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Abstract

In GARCH models, neglecting parameter changes in the conditional volatility process results in
biased estimation. The estimated sum of the autoregressive parameters of the conditional volatility
converges to one. In Chapter 2, | analyze the effect of changes in the parameters of conditional
volatility on European call option prices when these parameters are estimated ignoring the change-
points. Simulation studies show that ignoring parameter changes in the conditional variance pro-
cess of GARCH(1,1) models leads to biased estimates of option prices. The bias, measured in
percentages, is most pronounced for out-of-the-money options, substantial for at-the-money op-
tions, and vani shes as options move deep-in-the-money.

Theempirical study in Chapter 2 showsthat the biasin option prices decreaseswhen NGARCH
model is used. NGARCH model captures the negative correlation between the stock price and
volatility. To analyze thisissue further, in Chapter 3, | analyze the effect of changes in the param-
eters of conditional volatility on European call option prices using Heston’s and Nandi’s (2000)
closed-form GARCH option pricing model. Simulation studies show that option prices obtained
by the closed-form expression are biased when parameter changes are ignored, but due to asym-
metry effects the biasis less pronounced compared to the resultsin Chapter 2.

In Chapter 4, | analyze the effect of parameter changes in the conditional volatility process
on Value-at-Risk (VaR) based on a GARCH model. Ignoring parameter changes results in biased
VaR estimates. The bias is more pronounced when parameter changes imply a greater change in
unconditional volatility. In addition, the sign of the bias is negatively related to the sign of the

change in unconditional volatility.



Chapter 1

| ntroduction

Using volatility models has become an important part in empirical asset pricing and risk man-
agement. The ARCH model by Engle (1982) and its generalization, the GARCH model by Boller-
dev (1986), alow for the variance of the underlying process to change in a discrete time frame-
work. Bollerdev et al. (1992) and Bollerdev et al. (1994) provide an overview of ARCH-type
models. Several studiesin the existing literature on GARCH models show that estimations of vari-
ous different specification of GARCH modelsindicate volatility clustering and high persistencein
financial data. Engle and Bollerslev (1986) introduce the I-GARCH (Integrated-GARCH) model
to capture the high persistence feature of asset returns. In this model, shocks to volatility do not
decay over time. Also, severa studiesin the fractional integration literature find high persistence
in stock returns. Ding et a. (1993), Ding and Granger (1996), and Baillie et al. (1996) are some
of the important studiesin the area.

Recently an increasing number of studies show that there may exist nonstationarities in the
volatility of asset returns. Diebold and Inoue (2001) point out the possibility of confusing long
memory and structural change. Some of the important studies in the long memory literature
emphasizing the same phenomenon are Lobato and Savin (1998), Granger and Hyung (2004),
Granger and Terasvirta (2001), and Smith (2005). Perron and Qu (2004) show that estimation of
the order of integration of a short memory process contaminated with structural changesis biased

upwards and therefore it implies long memory. In GARCH models the issue was first brought up



by Diebold (1986). Lamoureux and Lastrapes (1990) show in data and simulation experiments that
the GARCH(1,1) model exhibits high persistence due to neglected changes in the constant term
of the conditional variance process. Hillebrand (2005) shows that if there is a neglected parame-
ter change in the conditional variance of a GARCH process, the sum of the maximum likelihood
estimators of the autoregressive parameters of conditional volatility convergesto one. Staricaand
Granger (2005) show that instead of assuming global stationarity in S& P 500 returns, assuming
nonstationarity and approximating the nonstationary data-generating process by locally stationary
models provides a better forecasting performance. The results from Markov-switching models of
Hamilton and Susmel (1994) (for ARCH models) and Gray (1996) (for GARCH models) indicate
that locally stationary models provide lower persistence estimates. In summary, the conclusion
from these studiesis that assuming global stationarity and a constant unconditional variance for a
process contaminated with parameter changes results in high persistence estimates and poor fore-
casting performance. This dissertation analyzes the effect of ignored parameter changes in condi-
tional variance process of the GARCH model on option prices and Va ue-at-Risk.

An option is a derivative security whose value depends on one or more underlying assets. A
call (put) option givesitsowner the right but not the obligation to buy (sell) itsunderlying asset at a
specific price (strike price) and at a specific time. Options are widely used in financial markets for
hedging risk. Mispriced options may lead to arbitrage opportunities and a substantial increase in
the portfolio risk. An arbitrage opportunity existsif an option is overpriced or underpriced relative
to its expected value. For example, if an option is underpriced, a financial institution can buy the
option by issuing a bond at the same interest rate the option value is discounted from its expected
value at the expiration and obtain risk-free profits when the option expires. In Chapters 2 and 3, |
analyze the effect of a parameter change in conditional variance process of the GARCH model on
option prices.

Value-at-Risk is an important risk measure that is widely used by financial institutions to re-

port their market-risk exposures. It is used by regulatory agencies to control the risk exposures of



financial institutions. The Basel Committee on Banking Supervision (1996) at the Bank for Inter-
national Settlements requires banks to calculate and report VaR estimates daily. Based on these
VaR estimates, financial institutions must hold a certain level of capital. If a bank overestimates
VaR, the amount of capital that it is required to hold will be also overestimated, which may |lead
to substantial opportunity cost. If VaR is underestimated and in an adverse financial situation,
banks will be exposed to bankruptcy risk. GARCH models are widely used to estimate VaR and

| analyze the effect of a parameter change in conditional volatility process of GARCH models on

VaR estimates.



Chapter 2

The Sensitivity of GARCH Option Pricing
Modelsto |gnored Parameter Changes

2.1 Introduction

A voluminous literature has developed in the theory and practice of option pricing after Black
and Scholes (1973) and Merton (1973). Volatility of the stock price process is by far the most
important variable in these models. It is not directly observable and was assumed constant in the
early studies. It iswidely accepted that volatility and correlations in asset prices vary over time.
Hull and White (1987) introduced stochastic volatility modelsin a continuous-time framework. In
their model, there is no closed-form solution for option prices when the sources of randomness
in volatility and stock price are correlated, and Monte Carlo simulation is used to obtain option
prices. A closed-form solution is given by Heston (1993). The ARCH model by Engle (1982)
and its generalization, the GARCH model by Bollerslev (1986), allow for the variance of the
underlying process to change in a discrete time framework. An alternative approach to ARCH-
type models in discrete time is the stochastic volatility (SV) model introduced by Taylor (1986).
A recent survey of the SV literatureis given by Broto and Ruiz (2004). For an extensive review of
forecasting performance of various volatility models, see Poon and Granger (2003).

The gap between ARCH-type models and continuous time modelsis closed by Nelson (1990),
Drost and Werker (1996), and Corradi (2000). Nelson (1990) shows that the GARCH(1,1) model,



in its continuous time limit, converges to a continuous time stochastic volatility process. Drost
and Werker (1996) show that the class of continuous GARCH models contains not only continu-
ous time diffusion models but also jump-diffusion models. Corradi (2000) shows that, assuming
o (the ARCH parameter in Equation (2.3)) vanishes in the continuous time limit, the limiting
volatility process is deterministic. Duan (1997) proposes the augmented GARCH model, which
encompasses many parametric GARCH models, and shows that the diffusion limit of the model
also encompasses many diffusion processes commonly used in the literature.

In this chapter, we analyze the effect of ignored parameter changes in conditional variance
process of the GARCH model on European option prices using Duan’s (1995) GARCH option
pricing model. Duan (1995) developed the theoretical foundation that allows the use of GARCH
models for option valuation. Several improvements of the model and the methodology have been
developed to incorporate various empirical facts about asset returns (e.g. fat tails, leverage effect).
For an overview and comparison of GARCH option pricing models see Christoffersen and Jacobs
(2004). Our purpose in this study is to understand the effect of ignored changes in the uncondi-
tional volatility of a GARCH model on European option prices. Ignoring structural breaks creates
problemsin any autoregressive model (see Hillebrand 2005, 2006). The model can be modified as
desired to capture more features of the data. Aslong as it has autoregressive parameters, ignored
parameter changes will result in high persistence estimates. For clarity of exposition, we choose
the simplest GARCH specification.

The sensitivity of option prices to volatility is called Vega. Merton (1973) and Black and
Scholes (1973), among many others, show that volatility and price of an option are positively
related. Or in other words, Vega of an option is positive. Although in GARCH option pricing
models conditional volatility is time-varying, unconditional volatility is assumed constant and is
an important determinant of the option price. Therefore, if we assume a stationary process and
constant unconditional volatility for the underlying asset of an option when thisisin fact not the

case, the estimated biased unconditional volatility will lead to a biased option price. For instance,



if the process switches from high to low unconditional volatility in the mid-point of the sample
and we ignore the parameter change, the estimated unconditional volatility will be somewherein
between the two regimes. Therefore, since Vega is positive, we expect that the estimated option
price will be higher than the one that is obtained using data after the parameter change only. We
show evidence for this intuition in Monte Carlo simulations and in an empirical study of S& P500
index prices.

Our simulation study shows that ignoring structural breaks in the unconditional volatility of
the underlying security leads to biased estimates of European option prices. The biasis most pro-
nounced for out-of-the-money options and increases as the out-of -the-moneyness gets deeper. The
effect is smaller for in-the-money options and becomes negligible as the in-the moneyness gets
deeper. We test S& P500 index returns for unknown change-points and apply the same methodol-
ogy that we usein ssimulationsto real data. Our change-point study on the S& P500 index supports
our simulation results.

In the next section, we briefly review the Duan (1995) model. Section 2.3 describes the simu-
lation methodology. The results follow in Section 2.4. In Section 2.5, we present a change-point
study on the S& P500 index and apply the same pricing methodology to seeif the empirical results

are similar to simulation results. Section 2.6 summarizes the main results.

2.2 TheModd

We use the GARCH(1,1) option pricing model of Duan (1995). Consider

l0g(S /S 1) =+ AR~ S +a, @)
&t|Ft—1 ~ N (0,h), under measure P, (2.2
he = o+ oe? 1+ Bh_1, (2.3)

where F; is a o-field of all information up to and including time t;  constant, o and B are au-



toregressive GARCH(1,1) parameters; § is the underlying asset (in our case, stock) price at time
t; r isthe risk-free interest rate; A is the unit risk premium, which represents preferences; €; is
the normally distributed innovation with mean zero and variance h;. Equation (2.1) isthe standard
asset pricing equation that models one-period returns at timet that depend on the constant risk-free
interest rate, constant unit risk premium, time-varying variance, and anormally distributed random
term with mean zero and variance h;. Equation (2.2) shows how the error terms are distributed.
Equation (3.2) isthe GARCH(1,1) equation that specifies how the conditional variance h; evolves
over time.

The physical probability measure P models the dynamics of the stock price. It determines how
likely it is that the stock price moves up or down. The valuation of contingent claims, however,
necessitates a fair pricing mechanism. To achieve this, al we need to assume is that there does
not exist any arbitrage opportunity (the so-called First Fundamental Theorem of Asset Pricing,
see Harrison and Kreps (1979) and Delbaen and Schachermayer (1994)). This leads to a pricing
mechanism that depends on the value of the stock price at maturity and the payoff function of the
contingent claim, not on the probability to obtain the stock price at maturity. Therefore, the new
arbitrage-free pricing mechanism results in a different probability measure Q than the physica

probability measure P. For more details, see the discussion in Duan (1995, p 15-18).

DEFINITION 1. Duan (1995) A pricing measure Q satisfies the locally risk-neutral valuation

relationship if

e measure Q is absolutely continuous with respect to measure P, which means that the prob-
ability of an event in o-field F; under measure Q is zero if and only if the probability of the

same event in o-field F; under measure P is zero.

e (S/S_1)|F_1 follows alognormal distribution (under measure Q) with
EQ((S/S-1)|Fe-1] = €.

The conditional variances under measures P and Q are required to be equal. We can therefore



estimate the parameters of the conditional variance under measure P and use them to estimate the
stock price under measure Q. Although this is not sufficient to eliminate the unit risk premium
A, which represents preferences, this property along with the conditional mean results in a well-
specified model that does not depend on preferences locally.

Duan (1995) showsthat the locally risk-neutral valuation relationship impliesthat under prob-

ability measure Q,

log(S/S-1) =1~ %hH—Ct, (2.4)
where
GlFt-1~N (0,h), (2.5)
and )
e = 00 (Goa—Ay/Pes) +Bhes. (26)

Then, the price of a European call option under probability measure Q is given as:

c=exp[—r (T —t)]EQ [max (St — X,0)|F]. (2.7)

The price of a European call option can be calculated by following the steps below:

Step 1 Obtain parameters from the model given in Equations (2.1) through (2.3), which is under

the probability measure P.

Step 2 Using the parametersin Step 1, obtain Monte Carlo simulation prices Sby using the model
given by equations (2.4) through (2.6), which is under the locally risk-neutral probability

measure Q.

Step 3 Assuming that the number of simulated sample pathsis N and time to maturity is T, ap-
ply the Empirical Martingale Simulation Method (EMS) of Duan and Simonato (1998) as

follows:



Fort=12..Tandi=1,2...N,

gmwz&égk (2.8)

where S(t,i) isthe EMS corrected asset price for the it sample path at timet, and

L a4 St
Z(t,i)=S(t 1’|)7§(t—1,i)’ (2.9
- 1 N
awzﬁamqwzzmu (2.10)
i=1

Note that é(t, i) isthe simulated asset price for the it" sample path at timet in Step 2. Also,
for all sample paths we set §0,i) and S(0,i) to the initial stock price Sg. We start with
t = 1 and calculate Equation (2.9) for al sample paths (for all i’s). Then, we obtain Z(1)
from Equation (2.10) and calculate the EMS corrected asset prices for al sample paths at

time 1 using Equation (2.8). We repeat this sequence for all t’suntil expiration.

Step 4 After we obtain EM S asset prices, the price of a European call option is estimated by:

Mz

é:%exp[—r(T—t)] max [S*(T,i) — X, 0], (2.11)

i=1

where X is the strike price, S'(T,i) is the it" simulated price of the underlying asset at

expiration (timeT).

See Duan (1995), Duan and Simonato (1998), and Christoffersen and Jacobs (2004) for more

details on the model and the estimation methodol ogy.

2.3 Simulation Methodology

In order to show the effects of changes in the parameters of the model on option prices, we first

simulate a series of stock prices under the physical probability measure P. The series has 4,000



observations with a parameter change at observation 2,001. The stock price follows the process:

1

log(§/S-1) = 1+ v/ — Sh +ex, (2.12)
&t|Ft—1 ~ N (0,ht), under measure P, (2.13)
hy = o+ oue? | +Pihy_1, fori=1,2. (2.14)

Here, i = 1 denotesthefirst regime of 2,000 observationsand i = 2 denotes the second regime
of 2,000 observations. We set initial volatility equal to the unconditional mean.

After ssmulating the system above, we estimate the parameters (a) for the whole series and (b)
for the last 2,000 observations. We then simulate 10,000 sample paths until the expiration date
under the risk-neutral probability measure Q (Equations (2.4) through (2.6)) and apply the empir-
ical martingale simulation method (described in Section 2.2). Then, the payoff of the call option
for each sample path is calculated. Since expectation is taken under the risk-neutral probability
measure Q, the European call price is calculated using Equation (2.11) for N = 10,000 sample
paths. We repeat this process 5,000 times for each of the several different scenarios presented in
the tables and figures in the next section in order to get 5,000 simulated call prices. Thus, each of
the 5,000 call prices isthe mean of the call prices of 10,000 simulations. Then, we analyze the

distributional properties of these 5,000 call price observations for each scenario.

2.4 Simulation Results

24.1 At-the-Money Options

Our objective is to show the effect of an ignored change in one of the parameters in the
GARCH(1,1) conditional volatility process on at-the-money European call option prices. An op-
tion is said to be at-the-money if the price of underlying stock is equal to its strike price. Itissaid

to be in-the-money (out-of-the-money) if the price of underlying stock is higher (lower) than its

10



strike price. We run simulations with a single change point in one of the parameters of the condi-
tional volatility h;. Each simulated series has 4, 000 observations and the change in the parameter
occurs at observation 2, 001.

Following Duan and Simonato (1998), we chose A to be 0.01 and r = 0 in the simulations.
Estimating the model without accounting for the changes in the parameters of the conditional
volatility does not affect the estimation of A sinceit isin the mean equation. Experimenting with

different choices of A did not affect the results. These results are avail able upon request.

The annualized volatility o is equal to 1/250w/(1— o —B). Let o1 denote the annualized
volatility of the first half of the series and it is set equal to 20%. Let 62 denote the annualized
volatility of the second half of the series and it is set to different values. The changes in the
parameters are set according to the considered change in 62. For example, when we study the
effect of a change in the constant parameter ®, we initially set w1 = 3.2e— 5, a3 = 0.20, and
B1 = 0.60, so that the initial annualized volatility is 20%. To study the effect of the change in
o when the annualized volatility decreases to 15%, we change m, accordingly to 1.80e—5. The
setup is analogous for changesin the other parameters.

We simulate 5, 000 series with 4,000 observations each. After we simulate the series, we esti-
mate two sets of parameters by maximum likelihood: one from the whole series without account-
ing for the parameter change that occurs at observation 2,001 and one from the second segment
of the series, after the parameter change occurs. For each of the 5,000 series, we simulate 10, 000
sample paths and calculate call option prices for each sample path. Then, we take the mean of the
10,000 option prices to calculate the Monte Carlo ssimulation price. This resultsin 5,000 Monte
Carlo ssimulation prices. Table 2.1 reports the means over these 5,000 call prices. We calculate
pricesof call optionswith 5, 30, and 90 daysto maturity. Initial stock price and strike price are set
equal to $100.

In Table 2.1, we study the effect of neglected changes in the constant . In al tables and

figures, we included the zero parameter change as benchmark. Consistent with the resultsin Hille-

11
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brand (2005), we see that B is overestimated and that the greater the jJump size in the annualized
volatility, the greater the effect of a neglected change in w on B and, thus, on 6 = &+ B We
observe that 6 approaches 1 as the jump sizeincreases. If the annualized volatility is lower for the
second segment of the series, then the option price obtained from the whole sample is higher than
the option price obtained using only data from the second segment, and vice versa. The reason
is that the estimated annualized volatility from the whole sample is between the initial annualized
volatility (whichis set to 20%) and the annualized volatility of the second segment. For example,
if the annualized volatility of the second segment of the seriesis 10%, then the estimated annual -
ized volatility from the whole sample will be between 10% and 20% almost surely. Since higher
annualized volatility resultsin a higher option value, the option price calculated from the whole
series is above the option price obtained from the second segment. The opposite holds when the
annualized volatility increases: If the annualized volatility for the second segment is higher, then

the option price obtained from this segment will be above the option price obtained from the whole

Series.
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Figure 2.1: The effect of the change in parameter @ on European at-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (€,) without accounting for the parameter change, and the option price
obtained from the second part of the sample (€). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axisthere are 5,000 observations.

As can be seen in Table 2.1, if the annualized volatility is reduced to 10% after the parameter

change, then the option price from the whole sample is roughly twice the option price obtained

13



from the second segment. It is roughly 20% higher if the decrease in annualized volatility is 5%.
This can aso be seen in Figure 2.1, which plots the percentage difference in the option prices €,
obtained from the whole sample and option prices € obtained from only the second segment of the
series (y-axis) for a given change in annualized volatility (x-axis). For each value of the changein
annualized volatility, the figures provide abox and whisker plot. Lower quartile, median and upper
quartilevaluesare given by thelinesin each box. The whiskers, which are the lines extending from
each end of the boxes, give the values that correspond to 1.5 times the interquartile range away
from the lower and upper quartiles. The values beyond the ends of the whiskers are the simulated
date distribution tails. We observe that if annualized volatility decreases, the effect of a changein
the constant parameter m on option prices is greater than in the case where annualized volatility
increases. If annualized volatility increases by 10% in the second half of the series the option
price from the whole sample is around 10% less than the option price obtained from the second
segment. If the annualized volatility decreases by 10%, the distortion of the option price ranges
between 75% and 100%. The effect increases in magnitude for larger increases in annualized
volatility but at a decreasing rate. For decreases in annualized volatility, the effect grows at an
increasing rate.

The same conclusions can be drawn for changes in the parameters o and 3. The results for
these parameters are presented in Tables 2.2 and 2.3 and Figures 2.2 and 2.3. We see that the
percentage differences are very close across the three parametersfor the same changein annualized
volatility. In the case of changesin a, the effect is dlightly stronger. The reason for this is that
a neglected change in the parameter o, has the smallest effect on the estimation of the parameters
of conditional volatility, consistent with the resultsin Hillebrand (2005). An increase in volatility
after theignored change-point resultsin lower estimates of 6 for changesin o. compared to changes
in or B. This, in turn, results in lower estimated annualized volatilities for neglected changes
in oo compared to neglected changesin  or B. Say that after the parameter change, annualized

volatility in the second segment is increasing. Estimated annualized volatility fallsin between the
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Figure 2.2: The effect of the change in parameter oo on European at-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (€,) without accounting for the parameter change, and the option price
obtained from the second part of the sample (€). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 5,000 observations. We
did not include the —10% change in these experiments because of strict positivity constraint on
the parameters.

Changes in Beta, Maturity = 5 Days Changes in Beta, Maturity = 30 Days Changes in Beta, Maturity = 90 Days

:
2og
¥

100(c,-c)lc

i
B3
*

i
=
+

100(c,-c)lc

+
=
+

i
E=
3

1

20 E 2
+ .
:

100(c, -c)le

i
=
+

i
=
+

t
B3
+

T 2 s T e T = e
toy Ty toy

-5 0 5 10 15 20 -5 0 5 10 15 20 -5 0 5 10 15 0
% Change in Annualized Volatility % Change in Annualized Volatility % Change in Annualized Volatility

Figure 2.3: The effect of the change in parameter 3 on European at-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (€,) without accounting for the parameter change, and the option price
obtained from the second part of the sample (€). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 5,000 observations. We
did not include the —10% change in these experiments because of strict positivity constraint on
the parameters.
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Table 2.2: The effect of a single neglected change-point in o. on the European at-the-money call
option price. GARCH(l 1) Option Pricing Model Duan (1995) withr = 0, A = 0.01 and h; =
3. 20(—:~5+0c.at 1+ 0.60h_1 fori =12 0= oc+[3 Strike price = Initial stock price = $100.
Parameter estimates are the means of 5,000 ssimulations. € is the call price calculated using the
second half of the sample and €, isthe call price calculated using the whole sample without taking
the parameter change into account. The annualized volatility 64 of the first segment isaways 0.20.
Standard errors are given in parentheses.

Parameter Changes  Parameter Estimates (Whole Sample) 5-Day

30-Day 90-Day

02

o1

o2

0]

o

B

0

o

¢

Cn

¢

(o

Cn

0.15
0.20
0.25
0.30
0.35
0.40

0.20
0.20
0.20
0.20
0.20
0.20

0.044
0.200
0.272
0.311
0.335
0.350

2.11e-5
(5.18¢-6)

3.24e-5
(4.62-6)

3.02e-5
(4.08¢-6)

2.79e-5
(3.88¢-6)

2.62e-5
(3.42¢-6)

2.51e-5
(4.16e-6)

0.14
(0.02)

0.20
(0.02)

0.24
(0.02)

0.26
(0.02)

0.28
(0.02)

0.29
(0.02)

0.69
(0.06)

0.60
(0.04)

0.61
(0.03)

0.62
(0.03)

0.63
(0.03)

0.63
(0.03)

0.83
0.80
0.85
0.88
091
0.92

0.175
0.200
0.224
0.244
0.262
0.277

0.75
(0.02)

0.97
(0.03)

1.19
(0.07)

1.40
(0.13)

1.61
(0.20)

1.80
(0.27)

0.86
(0.02)

0.97
(0.03)

1.08
(0.04)
117
(0.05)

1.25
(0.07)

1.32
(0.08)

2.03
(0.05)

2.66
(0.09)

3.24
(0.02)

3.76
(0.30)

4.23
(0.41)

4.64
(0.57)

2.35
(0.06)

2.66
(0.07)

2.94
(0.10)

3.17
(0.13)

3.36
(0.16)

3.52
(0.19)

\l

0.

4.
(0.17)

5.78
(0.32)

6.72
(0.50)

7.52
(0.68)

8.18
(0.81)

—
(2]
=

¢
3.5
o
-

N

4.14
(0.10)

472
(0.13)

524
(0.18)

5.67
(0.23)

6.01
(0.29)

6.29
(0.35)

Table 2.3: The effect of a single neglected change-point in B on the European at-the-money call
option price. GARCH(l 1) Option Pricing Model Duan (1995) withr = 0, A = 0.01 and h; =
3.20e-5+ 0.20e2 ; + Bihy_1 for i = 1,2. 6 = &+ B. Strike price = Initial stock price = $100.
Parameter estimates are the means of 5,000 simulations. € is the call price calculated using the
second half of the sample and €, isthe call price calculated using the whole sample without taking
the parameter change into account.The annualized volatility 641 of the first segment isaways 0.20.
Standard errors are given in parentheses.

Parameter Changes  Parameter Estimates (Whole Sample) 5-Day 30-Day 90-Day

02

Bs

B2 Q) 0 B

0

o

¢

Cn

¢

(o

Cn

0.15
0.20
0.25
0.30
0.35
0.40

0.60
0.60
0.60
0.60
0.60
0.60

0.444
0.600
0.672
0.711
0.735
0.750

2.24e-5
(4.33¢-6)

3.24e-5
(4.62-6)

2.75e-5
(4.33e-6)

2.05e-5
(3.77e-6)

1.57e-5
(3.04e-6)

1.29e-5
(4.76e-6)

0.20
(0.02)

0.20
(0.02)

0.20
(0.02)

0.20
(0.02)

0.20
(0.02)

0.19
(0.02)

0.62
(0.05)

0.60
(0.04)

0.67
(0.04)
0.72
(0.03)

0.76
(0.03)

0.78
(0.03)

0.82
0.80
0.87
0.92
0.96
0.97

0.177
0.200
0.223
0.253
0.283
0.311

0.73
(0.02)

0.97
(0.03)

1.21
(0.05)

1.45
(0.08)

1.67
(0.12)

1.90
(0.16)

0.86
(0.02)

0.97
(0.03)

1.10
(0.04)
1.23
(0.05)

1.38
(0.08)

152
(0.10)

2.02
(0.06)

2.66
(0.09)

3.28
(0.14)

3.90
(0.21)

4.48
(0.29)

5.03
(0.40)

2.35
(0.06)

2.66
(0.07)

2.98
(0.09)

3.30
(0.12)

3.64
(0.18)

3.98
(0.25)

(31

0.

4.
(0.17)

5.85
(0.26)

6.92
(0.37)

7.95
(0.51)

8.90
(0.66)

—~
o]
=

¢
3.5
1
-

N

4.16
(0.11)

472
(0.13)

5.30
(0.17)

5.88
(0.22)

6.44
(0.29)

6.96
(0.38)
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initial value and the value of the second segment. Therefore, the higher the estimate of annualized
volatility, the closer the option price from the whole series is to the option price from the second
segment. Hence, the low estimates of 6 that we obtain if we neglect a change-point in o relative
to neglecting a change-point in o or B result in relatively lower estimates of annualized volatility

on the whole sample.

Table 2.4: True option prices for change in m. European at-the-money call option pricesif param-
eter change points and values are known. GARCH(1,1) Option Pricing Model Duan (1995) with
r=0,A=001land h = wj + 0.2083_1+ 0.60h;_1 fori = 1, 2. Strike price = Initial Stock Price =
$100. Call prices are the means of 5,000 Monte Carlo simulation prices. For each Monte Carlo
simulation, we use 10, 000 sample paths.

Parameter Changes Cdll Pricesc
(8] (O] (O] 5-day 30-day 90-day
0.10 3.20e5 8.00e-6 | 0.49 133 2.36
0.15 3.20e5 180e5| 073 200 354
0.20 3.20e5 3.20e5| 097 266 4.72
025 3.20e5 500e5| 122 333 5.89
0.30 320e5 7.20e5| 146 4.00 7.07
035 3.20e5 980e5| 1.70 466 8.25
040 320e5 128e4| 194 532 9.42

Table 2.5: True option prices for changein o.. European at-the-money call option pricesif param-
eter change points and values are known. GARCH(1,1) Option Pricing Model Duan (1995) with
r=0,A=0.01land h =3.2e5+ (xiatz,l +0.60h;_1 for i = 1,2. Strike price = Initial stock price
= $100. Call prices are the means of 5,000 Monte Carlo simulation prices. For each Monte Carlo
simulation, we use 10, 000 sample paths.

Parameter Changes Call Pricesc

(6)) (05} (0% 5—day 30-day 90-day
015 020 0044 | 075 204 3.57
020 020 0.200 | 0.97 266 4.72
025 020 0272| 119 324 5.80
030 020 0311| 141 378 6.77
035 020 0335| 163 4.28 7.65
040 020 0350 | 1.8 475 8.41

Consistent with the results in Hillebrand (2005), we observe that the effect of a neglected

parameter change in 3 on the parameter estimates of conditiona volatility is smaller than the
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Table 2.6: True option pricesfor change in B. European at-the-money call option pricesif param-
eter change points and values are known. GARCH(1,1) Option Pricing Model Duan (1995) with
r=0,A=0.01and h =3.2e-5+ 0.208t2_1+ Bihi_1 for i = 1,2. Strike price = Initial stock price
= $100. Cdll prices are the means of 5,000 Monte Carlo simulation prices. For each Monte Carlo
simulation, we use 10, 000 sample paths.

Parameter Changes Cadl Pricesc

G2 B1 B> | 5-day 30-day 90-day

0.15 060 0.444| 0.73 2.02 3.55

0.20 0.60 0.600 | 0.97 2.66 4.72

025 060 0672 121 3.29 5.86

0.30 060 0.711| 1.45 3.91 6.96

0.35 060 0.735| 1.69 4.53 8.04

0.40 060 0.750| 1.93 5.12 9.06

effect of a change in w. Since the estimated annualized volatilities from the whole sample in
both cases are close to each other, however, the effect on option prices is similar to the effect
of achange in . We also observe that as the magnitude of the parameter change increases, the
variance of the observationsin Figure 2.1 increases. This also holdsfor changes in the parameters
o and 3 (see Figures 2.2 and 2.3, respectively).

For comparison, we report the true option prices assuming knowledge of the data-generating
parameter values from the second segment in Tables 2.4, 2.5 and 2.6. To gauge bias and estimator

variance, Table 2.7 reports the root mean-square errors for at-the-money options.

Table 2.7: Root Mean Square Errors for at-the-money European call option prices. 62 denotes
annualized volatility of the segment after the change.

Root Mean Square Errors for At-the-Money Options
Omega Alpha Beta

G2 | b-day 30-day 90-day | 5-day 30-day 90-day | 5-day 30-day 90-day
010| 051 124 2.05 — - —
015| 0214 0.36 064 | 011 032 059 | 013 034 0.62
020 | 0.03 0.07 0.13 | 003 0.07 0.13 003 0.07 0.13
025| 012 0.33 057 | 012 031 057 | 012 032 0.58
030| 020 0.60 105 | 024 0.60 108 | 022 061 1.07
035| 023 076 139 | 037 0.88 153 | 031 0.85 154
040| 025 0.87 173 | 049 114 193 | 039 1.07 1.97
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2.4.2 In-the-Money and Out-of-the-Money Options

In percentage terms, the effect of ignored changes in the parameters of conditional volatility on
out-of-the-money option prices is substantially greater than it is on at-the-money option prices.
The effect increases as the out-of-the-moneyness gets deeper. The price of a deep-out-of-the-
money option isusually very close to zero and a change in the unconditional volatility that affects
the probability of the option finishing in the money at expiration date has a large percentage im-
pact on the price. Analogously, the price of a deep-in-the-money option ishigh and achangeinthe
unconditional volatility that affects the probability of the option finishing in the money at expira-
tion date has a small percentage impact on the price. Therefore, the price of a degp-in-the-money
option is much less affected by an ignored change in one of the parameters of the conditional
volatility process than the price of a deep-out-of-the-money option. This effect can aso be seen
in Table 2.9, where we report root mean square errors and the bias is measured in dollar terms.
Results for in-the-money and out-of-the-money options in the case of a change in @ are givenin
Table 2.8. Results are similar for changesin o and B and are available upon request. Also, results

for deep-in-the-money and deep-out-of-the-money options are available upon request.

Changes in Omega, Maturity = 5 Days Changes in Omega, Maturity = 30 Days Changes in Omega, Maturity = 90 Days
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Figure 2.4: The effect of the change in parameter m on European in-the-money call optionsin
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (€,) without accounting for the parameter change, and the option price
obtained from the second part of the sample (€). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axisthere are 5,000 observations.
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Figure 2.5: The effect of the change in parameter o on European out-of-the-money call optionsin
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (€,) without accounting for the parameter change, and the option price
obtained from the second part of the sample (€). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 5,000 observations. For 5
days to maturity, alarge proportion of the simulated option prices are close to zero in the case of
negative changes and no change in annualized volatility. We therefore excluded these cases.

Table 2.9: Root mean square errors for European in-the-money and out-of-the-money call op-
tions when o changes. Results for o from Table 2.7 are added for easy comparison. ¢, denotes
annualized volatility of the segment after the change.

Root Mean Square Errors for changesin .

At-the-Money In-the-Money Out-of-the-Money
G2 | bday 30-day 90-day | 5-day 30-day 90-day | 5-day 30-day 90-day
0.10 | 051 124 205 | 0.03 033 119 | 002 0.30 1.19
015| 014 036 064 | 002 011 039 | 0.00 0.08 0.39
020 | 0.03 0.07 0.13 0.03 007 0.13 000 0.03 0.09
025| 012 0.33 057 | 003 0.16 044 | 000 014 0.45
030| 020 0.60 105 | 003 031 081 | 001 029 0.86
035| 023 0.76 139 | 004 043 112 | 002 042 1.19
040| 025 0.87 173 | 006 055 144 | 003 054 151

2.5 Empirical Results

To study the effects of possible change-pointsinreal data, we consider S& P500 index returns. The
sample ranges from February 1, 1997 to August 20, 2007. First, we test for an unknown change-
point using the statistic proposed by Kokoszka and Leipus (1999, 2000). We find that there is a
single structural break on April 28, 2003 at 1% significance level. Looking at Figure 2.6, we see
that until this date the index returns exhibit relatively higher volatility compared to the post-2003
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Figure 2.6: S&P500 returns between February 1, 1997 and August 20, 2007. Change-point at
April 28, 2003 according to Kokoszka and Leipus (1999, 2000).

period.
If the GARCH(1,1) model (Equations (2.1) to (2.3)) is estimated without accounting for the

detected change-point, we get the following results (standard errors in parentheses):

hy = 1.336e-6+0.072e2 ; +0.917h;_1.
(5.69e-7)  (0.013) (0.013)

We assume a zero interest rate for an easier comparison of option prices with different strikes
and maturities. The estimated annualized unconditional volatility 6 isequal to 0.18 and Ais equal
t0 0.07 (s.e. = 0.02).

If the model is estimated by segmenting the sample according to the estimated parameter

change, we obtain the following results:
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1-Feb-1997 through 28-Apr-2003:

hy = 9.332e-6+0.099¢? ; +0.849h; 1,
(2.15e-6)  (0.024) (0.031)

A

A1 :? 57)and<51—0212

29-Apr-2003 through 20-Aug-2007:

hy = 2.038e-6+0.052¢2 ; +0.911h_1,
(6.72e7)  (0.015) (0.021)

A, = 0.08 and 6, = 0.116.
(0.022)

Table 2.10: European Call Prices - GARCH(1,1) Moddl. K isthe strike price and, S= $1445, is
theinitial stock price. € isthe call price calculated by using the second half of the sample and €,
is the call price calculated by using the whole sample without taking the parameter change into
account.
5-Day 30-Day 90-Day

S/K ¢ Cn ¢ Cn ¢ Cn

0.90 | 0.00 0.00 0.11 1.88 3.00 13.67

1.00| 8.40 1296 | 2261 3461 | 3981 60.34

110 | 131.37 131.35| 131.59 134.02 | 135.38 146.92

115 | 188.48 188.47 | 188.52 189.11 | 189.44 195.96

The GARCH(1,1) estimation results show that there is a substantial shift in annualized un-
conditional volatility of the S& P500 return series. The estimated persistence parameter ) equals
approximately 0.99 if we ignore the change-point. European call option prices are given in Table
2.10 for different levels of moneyness S/K, where Sis always equal to $1445, the index price on
Aug 20, 2007. The results strongly support our simulation experiments. If the option is at-the-
money (S/K = 1), we observe roughly a 150% distortion from ignoring the change-point. If the
option is out-of-the-money (S/K < 1), theeffect isbigger. If the optionisin-the-money (S/K > 1),

the effect is smaller. The effect increases with time to maturity.
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One of the widely accepted features of financial dataisthat it exhibits asymmetry between re-
turnsand volatility. Itiswell documented that asset returns are negatively correlated with volatility,
which means that a negative shock to returns increases volatility more than a positive shock. This
isthe so-called leverage effect. To capture thisfeature of asset returns, Engle and Ng (1993) devel-
oped the Non-linear Asymmetric GARCH (NGARCH) model. The conditional variance process
of the NGARCH(1,1) model isthe following:

h = o+ o(er—1—yvhe1)>+Bhe1, (2.15)

where yis called the leverage parameter and all other variables are defined as before.
Under the locally risk-neutral measure Q, along with Equations (2.4) and (2.5), the conditional

variance process follows:

=0 (Goa— (o )VAcT) + B, (216

where {;_1 isadifferent random variable than &;_1 due to the measure change.

If the NGARCH(1,1) model (Equations (2.1), (2.2) and (2.15)) is estimated under measure
P without accounting for the structural break, we get the following results (standard errors in
parentheses):

2.284e-6 4+ 0.0695(e;_1 — 1.056+/hy 0.841
he = (5.14e-7) * (0012)( 1 (0.113) + 0027ht L

A= 0.02 and 6 = 0.214.
(0.02)

If the model is estimated by segmenting the sample according to the estimated parameter
change, we get the following: 1-Feb-1997 through 28-Apr-2003:

= 7.135e-6 4 0.0496(e;_1 — 1.889+/h; 240.739 ,
(1.297e6)  (0.01) (Et-1 (0.212) (0.053) M1
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M= ? 05)and01_0227

29-Apr-2003 through 20-Aug-2007:

4.59e-6 + 0.062(gt_1 — 1.549+/ h; —|—0712 ,
= (1.33e-6) (0019)(t ! (0.282) (0.0 s

A» = 0.05 and 6, = 0.121.
(0.024)

Table 2.11: European Call Prices - NGARCH(1,1) Model. K isthe strike price and, S= $1445,
istheinitial stock price. €isthe call price calculated by using the second half of the sample and
Cn isthe call price calculated by using the whole sample without taking the parameter change into
account.
5-Day 30-Day 90-Day

S/K ¢ & ¢ & ¢ &

0.90 | 0.00 0.00 0.00 0.00 1.50 3.08

1.00| 5.98 6.26 20.70 2175 | 4055 4897

1.10 | 131.35 131.36 | 131.97 132.26| 138.22 144.79

115 | 188.47 188.48 | 188.56 188.71| 191.35 195.96

The parameter estimates of the NGARCH(1,1) model exhibit similar results obtained from
GARCH(L,1). The persistence parameter o(1+?) + B is estimated at approximately 0.99. The
unconditional volatility changes substantially in the second segment of the sample. European call
option prices are reported in Table 2.11. The results exhibit similar characteristics. The effect
of the neglected parameter change decreased somewhat for at-the-money and out-of-the-money

options.

2.6 Summary

We analyzed the effect of ignored parameter changes in the parameters of the conditional variance
of a GARCH(1,1) model on option prices. Ignoring such parameter changes and assuming a

constant unconditional volatility result in biased parameter estimates. Unconditional volatility is
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an important determinant of option prices and biased estimation leads to biased option prices.
Our Monte Carlo simulation experiments provide evidence for this intuition. For at-the-money
options, we observe substantial price distortions as a result of the ignored change-point. The
bias is more pronounced for out-of-the-money options and increases as options move deeper out-
of-the-money. The bias decreases for in-the-money options and becomes negligible as options
move deeper in-the-money. In our simulation experiments, we observe that negative changes in
unconditional volatility affect option pricesrelatively more than positive changes in unconditional
volatility. An empirical analysis of S&P500 index returns supports our simulation experiments
and provides evidence that if parameter changes in the conditional variance are ignored, option
prices are biased. Using the NGARCH model, which accounts for the leverage effect, decreases

the bias, but does not eliminate it.
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Chapter 3

Closed-form GARCH Option Pricing M odel
and Ignored Parameter Changes

3.1 Introduction

One of the main disadvantages of GARCH option pricing modelsisthe fact that there is no closed-
form solution and Monte Carlo simulation methods have to be used to price European options.
Heston and Nandi (2000) propose a GARCH option pricing model that has a closed-form solution
for the option price. Their model captures both leverage effects and time-varying volatility, which
have indisputably become two of the most important empirical facts about financial volatility time
series.

As mentioned earlier in Chapter 1, the leverage effect refers to the negative correlation of
volatility with stock returns. The GARCH modelsthat capture the leverage effect generate negative
skewness in the risk-neutral distribution of stock returns, which means that the probability mass
in the negative tail of the return distribution is greater than in the positive tail of the distribution.
Therefore, these models generate lower call option prices. In simpler words, a decrease in the
volatility of stock returns leads to two effects: 1) a decrease in the value of a call option (due to
positive Vega) and 2) higher stock returns, which in turn leads to an increase in the value of a call
option. Our study simulation study shows that the first effect dominates the second one and the

net effect is a decrease in the value of acall option.
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In Section 2.5, we studied change-points in S&P500 index returns. Since the index return
series switches from a high to low volatility regime on April 28, 2003 in our sample, the esti-
mation of the unconditional volatility is overestimated when the regime-switch is ignored. This
creates a positive bias in option prices. However, when we incorporate the leverage effect the bias
decreases. Increases in volatility generate higher option prices, but because of the negative corre-
lation between stock price and volatility, the stock price decreases and so does the value of a call
option. In other words, the effect of an increase in volatility is partially offset by the decrease in
the stock price.

In this chapter, | analyze thisissue with a ssmulation study. | analyze the effect of ignored pa-
rameter changes in the parameters of the data-generating GARCH model on European call option
prices using Heston’s and Nandi’s (2000) closed-form GARCH option valuation model. Heston's
and Nandi’s (2000) model issimilar to Engle’s and Ng's (1993) model with a slight change, which
is essential in obtaining the closed-form solution. In a simulation study, | show that neglecting
parameter changes in the Heston and Nandi (2000) closed-form model also creates biased option
prices. The results are presented in Section 3.4.

| also present the disproof of the solution for the model when it has a higher order than p =
g = 1. The closed-form solution of the model depends on the inversion theorem of characteristic
functions. Specifically, if one can write the characteristic function of the stock price process, then
by using numerical inversion methods, the probability density function (pdf) of the stock prices
can be obtained. The pdf can then be used to evaluate option prices. The problem with the model
for higher ordersthan p= q = 1 isin the derivation of the characteristic function. The details of
the model and the disproof are presented in the next section. The closed-form solution of Heston

and Nandi (2000) workswell for p= g = 1 and can be used to estimate European option prices.
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3.2 TheModd

The closed-form solution presented in Heston and Nandi (2000) depends on the inversion of the
characteristic function of the stock price process. | start with the brief description of the inversion
method.

The characteristic function ¢y (¢) of arandom variableY is defined as:

ov () = E[exp(igy)],

wheret € R and i istheimaginary unit.
If the cumulative distribution function of Y is Fy, then the Fourier Transform of the pdf fy of
Y is
ov(0)= [ _explioy) fv(y)ay.

which can also be written as:

ov(0) = [ explioy)dFy (y).

where Ry isthecdf of Y.
Then, by applying the inverse Fourier transform, the pdf of Y can be obtained from the char-

acteristic function:

fy(y) = Z—i/Zexp(—id)y)cpv(@d@

Next, | will go through the derivation of the closed-form GARCH option pricing model. |
follow the notation used in Chapter 2 and Heston and Nandi (2000). In the setup of the model in
Heston and Nandi (2000), assuming time step length A = 1, the logarithm of the stock price S

followsa GARCH process given as.

log(S) = l0g(S—1) + 1 + A + /Ivz, (3.2)
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p q

h =0+ Y Bit—i+ Y ai(z-i —vivh_i)? (3.2
i—1 i—1

Zt“:t—l ~ N (07 1)7 (33)

where r isthe risk-free interest rate; A is the unit risk premium; o constant, o; and [3; are autore-
gressive parameters, v; istheleverage parameter; z isanormally distributed innovation with mean
zero and variance one and F; is a o-field of al information up to and including time t. Given
these specifications, the stock returns log(S/S—1) follow a normal distribution with mean zero
and time-varying variance h.

This specification of the model allows for a closed-form solution to exist. Feller (1971) and
Kendall and Stuart (1977) show that probability density functions can be recovered by inverting
characteristic functions, a brief description of which is given above. Heston and Nandi (2000) ap-
ply this method to the above model and obtain a closed-form solution. The details of the derivation
below shows that the solution does not hold for orders of p and g higher than 1.

Let x =log(S) and let f(t;T,d) bethe conditional moment generating function of Xr,

foi=f(t;T,0) = Ec[exp(oxr)]. (34)

For notational convenience, the function arguments are dropped hereafter. The functional form
of the conditional moment generating function of xt proposed by Heston and Nandi (2000) isgiven

asfollows:

p q-1
ft = exp <¢Xt +Ac+ Y Bithz-i+ Y Cig <2t+1—i —Yiv/ ht+1—i> 2) : (3.5

i=1 i=1
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Next, by applying the law of iterated expectationsto f; we get

ft = Et [ fra]

p g-1 2
exp{ OXe+1+ A1+ 2 Bitt1hty3-i+ Z Citr1 <2t+27i RV ht+27i> }] :

i=1 i=1

(3.6)
=Ty

Substituting Equations (3.1) and (3.2) gives.

( o (Xt +r+Ah 1 ++/ ht+1zt+1> + At
2
+B1t11 (Blht+1 +og <Zt+1 —T1V ht+1> )

p—1
o+ Y Birahei1
=1

q-1

+ ; Oli+1 (ZH—l—i —Yi+1V/ ht+1—i) :

+B1t11

p-1 2
[

+ ) Bisttsthio—i +Criyt (ZH—l Y1V ht+1)
i—1

L \

g-2 2
+ ) Cit1t41 <2t+17i —Yi+1V hl+1fi>
i—1

Rearranging Equation (3.7) gives.

( O +r)+Forh 1+ 01z 1+ A
2
+Brtr1Biht i1 +Bigraon <2t+1 RV ht+1>

p—1
+B1t410+B1tr1 Y, Bisthey1i

=1

g-1 2
+B11 Y Ol <2t+17i —Yi+1V/ ht+1fi)
i—1

fi = Eq exp (38)

p—1 2
+ ) Bisttsthio—i +Criyt (Zt+1 —Yivht+ 1)
i—1

g-2 2
+ Cis1e41 <2t+1—i —Yi+1V ht+1—i)
i—1

L \
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Now, define Q = 04By t+1 4+ C1t+1, collect terms and rearrange:

fi = E¢ [exp

B (

2
OX+r)+Ar1+Bri10+Q <zt+1 — V1A /ht+1)
+ (OA+Bat11B1) b1 + 0/ I 1z 11

p—1 p—1
+B1t+1 Y, Bivther1—i+ Y, Birarsaheyo i
i=1 i=1

g-1 2
+B1ts1 ), Gl <Zt+1fi —Yi+1V ht+1fi>
i—1

q-2 5
+ Y Cis1t41 <Zt+1—i —Yir1V/ ht—i—l—i)
i—1

L \

(39

Complete the square by adding and subtracting y16h 1 and %ht+1. Rearranging the terms will

give:

f =

[t

exp

\

2 )
O +T1)+Ap1+ 0Bl +Q (Zt+1 — (Yl — %) vV ht+1)

2 p-1
+ ((I)K—i— Bl,t+1[31+¢Y — %) het1+ Bits1 z Bit+1he1i
i=1

p—1

g-1 2
+ Y Bit1t+1ho—i +Brgp1 D, iyt <2t+17i —Yi+1V/ ht+1fi)
1 i—1

q-2 5
+ Y Cis1t41 <Zt+1—i —Yir1V/ ht+1—i)
i—1

J

(3.10)

2
All the terms in Equation (3.10) are known at time t, except Q <2t+1_ (yl— %) \/h[+1> .

ab?

Apply the fact E [exp(a(z+b)?)] = exp (—% log(1—2a) + m) , Where z is a standard normal

random variable, to Q <zt+1 ~ <Y1 - %) ht+1> ’.

[

exp (Q (Zt+1— (Yl— %) m>2>] =exp —%|09(1—29)+

o -n) o
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Now, substituting this result in Equation (3.10) gives:

fi = exp

;

1
O (% +1)+Ar1+ Bl — 5 log(1—2Q)

+ ¢7»+|31,t+1l31+¢71_ﬁ+ 1-2Q

p—1 p—1
+B1t+1 Y, Bivtheri—i+ D, Bisgeriheyo i

i=1 =1

g-1 2
+B1t41 D, Oyt <Zt+1fi —Yi+1V/ ht+1finn>
i—1

q-2 2
+ G141 <2t+17i —Yi+1V/ ht+1fin)
i—1

\

2 o(d-n)

hty1

Complete the square by adding and subtracti ng%ﬁhtH. Rearranging gives.

fi = exp

(

1
OXt + Or + Ag1+ (DB]_JJFJ_ =5 |Og(1 — ZQ)

1

+ <¢(k+w) +BuaBr— Y+ T g

p-1 p—1
+B1tr1 D, Birthes1—i+ Y, Birrtriheiz-in
i=1 i=1

g-1 2
+B1t1 Y, Oit1 (ZH—l—i —Yit1V ht+1—i>
i—1

q-2 ,
+ Y Cit1t41 <Zt+1—i —Yi+1V/ ht+1—i>
i—1

\

1/n2(0 —y1)?

n) e y1

Vs

(3.11)

(3.12)

Now, rearrange the guess function (equation (3.5)) to make it easily tractable when we solve

for the coefficients A(.),Bi(.) and Ci(.).

p

OX + A+ Brtheia + 2 Bit1thtra-i
f = exp o i=1

: -gllc” (aeai—wv/Aeas)

33
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Comparing Equations (3.12) and (3.13), we get the following results:

1
A =0r+A 1 +0B1ii1— EIog(l—ZQ), (3.14)
1, 1/2(6—m)2
Bt = 0(A+7v1) +BrtiaP1— EY% + % +Bat+1- (3.15)
Bit = B1t+1Bi + Bit1t41, for 2<i <p. (3.16)

Equations (3.14)-(3.16) are the same as the ones given in Heston and Nandi (2000). However,
the problem occursin theC;(.) terms. The solution for the C;(.) termsin Heston and Nandi (2000)

isgiven asfollows:

Cit=0i41B1t11+Ciyrp41, for 1<i<qg—-1. (3.17)

To see that Equation (3.17) does not give the correct result, let's take the C1¢ terms from
Equation (3.13) (For ssimplicity i = 1 is chosen. The result holds for all i). Compare Equation
(3.13)to Equation (3.17): In Equation (3.13), C1; isthe coefficient of (z — yl\/ﬁ)z. So, Cy ¢ must
be equal to the coefficients of (zt —yl\/ﬁ)z in Equation (3.12). For i = 1, the last two termsin
Equation (3.12) give:

2 2
02B1t11 <Zt - Yz\/ﬁ) +Cati1 (Zt - Ym/ﬁ) : (3.18)
The solution for Cq+ in Equation (3.17) is given as:
Cit = 02B1t11+Cot1.

In order for thisexpressionto satisfy Equation (3.13), (0.2B1 1+ Cat41) from Equation (3.18)
must be the coefficient of (z —y1v/h) 2 Whereas Equation (3.18) show that it is the coefficient of

(z2 —12v/hy) 2. Although it looks like a small typographical error at the end, it cannot be corrected



in the way it is given. The guess function in Equation (3.5) has to be redefined and all the steps
above must be repeated to see if the guess function and the iterated solution match. However, we
have not been able to find a correct form of Equation (3.5) and to the best of our knowledge, there
has been no correction provided in the literature yet.

The model works for the Heston and Nandi (2000) version of the GARCH(1,1) specification,

which isgiven as:

log(S) = log(S—1) +r +Ah + /hez, (3.19)
=0+ Bheito (21— 1/hr) (320)
z|Fi_1~N(0,1). (3.22)

To calculate option prices we need the risk-neutral distribution of the stock price, which is

shown by Heston and Nandi (2000) to be:

log(S) = log(§ 1) +r — 0.5k + /hZ, (3.22)
2
h= -+ Bhs+o (% -7 Vo), (3.29
where
Y =v+A+05.
The moment generating function of the logarithm of the stock priceis asfollows:
fi(0) = S exp (A +Bihs1) (3.24)
where
A= A1 +0r + 0By —0.5log(1—20Bt 1), (3.25)
_ 0.5(¢ —v)
Bt —q)(?"—‘f_’Y) _0'5Y2+BlB[+l+m. (326)
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Equations (3.25) and (3.26) are solved recursively with the terminal conditions:
At =Br =0,

since xt isknown at time T.
Following Feller (1971) and Kendall and Stuart (1977), Heston and Nandi (2000) show that if

the characteristic function of the logarithm of the stock priceis f(i0), then

<05+/ lK 'T?{)fq’ﬂ)}dd))’
c(osed [l

where Re[ . | isthe real part of a complex number.

E([Max(Sr —K,0)] = (3.27)

Given all the above information, the price of a European call option that expiresat time T and

with astrike price K is given as:

C = e'TUE Max(Sr—K,0)]

r(T-t) —iq) * (1
055+ = / Re{ f.(|¢+1)}d¢
_ o ¢ (3.28)

et (T—1) 1 = [K*f(io) ’
Ke (o.5+n /O Re[iiq) do

where E*[ . | isthe expectation with respect to risk-neutral probability measureand f*() isthe

characteristic function of the risk-neutral model given in equations (3.22) and (3.23). We evaluate
theintegralsin Equation (3.28) numerically in C++ by using numerical integration routine gromo()

provided in Press et a. (2002).
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3.3 Simulation M ethodology

First, a series of stock prices is ssmulated under the physical probability measure P. The series
has 4, 000 observations with a parameter change at observation 2,001. The model usedisgivenin

eguations (3.17)-(3.19) with a parameter change at observation 2,001

log(S) = l0g(S—1) + 1 + A + /Ivz, (3.29)
b= o+ Bita i (201 1/AC) L fori=1.2 (330
Zt“:tfl ~N (O7 1)7 (331)

where i = 1 denotes thefirst regime of 2,000 observationsand i = 2 denotes the second regime of
2,000 observations. We set initial volatility equal to the unconditional mean.

After simulating the system above, the parameters (a) for the whole series and (b) for the
last 2,000 observations are estimated by maximum likelihood. Estimated parameters are used
to evaluate the characteristic function given in Equations (3.24)-(3.26) after replacing ¢ with i¢
wherever it appears. Option prices are then estimated by using Equation (3.28). This processis
repeated 500 times for each of the scenarios. The numbersin Tables 3.1 through 3.3 and Figures
3.1 through 3.3 are the means of these 500 call prices. For brevity, | analyze only the changesin

. The changesin o and 3 are analogous.

3.4 Smulation Results

In thefollowing, | analyze the effect of changesin o of the conditional volatility process on at-the-
money, out-of-the-money, and in-the-money European Call options. The model given above from
Equation (3.29) to (3.31) is simulated for a single change in o at observation 2001. The initial

stock price S is assumed to be $100. We keep the interest rate r at zero to make cross-maturity
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analysis easier. Following Heston and Nandi (2000), | choosey =421 and A = 0.2.

The annualized volatility o isequal to 1/250(w + o) /(1 — Y20 — B). o1 denotesthe annualized
volatility of the first half of the series and is set equal to 20% initially. 6, denotes the annualized
volatility of the second half of the series and is set to different values, which in turn determines
the changein w, asin the method followed in Chapter 2. | initialy set ; = 2.5e-5, oi; = 1.33e-6,
and 1 = 0.60, so that the initial annualized volatility is 20%. For example, to study the effect
of the change in ® when the annualized volatility increases to 35%, w> is changed accordingly to

7.92e-5. Theresults are presented in Tables 3.1-3.3 and Figures 3.1-3.3 below.

Changes in Omega, Maturity = 5 Days Changes in Omega, Maturity = 30 Days Changes in Omega, Maturity = 90 Days

80

(E RS 4

o Ed o 20 + e |

g‘ i ! E e 20 ;

ﬂ %%Qgé IR T '
- ; L

-60

Figure 3.1: The effect of the change in parameter @ on European at-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (€,) without accounting for the parameter change, and the option price
obtained from the second part of the sample (€). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 500 observations.

When the parameter change is ignored, the estimated persistence of the model increases spu-
riously, as in the case of the Duan (1995) model analyzed in Chapter 2. This can be seen from the
values of 8 (= Yo+ B) in the tables. As the magnitude of the change in the annualized volatility
o increases, the overestimation of the persistence of the model increases. The persistence of the
model implied by the initial values of the parameters is 0.84. Although the model’s persistence
does not change when o changes from one regime to another, when the annualized volatility is
decreased to 0.10 from 0.20 by decreasing o, the estimated persistence increases to 0.99 if the pa-

rameter changeisignored. These findingsarein line with the regime-switching literature reviewed
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Changes in Omega, Maturity = 5 Days Changes in Omega, Maturity = 30 Days Changes in Omega, Maturity = 90 Days

0s O%ét-_i_%_i
t

:
R

~o)lc
~olc
—o)fc

100,

100,

100,
5

i ?
g 5
M +

:
i
=] I
!

T -30
+21

0 +5 +10 1! -5 0 +5 +10 +15 0 -10 -5 0 +5 +10 +15 +20
9% Change in Annualized Volatility 9% Change in Annualized Volatility 9% Change in Annualized Volatility

Figure 3.2: The effect of the change in parameter ® on European in-the-money call optionsin
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (€,) without accounting for the parameter change, and the option price
obtained from the second part of the sample (€). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 500 observations.

in Chapter 2. We see that the direction of the change in unconditiona volatility is negatively re-
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Figure 3.3: The effect of the change in parameter ® on European out-the-money call optionsin
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (€,) without accounting for the parameter change, and the option price
obtained from the second part of the sample (€). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 500 observations.

lated to the direction of the bias in option prices. If unconditional volatility decreases for the
second half of the series with the parameter change, then the biasin option prices will be positive.
For example, from Table 1 we see that if unconditional volatility decreases from 0.20 to 0.10 or
to 0.15 after the parameter change, the option price obtained by ignoring the parameter change
is greater than the option price obtained from the second half of the series. Exactly the opposite

happens if unconditional volatility increases. The main reason for this result is that if the uncon-
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ditional volatility decreases after the parameter change, the estimated unconditional volatility will
be greater than unconditional volatility of the second half of the series when the parameter change
isignored. Sincethe volatility and option prices are positively correlated, it resultsin positive bias

in option pricesin this case.

Table 3.3: Root Mean Square Errors for at-the-money European call option prices. 62 denotes
annualized volatility of the segment after the change.

Root Mean Square Errors for changesin .
At-the-Money In-the-Money Out-of-the-Money
G2 | b-day 30-day 90-day | 5-day 30-day 90-day | 5-day 30-day 90-day
010 023 054 106 | 001 012 0.70 | 0.00 0.00 0.10
015| 012 031 058 | 0.00 0.10 040 | 0.00 0.00 0.26
020 | 0.03 0.05 0.06 0.00 0.02 0.05 0.00 0.00 0.04
025| 0.09 031 059 | 0.00 0.16 047 | 000 0.10 0.44
030| 017 0.62 120 | 001 0.38 099 | 0.00 027 0.85
035| 024 0.88 172 | 003 0.60 149 | 000 047 1.05
040 | 0.37 1.22 236 | 0.05 0.87 207 | 0.00 0.77 1.87

When the parameter change is ignored, the bias in option prices as measured by percentage
differences decreases as moneynessincreases. In other words, ignoring parameter changes affects
out-of-the-money options the most. The reason for thisis the near-zero value of out-of-the-money
optionsand thefact that the probability of the option finishing in the money is affected substantially
when there is a change in unconditional volatility. The differences also increase with the time to
maturity of the option. That is, as the time to maturity of the option increases, we see bigger
percentage differences in option prices as well as more outliers when the parameter change is
ignored.

If unconditional volatility decreases after the parameter change, the percentage differences
due to ignoring parameter changes are smaller in the Heston and Nandi (2000) model than they
are in the Duan (1995) model in Chapter 2. This result is seen especially when pricing at-the-
money and out-of-the-money options. This difference stems from the fact that inclusion of the

leverage parameter in the Heston and Nandi (2000) resultsin negative skewnessin the risk-neutral
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distribution of returns. Negative skewness of the return distribution means that there is more
probability mass in the negative tail of the distribution than in the positive tail. Therefore, models
with negatively skewed return distributions generates lower prices for call options compared to
models with symmetric return distributions. In other words, the leverage effect partially offsets
the effect of a change in the volatility of stock returns on the value of options. For example, a
decrease in volatility decreases the value of a call option since Vega is positive. This effect is
partialy offset by the increase in stock prices, which results from the negative correlation of stock

returns and volatility.

3.5 Summary

In discrete-time modeling of financial returns, GARCH models play an important role since they
capture the stochastic volatility and leptokurtic (fat tails) characteristics of financia return distri-
butions. However, simulation methods have to be used to price optionswhen they are used. Heston
and Nandi (2000) provide a closed-form method of pricing European options by using a sightly
altered GARCH model. This specification allows for asymmetric and leverage effects.

| analyze the effect of an ignored parameter change in the conditional variance process of the
model on European call option prices. Models taking the leverage effect into account generate
negatively skewed return distributions. Compared to the Black and Scholes (1973) or the Duan
(1995) model, this resultsin lower prices for call options and a decrease in bias in option prices
when parameter changes are ignored.

| also show that the solution of the Heston and Nandi (2000) model for GARCH models with
ordersof p= q= 2 or higher isnot correct. Since magjority of the GARCH option pricing models
use GARCH(1,1) and there is little or no support for higher order GARCH models in option

pricing, this result does not undermine the importance of the model.
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Chapter 4

Sengitivity of VaR Models Using GARCH to
|gnored Parameter Changes

4.1 Introduction

Value-at-Risk (VaR) has become a standard measure to numerically evaluate market risk exposures
of agiven portfolio of financial assets. For a given confidence level, VaR is defined as the quantile
of that confidence level. Aninterpretation of VaR istherefore that with the probability specified at
the confidence level, the loss of the portfolio is not going to exceed this quantile. Therefore, VaR
isestimation of the left tail of the distribution of returns on the portfolio. VaR isusually calculated
with 95% or 99% confidence level over 1 day, 10 days or 14 days.

The Basel Committee on Banking Supervision (1996) at the Bank for International Settlements
requires banks and other financial institutions to calculate and report VaR estimates daily. The
Bank for International Settlements requires a VaR estimation with a 99% confidence level over
a 10-day period. Based on these VaR estimates, financial institutions must hold a certain level
of capital. Financial institutions can report their risk exposures to the Securities and Exchange
Commission by using 2-week VaR estimates with alevel of 99% confidence.

The widespread use of VaR as a risk measure has increased the efforts to search for a good
estimation method. In the literature, many different models and methods have been proposed,

which are broadly categorized in three groups:



1. Historical simulation method,
2. Semi-parametric methods,
3. Parametric methods.

Historical simulation methods do not assume any parametric model. Returns are assumed to
be independently and identically distributed (i.i.d.) and the estimation of VaR isbased on arolling
window estimation scheme. However, it is a well-known fact that financia asset returns are not
i.i.d. Although very easy to estimate, historical simulation methods are inaccurate due to thei.i.d.
returns assumption.

Alternatively, one can use a semi-parametric method, such as filtered historical simulation
(Barone-Adesi et al. (1998), Barone-Ades et al. (1999), and Pritsker (2006)), extreme value
theory (McNeil and Frey (2000)), or CAViaR (Engle and Manganelli (2004)).

The most frequently used model in the parametric approach is GARCH. Since estimating VaR
means estimating a quantile of the distribution of returns, volatility modeling plays an important
role in obtaining good VaR estimates. Various specifications of GARCH models have been pro-
posed to model the volatility dynamics of financial return distributions (see Angelidiset al. (2004)
and Duffie and Pan (1997) for an overview). In the literature, there has not been a consensus
among researchers about which model is the best to capture the stylized facts of financial returns
(e.g. fat-tails, leverage effect, volatility clustering, non-normality of distributions, etc.) and about
how to generate better VaR results. The results vary depending on the assumptions about return
distributions and volatility dynamics. The results also vary depending on the selection of portfo-
lio and asset classes. The same method may provide results of different quality when applied to
different portfolios.

Evidence of high persistence of volatility in financia returns has been observed by researchers
intheliterature. Intheearlier chapters, | have cited several studiesarguing that the high persistence

in volatility dynamics may be aresult of structural changes. | have shown that ignoring parameter
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changes in the conditiona variance dynamics of GARCH models results in biased estimates of
option prices. The purpose of this chapter is to analyze the effect of ignored parameter changes
in the conditional variance dynamics of GARCH models on VaR. | follow the simulation method-
ology in earlier chapters and show that VaR estimates are biased when the parameter changes are
ignored.

The rest of the chapter is organized as follows. The next section provides an overview of VaR
estimation methodology. Section 4.3 explains the simulation methodology. Results are given in

Section 4.4 and the last section concludes.

4.2 Evaluating Value-at-Risk

Let ry = log(S) —log(S—1) be the daily return of a financial asset. A single asset portfolio is
assumed to follow the GARCH(1,1) model given as:

re=/hz, (4.1)
z|Fi_1~N (0,1), (4.2)
hy = 0+ oe? ; +Bh_1, (4.3)

where F; isac-field of all information up to and including timet; z is a standard normal random
variable; o constant, oo and 3 are autoregressive GARCH(1,1) parameters. Then the returnsr; are
distributed normally with zero mean and variance h;.

Formally, VaR at timet with a1 — o confidence level isthe solution to the following equation:

Pr(r; <VaRY) = /VaRg f(re)dre, (4.4)

—o0

where f(.) isthe probability density function of a standard normal random variable. Then VaR for
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1-day can be estimated as follows:
VaR = /1 F (), (4.5)

where F~1(.) isthe inverse cumulative distribution function of a standard normal random variable
and F]l+1 isthe 1-day ahead forecast of the variance of r;.
JPMorgan’s RiskMetrics uses a specia form the GARCH model given above, which is called

exponentially weighted moving average model:
he = oef_y +Bhe1. (4.6)

RiskMetrics does not estimate the parameter of the model and assumes that they are constant at
B=0.94 and oo = 0.06. The model is nonstationary since o.+ 3 is equal to 1. This means that
shocks to the model are permanent and do not die out. This form of GARCH model is called
Integrated-GARCH (IGARCH), which was proposed by Engle and Bollerslev (1986). The choice
of these valuesis due to the high persistence in the volatility of financial returns reported by many
studies. However, as mentioned in earlier chapters, high persistence in volatility may be due to
ignored parameter changes and thisis the main motivation of this chapter. RiskM etrics assumption
about the persistence may create biased estimates of VaR values. In the next section, | analyzethis

issue in asimulation study.

4.3 Simulation M ethodology and Results

Analogous to Chapters 2 and 3, | simulate the model given in Equations (4.1)-(4-3) with the

parameter values given as.

e = \/Hztv (47)
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Zt“:'[—l ~N (07 1) ) (48)

hy = o; +0.20e? | +0.60h;_1, fori = 1,2, (4.9)

wherei = 1 denotes thefirst 2,000 observations and i = 2 denotes the second 2,000 observations.
Theinitial value of o is set equal to 3.20e-5, so that the initial annualized unconditional volatility
is0.20. Volatility is changed for the second half of the series as specified in the tables.

The series has 4,000 observations with a parameter change at observation 2,001. | consider
only changes in . After smulating the return series, the parameters (@) for the whole series
and (b) for the last 2,000 observations are estimated by maximum likelihood. 1-day, 5-day, and
10-day VaR values at 99% and 95% confidence levels are estimated by using the estimated pa-
rameters from (a) and (b). For 1-day VaR estimations, Equation (4.5) is used. One-day ahead
forecasts of h; are readily calculated since all the variables are known in Equation (4.3) at timet.
Since F~1(0.01) = —2.3264 and F ~1(0.01) = —1.6449, 1-day VaR estimates with 99% and 95%
confidence levels are:

VaR®* = —2.32644/hy 1,
VaR* = —1.64491 /by, 1, respectively.

For longer horizon VaR estimations, Monte Carlo simulationswith 10, 000 repetitions are used.
For example, to calculate the 5-day VaR, we ssimulate 10,000 return series given the model in
Equations (4.1)-(4.3) until t 4+ 5 and calculate each of the 10,000 VaR estimates with 99% and
95% confidence levels as:

VaR* = —2.32644/5hs,
VaR®* = —1.6449,/5h .5, respectively.
Then, VaR is calculated by taking the mean over 10,000 estimates. 10-day VaR is calculated

analogoudly.
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Table 4.1 reports the VaR estimates at the 99% confidence level and Table 4.2 reports the VaR
estimates at the 95% confidence level.

The results show that the VaR estimates are biased when they are obtained ignoring the pa
rameter changes. The direction of the bias depends on the direction of the change in unconditional
volatility. For example, if annualized volatility of the second segment of the seriesis lower than
that of the first segment, ignoring the parameter change overstates the VaR estimates. If annual-
ized volatility of the second segment of the series is higher than that of the first segment and the
parameter change is ignored, VaR is biased downward. This means that the risk of the portfolio
isunderstated. The reason for this result is the spurious estimation of annualized volatilities when
the parameter change is ignored. In the case of a decrease in annualized volatility for the sec-
ond segment of the return series, ignoring the parameter change will result in overestimation of

annualized volatility and therefore overestimation of the risk of a highly negative return.

Changes in Omega, 1-Day Value at Risk Changes in Omega, 5-Day Value at Risk Changes in Omega, 10-Day Value at Risk
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Figure 4.1: The effect of the change in parameter @ on VaR in percentages. The vertical axis
shows the percentage difference between the VaR obtained from the whole sample (VaR,,) without
accounting for the parameter change, and the VaR obtained from the second part of the sample
(VaR). The horizontal axis shows the percentage change in annualized volatility. For each value
on the horizontal axis there are 1000 observations.

Figure 4.1 showsthat the biasincreases with the magnitude of the change in annualized volatil-
ity. The intuition behind this result isthat the greater the change in annualized volatility, the more
pronounced the overestimation or underestimation of unconditional volatility. VaR at the 99%

confidence level and VaR at the 95% confidence level are both quantile estimates of a standard
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Table 4.2: The effect of a single neglected change-point in ® on 1-day, 5-day, and 10 VaR at
the 95% confidence interval. hy = w; +0.20e? ; +0.60h;_1 for i = 1,2. 8 = G+ . Parameter
estimates are the means of 1,000 simulations. VaR is the VaR calculated using the second half of
the sample and VaR, is the VaR calculated using the whole sample without taking the parameter
change into account.The annualized volatility 61 of the first segment is always 0.20. Standard
errors are given in parentheses.
Parameter Changes 1-Day 5-Day 10-Day
G2 w1 2 VaR VaR, | VaR VaR, | VaR VaR,

0.10 3.20es5 800e6| 1.02 111 | 227 258 | 3.22 382
(0.21) (0.27) | (0.21) (0.54) | (0.14)  (0.68)

0.15 3.20e5 180e5|150 162|339 380 | 481 552
(0.31) (0.32) | (0.30) (0.39) | (0.21)  (0.29)

020 3.20e5 320e5| 204 204 | 456 456 | 643 6.43
(047) (0.46) | (047) (045) | (0.31) (0.27)
0.25 3.20e5 500e5| 253 242 | 567 526 | 802 7.33
(0.57) (0.63) | (0.56) (0.75) | (0.37)  (0.51)

0.30 3.20e5 7.20e5| 300 282|677 6.13 1359 11.98
(0.66) (0.80) | (0.69) (1.27) | (0.49) (1.19)

0.35 3.20e5 980e5| 35 341|795 742 |11.25 1021
(0.78) (1.06) | (0.78) (2.03) | (052)  (2.39)

0.40 3.20e5 1.28e-4| 402 387 | 9.04 849 |1283 11.75
(0.87) (117) | (0.85) (241) | (058) (3.07)

Table 4.3: Root Mean Square Errors
Omega
99% Confidence 95% Confidence
62 | l-day 5-day 10-day | 1-day 5-day 10-day

010 065 089 128 | 046 063 091
0.15| 048 080 108 | 0.3 057 0.76
020| 035 037 0.38 029 032 033
025 090 120 121 | 064 085 0.8
030| 1.16 201 233 | 082 142 165
035] 151 29 368 1.07 209 260
040| 1.67 349 460 1.18 247 3.25

normal variable. Therefore, the the percentage biases are the same for both cases. We only show

the graph for VaR at 99% confidence level.
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4.4 Summary

VaR as measure of risk exposure has become important since it is required by regulatory agencies
such as the Securities and Exchange Commission and the Bank for International Settlements.
Among parametric methods of estimating VaR, GARCH models are by far the most frequently
used to capture the stylized facts of financial asset returns. Ignoring parameter changesin GARCH
models generates spurious results. In a simulation experiment, | show that VaR estimations based
on GARCH models are biased when parameter changes are ignored. Therefore, a change-point

study is needed before estimating the parameters of GARCH models and VaR.
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Chapter 5

Conclusions

Among stochastic volatility models, GARCH models are the most frequently used to forecast the
volatility dynamics of financial asset returns. Severa studies show that financia returns exhibit
volatility clustering and fat-tails. GARCH models are not only capable of capturing these charac-
teristics, but also can be specified in various ways to capture other stylized facts, such as negative
correlation between asset returns and volatility and non-normality of asset returns.

High persistence of financial asset returns have been documented in many studies. In GARCH
models, persistence of volatility is measured by the sum of estimated parameters. A value close
to 1 is considered to indicate high persistence. In the literature, severa studies show that when
there are structural breaks in the data generating process and the sum of estimated autoregressive
parameters approaches to 1, parameter estimates of GARCH models are spurious. An increasing
number of studies show that the high persistence feature of financial asset returns may be due to
structural breaks.

In this dissertation, | study the effect of this phenomenon on option prices and Value-at-Risk.
Options are derivative securities, the values of which are derived from another underlying asset or
assets. They are mostly used for hedging financial risk and are an important financial tool. Value-
at-Risk is used to measure the downside risk of a portfolio and it has become a standard measure
of market risk. The Bank for International Settlements require banks to report their VaR estimates

daily. The Securities Exchange Commission allows financial institutions to use VaR as a measure
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of their risk exposures.

In Chapter 2, | analyze the effect of ignored parameter changes in the condition volatility of
a GARCH model on European call option prices. Simulation studies show that the estimation
of option prices is biased when parameter changes are ignored. The main reason of the bias is
the spurious estimation of volatility. The value of an option depends positively on volatility of
the underlying asset. The direction of the bias depends on whether the estimated unconditional
volatility when parameter changes are ignored is higher or lower than unconditional volatility of
the segment after parameter changes. In the case of a parameter change that results in a lower
(higher) estimated unconditional volatility for the second segment of the series (the segment after
parameter changes), the bias in the prices of options is positive (negative). In addition, it is ob-
served that a negative change in unconditional volatility results in more pronounced bias than a
positive change in unconditional volatility. In a change-point study on S& P500 returns, we find
that there is a single structural break on April 28, 2003 at 1% significance level. The estimated
unconditional volatility for the segment after the structural break is lower than the estimated un-
conditional volatility for the whole data without accounting for the structural break. Therefore,
based on our simulation study, we expect that when the structural break isignored, options should
be overpriced. The results support this intuition.

Theempirical study in Chapter 2 al so showsthat the biasin option prices decreases but does not
disappear when GARCH modelsaccount for leverage effects. Leverage effectsrefer to the negative
correlation between asset returns and volatility. When volatility is high, asset prices decrease and
when volatility islow, asset pricesincrease. In Chapter 3, | analyze the effect of ignored parameter
changes on European call options when leverage effects are accounted for. | use Heston's and
Nandi’s (2000) closed-form GARCH option pricing model to study this phenomenon. Results
support the empirical finding of Chapter 2. The bias in option prices decreases when a leverage
effect parameter is included in the model. The intuition behind the results is as follows: When

volatility decreases, the price of a call option decreases. However, due to the leverage effects,



the stock price increases. This, in turn, increases the price of acall option and as aresult partially
offsetsthe decrease dueto the decrease in volatility. Therefore, taking leverage effectsinto account
results in aless pronounced biasin call option prices. In Chapter 3, | also show that the closed-
form solution for the GARCH option pricing model is incorrect for orders p and q greater than
1

In Chapter 4, | analyze the effect of ignored parameter changes on VaR estimates that are based
on GARCH models. | find that VaR estimates are biased when parameter changes are ignored. If
a change in the parameters of the model increases (decreases) unconditional volatility, the bias
in VaR estimates is negative (positive). The bias is positively correlated with the magnitude of
change in unconditional volatility.

We see that in all the cases considered, ignoring parameter changes in conditional volatility
results in biased estimates of option prices and VaR. Therefore, a change-point study is needed

before estimating the parameters of GARCH models.
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