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 ABSTRACT 

The Hausman test is used in applied economic work as a test of misspecification. It is most commonly 

thought of (wrongly some would say) as a test of whether one or more explanatory variables in a 

regression model is endogenous. There are several versions of the test available with modern software, 

some of them suggesting opposite conclusions about the null hypothesis. We explore the size and power of 

the alternative tests to find the best option. Secondly, the usual Hausman contrast test requires one 

estimator to be efficient under the null hypothesis. If data are heteroskedastic, the least squares estimator is 

no longer efficient. Options for carrying out a Hausman-like test in this case include estimating an artificial 

regression and using robust standard errors, or bootstrapping the covariance matrix of the two estimators 

used in the contrast, or stacking moment conditions leading to two estimators and estimating them as a 

system. We examine these options in a Monte Carlo experiment. We conclude that in both these cases the 

preferred test is based on an artificial regression, perhaps using a robust covariance matrix estimator if 

heteroskedasticity is suspected. If instruments are weak (not highly correlated with the endogenous 

regressors), however, no test procedure is reliable. If the test is designed to choose between the least 

squares estimator and a consistent alternative, the least desirable test has some positive aspects. We also 

investigate the impact of various types of bootstrapping. Our results suggest that in large samples, wild 

(correcting for heteroskedasticity) bootstrapping is a slight improvement over asymptotics in models with 

weak instruments. Lastly, we consider another model where heteroskedasticity is present – the count data 

model. Our Monte Carlo experiment shows that the test using stacked moment conditions and the second 

round estimator has the best performance, but which could still be improved upon by bootstrapping.
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1. INTRODUCTION 

Arguably the most important research tool for the empirical researcher is regression analysis. Since the 

mid-1970’s there has been a great deal of concern for regression models in which some explanatory 

variables are endogenous, that is, they are correlated with the regression error term. Traditionally such 

problems had been considered within the context of simultaneous equations models, in which explicit 

assumptions about endogeneity and exogeneity were required, and multiple equation regression systems 

were built and estimated. At some point in the development of empirical research such models were 

abandoned in favor of single equation regressions that may have endogenous regressors. The doubt in that 

statement is present because structural equations for these potentially endogenous regressors were never 

explicitly specified. We can speculate that economists studying complex microeconometric behaviors were 

unable, or unwilling, to build systems models that described the data.  

 One outcome of this change in philosophy was the recognition of the requirement for a statistical 

test of whether a regression model included endogenous regressors. The usual least squares estimator is 

inconsistent if there are endogenous regressors. If there are endogenous regressors, and if valid 

instrumental variables are available, then the instrumental variables, or two-stage least squares, estimator is 

consistent and should be used. Instrumental variables estimators can be very imprecise relative to the least 

squares estimator if good instruments are not available, and finding good instruments is no easy task. Thus 

it is imperative that researchers have a good way of determining when they must use the instrumental 

variables estimator, and when they do not have to. 

 In a series of papers by Durbin (1954), Wu (1973, 1974) and Hausman (1978) tests were proposed 

that can be applied to the problem of detecting endogenous regressors. In this chapter the essentials of the 

problem are outlined. Chapter 2 summarizes the literature and examines the behavior of various tests in the 

regression model with homoskedastic errors. This dissertation studies the problem of testing for 

endogenous regressors in regression models when errors are heteroskedastic. In Chapter 3 asymptotically 

valid tests are considered in linear regression models with heteroskedastic errors. We explore using Monte 

Carlo experiments the behavior of alternative tests under various degrees of heteroskedasticity, and with 
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instruments of different quality. Chapter 4 introduces the use of bootstrapping to obtain test statistic critical 

values. Our goal is to obtain a test with proper size in finite samples, and to examine its power. Alternative 

resampling schemes are considered to accommodate heteroskedastic errors. In Chapter 5 count data 

regression models with potentially endogenous regressors are considered. Tests for endogeneity in this 

model have some of the same features as the linear regression model with heteroskedastic errors, yet offer 

new complexities due to the model’s nonlinearity. Chapter 6 concludes and summarizes. 

 In the remainder of this chapter we introduce the fundamental problems in the context of the 

simple linear regression model in a very intuitive, nontechnical discussion1. We also observe the 

perplexing default tests presented by several large computer software providers, which has introduced a 

measure of confusion into the application of tests for endogeneity in econometric practice. It is an 

objective of this work to clear the confusion and offer clear guidelines to empirical researchers who wish 

to test for the presence of potentially endogenous regressors. 

1.1 Least Squares Estimation 

In the linear regression model we make a number of assumptions about the data generating process. One of 

these is fundamental if the least squares estimator is to be consistent. Let us denote the simple linear 

regression model as 

(1.1) 1 2 , 1, ,i i iy x e i N= β +β + = …  

Values of xi and yi are obtained by random sampling. We usually assume that the random errors ei 

have certain properties, namely that they have zero mean and are uncorrelated with the regressor, 

(1.2) ( ) 0iE e =  

(1.3) ( )cov , 0i ix e =  

Under assumptions (1.1) - (1.3) the least squares estimators are consistent [if the distribution of xi 

values is well behaved]; that is, they converge to the true parameter values as T→∞. If serial correlation 

and/or heteroskedasticity are present, then the least squares estimator is no longer “best,” but it is still 

consistent. 

                                                      

1 The discussion in the next few sections draws heavily on Undergraduate Econometrics, 2nd Edition by Hill, Griffiths and Judge (Wiley, 2001), 
Chapter 13. 



 

 

 

3

There are some very standard situations in which correlation between x and e is anticipated to 

exist: 

• when a relevant variable is omitted and is related to the included right-hand-side variables; 

• simultaneous equations models;  

• models including explanatory variables which are measured with error; and 

• models in which a lagged dependent variable is included as a regressor, and serial correlation is 

present. 

In each of these cases the usual least squares estimation procedure is no longer appropriate. If 

assumption (1.3) is not true, and consequently xi and ei are correlated, then the least squares estimators are 

inconsistent. They do not converge to the true parameter values even in very large samples. Furthermore, 

none of our usual hypothesis testing or interval estimation procedures are valid. Thus when x is random, 

the relationship between x and e is the crucial factor when deciding whether least squares estimation is 

appropriate or not. If the error term is correlated with x (any x in the multiple regression model) then the 

least squares estimator fails. 

 To demonstrate why the least squares estimator fails when ( )cov , 0i ix e ≠  we will use a small 

simulation Let the systematic portion of the regression model be  

(1.4) ( ) 1 2| 1 1i i iE y x x x= β +β = + × .  

Using random number generators, we create N = 100 correlated pairs of xi and ei values with correlation .9, 

such that ei has mean zero and constant variance. These values are shown in Figure 1.1. We then create yi 

values by adding ei to E(yi), given in (1.4). Applying least squares estimation to these data we obtain the 

least squares estimates b1 and b2, yielding the fitted regression line 1 2ŷ b b x= + . In Figure 1.2 we plot the 

fitted line and the true regression function ( ) 1i iE y x= + . Note that the data values are not randomly 

scattered around the true regression function, because of the correlation we have created between x and e. 

The least squares principle works by fitting a line through the “center” of the data. When x and e are 

correlated the least squares idea is not going to work. The systematic overestimation of the slope, and 

underestimation of the intercept will not go away in larger samples, and thus the least squares estimators 

are not correct on average even in large samples. The least squares estimators are inconsistent. In this case 
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FIGURE 1.1. CORRELATED X AND E 
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 we must consider alternative estimation procedures such as two-stage least squares, or instrumental 

variables estimation. 

1.2 Instrumental Variables Estimation 

Suppose that there is a variable, zi, called an instrumental variable, which satisfies the moment conditions 

( ) ( )1 20 0i i i i iE z e E z y x= ⇒ ⎡ −β −β ⎤ =⎣ ⎦  

( ) ( )1 20 0i i iE e E y x= ⇒ −β −β =  

The corresponding sample moment conditions are: 

( )
( )

1 2

1 2

1 ˆ ˆ 0

1 ˆ ˆ 0

i i

i i i

y x
N

z y x
N

−β −β =

−β −β =

∑

∑
 

Solving these equations leads us to method of moments estimators, which are usually called the 

instrumental variable estimators, 

( )( )
( )( )2

1 2

ˆ

ˆ ˆ

i ii i i i

i i i i i i

z z y yN z y z y
N z x z x z z x x

y x

− −−
β = =

− − −

β = −β

∑∑ ∑ ∑
∑ ∑ ∑ ∑  

These new estimators have the following properties: 

• they are consistent 

• in large samples the instrumental variable estimators have approximate normal distributions 

• the variance of the instrumental variables estimator is  

 ( )
( )

2

2 2 2
ˆvar

t zxx x r
σ

β =
−∑

, where 2
zxr  is the squared sample correlation between the instrument z 

 and the random regressor x.  

1.3 When Surplus Instruments Are Available 

Usually, however, we have more instrumental variables at our disposal than are necessary. For example, let 

w be a variable that is correlated with x but uncorrelated with e, so that we have a 3rd moment conditions 

 ( ) ( )1 2 0t t t t tE w e E w y x= ⎡ −β −β ⎤ =⎣ ⎦  
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An alternative that uses all of the moment conditions is to choose values for 1β̂  and 2β̂  satisfying the 3 

equations as closely as possible. The two-stage least squares estimation procedure satisfies this objective 

and can be implemented by (i) regressing x on a constant term, z and w, and obtain the predicted value x̂ ; 

and (ii) using x̂  as an instrumental variable for x. The resulting estimator is 

 
( )( )
( )( )2

1 2

ˆˆ
ˆ

ˆ ˆ

i i

i i

x x y y
x x x x

y x

− −
β =

− −

β = −β

∑
∑  

The appropriate estimator of the variance of 2β̂  is 

 ( )
( )

2

2 2

ˆˆˆvar
ˆ

IV

ix x
σ

β =
−∑

 

where ( )2
2

1 2
1 ˆ ˆˆ

2IV i iy x
N

σ = −β −β
− ∑ . The estimated variance can be used as a basis for t-tests of 

significance and interval estimation of parameters. 

1.4 The Hausman Test 

The ordinary least squares estimator fails if there is correlation between an explanatory variable and the 

error term. The instrumental variables estimator can be used when the least squares estimator fails. How do 

we test for the presence of a correlation between an explanatory variable and the error term, so that we can 

use the appropriate estimation procedure? Let the null hypothesis be ( )0 : cov , 0H x e = . If the null 

hypothesis is true, both the least squares estimator and the instrumental variables estimator are consistent. 

Thus, in large samples the difference between them converges to zero. That is, ( )ˆ 0ols IVq b= −β → . 

Naturally if the null hypothesis is true, use the more efficient estimator, which is the least squares 

estimator. 

 The alternative hypothesis is ( )1 : cov , 0H x e ≠ . If the alternative hypothesis is true, the least 

squares estimator is not consistent, and the instrumental variables estimator is consistent, so 

( )ˆ 0ols IVq b c= −β → ≠ . If the null hypothesis is not true, we should use the instrumental variables 

estimator, which is consistent. 
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 There are several forms of the test for these null and alternative hypotheses. One form of the test 

directly examines the differences between the least squares and instrumental variables estimator, as we 

have described above. Many computer software programs implement this contrast test for the user. An 

alternative form of the test is very easy to implement. In the regression 1 2i i iy x e= β +β +  we wish to know 

whether x is correlated with e. Let iz  be an instrumental variables for xi. Then carry out the following 

steps: 

• Estimate the model 0 1i i ix a a z v= + +  by least squares, and obtain the residuals 0 1ˆ ˆ ˆi i iv x a a z= − − . 

If there are more than one explanatory variables that are questionable, repeat this estimation for 

each one, using all available instrumental variables in each regression. 

• Include the residuals computed in step 1 as an explanatory variable in the regression, 

1 2 ˆi i i iy x v e= β +β + δ + . Estimate this "artificial regression" by least squares, and employ the usual 

t-test for the hypothesis of significance 

 
( )
( )

0

1

: 0 no correlation between  and 

: 0 correlation between  and 

H x e

H x e

δ =

δ ≠
 

• If more than one variable is suspect, the test will be an F-test of joint significance of the 

coefficients on the included residuals. 

1.5 Mroz Supply Equation 

To illustrate the tests described above, we use a popular text book example. Example 9.5 in Wooldridge 

[Econometric Analysis of Cross-Section and Panel Data] is based on Mroz (1987). Based on a sample of 

428 working women in 1975 we wish to estimate the labor supply function 

 ( )log , , , , 6, 6,hours f wage educ const age kidslt kidsge nwifeinc= ⎡ ⎤⎣ ⎦  

We will use the software Stata, Version 9.2 and actually list the commands required for each alternative 

test. The single instrumental variable experience (exper) will be employed. 

 The contrast test is obtained by applying instrumental variables estimation (the IVREG2 

command), followed by the least squares estimation (the REG command). After each estimation the results 

are stored for later recall. 
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. ivreg2 hours (lwage=exper) educ age kidslt6 kidsge6 nwifeinc 

. estimates store iv 

. reg hours lwage educ age kidslt6 kidsge6 nwifeinc 

. estimates store ls 

The contrast test is implemented using the HAUSMAN command. 

. hausman iv ls 

The test result that is reported is 

                 ---- Coefficients ---- 
             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B)) 
             |       iv           ls         Difference          S.E. 
-------------+---------------------------------------------------------------- 
       lwage |    1772.323    -17.40781        1789.731        586.8068 
        educ |    -201.187    -14.44486       -186.7422         66.9675 
         age |   -11.22885    -7.729976       -3.498876        8.867692 
     kidslt6 |   -191.6588    -342.5048         150.846        166.4163 
     kidsge6 |   -37.73247    -115.0205        77.28804        55.07016 
    nwifeinc |   -9.977746    -4.245807       -5.731939        6.104631 
------------------------------------------------------------------------------ 
                          b = consistent under Ho and Ha; obtained from ivreg2 
          B = inconsistent under Ha, efficient under Ho; obtained from regress 
 
    Test:  Ho:  difference in coefficients not systematic 
 
                  chi2(6) = (b-B)'[(V_b-V_B)^(-1)](b-B) 
                          =        9.30 
                Prob>chi2 =      0.1573 
 

Note that the test statistic is reported to be chi-square with 6 degrees of freedom, and a p-value of .1573. 

Based on these results we would (incorrectly) fail to reject the null hypothesis that log(wage) is 

uncorrelated with the regression error. The degrees of freedom for this test reflect that the contrast is based 

on a comparison of the regression coefficients other than the intercept. In carrying out the contrast test it is 

more conventional to include the intercept in the contrast, and this is achieved by making a simple 

modification to the HAUSMAN command. 

. hausman iv ls, constant 
 
    Test:  Ho:  difference in coefficients not systematic 
 
                  chi2(7) = (b-B)'[(V_b-V_B)^(-1)](b-B) 
                          =        9.30 
                Prob>chi2 =      0.2317 

 

The chi-square test now has 7 degrees of freedom, and the reported p-value is .2317, again leading to 

failure to reject the null hypothesis that log(wage) is exogenous2.  

                                                      

2 This test is also the default in SAS’s PROC MODEL. 
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Stata provides several other options with the HAUSMAN command. The option SIGMAMORE 

forces the contrast test to use the estimator of 2σ  based on the least squares estimates. Applying this 

command, along with the CONSTANT option yields 

. hausman iv ls, constant sigmamore 
 
    Test:  Ho:  difference in coefficients not systematic 
 
                  chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B) 
                          =       33.56 
                Prob>chi2 =      0.0000 

 

The chi-square test statistic is now reported to have but one degree of freedom and the p-value is zero to 

four decimals. With this simple option we have obtained a totally different result. 

 The option SIGMALESS forces the contrast test to use the estimator of 2σ  based on the 

instrumental variables estimates. Applying this command, along with the CONSTANT option yields 

. hausman iv ls, constant sigmaless 
 
    Test:  Ho:  difference in coefficients not systematic 
 
                  chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B) 
                          =        9.51 
                Prob>chi2 =      0.0020 
 

This test results in a chi-square statistic with one degree of freedom, a test statistic value that is close to the 

default test statistic value, yet a p-value of .002, leading us to reject the null hypothesis that log(wage) is 

not correlated with the regression error. 

 Stata provides a further option using the IVREG2 post-estimation command IVENDOG. This 

command yields 

. ivendog 
 
Tests of endogeneity of: lwage 
H0: Regressor is exogenous 
    Wu-Hausman F test:                 36.37992  F(1,420)    P-value = 0.00000 
    Durbin-Wu-Hausman chi-sq test:     34.11764  Chi-sq(1)   P-value = 0.00000 

 

Now we are presented with an F-test, with one numerator degree of freedom indicating that one hypothesis 

is being tested, and a chi-square test with one degree of freedom, but with a different numerical value than 

any of the previous chi-square values. 

 Finally, we can implement the regression based test in Stata using a few simple commands. 

. reg lwage exper educ age kidslt6 kidsge6 nwifeinc 
 
. predict v, residuals 
 
. reg hours lwage educ age kidslt6 kidsge6 nwifeinc v 
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------------------------------------------------------------------------------ 
       hours |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       lwage |   1772.323   301.2612     5.88   0.000     1180.156    2364.491 
        educ |   -201.187   35.44555    -5.68   0.000    -270.8598   -131.5142 
         age |  -11.22885   5.342384    -2.10   0.036    -21.72999   -.7277101 
     kidslt6 |  -191.6589   99.25389    -1.93   0.054    -386.7551      3.4374 
     kidsge6 |  -37.73248   32.26388    -1.17   0.243    -101.1513    25.68631 
    nwifeinc |  -9.977746   3.637582    -2.74   0.006    -17.12788   -2.827612 
           v |  -1844.847   305.8648    -6.03   0.000    -2446.063    -1243.63 
       _cons |   2478.435   332.2004     7.46   0.000     1825.453    3131.417 
------------------------------------------------------------------------------ 

 

The t-statistic value for included residuals is −6.03, leading us to reject the null hypothesis that its 

coefficient is zero, and leading us to include that log(wage) is indeed endogenous. A quick calculation 

shows that the square of this t-statistic is the F-value reported by IVENDOG. 

 Why are there so many options? Why do some options imply that one hypothesis is being tested, 

and others imply that we testing a number of hypotheses equaling the number of model parameters, or one 

less than the number of model parameters? These are the questions that motivated this dissertation.  

 In Chapter 2 the asymptotic theory related to the tests is explored, and it is shown that the correct 

number of degrees of freedom for this test of endogeneity is the number of potentially endogenous 

variables in the regression that are being tested, in our example this is one. However other issues arise in 

each example related to the degree of endogeneity of the variables under scrutiny, and the number and 

strength of the available instrumental variables. If all available instruments are weak no test or instrumental 

variables estimation procedure is reliable. We explore the power of the alternative tests using Monte Carlo 

experiments, and compare these results to those previously reported in the literature. As to why software 

companies provide users with a default chi-square test with the wrong number of degrees of freedom is 

unclear. Our guess is that being able to compute many contrast tests, in many contexts, with the same code 

is powerfully attractive, yet in the context of the problems we consider fatally flawed. 

 Furthermore, all of the standard theory reviewed in Chapter 2 is developed under the assumption 

of homoskedastic errors. Most applications of tests for endogeneity are carried out with cross-sectional, or 

panel, data. In such data we routinely anticipate heteroskedasticity problems. Chapter 3 examines how the 

classical tests, and some alternatives, perform under heteroskedasticity. We are able to conclude that the 

preferred test is the t-test in the artificial regression, or the F-test if several potentially endogenous 
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regressors are being tested, perhaps made robust by one form or another of a heteroskedasticity corrected 

covariance matrix. 

 Wong (2000) applied bootstrapping to obtain the critical value of the chi-square test for 

endogeneity. This approach is attractive as it should give tests of closer to proper size in finite samples. In 

recent years the explosion of literature on bootstrapping has included alternatives that may be effective 

when errors are heteroskedastic. We explore using bootstrapped tests in Chapter 4. 

 In Chapter 5 the tests for endogeneity in Chapters 3 and 4 are extended to exponential regression 

models for count data. A contrast test follows from recently developed instrumental and GMM estimators 

for count data models. In addition, Wooldridge (2002) suggests that an LM test similar to the regression 

based test for endogeneity can be employed. We consider these tests as well as those based upon a GMM 

estimator obtained by stacking moment conditions from the restricted and unrestricted models, as 

suggested by Creel (2004). Final remarks and questions for further consideration are in Chapter 6. 
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2. THE DURBIN-WU-HAUSMAN TESTS UNDER HOMOSKEDASTICITY 

2.1 Literature Review  

The idea that if a model is correctly specified, estimates by any two consistent methods should be close to 

each other, was introduced by Durbin (1954). Wu (1973, 1974) used a similar approach and suggested four 

tests for testing the assumption that regressors in the linear regression model are statistically independent 

of the disturbance term. The statistics are computationally cumbersome and thus they have not been used 

in empirical studies.  His theoretical and Monte Carlo results (based on one endogenous regressor, two 

included and two excluded instruments model) indicated that the test statistics called T2 has better 

properties than the other tests. He also suggested that the choice of the estimation method should be not 

only based on the correlation between the regressors and the error term but also on the coefficients of the 

first stage regression. Wu (1974) proposed the test T2 to be the basis for a new estimator (the pre-test 

estimator) that is equal to the OLS estimator if the null of regressor’s exogeneity is accepted and is equal to 

the IV estimator if the null is rejected. The computationally more convenient Hausman (1978) test is based 

on looking for a statistically significant difference between an efficient estimator under the null hypothesis 

of no misspecification and a consistent estimator under the alternative hypothesis that misspecification is 

present. There are more versions of the test depending on which estimators of the asymptotic covariance 

matrix are used.  Nakamura and Nakamura (1981) proved that the Hausman test statistics are equivalent to 

the statistics proposed by Durbin (1954) and Wu (1973, 1974). The version of the Hausman statistic that 

uses the OLS estimate of the error variance is equivalent to the test statistic proposed by Durbin (1954) and 

separately by Wu (1973) (his T4 statistic, which is a monotone transformation of T2, thus has the same 

properties.).  The version of the Hausman statistic that is formed using the IV estimate of the error variance 

was also first proposed by Wu (1973) (his T3 statistic).  

Asymptotically, all the different versions of the test statistic have a chi-square distribution, with 

degrees of freedom equal to the number of potentially endogenous regressors at most as Hausman and 

Taylor (1981) demonstrated. However, the rank of the covariance matrix that is usually reported is the 

dimension of the whole parameter vector.  
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In the following, we present another case where the routinely used (SAS computed) Hausman test 

statistics leads to partially incorrect conclusions about regressors endogeneity. Gaston and Trefler (1994) 

investigate the effects of international trade policy on wages in U.S. manufacturing industries in 1983.  In 

their data, tariffs and non-tariff barriers are negatively correlated with industry wage premium meaning 

that wages in protected industries are lower than in unprotected industries. The correlation is economically 

large. One explanation of the high correlation could be that the impact of tariffs reflects the endogeneity of 

protection, that the level of wages influences the decision to protect an industry, in this case policy makers 

protect low-wage industries. However, Gaston and Trefler (1994) find no evidence of such process. In 

Table 4 (p. 582), they present results of the OLS and 2SLS regression of the wage premium on tariffs, non-

tariff trade barriers, exports, imports, import growth, intra-industry trade and a constant.  To test for 

endogeneity of protection (tariffs and non-tariff trade barriers), they compute the Hausman test statistic and 

compare it to the critical value of a chi-square distribution with 7 degrees of freedom, which is the total 

number of regressors. The value of the test statistic is 5.95, thus they find no evidence in favor of 

endogeneity of protection. However,  if we use the number of degrees of freedom equal to the number of 

potentially endogenous regressors (two), the test rejects protection exogeneity at 10% and fails to reject it 

at 5% very marginally (the critical value of a chi-square distribution with 2 degrees of freedom is 5.99).   

 One of the reasons for the incorrect number of degrees of freedom computed is that in finite 

samples, the Hausman test statistic can have a distribution that is different from the one predicted by the 

asymptotic theory, especially if we do not make the assumptions of the classical normal model. Kariya and 

Hodoshima (1980) show that under the assumption of normal disturbance terms the exact conditional 

distribution of the Wu-Hausman statistic is the double non-central F distribution. They prove the non-

unbiasedness (or biasedness) of the test when the critical point is greater than the ratio of the denominator 

and numerator degrees of freedom. The non-unbiasedness (biasedness) of the test implies that when the 

alternative is true, there exist some parameter points in which acceptance of the null is more likely than in 

the case where the null hypothesis is true thus, the type II error of the test may be relatively high. The 

Hausman test that uses the OLS estimate of the error variance seems to have the best properties. It has an 

asymptotic distribution that is a mixture of a non-central chi-square distribution with a random non-

centrality parameter. Under the null it converges to a chi-square distribution. When the instruments are 
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relevant, the stronger the instruments, the fewer the number of instruments and the stronger the 

endogeneity, the higher the power of the test. Under the alternative, the Hausman test with the OLS 

estimate of the error variance has greater asymptotic power than the tests that use the difference of the 

covariance matrices or the IV estimate of the error variance.  

When the instruments are irrelevant, in general the two-stage least squares estimator is not 

consistent and has a nonstandard asymptotic distribution. Maddala and Jeong (1992) examine the behavior 

of the IV estimator in the one-regressor-one instrument model when the correlation between the regressor 

and the instrument is very low. Their results indicate that standard statistical inference in such 

circumstances may be very misleading. As Nelson and Starz (1990a, b) and Bound, Jaeger and Baker 

(1995) find, the 2SLS estimator is biased in the direction of the OLS estimator, and the 2SLS standard 

error is small relative to the bias. Buse (1992) shows that there is no systematic relationship between bias 

and the number of instruments. The estimated bias will increase with the number of excess instrumental 

variables only if the proportional increase in the number of instruments is faster than the rate of increase in 

R2 measured relative to the fit of the endogenous variables on the exogenous variables. Blomquist and 

Dahlberg (1999) also study the small sample performance of the 2SLS, the LIML and four new jackknife 

IV estimators under weak instruments. They find that the LIML and the new jackknife estimators have a 

smaller bias but a larger variance than the 2SLS. In terms of root mean square error, neither LIML nor the 

new estimators perform uniformly better than the 2SLS. The properties of the estimators are specific to 

each data-generating process and sample size. To obtain reliable estimates, better instruments and/or larger 

samples are required. Staiger and Stock (1997) propose reporting the first stage F statistics and/or the bias 

measures. Shea (1997) suggests a simple partial R2 measure of instrument relevance for multivariate 

models. However, Hall, Rudebusch and Wilcox (1996) show that such pretesting does not appear to work 

and may even make matters worse as far as test reliability is concerned. Their simulation results indicate 

that a use of relevance measures may actually exacerbate the poor finite-sample properties of the IV 

estimator as also described by Nelson and Starz (1990a, b): “The probability distribution of the IV 

estimator based on a “good” instrument (as identified by the use of a relevance statistic as a screening 

device) can be even more distorted than the one based on a random (unscreened) instrument. This error 

arises because those instruments that are identified as having high relevance for the regressors in the 
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sample are also likely to have higher endogeneity in the sample.”  Hall, Rudebusch and Wilcox (1996)  

recommend that we do not rely  on asymptotic theory but focus on an analysis of the distributions of the 

estimated parameters and hypothesis tests conditional on the realized value of the relevance statistic. In our 

case we should take into account the sample correlation between regressors and instruments.  

Since the finite-sample distribution of IV estimators departs noticeably from the asymptotic 

normal distribution under low relevance of instruments, the asymptotic distributions of test statistics and 

variance estimators are also nonstandard. Conventional asymptotics treat the coefficients on the 

instruments in the first stage as nonzero and fixed which implies that the F statistic increases to infinity 

with the sample size. Thus, when the means of these F statistics are small, these asymptotic 

approximations break down as demonstrated by Wang and Zivot (1998). Staiger and Stock (1997) show 

that in the case of a single potentially endogenous variable the distribution of the IV esimator depends on 

the number of instruments and the noncentrality parameter whose limit is a noncentral Wishart random 

variable. The noncentrality parameter is not consistently estimable and thus asymptotically valid 

confidence regions cannot be constructed by directly inverting the statistics. Staiger and Stock (1997) 

suggest Anderson-Rubin confidence regions and confidence regions based on Bonferroni’s inequality. 

However, as Revankar (1978) demonstrates the Anderson-Rubin test statistic is less efficient than the Wu 

statistics and also less efficient than the likelihood ratio test, as shown by Hwang (1980), but it is easier to 

compute. Conversely, Davidson and MacKinnon (2006) found that under weak instruments, none of the 

Student’s t (or Wald), Kleibergen’s K (2002), likelihood ratio and the Anderson-Rubin (1949) test statistics 

has any real asymptotic power against local alternatives.  

In the following, we compare the size and power of the alternative versions of the Hausman test 

and related classical tests under homoskedasticity, investigate the impact of the strength of the instruments 

and show that the usual version of the test is not always the best option.  

2.2 Contrast Tests   

The linear regression model is y X u= β + . Initially we consider that the errors are homoskedastic with 

variance 2σ , thus 2( )V u I= σ . Let the n × K matrix of explanatory variables X  [ ( ) 0XXplim X X n Q′ = ≠ ] 

be partitioned as [ ]1 2X X X= , where  
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• X1 is n × K1 and potentially endogenous, ( ) 01plim X u n′ ≠ , and 

• X2 is n × K2 and assumed exogenous, ( ) 02plim X u n′ =   

Assume that there is an n × L matrix [ ]1 2Z Z X=  of instruments that are uncorrelated with the error, 

( ) 0plim Z u n′ = .  X2 contains the included or “internal” instruments. The matrix Z1 is n × L1 and 

comprises the excluded or “external” instruments, which do not appear in the regression equation. Valid 

instruments must also be correlated with the regressors so that ( ) 0ZXplim Z X n Q′ = ≠ .  

The number of instruments L = L1 + K2 must be greater than or equal to the number of regressors K. So 

L1, the number of external instruments, must be greater than or equal to K1, the number of potentially 

endogenous variables. This is the necessary order condition. We also assume that ZXQ  is of full rank K. 

The least squares estimator ( ) 1ˆ
OLS X X X y−′ ′β =  is consistent if X and u are uncorrelated, and with 

homoskedastic errors ( ) ( ) 12ˆ
OLSV X X −′β = σ  with ( ) ( ) ( )2 ˆ ˆˆ OLS OLS OLSy X y X n K′σ = − β − β − . If X and u are 

correlated then the least squares estimator is inconsistent. Define the matrix ( ) 1
ZP Z Z Z Z−′ ′= . A 

consistent estimator is the instrumental variables (IV) estimator ( ) 1ˆ
IV Z ZX P X X P y−′ ′β =  which has 

covariance matrix ( ) ( ) 12ˆ
IV ZV X P X −′β = σ  and ( ) ( ) ( )2 ˆ ˆˆ IV IV IVy X y X n K′σ = − β − β − . If X is uncorrelated 

with the error then the ˆ
IVβ  estimator is inefficient relative to ˆ

OLSβ . In fact it can be quite a bit less efficient, 

depending on the quality of the instruments. 

If we are not sure about the endogeneity of a subset of regressors then we can resort to a test belonging 

to the Durbin-Wu-Hausman (DWH) family. If we define ( )ˆ ˆ
IV OLSq = β −β  then the Hausman (1978) test 

statistic is ( ) ( )ˆ ˆ
IV OLSH q V V q

+
⎡ ⎤′= β − β⎣ ⎦  where “+” denotes a generalized inverse. Under the null 

hypothesis that both estimators are consistent [or that X1 is uncorrelated with the error term] then ( )1

2~a KH χ  

(see Appendix) . However, within class of contrast (comparing two estimators) tests there are a number of 

options 
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a. ( ) ( )1
ˆ ˆ

IV OLSH q V V q
+

⎡ ⎤′= β − β⎣ ⎦  and ( )1

2
1 ~a KH χ  

b. ( ) ( )1
ˆ ˆ

s IV OLSH q V V q
+

⎡ ⎤′= β − β⎣ ⎦  and 
( ) ( )( )

2
1 ˆ ˆ~

IV OLS

a
s rank V V

H
⎡ ⎤β − β⎣ ⎦

χ . This is the default in SAS. In STATA 

the default omits the contrast of constant terms. The constant is included with an extra option. The 

SAS computation is H = q’*ginv(v0-v1)*q, and the degrees of freedom as 

df=round(trace(ginv(v0-v1)*(v0-v1))). As a reminder, the STATA default is the 

contrast excluding the constant term, and with degrees of freedom equaling the rank of the 

resulting covariance difference, which is usually K − 1 and not K1 unless all regressors are 

potentially endogenous. 

c. ( ) ( ){ }1 12
2 ˆ IV ZH q X P X X X q

+− −⎡ ⎤′ ′ ′= σ −⎣ ⎦  and ( )1

2
2 ~a KH χ  [STATA SIGMALESS option] 

d. ( ) ( ){ }1 12
3 ˆ OLS ZH q X P X X X q

+− −⎡ ⎤′ ′ ′= σ −⎣ ⎦  and ( )1

2
3 ~a KH χ  [STATA SIGMAMORE option]) 

e. ( ) ( ){ }1 12
3 ˆa ML ZH q X P X X X q

+− −⎡ ⎤′ ′ ′= σ −⎣ ⎦  where ( ) ( )2 ˆ ˆˆ ML OLS OLSy X y X n′σ = − β − β  and ( )1

2
3 ~aa KH χ  

[STATA IVENDOG option following IVREG2; Durbin-Wu-Hausman chi-sq test. See 

Baum, Schaffer and Stillman (2003)].  

2.3 Artificial Regression Version 1 

In addition to the contrast tests there are some auxiliary regression equivalents. Consider the contrast 

vector 

(2.1) 

( ) ( )
( ) ( )

( ) ( )( )
( )

1 1

1 1

1 1

1

ˆ ˆ
IV OLS

Z Z

Z Z Z

Z Z

Z Z X

q

X P X X P y X X X y

X P X X P y X P X X X X y

X P X X P I X X X X y

X P X X P M y

− −

− −

− −

−

= β −β

′ ′ ′ ′= −

⎡ ⎤′ ′ ′ ′ ′= −⎣ ⎦
⎡ ⎤′ ′ ′ ′= −
⎣ ⎦

′ ′=

 

The test of whether 0q →  asymptotically is equivalent to testing whether Z XX P M y′  has zero mean 

asymptotically. The matrix of fitted values in the reduced form regression of X on Z   
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( ) 1
1 2

ˆ ˆ
ZP X Z Z Z Z X X X X− ⎡ ⎤′ ′= = = ⎣ ⎦  and 1

ˆ ˆ 0X XM X M X⎡ ⎤= ⎣ ⎦ . Thus the portion of Z XX P M y′  that is 

relevant is 1 Z XX P M y′ . Defining 1X ZP M P X= , consider the artificial regression 

(2.2) * *
1 1

ˆ
Zy X P X error X X error= β + δ + = β + δ +  

We use *β  to distinguish from the instrumental variables estimator since they are not numerically equal. 

Applying the Frisch-Waugh-Lovell (FWL) Theorem we obtain 

(2.3) 1X X ZM y M P X error y P error= δ + ⇒ = δ +  

It follows that the test for 0δ =  is testing for zero correlation between residuals from the regression of y on 

X and some transformation of the potentially endogenous regressors. The least squares residuals from (2.3) 

are 

( ) 1
1 1 1 1

ˆ
X X Z Z X Z Z X XPy P M y M P X X P M P X X P M y M M y−′ ′− δ = − = ,  

where ( ) 1
1 1 1 1X Z Z X Z ZPM I M P X X P M P X X P−′ ′= − . 

The unrestricted sum of squared residuals un X XPSSR y M M M y′=  and an estimator of the error variance 

that is consistent under the null hypothesis that 0δ =  is ( )2
1unSSR n K Kσ = − − . Under the null 

hypothesis that 0δ = , the restricted model is the usual regression model with rest XSSR y M y′= . Taking the 

difference we obtain 

( ) ( ) 1

rest un X X X X XP PSSR SSR y M y y M M M y y M I M M y y P P P P y
−

′ ′ ′ ′ ′ ′− = − = − =  

using the fact that XM P P= . Therefore a test that is asymptotically equivalent to the Hausman test is an 

F-test of the null hypothesis that 0δ =  in the artificial regression (2.2), with the test statistic being 

(2.4) 
( )

1 1

1

,2
1

~aDWH K n K K

y P P P P y
F F

K

−

− −

′ ′ ′
=

σ
 

2.4 Artificial Regression Version 2 

An alternative version of the artificial regression is  

(2.5) 1 1 1 1
ˆ ˆ( )Zy X M X error X X X error X V error= β + η+ = β + − η+ = β + η+  
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In this regression instead of augmenting the original model with the predicted values of the endogenous 

regressors from the reduced form, we add to the original model the residuals from reduced form equations. 

The F-test that results is identical to the earlier one because 

1X X ZM y M M X error= η+  

Note that  

( )1 1 1 1 1X Z X Z X X Z X ZM M X M I P X M X M P X M P X= − = − = −  

since 1 0XM X = . So the regression 

( )1 1 1X X Z X Z X ZM y M M X error M P X error M P X error= η+ = −η + = δ +  

has the same sum of squared residuals as in the earlier case (2.2), and thus the F-test of 0η =  in (2.5) is 

identical to that for 0δ =  in (2.4). This test is referred to in STATA (STATA IVENDOG option following 

IVREG2) as the Wu-Hausman F-test. 

This version of the artificial regression has another convenient property. The least squares 

estimator of β in (2.5) is numerically equal to the instrumental variables estimator ˆ
IVβ . To see this write 

1

2

Z

Z

y X M X error

X M X error

= β + η+

η⎡ ⎤
= β + +⎢ ⎥η⎣ ⎦

 

This follows because  

[ ] [ ]1 2 1 2 1 1 1
ˆ ˆ ˆ 0 0Z ZM X X X X X X X X X M X⎡ ⎤ ⎡ ⎤= − = − = − =⎣ ⎦ ⎣ ⎦  

Let ZX M X=  and ( ) ( )
1 1

Z Z ZXM I X X X X I M X X M X X M
− −′ ′ ′ ′= − = − . Then we can apply the FWL 

theorem again to the artificial regression 

2
Zy X M X error X X error

η⎡ ⎤
= β + + = β + η+⎢ ⎥η⎣ ⎦

 

Multiplying both sides by XM  we obtain 

(2.6) ˆ
X XM y M X error X error= β + = β +  

since 

( ) 1 ˆ
Z Z Z Z ZXM X X M X X M X X M X X M X P X X−′ ′= − = − = = .  
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The least squares estimator from (2.6) is then 

( ) 1ˆ ˆ ˆ ˆ
XX X X M y

−
′ ′β =  

Multiplying out the final term we find 

( )( )
( )( )

1

1

ˆ ˆ

ˆ

Z Z ZX

Z Z Z Z

Z

X M y X I M X X M X X M y

X P I M X X M X X M y

X P y X y

−

−

′ ′ ′ ′= −

′ ′ ′= −

′ ′= =

 

since 0Z Z Z ZP M P P= − = . Therefore 

( ) ( )1 1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
IVXX X X M y X X X y

− −
′ ′ ′ ′β = = = β  

2.5 Other Classical Tests Equivalents  

There are also other classical tests equivalents. Silvey (1959), Engle (1984), Holly (1982), Andrews and 

Fair (1988) demonstrated that  under very general conditions, the LR, LM, Wald and the Hausman test 

statistics are locally equivalent. Another way how to obtain the Hausman test statistics is to multiply the 

squared multiple correlation coefficient R2 of the ordinary least squares regression of the constant unity on 

the original regressors and the reduced form errors by the number of observations n. The product nR2 is 

asymptotically distributed as chi-square with degrees of freedom equal to the number of endogenous 

regressors (White (1987)). Ruud (1984) and Newey (1985) also show that tests asymptotically equivalent 

to the Hausman test can be computed as the score test. Davidson and MacKinnon (1990) show that for any 

test statistic that can be computed with artificial regression (for example a LM test) there is a Durbin-Wu-

Hausman version that can be based on similar artificial regression. Holly and Monfort (1986) describe 

cases where quadratic forms based on linear combinations of the constrained and unconstrained estimators 

of all the parameters of a model are asymptotically equivalent to the classical test statistics. Their main 

result is that the rank of appropriate information matrices should be equal to the number of parameters of 

primary interest so that no information is lost. Newey and McFadden (1994, p. 2222) and Gourieroux and 

Monfort (1989, p. 73) demostrate the asymptotic equivalence of comparable classical-type and Hausman-

type statistics constructed with the information matrix-type equality imposed and not imposed, 
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respectively. Dastoor (2003) shows the equality of comparable extended families of classical type and 

Hausman-type statistics.  

2.6 The Estimators under Homoskedasticity 

Though it is not a primary objective in our study, we do report the Monte Carlo means of the alternative 

estimators and their root-mean-squared-errors (RMSE) for the slope parameters. The coefficients of the 

potentially endogenous regressors X1 are of primary interest. The estimators whose performance we report 

are OLS (b2OLS), instrumental variables (b2IV) and optimal 2-step GMM (b2GMM). In addition we report 

results for the pre-test estimators using the usual t-statistic. This estimator is  

 2
2

2

if  < 
if   

OLS c
pt

IV c

b t t
b

b t tα

⎧
= ⎨ ≥⎩

 

where tc is the critical value for a t-distribution with n − K − 1 (degrees of freedom from the artificial 

regression) at significance level α = .05 (b2pt05) or α = .20 (b2pt20). Similarly we define a pre-test estimator 

defined on the default SAS statistic ho1s 

 
2

2 1
2 2

2 1

if   
if   

OLS s c
pt s

IV s c

b H
b

b Hα

⎧ < χ⎪= ⎨
≥ χ⎪⎩

 

2.7  A Monte Carlo Experiment under Homoskedasticity 

We adopt a slight variation of the Monte Carlo set up of Creel (2004). For the most part we use 40,000 

simulations. Using Cameron and Trivedi’s [2005, p. 252] test size calculation, this implies that the half-

width of 95% interval estimates for the .01, .05, .10 and .20 test sizes will are 0.00098, 0.00214, 0.00294, 

and 0.00392 respectively 3. We consider the regression 

(2.7) 1 2 0y x u x u= β +β + = + +  

Data are generated by specifying 

(2.8) 

1 2 3

1

2 41

3 42

10
1 0 00

~ ,
0 10
0 10

x
v

N
z
z

⎛ ⎞ρ ρ ρ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ρ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ρ ρ
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ρ ρ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

 

The key features are that 

                                                      

3 Creel used 100,000 simulations: the half-widths are 0.00062, 0.00135, 0.00186, 0.00248 



 

 

 

22

• endogeneity is controlled by the parameter 1ρ  which takes the values 0, .1, .2, .3, .4 and .5 

• the strength of the instruments is controlled by 2ρ  and 3ρ  which take the values .1, .3 and .5 

• the correlation between the instruments is controlled by 4ρ  which takes the values 0 and .5 

• samples of sizes n = 100 and n = 200 are considered. 

Our choice of parameter values is limited by the necessity of positive definiteness of the data generating 

process covariance matrix. Previous literature mostly uses just-identified models with one endogenous 

regressor. We choose two instruments and report results for models with two moderate, two strong 

instruments and one strong and one moderate instrument since we expect the test performance to be highly 

dependent on the instrument strength. For future reference, the various symbols are summarized below:  

• n = sample size 

• ρ1 controls endogeneity 

• ρ2 controls strength of IV #1 

• ρ3 controls strength of IV #2 

• ρ4 correlation between instruments 

• α = nominal level of significance 

• ho1 = H1 contrast with K1 = 1 df 

• ho1s = H1 contrast with K = 2 df [SAS default and STATA default with CONSTANT option] 

• ho2 = H2 contrast with IV variance estimator [sigmaless] 

• ho3 = H3 contrast with OLS variance estimator [sigmamore] 

• ho3a = H3a contrast with MLE variance estimator [Wu-Hausman chi-square] 

• t = t test of residual coefficient in auxiliary regression [DWH F-test] 

2.8 Discussion of Asymptotic Results under Homoskedasticity 

We report the results for just a few scenarios of instrumental variable strength: Case 1 has two strong 

instruments, both having correlation .5 with the endogenous regressor. Case 2 is two moderately strong 

instruments, both having correlation .3 with the endogenous regressor. Case 3 has one strong instrument 

(.5 correlation) and one weak instrument (.1 correlation). When both instruments are weak none of the tests 
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performs well. In all reported results the instruments are uncorrelated with each other. If the instruments 

have a .5 correlation, power is slightly reduced.  

2.8.1 The Effect of Sample Size 

All the results can be found in an appendix that is available upon request. Here we point out a few findings. 

In Table 2.1 we consider the effect of sample size. The “Table” numbers within the table body refer to its 

location in the appendix tables that can be provided upon request. Sample sizes n = 100 and 200 are 

examined and we have assumed one strong and one weak instrument. The effect of having a larger sample 

on test power is dramatic, which in itself is troubling since we have only 1 regressor. One would think that 

100 observations constitutes a “large sample” with a simple regression, but this is not so. 

 When the endogeneity control 1 0ρ =  the tests should reject with frequency α. The contrast test 

ho1s, the SAS/STATA default test, fails this criterion horribly for both sample sizes shown in Table 2. For 

example, α = .05 the rejection frequency for ho1s when n = 100 is .00462, and when n = 200 it is .00958. 

The test ho1, which is based on separate error variance estimates for OLS and IV estimation, but uses the 

correct degrees of freedom, K1 = 1, has size that is too low. The same is true of ho2, the contrast test with 

the IV estimate of the variance. The other tests seem to have about the right size most of the time. 

However, the size of the t-test does not improve with a larger sample size. The pattern is more noticeable 

under weak instruments.  As shown by Nelson and Startz (1990b), under weak instruments, the bias of the 

instrumental variable estimator may increase with larger sample size and lower degree of endogeneity. 

Consequently, test size distortions may be worse in larger samples. 

 In the second part of the table, Table 2.1a, we show the size corrected power of these tests. They 

are virtually identical, with ho3, ho3a and the t-test having a slight power edge at the third decimal. Thus 

the problems of the tests ho1, ho1s and ho2 seem to be associated with incorrect size.  

2.8.2 The Effect of Instrument Strength 

In Table 2.2 and Figure 2.1 we report 3 cases with n = 100. The rejection frequencies in the top panel 

correspond to the case with two strong instruments, the second panel to two weaker instruments, and the 

third panel to one strong and one weak instrument. When two strong instruments are available all the tests, 

except ho1s, reject the exogeneity of the suspect variable in excess of 80% of the samples with a 
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correlation between the endogenous regressor and error of 1 .3ρ = . Even with two strong instruments 

(recall that there is only one potentially endogenous regressor) the sizes of ho1, ho1s and ho2 are too 

small. Figure 2.2 compares the effect of instrument strength on individual tests. If we have two weaker 

instruments, with correlation to the regressor 2 3 .3ρ = ρ = , all of the tests perform substantially worse at all 

degrees of endogeneity. We confirm that it is better to have one strong instrument than two weak ones, 

though even in this case the power of the tests is reduced relative to the case with two strong instruments. 

2.8.3 Estimator Bias Results 

The sample means of the estimators are pictured in Figure 2.3 for the homoskedastic case. Recall that the 

true value of β2 = 1. The bias in the OLS estimator increases with the degree of endogeneity of the 

regressor x. The instrumental variables estimators have virtually no bias even with n = 100. The pretest 

estimators behave predictably. For a given pretest estimator the bias is smaller when α = .20 is chosen 

since the null is rejected with greater frequency and the OLS estimator abandoned in favor of IV 

estimation. The pretest estimator based on the SAS 2
(2)χ  test is worse in terms of bias than the other pretest 

estimators because it leads to rejection of the null a smaller percentage of the time. In all cases the bias 

begins and ends at zero, with a positive “hump” in the middle owing to us finding ourselves in that 

shadowy twilight-zone of indecision between heaven (exogenous regressor not requiring any IV’s) and the 

other place (endogenous regressor requiring us to find good IV’s). 

2.8.4 Estimator RMSE Comparisons 

In Figure 2.4 we compare the root-mse’s of the alternative estimators. The RMSE of the OLS estimator 

exceeds that of the IV estimators when the degree of endogeneity 1 .2ρ ≥ . When the degree of endogeneity 

is low the OLS estimator is a better choice. The pretest estimator is never the best choice, but we find 

something interesting nonetheless. SAS’s test leads to a better pre-test estimator performance when the 

degree of endogeneity is low ( 1 .2ρ ≤ ) and performance that is at least comparable to the other pre-test 

estimators when 1 .3ρ = . Thus the SAS/STATA default test is “best” for the intrepid researcher who does  
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TABLE 2.1. PERCENT REJECTIONS (HOMOSKEDASTIC CASE) - EFFECT OF SAMPLE 
SIZE (rho2 = .5, rho3 = .1) 
 

              Table 3: Percent rejections, n=100, gamma=0, rho2=.5, rho3=.1  
 
 
                                           alpha=0.05                                             
 
             rho1      ho1        ho1s       ho2        ho3        ho3a        t 
 
              0.0    0.03103    0.00462    0.03492    0.04868    0.05100    0.04905 
              0.1    0.06015    0.01110    0.06678    0.08685    0.09035    0.08750 
              0.2    0.16303    0.04380    0.17625    0.21255    0.21893    0.21385 
              0.3    0.37157    0.14758    0.39082    0.44390    0.45280    0.44572 
              0.4    0.65575    0.36843    0.67393    0.72377    0.73070    0.72530 
              0.5    0.90073    0.70530    0.90950    0.93037    0.93302    0.93107 
 
 
 
              Table 6: Percent rejections, n=200, gamma=0, rho2=.5, rho3=.1  
 
 
                                           alpha=0.05                                             
 
             rho1      ho1        ho1s       ho2        ho3        ho3a        t 
 
              0.0    0.04310    0.00958    0.04482    0.05170    0.05310    0.05200 
              0.1    0.11480    0.03655    0.11910    0.13130    0.13325    0.13167 
              0.2    0.36412    0.17572    0.37222    0.39455    0.39837    0.39548 
              0.3    0.71972    0.50085    0.72570    0.74503    0.74838    0.74572 
              0.4    0.94747    0.85115    0.94952    0.95488    0.95588    0.95513 
              0.5    0.99825    0.98923    0.99835    0.99860    0.99862    0.99860 
 

Table 2.1a. Size Corrected Power 

 
Table 21: Size Corrected Power, n=100, gamma=0, rho2=.5, rho3=.1 

 
alpha=0.05 

 
rho1      ho1        ho2        ho3        ho3a        t 

 
0.0    0.05003    0.05003    0.05003    0.05003    0.05003 
0.1    0.08868    0.08868    0.08905    0.08905    0.08905 
0.2    0.21502    0.21502    0.21663    0.21663    0.21663 
0.3    0.44712    0.44712    0.44960    0.44960    0.44960 
0.4    0.72540    0.72540    0.72808    0.72808    0.72808 
0.5    0.93090    0.93090    0.93227    0.93227    0.93227 
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TABLE 2.2. PERCENT REJECTIONS (HOMOSKEDASTIC CASE) - EFFECT OF 
INSTRUMENT STRENGTH (n = 100)  
 
 
              Table 1: Percent rejections, n=100, gamma=0, rho2=.5, rho3=.5  
 
 
                                           alpha=0.05                                             
 
             rho1      ho1        ho1s       ho2        ho3        ho3a        t 
 
              0.0    0.04305    0.00833    0.04743    0.05185    0.05407    0.05225 
              0.1    0.14422    0.04793    0.15398    0.16425    0.16910    0.16512 
              0.2    0.48360    0.25853    0.50103    0.51818    0.52638    0.51992 
              0.3    0.86940    0.69960    0.87823    0.88633    0.89058    0.88740 
              0.4    0.99375    0.97162    0.99457    0.99503    0.99535    0.99513 
              0.5    0.99997    0.99980    0.99997    0.99997    0.99997    0.99997 
 
 
 
              Table 2: Percent rejections, n=100, gamma=0, rho2=.3, rho3=.3  
 
 
                                           alpha=0.05                                             
 
             rho1      ho1        ho1s       ho2        ho3        ho3a        t 
 
              0.0    0.02510    0.00290    0.02908    0.04963    0.05198    0.05017 
              0.1    0.03852    0.00500    0.04317    0.07118    0.07433    0.07175 
              0.2    0.09077    0.01553    0.10103    0.14815    0.15275    0.14920 
              0.3    0.20095    0.04805    0.21743    0.29288    0.29947    0.29433 
              0.4    0.38405    0.13003    0.40730    0.50550    0.51323    0.50738 
              0.5    0.64030    0.31525    0.66180    0.75120    0.75750    0.75257 
 
 
 
              Table 3: Percent rejections, n=100, gamma=0, rho2=.5, rho3=.1  
 
                                           alpha=0.05                                             
 
             rho1      ho1        ho1s       ho2        ho3        ho3a        t 
 
              0.0    0.03103    0.00462    0.03492    0.04868    0.05100    0.04905 
              0.1    0.06015    0.01110    0.06678    0.08685    0.09035    0.08750 
              0.2    0.16303    0.04380    0.17625    0.21255    0.21893    0.21385 
              0.3    0.37157    0.14758    0.39082    0.44390    0.45280    0.44572 
              0.4    0.65575    0.36843    0.67393    0.72377    0.73070    0.72530 
              0.5    0.90073    0.70530    0.90950    0.93037    0.93302    0.93107 
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FIGURE 2.1. PERCENT REJECTIONS UNDER HOMOSKEDASTICITY (n = 100) 
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FIGURE 2.2. PERCENT REJECTIONS UNDER HOMOSKEDASTICITY - EFFECT OF 
INSTRUMENT STRENGTH (n = 100) 
*si – two strong instruments, wi  – two weaker instruments, mi - one strong, one weak instrument 
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FIGURE 2.3. ESTIMATOR MEAN VALUES UNDER HOMOSKEDASTICITY (n = 100) 
*pt – pre-test estimators defined in Section 2.6 
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not know what to do, and whose regressor may be exogenous or slightly endogenous. This seems 

consistent with a large company view of “corporate conservatism” and providing a product for the general, 

non-technical, world. Figure 2.5 compares the impact of instrument strength on root-mse’s of the 

alternative estimators.  For low degrees of endogeity there is virtually no diference among the root-mse’s 

of the pre-test estimator based on the SAS’s test given various instrument strength. 

2.9 Bootstrapping under Homoskedasticity 

Wong (1996) shows that bootstrapping is a good alternative to usual asymptotic theory in the 

homoskedastic case. Bootstrapping allows to make inferences without making strong distributional 

assumptions and without the need for analytic formulas for the sampling distribution parameters. It obtains 

the empirical distribution function from data by treating the sample as if it were the  population and 

resampling it with replacement many times in order to generate an empirical estimate of the entire 

sampling distribution of a statistic. In order for the bootstrap to work we must accept that the empirical 

distribution function of the sample is good approximation of the population distribution function. Hall 

(1992) shows that bootstrap approximations converge at the rate n . This is the same as the standard 

asymptotic approximations, so we should not expect bootstrap methods to improve the rate of 

convergence. However, Hall demonstrated that if the bootstrap is applied to asymptotically pivotal 

statistics, it can provide asymptotic refinements. The rate of convergence of the bootstrap is increased to n 

for one-sided distributions and to 3n for symmetrical distributions. Thus, the bootstrap provides better 

small sample performance than traditional asymptotic inference procedures.  

We implement a bootstrapping approach to obtain superior finite sample critical values for our 

tests. We are interested in whether bootstrapping improves the performance of the Hausman-type tests and 

also the tests based on the artificial regression since the evidence especially under weak instruments is 

mixed. We compare the impact of the strength of the instruments and investigate whether  bootstrapping is 

an improvement over asymptotics.  

2.9.1 Bootstrapping Performance under Weak Instruments 

The weak-instrument asymptotic expression for the t statistics depends non-trivially on the parameters 

[Staiger and Stock (1997)]. Dufour (1997) demonstrates that Wald-type statistics depending on values of a 
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FIGURE 2.4. ESTIMATOR RMSE UNDER HOMOSKEDASTICITY (n = 100) 
*pt – pre-test estimators defined in Section 2.6 
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FIGURE 2.5. ESTIMATOR RMSE UNDER HOMOSKEDASTICITY - EFFECT OF 
INSTRUMENT STRENGTH (n = 100) 
*si - two strong instruments, wi  – two weaker instruments, mi - one strong, one weak instrument  
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locally almost unidentified parameter cannot be pivotal functions either. Edgeworth expansions of 

estimators and test statistics include denominator terms that are close to zero, consequently making the 

higher-order terms dominate the lower-order terms. Thus, the bootstrap may provide very little 

improvement over first-order asymptotic theory in weak-instrument cases as also shown by Hahn, 

Hausman, and Kuersteiner (2002), Horowitz (2001), and Rothenberg (1984). However, Wong (1996) 

provides contradictory evidence. He considers a just-identified model, with one potentially endogenous 

regressor and one instrument. The bootstrapping procedure he uses is resampling residuals obtained from 

the OLS regression. A basic requirement for bootstrapping to be valid is that resampling needs to be done 

on independently and identically distributed variables which is fullfiled if residuals are homoskedastic and 

the null of exogeneity of regressors is imposed. He shows that the bootstrapped Hausman test performs 

better than the first-order asymptotics and the improvement is significant if the instruments are weakly 

relevant. It should be noticed that in his tests, Wong (1996) seemed to use the incorrect number of degrees 

of freedom (equal to the total number of regressors) and thus the power of his asymptotic tests was too 

low. In his Monte Carlo experiment, there are two regressors of which one is a constant. He does not state 

the number of degrees of freedom used explicitly but he says that in general the number of degrees of 

freedom of the Hausman test is equal to K which is the total number of regressors in the model.  

To improve bootstrap tests properties, Dufour (1997) suggests to use likelihood-based methods 

combined with projection techniques. Brown and Newey (2002) show that the empirical likelihood 

bootstrap provides an estimator of the t- and overidentification statistics that is asymptotically efficient. 

Their bootstrapping for GMM is based on resampling from the empirical likelihood distribution that 

imposes the moment restrictions rather than from the empirical distribution. Inoue (2006) and Kleibergen 

(2002) present experiments which also indicate that the bootstrap can lead to size improvements for the 

irrelevant instruments case in the GMM context.  

Moreira, Porter and Suarez (2004) show that bootstrap performance depends upon regularity of the 

statistic examined and not upon the quality of regressors. They provide evidence that the bootstrap 

provides improvements for the score statistic and conditional likelihood ratio statistics up to the first order 

even in models with weak instruments. On the other hand, bootstrapping the Wald test offers 

improvements over first-order asymptotics only when instruments are good. The reason is that the Wald 
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statistic distribution depends on the reduced form equation coefficients and thus on the instrument strength 

and the number of instruments. 

Davidson and MacKinnon (2006) proposed new procedures for bootstrapping which use more 

efficient estimates of the parameters of the reduced form equation (augmented by the residuals from 

restricted estimation of the structural equation). Among the bootstrap Student’s t (or Wald), Kleibergen’s 

K, likelihood ratio and the Anderson-Rubin tests, the conditional (on the reduced-form covariance matrix) 

likelihood ratio test performed the best. The Wald test had less power than the other tests when the 

instruments were weak. 

2.10 A Monte Carlo Experiment - Bootstrapping under Homoskedasticity 

As already mentioned, the data generating process of bootstrap samples should be as close as possible to 

the data generating process that generated the observed data. A basic requirement for bootstrapping to be 

valid is that resampling needs to be done on independently and identically distributed variables.  

The first step in developing bootstrap versions of a test is computing the test statistic of interest θ̂  

in the usual way and the estimation of the model that represents the null hypothesis which is in our case 

OLS. We obtain the constrained (as under the null) parameter estimates β̂ . The bootstrap procedure is: 

(1) Compute the predicted residuals ˆû y X= − β  

(2) Resample û , obtain *u  by drawing n times at random with replacement from û . 

(3) Construct pseudo data *y  by the formula * *ˆy X u= β+ . 

(4) Estimate the test statistic *θ̂  using X and y*. 

(5) Repeat steps (2) - (4) B times. 

The bootstrap critical value at level α is the (1 − α) quantile of the empirical distribution function of *θ̂ . 

The bootstrap p value may be estimated by the proportion of bootstrap samples that yield a statistic greater 

than θ̂ . This method provides asymptotic refinements. 

 Freedman (1981) proposed pairs bootstrap that resamples the regressand and regressors together 

from the original data: a pairs bootstrap sample * * *( , , )y X Z  is obtained by drawing rows with replacement 

from ( , , )y X Z .  
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The bootstrap can be used to perform also tests without asymptotic refinements. If we draw B 

bootstrap samples of size n with replacement yielding the bootstrap estimates *β̂  and *β , the variance of 

the contrast of the two estimators can be estimated consistently by [Cameron and Trivedi (2005), p. 378]: 

(2.9) ( ) * * * * * * * *

1

1ˆ ˆ ˆ ˆ ˆˆ [( ) ( )][( ) ( )]
1

B

Boot b b b b b b b b
b

V
B =

′β −β = β −β − β − β β −β − β − β
− ∑  

where * 1 *

1

ˆ ˆ
B

b b
b

B−

=

β = β∑  and * 1 *

1

B

b b
b

B−

=

β = β∑ . The Hausman test statistic can then be computed as 

(2.10) ( ) ( )( ) ( )1ˆ ˆ ˆˆ
Boot BootH V

−′= β −β β −β β −β  

Furthermore, we examine the performance of the bootstrap t test based on the auxiliary regression. 

We use the same set up as in the previous sections. We perform 1,000 Monte Carlo simulations 

and 1,000 bootstrap replications. We consider the regression (2.7) and generate data by using (2.8). To be 

consistent with Wong (1996), we employ the percentile method and bootstrap the critical values. 

We summarize the notation we use: 

• hb1 = bootstrap H1 contrast with K1 = 1 df 

• hb1s = bootstrap H1 contrast with K = 2 df [SAS default and STATA default with CONSTANT 

option] 

• hb2 = bootstrap H2 contrast with IV variance estimator [sigmaless] 

• hb3 = bootstrap H3 contrast with OLS variance estimator [sigmamore] 

• hb3a = bootstrap H3a contrast with MLE variance estimator [Wu-Hausman chi-square] 

• tb = bootstrap t test of residual coefficient in auxiliary regression [DWH F-test] 

2.11 Discussion of Bootstrapping Results under Homoskedasticity 

We investigate the performance of the classical Hausman tests and the t-test under homoskedasticity. We 

report results of the percentile bootstrap method with asymptotic refinements. Bootstrapped samples were 

generated by resampling OLS residuals as in Wong (1996).  
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2.11.1 The Effect of Instrument Strength 

In Figure 2.6 we report percent rejections of the four contrast tests and the t-test. With two strong 

instruments, the bootstrap t-test performs the best, the contrast tests using the difference of covariance 

matrices or the IV error variance estimator perform the worst. Under weak instruments, the bootstrap t-test 

performs the worst. If one strong and one weak instruments are available, the relative performance of the 

tests is the same as in the case with strong instruments.  

In Figure 2.7.1, we compare the effect of instrument strength on individual tests. For low degrees 

of endogeneity, the stronger the instruments the worse the performance of the bootstrap contrast tests 

whereas the expected outcome (the stronger the instruments the higher the power) is true for the bootstrap 

t-test. As shown by Nelson and Startz (1990b), the finite sample distribution of the instrumental variable 

estimator is very different from its asymptotic counterpart. If instruments are irrelevant, the finite sample 

distribution collapses around a point of concentration (which is inversely related to the degree of 

endogeneity), at which the true density of the estimator equals zero. Further, the bias of the instrumental 

variable estimator may increase with low degrees of endogeneity. Thus, the performance of the contrast 

tests which use the instrumental variable estimator may be non-standard. Another issue could be also the 

small number of Monte Carlo samples.  

Our results are comparable to Wong’s who uses only one instrument and more Monte Carlo 

samples to compute the contrast test with the covariance matrix equal to the difference of covariance 

matrices of the respective estimators. If ρ1 = .5 and ρ2 = .4, the power of the bootstrap test in Wong  (1996) 

is .741. The power of our bootstrap test is .684 if ρ1 = .5, ρ2 = .5 and ρ3 = .1. If weak instruments is 

available and endogenity is weak too (ρ1 = .3 and ρ2 = .3), Wong’s power is .162. Our experiment results in 

power equal to .36 if  ρ1 = .3, ρ2 = .3 and ρ3 = .3. Under low degrees of endogeneity, the power of Wong’s 

test is not increasing the stronger the instruments. 

To illustrate the importance of the type of bootstrapping used, in Figure 2.7.2 we present results 

for pairs bootstrapping. With pairs bootstrapping, the stronger the instruments the higher the power of the 

contrast test which is also valid for the t-test for high degrees of endogeneity. Under weak endogeneity, the  

t-test in the model that uses weak instruments reaches higher power than in the model with strong 

instruments. However, the differences are very small. 
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FIGURE 2.6. PERCENT REJECTIONS (BOOTSTRAPPING) UNDER HOMOSKEDASTICITY (n 
= 100) 
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FIGURE 2.7.1. PERCENT REJECTIONS (BOOTSTRAPPING) UNDER HOMOSKEDASTICITY 
- EFFECT OF INSTRUMENT STRENGTH (n = 100) 
Residual bootstrapping 
*si – two strong instruments, wi  – two weaker instruments, mi - one strong, one weak instrument 
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FIGURE 2.7.2. PERCENT REJECTIONS (BOOTSTRAPPING) UNDER HOMOSKEDASTICITY 
- EFFECT OF INSTRUMENT STRENGTH (n = 100) 
Pairs bootstrapping 
*si – two strong instruments, wi  – two weaker instruments, mi - one strong, one weak instrument 
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FIGURE 2.8.1. PERCENT REJECTIONS UNDER HOMOSKEDASTICITY - EFFECT OF 
BOOTSTRAPPING (n = 100)  
Strong instruments 
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FIGURE 2.8.2. PERCENT REJECTIONS UNDER HOMOSKEDASTICITY - EFFECT OF 
BOOTSTRAPPING (n = 100)  
Weaker instruments 
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FIGURE 2.8.3. PERCENT REJECTIONS UNDER HOMOSKEDASTICITY - EFFECT OF 
BOOTSTRAPPING (n = 100) 
One strong, one weak instrument 
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2.11.2 The Effect of Bootstrapping under Homoskedasticity 

In Figure 2.8 we compare the effect of bootstrapping on individual tests. We again use the residual 

bootstrapping approach and distinguish between a strong instruments case, a weak instrument case and a 

one strong and one weak instrument case. It should be noticed that the number of Monte Carlo samples for 

the asymptotic and bootstrapped tests is different because the length of the bootstrap experiment would be 

enourmous if the same number was used. Bootstrapping improves the performance of the t-test under 

strong instruments and the performance of the contrast tests under weak instruments for low degrees of 

endogeneity, otherwise the asymptotic tests perform better. Wong’s bootstrap tests are an improvement 

over asymptotic results but it seems that in his asymptotic tests, he used the number of degrees of freedom 

that is equal to the total number of regressors and not to the number of potentially endogenous variables. 

Bootstrap tests seem to be sensitive also to the number of instruments used, conclusions made for just-

identified models cannot be generalized and applied to over-identified models. 

2.12 Summary of Findings under Homoskedasticity 

When endogeneity is absent or weak, the default tests in STATA and SAS lead to pretest estimators with 

lower root mean squared error than pretest estimators based on generally superior tests. In terms of test 

performance, changing the degrees of freedom to K1 improves the test, but it does not produce the best test 

among those considered. The best (and easiest) test to use of the F or t test in an artificial regression that 

takes the original specification and augments it with the residual vectors from the OLS estimates of the 

reduced form equations that express each potentially endogenous variable as a function of all available 

instruments. The preferred test is a significance test of these included residual vectors. The tests are 

affected by instrument strength. Having more and stronger instruments is preferred, but one strong and one 

weak instrument, in our case of a single endogenous regressor, is better than having two “middling” 

instruments. Collinearity between the instruments does slightly reduce the performance of tests. 

The performance of the bootstrapped tests is not an improvement over the asymptotic tests except 

the t-test in the model with two strong instruments and the H1 and H3a tests in the model with two weak 

instruments for low degrees of endogeneity. These results are very sensitive to the type of bootstrapping 

used. 
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3. HAUSMAN TESTS WITH HETEROSKEDASTICITY 

The difficulty with the Hausman test in a general context , for example if heteroskedasticity is present, is 

that the variance of the contrast, 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ2cov ,V V Vβ −β = β + β − β β  

includes the term ( )ˆcov ,β β  that is not routinely calculated. There are several approaches one might take. 

The first, using GMM and following Creel (2004) is to directly estimate the covariance term. The second, 

as suggested by Cameron and Trivedi (2005, p. 378) is to use bootstrapping. The third is to follow the path 

of Davidson and MacKinnon (1993, p. 399) and use a robust artificial regression, also suggested by 

Wooldridge (2002, p. 119).  

In the following, we describe the approaches based on GMM which include (i) the Creel’s (2004) 

system (ii) the naive contrast test between OLS and GMM, (iii) the auxiliary regression F-test that is 

equivalent to this contrast, and (iv) the test based on the difference in the GMM objective functions. We 

compare the performance of all of the GMM based tests with the standard tests, first ignoring 

heteroskedasticity. This includes the artificial regression tests based on the F or t-distributions [DWH F-

test], the contrast test with the common estimate of the error variance being from the OLS 

[sigmamore] or IV [sigmaless] regressions, and the chi-square test using the ML estimate of the error 

variance [Wu-Hausman chi-square]. Then, we make the auxiliary regression tests robust to 

heteroskedasticity and investigate whether the performance improved relative to the standard tests ignoring 

the problem. 

3.1 Direct Testing in a GMM Framework 

We wish to estimate the linear regression model y X u= β +  and test for endogeneity in the presence of 

heteroskedastic errors . We will assume that observations are cross-sectional and that the errors ui and uj 

are uncorrelated, but that the errors are heteroskedastic with ( ) 2var i iu = σ . Creel (2004) suggests that we 

combine the sets of moment conditions that lead to OLS and IV estimators into a single estimation 

problem. The moment conditions leading to OLS are 
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 ( ) 0i i iE x y x′⎡ − β ⎤ =⎣ ⎦ , 

and those leading to the IV estimator are 

 ( ) 0i i iE z y x′⎡ − β ⎤ =⎣ ⎦ . 

These have the sample analogs  

 ( )1 1 1
1 1

i i i ih h x y x
n n

′= = − β∑ ∑  

and 

 ( )2 2 2
1 1

i i i ih h z y x
n n

′= = − β∑ ∑  

Then we stack these two sets of moment conditions into  

 1

21

1 1 i
i

h
h h

hn n
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

∑ ∑  

In this context the GMM estimator [see Cameron and Trivedi (2005) p. 173 and following] minimizes 

 ( ) 1 1
i n iQ h W h

n n

′⎡ ⎤ ⎡ ⎤β = ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑   

where ( )1 2′ ′ ′β = β β . The optimal weight matrix nW  is the inverse of the asymptotic covariance matrix of 

the moment conditions. That is, if  

 0
1

i iS plim h h
n

′= ∑  

then the optimal weight matrix is 1
0 0W S −= . If [ ]0G E h ′= ∂ ∂β , then [Cameron and Trivedi (2005), p. 176] 

 ( ) ( ) 11
0 0 0

ˆ 0,d
OGMMn N G S G

−−⎡ ⎤′β −β → ⎢ ⎥⎣ ⎦
 

The natural estimator of for 0S  is 

(3.1) ( ) ( )1ˆ ˆ ˆ
i iS h h

n
′= β β∑ .  

Then, the two-step GMM estimator minimizes 

(3.2) ( ) 11 1ˆ
i iQ h S h

n n
−

′⎡ ⎤ ⎡ ⎤β = ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  



 

 

 

46

The optimal estimator ˆ
OGMMβ  has estimated asymptotic covariance matrix  

 ( ) ( ) 1
11ˆ ˆ ˆ ˆ

OGMMV G S G
n

−
−′β =  

where  

 
ˆ

1ˆ ihG
n β

∂
=

′∂β∑  

In our case  

 
01ˆ

0
X X

G
Z Xn

′−⎡ ⎤
= ⎢ ⎥′−⎣ ⎦

 

Now let us assume that in the “first round” the weight matrix is block diagonal 

1

2

0
0n

W
W

W
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  

Assume that W1 = IK and that W2 is optimal considering only the moment conditions h2, then the first round 

estimates of ( )1 2′ ′ ′β = β β  are 1
ˆ ˆ

OLSβ = β , the OLS estimator of the original model y X u= β +  and 

2
ˆ ˆ

GMMβ = β , the optimal two-step estimator of the original model using instruments Z. Using these first 

round estimates we can obtain Ŝ  and then the two-step GMM estimator 

(3.3) 

1

1 1
2

0 0 0ˆ ˆ ˆ
0 0 0GMM

X X X X X X X y
S S

Z X Z X Z X Z y

−

− −
⎧ ⎫′ ′′ ′ ′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪β = ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′ ′⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

 

with asymptotic covariance matrix 

(3.4) ( )
1

1
2

0 0ˆ ˆ
0 0GMM

X X X X
V n S

Z X Z X

−

−
⎧ ⎫′′ ′⎡ ⎤ ⎡ ⎤⎪ ⎪β = ⎨ ⎬⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

 

Then, a Wald test of the null hypothesis that ( )0
ˆ ˆ: 0OLS GMMH plim β −β =  can be based upon their 

“improved” versions in 2
ˆ

GMMβ  and using ( )2
ˆ

GMMV β .  If [ ]K KR I I= −  then the test statistic is 

(3.5) ( ) ( ) ( )1

2 2 2 2
ˆ ˆ ˆ

GMM GMM GMMW R RV R R
−′ ⎡ ⎤′= β β β⎣ ⎦  
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Under the null hypothesis the test statistic W2 presumably has an asymptotic distribution with K degrees of 

freedom, or the rank of ( )2
ˆ

GMMRV R′β  if that is less than K. Note that [ ]1 2X X X=  and [ ]1 2Z Z X= , 

thus asymptotically the covariance matrix of the two sets of moment conditions S  (3.1) will be singular 

(the number of linearly independent columns will be less than 2K). In a just identified case, the rank of S  

should equal  K1 since we are testing the endogeneity of K1 regressors, consequently W2 has K1 degrees of 

freedom too. 

 As an alternative test we can focus on the coefficients of the potentially endogenous regressors X1. 

If 
1 11 0 0K KR I I⎡ ⎤= −⎣ ⎦  the corresponding Wald statistic will be called W2a and it will have K1 degrees 

of freedom. 

 Creel (2004) cites the findings of Burnside and Eichenbaum (1996) that Wald tests based on GMM 

estimators have improved properties when restrictions implied by the model, or null hypothesis, are 

imposed.  With that in mind we obtain the restricted GMM estimator by minimizing the objective function 

(3.2) subject to the null hypothesis that within ( )1 2′ ′ ′β = β β  the equality 1 2β = β = β  holds. The resulting 

estimates 

(3.6) 
ˆ

ˆ
ˆr

⎡ ⎤β
⎢ ⎥β =
⎢ ⎥β⎣ ⎦

 

are used to obtain ( ) ( )1ˆ ˆ ˆ
r i r i rS h h

n
′= β β∑  where the subscript “r” denotes this restricted estimation result. 

The corresponding estimated asymptotic covariance matrix is 

(3.7)  ( )
1

1
2

0 0ˆ ˆ
0 0GMM r r

X X X X
V n S

Z X Z X

−

−
⎧ ⎫′′ ′⎡ ⎤ ⎡ ⎤⎪ ⎪β = ⎨ ⎬⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

 

We compute analogs of W2 and W2a, which we call W2r and W2ar, with degrees of freedom under the null 

hypothesis (that X1 is not endogenous) of K (but maybe K1) and K1, respectively. 

 While focusing on GMM estimation, we offer one more test. Cameron and Trivedi (2005, p. 245) 

note that for the efficient GMM estimator the difference test statistic  

(3.8) ( ) ( )ˆ ˆ
r uD n Q Q⎡ ⎤= β − β⎣ ⎦  
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has an asymptotic chi-square distribution with number of degrees of freedom equal to the number of 

hypotheses imposed to obtain ˆ
rβ . To implement this test we compare the objective function (3.1) at the 

estimates 2
ˆ

GMMβ  [from (3.2)] and ˆ
rβ  from (3.4). This test statistic should have degrees of freedom K under 

the null hypothesis.  

3.2 Testing with a Robust Artificial Regression 

Consider again the contrast in (2.1), ( ) 1ˆ ˆ
IV OLS Z Z Xq X P X X P M y−′ ′= β −β = . The question, as before, is 

whether Z XX P M y′ , or its relevant part, 1 Z XX P M y′  has zero mean asymptotically. Again consider the 

artificial regression (2.2) and apply the FWL theorem 

(3.9) 1X X ZM y M P X error y P error= δ + ⇒ = δ + .  

Following Davidson and MacKinnon (1993, p. 401), we assume that the regression errors u are 

heteroskedastic, so that ( )2 2
1 , , nEuu diag′ = Ω = σ σ… , and that 

 1plim P P
n

′Ω   

exists and can be consistently estimated, under the null δ = 0, by  

1 ˆP P
n

′Ω   

where ( )2 2
1

ˆ ˆ ˆ, , ndiag u uΩ = …  and ˆˆi i i OLSu y x′= − β . The least squares estimator ( ) 1ˆ P P P y
−

′ ′δ =  has an 

asymptotic covariance matrix that can be estimated by 

(3.10) ( ) ( ) ( )1 1ˆ ˆV P P P P P P
− −

′ ′ ′δ = Ω  

Thus the Wald statistic for the null hypothesis that δ = 0 is 

(3.11) ( ) ( ) ( )1

1 1 2ˆ ˆ ˆ ˆ ~a KW V y P P P P y
− −⎡ ⎤′ ′ ′ ′= δ δ δ = Ω χ⎣ ⎦  

Once again, the robust Wald or F-test can be based on the artificial regression (2.5) that includes the 

residuals of the reduced form regression for the potentially endogenous variable(s) instead of their 

predicted value(s). 
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We could have done things more directly by considering 1 1Z X Z XX P M y X P M u P u′ ′ ′= = . If we 

assume that ( )
1

12 0,dn P u N plim n P P
− −⎡ ⎤′ ′→ Ω⎣ ⎦  Then 

 

( )

( )

( ) ( )1

1 1112 2

1 1112 2

1 2ˆ ~a K

W n P u plim n P P n P u

n P y plim n P P n P y

y P P P P y

−− −−

−− −−

−

′⎛ ⎞ ⎛ ⎞⎡ ⎤′ ′ ′= Ω⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠
′⎛ ⎞ ⎛ ⎞⎡ ⎤′ ′ ′= Ω⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠

′ ′ ′≅ Ω χ

 

3.3 Another Robust Artificial Regression Test 

Suppose we form a contrast between OLS and another linear estimator that is consistent if some regressors 

are endogenous. Let it take the form [MacKinnon, 1992, p. 125] 

(3.12) ( ) 1ˆ
A X AX X Ay−′ ′β =  

where A is n × n and with rank no less than K. Then the contrast with the OLS estimator is 

(3.13) ( ) 1ˆ ˆ
A OLS Xq X AX X AM y−′ ′= β −β =  

and the question is whether XX AM y′  has zero mean asymptotically. Going through the same steps as in 

Section 3.2 we can form the artificial regression 

(3.14) *y X AX error= β + δ +  

which leads to the estimator  

(3.15) ( ) 1ˆ
X XX AM AX X AM Ay−′ ′δ =  

and a robust Wald test statistic for the hypothesis δ = 0 of 

(3.16) ( ) ( )
1 2

[ ]
ˆ ~aDM X X X X rankW y M AX X AM M AX X AM y

−
′ ′ ′= Ω χ i  

where the degrees of freedom are the rank of the matrix inversed in the quadratic form. The rank is 

nominally K but XM AX  may not have rank K depending on the choice of A.  

 One logical choice for A, since we would like to form the contrast with the most efficient 

consistent estimator is 1ˆZS Z− ′ , so that the estimator ˆ ˆ
A GMMβ = β , which is the optimal two-step GMM 
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estimator of β in the original model y X u= β + . In this case ˆ
nS Z D Z′=  where nD  is a diagonal matrix of 

squared residuals based either on the OLS or IV estimators.  

3.4 The Estimators under Heteroskedasticity 

As in the homoskedastic case, we report the Monte Carlo means of the alternative estimators and their 

root-mean-squared-errors (rmse) for the parameter β2 (2.7). The slope parameter, and coefficient of the 

potentially endogenous regressor x, is of primary interest. The estimators whose performance we report are 

OLS (b2OLS), instrumental variables (b2IV) and optimal 2-step GMM (b2GMM). In addition we report results 

for the pre-test estimators using the usual t-statistic. This estimator is  

 2
2

2

if  < 
if   

OLS c
pt

IV c

b t t
b

b t tα

⎧
= ⎨ ≥⎩

 

where tc is the critical value for a t-distribution with n − K − 1 (degrees of freedom from the artificial 

regression) at significance level α = .05 (b2pt05) or α = .20 (b2pt20). Similarly we define a pre-test estimator 

defined on the default SAS statistic 1sH  

 
2

2 1
2 2

2 1

if   
if   

OLS s c
pt s

IV s c

b H
b

b Hα

⎧ < χ⎪= ⎨
≥ χ⎪⎩

 

Finally based on the robust t-test tr, we define a pretest estimator that chooses between the OLS estimator 

and the 2-step optimal GMM estimator, 

 2
2

2

if  < 
if   

OLS c
prt

GMM c

b t t
b

b t tα

⎧
= ⎨ ≥⎩

 

3.5 A Monte Carlo Experiment under Heteroskedasticity 

We use the same design as under homoskedasticity 

(3.17) 1 2 0y x u x u= β +β + = + +  

Data are generated by specifying 

(3.18) 

1 2 3

1

2 41

3 42

10
1 0 00

~ ,
0 10
0 10

x
v

N
z
z

⎛ ⎞ρ ρ ρ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ρ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ρ ρ
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ρ ρ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

 

The key features are that 
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• endogeneity is controlled by the parameter 1ρ  which takes the values 0, .1, .2, .3, .4 and .5 

• the strength of the instruments is controlled by 2ρ  and 3ρ  which take the values .1, .3 and .5 

• the correlation between the instruments is controlled by 4ρ  which takes the values 0 and .5 

• samples of sizes n = 100 and n = 200 are considered. 

The error u in (3.17) is made heteroskedastic by specifying  

(3.19) (1 )u x v= + γ  

• The parameter γ controls the degree of heteroskedasticity and takes the values 0 

(homoskedasticity), .5 and 1. 

To give some idea of consequences of these choices consider the estimation results based on one sample 

for various design points (Table 3.1). Columns 1-3 demonstrate the effect of the heteroskedasticity control 

parameter γ. The Breusch-Pagan LM test shows significant heteroskedasticity with sample size n = 100.  

 

TABLE 3.1. RESULTS FOR A SINGLE SAMPLE FOR VARIOUS MC DESIGNS 

DESIGN 1 2 3 4 5 6 7 8 

n (sample) 100 100 100 100 100 200 200 100 

γ (hetero) 0 .5 1 1 1 1 1 1 

ρ1 (endog) 0 0 0 .5 .5 .5 .5 .5 

ρ2 (IV1)    .3 .5 .5 .3 .3 

ρ2 (IV2)    .3 .1 .5 .1 .1 

         

Bols .944 .892 .83 1.37 1.37 1.27 1.27 1.37 

Bpagan  20.86 37.16 15.9 15.9 24.66 24.66 15.9 

1st Stage F    15.36 13.47 113.83 13.17 4.05 

Shea R^2    .24 .21 .54 .12 .08 

Biv    .944 .75 .87 .85 .775 

p(DWH)    .045 .0067 .0000 .0902 .1571 

p(WH)    .044 .0067 .0000 .0886 .1519 

 

 

For future reference, estimator legend and notation are summarized below:  

• n = sample size 

• ρ1 controls endogeneity 
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• ρ2 controls strength of IV #1 

• ρ3 controls strength of IV #2 

• ρ4 correlation between instruments 

• α = nominal level of significance 

• ho1 = H1 contrast with K1 = 1 df 

• ho1s = H1 contrast with K = 2 df [SAS default and STATA default with CONSTANT option] 

• ho2 = H2 contrast with IV variance estimator [sigmaless] 

• ho3 = H3 contrast with OLS variance estimator [sigmamore] 

• ho3a = H3a contrast with MLE variance estimator [Wu-Hausman chi-square] 

• t = t test of residual coefficient in auxiliary regression [DWH F-test] 

• hc = H1 contrast, GMM and OLS, with HC1
4 correction, with K = 2 df 

• hc1 = hc test using K1 =1 df  

• tr = robust t test in auxiliary regression; HC1 correction  

• tr2 = robust t test in auxiliary regression; HC2 correction  

• tr3 = robust t test in auxiliary regression; HC3 correction  

• w2 = Creel system test using 2nd round estimator K = 2 df 

• w21 = Creel test w2 with K1 = 1 df 

• d = Cameron & Trivedi (2005, p. 245) D with K = 2 df 

• d1 = d test with K1 = 1 df  

• w2r = Creel test w2 with covariance evaluated at estimates restricted by null, K = 2 df 

• w2r1 = w2r with K1 = 1 df 

• DMF = Davidson & MacKinnon type F contrast test comparing GMM to OLS, K = 2 df 

 

 

 
                                                      

4 See Davidson & MacKinnon, 1993, p. 554, for discussion of the HC modifications. 
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3.6 Discussion of Asymptotic Results under Heteroskedasticity 

In Figure 3.1 we present the performance of selected tests under heteroskedasticity. The relative 

performance of tests is independent of the instrument strength.  The contrast test ho3a and the t test valid 

under homoskedasticity have the highest power also under heteroskedasticity.  

The Davidson and MacKinnon style contrast test between the OLS estimator and the GMM 

estimator given in (3.16) has rejection frequencies that are even lower than the Creel (1996) type tests. In 

the following, we take a closer look at the effect of heteroskedasticity on the tests and the estimators. 

3.6.1 The Effect of Heteroskedasticity 

Table 3.2 contains some results showing the effects of heteroskedasticity on test performance. In the upper 

panel we give the percent rejections in the homoskedasticity case for easy reference. The parameter in 

control of the heteroskedasticity is γ, with the heteroskedasticity structure shown in (3.19) 

(1 )u x v= + γ  

If γ = 0 the errors are homoskedastic. We consider two degrees of heteroskedasticity, with γ = .5 and γ = 1. 

How strong is the heteroskedasticity? The indication from the single sample results reported in Table 3.1, 

is that the Breusch-Pagan statistic [ 2
(1)χ  under the null of no heteroskedasticity] is 15.9 in the former case 

and 24.66 in the latter. The middle and lower panels show the effects of heteroskedasticity for the cases 

with n = 100 and one strong instrument. When heteroskedasticity is present we continue to examine three 

tests that are valid for homoskedastic errors, ho3, ho3a and t. Our curiosity here is how heteroskedasticity 

affects these standard tests, which are the best in the homoskedasticity case. Going from the top to the 

bottom panel in Table 3.2 we see that for the case in which x is endogenous, 1 0ρ > , the standard tests 

reject less frequently, suggesting lower power when errors are heteroskedastic. The effect of 

heteroskedasticity strength on these tests is also illustrated in Figure 3.2. Of these three ho3a, the contrast 

test based on the maximum likelihood estimate of the error variance, seems to fare the best, but this is a 

function of the too low size of ho3 and t in this case, and differences disappear in the size corrected results 

[Table 3.3b]. The other tests in Table 3.2 are designed to cope with heteroskedasticity in one way or 

another. First, there are the robust t-tests tr, tr2 and tr3. These tests are justified by the consideration  
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FIGURE 3.1. PERCENT REJECTIONS UNDER HETEROSKEDASTICITY (gamma = 1, n = 100) 
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 of the artificial regression (3.9), and the robust Wald [or equivalent F-test, or t when there is a single 

potentially endogenous regressor] statistic (3.11). The simplest robust t-statistic rejects the true null three t 

tests, but this effect disappears after size correction [Table 3.3b]. It is interesting to note that the usual t-test 

has size corrected power that is even slightly higher than the three “robust” t-tests. 

 The results of two of Creel’s test statistics are also considered. First, w21 is the system test (3.5) 

that is based on a second round improvement of the GMM estimator (3.3) and with usual covariance 

matrix (3.4), but which sets the degrees of freedom of the chi-square test to one instead of the nominal 

number of restrictions being tested, which is two. With this modification the test rejects near 5% of the 

time when heteroskedasticity is stronger, only about 4.2% of the time in the medium heteroskedasticity 

case. The second of Creel’s tests that we consider, w2r1, replaces the usual GMM covariance estimator 

with a restricted version (3.7), based the restricted GMM estimator (3.6), but again it presumes one degree 

of freedom rather than the nominally correct two degrees of freedom. This test represents a substantial 

improvement over w21. It has close to the correct size in both heteroskedasticity cases and greater power at 

all levels of regressor endogeneity. Clearly w2r1 is preferred to w21. However, after size correction, the 

usual and robust t-statistic based tests perform better over all levels of endogeneity beyond the weakest 

[that is, for 1 .2ρ ≥ ] in both the medium and strong heteroskedasticity cases. 

The test statistic d1, shown in (3.8), based on the difference of the two GMM objective functions 

is again compared to the critical value from a chi-square with one degree of freedom rather than the 

nominally correct two. The percentage rejections of d1 and w21 are identical and upon reflection one can 

see why the tests should be asymptotically equivalent. They are both testing the null hypothesis 

( )0
ˆ ˆ: 0OLS GMMH plim β −β = . The test w21 is a Wald test of the equality of the estimates obtained by jointly 

considering two sets of moment conditions, and the d1 test compares the values of the GMM objective 

function obtained from restricted and unrestricted estimation. Neither of these tests are computationally  
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TABLE 3.2. PERCENT REJECTIONS - EFFECT OF HETEROSKEDASTICITY STRENGTH 

 
              Table 3: Percent rejections, n=100, gamma=0, rho2=.5, rho3=.1  
 
 
                                           alpha=0.05                                             
 
             rho1      ho1        ho1s       ho2        ho3        ho3a        t 
 
              0.0    0.03103    0.00462    0.03492    0.04868    0.05100    0.04905 
              0.1    0.06015    0.01110    0.06678    0.08685    0.09035    0.08750 
              0.2    0.16303    0.04380    0.17625    0.21255    0.21893    0.21385 
              0.3    0.37157    0.14758    0.39082    0.44390    0.45280    0.44572 
              0.4    0.65575    0.36843    0.67393    0.72377    0.73070    0.72530 
              0.5    0.90073    0.70530    0.90950    0.93037    0.93302    0.93107 
 
 
 
             Table 9: Percent rejections, n=100, gamma=.5, rho2=.5, rho3=.1  
 
                                           alpha=0.05                                             
 
 rho1    ho3      ho3a      t        tr      tr2      tr3      w21       d1      w2r1     DMF 
 
  0.0  0.04743  0.05005  0.04793  0.05345  0.05115  0.04540  0.04245  0.04245  0.04990  0.03782 
  0.1  0.07788  0.08067  0.07848  0.08595  0.08285  0.07545  0.06755  0.06755  0.07995  0.05248 
  0.2  0.17815  0.18380  0.17938  0.19165  0.18638  0.17258  0.15118  0.15118  0.17865  0.11107 
  0.3  0.35985  0.36717  0.36157  0.37728  0.36838  0.34823  0.30815  0.30815  0.35490  0.23197 
  0.4  0.58835  0.59645  0.59030  0.60413  0.59467  0.57263  0.52065  0.52065  0.57622  0.42625 
  0.5  0.82073  0.82610  0.82215  0.82778  0.82070  0.80660  0.75053  0.75053  0.80288  0.68075 
 
 
 
             Table 15: Percent rejections, n=100, gamma=1, rho2=.5, rho3=.1  
 
                                           alpha=0.05                                             
 
 rho1    ho3      ho3a      t        tr      tr2      tr3      w21       d1      w2r1     DMF 
 
  0.0  0.04830  0.05072  0.04877  0.05335  0.04970  0.04312  0.04983  0.04983  0.05100  0.03470 
  0.1  0.06938  0.07197  0.07007  0.07318  0.06928  0.06155  0.06772  0.06772  0.07095  0.04423 
  0.2  0.12780  0.13242  0.12880  0.13578  0.12970  0.11770  0.11837  0.11837  0.12610  0.07470 
  0.3  0.23453  0.24070  0.23585  0.24452  0.23535  0.21728  0.21600  0.21600  0.23113  0.13845 
  0.4  0.38100  0.38867  0.38245  0.39163  0.37967  0.35497  0.34485  0.34485  0.37078  0.24213 
  0.5  0.54563  0.55395  0.54755  0.55358  0.54048  0.51585  0.49715  0.49715  0.53017  0.38115 
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FIGURE 3.2. PERCENT REJECTIONS - EFFECT OF HETEROSKEDASTICITY STRENGTH (n 
= 100) 
*nh – no heteroskedasticity (gamma = 0), mh  – medium heteroskedasticity (gamma = .5), sh – strong 
heteroskedasticity (gamma = 1) 
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TABLE 3.3. HETEROSKEDASTIC CASE: VARIATIONS 

 
             Table 15: Percent rejections, n=100, gamma=1, rho2=.5, rho3=.1  
 
                                           alpha=0.05                                             
 
 rho1    ho3      ho3a      t        tr      tr2      tr3      w21       d1      w2r1     DMF 
 
  0.0  0.04830  0.05072  0.04877  0.05335  0.04970  0.04312  0.04983  0.04983  0.05100  0.03470 
  0.1  0.06938  0.07197  0.07007  0.07318  0.06928  0.06155  0.06772  0.06772  0.07095  0.04423 
  0.2  0.12780  0.13242  0.12880  0.13578  0.12970  0.11770  0.11837  0.11837  0.12610  0.07470 
  0.3  0.23453  0.24070  0.23585  0.24452  0.23535  0.21728  0.21600  0.21600  0.23113  0.13845 
  0.4  0.38100  0.38867  0.38245  0.39163  0.37967  0.35497  0.34485  0.34485  0.37078  0.24213 
  0.5  0.54563  0.55395  0.54755  0.55358  0.54048  0.51585  0.49715  0.49715  0.53017  0.38115 
 

Table 3.3a. Larger Sample Size 
             Table 18: Percent rejections, n=200, gamma=1, rho2=.5, rho3=.1  
 
                                           alpha=0.05                                             
 
 rho1    ho3      ho3a      t        tr      tr2      tr3      w21       d1      w2r1     DMF 
 
  0.0  0.05140  0.05253  0.05162  0.05305  0.05142  0.04797  0.05248  0.05248  0.05175  0.04192 
  0.1  0.08910  0.09123  0.08943  0.09195  0.09002  0.08475  0.08708  0.08708  0.08940  0.06605 
  0.2  0.21395  0.21660  0.21448  0.21873  0.21468  0.20620  0.20650  0.20650  0.21238  0.14670 
  0.3  0.42543  0.42920  0.42605  0.43035  0.42480  0.41240  0.40742  0.40742  0.41920  0.30470 
  0.4  0.65470  0.65853  0.65535  0.65870  0.65255  0.64153  0.62840  0.62840  0.64507  0.51570 
  0.5  0.83890  0.84113  0.83925  0.83455  0.83013  0.82155  0.81288  0.81288  0.82475  0.72575 
 
 

Table 3.3b. Size Corrected Power 

 
            Table 33: Size Corrected Power, n=100, gamma=1, rho2=.5, rho3=.1  
 
                                           alpha=0.05                                             
 
 rho1    ho3      ho3a      t        tr      tr2      tr3       w2       d       w2r      DMF 
 
  0.0  0.05003  0.05003  0.05003  0.05003  0.05003  0.05003  0.05003  0.05003  0.05003  0.05003 
  0.1  0.07155  0.07155  0.07155  0.06982  0.06955  0.06970  0.06797  0.06797  0.06990  0.06140 
  0.2  0.13160  0.13160  0.13160  0.13055  0.13012  0.13008  0.11868  0.11868  0.12445  0.10028 
  0.3  0.23943  0.23943  0.23943  0.23670  0.23588  0.23585  0.21638  0.21638  0.22898  0.17968 
  0.4  0.38685  0.38685  0.38685  0.38240  0.38033  0.37875  0.34547  0.34547  0.36773  0.29538 
  0.5  0.55173  0.55173  0.55173  0.54455  0.54125  0.53815  0.49800  0.49800  0.52670  0.44377 
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routine, to our knowledge, in econometrics software, thus their dominance by usual and robust t-tests 

makes their use unlikely without further evidence, at least in the regression context5.   

Finally we consider the Davidson and MacKinnon style contrast test between the OLS estimator 

and the GMM estimator given in (3.15). The Wald test statistic is given in (3.16) and we report the F-test 

version, DMF, which is WDM divided by number of independent columns of XM AX , which in this case is 

two. The size of this test is too low, and its size corrected power is lower than the other tests, thus 

unfortunately there appears little to recommend it in practice. Its performance does improve in larger 

samples, as shown in Table 3.3a. 

3.6.2 Estimator Bias Results 

Recall that the true value of β2 = 1. In Table 3.4 and Figure 3.3 we compare alternative degrees of 

heteroskedasticity. Increasing heteroskedasticity slightly increases the bias of the GMM estimator, worsens 

the performance of the pre-test estimators, but with relative performance about the same. However, the 

robust t-test may produce a pre-test estimator with slightly less bias in the heteroskedastic cases.  

3.6.3 Estimator RMSE Comparisons 

In Table 3.5 and Figure 3.4 we compare the root-mse’s of the alternative estimators with increasing levels 

of heteroskedasticity. The RMSE of the OLS estimator exceeds that of the IV and GMM estimators when 

the degree of endogeneity 1 .2ρ ≥  (when γ = 0 or γ = .5) and if 1 .3ρ ≥  when γ = 1. When the degree of 

endogeneity is low the IV estimator is a better choice than GMM. The pretest estimator is never the best 

choice. However, SAS’s test leads to a better pre-test estimator performance when the degree of 

endogeneity is low ( 1 .2ρ ≤ ) and performance that is at least comparable to the other pre-test estimators 

when 1 .3ρ = . Thus also under heteroskeadasticity the SAS/STATA default test is “best” for the intrepid 

researcher who does not know what to do, and whose regressor may be exogenous or slightly endogenous. 

Its advantage diminishes with an increase in sample size, as shown in Table 3.6a. In Table 3.6b and Figure 

3.5 we see that weaker instruments also enhance the conservative approach, while stronger instruments 

reduce its appeal.  

                                                      

5 Stata has a post-estimation command called suest that computes the “robust” covariance matrix of stacked estimators from potentially 
different models. It is currently implemented for ML based models that return a score vector. It is based on Wessie (1999), cited in Creel (2004). 
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TABLE 3.4. ESTIMATOR MEANS - EFFECT OF HETEROSKEDATICITY STRENGTH 

 
 
            Table 39: Estimator mean values, n=100, gamma=0, rho2=.5, rho3=.1  
 
 rho1      b2       b2iv     b2gmm     b2pt05    b2pt20   b2pt05s   b2pt20s   b2prt05   b2prt20 
 
  0.0   1.00041   1.00093   1.00077   1.00042   1.00099   1.00023   1.00051   1.00063   1.00087 
  0.1   1.09899   0.99930   0.99934   1.06730   1.03067   1.09370   1.06658   1.06507   1.02992 
  0.2   1.19934   1.00046   1.00033   1.10842   1.04266   1.17687   1.10676   1.10522   1.04149 
  0.3   1.29937   0.99782   0.99801   1.09958   1.02925   1.22154   1.09758   1.09666   1.02853 
  0.4   1.39954   0.99942   0.99950   1.05654   1.01206   1.20254   1.05561   1.05561   1.01201 
  0.5   1.49955   1.00002   0.99991   1.01491   1.00220   1.10693   1.01464   1.01522   1.00195 
 
 
 
           Table 45: Estimator mean values, n=100, gamma=.5, rho2=.5, rho3=.1  
 
 rho1      b2       b2iv     b2gmm     b2pt05    b2pt20   b2pt05s   b2pt20s   b2prt05   b2prt20 
 
  0.0   0.99949   0.99888   0.99917   1.00073   0.99926   0.99975   1.00044   1.00035   0.99934 
  0.1   1.09976   0.99992   0.99877   1.06907   1.03277   1.09465   1.06854   1.06765   1.03145 
  0.2   1.20004   1.00051   0.99824   1.11507   1.04744   1.18054   1.11377   1.11230   1.04517 
  0.3   1.29934   0.99833   0.99478   1.12064   1.04012   1.24011   1.11863   1.11644   1.03699 
  0.4   1.39962   1.00047   0.99579   1.09208   1.02380   1.25264   1.09017   1.08741   1.02008 
  0.5   1.49968   0.99738   0.99130   1.03991   1.00532   1.19023   1.03969   1.03505   0.99963 
 
 
 
            Table 51: Estimator mean values, n=100, gamma=1, rho2=.5, rho3=.1  
 
 rho1      b2       b2iv     b2gmm     b2pt05    b2pt20   b2pt05s   b2pt20s   b2prt05   b2prt20 
 
  0.0   0.99870   0.99788   0.99784   0.99957   0.99793   0.99899   0.99929   0.99919   0.99823 
  0.1   1.10180   1.00169   0.99901   1.07124   1.03470   1.09695   1.07081   1.07163   1.03334 
  0.2   1.19773   0.99863   0.99254   1.12338   1.05418   1.18254   1.12208   1.12223   1.05086 
  0.3   1.29824   0.99682   0.98928   1.15203   1.05719   1.25949   1.14941   1.15044   1.05261 
  0.4   1.39938   0.99960   0.98819   1.15214   1.05026   1.30989   1.14986   1.14909   1.04214 
  0.5   1.50026   0.99976   0.98630   1.12702   1.03483   1.32444   1.12478   1.12236   1.02500 
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FIGURE 3.3. ESTIMATOR MEANS - EFFECT OF HETEROSKEDATICITY STRENGTH (n = 
100, rho2 = .5, rho3 = .1) 
*pt, prt – pre-test estimators defined in Section 3.4 
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TABLE 3.5. ESTIMATOR RMSE: EFFECT OF HETEROSKEDASTICITY 

 
 
               Table 57: Estimator rmse, n=100, gamma=0, rho2=.5, rho3=.1  
 
 rho1      b2       b2iv     b2gmm     b2pt05    b2pt20   b2pt05s   b2pt20s   b2prt05   b2prt20 
 
  0.0   0.10195   0.20466   0.20627   0.13638   0.17423   0.10693   0.13681   0.13852   0.17570 
  0.1   0.14170   0.20623   0.20783   0.17374   0.19500   0.14826   0.17346   0.17549   0.19575 
  0.2   0.22281   0.20674   0.20837   0.23770   0.22500   0.23085   0.23662   0.23750   0.22527 
  0.3   0.31489   0.20749   0.20940   0.28020   0.23746   0.31218   0.27763   0.27871   0.23770 
  0.4   0.41019   0.20669   0.20828   0.27285   0.22542   0.35492   0.27048   0.27239   0.22644 
  0.5   0.50717   0.20764   0.20962   0.23353   0.21210   0.32322   0.23233   0.23560   0.21373 
 
 
 
               Table 63: Estimator rmse, n=100, gamma=.5, rho2=.5, rho3=.1  
 
 rho1      b2       b2iv     b2gmm     b2pt05    b2pt20   b2pt05s   b2pt20s   b2prt05   b2prt20 
 
  0.0   0.13285   0.23995   0.24099   0.16787   0.20738   0.13759   0.16777   0.16870   0.20793 
  0.1   0.16705   0.23879   0.24011   0.19877   0.22289   0.17339   0.19829   0.19965   0.22330 
  0.2   0.24061   0.24043   0.24121   0.26238   0.25497   0.24959   0.26087   0.26110   0.25477 
  0.3   0.32837   0.24107   0.24163   0.31228   0.27386   0.33162   0.31018   0.31020   0.27344 
  0.4   0.42231   0.24495   0.24518   0.32933   0.27324   0.39614   0.32654   0.32706   0.27364 
  0.5   0.51874   0.24767   0.24838   0.30438   0.26063   0.40986   0.30252   0.30409   0.26143 
 
 
 
               Table 69: Estimator rmse, n=100, gamma=1, rho2=.5, rho3=.1  
 
 rho1      b2       b2iv     b2gmm     b2pt05    b2pt20   b2pt05s   b2pt20s   b2prt05   b2prt20 
 
  0.0   0.19988   0.31894   0.31961   0.23764   0.28262   0.20493   0.23757   0.23677   0.28202 
  0.1   0.22443   0.31964   0.32038   0.26306   0.29539   0.23176   0.26277   0.26106   0.29483 
  0.2   0.28438   0.32293   0.32377   0.31841   0.32610   0.29433   0.31718   0.31690   0.32593 
  0.3   0.36639   0.32495   0.32548   0.37828   0.35368   0.37615   0.37661   0.37669   0.35349 
  0.4   0.45627   0.33132   0.33025   0.42240   0.37106   0.45670   0.41999   0.42081   0.37039 
  0.5   0.55225   0.33814   0.33807   0.44205   0.37471   0.52095   0.43900   0.44179   0.37527 



 

 

 

63

 

No heteroskedasticity (gamma = 0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 rho1

Mild heteroskedasticity (gamma = .5)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 rho1

Strong heteroskedasticity (gamma = 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 rho1

b2 b2gmm b2prt05 b2prt20

 

FIGURE 3.4. ESTIMATOR RMSE - EFFECT OF HETEROSKEDATICITY STRENGTH (n = 100, 
rho2 = .5, rho3 = .1) 
*prt – pre-test estimators defined in Section 3.4 
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TABLE 3.6. ESTIMATOR RMSE UNDER HETEROSKEDASTICITY- VARIATIONS (gamma = 
1) 
 
 
               Table 69: Estimator rmse, n=100, gamma=1, rho2=.5, rho3=.1  
 
 rho1      b2       b2iv     b2gmm     b2pt05    b2pt20   b2pt05s   b2pt20s   b2prt05   b2prt20 
 
  0.0   0.19988   0.31894   0.31961   0.23764   0.28262   0.20493   0.23757   0.23677   0.28202 
  0.1   0.22443   0.31964   0.32038   0.26306   0.29539   0.23176   0.26277   0.26106   0.29483 
  0.2   0.28438   0.32293   0.32377   0.31841   0.32610   0.29433   0.31718   0.31690   0.32593 
  0.3   0.36639   0.32495   0.32548   0.37828   0.35368   0.37615   0.37661   0.37669   0.35349 
  0.4   0.45627   0.33132   0.33025   0.42240   0.37106   0.45670   0.41999   0.42081   0.37039 
  0.5   0.55225   0.33814   0.33807   0.44205   0.37471   0.52095   0.43900   0.44179   0.37527 

Table 3.6a. Sample Size 

 
               Table 72: Estimator rmse, n=200, gamma=1, rho2=.5, rho3=.1  
 
 rho1      b2       b2iv     b2gmm     b2pt05    b2pt20   b2pt05s   b2pt20s   b2prt05   b2prt20 
 
  0.0   0.14122   0.22264   0.22296   0.16823   0.19815   0.14889   0.17221   0.16759   0.19789 
  0.1   0.17392   0.22278   0.22297   0.19852   0.21404   0.18355   0.20115   0.19801   0.21385 
  0.2   0.24668   0.22380   0.22383   0.25655   0.24172   0.25672   0.25489   0.25564   0.24162 
  0.3   0.33520   0.22638   0.22646   0.29632   0.25565   0.32687   0.29022   0.29645   0.25598 
  0.4   0.42959   0.22984   0.22967   0.30428   0.25248   0.36641   0.29478   0.30446   0.25327 
  0.5   0.52698   0.23382   0.23313   0.28547   0.24515   0.36013   0.27621   0.28774   0.24574 

Table 3.6b. Instrument strength 

 
               Table 68: Estimator rmse, n=100, gamma=1, rho2=.3, rho3=.3  
 
 rho1      b2       b2iv     b2gmm     b2pt05    b2pt20   b2pt05s   b2pt20s   b2prt05   b2prt20 
 
  0.0   0.19969   0.37888   0.37996   0.26153   0.32581   0.20380   0.25067   0.26039   0.32463 
  0.1   0.22381   0.37928   0.38018   0.28181   0.33828   0.22930   0.27074   0.27977   0.33777 
  0.2   0.28846   0.38429   0.38493   0.34191   0.37090   0.29451   0.33260   0.34059   0.36928 
  0.3   0.36667   0.39096   0.39045   0.40816   0.40893   0.37375   0.39834   0.40643   0.40708 
  0.4   0.45573   0.39530   0.39578   0.47223   0.43631   0.46185   0.46345   0.46843   0.43553 
  0.5   0.55341   0.40450   0.40422   0.51930   0.45511   0.55136   0.51578   0.51639   0.45353 
 
 
 
               Table 67: Estimator rmse, n=100, gamma=1, rho2=.5, rho3=.5  
 
 rho1      b2       b2iv     b2gmm     b2pt05    b2pt20   b2pt05s   b2pt20s   b2prt05   b2prt20 
 
  0.0   0.19994   0.24639   0.24691   0.21393   0.23112   0.20312   0.21617   0.21346   0.23138 
  0.1   0.22523   0.24642   0.24624   0.23805   0.24462   0.23134   0.23938   0.23814   0.24440 
  0.2   0.28697   0.24770   0.24750   0.28264   0.26457   0.29108   0.28049   0.28185   0.26407 
  0.3   0.36734   0.25071   0.25071   0.30345   0.26804   0.34186   0.29738   0.30334   0.26883 
  0.4   0.45853   0.25316   0.25348   0.29009   0.26155   0.34504   0.28394   0.29282   0.26241 
  0.5   0.54873   0.25563   0.25538   0.27050   0.25814   0.30869   0.26739   0.27536   0.25902 
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FIGURE 3.5. ESTIMATOR RMSE UNDER HETEROSKEDASTICITY (gamma = 1, n = 100) 
*pt, prt – pre-test estimators defined in Section 3.4 
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3.7 Summary of Findings under Heteroskedasticity 

In the case of heteroskedastic errors the simple t-test (ignoring heteroskedasticity) and the robust t-statistic 

tr2 (HC2 correction) seem to have reliable size, with the robust t-tests tr and tr3 improving with larger 

samples. The statistic tr2 had size closer to the correct value in the smaller sample. After size correction 

the differences between the alternative t-tests were largely eliminated. In many of the scenarios the simple 

t-test that ignores the heteroskedasticity seems to have a slight edge in size-corrected power. Based on our 

results there is no strong evidence that any of the other tests is superior. 

 Among the more specialized tests Creel’s test w2r1 with the covariance matrix evaluated at 

estimates restricted by null when degrees of freedom are specified as one rather than two performed the 

best. However, neither of the tests based on GMM was as powerful as the t-tests in our experiments.  

Wong (1996) shows that bootstrapping is a good alternative to usual asymptotic theory in the 

homoskedastic case. In the next chapter, we extend bootstrapping to the heteroskedastic case. 
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4. BOOTSTRAPPING UNDER HETEROSKEDASTICITY 

4.1 Bootstrap Tests under Heteroskedasticity 

If we do not make the assumptions of classical normal model, the Hausman test statistic has a finite sample 

distribution that is different from the one predicted by the asymptotic theory. Bootstrapping allows to make 

inferences without making strong distributional assumptions and without the need for analytic formulas for 

the sampling distribution parameters. Thus, it could also help in the presence of heteroskedasticity. We are 

interested in whether bootstrapping improves the performance of the Hausman-type tests based on the 

Creel’s system in GMM framework and also the Wald test based on the artificial regression since the 

evidence especially under weak instruments is mixed. We compare the impact of different types of 

bootstrapping on all the Hausman test alternatives typically used under heteroskedasticity and try to 

suggest the best for testing endogeneity.  

As already mentioned in Chapter 2, the data generating process of bootstrap samples should be as 

close as possible to the data generating process that generated the observed data. With heteroskedasticity of 

unknown form, this might be a problem. A basic requirement for bootstrapping to be valid is that 

resampling needs to be done on independently and identically distributed variables. Thus for 

heteroskedastic data, bootstrapping the residuals is not valid. Freedman (1981) proposed pairs bootstrap 

that resamples the regressand and regressors together from the original data: a pairs bootstrap sample 

* * *( , , )y X Z  is obtained by drawing rows with replacement from ( , , )y X Z . However, randomly 

resampling pairs does not impose the restriction of exogeneity of regressors. Mammen (1993) and 

Flachaire (1999) suggested an improved version of the pairs bootstrap where the resampling scheme 

respects the null hypothesis.  

Another technique that solves the problem of unknown heteroskedasticity is a wild bootstrap 

technique proposed by Liu (1988). The wild bootstrap generating process is  

(4.1)  * *ˆ ˆt t t t ty X a u= β + ε   

where ˆtu  is the OLS residual, *
tε  is white noise with a zero mean and variance equal to 1. ta  is the 

diagonal element correction of the heteroskedasticity consistent covariance matrix estimator (we use HC2 
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correction) as suggested by MacKinnon and White (1985). For the model with one regressor, Liu showed 

that the first three moments of the bootstrap distribution of a heteroskedasticity consistent covariance 

matrix estimator based statistic mapped those of the true distribution of the statistic up to order 1n− . 

Mammen (1993) provided further evidence that the wild bootstrap is asymptotically justified. He proposed 

that the white noise follows the two-point distribution  

(4.2) *
1

( 5 1) / 2 0.618     with probability ( 5 1) /(2 5) 0.7236
:

( 5 1) / 2 1.618          with probability 1 0.2764                         
t

p
PD

p

⎧ − − − = +⎪ε = ⎨
+ −⎪⎩

 

so that *( ) 0tE ε = , *2( ) 1tE ε = , and *3( ) 1tE ε = . Horowitz (1997, 2001) shows that this wild bootstrap performs 

much better than paired bootstrap in the case of heteroskedasticity and works well even if there is no 

heteroskedasticity. Flachaire (2005) also examined performances of heteroskedasticity-robust tests. He 

showed that the wild bootstrap proposed in Davidson and Flachaire (2001) gives better results than pairs 

bootstrap. In particular, white noise used in the data generating process following the Rademacher 

distribution always gives better results than the two-point distribution proposed by Mammen (1993), used 

in Horowitz (1997) and recommended in the literature.  

The white noise is modeled by the Rademacher distribution where 

(4.3) *
2

1   with probability 0.5
:

1 with probability 0.5tPD ⎧
ε = ⎨−⎩

                    

so that *( ) 0tE ε = , *2( ) 1tE ε = , and *3( ) 0tE ε = .  

Thus, if we draw B pairs or wild bootstrap samples of size n with replacement yielding the 

bootstrap estimates *β̂  and *β , the variance of the contrast of the two estimators can be estimated 

consistently by [Cameron and Trivedi (2005), p. 378]: 

(4.4) ( ) * * * * * * * *

1

1ˆ ˆ ˆ ˆ ˆˆ [( ) ( )][( ) ( )]
1

B

Boot b b b b b b b b
b

V
B =

′β −β = β −β − β − β β −β − β − β
− ∑  

where * 1 *

1

ˆ ˆ
B

b b
b

B−

=

β = β∑  and * 1 *

1

B

b b
b

B−

=

β = β∑ . The Hausman test statistic can then be computed as 

(4.5) ( ) ( )( ) ( )1ˆ ˆ ˆˆ
B BootH V

−′= β −β β −β β −β  
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Since this approach can be used for any chi-square distributed test, we analogously compute the bootstrap 

Wald test based on the auxiliary regression 1̂y X V error= β + η+ as  

(4.6) ( )( ) 1ˆˆ ˆ ˆB BootW V
−′= η η η   

where η̂  is the OLS estimate of η  and the bootstrap Wald test based on the Creel’s (2004) system 

approach as  

(4.7) ( ) ( ) ( )1

2 2 2 2
ˆ ˆ ˆˆ

B GMM Boot GMM GMMW R RV R R
−′ ⎡ ⎤′= β β β⎣ ⎦   

or  

(4.8) ( ) ( ) ( )1

2 1 2 1 2 1 1 2
ˆ ˆ ˆˆ

B a GMM Boot GMM GMMW R RV R R
−′ ⎡ ⎤′= β β β⎣ ⎦  

where the two-step GMM estimator 2
ˆ

GMMβ  is defined as in (3.2), [ ]K KR I I= −  

and
1 11 0 0K KR I I⎡ ⎤= −⎣ ⎦ . We also compute the bootstrap Wald test based on the system and comparing 

the OLS and IV and the OLS and first-step GMM estimators. The covariance matrix for each estimator is 

computed analogously to (4.4). Furthermore, we examine the performance of the bootstrap robust t test 

based on the auxiliary regression. Size corrected powers of the bootstrapped tests are obtained by the 

percentile method described in Chapter 2. The critical values we use are the respective quantiles of the 

empirical distribution function of the bootstrapped test statistic. 

4.2 A Monte Carlo Experiment - Bootstrapping under Heteroskedasticity 

We use the same set up as in the previous sections. We perform 1,000 Monte Carlo simulations and 1,000 

bootstrap replications. We consider the regression 

(4.9) 1 2 0y x u x u=β +β + = + +  

Data are generated by specifying 

(4.10) 

1 2 3

1

21

32

10
1 0 00

~ ,
0 1 00
0 0 10

x
v

N
z
z

⎛ ⎞ρ ρ ρ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ρ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ρ
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ρ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

 

The key features are that 
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• endogeneity is controlled by the parameter 1ρ  which takes the values 0, .1, .2, .3, .4 and .5 

• the strength of the instruments is controlled by 2ρ  and 3ρ  which take the values .1, .3 and .5 

• the two instruments are uncorrelated with each other 

• samples of sizes n = 100 and n = 200 are considered. 

The error u in (4.9) is made heteroskedastic by specifying  

(4.11) (1 )u x v= + γ  

• The parameter γ controls the degree of heteroskedasticity and takes the values 0 

(homoskedasticity), .5 and 1.  

We perform pairs and wild bootstrapping. The two-point distributions that are used in wild bootstrapping 

are the Rademacher distribution (4.3) as proposed in Davidson and Flachaire (2001) and the distribution 

(4.2) as in Mammen (1993). We compute the bootstrap Wald test based on the system and comparing the 

OLS and IV, the OLS and first-step GMM estimators and the OLS and second-step GMM estimators. We 

also analyze the performance of the bootstrap contrast tests, the bootstrap t test and the bootstrap robust t 

test based on the auxiliary regression. 

We summarize the notation we use: 

• n = sample size 

• ρ1 controls endogeneity 

• ρ2 controls strength of IV #1 

• ρ3 controls strength of IV #2 

• α = nominal level of significance 

• wb = Wald test of the residual coefficient in auxiliary regression K = 1 df 

• wb0 = Wald test based on OLS and IV estimators K = 2 df 

• wb0a = Wald test based on OLS and IV estimators K = 1 df 

• wb1 = Wald test based on OLS and GMM estimators K = 2 df 

• wb1a = Wald test based on OLS and GMM estimators K = 1 df 

• wb2 = Wald test based on OLS and GMM2 estimators K = 2 df 

• wb2a = Wald test based on OLS and GMM2 estimators K = 1 df 
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4.3 Discussion of Results on Bootstrap Tests under Heteroskedasticity 

Since the performance of the classical Hausman tests is, as expected, not satisfactory and also the errors in 

levels of the t and robust t tests are enormous, we only report results for the Wald test based on the 

artificial regression and the Wald type tests based on the Creel’s system comparing the OLS estimators to 

the IV, GMM and second round improvement of the GMM estimators. We consider the statistics that set 

the degrees of freedom of the chi-square test to one and to the nominal number of restrictions being tested 

(two).  

4.3.1 The Effect of Sample Size 

In Table 4.1 we consider the effect of sample size. We report the results for wild bootstrapping using the 

PD1 distribution as in Mammen (1993) and two weak instruments. The results for the PD1 distribution 

illustrate that the larger the sample size,   the worse the size distortions except the Wald-type test with one 

degree of freedom comparing the OLS and both GMM estimators but this conclusion depends on the 

instrument strength and a bootstrapping type. If two strong instruments are used, the larger the sample size 

the better the test size properties. With pairs bootstrapping, a larger sample size reduces size distortions of 

most of the tests. With wild bootstrapping, the test size improved with a larger sample size for tests with 

one degree of freedom comparing the OLS and both GMM estimators with the exception of the case with 

Rademacher distribution under weak instruments where size distortions were increased for most of the 

tests. This unexpected result may be caused by a nonstandard finite sample distribution of the instrumental 

variable estimator or a small number of Monte Carlo samples in our bootstrap experiments. However, the 

same pattern (the larger sample size the lower the test size, in particular of the t- test) for models with weak 

instruments can be also observed in our Chapter 2 asymptotic experiments where the number of Monte 

Carlo samples is much higher, which seems to confirm the former. The differences in rejection frequencies 

of the tests for a size of 100 and 200 observations are remarkable. For example, if the correlation between 

the endogenous regressor and error term 1 .4ρ = , the size corrected power of each of the tests increases by 

at least twice as much. 
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TABLE 4.1. BOOTSTRAPPING - EFFECT OF SAMPLE SIZE   

 
Table 104: Percent rejections (wild bootstr. ‐ Mammen), n=100, gamma=1, rho2=.3, rho3=.3 

 
alpha=0.05 

 
rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 

 
0.0    0.056    0.056    0.056    0.056    0.029    0.107    0.056    0.030    0.107    0.058 
0.1    0.051    0.051    0.051    0.051    0.029    0.090    0.057    0.029    0.097    0.061 
0.2    0.098    0.098    0.098    0.098    0.047    0.149    0.102    0.052    0.148    0.102 
0.3    0.168    0.168    0.168    0.168    0.088    0.221    0.165    0.091    0.221    0.164 
0.4    0.215    0.215    0.215    0.215    0.136    0.304    0.226    0.138    0.303    0.227 
0.5    0.326    0.326    0.326    0.326    0.219    0.396    0.339    0.223    0.398    0.340 

 
 

Table 107: Percent rejections (wild bootstr. ‐ Mammen), n=200, gamma=1, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.061    0.061    0.061    0.061    0.020    0.081    0.065    0.020    0.084    0.063 
0.1    0.063    0.063    0.063    0.063    0.031    0.102    0.064    0.035    0.104    0.065 
0.2    0.151    0.151    0.151    0.151    0.084    0.202    0.152    0.088    0.205    0.155 
0.3    0.261    0.261    0.261    0.261    0.157    0.318    0.269    0.159    0.317    0.270 
0.4    0.447    0.447    0.447    0.447    0.314    0.516    0.460    0.313    0.514    0.462 
0.5    0.628    0.628    0.628    0.628    0.470    0.681    0.635    0.474    0.681    0.640 

 
 

Table 4.1a. Size Corrected Power 
 

Table 158: Size Corrected Power (wild bootstr. ‐ Mammen), n=100, gamma=1, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb0a     wb1      wb1a     wb2      wb2a 
 

0.0    0.050    0.050    0.050    0.050    0.050    0.050    0.050 
0.1    0.051    0.051    0.051    0.046    0.051    0.051    0.053 
0.2    0.097    0.097    0.097    0.086    0.091    0.093    0.093 
0.3    0.166    0.166    0.166    0.132    0.150    0.141    0.148 
0.4    0.214    0.214    0.214    0.197    0.210    0.203    0.209 
0.5    0.325    0.325    0.325    0.285    0.318    0.292    0.319 

 
 

Table 161: Size Corrected Power (wild bootstr. ‐ Mammen), n=200, gamma=1, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb0a     wb1      wb1a     wb2      wb2a 
 

0.0    0.050    0.050    0.050    0.050    0.050    0.050    0.050 
0.1    0.064    0.064    0.064    0.077    0.068    0.070    0.070 
0.2    0.154    0.154    0.154    0.168    0.165    0.156    0.167 
0.3    0.268    0.268    0.268    0.278    0.289    0.263    0.295 
0.4    0.453    0.453    0.453    0.459    0.485    0.444    0.487 
0.5    0.633    0.633    0.633    0.646    0.650    0.630    0.659 
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4.3.2 The Effect of Instrument Strength 

In Table 4.2 and Figure 4.1 we report three wild bootstrapping (using the PD1 distribution as in Mammen 

(1993)) cases with n = 200. For the case with two strong instruments, all the Wald tests reject exogeneity 

of the variable in question in more than 92% of the samples if a correlation between the endogenous 

regressor and error 1 .4ρ = . After size correction, the differences among the Wald tests are negligible, 

however the w test based on artificial regression and the tests wb0, wb01 and wb0a based on Creel’s 

system comparing the OLS and IV estimators perform slightly better. Together with the Wald-type tests 

comparing only the potentially endogenous elements of the GMM and the OLS estimators have the best 

size properties. If we have two weaker instruments, all of the tests perform worse at all degrees of 

endogeneity, size distortions are also greater. The effect of instrument strength on individual tests is 

illustrated in Figure 4.2. After size correction, the Wald test w2a (comparing the potentially endogenous 

elements of the two step GMM and the OLS estimators) and w1a (comparing the potentially endogenous 

elements of the GMM and the OLS estimators) perform the best. In the third panel we report the results for 

one strong and one weak instrument. The size properties are better than in the case with two strong or two 

weak instruments. The rejection frequencies are higher than in the case with two weak instruments, the 

relative performance of the tests is almost the same, with the Wald tests comparing the potentially 

endogenous elements of the GMM and the OLS estimators performing the best.  

4.3.3 The Effect of Heteroskedasticity 

Table 4.3 and Figures 4.3 show effects of heteroskedasticity on test performance if we have two weak 

instruments available and n = 200. In the upper panel we present the size corrected power in the 

homoskedasticity case, the middle and lower panels show the effects of heteroskedasticity for γ = .5 and γ 

= 1. For any type of bootstrapping, under weak endogeneity ( 1 .1ρ = ) the size corrected power of all 

bootstrap tests under mild heteroskedasticity (γ = .5) is higher than under homoskedasticity. When the 

correlation between the regressor and the error term is higher than .1, we obtain evidence that the more 

pronounced heteroskedasticity, the lower the power of all Wald tests. 
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TABLE 4.2. BOOTSTRAPPING - EFFECT OF INSTRUMENT STRENGTH   

 
 
 

Table 106: Percent rejections (wild bootstr. ‐ Mammen), n=200, gamma=1, rho2=.5, rho3=.5 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.042    0.042    0.042    0.042    0.014    0.069    0.045    0.015    0.070    0.047 
0.1    0.166    0.166    0.166    0.166    0.090    0.206    0.154    0.086    0.207    0.155 
0.2    0.497    0.497    0.497    0.497    0.337    0.526    0.463    0.332    0.524    0.454 
0.3    0.843    0.843    0.843    0.843    0.692    0.850    0.809    0.692    0.852    0.808 
0.4    0.977    0.977    0.977    0.977    0.931    0.978    0.969    0.928    0.978    0.969 
0.5    0.997    0.997    0.997    0.997    0.992    0.996    0.994    0.991    0.996    0.992 

 
 
 
 

Table 107: Percent rejections (wild bootstr. ‐ Mammen), n=200, gamma=1, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.061    0.061    0.061    0.061    0.020    0.081    0.065    0.020    0.084    0.063 
0.1    0.063    0.063    0.063    0.063    0.031    0.102    0.064    0.035    0.104    0.065 
0.2    0.151    0.151    0.151    0.151    0.084    0.202    0.152    0.088    0.205    0.155 
0.3    0.261    0.261    0.261    0.261    0.157    0.318    0.269    0.159    0.317    0.270 
0.4    0.447    0.447    0.447    0.447    0.314    0.516    0.460    0.313    0.514    0.462 
0.5    0.628    0.628    0.628    0.628    0.470    0.681    0.635    0.474    0.681    0.640 

 
 
 
 

Table 108: Percent rejections (wild bootstr. ‐ Mammen), n=200, gamma=1, rho2=.5, rho3=.1 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.046    0.046    0.046    0.046    0.023    0.066    0.045    0.022    0.067    0.045 
0.1    0.084    0.084    0.084    0.084    0.037    0.109    0.081    0.037    0.109    0.080 
0.2    0.213    0.213    0.213    0.213    0.118    0.257    0.209    0.124    0.258    0.210 
0.3    0.406    0.406    0.406    0.406    0.269    0.475    0.416    0.271    0.474    0.414 
0.4    0.649    0.649    0.649    0.649    0.473    0.699    0.653    0.473    0.695    0.651 
0.5    0.840    0.840    0.840    0.840    0.723    0.870    0.844    0.724    0.869    0.840 
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FIGURE 4.1. PERCENT REJECTIONS UNDER HETEROSKEDASTICITY (WILD 
BOOTSTRAPPING – MAMMEN, gamma = 1, n = 200)
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FIGURE 4.2. PERCENT REJECTIONS UNDER HETEROSKEDASTICITY (WILD 
BOOTSTRAPPING – MAMMEN) - EFFECT OF INSTRUMENT STRENGTH (gamma = 1, n = 
200) 
*si – two strong instruments, wi  – two weaker instruments, mi - one strong, one weak instrument 
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TABLE 4.3. BOOTSTRAPPING - EFFECT OF HETEROSKEDASTICITY 

 

Table 4.3.1. Pairs bootstrapping  

 
Table 77: Percent rejections (pairs bootstrapping), n=200, gamma=0, rho2=.3, rho3=.3 

 
alpha=0.05 

 
rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 

 
0.0    0.042    0.004    0.036    0.036    0.004    0.041    0.033    0.004    0.039    0.034 
0.1    0.071    0.016    0.056    0.055    0.016    0.056    0.054    0.016    0.055    0.052 
0.2    0.230    0.061    0.192    0.188    0.058    0.202    0.192    0.056    0.201    0.190 
0.3    0.450    0.181    0.401    0.397    0.183    0.404    0.389    0.183    0.403    0.387 
0.4    0.774    0.448    0.723    0.717    0.447    0.734    0.716    0.449    0.733    0.717 
0.5    0.960    0.775    0.940    0.937    0.766    0.938    0.932    0.762    0.937    0.932 

 
 
 
 

Table 83: Percent rejections (pairs bootstrapping), n=200, gamma=.5, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.033    0.005    0.027    0.026    0.005    0.027    0.025    0.005    0.026    0.025 
0.1    0.080    0.015    0.066    0.065    0.013    0.068    0.064    0.013    0.067    0.064 
0.2    0.170    0.046    0.140    0.136    0.038    0.149    0.135    0.039    0.148    0.134 
0.3    0.374    0.130    0.341    0.337    0.138    0.346    0.336    0.137    0.346    0.336 
0.4    0.632    0.330    0.589    0.581    0.339    0.594    0.581    0.336    0.595    0.582 
0.5    0.867    0.596    0.847    0.843    0.605    0.853    0.845    0.607    0.852    0.844 

 
 
 
 

Table 89: Percent rejections (pairs bootstrapping), n=200, gamma=1, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.053    0.007    0.047    0.044    0.004    0.047    0.042    0.004    0.044    0.041 
0.1    0.059    0.013    0.048    0.044    0.011    0.053    0.044    0.011    0.053    0.042 
0.2    0.131    0.037    0.120    0.112    0.036    0.125    0.112    0.035    0.125    0.110 
0.3    0.231    0.071    0.213    0.205    0.077    0.219    0.198    0.075    0.216    0.196 
0.4    0.417    0.185    0.384    0.376    0.197    0.401    0.376    0.194    0.397    0.372 
0.5    0.590    0.288    0.546    0.537    0.296    0.564    0.538    0.298    0.565    0.537 
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Table 4.3.2. Wild bootstrapping - PD1 distribution 
 
 

Table 95: Percent rejections (wild bootstr. ‐ Mammen), n=200, gamma=0, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1     wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.060    0.060    0.060    0.060    0.020    0.079    0.061    0.020    0.081    0.061 
0.1    0.088    0.088    0.088    0.088    0.037    0.116    0.095    0.038    0.115    0.095 
0.2    0.268    0.268    0.268    0.268    0.150    0.308    0.273    0.150    0.306    0.273 
0.3    0.513    0.513    0.513    0.513    0.329    0.554    0.512    0.329    0.553    0.512 
0.4    0.824    0.824    0.824    0.824    0.669    0.845    0.826    0.669    0.845    0.827 
0.5    0.969    0.969    0.969    0.969    0.910    0.979    0.966    0.911    0.978    0.966 

 
 
 
 

Table 101: Percent rejections (wild bootstr. ‐ Mammen), n=200, gamma=.5, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.041    0.041    0.041    0.041    0.015    0.061    0.046    0.015    0.061    0.046 
0.1    0.094    0.094    0.094    0.094    0.048    0.130    0.095    0.049    0.129    0.095 
0.2    0.201    0.201    0.201    0.201    0.104    0.238    0.208    0.103    0.238    0.207 
0.3    0.422    0.422    0.422    0.422    0.256    0.473    0.426    0.258    0.469    0.425 
0.4    0.679    0.679    0.679    0.679    0.516    0.706    0.679    0.515    0.709    0.678 
0.5    0.896    0.896    0.896    0.896    0.809    0.919    0.902    0.808    0.918    0.900 

 
 
 
 

Table 107: Percent rejections (wild bootstr. ‐ Mammen), n=200, gamma=1, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.061    0.061    0.061    0.061    0.020    0.081    0.065    0.020    0.084    0.063 
0.1    0.063    0.063    0.063    0.063    0.031    0.102    0.064    0.035    0.104    0.065 
0.2    0.151    0.151    0.151    0.151    0.084    0.202    0.152    0.088    0.205    0.155 
0.3    0.261    0.261    0.261    0.261    0.157    0.318    0.269    0.159    0.317    0.270 
0.4    0.447    0.447    0.447    0.447    0.314    0.516    0.460    0.313    0.514    0.462 
0.5    0.628    0.628    0.628    0.628    0.470    0.681    0.635    0.474    0.681    0.640 
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Table 4.3.3. Wild bootstrapping – PD2 distribution (Rademacher) 

 
 

Table 113: Percent rejections (wild bootstr. ‐ Radem.), n=200, gamma=0, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.061    0.061    0.061    0.061    0.056    0.142    0.060    0.058    0.138    0.059 
0.1    0.090    0.090    0.090    0.090    0.074    0.186    0.093    0.076    0.184    0.093 
0.2    0.271    0.271    0.271    0.271    0.197    0.367    0.272    0.195    0.367    0.271 
0.3    0.513    0.513    0.513    0.513    0.406    0.610    0.500    0.396    0.607    0.502 
0.4    0.817    0.817    0.817    0.817    0.714    0.859    0.816    0.714    0.859    0.816 
0.5    0.969    0.969    0.969    0.969    0.934    0.983    0.966    0.934    0.983    0.966 

 
 
 
 

Table 119: Percent rejections (wild bootstr. ‐ Radem.), n=200, gamma=.5, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.042    0.042    0.042    0.042    0.037    0.110    0.045    0.038    0.112    0.046 
0.1    0.097    0.097    0.097    0.097    0.086    0.201    0.094    0.086    0.201    0.094 
0.2    0.202    0.202    0.202    0.202    0.149    0.302    0.205    0.146    0.302    0.205 
0.3    0.417    0.417    0.417    0.417    0.309    0.538    0.414    0.309    0.529    0.412 
0.4    0.674    0.674    0.674    0.674    0.566    0.748    0.667    0.566    0.747    0.666 
0.5    0.895    0.895    0.895    0.895    0.842    0.936    0.906    0.840    0.936    0.905 

 
 
 
 

Table 125: Percent rejections (wild bootstr. ‐ Radem.), n=200, gamma=1, rho2=.3, rho3=.3 
 

alpha=0.05 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.055    0.055    0.055    0.055    0.041    0.134    0.059    0.044    0.138    0.059 
0.1    0.064    0.064    0.064    0.064    0.056    0.152    0.064    0.061    0.154    0.064 
0.2    0.145    0.145    0.145    0.145    0.122    0.264    0.152    0.126    0.263    0.154 
0.3    0.258    0.258    0.258    0.258    0.214    0.395    0.264    0.216    0.398    0.265 
0.4    0.448    0.448    0.448    0.448    0.379    0.577    0.453    0.373    0.576    0.454 
0.5    0.632    0.632    0.632    0.632    0.541    0.726    0.632    0.534    0.721    0.635 



 

 

 

80

wb

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 rho1

wb-nh wb-mh wb-sh

wb1a

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 rho1

wb1a-nh wb1a-mh wb1a-sh

wb2a

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 rho1

wb2a-nh wb2a-mh wb2a-sh

 

 
FIGURE 4.3.1. SIZE CORRECTED POWER - EFFECT OF HETEROSKEDASTICITY (n = 200, 
rho2 = .3, rho3 = .3)  
Pairs bootstrapping 
*nh – no heteroskedasticity (gamma = 0), mh  – medium heteroskedasticity (gamma = .5), sh - strong 
heteroskedasticity (gamma = 1)
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FIGURE 4.3.2. SIZE CORRECTED POWER - EFFECT OF HETEROSKEDASTICITY (n = 200, 
rho2 = .3, rho3 = .3)  
Wild bootstrapping - PD1 distribution 
*nh – no heteroskedasticity (gamma = 0), mh  – medium heteroskedasticity (gamma = .5), sh - strong 
heteroskedasticity (gamma = 1) 
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FIGURE 4.3.3. SIZE CORRECTED POWER - EFFECT OF HETEROSKEDASTICITY (n = 200, 
rho2 = .3, rho3 = .3)  
Wild bootstrapping – PD2 distribution (Rademacher) 
*nh – no heteroskedasticity (gamma = 0), mh  – medium heteroskedasticity (gamma = .5), sh - strong 
heteroskedasticity (gamma = 1) 
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4.3.4 The Effect of Bootstrapping under Heteroskedasticity 

Table 4.4 and Figures 4.4 compare the effect of bootstrapping on the respective tests if the sample size 

n=100 and heteroskedasticity is present. In the case of two strong instruments, there are only small 

differences between the asymptotic and bootstrap tests. The Wald test based on the artificial regression that 

uses pairs bootstrapping has higher rejection rate than the test that uses wild bootstrapping but its size is 

also higher. The Wald tests based on the Creel’s system that use wild bootstrapping have higher power 

than tests using pairs bootstrapping, wild bootstrapping using the Rademacher distribution performs 

slightly better that the one using the PD1 distribution as in Mammen (1993).  With pairs bootstrapping , the 

Wald tests based on the Creel’s system comparing all the coefficients of the GMM and OLS or  the IV and 

OLS estimators and having two degrees of freedom underreject the null, consequently their rejection 

frequencies are the lowest. After size correction, for low degrees of endogeneity pairs bootstrapping in 

comparison to asymptotics or to wild bootstrapping improves the performance of all tests. Size corrected 

Wald tests computed by pairs bootstrapping perform better than by both types of wild bootstrapping. Wild 

bootstrapping using the PD1 distribution as in Mammen (1993) performs slightly better that the one using 

the Rademacher distribution for the size corrected Wald tests wb1 and wb2 based on the Creel’s system 

comparing all the coefficients of the GMM and OLS estimators, the conclusions are reverse for the size 

corrected Wald test based on the Creel’s system comparing only the coefficients of potentially endogenous 

elements of the GMM and OLS estimators. 

In the case of weak instruments, the pairs bootstrapping tests perform significantly worse than the 

asymptotic and wild bootstrap tests. The bootstrap tests are not an improvement over the asymptotic tests 

except the wild bootstrap tests wb11 and wb21 based on the Creel’s system comparing the GMM and OLS 

estimators and having one degree of freedom but for example their size is higher than .1 if the  nominal 

level of significance is .05. The rejection rate of tests using the PD1 distribution and the Rademacher 

distribution based on the Creel’s system comparing the IV and OLS estimators is very similar. The 

evidence in the case of tests comparing the GMM and OLS estimators is mixed, Rademacher distribution 

helps to improve the rejection rate of  the tests wb1, wb11, wb2 and wb21;  the PD1 distribution does 

better in the case of  the tests wb1a and wb2a.  
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If we compare the asymptotic and the wild bootstrapped tests in the case of one strong and one 

weak instrument, the only bootstrap tests that perform better than the asymptotic tests are the wild 

bootstrap tests wb11 and wb21, the Rademacher distribution doing better than the PD1 distribution. After 

size correction, the Rademacher distribution performs better than the PD1 distribution for the Wald tests 

wb1a and wb2a based on the Creel’s system comparing only the coefficients of potentially endogenous 

elements of the GMM and OLS estimators. Under weak endogeneity, pairs bootstrapping works better than 

wild bootstrapping for some of the size corrected Wald tests. If we compare corresponding tests (Figure 

4.4.1 and Figure 4.4.2), the bootstrap wb is not an improvement over the asymptotic t test but the bootstrap 

w21 test has higher power than the asymptotic w21 test. However, after size correction, the bootstrap wb2 

test does not perform better than the asymptotic w2 test.  

Tables 4.5 provide evidence that if the sample size is higher (n = 200), wild bootstrapping is an 

improvement over asymptotics.  Specifically, even under weak instruments, the bootstrap w21 test has 

higher power than the asymptotic w21 test and after the size correction (Figure 4.5.2) the bootstrap wb2 

test has higher power than the asymptotic w2 test. The bootstrap wb is not an improvement over the 

asymptotic t test in the model with weak instruments (Figure 4.5.1).  

Under two strong instruments (Table 4.5.1), wild bootstrapping does not improve test 

performance. After size adjustments, if the correlation between the regressor and the error term is low, 

pairs bootstrapping does well, it works better than wild bootstrapping. The distribution PD1 performs better 

than the Rademacher distribution in the bootstrapped system tests wb1 and wb2 comparing GMM and 

OLS under weak endogeneity, differences among other tests are very small.  

If only weak instruments are available (Table 4.5.2), there is no improvement over the asymptotic 

tests except  the   wb11  and  wb21  test based on the Creel’s system comparing the GMM and OLS 

estimators and using one degree of freedom, tests employing the Rademacher distribution doing better than 

the PD1 distribution. The conclusions are reversed after size correction. The best performing are the wb1a  
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TABLE 4.4. EFFECT OF BOOTSTRAPPING - HETEROSKEDASTIC CASE (n = 100) 

Table 4.4.1. Two strong instruments 

alpha=0.05 
 
 

Table 13: Percent rejections, n=100, gamma=1, rho2=.5, rho3=.5 
 

         rho1     ho3     ho3a     t      tr     tr2     tr3      w21     d1     w2r1    DMF 
                     

0.0  0.051  0.053  0.051  0.054  0.051  0.045  0.061  0.061  0.054  0.035 
0.1  0.103  0.107  0.104  0.112  0.107  0.096  0.112  0.112  0.105  0.062 
0.2  0.283  0.290  0.285  0.295  0.284  0.264  0.280  0.280  0.276  0.166 
0.3  0.561  0.569  0.563  0.568  0.555  0.530  0.536  0.536  0.538  0.376 
0.4  0.809  0.815  0.810  0.803  0.794  0.773  0.768  0.768  0.777  0.631 
0.5  0.939  0.942  0.940  0.925  0.919  0.907  0.908  0.908  0.912  0.827 

 
 

Table 85: Percent rejections (pairs bootstrapping), n=100, gamma=1, rho2=.5, rho3=.5 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.061    0.012    0.052    0.043    0.010    0.047    0.034    0.009    0.040    0.032 
0.1    0.102    0.026    0.089    0.076    0.018    0.065    0.053    0.016    0.057    0.048 
0.2    0.314    0.109    0.283    0.254    0.079    0.248    0.224    0.073    0.239    0.207 
0.3    0.553    0.267    0.491    0.475    0.204    0.460    0.429    0.187    0.443    0.408 
0.4    0.796    0.501    0.755    0.737    0.424    0.701    0.673    0.402    0.685    0.654 
0.5    0.922    0.721    0.904    0.883    0.626    0.859    0.830    0.595    0.841    0.815 

 
 

Table 103: Percent rejections (wild bootstr. ‐ Mammen), n=100, gamma=1, rho2=.5, rho3=.5 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.055    0.055    0.055    0.055    0.021    0.094    0.045    0.025    0.095    0.042 
0.1    0.087    0.087    0.087    0.087    0.033    0.131    0.079    0.033    0.132    0.076 
0.2    0.290    0.290    0.290    0.290    0.156    0.337    0.271    0.156    0.342    0.262 
0.3    0.527    0.527    0.527    0.527    0.342    0.588    0.503    0.339    0.581    0.489 
0.4    0.781    0.781    0.781    0.781    0.620    0.814    0.746    0.613    0.810    0.736 
0.5    0.912    0.912    0.912    0.912    0.797    0.920    0.876    0.787    0.912    0.865 

 
 

Table 121: Percent rejections (wild bootstr. ‐ Radem.), n=100, gamma=1, rho2=.5, rho3=.5 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.056    0.056    0.056    0.056    0.042    0.137    0.055    0.045    0.141    0.054 
0.1    0.088    0.088    0.088    0.088    0.060    0.181    0.082    0.061    0.183    0.084 
0.2    0.294    0.294    0.294    0.294    0.190    0.403    0.275    0.189    0.398    0.271 
0.3    0.531    0.531    0.531    0.531    0.406    0.636    0.501    0.407    0.634    0.501 
0.4    0.783    0.783    0.783    0.783    0.659    0.846    0.767    0.655    0.844    0.758 
0.5    0.915    0.915    0.915    0.915    0.846    0.938    0.886    0.838    0.936    0.882 
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 Table 4.4.2. Two weak instruments 

alpha=0.05 
 
 

Table 14: Percent rejections, n=100, gamma=1, rho2=.3, rho3=.3 
 

    rho1     ho3     ho3a     t      tr     tr2     tr3      w21     d1     w2r1    DMF 
 

0.0  0.049  0.052  0.050  0.055  0.051  0.045  0.043  0.043  0.052  0.035 
0.1  0.060  0.063  0.060  0.064  0.061  0.054  0.051  0.051  0.063  0.039 
0.2  0.098  0.102  0.099  0.106  0.101  0.090  0.082  0.082  0.100  0.059 
0.3  0.160  0.165  0.161  0.169  0.162  0.147  0.132  0.132  0.161  0.096 
0.4  0.254  0.260  0.256  0.264  0.255  0.235  0.209  0.209  0.250  0.155 
0.5  0.369  0.377  0.370  0.384  0.371  0.347  0.304  0.304  0.363  0.235 

 
 

Table 86: Percent rejections (pairs bootstrapping), n=100, gamma=1, rho2=.3, rho3=.3 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.042    0.005    0.035    0.028    0.005    0.028    0.024    0.006    0.029    0.024 
0.1    0.034    0.003    0.023    0.017    0.001    0.024    0.015    0.001    0.023    0.014 
0.2    0.056    0.006    0.049    0.041    0.004    0.050    0.043    0.003    0.050    0.042 
0.3    0.111    0.018    0.084    0.070    0.015    0.083    0.071    0.013    0.082    0.071 
0.4    0.138    0.027    0.111    0.099    0.028    0.129    0.103    0.028    0.127    0.101 
0.5    0.229    0.060    0.185    0.169    0.056    0.202    0.171    0.048    0.204    0.171 

 
 

Table 104: Percent rejections (wild bootstr. ‐ Mammen), n=100, gamma=1, rho2=.3, rho3=.3 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.056    0.056    0.056    0.056    0.029    0.107    0.056    0.030    0.107    0.058 
0.1    0.051    0.051    0.051    0.051    0.029    0.090    0.057    0.029    0.097    0.061 
0.2    0.098    0.098    0.098    0.098    0.047    0.149    0.102    0.052    0.148    0.102 
0.3    0.168    0.168    0.168    0.168    0.088    0.221    0.165    0.091    0.221    0.164 
0.4    0.215    0.215    0.215    0.215    0.136    0.304    0.226    0.138    0.303    0.227 
0.5    0.326    0.326    0.326    0.326    0.219    0.396    0.339    0.223    0.398    0.340 

 

 
Table 122: Percent rejections (wild bootstr. ‐ Radem.), n=100, gamma=1, rho2=.3, rho3=.3 

 
rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 

 
0.0    0.058    0.058    0.058    0.058    0.060    0.160    0.054    0.059    0.155    0.054 
0.1    0.053    0.053    0.053    0.053    0.055    0.138    0.050    0.056    0.143    0.053 
0.2    0.096    0.096    0.096    0.096    0.079    0.203    0.097    0.076    0.195    0.099 
0.3    0.164    0.164    0.164    0.164    0.130    0.275    0.152    0.128    0.271    0.154 
0.4    0.211    0.211    0.211    0.211    0.182    0.357    0.221    0.185    0.355    0.219 
0.5    0.322    0.322    0.322    0.322    0.266    0.447    0.328    0.265    0.447    0.328 
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 Table 4.4.3. One strong, one weak instrument 

 
alpha=0.05 

 
 

Table 15: Percent rejections, n=100, gamma=1, rho2=.5, rho3=.1 
 

   rho1     ho3     ho3a     t      tr     tr2     tr3      w21     d1     w2r1    DMF 
 

0.0  0.048  0.051  0.049  0.053  0.050  0.043  0.050  0.050  0.051  0.035 
0.1  0.069  0.072  0.070  0.073  0.069  0.062  0.068  0.068  0.071  0.044 
0.2  0.128  0.132  0.129  0.136  0.130  0.118  0.118  0.118  0.126  0.075 
0.3  0.235  0.241  0.236  0.245  0.235  0.217  0.216  0.216  0.231  0.138 
0.4  0.381  0.389  0.382  0.392  0.380  0.355  0.345  0.345  0.371  0.242 
0.5  0.546  0.554  0.548  0.554  0.540  0.516  0.497  0.497  0.530  0.381 

 
Table 87: Percent rejections (pairs bootstrapping), n=100, gamma=1, rho2=.5, rho3=.1 

 
rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 

 
0.0    0.039    0.005    0.030    0.024    0.007    0.034    0.029    0.007    0.028    0.026 
0.1    0.052    0.010    0.039    0.033    0.008    0.040    0.031    0.007    0.038    0.030 
0.2    0.099    0.021    0.085    0.071    0.019    0.092    0.078    0.015    0.091    0.077 
0.3    0.207    0.045    0.165    0.144    0.041    0.159    0.142    0.039    0.154    0.137 
0.4    0.308    0.091    0.251    0.221    0.096    0.256    0.228    0.086    0.248    0.221 
0.5    0.476    0.167    0.407    0.372    0.151    0.398    0.368    0.143    0.395    0.358 

 
 

Table 105: Percent rejections (wild bootstr. ‐ Mammen), n=100, gamma=1, rho2=.5, rho3=.1 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.050    0.050    0.050    0.050    0.023    0.090    0.054    0.029    0.100    0.055 
0.1    0.052    0.052    0.052    0.052    0.030    0.087    0.052    0.032    0.085    0.053 
0.2    0.115    0.115    0.115    0.115    0.071    0.181    0.129    0.080    0.183    0.126 
0.3    0.228    0.228    0.228    0.228    0.137    0.276    0.238    0.139    0.276    0.234 
0.4    0.333    0.333    0.333    0.333    0.204    0.394    0.342    0.208    0.396    0.342 
0.5    0.509    0.509    0.509    0.509    0.334    0.572    0.510    0.335    0.573    0.508 

 
 

Table 123: Percent rejections (wild bootstr. ‐ Radem.), n=100, gamma=1, rho2=.5, rho3=.1 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.047    0.047    0.047    0.047    0.051    0.149    0.050    0.059    0.148    0.050 
0.1    0.054    0.054    0.054    0.054    0.049    0.133    0.052    0.051    0.130    0.052 
0.2    0.112    0.112    0.112    0.112    0.105    0.230    0.123    0.103    0.228    0.123 
0.3    0.229    0.229    0.229    0.229    0.170    0.335    0.230    0.175    0.328    0.225 
0.4    0.336    0.336    0.336    0.336    0.261    0.469    0.338    0.257    0.465    0.344 
0.5    0.511    0.511    0.511    0.511    0.390    0.615    0.515    0.388    0.617    0.507 
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FIGURE 4.4.1.SIZE CORRECTED POWER - EFFECT OF BOOTSTRAPPING (gamma = 1, n = 
100)  
t/Wald test 
*p – pairs bootstrapping, m  – wild bootstrapping (Mammen), r  – wild bootstrapping (Rademacher) 
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FIGURE 4.4.2. SIZE CORRECTED POWER - EFFECT OF BOOTSTRAPPING (gamma = 1, n = 
100)  
Creel system Wald test 
*p – pairs bootstrapping, m  – wild bootstrapping (Mammen), r  – wild bootstrapping (Rademacher) 
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TABLE 4.5. EFFECT OF BOOTSTRAPPING - HETEROSKEDASTIC CASE (n = 200) 

Table 4.5.1. Two strong instruments 

alpha=0.05 
 
 

Table 16: Percent rejections, n=200, gamma=1, rho2=.5, rho3=.5 
 

   rho1     ho3     ho3a     t      tr     tr2     tr3      w21     d1     w2r1    DMF 
 

0.0  0.051  0.052  0.051  0.054  0.052  0.049  0.056  0.056  0.052  0.044 
0.1  0.167  0.170  0.168  0.173  0.169  0.161  0.170  0.170  0.166  0.113 
0.2  0.516  0.520  0.517  0.520  0.513  0.501  0.506  0.506  0.506  0.377 
0.3  0.853  0.855  0.854  0.852  0.848  0.840  0.838  0.838  0.841  0.737 
0.4  0.980  0.980  0.980  0.975  0.974  0.972  0.971  0.971  0.972  0.941 
0.5  0.998  0.998  0.998  0.996  0.996  0.995  0.995  0.995  0.996  0.989 

 
 

Table 88: Percent rejections (pairs bootstrapping), n=200, gamma=1, rho2=.5, rho3=.5 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.054    0.013    0.046    0.041    0.010    0.050    0.044    0.010    0.048    0.042 
0.1    0.179    0.065    0.167    0.163    0.052    0.162    0.132    0.051    0.157    0.128 
0.2    0.528    0.287    0.503    0.486    0.256    0.469    0.431    0.247    0.461    0.421 
0.3    0.850    0.655    0.830    0.822    0.612    0.810    0.776    0.602    0.809    0.774 
0.4    0.978    0.917    0.978    0.975    0.887    0.967    0.957    0.880    0.966    0.953 
0.5    0.997    0.988    0.997    0.997    0.982    0.994    0.992    0.979    0.994    0.991 

 
 
 

Table 106: Percent rejections (wild bootstr. ‐ Mammen), n=200, gamma=1, rho2=.5, rho3=.5 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.042    0.042    0.042    0.042    0.014    0.069    0.045    0.015    0.070    0.047 
0.1    0.166    0.166    0.166    0.166    0.090    0.206    0.154    0.086    0.207    0.155 
0.2    0.497    0.497    0.497    0.497    0.337    0.526    0.463    0.332    0.524    0.454 
0.3    0.843    0.843    0.843    0.843    0.692    0.850    0.809    0.692    0.852    0.808 
0.4    0.977    0.977    0.977    0.977    0.931    0.978    0.969    0.928    0.978    0.969 
0.5    0.997    0.997    0.997    0.997    0.992    0.996    0.994    0.991    0.996    0.992 

 
 

Table 124: Percent rejections (wild bootstr. ‐ Radem.), n=200, gamma=1, rho2=.5, rho3=.5 
 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.038    0.038    0.038    0.038    0.040    0.131    0.050    0.043    0.125    0.052 
0.1    0.167    0.167    0.167    0.167    0.123    0.273    0.162    0.122    0.271    0.160 
0.2    0.501    0.501    0.501    0.501    0.383    0.587    0.483    0.383    0.585    0.479 
0.3    0.844    0.844    0.844    0.844    0.735    0.880    0.822    0.734    0.877    0.820 
0.4    0.976    0.976    0.976    0.976    0.940    0.982    0.971    0.939    0.981    0.970 
0.5    0.997    0.997    0.997    0.997    0.994    0.997    0.995    0.994    0.997    0.995 
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Table 4.5.2. Two weak instruments 

alpha=0.05 
 
 

Table 17: Percent rejections, n=200, gamma=1, rho2=.3, rho3=.3 
 

    rho1     ho3     ho3a     t      tr     tr2     tr3      w21     d1     w2r1    DMF 
 

0.0  0.048  0.050  0.049  0.052  0.050  0.047  0.045  0.045  0.049  0.041 
0.1  0.074  0.075  0.074  0.077  0.075  0.071  0.069  0.069  0.075  0.056 
0.2  0.151  0.154  0.152  0.157  0.154  0.146  0.138  0.138  0.150  0.104 
0.3  0.278  0.281  0.279  0.285  0.280  0.270  0.257  0.257  0.276  0.196 
0.4  0.459  0.462  0.460  0.466  0.459  0.448  0.427  0.427  0.454  0.338 
0.5  0.645  0.649  0.646  0.649  0.643  0.631  0.606  0.606  0.637  0.519 

 
 

Table 89: Percent rejections (pairs bootstrapping), n=200, gamma=1, rho2=.3, rho3=.3 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.053    0.007    0.047    0.044    0.004    0.047    0.042    0.004    0.044    0.041 
0.1    0.059    0.013    0.048    0.044    0.011    0.053    0.044    0.011    0.053    0.042 
0.2    0.131    0.037    0.120    0.112    0.036    0.125    0.112    0.035    0.125    0.110 
0.3    0.231    0.071    0.213    0.205    0.077    0.219    0.198    0.075    0.216    0.196 
0.4    0.417    0.185    0.384    0.376    0.197    0.401    0.376    0.194    0.397    0.372 
0.5    0.590    0.288    0.546    0.537    0.296    0.564    0.538    0.298    0.565    0.537 

 
 

Table 107: Percent rejections (wild bootstr. ‐ Mammen), n=200, gamma=1, rho2=.3, rho3=.3 
 

rho1      wb      wb0     wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.061    0.061    0.061    0.061    0.020    0.081    0.065    0.020    0.084    0.063 
0.1    0.063    0.063    0.063    0.063    0.031    0.102    0.064    0.035    0.104    0.065 
0.2    0.151    0.151    0.151    0.151    0.084    0.202    0.152    0.088    0.205    0.155 
0.3    0.261    0.261    0.261    0.261    0.157    0.318    0.269    0.159    0.317    0.270 
0.4    0.447    0.447    0.447    0.447    0.314    0.516    0.460    0.313    0.514    0.462 
0.5    0.628    0.628    0.628    0.628    0.470    0.681    0.635    0.474    0.681    0.640 

 
 

Table 125: Percent rejections (wild bootstr. ‐ Radem.), n=200, gamma=1, rho2=.3, rho3=.3 
 

rho1      wb      wb0     wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.055    0.055    0.055    0.055    0.041    0.134    0.059    0.044    0.138    0.059 
0.1    0.064    0.064    0.064    0.064    0.056    0.152    0.064    0.061    0.154    0.064 
0.2    0.145    0.145    0.145    0.145    0.122    0.264    0.152    0.126    0.263    0.154 
0.3    0.258    0.258    0.258    0.258    0.214    0.395    0.264    0.216    0.398    0.265 
0.4    0.448    0.448    0.448    0.448    0.379    0.577    0.453    0.373    0.576    0.454 
0.5    0.632    0.632    0.632    0.632    0.541    0.726    0.632    0.534    0.721    0.635 
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 Table 4.5.3. One strong, one weak instrument 

 
 

alpha=0.05 

 
Table 18: Percent rejections, n=200, gamma=1, rho2=.5, rho3=.1 

 
   rho1     ho3     ho3a     t      tr     tr2     tr3      w21     d1     w2r1    DMF 

 
0.0  0.051  0.053  0.052  0.053  0.051  0.048  0.052  0.052  0.052  0.042 
0.1  0.089  0.091  0.089  0.092  0.090  0.085  0.087  0.087  0.089  0.066 
0.2  0.214  0.217  0.214  0.219  0.215  0.206  0.207  0.207  0.212  0.147 
0.3  0.425  0.429  0.426  0.430  0.425  0.412  0.407  0.407  0.419  0.305 
0.4  0.655  0.659  0.655  0.659  0.653  0.642  0.628  0.628  0.645  0.516 
0.5  0.839  0.841  0.839  0.835  0.830  0.822  0.813  0.813  0.825  0.726 

 
 

Table 90: Percent rejections (pairs bootstrapping), n=200, gamma=1, rho2=.5, rho3=.1 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.046    0.009    0.041    0.039    0.007    0.037    0.030    0.006    0.037    0.030 
0.1    0.079    0.017    0.072    0.069    0.017    0.074    0.071    0.017    0.073    0.069 
0.2    0.209    0.090    0.191    0.186    0.081    0.196    0.181    0.079    0.193    0.179 
0.3    0.395    0.190    0.369    0.358    0.184    0.377    0.355    0.181    0.372    0.344 
0.4    0.637    0.366    0.607    0.589    0.357    0.611    0.594    0.350    0.602    0.587 
0.5    0.826    0.589    0.807    0.795    0.579    0.809    0.790    0.570    0.807    0.788 

 
 

Table 108: Percent rejections (wild bootstr. ‐ Mammen), n=200, gamma=1, rho2=.5, rho3=.1 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.046    0.046    0.046    0.046    0.023    0.066    0.045    0.022    0.067    0.045 
0.1    0.084    0.084    0.084    0.084    0.037    0.109    0.081    0.037    0.109    0.080 
0.2    0.213    0.213    0.213    0.213    0.118    0.257    0.209    0.124    0.258    0.210 
0.3    0.406    0.406    0.406    0.406    0.269    0.475    0.416    0.271    0.474    0.414 
0.4    0.649    0.649    0.649    0.649    0.473    0.699    0.653    0.473    0.695    0.651 
0.5    0.840    0.840    0.840    0.840    0.723    0.870    0.844    0.724    0.869    0.840 

 
 

Table 126: Percent rejections (wild bootstr. ‐ Radem.), n=200, gamma=1, rho2=.5, rho3=.1 
 

rho1      wb      wb0      wb01     wb0a     wb1      wb11     wb1a     wb2      wb21     wb2a 
 

0.0    0.047    0.047    0.047    0.047    0.050    0.130    0.046    0.050    0.129    0.044 
0.1    0.085    0.085    0.085    0.085    0.068    0.174    0.081    0.069    0.170    0.081 
0.2    0.217    0.217    0.217    0.217    0.162    0.317    0.216    0.164    0.316    0.216 
0.3    0.411    0.411    0.411    0.411    0.328    0.530    0.416    0.326    0.526    0.413 
0.4    0.646    0.646    0.646    0.646    0.531    0.744    0.650    0.527    0.741    0.648 
0.5    0.846    0.846    0.846    0.846    0.764    0.896    0.844    0.763    0.894    0.842 
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FIGURE 4.5.1. SIZE CORRECTED POWER - EFFECT OF BOOTSTRAPPING (gamma = 1, n = 
200)  
t/Wald test 
*p – pairs bootstrapping, m  – wild bootstrapping (Mammen), r  – wild bootstrapping (Rademacher) 



 

 

 

94

Two strong instruments

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 rho1

Two weaker instruments

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 rho1

One strong, one weak instrument

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 rho1

w2 wb2-p wb2-m wb2-r

 

FIGURE 4.5.2. SIZE CORRECTED POWER - EFFECT OF BOOTSTRAPPING (gamma = 1, n = 
200)  
Creel system Wald test 
*p – pairs bootstrapping, m  – wild bootstrapping (Mammen), r  – wild bootstrapping (Rademacher) 
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and wb2a  tests based on the Creel’s system comparing only the coefficients of potentially endogenous 

elements of the GMM and OLS estimators computed using the PD1 distribution.  

If we compare the size corrected powers of the asymptotic and the wild bootstrapping tests in the 

case of one strong and one weak instrument (Table 4.5.3), there is an improvement over the asymptotic 

equivalents for the wb test if wild bootstrapping is used and for the wb2 test if pairs bootstrapping or wild 

bootstrapping with the PD1 distribution are used. The best performing among the Wald tests, after level 

adjustments, are the wb1a and wb2a tests based on the Creel’s system comparing only the coefficients 

of potentially endogenous elements of the GMM and OLS estimators computed using the PD1 distribution.  

4.4 Summary of Findings on Bootstrap Tests under Heteroskedasticity 

We have bootstrapped the Wald test based on the artificial regression and the Wald tests based on the 

Creel’s (2004) system approach if heteroskedastic errors were present.  

We considered impacts of the sample size and instrument strength. The effect of sample size on 

power improvement was remarkable especially if only weak instruments were available. Under pairs 

bootstrapping, a larger sample size reduced size distortions of most of the tests in all scenarios but this 

conclusion could not be made under wild bootstrapping where instrument strength seemed to have an 

impact on a test size. The Rademacher distribution seemed to have better size properties than the PD1 

distribution used in Mammen (1993). As expected, the stronger the instruments the better the performance 

of the tests. Models with one strong and one weak instrument seem to have the best size properties. The 

size is more distorted under pairs than under wild bootstrapping.  

With two strong instruments, after size adjustments, pairs bootstrapping of the tests performed 

better than both types of wild bootstrapping but in the case of weak instruments, the pairs bootstrap tests 

performed significantly worse than the asymptotic and wild bootstrap tests.  

The errors used in the data generating process following the Rademacher distribution give better 

results than the distribution proposed by Mammen (1993) but after size correction, wild bootstrapping 

using the distribution as in Mammen (1993) performs slightly better than the one using the Rademacher 

distribution for the Wald test based on the Creel’s system comparing all the coefficients of the GMM and 
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OLS estimators, the conclusions are reversed for the Wald test based on the Creel’s system comparing only 

the coefficients of potentially endogenous elements of the GMM and OLS estimators.   

The performance of the bootstrapped tests based on the Creel’s (2004) system approach is not an 

improvement over the classical bootstrapped tests (the Wald test of the artificial regression coefficient) 

except a few scenarios with weak instruments under strong heteroskedasticity (γ = 1) and with one strong 

and one weak instrument when a sample size is larger.  

We have provided evidence that for a larger sample size (n = 200) wild bootstrapping is a slight 

improvement over asymptotics, in particular for the Hausman test comparing potentially endogenous 

elements of the OLS and the second round GMM estimates. Bootstrapping increased the rejection rate 

even under strong heteroskedasticity and in the model with weak instruments. On the other hand, 

bootstrapping the Wald test based on the artificial regression did not provide improvements over first-order 

asymptotics when instruments were irrelevant.  

Our Monte Carlo results are very limited. We only consider overidentified models with  one 

endogenous regressor and two instruments. To evaluate the tests performance in different models, further 

study  is needed. 
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5. EXOGENEITY TESTS IN COUNT DATA MODELS 

5.1 Poisson Regression Model 

There is a wide range of microeconomics examples with a nonnegative integer as the dependent variable. 

The number of occurrences of an event is usually modeled by a Poisson distribution, whose density is 

 
exp( )  Pr[ ] ,      0,1, 2,....

!

y

Y y y
y
λ λ−

= = =  

The mean E[Y] = λ, the variance V[Y] = λ. The Poisson regression model is derived from the Poisson 

distribution by the exponential mean parameterization of the relation between the mean λ and K linearly 

independent regressors xi:  

exp( ),    0,1,2,...,i ix i n′λ = β = .  

Since ( ) exp( )i i iV y x x′= β , the regression is heteroskedastic. The standard approach is to estimate the 

model by maximum likelihood. If we assume independence across observations, the log-likelihood 

function becomes 

 [ ]
1

ln ( ) exp( ) ln !
n

i i i i
i

L y x x y
=

′ ′β = β − β −∑  

The Poisson maximum likelihood estimator ˆ
MLβ  is the solution to the K first-order conditions: 

[ ]
1

exp( ) 0
n

i i i
i

y x x
=

′− β =∑ . If the density of the number of occurrences is misspecified, the estimator is 

referred to as pseudo-ML estimator. The PML estimator ˆ
PMLβ  is consistent, if the conditional mean is 

correctly specified and regressors xi are exogenous. 

 Following Cameron and Trivedi (2005, p.669) , the variance matrix of the PML estimator is 

 ( )
1 1

1 1 1

ˆ
n n n

PML i i i i i i i i i
i i i

V x x x x x x
− −

= = =

⎛ ⎞ ⎛ ⎞⎛ ⎞′ ′ ′β = λ ω λ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑  

where ( )i i iV y xω =  is the conditional variance of yi. If ˆ p
i iλ ⎯⎯→λ , then 

( )2
1 1 2

1 1

ˆ lim
n n

p
i i i i i i i

i i

N y x x N x x− −

= =

′ ′− λ ⎯⎯→ ω∑ ∑  and a consistent estimator of ( )ˆ
PMLV β is thus  
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(5.1) ( ) ( )
1 1

2

1 1 1

ˆ ˆ ˆ ˆˆ
n n n

PML i i i i i i i i i i
i i i

V x x y x x x x
− −

= = =

⎛ ⎞ ⎛ ⎞⎛ ⎞′ ′ ′β = λ − λ λ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑  

If all the regressors are exogenous, the (pseudo-)maximum likelihood estimator is consistent but 

inefficient. Endogeneity leads to maximum likelihood estimators that are inconsistent, so alternative 

estimators have to be used.  

In the following, we describe alternative tests for endogeneity in the Poisson regression model. We 

compare the performance of the the classical contrast tests with uncorrected covariance matrix, the Wald 

test based on the artificial Poisson regression and the GMM based tests using the Creel’s (2004) system 

approach. Further, we investigate how all these tests are affected by the sample size and by the strength of 

the instruments.  

5.2 GMM Framework  

To obtain estimators that are consistent under weak distributional assumptions, we can use the method of 

moments. 

5.2.1 Additive Error Model 

The exponential mean model with additive zero-mean error term assumes  

 exp( )i i i i i iy E y x u x u′⎡ ⎤= + = β +⎣ ⎦  

GMM estimation in the Poisson regression model is based on the conditional moments  

exp( ) 0i i iE y x x′⎡ ⎤− β =⎣ ⎦ . If the regressors are endogenous, instruments zi have to be found such that 

exp( ) 0i i iE y x z′⎡ ⎤− β =⎣ ⎦  and 0i iE u z⎡ ⎤ =⎣ ⎦ . The consistent estimator of β then mimimizes 

 ( ) ( )
1 1

( ) exp( ) exp( )
n n

i i i n i i i
i i

Q z y x W z y x
= =

′⎡ ⎤ ⎡ ⎤′ ′β = − β − β⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∑ ∑  

where Wn is a symmetric weighting matrix.  

For the additive errors model define  

(5.2) 
( ) ( )

1ˆ

exp( ) ˆˆ exp
n

a i i
i

y x
D x x

=β

′∂ − β
′ ′= = β

′∂β ∑  and  

(5.3) 2

1

1ˆ ˆ
n

i i i
i

S u z z
n =

′= ∑  where ˆˆ exp( )i i iu y x′= − β  
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The nonlinear two stage least squares/instrumental variables estimator ˆ
NIVβ  solves 

 ( ) ( )
1

1 1

min exp( ) exp( )
n n

i i i i i i
i i

Z Zz y x z y x
n

−

β
= =

′ ′⎡ ⎤ ⎡ ⎤⎛ ⎞′ ′− β − β⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑  

Its estimated asymptotic variance is [Cameron and Trivedi (2005, p. 105)] 

 ( ) ( ) ( )( )1 11 1 1 1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )NIV a a a a a aV n D Z Z Z Z D D Z Z Z S Z Z Z D D Z Z Z Z D
− −− − − −′ ′ ′ ′ ′ ′ ′ ′ ′ ′β =  

where ˆ
aD  and Ŝ  are as in (5.2) and (5.3), respectively and evaluated at ˆ

NIVβ . 

The optimal GMM estimator ˆ
GMMβ  minimizes the objective function 

( ) ( )1

1 1

ˆ( ) exp( ) exp( )
n n

i i i i i i
i i

Q z y x S z y x−

= =

′⎡ ⎤ ⎡ ⎤′ ′β = − β − β⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∑ ∑ . 

with the weighting matrix equal to the inverse of the asymptotic covariance matrix of the moment 

conditions evaluated at the first round estimate ˆ
NIVβ . 

The optimal ˆ
GMMβ  estimated asymptotic variance is [Cameron and Trivedi (2005, p. 105)] 

 ( ) ( ) 11ˆ ˆˆ ˆ ˆ
GMM a aV n D ZS Z D

−
−′ ′β =  

 where ˆ
aD  and Ŝ  are as in (5.2) and (5.3), respectively and evaluated at ˆ

GMMβ . 

5.2.2 Multiplicative Error Model 

The exponential mean model with multiplicative zero-mean error term assumes  

 exp( ) exp( ),     exp( )i i i i i i iy x x u u′ ′= β ν = β + ν = .  

It treats the observables and unobservables symmetrically. Mullahy (1997) shows that the multiplicative 

error model has some advantages over the additive one. Specifically, nonlinear IV estimators based on an 

additive residual function are not generally consistent whereas IV estimators based on multiplicative errors 

are.  

 The instrumental variables in the multiplicative error model satisfy 1i iE z⎡ ⎤ν =⎣ ⎦  and the IV 

estimator is based on the moment conditions 1 0
exp( )

i
i

i

yE z
x

⎡ ⎤
− =⎢ ⎥′β⎣ ⎦

. Windmeijer and Silva (1997) show 

that the same set of instruments will not, in general, be orthogonal to both error types. If Z are valid 
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instruments in the additive model, then MZ (where M = diag (λi)) are valid instruments in the 

multiplicative model, giving the same estimation results for the two model specifications.  

The consistent estimator of β in the multiplicative error model minimizes 

 
1 1

( ) 1 1
exp( ) exp( )

n n
i i

i n i
i ii i

y yQ z W z
x x= =

′⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
β = − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′β β⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑  

where Wn is a symmetric weighting matrix. For the multiplicative errors models define  

(5.4) ( )
( )1ˆ

/ exp( ) 1ˆ
ˆexp

n
i

m i
i i

y x yD x
x=β

′∂ β − − ′= =
′∂β ′β

∑  and  

(5.5) 2

1

1ˆ ˆ
n

i i i
i

S u z z
n =

′= ∑  where ˆ 1ˆexp( )
i

i
i

yu
x

= −
′β

 

Thus, the optimal GMM estimator ˆ
GMMβ  for the multiplicative model minimizes the objective function 

1

1 1

ˆ( ) 1 1
exp( ) exp( )

n n
i i

i i
i ii i

y yQ z S z
x x

−

= =

′⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
β = − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′β β⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑  

 where Ŝ  is evaluated at ˆ
NIVβ . Its estimated asymptotic variance is 

( ) ( ) 11ˆ ˆˆ ˆ ˆ
GMM m mV n D ZS Z D

−
−′ ′β =  

 where ˆ
mD  and Ŝ  are as in (5.4) and (5.5), respectively and evaluated at ˆ

GMMβ . 

 In the subsequent GMM applications, we assume multiplicative residual functions. Following 

Grogger (1990) and Creel (2004), we compute the usual Hausman test statistic that assumes one efficient 

estimator under the null hypothesis. 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ
NIV NIV ML NIV ML NIV MLH V V

+′ ⎡ ⎤= β −β β − β β −β⎣ ⎦  and ( )1

2~aNIV KH χ  

where 1K  is the number of possibly endogenous regressors. 

 We also compute the test statistics HGMM using the optimal GMM estimator ˆ
GMMβ .  

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ
GMM GMM ML GMM ML GMM MLH V V

+′ ⎡ ⎤= β −β β − β β −β⎣ ⎦  and ( )1

2~aGMM KH χ  
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To avoid the estimator inefficiency problem under the null hypothesis in the usual Hausman test, we 

follow Creel’s (2004) approach combining the sets of moment conditions ( exp( ) 0i i iE y x x′⎡ ⎤− β =⎣ ⎦  and 

1 0
exp( )

i
i

i

yE z
x

⎡ ⎤
− =⎢ ⎥′β⎣ ⎦

) that lead to the ML and IV estimators into a single estimation problem. The 

procedure was already described in the previous chapter.  

 The two-step GMM system estimator 2
ˆ

GMMβ obtained using Creel’s approach minimizes  

(5.6) 1[ exp( )] 0 [ exp( )] 0ˆ( )
0 [ / exp( ) 1] 0 [ / exp( ) 1]

y x x x y x
Q S

y x Z Z y x
−′ ′⎧ ⎫− β − β⎡ ⎤ ⎡ ⎤⎪ ⎪β = ⎨ ⎬⎢ ⎥ ⎢ ⎥′ ′β − β −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 

where the weighting matrix is the inverse of the asymptotic covariance matrix of the two sets of moment 

conditions evaluated at the first round estimate. The asymptotic covariance matrix 

(5.7) ( )
1

1
2

ˆ ˆ0 0ˆ ˆ
ˆ ˆ0 0

a a
GMM

m m

D X X D
V n S

D Z Z D

−

−
⎧ ⎫⎡ ⎤ ⎡ ⎤′ ′⎪ ⎪β = ⎢ ⎥ ⎢ ⎥⎨ ⎬

′ ′⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
 

where ˆ
aD  and ˆ

mD  are as in (5.2) and (5.4), respectively, Ŝ  is the asymptotic covariance matrix of the two 

sets of moment conditions, all are evaluated at 2
ˆ

GMMβ . 

 The Wald test of the null hypothesis that ( )0
ˆ ˆ: 0ML GMMH plim β −β =  can then be based upon the 

two-step GMM system estimator 2
ˆ

GMMβ  and ( )2
ˆ

GMMV β . If [ ]K KR I I= −  then the test statistic is 

(5.8) ( ) ( ) ( )1

2 2 2 2
ˆ ˆ ˆ

GMM GMM GMMW R RV R R
−′ ⎡ ⎤′= β β β⎣ ⎦  

Under the null hypothesis it has an asymptotic distribution with K degrees of freedom. If we use just the 

coefficients of the potentially endogenous regressors X1 and define
1 11 0 0K KR I I⎡ ⎤= −⎣ ⎦  the 

corresponding Wald statistic will be called W2a and it will have K1 degrees of freedom. 

 Based on Burnside and Eichenbaum (1996) finding that Wald tests have improved properties when 

restrictions of the null hypothesis of equality of the two estimators are imposed (we call the restricted 

GMM system estimator ˆ
rβ ), we compute the restricted analogues of W2 and W2a, named W2r and W2ar. 

Their degrees of freedom under the null hypothesis are K and K1, respectively. 

 Next test we perform is the test suggested by Cameron and Trivedi (2005, p. 245)  
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comparing the objective function at the unrestricted estimates 2
ˆ

GMMβ  [from (3.2)] and restricted estimates 

ˆ
rβ : 

(5.9) ( ) ( )ˆ ˆ
r uD n Q Q⎡ ⎤= β − β⎣ ⎦  

Under the null hypothesis, this test statistic has an asymptotic chi-square distribution with number of 

degrees of freedom equal to K.  

5.3 Artificial Regression 

Tests based on auxiliary regression are typically robust to nonsphericality. We follow Wooldridge (2002, 

p. 663) who suggests the omitted variable approach to derive a test for endogeneity. Let the regressors xi be 

partitioned into two parts, a 11 K×  vector of endogenous variables, x1i, and 21 K×  vector of exogenous and 

predetermined variables, x2i. Let c1 be an unobserved variable potentially correlated with x1i. The equation 

can then be rewritten as   

(5.10) [ ] 1 1 2 2 1| exp( )i i i i iE y x x x c′ ′= β + β +  

There are assumed to be L K≥  instruments, of which 2K  are the columns of the matrix x2. The values of 

the endogenous variables are assumed to be determined by a set of linear simultaneous equations. The 

reduced form equations for the endogenous explanatory variables can be written as 

(5.11) 1 1i i ix z v= Π +  

where 1Π  is a 1L K×  matrix and iv  is a 11 K×  vector of error terms. 

We assume that 1 1  i ic v error= ρ +  and that the error term is independent of vi and zi. Then x1i is 

exogenous if and only if ρ1 = 0. The null hypothesis ρ1 = 0 can be tested using the Wald or LM statistic in 

the artificial regression  

(5.12) [ ]1 2 1 1 2 2 1ˆ ˆ| , , exp( )i i i i i i iE y x x v x x v′ ′= β + β + ρ   

where îv are the estimated residuals from the OLS first stage regression. The model can be estimated by 

pseudo-MLE. If the conditional mean is correctly specified, the resulting estimator ( 2
ˆ

SCMLβ ) is consistent 

and no distributional assumptions about x1i or x2i are needed.  
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 We compute the Wald statistics as 

(5.13) 1
1 0 1 1

ˆˆ ˆ ˆ( )W n V −′= ρ ρ ρ  

where 0 1
ˆ ˆ( )V ρ is a consistent estimator of the lower 1 1K K×  right-hand block of the covariance matrix of 

the two stage conditional maximum likelihood corresponding to 1ρ̂ . The covariance matrix of 1ρ̂  is 

estimated under the null and thus is the usual covariance matrix. The test statistics is distributed chi-

squared with the degrees of freedom equal to the number of variables specified as potentially endogenous. 

If the null hypothesis is rejected, a maximum likelihood estimator should not be employed. 

 We also compute the usual Hausman test statistic comparing the maximum likelihood and the two 

stage conditional maximum likelihood. The test can be based on the coefficients of just the endogenous 

variables, all the regressors and all the variables including the first stage reduced form residuals. Let 

1 2 1( , , )′ ′θ = β β ρ . Under the null of no endogeneity, θ is consistently though not efficiently estimated by the 

maximum likelihood estimator 1 2
ˆ ˆ ˆ( , )ML ML MLβ = β β . Under the alternative, the two-stage conditional 

maximum likelihood estimator 2 2 1 2 2 1
ˆ ˆ ˆ ˆ( , , )SCML SCML SCMLθ = β β ρ  is still consistent. Let 1 2

ˆ ˆ ˆ( , ,0)ML ML MLθ = β β . 

Then the alternative Hausman tests are 

( ) ( )1 2 1 1 2 1 1 2 1 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( )CML SCML ML SCML ML SCML MLH V V

+
⎡ ⎤′= β −β β − β β −β⎣ ⎦  

( ) ( )2 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( )CML SCML ML SCML ML SCML MLH T V V

+
⎡ ⎤′= β −β β − β β −β⎣ ⎦  

( ) ( )3 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( )CML SCML ML SCML ML SCML MLH T V V

+
⎡ ⎤′= θ − θ θ − θ θ − θ⎣ ⎦  

All the test statistics have a number of degrees of freedom equal to the number of potentially endogenous 

variables. We also calculate the test statistics HCML2s and HCML3s using the degrees of freedom equal to the 

rank of the difference of covariance matrices.  

5.4 A Monte Carlo Experiment in Count Data Models 

We use the same count data model as in Creel (2004): 

 (5.14)  Poisson ( )y λ∼ , where 1 2exp( ) exp( .5 )x u x uλ = β +β + = − + +  
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but our instrumental variables estimator is based on different instruments, we use smaller sample sizes and 

perform more tests. Following our linear regression model the data are generated as 

(5.15) 

1 2 3

1

2 41

3 42

10
1 0 00

~ ,
0 10
0 10

x
u

N
z
z

⎛ ⎞ρ ρ ρ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ρ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ρ ρ
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ρ ρ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

 

Similarly to the previous part: 

• endogeneity is controlled by the parameter 1ρ  which takes the values 0, .1, .2, .3, .4 and .5 

• the strength of the instruments is controlled by 2ρ  and 3ρ  which take the values .1, .3 and .5 

• samples of sizes n = 100 and n = 200 are considered. 

We perform 40,000 simulations. The instrumental variables estimator is based on the multiplicative 

residual function / 1y λ −  and the instruments z1 and z2.  

The notation we use:  

• n = sample size 

• ρ1 controls endogeneity 

• ρ2 controls strength of IV #1 

• ρ3 controls strength of IV #2 

• ρ4 correlation between instruments 

• α = nominal level of significance 

• hc1 = H1 contrast, 2SCMLE and MLE (endogenous regressor only), with K = 1 df 

• hc2 = H1 contrast, 2SCMLE and MLE (original regressors), with K = 1 df 

• w = Wald test of the residual coefficient in auxiliary regression  

• w2 = Creel system test using 2nd round estimator K = 2 df 

• w21 = Creel test w2 with K1 = 1 df 

• w2a = w2 (endogenous regressors only) with K1 = 1 df 

• w2r = Creel test w2 with covariance evaluated at estimates restricted by null, K = 2 df 

• w2r1 = w2r with K1 = 1 df 
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• w2ar = w2r (endogenous regressors only) with K1 = 1 df 

• d = Cameron & Trivedi (2005, p. 245) D with K = 2 df 

• d1 = d test with K1 = 1 df  

5.5 Monte Carlo Experiment Results for Count Data Models 

As expected the performance of the contrast tests with uncorrected covariance matrix HNIV, HGMM, HCML1, 

HCML2 and HCML3 was not satisfactory, so we report only the best performing hc1 (HCML1) and hc2 (HCML2) 

comparing the two-stage conditional maximum likelihood estimator and the maximum likelihood estimator 

of the endogenous regressors and all the original model regressors. The power of HCML3 was usually the 

highest but its size was higher than of the other two. All the test results can be found in an appendix that is 

available upon request.  

5.5.1 The Effect of Sample Size 

In Table 5.1 we compare the effect of sample size. Sample sizes n = 100 and 200 are examined and we 

have assumed one strong and one weak instrument. Under the null hypothesis on no endogeneity, the tests 

should reject with frequency α. When α = .05 and n = 100 the contrast tests hc1 and hc2, the auxiliary 

regression test w, the system tests w2 and w21 (5.8) that are based on a second round improvement of the 

GMM estimator (5.6) and with usual covariance matrix (5.7), with the degrees of freedom equal to the 

nominal number of restrictions being tested and one respectively, have their size above .15. Also the size 

of the test w2r1 that uses the restricted GMM covariance estimator and presumes one degree of freedom is 

close to .15. The system test (5.8) w2a that uses the coefficients of the potentially endogenous regressors 

and the usual covariance matrix, the test w2r that uses the restricted GMM covariance estimator and 

presumes the degrees of freedom equal to the nominal number of restrictions being tested and the test d1 

(5.9), based on the difference of the two GMM objective functions with one degree of freedom still over-

reject but their size is below .10. The test w2ar  that uses the coefficients of the potentially endogenous 

regressors and the restricted covariance matrix and the test d2 (5.9), based on the difference of the two 

GMM objective functions with the number of degrees of freedom equal to the nominal number of 

restrictions both under-reject the correct null hypothesis. When n = 200, the test sizes remain very similar. 

The test w has the highest rejection rate (because of its too frequent rejection of the null), followed by the 
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test w21. After size correction, the test w2a performs the best but its power is still very low. For example, 

when a correlation between the endogenous regressor and error is 1 .3ρ = , it rejects the null only 20.68% of 

the time for sample size n = 100 and 33.68% of the time for the sample size n = 100. 

5.5.2 The Effect of Instrument Strength 

In Table 5.2 we compare the effect of instrument strength for sample size n = 100 and α = .05. The 

rejection frequencies in the top panel correspond to the case with two strong instruments, the second panel 

to two weaker instruments, and the third panel to one strong and one weak instrument.  

If we have two strong instruments, the test w based on the artificial regression performs the best followed 

by the tests w21, hc1, hc2 and w2r1. For example, if a correlation between the endogenous regressor 

and error 1 .3ρ = , the test w rejects exogeneity 79.97% of the time. The power of the tests w21, hc1, hc2 

and w2r1 ranges from .56 to .61. The test w2ar rejects exogeneity least frequently: 18.96% of the time.  

If we have two weaker instruments, with correlation to the regressor 2 3 .3ρ = ρ = , the performance of all 

tests worsens radically. The test w rejects exogeneity 70.22% of the time and power of the other tests is 

below .5 if 1 .3ρ = .   

If we have one strong and one weak instrument, the power of all tests slightly improves in 

comparison to the case with two weak ones. But still, if 1 .3ρ = , the power of the test w is only .71 and the 

power of the other tests is between .51 (w21) and .10 (w2ar).  

In Figure 5.1 we present the size corrected results of the effect of instrument strength for sample 

size n = 100 and α = .05. With two strong instruments, the test w2a rejects the null most frequently, 

however the differences among the tests w2a,  w2r,  d  and w in case of stronger endogeneity are 

negligible, especially at significance levels above .1. If we have two weak instruments, the best performing  

test is the test w which is based on the artificial regression. With one strong and one weak instrument, the 

conclusions are the same as in the case with two strong instruments.  

5.5.3 Estimator Bias Results 

We also report the Monte Carlo means of the alternative estimators and their root-mean-squared-

errors (rmse) for the parameter β2. The estimators whose performance we report are the pseudo-ML  
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TABLE 5.1. PERCENT REJECTIONS (COUNT DATA) – EFFECT OF SAMPLE SIZE  
 

Table 183: Percent rejections (Poisson model), n=100, rho2=.5, rho3=.1 
 

alpha=0.05 
 

  rho1    hc1      w       w2      w21      w2a      w2r      w2r1     w2ar       d       d1 
 

0.0  0.17165  0.53240  0.17645  0.28650  0.08150  0.06407  0.14122  0.03340  0.02760  0.08775 
0.1  0.20038  0.56405  0.22012  0.33742  0.13003  0.08603  0.18045  0.04980  0.04718  0.12835 
0.2  0.26190  0.62895  0.28935  0.41990  0.19737  0.12960  0.24710  0.07422  0.07760  0.18993 
0.3  0.33810  0.70795  0.36917  0.50587  0.27858  0.18770  0.32560  0.10450  0.11905  0.26180 
0.4  0.42805  0.78643  0.46410  0.60382  0.37983  0.27127  0.42838  0.14725  0.18388  0.35983 
0.5  0.54183  0.86615  0.56210  0.70225  0.48785  0.36623  0.52568  0.19160  0.26143  0.46087 

 
 
 

Table 186: Percent rejections (Poisson model), n=200, rho2=.5, rho3=.1 
 

alpha=0.05 
 

  rho1    hc1      w       w2      w21      w2a      w2r      w2r1     w2ar       d       d1 
 

0.0  0.16658  0.52053  0.21795  0.33222  0.08847  0.06500  0.14910  0.02688  0.03245  0.09903 
0.1  0.22867  0.57770  0.29325  0.41287  0.17203  0.10300  0.21285  0.04793  0.07390  0.17790 
0.2  0.31925  0.68437  0.41300  0.54150  0.29440  0.18230  0.32605  0.08007  0.14347  0.29657 
0.3  0.43880  0.79297  0.54722  0.67550  0.44412  0.30043  0.46792  0.12695  0.24978  0.44270 
0.4  0.55978  0.87857  0.67998  0.79217  0.59647  0.44095  0.61015  0.18108  0.38405  0.59578 
0.5  0.69600  0.94303  0.79060  0.87810  0.73042  0.57890  0.73033  0.23435  0.53380  0.73628 

 
 

Table 5.1a. Size Corrected Power 
 

Table 189: Size Corrected Power (Poisson model), n=100, rho2=.5, rho3=.1 
 

alpha=0.05 
 

   rho1       hc1        hc2        w         w2        w2a        w2r        w2ar        d 
 

0.0    0.05000    0.05000    0.05000    0.05000    0.05000    0.05000    0.05000    0.05000 
0.1    0.06423    0.06065    0.06170    0.07235    0.08778    0.06772    0.07068    0.08023 
0.2    0.09555    0.08700    0.10073    0.10270    0.13847    0.10453    0.10180    0.12095 
0.3    0.13878    0.12438    0.15673    0.15030    0.20680    0.15668    0.13667    0.17870 
0.4    0.19275    0.17738    0.24063    0.20605    0.29502    0.23233    0.18815    0.25930 
0.5    0.27545    0.27005    0.35997    0.27782    0.39582    0.32145    0.23342    0.35033 
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estimator ( ˆ
PMLβ ), the two-stage conditional maximum likelihood estimator ( 2

ˆ
SCMLβ ), the nonlinear two 

stage least squares/instrumental variables estimator ( ˆ
NIVβ ) and the optimal 2-step GMM ( ˆ

GMMβ ). 

The true value of β2 = 1. The sample means of the estimators are given in Table 5.3 for a case with 

weak instruments and sample sizes of n = 100 and n = 200. The bias in the ML estimator increases with the 

degree of endogeneity of the regressor x. The bias of the two-stage conditional maximum likelihood 

estimator decreases with higher  degree of endogeneity, it also improves with a larger sample. If only weak 

instruments are available, under the null hypothesis of no endogeneity the instrumental variables and 

GMM estimators have almost no bias with n = 100, but their bias increases in larger samples. This seems 

counterintuitive but as Nelson and Starz (1990b) show, the finite sample distribution of the instrumental 

variable estimator is very different from its asymptotic counterpart.  For a linear model with one regressor 

and one instrument, it is bimodal, fat-tailed and may be concentrated around a point which is closer to the 

least squares estimator than to the true parameter. Not only does it depend on the asymptotic variance but 

also on the degree of endogeneity. Another problem is that if instruments are irrelevant, the asymptotic 

variance grows without limit. And, the larger the asymptotic variance the poorer approximation the 

asymptotic density of finite sample density is. As the asymptotic variance rises (for example by decreasing 

a sample size), the small sample distribution becomes more, not less, concentrated. Thus, with weak 

instruments, the bias of the instrumental variable estimator may actually increase with a larger sample size. 

The expected result prevails for larger degrees of endogeneity: if 1 .4ρ ≥ , the instrumental variables and the 

GMM estimator biases reduce with a larger sample size.  

In Figure 5.2 we compare the estimators means under different instrument strength. Under the null 

of no endogeneity, the best performing are the instrumental variables and GMM estimators with weak 

instruments. However, their bias under the alternative is the largest with weak instruments, the estimators 

perform better if one weak and one strong instruments are available. If only strong instruments or one 

strong and one weak instrument were available, the ML estimator and the two-stage conditional maximum 

likelihood estimator would have the smallest bias under the null. The mean of the two-stage conditional 

maximum likelihood estimator increases with stronger endogeneity, the bias is the smallest at high degrees 
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TABLE 5.2. PERCENT REJECTIONS (COUNT DATA) – EFFECT OF INSTRUMENT 
STRENGTH (n = 100) 

 

 

Table 181: Percent rejections (Poisson model), n=100, rho2=.5, rho3=.5 
 

alpha=0.05 
 

  rho1    hc1      w       w2      w21      w2a      w2r      w2r1     w2ar       d       d1 
 

0.0  0.24093  0.38435  0.10248  0.19478  0.08697  0.07895  0.16965  0.03938  0.03035  0.09325 
0.1  0.30610  0.46505  0.16980  0.28058  0.17250  0.12068  0.23635  0.06915  0.06840  0.16212 
0.2  0.42960  0.63205  0.29860  0.44083  0.32033  0.23020  0.38470  0.11930  0.14752  0.29607 
0.3  0.57835  0.79970  0.45600  0.61250  0.48888  0.39387  0.56153  0.18962  0.26395  0.45913 
0.4  0.72535  0.92027  0.61418  0.75805  0.65263  0.57108  0.72395  0.27387  0.41118  0.62382 
0.5  0.86692  0.98195  0.74513  0.86393  0.78270  0.72288  0.84318  0.34373  0.56620  0.76425 

 
 
 
 

Table 182: Percent rejections (Poisson model), n=100, rho2=.3, rho3=.3 
 

alpha=0.05 
 

  rho1    hc1      w       w2      w21      w2a      w2r      w2r1     w2ar       d       d1 
 

0.0  0.14680  0.59105  0.20838  0.32370  0.07287  0.05532  0.12730  0.02962  0.02405  0.07863 
0.1  0.16673  0.61500  0.24580  0.36212  0.10525  0.07477  0.16133  0.04445  0.03595  0.10798 
0.2  0.20190  0.65453  0.29957  0.42040  0.15507  0.10663  0.20625  0.06115  0.05917  0.15180 
0.3  0.24850  0.70217  0.35145  0.48157  0.20720  0.14480  0.25967  0.08198  0.08438  0.19938 
0.4  0.31685  0.76055  0.42423  0.55780  0.27895  0.19470  0.32815  0.10670  0.11965  0.26527 
0.5  0.40382  0.82132  0.50523  0.64097  0.36685  0.26637  0.41505  0.14113  0.17325  0.35213 

 
 
 
 

Table 183: Percent rejections (Poisson model), n=100, rho2=.5, rho3=.1 
 

alpha=0.05 
 

rho1    hc1      w       w2      w21      w2a      w2r      w2r1     w2ar       d       d1 
 

0.0  0.17165  0.53240  0.17645  0.28650  0.08150  0.06407  0.14122  0.03340  0.02760  0.08775 
0.1  0.20038  0.56405  0.22012  0.33742  0.13003  0.08603  0.18045  0.04980  0.04718  0.12835 
0.2  0.26190  0.62895  0.28935  0.41990  0.19737  0.12960  0.24710  0.07422  0.07760  0.18993 
0.3  0.33810  0.70795  0.36917  0.50587  0.27858  0.18770  0.32560  0.10450  0.11905  0.26180 
0.4  0.42805  0.78643  0.46410  0.60382  0.37983  0.27127  0.42838  0.14725  0.18388  0.35983 
0.5  0.54183  0.86615  0.56210  0.70225  0.48785  0.36623  0.52568  0.19160  0.26143  0.46087 
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FIGURE 5.1. SIZE CORRECTED POWER - COUNT DATA (n = 100)
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 of endogeneity. Thus we confirm Nelson and Starz (1990a) result from a linear model that the bias of the 

instrumental variable estimator is inversely related to the degree of “feedback from the error to the 

regressor.”  

5.5.4 Estimator RMSE Comparisons 

In Table 5.4 we compare the root-mse’s of the alternative estimators for a case with weak instruments and 

sample sizes of n = 100 and n = 200. The RMSE of the ML estimator exceeds that of the two-stage 

conditional maximum likelihood estimator, the IV and GMM estimators when the degree of endogeneity 

1 .5ρ ≥  (when n = 100) and if 1 .4ρ ≥  when n = 200, otherwise it is the lowest. When the degree of 

endogeneity is low, the two-stage conditional maximum likelihood estimator performs better than the IV or 

GMM estimator but worse than the ML estimator. The IV and the GMM estimator perform the best in a 

larger sample under strong endogeneity. The differences between them are negligible.  

In Figures 5.3 and 5.4 we compare the root-mse’s of the alternative estimators under different instrument 

strength in a sample of size n = 100. For low degrees of endogeneity, the RMSE of the MLE estimator is 

the smallest. The root-mse of the two-stage conditional maximum likelihood estimator is smaller than the  

root-mse’s of the IV or GMM estimator for any degree of endogeneity. Each estimator performs the best if 

there are strong instruments available. The root-mse’s decline with increasing endogeneity probably 

because of the impact of the estimator biases which, for linear models, are the  

smaller the higher the correlation between the regressor and the error as demonstrated by Nelson and Starz 

(1990a).  

5.6 Summary of Findings in Count Data Models 

As expected, the performance of the contrast tests with uncorrected covariance matrix was not 

satisfactory. The tests hc1  and hc2  that are based on the two stage conditional maximum likelihood 

performed relatively better, often comparably to some of the tests based on the Creel’s (2004) system 

approach. The Wald test w based on the artificial Poisson regression had the highest rejection rate of all 

tests, including also the tests based on the Creel’s (2004) system approach but this was caused by its too 

frequent rejection of the null. Among the GMM based tests using the Creel’s (2004) system approach, the  

test w21 that is based on a two step optimal GMM estimator and uses the usual covariance matrix, with  
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TABLE 5.3. COUNT DATA - ESTIMATOR MEANS  -  EFFECT OF SAMPLE SIZE 
 
 

Table 194: Estimator mean values (Poisson model), n=100, rho2=.3, rho3=.3 
 

rho1     b2mle     b2tscmle     b2niv      b2gmm 
 

0.0    0.96866     0.95798    1.00140    1.00983 
0.1    1.06954     0.96450    1.00980    1.01936 
0.2    1.16757     0.97604    1.01781    1.02514 
0.3    1.26191     0.99039    1.03334    1.04107 
0.4    1.35845     1.00696    1.04709    1.05563 
0.5    1.45248     1.02450    1.06045    1.06900 

 
 

Table 197: Estimator mean values (Poisson model), n=200, rho2=.3, rho3=.3 
 

rho1     b2mle     b2tscmle     b2niv      b2gmm 
 

0.0    0.98118     0.96455    1.02260    1.03007 
0.1    1.08501     0.95896    0.99500    1.00076 
0.2    1.18447     0.96077    0.97928    0.98434 
0.3    1.27914     0.97193    0.97874    0.98400 
0.4    1.36962     0.98216    0.98268    0.98808 
0.5    1.45819     0.99541    0.99949    1.00517 

 
 

 

TABLE 5.4. COUNT DATA - ESTIMATOR RMSE - EFFECT OF SAMPLE SIZE 
 
 

Table 200: Estimator rmse (Poisson model), n=100, rho2=.3, rho3=.3 
 

rho1     b2mle     b2tscmle     b2niv      b2gmm 
 

0.0    0.21265     0.46820    0.52011    0.52639 
0.1    0.23048     0.47530    0.52384    0.53457 
0.2    0.27990     0.47718    0.51936    0.52526 
0.3    0.34550     0.47399    0.50610    0.51255 
0.4    0.42363     0.46710    0.49367    0.50083 
0.5    0.50426     0.45052    0.47185    0.47674 

 
 

Table 203: Estimator rmse (Poisson model), n=200, rho2=.3, rho3=.3 
 

rho1     b2mle     b2tscmle     b2niv      b2gmm 
 

0.0    0.16252     0.34551    0.41015    0.41484 
0.1    0.18674     0.35281    0.40294    0.40874 
0.2    0.25068     0.35221    0.38243    0.38519 
0.3    0.32599     0.34827    0.35487    0.35758 
0.4    0.40484     0.34532    0.32583    0.32608 
0.5    0.48632     0.33153    0.30939    0.30960 
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FIGURE 5.2. ESTIMATOR MEAN VALUES - COUNT DATA (n = 100) 
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FIGURE 5.3. ESTIMATOR RMSE - COUNT DATA (n = 100) 
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FIGURE 5.4. ESTIMATOR RMSE (COUNT DATA) - EFFECT OF INSTRUMENT STRENGTH 
(n =100) 
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the degrees of freedom equal to one had the highest rejection frequency. The test w2r that uses the 

restricted GMM covariance estimator and presumes the degrees of freedom equal to the nominal number 

of restrictions being tested had size the closest to the correct value. After size correction, the test w2a 

based on the coefficients of the potentially endogenous regressors performed the best, but its power was 

still very low. Apparently, a sample size of n = 100 is too small to give a reliable results in GMM 

framework. The fact was also confirmed by comparing the root-mse’s of the alternative estimators. The IV 

and the GMM estimator performed the best in a larger sample under strong endogeneity, otherwise the 

edge went to the two-stage conditional maximum likelihood estimator. Our results demonstrate that unless 

endogeneity is strong, the ML estimator has the lowest root-mse among all considered estimators. This 

suggests using pretest estimators. After size correction, the easy to implement Wald test (or t-test) of the 

Poisson regression augmented by the reduced form residuals performed the best if no strong instruments 

were available but its size was very unreliable. The test statistics properties could be improved by 

bootstrapping, specifically by wild bootstrapping since heteroskedasticity is present. Our future work will 

compare the tests performance under pairs and wild bootstrapping. 
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6. CONCLUSIONS 

There are many applied economic cases where endogeneity is a potential issue and a researcher has to 

decide whether classical regression assumptions match the reality. The most commonly used to decide are 

the Hausman type tests. However, different versions of the Hausman test give sometimes contradictory 

conclusions. We examine characteristics (the size and power) of alternative versions of the Hausman test in 

models with homoskedastic and especially, heteroskedastic data. Options for carrying out a Hausman-like 

test in heteroskedastic cases include estimating an artificial regression and using robust standard errors, or 

bootstrapping the covariance matrix of the two estimators used in the contrast, or stacking moment 

conditions leading to two estimators and estimating them as a system. We conclude that the preferred test 

is based on an artificial regression, perhaps using a heteroskedasticity corrected covariance matrix 

estimator if heteroskedasticity is suspected. If instruments are weak, however, no test procedure is reliable. 

To obtain tests of closer to proper size in finite samples, we employ bootstrapping. Specifically, we 

compare pairs and wild bootstrapping as these alternatives may be effective when errors are 

heteroskedastic. Our results suggest that in large samples, wild bootstrapping is a slight improvement over 

asymptotics in models with weak instruments. However, the results are very sensitive to the type of 

bootstrapping used and whether we bootstrap the critical values or the covariance matrix of the difference 

of the estimators. Lastly, we consider another model where heteroskedasticity is present – the count data 

model. Our Monte Carlo experiment shows that the test using stacked moment conditions and the second 

round estimator has the best performance, but which could still be improved upon by bootstrapping. Our 

future work will compare the tests performance in count data models under pairs and wild bootstrapping. 

Another direction for further study could be evaluating pretest estimators performance in count data. 
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APPENDIX: HAUSMAN TEST DEGREES OF FREEDOM  

To derive the Hausman test statistic, we start with the difference of the two estimators, 

(A1.1)     ( ) ( )1 1ˆˆ [ ]q Z X Z X X X y− −′ ′ ′ ′= β−β = −   

In (A1.2) to (A1.4), we show that ( ) ( ) ( )Z X Z Z X Z′ ′ ′= = . 

(A1.2)      
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Using that ZP  is symmetric and idempotent and that Z includes X2 
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Using the equality ( ) ( )1 1 1( )Z X Z Z X Z− − −′ ′ ′= = , the difference of the two estimators (A1.1) can be 

expressed as 

(A1.5)     ( ) ( )1 1ˆˆ [ ]q Z Z Z X X X y− −′ ′ ′ ′= β−β = −   

Using the inversion formula for partitioned matrices 
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⎡ ⎤′ ′ ′ ′ ′ ′− −⎢ ⎥⎣ ⎦
′⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′ ′+ −⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

( )
1 1

1 2 2 2X X X X
− −

⎞
⎟
⎟
⎟
⎟′ ′ ⎟⎥ ⎠

This can be rewritten as 

(A1.6)      ( )
1

1

2 2

( )
A

Z Z
A X X A A

−
−

⎛ ⎞Σ −Σ
⎜ ⎟′ =
⎜ ⎟′′ ′− Σ + Σ⎜ ⎟
⎝ ⎠

  

where 

(A1.7)      ( ) 1

1 2 2 2A X X X X
−

′ ′=   

(A1.8)      ( )
11

1 1 1 2 2 2 2 1X̂ X X X X X X X
−−⎡ ⎤′ ′ ′ ′Σ = −⎢ ⎥⎣ ⎦

  

Similarly, 

(A1.9)     ( ) ( )
1

1

2 2

ˆ ˆ

ˆ ˆ

A
X X

A X X A A
−

−

⎛ ⎞Σ −Σ
⎜ ⎟′ = ⎜ ⎟′′ ′− Σ + Σ⎜ ⎟
⎝ ⎠

  

 

where A is the same as in (A1.7) and 
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(A1.10)     ( )
11

1 1 1 2 2 2 2 1
ˆ X X X X X X X X

−−⎡ ⎤′ ′ ′ ′Σ = −⎢ ⎥⎣ ⎦
  

Thus, (A1.5) can be rewritten as 

       

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1

1 11 2 1 2
2 2 2 2

1 2 1 2
1 1

1 2 2 2 2 1 2 2 2

ˆ [ ]

ˆ ˆ
ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

q Z Z Z X X X y

A A
X X X X y

A X X A A A X X A A

X AX X AX

A X X X X A AX A X X X X

− −

− −

− −

′ ′ ′ ′= −

⎡ ⎤⎛ ⎞⎛ ⎞Σ −Σ Σ −Σ
′⎢ ⎥⎜ ⎟ ′⎜ ⎟= −⎢ ⎥⎜ ⎟⎜ ⎟′ ′′ ′ ′ ′− Σ + Σ − Σ + Σ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞′ ′ ′ ′Σ −Σ Σ −Σ
⎜ ⎟= −⎜ ⎟′ ′ ′ ′ ′ ′ ′′ ′ ′ ′− Σ + + Σ − Σ + +⎜ ⎟
⎝ ⎠ 2

1 2 1 2

1 2 1 2

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

y
A AX

X AX X AX
y

A X A AX A X A AX

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟′Σ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤′ ′ ′ ′Σ −Σ −Σ + Σ
⎢ ⎥=
⎢ ⎥′ ′ ′ ′′ ′ ′ ′− Σ + Σ + Σ − Σ⎣ ⎦

 

Hence, there is an exact linear relationship between the first K1 elements of q̂  and the remaining 

1( )K K−  elements. 

If we define 1 2 1 2
ˆ ˆ ˆE X AX X AX′ ′ ′ ′= Σ −Σ −Σ +Σ  ( 1K T×  matrix), 

               ( ) ( )1 1ˆ [ ]
E

q Z Z Z X X X y y
A E

− − ⎛ ⎞′ ′ ′ ′= − = ⎜ ⎟′−⎝ ⎠
. 

Thus, the difference of parameter coefficients can be rewritten as 

(A1.11)   1

1

ˆ
ˆ

ˆ
qEy

q
A qA Ey

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ′′ −−⎝ ⎠ ⎝ ⎠

  

To construct the test, the variance of the asymptotic distribution of ˆT q , ˆ( )V q , has to be 

determined. The estimators β̂  and β  are correlated which could be a problem but Hausman 

(1978) presents the result that under the null hypothesis an asymptotically efficient estimator β̂  

must have zero asymptotic covariance with its difference from a consistent but asymptotically 

inefficient estimator β  and thus under the null hypothesis of no misspecification 

(A1.12)   ˆ ˆˆ( ) ( ) ( ) ( )V q V V V= β−β = β − β   
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The variance of the asymptotic distribution of ˆT q  

         ( ) 12 1 1 1 1 1 2 1ˆˆ( ) ( ) ( ) ( ) ( )( )V q V V T Z X T Z Z T X Z T X X
−− − − − − −′ ′ ′ ′= β − β = σ −σ  

is consistently estimated by 

(A1.13)    

( )
( )

( ) ( )( )

12 1 1 1 1 1 2 1

12 1 1 2

1 12 2

ˆ ˆ ˆ( ) ( ) ( )( )

ˆ[ ( ) ( )( ) ]

ˆ

V q T Z X T Z Z T X Z T X X

T Z X Z Z X Z X X

T Z Z X X

−− − − − − −

−− −

− −

′ ′ ′ ′= σ −σ

′ ′ ′ ′= σ −σ

′ ′= σ −σ

  

Plugging in  (A1.6) and (A1.9)             

         

( ) ( )( )

( ) ( )
( )

( ) ( ) ( )

1 12 2

2 2
1 1

2 2 2 2

2 2 2 2

1
2 2 2 2 2 2

2 2

ˆ ˆ ˆ( )

ˆ ˆ
ˆ

ˆ ˆ

ˆ ˆˆ ˆ
 

ˆ ˆˆ ˆ ˆ( )

V q T Z Z X X

A A
T

A X X A A A X X A A

A
T

A X X A A

− −

− −

−

′ ′= σ −σ

⎡ ⎤⎛ ⎞⎛ ⎞Σ −Σ Σ −Σ
⎢ ⎥⎜ ⎟⎜ ⎟= σ −σ⎢ ⎥⎜ ⎟⎜ ⎟′ ′′ ′ ′ ′− Σ + Σ − Σ + Σ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞σ Σ −σ Σ − σ Σ −σ Σ
⎜ ⎟= ⎜ ⎟′′ ′− σ Σ −σ Σ σ −σ + σ Σ −σ Σ⎜ ⎟
⎝ ⎠

                                             

where ,A Σ  and Σ̂  are as defined in (A1.7), (A1.8) and (A1.10) respectively. 

Let 

(A1.14)    2 2ˆ ˆˆΩ = σ Σ−σ Σ   

(A1.15)     ( ) 12 2
2 2ˆ( )C X X −′= σ −σ   

Then, 

(A1.16)      
ˆ ˆ

ˆ ˆ( )  
ˆ ˆ

A
V q T

A C A A

⎛ ⎞Ω −Ω
= ⎜ ⎟⎜ ⎟′ ′− Ω + Ω⎝ ⎠

  

 

Using the inversion formula for partitioned matrices again (assuming that 1C−  exists), we get that: 
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( ) ( )
( ) ( )

1 11 1 1 1 1 1

1 1
1 11 1 1

1 1 1
1

1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

A C A A A A A A C A A A A
V q T

C A A A A A C A A A A

AC A ACT
C A C

− −
− − − − − −

− −

− −
− − −

− − −
−

− −

⎛ ⎞′ ′ ′ ′ ′Ω +Ω Ω + Ω − ΩΩ Ω ΩΩ Ω Ω + Ω − ΩΩ Ω⎜ ⎟= ⎜ ⎟
⎜ ⎟′ ′ ′ ′ ′+ Ω − ΩΩ Ω ΩΩ + Ω − ΩΩ Ω⎝ ⎠
⎛ ⎞′Ω +

= ⎜ ⎟
′⎝ ⎠

 

It follows that the Hausman statistic 1ˆˆ ˆ ˆ[ ( )]H Tq V q q−′=  can be reexpressed (using (A1.11)) as 

         

( )

( )

( )

1 1 1
11

1 1 1 1
1

11 1 1 1 1
1 1 1 1 1

1

11
1

1

1
1 1

1
1 1 1 1

ˆ ˆ
ˆ ˆ

ˆ

ˆˆˆ ˆ ˆ ˆ ˆ
ˆ

ˆˆˆ 0
ˆ

ˆˆ ˆ

ˆ ˆˆ( ) ( )

qAC A ACH T q q A T
A qC A C

q
q q AC A q AC A q AC q AC

A q

q
q

A q

q q

− − −
−

− −

− − − − −

−

−

−

⎡ ⎤⎛ ⎞′ ⎛ ⎞Ω +′ ′= − ⎢ ⎥⎜ ⎟ ⎜ ⎟′−′⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦
⎛ ⎞′ ′ ′ ′ ′ ′ ′= Ω + − − ⎜ ⎟′−⎝ ⎠

⎛ ⎞′= Ω ⎜ ⎟′−⎝ ⎠

′= Ω

′= β −β Ω β −β

 

That is, the test statistic can be written as a quadratic form in the first K1 elements of q̂ : 

(A1.17)   1
1 1 1 1

ˆ ˆˆ( ) ( ) ( )H T T −′= β −β Ω β −β   

where 1 1K K×  matrix Ω̂  is as defined in (A1.14). It means that asymptotically the test statistic has a chi-

square distribution, with degrees of freedom equal to the number of potentially endogenous regressors at 

most. 
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