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Abstract

This dissertation makes a contribution to the social networks literature. The first essay

provides a way of evaluating a player’s contribution to their team and relates their effort to

their market values. We extend the work of Ballester et al. (Econometrica, 2006) by incor-

porating a network outcome component in the players’ payoff functions and prove that there

is a unique interior Nash Equilibrium in pure strategies. We then illustrate this approach

by collecting data from the UEFA Euro 2008 from Quarter Final to the Final matches. The

passing data are utilized to construct the interaction network of each team. We only consider

(net) successful discounted passes between every player for each game and each team. A

discount measure for the passes made in the own half of the field is introduced to capture

the importance of the passing effort. This data are used to determine the key player in each

game, and also rank all the players in their order of importance in the game by the inter-

centrality measure. A sensitivity check for the model parameters is then carried out using a

number of different simulations. Next, we identify key groups of players to determine which

combinations of players played a more important role for their team. This information can

be crucial for the clubs, managers and coaches who wonder about the joint performance of

the players. In the last part, we investigate the returns of the intercentrality measure to the

players. The most current market values and other observable characteristics of the players

in the sample are obtained from transfermarkt.de and combined with the intercentrality mea-

sure from UEFA Euro 2008. The result of the first chapter indicates that players who have

higher amount of interaction (high intercentrality value) with their teammates regardless of
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their position on the field have significantly higher market values.

The second essay of my dissertation characterizes efficient networks in player and part-

ner heterogeneity models for both the one-way flow and the two-way flow models. Player

(partner) dependent network formation allows benefits and costs to be player (partner) het-

erogenous which is an important extension for modeling social networks in the real world.

Employing widely used assumptions, I show that efficient networks in the two way flow model

are minimally connected and have star or derivative of star type architectures, whereas effi-

cient networks in the one way flow model have wheel architectures.

The third essay of my dissertation considers a non-cooperative network formation game

where identity is introduced as a single dimension to capture the characteristics of a player

in the network. Players access to the benefits from the link through direct and indirect

connections. We consider cases where cost of link formation paid by the initiator or it is

shared between the participants. Each player is allowed to choose their commitment level to

their identities. The cost of link formation decreases as the players forming the link share the

same identity and higher commitment levels. We then introduce link and node imperfections

to the model. Each existing link in the network successfully transmits information with a

probability. We consider two cases for reliability probability of existing links: a homogenous

probability, p and heterogenous probability pij. We characterize the Nash networks and we

find that the set of Nash networks are either singletons with no links formed or separated

blocks or components with mixed blocks or connected.
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Chapter 1

Introduction

A social network is a social structure made up of individuals called ”nodes”, which are tied

(connected) by one or more specific types of interdependency, such as friendship, kinship,

common interest, financial exchange, dislike, sexual relationships, or relationships of beliefs,

knowledge or prestige. Social networks analysis in economics have great importance in in-

vestigating how the information transmits, health outcomes; labor market, crime, education

outcomes and financial transactions. More specifically, social network analysis explain im-

portant questions such as how diseases spread, which products we buy, which languages we

speak, how we vote, as well as whether or not we decide to become criminals, how much

education we obtain, and our likelihood of succeeding professionally. The countless ways in

which network structures affect our well-being make it critical to understand how networks

are formed. My research is motivated by these important questions and focuses on network

formation. My dissertation focuses on the identifying the important players in team envi-

ronment, conflicts between stable and socially optimal outcomes and the link reliability in

social network where identity is introduced as a single dimension variable to capture the

different characteristics of the players.

Chapter 2: Key Players and Key Groups in Teams

In the recent years, understanding which node plays a more important role in the network

configuration has become a main theme for many of the research papers. There are two main

approaches in the literature to determine the key player problem. The first approach is based
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on Graph Theory. This approach involves fragmentation and minimum distance principles.

The fragmentation type measures count the number of fragments if we remove one player

from the game at a time. Second approach is to utilize centrality measures. Centrality

measures are generally used for determining the importance of a node in a network. To

determine the importance of each node, various centrality measures have been developed.

Then these measures are used to determine which node plays a more important role in a

network.

The second approach relies on the centrality measures. There are three classes of cen-

trality measures that are mostly developed in sociology such as: closeness like, betweeness

like and degree like measures. Closeness like measures such as Freeman (1979) considers the

geodesic distance from a given node to the other nodes. Betweeness type measures are based

on the number of walks or flows that pass through a given node. The measures that are

proposed in Katz (1953), Freeman (1979), Hubbell (1965), Bonacich (1972) and Sade (1989)

are involved in degree like measures. Generally, this type of measures calculates the number

of walks originating or terminating at a given node.

The seminal paper of Ballester, Calvo-Armengol and Zenou (2006, henceforth BCZ)

provides the basic framework to identify key players using centrality measures in networks.

BCZ (2006) provide microfoundation for the key player problem in a fixed network. Their

model considers two vital ingredients: individual actions and interaction between players.

In the Nash equilibrium of the game each player chooses their individual action taking both

components into account. The key player is the one whose removal leads to the highest

overall reduction in effort. Thus, their approach builds strategic behavior into the network,

and combines both negative and positive aspects of the problem. My first chapter makes

a contribution to this literature by modifying the original model of BCZ (2006) to capture

team situations by providing the network members a common goal as well and illustrates

the approach by using unique data from soccer matches. Team like situations dominate

many social and economic environments. Firms and organizations are usually made up of
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smaller groups or teams. Recommendation letters often mention person’s ability to be a team

player. An applicant’s ability to be a team player is also tested in many interviews. Work

environments like R&D groups, special task forces and even academia to a certain extent

function as teams. Teamwork is an important feature of many games like soccer, basketball

and volleyball. This makes understanding the contribution of individual members to a team

very useful exercise. It can help design better teams and compensation packages. Identifying

the key players in teams is also very useful for retention issues.

This chapter has two contributions to the key player literature. The first contribution is

providing an empirical illustration of the approach using a team sport, namely soccer. We

observe the passing effort of international soccer players to proxy the amount of interaction

between players in UEFA European Championship 2008 and identify the key players and

key groups in the network. It is important to note that we are not seeking the best player on

the field. Rather, we are looking for the player whose contribution to his team is maximal.

Finally, we show that players who have higher interactions (passings and receivings) and

abilities have significantly higher ratings from experts and market values. We adapt the

asymmetries in the interactions which provides a more detailed analysis. The second con-

tribution is extending the BCZ (2006) model and introducing a team (or network) outcome

component into the analysis to rank players according to their contributions to their team-

mates. The Nash equilibrium of the model provides the optimal amount of individual efforts

of each player. It implies that if the player has a higher return for his individual actions or

a higher ability parameter, then she will have more incentives to perform individual actions.

Determining a key group instead of a key player is also an interesting aspect since more

than one player may have equivalent level of contribution to their teammates. In addition

to that, it is important to identify which combination of players has more importance within

the network. This information is crucial for the team managers who wish to form a team

with individuals who provide different inputs to their teammates. It is important to note

that the members of the of key groups are not the best working peers but they are the ones
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whose joint contribution to their team is maximal. The approach in the chapter can be

extended and replicated to more general team situations as well as for other sports where

players work in teams.

Chapter 3: Efficient Networks in Models of Player and Partner Heterogeneity

A substantial literature focuses on individual optimization through Nash networks, where

no agent can make herself better off by deviating from her current strategy, given the strate-

gies of the other players. A central theme in the literature on network formation is the conflict

between the set of stable and efficient networks. Even though Nash networks are very well

studied in broader manners, there has been few studies about efficiency. This chapter fills the

gap in the literature of network formation by describing the efficient network architectures

under heterogeneous agents. In this chapter, we address the issue of efficiency in the form

of maximizing aggregate utility of players in the network and compare the architectures of

efficient networks with Nash networks.

The seminal papers on network formation are Jackson and Wolinsky (1996) and Bala

and Goyal (2000). Jackson and Wolinsky (1996) provide two sided link formation, where the

cost of forming links is shared by the participants and introduces pairwise stability. Bala

and Goyal (2000) provide a theoretical framework to address network formation in a non-

cooperative setting with homogenous players, where the cost of forming links is on one side.

Bala and Goyal (2000) discuss two different types of flow. In the two way flow model, the

network is undirected, so both players participating in a link access can access benefits from

each other. However, in the one way flow model the network is directed; hence, only the

initiating player can access the benefit of the link. This chapter follows the Bala and Goyal

(2000) framework, where link costs are levied only by the person initiating the link. Galeotti

et al. (2006) relaxes the homogeneity assumption in the two way flow model, so the benefits

from a link and the cost of sponsoring a link are player dependent. A more recent paper

(Billand et al. 2010) introduces partner heterogeneity in the two way flow model, where the

benefit and cost of making a link is partner heterogeneous, meaning that it only depends
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on whom is being accessed in terms of the benefits and costs. Although Nash networks are

clearly identified under heterogeneity, not much has been done about efficient networks under

heterogeneity. Specifically, in this chapter, we illustrate situations where Nash and efficient

networks do not coincide. Our approach is to start with a general payoff specification in

a two way flow model satisfying common assumptions in the literature. Without imposing

any restrictions, efficient networks can have maximal diameter and it is not possible to

characterize the architecture. Once we allow for heterogeneity between players, the efficient

network architectures depend on four factors: the value of players (benefit obtained by

linking to each player), the number of minimum cost players, the difference in cost between

the minimum cost player(s) and the other players and finally the functional form of payoffs.

In this chapter, we provide the architecture, as well as, the diameter to identify the efficient

networks. The architecture provides information about how the efficient networks look, and

the diameter helps to determine the maximum distance between any two players in the

network.

Our results indicate significant differences in the architecture and diameter between Nash

and efficient networks in two-way flow models. We find that the crucial difference between

player and partner heterogeneity models is in the change of the player who sponsors the

links. There are certain differences in the network formation model and results under player

or partner heterogeneous players. Finally, for one way flow models, there is no difference

between player and partner heterogeneity models and the Nash and efficient architectures

coincide.

Chapter 4: Identity and Link Reliability in Networks

Many empirical observations suggest that one of the key determinants in the network

formation is the similarities in the characteristics of the players. In this chapter, we consider

a network formation game where the identity characteristics are introduced to capture the

similarities or differences between the players. We consider a framework where the links

between players are not fully reliable i.e, the success of a link is probabilistic. We assume
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that identity characteristics are assigned exogenously to the players and each player decides

about how much to commit to her current characteristic. For example, exogenously given

characteristics can be listed as race, nationality and culture and in the network formation

game players choose how much to commit to their given characteristic as well as their linking

strategies.

Esteban and Ray (1994), Akerlof and Kranton (2000), Chen et al. (2000), Fryer and

Jackson (2002), Currarini, Jackson, and Pin (2008), Marti and Zenou (2009), Dev (2009)

and Dev (2010) study the importance of identity dimension in the network formation. The

standard network formation models used is the related to the literature on non-cooperative

network formation models pioneered by Bala and Goyal (2000a) as well as Bala and Goyal

(2000b) with related work by Galeotti, Goyal, and Kamphorst (2003), Hojman and Szeidl

(2006), Billand et al. (2006), Galeotti (2006). The other strand in this literature follows

from Jackson and Wolinsky (1996). Bala and Goyal (2000b), Haller and Sarangi (2003)

explore the effects of link readability on the network formation. The important deviation

of this chapter from this literature is to combine the non-cooperative network formation

models with identity and probabilistic link reliability. In our model, the links will be formed

based on identity characteristics and each link or player can fail with a certain probability.

Probabilistic links provide many incentives form different architectures and yields results

that corresponds to the empirical observations.

We consider a non-cooperative network game, players how much to commit their identities

and their linking strategies. Player’s commitment decision affects the cost of forming a

link. By choosing her commitment level, a player reveals which type of players she can

easily form a link. We assume that players with same identities and higher commitment

levels can make links easier. Cost of link formation with different identities and higher

commitment levels becomes very costly. Players access to information by making links with

others. We assume two way flow and undirected network without decay which means that

both players access to the same benefit of the link through direct or indirect connections.

6



We consider two cases of costly link formation. In the first case, the cost of the link is paid

by the initiator. In the second case, the players who are involved in the link share the cost

depending on their initial link offers. Hence, the second case enables us to investigate the

network formation under mutual consent. For simplicity of the analysis, we assume that link

reliability probabilities within the same identity group are equal to each other. We show

that costly link formation between different identities can lead to fragmented architectures.

However, with fully heterogeneous link failures, it is possible to have more integrated groups

with different identities which may include many components however this only occurs if the

link between the different identity groups is more reliable than a link between the players

when both players involved in the link share the common identity characteristic. The actual

determination of reliability probability ranges is fairly complicated and we demonstrate the

intuition with an example for some cases.

Our model combines the results of Bala and Goyal (2000b) and Dev (2010). Compared to

Bala and Goyal (2000b) model, the cost of link formation is heterogenous and its a function of

players’ identity characteristics and commitment levels. This allows us to study the effect of

identity on their model. Compared to Dev (2010) model, our model introduces probabilistic

link reliability and the Nash networks may include different identity characteristics in a single

component.
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Chapter 2

Key Players and Key Groups in
Teams

2.1 Introduction

In recent years the literature in economics on networks has begun to focus on centrality

measures. The seminal paper of Ballester et al. (2006) provides the basic framework to

identify key players using centrality measures in networks. However, to the best of our

knowledge there is no paper that studies centrality measures using actual data. This chapter

makes a contribution to this literature - it modifies the original model of Ballester et al.

(2006) to capture team situations by providing the network members a common goal as well.

After obtaining the necessary theoretical results we apply it to a unique data set collected

from soccer games.

Team like situations dominate many social and economic environments. Firms and or-

ganizations are usually made up of smaller groups or teams. Recommendation letters often

mention person’s ability to be a team player. An applicant’s ability to be a team player

is also tested in many interviews. Work environments like R&D groups, special task forces

and even academia to a certain extent function as teams. Teamwork is an important fea-

ture of many games like soccer, basketball and volleyball. This makes understanding the

contribution of individual members to a team very useful exercise. It can help design better

teams and compensation packages. Identifying the key players in teams is also very useful
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for retention issues. In this chapter, we develop a method for identifying key players and

key groups in teams.

There is a substantial literature in graph theory on identifying the key node in a network.

To determine the importance of each node, various centrality measures have been developed.

These may be degree based measures that take into account the number of links that emanate

and end at a node (see for instance Katz (1953), Freeman (1979), Hubbell (1965), Bonacich

(1987) and Sade (1989)). Closeness measure like those developed by Sabidussi (1966) and

Freeman (1979) use some type of topological distance in the network to identify the key

players. Another measure called betweeness measure (see for instance Freeman (1979))

uses the number of paths going through a node to determine its importance. Borgatti and

Everett (2006) develop a unified framework to measure the importance of a node. Borgatti

(2006) identifies two types of key player problems (KPP). He argues that in KPP-positive

situation key players are those who can optimally diffuse something in the network. In a KPP

negative situation key players are individuals whose removal leads to maximal disruption in

the network.

Ballester, Calvo-Armengol and Zenou (2006, henceforth BCZ) provide microfoundation

for the key player problem in fixed networks. Their model considers two vital ingredients:

individual actions and interaction between players. In the Nash equilibrium of the game each

player chooses their individual action taking both components into account. The key player

is the one whose removal leads to the highest overall reduction in effort. Thus, their approach

builds strategic behavior into the network, and combines both negative and positive aspects

of the problem. Calvo-Armengol, Patacchini and Zenou (2009, henceforth CPZ) extend BCZ

(2006) and propose a peer effects model to study educational outcomes.

We develop a Team Game based on the individual actions and interactions between

players. Additionally, each player gains utility when the team achieves its desired outcome.

This team outcome depends on individual effort and an ability term for each player. Another

interesting feature is that following BCZ (2006) we define key player problem from a social
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planner’s perspective. In context of teams, team leader or head coaches can be regarded as

the social planners. We then develop two new intercentrality measures that take into account

two different criteria for the social planner. The first intercentrality measure is derived form

the reduction in aggregate Nash equilibrium effort levels whereas the second intercentrality

measure is derived using the externality a player gets from her teammates.

This chapter has two contributions to the key player literature. The first contribution is

providing an empirical illustration of the approach using a team sport, namely soccer. We

observe the passing effort of international soccer players to proxy the amount of interaction

between players in UEFA European Championship 2008 and identify the key players and

key groups in the network. It is important to note that we are not seeking the best player on

the field. Rather, we are looking for the player whose contribution to his team is maximal.

Finally, we show that players who have higher interactions (passings and receivings) and

abilities have significantly higher ratings from experts and market values. We adapt the

asymmetries in the interactions which provides a more detailed analysis. Our approach is

different from CPZ (2009) in two aspects. CPZ (2009) focuses on peer effects in a student

environment whereas we are directly interested in determining key players and ranking the

individuals according to their contribution to their teams. The second contribution is ex-

tending the BCZ (2006) model and introducing a team (or network) outcome component

into the analysis to rank players according to their contributions to their teammates. The

Nash equilibrium of the model provides the optimal amount of individual efforts’ of each

player. It implies that if the player has a higher return for his individual actions or a higher

ability parameter, then she will have more incentives to perform individual actions.

Determining a key group instead of a key player is also an interesting aspect since more

than one player may have equivalent level of contribution to their teammates. In addition to

that, it is important to identify which combination of players have more importance within

the network. This information is crucial for the team managers who wish to form a team

with individuals who provide different inputs to their teammates. It is important to note
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that the members of the of key groups are not the best working peers but they are the

ones whose joint contribution to their team is maximal. Temurshoev (2008) extends BCZ

(2006) paper by introducing the key group dimension. Temurshoev (2008) searches for the

key group, whose members are, in general, different from the players with highest individual

intercentralities. We apply Temurshoev’s (2008) approach to determine the key groups of

players.

The approach in this chapter can be extended and replicated to more general team

situations as well as for other sports where players work in teams. However, we provide

an empirical example using international soccer matches. Taking this approach has some

advantages. First, since soccer is a team sport and the payoff of players depends on the

team outcome. Second, interactions within soccer teams are observable and passing effort

of players is a good metric to identify these interactions. We create a unique passing data

from UEFA European Championship 2008 and identify the key players and key groups of

teams which played in the Quarter Final, Semi-Final and Final stage of the tournament.1

Subsequent sections of the chapter are organized as follows: Section 2 defines the team

game and various centrality measures. It also identifies the Nash equilibrium and our team

intercentrality measures. Section 3 motivates the use of soccer data as an empirical applica-

tion. Section 4 identifies the empirical methodology. The chapter concludes with discussions

and possible extensions.

2.2 Team Game

In this section, we first define the team game and interpret the model for soccer. Then,

we introduce the various centrality measures and find the Nash equilibrium of the game.

Finally, we provide the relationship between the Nash equilibrium and the intercentrality

1Fifty European national teams played qualifying stages and only 16 of them were qualified for the UEFA
Euro 2008. So, it is reasonable to expect that the quality of the players in the national tournaments are
similar. Thus, interaction between players plays a crucial role in determining the outcome of the matches
making our results more important.
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measure(s) considering two different scenarios.

We begin by introducing the team game. We define the individual player’s payoff function

using the notation of BCZ (2006) as far as possible. We also interpret the model variables.

Ui(x1, ...., xn) = αixi +
1

2
σiix

2
i +

∑
j 6=i

σijxixj + θZ. (2.1)

The first two terms form a standard quadratic utility function where xi ≥ 0 is defined as

the individual effort of player i. αi > 0 stands for the coefficient of individual actions and

σii < 0, the coefficient of the second term, defines concavity in own effort i.e., ∂2Ui/∂x
2
i =

σii < 0. For simplicity we assume that these coefficients are identical for all players and we

drop the subscript.2The third term captures the bilateral influences between players with σij

being the coefficient of this term. Let Σ = [σij] be the matrix of these coefficients. Note that

σij could be positive or negative. The last expression is the team outcome term denoting

the desired team goal. It represents how an individual’s utility depends on team outcome.

We assume that the team outcome, Z is a linear function of each player’s effort and ability

parameter. The coefficient θ is a scale parameter that can be used to capture the importance

of the game.

For soccer, xi term can be interpreted as the attributes such as creativity, distance

traveled, attention, speed or shots on goal. αi measures the returns from individual actions

and σii introduces the concavity in effort in the sense that as players perform actions, they

spend stamina and it becomes costly. We utilize passing behavior to infer the interactions

between players. Thus, player i’s utility from interacting with player j is weighted by how

often he passes to j. σij can be interpreted as the complementary action of player i on player

j. For the case of soccer, σij indicates the number of (discounted) successful passes from

player i to j minus the number of (discounted) unsuccessful passes from player i to j.3 This

2We relax this assumption and consider the cases when αi and σii can be different for every player in
Proposition 1 (a)-(b).

3We acknowledge that there are other complementarity actions other than passing behavior; however,
these factors are very difficult to measure. Taking passing as a metric for complementarity action simplifies
the empirical model and enables us to quantify.
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Figure 2.1: Unsuccessful passing attempts are shown by cross overs.

means that if σij is positive, number of successful passes from player i to player j exceeds

the number of unsuccessful passes from player i to j.

While measuring the complementarity in players’ effort, we introduce a discounting pa-

rameter, d in constructing the Σ matrix. Passes that are made far from the opponent’s

goal have little influence on creating a goal scoring opportunity. Therefore, we discount the

passes that are made in own half of the field by a factor 0 < d < 1. On the other hand, if

player i successfully passes the ball to player j, and if player j is the opponent’s half, then

we do not discount that pass. Unsuccessful passes are discounted in the opposite way. If a

player i losses the ball while trying to pass to player j, we look at the position of j. If player

j is in the opponent’s half, then we discount that loss by d. Similarly, if player i losses the

ball while trying to pass to player j who is in his own half, then we do not discount that

loss. Basically, if player i losses the ball near his own goal then that is a serious loss for

the team. The intuition for not discounting the unsuccessful passes made in the own half is

that players have to run back which hurts the team’s play and may create an opportunity

for the opponent to start an attack from an advantageous position. The below figure shows

an example of discounting.
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For the empirical model, the ability parameter, δi is defined as the scoring probability of

player i where δi = Number of goals scored by player i / Number of total shots on goal of

player i. Alternatively, Z can also be defined as the outcome of the match. Specifically, Z

can be assumed to be taking values of {1, 0, -1} where Z = 1 implies that the team wins the

game, Z = 0 implies that the match ended in a draw, and Z = −1 implies that the team

lost the match. With the above definition of Z, the Nash equilibrium of the Team Game

is identical to the BCZ (2006) and allows us to use the ICM provided by the authors in

Remark 5 (pg. 1412). For a soccer game this could be winning the game or scoring more

goals. This term contains a the same set of variables for all players since they all share the

same outcome. For simplicity, let Z =
∑n

i=1 δixi where δi defines each individual’s ability to

help achieve the team’s goal. The parameter θ is a scale factor that could be used to capture

the importance of different events for the team.4

Our team game differs from that of BCZ (2006) model in the last term. This allows us

to consider the n players acting together towards a common objective. While alternative

formulations of this are possible, we believe our framework has certain advantages. First, it

allows for explicit comparison with BCZ (2006). Second, while all effort by player provides

a utility, the effort adjusted by the ability parameter is important for achieving the team

outcome. This can be useful for empirical illustration since it may not be possible to obtain

data on αi and σii. The ability parameter δi on the other hand could be obtained from

available data.

In order to proceed following BCZ (2006), we let σ = min (σij|i 6= j) and σ = max

(σij|i 6= j). We assume that σ < min (σ, 0). Let γ = − min σ, 0 ≥ 0. If efforts are

strategic substitutes for some pair of players, then σ < 0 and γ > 0; otherwise, σ ≥ 0 and

γ = 0. Let λ = σ + γ ≥ 0. We assume that λ > 0. Define gij = (σij + γ)/λ. Note that,

the gij’s are weighted and directed allowing us to obtain relative complementarity measures.

Consequently, the elements gij of the weighted adjacency matrix lie between 0 and 1. If we do

4In principle, one could define θZ to capture the importance of the level of achievement in the team’s
objective. Here, for simplicity we assume it to be θ.
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not use a weighted G matrix then it contains only 0s and 1s as its elements. This will imply

that the additional weight for having more connections with the same player is zero. So,

when gij = 1 then there is a connection and if gij = 0 then there is no connection between

player i and player j. However, it is very important to identify the relative interaction

between players rather than just considering if there is a connection between player i and j.

Thus, using a weighted G matrix is important to illustrate team environments.

The adjacency matrix G = [gij] is defined as a zero diagonal nonnegative square matrix.

The zero diagonal property assures that no player is connected to themselves (i.e, there are

no direct loops from player i to i.) Then, Σ matrix which captures the cross effects can be

decomposed into the following expression:

Σ = −βI− γU + λG (2.2)

where −βI shows the concavity of the payoffs in terms of own actions, −γU shows the global

interaction effect, and λG shows the complementarity in players’ efforts. Using the above

decomposition, Equation (1) becomes:

Ui(x1, ..., xn) = αxi −
1

2
(β − γ)x2i − γ

n∑
j=1

xixj + λ
n∑
j=1

gijxixj + θzZ (2.3)

for all players i = {1, ..., n}.

2.2.1 Centrality Measures

Here, we define the centrality measures needed to identify the key player. Let M be a matrix

defined as follows:

M(g, a) = [I− aG]−1 =
∞∑
k=0

akGk. (2.4)

The above matrix keeps track of the number of paths that start from player i and end at

player j with a decay factor, a and a given adjacency matrix G. Note that players can also
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contribute to their teammates through indirect connections, but these have lower weights.

Following BCZ (2006), we define the Bonacich centrality measure as:

b(g, a) = [I− aG]−1 · 1 (2.5)

where 1 is a n × 1 vector of ones, n is number of players in the team and I is a n × n

identity matrix. The Bonacich centrality measure counts the total number of paths that

originates from player i. Note that bi is the row sum of the M matrix. Equivalently, the

Bonacich centrality measure is bi(g, a) = mii(g, a) +
∑

i 6=jmij(g, a). Next, we define a

weighted Bonacich centrality measure with the ability parameter, δi as the weight:

bδ(g, a) = [I− aG]−1 · δ (2.6)

We define another centrality measure which accounts for the weighted receivings of the

players where the weights are given by δi:

ri(g, a) =
n∑
j=1

mji(g, a)× δi (2.7)

This (receiving) centrality measure takes into account the paths that end in player i weighted

by the ability parameter of the player. This measure captures the externality a player gets

from her teammates and weights it according to the ability of the player.

The BCZ (2006) intercentrality measure (ICM) for an asymmetric G5 is given by:

c̃i(g, a) = bi(g, a)×
∑n

j=1mji(g, a)

mii(g, a)
(2.8)

Unlike the Bonacich centrality measure, ICM takes into account both the connections that

player i sends to her teammates and the number of connections that player i receives.

5Note that, in the context of teams, the Σ matrix is unlikely to be symmetric since the number of paths
from player i to player j will be different for at least one pair. Hence, an asymmetric Σ matrix will lead to
an asymmetric G matrix.
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Throughout the chapter, we define two intercentrality measures to take into account pos-

sible different objectives of the social planner while identifying the key players. We provide

two alternative objectives for the social planner. In the first case, the social planner deter-

mines the player whose removal leads to the highest amount of reduction in the aggregate

Nash Equilibrium effort. We derive the intercentrality measure for this objective and call

this measure as team intercentrality measure, TICM . For an asymmetric G matrix, we

define TICM as:

c̄i(g, a) = bi(g, λ
∗)× (

∑n
j=1mji(g, λ

∗) +
∑n

j=1mji(g, λ
∗)δj

mii(g, λ∗)
) (2.9)

TICM measures player i’s contribution to the interaction matrix as well as her contribution

to the team outcome. The difference between ICM and TICM is in the last term in the

parentheses which captures player i’s importance in creating the team outcome.

Alternatively, one can argue that the social planner is equally interested in the interac-

tion between players as well as the externality term in the payoff of each player. While the

TICM measure above takes the first effect into account it does not take the second effect

into account. Therefore, we introduce a second measure of the importance of a player in the

game by taking the interaction into account as well as how the contribution of other players

affects the performance of each player weighted by their ability. We derive the intercentral-

ity measure for this objective and call this measure as team intercentrality measure with

externality, (TICM e). For an asymmetric G matrix, we define TICM e as:

ĉi(g, a) = bi(g, a)×
∑n

j=1mji(g, a)

mii(g, a)
+

n∑
j=1

mji(g, a)× δi (2.10)

The primary difference between ICM and TICM e is in the last term which measures the

externality player i receives from her teammates weighted by the ability parameter of the

player.
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2.2.2 Nash Equilibrium of the Team Game

In this section, we show that the Team Game has a unique interior Nash equilibrium by the

following theorem. Nash equilibrium shows that the aggregate equilibrium effort increases

with higher centrality measures.

Theorem 2.1 Consider a matrix of cross-effects which can be decomposed into (3).

Suppose σij 6= σji for at least one j 6= i, β/λ > (ρ(G)) and a small enough θ. Define

λ∗ = λ/β. Then, there exists a unique, interior Nash Equilibrium of the team game given

by:

x̂∗(Σ) =
αb(g, λ∗) + θbδ(g, λ

∗)

β + γb̂(g, λ∗)

where b̂(g, λ∗) =
∑n

i=1 bi(g, λ
∗) and x̂∗ =

∑n
i=1 xi.

Proof : The proof is an adaptation of BCZ (2006) and can be found in Appendix.

The Nash equilibrium of the Team Game has some interesting implications. First, it

identifies the optimal effort of individuals in the network based on the given interactions

between players. It also explains why some players provide higher individual effort by indi-

cating that players who have higher ability parameter or who make more interactions with

their teammates, will have higher individual effort.

A unique interior Nash equilibrium exists even when players have heterogeneity in returns

(αi) and concavity (σii) in individual actions are proved in Proposition 1 (a) and (b).

Proposition 1 (a): Suppose αi 6= αj and θ is small enough then Nash equilibrium of

the Team Game is:

x̂∗(Σ) =
bα(g, λ∗) + θbδ(g, λ

∗)

β + γb(g, λ∗)

(b): Suppose αi 6= αj, σii 6= σjj for at least one player and θ is small enough, then Nash

equilibrium of the team game is:

x̂∗(Σ) =
bα̃(g, λ̃∗) + θb̃δ(g, λ

∗)

β̃ + γ̃b̂(g, λ̃∗)
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Proof : See Appendix.

2.2.3 Key Player

In this subsection, we develop two alternative measures of identifying the key player in the

teams by considering different criteria of the social planner. In the first case, social planer

is interested in finding the player whose removal causes highest amount of reduction in the

aggregate Nash Equilibrium. In this approach, we determine the key player as in BCZ (2006)

which is to minimize sum of efforts after removal. We denote by G−i (resp. Σ−i) the new

adjacency matrix (resp. matrix of cross-effects), obtained from G (resp. from Σ) by setting

all of its ith row and column coefficients to zero. The resulting network is g−i. The social

planner’s objective is to reduce x∗(Σ) optimally by picking the appropriate player from

the population. Formally, she solves max {x∗(Σ) − x∗(Σ−i)|i = 1, ..., n}. This is a finite

optimization problem and has at least one solution. Theorem 2.2 shows that the player who

has the highest amount of TICM will be the solution of this problem.

Theorem 2.2 Let β > λρ1(G). The key player of the Team Game, i∗ solvesmax{x∗(Σ)−

x∗(Σ−i)|i = 1, ..., n} and has the highest team intercentrality measure (TICM) in g, that is

c̄i∗(g, λ
∗) > c̄i(g, λ

∗) for all i = 1, ..., n.

Proof : See Appendix

Alternatively, social planner may consider the externalities players get from their team-

mates which is not included in the Nash Equilibrium of the team game. It might be the case

that social planner is interested in considering each player’s effect on the interaction matrix

as well as taking the externality into account. BCZ (2006) provides the effect of player i’s

removal to the interaction matrix under Remark 5 for the asymmetric case. We define the

externality player i receives from her teammates ri(g, λ
∗) =

∑
j 6=imji(g, λ

∗) and we weight

that with the ability parameter of the player. Theorem 2.3 indicates that the player who

has the highest amount of TICM e will be the solution of this case.
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Theorem 2.3 Let β > λρ1(G). The key player of the Team Game with externalities, i∗

solves b(g, λ∗)− b(g−i, λ∗) + riδ(g, λ
∗) and has the highest TICM e in g, that is ĉi∗(g, λ

∗) >

ĉi(g, λ
∗) for all i = 1, ..., n.

Proof : See Appendix

2.3 Soccer: A Team Game and The Role of Passing

Modern soccer is very much a team game. The performance of players depends crucially on

each other’s actions and interaction between players forms a vital component of the game.

Soccer coaches, training books and authorities emphasize the team aspect of the game. As

the great Brazilian soccer player Pele said in a press conference in Singapore in November

2006, “I think the problem with Brazil was lack of teamwork because everybody used to say

Brazil will be in the final.” Pele added that Brazil had the best individual players against

France, but they lost the game because they could not play as a team.6 On November

29, 2007, Gerard Houllier, the famous technical director of the French Football Federation,

speaking at the 9th UEFA Elite Youth Football Conference summed this up as “Teamwork

is the crux of everything.”7

One important aspect of soccer that makes it a team game is the fact that passing is a

very crucial part of the game. In the early days of soccer, the game was based on individual

skills such as tackling and dribbling. In 1870s, the Scots invented the passing game and

everyone soon realized that it is easier to move the ball than players since the ball travels

faster than humans. Since then passing and receiving have become a key part of a soccer

team’s strategies. A soccer training manual by Luxbacher (2005) emphasizes the importance

of passing in the following “Passing and receiving skills form the vital thread that allows 11

individuals to play as one - that is the whole to perform greater than the sum of its parts.”

Similarly, Miller and Wingert (1975) addresses the importance of passing in soccer by stating

6See http :// findarticles.com/p/articles/mi kmafp/is 200611/ai n16939060.
7See http://www.uefa.com/uefa/keytopics/kind=1024/newsid=629284.html
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Figure 2.2: The relationship between average number of shots per game and average number
of passes per game in UEFA Euro 2008.

that “There are no more crucial skills than passing in soccer because soccer is a team sport.

The most effective set plays involve accurately passing and receiving the ball.”

Luhtanen et al. (2001) report that successful passes at the team level are important for

explaining the success in the UEFA European Championship 2000. Specifically, Luhtanen

et al. (2001) document that there is one to one relationship between the ranking of the

team in Euro 2000 and the ranking of the team in terms of successful passing and receivings.

This provides evidence that in the competition, having more interactions in the team leads

to better results. It seems reasonable that passing is a good metric for identifying the

interactions between players.

Figure 2 displays the relationship between average number of shots per game and average

number of passes per game of the national teams in the UEFA European Championship

2008.8 The correlation coefficient between these variables is 0.7. The regression coefficient

obtained from regressing average number of shots on goal per game on average number of

passes per game indicates that on the average 27 passes created 1 additional shot on goal for

8This data was accessed from the following website http://www1.uefa.com/tournament/statistics/teams.
It is available from the authors upon request.
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the team in Euro 2008. This is consistent with the idea that teams need ball possession to

create goal scoring opportunities which directly affects the outcome of the match. Clearly,

passing is an important interaction variable in our dataset.

There are some advantages to using passing to infer player interactions. First, it is

pairwise and both the originator and receiver must be successful to complete the action.

The pairwise aspect of passing enables us to utilize the network theory to understand the

contribution of each player to the team. Second, passing as a measure of interaction is

observable and easily quantifiable. Data for other aspects of the soccer such as tackling,

dribbling or off the ball movement of players are very hard to observe. In addition, often

identifying the quality of these actions require subjective judgement. Finally, even if we had

data about these aspects, it would be still difficult to quantify those variables exactly.

2.4 Empirical Methodology

This section illustrates our methodology for identifying the key player and key groups in

soccer teams. First, we describe our data collection process. Next, we calculate the ICM

and TICM e by using the corresponding definitions and provide our results for the key players

and key groups. Finally, we conduct sensitivity checks for the model parameters which are

used for identifying key players.

2.4.1 Data and Results

Our data consists of all the matches from the Quarter Final onwards for the UEFA European

Championship 2008. All the data that is used in the chapter is available from the authors

on request. Unfortunately, official passing data from UEFA’s website is not adequate for our

study due to a number of reasons. First, UEFA provides data only on the successful passes

between player i and j and excludes the unsuccessful passes. Second, UEFA statistics do

not provide the passing position of the players which is important for assessing the quality
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of passing. Hence, we created a unique passing data set ourselves by watching the matches

from DVD’s. This was done by freezing the frame at the time of the passing attempt and

recording the player making the pass and the receiver in a matrix by noting the position

of the receiver. We also discounted the passes using the method described in the previous

section.9The net discounted passes are used to determine the σ′ijs in Σ matrix. As expected,

the Σ and G matrices are both asymmetric.

In order to facilitate comparisons across matches, we define a tournament wide λ and

γ which are the same for every team. First we obtain the highest amount of positive and

negative interaction between each pair of players throughout the tournament. Using this,

the tournament wide γ and λ parameters are chosen as 5 and 20 respectively. This allows

us to compare the same player’s intercentrality measure from different matches as well as to

compare the intercentrality measure of different players from different matches.10

Data for creating the tournament wide scoring probabilities of each player was obtained

from ESPN’s website.11 Ideally, the life time scoring probability of a player would be δi in

the model. However, this data is not available and we use the tournament wide measure

as a proxy for this. Next, we calculate the M matrix, centrality vector (b) and (team)

intercentrality vectors c and ĉ by using the definitions provided in Section 2. Note that

assigning a value to a is crucial for obtaining a pure and interior Nash equilibrium. BCZ

(2006) note that for the case of asymmetric Σ and G matrices, a should be less than the

spectral radius of G, which is inverse of the norm of the highest eigenvalue of G. The

greatest eigenvalue of G matrices for the teams in the sample is 7.07 and hence following

the above rule, the decay factor, a, is set to 0.125 for all matches. Since we did not have any

guide lines for discount factor, d ∈ [0, 1] we assume that d = 0.5 for all matches. Using all

9According to our passing data on average 972.5 successful passes occurred in a match and it is a tedious
exercise to record every passing attempt. Note that we also take into account the unsuccessful passing effort
which are 272.3 on average in each match.

10Note that the Netherlands vs Russia, Spain vs Italy and Croatia vs Turkey matches went into the extra
time. Therefore, comparing the players in the these games with those ended in 90 minutes is not possible.
The cross comparisons are valid for match lengths of the same duration. We discuss this issue in more detail
in the next subsection.

11http://soccernet.espn.go.com/euro2008/stats
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of these parameters we then compute ICM and TICM e of each player.

The corresponding calculations for the Final, Semi Final and Quarter Final games for

Euro 2008 are reported for each team in Tables 2.1-2.7.

Table 2.1: Spain vs Germany Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci
Xavi M 4.31 3.97 Lahm D 4.38 3.73

Fabregas M 3.97 3.35 Schweinsteiger M 4.37 3.57
Senna M 3.66 3.66 Frings M 4.02 4.02

Ramos D 3.53 3.53 Podolski M 4.02 3.45
Capdevila D 3.49 3.49 Metzelder D 3.88 3.88

Puyol D 3.48 3.48 Mertesacker D 3.77 3.77
Silva M 3.47 3.36 Ballack M 3.73 3.38

Guiza* F 3.46 3.02 Klose F 3.57 3.14
Marchena D 3.46 3.46 Hitzlsperger M 3.57 3.57

Iniesta M 3.45 3.45 Friedrich D 3.47 3.47
Torres F 3.18 2.98 Lehmann G 3.34 3.34

Xabi Alonso* M 3.14 3.14 Jansen* M 3.25 3.25
Cazorla* M 3.11 3.11 Gomez* F 3.12 3.12
Casillas G 3.07 3.07 Kuranyi* F 2.99 2.99

Table 2.1: In the above table, the first 4 columns are for Spain and the remaining ones are
for Germany. ĉi represents TICM e and ci represents ICM . * indicates that player is a
substitute.

Table 2.2: Spain vs Russia Semi-Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci
Fabregas* M 6.04 5.24 Zyryanov M 4.87 4.56

Silva M 5.50 5.35 Semak M 4.37 4.37
Xavi M 5.48 5.09 Zhirkov D 4.12 4.12

Ramos D 5.37 5.37 Anyukov D 4.10 4.10
Iniesta D 4.97 4.97 Arshavin F 4.06 3.70
Senna M 4.82 4.82 Ignashevich D 3.84 3.84
Torres F 4.30 4.06 Berezutski D 3.83 3.83

Capdevila D 4.23 4.23 Saenko M 3.63 3.63
Xabi Alonso* M 4.11 4.11 Semshov M 3.57 3.57

Villa F 4.08 3.59 Pavlyuchenko F 3.52 3.30
Guiza* F 4.06 3.58 Sychev* F 3.46 3.46

Marchena D 4.02 4.02 Akinfeev G 3.36 3.36
Puyol D 3.75 3.75 Biyaletdinov* M 3.28 3.28

Casillas G 3.69 3.69

Table 2.2: In the above table, the first 4 columns are for Spain and the remaining ones are for
Russia. ĉi represents TICM e and ci represents ICM . * indicates that player is a substitute.

24



Table 2.3: Germany vs Turkey Semi-Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci
Schweinsteiger M 5.01 4.15 Ugur M 4.95 4.23

Lahm D 4.48 3.82 Hamit M 4.73 4.73
Podolski M 4.12 3.55 Semih F 4.69 3.85

Mertesacker D 3.85 3.85 Ayhan M 4.65 4.65
Friedrich D 3.75 3.75 Sabri D 4.64 4.64

Hitzlsperger M 3.75 3.75 Hakan D 4.32 4.32
Frings* M 3.68 3.68 Kazim M 4.23 4.23

Metzelder D 3.67 3.67 Aurelio M 4.15 4.15
Ballack M 3.63 3.29 Gokhan D 4.14 4.14

Klose F 3.51 3.07 Mehmet M 4.11 4.11
Rolfes M 3.22 3.22 Gokdeniz* M 3.45 3.45

Lehmann G 2.98 2.98 Rustu G 3.44 3.44
Jansen* M 2.91 2.91 Mevlut F 3.43 3.43

Tumer* M 3.34 3.34

Table 2.3: In the above table, the first 4 columns are for Germany and the remaining ones
are for Turkey. ĉi represents TICM e and ci represents ICM . * indicates that player is a
substitute.

Table 2.4: Netherlands vs Russia Quarter Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci
Van Bronchorst D 5.40 4.34 Arshavin F 5.04 4.61
Van Der Vaart M 5.08 5.08 Zhirkov D 4.56 4.56

Nistelrooy F 5.08 4.63 Pavlyuchenko F 4.47 4.24
Sneijder M 4.51 4.30 Zyryanov M 4.45 4.16

Van Persie* F 4.51 4.16 Semak M 4.22 4.22
Heitinga* D 4.43 4.43 Torbinski* M 4.16 3.68

Boulahrouz D 4.39 4.39 Anyukov D 4.01 4.01
Oojer D 4.35 4.35 Semshov M 3.91 3.91

De Jong M 4.24 4.24 Saenko M 3.90 3.90
Kuyt M 4.24 3.73 Kolodin D 3.88 3.88

Afellay* M 4.16 4.16 Ignashevich D 3.76 3.76
Van Der Sarr G 4.09 4.09 Bilyaletdinov* M 3.68 3.68

Englaar M 4.03 4.03 Akinfeev G 3.52 3.52
Mathijsen D 4.00 4.00 Sychev* F 3.40 3.40

Table 2.4: In the above table, the first 4 columns are for Netherlands and the remaining
ones are for Russia. ĉi represents TICM e and ci represents ICM . * indicates that player is
a substitute.
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Table 2.5: Germany vs Portugal Quarter Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci
Schweinsteiger M 5.47 4.58 Deco M 6.44 5.81

Podolski M 5.20 4.55 Ronaldo M 5.47 5.31
Ballack M 5.10 4.69 Simao M 5.39 5.39

Klose F 5.01 3.96 Bosingwa D 5.18 5.18
Lahm D 4.95 4.25 Pepe D 5.15 4.63
Rolfes M 4.38 4.38 Meireles* M 4.91 4.48

Hitzlsperger M 4.05 4.05 Ferreira D 4.70 4.70
Friedrich D 3.87 3.87 Petit M 4.51 4.51
Lehmann G 3.60 3.60 Carvalho D 4.39 4.39

Mertesacker D 3.58 3.58 Nuno Gomes F 4.39 3.98
Metzelder D 3.57 3.57 Postiga* F 4.26 3.85

Fritz* M 3.39 3.39 Moutinho M 4.02 4.02
Borowski* M 3.32 3.32 Nani* M 4.02 4.02

Jansen* M 3.31 3.31 Ricardo G 3.81 3.81

Table 2.5: In the above table, the first 4 columns are for Germany and the remaining ones
are for Portugal. ĉi represents TICM e and ci represents ICM . * indicates that player is a
substitute.

Table 2.6: Spain vs Italy Quarter Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci
Fabregas* M 8.43 7.49 Grosso D 5.74 5.74

Silva M 8.15 7.97 De Rossi M 5.13 5.13
Xavi M 7.59 7.13 Panucci D 4.99 4.29

Capdevila D 7.53 7.53 Ambrossini M 4.93 4.93
Senna M 7.23 7.23 Aquilani M 4.73 4.73
Villa F 6.66 6.00 Zambrotta D 4.65 4.65

Ramos D 6.52 6.52 Camoranesi* M 4.65 4.65
Marchena D 6.14 6.14 Chiellini D 4.56 4.56

Iniesta M 5.67 5.67 Toni F 4.38 4.38
Puyol D 5.63 5.63 Cassano F 4.28 4.28
Torres F 5.56 5.29 Buffon G 4.05 4.05

Guiza* F 5.33 4.77 Di Natale* F 4.05 4.05
Cazorla* M 5.18 5.18 Perrotta M 3.94 3.94
Casillas G 4.72 4.72 Del Piero* F 3.59 3.59

Table 2.6: In the above table, the first 4 columns are for Spain and the remaining ones are for
Italy. ĉi represents TICM e and ci represents ICM . * indicates that player is a substitute.
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Table 2.7: Croatia vs Turkey Quarter Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci
Modric M 5.69 4.58 Arda M 7.67 5.26
Pranjic D 4.47 4.47 Hamit M 5.24 5.24
Rakitic M 4.18 4.18 Tuncay M 5.24 5.24

Srna M 4.06 3.83 Hakan D 5.11 5.11
Klasnic* F 4.05 3.31 Nihat F 5.03 4.40

N. Kovac M 3.97 3.97 Semih* F 4.89 3.99
Simunic D 3.90 3.90 Ugur* M 4.48 3.82
Corluka D 3.77 3.77 Sabri D 4.24 4.24

R. Kovac D 3.77 3.77 Gokhan D 4.14 4.14
Kranjcar M 3.66 3.66 Emre D 4.13 4.13

Olic F 3.64 3.37 Mehmet M 4.09 4.09
Petric* F 3.32 3.32 Kazim M 3.91 3.91

Pletikosa G 3.21 3.21 Rustu G 3.69 3.69
Gokdeniz* M 3.43 3.43

Table 2.7: In the above table, the first 4 columns are for Croatia and the remaining ones
are for Turkey. ĉi represents TICM e and ci represents ICM . * indicates that player is a
substitute.

In the above tables, ĉ refers to TICM e and c indicates ICM of BCZ (2006). We find

that the results obtained by using TICM e are generally better at capturing the players who

have a direct influence on the outcome of the matches since it also incorporates the scoring

probabilities. The highest value of TICM e is observed in the Spain vs Italy Quarter Final

game for Fabregas of Spain who has a value of 8.43. Note that this match ended in extra

time. In all of the matches which ended in normal time, the highest value of TICM e is

observed in the Germany vs Portugal Quarter Final game for Deco of Portugal who has a

value of 6.44. The highest ICM reported as 7.97 in Spain vs Italy match for David Silva of

Spain. Note that this match ended in extra time. The next highest ICM is in Germany vs

Portugal match (which ended in normal time) for Deco 5.81. Unlike the conventional belief

that midfielders would always be key players due to their field position, there are examples in

our data that proves otherwise. For instance, in Netherlands vs Russia match, Russian key

player turns out to be a Arshavin, a forward player. Also, the major difference TICM e and

ICM is that forward and midfield players appear in the higher ranks according to TICM e.
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Table 2.8: Spain vs Germany Final Game, TICM , TICM e and ICM a=0.125 and d=0.5

Name Position c̄i ĉi c̃i Name Position c̄i ĉi ci
Xavi M 4.42 4.31 3.97 Lahm D 4.53 4.38 3.73

Fabregas M 4.04 3.97 3.35 Schweinsteiger M 4.45 4.31 3.57
Senna M 3.78 3.66 3.66 Frings M 4.25 4.02 4.02

Ramos D 3.64 3.53 3.53 Podolski F 4.15 4.01 3.45
Capdevila D 3.60 3.49 3.49 Metzelder D 4.07 3.88 3.88

Puyol D 3.59 3.48 3.48 Mertesacker D 3.95 3.77 3.77
Marchena D 3.57 3.46 3.46 Ballack M 3.88 3.71 3.38

Silva M 3.57 3.47 3.36 Hitzspelger M 3.77 3.58 3.58
Iniesta M 3.57 3.45 3.45 Klose F 3.71 3.59 3.13
Guiza F 3.53 3.46 3.02 Friedrich D 3.64 3.47 3.47
Torres F 3.26 3.18 2.98 Lehmann G 3.50 3.34 3.34

Xabi M 3.24 3.14 3.14 Jansen D 3.41 3.25 3.25
Santi M 3.21 3.11 3.11 Gomez F 3.27 3.12 3.12

Casillas G 3.16 3.07 3.07 Kuranyi F 3.12 2.99 2.99

Table 2.8: In the above table, the first 5 columns are for Spain and the remaining ones are
for Germany. c̄i represents TICM , ĉi represents TICM e, and ci represents ICM. * indicates
that player is a substitute.

Table 2.9: Netherlands vs Russia Quarter Final Game, TICM and TICM e a=0.125 and d=0.5

Name Position c̄i ĉi c̃i Name Position c̄i ĉi ci
Gio D 5.50 5.32 4.34 Arshavin F 5.16 4.98 4.61

Vaart M 5.31 5.08 5.08 Zhirkov D 4.68 4.56 4.59
Nistelrooy F 5.29 5.05 4.63 Pavlyuchenko F 4.61 4.47 4.24

Sneijder M 4.68 4.51 4.30 Zyryanov M 4.53 4.46 4.16
Van Persie F 4.68 4.50 4.16 Semak M 4.33 4.22 4.22

Boulahrouz D 4.64 4.39 4.39 Torbinski M 4.22 4.17 3.68
Heitinga D 4.63 4.43 4.43 Anyukov D 4.11 4.01 4.01

Ooijer D 4.53 4.35 4.35 Semshov M 4.01 3.91 3.91
De Jong M 4.41 4.24 4.24 Saenko M 4.01 3.90 3.90
Afellay M 4.38 4.16 4.16 Kolodin D 3.97 3.88 3.88

Kuyt F 4.37 4.21 3.73 Ignashevich D 3.85 3.76 3.76
Van der Sarr G 4.25 4.09 4.09 Bilyaletdinov M 3.77 3.68 3.68

Engelaar M 4.21 4.03 4.03 Akinfeev G 3.60 3.52 3.52
Mathijsen D 4.19 4.00 4.00 Sychev F 3.48 3.40 3.40

Table 2.9: In the above table, the first 5 columns are for Netherlands and the remaining
ones are for Russia. c̄i represents TICM , ĉi represents TICM e, and ci represents ICM. *
indicates that player is a substitute.
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In Tables 2.8 and 2.9, we provide all the intercentrality measures(TICM , TICM e and

ICM) for Spain vs Germany Final and Netherlands vs Russia Quarter Final matches. The

difference between TICM and ICM provides the externality player i receives from his

teammates. The difference between TICM and ICM yields the contribution of the player

to the team outcome. It can be seen in all tables that if δi = 0, then TICM e and ICM

are equal to each other. However, TICM can still be different since it includes δ′js. We can

conclude that both measures are reasonably close and the main results do not change.

An important fact to mention is that since the data on scoring probabilities of players is

not life time scoring probabilities, TIMC and TICM e cause players who have very few shots

in the tournament but scored a goal to have a high measures in some matches. Therefore,

we report ICM results as a sensitivity check.12 Some teams in our data are observed more

than once and yet the key player in the same team differs in different matches. This might

be due to the fluctuations in the performance of players as well as the different playing style

of the players in different matches.

For the case of soccer, it is mostly the case that the head coach of the national team as the

social planner would not be very interested in the reduction in aggregate Nash equilibrium.

There is no guarantee that teams having more effort or playing better will get higher ranks

in the tournament. Hence, we will use the externality scenario since it includes the quality

of effort of the players directly and it captures the externality a player gets from the social

planner’s perspective, not through the player optimization through the Nash Equilibrium.

We provide some calculations of TICM in the next section to make some comparisons

however, through the empirical part, we mainly focus on TICM e and ICM .

12According to our data there are a few players such as Van Bronchorst of Netherlands and Lahm of
Germany who has only one or two shots on goal through the tournament however scoring a goal in those
attempts. That makes their scoring probability relatively higher and substantially increases their TICMe.
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2.4.2 Sensitivity Checks

There is a concern that determination of the key player may depend on the our chosen values

of the decay factor, a and discount factor, d. In fact, by means of an example BCZ (2006)

show that the key player may be different for different values of a. Similarly, the key player

may change depending the value of discount factor, d. Hence, in order to check the robustness

of our results, we conduct a simulation analysis by changing the values of those parameters.

We allow a to vary from 0 to 0.125 in increments of 0.001. Simultaneously, we use the same

increment and increase the value of d from 0 to 1. Since we perform the simulations for

all matches and all teams, this gives us 14 × 125,000 = 1.75 million simulations. We find

that the key player identified by ICM changes about 15 percent of the simulations. On the

other hand, the identified key players by using TICM e change 40 percent of the simulations.

There is a greater variability in TICM e results since the scoring probability of the players

are specific to the Euro 2008 tournament. Since the scoring probability itself shows great

variability, it makes the TICM e measure more idiosyncratic. The passing game on the other

hand is more stable and therefore the ICM results have smaller variation.

2.4.3 Key Group

In this section, we determine the key groups of players. The idea of searching for the key

group was initiated by BCZ (2004). However, in this chapter we prefer to follow Temur-

shoev’s (2008) approach for computational convenience. Key groups of players in the matches

provide information about the joint performance of players in the group. This is a valuable

information for the soccer clubs, managers and coaches who wish the form their teams with

individuals that provide different adjacencies to their teammates.13 In order to identify key

groups of size k in a team, we take every possible combination of k players from the team

and determine the reduction in the interaction matrix as well as the externalities. The key

13The identified key groups do not reveal best working individuals, but it reveals which combination of
players have higher importance in the interactions and externalities.
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group consists of players whose joint removal leads to the largest reduction.

We use Temurshoev’s (2008) approach to compute the TICM of a group of k players.

Removing players from the game causes a reduction in the interaction between players in

addition to the reduction to the loss of those players ability. Therefore, we derive the group

intercentrality measure for TICM e as:

ĉg = b′E(E′ME)−1E′b + (1′ME)(E′δ) (2.11)

where E is the n× k matrix defined as E = (ei1, ..., eik) with eir being the ithr column of the

identity matrix, k being the number of players in the group and 1 ≤ k ≤ n.

The first term captures the effect of the removal of a group of players in g and the second

term captures the effect of reduction in the desired outcome of the team. It can be readily

checked that for k = 1, the above expression boils down to the team intercentrality measure

with externality (TICM e) of a player which is given in Equation (10). Note that the key

group is not always comprised of the individuals having the highest intercentrality mea-

sure. As described in Borgatti (2006) and Temurshoev (2008), according to the redundancy

principle key group involves players who provide different adjacency to their teammates.

We choose key group sizes of k = 2 and k = 3 and calculate every possible group’s

intercentrality measure using Equation (11). The key group results for all the countries and

matches in the sample are provided in Tables 2.10-2.14. In these tables, we report the top two

(the best and the next best) key groups. In the key group tables, the column player position

identifies the field position of the player. These positions are D (Defense), M (Midfield) and

F (Forward). The rank in the ĉ column identifies the player’s rank according to (TICM).
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Table 2.10: Key Group of Spain, TICM e, a=0.125, d=0.5

Match Group Size Player Position Rank in ĉ Player Names ĉg
Final 2 M, M 1,2 Xavi, Fabregas 7.78
Final 2 M, F 1,8 Xavi, Guiza 7.36
Final 3 M, M, F 1,2,8 Xavi, Fabregas, Guiza 10.58
Final 3 M, M, M 1,2,3 Xavi, Fabregas, Senna 10.49

Semi-Final 2 M, M 1,3 Fabregas, Xavi 10.48
Semi-Final 2 M, M 1,2 Fabregas, Silva 10.40
Semi-Final 3 M, M, M 1,2,3 Fabregas, Silva, Xavi 14.03
Semi-Final 3 M, M, D 1,2,4 Fabregas, Silva, Ramos 13.76

Quarter Final 2 M, M 1,3 Fabregas, Xavi 14.49
Quarter Final 2 M, M 1,2 Fabregas, Silva 14.15
Quarter Final 3 M, M, M 1,2,3 Fabregas, Silva, Xavi 18.87
Quarter Final 3 M, M, F 1,3,6 Fabregas, Xavi, Vila 18.66

Table 2.10: In the above table, key group and the second best key group results of Spain are
provided for group sizes 2 and 3.

Table 2.11: Key Group of Germany, TICMe, a=0.125, d=0.5
Match Group Size Player Position Rank in ĉ Player Names ĉg

Final 2 D, M 1,2 Lahm, Schweinsteiger 8.28
Final 2 M, M 2,4 Schweinsteiger, Podolski 7.97
Final 3 D, M, M 1,2,4 Lahm, Schweinsteiger, Podolski 11.44
Final 3 M, M, M 2,3,4 Schweinsteiger, Frings, Podolski 11.25

Semi-Final 2 M, D 1,2 Schweinsteiger, Lahm 8.92
Semi-Final 2 M, M 1,3 Schweinsteiger, Podolski 8.52
Semi-Final 3 M, D, M 1,2,3 Schweinsteiger, Lahm, Podolski 11.93
Semi-Final 3 M, D, M 1,2,9 Schweinsteiger, Lahm, Ballack 11.69

Quarter Final 2 M, M 1,2 Schweinsteiger, Podolski 9.86
Quarter Final 2 M, F 1,4 Schweinsteiger, Klose 9.85
Quarter Final 3 M, M, F 1,2,4 Schweinsteiger, Podolski, Klose 13.71
Quarter Final 3 M, M, D 1,4,5 Schweinsteiger, Klose, Lahm 13.69

Table 2.11: In the above table, key group and the second best key group results of Germany
are provided for group sizes 2 and 3.
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Table 2.12: Key Group of Russia, TICMe, a=0.125, d=0.5
Match Group Size Player Position Rank in ĉ Player Names ĉg

Semi-Final 2 M, M 1,2 Zyryanov, Semak 8.36
Semi-Final 2 M, D 1, 4 Zyryanov, Anyukov 8.19
Semi-Final 3 M, M, F 1,2,5 Zyryanov, Semak, Arshavin 11.23
Semi-Final 3 M, D, F 1,4,5 Zyryanov, Anyukov, Arshavin 11.11

Quarter Final 2 F, M 1,4 Arshavin, Zyryanov 8.80
Quarter Final 2 F, F 1,3 Arshavin, Pavlyuchenko 8.79
Quarter Final 3 F, F, M 1,3,6 Arshavin, Pavlyuchenko, Torbinski 12.08
Quarter Final 3 F, D, F 1,2,3 Arshavin, Zhirkov, Pavlyuchenko 11.95

Table 2.12: In the above table key group and the second best key group results of Russia
are provided for group sizes 2 and 3.

Table 2.13: Key Group of Turkey, TICM e, a=0.125, d=0.5

Match Group Size Player Position Rank in ĉ Player Names ĉg
Semi-Final 2 M, F 1,2 Ugur, Semih 9.18
Semi-Final 2 F, D 2,5 Semih, Sabri 8.96
Semi-Final 3 M, F, D 1,2,5 Ugur, Semih, Sabri 12.60
Semi-Final 3 M, F, M 1,2,3 Ugur, Semih, Hamit 12.54

Quarter Final 2 M, F 1,5 Arda, Nihat 11.89
Quarter Final 2 M, F 1, 6 Arda, Semih 11.85
Quarter Final 3 M, F, F 1,5,6 Arda, Nihat, Semih 12.31
Quarter Final 3 M, M, F 1,2,6 Arda, Hamit, Semih 12.18

Table 2.13: In the above table, key group and the second best key group results of Turkey
are provided for group sizes 2 and 3.
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Table 2.14: Key Group of Other Countries, TICM e, a=0.125, d=0.5

Match Group Size Player Position Rank in ĉ Player Names ĉg
Netherlands

Quarter Final 2 D, F 1,3 Bronckhorst, Nistelrooy 9.81
Quarter Final 2 D, M 1,2 Bronckhorst, Vaart 9.64
Quarter Final 3 D, M, F 1,2,3 Bronckhorst, Vaart, Nistelrooy 13.27
Quarter Final 3 D, F, F 1,3,5 Bronckhorst, Nistelrooy, Persie 13.15

Portugal

Quarter Final 2 M, D 1,5 Deco, Pepe 10.73
Quarter Final 2 M, M 1,2 Deco, Ronaldo 10.60
Quarter Final 3 M, M, D 1,2,5 Deco, Ronaldo, Pepe 14.35
Quarter Final 3 M, D, M 1,5,6 Deco, Pepe, Meireles 14.15

Italy

Quarter Final 2 D, D 1,3 Grosso, Panucci 9.91
Quarter Final 2 D, M 1,2 Grosso, De Rossi 9.78
Quarter Final 3 D, M, D 1,2,3 Grosso, De Rossi, Panucci 13.47
Quarter Final 3 D, D, D 1,3,7 Grosso, Panucci, Zambrotta 13.25

Croatia

Quarter Final 2 F, M 1,5 Modric, Klasnic 9.21
Quarter Final 2 D, M 1,2 Modric, Pranjic 9.17
Quarter Final 3 D, F, M 1,2,5 Modric, Pranjic, Klasnic 12.31
Quarter Final 3 D, D, M 1,3,5 Modric, Rakitic, Klasnic 12.18

Table 2.14: In the above table, key group and the second best key group results of Nether-
lands, Portugal, Italy and Croatia are provided for group sizes 2 and 3.

34



For an interesting comparison, we also provide the ICM key group results of Spain in

Table 2.15.14 Generally, the key groups obtained by using TICM e include more forwards

and midfielders. According to Table 15, there are no forward players and several defenders

in key groups. However, according to Table 2.10, key groups according to TICM e have some

forwards and more midfielders.

Table 2.15: Key Group of Spain, ICM , a=0.125, d=0.5

Match Group Size Player Position Rank in c̃ Player Names c̃g
Final 2 M, M 1, 2 Xavi, Senna 7.02
Final 2 M, D 1, 3 Xavi, Ramos 6.97
Final 3 M, D, D 1, 3, 4 Xavi, Ramos, Capdevila 9.61
Final 3 M, D, D 1, 3, 5 Xavi, Ramos, Puyol 9.60

Semi-Final 2 D, M 1,2 Ramos, Silva 9.52
Semi-Final 2 M, M 2,3 Silva, Fabregas 9.45
Semi-Final 3 M, D, M 5,1,3 Iniesta, Ramos, Fabregas 12.82
Semi-Final 3 M, M, M 5,4,8 Iniesta, Xavi, Xabi 12.73

Quarter Final 2 D, M 2,1 Capdevila, Silva 13.51
Quarter Final 2 M, M 4,1 Senna, Silva 13.13
Quarter Final 3 D, M, M 2,4,1 Capdevila, Senna, Silva 17.48
Quarter Final 3 D, M, M 2,4,3 Capdevila, Senna, Fabregas 17.39

Table 2.15: In the above table, key group and the second best key group results of Spain are
provided for group sizes 2 and 3 by using the BCZ (2006) ICM key group measure.

2.4.4 Player Ratings, Market Value and (Team) Intercentrality

In this subsection, we discuss the effect of the ICM and TICM e on player ratings and market

values of the players in our sample. The transfermarkt.de website provides information about

other observable characteristics of the players such as: Date of birth, club, nation, position,

and number of international appearances, number of international goals, preferred foot and

captaincy. We use the Club UEFA points and Nation UEFA points which are available

from UEFA’s website in order to capture quality and reputation of the players. Club and

Nation points are announced by UEFA yearly. These points are earned for being successful

in UEFA club or national tournaments. The points that are provided by UEFA for the

14The key groups according to ICM for other countries are available upon request.
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year 2008 are composed of the points earned in 2003-2008 period. We merge the available

data from transfermarkt.de with the (team) intercentrality measure, Club and Nation Rank

measured by the UEFA points in 2008. The descriptive statistics about the data set are

provided in Table 16.

Table 2.16: Descriptive Statistics
Variable Obs Mean Std. Dev Min Max

Average Rating 113 6.17 0.85 3.83 8.17
ICM 113 4.21 0.61 2.99 5.81

TICM e 113 4.38 0.74 2.99 7.67
Log Market Value 112 2.25 0.84 -0.22 4.32

Age 113 28.29 3.55 22 36
Height(cm) 112 181.27 6.85 168 198

Club UEFA Points 112 66.95 33.33 0 124.99
Nation UEFA Points 112 44.27 17.05 11.62 75.27

International Caps 112 46.52 21.53 10 98
International Goals 112 7.73 9.56 0.00 48

Captaincy 112 0.16 0.37 0.00 1.00
Right-footed 112 0.57 0.50 0.00 1.00

Left-footed 112 0.20 0.40 0.00 1.00
Both 112 0.23 0.42 0.00 1.00

Defender 113 0.27 0.45 0.00 1.00
Midfielder 113 0.47 0.50 0.00 1.00

Forward 113 0.25 0.43 0.00 1.00
Expiring 112 0.14 0.35 0.00 1.00

Move 112 0.38 0.49 0.00 1.00

Table 2.16: Average ratings for the players are obtained by taking the average of the player
ratings available through Goal.com ESPN Soccer and Skysports. Log of the market value of
players are obtained from transfermarkt.de along with the player characteristics. Club and
Nation UEFA points are available from UEFA’s website. We use 2007-2008 points, which is
earned in 2003-2008 period by clubs or nations in UEFA tournaments. Captaincy is equal to
1 if the player is a captain in his club or his national team and 0 oth. D, M and F are dummy
variables to indicate the field position of the players. They represent Defender, Midfielder
and Forward positions respectively. Goalkeepers are excluded from the sample. Expiring is
equal to 1 if the players current contract with his club is expiring at the end of 2009-2010
season 0 oth. Move is equal to 1 if the player transferred to another after Euro 2008 and 0
oth.
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2.4.4.1 Player Ratings

We consider player ratings by experts after each game to show that the individual perfor-

mance of the players can be explained by the (team) intercentrality measures. We obtain

player ratings from three sources: Goal.com, ESPN and SkySports. We create a variable

called rating for each player which is obtained by taking of the average of these ratings.15

These sources are used since they use the same scale and also provide ratings for the substi-

tute and substituted players in the matches. Also, these sources are outside the competing

countries in UEFA Euro 2008 which eliminates potential country bias in the ratings.

In order to analyze the relationship between player ratings and ICM and TICM e, we

consider the following base model:

Ratingit = α1 + β1 ICMit(TICM
e
it) + γ1 Agei + θ1 Age

2
i + λ1 Positioni

+ ψ1 ClubRanki + φ1 NationRanki + εit.

In the above regression model, the i subscript represents the player i and the t subscript

represents the match t. Rating is the dependent variable and represents for the average of the

player ratings obtained from the three sources. ICM stands for the intercentrality measure

of BCZ (2006). TICM e represents the team intercentrality measure with externalities from

Equation (10). Position is a dummy variable that identifies the field position of the player.

We consider three different field positions: Defense (D), Midfield (M) and Forward(F).16

The estimation results for the relationship between average player ratings, ICM and

TICM e are provided in Tables 2.17 and 2.18. In the pooled OLS estimation, we estimate a

linear regression model where the time variable, t which is used to identify each match.17

Table 2.18 reports the results from a GLS estimation with bootstrapped robust standard

15The correlation coefficient of ratings from the above sources are 0.7 thus we prefer to take the average
of these ratings rather than using them one by one.

16Goalkeepers are excluded from the regression analysis. Niko Kovac (Croatia) retired from professional
soccer before 2010 and are also excluded.

17Ideally, we would prefer to run a random effects model, but there is not enough idiosyncratic variance
in the data to allow for this.
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errors. We take the average of the ratings and (team) intercentrality measures and have

only one observation for each player and we report robust standard errors. Both Tables

2.17 and 2.18 show that there is a strong relationship between the TICM e and the average

ratings. Specifically, players who have higher TICM e performed better than their teammates

according to the experts. In the pooled OLS estimation, the estimated coefficient for the

TICM e is significant at 5 % significance level while the coefficient of ICM is significant

at 10 % significance level. In the GLS estimation, the estimated coefficient of TICM e is

significant at 1 % significance level while the estimated coefficient of ICM is significant at

5 % significance level. As a sensitivity check, we only include the players who played longer

than 30 minutes in the matches. This reduces the number of observations by 30, but the

results are robust. Another important factor to control for is whether or not the match ended

in normal time. We define a dummy variable ET which is equal to 1 if the match ended in

extra time and 0 otherwise. With the inclusion of this variable, the estimated coefficient of

TICM e is significant at 5 % significance level whereas the estimated coefficient of ICM is

not statistically different from zero. Therefore, we conclude that TICM e and ICM explain

the expert ratings.

In order to investigate whether the experts regard different importance to the ICM and

TICM e according to their field position of the players, we interact the ICM and TICM e

of players with their position dummies. None of the estimated coefficients are statistically

significant. Therefore, we conclude that the ICM and TICM e are equally important re-

gardless of the field positions of the players. (i.e, the effect of the intercentrality measures

on ratings is homogenous in the sample with respect to players’ positions on the field.) In

addition to the control variables in base model, we run regressions with a broader set of

control variables including international appearances, international goals, captaincy, height

and preferred foot. The estimated coefficients and their significance are very similar.
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Table 2.17: Average Ratings, ICM and TICM e Pooled OLS Estimation
Variable I II III IV V VI

ICM 0.254*** 0.248*** 0.226
(0.093) (0.094) (0.146)

TICM e 0.308*** 0.296*** 0.262**
(0.090) (0.086) (0.119)

ET 0.327* 0.375* 0.361* 0.303 0.345* 0.327
(0.189) (0.209) (0.217) (0.193) (0.207) (0.217)

Age -0.198 -0.104 -0.135 -0.127 -0.036 -0.108
(0.262) (0.273) (0.267) (0.268) (0.271) (0.277)

Age Squared 0.003 0.001 0.002 0.002 0.000 0.002
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Club UEFA pts 0.001 0.001 0.001 0.000 0.000 0.000
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Nation UEFA pts 0.007* 0.008* 0.008* 0.008* 0.008* 0.008*
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

D -0.272* -0.119 -0.233 0.052
(0.149) (0.935) (0.145) (0.836)

F -0.066 -0.987 -0.099 -1.483
(0.189) (1.225) (0.184) (1.122)

DxI -0.035
(0.213)

FxI 0.236
(0.305)

DxTI -0.065
(0.184)

FxTI 0.328
(0.264)

Constant 7.886** 6.576* 7.122* 6.602* 5.374 6.564
(3.807) (3.928) (3.864) (3.895) (3.957) (4.083)

Observations 178 178 178 178 178 178
Number of Players 111 111 111 111 111 111

R-squared 0.119 0.131 0.137 0.153 0.162 0.176
Wald Chi Sq statistic 18.96 18.59 18.86 23.37 24.77 24.12

Table 2.17: The dependent variable is average ratings and the pooled OLS coefficients are
reported in the above regressions. Bootstrapped robust standard errors are given in paren-
theses. ***, **, * indicate 1, 5 and 10 percent significance levels respectively. ET is a
dummy variable which takes the value of 1 if the player played more than 90 minutes in
any of the matches and 0 otherwise. Goalkeepers are excluded from the sample. DxICM ,
FxICM , DxTICM e and FxTICM e are interaction variables obtained by interacting the
(team) intercentrality measure with the position dummy.
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Table 2.18: Average Ratings and (Team) Intercentrality GLS Estimation
Variable I II III IV V VI

(ICM) 0.557*** 0.564*** 0.495**
(0.155) (0.154) (0.197)

(TICM e) 0.541*** 0.534*** 0.434***
(0.146) (0.135) (0.165)

Age -0.070 -0.066 -0.084 -0.034 0.058 -0.029
(0.301) (0.314) (0.323) (0.299) (0.322) (0.307)

Age Squared 0.001 0.001 0.001 -0.001 -0.001 0.000
(0.005) (0.005) (0.006) (0.005) (0.006) (0.005)

Club UEFA pts -0.003 -0.003 -0.002 -0.004 -0.004 -0.004
(0.003) (0.003) (0.004) (0.003) (0.003) (0.003)

Nation UEFA pts -0.001 0.001 0.001 0.001 0.001 0.001
(0.005) (0.006) (0.007) (0.005) (0.005) (0.005)

Defender -0.066 -0.375 -0.001 -0.439
(0.166) (1.158) (0.175) (1.024)

Forward 0.015* -1.067 -0.065 -2.189*
(0.212) (1.675) (0.199) (1.247)

DxICM 0.072
(0.280)

FxICM 0.272
(0.418)

DxTICM e 0.098
(0.237)

FxTICM e 0.504*
(0.296)

Constant 5.399 5.305 5.875 3.797 3.510 5.253
(4.431) (4.626) (4.889) (4.342) (4.647) (4.530)

Observations 112 112 112 112 112 112
R square 0.147 0.148 0.153 0.206 0.207 0.231

R square adj 0.106 0.091 0.078 0.169 0.154 0.163
Wald Chi Sq Statistic 14.29 14.83 18.18 15.51 16.76 26.63

Table 2.18: The dependent variable is average ratings and the GLS estimation results are
reported in the above regressions. Bootstrapped robust standard errors with 1000 replica-
tions are given in parentheses. ***, **, * indicate 1, 5 and 10 percent significance levels
respectively. Goalkeepers are excluded from the sample. DxICM , FxICM , DxTICM e

and FxTICM e are interaction variables obtained by interacting the (team) intercentrality
measure with the position dummy.
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2.4.4.2 Market Values

Next, we investigate whether having a higher ICM or TICM e in Euro 2008 affects the mar-

ket values of the players. Investigating the effect of intercentrality on salaries would be more

interesting, but the club salaries of soccer players in Europe are not publicly available. Hence,

we consider market values instead of salaries. Frick (2007) and Battre et al. (2008) regard

the estimated market value of the soccer players obtained from http://www.transfermarkt.de

18 as a good and reliable source to proxy the undisclosed salary of players. Battre et al.(2008)

points out that there is a strong relationship between the market value of the players and

their salaries for the players in Bundesliga, German First Division.19 So, the estimated mar-

ket value of the players are obtained for the year 2010 may be regarded as a proxy for the

salaries of the players in our sample.

We use the following base model to investigate the relationship between the market values

of soccer players and their ICM or TICM e:

LogMVi = α2 + β2 ICMi(TICM
e
i ) + γ2 Agei + θ2 Age

2
i + λ2 Positioni

+ ψ2 ClubRanki + φ2 NationRanki + ui.

In the above model, LogMV is the dependent variable obtained from transfermarkt.de and

represents the log of the market value of the players in million euros. Another important

factor affecting the market values of players might be the contract length of the players

because of the Bosman Rules in European football. It is likely that players whose contracts

are about to expire have lower market values.20 Using the contract duration information

18transfermarkt.de does not allow user to track the past market values. We saved the data about the
players at March, 19 2010.

19Battre et al.(2008) obtains estimated market values of soccer players from a German sports magazine
Kicker. However, Kicker only provides the market values of the players who only play at Bundesliga. They
conduct a sensitivity check with transfermarkt.de data and they state that the correlation between those
two sources are high.

20Bosman Rules is an important factor affecting the free movement of labor and had a profound effect on
the transfers of football players within the European Union (EU). It allows professional football players in
the EU to move freely to another club at the end of their contract with their present team.
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available from transfermarkt.de we identify the players whose contracts’ are expiring at the

end of 2009-2010 season. Inclusion or exclusion of those players do not affect our results.

However, we find evidence that players whose contracts are expiring in 2009-2010 season have

lower market values. Another factor to control for is whether or not the player transferred

to another club between 2008 and 2010. We define a dummy variable called move and it is

equal to 1 if the player has complected a transfer and 0 otherwise. The estimated coefficient

and significance of ICM and TICM e is robust.

Some players are observed more than once in the tournament and they have different

average ratings and (team) intercentrality measures in different matches. However, we have

only one observation for the market value of the players and the other control variables are

time independent with the current setup. Thus, the above model cannot be estimated by

panel data methods. In order to deal with this issue, we take the average of the (team)

intercentrality measures and use GLS estimation with bootstrapped robust standard errors.

We also run sensitivity regressions with clustered errors according to players, the results are

very similar.

The estimation results investigating the relationship between the estimated market value

and (team) intercentrality measures in Euro 2008 is provided in Table 2.19. We again report

the results for both ICM and TICM e. The standard errors are bootstrapped with 1000

replications.21

21Since we have only one market value observation for the players, we lose significant amount of observa-
tions. To deal with this issue, we bootstrap the standard errors.
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Table 2.19: Market Values and (Team) Intercentrality GLS Estimation
Variable I II III IV V VI

ICM 0.256** 0.311*** 0.458***
(0.104) (0.104) (0.137)

TICM e 0.240*** 0.247*** 0.333***
(0.082) (0.079) (0.103)

Age 0.430* 0.398 0.408* 0.474* 0.452* 0.505**
(0.256) (0.244) (0.228) (0.259) (0.248) (0.247)

Age squared -0.010** -0.009** -0.009** -0.010** -0.010** -0.011**
(0.004) (0.004) (0.004) (0.005) (0.004) (0.004)

Club UEFA pts 0.005** 0.005** 0.005** 0.005** 0.005** 0.006**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Nation UEFA pts 0.013*** 0.012*** 0.013*** 0.014*** 0.014*** 0.014***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Defender -0.187 1.254 -0.166 0.597
(0.135) (1.028) (0.133) (0.992)

Forward 0.181 1.746 0.121 1.629*
(0.153) (1.053) (0.147) (0.931)

DxICM -0.335
(0.233)

FxICM -0.387
(0.258)

DxTICM e -0.174
(0.221)

FxTICM e -0.357*
(0.216)

Constant -4.183 -3.982 -4.807 -4.825 -4.583 -5.779
(3.739) (3.520) (3.317) (3.750) (3.604) (3.570)

Observations 112 112 112 112 112 112
R square 0.512 0.536 0.551 0.523 0.509 0.552

R square adj 0.489 0.505 0.512 0.500 0.507 0.512
Wald Chi Sq Statistic 120.55 137.33 139.61 124.69 139.67 148.88

Table 2.19: The dependent variable is the natural log of 2010 market value of the play-
ers obtained from transfermarkt.de. Goalkeepers are excluded from the sample. DxICM ,
FxICM , DxTICM e and FxTICM e are variables obtained by interacting the (team) inter-
centrality measures with the position dummy of the player. Bootstrapped robust standard
errors with 1000 replications are reported in parentheses. ***, **, * indicate 1, 5 and 10
percent significance levels respectively.
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According to the estimation results, intercentrality measure in UEFA Euro 2008 explains

the 2010 market values of the players. One standard deviation increase in ICM creates on

the average 15.62 percent increase in the market values of the players. On the other hand,

one standard deviation increase in TICM e yields on the average 18.22 percent increase in

the market values of the players. It might be the case that, intercentrality measures are

important for only a certain group of players who play in a certain position of the field (say

midfielders). To test this hypothesis, we interact the ICM and TICM e of players with their

position dummies. The findings suggest that ICM and TICM e are equally important at

5 % significance level. (i.e, the effect of the intercentrality measures on the market values

is homogenous in the sample with respect to players’ positions on the field.) In addition

to the control variables in the above model, we regress the same dependent variable on a

broader set of control variables including national team dummies, international appearances,

international goals, captaincy, height and preferred foot. The estimates are close and the

coefficient of ICM and TICM e variables are still significant. Since we have a small sample

size, we prefer to use and report the results for the base models.

Note that the regression models use the intercentrality measures (ICM and TICM e)

which are calculated for specific parameters of a = 0.125 and d = 0.5. As a sensitivity

check, we calculated those intercentrality measures for the parameter sets a = 0.1 and

d = 0.4, 0.5, 0.6 and a = 0.125 and d = 0.4, 0.6. The estimated coefficients and their

significance are very similar.22

2.5 Conclusion and Discussion

In this chapter, we introduce a Team Game and develop a measure for identifying the key

player in teams. Our work extends the intercentrality measure of BCZ (2006) to include an

additional term which captures the team outcome expression in the utility functions of play-

22We do not report the estimates obtained by using the above parameters but they are available upon
request.
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ers. This term suggests that a player gets utility when her team achieves its desired outcome.

To identify the contribution of players to their teammates, we develop two intercentrality

measures which derives from possible considerations of the social planner. TICM considers

the effect of a player’s removal on the aggregate Nash Equilibrium effort levels. TICM e

identifies the externality each player gets from her teammates and weights it according to

the ability of the player.

Our measures also have some common features with intercentrality measure (ICM) of

BCZ (2006). We can say that a key player does not need to have the highest amount of

individual payoff. In addition, a key player does not need to have the highest amount of

individual action. It is important to note that both BCZ (2006) and our framework are not

seeking the best players in the network. The identified key players and key groups are the

ones that have the highest contribution to the corresponding aggregate Nash equilibrium

effort levels or according to the externality scenario the key players are the ones who get

the highest amount of externality from their teammates which is weighted by the ability

parameter of each player.

In the empirical part of the chapter, first we illustrate how to utilize the intercentrality

measures. Then, we show that there is a positive relationship between the average ratings

and TICM e and ICM in the sample. This fact reflects that soccer players having more

interactions with their teammates get more credit in performance by the experts. Moreover,

the market value of the soccer players increase with both TICM e and ICM which is assumed

to be reflected in their salaries. This effect is homogenous in the sample, it doesn’t depend

on the position of the player on the field.

One interesting extension of the approach in the chapter might be considering the effort

variable to be a vector and allowing different types of individual actions. This will require

a new set of theocratical results. Depending on the availability of data this model then can

be empirically tested. In soccer, for instance one could include distance traveled, tackling

and dribbling data. Given the relationship between passing and scoring opportunities, this
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way will not alter our primary results, but will provide us a more precise way to identify key

players and key groups.

An interesting extension to our model would be to investigate key player problem as a

network design game. The planner is the head coaches who have to announce the national

squads. There are qualities, δi’s and possible interaction possibilities between players. This

can be modeled as an expected utility maximization problem with a two stage team game.

At the first stage, squads are announced and at the second stage players optimize their effort

with given interactions.

2.6 Appendix

Proof of Theorem 2.1

The condition for a well defined interior Nash equilibrium of the Team Game is that the

[βI− λG]−1 matrix must be invertible. We can rewrite the [βI− λG]−1 matrix as

λ[
β

λ
I−G]−1

Let (ρ1(G)) be the spectral radius of G matrix.23 Then, β > λ(ρ1(G)) ensures that Equation

(9) is invertible by Theorem III of Debreu and Herstein (1953, pg.601). Once the condition

is verified, an interior Nash equilibrium in pure strategies x∗ ∈ Rn
+ satisfies:

∂Ui
∂xi

(x∗i ) = 0 and x∗i > 0 for all i=1, 2,...,n

23Spectral radius of G matrix is defined as the inverse of the norm of the highest eigenvalue of G matrix.
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Hence, maximizing Ui with respect to xi yields:

∂Ui
∂xi

= αi + σiixi +
∑
j 6=i

σijxj + θδi = 0

= α− βxi − γ
n∑
j 6=i

xj + λ
n∑
i=1

gijxj + θδi

In vector notation:

∂U

∂x
= α1− (βI − γU − λG)x + θδ = 0 (2.12)

The above equation can be rewritten as:

β(I − λ/βG)x∗ = α1− γUx∗ + θδ

Let x∗(Σ) be the solution to the above equation. By using Ux∗ = x̂∗1 where x̂∗ =
∑n

i=1 x
∗
i

and rearranging terms we obtain:

β(I− λ∗G)x∗ = (α− γx̂∗)1 + θδ

Multiplying both sides with (I− λ∗G)−1 yields:

βx̂∗ = (α− γx̂∗)(I− λ∗G)−11 + θ(I− λ∗G)−1δ

By using the definitions b(g, λ∗) = (I − λ∗G)−11 and bδ(g, λ
∗) = (I − λ∗G)−1δ the above

expression becomes:

βhatx∗ = (α− γx̂∗)b(g, λ∗) + θbδ(g, λ
∗)

= αb(g, λ∗)− γx̂∗b(g, λ∗) + θbδ(g, λ
∗)
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which is equivalent to:

x̂∗ = αb(g, λ∗)− γx∗b̂(g, λ∗) + θbδ(g, λ
∗)

where b̂(g, λ∗) =
∑n

i=1 bi(g, λ
∗). By rearranging terms we get the following24:

x̂∗(Σ) =
αb(g, λ∗) + θbδ(g, λ

∗)

β + γb̂(g, λ∗)

Given that α + θδ > 0 and bi(g, λ
∗) + bδ(g, λ

∗) ≥ 1 for all i = 1, ..., n, there is only one

critical point and ∂2Ui

∂x2i
= σii < 0 is always concave. This argument ensures that x∗ is interior.

Now, we establish uniqueness by dealing with the corner solutions.

Let β(Σ), γ(Σ), λ(Σ) and G(Σ) be the elements of the decomposition of Σ. For all

matrices Y, vector y and set S ⊂ 1, 2, ..., n, Ys is a submatrix of Y with s rows and columns

and ys is the subvector of y with rows in s. Then, γ(Σs) ≤ γ(Σ), β(Σs) ≥ β(Σ) and

λ(Σs) ≤ λ(Σ). Also, λ(G) = Σ + γ(U− I)− σiiI− θzZ and the coefficients in λG (s rows

and columns) are at least as high as the coefficients in λ(Σs)Gs. From Theorem I of Debreu

and Herstein (1953, pg.600), ρ1(λ(Σs)Gs) ≤ ρ1(λ(Σ)G). Therefore, β(Σ) > λ(Σ)ρ1(G)

implies that β(Σs) > λ(Σs)ρ1(Gs).

Let y∗ be a non interior Nash equilibrium of the Team Game. Let S ⊂ 1, 2, ..., n such

that y∗i = 0 if and only if i ∈ N \ S. Thus, y∗i > 0 for all i ∈ S.

∂Ui
∂xi

= α− βxi − γ
n∑
j 6=i

xj + λ

n∑
i=1

gijxj + θδi

∂Ui
∂xi

(0) = αi + θδi

24The last step of writing the Nash Equilibrium follows from the simple algebra stated in BCZ (2006) page
1414.
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and 0 cannot be a Nash Equilibrium. Then,

−Σsy
∗
s = (βIs + γUs − λGs)y

∗
s = α+ θδ

βy∗
s + γUsy

∗
s − λGsy

∗
s = α + θδs

β[Is − λ∗Gs]y
∗
s = α + θδs − γŷ∗s · 1s

where the last step utilizes Usy
∗
s = ŷ∗s · 1s and λ∗ = λ/β. Pre-multiplying both sides by

[Is − λ∗Gs]
−1 yields:

βy∗
s = [I− λ∗Gs]

−1α + θ[I− λ∗Gs]
−1δs − γŷ∗s [Is − λ∗Gs]

−1 · 1s (2.13)

y∗
s =

(α− γŷ∗s)bs(g, λ∗) + θbsδ(g, λ
∗)

β
(2.14)

Every player i ∈ N \ S is best responding with y∗i = 0 so that y∗j is the action of the subset

S of players.

∂Ui
∂xi

(y∗i ) = α−
∑
j∈S

σijy
∗
j + θδi

∂Ui
∂xi

(y∗i ) = α− γŷ∗s + λ
∑
j∈S

gijy
∗
j + θδi ≤ 0

for all i ∈ N \ S. Now substitute y∗s instead of y∗j in the above equation:

∂Ui
∂xi

(y∗) = α− γŷ∗s + λ
∑
j∈S

gij(
(α− γŷ∗s)bj(g, λ∗) + θbjδ(g, λ

∗)

β
) ≤ 0

∂Ui
∂xi

(y∗) = (α− γŷ∗s)[1 + λ∗
∑
j∈S

gijbj(g, λ
∗)] + θλ∗

∑
j∈S

bjδ(g, λ
∗) ≤ 0

If θ ≤ |α − γŷ∗s | then y∗i ≤ 0 using Equations (10) and (11), which is a contradiction. Note

that to reestablish uniqueness θ has to be small enough such that θ ≤ |α− γŷ∗s |.

Proof of Proposition 1.a:

Note that equation (9) still holds for this case. Σ matrix is substituted in equation (10) to
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obtain:

(βI + γU− λG)x∗ = α+ θδ

where α is now a n × 1 column vector and its elements shows the returns to individual

actions. Now, substitute x · 1 instead of U · x∗:

[βI− λG]x∗ = α− γx∗ · 1 + θδ −→ β[I− λ∗G]x∗ = α− γx∗ · 1 + θδ

And pre-multiply both sides by [I− λ∗G]−1 matrix to obtain:

βx∗ = [I− λ∗G]−1(α+ θδ)− γx∗[I− λ∗G]−1 · 1

βx∗ = bα(g, λ∗) + θbδ + γx∗b(g, λ∗)

x∗(Σ) =
bα(g, λ∗) + θbδ(g, λ

∗)

β + γb(g, λ∗)

Proof of Proposition 1.b:

Define:

α̃i =
αi
σii

, σ̃ij =
σij
σii

, δ̃i =
δi
σii

Now, rewrite the payoff function by using the above definition such that:

Ui = α̃xi +
1

2
σ̃iix

2
i +

∑
j 6=i

σ̃ijxixj + θZ̃

Ui =
σi
|σii|

xi +
1

2

σii
|σii|

x2ii +
∑
j 6=i

σij
|σii|

xixj + θZ̃

∂Ui
∂xi

=
αi
|σii|

+
σii
|σii|

xi +
∑
j 6=i

σij
|σii|

xj + θ
δi
|σii|

= 0

∂Ui
∂xi

=
1

|σii|
(αi + σiixi +

∑
j 6=i

xj + θδi) = 0

1

|σii|
(αi + σi1x1 + σi2, x2 + ...+ σinxn + θδi) = 0 ∀ i = 1, . . . , n
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Let Σ̃ be the following matrix:



1
σ11

0 0 · · · 0

0 1
σ22

0 · · · 0

0 0 1
σ33
· · · 0

...
...

...
. . .

...

0 · · · 0 0 1
σnn


Then,

Σ̃(α+ Σx + θδ) = 0

In the above equation, Σ̃ is not zero matrix (since the diagonal elements are not equal to

0), then the second term must be equal to a zero vector. By using this, if the equation is

solved for x, then:

x∗(Σ) =
bα̃(g, λ̃∗) + θb̃δ(g, λ

∗)

β̃ + γ̃b̂(g, λ̃∗)
(2.15)

Proof of Theorem 2.2

Aggregate Nash equilibrium in the Team Game depends on the Bonacich centrality and the

Bonacich centrality weighted by the ability parameter of the player. Note that ρ1(G) >

ρ1(G
−i). Thus, when M(g, λ∗) is well defined and nonnegative then so is M(g−i, λ∗) for all

i = 1, ..., n.

Let bji(g, λ
∗) = bj(g, λ

∗) − bj(g
−i, λ∗) and bδji(g, λ

∗) = bδj(g, λ
∗) − bδj(g

−i, λ∗) for j 6= i

which is the contribution of player i to player j’s Bonacich centrality and Bonacich centrality

weighted with the ability parameter respectively. The removal of player i from the network

has the following effect:

b(g, λ∗)− b(g−i, λ∗) + bδ(g, λ∗)− bδ(g−i, λ∗) ≡ di(g, λ
∗)
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where di is the loss function when player i is removed from the network. Our goal is to find

ith player whose removal will result in the highest di such that di∗(g, λ
∗) ≥ di(g, λ

∗) for all

i = 1, ..., n. The solution of the first two terms is given by BCZ (2006) on page 1412 under

Remark 5, so we focus on the last two terms coming from the additional terms in the team

game.

bδ(g, λ∗)− bδ(g−i, λ∗) = bδi (g, λ
∗) +

∑
j 6=i

(bδj(g, λ
∗)− bδj(g

−i, λ∗)

= bδi (g, λ
∗) +

∑
j 6=i

n∑
k=1

(mjk(g, λ
∗)−mjk(g, λ

∗)δj

Lemma 1: Let M = [I−aG]−1 matrix be well defined and nonnegative. Thenmji(g, a)mik(g, a) =

mii(g, a)[mjk(g, a)−mjk(g
−i, a)] for all k 6= i 6= j.

From Lemma 1 it follows that

bδ(g, λ∗)− bδ(g−i, λ∗) = bδi (g, λ
∗)
∑
j 6=i

n∑
k=1

mji(g, λ
∗)mik(g, λ

∗)

mii(g, λ∗)
δj

which can be rewritten as:

bδ(g, λ∗)− bδ(g−i, λ∗) =
n∑
k=1

mik(g, λ
∗)δi +

n∑
k=1

∑
j 6=i

mji(g, λ
∗)mik(g, λ

∗)

mii(g, λ∗)
δj

=
n∑
k=1

(mik(g, λ
∗)δi +

∑
j 6=i

mji(g, λ
∗)mik(g, λ

∗)

mii(g, λ∗)
δj)

=
n∑
k=1

(mik(g, λ
∗)δi +

mik(g, λ
∗)

mii(g, λ∗)

∑
j 6=i

mjiδj)

By rearranging terms we obtain:

bδ(g, λ∗)− bδ(g−i, λ∗) =
n∑
k=1

mik(g, λ
∗)(δi +

∑
j 6=imji(g, λ

∗)δj

mii(g, λ∗)
)
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Using the definition bi(g, λ
∗) =

∑n
k=1mik(g, λ

∗), we obtain:

bδ(g, λ∗)− bδ(g−i, λ∗) = bi(g, λ
∗)(δi +

∑
j 6=imji(g, λ

∗)δj

mii(g, λ∗)
)

The above expression measures the effect of player i’s removal Bonacich centrality weighted

with ability parameter. Combining the above expression with the ICM to get the full effect

of player i’s removal (di(g, λ
∗)) yields:

bi(g, λ
∗)×

∑n
j=1mji(g, λ

∗)

mii(g, λ∗)
+ bi(g, λ

∗)× (δi +

∑
j 6=imji(g, λ

∗)δj

mii(g, λ∗)
)

By taking into bi(g, λ
∗) parentheses:

bi(g, λ
∗)× (

∑n
j=1mji(g, λ

∗) +
∑

j 6=imji(g, λ
∗)δj

mii(g, λ∗)
+ δi)

The above expression can be further simplified as:

c̄i(g, a) = bi(g, λ
∗)× (

∑n
j=1mji(g, λ

∗) +
∑n

j=1mji(g, λ
∗)δj

mii(g, λ∗)
)

Proof of Theorem 2.3

Nash Equilibrium of the team game does not take into account the externality that a player

gets from her teammates. It might be the case that social planner is interested in taking

the externality into account as well as considering the each player’s effect on the interaction

matrix. Therefore, the loss function (the effect of player i’s removal) becomes:

b(g, λ∗)− b(g−i, λ∗) + riδ(g, λ
∗) = bi(g, λ

∗) +
∑
j 6=i

bji(g, λ
∗) + riδ(g, λ

∗) ≡ ei(g, λ
∗)

where ei is the loss function when player i is removed from the network. Our goal is to find

ith player whose removal will result in the highest ei such that ei∗(g, λ
∗) ≥ ei(g, λ

∗) for all
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i = 1, ..., n.. By following this approach, we come up with TICM e which is the following:

ĉi(g, a) = bi(g, a)×
∑n

j=1mji(g, a)

mii(g, a)
+

n∑
j=1

mji(g, a)× δi
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Chapter 3

Efficient Networks in Models of
Player and Partner Heterogeneity

3.1 Introduction

A growing literature on social and economic networks addresses the dominant effect of net-

works on various important outcomes such as labor markets, the spread of diseases, educa-

tion, and crime. Hence, vast research not only in economics, but also in the other disciplines

has been conducted to understand how the networks emerge and how they evolve over time.

A central theme in the literature on network formation explores the conflict between the set

of stable and socially optimal (efficient) networks. Individual optimization happens through

Nash networks, where no agent can make herself better off by deviating from her current

strategy, given the strategies of the other players. Even though Nash networks are very well

studied in broader manners, there has been few studies about efficiency. This chapter fills the

gap in the literature of network formation by exploiting the efficient network architectures

under heterogenous agents. In particular, 2 types for which Nash networks are known. I

address the issue of efficiency in the form of maximizing aggregate utility of players in the

network and compare the architectures of efficient networks with Nash networks.

The seminal papers on network formation are Jackson and Wolinsky (1996) and Bala

and Goyal (2000). Jackson and Wolinsky (1996) provide two sided link formation, where the

cost of forming links is shared by the participants and introduces pairwise stability. Bala
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and Goyal (2000) provide a theocratical framework to address network formation in a non-

cooperative setting with homogenous players, where the cost of forming links is on one side.

Bala and Goyal (2000) discuss two different types of flow. In the two way flow model, the

network is undirected, so both players participating in a link access can access benefits from

each other. However, in the one way flow model the network is directed; hence, only the

initiating player can access the benefit of the link. This chapter follows the Bala and Goyal

(2000) framework, where link costs are levied only by the person initiating the link.

Galeotti et al. (2006) relaxes the homogeneity assumption in the two way flow model, so

the benefits from a link and the cost of sponsoring a link are player dependent. A more recent

paper (Billand et al. 2010) introduces partner heterogeneity in the two way flow model, where

the benefit and cost of making a link is partner heterogenous, meaning that it only depends

on whom is being accessed in terms of the benefits and costs. Although Nash networks are

clearly identified under heterogeneity, not much has been done about efficient networks under

heterogeneity. Galeotti et al. (2006) conclude that Nash and efficient networks coincide under

linear payoff situations; however, I show that with more general payoff function specifications

this result does not always hold. Specifically, I illustrate situations where Nash and efficient

networks do not coincide.

Galeotti (2006) and Billand et al (2011) extend the one way flow model by allowing

benefits and costs to be player and partner heterogenous respectively. In a one way flow

model, only the node who sponsors a link accesses the benefit. This fact yields a wheel type

efficient architecture, that coincides with strict Nash networks architecture.

I start with a general payoff in a two way flow model satisfying common assumptions in the

literature. Without imposing any restrictions, efficient networks can have maximal diameter

and it is not possible to characterize the architecture. Once we allow for heterogeneity

between players, the efficient network architectures depend on four factors: (i) the value of

players (benefit obtained by linking to each player), (ii) the number of minimum cost players,

(iii) the difference in cost between the minimum cost player(s) and the other players and (iv)
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the functional form of payoffs. The first factor is controlled by a restriction which ensures that

all links are profitable. I do not impose any restrictions to control the second factor, since

having more than one minimum cost player does not change the results qualitatively. To deal

with the third factor, I introduce the widely used linearity, strict concavity, and convexity

assumptions on the payoffs. The fourth factor is accounted for with the restrictions that

are already imposed, but I introduce an additional condition in the two way flow player

heterogeneity model.

I provide the architecture, as well as, the diameter to identify the efficient networks. The

architecture provides information about how the efficient networks look, and the diameter

helps to determine the maximum distance between any two players in the network. The

crucial difference between player and partner heterogeneity models is in the change of the

player who sponsors the links. In addition, there are some differences in the network forma-

tion model and results under player or partner heterogenous players. Finally, for one way

flow models, there is no difference between player and partner heterogeneity models and the

Nash and efficient architectures coincide.

Rest of the chapter is organized as follows: Section 2 presents the basics of the model

setup and some important definitions. Section 3 identifies the efficient networks in a player

heterogeneity model. Section 4 demonstrates the efficient networks in the partner hetero-

geneity model. Section 5 discusses one way flow models. The chapter concludes with a

discussion and comparison of Nash and efficient networks.

3.2 Model Setup

N = {1, . . . , n} denotes the set of players. A directed network g = (N,A) is a pair of sets:

the set N of players and the set A ⊂ N×N of links. A(g) denotes the set of links of network

g. The undirected counterpart of g, ḡ, is obtained by ignoring the orientation of arcs of g

and treating links between the same players as a single link.
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Each player i chooses a strategy gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n) where gi,j ∈ {0, 1}

for all j ∈ N \ {i}. The interpretation of gi,j = 1 is that player i forms an arc with player

j 6= i, and the interpretation of gi,j = 0 is that i forms no arc with player j. I assume that

player i cannot form an arc with herself. I only consider pure strategies. Let Gi be the set of

all strategies of player i ∈ N . Network relations among players are formally represented by

directed networks whose nodes are identified by the players. I assume that if gi,j = 1, then

ji ∈ A(g). An arc ji is shown by an arrow from j to i. Thus, if i chooses to link with j,

the arc will be directed from j to i and it also means that player i sponsors the cost of the

link formation. Hence, it is assumed that cost of link formation is always on one side of the

participants of the link.

For a directed network, g, a path from player k to player j, j 6= k, is a finite se-

quence j0, j1, . . . , jm of distinct players such that j0 = j, jm = k and gj`,j`+1
= 1 for

` = 0, . . . ,m−1. A chain exists between player k and player j, j 6= k by replacing gj`,j`+1
= 1

by max{gj`,j`+1
, gj`+1,j`} = 1.

Given a network g, I define a component, D(g), as a set of players such that there is

a chain between any two players who belong to D(g), and there does not exist a chain

between a player in D(g) and a player who does not belong to D(g). A network g is said to

be connected if it contains one component. A network is said to be minimal if any removal

of a current links lead to an increase in the number of components. Finally, a network

is minimally connected if it is not possible to preserve its connectivity whenever a link is

removed.

A network g is a star if there is a player i such that max gi,j, gj,i} = 1 for all j ∈ N \ {i}

and g`,j = 0 for all ` ∈ N \ {i} and j ∈ N \ {i, `}. The network g is an inward pointing star

or center sponsored star if it is a star and for the center player i, we have gj,i = 0 for all

j ∈ N \ {i}. The network g is an outward pointing star or periphery sponsored star if it is

a star and for the center player i, we have gi,j = 0 for all j ∈ N \ {i}.

A network in which each group constitutes a star and a single player i of group l forms a
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link with the central player j of group l‘ where l 6= l‘, then it is referred to as an interlinked

star network. If each star is center-sponsored (periphery-sponsored), the network is said to

be an interlinked center-sponsored (periphery-sponsored) star.

Define Ni(g) = {i} ∪ {j ∈ N \ {i} | there is a chain between i and j in g} as the set of

players who are observed by player i with the convention that player i always “observes”

herself. I assume that player i obtains no additional resources from herself by forming arcs.

However, player i can obtain her own resources even if she forms no arcs and there is no

network.

I will now define two classes of models that assumes the benefit and cost of a link can be

different among players. Precisely, in the player heterogeneity model proposed by (Galeotti

et al. 2006), each player i obtains Vi > 0 from each player j ∈ Ni(g) \ {i}, and incurs a cost

ci > 0 when she forms a link with player j 6= i. In the partner heterogeneity model introduced

by (Billand et al. 2009), each player i obtains Vj > 0 from each player j ∈ Ni(g) \ {i}, and

incurs a cost cj > 0 when she forms a link with player j 6= i. In these models it is assumed

that each player in the network contains a value of information and whenever a link is formed

between player i and j the players obtain player or partner specific benefits. For example,

in the player heterogeneity model, player i obtains Vi > 0 from each link formed. So, the

benefits only depend on the player i’s characteristics. On the other hand, in the partner

heterogeneity model, player i obtains Vj for i 6= j form each link formed. Therefore, the

benefit player i obtains from each link depends on to whom player i is connected. This

implies that benefits obtained by player i form each link depends on the characteristics of

player j.

Another class of models considers the direction of information flow. In the two way

flow model, both players sharing a link access each other; hence, the information flow is

symmetric (undirected). On the other hand, the one way flow model assumes that the

network is directed; therefore, only the sponsor of a link can access benefit of the link.

Let π : g→ R be the payoff of player i where φ : R2 → R and φ(x, y) is strictly increasing
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in x and strictly decreasing in y.

πi(g) = φ

 ∑
j∈Ni(g)\{i}

V,
∑

j∈N\{i}

gi,jc

 (3.1)

Given the properties of the function φ, the first term, x can be interpreted as the “benefits”

that agent i receives from her links, while the second term, y measures the “costs” associated

with forming them. Observe that this is the model proposed by Bala and Goyal (2000). In the

player heterogeneity model, Vi replaces V and ci replaces c while in the partner heterogeneity

model, Vj replaces V and cj replaces c in the payoff function. This representation breaks the

player uniformity in two variations, namely player and partner heterogenous players.

Given a network g, the aggregate payoff is denoted by: W (g) =
∑n

i=1 πi(V, c). A network

is said to be efficient if W (g) ≥ W (g
′
) for any g

′ 6= g where g
′

represents all other possible

networks.

3.3 Player Heterogeneity Model

3.3.1 General Payoff Function

In this section, I study the efficient network architectures with player heterogenous agents in

two-way flow information. Player heterogeneity allows each player to obtain player specific

value of information and cost of link formation. Hence, the value of information and cost

of link formation only depends on the individual attributes and abilities of the players. For

example, suppose player i and j have a link which allows them to access information from

each other. Without loss of generality suppose that player i is sponsoring the link. Then,

the value of information player i receives from this link is represented by Vi and the cost of

link formation is represented by ci. On the other hand, the value of information player j

receives is Vj and it is not necessarily equal to Vi.

Let π : g→ R and φ : R2 → R be such that φ(x, y) is strictly increasing in x and strictly
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decreasing in y. So, the payoff function for player i is:

πi(g) = φ

 ∑
j∈Ni(g)\{i}

Vi,
∑

j∈N\{i}

gi,jci

 (3.2)

The above representation does not assume any particular functional form and it does

not impose any restriction on the levels of value of information and cost of link formation.

One immediate result for the efficient networks is that it is not possible to characterize the

architecture. In particular, there might be some players who are not connected to the other

players; hence, the diameter of the efficient network goes to infinity. Even though we cannot

characterize the diameter or architecture of the network, the following proposition shows

that we still obtain minimal networks as the efficient networks.

Proposition 1: Suppose the payoff function is given by (2) and information flow is two-way

without decay. Then, any efficient network, g is minimal.

Proof : Suppose g is a minimal network and g
′
represents all the other possible non-minimal

networks where the number of observed agents are the same in g and g
′
. Then, there exists

two players i and j in g
′

such that there exists more than one link between the players i

and j. Then, it is possible to maintain the total benefits but decrease the total cost of link

formation by deleting the extra link between player i and j since we assume there is no decay

and information flow is symmetric. We assume that φ is a strictly decreasing function in

cost, then it follows that W (g) > W (g
′
). Hence, g

′
cannot be an efficient network.

The above proposition shows that the players access to each other with minimum number

of links in the efficient networks. This indicates that if player i and j are connected in the

efficient network, there will be only one path from player i to j. This means that any

redundant links are eliminated to maximize the aggregate payoff of the players. It follows

that the efficient networks are minimal in two way flow player heterogeneity model. Note

that this result also holds for two way flow partner heterogeneity model.
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To ensure connectivity in the efficient network, I impose the following assumption, A1. A1

eliminates the efficient networks which may include singletons or disconnected components.

Once A1 is satisfied, efficient networks are connected.

Assumption 1 (A1): φ(x+ Vi, y + gijci) ≥ φ(x, y), for all i ∈ N .

Lemma 1: Suppose the payoff function is given by (2) and A1 is satisfied. Then, any

efficient network, g is minimally connected.

Proof : Suppose not. Then there exists an efficient network, g
′

with two components D1(g
′
)

and D2(g
′
). From Proposition 1 we know that D1(g

′
) and D2(g

′
) are internally minimal

but they can still be disconnected from each other. By A1, we know that making links to

an unobserved player provides positive net payoffs. Now consider two players k and m such

that k ∈ D1(g
′
) and m ∈ D2(g

′
). Let g be a network such that g = g

′
+ km. Then, by A1,

it follows that W (g) > W (g
′
). Therefore g

′
cannot be an efficient network and the proof

follows. From the above contradiction, we conclude that if A1 is satisfied, then the efficient

networks do not have any singletons or disconnected components. As shown in Proposition

1, to maximize the aggregate payoff any redundant links in the network are eliminated.

Combining these results, we obtain that the efficient networks are minimally connected.

Note that Lemma 1 does not directly impose a condition on the functional form and holds

for both player and partner heterogeneity models. It says that values obtained by connecting

to other players and costs of link formation vary such that every link is profitable, which

implies that efficient networks have one component. Even though this assumption leads

to analyzing only connected networks, it makes it possible to identify and characterize the

efficient network structure.

Efficient networks are expected to have a very low diameter and exhibit very high cen-

trality. However, once the values and costs are allowed to be player (partner) specific, the

efficient networks can have more decentralized architectures. The next proposition indicates

that when the benefits and costs of link formation are allowed to vary freely, it is possible
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to have decentralized architectures and even maximal diameter.

Proposition 2: Suppose the payoff function is given by (2) and satisfies A1. There exists

parameter values Vi and ci such that the efficient network, g, has maximum diameter, (n−1).

Formal proof is omitted. To illustrate an efficient network which has maximal diameter, I

provide the following example which utilizes an additively separable form, where the benefits

and costs of link formation can be expressed as separate terms.1

Example 1: Suppose the payoff function of player i is given by:

πi(g) = (
∑

j∈Ni(g)\{i}

Vi)− (
∑

j∈N−{i}

gi,jci)
2

Suppose there is one minimum cost player represented by L and 3 high cost players repre-

sented by H. Let cL and cH be equal to 2 and 3 respectively. Assume that all players have

the same Vi = V = 100.2 Note that A1 holds for these parameter values. Now suppose that

all links are sponsored by L, which can be represented by an inward pointing star. For this

case, πL =
√

400 − (3 × 2)2 = −16 and πH =
√

400 which implies W (g
′
) =

∑
i πi(g’) = 44.

Compare this with the efficient network g, where each player sponsors a single link except

one H type player. For this case, πL = 16 and πH = 20 for the H type player who did

not sponsor any link and πH = 11 for the ones who sponsored a single link. This yields

W (g) = 58. This example shows that the diameter can be as high as (n − 1) depending

on the payoff function. Due to general payoff function specification, we cannot ensure that

all the links will be sponsored by the minimum cost player in the efficient network. After

sponsoring a single link, the marginal cost of sponsoring another link to the minimum cost

player is 16− 4 = 12. However, the marginal cost of sponsoring a single link for a high cost

player is 32 = 9.

1I consider an additively separable form which has economic interpretation and easy to construct. The
below function satisfies the assumptions of being strictly increasing in value and strictly decreasing in cost.
In addition, it exhibits strict concavity in values and strict convexity in cost.

2For simplicity I introduce two types of players represented by L and H. However, it is possible to have
any heterogeneity between players in the values and costs.
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The above example provides the intuition to determine the factors that affect the ar-

chitecture of the efficient networks. It also demonstrates that strict concavity or convexity

of the payoff function in terms of cost plays a role in determining the diameter of the effi-

cient network.3 However, strict concavity or convexity may not be enough to characterize

the efficient network since Vi and ci also play a role. Without a restriction on the payoff

specification, it is not possible to characterize the efficient networks. Therefore, I impose

restrictions on the payoff function. I consider the following cases: linear payoffs, and strictly

concave and convex payoffs in the cost argument.

3.3.2 Linear Payoffs

Suppose the payoff function of player i is given by:

πi(g) =
∑

j∈Ni(g)\{i}

Vi −
∑

j∈N\{i}

gi,jci (3.3)

where ∀i, j ∈ N .

Proposition 3: Suppose the payoff function is given by (3) and
∑

i∈N Vi ≥ c where c =

argmini∈N{ci}. If g is an efficient network, then it is minimally connected and 2 ≤ D(g) ≤

2s[ci0 ]. Moreover, the efficient network is a center sponsored star or a center sponsored

interlinked star.

Proof : I start with proving the diameter and the architecture follows. It is clear that if g is

an efficient network and
∑

i∈N Vi ≥ c then g is minimally connected. If n ≥ 3, it follows that

D(g) ≥ 2. Moreover, if a player i ∈ N forms a link with player k, then i ∈ argminj∈N{cj},

otherwise it is possible to replace the link i, k by a link j, k where j ∈ argminj∈N{cj} to

obtain a higher total utility. I now show that it is not possible to have an efficient network g

with D(g) > 2s[ci0 ]. To introduce a contradiction, assume that g is an efficient network such

3In Example 1, if the cost term is taken as square root instead of square then the efficient network has
diameter equal to 2.
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that D(g) > 2s[ci0 ]. Then, there exists a chain Ci,k between two players say i and k such that

`(Ci,k) > 2s[ci0 ]. In other words, there are more than 2s[ci0 ] links between i and k. It follows

that at least one link has been formed by j /∈ S[ci0 ], a contradiction. Star or interlinked star

architecture occurs since the high cost players will be gathered around the minimum cost

player(s).

Observe that if there is a single minimum cost player, then the efficient network is a center

sponsored star. If there is more than one minimal cost players, then the star architecture

is still efficient. Galeotti et al. (2006) concludes that the efficient networks and strict Nash

networks are the same when a linear payoff specification is assumed. However, if there are

more than one minimum cost players in the network, then the center sponsored interlinked

star, where the links are sponsored by the minimum cost players is also efficient. This points

out a conflict between stability and efficiency.

Figure 1 illustrates the possible efficient networks associated with Proposition 2.4
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Figure 3.1: Examples of Efficient Networks

4In the below figures, L represents minimum cost players and H represents high cost players. H type
players can have any cost c+ εi where ε > 0.
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A linear payoff specification is the simplest case and it is possible to identify the diameter

and architecture of the efficient network without A1.5

3.3.3 Strictly Concave and Convex Payoffs in Cost

With a linear payoff function, it is possible to determine the diameter and architecture

without any strong restrictions. However, the interpretation of the model is limited. Strict

concavity or convexity specifications are widely used in the literature to address this limita-

tion. I define strictly concave and convex payoff functions6 in terms of the cost argument in

the following way:

Definition 1: Suppose c1, c2 ∈ (0,
∑

i∈N ci), c1 < c2 κ ∈ (0, c1]. If φ(V, c1)− φ(V, c1 − κ) >

φ(V, c2)− φ(V, c2 − κ) then the payoff function is strictly concave in the cost argument.

Definition 2: Suppose c1, c2 ∈ (0,
∑

i∈N ci), c1 < c2 κ ∈ (0, c1]. If φ(V, c1)− φ(V, c1 − κ) <

φ(V, c2)− φ(V, c2 − κ) then the payoff function is strictly convex in the cost argument.

Proposition 4: Suppose the payoff function is given by (2) and φ(x, y) satisfies strict

concavity in cost and A1. If g is an efficient network, then it is minimally connected and

the unique efficient architecture is a center sponsored star.

Proof : It is clear that if g is an efficient network and
∑

i∈N Vi ≥ ci then Lemma 1 implies

that g is minimally connected. Since n ≥ 3, it follows that D(g) ≥ 2. Moreover, if a player

i ∈ N forms a link with player k, then i ∈ argminj∈Ncj. Otherwise, it is possible to replace

the link i, k by a link j, k where j ∈ argminj∈Ncj to obtain a higher total utility. From the

property of strictly concave functions, φ(V, (k − 1) × ci) < (k − 1) × φ(V, ci). Therefore,

to maximize total utility, all the links must be sponsored by a single minimum cost player.

5Assuming A1 will provide the same result, however note that A1 is stronger than assuming
∑

i∈N Vi ≥ c
where c = argmini∈N{ci}.

6An important fact to mention is that all the concave (convex) functions are subadditive (superadditive);
however, the reverse is not true. The subadditivity (superadditivity) property implies that the marginal cost
of adding links for a minimum cost player decreases (increases) as the number of links sponsored increases.
These properties enable us to track the marginal cost of sponsoring links and simplify the identification of
efficient networks.
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Since all the links are sponsored by a single minimum cost player, star is the only possible

efficient architecture.

Note that under the strict concavity case, the number of minimum cost players does not

play a role, the unique efficient network is a center sponsored star. For the convexity case, I

will impose an additional condition to characterize the efficient network.

Assumption 2 (A2): Let c be c = argminc{j∈n}. Suppose φ(x, y) satisfies φ(V, k × c) −

φ(V, (k − 1)× c) < φ(V, k × ci)∀ci 6= c and k = {1, 2, ..., n}.

Note that the above assumption is not on the functional form of the payoffs. It can easily

be shown through modifying Example 1 that the diameter can be as high as (n−1) when the

payoff function is strictly convex in cost. Condition 1 eliminates cases where the marginal

cost of sponsoring a link for a high cost player is less than the marginal cost of sponsoring a

link for a minimum cost player. Once Condition 1 is satisfied, all the links will be sponsored

by the minimum cost player(s).

Proposition 5: Suppose the payoff function is given by (2). Also suppose φ(x, y) satisfies

the convexity in the cost argument and satisfies A1 and A2 about the degree of convexity in

cost. If g is an efficient network, then it is minimally connected and 2 ≤ D(g) ≤ 2s[ci0 ]. The

efficient network is a center sponsored star for s[ci0 ] = 1 and an interlinked star for s[ci0>1].

Proof : It is clear that if g is an efficient network and
∑

i∈N Vi ≥ ci then g is minimally

connected. Since n ≥ 3, it follows that D(g) ≥ 2. Condition 1 ensures that even though φ is

strictly convex in cost, to maximize total utility the minimum cost player still sponsors the

links. That is, if a player i ∈ N forms a link with player k, then i ∈ argminj∈Ncj, otherwise

it is possible to replace the link i, k by a link j, k where j ∈ argminj∈Ncj. Condition 1 ensures

that all the links will be sponsored by the minimum cost players. I obtain the interlinked

star type architecture where a high cost player can stay in the center as a bridge player

without sponsoring any links.

Note that if there is more than one minimum cost players in g, then a center sponsored
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interlinked star is the efficient architecture as opposed to the star architecture. The intuition

for this case is that it becomes inefficient for a single minimum cost player to sponsor all the

links since the payoff is strictly convex in cost.

The efficient networks in two way flow and player heterogeneity models generally exhibit

high centrality and low diameter. Introducing the player heterogeneity increases the possi-

bilities of efficient networks. Compared to Bala and Goyal (2000), in addition to the star

architecture, interlinked stars can also be efficient, which occurs in linear specification and

strictly convex in cost cases. Assuming strict convexity requires an additional condition that

ensures all links are sponsored by the minimum cost player(s).

3.4 Partner Heterogeneity Model

Partner heterogeneity model introduced by Billand et al. (2011) considers a framework

where benefits and costs of link formation vary according to whom is being accessed. With

this type of heterogeneity, the set of strict Nash networks substantially increase and new

architectures arise. In this section, I characterize the efficient network architectures with

player heterogenous agents in two-way flow information. Partner heterogeneity allows each

player to obtain partner specific value of information and cost of link formation. Hence, the

value of information and cost of link formation only depends on the attributes and abilities

of the player to whom players access. For example, suppose player i and j have a link which

allows them to access information from each other. Without loss of generality suppose that

player i is sponsoring the link. Then, the value of information player i receives from this link

is represented by Vj and the cost of link formation is represented by cj which is sponsored

by player i. On the other hand, the value of information player j receives is Vi and it is not

necessarily equal to Vj.
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Let π : g → R and φ : R2 → R such that φ(x, y) is strictly increasing in x and strictly

decreasing in y. Let the payoff function for player i be:

πi(g) = φ

 ∑
j∈N−{i}

Vj,
∑

j∈N\{i}

gi,jcj

 (3.4)

Remark 1: Partner Heterogeneity with General Payoffs

As in the player heterogeneity case when the values and costs vary freely, it is possible to

have an efficient network, g which has maximal diameter equal to (n−1). This can easily be

shown by modifying Example 1, where Vj replaces Vi and cj replaces ci. Therefore, I impose

additional restrictions on the payoffs as in the player heterogeneity model. As before, I

consider the linear payoffs, strictly concave, and convex payoffs in cost cases.

Remark 2: Partner Heterogeneity with Linear Payoffs

To have partner heterogeneity, Vj replaces Vi and cj replaces ci in (2). The diameter and

efficient architecture for this case is essentially the same as the player heterogeneity with

linear payoffs. The main difference between the player and partner heterogeneity model is

who sponsors the links. In the player heterogeneity case, the minimal cost player sponsors

the links. However, in the partner heterogeneity case, the links are sponsored by non-minimal

cost players. Therefore, the efficient network has periphery sponsored architecture for the

partner heterogeneity case.

Remark 3: Partner Heterogeneity with Strictly Concave Payoffs in Cost

The diameter and the architecture can be different from the player heterogeneity case. In

fact, 2 ≤ D(g) ≤ 4. If the marginal cost of adding links for a high cost player becomes very

little after sponsoring links with the minimum cost players, the efficient network can have a

center sponsored star architecture. However, if the marginal cost of adding links for a high

cost player does not decrease enough, it is possible that there is a core in the center where a

high cost player sponsor links to the minimum cost players, and then other high cost players
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Figure 3.2: Core and Periphery

sponsor a link with the minimum cost players and form a periphery around the core. This

architecture can be called mixed star and the diameter in that case can be at most 4. Figure

2 illustrates the possible architecture with diameter of 4.

Remark 4: Partner Heterogeneity with Strictly Convex Payoffs in Cost

For this case, 2 ≤ D(g) ≤ 1 + s[ci0 ]. Note that this architecture is different from the player

heterogeneity. In player heterogeneity, a non-minimal cost player can serve as a bridge player

as seen in Figure 1. However, in the partner heterogeneity, efficient network does not have

such architecture. Observe that to have a bridge the player in player heterogeneity model

is not sponsoring any links. These links are sponsored by the minimal cost players around

the bridge player. However, such a bridge player in the partner heterogeneity model requires

sponsoring two links for that player, which is not efficient when payoff is strictly convex cost.

3.5 One-Way Flow Models

In this section, I identify the efficient networks in the one way flow models. In the one

way flow model, only the player who sponsors the link accesses the benefit of the link. I

consider Galeotti (2006) and Billand et al. (2009) models, which are extensions of Bala

and Goyal (2000). Both of these papers establish strict Nash networks; however, they give

little information about the efficient networks.7 The next proposition identifies the efficient

network for player heterogenous one way flow model, which is an adaption from Bala and

7Galeotti (2004) working paper discusses the efficient architecture and compares it with Nash networks
very briefly.
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Goyal (2000).

Let π : g → R such that φ(x, y) is strictly increasing in x and strictly decreasing in y.

Let the payoff function for player i be:

πi(g) = πi

B(
∑

j∈N {i}

ˆgi,jVi), C(
∑
j∈N

gi,jci)

 (3.5)

Proposition 6: Suppose the payoff function is given by (5) and the condition in Lemma

1 is satisfied. If φ(
∑n

i=1 Vi, ci) > φ(Vi, 0) for all i = {1, ..., n} then the unique efficient

architecture is a wheel. If φ(
∑n

i=1 Vi, ci) < φ(Vi, 0) for all i = {1, ..., n} then the empty

network is efficient.

Proof : I will first consider the connected case. Let Γ be the set of values (B(g), C(g)).

If C(g) = 0, then B(g) = Vi, while if C(g) ∈ {1, ..., n − 1}, then C(g) ∈ Vi,
∑n

i=1 Vi.

Thus, Γ ⊂ {1, ..., n}x{1, ..., n− 1} ∪ {(1, 0)}. Given (x, y) ∈ Γ− (Vi, 0), then π(
∑n

i Vi, ci) ≥

π(
∑n

i Vi, y) ≥ π(x, y) since π is increasing in benefits and decreasing in costs. For the wheel

network gw, Bi(g
w) =

∑n
i Vi and Ci(g

w) = ci. For any other network g 6= gw for each

i ∈ N , if Ci(g) ≥ ci, then Bi(g) ≤
∑n

i , while if Ci(g) = 0, then Vi(g) = Vi since the

player observes herself. In either case, πi(g
w) = π(

∑n
i=1 Vi, ci) ≥ π(Bi(g), Ci(g)) = πi(g),

π(
∑n

i=1 Vi, ci) > π(Vi, 0) for all i = 1, ..., n. It follows that W (gw) =
∑

i∈n πi(
∑n

i=1 Vi, ci) ≥∑
i∈n πi(Bi(g), Ci(g)) = W (g) as well. Therefore, gw is an efficient architecture. To show

uniqueness, note that the assumptions on π imply that W (gw > W (g) if Ci(g) 6= ci or if

Bi(g) < n. Let g 6= gw be given; if Ci(g) 6= 1 for even one i, then W (gw) > W (g). On the

other hand, suppose Ci(g) = 1 for all i ∈ N . As the wheel is the only connected network

with n agents, and g 6= gw, there must be an agent j such that Bj(g) ≤
∑n

j=1 Vj. Thus,

W (gw) > W (g), proving uniqueness.

In a wheel architecture, sponsoring a single link allows all the agents to access each other.

Note that the order of players or having more than one minimum cost player does not have
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any effect on the efficient architecture.

Remark 5: Partner Heterogeneity in one way flow model

For this case only the condition to have a connected efficient architecture changes. If

φ(
∑n

i=1 Vj, cj) > φ(Vj, 0) for all i = 1, ..., n then the unique efficient architecture is a wheel.

If φ(
∑n

i=1 Vi, ci) < φ(Vi, 0) for all i = 1, ..., n then the empty network is efficient. Note that

the partner heterogeneity setting yields the same result as the player heterogeneity model.

Again, by sponsoring a single link and incurring the cost cj, each player can access all players

in the network.

3.6 Discussion and Conclusion

This chapter studies the efficient networks in the player and partner heterogeneity models

with various functional forms. With a two way flow of information, I find that payoff function

specification, the differences in cost between minimum cost player(s) and the other players

and the number of minimum cost players play a crucial role in determining the architecture

of the efficient networks. I deal with the first two determinants by imposing additional re-

strictions if necessary. Note that having more than one minimum cost players introduces

some symmetries and additional efficient network architectures. However, the efficient net-

work architectures in the case of having more minimum cost players can still be identified

without imposing any restrictions unlike the other two determinants.

There are some notable differences between the efficient architectures under the player

and partner heterogeneity models. The first difference is in the player heterogeneity model

minimum cost player(s) sponsor all the links. However, in partner heterogeneity a high cost

player can also sponsor some links. In the homogenous model discussed by Bala and Goyal

(2000), efficient networks have star architecture. However, when we allow for heterogeneity

in values and costs, a rather decentralized efficient architecture in the form of interlinked

stars occurs in linear and strictly convex payoffs in cost.
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In the one way flow model, the architecture of the efficient network with player and

partner heterogeneity is identical. The only connected efficient architecture is a wheel for

these cases, where each agent can access to all other agents by sponsoring a single link. I

conclude that strict Nash networks in one way flow model discussed by Galleotti (2006) and

Billand et al. (2011) are also efficient.

Nash and efficient networks coincide if the payoff function is linear in benefits and costs.

This holds true for one way flow of information and some cases in the two way flow of

information. However, we show that in two way flow of information this result is not robust

when payoff function exhibits strict convexity in cost. Also, with the linear specification

efficient networks can also be interlinked stars while only star type architectures are Nash

networks. Note that not all of the payoff function specifications are comparable in terms of

Nash and efficient networks since I impose additional requirements to identify link formation

in some cases.
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Chapter 4

Identity and Link Reliability in
Networks

4.1 Introduction

Networks have an undoubtable effect on how we take our places in the society. A vast lit-

erature on network formation sheds light on how the networks form and take shape under

different circumstances. Many empirical observations suggests that one of the key deter-

minant in the network formation is the similarities in the characteristics of the players. In

this chapter, we consider a network formation game where the identity characteristics are

introduced to capture the similarities between players. We consider a framework where the

links between players are not fully reliable i.e, the success of a link is probabilistic.

We introduce identity as a single dimension variable to capture the different character-

istics of players. We assume that identity characteristics are assigned exogenously to the

players and each player decides about how much to commit to her current characteristic.

Nationality, race and culture are good examples of exogenously assigned identities.

Players access to information by making links with others. We assume two way flow

and undirected network without decay which means that both players access to the same

benefit of the link through direct or indirect connections. We consider two cases of costly

link formation. In the first case, the cost of the link is paid by the initiator. In the second

case, the players who are involved in the link share the cost depending on their initial link
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offers. Hence, the second case enables us to investigate the network formation under mutual

consent.

In a non-cooperative network game, players how much to commit their identities and

their linking strategies. Player’s commitment decision affect the cost of forming a link. By

choosing her commitment level, a player reveals which type of players she can easily form a

link. We assume that players with same identities and higher commitment levels can make

links easier. Cost of link formation with different identities and higher commitment levels

becomes very costly. In this setting, cost of link formation c becomes player and partner

heterogenous, cij. For simplicity, we assume that the benefits from all the links are the same

which is denoted by V .

We introduce link and node failures into the network formation model. Link and node

reliability sheds light into network formation in a realistic setting. Even though a link exists

between players, the transmission of information might fail without a further notice. We

first introduce an exogenous and constant link failure probability, p. Then, we relax this

assumption heterogenize the link failures and allow pairwise link failures, pij. For simplicity

of the analysis, we assume that link reliability probabilities within the same identity group

are equal to each other. We show that costly link formation between different identities

can lead to fragmented architectures. However, with fully heterogenous link failures, it is

possible to have more integrated groups with different identities which may include many

components however this only occurs if the link between the different identity groups are

more reliable than a link between the players when both players involved in the link share the

common identity characteristic. The actual determination of reliability probability ranges

are fairly complicated and we demonstrate the intuition with an example for some cases.

Next, we allow each player (or node) in the network fail with a constant probability, f .

Player failure can happen if player is not reachable or if she simply goes beyond reach with a

certain probability. The difference between link and player imperfection is that in the former

each existing link is successful with a probability and in the latter all the links that player
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i is involved might fail. We identify the Nash network(s) under these link and node failures

and with the available scenarios for identity and commitment levels.

Akerlof and Kranton (2000), Chandra (2001), Chen et al. (2007), Currarini, Jackson, and

Pin (2008), De Mari and Zenou (2009), Dev (2009) and Dev (2010) study the importance of

identity dimension in the network formation. The standard network formation models used is

the related to the literature on non-cooperative network formation models pioneered by Bala

and Goyal (2000a) as well as Bala and Goyal (2000b) with related work by Galeotti, Goyal,

and Kamphorst (2003), Hojman and Szeidl (2006), Billand et al. (2006), Galeotti (2006).

The other strand in this literature is from Jackson and Wolinsky (1996). Bala and Goyal

(2000b), Haller and Sarangi (2005) explore the effects of link readability on the network

formation. The important deviation of this chapter from this literature is to combine the

non-cooperative network formation models with identity and probabilistic link failures. In

our model, the links will be formed based on identity characteristics and each link or player

can fail with a certain probability. Probabilistic links provide many incentives form different

architectures and yields results that corresponds to the empirical observations.

Rest of the chapter is organized as follows: Section 2 illustrates our model setup and

provides some useful network definitions. Section 3 describes the Nash networks where

identity is exogenously assigned to the players. The chapter concludes with a discussion and

possible extensions.

4.2 Model

The set of all players is N = {1, 2, ..., n}, with generic members i and j. For ordered pairs

(i, j) ∈ N × N , we use the shorthand notation ij. For non-ordered pairs i, j, we use the

notation [ij]. Throughout the chapter, we assume that n ≥ 3.

Identity is defined as a single dimension variable which consists of a set of characteristics

following Dev (2010) and (2011). Each player’s identity, Ii consists of one of the characteris-
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tics. For simplicity we assume that there is a single identity and there are two characteristics

associated with the identity. For example, race is an identity and possible characteristics are

only black and white. Relaxing this assumption yields fairly complicated probability ranges

and left as a possible extension.

The identity profile of the population is represented by n × 1 vector I. Identity can

be assigned exogenously or it can be a choice variable. For example, race is an exogenous

identity characteristic whereas being democrat or republican is a choice characteristic. We

define a block which is made up players who share the same type of characteristics. Each

player has the following strategy profile:

- Identity (where applicable): player i chooses his identity such that Ii = {A,B}. We

work on the each case separately where identity is exogenous and where it can be a variable

of choice. Identity is a very powerful concept to include different aspects to the network

formation game. As an illustrative example, in a student network players can be classified as

nerds, jorks and burnouts. Or from a different point of view they cane be classified according

to the race and culture.

- Commitment, θ ∈ [0, 1]: Commitment level indicate the devotion of a player to her

characteristic. In general, a higher commitment to any characteristic will make players with

the same characteristic cheaper but make links more expensive with players who do not have

this characteristics. n× 1 vector Θ represents the commitment profile of the population.

- Link offers: li = {li1, ..., lii−1, lii = 0, lii+1, ..., lin} where lij ∈ [0, 1]. A link between player

i and player j is formed if lij + lji ≥ cij. Let £ = {l1, l2, ..., ln}. Let Li be a n dimensional

vector such that

Lij =


lij

(lij+lji)
if lij + lji ≥ 0

0 otherwise.

Let (I, Θ and £) be n-dimensional vector that hold the strategy profile of the players in the
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network.

- Cost of link formation: We consider two types of link formation. In the fist case, we

assume that initiator of the link fully pays the cost of link formation. This scenario explains

situations where there is a devoted recruiter in the network who pays all of the cost of link

formation. In the second scenario, we assume that cost of link formation is shared between

the participants in proportion of their link offers. For both of these scenarios, we define cost

of link formation as a function of identity characteristics and commitment levels. So, cost

of link formation is player and partner specific as assumed in some cases of Galeotti et al.

(2006) but it is not fully heterogenous and defined as a function of identity characteristic and

commitment levels. We assume that the players involved in the link share the same identity,

it is cheaper to form a link. Also, as the players increase their commitment levels, the cost of

a link between these players decreases even further. However, we assume that if the players

involved in the link have different identity characteristics and very high commitment levels

(ex. θ = 1) to their identities, then the link formation is not profitable for any V or any

functional form of the payoffs.

- Link failure: We allow an every existing link in the network to have a reliability proba-

bility, p ∈ [0, 1]. The failure of a link can be interpreted as link still exists but fails to transmit

information. First, we assume that reliability probability is exogenous and constant. Then,

we heterogenize the link reliability by defining a pij. We assume that pij = pji. For simplicity

and to incorporate heterogenous link reliability probabilities, we introduce 3 different link

failure probabilities that arise from the identity characteristics and commitment levels. If

player i and j ∈ N have the same identity characteristic (Ii = Ij) = A, we call it as the first

case and we assume that all the other players represented by i and j who have the same

identity and characteristics have same link reliability probability, p1. Similarly, if player i

and j have the same identity characteristic (Ii = Ij) = B 6= A then we assume that their

link failure probability is p2. If player i and j have different identity characteristic (Ii 6= Ij)

then we assume that their link failure probability is p3. We assume that all link failures are
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independent from each other.

- Expected Benefits: We assume that each player has constant and exogenous information

of value (V ) to the other players. A player can get access to more information by forming links

with other players. We assume two way flow (symmetric) and undirected network, which

implies that both players participating in the link can access benefits of the link. And we

assume that there is no decay. However, as discussed in the link and node failure parts, even

though a link is formed, the functionality of a link to transmit information is probabilistic.

Without further notice, a link may not function to transmit information. Hence, under the

probabilistic link or node failure, the players have an expected benefits from their links. Let

µi(g) be the set of players that player i is linked to directly or indirectly and let µdi (g) be

the set of players to whom player i has formed a link and µsi(g) be the set of players who

share the same identity characteristics with player i.

Definition 1: The closure of g is a non-directed network denoted by h = cl(g) and defined

as cl(g) = {ij ∈ N ×N : i 6= j and gij = 1 or gji = 1}.

The benefits from network g are derived from its closure h = cl(g). For two players

i 6= j, the non-ordered pair [ij] represents the undirected or both-way link between i and

j, i.e. the simultaneous occurrence of ij and ji. If hij = hij = 1, then [ij] succeeds with

probability pij ∈ (0, 1) and fails with probability 1− pij where pij is not necessarily equal to

pik for j 6= k. It is assumed, however, that pij = pji. Furthermore, the success or failure of

direct links between different pairs of players are assumed to be independent events. Thus,

h may be regarded as a random network with possibly different probabilities of realization

for different edges. To simply these link failure probabilities, we classify them in 3 different

categories depending on the identity characteristic and commitment levels of the participants

as discussed in link failure above.

We call a non-directed network h
′

a realization of h (denoted by h
′ ⊂ h) if it satisfies

h
′
ij ≤ hij for all i, j with i 6= j. The notation [ij] ∈ h′ signifies that the undirected link [ij]
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belongs to h
′
, that is h

′
ij = h

′
ji = 1. At this point the concept of a path (in h

′
) between two

players proves useful.

Definition 2: For h
′ ⊂ h, a path of length m from an player i to a different player j is a finite

sequence i0, i1, ..., im of pairwise distinct players such that i0 = i, im = j, and h
′

ik,ik+1 = 1 for

k = 0, ...,m− 1.

We say that player i observes player j in the realization h
′
, if there exists a path from

i to j in h
′
. We assume that links can fail independently, the probability of the network h

′

being realized given h is given by:

λ(h
′|h) = Π[ij∈h′ ]pijΠ[ij]/∈h′ (1− pij) (4.1)

Let µi(h
′
) be the number of players that player i observes in the realization h

′
, i.e. the

number of players to whom i is directly or indirectly linked in h
′
. Each observed player in a

realization yields a benefit V > 0 to player i. Without loss of generality assume that V = 1.

Given the strategy profile of players in g and link failures, player i’s expected benefit from

the random network h is given by the following benefit function Bi(h):

Bi(h) =
∑
h′⊂h

λ(h
′ |h)µi(h

′
) (4.2)

where h = cl(g). The probability that network h
′

is realized is λ(h
′ |h), in which case

player i gets access to the information of µi(h
′
) players in total. Note that the benefit

function is clearly non-decreasing in the number of links for all the players.

- Payoffs: We assume that each link formed by player i costs c > 0. Cost of link formation

depends on the identity and characteristics and the commitment levels. When the cost of

link formation is only on one side the payoff of player i is as follows:

Πi(I,Θ,G) = (Bi(cl(g))−
∑

j 6=i∈µdi

c(Ii, Ij, θi, θj) (4.3)
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where the expected benefits of player i from the network is indicated by Bi.

Then, player i’s expected payoff from the network when the formation of link depends

on link offers and mutual consent is given by:

Πi(I,Θ,£) = π(Bi(cl(g))− c(Li,Θ, I) (4.4)

If the composition of the players with the same identity characteristic affects payoffs then:

Πi(I,Θ,£) = π(Bi(cl(g))− c(Li,Θ, I) (4.5)

Note that Li,Θ, I determines the costs of forming links and the last term is introduced when

identity characteristic has a direct impact on the payoffs (third scenario of identity). We

assume that πi is a strictly increasing function in N si meaning that as the number o players

who share the identity characteristic of player i increases, player i obtains higher payoff.

Given a network g ∈ G, let g−i denote the network that remains when all of player i’s

links have been removed. Clearly g = gi⊕g−i where the symbol ⊕ indicates that g is formed

by the union of links in gi and g−i.

Assumptions on the Payoff Function

We assume that payoff of player i is linear in expected benefits and costs. We propose

the following assumptions on the payoff function:

1. Assumption on the reliability probabilities:

A1) Link and node failure events are all independent from each other meaning that one

link or node’s reliability does not affect the reliability of other links or nodes.

2. Assumptions on the benefits and costs of link formation:

A2) Πi is a strictly increasing function of the number of players connected directly or

indirectly. Also, if the links are more reliable (i.e, higher p) the expected payoff of player i

increases.
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A3) c(Ii, Ij, θi, θj) is strictly decreasing in θi, θj for each j ∈ µi if Ii = Ij. And c(Ii, Ij, θi, θj)

is strictly increasing in θi, θj for each j ∈ µi if Ii 6= Ij. Moreover, we assume that there

cannot be a profitable link between player i and j if Ii 6= Ij and θi = θj = 1.

3. Assumptions on the link offers (where applicable):

A4) Πi is a strictly decreasing function of Li which represents the total link offers made

by player i.

A5) Cost sharing in the link formation implies that in order to have the link between

player i and j, link ij should be profitable to both player i and player j.

Definition 3: A strategy gi is said to be a best response of player i to g−i if Πi(gi ⊕ g−i) ≥

Πi(g
′
i ⊕ g−i) for all g

′
i ∈ Gi. Let BRi(g−i) denote the set of player i’s best responses to g−i.

A network g = (g1, ..., gn) is said to be a Nash network if gi ∈ BRi(g−i) for each player i,

i.e., players are playing a Nash equilibrium. A strict Nash network is one where players are

playing strict best responses. Formally,

Definition 4: The Nash Equilibrium is a set of strategies Π(I,Θ,£) which result in network

g, such that for each player i ∈ N

Π(I,Θ,£) ≥ Π(l
′

i, θ
′

i, I
′

i)

Definition 5: A set C ⊂ N is called a component of g if there exists a path in cl(g) between

any two players i and j in C and there is no strict superset C
′
ofC for which this holds true.

Definition 6: A connected network g is said to be minimally connected, if it is no longer

connected after the deletion of any link. A network g is called complete, if all links exist in

cl(g). A network with no links is called an empty network.
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4.3 Exogenous Identity

In this section, we study the network formation game where identity is assigned exogenously

to the players. Players are allowed to choose how much to commit to their identity charac-

teristics. We will first investigate one sided link formation where the cost of link formation

is on the initiator of the link. Then, we will explore mutual consent link formation through

link offers. We introduce the link failures in two ways. Firstly, we assume that link failure is

constant and same for all links even within different characteristic groups, p ∈ (0, 1). Then,

we heterogenize the link failures in three groups as discussed in the model setup section. We

characterize the Nash networks under these link imperfections in the following lemmas and

propositions.

Lemma 1: Suppose the payoff of player i ∈ N is given by Equation 3. Then, in a Nash

network each identity characteristic group is composed of players choosing θ = 1 if they are

directly connected to the players where the identity characteristic is the same and θ = 0 if

they are connected to the different identity characteristics.

The proof of the lemma directly follows from the assumptions on the payoff function.

Players who choose to make links only within their characteristic will choose θ = 1 while all

player’s who choose to make links with players outside their characteristic will choose θ = 0.

The proposition below identifies Nash network architectures for an exogenous and con-

stant link failure probability, p0. If p0 = p0(c, n) = c × (n − 1)−1 it never benefits player i

to initiate a link from i to j, no matter how reliably player j is linked to other players and,

therefore, gij = 0 in any Nash equilibrium.

Definition 7: Define the cost of link formation c1 = c(Ii = Ij, θi = θj = 1) if players

involved in the link share the same identity characteristic and highest commitment levels,

and c2 = c(Ii 6= Ij, θi, θj) if the players involved in the link do not have a common identity

characteristic. By assumption A3, it follows that c2 > c1.
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Proposition 1: Exogenous Identity and Homogenous Link Failure

Under the assumptions A1-A3, the Nash Network of the game, where players choose their

commitment levels and link strategies with the given probabilities will have one of the fol-

lowing structures:

1) Empty if p0 < argmin{cij × (n− 1)−1}

2) Separated, where each identity characteristic forms a component if p0 < cij × (n− 1)−1

3) Connected if p0 ≥ {cij × (n− 1)−1

Proof : Suppose g is a Nash network and its neither empty or connected. Then, without

loss of generality, there exists three players i, j and k such that player i and j belong to one

component, C1(g) and player k belongs to another component, C2(g). Then either gij or

gji = 1 but gki and gkj = 0. Without loss of generality, assume gij = 1. Define the benefit

player i receives by linking to j in g as b1. Since the link ij is made, it must be profitable for

i to sponsor the link, so b1 > c. Let g
′

be a network where all the links of player i is deleted.

Under this condition, player i is an isolated player and the expected benefit for player i by

linking to j is b2 = p× (1 + Vj) where Vj is the expected benefit player j receives from her

closure. In g
′

player i has no other direct links and all her indirect links go through player j.

Hence, it follows that b2 > b1. Consider a link from player k to j in g
′

the expected benefit

of this link for player k is b3 = p × (p + 1 + Vj). Notice that b3 > b2 if p > cij × (n − 1)−1.

Hence, both in g and g
′

its profitable for player k to initiate the link kj. This contradicts

the initial assumption that g is Nash.

Player i’s expected benefit from the link ij is at most p0×(n−1). If p1 < p0 then, it never

benefits the players i and j to form a link ij since the expected benefit of link ij is not high

enough to compensate the cost of link formation for any lij and lji. If p0 > maxcij×(n−1)−1

holds then a Nash network, g can either be connected, or separated with identities or empty.

Note that due to a general payoff functional form, having p0 > maxcij × (n− 1)−1 does not

guarantee that Nash network will be non-empty. However, if p0 < maxcij × (n− 1)−1 then

Nash network will be guaranteed to be empty.
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Proposition 2: Let the payoff of player i be given by (2.3). Given p ∈ (0, 1) there exists

c(p) > 0 such that in a Nash network, g there will be at least more than one path between

player i and j if Ii = Ij.

Proof : Player i’s expected benefit from the link ij is at most p0 × (n − 1). If p1 < p0

then, it never benefits the players i and j to form a link ij since the expected benefit of link

ij is not high enough to compensate the cost of link formation for any lij and lji. If p0 >

maxcij× (n−1)−1 holds then Nash network non-empty. However, if p0 < maxcij× (n−1)−1

then Nash network will be guaranteed to be empty. For a player to make a redundant link,

the marginal benefit of the additional link with an observed player must exceed the cost of

link formation. Following Bala and Goyal (2000b), if p× (1−pn/2) > c1 or c2 then for player

i sponsoring a link to an indirectly connected player j provides an increase in the payoff of

player i.

Note that proposition 2 result will only hold if the player i and j belong to the same

identity group. If player i and j belong to a different identity group, then in order this result

to hold, the cost of link formation between different identity groups must be small enough.

Since, we do not assume any particular functional form on the cost of link formation, we are

not able to determine the c(p). This limitation can be analyzed if a particular functional

form is assumed.

Proposition 3: Let the payoff of player i be given by (2.3). If p > c and (1 − p) + (n −

2)(1 − p2) < c are satisfied then in a Nash network, each identity group will form a mixed

star architecture.

Proof : Suppose g is a mixed star network and let player k be the center of the star.

Consider a player i 6= k where without loss of generality gik = 1. From Equation (2.3),

player i’s payoff is p + (n − 2)p2 − c. If player i does not form this link, then she obtains

zero payoff from the architecture of a star network. However, since p > c it is profitable for

player i to form at least one link. If player i chooses to link another player j 6= k then player

i’s expected payoff is p + p2 + (n− 3)p3 − c. Linking with player k dominates this payoff if
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(1 − p) + (n − 2)(1 − p2) < c is satisfied. Hence, player i’s optimal strategy is to link with

player k if the conditions in the proposition hold. If player i chooses to form more than one

link then his payoff is bounded above by (n− 1)−nc. Subtracting this payoff from the star,

the incremental benefit of player i at most (1− p) + (n− 2)(1− p2)− c and this is negative

if (1− p) + (n− 2)(1− p2) < c. Therefore, player i optimal strategy is to form a single link

with player k.

The above proposition states that each identity group will be a derivative of star archi-

tecture. However, for the entire network to be connected, p > argmax{c(Ii 6= Ij)} must be

satisfied. In this case, the Nash network will be an interlink star where one of the periphery

player will form a link with opposite identity group.

Proposition 4: Exogenous Identity and Heterogenous Link Failure

Suppose the heterogenous link failures can be classified in 3 types (p1, p2 and p3). Under the

assumptions A1-A4, the Nash Network of the game, where players choose their commitment

levels and link strategies with the given link failure probabilities will have one of the following

structures:

• Connected if p1 ≥ 1
1+c2

p2 and p2 ≥ 1
1+c1/n2

b
p1 and p3 ≥ 1

1+c/(nb+1)2
p2 where c =

min{c1, c2}.

• Separated if p3 <
1

1+c/(nb+1)2
p2 where c = min{c1, c2}:

a) If p2 ≥ 1
1+c1/n2

b
p1 and p1 ≥ 1

1+c2
p2 then each block is a connected component.

b)If p2 <
1

1+c1/n2
b
p1 and p1 ≥ 1

1+c2
p2 then the player with θ < 1 will be isolated in each

block.

c)If p2 ≥ 1
1+c1/n2

b
p1 and p1 <

1
1+c2

p2 then there is only one link in each block, and it is

formed between one of the players with θ = 1 and the player with θ < 1. All the other

players don’t form a link.

• Empty if p1 <
1

1+c2
p2 and p2 <

1
1+c1/n2

b
p1 and p3 <

1
1+c/(nb+1)2

p2.
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Proof : We prove each case separately. In order to have a connected Nash network, two

players with different identities will choose θ < 1 and the others will choose θ = 1 in the

equilibrium and all players will access to each other through direct or indirect connections.

Note that the level of link failures and the number of players present in each identity type

are the main determinants of expected benefits from a generic link ij. The link success

parameters, namely p1, p2 and p3 are exogenously assigned for each identity group. Let

c = min{c1, c2, c3} be minimum cost of link formation in the network.

1) Connected Nash Networks: Consider a Nash network, g. Suppose g is neither empty

nor connected. Then, there exist three agents i, j, and k such that i and j belong to one

connected component of cl(g), C1 and k belongs to a different connected component of cl(g),

C2. Then gij = 1 or gji = 1 whereas gmk = gkm = 0 for all m ∈ C1. Without loss of

generality assume gij = 1. Then, the incremental benefit to i of having the link from i to

j is b1 − c. Let g
′

denote the network which one obtains, if in g all direct links with i as a

vertex are severed. The incremental expected benefit to i and j of forming the link ij in g
′

is b2 > b1 > cij and can be written as b2 = pij(1 + Vj) where Vj is j’s expected benefit from

all the links j has in addition to ij. Now consider a link from k to j, given g
′⊕ gij. This link

is worth b3 = pkj(pij + 1 +Vj) to player j and k. A link from k to j, given g, is worth b4 > b3

to k. We claim that b3 > b2, i.e., pkj > pij
(1+Vj)

(1+Vj+pij)
. Since g is Nash and gij = 1, we know

pij > p0. By assumption, pkj >
1

1+c/n2pij. This shows the claim that b4 > b3 > b2 > b1 > c.

If p1 ≥ 1
1+c2

p2 and p2 ≥ 1
1+c1/n2

b
p1 and p3 ≥ 1

1+c/(nb+1)2
p2 where c = min{c1, c2} then having

the link kj is better for k and j than not having it, contradicting that g is Nash.

2) Separated Nash networks:

a) If p2 ≥ 1
1+c1/n2

b
p1 and p1 ≥ 1

1+c2
p2 then each block is a connected component. Then, none

of the players will form a link with the opposite identity group and the Nash network is

separated.

b)If p2 <
1

1+c1/n2
b
p1 and p1 ≥ 1

1+c2
p2 then the player with θ > 1 will be isolated in each

block.
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c)If p2 ≥ 1
1+c1/n2

b
p1 and p1 <

1
1+c2

p2 then there is only one link in each block, and it is

formed between one of the players with θ = 1 and the player with θ > 1. All the other

players don’t form a link.

3) Empty Nash networks: Consider p1 <
1

1+c2
p2 and p2 <

1
1+c1/n2

b
p1 and p3 <

1
1+c/(nb+1)2

p2.

Next, we study the Nash networks under mutual consent. Mutual consent requires in-

vestments from both of the participants of the link and the cost of link formation will be

shared among them. The following lemmas indicate a few properties that holds in a Nash

network.

Lemma 2: Link offers.

Under the definitions and assumptions of the model, in a Nash network sum of the link offers

from player i and j must be exactly equal to the cost of link formation.

Proof : Suppose there are two players i and j such that lij + lji > cij. Without loss of

generality, player i will be better off by decreasing her link offer until lij + lji = cij so that

the link will still be preserved and player i’s payoff would strictly increase from A3. Hence,

a link offer lij + lji > cij is not a best response strategy.

Lemma 3: Commitment levels of identities in a block.

Under the definitions and assumptions of the model, a block includes players with maxi-

mum commitment, i.e. θ = 1 unless expected benefit from connecting to the other identity

characteristic exceeds the cost of link formation to the opposite identity group.

Proof : From the definition of the cost of link formation, if players with the same identity

choose commitment level θ = 1, the cost of link formation becomes minimal. So, suppose

there exists two players i and j ∈ N such that θi < 1 but θj = 1. Then, player i can strictly

increase her payoff by increasing her commitment. If the Nash network is connected with

players with different identities, again from the definition of cost of link formation, there

must be player k and m such that Ik 6= Im and θk and θm < 1 which enables a link to be

formed with different identities. Note that since there is no decay in the model, there will
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be exactly 2 players in this situation which makes the network connected. Also, there will

be exactly two players i and j with θi = θj = 1 connecting to players k and m. However, to

have a connection between different identities, the benefits from linking to different identities

must be high enough to offset this increase in the cost of link formation.

When the cost of link formation is shared between the participants of the link, we assume

that if a link is made between player i and j then it must be profitable for each player.

Remark 1: Exogenous Identity, Homogenous Link Failure and Cost Sharing

Under the assumptions A1-A4, the Nash Network of the game, where players choose their

commitment levels and link strategies with the given probabilities will have one of the fol-

lowing structures:

1) Empty if p0 ≤ maxcij × (n − 1)−1 2) Separated, where each block will either form a

component or each player of the block remains a singleton if

3) Connected if p0 ≥ maxcij × (n− 1)−1

If we expand the heterogeneity of link reliability to the broader terms, calculations are

fairly complicated. We can say that given pij 6= pkm there exists cost values such that any

network can be a Nash equilibrium. Intuitively, imagine for a group of players the reliability

is lower than the cost of link formation. Then, we can have disconnected components in

a Nash network. Furthermore, if the link reliability between different identity groups are

higher than the cost of link formation it is possible to observe players belonging to different

identity characteristic to link each other. Also, the minimality result in Nash networks may

not hold. In short, the optimal strategy for player i becomes a function of number of players

in each characteristic and how fast the cost of link formation increases. We leave this as a

future work.
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4.4 Discussion and Extensions

In this chapter, we introduce link reliability to a non-cooperative network formation game

where identity characteristics are capturing the similarities or differences between the play-

ers in the network. Compared to Bala and Goyal (2000b) framework, our model is includes

an identity dimension. If the link reliability is the same for all players in the network then

Bala and Goyal (2000b) results generally hold. However, once the link reliability is different

between the different identity groups, Nash networks can include more than one compo-

nent if the cost of link formation is too high between the different identity characteristics.

Depending on the link reliability and cost of link formation, it is possible to observe very

decentralized architectures and connectivity of the network greatly depends on how the cost

of link formation increases between different identity groups. Compared to Dev (2009) and

(2010), we find significant differences in the Nash networks if link reliability between the dif-

ferent identity groups are high and cost of link formation is low enough. Dev (2010) shows

how the Nash networks can be fragmented according to the identity characteristics. In this

chapter, we show that players belonging to different identity groups can choose to link if the

reliability within their own group is lower than the reliability of the opposite group. Another

difference is that Dev (2010) minimality result may not hold as the number of players in the

network increases and the link reliability is low enough.

Our results in the chapter are preliminary and a number of extensions can be considered

for future work. One possible extension is to consider identity as a choice variable rather

than exogenous to the model. In this scenario, the network formation can be modeled as a

dynamic game with rounds. In the first round, an arbitrary player chooses his identity and

commitment level and makes link offers. In the other rounds, each player decides whether

or no to accept the link offer.

Another possible extension is to consider endogenic link reliability and make it as a

function of the link investment under this scenario, players can increase the link success

probability if they bear higher cost of link formation. This setting is important to explain
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star type architectures since the links are critical for the players in the periphery.

It is possible to consider player reliability, f in the sense that each player can leave the

network without any further notice. In this case, if one of the players leave the network, all

the links she is involved in will be lost.

91



Chapter 5

Conclusion

My dissertation contributes to the social network literature by investigating interesting ques-

tions. My first chapter introduces a Team Game, develops a measure for identifying the key

player in teams. My second chapter explores the socially optimal network architectures and

investigates the differences between Nash and efficient networks. My final chapter consid-

ers a non-cooperative network formation game where identity is introduced to capture the

similarities or the differences among the players and the link realisability is probabilistic.

My first chapter extends the intercentrality measure of BCZ (2006) to include an addi-

tional term which captures the team outcome expression in the utility functions of players.

This term suggests that a player gets utility when her team achieves its desired outcome.

To identify the contribution of players to their teammates, we develop two intercentrality

measures which derives from possible considerations of the social planner. TICM considers

the effect of a player’s removal on the aggregate Nash Equilibrium effort levels. TICM e

identifies the externality each player gets from her teammates and weights it according to

the ability of the player. In the empirical part of the chapter, first we illustrate how to utilize

the intercentrality measures. Then, we show that there is a positive relationship between

the average ratings and TICM e and ICM in the sample. This fact reflects that soccer

players having more interactions with their teammates get more credit in performance by

the experts. Moreover, the market value of the soccer players increase with both TICM e

and ICM which is assumed to be reflected in their salaries. This effect is homogenous in the
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sample, it doesn’t depend on the position of the player on the field. One interesting exten-

sion of the approach in the chapter might be considering the effort variable to be a vector

and allowing different types of individual actions. This will require a new set of theocratical

results. Depending on the availability of data this model then can be empirically tested. In

soccer, for instance one could include distance traveled, tackling and dribbling data. Given

the relationship between passing and scoring opportunities, this way will not alter our pri-

mary results, but will provide us a more precise way to identify key players and key groups.

Another interesting extension to our model would be to investigate key player problem as a

network design game. The planner is the head coaches who have to announce the national

squads. There are qualities, δi’s and possible interaction possibilities between players. This

can be modeled as an expected utility maximization problem with a two stage team game.

At the first stage, squads are announced and at the second stage players optimize their effort

with given interactions.

My second chapter studies the efficient networks in the player and partner heterogeneity

models with various functional forms. With a two way flow of information, I find that

payoff function specification, the differences in cost between minimum cost player(s) and the

other players and the number of minimum cost players play a crucial role in determining

the architecture of the efficient networks. I deal with the first two determinants by imposing

additional restrictions if necessary. Note that having more than one minimum cost players

introduces some symmetries and additional efficient network architectures. However, the

efficient network architectures in the case of having more minimum cost players can still be

identified without imposing any restrictions unlike the other two determinants. There are

some notable differences between the efficient architectures under the player and partner

heterogeneity models. The first difference is in the player heterogeneity model minimum

cost player(s) sponsor all the links. However, in partner heterogeneity a high cost player

can also sponsor some links. In the homogenous model discussed by Bala and Goyal (2000),

efficient networks have star architecture. However, when we allow for heterogeneity in values
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and costs, a rather decentralized efficient architecture in the form of interlinked stars occurs

in linear and strictly convex payoffs in cost. In the one way flow model, the architecture of

the efficient network with player and partner heterogeneity is identical. The only connected

efficient architecture is a wheel for these cases, where each agent can access to all other

agents by sponsoring a single link. I conclude that strict Nash networks in one way flow

model discussed by Galleotti (2006) and Billand et al. (2011) are also efficient. I find that

Nash and efficient networks coincide if the payoff function is linear in benefits and costs.

This holds true for one way flow of information and some cases in the two way flow of

information. However, we show that in two way flow of information this result is not robust

when payoff function exhibits strict convexity in cost. Also, with the linear specification

efficient networks can also be interlinked stars while only star type architectures are Nash

networks. Note that not all of the payoff function specifications are comparable in terms of

Nash and efficient networks since I impose additional requirements to identify link formation

in some cases.

In my last chapter, we introduce link reliability to a non-cooperative network formation

game where identity characteristics are capturing the similarities or differences between the

players in the network. Compared to Bala and Goyal (2000b) framework, our model is in-

cludes an identity dimension. If the link reliability is the same for all players in the network

then Bala and Goyal (2000b) results generally hold. However, once the link reliability is

different between the different identity groups, Nash networks can include more than one

component if the cost of link formation is too high between the different identity character-

istics. Depending on the link reliability and cost of link formation, it is possible to observe

very decentralized architectures and connectivity of the network greatly depends on how the

cost of link formation increases between different identity groups. Compared to Dev (2009)

and (2010), we find significant differences in the Nash networks if link reliability between the

different identity groups are high and cost of link formation is low enough. Dev (2010) shows

how the Nash networks can be fragmented according to the identity characteristics. In this
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chapter, we show that players belonging to different identity groups can choose to link if the

reliability within their own group is lower than the reliability of the opposite group.
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