRij/TFPRj). We will depict

both value added and gross output approach to measure TFPR. First, we try to

replicate the results from Hsieh and Klenow [2009] using value added approach.

They estimated distribution of TFPR taking formal manufacturing sector data for

1987-88 and 1994-95. We repeat their method taking 2005-06 data for both formal

and informal sector. We also illustrate the TFPR distribution using gross output
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Figure 4.3: Logarithm of TFPR Distribution

method using the same data.

Cobbold [2003] presented the formal relationship between value-added and gross-

output TFP as,

TFPV A =
G

V A
× TFPGO

where G and VA represents nominal value of total revenue and total value added

respectively.

Oulton and O’Mahony [1994] and van der Wiel [1999] show that the productivity

growth measured using value added is much higher than the measurement considering

all inputs. It naturally follows from the above equation that given G and VA, TFP as

well as TFPR (each side multiplying by price) measured using value added aproach

will be larger than that measured by gross output approach.

Before calculating the variance, we trim 1 percent tails of log(TFPRij/TFPRj)

to get rid of the outliers. Figure 4.3 plots the distributions of logarithm of TFPR

deviated from the industry mean. The dashed line shows the value-added TFPR

110



Table 4.4: Dispersion of Logarithm of TFPR
Statistics Value Added Gross Output
SD 0.99 0.47
75-25 1.23 0.51
90-10 2.45 1.08
Note.The variable is log(TFPRsi/TFPRs)

Table 4.5: Dispersion of Logarithm of TFPR in Literature
Statistics Hsieh-Klenow (1994-95) Chatterjee (2004-05)
SD 0.67 0.49
75-25 0.81 0.56
90-10 1.6 1.19

Note. Column 1 shows dispersion of TFPR estimated byHsieh
and Klenow [2009] for 1994-95 data, using value added approach.
Column 2 depicts the same estimated by Chatterjee [2011] for
2004-05 data using gross output approach.

distribution whereas the solid line shows that of the gross-output approach. The

variation in value added TFPR is much higher than that in gross output TFPR.

Table 4.4 presents the TFPR dispersion statistics in firm level TFPR. Standard

Deviation (SD) in value-added TFPR is around .99 compared to .47, which is the SD

of TFPR using gross-output approach. The difference in both approaches is more

pronounced in estimating variation in TFPR at higher percentile.

Table 4.5 shows the dispersion in logarithm of TFPR in Hsieh and Klenow [2009]

using value added and the same in Chatterjee [2011] using gross output approach.

Our result displays a larger value-added SD than that of Hsieh and Klenow [2009],

who used the same approach with formal sector data from 1994-95. This may be

due to an increase in the overall level of misallocation in the last decade or inclusion

of informal sector in our analysis.
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Furthermore, we find comparable result with that of Chatterjee [2011] in disper-

sion of gross output TFPR. After inclusion of energy and service sector distortions,

the SD in firm level TFPR has dropped by .02 from an overall .49 depicted in Chat-

terjee with 2004-05 data. The gap between the results is more conspicuous in 75 to

25 and 90 to 10 percentile.

4.5.2 Decomposition of Misallocation

We now turn towards separating out the effect of each component attributing to the

variance of firm level TFPR. Moving forward, only Gross Output approach will be

considered. We took into account several kinds of distortions in input and output

markets. The calculation for each kind as a function of total revenue, cost of inputs

and factor shares is derived from first order conditions of a firm as,

1− τysi =
ρ

ρ− 1

wLsi

αLjPsiYsi
(4.26a)

1 + τksi =
αKj

αLj

wLsi

RKsi

(4.26b)

1 + τmsi =
αMj

αLj

wLsi

pmMsi

(4.26c)

1 + τesi =
αEj

αLj

wLsi

peEsi
(4.26d)

1 + τzsi =
αZj

αLj

wLsi

pzZsi
(4.26e)

We assumed the labor market to be undistorted. All input market distortions

are estimated relative to labor market. The intuition behind equations 4.26b-4.26e
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is that in presence of distortion, the input costs relative to labor compensation will

be lower than given by the output elasticity. Equation 4.26a demonstrates that a

deviation of labor share from output elasticity with respect to labor will result in

output distortion.

Figure 4.4: Distribution of log TFPR taking one distortion at a time
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Next, we would like to find out the distinct effect of each distortion on logarithm

of TFPR deviated from industry mean. In figure 4.4 the solid lines illustrates the

distribution of our variable of interest, taking one factor distortion at a time. The

dashed line represent the actual firm level TFPR distribution taking all distortion

together. The top panel of Figure 4.4 shows TFPR distribution taking either output

or capital distortion. Similarly, middle and bottom panel depict the scenarios with

only material, energy, or service input distortion respectively.

It is perceptible from Figure 4.4 that output and material distortion play the

primary role in dispersion of TFPR within an industry. Energy distortion is almost

negligible, whereas capital and service input distortions also contribute a modest

share in measurement of misallocation.

To give a more elaborate presentation of the above result, we now find the vari-

ance of log(TFPRij/TFPRj). The total misallocation is measured by the following

variance

Var[log[
TFPRij

TFPRj

]] = Var(DK +DL +DM +DE +DZ −DY ) (4.27)

where,

DS = αSj log

[
(1 + τSij)

Nj∑
i=1

(1− τY ij)PijYij
(1 + τSij

)PjYj

]
(4.28)

and DY = log(1− τY ij) (4.29)
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Recall that S consists of all factor inputs such as K, L, M, E, and Z. αSj denotes

the corresponding factor shares, and τSij indicate the corresponding factor distor-

tions. Also recall that we consider labor market is undistorted implying τLij to be

zero. In the above equations, DS can be inferred as components of each factor input

in the variance of TFPR. Table 4.6 describes the variance and co-variances of each

of the above components.

Variance of the components of equation (4.16) depict the contribution of fac-

tor distortion in explaining the variation in firm level TFPR. As labor is the only

undistorted factor in our analysis, variance of DL measures the benchmark variation

in industry TFPR in presence of only output distortion, multiplied by cost share of

labor. Moreover, Variance of DY determines the variation in firm TFPR attributed

to only output distortion. Dispersion in DY and DM are very high compared to the

overall variance of log(TFPRij/TFPRj) implying that the misallocation is highest

in output and raw material.

Overall variance in log(TFPRij/TFPRj) includes the pairwise covariance be-

tween the components of equation (4.16) as well. It is interesting to note that the

covariance between output and raw material distortions are the highest (.5716). This

result may follow from the fact that in our framework raw material is endogenous,

thus output of one firm is used as raw material to the other.

Figure 4.5 illustrates the cumulative effect of each factor relative to actual TFPR

distribution. The dashed line shows actual TFPR distribution, whereas the solid line

in each block adds distortion one by one. Without any distortion, there would not

have been any distribution of TFPR. We start from only output distortion in the top
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Table 4.6: Variance Decomposition
Component Variance-Covariance
Var(DK) 0.0472
Var(DL) 0.0119
Var(DM) 0.3490
Var(DE) 0.0048
Var(DZ) 0.0345
Var(DY ) 1.1203
Cov(DK , DL) 0.0030
Cov(DK , DM) 0.0346
Cov(DK , DE) 0.0029
Cov(DK , DZ) 0.0082
Cov(DK , DY ) 0.0727
Cov(DL, DM) -0.0026
Cov(DL, DE) 0.0001
Cov(DL, DZ) 0.0001
Cov(DL, DY ) 0.0067
Cov(DM , DE) 0.0129
Cov(DM , DZ) 0.0533
Cov(DM , DY ) 0.5716
Cov(DE, DZ) 0.0034
Cov(DE, DY ) 0.0302
Cov(DZ , DY ) 0.1110
Var (log(TFPRsi/TFPRs)) 0.2194

Note: The table shows variance and covariances
of the components of log TFPR, where DS, (S ∈
{K,L,M,E, Z}) and DY are given by the equation
(4.28) and (4.29)

left panel. The solid line in top right panel depicts the TFPR distribution taking

into account both capital and output distortion. The middle left panel considers

output, capital, and raw material distortions together, while middle right panel adds

energy distortion to the distribution. Bottom panel shows all distortion together,

thus coinciding with the actual TFPR distribution.
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Figure 4.5: Distribution of TFPR Adding one distortion at a time

The intriguing observation from Figure 4.5 is that addition of each factor mar-

ket distortion tend to reduce the variance of TFPR, thus indicating a lower overall

misallocation. This result implies that when we consider more factor input distor-

tions to our model, they are offsetting the effects of each other in describing total

misallocation.
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4.6 Misallocation and Firm Size

There is a body of literature on the sources of the factor distortions. Banerjee and

Duflo [2005] discovered that capital market distortion might be originated from dis-

parity in the credit policy. Chatterjee [2011] mentions unavailability of raw material

acting as intermediate input distortion. Bhidé [2008] shows that in a developing

country like India, electricity connection taken from private and public enterprises

might cause a distortion in energy prices. Hsieh and Klenow [2009] argues that

government policy, specially size restriction might prohibit the firms to achieve the

optimal scale, thus creating an output distortion. They also considered firm size as

an explanation of TFPR dispersion within industry. In this section, we would like

to examine the relationship between firm size and distortion in factor markets.

Table 4.7: Regression of Firm Size on Distortion
Variables log of distortions

Output
(1)

Capital
(2)

Raw material
(3)

Energy
(4)

Service
(5)

log(labor) 0.0752** 0.2741** 0.0440** 0.1900** 0.0765**
(0.0048) (0.0063) (0.0079) (0.005) (0.0047)

Industry effect yes yes yes yes yes
Ownership effect Yes Yes Yes Yes Yes
Organization effect Yes Yes Yes Yes Yes
Region effect Yes Yes Yes Yes Yes
N 41237 44726 45589 47755 47829

Note. The dependent variables in the regressions are logarithm of output and
input (capital, raw material, energy, service respectively) distortions. Standard
errors are given in the parenthesis. ∗∗ shows p− value < .01

Table 4.7 presents coefficient of regression of firm size on the distortions. We

took logarithm of total labor employed as a measure of firm size. Panel (1) takes

logarithm of firm level output distortion to be the regressand. Similarly, dependent
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variable for (2), (3), (4) and (5) are logarithm of firm level capital, raw material,

energy and service input distortion respectively. We control for industry fixed effects,

ownership type (private, central government owned, state government owned etc.),

type of organization (Individual Proprietorship, partnership, co-operative society,

and etc.) and location of the firm.

We found a positive relationship of firm size with each kind of distortion, which

is in line with the findings of Hsieh and Klenow [2009]. Smaller firms in formal

or informal sector might be able to avoid some policy restrictions unlike their larger

counterparts. Assumption of monopolistic competition includes the provision of mark

up in our model. Though we assumed all firms in an industry to have same mark

up, larger firms might have greater market power and larger mark up which in turn

will create more output distortion as well as raw material distortion. It will be

fascinating to see the effect of firm size on distortion, once we relax the assumption

of same elasticity of substitution within an industry.

4.7 Conclusion

We measure the aggregate misallocation in resources using firm level data from both

formal and informal manufacturing sectors in India for the year 2005-06. We include

energy distortion and service input distortion to extend existing works such as Hsieh

and Klenow [2009] and Chatterjee [2011] . The dispersion in TFPR within each

industry turns out to be substantial, implying misallocation caused by distortion of

factor resources. While energy distortion does not contribute much to the aggregate

misallocation, effect of service sector input distortion is more pronounced. We further

decomposed the variance of TFPR to find out effect of each factor market distortion
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separately. We discover that output distortion and raw material distortion contribute

the largest share in aggregate misallocation. Reallocation of such factors within the

industries should result in the highest TFP gain. We also uncover a puzzling result

that the inclusion of many factor distortions together offset each other’s effect and

result in a lower aggregate misallocation. Although unexpected, this result may

inspire further research in this field.
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Chapter 5
Concluding Remarks
Post-liberalization growth pattern and the driving factors of such growth in India

has inspired a large body of research. In this dissertation, we address three facets

of regional growth, convergence, and productivity variation, in an effort to provide

a supplement to the existing literature.

The second chapter of this dissertation explores the growth pattern and conver-

gence in Indian districts alongside the rural and urban dimension, using radiance

calibrated satellite night light data. We find both absolute and conditional conver-

gence in the districts, primarily driven by the convergence in rural areas. We fail

to find any evidence of convergence in the urban area. Furthermore, we show that

the state specific characteristics explain almost half of the rural as well as overall

growth. On the other hand, among district level initial conditions, human capital

and infrastructure has a role to play in defining the same. However, array of controls

in our study fails to explain much of urban growth.

The third chapter investigates the impact of credit supply shock on economic

growth in districts measured by the same radiance calibrated night light data. The

modified shift-share approach has been used as a strategy of identification. Although

we find strong positive association of credit growth with the growth in economic

activity, the association fails to hold as we separate out the demand side effects

using predicted lending shocks.

The fourth chapter, on the other hand, measures the aggregate misallocation
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in resources using firm level data from both formal and informal manufacturing

sectors in India for the year 2005-06. The variance decomposition of TFPR displays

that output, and raw material distortion contribute the largest share in aggregate

misallocation.
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Appendix A
Data Description

Table D1: Data Description
Variable Description Source

Log Initial Light
per capita

Logarithm of radiance calibrated satellite
night lights data for 2000 per unit
of population.

National Geophysical
Data Center

Log Initial Rural Light
per capita

Logarithm of Radiance calibrated satellite
night lights data for 2000 per unit
of population, when the Digital number
value of two contiguous pixels are
less than 12.

National Geophysical
Data Center

Log Initial Urban Light
per capita

Logarithm radiance calibrated satellite
night lights data for 2000 per unit
of population, when the Digital number
value of two contiguous pixels
are more than 12.

National Geophysical
Data Center

Night Lights Growth
per capita

Per capita radiance calibrated Night
Time Light growth over 2000-2010,
we also used 2000-05 and 2005-10
growth for various regressions.

National Geophysical
Data Center

Rural Night Lights
Growth per capita

Radiance calibrated night lights
growth Per capita if the DN value of
two contiguous pixel are less than 12.

National Geophysical
Data Center

Urban night lights
growth per capita

Radiance calibrated Night Lights
growth Per capita if the DN value of
two contiguous pixel are more than 12.

National Geophysical
Data Center
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Table D1: Data Description (continued)
Variable Description Source

Rural Percent Percent of rural popultaion
Census of India
2001

Overall Popul-
ation Density

Overall population per 100000 square km
Census of India
2002

SC Pop.
Share

Share of scheduled cast
population in total population
collected for rural and urban areas separately

Census of India
2000

ST Pop.
Share

Share of scheduled tribe
population in total population
collected for rural and urban areas separately

Census of India
2000

Working
Pop. Share

Share of working population
in total population
collected for rural and urban areas separately

Census of India
2000

Literate
Pop. Share

Share of literate population
in total population
collected for rural and urban areas separately

Census of India
2000

Higher Edu.
Share

Share of population with
higher secondary and
tertiary education
collected for rural and urban areas separately

Census of India
2000

Log Net Irrigated
Area

Logarithm of net land irrigated
land area (per million population)
divided by district population

Das and Ghate
& Robertson (2015)

Log HH with
Paved Roads

Logarithm of the percentage of
households connected by paved roads

Das and Ghate
& Robertson (2015)
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Table D1: Data Description (continued)
Variable Description Source

Log Credit
per capita

Logarithm of per capita outstanding credit.
The data for credit of scheduled commercial banks,
has been obtained from Basic,Statistical,Returns,
(BSR),compiled annually by the Reserve Bank of
India (RBI). BSR reports annual district-level
outstanding credit for different population groups
such as rural, semi-urban urban and metropolitan.
(We remark that the rural and urban definition of
RBI is somewhat different from that of Indian census.
According to RBI, any region with population less
than 10000 is considered as rural area, whereas
population 10000 to 1 lakh, and 1 lakh to 10 lakhs
indicate semi-urban and urban area respectively. Any
region with population more than 10 lakhs is metropolitan.)
We consider the sum of the credit in semi-urban,
urban and metropolitan areas as ‘urban credit’,
whereas the credit in rural areas are considered as
‘rural credit’. Each credit variables are taken per unit
of the population in the area

Reserve bank
of India (Basic
statistical
return)

Log Rainfall
per sq
km

The rainfall is measured in cm and is available for every
latitudinal and longitudinal grid of 0.5 degrees by 0.5
degrees. A GIS map is used to identify the centroid of
each district and latitudes and longitudes of the centroids.
Then the latitudes and longitudes of each district centroid
was matched with the nearest rain-fall database grid to
find the monthly rainfall for the district. We sum up the
monthly data to get annual rainfall data. We use logarithm
of average rainfall per square kilometre between 2000 to 2010
as our control.

University
of Delaware
website
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Table D2: Reform Project Data Description
Variable Description Sources

NREGA
Expenditure
per capita

Average labor and material expenditure of
NREGA per unit of rural population. The
public data portal of MGNREGA shows
physical and monetary variables reported
by the districts to MoRD. We use the data
from 2006, the year of introduction of the program
to 2010.

NREGA
Website
(mnregaweb4.
nic.in)

PMGSY
Expenditure
per capita

Average sanctioned expenditure on rural road
project per unit of rural population.
The data for PMGSY has been taken from
Online Management and Monitoring System
(OMMS). OMMS is used in program tracking and
implementation of the program which provides the
administrative records of the actual program.
The OMMS reports district level yearly summary
of number of road built, habitation covered, length
of total road and LSB (Long Spanning Bridge)
construction, and total expenditure in the projects.

OMMS
Website
(omms.nic.in)

RGGVY
Expenditure
per capita

Average sanctioned expenditure per capita rural
population till the year 2011 per unit of rural population.
The DDUGJY website reports plan-wise physical and
financial progress for districts under RGGVY over tenth,
eleventh and twelfth five year plan. The data reports
implementation agency fund sanction and release
date along with the amount, number of villages covered
for both electrification and intense electrification, and
number of BPL households which are provided
with electricity under the program.

DDUGJY
Website
(www.ddugjy
.gov.in)
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