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Abstract

In GARCH models, neglecting parameter changes in the conditional volatility process results in

biased estimation. The estimated sum of the autoregressive parameters of the conditional volatility

converges to one. In Chapter 2, I analyze the effect of changes in the parameters of conditional

volatility on European call option prices when these parameters are estimated ignoring the change-

points. Simulation studies show that ignoring parameter changes in the conditional variance pro-

cess of GARCH(1,1) models leads to biased estimates of option prices. The bias, measured in

percentages, is most pronounced for out-of-the-money options, substantial for at-the-money op-

tions, and vanishes as options move deep-in-the-money.

The empirical study in Chapter 2 shows that the bias in option prices decreases when NGARCH

model is used. NGARCH model captures the negative correlation between the stock price and

volatility. To analyze this issue further, in Chapter 3, I analyze the effect of changes in the param-

eters of conditional volatility on European call option prices using Heston’s and Nandi’s (2000)

closed-form GARCH option pricing model. Simulation studies show that option prices obtained

by the closed-form expression are biased when parameter changes are ignored, but due to asym-

metry effects the bias is less pronounced compared to the results in Chapter 2.

In Chapter 4, I analyze the effect of parameter changes in the conditional volatility process

on Value-at-Risk (VaR) based on a GARCH model. Ignoring parameter changes results in biased

VaR estimates. The bias is more pronounced when parameter changes imply a greater change in

unconditional volatility. In addition, the sign of the bias is negatively related to the sign of the

change in unconditional volatility.
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Chapter 1

Introduction

Using volatility models has become an important part in empirical asset pricing and risk man-

agement. The ARCH model by Engle (1982) and its generalization, the GARCH model by Boller-

slev (1986), allow for the variance of the underlying process to change in a discrete time frame-

work. Bollerslev et al. (1992) and Bollerslev et al. (1994) provide an overview of ARCH-type

models. Several studies in the existing literature on GARCH models show that estimations of vari-

ous different specification of GARCH models indicate volatility clustering and high persistence in

financial data. Engle and Bollerslev (1986) introduce the I-GARCH (Integrated-GARCH) model

to capture the high persistence feature of asset returns. In this model, shocks to volatility do not

decay over time. Also, several studies in the fractional integration literature find high persistence

in stock returns. Ding et al. (1993), Ding and Granger (1996), and Baillie et al. (1996) are some

of the important studies in the area.

Recently an increasing number of studies show that there may exist nonstationarities in the

volatility of asset returns. Diebold and Inoue (2001) point out the possibility of confusing long

memory and structural change. Some of the important studies in the long memory literature

emphasizing the same phenomenon are Lobato and Savin (1998), Granger and Hyung (2004),

Granger and Teräsvirta (2001), and Smith (2005). Perron and Qu (2004) show that estimation of

the order of integration of a short memory process contaminated with structural changes is biased

upwards and therefore it implies long memory. In GARCH models the issue was first brought up
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by Diebold (1986). Lamoureux and Lastrapes (1990) show in data and simulation experiments that

the GARCH(1,1) model exhibits high persistence due to neglected changes in the constant term

of the conditional variance process. Hillebrand (2005) shows that if there is a neglected parame-

ter change in the conditional variance of a GARCH process, the sum of the maximum likelihood

estimators of the autoregressive parameters of conditional volatility converges to one. Starica and

Granger (2005) show that instead of assuming global stationarity in S&P 500 returns, assuming

nonstationarity and approximating the nonstationary data-generating process by locally stationary

models provides a better forecasting performance. The results from Markov-switching models of

Hamilton and Susmel (1994) (for ARCH models) and Gray (1996) (for GARCH models) indicate

that locally stationary models provide lower persistence estimates. In summary, the conclusion

from these studies is that assuming global stationarity and a constant unconditional variance for a

process contaminated with parameter changes results in high persistence estimates and poor fore-

casting performance.This dissertation analyzes the effect of ignored parameter changes in condi-

tional variance process of the GARCH model on option prices and Value-at-Risk.

An option is a derivative security whose value depends on one or more underlying assets. A

call (put) option gives its owner the right but not the obligation to buy (sell) its underlying asset at a

specific price (strike price) and at a specific time. Options are widely used in financial markets for

hedging risk. Mispriced options may lead to arbitrage opportunities and a substantial increase in

the portfolio risk. An arbitrage opportunity exists if an option is overpriced or underpriced relative

to its expected value. For example, if an option is underpriced, a financial institution can buy the

option by issuing a bond at the same interest rate the option value is discounted from its expected

value at the expiration and obtain risk-free profits when the option expires. In Chapters 2 and 3, I

analyze the effect of a parameter change in conditional variance process of the GARCH model on

option prices.

Value-at-Risk is an important risk measure that is widely used by financial institutions to re-

port their market-risk exposures. It is used by regulatory agencies to control the risk exposures of
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financial institutions. The Basel Committee on Banking Supervision (1996) at the Bank for Inter-

national Settlements requires banks to calculate and report VaR estimates daily. Based on these

VaR estimates, financial institutions must hold a certain level of capital. If a bank overestimates

VaR, the amount of capital that it is required to hold will be also overestimated, which may lead

to substantial opportunity cost. If VaR is underestimated and in an adverse financial situation,

banks will be exposed to bankruptcy risk. GARCH models are widely used to estimate VaR and

I analyze the effect of a parameter change in conditional volatility process of GARCH models on

VaR estimates.
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Chapter 2

The Sensitivity of GARCH Option Pricing
Models to Ignored Parameter Changes

2.1 Introduction

A voluminous literature has developed in the theory and practice of option pricing after Black

and Scholes (1973) and Merton (1973). Volatility of the stock price process is by far the most

important variable in these models. It is not directly observable and was assumed constant in the

early studies. It is widely accepted that volatility and correlations in asset prices vary over time.

Hull and White (1987) introduced stochastic volatility models in a continuous-time framework. In

their model, there is no closed-form solution for option prices when the sources of randomness

in volatility and stock price are correlated, and Monte Carlo simulation is used to obtain option

prices. A closed-form solution is given by Heston (1993). The ARCH model by Engle (1982)

and its generalization, the GARCH model by Bollerslev (1986), allow for the variance of the

underlying process to change in a discrete time framework. An alternative approach to ARCH-

type models in discrete time is the stochastic volatility (SV) model introduced by Taylor (1986).

A recent survey of the SV literature is given by Broto and Ruiz (2004). For an extensive review of

forecasting performance of various volatility models, see Poon and Granger (2003).

The gap between ARCH-type models and continuous time models is closed by Nelson (1990),

Drost and Werker (1996), and Corradi (2000). Nelson (1990) shows that the GARCH(1,1) model,
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in its continuous time limit, converges to a continuous time stochastic volatility process. Drost

and Werker (1996) show that the class of continuous GARCH models contains not only continu-

ous time diffusion models but also jump-diffusion models. Corradi (2000) shows that, assuming

α (the ARCH parameter in Equation (2.3)) vanishes in the continuous time limit, the limiting

volatility process is deterministic. Duan (1997) proposes the augmented GARCH model, which

encompasses many parametric GARCH models, and shows that the diffusion limit of the model

also encompasses many diffusion processes commonly used in the literature.

In this chapter, we analyze the effect of ignored parameter changes in conditional variance

process of the GARCH model on European option prices using Duan’s (1995) GARCH option

pricing model. Duan (1995) developed the theoretical foundation that allows the use of GARCH

models for option valuation. Several improvements of the model and the methodology have been

developed to incorporate various empirical facts about asset returns (e.g. fat tails, leverage effect).

For an overview and comparison of GARCH option pricing models see Christoffersen and Jacobs

(2004). Our purpose in this study is to understand the effect of ignored changes in the uncondi-

tional volatility of a GARCH model on European option prices. Ignoring structural breaks creates

problems in any autoregressive model (see Hillebrand 2005, 2006). The model can be modified as

desired to capture more features of the data. As long as it has autoregressive parameters, ignored

parameter changes will result in high persistence estimates. For clarity of exposition, we choose

the simplest GARCH specification.

The sensitivity of option prices to volatility is called Vega. Merton (1973) and Black and

Scholes (1973), among many others, show that volatility and price of an option are positively

related. Or in other words, Vega of an option is positive. Although in GARCH option pricing

models conditional volatility is time-varying, unconditional volatility is assumed constant and is

an important determinant of the option price. Therefore, if we assume a stationary process and

constant unconditional volatility for the underlying asset of an option when this is in fact not the

case, the estimated biased unconditional volatility will lead to a biased option price. For instance,
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if the process switches from high to low unconditional volatility in the mid-point of the sample

and we ignore the parameter change, the estimated unconditional volatility will be somewhere in

between the two regimes. Therefore, since Vega is positive, we expect that the estimated option

price will be higher than the one that is obtained using data after the parameter change only. We

show evidence for this intuition in Monte Carlo simulations and in an empirical study of S&P500

index prices.

Our simulation study shows that ignoring structural breaks in the unconditional volatility of

the underlying security leads to biased estimates of European option prices. The bias is most pro-

nounced for out-of-the-money options and increases as the out-of-the-moneyness gets deeper. The

effect is smaller for in-the-money options and becomes negligible as the in-the moneyness gets

deeper. We test S&P500 index returns for unknown change-points and apply the same methodol-

ogy that we use in simulations to real data. Our change-point study on the S&P500 index supports

our simulation results.

In the next section, we briefly review the Duan (1995) model. Section 2.3 describes the simu-

lation methodology. The results follow in Section 2.4. In Section 2.5, we present a change-point

study on the S&P500 index and apply the same pricing methodology to see if the empirical results

are similar to simulation results. Section 2.6 summarizes the main results.

2.2 The Model

We use the GARCH(1,1) option pricing model of Duan (1995). Consider

log(St/St−1) = r +λ
√

ht − 1
2

ht + εt , (2.1)

εt |Ft−1 ∼ N (0,ht) , under measure P, (2.2)

ht = ω+αε2
t−1 +βht−1, (2.3)

where Ft is a σ-field of all information up to and including time t; ω constant, α and β are au-
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toregressive GARCH(1,1) parameters; St is the underlying asset (in our case, stock) price at time

t; r is the risk-free interest rate; λ is the unit risk premium, which represents preferences; εt is

the normally distributed innovation with mean zero and variance ht . Equation (2.1) is the standard

asset pricing equation that models one-period returns at time t that depend on the constant risk-free

interest rate, constant unit risk premium, time-varying variance, and a normally distributed random

term with mean zero and variance ht . Equation (2.2) shows how the error terms are distributed.

Equation (3.2) is the GARCH(1,1) equation that specifies how the conditional variance ht evolves

over time.

The physical probability measure P models the dynamics of the stock price. It determines how

likely it is that the stock price moves up or down. The valuation of contingent claims, however,

necessitates a fair pricing mechanism. To achieve this, all we need to assume is that there does

not exist any arbitrage opportunity (the so-called First Fundamental Theorem of Asset Pricing,

see Harrison and Kreps (1979) and Delbaen and Schachermayer (1994)). This leads to a pricing

mechanism that depends on the value of the stock price at maturity and the payoff function of the

contingent claim, not on the probability to obtain the stock price at maturity. Therefore, the new

arbitrage-free pricing mechanism results in a different probability measure Q than the physical

probability measure P. For more details, see the discussion in Duan (1995, p 15-18).

DEFINITION 1. Duan (1995) A pricing measure Q satisfies the locally risk-neutral valuation

relationship if

• measure Q is absolutely continuous with respect to measure P, which means that the prob-

ability of an event in σ-field Ft under measure Q is zero if and only if the probability of the

same event in σ-field Ft under measure P is zero.

• (St/St−1)|Ft−1 follows a lognormal distribution (under measure Q) with

E
Q [(St/St−1)|Ft−1] = er.

The conditional variances under measures P and Q are required to be equal. We can therefore
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estimate the parameters of the conditional variance under measure P and use them to estimate the

stock price under measure Q. Although this is not sufficient to eliminate the unit risk premium

λ, which represents preferences, this property along with the conditional mean results in a well-

specified model that does not depend on preferences locally.

Duan (1995) shows that the locally risk-neutral valuation relationship implies that under prob-

ability measure Q,

log(St/St−1) = r− 1
2

ht +ζt , (2.4)

where
ζt |Ft−1 ∼ N (0,ht) , (2.5)

and

ht = ω+α
(

ζt−1 −λ
√

ht−1

)2
+βht−1. (2.6)

Then, the price of a European call option under probability measure Q is given as:

c = exp [−r (T − t)]EQ [max(ST −X ,0)|Ft ] . (2.7)

The price of a European call option can be calculated by following the steps below:

Step 1 Obtain parameters from the model given in Equations (2.1) through (2.3), which is under

the probability measure P.

Step 2 Using the parameters in Step 1, obtain Monte Carlo simulation prices Ŝ by using the model

given by equations (2.4) through (2.6), which is under the locally risk-neutral probability

measure Q.

Step 3 Assuming that the number of simulated sample paths is N and time to maturity is T , ap-

ply the Empirical Martingale Simulation Method (EMS) of Duan and Simonato (1998) as

follows:
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For t = 1,2, ...T and i = 1,2, ...N,

S∗(t, i) = S0
Z(t, i)
Z(t)

, (2.8)

where S∗(t, i) is the EMS corrected asset price for the ith sample path at time t, and

Z(t, i) = S∗(t −1, i)
Ŝ(t, i)

Ŝ(t −1, i)
, (2.9)

Z(t) =
1
N

exp(−rt)
N

∑
i=1

Z(t, i). (2.10)

Note that Ŝ(t, i) is the simulated asset price for the ith sample path at time t in Step 2. Also,

for all sample paths we set Ŝ(0, i) and S∗(0, i) to the initial stock price S0. We start with

t = 1 and calculate Equation (2.9) for all sample paths (for all i’s). Then, we obtain Z(1)

from Equation (2.10) and calculate the EMS corrected asset prices for all sample paths at

time 1 using Equation (2.8). We repeat this sequence for all t’s until expiration.

Step 4 After we obtain EMS asset prices, the price of a European call option is estimated by:

ĉ =
1
N

exp [−r (T − t)]
N

∑
i=1

max [S∗(T, i)−X ,0], (2.11)

where X is the strike price, S∗(T, i) is the ith simulated price of the underlying asset at

expiration (time T ).

See Duan (1995), Duan and Simonato (1998), and Christoffersen and Jacobs (2004) for more

details on the model and the estimation methodology.

2.3 Simulation Methodology

In order to show the effects of changes in the parameters of the model on option prices, we first

simulate a series of stock prices under the physical probability measure P. The series has 4,000
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observations with a parameter change at observation 2,001. The stock price follows the process:

log(St/St−1) = r +λ
√

ht − 1
2

ht + εt , (2.12)

εt |Ft−1 ∼ N (0,ht) , under measure P, (2.13)

ht = ωi +αiε2
t−1 +βiht−1, for i = 1,2. (2.14)

Here, i = 1 denotes the first regime of 2,000 observations and i = 2 denotes the second regime

of 2,000 observations. We set initial volatility equal to the unconditional mean.

After simulating the system above, we estimate the parameters (a) for the whole series and (b)

for the last 2,000 observations. We then simulate 10,000 sample paths until the expiration date

under the risk-neutral probability measure Q (Equations (2.4) through (2.6)) and apply the empir-

ical martingale simulation method (described in Section 2.2). Then, the payoff of the call option

for each sample path is calculated. Since expectation is taken under the risk-neutral probability

measure Q, the European call price is calculated using Equation (2.11) for N = 10,000 sample

paths. We repeat this process 5,000 times for each of the several different scenarios presented in

the tables and figures in the next section in order to get 5,000 simulated call prices. Thus, each of

the 5,000 call prices is the mean of the call prices of 10,000 simulations. Then, we analyze the

distributional properties of these 5,000 call price observations for each scenario.

2.4 Simulation Results

2.4.1 At-the-Money Options

Our objective is to show the effect of an ignored change in one of the parameters in the

GARCH(1,1) conditional volatility process on at-the-money European call option prices. An op-

tion is said to be at-the-money if the price of underlying stock is equal to its strike price. It is said

to be in-the-money (out-of-the-money) if the price of underlying stock is higher (lower) than its

10



strike price. We run simulations with a single change point in one of the parameters of the condi-

tional volatility ht . Each simulated series has 4,000 observations and the change in the parameter

occurs at observation 2,001.

Following Duan and Simonato (1998), we chose λ to be 0.01 and r = 0 in the simulations.

Estimating the model without accounting for the changes in the parameters of the conditional

volatility does not affect the estimation of λ since it is in the mean equation. Experimenting with

different choices of λ did not affect the results. These results are available upon request.

The annualized volatility σ is equal to
√

250ω/(1−α−β). Let σ1 denote the annualized

volatility of the first half of the series and it is set equal to 20%. Let σ2 denote the annualized

volatility of the second half of the series and it is set to different values. The changes in the

parameters are set according to the considered change in σ2. For example, when we study the

effect of a change in the constant parameter ω, we initially set ω1 = 3.2e− 5, α1 = 0.20, and

β1 = 0.60, so that the initial annualized volatility is 20%. To study the effect of the change in

ω when the annualized volatility decreases to 15%, we change ω2 accordingly to 1.80e−5. The

setup is analogous for changes in the other parameters.

We simulate 5,000 series with 4,000 observations each. After we simulate the series, we esti-

mate two sets of parameters by maximum likelihood: one from the whole series without account-

ing for the parameter change that occurs at observation 2,001 and one from the second segment

of the series, after the parameter change occurs. For each of the 5,000 series, we simulate 10,000

sample paths and calculate call option prices for each sample path. Then, we take the mean of the

10,000 option prices to calculate the Monte Carlo simulation price. This results in 5,000 Monte

Carlo simulation prices. Table 2.1 reports the means over these 5,000 call prices. We calculate

prices of call options with 5, 30, and 90 days to maturity. Initial stock price and strike price are set

equal to $100.

In Table 2.1, we study the effect of neglected changes in the constant ω. In all tables and

figures, we included the zero parameter change as benchmark. Consistent with the results in Hille-
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brand (2005), we see that β is overestimated and that the greater the jump size in the annualized

volatility, the greater the effect of a neglected change in ω on β̂ and, thus, on θ̂ = α̂ + β̂. We

observe that θ̂ approaches 1 as the jump size increases. If the annualized volatility is lower for the

second segment of the series, then the option price obtained from the whole sample is higher than

the option price obtained using only data from the second segment, and vice versa. The reason

is that the estimated annualized volatility from the whole sample is between the initial annualized

volatility (which is set to 20%) and the annualized volatility of the second segment. For example,

if the annualized volatility of the second segment of the series is 10%, then the estimated annual-

ized volatility from the whole sample will be between 10% and 20% almost surely. Since higher

annualized volatility results in a higher option value, the option price calculated from the whole

series is above the option price obtained from the second segment. The opposite holds when the

annualized volatility increases: If the annualized volatility for the second segment is higher, then

the option price obtained from this segment will be above the option price obtained from the whole

series.
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Figure 2.1: The effect of the change in parameter ω on European at-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (ĉn) without accounting for the parameter change, and the option price
obtained from the second part of the sample (ĉ). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 5,000 observations.

As can be seen in Table 2.1, if the annualized volatility is reduced to 10% after the parameter

change, then the option price from the whole sample is roughly twice the option price obtained

13



from the second segment. It is roughly 20% higher if the decrease in annualized volatility is 5%.

This can also be seen in Figure 2.1, which plots the percentage difference in the option prices ĉn

obtained from the whole sample and option prices ĉ obtained from only the second segment of the

series (y-axis) for a given change in annualized volatility (x-axis). For each value of the change in

annualized volatility, the figures provide a box and whisker plot. Lower quartile, median and upper

quartile values are given by the lines in each box. The whiskers, which are the lines extending from

each end of the boxes, give the values that correspond to 1.5 times the interquartile range away

from the lower and upper quartiles. The values beyond the ends of the whiskers are the simulated

date distribution tails. We observe that if annualized volatility decreases, the effect of a change in

the constant parameter ω on option prices is greater than in the case where annualized volatility

increases. If annualized volatility increases by 10% in the second half of the series the option

price from the whole sample is around 10% less than the option price obtained from the second

segment. If the annualized volatility decreases by 10%, the distortion of the option price ranges

between 75% and 100%. The effect increases in magnitude for larger increases in annualized

volatility but at a decreasing rate. For decreases in annualized volatility, the effect grows at an

increasing rate.

The same conclusions can be drawn for changes in the parameters α and β. The results for

these parameters are presented in Tables 2.2 and 2.3 and Figures 2.2 and 2.3. We see that the

percentage differences are very close across the three parameters for the same change in annualized

volatility. In the case of changes in α, the effect is slightly stronger. The reason for this is that

a neglected change in the parameter α has the smallest effect on the estimation of the parameters

of conditional volatility, consistent with the results in Hillebrand (2005). An increase in volatility

after the ignored change-point results in lower estimates of θ for changes in α compared to changes

in ω or β. This, in turn, results in lower estimated annualized volatilities for neglected changes

in α compared to neglected changes in ω or β. Say that after the parameter change, annualized

volatility in the second segment is increasing. Estimated annualized volatility falls in between the
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Figure 2.2: The effect of the change in parameter α on European at-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (ĉn) without accounting for the parameter change, and the option price
obtained from the second part of the sample (ĉ). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 5,000 observations. We
did not include the −10% change in these experiments because of strict positivity constraint on
the parameters.

−5 0 5 10 15 20
−40

−30

−20

−10

0

10

20

30

10
0(

c n−
c)

/c

% Change in Annualized Volatility

Changes in Beta, Maturity = 5 Days

−5 0 5 10 15 20
−40

−30

−20

−10

0

10

20

30

10
0(

c n−
c)

/c

% Change in Annualized Volatility

Changes in Beta, Maturity = 30 Days

−5 0 5 10 15 20
−40

−30

−20

−10

0

10

20

30

10
0(

c n−
c)

/c

% Change in Annualized Volatility

Changes in Beta, Maturity = 90 Days

Figure 2.3: The effect of the change in parameter β on European at-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (ĉn) without accounting for the parameter change, and the option price
obtained from the second part of the sample (ĉ). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 5,000 observations. We
did not include the −10% change in these experiments because of strict positivity constraint on
the parameters.
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Table 2.2: The effect of a single neglected change-point in α on the European at-the-money call
option price. GARCH(1,1) Option Pricing Model Duan (1995) with r = 0, λ = 0.01 and ht =
3.20e-5 + αiε2

t−1 + 0.60ht−1 for i = 1,2. θ̂ = α̂ + β̂. Strike price = Initial stock price = $100.
Parameter estimates are the means of 5,000 simulations. ĉ is the call price calculated using the
second half of the sample and ĉn is the call price calculated using the whole sample without taking
the parameter change into account.The annualized volatility σ1 of the first segment is always 0.20.
Standard errors are given in parentheses.

Parameter Changes Parameter Estimates (Whole Sample) 5-Day 30-Day 90-Day
σ2 α1 α2 ω̂ α̂ β̂ θ̂ σ̂ ĉ ĉn ĉ ĉn ĉ ĉn

0.15 0.20 0.044 2.11e-5
(5.18e-6)

0.14
(0.02)

0.69
(0.06)

0.83 0.175 0.75
(0.02)

0.86
(0.02)

2.03
(0.05)

2.35
(0.06)

3.57
(0.08)

4.14
(0.10)

0.20 0.20 0.200 3.24e-5
(4.62e-6)

0.20
(0.02)

0.60
(0.04)

0.80 0.200 0.97
(0.03)

0.97
(0.03)

2.66
(0.09)

2.66
(0.07)

4.72
(0.17)

4.72
(0.13)

0.25 0.20 0.272 3.02e-5
(4.08e-6)

0.24
(0.02)

0.61
(0.03)

0.85 0.224 1.19
(0.07)

1.08
(0.04)

3.24
(0.02)

2.94
(0.10)

5.78
(0.32)

5.24
(0.18)

0.30 0.20 0.311 2.79e-5
(3.88e-6)

0.26
(0.02)

0.62
(0.03)

0.88 0.244 1.40
(0.13)

1.17
(0.05)

3.76
(0.30)

3.17
(0.13)

6.72
(0.50)

5.67
(0.23)

0.35 0.20 0.335 2.62e-5
(3.42e-6)

0.28
(0.02)

0.63
(0.03)

0.91 0.262 1.61
(0.20)

1.25
(0.07)

4.23
(0.41)

3.36
(0.16)

7.52
(0.68)

6.01
(0.29)

0.40 0.20 0.350 2.51e-5
(4.16e-6)

0.29
(0.02)

0.63
(0.03)

0.92 0.277 1.80
(0.27)

1.32
(0.08)

4.64
(0.57)

3.52
(0.19)

8.18
(0.81)

6.29
(0.35)

Table 2.3: The effect of a single neglected change-point in β on the European at-the-money call
option price. GARCH(1,1) Option Pricing Model Duan (1995) with r = 0, λ = 0.01 and ht =
3.20e-5 + 0.20ε2

t−1 + βiht−1 for i = 1,2. θ̂ = α̂ + β̂. Strike price = Initial stock price = $100.
Parameter estimates are the means of 5,000 simulations. ĉ is the call price calculated using the
second half of the sample and ĉn is the call price calculated using the whole sample without taking
the parameter change into account.The annualized volatility σ1 of the first segment is always 0.20.
Standard errors are given in parentheses.

Parameter Changes Parameter Estimates (Whole Sample) 5-Day 30-Day 90-Day
σ2 β1 β2 ω̂ α̂ β̂ θ̂ σ̂ ĉ ĉn ĉ ĉn ĉ ĉn

0.15 0.60 0.444 2.24e-5
(4.33e-6)

0.20
(0.02)

0.62
(0.05)

0.82 0.177 0.73
(0.02)

0.86
(0.02)

2.02
(0.06)

2.35
(0.06)

3.55
(0.18)

4.16
(0.11)

0.20 0.60 0.600 3.24e-5
(4.62e-6)

0.20
(0.02)

0.60
(0.04)

0.80 0.200 0.97
(0.03)

0.97
(0.03)

2.66
(0.09)

2.66
(0.07)

4.72
(0.17)

4.72
(0.13)

0.25 0.60 0.672 2.75e-5
(4.33e-6)

0.20
(0.02)

0.67
(0.04)

0.87 0.223 1.21
(0.05)

1.10
(0.04)

3.28
(0.14)

2.98
(0.09)

5.85
(0.26)

5.30
(0.17)

0.30 0.60 0.711 2.05e-5
(3.77e-6)

0.20
(0.02)

0.72
(0.03)

0.92 0.253 1.45
(0.08)

1.23
(0.05)

3.90
(0.21)

3.30
(0.12)

6.92
(0.37)

5.88
(0.22)

0.35 0.60 0.735 1.57e-5
(3.04e-6)

0.20
(0.02)

0.76
(0.03)

0.96 0.283 1.67
(0.12)

1.38
(0.08)

4.48
(0.29)

3.64
(0.18)

7.95
(0.51)

6.44
(0.29)

0.40 0.60 0.750 1.29e-5
(4.76e-6)

0.19
(0.02)

0.78
(0.03)

0.97 0.311 1.90
(0.16)

1.52
(0.10)

5.03
(0.40)

3.98
(0.25)

8.90
(0.66)

6.96
(0.38)
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initial value and the value of the second segment. Therefore, the higher the estimate of annualized

volatility, the closer the option price from the whole series is to the option price from the second

segment. Hence, the low estimates of θ that we obtain if we neglect a change-point in α relative

to neglecting a change-point in ω or β result in relatively lower estimates of annualized volatility

on the whole sample.

Table 2.4: True option prices for change in ω. European at-the-money call option prices if param-
eter change points and values are known. GARCH(1,1) Option Pricing Model Duan (1995) with
r = 0, λ = 0.01 and ht = ωi +0.20ε2

t−1 +0.60ht−1 for i = 1,2. Strike price = Initial Stock Price =
$100. Call prices are the means of 5,000 Monte Carlo simulation prices. For each Monte Carlo
simulation, we use 10,000 sample paths.

Parameter Changes Call Prices c
σ2 ω1 ω2 5-day 30-day 90-day

0.10 3.20e-5 8.00e-6 0.49 1.33 2.36
0.15 3.20e-5 1.80e-5 0.73 2.00 3.54
0.20 3.20e-5 3.20e-5 0.97 2.66 4.72
0.25 3.20e-5 5.00e-5 1.22 3.33 5.89
0.30 3.20e-5 7.20e-5 1.46 4.00 7.07
0.35 3.20e-5 9.80e-5 1.70 4.66 8.25
0.40 3.20e-5 1.28e-4 1.94 5.32 9.42

Table 2.5: True option prices for change in α. European at-the-money call option prices if param-
eter change points and values are known. GARCH(1,1) Option Pricing Model Duan (1995) with
r = 0, λ = 0.01 and ht = 3.2e-5+αiε2

t−1 +0.60ht−1 for i = 1,2. Strike price = Initial stock price
= $100. Call prices are the means of 5,000 Monte Carlo simulation prices. For each Monte Carlo
simulation, we use 10,000 sample paths.

Parameter Changes Call Prices c
σ2 α1 α2 5-day 30-day 90-day

0.15 0.20 0.044 0.75 2.04 3.57
0.20 0.20 0.200 0.97 2.66 4.72
0.25 0.20 0.272 1.19 3.24 5.80
0.30 0.20 0.311 1.41 3.78 6.77
0.35 0.20 0.335 1.63 4.28 7.65
0.40 0.20 0.350 1.85 4.75 8.41

Consistent with the results in Hillebrand (2005), we observe that the effect of a neglected

parameter change in β on the parameter estimates of conditional volatility is smaller than the

17



Table 2.6: True option prices for change in β. European at-the-money call option prices if param-
eter change points and values are known. GARCH(1,1) Option Pricing Model Duan (1995) with
r = 0, λ = 0.01 and ht = 3.2e-5+0.20ε2

t−1 +βiht−1 for i = 1,2. Strike price = Initial stock price
= $100. Call prices are the means of 5,000 Monte Carlo simulation prices. For each Monte Carlo
simulation, we use 10,000 sample paths.

Parameter Changes Call Prices c
σ2 β1 β2 5-day 30-day 90-day

0.15 0.60 0.444 0.73 2.02 3.55
0.20 0.60 0.600 0.97 2.66 4.72
0.25 0.60 0.672 1.21 3.29 5.86
0.30 0.60 0.711 1.45 3.91 6.96
0.35 0.60 0.735 1.69 4.53 8.04
0.40 0.60 0.750 1.93 5.12 9.06

effect of a change in ω. Since the estimated annualized volatilities from the whole sample in

both cases are close to each other, however, the effect on option prices is similar to the effect

of a change in ω. We also observe that as the magnitude of the parameter change increases, the

variance of the observations in Figure 2.1 increases. This also holds for changes in the parameters

α and β (see Figures 2.2 and 2.3, respectively).

For comparison, we report the true option prices assuming knowledge of the data-generating

parameter values from the second segment in Tables 2.4, 2.5 and 2.6. To gauge bias and estimator

variance, Table 2.7 reports the root mean-square errors for at-the-money options.

Table 2.7: Root Mean Square Errors for at-the-money European call option prices. σ2 denotes
annualized volatility of the segment after the change.

Root Mean Square Errors for At-the-Money Options
Omega Alpha Beta

σ2 5-day 30-day 90-day 5-day 30-day 90-day 5-day 30-day 90-day
0.10 0.51 1.24 2.05 − − − − − −
0.15 0.14 0.36 0.64 0.11 0.32 0.59 0.13 0.34 0.62
0.20 0.03 0.07 0.13 0.03 0.07 0.13 0.03 0.07 0.13
0.25 0.12 0.33 0.57 0.12 0.31 0.57 0.12 0.32 0.58
0.30 0.20 0.60 1.05 0.24 0.60 1.08 0.22 0.61 1.07
0.35 0.23 0.76 1.39 0.37 0.88 1.53 0.31 0.85 1.54
0.40 0.25 0.87 1.73 0.49 1.14 1.93 0.39 1.07 1.97
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2.4.2 In-the-Money and Out-of-the-Money Options

In percentage terms, the effect of ignored changes in the parameters of conditional volatility on

out-of-the-money option prices is substantially greater than it is on at-the-money option prices.

The effect increases as the out-of-the-moneyness gets deeper. The price of a deep-out-of-the-

money option is usually very close to zero and a change in the unconditional volatility that affects

the probability of the option finishing in the money at expiration date has a large percentage im-

pact on the price. Analogously, the price of a deep-in-the-money option is high and a change in the

unconditional volatility that affects the probability of the option finishing in the money at expira-

tion date has a small percentage impact on the price. Therefore, the price of a deep-in-the-money

option is much less affected by an ignored change in one of the parameters of the conditional

volatility process than the price of a deep-out-of-the-money option. This effect can also be seen

in Table 2.9, where we report root mean square errors and the bias is measured in dollar terms.

Results for in-the-money and out-of-the-money options in the case of a change in ω are given in

Table 2.8. Results are similar for changes in α and β and are available upon request. Also, results

for deep-in-the-money and deep-out-of-the-money options are available upon request.
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Figure 2.4: The effect of the change in parameter ω on European in-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (ĉn) without accounting for the parameter change, and the option price
obtained from the second part of the sample (ĉ). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 5,000 observations.
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ĉ
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Figure 2.5: The effect of the change in parameter ω on European out-of-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (ĉn) without accounting for the parameter change, and the option price
obtained from the second part of the sample (ĉ). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 5,000 observations. For 5
days to maturity, a large proportion of the simulated option prices are close to zero in the case of
negative changes and no change in annualized volatility. We therefore excluded these cases.

Table 2.9: Root mean square errors for European in-the-money and out-of-the-money call op-
tions when ω changes. Results for ω from Table 2.7 are added for easy comparison. σ2 denotes
annualized volatility of the segment after the change.

Root Mean Square Errors for changes in ω.
At-the-Money In-the-Money Out-of-the-Money

σ2 5-day 30-day 90-day 5-day 30-day 90-day 5-day 30-day 90-day
0.10 0.51 1.24 2.05 0.03 0.33 1.19 0.01 0.30 1.19
0.15 0.14 0.36 0.64 0.02 0.11 0.39 0.00 0.08 0.39
0.20 0.03 0.07 0.13 0.03 0.07 0.13 0.00 0.03 0.09
0.25 0.12 0.33 0.57 0.03 0.16 0.44 0.00 0.14 0.45
0.30 0.20 0.60 1.05 0.03 0.31 0.81 0.01 0.29 0.86
0.35 0.23 0.76 1.39 0.04 0.43 1.12 0.02 0.42 1.19
0.40 0.25 0.87 1.73 0.06 0.55 1.44 0.03 0.54 1.51

2.5 Empirical Results

To study the effects of possible change-points in real data, we consider S&P500 index returns. The

sample ranges from February 1, 1997 to August 20, 2007. First, we test for an unknown change-

point using the statistic proposed by Kokoszka and Leipus (1999, 2000). We find that there is a

single structural break on April 28, 2003 at 1% significance level. Looking at Figure 2.6, we see

that until this date the index returns exhibit relatively higher volatility compared to the post-2003
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Figure 2.6: S&P500 returns between February 1, 1997 and August 20, 2007. Change-point at
April 28, 2003 according to Kokoszka and Leipus (1999, 2000).

period.

If the GARCH(1,1) model (Equations (2.1) to (2.3)) is estimated without accounting for the

detected change-point, we get the following results (standard errors in parentheses):

ht = 1.336e-6
(5.69e-7)

+0.072
(0.013)

ε2
t−1 +0.917

(0.013)
ht−1.

We assume a zero interest rate for an easier comparison of option prices with different strikes

and maturities. The estimated annualized unconditional volatility σ̂ is equal to 0.18 and λ̂ is equal

to 0.07 (s.e. = 0.02).

If the model is estimated by segmenting the sample according to the estimated parameter

change, we obtain the following results:
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1-Feb-1997 through 28-Apr-2003:

ht = 9.332e-6
(2.15e-6)

+0.099
(0.024)

ε2
t−1 +0.849

(0.031)
ht−1,

λ̂1 = 0.057
(0.024)

and σ̂1 = 0.212.

29-Apr-2003 through 20-Aug-2007:

ht = 2.038e-6
(6.72e-7)

+0.052
(0.015)

ε2
t−1 +0.911

(0.021)
ht−1,

λ̂2 = 0.08
(0.022)

and σ̂2 = 0.116.

Table 2.10: European Call Prices - GARCH(1,1) Model. K is the strike price and, S = $1445, is
the initial stock price. ĉ is the call price calculated by using the second half of the sample and ĉn

is the call price calculated by using the whole sample without taking the parameter change into
account.

5-Day 30-Day 90-Day
S/K ĉ ĉn ĉ ĉn ĉ ĉn

0.90 0.00 0.00 0.11 1.88 3.00 13.67
1.00 8.40 12.96 22.61 34.61 39.81 60.34
1.10 131.37 131.35 131.59 134.02 135.38 146.92
1.15 188.48 188.47 188.52 189.11 189.44 195.96

The GARCH(1,1) estimation results show that there is a substantial shift in annualized un-

conditional volatility of the S&P500 return series. The estimated persistence parameter θ̂ equals

approximately 0.99 if we ignore the change-point. European call option prices are given in Table

2.10 for different levels of moneyness S/K, where S is always equal to $1445, the index price on

Aug 20, 2007. The results strongly support our simulation experiments. If the option is at-the-

money (S/K = 1), we observe roughly a 150% distortion from ignoring the change-point. If the

option is out-of-the-money (S/K < 1), the effect is bigger. If the option is in-the-money (S/K > 1),

the effect is smaller. The effect increases with time to maturity.
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One of the widely accepted features of financial data is that it exhibits asymmetry between re-

turns and volatility. It is well documented that asset returns are negatively correlated with volatility,

which means that a negative shock to returns increases volatility more than a positive shock. This

is the so-called leverage effect. To capture this feature of asset returns, Engle and Ng (1993) devel-

oped the Non-linear Asymmetric GARCH (NGARCH) model. The conditional variance process

of the NGARCH(1,1) model is the following:

ht = ω+α(εt−1 − γ
√

ht−1)2 +βht−1, (2.15)

where γ is called the leverage parameter and all other variables are defined as before.

Under the locally risk-neutral measure Q, along with Equations (2.4) and (2.5), the conditional

variance process follows:

ht = ω+α
(

ζt−1 − (λ+ γ)
√

ht−1

)2
+βht−1, (2.16)

where ζt−1 is a different random variable than εt−1 due to the measure change.

If the NGARCH(1,1) model (Equations (2.1), (2.2) and (2.15)) is estimated under measure

P without accounting for the structural break, we get the following results (standard errors in

parentheses):

ht = 2.284e-6
(5.14e-7)

+0.0695
(0.012)

(εt−1 −1.056
(0.113)

√
ht−1)2 +0.841

(0.027)
ht−1.

λ̂1 = 0.02
(0.02)

and σ̂ = 0.214.

If the model is estimated by segmenting the sample according to the estimated parameter

change, we get the following: 1-Feb-1997 through 28-Apr-2003:

ht = 7.135e-6
(1.297e-6)

+0.0496
(0.01)

(εt−1 −1.889
(0.212)

√
ht−1)2 +0.739

(0.053)
ht−1,
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λ̂1 = 0.005
(0.017)

and σ̂1 = 0.227.

29-Apr-2003 through 20-Aug-2007:

ht = 4.59e-6
(1.33e-6)

+0.062
(0.019)

(εt−1 −1.549
(0.282)

√
ht−1)2 +0.712

(0.08)
ht−1,

λ̂2 = 0.05
(0.024)

and σ̂2 = 0.121.

Table 2.11: European Call Prices - NGARCH(1,1) Model. K is the strike price and, S = $1445,
is the initial stock price. ĉ is the call price calculated by using the second half of the sample and
ĉn is the call price calculated by using the whole sample without taking the parameter change into
account.

5-Day 30-Day 90-Day
S/K ĉ ĉn ĉ ĉn ĉ ĉn

0.90 0.00 0.00 0.00 0.00 1.50 3.08
1.00 5.98 6.26 20.70 21.75 40.55 48.97
1.10 131.35 131.36 131.97 132.26 138.22 144.79
1.15 188.47 188.48 188.56 188.71 191.35 195.96

The parameter estimates of the NGARCH(1,1) model exhibit similar results obtained from

GARCH(1,1). The persistence parameter α(1 + γ2)+ β is estimated at approximately 0.99. The

unconditional volatility changes substantially in the second segment of the sample. European call

option prices are reported in Table 2.11. The results exhibit similar characteristics. The effect

of the neglected parameter change decreased somewhat for at-the-money and out-of-the-money

options.

2.6 Summary

We analyzed the effect of ignored parameter changes in the parameters of the conditional variance

of a GARCH(1,1) model on option prices. Ignoring such parameter changes and assuming a

constant unconditional volatility result in biased parameter estimates. Unconditional volatility is
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an important determinant of option prices and biased estimation leads to biased option prices.

Our Monte Carlo simulation experiments provide evidence for this intuition. For at-the-money

options, we observe substantial price distortions as a result of the ignored change-point. The

bias is more pronounced for out-of-the-money options and increases as options move deeper out-

of-the-money. The bias decreases for in-the-money options and becomes negligible as options

move deeper in-the-money. In our simulation experiments, we observe that negative changes in

unconditional volatility affect option prices relatively more than positive changes in unconditional

volatility. An empirical analysis of S&P500 index returns supports our simulation experiments

and provides evidence that if parameter changes in the conditional variance are ignored, option

prices are biased. Using the NGARCH model, which accounts for the leverage effect, decreases

the bias, but does not eliminate it.
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Chapter 3

Closed-form GARCH Option Pricing Model
and Ignored Parameter Changes

3.1 Introduction

One of the main disadvantages of GARCH option pricing models is the fact that there is no closed-

form solution and Monte Carlo simulation methods have to be used to price European options.

Heston and Nandi (2000) propose a GARCH option pricing model that has a closed-form solution

for the option price. Their model captures both leverage effects and time-varying volatility, which

have indisputably become two of the most important empirical facts about financial volatility time

series.

As mentioned earlier in Chapter 1, the leverage effect refers to the negative correlation of

volatility with stock returns. The GARCH models that capture the leverage effect generate negative

skewness in the risk-neutral distribution of stock returns, which means that the probability mass

in the negative tail of the return distribution is greater than in the positive tail of the distribution.

Therefore, these models generate lower call option prices. In simpler words, a decrease in the

volatility of stock returns leads to two effects: 1) a decrease in the value of a call option (due to

positive Vega) and 2) higher stock returns, which in turn leads to an increase in the value of a call

option. Our study simulation study shows that the first effect dominates the second one and the

net effect is a decrease in the value of a call option.
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In Section 2.5, we studied change-points in S&P500 index returns. Since the index return

series switches from a high to low volatility regime on April 28, 2003 in our sample, the esti-

mation of the unconditional volatility is overestimated when the regime-switch is ignored. This

creates a positive bias in option prices. However, when we incorporate the leverage effect the bias

decreases. Increases in volatility generate higher option prices, but because of the negative corre-

lation between stock price and volatility, the stock price decreases and so does the value of a call

option. In other words, the effect of an increase in volatility is partially offset by the decrease in

the stock price.

In this chapter, I analyze this issue with a simulation study. I analyze the effect of ignored pa-

rameter changes in the parameters of the data-generating GARCH model on European call option

prices using Heston’s and Nandi’s (2000) closed-form GARCH option valuation model. Heston’s

and Nandi’s (2000) model is similar to Engle’s and Ng’s (1993) model with a slight change, which

is essential in obtaining the closed-form solution. In a simulation study, I show that neglecting

parameter changes in the Heston and Nandi (2000) closed-form model also creates biased option

prices. The results are presented in Section 3.4.

I also present the disproof of the solution for the model when it has a higher order than p =

q = 1. The closed-form solution of the model depends on the inversion theorem of characteristic

functions. Specifically, if one can write the characteristic function of the stock price process, then

by using numerical inversion methods, the probability density function (pdf) of the stock prices

can be obtained. The pdf can then be used to evaluate option prices. The problem with the model

for higher orders than p = q = 1 is in the derivation of the characteristic function. The details of

the model and the disproof are presented in the next section. The closed-form solution of Heston

and Nandi (2000) works well for p = q = 1 and can be used to estimate European option prices.
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3.2 The Model

The closed-form solution presented in Heston and Nandi (2000) depends on the inversion of the

characteristic function of the stock price process. I start with the brief description of the inversion

method.

The characteristic function ϕY (φ) of a random variable Y is defined as:

ϕY (φ) = E[exp(iφy)],

where t ∈ ℜ and i is the imaginary unit.

If the cumulative distribution function of Y is FY , then the Fourier Transform of the pdf fY of

Y is:

ϕY (φ) =
∫ ∞

−∞
exp(iφy) fY (y)dy,

which can also be written as:

ϕY (φ) =
∫ ∞

−∞
exp(iφy)dFY (y),

where FY is the cdf of Y .

Then, by applying the inverse Fourier transform, the pdf of Y can be obtained from the char-

acteristic function:

fY (y) =
1

2π

∫ ∞

−∞
exp(−iφy)ϕY (φ)dφ.

Next, I will go through the derivation of the closed-form GARCH option pricing model. I

follow the notation used in Chapter 2 and Heston and Nandi (2000). In the setup of the model in

Heston and Nandi (2000), assuming time step length � = 1, the logarithm of the stock price St

follows a GARCH process given as:

log(St) = log(St−1)+ r +λht +
√

htzt , (3.1)
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ht = ω+
p

∑
i=1

βiht−i +
q

∑
i=1

αi(zt−i− γi

√
ht−i)2, (3.2)

zt |Ft−1 ∼ N (0,1), (3.3)

where r is the risk-free interest rate; λ is the unit risk premium; ω constant, αi and βi are autore-

gressive parameters; γi is the leverage parameter; zt is a normally distributed innovation with mean

zero and variance one and Ft is a σ-field of all information up to and including time t. Given

these specifications, the stock returns log(St/St−1) follow a normal distribution with mean zero

and time-varying variance ht .

This specification of the model allows for a closed-form solution to exist. Feller (1971) and

Kendall and Stuart (1977) show that probability density functions can be recovered by inverting

characteristic functions, a brief description of which is given above. Heston and Nandi (2000) ap-

ply this method to the above model and obtain a closed-form solution. The details of the derivation

below shows that the solution does not hold for orders of p and q higher than 1.

Let xt = log(St) and let f (t;T,φ) be the conditional moment generating function of XT ,

ft := f (t;T,φ) = Et [exp(φxT )]. (3.4)

For notational convenience, the function arguments are dropped hereafter. The functional form

of the conditional moment generating function of xT proposed by Heston and Nandi (2000) is given

as follows:

ft = exp

(
φxt +At +

p

∑
i=1

Bi,tht+2−i +
q−1

∑
i=1

Ci,t

(
zt+1−i − γi

√
ht+1−i

)2
)

. (3.5)

30



Next, by applying the law of iterated expectations to ft we get

ft = Et [ ft+1]

= Et

[
exp

{
φxt+1 +At+1 +

p

∑
i=1

Bi,t+1ht+3−i +
q−1

∑
i=1

Ci,t+1

(
zt+2−i − γi

√
ht+2−i

)2
}]

.
(3.6)

Substituting Equations (3.1) and (3.2) gives:

ft = Et

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
(

xt + r +λht+1 +
√

ht+1zt+1

)
+At+1

+B1,t+1

(
β1ht+1 +α1

(
zt+1 − γ1

√
ht+1

)2
)

+B1,t+1

⎛
⎜⎜⎜⎜⎝

ω+
p−1

∑
i=1

βi+1ht+1−i

+
q−1

∑
i=1

αi+1

(
zt+1−i − γi+1

√
ht+1−i

)2

⎞
⎟⎟⎟⎟⎠

+
p−1

∑
i=1

Bi+1,t+1ht+2−i +C1,t+1

(
zt+1 − γ1

√
ht+1

)2

+
q−2

∑
i=1

Ci+1,t+1

(
zt+1−i − γi+1

√
ht+1−i

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.7)

Rearranging Equation (3.7) gives:

ft = Et

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(xt + r)+φλht+1 +φ
√

ht+1zt+1 +At+1

+B1,t+1β1ht+1 +B1,t+1α1

(
zt+1 − γ1

√
ht+1

)2

+B1,t+1ω+B1,t+1

p−1

∑
i=1

βi+1ht+1−i

+B1,t+1

q−1

∑
i=1

αi+1

(
zt+1−i − γi+1

√
ht+1−i

)2

+
p−1

∑
i=1

Bi+1,t+1ht+2−i +C1,t+1

(
zt+1 − γ1

√
ht +1

)2

+
q−2

∑
i=1

Ci+1,t+1

(
zt+1−i − γi+1

√
ht+1−i

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.8)
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Now, define Ω = α1B1,t+1 +C1,t+1, collect terms and rearrange:

ft = Et

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(xt + r)+At+1 +B1,t+1ω+Ω
(

zt+1 − γ1
√

ht+1

)2

+(φλ+B1,t+1β1)ht+1 +φ
√

ht+1zt+1

+B1,t+1

p−1

∑
i=1

βi+1ht+1−i +
p−1

∑
i=1

Bi+1,t+1ht+2−i

+B1,t+1

q−1

∑
i=1

αi+1

(
zt+1−i − γi+1

√
ht+1−i

)2

+
q−2

∑
i=1

Ci+1,t+1

(
zt+1−i − γi+1

√
ht+1−i

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.9)

Complete the square by adding and subtracting γ1φht+1 and φ2

4Ωht+1. Rearranging the terms will

give:

ft = Et

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(xt + r)+At+1 +ωB1,t+1 +Ω
(

zt+1 −
(

γ1− φ
2Ω

)√
ht+1

)2

+
(

φλ+B1,t+1β1 +φγ1− φ2

4Ω

)
ht+1 +B1,t+1

p−1

∑
i=1

βi+1ht+1−i

+
p−1

∑
i=1

Bi+1,t+1ht+2−i +B1,t+1

q−1

∑
i=1

αi+1

(
zt+1−i− γi+1

√
ht+1−i

)2

+
q−2

∑
i=1

Ci+1,t+1

(
zt+1−i − γi+1

√
ht+1−i

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.10)

All the terms in Equation (3.10) are known at time t, except Ω
(

zt+1 −
(

γ1− φ
2Ω

)√
ht+1

)2
.

Apply the fact E
[
exp(a(z+b)2)

]
= exp

(
−1

2 log(1−2a)+ ab2

1−2a

)
, where z is a standard normal

random variable, to Ω
(

zt+1 −
(

γ1− φ
2Ω

)√
ht+1

)2
:

Et

[
exp

(
Ω
(

zt+1 −
(

γ1 − φ
2Ω

)√
ht+1

)2
)]

= exp

⎡
⎢⎣−1

2
log(1−2Ω)+

Ω
(

φ
2Ω − γ1

)2
ht+1

1−2Ω

⎤
⎥⎦ .
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Now, substituting this result in Equation (3.10) gives:

ft = exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(xt + r)+At+1 +ωB1,t+1 − 1
2

log(1−2Ω)

+

⎛
⎜⎝φλ+B1,t+1β1 +φγ1 − φ2

4Ω
+

Ω
(

φ
2Ω − γ1

)2

1−2Ω

⎞
⎟⎠ht+1

+B1,t+1

p−1

∑
i=1

βi+1ht+1−i +
p−1

∑
i=1

Bi+1,t+1ht+2−i

+B1,t+1

q−1

∑
i=1

αi+1

(
zt+1−i − γi+1

√
ht+1−inn

)2

+
q−2

∑
i=1

Ci+1,t+1

(
zt+1−i − γi+1

√
ht+1−in

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.11)

Complete the square by adding and subtracting 1
2γ2

1ht+1. Rearranging gives:

ft = exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φxt +φr +At+1 +ωB1,t+1− 1
2

log(1−2Ω)

+

(
φ(λ+ γ1)+B1,t+1β1− 1

2
γ2
1 +

1
/

n2(φ− γ1)2

1−2Ω
n

)
ht+1

+B1,t+1

p−1

∑
i=1

βi+1ht+1−i +
p−1

∑
i=1

Bi+1,t+1ht+2−in

+B1,t+1

q−1

∑
i=1

αi+1

(
zt+1−i − γi+1

√
ht+1−i

)2

+
q−2

∑
i=1

Ci+1,t+1

(
zt+1−i − γi+1

√
ht+1−i

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.12)

Now, rearrange the guess function (equation (3.5)) to make it easily tractable when we solve

for the coefficients A(.),Bi(.) and Ci(.).

ft = exp

⎛
⎜⎜⎜⎜⎝

φxt +At +B1,tht+1 +
p

∑
i=1

Bi+1,tht+1−i

+
q−1

∑
i=1

Ci,t

(
zt+1−i − γi

√
ht+1−i

)2

⎞
⎟⎟⎟⎟⎠ . (3.13)
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Comparing Equations (3.12) and (3.13), we get the following results:

At = φr +At+1 +ωB1,t+1 − 1
2

log(1−2Ω), (3.14)

B1,t = φ(λ+ γ1)+B1,t+1β1− 1
2

γ2
1 +

1
/

2(φ− γ1)2

1−2Ω
+B2,t+1. (3.15)

Bi,t = B1,t+1βi +Bi+1,t+1, for 2 � i � p. (3.16)

Equations (3.14)-(3.16) are the same as the ones given in Heston and Nandi (2000). However,

the problem occurs in the Ci(.) terms. The solution for the Ci(.) terms in Heston and Nandi (2000)

is given as follows:

Ci,t = αi+1B1,t+1 +Ci+1,t+1, for 1 � i � q−1. (3.17)

To see that Equation (3.17) does not give the correct result, let’s take the C1,t terms from

Equation (3.13) (For simplicity i = 1 is chosen. The result holds for all i). Compare Equation

(3.13)to Equation (3.17): In Equation (3.13), C1,t is the coefficient of
(
zt − γ1

√
ht
)2

. So, C1,t must

be equal to the coefficients of
(
zt − γ1

√
ht
)2 in Equation (3.12). For i = 1, the last two terms in

Equation (3.12) give:

α2B1,t+1

(
zt − γ2

√
ht

)2
+C2,t+1

(
zt − γ2

√
ht

)2
. (3.18)

The solution for C1,t in Equation (3.17) is given as:

C1,t = α2B1,t+1 +C2,t+1.

In order for this expression to satisfy Equation (3.13), (α2B1,t+1 +C2,t+1) from Equation (3.18)

must be the coefficient of
(
zt − γ1

√
ht
)2, whereas Equation (3.18) show that it is the coefficient of(

zt − γ2
√

ht
)2

. Although it looks like a small typographical error at the end, it cannot be corrected
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in the way it is given. The guess function in Equation (3.5) has to be redefined and all the steps

above must be repeated to see if the guess function and the iterated solution match. However, we

have not been able to find a correct form of Equation (3.5) and to the best of our knowledge, there

has been no correction provided in the literature yet.

The model works for the Heston and Nandi (2000) version of the GARCH(1,1) specification,

which is given as:

log(St) = log(St−1)+ r +λht +
√

htzt , (3.19)

ht = ω+βht−1 +α
(

zt−1 − γ
√

ht−1

)2
, (3.20)

zt |Ft−1 ∼ N (0,1). (3.21)

To calculate option prices we need the risk-neutral distribution of the stock price, which is

shown by Heston and Nandi (2000) to be:

log(St) = log(St−1)+ r−0.5ht +
√

htz
∗
t , (3.22)

ht = ω+βht−1 +α
(

z∗t−1 − γ∗
√

ht−1

)2
, (3.23)

where
z∗t = zt +(λ+0.5)

√
ht ,

γ∗ = γ+λ+0.5.

The moment generating function of the logarithm of the stock price is as follows:

ft(φ) = Sφ
t exp(At +Btht+1) , (3.24)

where
At = At+1 +φr +ωBt+1 −0.5log(1−2αBt+1) , (3.25)

Bt = φ(λ+ γ)−0.5γ2 +β1Bt+1 +
0.5(φ− γ)2

1−2αBt+1
. (3.26)
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Equations (3.25) and (3.26) are solved recursively with the terminal conditions:

AT = BT = 0,

since xT is known at time T.

Following Feller (1971) and Kendall and Stuart (1977), Heston and Nandi (2000) show that if

the characteristic function of the logarithm of the stock price is f (iφ), then

Et [Max(ST −K,0)] =

⎡
⎢⎢⎢⎣

f (1)
(

0.5+
1
π

∫ ∞

0
Re

[
K−iφ f (iφ+1)

iφ f (1)

]
dφ
)

−K

(
0.5+

1
π

∫ ∞

0
Re

[
K−iφ f (iφ)

iφ

]
dφ
)

⎤
⎥⎥⎥⎦ , (3.27)

where Re[ . ] is the real part of a complex number.

Given all the above information, the price of a European call option that expires at time T and

with a strike price K is given as:

C = e−r(T−t)E∗
t [Max(ST −K,0)]

=

⎡
⎢⎢⎢⎣

0.5St +
e−r(T−t)

π

∫ ∞

0
Re

[
K−iφ f ∗(iφ+1)

iφ

]
dφ

−Ke−r(T−t)
(

0.5+
1
π

∫ ∞

0
Re

[
K−iφ f ∗(iφ)

iφ

]
dφ
)
⎤
⎥⎥⎥⎦ , (3.28)

where E∗[ . ] is the expectation with respect to risk-neutral probability measure and f ∗() is the

characteristic function of the risk-neutral model given in equations (3.22) and (3.23). We evaluate

the integrals in Equation (3.28) numerically in C++ by using numerical integration routine qromo()

provided in Press et al. (2002).
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3.3 Simulation Methodology

First, a series of stock prices is simulated under the physical probability measure P. The series

has 4,000 observations with a parameter change at observation 2,001. The model used is given in

equations (3.17)-(3.19) with a parameter change at observation 2,001:

log(St) = log(St−1)+ r +λht +
√

htzt , (3.29)

ht = ωi +βiht−1 +αi

(
zt−1 − γ

√
ht−1

)2
, for i = 1,2. (3.30)

zt |Ft−1 ∼ N (0,1), (3.31)

where i = 1 denotes the first regime of 2,000 observations and i = 2 denotes the second regime of

2,000 observations. We set initial volatility equal to the unconditional mean.

After simulating the system above, the parameters (a) for the whole series and (b) for the

last 2,000 observations are estimated by maximum likelihood. Estimated parameters are used

to evaluate the characteristic function given in Equations (3.24)-(3.26) after replacing φ with iφ

wherever it appears. Option prices are then estimated by using Equation (3.28). This process is

repeated 500 times for each of the scenarios. The numbers in Tables 3.1 through 3.3 and Figures

3.1 through 3.3 are the means of these 500 call prices. For brevity, I analyze only the changes in

ω. The changes in α and β are analogous.

3.4 Simulation Results

In the following, I analyze the effect of changes in ω of the conditional volatility process on at-the-

money, out-of-the-money, and in-the-money European Call options. The model given above from

Equation (3.29) to (3.31) is simulated for a single change in ω at observation 2001. The initial

stock price St is assumed to be $100. We keep the interest rate r at zero to make cross-maturity
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analysis easier. Following Heston and Nandi (2000), I choose γ = 421 and λ = 0.2.

The annualized volatility σ is equal to
√

250(ω+α)/(1− γ2α−β). σ1 denotes the annualized

volatility of the first half of the series and is set equal to 20% initially. σ2 denotes the annualized

volatility of the second half of the series and is set to different values, which in turn determines

the change in ω, as in the method followed in Chapter 2. I initially set ω1 = 2.5e-5, α1 = 1.33e-6,

and β1 = 0.60, so that the initial annualized volatility is 20%. For example, to study the effect

of the change in ω when the annualized volatility increases to 35%, ω2 is changed accordingly to

7.92e-5. The results are presented in Tables 3.1-3.3 and Figures 3.1-3.3 below.
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Figure 3.1: The effect of the change in parameter ω on European at-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (ĉn) without accounting for the parameter change, and the option price
obtained from the second part of the sample (ĉ). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 500 observations.

When the parameter change is ignored, the estimated persistence of the model increases spu-

riously, as in the case of the Duan (1995) model analyzed in Chapter 2. This can be seen from the

values of θ (= γ2α +β) in the tables. As the magnitude of the change in the annualized volatility

σ increases, the overestimation of the persistence of the model increases. The persistence of the

model implied by the initial values of the parameters is 0.84. Although the model’s persistence

does not change when ω changes from one regime to another, when the annualized volatility is

decreased to 0.10 from 0.20 by decreasing ω, the estimated persistence increases to 0.99 if the pa-

rameter change is ignored. These findings are in line with the regime-switching literature reviewed
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ĉ
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Figure 3.2: The effect of the change in parameter ω on European in-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (ĉn) without accounting for the parameter change, and the option price
obtained from the second part of the sample (ĉ). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 500 observations.
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Figure 3.3: The effect of the change in parameter ω on European out-the-money call options in
percentages. The vertical axis shows the percentage difference between the option price obtained
from the whole sample (ĉn) without accounting for the parameter change, and the option price
obtained from the second part of the sample (ĉ). The horizontal axis shows the percentage change
in annualized volatility. For each value on the horizontal axis there are 500 observations.

lated to the direction of the bias in option prices. If unconditional volatility decreases for the

second half of the series with the parameter change, then the bias in option prices will be positive.

For example, from Table 1 we see that if unconditional volatility decreases from 0.20 to 0.10 or

to 0.15 after the parameter change, the option price obtained by ignoring the parameter change

is greater than the option price obtained from the second half of the series. Exactly the opposite

happens if unconditional volatility increases. The main reason for this result is that if the uncon-
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ditional volatility decreases after the parameter change, the estimated unconditional volatility will

be greater than unconditional volatility of the second half of the series when the parameter change

is ignored. Since the volatility and option prices are positively correlated, it results in positive bias

in option prices in this case.

Table 3.3: Root Mean Square Errors for at-the-money European call option prices. σ2 denotes
annualized volatility of the segment after the change.

Root Mean Square Errors for changes in ω.
At-the-Money In-the-Money Out-of-the-Money

σ2 5-day 30-day 90-day 5-day 30-day 90-day 5-day 30-day 90-day
0.10 0.23 0.54 1.06 0.01 0.12 0.70 0.00 0.00 0.10
0.15 0.12 0.31 0.58 0.00 0.10 0.40 0.00 0.00 0.26
0.20 0.03 0.05 0.06 0.00 0.02 0.05 0.00 0.00 0.04
0.25 0.09 0.31 0.59 0.00 0.16 0.47 0.00 0.10 0.44
0.30 0.17 0.62 1.20 0.01 0.38 0.99 0.00 0.27 0.85
0.35 0.24 0.88 1.72 0.03 0.60 1.49 0.00 0.47 1.05
0.40 0.37 1.22 2.36 0.05 0.87 2.07 0.00 0.77 1.87

When the parameter change is ignored, the bias in option prices as measured by percentage

differences decreases as moneyness increases. In other words, ignoring parameter changes affects

out-of-the-money options the most. The reason for this is the near-zero value of out-of-the-money

options and the fact that the probability of the option finishing in the money is affected substantially

when there is a change in unconditional volatility. The differences also increase with the time to

maturity of the option. That is, as the time to maturity of the option increases, we see bigger

percentage differences in option prices as well as more outliers when the parameter change is

ignored.

If unconditional volatility decreases after the parameter change, the percentage differences

due to ignoring parameter changes are smaller in the Heston and Nandi (2000) model than they

are in the Duan (1995) model in Chapter 2. This result is seen especially when pricing at-the-

money and out-of-the-money options. This difference stems from the fact that inclusion of the

leverage parameter in the Heston and Nandi (2000) results in negative skewness in the risk-neutral
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distribution of returns. Negative skewness of the return distribution means that there is more

probability mass in the negative tail of the distribution than in the positive tail. Therefore, models

with negatively skewed return distributions generates lower prices for call options compared to

models with symmetric return distributions. In other words, the leverage effect partially offsets

the effect of a change in the volatility of stock returns on the value of options. For example, a

decrease in volatility decreases the value of a call option since Vega is positive. This effect is

partially offset by the increase in stock prices, which results from the negative correlation of stock

returns and volatility.

3.5 Summary

In discrete-time modeling of financial returns, GARCH models play an important role since they

capture the stochastic volatility and leptokurtic (fat tails) characteristics of financial return distri-

butions. However, simulation methods have to be used to price options when they are used. Heston

and Nandi (2000) provide a closed-form method of pricing European options by using a slightly

altered GARCH model. This specification allows for asymmetric and leverage effects.

I analyze the effect of an ignored parameter change in the conditional variance process of the

model on European call option prices. Models taking the leverage effect into account generate

negatively skewed return distributions. Compared to the Black and Scholes (1973) or the Duan

(1995) model, this results in lower prices for call options and a decrease in bias in option prices

when parameter changes are ignored.

I also show that the solution of the Heston and Nandi (2000) model for GARCH models with

orders of p = q = 2 or higher is not correct. Since majority of the GARCH option pricing models

use GARCH(1,1) and there is little or no support for higher order GARCH models in option

pricing, this result does not undermine the importance of the model.
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Chapter 4

Sensitivity of VaR Models Using GARCH to
Ignored Parameter Changes

4.1 Introduction

Value-at-Risk (VaR) has become a standard measure to numerically evaluate market risk exposures

of a given portfolio of financial assets. For a given confidence level, VaR is defined as the quantile

of that confidence level. An interpretation of VaR is therefore that with the probability specified at

the confidence level, the loss of the portfolio is not going to exceed this quantile. Therefore, VaR

is estimation of the left tail of the distribution of returns on the portfolio. VaR is usually calculated

with 95% or 99% confidence level over 1 day, 10 days or 14 days.

The Basel Committee on Banking Supervision (1996) at the Bank for International Settlements

requires banks and other financial institutions to calculate and report VaR estimates daily. The

Bank for International Settlements requires a VaR estimation with a 99% confidence level over

a 10-day period. Based on these VaR estimates, financial institutions must hold a certain level

of capital. Financial institutions can report their risk exposures to the Securities and Exchange

Commission by using 2-week VaR estimates with a level of 99% confidence.

The widespread use of VaR as a risk measure has increased the efforts to search for a good

estimation method. In the literature, many different models and methods have been proposed,

which are broadly categorized in three groups:
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1. Historical simulation method,

2. Semi-parametric methods,

3. Parametric methods.

Historical simulation methods do not assume any parametric model. Returns are assumed to

be independently and identically distributed (i.i.d.) and the estimation of VaR is based on a rolling

window estimation scheme. However, it is a well-known fact that financial asset returns are not

i.i.d. Although very easy to estimate, historical simulation methods are inaccurate due to the i.i.d.

returns assumption.

Alternatively, one can use a semi-parametric method, such as filtered historical simulation

(Barone-Adesi et al. (1998), Barone-Adesi et al. (1999), and Pritsker (2006)), extreme value

theory (McNeil and Frey (2000)), or CAViaR (Engle and Manganelli (2004)).

The most frequently used model in the parametric approach is GARCH. Since estimating VaR

means estimating a quantile of the distribution of returns, volatility modeling plays an important

role in obtaining good VaR estimates. Various specifications of GARCH models have been pro-

posed to model the volatility dynamics of financial return distributions (see Angelidis et al. (2004)

and Duffie and Pan (1997) for an overview). In the literature, there has not been a consensus

among researchers about which model is the best to capture the stylized facts of financial returns

(e.g. fat-tails, leverage effect, volatility clustering, non-normality of distributions, etc.) and about

how to generate better VaR results. The results vary depending on the assumptions about return

distributions and volatility dynamics. The results also vary depending on the selection of portfo-

lio and asset classes. The same method may provide results of different quality when applied to

different portfolios.

Evidence of high persistence of volatility in financial returns has been observed by researchers

in the literature. In the earlier chapters, I have cited several studies arguing that the high persistence

in volatility dynamics may be a result of structural changes. I have shown that ignoring parameter
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changes in the conditional variance dynamics of GARCH models results in biased estimates of

option prices. The purpose of this chapter is to analyze the effect of ignored parameter changes

in the conditional variance dynamics of GARCH models on VaR. I follow the simulation method-

ology in earlier chapters and show that VaR estimates are biased when the parameter changes are

ignored.

The rest of the chapter is organized as follows: The next section provides an overview of VaR

estimation methodology. Section 4.3 explains the simulation methodology. Results are given in

Section 4.4 and the last section concludes.

4.2 Evaluating Value-at-Risk

Let rt = log(St)− log(St−1) be the daily return of a financial asset. A single asset portfolio is

assumed to follow the GARCH(1,1) model given as:

rt =
√

htzt , (4.1)

zt |Ft−1 ∼ N (0,1) , (4.2)

ht = ω+αε2
t−1 +βht−1, (4.3)

where Ft is a σ-field of all information up to and including time t; zt is a standard normal random

variable; ω constant, α and β are autoregressive GARCH(1,1) parameters. Then the returns rt are

distributed normally with zero mean and variance ht .

Formally, VaR at time t with a 1−α confidence level is the solution to the following equation:

Pr(rt ≤VaRα
t ) =

∫ VaRα
t

−∞
f (rt)drt, (4.4)

where f (.) is the probability density function of a standard normal random variable. Then VaR for
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1-day can be estimated as follows:

VaRα
t =

√
ĥt+1F−1(α), (4.5)

where F−1(.) is the inverse cumulative distribution function of a standard normal random variable

and ĥt+1 is the 1-day ahead forecast of the variance of rt .

JPMorgan’s RiskMetrics uses a special form the GARCH model given above, which is called

exponentially weighted moving average model:

ht = αε2
t−1 +βht−1. (4.6)

RiskMetrics does not estimate the parameter of the model and assumes that they are constant at

β = 0.94 and α = 0.06. The model is nonstationary since α + β is equal to 1. This means that

shocks to the model are permanent and do not die out. This form of GARCH model is called

Integrated-GARCH (IGARCH), which was proposed by Engle and Bollerslev (1986). The choice

of these values is due to the high persistence in the volatility of financial returns reported by many

studies. However, as mentioned in earlier chapters, high persistence in volatility may be due to

ignored parameter changes and this is the main motivation of this chapter. RiskMetrics assumption

about the persistence may create biased estimates of VaR values. In the next section, I analyze this

issue in a simulation study.

4.3 Simulation Methodology and Results

Analogous to Chapters 2 and 3, I simulate the model given in Equations (4.1)-(4-3) with the

parameter values given as:

rt =
√

htzt , (4.7)
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zt |Ft−1 ∼ N (0,1) , (4.8)

ht = ωi +0.20ε2
t−1 +0.60ht−1, for i = 1,2, (4.9)

where i = 1 denotes the first 2,000 observations and i = 2 denotes the second 2,000 observations.

The initial value of ω is set equal to 3.20e-5, so that the initial annualized unconditional volatility

is 0.20. Volatility is changed for the second half of the series as specified in the tables.

The series has 4,000 observations with a parameter change at observation 2,001. I consider

only changes in ω. After simulating the return series, the parameters (a) for the whole series

and (b) for the last 2,000 observations are estimated by maximum likelihood. 1-day, 5-day, and

10-day VaR values at 99% and 95% confidence levels are estimated by using the estimated pa-

rameters from (a) and (b). For 1-day VaR estimations, Equation (4.5) is used. One-day ahead

forecasts of ht are readily calculated since all the variables are known in Equation (4.3) at time t.

Since F−1(0.01) = −2.3264 and F−1(0.01) = −1.6449, 1-day VaR estimates with 99% and 95%

confidence levels are:

VaRα
t = −2.3264

√
ĥt+1,

VaRα
t = −1.6449

√
ĥt+1, respectively.

For longer horizon VaR estimations, Monte Carlo simulations with 10,000 repetitions are used.

For example, to calculate the 5-day VaR, we simulate 10,000 return series given the model in

Equations (4.1)-(4.3) until t + 5 and calculate each of the 10,000 VaR estimates with 99% and

95% confidence levels as:

VaRα
t = −2.3264

√
5ĥt+5,

VaRα
t = −1.6449

√
5ĥt+5, respectively.

Then, VaR is calculated by taking the mean over 10,000 estimates. 10-day VaR is calculated

analogously.
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Table 4.1 reports the VaR estimates at the 99% confidence level and Table 4.2 reports the VaR

estimates at the 95% confidence level.

The results show that the VaR estimates are biased when they are obtained ignoring the pa-

rameter changes. The direction of the bias depends on the direction of the change in unconditional

volatility. For example, if annualized volatility of the second segment of the series is lower than

that of the first segment, ignoring the parameter change overstates the VaR estimates. If annual-

ized volatility of the second segment of the series is higher than that of the first segment and the

parameter change is ignored, VaR is biased downward. This means that the risk of the portfolio

is understated. The reason for this result is the spurious estimation of annualized volatilities when

the parameter change is ignored. In the case of a decrease in annualized volatility for the sec-

ond segment of the return series, ignoring the parameter change will result in overestimation of

annualized volatility and therefore overestimation of the risk of a highly negative return.
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Figure 4.1: The effect of the change in parameter ω on VaR in percentages. The vertical axis
shows the percentage difference between the VaR obtained from the whole sample (VaRn) without
accounting for the parameter change, and the VaR obtained from the second part of the sample
(VaR). The horizontal axis shows the percentage change in annualized volatility. For each value
on the horizontal axis there are 1000 observations.

Figure 4.1 shows that the bias increases with the magnitude of the change in annualized volatil-

ity. The intuition behind this result is that the greater the change in annualized volatility, the more

pronounced the overestimation or underestimation of unconditional volatility. VaR at the 99%

confidence level and VaR at the 95% confidence level are both quantile estimates of a standard
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Table 4.2: The effect of a single neglected change-point in ω on 1-day, 5-day, and 10 VaR at
the 95% confidence interval. ht = ωi + 0.20ε2

t−1 + 0.60ht−1 for i = 1,2. θ̂ = α̂ + β̂. Parameter
estimates are the means of 1,000 simulations. VaR is the VaR calculated using the second half of
the sample and VaRn is the VaR calculated using the whole sample without taking the parameter
change into account.The annualized volatility σ1 of the first segment is always 0.20. Standard
errors are given in parentheses.

Parameter Changes 1-Day 5-Day 10-Day
σ2 ω1 ω2 VaR VaRn VaR VaRn VaR VaRn

0.10 3.20e-5 8.00e-6 1.02
(0.21)

1.11
(0.27)

2.27
(0.21)

2.58
(0.54)

3.22
(0.14)

3.82
(0.68)

0.15 3.20e-5 1.80e-5 1.50
(0.31)

1.62
(0.32)

3.39
(0.30)

3.80
(0.39)

4.81
(0.21)

5.52
(0.29)

0.20 3.20e-5 3.20e-5 2.04
(0.47)

2.04
(0.46)

4.56
(0.47)

4.56
(0.45)

6.43
(0.31)

6.43
(0.27)

0.25 3.20e-5 5.00e-5 2.53
(0.57)

2.42
(0.63)

5.67
(0.56)

5.26
(0.75)

8.02
(0.37)

7.33
(0.51)

0.30 3.20e-5 7.20e-5 3.00
(0.66)

2.82
(0.80)

6.77
(0.69)

6.13
(1.27)

13.59
(0.49)

11.98
(1.19)

0.35 3.20e-5 9.80e-5 3.56
(0.78)

3.41
(1.06)

7.95
(0.78)

7.42
(2.03)

11.25
(0.52)

10.21
(2.39)

0.40 3.20e-5 1.28e-4 4.02
(0.87)

3.87
(1.17)

9.04
(0.85)

8.49
(2.41)

12.83
(0.58)

11.75
(3.07)

Table 4.3: Root Mean Square Errors

Omega
99% Confidence 95% Confidence

σ2 1-day 5-day 10-day 1-day 5-day 10-day
0.10 0.65 0.89 1.28 0.46 0.63 0.91
0.15 0.48 0.80 1.08 0.34 0.57 0.76
0.20 0.35 0.37 0.38 0.29 0.32 0.33
0.25 0.90 1.20 1.21 0.64 0.85 0.85
0.30 1.16 2.01 2.33 0.82 1.42 1.65
0.35 1.51 2.96 3.68 1.07 2.09 2.60
0.40 1.67 3.49 4.60 1.18 2.47 3.25

normal variable. Therefore, the the percentage biases are the same for both cases. We only show

the graph for VaR at 99% confidence level.
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4.4 Summary

VaR as measure of risk exposure has become important since it is required by regulatory agencies

such as the Securities and Exchange Commission and the Bank for International Settlements.

Among parametric methods of estimating VaR, GARCH models are by far the most frequently

used to capture the stylized facts of financial asset returns. Ignoring parameter changes in GARCH

models generates spurious results. In a simulation experiment, I show that VaR estimations based

on GARCH models are biased when parameter changes are ignored. Therefore, a change-point

study is needed before estimating the parameters of GARCH models and VaR.
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Chapter 5

Conclusions

Among stochastic volatility models, GARCH models are the most frequently used to forecast the

volatility dynamics of financial asset returns. Several studies show that financial returns exhibit

volatility clustering and fat-tails. GARCH models are not only capable of capturing these charac-

teristics, but also can be specified in various ways to capture other stylized facts, such as negative

correlation between asset returns and volatility and non-normality of asset returns.

High persistence of financial asset returns have been documented in many studies. In GARCH

models, persistence of volatility is measured by the sum of estimated parameters. A value close

to 1 is considered to indicate high persistence. In the literature, several studies show that when

there are structural breaks in the data generating process and the sum of estimated autoregressive

parameters approaches to 1, parameter estimates of GARCH models are spurious. An increasing

number of studies show that the high persistence feature of financial asset returns may be due to

structural breaks.

In this dissertation, I study the effect of this phenomenon on option prices and Value-at-Risk.

Options are derivative securities, the values of which are derived from another underlying asset or

assets. They are mostly used for hedging financial risk and are an important financial tool. Value-

at-Risk is used to measure the downside risk of a portfolio and it has become a standard measure

of market risk. The Bank for International Settlements require banks to report their VaR estimates

daily. The Securities Exchange Commission allows financial institutions to use VaR as a measure
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of their risk exposures.

In Chapter 2, I analyze the effect of ignored parameter changes in the condition volatility of

a GARCH model on European call option prices. Simulation studies show that the estimation

of option prices is biased when parameter changes are ignored. The main reason of the bias is

the spurious estimation of volatility. The value of an option depends positively on volatility of

the underlying asset. The direction of the bias depends on whether the estimated unconditional

volatility when parameter changes are ignored is higher or lower than unconditional volatility of

the segment after parameter changes. In the case of a parameter change that results in a lower

(higher) estimated unconditional volatility for the second segment of the series (the segment after

parameter changes), the bias in the prices of options is positive (negative). In addition, it is ob-

served that a negative change in unconditional volatility results in more pronounced bias than a

positive change in unconditional volatility. In a change-point study on S&P500 returns, we find

that there is a single structural break on April 28, 2003 at 1% significance level. The estimated

unconditional volatility for the segment after the structural break is lower than the estimated un-

conditional volatility for the whole data without accounting for the structural break. Therefore,

based on our simulation study, we expect that when the structural break is ignored, options should

be overpriced. The results support this intuition.

The empirical study in Chapter 2 also shows that the bias in option prices decreases but does not

disappear when GARCH models account for leverage effects. Leverage effects refer to the negative

correlation between asset returns and volatility. When volatility is high, asset prices decrease and

when volatility is low, asset prices increase. In Chapter 3, I analyze the effect of ignored parameter

changes on European call options when leverage effects are accounted for. I use Heston’s and

Nandi’s (2000) closed-form GARCH option pricing model to study this phenomenon. Results

support the empirical finding of Chapter 2. The bias in option prices decreases when a leverage

effect parameter is included in the model. The intuition behind the results is as follows: When

volatility decreases, the price of a call option decreases. However, due to the leverage effects,
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the stock price increases. This, in turn, increases the price of a call option and as a result partially

offsets the decrease due to the decrease in volatility. Therefore, taking leverage effects into account

results in a less pronounced bias in call option prices. In Chapter 3, I also show that the closed-

form solution for the GARCH option pricing model is incorrect for orders p and q greater than

1.

In Chapter 4, I analyze the effect of ignored parameter changes on VaR estimates that are based

on GARCH models. I find that VaR estimates are biased when parameter changes are ignored. If

a change in the parameters of the model increases (decreases) unconditional volatility, the bias

in VaR estimates is negative (positive). The bias is positively correlated with the magnitude of

change in unconditional volatility.

We see that in all the cases considered, ignoring parameter changes in conditional volatility

results in biased estimates of option prices and VaR. Therefore, a change-point study is needed

before estimating the parameters of GARCH models.
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