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Abstract

This paper offers three different regional output-by-industry forecasting techniques
(time series, Social Accounting Matrix (SAM)-based, and Computable General Equilibrium
(CGE)-based) and two different occupation-by-industry matrices (national and state
geographies) for use in the creation of industry/occupation employment forecasts. Estimates
are compared to actual data from eight years for 2001 to 2010. OLS regressions are run to
determine how well modeled employment estimates fit actual employment for the state of
Louisiana. A meta-analysis-style regression of the R-squared values on model characteristics
(accounted for using Boolean dummy-variables) determines that industrial output forecasting
techniques do not provide statistically different R-squared values, but that models which use
the state level occupation-by-industry matrix constructed for this paper should expect a
statistically higher (by about 3.5%) R-squared value. Theil inequality coefficient decomposition
analysis indicates that the assumed direct link between output and employment present in

many projection methodologies may need further consideration.



1 Introduction
1.1 Framing the Policy Question

As regional and state policy agencies address workforce and education issues that
accompany macroeconomic structural shifts, accurate regional and state industry/occupation
employment projections are a vital input to policy functions at regional and state levels.
Sweeney (2004) asserts that “detailed industry/occupation employment forecasts are an
important class of regional labor market information.” Using these projections, policymakers
determine state funding for various educational and training programs that will produce the

necessary workers to fill future employment needs.

With regional and state policies frequently informed by industry/occupation
employment projections, the methods and techniques used to produce such forecasts are
crucial to the efficacy of the policies they influence. Inaccurate, biased projections could cause
significant mismatching in the efficiencies of labor markets (Sweeney, 2004). Therefore, it
becomes increasingly important that economists strive to provide projections using the most
appropriate processes to policymakers during this transitional period in the U.S. and world

economy.

One of the most pressing concerns regarding regional industry/occupation forecasting is
determining which techniques, when used within the BLS recommended process, best serve the
needs of state policymakers, workers, and industries. There are several different methods that
vary in approach, technique, structure, complexity of theory, complication in construction, and

data requirements. Thus, an assessment of the practical costs and benefits to the state of



Louisiana of each model, or type of model, is valuable in hopes of finding the appropriate place

in the policy function for each variation.

Sweeney (2004) asserts that “in theory, the [industry/occupation] forecasts should
improve the national, interregional, and intertemporal matching efficiency of labor markets.”
However, this statement assumes that the projections are accurate or unbiased, hence the
precursor “in theory.” If the projections used to craft educational policies are not reasonably
accurate, then those policies will not produce the desired economic effects, even if they create
the intended amount of trained workers. That is, without a solid industry/occupation
forecasting method, there is no guarantee that the specially trained workers will be in the
correct industries or in the correct amounts. It then becomes critical that processes for
producing such forecasts be examined at both the theoretical and practical levels, and further,

that alternative projection models be considered.

This research will focus on two specific steps in the forecasting procedure for the state
of Louisiana for years from 2001 to 2010 (which will be elaborated upon in the following
section). The first is output-by-industry forecasts, which can be conducted using methods that
vary in the level of complication. The second stage is to convert these output projections into
employment counterparts. This second stage is a much simpler process both theoretically and
technically but requires data granularity that can be difficult to obtain. However it maintains a
key role in the creation of industry/occupation projections and deserves investigation by any
paper discussing industry/occupation style labor projection techniques and processes due to

some existing assumptions that are forced due to availability.



Tiebout (1969) asserts that in terms of industrial output estimates, the movement from
econometric analysis toward new Input-Output (I/O) or Leontief-style models during the 1940’s
represented a significant step forward in the ability to model economies, and in a 1957 paper
asserts that “it’s not too much of an overstatement to say that post World War Il regional
research has been almost completely dominated by regional applications of Input-Output
models.” While academic regional economists have begun to move beyond Input-Output
modeling after the analysis of ready-made secondary data-based Input-Output models, Input-
Output analysis still dominates private sector consulting and government regional economic
research (Partridge, 2007). Input-Output style impact analysis has been used to evaluate
regional policy in almost every economic field: labor, growth and development, agriculture, and
general industry, to name a few. Impact analysis in particular benefitted from the adoption of
Input-Output techniques because, together, they provided a more realistic economic model in

which policy alternatives could be tested.

Input-Output (or the expanded version, Social Accounting Matrix (SAM)) analyses
improved the science of impact analysis by providing a more realistic view of the economy
which includes previously ignored inter-industry linkages. That is, prior models had largely
ignored or were incapable of accounting for such linkages, effectively ignoring indirect effects.
Nicholson (1995) asserts that pricing outcomes in one market create ripples that affect other
markets, possibly such that the ripples then affect the originating market. The existence of
these rippled, indirect effects is ignored completely in partial equilibrium models, but de Melo
and Tarr (1992) argue that a general equilibrium model, such as a model based on Input-Output

framework, has the capability capture these inter-industry linkages. Input-Output models



essentially improved the glass through which economists and policymakers viewed the
economy. By providing a clearer, more detailed and intricate picture, Input-Output analysis
increased the efficiency of the projections, thus theoretically improving both policy efficiency

and efficacy.

Just as Input-Output and Social Accounting Matrix analyses improved realism over
partial equilibrium models, so Computable General Equilibrium (CGE) models are improving on
Input-Output theory by relaxing many of the rigid assumptions that make Input-Output models
unrealistic or problematic in evaluating regional policies. Waters, Holland, and Weber (1997)
conclude that “compared with fixed-price I/0 and econometric forecasting models, Computable
General Equilibrium models can better address the implications for efficiency and equity of
alternative public policies because the underlying assumptions regarding economic behavior
are more tenable.” CGE is a system of simultaneously solved equations that govern the actions
of economic agents of a variety, thus it could be classified as a Walrasian, neoclassical, general
equilibrium approach. The basic argument for CGE implementation over I/O or SAM is similar to
the arguments originally made by I/O over econometric models: by including more economic
information in the model one improves the ability of the model to react as markets do in

reality.

With the idea that CGE models represent a theoretical improvement over Leontief
structures (Menezes et. al., 2006), the policy question then becomes: Are the theoretical
superiorities of I/0 and SAM models over econometric models and CGE over I/O or SAM models

apparent in their production of industry/occupation forecasts for the state of Louisiana?



Though improvements in economic understanding allows for the modeling of more complex
ideas, the more pertinent question is, are any practical improvements worth the costs incurred
in their acquisition at the regional level? CGE models are larger, more complex to construct
(and understand) and easily misspecified. Are the improvements in projections significant,
providing real-world improvements validating any increase in costs and effort spent by state

agencies?

Regardless of output estimation method chosen, the next task is the conversion of those
output rates into occupational units. Most state agencies follow BLS recommendations
(Franklin, 2007) which suggest applying fixed staffing patterns of occupation-by-industry
directly to output projections. This information is contained in occupational matrices at the
national level without regional consideration, which may be biasing results (Vargas et.al., 1999).
The possible biases may be the result of a geographical information mismatching. That is, this
process contains the rather untenable assumption that national staffing patterns are an
appropriate proxy for regional patterns. However, as regional staffing pattern matrices do not
exist for the state of Louisiana it remains unknown how this unification of geographical

information may improve estimates of industry/occupation projections.

Current methods of application in which these staffing patterns are applied to industrial
output estimates will be spelled out in future sections along with several alternatives, but the
basic approach remains the same. Each different method will apply labor market information

directly to output estimates to obtain the estimate of the number jobs by occupation and by



industry. Variance in this particular application of the process comes from geographic nature

rather than the structure of data.

A more thorough understanding of these two particular steps within the projection
process, the theory that each is built on, their sensitivity, their structure, and the ways in which
they can be used most appropriately is important for policymakers in creating policies that
shape educational funding and therefore workforce development and efficient economic
growth at the national, regional, and local levels. Knowing how these models perform
empirically is equally as important as understanding theoretical underpinnings. Further,

empirical testing of this nature has been ignored in labor economics to this point.

1.2 Objectives

1.2.1 General Objective

The primary objective of this paper is to analyze the procedure for the creation of
industry/occupation employment forecasts for the state of Louisiana, considering alternative
industrial output forecasting techniques and occupation-by-industry matrix geographies. This
paper will focus on two primary mathematical pieces of the projection procedure published by
BLS via the BLS Handbook of Methods, and thus will include evaluation of these individual parts
as well as the combinations thereof. The structure of the industry/occupation forecasts as
presented by BLS is given in Figure 1.1. The two steps for which alternative techniques are

considered in this dissertation are enclosed in hexagons rather than boxes.
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-

Project Industrial
Output
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Occupation-by-Industry Matrices

.

-

[ Industrial Labor Demand by Occupation ]

Figure 1.1: Industry/Occupation Forecast Procedure Flow Chart

First, this paper seeks to determine if the theoretical superiorities of Input-Output style
models over partial equilibrium models and of Computable General Equilibrium over /O or
SAM models produce different industrial output forecasts and thus different
industrial/occupational forecasts, statistically and functionally. The distinction between
statistical and functional differences is crucial. Both will be addressed and both have valuable
interpretation. However, following Friedman’s instrumentalist advice (Hausman, 2008),

functionality will take precedent in this paper. Should a simpler, less rigorous method provide



more accurate estimates when used as a prediction tool than a more theoretically sound
model, the first model would be preferred. Simply, forecast accuracy is preferred to theoretical

or interpretive solidarity.

Though there have been several published works covering the theoretical underpinnings
and comparisons of Input-Output and CGE models, there have not been any that measured
these differences empirically. There has been piece-meal discussion including a comparison of
Input-Output and CGE models in theory (Partridge and Rickman, 1997), countless empirical
Input-Output models, and slightly fewer empirical CGE’s. However, this paper represents the
first empirical effort to estimate any superiorities of CGE over Input-Output (and of I/O over
econometric based models) in labor market forecasting. This paper will focus on the specific
application of Input-Output and CGE to Louisiana industry/occupation projections, but if the
models produce significantly different results those results could speak to a variety of other
applications. Regional development groups, education boards, workforce development groups,
and private industrial firms in the state of Louisiana, as well as nation-wide, all use output by
industry projections and thus would stand to benefit from a quantified, empirical comparison of

methods.

The second part of the evaluation pertains to the application of labor market
information to these output estimates. Current methods use national staffing patterns to link
industry output to labor. This paper will construct a matrix of staffing patterns for the state of
Louisiana for comparison to the national level data to determine if proper scope provides more

reliable labor estimates. Matrices of this variety do not currently exist for the state of Louisiana;



thus, it is constructed. This is the first set of state industry/occupation matrices constructed for

the state of Louisiana for use in employment projections.

After the methods for output estimation and the varying occupation-by-industry
matrices have been evaluated and compared to one another, projections will be produced
using all available combinations of output estimates and occupation-by-industry matrices.
Resulting comparisons should provide an outline and optimal projection techniques in terms of
output estimates and application of staffing pattern data to such estimates within the

industry/occupation employment forecasting framework.

1.2.2 Specific Objectives

This general objective will be accomplished via the following specific objectives:

1) Evaluate current and relevant projection procedures. (Chapter 3)

2) Evaluate the theoretical underpinnings of current projection procedures, as well an
Input-Output and Social Accounting Matrix modeling, Computable General Equilibrium
modeling, and alternative occupation-by-industry matrices. (Chapter 3)

3) Build SAM and CGE models of industrial output for the state of Louisiana as a single
region. (Chapter 3)

4) Construct alternative occupation-by-industry matrices. (Chapter 3)

5) Test the industrial output techniques, the occupation-by-industry matrices, and all

combinations thereof. (Chapter 4)



These specific objectives are discussed in detail, constructed, and tested in their
designated chapters, so the rest of this chapter will outline for the reader some of the details of
the BLS guidelines for industry/occupation employment forecasting, the current state of the art
in the production of industry/occupation projections, and some of the motivation behind the

alternative techniques considered in this dissertation.

1.3 Guidelines for the Creation of Industry/Occupation Employment Forecasts

BLS publishes guidelines for the creation of industry/occupation employment forecasts.
Franklin (2007) outlines this six step process. Contained among the six steps are two of the
primary interests of this dissertation: (1) industrial output projections and (2) the conversion of
output forecasts to employment forecasts via occupation-by-industry matrices. Each set of
projections made, regardless of alternative techniques for each individual step, will follow the

general structure outlined below which is a discussion of the process described in Figure 1.1.

. Project Labor Force

The first step towards industry/occupation projections is to estimate the future supply
of labor. This is accomplished by applying labor force participation rate projections published by
BLS to population projections published by the Census Bureau. This process projects the gross
change in the labor force, which then is adjusted for various workforce reductions (military
workers, prison inmates, etc.) and for exit trends. The data are smoothed and then checked for

consistency with past trends.

10



1. Project Aggregate Economic Output

Aggregate output is projected vis-a-vis Gross Domestic Product (GDP) and primary
demand and income sectors. These projections are published by BLS and are available at
national and state levels and include assumptions about monetary and fiscal policy, energy
prices and supply, world economic growth, and demographic changes. (Bureau of Labor

Statistics)

1. Commodity Final Demand

Commodity final demand projections are the product of disaggregating the macro
economic projections from the previous section. The aggregate demand is first divided into
national income and product account categories, and then into the types of commodities

purchased by those categories.

V. Industrial Output Forecasts

This section generally disaggregates industrial output given the projected GDP from
above. Each method, of which there are many, distributes the projected aggregate output over
the industry categories according to the rules which accompany that particular technique. The
most common techniques are partial-equilibrium, econometric models, but more sophisticated

models can also be used.

The econometric model will have an equation for each industry that will project output
dependent on past trends and the aggregate GDP projection. These equations may also include

some adjustments for regional deviation from national trends when appropriate. The SAM and

11



CGE models, on the other hand, are general equilibrium and involve the creation of an input-
output table. Regardless of the method used, the results are projected output by industry

category. This will be discussed further under the specific objectives section.

V. Employment

The industry output derived above is then used to solve for industry-level employment.
Data from the Current Employment Statistics (CES) and the Current Population Survey (CPS) are
used to model industrial employment as a function of output, time, wages, and prices. These

employment projections must be consistent with the aggregate employment projected above.

VI. Occupational Employment

The industry-level employment projections are then converted into occupational
projections via an occupation-by-industry matrix. There will be two different types of matrices
in use, national matrices produced by BLS and Louisiana state matrices which are constructed
for this study. Each matrix consists of staffing patterns that distribute industry employment
over the occupations within that industry, resulting in employment projections by industry and
occupation. The data are then aggregated by occupation resulting in the desired

industry/occupation projections.

1.4 State of the Art

When Louisiana state, regional, and local political agencies construct
industry/occupation employment projections, most use some general version of the BLS

recommended process. They may gather data from other sources rather than, say, projecting

12



the regional labor force internally; they use various techniques within the guidelines most
commonly econometric (partial-equilibrium) and Input-Output style models to project

industrial output and national occupation-by-industry matrices (Franklin, 2007).

Econometric estimation of industrial output is conducted using a variety of econometric
techniques (panel-data regression analysis, time-series regression analysis, shift-share analysis,
etc.) (Franklin, 2007). The future production of each industry is modeled as a function of
previous industry output, some industry-specific measurements, and many policymakers insert
variables to account for various expected trends over the projection period. The last of these
inputs are, in many cases, attempts to correct for things that are not accounted for within the
structure of the model; like inter-industry linkages, inter-regional linkages, national and/or
regional economic trends, or industrial trends (Franklin, 2007). These models are partial
equilibrium models, thus the accuracy of each industry’s projections depends on granularity of
industrial segregation, as well as specificity of data and the “tweaks” inserted asystematically

by policy-makers.

In an attempt to improve output estimates some policymakers have used Input-Output
or Leontief style models (Tiebout, 1969). These models are general equilibrium models and
account for inter-industry linkages within the structure of the model. Thus, they do not require
variable insertion to account for these linkages, as in econometric models. These models are
often adapted for state and regional use from national models because of their intense
mathematical structures, and they must be expanded in order to account for inter-regional

linkages that are more prominent between states or regions than between countries. Vargas et

13



al (1999) claim that regional economies are more open than national economies and that
frameworks designed for national economies may not correctly handle interregional openness,

thus regional econometric models adapted from national models may be misspecified.

Today, most states use econometric models to estimate industrial output. Several
regional industry/occupation forecast producers have moved to Input-Output or Social
Accounting Matrix style models, but of those, many are developed by software packages that
can be easily misused or adopted from national models. No states, to my knowledge, currently
use Computable General Equilibrium modeling within the industry/occupation projection

framework.

Regardless of output projection strategy, workforce projections are acquired by applying
labor market information or staffing patterns (via a fixed occupation-by-industry matrix) to the
industry output forecasts to determine expected output within each occupation-by-industry.
These estimates can then be aggregated by occupation to predict future workforce needs.
These projections of occupational needs by industry allow policymakers to fund educational

programs according to the state workforce needs.

As a crude example, assume projections for five years from now indicate that Louisiana
healthcare industry will need 1,000 more nurses than are currently projected as available.
Policymakers might offer tuition incentives to nursing programs in order to create the trained
workforce needed to meet that requirement. Obviously the reality is more complex, but the
example illustrates the usefulness of industry/occupation projections and their effect on

educational policy.

14



Currently, strategies for applying labor market information vary. Many state agencies
use national occupation-by-industry averages while others use national averages with regional
adjustments. The state of Louisiana does not produce a state-wide occupation-by-industry
employment matrix. However, several economic processes may indicate that labor distribution
by occupation over a given industry could differ across regions, and those differences may
occur between the national and regional labor distributions (Goodrich, 1936). A region’s
endowments of natural resources, human capital, and infrastructure may cause production
functions to differ slightly (Pindyck and Rubinfeld, 2001). That is, varying factor inputs could
change the production function in a particular region to the point where labor requirements in

that region are structurally different than the national industrial trends.

Further, differences between state and national matrices may stem from product life
cycle variations. If production of a specific product in a specific region is at a different level of
maturity than the national industry, it would have a different ratio of capital to labor due to
differing stages in the product life cycle (Vernon, 1966). That is, if the region’s production
process is more mature than the national, that region would be using less high-skill labor,

possibly more low-skill labor, and possibly less total labor.

As a simple example, consider the real estate industry. In the southeast portion of the
US, most real estate transactions are brokered by real estate agents. However, in other parts of
the country the same business transaction would be brokered by a lawyer. This difference may
be a result of the institutional environment, inherited tradition, or possible policy differences

between regions. Regardless, differences of this sort could cause the national occupation by

15



industry matrix to differ from a regional or state matrix. This paper, in part, will create these
two matrices in order to empirically determine if they are different, how they are different, and

possibly to offer some intuition as to why they might be different.

Though some states have attempted to use regional staffing pattern data, there exists
no such matrix for the state of Louisiana. Basic economic geography reasoning would indicate
that when creating projections for a specific region, input data from that region is preferred to
information from larger or smaller segments of the population. Assuming local markets act like
national markets could cause bias in the estimation process, leading to bias in the policy
function which might be easily avoidable by matching geographic information between output

estimates and labor market information.

It would benefit policymakers and economists to know whether alternate projection
techniques provide benefits in the instrumentalist sense. That is, would alternate methods of
projecting output and/or applying labor market information to estimates of output produce

markedly better results not just in terms of theory, but in real world application?

16



2 Review of Literature

2.1 Introduction

This chapter sets out to provide a review of literature on several topics that will be
prominent in the development of the ideas presented in this dissertation. The introduction is
followed by a discussion of industry/occupation employment forecast procedures as laid out by
the Bureau of Labor Statistics at both the national and regional levels. The next section
addresses literature which compares employment estimates from projection models to actual
employment statistics. The fourth section presents literature relative to comparative analysis,
which helps economists choose between models which represent similar economic
phenomena. The fifth section provides literature on the alternative industrial output
forecasting techniques chosen for this study, while the sixth section presents literature on
Meta-Analysis Regression which will be used in the fourth chapter. The final section offers some

concluding remarks.

2.2 Bureau of Labor Statistics Employment Projections

2.2.1 National Framework for Employment Forecasts

The Bureau of Labor Statistics (BLS) publishes the BLS Handbook of Methods, in which it
devotes an entire chapter (Chapter 13: Employment Projections) to the procedure used to
create industry/occupation employment projections. This chapter begins by laying out a basic

history of employment projection procedures, and state that “since the late 1970’s..., the basic

17



methodology has remained largely the same,” and that the methodology is built on an Input-

Output framework and a national occupation-by-industry matrix (Franklin, 2007).

BLS produces national industry/occupation employment projections using the
framework from Figure 1.1 and has done so regularly since late 1960’s (Fullerton, 2003). These
forecasts are published by BLS and available for a variety of base years and projections years,
with a variety of time-lengths (Bureau of Labor Statistics). These projections are used widely

and have been tested.

2.2.2 Regional Framework for Employment Forecasts

Regional frameworks for producing employment forecasts generally follow the outlines
set by the national procedures (Bell, 1981). Most State Employment Security Agencies use the
general framework laid out by the BLS Handbook of Methods discussed in the previous section
modified to fit regional projects where possible, or they contract out employment projections
(Goldstein and Cruze, 1987). Companies like Moody’s Analytics and ProjectionsCentral.com sell
industry/occupation employment forecasts and analyses which are often purchased by regional
economic agencies. While there are many topic areas that could be covered in regional
employment projection analyses, this literature review will focus on three aspects of regional
employment projections, each with a seminal paper: (1) the adoption of the general national
framework to regional economic analysis (Goldstein and Cruze, 1987); (2) the outsourcing of
regional employment projections to proprietary entities; and (3) the use of regional parameters

to relax assumptions that national parameters are proxies for regional parameters.

18



Goldstein and Cruze (1987) calculated average errors for projections made by BLS in
1972 using essentially the same framework (including I/O techniques and advanced regression
analysis) projecting 1982 industry/occupation employment. They cite problems with
comparisons due to changes in aggregations, definitions, and classification systems, as in Wyatt
(2010). Goldstein and Cruze (1987) suggest that the following improvements be made to state
industry/occupation employment forecast framework: improvements in system design and
data collection that would reflect available data and statistical tools, and improvements in the
documentation of the creation and evaluation processes. These results bring forth the two

primary branches of literature based on these regional projection frameworks.

The first branch is concerned with the technical aspects of creating better employment
projections by using the best available data and statistical tools. Oosterhaven and Stelder
(2007), Partridge and Rickman (1998), and Vargas et. al. (1999) represent different ways in
which this branch has developed. Oosterhaven and Stelder (2007) outline the development of
interregional I/0O models from closed national models. They present, among other things, the
use of regional 1/0 tables, the disaggregation from a national model to an interregional I/O
model, and different ways in which the interregional models can be extended and applications

in multiplier and impact analysis.

Partridge and Rickman (1998) introduce regional I/O coefficients instead of assuming
that national coefficients are sufficient proxies for regional coefficients (this paper also
addresses come comparative analysis and will come up again during a later section devoted to

that topic). They evaluate five different models for employment forecasting in the state of

19



Georgia, ranging from a simple auto-regressive model to a general Bayesian Vector
Autoregression approach, and find that econometric-style projections “were comparatively
more accurate in the short run, but the most input-output-oriented models were comparatively
more accurate in the longer run,” and that “more accurate forecasts may be obtained in
applications to regional economies that are less dependent on the national economy”
(Partridge and Rickman, 1998). For other examples of studies that study improvements to
regional frameworks by introducing more geography-appropriate parameters, see Vargas et. al.
(1999) who discuss the relative openness of regional economies, Adkins et. al. (2002) who use
Computable General Equilibrium (CGE) modeling for regional production, Giescke (2002) who
uses a dynamic multi-regional CGE of regional Australian economies, and Kim and Kim (2002)

who evaluates several regional development strategies.

The second branch mentioned above is the improvement in documentation of the
creation and evaluation of these regional projections. This branch turns out to be rather large
and encompasses how employment forecasts have historically been evaluated. This branch

deserves its own dedicated discussion and is presented in the following section.

2.3 Evaluating Employment Forecasts

The evaluation of employment forecasts literature can most easily be categorized into
two groups: (1) literature evaluating BLS projections and (2) literature that suggests
improvements for, and tests assumptions and implications of, the generally accepted

employment projection methodology in general (without producing any specific new
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employment forecast estimates, but rather evaluating an aspect of the methodology in some

other way).

2.3.1 Evaluating BLS Projections

Rosenthal (1999), Fullerton (2003), Stekler and Thomas (2005), and Wyatt (2010) all
published studies which evaluate various BLS employment projections. These studies represent
a large literature and were chosen to outline that literature and show how the BLS projections
have been evaluated over the past 20 years, but these papers should by no means be

considered exhaustive, merely representative.

Rosenthal (1999) discussed the general history of projection procedures used by BLS to
forecast occupational employment and analyzed projections from five time periods ranging
from 1960 to 1995. The study uses only descriptive statistics in its analysis (no regressions or
detailed statistical tools), but finds that occupational employment projections predicted actual
employment reasonably well. Projections are better for total employment estimates than for
major occupational groups and better for major occupational groups than minor occupational

groups. For other information on BLS forecasting history and review, see Toossi (2006).

Fullerton (2003) and Stekler and Thomas (2005) evaluate BLS employment projections
for 2000. Fullerton (2003) evaluated five sets of labor force projections made by BLS between
1986 and 1994 that projected the labor force to 2000. Using a descriptive statistical analysis,
the study suggests that projections of labor force participation rate projections overestimated
actual rates in four of the five projection series and projections become less reliable as the
granularity of the projections increases (Fullerton, 2003).
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Stekler and Thomas (2005) study labor force, employment, and occupation projections
for 2000 evaluating projections using a variety of descriptive statistical analyses, even going so
far as to reframe some of the accuracy measures. The study finds that BLS projections “were
comparable to estimates obtained from naive extrapolative models” (Stekler and Thomas,

2005).

Wyatt (2010) follows Fullerton (2003) and Stekler and Thomas (2005) but evaluates
employment projections for years 1996-2006. This paper is perhaps the most appropriate
citation for this dissertation; Wyatt (2010) asserts that projections should be evaluated relative
to alternative projections available (this segues nicely to section 2.4 which discusses
comparative analysis). Wyatt (2010) finds that each of four different series of employment
estimates produced by BLS are more accurate than projections made by alternative methods;
however, the author identifies a problem that hampers all in depth, long-term employment
forecasts (like the ones in this dissertation): the fact that changes in “data series, definitions,
and classification systems hamper [an] article’s analysis by decreasing the number of
occupations available for analysis and creating substantial data comparison problems” (Wyatt,
2010). For other evaluations of BLS employment projections, see, most notably Alpert and

Auyer (2003), but also Rosenthal (1997), and Hecker (2005) among others.

Though all of these studies evaluate BLS employment projections in some way, they all
use simple descriptive statistical analyses rather than in-depth regression analysis or other
more complex forms of analysis to determine how well the projections fit actual data. In many

of these studies, descriptive statistics are sufficient, because there is only one set of projections
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to evaluate. That is, there are no alternative models to be considered, no model characteristics
to evaluate; the forecasts have errors when compared to actual data that are either small or
large. There are few nuances that require more sensitive statistical tools as there might be if
multiple alternative models are presented that each have relative strengths and weaknesses

(Goldstein and Cruze, 1987; Vargas et. al., ; Partridge and Rickman, 2007).

2.3.2 Literature on the Indirect Aspects of the General Employment Projections Framework

The literature concerning the improvements in the general industry/occupation
employment projections framework can be viewed in general as non-empirical. Though some
works in this area do present empirical results, many do not, and those that do, often present
empirical results that test a specific assumption or implication of the existing framework in an
indirect way. For example, Bezdek (1984) tests three different implications of the Leontief I/O
model which are central to the employment forecasting framework, but the paper never
creates new employment projections nor evaluates any existing projections. This branch of the
literature covers vast theoretical ground and an entire literature review of this kind could be
produced for each of the six steps in the projection framework. Thus, to provide sufficient
literature review in this area, examples and suggestions for further reading are presented very

briefly.

Literature regarding the evaluation of actual labor force projections was discussed in the
previous section addressing the evaluation of BLS employment projections. However literature
regarding assumptions about labor force projections can be found in Durand et. al. (1996) who

decomposes labor force growth into effects from population change and effects from changes
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in the activity rates. Parsons (1980) discusses assumptions about labor force participation

concerning shifts in participation rates of specific demographics.

For literature regarding the testing of employment migration and relative wage
assumptions, see Blanchard and Katz (1992) and Barro and Sala-i-Martin (1991). Blanchard and
Katz discuss regional evolutions in terms of regional employment, regional wages, and the
linkages between the two, while Barro and Sala-i-Martin (1991) discuss how relative wages
converge across regions, implying effects this convergence may have on regional worker

migration. The reader may also see Treyz et. al. (1993) for discussion of specific U.S. migration.

There is a wealth of literature on regional employment multipliers including the work of
Leontieff (1936, 1941), Pyatt and Round (1978), and Miller and Blair (1985), who lay out the
foundations of the I/O framework and the multipliers. Early empirical studies of these
multipliers were conducted in New Hampshire (Weiss and Gooding, 1968) and there are many
modifications to the framework for specific situations: Mathur and Rosen (1974) presented a
modified framework for regional employment multipliers which separated localized and non-
localized employment and was critiqued by Isserman (1975) and Park (1970) suggested a

regression approach to calculating employment multipliers.

The literature regarding alternative industrial output forecasting will be presented in
section 2.5. It is separated from this discussion because the topic is central to this dissertation

and the literature on specific alternatives deserves in-depth presentation.
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2.3.3 Non-BLS Employment Projections

Since the 1970’s, the general framework for the production of industry/occupation
employment forecasts has not undergone significant structural change (Bureau of Labor
Statistics), and thus the creation of actual projections has mainly been left to BLS, state
agencies follow guidelines laid out by the BLS, and proprietary groups who produce economic
statistics; thus, recent studies which produce new employment forecasts are rather rare, with
the majority of recent literature focused on the evaluation of BLS projections or on assumptions
and implications contained within the minutia of the projection framework. This leaves no
recent studies that produce employment projections internally and empirically test those
projections against actual data. Thus, this dissertation will take its testing guidance from the

comparative analysis literature and from common econometric practice theory.

2.4 Comparative Analysis

The literature on comparative analysis, or the comparison of several models which
purport to account for the same phenomena is presented (in a field called encompassing tests)
as a theoretical problem in Cox (1961) who considered “comparing separate families of
hypotheses” (Cox, 1961). Pesaran (1974) expanded the idea to testing linear single-equation
econometric models, and Pesaran and Deaton (1978) expanded further to include comparative
analysis for multivariate nonlinear models by deriving a test that uses alternative models to
reject hypotheses about one another (forming the Cox-Perasan-Deaton, or CPD, encompassing

test) by comparing five models of the consumption-income relationship.
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Chong and Hendry (1986) discuss the distinction between theoretical solidarity and
functional performance in the empirical evaluation of systems as a whole. That is, “since system
characteristics are the prime concern of economy-wide models, it might be the case that the
validity of every individual component is not essential to adequate overall performance”
(Chong and Hendry, 1986). This question is particularly important to this dissertation in that

empirical performance is preferred to solidarity with economic principle, ceteris paribus.

Regressions of actual data on projected values of that data were used by Fair and Shiller
(1990) to compare real Gross National Product (GNP) growth rates from various models. Fair
and Shiller (1990) cite the CPD tests, as well as Chong and Hendry (1986), in their discussion of
these regression equations, but Fair and Shiller note that their tests do not provide insight as to
whether a model, as a whole, contains “useful information” (a question that this dissertation
addresses in a later section discussing Meta-Analysis Regression). The testing process,
presented by Fair and Shiller (1990) and advanced by Diebold and Mariano (1995), and Diebold
and Lopez (1996) (among others), is a relative test; that is, there is not a general goodness-of-fit
calculated for each alternative model that has meaning outside of the relative study but rather
the models are evaluated relative to one another. To include more models in the analysis, one
cannot simply calculate a new test statistic for the new models, new regression equations must

be run.

Fair and Shiller (1990) conclude that this type of comparative analysis seems useful in
determining how alternative models perform relative to one another. For more detailed,

mechanical referential material on this type of testing, the reader is directed to West and
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McCracken (1998) who “develop regression-based tests of hypotheses about out of sample
prediction errors” and find that simulations of these types of testing procedures work well and
to Vuong (1989) and Rivers and Vuong (2002) who develop relative performance tests for

nonlinear dynamic models.

This dissertation will rely heavily on this type of testing, as will become apparent in
Chapter four. The general strategy of running regressions of actual data on projected data and
comparing regression statistics and goodness-of-fit measures is a strategy that allows for
multiple models to be considered for the same economic phenomena and evaluates them
strictly on how well they fit the data, rather than on how well the structures fit economic

theory and principle (Diebold and Mariano, 1995).

2.5 Alternative Industrial Output Forecasting Techniques

2.5.1 Input-Output (1/0)

Input-Output (I/0) and Social Accounting Matrix (SAM) analysis began its ascendency
with Leontief’s work in the 1930’s which laid an analytical framework designed to describe the
transactions and, more importantly, the inter-industry linkages within an economy (Miller and
Blair, 1985). Though Quesnay published “Tableau Economique” in the 1750’s which contained
some of Leontief’s structures and basic theories, it is Leontief that is referred to as the “father”
of Input-Output analysis. The fundamental breakthrough that Quesnay and Leontief share is the
separate descriptions of agents in the economy as producer and consumer. Leontief’s
transaction table, which is at the center of both I/O and SAM analyses, is a clever
representation of this theoretical separation.
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A transactions table, at its core, is a double-entry bookkeeping of accounts, in which
“each transaction appears in the table as an output or sale [row] and simultaneously as an input
or purchase [column], and when factor incomes are included as inputs, then the sum of the
outputs from each industry is observed to balance, in an accounting sense, with the sum of
inputs” (Adams and Stewart, 1956). Leontief’s Input-Output analysis structure consists of n
linear equations with n unknowns, and is therefore solvable. The relations can also be
represented in matrix form. The model is constructed from observable data that can cover
regions of various sizes (nation, states, counties, etc.). Because much of the model is based
around the linkages between industries, industrial clarity is required. The extent to which the
sectors are divided can vary between models; industrial granularity should be determined with

respect to the research question requirements and data availability.

The monetary flows from one industry to another representing production make up the
primary data and are usually gathered over a specific, non-recurring time period. That is, the
data are static. Note that the data are in monetary terms, thus this model is not able to account
for changes in price within the specified time period. Although physical goods can be used as

units, this is a much less common practice due to complex comparability issues across industry.

Miller and Blair (1985) provide a full review of input-output techniques, and the
following basic structures follow directly from that review. Denote the flow of monetary value
from industry i to industry j as zj. The amount of input j that will be used by industry j will be
closely tied to the amount of output produced by industry j. In addition to providing industry j

with an intermediate good, industry i may also sell its commodity in the final goods market. The
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final demand for a product is the monetary value of the good in industry i sold to final goods
markets, denoted as Y. Let the total production of industry i’s product be X;, and be

represented as

Xi = Zj=1,2,3..n(zij) + Yi

This equation represents the total production for industry i, and there exists one for

each industry in the model. Consider the compilation of these equations in matrix form.

X1 =Zj=1,2,3..n(21) + Y1

X2 = Zj=1,2,3.n(22) + Y2

Xn = Zj=1,2,3..n(zn;) + Yn

Note that, the matrix made by stacking these equations has two nice properties: (1)
columns represent the sum of all inputs used by each industry in dollars, and (2) rows represent
the sum of production from each industry in dollars, hence the name Input-Output. (Miller and

Blair, 1985)

The information contained within this system of equations, combined with industrial
data on value added and import/export activities, make up the transactions table. The industry
of origin is represented by row information and purchasing industry by column in a square
matrix. Alternative sectors of the economy, including value-added and imports, are represented

by one row and one column each, representing production and inputs of the sectors
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respectively. The number and specific characteristics of sectors added to the base production
information can vary depending on the scope of the research question and data availability.

(Pyatt and Round, 1978)

The use of transactions tables in I/0O and SAM analyses allow the systems to account for
inter-industry linkages in a much more specific, accurate manner than with a single equation
model. In the transaction table, if output in one industry rises, it is represented as an increase in
the column (input) entries for that industry (since the columns represent the input mix). Each
input increase is, following the double-entry bookkeeping idea, also seen as an increase in the
output of the intermediary good since more inputs are required to produce the extra output.
This process is repeated for the intermediate good’s industry, thus revealing the depth of inter-

industry linkages that are overlooked in a single equation model.

These transaction tables are used in lieu of econometric equations to predict industry
output. However, once these output projections are obtained, the process in which those
forecasts are used to produce industry/occupation forecasts is the same in this paper as in
standard state agency practice (using staffing patterns along with duration and turnover

statistics).

2.5.2 Social Accounting Matrices

A Social Accounting Matrix (SAM) is a larger model produced by expanding an I/0O model
structure to include income, demand, and factors of production such that it focuses on more
detailed descriptions of institutions and inter-institutional linkages. That is to say an I/O
transactions table is a subset of the larger SAM model. By including information on income and
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demand changes, a SAM can track economic linkages outside of production much the same way

I/0 models track them inside production sectors.

The SAM is formed by simply adding sectors for income, demand, and factors of
production in dollar terms to the I/O transactions table. This expansion does not change the
zero-sum, double-entry bookkeeping nature of the I/0 model, while allowing policy makers to
see effects beyond changes in production. In essence, because SAM models are a simple
addition to any I/O model and allow for deeper interpretation and application, a SAM model
will be used for this study. Also note that the theory, interpretation, and content are very much
the same, which makes the above substitution of SAM for I/O quite natural (Pyatt and Round,
1979). In fact, most models created in policy work today are called I/O but in fact are SAM,;

thus, the two terms are often used interchangeably (even if technically incorrect).

2.5.3 Computable General Equilibrium

Computable General Equilibrium models do not contain rigid price and wage
assumptions, instead prices (including wages, which are just the price of labor) are the solution
set in which the system of equations is at general equilibrium. Still, Computable General
Equilibrium models have not seen wide adoption in the regional policy world in part because
they are complex to construct and require large amounts of regional data. As these problems
become less restrictive with increases in regional data collection and storage and availability of
computers with high processing power and large storage capabilities, Computable General

Equilibrium models are becoming more feasible at the regional level (Vargas et al, 1999).
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Robinson, Kilkenny, and Hanson (1990) summarized the debate between the theory of

I/0 and CGE models:

The CGE framework offers an alternative for regional analysis. It encompasses
both the I/0 and SAM frameworks by making demand and supply of commodities and
factors dependent on prices. A CGE model simulates the working of a market economy
in which prices and quantities adjust to clear all markets. It specifies the behavior of
optimizing consumers and producers while including the government as an agent
capturing all transactions in circular flow of income.

A CGE model, at its core, is a “Walrasian neoclassical general equilibrium approach”
(Vargas et al, 1999). The solution is a vector of prices which satisfies a system of equations that
govern agents' actions. Producers maximize profits, while consumers maximize utility, both
subject to constraints. Production factors are paid the value of their marginal productivities,

and the solution prices clear commodity and factor markets.

In general, CGE frameworks offer several key improvements over Leontief structures
which will be enumerated rather than expounded upon in this draft. As stated, CGE models do
not contain fixed wage or price assumptions. CGE models contain inter-industry linkage
information via the inclusion of a SAM, and thus contain many of the novelties of I/0-SAM
frameworks, without some of the drawbacks (fixed price and wage assumptions or non-

substitutability of inputs).

Vargas et al (1999) and Partridge and Rickman (1998) provide a rigorous review of CGE
modeling which begins with assumptions and ends with solution methods. These papers
provide a solid literature review for anyone unfamiliar with either national or regional CGE

structures. Robinson, Kilkenny, and Hanson (1990) present a CGE of the US developed by the
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Economic Research Service, but note that since then CGE modeling has expanded applications

throughout domestic alternative policy analysis, especially regional CGE modeling.

2.5.4 Empirical Studies

Empirical papers using I/0-SAM models tend to focus on the empirics of testing
intersectoral relationships (Cella, 1984; Tiebout, 1969; Forni and Paba, 2002), economic impact
analysis (Fletcher, 1989; Psacharopoulos, 1973), forecasting structural change (Israilevich et. al.,

1997), or estimating multiplier effects (Kilkenny, 1999; Frechtling and Horvath, 1999).

Being that most of the employment forecast estimates produced are done by BLS, as
discussed earlier in this chapter, existing studies that examine, empirically, the difference
between employment forecasts and actual data are limited to the literature which evaluates

employment projections made by BLS, discussed in section 2.3.1.

Similarly to I/0O-SAM models, CGE models have been used to investigate inter-industry
linkages (Goulder and Eichengreen, 1992), alternative policy impact analysis (Kilkenny, 1993;
Prescott, 1995), international trade (De Melo and Robinson, 1989; Shoven and Whalley, 1992),
and structural change (Kilkenny and Otto, 1994). Though Johansen (1960) is generally given
credit as the first attempt to use CGE to study actual economies, CGE models were not adopted
regionally until much later with studies like Norrie and Percy (1983), Kimbell and Harrison

(1984), and Liew (1984), which all looked at regional CGE models.

Though there are numerous papers which construct, discuss, and dissect I/0-SAM

models and CGE models, there are relatively few which discuss them both (Partridge and
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Rickman, 1997; Rose, 1995; Partridge and Rickman, 2008), and even fewer which empirically

compare the two directly.

Seung et al (1997) compared a modified “supply-determined” SAM (SDSAM) to a CGE
approach. They found that SDSAM models overestimate, relative to CGE, policy impacts on
factor income and output and recommend CGE for “impact analysis where productive capacity
of rural sectors is reduced,” but results are restricted to impacts of surface water reallocation

and have little input as to how CGE models might perform in terms of employment projections.

Cardenete and Sancho (2004) addressed the sensitivity of CGE models to SAMs of
various aggregations and structures and found little sensitivity. Unfortunately, the study did not
compare estimates of any kind from a model built on I/0-SAM framework to estimates built on

a CGE framework.

Partridge and Rickman (2007) evaluated theoretical underpinnings of regional CGE
modeling, compared CGE to I/0 in terms of economic theory, and built a regional CGE, but did
not directly compare to a similarly specified I/O model. Other papers have addressed related
issues, but an empirical comparison that might apply to labor markets, much less regional labor

markets, does not exist.

2.6 Meta-Analysis Regression

Meta-Analysis Regression (MAR) involves using regressions which use Boolean (dummy)
independent variables to account for model characteristics (in possible conjunction with non-

Boolean explanatory variable). Though some independent variables are discrete in MAR, the
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dependent variable is continuous. That is, independent variables can be either discrete or
continuous while the dependent variable is continuous. This allows for the regression
coefficients from the MAR regression equation to indicate if the model characteristics
(represented by a series of dummy variables) are associated with statistically significant
changes in the goodness-of-fit of the previous regression equations (Stanley and Jarrell, 1989;

Judge et. al., 1988).

In seeking to evaluate existing literature for unobserved patterns and to provide
consensus, Stanley and Jarrell (1989) sought to create a testing structure which “provides a
framework for replication and offers a sensitivity analysis for model specification.” In this
paper, they present an outline for Meta-Regression Analysis (MRA). This dissertation is not
interested in any sort of meta-analysis, per se, but econometric testing which “offers a
sensitivity analysis for model specification” is quite pertinent. By applying the econometric
structure presented by Stanley and Jarrell (1989) to the question of model specification within
the industry/occupation employment estimate procedure, this paper seeks the same sort of

sensitivity analysis for model specification.

MAR provides a unique solution to the comparative analysis problem of choosing among
available alternative methodologies; further, it echoes the “performance” ideas put forth by
Chong and Hendry (1986) who place preference on statistical performance rather than
theoretical solidarity or elegance. MAR analyses are most often used in, not surprisingly, meta-
analyses. Various statistics have been used as the dependent variable in a wide variety of fields,

such as medical treatment effects (van Houwelingen et. al., 1993; van Houwelingen et. al.,
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2002), factors influencing share-holder wealth (Datta et. al., 1992), and new product
performance (Montoya-Weiss and Calantone, 1994). The nature of MAR implies that virtually
any statistic can be used as a dependent variable with various discrete and continuous variables

used as independent variables (Stanley and Jarrell, 1989).

The only field in which MAR has an existing literature that relates to the topic of this
dissertation is in employment turnover. Cotton and Tuttle (1986) used independent variables
accounting for population, nationality, and other business characteristics to predict
employment turnover rates. Griffeth et. al. (2000) follow Hom and Griffeth (1995) evaluating

the “predictive strength of numerous turnover antecedents” (Griffeth et. al., 2000).

Though there are no guides for using MAR in employment projection analysis, Judge et.
al. (1988) provide general economic theory for regression analysis using Boolean independent

variables to explain continuous dependent variables.
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3 Method and Models

3.1 Introduction

The primary objective of this chapter is to evaluate alternative methods for projecting
workforce needs for the state of Louisiana. This chapter will focus on two primary functional
pieces of the projection method, and thus will include evaluation of these individual parts as
well as the combinations thereof. Section 3.2 will discuss three methods of producing industry
output estimates; Section 3.3 will discuss occupation-by-industry matrices, and section 3.4 will

provide a summary and conclusion.

3.2 Industrial Output Models

The general structure of this study pairs three different industry output projection
methods with two different occupation-by-industry matrices within the structure of
industry/occupation employment projection, as discussed in the previous section. The structure
of industry/occupation projection method featured in the BLS guidelines (Franklin, 2007) is

given in Table 3.1, annotated for chapter sections.

The following sections will discuss the three different output projection methods,
followed by a discussion of the occupation-by-industry matrices, and will conclude with a

discussion of industry/occupation projections using the various combinations thereof.
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3.2.1 SAM

3.2.1.1 Theory

This section considers the expansion of the Input-Output framework already developed
to a Social Accounting Matrix framework. A social accounting matrix (SAM) has two primary
objectives: (1) the organization of economic and social information in a specific time period and
(2) to provide a basis for the creation of a plausible economic model which can simulate

reactions in economic markets of exogenous changes (Pyatt and Round, 1978).

The first objective according to King (Pyatt and Round, 1978) is the organization of data.
The anatomy of a SAM is most easily presented in the form of an example. Consider a simple
theoretical economy whose SAM is presented in the table below. First consider the accounts:
(1) production, (2) factors of productions, (3) institutions, (4) the rest of the world (ROW), and
(5) regional balances. This presentation and discussion is a paraphrasing of discussions written

by King and featured in Pyatt and Round (1978) and Miller and Blair (1985).

Table 3.1: Example SAM Expenditures
Regional
Production | Factors | Institutions ROW | Balances Total
1 | Production 1,000 250 1,250
2 | Factor of Production 1,025 1,025
Receipts 3 | Institutions 100 1,000 25 1,125
4 | ROW 125 25 450 600
5 | Regional Balances (325) 325 0
6 | Total 1,250 1,025 1,125 600 0

Consider the five accounts. Production requires factors to produce value-added that is
sold in domestic and foreign markets. Factors of production consist primarily of capital and
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labor that are used in, and receive income from, the production process. The factors are drawn
from institutions such as households, private and public firms, and government institutions who
supply labor and capital and are represented in the second account. The ROW account
represents the transactions with accounts outside the region, and the final account, “regional
balance,” is a direct result of these transactions. Transactions with the rest of the world rarely
balance and the difference must be made up through lending (Pyatt and Round, 1978) which is

represented in this final account.

In this example there are, excluding the border cells, 11 cell entries. A brief cell-by-cell
analysis begins by considering row (1). The production process receives sale of product of
$1,000 from domestic institutional demand and $250 from demand from foreign markets.
Notice that these payments are offset exactly by the expenditures of production in column (1),
which is comprised of the value-added by factors of production ($1025), institutional payments
like profits and taxes (5100), and payments for imported materials (5125) (Pyatt and Round,

1978).

Looking at the factors of production account, consider row (2). The $1,025 payment
from production is the only payment to factors of production. In column (2) income is
distributed among institutions such as households and taxes (51000) and to ROW ($25) for

payments to foreign factors (Pyatt and Round, 1978).

With production and factors of production entries covered, consider the institutions
account in row (3). Household income from factors is received in the second column ($1000),

direct tax payments from production are in the first column ($100), and transfers from the
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ROW account is in the fifth column ($25). Column (3) shows how institutional income is
distributed among consumption of domestic final goods ($1000) and imported final goods
(5450); the remaining payment entry is a negative payment to the regional balance (-$325) that
is the result of the imbalance of domestic income and domestic consumption, which in this case
produces a deficit (one might also think of this sector as investment or as a regional account).
The final unmentioned cell is the ROW surplus to regional balances ($325). This also is a result
of the regional trade; if the domestic region runs a $325 deficit with the ROW, then the ROW
account must be running a $325 surplus with the domestic region which is why the surplus in
the ROW account exactly balances the deficit run by the domestic region in the regional

balances account (Pyatt and Round, 1978).

This completes discussion of data organization. Pyatt and Round (1978) assert that this
organization should be used a basis upon which to build a plausible model. The SAM structure
in and of itself does not produce any industrial output estimates, much less projections thereof.
However, this framework will be the basis upon which a model to produce industrial output

estimates and projections is built.

Since the purpose of this process is to provide industrial output estimates, the rest of
the discussion will focus on the disaggregated production sector of the SAM (also called the
transactions table or Input-Output Table). This process is valid for all of the accounts included in
the SAM, but the terminology, interpretation, and notation can get vague when speaking in
generalities. To be clear, the inclusion of the other sectors of the economy in the SAM provides

access to all of the linkages in the economy and is vital to include in the model from the
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beginning, but interest from this point forward is to extract industry output estimates from the
SAM which already account for the linkages; thus, | restrict this discussion to the production

account. Regardless, it is important to note that this process is valid for all sectors.

The production sector, though presented as a single row-column combination in the
example above, is comprised of a row-column combination for each industry (i) in the model.
The i X i matrix is inserted into the top left cell of the example SAM and is often referred to as

the make matrix.

Consider an economy with n industries each producing output of x;. Each industry i
requires a; ; units from industry j. Industries sell their production to other sectors (as
intermediate goods) as well as to consumer via final demand. Thus output equals the sum of

intermediate and final demands:

Equation (3.1)

xi = [agx; + agixy; + 0+ apxn] + d;

where d; is final demand and a; ;x; + a,;x, + --- + a, ;x, is the summation of intermediate
demand to all other industries from industry i. This calculation may also be represented in

matrix form as

Equation (3.2)

X=AX+D
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where X is the vector of total outputs, A4 is the matrix of a; ; coefficients, and D is the vector of
final demands. This notation becomes useful in the discussion of how these output measures

are calibrated and projected which occurs in future sections.

This process of calibrating and projecting the output calculated via the SAM can be used
in lieu of econometric equations. However, once output projections are obtained the process in
which those estimates are converted into industry/occupation forecasts is the same in this

paper as in standard state agency practice (using staffing patterns) (Franklin, 2007).

3.2.1.2 Assumptions and Shortcomings of SAM:

Though SAM models are general equilibrium models, they are not without drawbacks.
Further, because a SAM is used in the construction of any CGE model, some of the faults in the
model are carried over. Drawbacks in this type of modeling typically either stem from

assumptions or from scope issues.

Input-Output and Social Accounting Matrix models assume wage fixity, yet Tokle and
Huffman (1991) claim that regional wage disparities exist for a variety of reasons. Along similar
lines, SAM analysis assumes that prices are fixed, but there are numerous articles suggesting
this is not entirely true. Jedidi et. al. (2003) suggest that fixed-price models produce “biased
demand estimates” when predicting product line pricings. If one expands this idea to the labor
market, biased demand estimates equate to inaccurate work force projections, which bias the

policy function.
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On a theoretical level, it is assumed the prices move proportionally. Nicholson (2005)
claims that this only holds because of zero-transaction cost and perfect information
assumptions, which are unrealistic in most if not all regional economic settings. Thus, if the
underlying assumptions to price fixity are unrealistic, then fixed-price models may result in

biased estimates even in the event they are specified correctly.

The reality of fixed wages comes into question when considering alternative functional
forms like Cobb-Douglas (Chand and Kaul, 1986). Flexible functional forms imply that labor and
capital are substitutable and each is paid equal to the value of its marginal product. This
substitutability suggests that wages may differ in regions where transportation costs, capital
production, or technology levels differ. Thus, correctly specified models should account for

wage differences across regions.

A further issue with Leontief style models is that they “hinge on the crucial assumption
that sectoral production is completely demand driven.” More specifically, the problem is that
Input-Output type models ignore capacity constraints and assume that any demand will be met
instantaneously by production, which makes them more useful as “guidelines to potential
induced linkage effects, and as indicators of likely bottlenecks,” but less useful as predictive

models (Sadoulet and de Janvry, 1995).

It is important during times of structural change that economists and policymakers
evaluate policies and the tools used to craft them. When looking forward, models that contain
restrictive, unrealistic assumptions may not be able to handle impending structural changes.

During such shifts in economic organization, a projection methodology with such restrictions
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may in fact inhibit policy efficacy. That is, the use of such models lowers the quality of

projections, a primary input in the policy function, thus decreasing policies’ effectiveness.

The adoption of national models to the regional setting is also problematic. Regional
models “differ from their national counterparts in several aspects. Most of these differences
stem from the fact that regions are relatively more open economies compared to nations.
Because of this regional openness, commodity trade and resource migration are more
important” (Vargas et al, 1999). This statement also speaks to the rigid assumptions above and

their inability to cope with structural change and wage or price disparities.

3.1.1.3 Data

In order to construct the SAMs for this study, data on industrial output for the state of
Louisiana was purchased from Impact Analysis for Planning (IMPLAN). Due to financial
restrictions only data for 2001, 2002, 2006, 2007, and 2008 were available. However, the data
from 1998 and 1999 used industry classification codes that require 3 different sets of
disaggregation and reaggregation in order to be compatible with the post-2000 data in terms of
NAICS codes. These bridge tables are large, cumbersome, and contain a significant amount of

overlap at the two-digit NAICS level; therefore data from 1998 and 1999 are excluded.

The data from 2001, 2002 and 2006 also required a bridge table in order to merge the
industry classification codes with the data from 2007 and 2008. However there is very little
overlap at the two-digit level and the crosswalk is far less extensive. Thus there will be five
SAMs constructed in this dissertation, one for each post-2000 IMPLAN data set: 2001, 2002,

2006, 2007, and 2008.
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Data are organized into the five SAM structures using the IMPLAN software. Trade data,
or inter-institutional transfer data, from each year is used to track linkages between industries
that feed into one another so that these linkages are not ignored when forecasting output by
industry. Data about other aspects of the economy (consumption, taxes, etc.) are used in the
IMPLAN construction of SAMs to dictate linkages between institutions. However much of the
actual mechanics are protected as proprietary information used within the IMPLAN software

packages and are thus unavailable.

Further details on relevant calibration, simulation, and projection techniques for

industry output are discussed in the section of this chapter devoted specifically to those topics.

3.2.2 Computable General Equilibrium Models

3.2.2.1 Theory

The following specifics are excerpts from the CGE literature that specifically apply to this
paper. For expansive CGE models and comprehensive literature reviews, see Partridge and
Rickman (1997 and 2007), Vargas et al (1999), Lofgren et al (2002), and/or De Menezes et al

(2006).

The theory presented here are sections pertinent to the models that will be constructed
for this dissertation following the Standard Computable General Equilibrium (CGE) Models in
GAMS produced by the International Food Policy Research Institute (IFPRI) (Lofgren, 2002). The
IFPRI model is published with code for a solver named GAMS (General Algebraic Modeling

System) which is used for CGE construction in this chapter. The IFPRI model is not entirely
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adopted, but rather adjusted in terms of parameters, regionality, and structure in order to
adhere to tenable assumptions given the nature of this project. The IFPRI model was designed
to be a national model for use in developing countries, so adjustments are needed to make the
structure suitable for regional modeling. This section will describe the primary sections of the

CGE along with changes that were made and rationale for those changes.

Perhaps the easiest way to conceptualize a Computable General Equilibrium (CGE) is in
two stages. The first stage is intuitive while the second is organizational and formulaic. The
intuition of the CGE can be summarized in how certain aspects of the economy act and interact
within the CGE: (1) production and factor markets; (2) institutions; (3) commodity markets; and
(4) macroeconomic balances. These concepts and the specifics thereof are at the core of the
model and must be understood in order to grasp the general structures of the CGE. However,
the actual formalized model of equations is not so neatly organized; for example, a single
equation that addresses institutional expenditures on foreign commodities could easily fall into
any of the four categories listed above. For this reason, the equations are divided up into
slightly different categories that make their presentation more coherent for the reader: (A)
price equations; (B) production and trade equations; (C) institutional equations; and (D) system
constraint equations. With this designation, the institutional expenditures on foreign

commodities equation would squarely fall under the trade equations.

Begin with how the CGE structure in this dissertation deals with the four intuitive
concepts. Production in the CGE is driven by the neoclassical specifications. Each producer can

make several commodities within the production function, but the proportion of the
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commodities produced by each firm’s production process is fixed. To produce these
commodities, firms demand factors until their marginal revenue equals their marginal cost;
thus factor prices may differ across industries and commodities (Partridge and Rickman, 1998).
The quantity of each factor is taken from the observed data and an “economy-wide wage
variable is free to vary to assure that the sum of demands from all activities equals the quantity

supplied” (Lofgren et al, 2002), which closes the factor markets.

Technology is specified as a Leontief function of value-added and aggregate
intermediate input functions. The value-added is described by a constant elasticity of
substitution (CES) function while aggregate intermediate inputs are a Leontief function of

disaggregated intermediate inputs (Lofgren et al., 2002).

Institutions include households, government accounts, enterprises (corporate profits),
and the rest of the world (ROW) account. Households receive incomes from the factors they
provide to the production process and from other institutions. They distribute that income to
direct taxes, savings, transfers to other institutions, and consumption. Household consumption
distribution over commaodities is driven by a linear expenditure (LES) demand function which
comes from utility maximization. Commodity prices adjust so that markets clear (Partirdge and

Rickman, 1998).

The government collects taxes and institutional transfers and distributes that income
over consumption and transfers to other institutions. Governmental consumption is held as

exogenous (Lofgren et al, 2002).
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Instead of being paid directly to households factor payments may be paid to enterprises,
which may also receive other institutional transfers. Enterprises distribute their income over
direct taxes, savings, and institutional transfers. Enterprises do not consume; however “apart
from this, the payments to and from enterprises are modeled in the same way as the payments

to and from households” (Lofgren et al, 2002).

The ROW account receives and makes payments to other institutions and factors, but
those transactions are fixed in foreign currency. The ROW account receives transfers from
domestic institutions and foreign factors in domestic use while spending that income on
institutional transfers within the region, domestic factors, and consumption of domestic goods.
The difference between spending and receipts is foreign savings. Trade and closure of markets
concerning the ROW account are covered in the following discussion of commodity markets

and macroeconomic closures (Partridge and Rickman, 1998).

Commodity market discussion begins with aggregating commodity output from all
producers using a CES function. This aggregated commodity output is then distributed between
exports and domestic sales using a Constant Elasticity of Transformation (CET) function. At this
point, domestic supplies are joined with imports to form a composite good. This composite
good supplies household and government consumption as well as investment and intermediate

markets. Commodity prices fluctuate to clear markets (Lofgren et al, 2002).

There are two particular assumptions used here that warrant discussion. “The
assumptions of imperfect transformability (between exports and domestic sales of domestic

output) and imperfect substitutability (between imports and domestically sold domestic
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output) permit the model to better reflect empirical realities” instead of forcing the alternative

assumptions of perfect substitutability and perfect transformation (Lofgren et al, 2002).

The CGE model includes three primary macroeconomic balances, or closures, pertaining
to government balances, foreign markets, and savings-investment. The government balance is
the difference between revenues and expenditures from governmental institutions and is
treated as a flexible residual. In other words, government consumption and tax rates are fixed
while the government savings or deficit fluctuates to balance the accounts (Lofgren et al, 2002).
International models may use flexible tax income models, but those models are inappropriate

for regional use within the U.S.

Though foreign markets are of relatively little importance to a study of Louisiana, in
order to close the system macroeconomic balances are required (Lofgren et. al., 2002), and
thus are presented here. The foreign market balances are held in foreign currencies and the
real exchange rate is allowed to fluctuate while foreign savings is fixed. Further, all transactions

between domestic institutions and ROW are fixed via the SAM which fixes the trade balance.

The investment-savings balance is probably the most simplistic closure intuitively.
Balances are investment driven in that real investment is fixed and savings rates adjust to
create savings that equal investment. It is assumed that governmental policy can influence

savings rates enough to balance the fixed investment (Vargas et. al, 1999).

There are alternative CGE macroeconomic balance closure methods mentioned in
Lofgren et al. (2002), Partridge and Rickman (1998), and Vargas et al (1999), but these methods
were most commonly associated with the U.S. and world markets in all three papers. For a
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reader needing specifics on alternative closure methods, Lofgren et al. (2002) is the most useful

reference.

This concludes the discussion of how the CGE intuitively models primary aspects of the
economy. However, a slightly different organization will improve readability when discussing
the CGE structure in terms of equations. These equations can be categorized into price
equations, production and trade equations, institutional equations, and system constraint
equations. The formal presentation of the equations can be found in Appendix A, but a brief

discussion of those equations is presented here.

The price block of equations contains equations for export and import prices, market
output valuation, domestic price vectors, absorption, aggregate intermediate input prices,
consumer and producer price indices, demand prices of domestic non-traded goods, activity
prices, and producer revenue and cost equations. These equations link endogenous prices to
one another as well as linking prices of other non-price variables, both endogenous and
exogenous (Lofgren et al., 2002). This block is particularly rigorous “primarily because of the
assumed quality differences among commaodities of different origins and destinations” (Lofgren

et al.,, 2002).

The production and trade equations cover domestic production, allocation of output to
domestic and foreign markets (including consumption), aggregate supply to domestic markets,
and demand for trade inputs. This equation block includes production functions, value-added-
intermediate-input ratios, aggregated and disaggregated demand for value-added, aggregated

and disaggregated demand for intermediate inputs, factor demand, commodity production and
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allocation, output aggregation and first order conditions, output transformation equations,
export-domestic supply ratios, composite supply (Armington) functions, import-domestic

demand ratios, and transaction services demand equations (Lofgren et al., 2002).

Equations for the institution block deal with factor incomes, institutional incomes, infra-
institutional transfers, household consumption expenditures, investment demand, government
consumption, government revenue, and government expenditures. These equations dictate
how institutions respond to one another within the framework of the CGE: how income is
gained, how transfers are made, and how institutions distribute their income in consumption

(Lofgren et al., 2002).

The final block of equations governs system closures and constraints. Factor market
closure, composite commodity market closure, foreign market closure, government balances,
direct institutional tax rates, institutional savings rates, the savings-investment balance, total
absorption, investment-absorption ratios, and government consumption-absorption ratios
equations are all in this block of equations that force markets to close, providing the impetus

for prices to adjust and equilibrating the model as a whole.

These blocks of equations are presented in detail in Appendix A along with a visual

representation and discussion of the CGE equation structure.

3.2.2.2 Data

CGE specifications begin with the creation of the five SAMs, which are the same

structures from which the SAM estimates are based. These five SAMs are the primary
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ingredients for the construction of a CGE. The structural equations were covered in the
theoretical model section. The additional specifications include the exogenous variable list:
consumer price indices and elasticites of several varieties. Tax rates are endogenous and
calculated from the payments to the tax sectors within the SAM (which are then paid in full to

the government accounts). The consumer price index numbers were taken from BEA.gov.

The approach taken to parameterization of the CGE models in this dissertation was
driven by the overall instrumental view of this policy question. Friedman asserts “The only
relevant test of the validity of a hypothesis is comparison of its predictions with experience”
(Housman, 2008). Being that many policymakers are not economists and may not have
professional economists on staff, it is unlikely that policymakers are using the up-to-date, “best
practices” of parameterization when constructing economic models for use in policy research. It
is far more likely that models will be parameterized by choosing among preset
parameterizations recommended by economists for general situations (international, national,

regional, state, etc.) or by statistical economic software packages.

Thus, in this dissertation, CGE models are parameterized via suggestions from the GAMS
user guide that accompanies the IFRPI code (Lofgren et al, 2002) and is verified to some degree
using other sources (Partridge and Rickman (1997, 2007), Vargas et al (1999), the readme files
and parameter sets that accompany the Lofgren et al (2002) chapters on CGE specification).
These parameters are identified as appropriate for regional use in the U.S. by Lofgren et. al.

(2002), which is a standard regional CGE model (Partridge and Rickman, 2007).
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Elasticities are the primary parameters of CGE models. The elasticity of substitution
between imports and domestic output in domestic demand and the elasticity of transformation
for domestic marketed output between exports and domestic supplies are both set to equal
1.5. Lofgren et al (2002) suggest this as an appropriate number for regional (sub-national) use
within the U.S. There are also several production elasticities recommended by Lofgren et. al.
(2002): elasticities between factors tend to be around 0.8 for U.S. industry; the output
aggregation elasticity for commaodity is set to four; and the elasticity of market demand for
commodity by household is equal to 1. All of these measurements come from the IFPRI model
discussion in Lofgren et al (2002) and from the GAMS code and “readme” files which
accompanies the Lofgren publication. In those files are suggested levels of elasticities for
different simulation scenarios. These parameters have been cited and discussed by many
previous regional CGE creators and that information and discussion was taken into account
during parameterization of these CGE’s (Shoven and Whalley (1992), Watson et al (2012), and

Robinson, Kilkenny, and Hanson (1990)).

3.2.3 Calibration/Simulation for SAM and CGE Comparison

3.2.3.1 SAM

The SAM models for this paper are calibrated according to SAM simulation processes
from Lofgren et al (2002). To calibrate the model to the actual data, real GSP numbers are used
to repopulate the SAM; this calibrates the model to fit the actual data rather than the data
estimated by IMPLAN while maintaining the economic structure and linkages given by the

observed data.

53



To do this, after the SAM-based model arrives at estimates of industry output, set the
ratio of industry output to the industry’s gross state product (GSP) equal to the observed (or

actual) ratio:

Equation (3.3)

xit,SAM(b) _ )?it,SAM(b)
GSPStAM(b) GSPt

where xESAM(b) is output for industry i in time period t from the SAM built on data from base
year b, GSP;AM(b) is the gross state product for time period t from the SAM built with data
from base year b, a hat (A) over any variable means that it is a calibrated estimate, and a bar
(_) over any variable means that it is actual data (the bar notation makes the subscript
indicating model type irrelevant). Thus, fESAM(b) is the calibrated estimate of industry output

for industry i in time period t from the SAM built on data from base year b, and GSP? is the

actual gross state product for industry i from time period t.

Using the actual GSP data with the SAM estimates of industry output and GSP,

rearrange equation 3.3 to get a calibrated industry output estimate:

Equation (3.4)

t
Xi SAM(b)

ot — t

A process similar to calibrating the SAM estimates can be used to project the economic

anatomy of the SAM to future estimates of GSP. That is, changing the assumption to
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Equation (3.5)

t ot!
XisaM(b) _ XiSAM(b)

GSPiuywy  GSPY

or

Equation (3.6)

x it,SAM(b)
GSP, SEAM(b)

Xisam(py = GSP*
would project the anatomy of the SAM from base year b to industry i’s gross state product
from some future time period, year t’, yielding calibrated output for industry i in time period t’
based on the SAM built on data from base year b. This effectively projects the GSP from

projection year t’ using the structure of the SAM from base year b in order to arrive at

projections of future industry outputs.
3.2.3.2 CGE

The CGE model is calibrated using a process that is fundamentally identical to the
calibration process for the SAM models, if different in application. In the same way the
industry-output-to-GSP ratio was held constant and used to repopulate the SAM for different
levels of GSP, the CGE equation parameters are held constant and the GSP data are used to

simulate how these equations would distribute production given the structure of the CGE.

In addition to the CGE code itself, simulation code allows the user to shock the
economic system from the demand side while holding the relationships, variables, and

parameters from the base model constant. Here, insert actual gross state product, GSP?t, and
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the simulation process distributes that GSP over the economy according to the relationships,
parameters, and solutions found in solving the base CGE model yielding estimates of X‘ECGE(,,):
the calibrated output for industry i for time period t estimated by the CGE built on data from

base year b.

This exact mathematical process can be used to project industry output for future time

periods according to the structures of the economy discovered through the CGE built on base

year b. That is, by running the simulation program and shocking the CGE equations with GSPt
rather than GSP?, one can arrive at the calibrated output for industry i for some future time

period t’ estimated by the CGE base on data from base year b.

The CGE projection process, as with the process for SAM-based models, distributes GDP
according to the anatomy of the economy estimated by its base model. However, there are
differences in the results of the projections processes worthy of discussion. The SAM-based
models project linearly. That is, the relationship between industry output and GSP is held
constant for each base model-industry pairing (only scaled by the constant ratio multiplier

t
x.
M), and each model will therefore produce industry output projections that are linear

t
GSPsam(b)

transformations of the base-year data.

In contrast, the CGE simulation process will adjust its output estimates in a non-linear
manner by allowing the exogenous variables and parameters in the CGE to re-equilibrate after
the GSP shock (Lofgren et al, 2002). This results in the ability of CGE models to adjust to shifts in

GSP in terms of capital/labor ratios, input mixes, labor migration, and price changes instead of
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linearly scaling industrial output to GDP. This approach allows for a more neoclassical reaction
to changes in GSP within the CGE structure than is capable in the SAM structure (Lofgren et al,

2002).

3.2.4 Time Series

3.2.4.1Theory

The time series models use the actual data on industry output from 1993-2010. The
data are aggregated by 2-digit NAICS to fit with the scope of the model, and then imported into
STATA. The data are then declared in the software as yearly time series of data with
observations of actual output by industry for years from 1993 up to the base year for each
series (ff, for 1993 < t < b). There are a total of five different time series. The models are
constructed for b = 2001, 2002, 2006, 2007, and 2008 in order to match the base years

available for SAM and CGE model construction for comparison.

Each of the five time series models are considered individually. Since time series models
contain the actual data for any years prior to their calibration year, backcasting can get
statistically complex (as well as interpretively unreliable) in terms of information and bias so the

focus is on the ability of time series to project forward only (Judge et al., 1988).

When considering the form of the structural equations for each time series, start with
the general autoregressive integrated moving average (ARIMA) model as a template, which
regresses the dependent variable on a series of lagged dependent variables and moving

average calculations (Judge et al., 1988). When considering the general model, these three
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parameters are needed to specify the ARMA model equations: the integrated difference order
(d), the Moving-average order (q), and the Autoregressive order (p) (Judge et al., 1988). The
equations and variable structures differ for each data series according to data trends and
parameter values, thus an ARIMA model is generally identified as ARIMA(p,d,q) with a different
equation structure for each parameter combination. The equations for each combination used
in this dissertation will be presented fully after the parameters and their values are discussed

individually.

The autoregressive order (p) describes the number of lags that are statistically

significant in predicting industry output in any particular year.

The integrated difference order (d) determines the difference degree needed to assure

trendless observations in the regression analysis.

The moving-average order (gq) determines the number of lags that should be included in
a moving-average calculation. The moving-average is then used as an independent variable in

regression analysis.

The decision-making process for specifying each time series model considers each of the
three primary parameters in turn. That is, each industry’s data series is evaluated

independently to allow each industry to be specified according to its own data and trends.

The integrated difference order (d) is approached first. Time series modeling requires
that data have a white noise error term, or lack any significant consistent trends. The process of

determining the integrated difference order (d) begins with a simple line plot of the data. If the

58



data appear to have a white-noise error the data are difference-appropriate for time series use
and the independent variables will take the form of X; (Judge et al., 1988). That is, the

regression equations will take the general form
Equation (3.7)
Rf=Po+px " +e

However, if there is a trend in the data, the first adjustment considered is to use the
natural logarithm of the observations. If the data exhibit an exponential trend then often the
natural logarithm of the variable will exhibit white-noise characteristics. This was considered for
many models, but never achieved the desired result and therefore was not used, which was

expected because of the low likelihood that output for any industry will expand exponentially.

The next adjustment in search for the appropriate integrated difference order (d) was to
plot first order differences (55{ — ff‘l) rather than the observations themselves in hopes that
the trend might disappear. If the line plot of the differences exhibited no trend where the
original data had provided one, the difference order parameter was set to one (d=1), and the

data were considered adequate for the ARMA model following
Equation (3.8)

[Rf =% =Bo+ Pl —x %] +e

or, rearranging to

Equation (3.9)
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i =Pot Bl T X +e
In this case, knowing ff‘l and ff‘z (because they are actual data) allows one to solve easily
for )?f given the B’s from the regression equations. If the first order difference also exhibited a
trend, then the second order difference (the difference of the differences) was considered. If

this series was without trend, then the difference operator was set to two (d=2) and the left
hand side of the equation would have taken the form [[J?f —x =[xt - )Zit_z]] and the

dependent variables in the regression would also be the second order difference (Judge et. al.,
1988). A more complex structure is needed to solve for 9?{, however none of the models

required a difference operator larger than one so this method was not required for any models
in this dissertation. For the detailed equations based on varying integrated difference operator

(d) values see the table 3.2.

The reason the integrated difference order is considered first is that if it is determined
that the difference order is greater than zero then each of the other parameters must be
determined by taking the appropriate differences of the variable rather than the original

variable series.

The moving-average order (q) is approached next and begins with looking at the
correlogram. The correlogram indicates how many lags are correlated with any particular
observation. A t-test of each autocorrelation indicates if the lag’s correlation with the
observation is significantly larger than zero. None of the time series data that were used for this
study exhibited more than one statistically significant lagged term. Further, because moving

averages require three consecutive significant terms to calculate, all models have a moving-
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average order of zero (Judge et. al., 1988) (q=0 for all times series models in this paper, in which

case the general ARMA structure collapses to a simple Autoregressive (AR) Model) .

The autoregressive order (p) is addressed last. The partial correlogram shows the
correlation between an observation and any other lagged observation of the same variable (not
just the immediate lag) having adjusted for the linear relationship between the observation and
its’ lags discovered through the correlogram (Judge et. al., 1988). This parameter often allows
for cyclical adjustments when the moving-average order is greater than zero, but since g=0 for
all models, the partial correlogram is appropriate for determining which lags should be included

in the ARMA model (Judge et. al., 1988).

The partial correlogram coefficients for each lagged term are t-tested to determine if
they are statistically different from zero. In all cases the first autoregressive term is significant,
thus all models have p21, so the term ff"l is used as an independent variable for all
regressions of X (or in the case where d = 1 and, [x/~! — ¥f~%] would be used as an
independent variable in the regressions with [56{ - ff_l] as the dependent variable). In some
cases the second lagged term also tested as significant, in which case p=2 and ff‘z is included
in addition to ff‘l as independent variables for the regression of 5c‘f (orin the case where d =
1and, [x/7% — /73] would be used along with [x/~! — x~2] as an independent variables in

the regressions of [£F — X ~']). None of the third lags were ever significant, so the

autoregressive order (p) has a maximum value of two in this dissertation.

The structural equations for the time series models for each parameter combination

used in this dissertation are listed below.

61



Table 3.2: Time Series Equations

Specifications Equations

D=0 2 =Bo+pu¥ " te

-~ X[ =Po+BiX T+ X i e

o 2 =Po+Buxit X T + xR e

1
8 =Bot BilE T — 2]+ Bl - R A
+ &

The ARMA models will produce coefficients (8's) for the specified terms in each model.
The f’s from the regressions provide a basis for which the time series model can be
extrapolated or projected to future time periods. The error terms are assumed to take a normal

or white-noise distribution and £ can then be easily solved. Then, £/ ** can be found using that

estimate of X} and the 8’s from the structural equation. Further, X/ *2 using the estimate of

St+1

X;" ", and so on. This iteration allows us to extrapolate the trends found in the time series data

to the desired projection year.

3.2.4.2 Data

The Time Series model requires industry level output as compared to GSP data for the
SAM and CGE. The data used are acquired from Moody’s Analytics and contains industry level
output from 1993-2010 and projected industry level output from 2011-2023. These data are
aggregated to the 2-digit NAICS codes to match the industry detail of this project. These data
are all that is required, which will later be argued as a distinct advantage, both structurally and

financially, of this technique.
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3.2.4.3 Specification

Each time series model starts with annual industrial output data from 1993 up through
the base year. That is, the 2001 calibrated model uses the data from 1993-2001 and the 2008
calibrated model uses the 1993-2008. Each of the five models is specified according to the
decision making process laid out in the previous discussion of the theoretical models. For each
of the five models, the two primary defining parameters for the ARMA model are presented in

Table 3.4.

Table 3.3: Time Series Specification

2001 2002 2006 2007 2008
Agriculture/ Forestry d=0 d=0 d=0 d=0 d=0
p=1 p=1 p=1 p=1 p=2

Prob > Chi2 0.68 0.62 0.49 0.28 0.21
Mining d=1 d=1 d=1 d=1 d=1
p=1 p=1 p=1 p=1 p=1

Prob > Chi2 0.86 0.708 0.807 0.806 0.78
Utilities d=0 d=0 d=0 d=0 d=0
p=1 p=1 p=1 p=1 p=1

Prob > Chi2 0.809 0.99 0.95 0.98 0.92
Construction d=1 d=1 d=1 d=1 d=1
p=2 p=2 p=1 p=2 p=1

Prob > Chi2 0.52 0.48 0.38 0.31 0.26
Manufacturing d=1 d=1 d=1 d=0 d=0
p=1 p=1 p=1 p=1 p=1

Prob > Chi2 0.489 0.6049 0.61 0.38 0.198
Wholesale d=1 d=1 d=1 d=1 d=1
p=1 p=1 p=1 p=1 p=1

Prob > Chi2 0.94 0.96 0.93 0.95 0.78
Transport/Warehousing d=1 d=1 d=1 d=1 d=1
p=2 p=2 p=2 p=2 p=2

Prob > Chi2 0.93 0.61 0.401 0.299 0.15
Retail Services d=0 d=0 d=0 d=0 d=0
p=1 p=1 p=1 p=1 p=1

Prob > Chi2 0.52 0.56 0.75 0.92 0.75
Professional Services d=1 d=1 d=1 d=1 d=1
p=1 p=1 p=1 p=1 p=1

Prob > Chi2 0.97 0.77 0.504 0.33 0.15
Education/Health Services d=1 d=1 d=1 d=1 d=1
p=1 p=1 p=1 p=1 p=1

Prob > Chi2 0.708 0.85 0.96 0.85 0.84
Government/Non-NAICS d=0 d=0 d=0 d=0 d=0
p=2 p=2 p=2 p=2 p=2

Prob > Chi2 0.78 0.83 0.47 0.41 0.29
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The data show remarkable consistency over time with only the Agriculture/Forestry,
Construction, and Manufacturing industries showing any specification change over the models.
The Agriculture/Forestry, Retails Services, and Government/Non-NAICS sectors were the only

industries for which the source data did not require a difference operator.

The transportation/warehousing and government/non-NAICS sectors are the only two
industries that exhibited an autoregressive order of two for each year, while construction has
p=2 for three of the five models and agriculture/forestry exhibited p=2 for only the 2008 model.
Expectations might have been to have more lagged observations be significant more often, but
with the exclusion of significance of any moving-average coefficients it could be that the first
lag is explaining a large amount of the data trend and the second lag is consequently is not

adding much information that is not inherited by the inclusion of the first lag.

The Chi-squared statistics are generally good. There are several aspects that warrant
discussion however. First, agriculture/forestry, construction, manufacturing,
transportation/warehousing, education/health services, and government/non-NAICS see
significant drops in the chi-squared statistic as the models incorporate more data. This would
indicate that as the data from 2006-2008 are added to the time series models, the models do
not fit the actual data as well. When considering the time period of the data, economic intuition
might lead one to expect this result. The data from 1993 through 2005 show relatively smooth
growth as exhibited by the need for difference operators on most of the industrial models.
However in 2006 the Louisiana economy started showing effects of a slowing economy. That is,

data starting in 2006 began to deviate from the nice smooth economic growth path set out by
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the precious 13 years of data. This deviation makes the linear time series estimates adjust
downward, or away from previous trends, thus the overall performance of the model decreases

as sum-squared-errors rise.
3.3 Occupation-by-Industry Matrices

Bureau of Labor Statistics (BLS) projection method guidelines recommend using a static,

fixed occupation-by-industry matrix: OCCé" ,where Ge(nat, state) is geographic distinction
between state and national employment data, and b’ designates the base year from which the
employment data were observed. These matrices are produced by BLS and available for
national trends for various years (Franklin, 2007). This matrix is n X m, where n and m are the
number of industries and occupations in the model. The industries are aggregated to two-digit
NAICS codes, as mentioned earlier, and occupations are aggregated to two-digit Standard

Occupational Classification (SOC) codes.

The BLS guidelines recommend directly multiplying this matrix by the vector of industry
outputs to estimate the number of workers in each occupation within each industry needed to

meet production levels, or

Equation (3.10)

!
X4y 0CCl =Eps:
where X}, is the vector of industry outputs for time period t estimated by model

Me[SAM(b), CGE(b),TS(b)], OCC(?' is the industry-by-occupation matrix of geography G built
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!
on employment data from year b’, and Eﬁ,é is the matrix of employment for time period t

arrived at using model M, geography G, employment data from time period b’.

This method implicitly assumes that industrial employment is tied directly to current
industrial output (Franklin, 2007). However, many characteristics of an economy could
contribute to the level of employment including but in no way limited to levels of human capital
(Simon, 1998), commuting and transportation costs (Hendrickson, 1986), innovation (Brouwer
et al., 1993), past employment (Boarnet, 2005), and past production (Carlino and Mills, 1987).
Regardless, the BLS guidelines issued to state agencies recommend this method for creating
occupation/industry estimates, and this dissertation will follow those guidelines seeking to
determine if the geographic nature of the employment data make a significant difference when
constructing occupation-by-industry estimates. The structural application of the employment

data is kept constant in order to tease out the effects of changing employment geography.

Louisiana state development agencies primarily use employment by occupation and
industry numbers for the U.S. which are adjusted to represent state trends and expectations;
however in some cases direct national averages are used without adjustments. Based on a
review of the literature, no state agency has been found to construct a state-specific matrix.
Although there is documentation of different approaches, no statewide or agency protocols
have been found to indicate under which circumstances national patterns are sufficient and

which require adjustment (Louisiana Workforce Commission, 2010).

This approach has some distinct advantages, most of them in application rather than in

theory. These national matrices are easy to find and are low-cost. Once output projections by
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industry are provided, the application of the occupation-by-industry matrix calculations is
mechanically simple. This, combined with the a simple industry output projection model, makes
it simple for policymakers and state development agencies to quickly, cheaply, and easily follow

a reasonable method when producing industry/occupation projections (BLS.gov).

3.3.1 State Matrix

The above approach may be reasonable, but maintains a problematic issue: regional or
state staffing patterns do not always adhere to national trends. Forcing national patterns on a
regional market may bias estimates. Vargas et al. (1999) suggest that regional investment shifts
and a lack of regional control over national monetary policy may make certain regions more or
less volatile in terms of investment and production, and therefore, employment. Further,
Partridge and Rickman (1998) argue that regional economic reactions to exogenous changes
may not be proportional to changes at the national level “depending upon the various
elasticities of supply and demand.” Ultimately, this dissertation hopes to determine if the
suggested differences between national and regional employment data drive significant
differences in industry/occupation projections for the state of Louisiana in the early years of the

2000’s.

Using staffing patterns specifically from the region seems to be a much more
economically sound principle. However, no such matrix exists for the state of Louisiana, so one
is created. By aggregating staffing patterns by industry and by occupation, for the state of
Louisiana, the first state occupation-by-industry matrix is constructed for use in occupational

growth projections. Thus, by using state-specific data to construct an occupation-by-industry
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matrix this paper hopes to improve occupational growth estimates and thus improve state-

wide policy functions.

The construction of the industry/occupation matrix begins with data on employment-

by-occupation for each industry. Each of the 11 industries (listed in the table below) has

Table 3.4: Industry and Occupation Categories

Industry Categories

Occupation Categories

Agriculture and Forestry

Management

Mining

Business and Financial Operations

Utilities

Computer and Mathematical

Construction

Architecture and Engineering

Manufacturing

Life, Physical, and Social Sciences

Wholesale Trade

Community and Social Services

Retail Trade

Legal

Transportation and Warehousing

Education, Training, and Library

Professional Services

Arts, Design, Entertainment, Sports, and Media

Education and Health Services

Healthcare Practitioners and Technical Support

Government and Non-NAICS industries

Healthcare Support

Protective Services

Food Preparation and Serving

Building, Grounds Cleaning, and Maintenance

Personal Care and Services

Sales and Related Services

Office and Administrative Support

Farming, Fishing, and Forestry

Construction and Extraction

Installation, Maintenance, and Repair

Production

Transportation and Material Moving

employment in each of the 22 occupational categories, resulting in a 22 X 11 matrix of actual
employment by occupation for the state of Louisiana: OCCft’ate. Entries in the matrix

!
occfsoc,state represent the actual employment needed in occupation soc to create an actual
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—__p!
€MPi soc,state

~t=b'
xi,state

dollar of output in industry i during time period b’, or occféoc,smte = . [Note that the

output on the bottom of the ratio is the state output data; in order to maintain geographic

matching within the data, regional output must be paired with regional employment. In the
construction of a national matrix, national industrial output by industry (25;3;) is paired with

national occupational employment by industry (empféoc‘nat).]
3.3.2 National Matrix

The national industry employment-by-occupation data comes from BLS staffing

patterns. The data are for industrial employment by occupation. In order to create the OCC,IL’(;t
matrix, the national industry output for the time period b’ is required exogenously (the data

come from BLS). Employment by occupation by industry is then divided by the industrial output

—1
. T . . b’ €MPisocnat
to arrive at the individual matrix entries: 0c¢/oc nar = ——ear e
inat

. These entries fill the matrix
OCC,f;t, and the construction of the national matrix is complete.
3.3.3 Data

The state data are available in some sense, but lack the desired structure. Thus, the data
are compiled by industry to the two-digit code. However, some of the industries, for example
construction and utilities, use many of the same workers and are therefore combined within
the state of Louisiana employment data. This aggregation seems logical as many utilities
projects involve construction and vice versa, but it does require a bit of adjustment to the

structure.
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Though the output numbers are separated by industry, at the point just before using the
matrix to designate occupations by industry, the output for certain industries are combined:
utilities with construction; agriculture with mining; and retail trade with wholesale trade. These
merges are required because state data on employment by category does not aggregate
further. To clarify, the industrial output of these industries are projected independently, but in
order to avoid some disaggregation challenges among occupations at the state level,
aggregation of those output numbers is required before those numbers are converted to
employment. Also, because this process is required for the state level data, the aggregation is
performed with the national matrix as well in order to maintain consistency throughout the

process.
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4 Data and Descriptive Statistics

4.1 Introduction

Previous chapters discussed the motivation and methods for the creation of
employment forecast estimates. This chapter will discuss the data used for the construction of
these estimates, the data to which these estimates will be compared (evaluated against), and
the descriptive statistics of these two data sets. The rest of this chapter addresses these data
issues for industrial output estimates, occupation-by-industry matrices, and employment
estimates, respectively. This chapter will not present any statistical analysis or hypothesis

testing; such analyses are in the fifth chapter.

4.2 Louisiana State Output-by-Industry Estimates Data and Summary Statistics

4.2.1 Data for Model Construction

Industrial output estimates for the state of Louisiana were created using the data from
each base year as the inputs to the three industrial output estimation techniques (CGE, SAM,
and time series). Base model years are years for which data are gathered and used in the
construction of each of the alternative methods for projecting industrial output to the chosen
projection years, as mentioned in Chapter 3. The series of projection years represents years for
which each model, regardless of base year, produces estimates of industrial output for use in

the creation of industry/occupation estimates.

The model base years were chosen based largely on data availability. Since each model

must be constructed using primary data from each model base year and a SAM is required for
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all non-econometric models, the project is therefore limited to model base years for which
sufficient data are available to construct a proper SAM for Louisiana. The data are available
through the IMPLAN group’s proprietary data products line. Due to financial restrictions,
however, only data from 1998, 1999, 2001, 2002, 2006, 2007, and 2008 were available for

consideration in this dissertation.

The data for 2001 and 2002 required re-aggregation as well, but the process of
converting previous versions of NAICS classification to a newer version is significantly easier and
more reliable that the conversion from SIC to NAICS codes. For this reason, 2001 and 2002 were
included as model base years after the NAICS codes were updated to the 2007 NAICS series.
The 2006, 2007, and 2008 data were industrially classified with the 2007 NAICS codes and
required no re-aggregation. This completes the model base year seriesas b €

(2001,2002,2006,2007,2008).

The projection year series represent the years for which estimates will be produced
from each model in this dissertation. The in-sample years were all chosen to begin with. In
addition to the five model base years, 2005, 2010, 2015, and 2020 were chosen to create a
consistent five-year span series of estimates. The 2009 year was added to complete the 2005-
2010 series, and 2023 was also added as it was the last year in which exogenous industrial
output data were projected. This leaves the final projection year seriesas t €

(2001,2002,2005,2006,2007,2008,2009,2010,2015,2020, 2023).

The time series base model years and projection years have, however, a small caveat

that causes them to be a subset of the series just discussed. Since actual data are used in their
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construction, time series models have problems with endogeneity if used to backcast (Judge et.
al., 1988). That is, when testing predictions made using actual historical data against that same
historical data, one cannot separate the effects on prediction accuracy of the model and
methods from the internal effects of having built those estimates on the knowledge of the
actual data to which estimates are being compared (Judge et. al., 1988). For this reason,
backcasts are not included in the evaluation of the time series models, and each time series

model is only used to project forward (or for years later than the model’s base year).

4.2.2 Data for Estimate Comparison

The industry output projections are compared to actual data to determine how accurate
they are as an individual component of the larger method. For historical data, data can be re-
aggregated from BEA data on state industrial output for comparison to projections using the
various models. However, no federal or state agencies produce industrial output projections in
a series, with consistent structures and aggregations, for a consistent group of projection years.
That is, there is no consistency in foundation and structure over base years or projection years.
Thus, a projection series that is documented to predict actual data reasonably well is needed to

which alternative projection series can be compared.

Moody’s projects annual state industrial output by industry to 2023. The projection
methods used are proprietary, but Cochrane’s 2011 paper “The Moody’s Analytics U.S. State
Economic Model System” discusses their process without providing technical details.
Cochrane’s 2011 paper states that Moody’s uses “a system of simultaneous econometric state

models that have enhanced simulation properties.” These models form an output-based
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industry model system that includes shift-share analyses, time series regression analyses, and

panel data regression analyses among other econometric techniques (Cochrane, 2011).

Moody’s uses data from the Bureau of Labor Statistics (BLS), the Bureau of Economic
Analysis (BEA), the Current Employment Survey (CES), the Quarterly Census of Employment and
Wages (QCEW), the U.S. Census Bureau, and other national and state agencies to fill primary
and historical data requirements while using their proprietary structural equations to calculate
additional economic and demographic data as well as to project current data into future time
periods (Cochrane, 2011). This means that the Moody’s data equals the actual data for years
prior to and including 2012, but that Moody’s projected data makes up the industrial output
data for years past 2012. Thus, this series is suitable for comparison to alternative methods for
years which historical data are available, since the Moody’s data equals the actual data, and
that the Moody’s data is a reasonable approximation for all projection years past 2012. Further,

since Moody’s data series are used, they are aggregated and structured consistently.

Though the data are collected for future time periods (years beyond 2012) and testing
will be done using all available estimates and data, much of the results section will focus on
comparing estimates from different models against the actual data before for projection years

up to 2010, excluding the years for which the Moody’s data are projected.

4.2.3 Descriptive Statistics

With three different model types producing forecast estimates for five base years and

eight projection years, the descriptive statistics can be quite expansive. While a more complete
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table of descriptive statistics can be found in Appendix B, a brief summary of these statistics is
presented in Table 4.1. These statistics are for aggregated forecast estimates and provide a
general sense of the magnitude of the estimates, more thorough trend analyses are held for the

regressions analysis sections later in this chapter.

There are several trends that deserve noting, not least of which is the upward bias
present in CGE (an over estimation of 109% on average) and SAM (overestimation of 69% on
average) models when compared to the actual output data. Though there is sizeable bias in the
CGE and SAM estimates, there is very little upward bias in the time series estimates, 12% on

average.

Table 4.1: Industrial Output Forecast Descriptive Statistics by Model and Base Year

Actual 2008 Output (all sectors) 186,836
CGE 2001 CGE 2002 CGE 2006 CGE 2007 CGE 2008 Avg
Total Output 309,726 294,042 420,725 450,655 474,905 390,011
Percent of Actual 166% 157% 225% 241% 254% 209%
SAM 2001 SAM 2002 SAM 2006 SAM 2007 SAM 2008
Total Output 267,424 225,401 338,108 340,197 403,724 314,971
Percent of Actual 143% 121% 181% 182% 216% 169%
TS 2001 TS 2002 TS 2006 TS 2007 TS 2008
Total Output 198,869 193,468 224,511 209,877 220,230 209,391
Percent of Actual 106% 104% 120% 112% 118% 112%

This upward bias comes with a tradeoff however. The average standard deviation of
estimates from CGE models are the lowest (52,016,000). Time series ($2,417,000) have a
slightly larger standard deviation and SAM models ($4,945,000) have an average standard
deviation nearly double CGE and time series models, implying that estimates from CGE models

are relatively more consistent than time series models within industries.
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Thus, it seems that CGE models tend to overestimate industrial output relative to SAM
and time series models; they do provide forecasts with smaller standard deviations. SAM
models also show upward bias, though not as large as CGE models, but have by far the largest
standard deviations. Time series models show little upward bias relative to CGE and SAM

models and have standard deviations that are comparable to those from CGE models.

4.3 Occupation-by-Industry Matrix Data and Summary Statistics

The output-by-industry estimates are converted to employment estimates using
unitized occupation-by-industry matrices. These occupation-by-industry matrices are
constructed using actual data on employment for each two-digit SOC code within each two-
digit NAICS industry sector. This is an occupation-by-industry-sized matrix of employment,
which has element entries as the annual number of employees in the designated industry-

occupation combination, hence the title occupation-by-industry employment matrix.

In order to use this matrix to distribute employment, the employment matrix is
converted to a matrix of employment-to-output ratios using the industrial output and the

employment for each industry-occupation combination, with each element taking the form

eMpi soc

— where i and emp; ¢, is the employment in industry i and occupation soc, and x; is the
l

eémp.,1 €mpy 1
X1 X2

output for industry. This gives a matrix of the form emp = |£MP12 . This matrix is
X1

multiplied by the industrial output estimates (scalar multiplication) to arrive at employment
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estimates for each industry-occupation combination. This process is discussed in further details

in Chapter 3.

When estimating industrial employment, the number of employees in each occupation

within the industry is divided by the industrial output of that industry to create an employment-

! !

S T 14
. emp; . emp;
to-output ratio: +"CG This ratio is assumed to be constant from year to year: +"CG =

Xi,M(b) Xi,M(b)

sl

emp; . . . .

ft‘—’“’c'a . Rearranged, this assumption can be used to solve for the industrial employment
i,M(b)

estimates for year t:

Equation (4.1)

—p'
empi,soc,G x )?t _ e/m\t
/ i,M(b) — Disoc,c

Xi,M(b)

a

(Franklin, 2007). The results are employment estimates for each industry-occupation pairing, so
they can easily be aggregated to industry level (including all occupations) or to the occupation

level (including all industries).

State and national level data from 2006, 2008, and 2010 were used to construct a total
of six alternative occupation-by-industry matrices. The state and national matrices are
measurably different from one another, but the differences between the 2006, the 2008, and

the 2010 matrices were negligible at both the state and national levels.

Consider the matrix of these fractions by industry. Each industry has in its section of the
matrix the list of occupations that are employed by that industry. Each occupation has an

employment-to-output ratio attached to it, which is multiplied by the industrial output to arrive
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at employment-by-industry-by-occupation. The sum of these ratios by industry is the industry’s

total employment coefficient.

The total employment coefficients for industries over the 2006, 2008, and 2010 matrices
differ by an average of less than two percent at the state level and less than one percent at the
national level. Since these matrices are fixed coefficients of employment-to-output ratios,
estimates that are one percent apart would convert any particular output number to

employment estimates that would differ by roughly one percent.

It could be the case however, that industrial employment is relatively constant from
year to year, but that the distribution of employment over occupations differs, as discussed in
Chapter 3. To investigate, the matrix was reaggregated by occupation (instead of by industry).
In order to do this, industrial output was no longer sufficient because the aggregation by
occupation collects people who work in similar types of jobs for all types of industry. This makes
the employment/industrial output ratio irrelevant. Instead, each occupation’s employment-to-

output coefficient used GDP as its output.

Regardless, when these occupational coefficients were summed, the difference
between 2006, 2008, and 2010 state models was less than two percent on average and the

difference among the national matrices was less than half of a percent on average.

These two reasons made using multiple years of data to build these matrices redundant
for a project whose base level scope is a six-year window. If the scope of data was longer there

may be more significant differences in these matrices, but for this project, the matrices are too
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similar to predict employment levels that are statistically different from one another, and two
of the observation years are dropped. The matrices from 2008 are chosen without loss of

generality.

Though the differences between the 2006, 2008, and 2010 matrices at both the national
and state level were negligible, the differences between 2008 national and state matrices are
sufficiently large in terms of both magnitude and distribution structure. The industry

employment-to-output coefficients are summed by industry and presented in Table 4.2.

State Matrix
Table 4.2: Matrix Industrial Coefficient Comparison Aggregated National Matrix

Industry Aggregated Industry

Coefficients Coefficients
Agriculture/Forestry/Mining 2.80 3.07
Construction/Utility 9.64 5.62
Manufacturing 4.07 4.55
Wholesale/Retail Trade 18.45 9.45
Transportation/Warehousing 22.40 17.50
Professional Services 3.90 3.43
Education and Health Services 13.44 5.47
Government and Non-NAICS sectors 2.43 0.63

Each ratio represents the annual number of workers needed to produce $1,000,000
worth of output in each industry. For instance, the agriculture/forestry/mining sectors only
require 2.8 workers to produce the $1,000,000 worth of production for the state of Louisiana
while businesses nationwide require slightly more than three workers to get that same
production. These simple ratios show how capital or labor intensive these industries are at the
state and national levels. For example, Louisiana construction industries are probably more

labor intensive than the industry nationally, as are education and health services. On the other

79



hand, the Louisiana aggregate agricultural industry is probably less labor intensive (therefore
more capital intensive) than the national average. This might be due to the fact that national
agriculture sector average includes labor intensive fruit and vegetable farming, of which

Louisiana has very little.

Most of the industries have larger state coefficients than national coefficients. Only the
agriculture/forestry/mining and manufacturing sectors have larger national coefficients. The
government and non-NAICS sector have the largest difference in coefficient values with the
state coefficient roughly four times larger than the national estimate, while
transportation/warehousing has the largest magnitude coefficient in both the state and
national matrices. If these coefficients are very rough measures of labor intensiveness, then
one might say that the state of Louisiana is more labor-intensive than the nation in education
and health services and government/nonNAICS sectors, but less labor-intensive in wholesale

and retail trade when compared to the national averages.

It should be noted however than no adjustments are made for differing wage rates at
the regional and national levels in these matrix ratios. That is, Louisiana may have more
employees per dollar of output, but these employees may cost less. That is, one may be getting
less productivity out of each employee causing you to need more employees, but if wages are
lower in a particular region than national average wages this may not necessarily by less cost

effective.
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Aggregation with respect to occupations yields the coefficients in Table 4.3. The
employment-to-output ratios for occupations are calculated in the same manner as for the

industrial aggregations and are presented in Table 4.2.

Table 4.3: Matrix Occupational Coefficient Comparison

State Matrix

Aggregated

Occupation National Matrix Aggregated

OCC Code Coefficients Occupation Coefficients

11 - Management Occupations 0.0732 0.0409
13 - Business and Financial Operations 0.0269 0.0391
15 - Computer and Mathematical 0.0035 0.0346
17 - Architecture and Engineering 0.0508 0.0363
19 - Life, Physical, and Social Science 0.0165 0.0133
21 - Community and Social Services 0.0167 0.0067
23 - Legal 0.0016 0.0018
25 — Education, Training, and Library 0.0696 0.0775
27 - Arts, Design, Entertainment, Sports, and Media 0.0070 0.0158
29 - Healthcare Practitioners and Technicians 0.0801 0.0810
31 - Healthcare Support 0.0410 0.0457
33 - Protective Services 0.0186 0.0072
35 - Food Preparation and Service 0.1286 0.1336
37 - Building and Grounds Cleaning and Maintenance 0.0288 0.0128
39 - Personal Care and Service 0.0425 0.0806
41 - Sales and Related 0.2278 0.1339
43 - Office and Administrative Support 0.1029 0.0476
45 - Faming, Fishing, and Forestry 0.0048 0.0049
47 - Construction and Extraction 0.1409 0.0915
49 - Installation, Maintenance, and Repair 0.0699 0.0441
51 - Production 0.0368 0.0365
53 - Transportation and Material Moving 0.0865 0.0373
Sum 1.2749 1.0226

Some differences are very small, such as occupation codes 29, 35, 45, and 51 which are
virtually the same, while occupation codes 11, 21, 33, 37, 41 exhibit state estimates more than
twice as large as the national counterparts. Only codes 15, 27, and 39 have national coefficients
that are significantly larger than the state coefficients, while 13 of the 22 occupations have

smaller national coefficients compared to their state coefficients.

One might expect that the sum for the state matrix would be higher than the sum of

coefficients for the national matrix due to economies-of-scale and regional comparative
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advantages within the country. That is the case for the data used in this study. The sum of the

coefficients for the state matrix is about 20% higher than that of the national matrix.

4.4 Industrial and Occupational Employment Data and Summary Statistics

4.4.1 Data

For both industry and occupation aggregations, projections for all models are compared
to actual employment data from the BLS and from LaWorks.net, the website of the Louisiana
Workforce Commission responsible for compiling labor market information in Louisiana. The
actual data are industry level data for 2005, 2006, 2007, 2008, 2009, and 2010 and occupational
level data for 2001, 2002, 2005, 2006, 2007, 2008, 2009, and 2010. The industry level data prior
to 2005 use SIC classification codes that are unable to be reliably converted to current

classification codes because of ambiguity in the original datasets.

The industry level data are state of Louisiana employment figures by industry at the four
digit NAICS code level. However, that level of granularity becomes irrelevant because the
employment projections are limited by the data that supports the state occupation-by-industry
matrix, which aggregates industries only to two digits NAICS code. This being the case, the
industry employment figures were aggregated to the two-digit level in order to make an apples-

to-apples comparison.

The occupational employment data are available at the six-digit SOC level for the state

of Louisiana. However, in much the same way as the industry level data, aggregation to the
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two-digit level is required for a proper comparison because the model is limited to two-digit

granularity by the state occupation-by-industry data.

4.4.2 Descriptive Statistics

The descriptive statistics for employment forecasts are divided, as in previous

discussions, into industrial employment estimates and occupational estimates. Thus, this

section is divided as well to discuss the descriptive statistics of each separately.

Industrial Employment Descriptive Statistics

A complete table of industrial employment descriptive statistics is presented in full in

Appendix B, but an overview of those statistics is presented here, in Table 4.4. These statistics

Table 4.4: Industrial Employment Descriptive Statistics

Actual Employment

Total Employment
Percent Change

Total Employment
Percent Change

Total Employment
Percent Change

Total Employment
Percent Change

Total Employment
Percent Change

Total Employment
Percent Change

2,449,537
All State
CGE 2001 CGE 2002 CGE 2006 CGE 2007 CGE 2008 CGE
3,138,146 3,009,635 3,635,959 4,207,892 4,276,692 3,653,665
49% 23% 48% 72% 75% 49%
All State
SAM 2001 SAM 2002 SAM 2006 SAM 2007 SAM 2008 SAM
2,793,942 2,353,238 2,944,988 3,330,628 3,639,448 3,012,449
14% -4% 20% 36% 49% 23%
All State
TS 2001 TS 2002 TS 2006 TS 2007 TS 2008 TS
1,852,888 1,831,064 1,940,100 1,891,159 1,886,796 1,880,401
-24% -25% -21% -23% -23% -23%
All Nat
CGE 2001 Nat CGE 2002 Nat CGE 2006 Nat CGE 2007 Nat CGE 2008 Nat CGE
1,527,992 1,441,711 2,054,158 2,275,103 2,307,393 1,921,271
-38% -41% -16% -7% -6% -22%
All Nat
SAM 2001 Nat SAM 2002 Nat SAM 2006 Nat SAM 2007 Nat SAM 2008 Nat SAM
1,358,488 1,161,162 1,715,127 1,846,370 2,017,259 1,619,681
-45% -53% -30% -25% -18% -34%
TS 2001 Nat TS 2002 Nat TS 2006 Nat TS 2007 Nat TS 2008 Nat All Nat TS
894,998 883,274 991,234 939,976 944,098 930,716

-63%

-64%

-60%

-62%

-61%

-62%
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show continued trends from the descriptive statistics of the industrial output forecast
estimates. That is, ceteris paribus, CGE models have the largest employment estimates followed
by SAM and time series estimates, respectively. However, with three industrial output
projection techniques combining with two occupation-by-industry matrices for five base years
and multiple projection years, it can be difficult to sort out what trends, if any, are present in

the descriptive statistics of industrial employment forecast estimates.

Table 4.5 aggregates some of the model estimates to more clearly demonstrate

descriptive statistic trends.

Table 4.5: Aggregated Industrial Employment Descriptive Statistics

All CGE All State

Avg Tot Emp 2,787,468 Avg Tot Emp 2,848,838
Percent Change 14% Percent Change 16%
All SAM All National

Avg Tot Emp 2,316,065 Avg Tot Emp 1,490,556
Percent Change -5% Percent Change -39%
All TS

Avg Tot Emp 1,405,559

Percent Change -43%

Though their relative relationships are the same (in that CGE forecast estimates are
higher than SAM estimates, which are in turn higher than the time series estimates), SAM
estimates show the least bias by underestimating industrial employment by 5%. CGE models
are second best in terms of bias, overestimating industrial employment by an average of 14%,

and time series models underestimate by an average of 43%.
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Further, the models which employ the state occupation-by-industry matrix have an

upward bias of 16% while models using the national matrix underestimate industrial

employment by an average of 39%. This indicates that national matrix models are forecasting

less than optimal industrial employment and that possible improvements in industrial

employment forecasts may be achieved through the use of a regional occupation-by-industry

matrix.

Occupational Employment Descriptive Statistics

Again, a complete table of occupational employment descriptive statistics is available in

Appendix B, but a brief overview is included here. Table 4.6 shows some general descriptive

Table 4.6: Occupational Employment Descriptive Statistics

Actual Employment

Total Employment
Percent Change

Total Employment
Percent Change

Total Employment
Percent Change

Total Employment
Percent Change

Total Employment
Percent Change

Total Employment
Percent Change

1,845,343
CGE 2001 CGE 2002 CGE 2006 CGE 2007 CGE 2008 All State CGE
3,070,774 2,962,288 3,558,698 4,117,768 4,166,902 3,110,974
66% 61% 93% 123% 126% 86%
SAM 2001 SAM 2002 SAM 2006 SAM 2007 SAM 2008 All State SAM
2,733,685 2,313,249 2,878,325 3,255,303 3,546,194 3,069,493
48% 25% 56% 76% 92% 66%
TS 2001 TS 2002 TS 2006 TS 2007 TS 2008 All State TS
1,726,612 1,742,971 1,594,424 1,600,641 1,575,821 2,042,168
6% 6% -14% -13% -15% 11%
CGE 2001 Nat CGE 2002 Nat CGE 2006 Nat CGE 2007 Nat  CGE 2008 Nat All Nat CGE
1,527,992 1,441,711 2,054,158 2,275,103 2,307,393 1,774,957
-17% -22% 11% 23% 25% -4%
SAM 2001 Nat SAM 2002 Nat SAM 2006 Nat SAM 2007 Nat SAM 2008 Nat | All Nat SAM
1,358,488 1,229,055 1,715,127 1,846,370 2,017,259 1,691,287
-26% -33% 7% 0% 9% -8%
TS 2001 Nat TS 2002 Nat TS 2006 Nat TS 2007 Nat TS 2008 Nat All Nat TS
894,998 871,131 932,830 899,414 897,745 1,123,126

-51%

-53%

-49%

-51%

-51%

-39%
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statistics. As with industrial output and industrial employment, the CGE forecast estimates are
the highest, with SAM and time series following, respectively. The magnitude of the bias in
occupational employment estimates, though the relationship between CGE, SAM, and time
series remains the same, is somewhere between the overestimations demonstrated in the
industrial output descriptive statistics and the biases displayed by the models when looking at
industrial employment. That is, all models which use the state occupation-by-industry matrix
overestimate occupational employment, while all models that use the national matrix

underestimate employment.

However, as earlier, it may be easier to digest some of these statistics if they are

aggregated to model and occupation-by-industry matrix geography separately, as in Table 4.7.

Table 4.7: Aggregated Occupational Employment Descriptive Statistics

All CGE All State

Avg Tot Emp 2,442,966 Avg Tot Emp 2,740,878
Percent Change 36% Percent Change 52%
All SAM All National

Avg Tot Emp 2,380,390 Avg Tot Emp 1,529,790
Percent Change 29% Percent Change -17%
All TS

Avg Tot Emp 1,582,647

Percent Change -14%

This aggregation of the statistics indicates that, although the models maintain their
relative order in terms of bias, the range is smaller, indicating that the models produce more
similar estimates for occupational employment than for industrial output or industrial

employment.
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Further, models which use the state occupation-by-industry matrix tend to overestimate
occupational employment by approximately one-half, while models that use the national matrix
tend to underestimate employment by about 17%. This implies that although forecast
estimates might be improved by the use of a regional occupation-by-industry matrix in terms of
industrial employment, those gains may be at the cost of overestimating occupational
employment. The balance of this tradeoff is beyond the scope of descriptive statistics and the

regression analysis will shed more light.
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5 Results and Statistical Analysis

5.1 Introduction

This chapter presents statistical analyses of industrial output and industry/occupation
employment forecast estimates. The first section presents a two different regression analyses
of the industrial output estimates against actual data, as well as a Theil Statistic analysis. The

second section repeats this series of tests for both industrial and occupational employment.

5.2 Louisiana Industrial Output Forecast Estimates Statistical Analysis
5.2.1 Tests of Industrial Output Forecast Estimates Grouped by Model Type (M), Base Year
(b), and Industry (i)

The first regression analysis aggregates the industrial output forecast estimates as
shown in the graph below. These estimates are grouped for a specific model type-base year
combination; for example, Graph 5.1 contains industrial output estimates from only the CGE
model with 2001 as a base year for data. Further, Graph 5.1 compiles the forecast estimates for
all industries and projection years 2001, 2002, 2005, 2006, 2007, 2008, 2009, and 2010. This
aggregation creates a total of 15 (three estimation techniques by five base years) data series

(graphs) each with 88 observations (11 industries by eight projection years).

For the first series of tests, all of the point estimates from Graph 5.1 will be used as the
dependent variables in a single OLS regression which use the corresponding actual output data
as the independent variable series. This style of regression is run for every model with each

output projection technique-base year combination, resulting in 15 regressions.
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Graph 5.1: 2001 CGE Model Estimates (All)

Because each industry has its own series within each larger series, as demonstrated by
the lines connecting the individual data points for each industry in Graph 5.1, an intercept
dummy variable will be included as an independent variable for each industry. Equation (5.1)

gives the basic form of the regression.

Equation (5.1)

Xf = Bo + BiXim) + BAG + B3 Mining + B, Utilities + BsConstruction + BsManufacturing
+ f;Wholesale + fgTransportation + fyRetail + foProfServ + pygEducHealth + ¢
where AG, Mining, Utilities, Construction, Manufacturing, Wholesale, Transportation,
Retail, ProfServe, and EducHealth are Boolean intercept dummy variables which indicate
the specific industry series. The variable for the non-NAICS industry is left out to avoid a

singular matrix (due to perfect multicollinearity).
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The use of intercept dummy variables should lower the range of the confidence
intervals due to the increased observations (Judge et. al., 1988). Using these intercept dummy
variables assumes that the individual industrial output series from Graph 5.1 follow similar
trends; more specifically, each industry’s data will follow a similarly shaped best-fit line. Though
the best-fit lines need to be similarly shaped, they need not have different y-axis intercepts
(Judge et. al., 1988). Looking at the lines for each industry in Graph 5.1 confirms that the trends
of the data follow very similar paths. Further, it is reasonable to expect that industrial output at
the two-digit NAICS level aggregation, each of which entails large groups of industries, would
have similar trends over time following general macroeconomic trends, regardless of the

specific industry classification.

The typical statistical analysis using R-squared, adjusted R-squared, F, and Durbin-
Watson statistics will be used to determine how well each output-by-industry estimation
technique/base year combination fits the data. Coefficient analysis and hypothesis testing on 3;
will reveal how well the estimates fit the actual data, while hypothesis testing on the other
Booelan variables’ coefficients will indicate if estimates for particular industries predict actual

output better than other industries.

This regression analysis is completed for each output-by-industry estimation
technique/base year combination (M}) for a total of 15 regressions in the first series. All
regression equations for models that use SAM or CGE based industrial output estimation
methods have 88 observations: one for each industry (11) in each of the projection years (8).

Since the time series models do not backcast, they have diminishing numbers of observations.
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The time series models for 2001, 2002, 2006, 2007, and 2008 base years have 80, 72, 56, 48,
and 40 observations respectively, one for each industry (11) in each projection year for which

time series estimates are made for that particular base year.

In all regressions, the forecast estimates were significant (at the one percent level)
predictors of the actual output data. The goodness-of-fit measures from each regression can be
analyzed and compared to one another to determine which, if any, models fit closest to the
actual data. The adjusted-R-squared and F-statistics for the first series of fifteen regressions are

shown in Table 5.1 below.

Table 5.1: Industrial Output Regression Results

Base years
adj RA2 2001 2002 2006 2007 2008 AVG
Model type CGE 0.9313 0.9249 0.939 0.9306 0.9284 0.9308
SAM 0.9308 0.9169 0.9384 0.9284 0.9306 0.929
TS 0.9119 0.9265 0.9371 0.9288 0.9388 0.9286
Base years
F 2001 2002 2006 2007 2008 AVG
Model type CGE 148.97 135.32 168.9 147.34 142.35 148.576
SAM 147.79 121.35 167.19 142.37 147.32 145.204
TS 103.51 113.37 103.96 78.11 76.36 95.062

First note that all of the models explain large amounts of the variance in the actual data

(all above 90%). The CGE models have a slightly higher average R-squared statistic (followed by

SAM and then time series), but all of the models’ averages are within one percent.

Further, all of the F-statistics are significant at the one percent level, which implies that

the independent variables have a correlation with the dependent variable that is statistically

different than zero.




5.2.2 Meta-Analysis Regression (MAR) Tests of Industrial Output Forecast Estimates
Grouped by Model Type, Base Year, and Industry

To determine if any of the model characteristics significantly affect the R-squared value,
the R-squared values are collected for use as the dependent variable in OLS regression. The
series of independent variables are Boolean variables for model characteristics. The regression

equation is

Equation (5.2)

R? = By + ,€2001 + B,€2002 + B3€2006 + B,C2007 + BsCGE + B¢SAM + ¢
where R? is the adjusted R-squared value from regressions equation (5.1), C2001, 2002,
C2006, and C2007 are dummy variables for the base year of the model (C2008 is left out to
avoid perfect multicollinearity), CGE and SAM are dummy variables for the model’s industrial
output estimation technique (TS, the time series dummy, is left out to avoid perfect

multicollinearity), and ¢ is the regression error term.

Hypothesis testing on the variable coefficients indicates whether a variable is
significantly correlated with the R-squared value, all else equal. The regression results are

presented in Table 5.2.

Table 5.2: Industrial Output MAR Results

R2 0.5767 F 1.82
Adj R2 0.2592 Prob > F 0.2129
Variable Coeff t
C2001 -0.0079 -1.47
C2002 -0.0098 -1.83
C2006 0.0056 1.03
C2007 -0.0033 -0.62
CGE 0.0022 0.53
SAM 0.0004 0.10
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The individual variable hypothesis testing reveals that none of the independent
variables are statistically significant. The CGE and SAM variables’ insignificance implies that
neither method provides a statistically significant improvement in a model’s adjusted R-squared
value over the excluded time series dummy variable. That is, none of the models have a
statistically significant advantage over the others in terms of R-squared values. However, the F-
statistic indicates that the regression as a whole is insignificant, implying that the ability of
these independent variables to explain variance in the dependent variable is not statistically
different from zero. This could be because the number of observations is low (15: 5 base years x

3 models), but regardless, the results lack robustness.
5.2.3 Theil Statistic Analysis

In an attempt to provide depth to the statistical analysis, a Theil Statistical
Decomposition Analysis is performed. The Theil statistic is a measure of inequality that can be

used to determine differences among data sets (Theil, 1967). The Theil Inequality Coefficient

- Exi-Xp)? )
, which returns a value between zero and one. A U-

statistic of zero implies that the estimates and the actual data are exactly the same. A U-

(U) is calculated as U =

statistic of one implies that the estimates are no better than a naive guess (Pyndyck and
Rubenfeld, 1981). Theil Statistical Analysis “also assesses the mode’s ability to duplicate turning
points or rapid changes in data” (Tijskens et. al., 2001) using a decomposition of the standard

U-statistic.
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The Theil Inequality Coefficient can be decomposed into three indices that account for
bias, variance, and covariance respectively (Pyndyck and Rubenfeld, 1981). The bias
decomposition (Uy;4s) is an index which addresses possible bias between datasets on the
whole, regardless of any variance within either of the datasets. The variance decomposition
(Upar) “represents the ability of the model to replicate the degree of variability in the observed
data” (Tijskens et. al., 2001). The covariance decomposition (U,,,) index represents the
remaining error after bias and variance are removed (random error). In general, the bias and
variance coefficients will be low for estimates which replicate data well. The covariance
coefficient is widely considered to have less value, in terms of goodness-of-fit, than the other
two decompositions, but nonetheless, a perfectly correlated set of estimates would yield zero
for bias and variance coefficients and one for the covariance decomposition (Pyndyck and

Rubenfeld, 1981).

Table 5.3 has the average U-statistics for industrial output forecast estimates from each

model type as well as a total statistic for all model types.

Table 5.3: Average U-Statistics

CGE SAM TS Total

U 0.41 0.35 0.32 0.36
Ubias 0.36 0.26 0.00 0.21
Uvar 0.46 0.43 0.02 0.30
Ucov 0.18 0.31 0.39 0.29

These Theil coefficients indicate that CGE models have higher U-statistics than either
SAM or time series models, indicating that CGE estimates are performing worst among the

three options. In the decomposition, it is apparent that the upward bias in the CGE and SAM
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forecast estimates seen in the descriptive statistics is present here. Further, the variance
coefficients for the CGE and SAM models are significantly higher than the coefficient for the
time series models. These results, measured against the perfect correlation coefficients (bias =
0, var =0, cov = 1), indicate that time series models significantly outperform both SAM and CGE
models with negligible bias and variance coefficients. SAM models also slightly outperform CGE

models, though the difference between SAM and CGE models is relatively small.

One might have expected CGE and SAM models to overestimate output. There is
literature supporting the theory the I/0-style models may overestimate production and/or
income (Simonovitz, 1975; Lahiri, 1983; Lahiri and Satchel, 1985; Bullard and Sebard, 1988).
However, the poor variance decomposition coefficients indicate that the SAM and CGE models
are somehow less sensitive to the movements in the actual data than are the time series
estimates. In theory, the opposite should occur: CGE and SAM models should capitalize on the
additional information included in their structural models in terms of increased sensitivity and

detail.

In order to investigate the effects of the strong upward bias known to be present, and
any possible spillover effects to the variance coefficient, all output forecast estimates were
calibrated to the actual data from the base year upon which the producing model was based.
That is, the upward bias was systematically removed while maintaining the variant relationship

of the original estimates. The U-statistics were recalculated and the results are in Table 5.4

With the upward bias corrected, the models converge. The CGE models jump from

worst to best, followed by time series and SAM models respectively. However, the U-statistics
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for all three model types are within 8% of one another. Regardless, it seems that correcting the

upward bias in the CGE and SAM model estimates also corrected the high variance coefficients.

Table 5.4: Average U-statistics

CGE SAM TS All
U 0.44 0.52 0.46 0.47
Ubias 0.00 0.01 0.00 0.00
Uvar 0.00 0.01 0.01 0.01
Ucov 0.25 0.09 0.16 0.17

Note that the upward bias in the output estimates was only removed for the purposes
of investigating the unanticipated variance coefficient results. These upward biases will not be
corrected moving forward from this point. This decision is made with knowledge of results to
come, and will speak to final conclusions. Full results, all the way through to employment
forecast estimates and statistical analyses thereof, were calculated and analyzed for both
corrected and uncorrected estimates, but the corrected estimates are left out of this
dissertation in part because they are not necessary or additive to the research narrative (and
partly to spare the pages).

5.3 Louisiana Industrial and Occupational Employment Forecast Estimates Statistical

Analysis
5.3.1 Tests of Industry/Occupation Employment Forecast Estimates Grouped by Model

Type, Base Year, and Industry

For the first employment estimate series, the data observations are grouped such that
estimates in each regression are from the same combination of the following parameters:

model base year, industrial output estimation technique, and occupation-by-industry matrix
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geography, expressed in matrix notation as [[ Jue ] . That is, there is a series of
M(b)

estimates for all projection years for each industry, as in the figure below which shows the
employment estimates by industry for the model using CGE industrial output estimates and the
state occupation-by-industry matrix. This mirrors the structure of the first series of tests for

industrial output estimates. Each of the data points on the graph will be an observation in the

regression that fills each block of the matrix [[ Jue ] .
M(b)

With the industrial output estimates, there were 15 of these graphs (CGE, SAM, and
time series models for each of the five base years), and hence, 15 different regression
equations. With the employment data these same 15 regressions equations are doubled
because there are estimates using each of these regressions with both the national and state

occupation-by-industry matrices, bringing the total number of regressions to 30
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Graph 5.1:2001 CGE Estimates of Industrial Employment
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The specific regression equations take the form
Equation (5.3)

ﬁn\pit,M(b)’G = By + prempt + B,AG + BsMining + B,Utilities + BsConstruction
+ fsManufacturing + B,Wholesale + BgTransportation + fyRetail

+ BoProfServ + ByoEducHealth + B,,STATE + ¢

where emp; ;) is the estimated employment by industry i (or occupation soc) for a model
using industrial output estimation technique M, base year b, and occupation-by-industry matrix
geography G € (National, State) indicates the geography of the occupation-by-industry
matrix, mit is the actual employment by industry (or occupation), indicates which occupation-
by-industry matrix was used to create the estimate, AG, Mining, Utilities, Construction,
Manufacturing, Wholesale, Transportation, Retail, ProfServe, and EducHealth are
Boolean intercept dummy variables which indicate the specific industry series, and STATE is a
Boolean intercept dummy which equals one if the observation uses the state occupation-by-

industry matrix and zero otherwise.

Within each dependent variable series, there are estimates for each industry in each
projection year. The Boolean variables that account for industry allow each industrial series to

have its own intercept.

The results from these regressions are presented in Tables 4.11 (industrial employment)

and 4.12 (occupational employment).
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The first impression of the industrial employment results is that all the models have very

high adjusted R-squared values and very high F-statistics. This means that combinations of base

year, industrial output estimation technique, and occupation-by-industry matrix geography

explain variation in actual employment data generally well.

Table 5.5: Industrial Employment Regression Results

State Matrix

adj R"2 2001 2002 2006 2007 2008
CGE 0.9732 0.976 0.9712 0.9688 0.9724
SAM 0.9773 0.9622 0.9628 0.9596 0.9661
TS 0.952 0.959 0.9633 0.9683 0.9623
F 2001 2002 2006 2007 2008
CGE 396.57 443.34 367.83 339.11 384.51
SAM 469.22 469.22 282.13 259.1 311.25
TS 216.57 232.09 207.82 211.17 150.86
National Matrix

adj R"2 2001 2002 2006 2007 2008
CGE 0.9365 0.9395 0.918 0.9238 0.9233
SAM 0.9394 0.9267 0.9124 0.916 0.9167
TS 0.945 0.9545 0.9296 0.9328 0.9266
F 2001 2002 2006 2007 2008
CGE 161.47 169.88 122.74 132.93 131.95
SAM 169.61 138.49 114.21 119.54 120.64
TS 187.86 208.01 105.02 96.36 71.01

Averages
0.9723
0.9656
0.9609

386.272
358.184
203.702

0.9282
0.9222
0.9377

143.794
132.498
133.652

For the models that use the state occupation-by-industry matrix, the CGE models have

the highest average R-squared value with SAM and time series models averaging about 0.5%

and 1% respectively. For national occupation-by-industry matrix, time series models average

the highest adjust-R-squared value with CGE and SAM models each about 0.5% lower.
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The models which use the state occupation-by-industry matrix average about 3.5%

higher R-squared values than the models that use the national matrix. This evidence might

suggest that geographical matching may improve a model’s ability to predict industrial

employment.

Table 5.6: Occupational Employment Regression Results

State Matrix

adj RA2 2001 2002 2006 2007 2008 Averages
CGE 0.9755 0.9737 0.9672 0.9705 0.9716 0.9717

SAM 0.972 0.9633 0.9687 0.9686 0.9702 0.96856
TS 0.9612 0.9647 0.966 0.9653 0.9684 0.96512
F 2001 2002 2006 2007 2008

CGE 313.94 292.1 233.18 259.63 270.44 273.858
SAM 274.06 207.45 244.59 244.17 257.01 245.456
TS 196.06 188.61 139.69 108.91 89.15 144.484
National Matrix

adj R"2 2001 2002 2006 2007 2008

CGE 0.9679 0.968 0.9646 0.9653 0.9645 0.96606
SAM 0.9679 0.9595 0.9629 0.9622 0.9626 0.96302
TS 0.9604 0.9639 0.966 0.9653 0.9679 0.9647

F 2001 2002 2006 2007 2008

CGE 238.72 239.36 215.3 220.19 215.22 225.758
SAM 238.28 187.38 205.26 201.24 203.85 207.202
TS 192.18 184.74 139.67 108.89 87.61 142.618

Looking at occupation employment, models that use the state occupation-by-industry

matrix, the CGE models have the highest average R-squared value (0.9717) with SAM (0.9686)

and time series (0.9651) within one percent. For models that use the national matrix, CGE

(0.9661) is still the highest, but time series (0.9647) slightly outperforms SAM (0.9630). The F-
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statistics for all models are significant at the one percent level, which implies that the

characteristics of the model have significant predictive power in terms of adjusted R-squared.

The state matrix models, as with industrial employment, show a slightly higher average
R-squared value (0.9685) than the national matrix models (0.9645). However, this difference is

less than half of one percent.

5.3.2 Meta-Analysis Regression (MAR) Tests of Industrial Output Forecast Estimates
Grouped by Model Type, Base Year, and Industry

Though all the models have high adjusted R-squared statistics, this series should help
reveal which, if any, model characteristics produce higher R-squared values statistically. The R-
squared values from the regressions in section 4.4.3 above are used as the dependent variables
in regressions which use dummy variables for various model characteristics as independent

variables. The equations take the form

Equation (5.4)

R? = By + BLCGE + B,SAM + B;State + ,€2001 + $5C2002 + $,€2006 + ,C2007 + ¢
where SAM (SAM based industrial output estimates), T'S (time series base industrial output
estimates), NAT (national occupation-by-industry matrix), C2001 (model base year of 2001),
C2002 (model base year of 2002), C2006 (model base year of 2006), and C2007 (model base
year of 2007) are Boolean variables equal to one if the model has the particular characteristic,
Note that variables for time series based industrial output estimates, national occupation-by-
industry matrices, and 2008 model base years are excluded from the regression equation to

avoid singularity. The results of this regression equation are presented in the table below.
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The only variable that is significant is the dummy variable for the state occupation-by-
industry matrix in the industrial employment estimates. The results indicate that models which
use the state occupation-by-industry matrix should expect a 1% higher R-squared value than
models which use the national matrix to predict industrial employment, ceteris paribus. The
model for industrial employment has an F-statistic that is statistically significant at the 10%

level.

Table 5.7: Industrial and Occupational 1%t MAR Results

Industrial Employment

R2 0.065 F 1.95
Adj R2 0.0317 Prob > F 0.0759

Variable Coeff t

C2001 0.0204 2.21

C2002 0.0066 0.71

C2006 -0.0063 -0.67

C2007 0.0181 1.89

CGE 0.0016 0.21

SAM 0.0004 0.05

State 0.0287 5.14*

Occupational Employment

R2 0.6986 F 73.49
Adj R2 0.6891 Prob > F 0

Variable Coeff t

C2001 0.0253 1.23

C2002 0.0215 1.07

C2006 0.016 1.35

C2007 0.0195 1.14

CGE 0.0199 0.21

SAM -0.0167 -0.17

State 0.0073 0.97

* indicates significance at the 1% level
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The occupational employment regression is much more statistically significant in
general, with an F-statistic significant at the 0.1% level, but the regression finds no significant

variables. The state matrix has a positive coefficient, but is not statistically significant.

Both the industrial and occupational employment models find no statistical difference
between the alternative industrial output forecasting methods. This is evidenced by the lack of

significance of their corresponding variables in both models.

This is a similar problem that was encountered with the industrial output tests. Now, as
then, robustness is needed in these results. In efforts to bolster results, employment estimates
are reorganized in order to more evenly spread the observation between the first and second

series of tests.

5.3.3 Employment Forecast Theil Statistical Analysis

The Theil Inequality Coefficient Decomposition Analysis from section 5.2.3 is applied
here to both industrial and occupational employment forecast estimates. The U-statistics for
industrial employment forecast estimates are in Table 5.5. The U-statistic and each of its
decompositions are averaged for each model type and geography and a total average is also

included.

The U-statistics show that CGE and SAM models are performing very similarly, as might
have been expected, but that the time series models have a U-statistic about 50% higher than
CGE and SAM. Further, the models which used the state occupation-by-industry matrix have

slightly better averages than models which used the national matrix.
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Table 5.8: Industrial Employment

U
CGE SAM TS All
State 0.45 0.42 0.57 0.48
National 0.43 0.45 0.63 0.50
Both 0.44 0.43 0.60
Ubias
State 0.11 0.33 0.04 0.16
National 0.09 0.16 0.40 0.22
Both 0.10 0.25 0.22
Uvar
State 0.11 0.06 0.01 0.06
National 0.07 0.08 0.23 0.13
Both 0.09 0.07 0.12
Ucov
State 0.78 0.89 0.78 0.82
National 0.84 0.76 0.31 0.63
Both 0.81 0.82 0.55

The bias coefficients show distinct advantages for the CGE model type and the state
occupation-by-industry matrix, indicating that the upwardly biased output numbers from the
CGE and SAM models produced the least biased industrial employment forecast estimates.
Conversely, the least biased industrial output numbers (time series) have produced industrial

employment forecast estimates with relatively large bias.

This contradictory result is supported by the variance coefficients where SAM and CGE
models again outperform the time series models which had much better industrial output
variance coefficients. These results are troublesome and more discussion about them will

follow.

The U-statistic coefficients for occupational employment forecast estimates are in Table

5.6.
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The occupational employment forecast estimates mimic the results from the industrial
employment estimates. The CGE and SAM models outperform the time series models in the
general U-statistic as well as in the variance decomposition coefficients. All three models are
within 2% in the variance coefficients. Though the bias coefficients favored the models which
used the state occupation-by-industry matrix, the models which used the national occupation-
by-industry matrix outperformed state models in terms of the U-statistics and the variance

coefficients.

Table 5.9: Occupational Employment

U
CGE SAM TS All
State 0.61 0.54 0.44 0.53
National 0.33 0.36 0.59 0.43
Both 0.47 0.45 0.52
Ubias
State 0.10 0.07 0.00 0.06
National 0.06 0.06 0.24 0.12
Both 0.08 0.07 0.12
Uvar
State 0.51 0.45 0.32 0.43
National 0.15 0.16 0.31 0.21
Both 0.33 0.31 0.32
Ucov
State 0.39 0.48 0.61 0.49
National 0.79 0.77 0.22 0.59
Both 0.59 0.63 0.41

5.4 Summary and Analysis of Results

The summary statistics from chapter 4 indicated that the CGE and SAM models were
overestimating industrial output. This overestimation was not entirely unexpected and follows
trends from existing literature. This overestimation is confirmed by the Theil Statistical

Decomposition analysis of the industrial output forecast estimates. The CGE and SAM estimates
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of industrial output have significantly worse bias and variance coefficients than did the time
series models. However, despite this upward bias, when output estimates were regressed
against actual data, the CGE, SAM, and time series models have R-squared statistics that are
statistically indistinguishable, implying that each of the estimation techniques replicate
variation in the actual data with roughly equal efficiency (this implication was confirmed by the

investigation using bias-corrected estimates).

The statistical analysis of the employment forecast estimates seems to contradict the
results from the output estimates. Though all three model types again have high R-squared
values when regressing employment estimates against actual industrial and occupational
employment figures, employment estimates made using CGE and SAM-produced output
estimates outperformed models using time series-produced output estimates in terms of U-
statistics. CGE and SAM estimates of industrial employment have better U, Ubias, Uvar, and
Ucov coefficients than time series estimates. The three models had roughly equivalent Uvar
coefficients for occupational employment, but the overall U-statistic and the Ubias coefficient

both favored CGE and SAM models.

These results indicate that though the CGE and SAM industrial output forecast estimates
are upwardly biased (in some cases significantly), those estimates are nonetheless producing
the best industrial and occupational employment forecast estimates. Conversely, the most
accurate industrial output estimates (time series) are producing the least accurate employment

estimates.
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There are at least two possible reasons for this result. The first possible reason for this
could lie in the distribution of industrial output to employment by the occupation-by-industry
matrix. This matrix is the data bottleneck for this dissertation. As discussed in Chapter 3,
regional employment data marked by industrial and occupational indices is often redacted for
firm privacy reasons. Thus, there were only three years of data available (2006, 2008, and

2010).

In a preliminary analysis of these state occupation-by-industry matrices, the
occupational employment ratios were compared across years. That is, the ratio of employees in
a particular occupation within an industry to the total employment in that industry. These
ratios were found to be nearly identical across the three years of data. Since the process of
distributing the industrial output into employment is a linear transformation and the
transformers (the matrices) were almost identical, it stood to reason that the choice between

matrices would be trivial. Thus, the 2008 matrix was chosen and the others discarded.

This decision may have biased the data in an unanticipated manner. In choosing the
2008 state occupation-by-industry matrix for use in the creation of industry/occupation
employment forecast estimates, the calibration of output-to-employment for the base model is
fixed to the 2008 level. That is, by choosing to fix this matrix, the ratio of output-to-
employment is also fixed. However, that ratio may have been skewed by the 2008 financial
crisis. Schaal (2012) asserts that employment was abnormally low and worker productivity was
abnormally high surrounding the 2008 recession. If the worker productivity was artificially high

during 2008, this would possible explain why the most accurate industrial output forecast
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estimates were producing too little employment. Further, the overestimated CGE and SAM
estimates would have been artificially “deflated” and would appear to be unbiased, when in
fact their existing upward bias was merely being offset by the downward bias presented by the

artificially high worker productivity.

The second possible reason for the discrepancies is a generalization of the first. That is,
it could be that the specific year used for this study was a bad year, but it could be that the
relationship between output and employment is not properly characterized within the
industry/occupation employment projection strategy and requires more specific attention. That
is, the process explicitly assumes that output in a given period is directly related to employment
in that same period. In reality, employment decisions are based on a myriad of variables
including, but not limited to, national or regional economic trends, future expectations, wage

trends, and characteristics of the workforce.

The reason these two possibilities are separated is that | view the first as a somewhat
misfortunate choice, a poor choice in application of a valid model to be learned from in future
model applications. The second possibility | believe is more indicative of a poor modeling
strategy that would hinder the applicable use of this model moving forward. The determination

of which possibility (if either) is true is left for future research.
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6 Conclusions, Contributions, and Suggested Extensions

6.1 Introduction

This chapter provides a summary of the previous four chapters which outlines the
primary contents of each. Next, the four contributions identified in the literature review are
addressed individually along with results and implications. A final section provides some

concluding remarks.

6.2 Summary

In the first chapter, the motivations and backgrounds of industry/occupation
employment forecasting were introduced. The Bureau of Labor Statistics (BLS) recommended
process for producing such forecasts (Franklin, 2007) was presented and two specific stages of
the process were identified as possible points of improvement by the use of modern economic
methods: the production of industrial output forecasts and the conversion of output forecasts

to employment figures via the use of an occupation-by-industry matrix.

Within the guidelines recommended by the BLS for the creation of industry/occupation
employment projections, various methods may be used to produce output-by-industry forecast
estimates, including but not limited to econometric analysis, Input-Output or Social Accounting
Matrix (I/O-SAM) analysis, and Computable General Equilibrium (CGE) analysis. However,
empirical evidence of their comparative performance in the industry/occupation employment

forecasting methodology does not exist. Thus, this dissertation set out to provide such an
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empirical study of alternative techniques’ ability to create reliable employment forecasts, and

provides these specific objectives which guide this dissertation.

1)

2)

3)

4)

5)

Evaluate current and relevant projection procedures for creating regional
industry/occupation employment forecasts.

Evaluate the theoretical underpinnings of current forecast procedures, as well an Input-
Output and Social Accounting Matrix modeling, Computable General Equilibrium
modeling, and alternative occupation-by-industry matrices.

Build SAM and CGE models of industrial output for the state of Louisiana as a single
region.

Construct alternative occupation-by-industry matrices.

Test the industrial output techniques, the occupation-by-industry matrices, and all

combinations thereof.

The second chapter provides a brief literature review of the existing body of academic

research around employment forecasts, alternative industrial output forecasting techniques

(1/0-SAM and CGE), occupation-by-industry matrices, and meta-regression analysis (MRA).

These sections draw together a basic history of each topic and seek to motivate the study of

these topics by illustrating how this study might address unanswered questions in existing

literature. Appropriately, the chapter ends by identifying four specific contributions to which

this dissertation aspires.

The third chapter (and Appendix A) offers a formal presentation of the alternative

models for consideration, including the three alternative industrial output forecasting
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techniques (time series, 1/O-SAM, and CGE), the construction of the regional occupation-by-
industry matrix, and mechanics of how each of these alternatives were combined to create

industry/occupation employment forecasts.

In the fourth chapter, the forecasts produced by each model, as outlined by the third
chapter, are tested against actual employment data. Some typical regression analysis finds that,
in general, no significant difference is found between the alternative industrial output forecast
techniques. This analysis is supplemented by a MAR analysis that adds depth to the general
analyses of results and their implications, confirming the lack of statistical variation in
industry/occupation employment forecasts due to alternative industrial output forecasting
technique and finding a statistically significant improvement when using the state occupation-

by-industry matrix rather than the national matrix.

6.3 Contributions

To conclude the literature review, this dissertation aspired to four contributions to
existing literatures that are outlined above. First, this dissertation provides an empirical study
of the performance of alternative industrial output forecasting techniques used within the
industry/occupation employment forecasting procedure recommended by BLS (Franklin, 2007).
Second, the dissertation provides a deliverable, an occupation-by-industry employment matrix
for the state of Louisiana, which is not currently available from national or state sources. Third,
the performance of the new regional occupation-by-industry matrix compared to that of the
national occupation-by-industry matrix is tested. | find that the regional matrix does

outperform the national matrix in terms of improved occupational and industrial employment
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forecasts. Finally, | use a unique approach to testing which employs Meta-Analysis Regression
(MAR) analysis. This method takes advantage of the large numbers of models with many
combinations of model characteristics in this dissertation and uses this analysis to determine
which, if any, model characteristics are correlated with improved industry/occupation

employment forecasts.

| believe each of the contributions is achieved in this dissertation, and each provides
insight to future research and/or policy development. This section devotes a brief discussion to
each contribution, the results of this paper which apply, and the implications to research or

policy that result.

6.3.1 The First Contribution

The first contribution is providing the literature with an empirical study of alternative
industrial output forecasting techniques within the industry/occupation employment guidelines
recommended by BLS. This study found that the alternative techniques provided results that
were not statistically different for any models in this dissertation. That is, the integration of
more complex, general equilibrium models into the industry/occupation employment
forecasting does not improve the employment forecasts in this study under likely model

specification.

The implication to policy development is not absolute, but rather, as many economic
decisions do, it depends on a simple cost benefit analysis. The evidence from this research
suggests that investing increased resources in the insertion of a CGE into the
industry/occupation employment forecasting procedure does not provide returns by way of

112



improved forecasts. However, the choice between using a time series econometric technique or
an I/0-SAM technique is not as straightforward. Since these methods seem to have no
significant differences, they should be viewed, generally, as substitutes in terms of benefits in
the policy function. Thus, the choice of which is more appropriate for use depends on the cost
of production of each, which can change depending on who is commissioning the forecasts,
scope and granularity of the desired forecasts, econometric forecasting experience of

forecasters, and other situational variables.

As a brief example, consider a state agency in Louisiana that would like to create
industry/occupation employment forecasts for the state of Louisiana and is choosing between
time series regression analysis and I/O-SAM analysis for an industrial output forecasting
technique. If there is an economist on staff, it may be easy for him or her to create a reliable
time series estimate. However, if the agency does not have someone on staff that can do this, it
may be more cost efficient to contract out the one-time creation of an I/O-SAM model rather

than hire someone specifically to create and maintain a set of time series equations.

Thus, this research suggests that regional, state, and local agencies should be wary of
investing in more complex methods of forecasting regional industrial output. However, this
research is by no means deterministic or absolute. | believe that more research is necessary to
determine the ability of CGE frameworks in forecasting industrial output. Issues of aggregation
and granularity that are present in this research due to employment data and aggregation

restrictions would not be present in research devoted to industrial output forecasting outside
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of the industry/occupation employment forecasting framework. This would allow for a more

detailed account of possible benefits of using more complex structures like I/O-SAM and CGE.

6.3.2 The Second and Third Contributions

The second and third contribution, the creation of a deliverable in the form of a
previously unavailable occupation-by-industry matrix for the state of Louisiana and the testing
of that matrix against its alternative, are inextricably linked, and are thus addressed together.
This state-level occupation-by-industry matrix, the construction of which is discussed in the
third chapter, however, is prevented from having high-levels of industrial and occupational
granularity. Regional employment data is often not collected with both industry and occupation
identifiers, and the data that does contain both identifiers can have privacy disclosure issues

and is thus of low granularity (or high aggregation).

This research suggests that the state-level occupation-by-industry matrix outperformed
the national matrix in terms of improved employment forecasts. This research, as discussed, is
at high levels of aggregation (low levels of granularity), but the data are unavailable at the
moment to determine if these results hold true as granularity is increased. If data collection
methods were available to the public, or to economists through non-disclosure agreements of
some kind, matrices of higher granularity could be constructed, tested, and possibly
implemented in the policy functions as improvements of their own accord, but also as

improvements within the forecasting of industry/occupation employment.
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6.3.3 The Fourth Contribution

The last contribution sought to sort through the many models created by the alternative
techniques in combination, as well as for the number of years for which each model was based,
by using MAR analysis to determine which model characteristics predicted high R-squared
values when a model’s forecast estimates were regressed on actual data. This method is
typically used in meta-analysis literature, but is used here to identify trends in goodness-of-fit

measures associated with specific model characteristics.

This application is attractive because, with as many as 144 different sets of employment
forecasts to test, individual goodness-of-fit measures, descriptive statistics, and hypothesis
testing can easily become extensive and trends can be difficult to spot amongst the statistical
noise. Further, as computing power increases, economists are able to create studies which have
many more alternative methods than the 5 varying model characteristics in this dissertation.
MAR could provide a tool, or perhaps the basis of a larger evaluation method, to determine

which models characteristic combinations perform best.

6.4 Conclusion

This dissertation set out to evaluate the industry/occupation forecasting guidelines
recommended by BLS, set out by Franklin (2007). The guidelines were evaluated, possible
alternative techniques identified, and models were constructed. There were a total of 32
industry/occupation employment models constructed for 9 industry groups and 22 occupation

groups.
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The estimates from each model were compared to actual employment data and
regression analysis (including MRA) revealed that none of the alternative industrial output
forecasting techniques produced significantly better employment forecasts. However, the
results did show that the state occupation-by-industry matrix, constructed in this paper,
outperformed the standard national matrix, implying that the assumption that national staffing
patterns are a proxy for regional staffing patterns for purposes of employment forecasting may

need to be scrutinized further.

This research also suggests that a proper industry/occupation employment forecast
procedure should forecast industrial output using an econometric or I/O-SAM-based technique
(depending on cost efficiency) in combination with an occupation-by-industry matrix that is
geographically matched with the scope of the project rather than assuming that national

staffing patterns are a proxy for regional patterns.
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Appendix A: Computable General Equilibrium

1) Visual Representation and Discussion
< Product P
Producers q <
» Markets
A A A
v
Households | "| Government |< | ROW
A A A
\A 4

Factor Capital <

Markets Markets

Figure Al: CGE Structure‘

Figure Al is a visual representation of a Computable General Equilibrium (CGE) model. The
boxes represent agents or markets and the lines represent transaction between the agents,
between the markets, or between an agent and a market. The equations that comprise a CGE
govern the transactions that occur between these agents and markets and are presented in the

next section of the appendix.

The Producers use their production process to create commodities. These commodities can
be sold in Product Markets which return to the producers their domestic sales. This transaction

is noted by the lines going from Producers to Product Markets (intermediate demand) and from
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Product Markets to Producers (domestic sales). The production process produces value-added
which is used to acquire factors or production from Factor Markets and is represented by the
flow from Producers to Factor Markets (Value-added). Producers also pay output taxes to

Government.

Consider next the Product Markets. It has already been shown that the Product Market
provides meets intermediate demands and facilitates domestic sales for Producers, but
Households, Government, and Capital Markets also consume commodities which the purchase
in the Product Markets. These transactions are represented by the lines from Households
(private consumption), Government (gov’t consumption), and Capital Markets (investment
demand) respectively to Product Markets. Domestic supply and demand is supplemented by
foreign producers who both demand and supply domestic products, as represented in the flows
from the Rest of the World (ROW) accounts. Imports flow into Product Markets from the ROW

while exports flow out.

Households receive income from Factor Markets and purchase goods from Product Markets
for consumption, pay income taxes to the Government, and save in Capital Markets.
Households also receive Government payments and payments from ROW for factors of

production provided outside the region or for foreign investments.

Government receives taxes from Producers (output taxes), Factor Markets (factor taxes),
Households (income taxes), and ROW (tariffs and foreign debt). The Government spends this
income on government consumption in the Product Markets, government payments to

Households, government savings in Capital Markets, and debt payments to the ROW.

127



Factor Markets are paid value-added from Producers and pay income to Households which

provide the factors. Further, Factor Markets pay the factor taxes to Government.

Capital Markets receive investment from Households (private savings), Government (gov’t
davings), and ROW (foreign investment) while providing investment demand to Product

Markets.

The ROW account exchanges imports and exports with the Product Markets, pays tariffs
and debt payments to Government, makes foreign payments to Households, and provides

foreign investment to Capital Markets.

This figure, and the accompanying discussion, covers the theoretical connections between
agents and markets that are covered within the framework of the CGE. The equations that

govern these transactions are presented in the next section of this appendix.

) Equations

The equations presented here follow Lofgren et al. (2002) and are the structural equations

for all CGE models in this dissertation.

The structure of this section follows the discussion in the primary body which separates the
equations into blocks which contain equations that deal with specific transactions within the
CGE: Prices, Production and Trade, Institutions, and Constraints. The equations will be

presented in these blocks separately.
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Price Block

Import Price PM, = pwm, -(1+m,) - EXR + Y PQ,.-icm,,

import

import

price |=| price

(Lew)

where

ceC
ceCM(cC)
ceCT(cC)

PM.,
pwn,
tm,
EXR
PW,

c

icmg,

(FCU)

I

c'eCT
tariff exchange rate cost of trade ceCM (1)
-| adjust- |-| (LCUper |+ | inputsper
ment FCU) import unit

a set of commodities (also referred to as ¢’ and C’),

a set of imported commodities,

a set of domestic trade inputs (distribution commodi-
ties),

import price in LCU (local-currency units) including
transaction costs,

c.L.f. import price in FCU (foreign-currency units),
import tariff rate,

exchange rate (LCU per FCU),

composite commodity price (including sales tax and
transaction costs), and

quantity of commodity ¢’ as trade input per imported
unit of ¢.

Export Price PE, = pwe, -(1-te,) - EXR — Y PQ, ice,..

export aport
price |=| price
(Lc) (FCt)

where

ceCE (cC)

PE,
pwe,
te.
ice,.

I

Il

tariff exchange rate cost of trade
adjust- |*| (LCU per |=—| imput: per

meént

c'eCT

ceCE (2)

FCU) export unit

a set of exported commodities (with domestic produc-
tion),

export price (LCU),

f.o.b. export price (FCU),

export tax rate,

quantity of commodity ¢’ as trade input per exported
unit of c.
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Demand Price of PDD = PDS, + Y PQ, icd,.,

Domestic Non ceCT
traded Goods
domestic domestic ok of sl ceCD (3)
demand :| = [ supply ] "!::::;"’
o Lo domeztic sales
where
ceCD(cC) = a set of commodities with domestic sales of domestic
output,
PDD, = demand price for commodity produced and sold domes-
tically,
PDS, = supply price for commodity produced and sold domesti-
cally, and
ied,. = quantity of commodity ¢’ as trade input per unit of ¢

produced and sold domestically.

Absorption PQ -(1-1tq.)-00. = PDD,-OD, + PM_-OM,

:::::.n:.d i vcisniit M - aeii ce(CDUCM) 4)
: — rimes fimes

::;‘:;‘;d domestic sale: quantity import quantity

where

QQ. = quantity of goods supplied to domestic market (com-
posite supply),

QD. = quantity sold domestically of domestic output,

QM, = quantity of imports of commodity, and

tq. = rate of sales tax (as share of composite price inclusive
of sales tax).

Marketed Output py .oy - PDS. -0D_+ PE.-QE.

Value

producer price domestic supply price export price

[ﬁmm&ﬂ]=[ fimes :l+[ times ] ceCX (b
output quantity domestic sales quantity export quantity

where

PX, = aggregate producer price for commodity,

QRX, = aggregate marketed quantity of domestic output of

commodity,
QE, = quantity of exports, and
ceCX(cC) = asetof commodities with domestic output.
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Activity Price p4, = Y Pxuc,. -6,

Aggregate
Intermediate Input

Price

Activity Revenue
and Costs

Consumer Price
Index

ceC

[armio] - |:prod'm pnru:] ae A (6)
price times yields

where

acA = a set of activities,

PA, = activity price (gross revenue per activity unit),
PXAC,, = producer price of commodity ¢ for activity a, and

8. = yield of output ¢ per unit of activity a.

PINT4, = Y PO, -ica
ceC
ae A (7)

aggregate intermediate input cost
intermediate | = | per unit of aggregate

input price intermediare input

where
PINTA, = aggregate intermediate input price for activity a, and
iea,, = quantity of ¢ per unit of aggregate intermediate input

a.

PA,-(1—ta,)-QA, = PVA,-QVA, + PINTA, - QINTA,

v ey | =| riconmen || ermediae acA (8
fimes activity level quanrity - pﬂ“ —
quantigy
where
ta, = tax rate for activity,
QA, = quantity (level) of activity,

QVA, quantity of (aggregate) value-added,
QINTA, = quantity of aggregate intermediate input, and
PVA, price of (aggregate) value-added.

Il

CPI= Z PQ, -cwts,
ceC

9)
CONSUMET — | Pprices times
price index weights
where
cwts, = weight of commodity c in the consumer price index, and

CPI = consumer price index (exogenous variable).
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Producer Price ppj- z PDS, -dwts,

Index for Nontraded (10)
Mal‘ket outpl.lt producer price index | __ | prices imez
for non-traded outputz 0 weights
where
dwts, weight of commodity ¢ in the producer price index, and

o

DPI producer price index for domestically marketed output.

Production and Trade Block

oo 4
CES Technology: 04, = (67 -OVA, * +(1-87) - OINTA, #* | ¥

Activity Production ] ae ACES (11)

Fucntion |:dﬂfll]tl':| P CES[ quantity of aggregate value added

level quantity of aggregate imtermediate inpur

1

CES Technology: _9V4. _|PINTA. 0. |
Value-Added- OINTA, PVA, 1-6;
Intermediate-Input _
Ratio i,,gf,ﬂ » [“’":ﬁf‘j;:f:"’ ] ae ACES (12)
ratio price rano
where
a e ACES(c A) = a set of activities with a CES function at the top of the
technology nest,

al = efficiency parameter in the CES activity function,
82 = CES activity function share parameter, and
ps = CES activity function exponent.
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Leontief OVA, =iva, 04,

Technology: ae ALEO (13)
Demand for [‘mm‘ﬂ» ] =f [amo ]
value added level
Aggregate Value-
Added
Leontief e
Technology: IS, =it 08, ae ALEO (14)
Demand for [dm.,g e ] iy l:nm'\m ]
Agg reg ate intermediate input level
Intermediate Input
where
a e ALEO(c A) = a set of activities with a Leontief function at the top of
the technology nest,
wa, = quantity of value-added per activity unit, and
inta, = quantity of aggregate intermediate input per activity
unit.
i
w |Pa =
Value-Added and 074, = " [ 67, -OF, ™ ] ae A (15
Factor Demands feF

value added inputs

I:mnn'-:r of asxrmw] = CESI:MM:I

Factor Demand yF, . WFDIST , , = PVA, (1-tva,)- OVA, {,Zj’r-a’?“ -QF, "%

ae A
" 5}\:’ lQFfa—pa -1 fE F l16)

marginal cost of — | marginal revenue product
factor fin activity a of factor f in activity a

where
feF(=F") = a set of factors,
tva, = rate of value-added tax for activity a,

ae = efficiency parameter in the CES value-added function,

e = CES value-added function share parameter for factor f
n activity a,
QF;, = quantity demanded of factor f from activity a,
pLe = CES value-added function exponent,
WF; = average price of factor, and

WFDIST,, = wage distortion factor for factor f in activity a (exoge-
nous variable).
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Disaggregated
Intermediate Input
Demand

Commodity
Production and
Allocation

QINT,  =ica,_ - QINTA, ae A -
(17)
ceC
intermediate demand aggregate intermediate
Sfor commodity ¢ —~ f npur quantity
from activity a Sor activity a
where
QINT,, = quantity of commodity ¢ as intermediate input to activ-
ity a.
Q‘X'A'Car + z Q}:‘{A’ach =6¢c 'QAa
heH
ac A
marketed quantity housahold h_m‘ production ( 18]
¥ consumprion il ' Cc€E CX
of commoditye |+ i = of commodity ¢
Jfrom activity a Ao 2Fe Jrom activity a
) Jfrom activity a

where

QXAC,. = marketed output quantity of commodity ¢ from activity
a, and

QHA, _, = quantity of household home consumption of commodity

¢ from activity a for household h.

1

- |3
Output Aggregation 0OX =a* [ 2.8 -oxac, ] ’

Function asd
WAL il ce CX (19)
marketed - marketed
production of CES production of
commodity ¢ commodity ¢
where
as = shift parameter for domestic commodity aggregation
function,
8% = share parameter for domestic commodity aggregation
function, and
pee = domestic commodity aggregation function exponent.
’ 3
- First-Order PXAC,_. =px.-OX. E‘S:‘f 'QXAC;f?r Lok vQL{C;f?"l
Condition for Output acd’
Aggregation acd o
Funct.on marginal cost of com- | _ | margimal revenue product of ce CX
modity ¢ from activity a commodify ¢ from activity @
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1
Output ox =o' -(5; . QE" +(1-8")- pr?) x
Transformation

(CEn Function aggregate marketed | _ CET export quantity, domestic
domestic output sales of domestic output

ce(CEnCD) (21)

where

at = a CET function shift parameter,

& = a CET function share parameter, and
Pt = a CET function exponent.

1

. QF -8 pit
Export-Domestic £k, | #E. r&
PDS. &,

Supply Ratio oD,
[mﬂ-domn’r] - f [cwarl’-domun’r]

ce(CEnCD) (22)

supply ratio price ratio

Output OX_=0D, + QE,

T;’“’*“’“‘a::;’"s:‘l’; ¢ €(CD A CEN) U (CE A CDN) (23)
omestica
Outputs Without | asoeser T
— | sales of domestic riz [ for
Exports and for [ dg:‘;’:‘:fw} '{ ite Eliceen cD.\':,r]
ce (CD n CEN)]

Exports Without
Domestic Sales

where
¢ €eCEN (c C) = non-exported commodities (complement of CE), and
¢ eCDN (c C) = commodities without domestic market sales of domes-
tic output (complement of CD).
i
Composite Supply 00 =a’ -(5“ oM +(1-87 )-QD"’") ot
(Al'mington) c E(CM NnCD) (24)
Fu'lCtion composite | _ import quantity, domestic
supply i f use of domestic output
where
al = an Armington function shift parameter,
&7 = an Armington function share parameter, and
p = an Armington function exponent.
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1
Import-Domestic OM. _(pPpD. 6! Yt ¢ e(CM ~CD) (25)
Demand Ratio 0D, PM. 1-9]

[.-..,,Mm_.,.-f] it [m,,-,.m]

demand ratio price ratio

Composite Supply 00_=0D_+0M_

el o ¢ €(CD A CMN) U (CM ~ CDN) (26)
Outputs and Non-
produced Imports domestic use of
composite | _ keted d ] imports [ for
[ zupply :| output [ for [c € (CM C'D.\'}}']
¢ € (CD ~ CAN)]
where
c eCMN (c C) = a set of non-imported commodities.

Demand for oT .= z (icm, .- OM.. +ice, .- QF,. +icd, .- QD)

Transactions fdec
serv.ces demand for 4 sum of demands ce CT 1271
tranzactions | = | for imports, exportz,
zervices and domestic sales
where
QT. = quantity of commodity demanded as transactions serv-
ice 1nput.

Institution Block

Factor Income YF, = z WF, - WFDIST ; , - OF,,

acd

: sum of activity payments
[!mm il ] = | (actvip-specific wages

Jactor f times emplayment levels)

feF (28)

where
YF; = 1income of factor f.
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Institutional Factor 1IF,, = shif,, -[(1— of,)- YF, —tmsfi,,,, . EXR]

Incomes [ income af —| [.’hwcqurw] |:im-tqffwmf} 1 eINSD (29)

instirutioni | = | offacterfro |°| (metoftax and f eF
Sfrom factor f institution i transfer to RolW)

where

1 eINS = a set of institutions (domestic and rest of the world),

1 eINSD(cINS) = a set of domestic institutions,

YIF;; = income to domestic institution i from factor f,

shifi¢ = share of domestic institution 7 in income of factor f,

if; = direct tax rate for factor f, and

trnsfr;; = transfer from factor f to institution 7.

Income of domestic, 7, - % yir,,+ Y 71RH,, +0usfi; ,, - CPI+0msfy,,, - EXR

Nongovernment feF i'e INSDNG'
Institutions
tagfars mrangfers mangfers P
intmqf]=|:ﬁuw]+ from other domestic | . a;.f: + ;:fr 1 eINSDNG (30)
imstitution § income amﬁ::ﬁ::mr government RoWW

where

1 eINSDNG(=INSDNG’ = INSD)

a set of domestic nongovernment institutions,

income of institution 1 (in the set INSDNG), and
transfers from institution iz’ to 7 (both in the set INS-

DNG).

YT
TRII;;

o

Infra-Institutional 7RI, .= shii, . (1- MPS,)-(1-TINS,.)- YI.

Transfers - i FSENESING iy

[mm:ﬁrﬁ‘on _]= [ of instirution i’ ]'[f’. net of savings cnd] _ EINSDNG

e L L mransfered toi direct taxes

where

shii; = share of net income of i’ to i (i’eINSDNG’; ieINS-
DNG),

MPS; = marginal propensity to save for domestic nongovern-
ment institution (exogenous variable), and

TINS; = direct tax rate for institution i (i eINSDNG).
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Household f£H,
Consumption

dizpozable for
conzumption

Expenditures {m,h,umm,] [;.mwm& .,..wm]

=[1_ Y sh:‘fw]»(1—5@5*)'(1—1'1?\78,‘)»}?,,

ic INSDNG

heH (32)

taxes, savings, and transfers to
other non-government instinitions

where
1 e HlcINSDNG)
= a set of households, and
EH, = household consumption expenditures.

Household
Consumption
Spending on
Marketed
Commodities

Household
Consumption
Spending on

Home Commodities

PQ -QH, ,=PQ -y, +B], -[EH,,— z PQ:.-]/:T,,—ZZPHC““]':‘.,,

¢'eC acdceC
household conzumption total household conzumption ceE C
|: spending on marker }= I l:mmd"hg, mark.nprins of c. and other j‘ }IEH l33)
commodity ¢ commodity prices (market and home)

where

QH._, = quantity of consumption of marketed commodity ¢ for
household £,

e = subsistence consumption of marketed commodity ¢ for
household £,

rhoa = subsistence consumption of home commeodity ¢ from ac-
tivity a for household h, and

T;, = marginal share of consumption spending on marketed

commodity ¢ for household h.
PXAC, .- QHA, ., = PXAC, .Y, o4 +Bic)

‘[EHh_ZPQc"Y:h_zzPXAC“"Y:f‘k] aeA

c'eC acdecel

ceC (34)
houszehold conzumption rotal hold ¢ iprion spending h € H
pending on home ¢ diy |= f producer price, and other
¢ from activity a commodity prices (market and home)
where
i = marginal share of consumption spending on home com-

modity ¢ from activity a for household .
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Investment Demand QINV_ =14DJ -Ec

. ceC (35)
Sfixed invesrment w“m::; Jactor
demand for |=
commodity ¢ ba.:;:::::'d
where
QINV, = quantity of fixed investment demand for commodity,
IADJ = nvestment adjustment factor (exogenous variable),
and
qinv, = base-year quantity of fixed investment demand.
Government 0G.=GADJ qg,
Consumption e
Demand consumption | _ rimes
dmﬂﬂ'_ﬁw baze-year S""""""""f CE C 136}
commodity ¢ consumption

where

QG, = government consumption demand for commodity,

GADJ = government consumption adjustment factor
(exogenous variable), and

%c = base-year quantity of government demand.

Government YG= Y TINS,-YI,+ if, YF,+ na,-PVA,-QVA,
Revenue ie INSDNG feF ac A

+ Zra, ‘P4, 04, + Z m:,-pwmr-QM:-E}ER+Z te.-pwe, - OF - EXR
4 = CM ccCE

ac A
+ Y.1q,-PQ, 00, + Y YIF, . +mtnsfi,  -EXR
ecC SfeF

direct taxes direct taxes value-
[p\maﬂ] = . i . +| added
revenue - . . -
| instirutions factors tax (3 7)
=S am&a-]+[hpoﬂ:|+|:apon]
| tax tariffe taxes

F- mangfers
+ “!“il+|:jf°mr]+ from
| tax income RolW

where
YG = government revenue.
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Government EG=)Y PO, -0G.+ 3 tmsfi,, -CPI

Expenditure e C ie INSDNG

transfers to domestic (38)
[an:umr:l = I::;o:mmr :|+|: T— }
where
EG = government expenditures.

System Constraint Block
Factor Markets ~OFS
,;QF“_QFS*’ feF (39)
demand for s supply of
[ Sactor f ] [ﬁlfm f]
where
QFS; = quantity suppled of factor (exogenous variable).
Composite 00 = ) QINT, + Y OH,, +0G, + QINV, +qdst, + 0T,
Commodity Markets ac 4 he H
ceC (40)

oo i Bl ]
+ [t Jo o]

where

gdst, = quantity of stock change.
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Current-Account Y pwm, -OM,+ Y trsfi,, = 3 pwe,-QE.+ 3 trusfi;,,, +FSAV

Balance for the -« s = o
Rest of the World, in [ o ] Sfactor [W ] mzritutional [ ﬁm_ﬂ] (41)
z || ransfars | = +| omansfer: ||
Foreign Currency | ... . revense ;ﬂ ey | Lsames
where
FSAV = foreign savings (FCU) (exogenous variable).
Government YG=FEG+GSAV
Balance
[gmumnmr] =[ government ]+ l:gmtn.!mm.l'] (42)
revenue expendinires zavings
where
GSAV = government savings.
Direct Institutional 77y — fins; .(1+ TINSADJ -tins01, )+ DTINS -1
Tax Rates
direct tax base rate adjusted point change :t eINSDNG (43)
rate for =| forscaling for +| forselected
institution i selected mstitutions institutions
where
TINS; = rate of direct tax on domestic institutions 1,
tins; = exogenous direct tax rate for domestic institution 1,
TINSAD.J = direct tax scaling factor (= 0 for base; exogenous vari-
able),
tins01; = (-1 parameter with 1 for mstitutions with potentially
flexed direct tax rates, and
DTINS; = change in domestic institution tax share (= 0 for base;

exogenous variable).
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Institutional MPS, = mps, - (1+ MPSADJ - mps0], ]+ DMPS - mps01,
Savings Rates

[ savings :| [aa.mmmﬁmd] |:po|'m changc} i eINSDNG (44)

rawefor |=| forscalingfor |+| forcelected

institution i selected inzriruti inritu s

where

mps; = base savings rate for domestic institution 1,

MPSAD.J = savings rate scaling factor (= 0 for base),

MPS01; = 0-1 parameter with 1 for institutions with potentially
flexed direct tax rates, and

DMPS = change in domestic institution savings rates (= 0 for

base; exogenous variable).

Savings-Investment 2, MPS, (1-TINS,)-YI, + GSAV + EXR
Balance *"°%¢

-FSAV =Y PQ.-QINV.+ Y. PQ, - qdst, (45)
«C ccC

[ | [oomen] ][ oo o] o |

Total Absorption T4BS =Y Y PO -OH_,+Y Y Y PX4C, -QH4,_,

he Hee C acdccCheH
+ 2, PQ.-0G, + 3, PO, -QINV, + 3 PQ, -qdst,
ceC ceC e C

(46)

][ = o = e e o 2]

where
TABS = total nominal absorption.

Ratio of Investment INVSHR-TABS= Y PQ.-QINV,+ Y PQ. - qdst,
to Absorption e C e C 47
=Mzl

where

INVSHR = investment share in nominal absorption.
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Ratio of
Government
Consumption to
Absorption

GOVSHR -TABS = PQ, -0G,
ceC

’Vc:t:::ﬂ:;“[ ol .|=[:mm,"| (48)

| 1
where
GOVSHR

-

= government consumption share in nominal absorption.
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Appendix B: GAMS Code

SONSYMLIST ONSYMXREF OFFUPPER

*SOFFSYMLIST OFFSYMXREF

SONEMPTY

*The dollar control option makes empty data initialization statements
*permissible (e.g. sets without elements or parameters without data)

*1. SET DECLARATIONS #it#HHH#HHH# T

Sontext

In this section, all sets are declared. They are divided into the

following groups:

a. model sets (appearing in the model equations)

b. calibration sets (used to initialize variables and define model
parameters)

c. report sets (used in report files)

Sofftext
SETS
*a. model sets

AC global set for model accounts - aggregated microsam accounts
ACNT(AC) all elements in AC except TOTAL

A(AC) activities

ACES(A)  activities with CES fn at top of technology nest

ALEO(A) activities with Leontief fn at top of technology nest

C(AC) commodities

CD(C) commodities with domestic sales of output
CDN(C) commodities without domestic sales of output
CE(C) exported commodities

CEN(C)  non-export commodities

CM(C) imported commodities

CMN(C)  non-imported commodities

CX(C) commodities with output

F(AC) factors

INS(AC) institutions

INSD(INS) domestic institutions

INSDNG(INSD) domestic non-government institutions
H(INSDNG) households

*b. calibration sets

CINV(C) fixed investment goods

CT(C) transaction service commodities
CTD(AC) domestic transactions cost account
CTE(AC) export transactions cost account
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CTM(AC) import transactions cost account

*c. report sets

AAGR(A) agricultural activities
ANAGR(A) non-agricultural activities
CAGR(C) agricultural commodities
CNAGR(C) non-agricultural commodities
EN(INSDNG) enterprises

FLAB(F) labor

FLND(F) land

FCAP(F) capital

’

*ALIAS statement to create identical cets

ALIAS

(AC,ACP) , (ACNT,ACNTP), (A,AP,APP)

(c,cp,CcpPP), (CE,CEP) , (CM,CMP)

(F,FP) , (FLAB,FLABP), (FCAP,FCAPP) , (FLND,FLNDP)
(INS,INSP), (INSD,INSDP), (INSDNG,INSDNGP), (H,HP)

’

*2. DATABASE ####H#HHHHHHHH

PARAMETER
SAM(AC,ACP) standard SAM
SAMBALCHK(AC) column minus row total for SAM

’

*INCLUDE ONE COUNTRY DATA SET
*Remove asterisk in front of ONE (AND ONLY ONE) of the following lines
*or add a new line for new file with country data

SINCLUDE TEST.DAT
*SINCLUDE SWAZILAN.DAT
*SINCLUDE ZIMBABWE.DAT

STITLE Core model files. Standard CGE modeling system, Version 1.01
SSTITLE Input file: MOD101.GMS. Standard CGE modeling system, Version 1.01

*SAM adjustments

*In this section, some minor adjustments are made in the SAM (when
*needed) to fit the model structure.

*Adjustment for sectors with only exports and no domestic sales.

*If there is a very small value for domestic sales, add the discrepancy

*to exports.

SAM(C,'ROW')$(ABS(SUM(A, SAM(A,C)) - (SAM(C,'ROW') - TAXPAR('EXPTAX',C)
- SUM(CTE, SAM(CTE,C))) ) LT 1.E-6)
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= SUM(A, SAM(A,C)) - TAXPAR('EXPTAX',C)
- SUM(CTE, SAM(CTE,C)) ;

*Netting transfers between domestic institutions and RoW.
SAM(INSD,'ROW') = SAM(INSD,'ROW"') - SAM('ROW',INSD);
SAM('ROW',INSD) =0;

*Netting transfers between factors and RoW.
SAM('ROW',F) = SAM('ROW',F) - SAM(F,'ROW');
SAM(F,'ROW'") =0;

*Netting transfers between government and domestic non-
*government institutions.

SAM(INSDNG,'GOV') = SAM(INSDNG,'GOV') - SAM('GOV',INSDNG);
SAM('GOV',INSDNG) = 0;

*Eliminating payments of any account to itself.
SAM(ACNT,ACNT) = 0;

*Checking SAM balance

*Account totals are recomputed. Check for SAM balance.
SAM('TOTAL',ACNT) = SUM(ACNTP, SAM(ACNTP,ACNT));
SAM(ACNT,'TOTAL') = SUM(ACNTP, SAM(ACNT,ACNTP));

SAMBALCHK(AC) =SAM('TOTAL',AC) - SAM(AC,' TOTAL);

DISPLAY "SAM after final adjustments", SAMBALCHK;
DISPLAY "SAM after final adjustments", SAM;

*Additional set definitions based on country SAM
*CD is the set for commodities with domestic sales of domestic output
*i.e., for which (value of sales at producer prices)
* > (value of exports at producer prices)
CD(C) = YESS
(SUM(A, SAM(A,C)) GT (SAM(C,'ROW') - TAXPAR('EXPTAX",C)
- SUM(CTE, SAM(CTE,C))) );
CDN(C) = NOT CD(C);

CE(C) = YESS(SAM(C,'ROW"));
CEN(C) = NOT CE(C);

CM(C) = YESS(SAM('ROW',C));
CMN(C) = NOT CM(C);

CX(C) = YESSSUM(A, SAM(A,C));
CT(C)
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S(SUM(CTD, SAM(C,CTD)) + SUM(CTE, SAM(C,CTE)) + SUM(CTM, SAM(C,CTM)))
=YES;

ALEO(A) = YES; ACES(A) = NO;

*If activity has no intermediate inputs, then Leontief function has to
*be used at the top of the technology nest

ACES(A)S(NOT SUM(C, SAM(C,A))) = NO;

ALEO(A)S(NOT ACES(A)) = YES;

DISPLAY
CD, CDN, CE, CEN, CM, CMN, CX, CT, ACES, ALEO;

*Fine-tuning non-SAM data
*Generating missing data for home consumption====

*If SAM includes home consumption but NO data were provided for SHRHOME,
*data are generated assuming that the value shares for home consumption
*are identical to activity output value shares.

IF(SUM((A,H), SAM(A,H)) AND NOT SUM((A,C,H), SHRHOME(A,C,H)),

SHRHOME(A,C,H)SSAM(A,H) = SAM(A,C)/SUM(CP, SAM(A,CP));

DISPLAY
"Default data used for SHRHOME -- data missing"
SHRHOME

’

*End IF statement
);
*Eliminating superfluous elasticity data=========

TRADELAS(C,'SIGMAT')$(CEN(C) OR (CE(C) AND CDN(C))) = 0;
TRADELAS(C,'SIGMAQ')$(CMN(C) OR (CM(C) AND CDN(C))) = 0;

PRODELAS(A)$(NOT SAM('TOTAL,A))  =0;
ELASAC(C)$S(NOT SUM(A, SAM(A,C))) = 0;

LESELAS1(C,H)$(NOT SAM(C,H))  =0;
LESELAS2(A,C,H)$(NOT SHRHOME(A,C,H)) = 0;

*Diagnostics

*Include file that displays and generates information that may be
*useful when debugging data set.

SINCLUDE DIAGNOSTICS.INC
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SSTITLE Input file: MOD101.GMS. Standard CGE modeling system, Version 1.01

*Physical factor quantities

PARAMETER
QF2BASE(F,A) gnty of fac f employed by act a (extracted data)

*If there is a SAM payment from A to F and supply (but not
*demand) quantities have been defined in the country data file,
*then the supply values are used to compute demand quantities.
QF2BASE(F,A)$(SAM(F,A)S((NOT QFBASE(F,A))SQFSBASE(F)))

= QFSBASE(F)*SAM(F,A)/SUM(AP, SAM(F,AP));

*If there is a SAM payment from A to F and neither supply nor

*demand quantities have been defined in the country data file,

*then SAM values are used as quantities

QF2BASE(F,A)S(SAM(F,A)S((QFBASE(F,A) EQ 0)S(QFSBASE(F) EQ 0)))
= SAM(F,A);

*If there is a SAM payment from A to F and demand quantities have

*been defined in the country data file, then this information is used.

QF2BASE(F,A)SQFBASE(F,A) = QFBASE(F,A);

DISPLAY QF2BASE, QFBASE, QFSBASE;

*3. PARAMETER DECLARATIONS H##HEHHEHHHEHHHEHEHHHHEHEHEHEHE

Sontext

This section is divided into the following subsections:

a. Parameters appearing in model equations

b. Parameters used for model calibration (to initialize variables and
to define model parameters)

In each group, the parameters are declared in alphabetical order.

Sofftext

PARAMETERS

*a. Parameters appearing in model equations

*Parameters other than tax rates

alphaa(A)  shift parameter for top level CES function

alphaac(C) shift parameter for domestic commodity aggregation fn
alphaq(C)  shift parameter for Armington function

alphat(C)  shift parameter for CET function

alphava(A) shift parameter for CES activity production function
betah(A,C,H) marg shr of hhd cons on home com c from act a
betam(C,H) marg share of hhd cons on marketed commodity c
cwts(C) consumer price index weights

deltaa(A) share parameter for top level CES function

148



deltaac(A,C) share parameter for domestic commodity aggregation fn
deltag(C) share parameter for Armington function

deltat(C) share parameter for CET function

deltava(F,A) share parameter for CES activity production function
dwts(C) domestic sales price weights

gammah(A,C,H) per-cap subsist cons for hhd h on home com c fract a
gammam(C,H) per-cap subsist cons of marketed com c for hhd h
ica(C,A) intermediate input c per unit of aggregate intermediate
inta(A) aggregate intermediate input coefficient

iva(A) aggregate value added coefficient

icd(C,CP)  trade input of c per unit of comm'y cp produced & sold dom'ly
ice(C,CP) trade input of c per unit of comm'y cp exported

icm(C,CP)  trade input of c per unit of comm'y cp imported
mps01(INS) 0-1 par for potential flexing of savings rates
mpsbar(INS) marg prop to save for dom non-gov inst ins (exog part)
qdst(C) inventory investment by sector of origin

gbarg(C)  exogenous (unscaled) government demand

gbarinv(C) exogenous (unscaled) investment demand

rhoa(A) CES top level function exponent

rhoac(C)  domestic commodity aggregation function exponent
rhoq(C) Armington function exponent

rhot(C) CET function exponent

rhova(A)  CES activity production function exponent

shif(INS,F) share of dom. inst'on i in income of factor f

shii(INS,INSP) share of inst'on i in post-tax post-sav income of inst ip
supernum(H) LES supernumerary income

theta(A,C) vyield of commodity C per unit of activity A

tins01(INS) 0-1 par for potential flexing of dir tax rates
trnsfr(INS,AC) transfers fr. inst. or factor ac to institution ins

*Tax rates

ta(A) rate of tax on producer gross output value
te(C) rate of tax on exports

tf(F) rate of direct tax on factors (soc sec tax)

tinsbar(INS) rate of (exog part of) direct tax on dom inst ins
tm(C) rate of import tariff

tq(C) rate of sales tax

tva(A) rate of value-added tax

*b. Parameters used for model calibration

Sontext

For model calibration, one parameter is created for each model variable
with the suffix "0" added to the variable name. 0 is also added to the
names of parameters whose values are changed in experiments.

Sofftext
PARAMETERS
*Parameters for definition of model parameters

alphavaO(A) shift parameter for CES activity production function
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qdst0(C) stock change

gbarg0(C)  exogenous (unscaled) government demand
gammahO(A,C,H) per-cap subsist cons for hhd h on home com c fr act a
gammamO(C,H) per-cap subsist cons of marketed com c for hhd h

ta0(A) rate of tax on producer gross output value
te0(C) rate of tax on exports

tfO(F) rate of direct tax on factors (soc sec tax)
tinsO(INS)  rate of direct tax on domestic institutions ins
tmO(C) rate of import tariff

tq0(C) rate of sales tax

tva0(A) rate of value-added tax

*Check parameters
cwtschk check that CPI weights sum to unity
dwtschk check that PDIND weights sum to unity
shifchk check that factor payment shares sum to unity

*Parameters for variable initialization

CPIO consumer price index (PQ-based)

DPIO index for domestic producer prices (PDS-based)
DMPSO change in marginal propensity to save for selected inst
DTINSO change in domestic institution tax share

EGO total current government expenditure

EHO(H) household consumption expenditure

EXRO exchange rate

FSAVO foreign savings

GADJO government demand scaling factor

GOVSHRO govt consumption share of absorption

GSAVO government savings

IADJO investment scaling factor (for fixed capital formation)
INVSHRO investment share of absorption

MPSO(INS)  marginal propensity to save for dom non-gov inst ins
MPSADJO savings rate scaling factor

PAO(A) output price of activity a

PDDO(C) demand price for com'y ¢ produced & sold domestically
PDSO(C) supply price for com'y ¢ produced & sold domestically
PEO(C) price of exports

PINTAO(A) price of intermediate aggregate

PMO(C) price of imports

PQO(C) price of composite good ¢

PVAO(A) value added price

PWEO(C) world price of exports

PWMO(C) world price of imports

PX0(C) average output price

PXACO(A,C) price of commodity c from activity a

QAO(A) level of domestic activity

QDO(C) guantity of domestic sales

QEO(C) quantity of exports

QFO(F,A)  quantity demanded of factor f from activity a

QFSO(F) quantity of factor supply

QGO(C) quantity of government consumption

QHO(C,H)  quantity consumed of marketed commodity c by hhd h
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QHAO(A,C,H) quantity consumed of home commodity c fr act a by hhd h
QINTO(C,A) quantity of intermediate demand for c from activity a
QINTAO(A)  quantity of aggregate intermediate input

QINVO(C)  quantity of fixed investment demand

QMo(C) quantity of imports

QQo(C) quantity of composite goods supply

QTO0(C) quantity of trade and transport demand for commodity c
QVAO(A) quantity of aggregate value added

QXxo(C) quantity of aggregate marketed commodity output
QXACO(A,C) quantity of ouput of commodity ¢ from activity a
TABSO total absorption

TINSO(INS) rate of direct tax on domestic institutions ins
TINSADJO  direct tax scaling factor

TRIO(INS,INSP) transfers to dom. inst. insdng from insdngp
WALRASO savings-investment imbalance (should be zero)
WFO(F) economy-wide wage (rent) for factor f

WEFDISTO(f,A) factor wage distortion variable

YFO(f) factor income

YGO total current government income

YIFO(INS,F) income of institution ins from factor f

YIO(INS)  income of (domestic non-governmental) institution ins

’

*4. PARAMETER DEFINITIONS #Ht##H#HHEHEHEH

*All parameters are defined, divided into the same blocks as the
*equations.

*Price block

Sontext

The prices PDS, PX, and PE may be initialized at any desired price.
The user may prefer to initialize these prices at unity or, if

he/she is interested in tracking commaodity flows in physical units, at
commodity-specific, observed prices (per physical unit). For any given
commodity, these three prices should be identical. Initialization at
observed prices may be attractive for disaggregated agricultural
commodities. If so, the corresponding quantity values reflect physical
units (given the initial price).

The remaining supply-side price, PXAC, and the non-commodity prices, EXR
and PA may be initizalized at any desired level. In practice, it may be
preferable to initialize PXAC at the relevant supply-side price and EXR

and PA at unity.

If physical units are used, the user should select the unit (tons vs.

'000 tons) so that initial price and quantity variables are reasonably
scaled (for example between 1.0E-2 and 1.0E+3) -- bad scaling may cause
solver problems. Initialization at unity should cause no problem as long
as the initial SAM is reasonably scaled.
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Sofftext

PARAMETER
PSUP(C) initial supply-side market price for commodity c

PSUP(C) = 1;

PEO(C)SCE(C) = PSUP(C);
PXO(C)$SCX(C) = PSUP(C);
PDSO(C)$CD(C) = PSUP(C);
PXACO(A,C)$SAM(A,C) = PSUP(C);

PAO(A)  =1;

Sontext

The exchange rate may be initialized at unity, in which case all data are

in foreign currency units (FCU; e.g., dollars). Set the exchange rate at
another value to differentiate foreign exchange transactions, which will

be valued in FCU, and domestic transactions valued in local currency

units (LCU). The SAM is assumed to be valued in LCU, and the exchange rate
is then used to calculate FCU values for transactions with the rest of the
world.

Sofftext

EXRO =1;

*Activity quantity = payment to activity divided by activity price
*QA covers both on-farm consumption and marketed output
*output GROSS of tax

QAO(A) = SAM('TOTAL',A)/PAO(A) ;

*Unit value-added price = total value-added / activity quantity
*define pva gross of tax
QVAO(A) = (SUM(F, SAM(F,A))+ TAXPAR('VATAX',A)) ;
PVAO(A) = (SUM(F, SAM(F,A))+ TAXPAR('VATAX',A))/QVAOQ(A);
iva(A) = QVAO(A)/QAO(A) ;
QXACO(A,C)SSAM(A,C)

=SAM(A,C) / PXACO(A,C);

QHAO(A,C,H)$SSHRHOME(A,C,H) = SHRHOME(A, C,H)*SAM(A,H)/PXACO(A,C);

*Qutput quantity = value received by producers divided by producer
*price
*QX covers only marketed output
QXO0(C)SSUM(A, SAM(A,C))
= SUM(A, SAM(A,C)) / PX0(C);

*Export quantity = export revenue received by producers
*(ie. minus tax and transactions cost) divided by

*export price.

QEO(C)SSAM(C,'ROW")
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= (SAM(C,'ROW') - TAXPAR('EXPTAX',C)
- SUM(CTE, SAM(CTE,C)))/PEO(C);

*RoW export price = RoW export payment (in for curr) / export gnty
PWEO(C)SQEO(C) = (SAM(C,'ROW')/EXRO) / QEO(C);

te0(C)SSAM(C,'ROW') = TAXPAR('EXPTAX',C)/SAM(C,'ROW");
te(C) = te0(C);

*Quantity of output sold domestically = output quantity less quantity
*exported = value of domestic sales divided by domestic supply price
*QDO covers only marketed output

QDO(C)$CD(C) = QX0(C) - QEO(C);

*Domestic demander price = demander payment divided by quantity bought
PDDO(C)$QDO(C)= (PDSO(C)*QDO(C) + SUM(CTD, SAM(CTD,C)))/QDO(C);

*Define import price to equal domestic price so that import and domestic
*units are the same to the purchaser. If no domestic good, set PM to 1.
PMO(C) = PDDO(C) ;

PMO0(C)$(QDO(C) EQ0) =1 ;

*Import quantity = demander payment for imports (including tariffs
*and marketing cost) divided by demander price.
QMO(C)$SCM(C) = (SAM('ROW',C) + TAXPAR('IMPTAX',C)

+ SUM(CTM, SAM(CTM,C)))/PMO(C);

*World price = import value (in foreign currency / import quantity
PWMO(C)$QMO(C)= (SAM('ROW',C)/EXR0) / QMO(C);
tmO(C)SSAM('ROW',C)

= TAXPAR('IMPTAX',C) / SAM('ROW',C);
tm(C) =tm0(C);

*Composite supply is the sum of domestic market sales and imports
*(since they are initialized at the same price).

QQO(C)S$(CD(C) OR CM(C)) = QDO(C) + QMO(C) ;

PQO(C)$QQO(C) = (SAM(C,'TOTAL') - SAM(C,'ROW'))/QQ0(C);
TQO(C)$QQO(C) = TAXPAR('COMTAX',C)/(PQO(C)*QQ0(C)) ;

TQ(C) =TQO(C);

*The following code works when for any number of sectors providing
*transactions services, as well as for the case when they are not
*in the SAM.

PARAMETERS

SHCTD(C) share of comm'y ct in trans services for domestic sales
SHCTM(C) share of comm'y ct in trans services for imports
SHCTE(C) share of comm'y ct in trans services for exports

SHCTD(CT) = SUM(CTD, SAM(CT,CTD)/SAM('TOTAL',CTD)) ;
SHCTM(CT) = SUM(CTM, SAM(CT,CTM)/SAM('TOTAL',CTM)) ;
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SHCTE(CT) = SUM(CTE, SAM(CT,CTE)/SAM('TOTAL',CTE)) ;

*Transactions input coefficients

icd(CT,C)$QDO(c)

= (shctd(ct)*SUM(CTD, SAM(CTD,C))/PQ0(ct)) / QDO(C);
icm(CT,C)$SQMO(C)

= (shctm(ct)*SUM(CTM, SAM(CTM,C))/PQO(ct)) / QMO(C);
ice(CT,C)$SQEO(C)

= (shcte(ct)*SUM(CTE, SAM(CTE,C))/PQO(ct)) / QEO(C);

*Indirect activity tax rate = tax payment / output value

*Tax is here applied to total output value (incl. on-farm cons.)
tvaO(A)  =TAXPAR('VATAX',A) / (PVAO(A)*QVAO(A));
tva(A) =tvaO(A);

*QA is GROSS of tax, so base for ta is as well
ta0(A) = TAXPAR('ACTTAX',A) / (SAM(A,'TOTAL'));
ta(A) =ta0(A);

*Yield coefficient
* = quantity produced (including home-consumed output)
*  [activity quantity
theta(A,C)SPXACO(A,C)
= ( (SAM(A,C) + SUM(H, SHRHOME(A,C,H)*SAM(A,H)) ) / PXACO(A,C) )
/ QAO(A);

*Intermediate input coefficient = input use / output quantity
QINTAO(A) = SUM(CSPQO(C), SAM(C,A) / PQO(C)) ;

ica(C,A)S(QINTAO(A)SPQO(C))
= SAM(C,A)/PQO(C) / QINTAO(A) ;

inta(A) = QINTAO(A) / QAO(A) ;
pintaO(A) = SUM(C, ica(C,A)*PQO(C)) ;

*CPI weight by comm'y = hhd cons value for comm'y / total hhd cons value
*CPI does not consider on-farm consumption.
cwts(C) = SUM(H, SAM(C,H)) / SUM((CP,H), SAM(CP,H));

*Domestic sales price index weight = dom sales value for comm'y
*/ total domestic salues value
*Domestic sales price index does not consider on-farm consumption.
dwts(C) = (SUM(A, SAM(A,C)) - (SAM(C,'ROW') -
SUM(cte, SAM(cte,C))))/
SUM(CP, SUM(A, SAM(A,CP)) - (SAM(CP,'ROW") -
SUM(cte, SAM(cte,CP))));

CWTSCHK = SUM(C, cwts(C));
DWTSCHK = SUM(C, dwts(C));

CPIO =SUM(C, cwts(C)*PQO(C)) ;
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DPIO = SUM(CD, dwts(CD)*PDSO(CD)) ;

DISPLAY
CWTSCHK, DWTSCHK;

*Production and trade block

*Compute exponents from elasticites

rhog(C)$(CM(C) AND CD(C)) = (1/TRADELAS(C,'SIGMAQ)) - 1;
rhot(C)$(CE(C) AND CD(C)) = (1/TRADELAS(C,'SIGMAT')) + 1;
rhova(A) = (1/PRODELAS(A)) - 1;

rhoa(A)SACES(A) = (1/PRODELAS2(A)) - 1;

*Aggregation of domestic output from different activities
RHOAC(C)SELASAC(C) = 1/ELASAC(C) - 1;

deltaac(A,C)S (SAM(A,C)SELASAC(C))
= (PXACO(A,C)*QXACO(A,C)**(1/ELASAC(C)))/
SUM(AP, PXACO(AP,C)*QXACO(AP,C)**(1/ELASAC(C)));

alphaac(C)SSUM(A,deltaac(A,C))
=QXx0(c)/
(SUM(ASdeltaac(A,C), deltaac(A,C) * QXACO(A,C)
**(-RHOAC(C))) )**(-1/RHOAC(C));

PARAMETERS
WFA(F,A) wage for factor f in activity a (used for calibration)

*Demand computations=====

*Defining factor employment and supply.
QFO(F,A) = QF2BASE(F,A);
QFSO(F) =SUM(A, QFO(F,A));

*Activity-specific wage is activity labor payment over employment
WFA(F,A)$SSAM(F,A) = SAM(F,A)/QFO(F,A);

*Economy-wide wage average is total factor income over employment
WFO(F) = SUM(A, SAM(F,A))/SUM(A, QFO(F,A));

DISPLAY

"If the value of WFO for any factor is very different from one (< 0.1"
"or >10) the user may consider rescaling the initial values for QFBASE"
"or QFSBASE for this factor to get a value of WFO such that"

"0.1 < WF0 < 10"

WFO

’

*Wage distortion factor
wfdistO(f,A)SSAM(F,A) = WFA(F,A)/WFO(F);
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*CES activity production function

deltava(F,A)SSAM(F,A)
= (wfdistO(F,A) * WFO(F)
* (QFO(F,A))**(1+rhova(A)) )
/ SUM(FP, wfdistO(FP,A) * WFO(FP)*(QFO(FP,A))**(1+rhova(A)));

alphavaO(A)= QVAO(A)/( SUM(F$(QFO(F,A)), deltava(F,A)*QFO(F,A)
**(-rhova(A))) )**(-1/rhova(A));

alphava(A) = alphava0O(A);

*CES top level production function
PARAMETER
predeltaa(A) dummy used to define deltaa

’

predeltaa(A) =0;
predeltaa(A)S(ACES(A) AND QINTAO(A))
= (PVAO(A)/PINTAO(A))*(QVAO(A)/QINTAO(A))**(1+rhoa(A)) ;
deltaa(A)SACES(A) = predeltaa(A)/(1 + predeltaa(A)) ;
alphaa(A)Sdeltaa(A)
= QAO(A)/((deltaa(A)*QVAO(A)**(-rhoa(A))
+(1-deltaa(A))*QINTAO(A)**(-rhoa(A)))**(-1/rhoa(A))) ;

*Intermediate demand
QINTO(C,A)SPQO(C) = SAM(C,A) / PQO(C);

*Transactions demand
QTO(CT) = ( SUM(CTD, SAM(CT,CTD)) + SUM(CTE, SAM(CT,CTE))
+ SUM(CTM, SAM(CT,CTM)) ) / PQO(CT) ;

*CET transformation
deltat(C)$(CE(C) AND CD(C))
=1/ (1 + PDSO(C)/PEQ(C)*(QEO(C)/QDO(C))**(rhot(C)-1));

alphat(C)$(CE(C) AND CD(C))
= QX0(C) / (deltat(C)*QEO(C)**rhot(C) + (1-deltat(C))
*QDO(C)**rhot(C))**(1/rhot(C));

*Armington aggregation

PARAMETER
predelta(C) dummy used to define deltaq

’

predelta(C)$(CM(C) AND CD(C))
= (PMO(C)/(PDDO(C)))*(QMO(C)/QDO(C))**(1+rhoq(C)) ;
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deltag(C)$(CM(C) AND CD(C))
= predelta(C)/(1 + predelta(C)) ;

alphaq(C)$(CM(C) AND CD(C))
=QQ0(C)/(deltag(C)*QMO(C)**(-rhoq(C))
+(1-deltaq(C))*QDO(C)**(-rhoq(C)))**(-1/rhoq(C)) ;

*Institution block

*Institutional income
YIO(INSDNG) = SAM('TOTAL',INSDNG);

*Factor income by factor category
YFO(F) = SUM(A, SAM(F,A));

*Institution income from factors
YIFO(INSD,F) = SAM(INSD,F);

*Transfers to RoW from factors
trnsfr('ROW',F) = SAM('ROW',F)/EXRO;

*Transfers from RoW to institutions
trnsfr(INSD,'ROW') = SAM(INSD,'ROW')/EXRO;

*Government transfers
trnsfr(INSD,'GOV') = SAM(INSD,'GOV')/CPI0;

*Factor taxes
tfO(F) = TAXPAR('FACTAX',F)/SAM('TOTAL',F);
tf(F) = tfO(F);

*Shares of domestic institutions in factor income (net of factor taxes
*and transfers to RoW).
shif(INSD,F) = SAM(INSD,F)/(SAM(F,'TOTAL') - TAXPAR('FACTAX',f)

- SAM('ROW',F));

SHIFCHK(F) = SUM(INSD, shif(INSD,F));

DISPLAY
SHIFCHK;

*Inter-institution transfers
TRIIO(INSDNG,INSDNGP) = SAM(INSDNG,INSDNGP);

*Share of dom non-gov institution in income of other dom non-gov
*institutions (net of direct taxes and savings).

shii(INSDNG,INSDNGP)

= SAM(INSDNG,INSDNGP)

/(SAM('TOTAL',INSDNGP) - TAXPAR('INSTAX',INSDNGP) - SAM('S-I',INSDNGP));

*Scaling factors for savings and direct tax shares
MPSADJO =0;
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TINSADJO =0;

*Savings rates
MPSO(INSDNG) = SAM('S-I',INSDNG)/(SAM('TOTAL',INSDNG) - TAXPAR('INSTAX',INSDNG));
mpsbar(INSDNG) = MPSO(INSDNG);

*Direct tax rates
TINSO(INSDNG) =TAXPAR('INSTAX',INSDNG) / SAM('TOTAL',INSDNG);
tinsbar(INSDNG) = TINSO(INSDNG);

*"Point" change in savings and direct tax shares
DMPSO =0;
DTINSO =0;

*Selecting institutions for potential "point" change in savings and tax rates

*If DMPS or MPSAD!I is flexible, institutions with a value of 1 for mps01
*change their savings rates.
mpsO1(INSDNG) =1;

*If DTIMS is flexible, institutions with a value of 1 for tins01 change
*their savings rates.
tinsO1(INSDNG) = 1;

*Household consumption spending and consumption quantities.
EHO(H) = SUM(C, SAM(C,H)) + SUM(A, SAM(A,H));
QHO(C,H)$PQO(C) = SAM(C,H)/PQO(C);

*Government indicators

YGO = SAM('TOTAL','GOV");

EGO = SAM('TOTAL','GOV') - SAM('S-I','GOV');
QGO(C)SPQO(C) = SAM(C,'GOV')/PQO(C);

gbarg0(C) =QGO(C);
gbarg(C) = qgbarg0(C);
GADJO  =1;

GSAVO  =SAM('S-I','GOV");

*LES calibration

PARAMETERS

BUDSHR(C,H) budget share for marketed commodity c and household h
BUDSHR2(A,C,H) budget share for home commaodity c - act a - hhd h
BUDSHRCHK(H) check that budget shares some to unity

ELASCHK(H) check that expenditure elasticities satisfy Engel aggr

BUDSHR(C,H) = SAM(C,H)/(SUM(CP, SAM(CP,H)) + SUM(AP, SAM(AP,H)));
BUDSHR2(A,C,H) = SAM(A,H)*SHRHOME(A,C,H)

/(SUM(CP, SAM(CP,H)) + SUM(AP, SAM(AP,H)));
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BUDSHRCHK(H) = SUM(C, BUDSHR(C,H)) + SUM((A,C), BUDSHR2(A,C,H));

ELASCHK(H) = SUM(C, BUDSHR(C,H)*LESELAS1(C,H))
+ SUM((A,C), BUDSHR2(A,C,H)*LESELAS2(A,C,H));

DISPLAY BUDSHR, BUDSHR2, BUDSHRCHK, LESELAS1, LESELAS2, ELASCHK;

LESELAS1(C,H) = LESELAS1(C,H)/ELASCHK(H);
LESELAS2(A,C,H) = LESELAS2(A,C,H)/ELASCHK(H);

ELASCHK(H) = SUM(C, BUDSHR(C,H)*LESELAS1(C,H))
+ SUM((A,C), BUDSHR2(A,C,H)*LESELAS2(A,C,H));

DISPLAY ELASCHK, LESELAS1, LESELAS2;

betam(C,H) = BUDSHR(C,H)*LESELAS1(C,H);
betah(A,C,H) = BUDSHR2(A,C,H)*LESELAS2(A,C,H);

gammamO(C,H)SBUDSHR(C,H)
= ((SUM(CP, SAM(CP,H)) + SUM(AP, SAM(AP,H))) / PQO(C) )
* ( BUDSHR(C,H) + betam(C,H)/FRISCH(H));

gammahO(A,C,H)$BUDSHR2(A,C,H)
= ((SUM(CP, SAM(CP,H)) + SUM(AP, SAM(AP,H))) / PXACO(A,C) )
* ( BUDSHR2(A,C,H) + betah(A,C,H)/FRISCH(H));

gammam(C,H)

gammamO(C,H);

gammah(A,C,H) = gammahO(A,C,H);

*Checking LES parameters
PARAMETERS

SUBSIST(H) subsistence spending

FRISCH2(H) alt. defn of Frisch -- ratio of cons to supernumerary cons
LESCHK(H) check on LES parameter definitions (error mssg if error)

LESELASP(H,*,C,*,CP) price elasticity bt c and cp for h (with c and cp labeled by source)
*LESELASP defines cross-price elasticities when c is different from cp and

*own-price elasticities when c and cp refer to the same commaodity.

*Source: Dervis, de Melo and Robinson. 1982. General Equilibrium Models

*for Development Policy. Cambridge University Press, p. 483

SUPERNUM(H) = SUM((A,C), gammah(A,C,H)*PXACO(A,C))

+ SUM(C, gammam(C,H)*PQ0(C)) ;
FRISCH2(H) = -EHO(H)/(EHO(H) - SUPERNUM(H));
LESCHK(H)S(ABS(FRISCH(H) - FRISCH2(H)) GT 0.00000001) = 1/0;

*Cross-price elasticities
LESELASP(H,'MRK',C,'MRK',CP)
S((ORD(C) NE ORD(CP)) AND LESELAS1(C,H) AND LESELAS1(CP,H))

= -LESELAS1(C,H)
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* PQO(CP)*gammam(CP,H) / (SUM(CPP, SAM(CPP,H)) + SUM(APP, SAM(APP,H)));

LESELASP(H,A,C,'MRK',CP)

$((ORD(C) NE ORD(CP)) AND LESELAS2(A,C,H) AND LESELAS1(CP,H))
= -LESELAS2(A,C,H)

* PQO(CP)*gammam(CP,H) / (SUM(CPP, SAM(CPP,H)) + SUM(APP, SAM(APP,H)));

LESELASP(H,'MRK',C,A,CP)

$((ORD(C) NE ORD(CP)) AND LESELAS1(C,H) AND LESELAS2(A,CP,H))
= -LESELAS1(C,H)

* PXACO(A,CP)*gammah(A,CP,H) /(SUM(CPP, SAM(CPP,H)) + SUM(APP, SAM(APP,H)));

*Own-price elasticities

LESELASP(H,'MRK',C,'MRK',C)

= -LESELAS1(C,H)
*( PQO(C)*gammam(C,H) / (SUM(CP, SAM(CP,H)) + SUM(AP, SAM(AP,H)))
- 1/FRISCH(H));
LESELASP(H,A,C,A,C)

= -LESELAS2(A,C,H)

*( PXACO(A,C)*gammah(A,C,H) / (SUM(CP, SAM(CP,H)) + SUM(AP, SAM(AP,H)))
- 1/FRISCH(H));

OPTION LESELASP:3:2:2;

DISPLAY
SUPERNUM, FRISCH, FRISCH2, LESCHK, LESELASP

’

*System-constraint block

*Fixed investment

gbarinv(c)SCINV(C) = SAM(C,'S-1')/PQO(C);
QINVO(C) = gbarinv(C);

IADJO =1;

*Stock changes
qdst0(C)SPQO(C) = (SAM(C,'S-I')S(NOT CINV(C)) + SAM(C,'DSTK'))/PQO(C);
qdst(C) = qdst0(C);
FSAVO = SAM('S-I','ROW"')/EXRO;
TABSO = SUM((C,H), SAM(C,H)) + SUM((A,H), SAM(A,H))
+ SUM(C, SAM(C,'GOV")) + SUM(C, SAM(C,'S-1"))
+ SUM(C, SAM(C,'DSTK"));

INVSHRO = SAM('TOTAL','S-I')/TABSO;
GOVSHRO = SUM(C, SAM(C,'GOV"))/TABSO;

WALRASO  =0;
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*5. VARIABLE DECLARATIONS ##HHHHHHHHHEHHEH
*This section only includes variables that appear in the model.
*The variables are declared in alphabetical order.

VARIABLES
CPI consumer price index (PQ-based)
DPI index for domestic producer prices (PDS-based)
DMPS change in marginal propensity to save for selected inst
DTINS change in domestic institution tax share
EG total current government expenditure
EH(H) household consumption expenditure
EXR exchange rate
FSAV foreign savings
GADJ government demand scaling factor
GOVSHR govt consumption share of absorption
GSAV government savings
IAD)J investment scaling factor (for fixed capital formation)
INVSHR investment share of absorption

MPS(INS)  marginal propensity to save for dom non-gov inst ins
MPSADJ savings rate scaling factor

PA(A) output price of activity a

PDD(C) demand price for com'y c produced & sold domestically
PDS(C) supply price for com'y ¢ produced & sold domestically
PE(C) price of exports

PINTA(A) price of intermediate aggregate

PM(C) price of imports

PQ(C) price of composite good ¢

PVA(A) value added price

PWE(C) world price of exports

PWM(C) world price of imports

PX(C) average output price

PXAC(A,C) price of commodity c from activity a

QA(A) level of domestic activity

QD(C) guantity of domestic sales

QE(C) quantity of exports

QF(F,A)  quantity demanded of factor f from activity a

QFS(F) quantity of factor supply

QG(C) guantity of government consumption

QH(C,H)  quantity consumed of marketed commodity c by household h
QHA(A,C,H) quantity consumed of home commodity c fr act a by hhd h
QINT(C,A) quantity of intermediate demand for c from activity a
QINTA(A) quantity of aggregate intermediate input

QINV(C)  quantity of fixed investment demand

Qm(C) quantity of imports

QQ(C) quantity of composite goods supply

QT(C) quantity of trade and transport demand for commodity c
QVA(A) quantity of aggregate value added

QX(C) quantity of aggregate marketed commodity output
QXAC(A,C) quantity of ouput of commodity c from activity a
TABS total absorption

TINS(INS) rate of direct tax on domestic institutions ins

TINSADJ  direct tax scaling factor
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TRII(INS,INSP) transfers to dom. inst. insdng from insdngp
WALRAS savings-investment imbalance (should be zero)
WALRASSQR  Walras squared

WF(F) economy-wide wage (rent) for factor f
WEFDIST(F,A) factor wage distortion variable
YF(F) factor income

YG total current government income

YIF(INS,F) income of institution ins from factor f
YI(INS)  income of (domestic non-governmental) institution ins

’

*6. VARIABLE DEFINITIONS #Ht#H#HHHHHHHH

*The initial levels of all model variables are defined in this file.
SINCLUDE VARINIT.INC

*QOptional include file that imposes lower limits for selected variables

*The inclusion of this file may improve solver performance.

*SINCLUDE VARLOW.INC

SSTITLE Input file: MOD101.GMS. Standard CGE modeling system, Version 1.01

*7. EQUATION DECLARATIONS #H##HH#HHEHHHHEHEHEH

EQUATIONS

*Price block
PMDEF(C)  domestic import price

PEDEF(C)  domestic export price

PDDDEF(C) dem price for com'y c produced and sold domestically
PQDEF(C)  value of sales in domestic market

PXDEF(C)  value of marketed domestic output

PADEF(A)  output price for activity a

PINTADEF(A) price of aggregate intermediate input

PVADEF(A) value-added price

CPIDEF consumer price index

DPIDEF domestic producer price index

*Production and trade block
CESAGGPRD(A) CES aggregate prod fn (if CES top nest)
CESAGGFOC(A) CES aggregate first-order condition (if CES top nest)
LEOAGGINT(A) Leontief aggreg intermed dem (if Leontief top nest)
LEOAGGVA(A) Leontief aggreg value-added dem (if Leontief top nest)
CESVAPRD(A) CES value-added production function

CESVAFOC(F,A) CES value-added first-order condition

INTDEM(C,A) intermediate demand for commodity c from activity a
COMPRDFN(A,C) production function for commodity c and activity a
OUTAGGFN(C) output aggregation function

OUTAGGFOC(A,C) first-order condition for output aggregation function
CET(C) CET function

CET2(C) domestic sales and exports for outputs without both
ESUPPLY(C) export supply
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ARMINGTON(C) composite commodity aggregation function

COSTMIN(C) first-order condition for composite commodity cost min
ARMINGTONZ2(C) comp supply for com's without both dom. sales and imports
QTDEM(C) demand for transactions (trade and transport) services

*Institution block
YFDEF(F) factor incomes

YIFDEF(INS,F) factor incomes to domestic institutions

YIDEF(INS)  total incomes of domest non-gov't institutions

EHDEF(H) household consumption expenditures

TRIIDEF(INS,INSP) transfers to inst'on ins from inst'on insp

HMDEM(C,H)  LES cons demand by hhd h for marketed commodity c
HADEM(A,C,H) LES cons demand by hhd h for home commodity c fr act a
INVDEM(C)  fixed investment demand

GOVDEM(C)  government consumption demand

EGDEF total government expenditures

YGDEF total government income

*System constraint block
COMEQUIL(C) composite commodity market equilibrium
FACEQUIL(F) factor market equilibrium

CURACCBAL  current account balance (of RoW)

GOVBAL government balance

TINSDEF(INS) direct tax rate for inst ins

MPSDEF(INS) marg prop to save for inst ins

SAVINVBAL  savings-investment balance

TABSEQ total absorption

INVABEQ investment share in absorption

GDABEQ government consumption share in absorption
OBJEQ Objective function

’

*8. EQUATION DEFINITIONS HiHHHEHEHEHHEHEHHEHEHEHE
*Notational convention inside equations:

*Parameters and "invariably" fixed variables are in lower case.

*"Variable" variables are in upper case.

*Price block

PMDEF(C)$CM(C)...
PM(C) =E= pwm(C)*(1 + tm(C))*EXR + SUM(CT, PQ(CT)*icm(CT,C));

PEDEF(C)$CE(C)..
PE(C) =E= pwe(C)*(1 - te(C))*EXR - SUM(CT, PQ(CT)*ice(CT,C));

PDDDEF(C)SCD(C).. PDD(C) =E= PDS(C) + SUM(CT, PQ(CT)*icd(CT,C));

PQDEF(C)$(CD(C) OR CM(C))..
PQ(C)*(1 - ta(c))*QQ(C) =E= PDD(C)*QD(C) + PM(C)*QM(C);

PXDEF(C)$CX(C).. PX(C)*QX(C) =E= PDS(C)*QD(C) + PE(C)*QE(C);
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PADEF(A).. PA(A) =E= SUM(C, PXAC(A,C)*theta(A,C));

PINTADEF(A).. PINTA(A) =E= SUM(C, PQ(C)*ica(C,A)) ;

PVADEF(A).. PA(A)*(1-ta(A))*QA(A) =E= PVA(A)*QVA(A) + PINTA(A)*QINTA(A) ;
CPIDEF.. CPI=E= SUM(C, cwts(C)*PQ(C)) ;

DPIDEF.. DPI =E= SUM(CD, dwts(CD)*PDS(CD)) ;

*Production and trade block

*CESAGGPRD and CESAGGFOC apply to activities with CES function at
*top of technology nest.

CESAGGPRD(A)SACES(A)..
QA(A) =E= alphaa(A)*(deltaa(A)*QVA(A)**(-rhoa(A))
+ (1-deltaa(A))*QINTA(A)**(-rhoa(A)))**(-1/rhoa(A)) ;

CESAGGFOC(A)SACES(A)..
QVA(A) =E= QINTA(A)*((PINTA(A)/PVA(A))*(deltaa(A)/
(1 - deltaa(A))))**(1/(1+rhoa(A))) ;

*LEOAGGINT and LEOAGGVA apply to activities with Leontief function at
*top of technology nest.

LEOAGGINT(A)SALEO(A).. QINTA(A) =E= inta(A)*QA(A) ;

LEOAGGVA(A)SALEO(A).. QVA(A) =E= iva(A)*QA(A) ;

*CESVAPRD, CESVAFOC, INTDEM apply at the bottom of the technology nest
*(for all activities).

CESVAPRD(A)..
QVA(A) =E= alphava(A)*(SUM(F,
deltava(F,A)*QF(F,A)**(-rhova(A))) )**(-1/rhova(A)) ;

CESVAFOC(F,A)$deltava(F,A)..
WE(F)*wfdist(F,A) =E=
PVA(A)*(1-tva(A))
* QVA(A) * SUM(FP, deltava(FP,A)*QF(FP,A)**(-rhova(A)) )**(-1)
*deltava(F,A)*QF(F,A)**(-rhova(A)-1);

INTDEM(C,A)S$ica(C,A).. QINT(C,A) =E= ica(C,A)*QINTA(A);

COMPRDFN(A,C)Stheta(A,C)..
QXAC(A,C) + SUM(H, QHA(A,C,H)) =E= theta(A,C)*QA(A) ;
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OUTAGGFN(C)$CX(C)..
QX(C) =E= alphaac(C)*SUM(A, deltaac(A,C)*QXAC(A,C)
**(-rhoac(C)))**(-1/rhoac(C));

OUTAGGFOC(A,C)Sdeltaac(A,C)..
PXAC(A,C) =E=
PX(C)*QX(C) * SUM(AP, deltaac(AP,C)*QXAC(AP,C)**(-rhoac(C)) )**(-1)
*deltaac(A,C)*QXAC(A,C)**(-rhoac(C)-1);

CET(C)S(CE(C) AND CD(C))..
QX(C) =E= alphat(C)*(deltat(C)*QE(C)**rhot(C) +
(1 - deltat(C))*QD(C)**rhot(C))**(1/rhot(C)) ;

ESUPPLY(C)$(CE(C) AND CD(C))..
QE(C) =E= QD(C)*((PE(C)/PDS(C))*
((1 - deltat(C))/deltat(C)))**(1/(rhot(C)-1)) ;

CET2(C)$( (CD(C) AND CEN(C)) OR (CE(C) AND CDN(C)) )..
QX(C) =E= QD(C) + QE(C);

ARMINGTON(C)$(CM(C) AND CD(C))..
QQ(C) =E= alphag(C)*(deltaq(C)*QM(C)**(-rhoq(C)) +
(1 -deltaq(C))*QD(C)**(-rhoq(C)))**(-1/rhoq(C)) ;

COSTMIN(C)$(CM(C) AND CD(C))..
QM(C) =E= QD(C)*((PDD(C)/PM(C))*(deltaq(C)/(1 - deltaq(C))))
**(1/(1 + rhoq(C)));

ARMINGTON2(C)$( (CD(C) AND CMN(C)) OR (CM(C) AND CDN(C)))..
QQ(C) =E= QD(C) + QM(C);

QTDEM(C)S$CT(C)..
QT(C) =E= SUM(CP, icm(C,CP)*QM(CP)+ ice(C,CP)*QE(CP)+ icd(C,CP)*QD(CP));

*Institution block

YFDEF(F).. YF(F) =E= SUM(A, WF(F)*wfdist(F,A)*QF(F,A));

YIFDEF(INSD, F)$shif(INSD,F)..
YIF(INSD,F) =E= shif(INSD,F)*((1-tf(f))*YF(F) - trnsfr('(ROW',F)*EXR);

YIDEF(INSDNG)..

YI(INSDNG) =E=
SUM(F, YIF(INSDNG,F)) + SUM(INSDNGP, TRII(INSDNG,INSDNGP))
+ trnsfr(INSDNG,'GOV')*CPI + trnsfr(INSDNG,' ROW')*EXR;

TRIIDEF(INSDNG,INSDNGP)$(shii(INSDNG,INSDNGP))..
TRII(INSDNG,INSDNGP) =E= shii(INSDNG,INSDNGP)

* (1 - MPS(INSDNGP)) * (1 - TINS(INSDNGP))* YI(INSDNGP);
EHDEF(H)..
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EH(H) =E= (1 - SUM(INSDNG, shii(INSDNG,H))) * (1 - MPS(H))
* (1 - TINS(H)) * YI(H);

HMDEM(C,H)Sbetam(C,H)..
PQ(C)*QH(C,H) =E=
PQ(C)*gammam(C,H)
+ betam(C,H)*( EH(H) - SUM(CP, PQ(CP)*gammam(CP,H))
- SUM((A,CP), PXAC(A,CP)*gammah(A,CP,H))) ;

HADEM(A,C,H)Sbetah(A,C,H)..
PXAC(A,C)*QHA(A,C,H) =E=
PXAC(A,C)*gammah(A,C,H)
+ betah(A,C,H)*(EH(H) - SUM(CP, PQ(CP)*gammam(CP,H))
- SUM((AP,CP), PXAC(AP,CP)*gammah(AP,CP,H))) ;

INVDEM(C)SCINV(C).. QINV(C) =E= IADJ*qgbarinv(C);
GOVDEM(C).. QG(C) =E= GADJ*qgbarg(C);

YGDEF..
YG =E= SUM(INSDNG, TINS(INSDNG)*YI(INSDNG))

+ SUM(f, tf(F)*YF(F))
+ SUM(A, tva(A)*PVA(A)*QVA(A))
+ SUM(A, ta(A)*PA(A)*QA(A))
+ SUM(C, tm(C)*pwm(C)*QM(C))*EXR
+ SUM(C, te(C)*pwe(C)*QE(C))*EXR
+ SUM(C, tq(C)*PQ(C)*QQ(C))
+ SUM(F, YIF('GOV/,F))
+ trnsfr('GOV','ROW')*EXR;

EGDEF..
EG =E= SUM(C, PQ(C)*QG(C)) + SUM(INSDNG, trnsfr(INSDNG,'GOV'))*CPI;

*System constraint block

FACEQUIL(F).. SUM(A, QF(F,A)) =E= QFS(F);
COMEQUIL(C)..

QQ(C) =E= SUM(A, QINT(C,A)) + SUM(H, QH(C,H)) + QG(C)

+ QINV(C) + qdst(C) + QT(C);

CURACCBAL..

SUM(C, pwm(C)*QM(C)) + SUM(F, trnsfr('ROW',F)) =E=

SUM(C, pwe(C)*QE(C)) + SUM(INSD, trnsfr(INSD,'ROW')) + FSAV;
GOVBAL.. YG =E=EG + GSAV;

TINSDEF(INSDNG)..
TINS(INSDNG) =E= tinsbar(INSDNG)*(1 + TINSADJ*tinsO1(INSDNG))
+ DTINS*tins01(INSDNG);

MPSDEF(INSDNG)..
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MPS(INSDNG) =E= mpsbar(INSDNG)*(1 + MPSADJ*mps01(INSDNG))
+ DMPS*mps01(INSDNG);

SAVINVBAL..
SUM(INSDNG, MPS(INSDNG) * (1 - TINS(INSDNG)) * YI(INSDNG))
+ GSAV + FSAV*EXR =E=
SUM(C, PQ(C)*QINV(C)) + SUM(C, PQ(C)*qdst(C)) + WALRAS;

TABSEQ..
TABS =E=

SUM((C,H), PQ(C)*QH(C,H)) + SUM((A,C,H), PXAC(A,C)*QHA(A,C,H))

+ SUM(C, PQ(C)*QG(C)) + SUM(C, PQ(C)*QINV(C)) + SUM(C, PQ(C)*qdst(C));

INVABEQ,. INVSHR*TABS =E= SUM(C, PQ(C)*QINV(C)) + SUM(C, PQ(C)*qdst(C));
GDABEQ.. GOVSHR*TABS =E= SUM(C, PQ(C)*QG(C));

OBJEQ.. WALRASSQR =E= WALRAS*WALRAS ;

*9. MODEL DEFINITION ######HHHHHHHHH A

MODEL STANDCGE standard CGE model
/

*Price block (10)
PMDEF.PM
PEDEF.PE
PQDEF.PQ
PXDEF.PX
PDDDEF.PDD
PADEF.PA
PINTADEF.PINTA
PVADEF.PVA
CPIDEF

DPIDEF

*Production and trade block (17)
CESAGGPRD
CESAGGFOC
LEOAGGINT
LEOAGGVA
CESVAPRD.QVA
CESVAFOC
INTDEM.QINT
COMPRDFN.PXAC
OUTAGGFN.QX
OUTAGGFOC.QXAC
CET

CET2

ESUPPLY
ARMINGTON
COSTMIN
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ARMINGTON2
QTDEM.QT

*Institution block (12)
YFDEF.YF
YIFDEF.YIF
YIDEF.YI
EHDEF.EH
TRIIDEF.TRII
HMDEM.QH
HADEM.QHA
EGDEF.EG
YGDEF.YG
GOVDEM.QG
GOVBAL
INVDEM.QINV

*System-constraint block (9)
FACEQUIL
COMEQUIL
CURACCBAL
TINSDEF.TINS
MPSDEF.MPS
SAVINVBAL.WALRAS
TABSEQ.TABS
INVABEQ

GDABEQ

/

*10. FIXING VARIABLES NOT IN MODEL AT ZERO ###H##H###HHHHHHHH

PDD.FX(C)$(NOT CD(C)) = 0;
PDS.FX(C)$(NOT CD(C)) = 0;
PE.FX(C)$(NOT CE(C)) = 0;
PM.FX(C)$(NOT CM(C)) =
PX.FX(C)$(NOT CX(C)) = 0;
PXAC.FX(A,C)$(NOT SAM(A,C)) = 0;

0;

QD.FX(C)$(NOT CD(C)) = 0;
QE.FX(C)$(NOT CE(C)) = 0;
QF.FX(F,A)$(NOT SAM(F,A)) = 0;
QG.FX(C)$(NOT SAM(C,'GOV')) = 0;
QH.FX(C,H)$(NOT SAM(C,H)) = 0;
QHA.FX(A,C,H)$(NOT BETAH(A,C,H)) = 0;
QINT.FX(C,A)$(NOT SAM(C,A)) = 0;
QINV.FX(C)$(NOT CINV(C)) = 0;
QM.FX(C)$(NOT CM(C)) = 0;
QQ.FX(C)$(NOT (CD(C) OR CM(C))) = 0;
QT.FX(C)$(NOT CT(C)) = 0;
QX.FX(C)$(NOT CX(C)) = 0;
QXAC.FX(A,C)$(NOT SAM(A,C)) = 0;
TRIL.FX(INSDNG,INSDNGP)$(NOT SAM(INSDNG,INSDNGP)) = 0;
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YLEX(INS)S(NOT INSD(INS)) = 0;
YIF.FX(INS,F)$((NOT INSD(INS)) OR (NOT SAM(INS,F))) = 0;

*11. MODEL CLOSURE ##tHHiHt I
Sontext

In the simulation file, SIM.GMS, the user chooses between

alternative closures. Those choices take precedence over the choices

made in this file.

In the following segment, closures is selected for the base model
solution in this file. The clearing variables for micro and macro
constraints are as follows:

FACEQUIL - WF: for each factor, the economywide wage is the
market-clearing variable in a setting with perfect factor mobility across
activities.

CURACCBAL - EXR: a flexible exchange rate clears the current account of
the RoW.

GOVBAL - GSAV: flexible government savings clears the government
account.

SAVINVBAL - SADIJ: the savings rates of domestic institutions are scaled
to generate enough savings to finance exogenous investment quantities
(investment-driven savings).

The CPl is the model numeraire.
Sofftext

*Factor markets=======

QFS.FX(F) = QFSO(F);
WF.LO(F)  =-inf;

WF.UP(F) = +inf;
WEFDIST.FX(F,A) = WEDISTO(F,A);
* WFDIST.LO(F,A) = -INF;

* WFDIST.UP(F,A) = +INF;

*Current account of ROW===========

*EXR.FX = EXRO;
FSAV.FX = FSAVO;

*Import and export prices (in FCU) are fixed. A change in model
*specification is required if these prices are to be endogenous.
PWM.FX(C) =PWMO(C);
PWE.FX(C) =PWEO(C);

*Current government balance=======
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*GSAV.FX =GSAVO;
TINSADJ.FX = TINSADIJO;
DTINS.FX = DTINSO;
GADIJ.FX = GADIJO;
*GOVSHR.FX = GOVSHRO;

*Savings-investment balance=======

MPSADIJ.FX = MPSADIJO;
DMPS.FX = DMPSO;
*IADJ.FX =1ADJO;
*INVSHR.FX = INVSHRO ;

*Numeraire price index============

CPLLFX = CPIO;
*DPI.FX = DPIO;

*12. DISPLAY OF MODEL PARAMETERS AND VARIABLES #######H#H

DISPLAY
*All parameters in this file and include files are displayed in
*alphabetical order.

ALPHAA , ALPHAVAO , ALPHAAC , ALPHAQ , ALPHAT , ALPHAVA
BETAH ,BETAM ,BUDSHR , BUDSHR2 , BUDSHRCHK, CPIO
CUTOFF ,CWTS , CWTSCHK , DELTAA , DELTAAC , DELTAQ
DELTAT , DELTAVA ,DPIO ,DMPSO , DTINSO , DWTS
DWTSCHK ,EGO  ,EHO , ELASAC , ELASCHK , EXRO
FRISCH , FSAVO ,GADJO , GAMMAH , GAMMAM , GOVSHRO
GSAVO0 ,IADJO ,ICA ,ICD ,ICE ,ICM

INTA , INVSHRO ,IVA , LESELAS1, LESELAS2 , MPSO
MPSADJO , MPSBAR ,PAO ,PDDO ,PDSO ,PEO

PINTAO ,PMO ,POP ,PQO , PRODELAS , PRODELAS2
PVAO ,PWEO ,PWMO ,PX0 ,PXACO ,QAO

QBARG , QBARGO , QBARINV ,QDO ,QDST ,QDSTO
QEO0O ,QF0 ,QF2BASE , QFBASE ,QFSO , QFSBASE

QGO ,QHO ,QHAQ ,QINTO ,QINTAO ,QINVO

amo ,QQ0 ,QT0 ,QVA0 ,QX0 , QXACO

RHOA ,RHOAC ,RHOQ ,RHOT ,RHOVA ,SAM
SAMBALCHK, SHCTD , SHCTE ,SHCTM , SHIF , SHIFCHK
SHII , SHRHOME , SUMABSDEV , SUPERNUM , TA , TAO
TABSO , TAXPAR ,TE ,TEO ,TF , TFO

THETA , TINSO , TINSADJO, TINSBAR , TM , TMO

TQ ,TQ0 , TRADELAS,TRIO ,TRNSFR ,TVA

TVAO , WALRASO ,WFO ,WFA , WFDISTO , YFO

YGO ,YI0O ,YIFO

’
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*13. SOLUTION STATEMENT HH##HHHHHHHEHEHIEHEHHHHEHEH

OPTIONS ITERLIM = 1000, LIMROW = 3, LIMCOL = 3, SOLPRINT=0ON,
MCP=PATH, NLP=CONOPT2 ;

Sontext

These options are useful for debugging. When checking whether the
initial data represent a solution, set LIMROW to a value greater than
the number of equations and search for three asterisks in the listing
file. SOLPRINT=ON provides a complete listing file. The program also
has a number of display statements, so when running experiments it is
usually not necessary to provide a solution print as well.

Sofftext

STANDCGE.HOLDFIXED =1;
STANDCGE.TOLINFREP =.0001;

Sontext

The HOLDFIXED option converts all variables which are fixed (.FX) into
parameters. They are then not solved as part of the model.

The TOLINFREP parameter sets the tolerance for determinining whether
initial values of variables represent a solution of the model

equations. Whether these initial equation values are printed is
determimed by the LIMROW option. Equations which are not satsfied to
the degree TOLINFREP are printed with three asterisks next to their
listing.

Sofftext

SOLVE STANDCGE USING MCP ;

*14. OPTIONAL NLP MODEL DEFINITION AND SOLUTION STATEMENT #####H##H##

Sontext

Define a model that can be solved using a nonlinear programming (NLP)
solver. The model includes the equation OBJEQ which defines the
variable WALRASSQR, which is the square of the Walras' Law variable,
which must be zero in equilibrium.

Sofftext

MODEL NLPCGE standard CGE model for NLP solver
/

*Price block (10)

PMDEF

PEDEF

PQDEF

PXDEF

PDDDEF

PADEF

PINTADEF
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PVADEF
CPIDEF
DPIDEF

*Production and trade block (17)
CESAGGPRD
CESAGGFOC
LEOAGGINT
LEOAGGVA
CESVAPRD
CESVAFOC
INTDEM
COMPRDFN
OUTAGGFN
OUTAGGFOC
CET

CET2

ESUPPLY
ARMINGTON
COSTMIN
ARMINGTON2
QTDEM

*Institution block (12)
YFDEF
YIFDEF
YIDEF
EHDEF
TRIIDEF
HMDEM
HADEM
EGDEF
YGDEF
GOVDEM
GOVBAL
INVDEM

*System-constraint block (9)
FACEQUIL
COMEQUIL
CURACCBAL
TINSDEF
MPSDEF
SAVINVBAL
TABSEQ
INVABEQ
GDABEQ
OBJEQ

/

’

NLPCGE.HOLDFIXED =1;
NLPCGE.TOLINFREP =.0001 ;
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*SOLVE NLPCGE MINIMIZING WALRASSQR USING NLP ;

*15. SOLUTION REPORTS #ittt#H#HHHHHH T HH T

*Optional include file defining report parameters summarizing economic
*data for the base year.

SINCLUDE REPBASE.INC

SSTITLE Input file: MOD101.GMS. Standard CGE modeling system, Version 1.01

STANDCGE.MODELSTAT = 0;
STANDCGE.SOLVESTAT = 0;
STANDCGE.NUMREDEF =0;

NLPCGE.MODELSTAT = 0;
NLPCGE.SOLVESTAT = 0;
NLPCGE.NUMREDEF =0;

R H THE END OF MOD101.GMS #*#*#*#*
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Appendix C: Full Descriptive Statistics

Table B.1: Industrial Output for the State of Louisiana by Model in Millions

Industrial Output

Industry Ag/For Mining Utilities Trans Retail Prof Serv Educ/Health Non-NAICS
Actual*

average 1,404 23,932 3,715 8,782 38,208 8,313 6,899 12,110 41,323 14,788 27,362

std dev 180 7,088 338 436 10,954 625 1,150 774 3,015 4,086 1,905
2001 CGE

average 4,119 19,910 4,090 19,967 81,254 9,881 13,657 12,994 56,476 41,291 46,085

std dev 229 1,109 228 1,061 4,526 730 1,348 724 3,145 2,299 2,566
2002 CGE

average 3,932 12,955 4,296 17,559 70,882 9,978 12,797 14,092 61,040 38,252 48,260

std dev 221 731 242 986 3,963 564 719 797 4,493 2,152 2,784
2006 CGE

average 4,117 23,439 4,217 17,513 166,625 11,706 14,422 16,451 72,928 37,868 51,439

std dev 246 1,356 222 1,217 9,713 690 864 966 4,248 2,513 2,911
2007 CGE

average 4,941 27,204 5,879 26,251 135,318 12,978 27,935 16,138 76,210 43,834 73,969

std dev 275 1,520 346 1,332 7,772 724 1,438 845 4,275 1,895 4,038
2008 CGE

average 5,389 33,769 6,529 27,855 170,805 13,951 12,981 18,313 88,362 48,926 48,023

std dev 280 3,814 360 1,401 7,337 928 751 1,012 4,572 2,812 2,597
2001 SAM

average 3,733 17,759 3,861 18,675 68,758 9,921 13,332 13,906 47,548 30,423 39,507

std dev 208 989 215 1,040 3,829 552 742 774 2,648 1,694 2,200
2002 SAM

average 3,309 10,954 3,612 14,871 59,973 8,403 11,892 11,585 43,072 25,695 32,034

std dev 645 2,134 704 2,898 11,686 1,637 2,317 2,258 8,393 5,007 6,242
2006 SAM

average 3,532 20,244 3,633 14,983 143,920 10,065 14,156 13,131 51,947 27,077 35,420

std dev 701 4,018 721 2,974 28,562 1,998 2,809 2,606 10,309 5,374 7,030
2007 SAM

average 4,114 22,751 4,939 22,256 114,423 10,821 24,636 13,820 53,418 29,841 39,178

std dev 920 5,088 1,105 4,977 25,587 2,420 5,509 3,091 11,945 6,673 8,761
2008 SAM

average 4,670 28,591 5,615 24,583 150,763 | 12,321 16,294 15,784 63,610 34,797 46,696
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Table B.1 Con’t

std dev 810 | 4,958 ‘ 974 ‘ 4,263 26,143 2,136 ‘ 2,825 ‘ 2,737 | 11,030 ‘ 6,034 8,097
2001 TS

average 1,483 44,249 3,718 9,707 21,457 9,498 6,245 14,650 44,072 11,431 32,361

std dev 120 2,425 144 516 431 939 399 1,681 2,938 297 1,530
2002 TS

average 1,153 31,610 3,311 8,370 30,092 9,580 5,745 14,678 43,845 12,020 33,063

std dev 9 80 143 211 1,066 614 174 1,081 1,882 267 1,042
2006 TS

average 1,668 12,793 3,316 10,629 63,167 10,963 10,655 16,940 50,712 12,645 31,024

std dev 137 4,905 355 1,365 14,137 1,925 2,894 3,241 8,698 884 2,749
2007 TS

average 1,640 13,524 3,431 10,157 44,405 11,680 11,501 16,070 55,359 13,109 29,000

std dev 114 4372 297 1,012 8,462 1,975 3,175 2,411 10,025 907 2,027
2008 TS

average 1,524 11,844 3,863 10,968 40,717 11,403 16,213 15,245 61,740 14,744 31,969

std dev 86 4,346 164 1,199 6,881 1,626 5,735 2,238 12,304 1,352 2,926
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Il. Industrial Employment

Table B.2: Industrial Employment Estimates for the State of Louisiana, by Model and Number of

Employees
Prof Educ/Healt Non-
Industry Ag/For/Mining Constr/Util Manufacturing Whole/Retail Trans Serv h NAICS
Actual*
average 81,102 194,595 159,812 345,667 91,531 497,126 339,302 740,403
std dev 7,561 13,591 9,478 4,929 2,077 35,730 19,851 17,833
2001 CGE
305,91
average 67,372 367,022 330,736 838,636 0 107,249 1,009,100 112,121
std dev 3,751 19,579 18,424 44,039 30,186 5,972 56,191 6,243
2002 CGE
286,62
average 47,348 327,752 288,517 891,237 8 115,915 934,825 117,414
std dev 2,667 18,406 16,130 50,418 16,100 8,532 52,598 6,774
2006 CGE
323,04
average 77,261 326,458 678,225 1,041,888 6 138,490 925,444 125,148
std dev 4,491 22,098 39,535 61,239 19,344 8,066 61,409 7,082
2007 CGE
625,71
average 90,124 486,423 550,794 1,058,915 1 144,722 1,071,242 179,961
std dev 5,028 24,919 31,637 49,523 32,207 8,118 46,322 9,825
2008 CGE
290,76
average 109,790 518,068 695,242 1,182,504 7 167,800 1,195,683 116,837
std dev 11,266 26,153 29,865 65,237 16,815 8,682 68,711 6,318
2001 SAM
298,63
average 60,258 343,930 279,870 881,334 0 90,295 743,508 96,118
std dev 3,355 19,151 15,584 49,076 16,629 5,028 41,401 5,352
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Table B.2 Con’t

2002 SAM
266,37
39,989 277,406 244,113 737,658 6 81,794 627,966 77,936
std dev 7,792 54,055 47,568 143,741 51,906 15,938 122,366 15,187
2006 SAM
317,08
average 66,663 279,450 585,808 849,427 0 98,648 661,737 86,175
std dev 13,230 55,460 116,260 168,578 62,928 19,578 131,329 17,102
2007 SAM
551,80
average 75,325 412,099 465,744 899,617 8 101,441 729,277 95,317
123,39
std dev 16,844 92,154 104,150 201,173 6 22,684 163,081 21,315
2008 SAM
364,95
average 93,254 456,232 613,664 1,026,532 7 120,796 850,407 113,607
std dev 16,170 79,111 106,410 178,002 63,284 20,946 147,462 19,700
2001 TS
137,31
average 126,276 188,313 87,540 876,135 9 82,133 277,478 77,694
std dev 8,426 8,632 1,725 120,763 10,741 6,654 8,425 4,432
2002 TS
127,35
average 94,833 166,230 117,697 874,857 7 81,541 289,537 79,012
std dev 7,286 4,807 12,401 101,363 4,845 5,360 11,961 4,214
2006 TS
180,88
average 52,450 183,813 208,314 872,570 0 81,772 289,980 70,322
std dev 3,414 6,733 11,155 48,932 17,112 3,978 5,263 626
2007 TS
186,90
average 54,398 180,601 152,475 865,486 7 86,081 298,467 66,744
std dev 2,358 3,006 4,602 31,369 13,923 3,914 4,195 759
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Table B.2 Con’t

2008 TS

213,16

average 51,401 189,349 137,890 814,413 7 89,799 321,162 69,615
std dev 1,715 3,464 2,308 18,512 | 18,644 3,579 5,521 855

2001 CGE Nat

238,98
average 73,670 126,379 397,297 230,426 0 | 203,001 228,865 29,374
std dev 4,102 6,649 22,132 12,398 | 23,582 11,303 12,744 1,636
2002 CGE Nat

223,91
average 51,774 114,809 346,582 242,447 6 | 219,404 212,019 30,761
std dev 2,917 6,451 19,377 13,714 | 12,577 16,149 11,929 1,775
2006 CGE Nat

252,36
average 84,483 114,154 814,719 283,623 6 | 262,134 209,892 32,787
std dev 4,911 7,473 47,492 16,678 | 15112 15,268 13,928 1,855
2007 CGE Nat

488,81
average 98,550 168,786 661,643 293,277 1| 273931 242,959 47,147
std dev 5,498 8,760 38,004 13,524 | 25,160 15,365 10,506 2,574
2008 CGE Nat

227,15
average 120,054 180,630 835,162 324,992 0 | 317613 271,182 30,609
std dev 12,319 9,172 35,876 18,271 | 13,136 16,433 15,584 1,655
2001 SAM Nat

233,29
average 65,891 118,388 336,195 240,002 2 | 170910 168,628 25,182
std dev 3,669 6,592 18,721 13,364 | 12,991 9,517 9,390 1,402
2002 SAM Nat

208,09
average 43,727 97,095 293,241 201,341 5 | 154,821 142,423 20,418
std dev 8,521 18,920 57,141 39,233 | 40,550 30,168 27,753 3,979
2006 SAM Nat

247,70
average 72,895 97,790 703,703 233,653 6 | 186,721 150,083 22,577
std dev 14,467 19,408 139,658 46,371 | 49,160 37,057 29,786 4,481
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Table B.2 Con’t

2007 SAM Nat

431,07
average 82,366 142,862 559,476 248,207 7 192,009 165,401 24,972
std dev 18,419 31,947 125,110 55,504 96,398 42,937 36,987 5,584
2008 SAM Nat

285,10
average 101,972 158,636 737,165 283,099 7 228,643 192,873 29,763
std dev 17,682 27,508 127,825 49,090 49,438 39,647 33,444 5,161
2001 TS Nat

107,27
average 138,081 70,093 105,157 235,642 5 155,463 62,932 20,355
std dev 9,213 2,154 2,072 31,831 8,391 12,595 1,911 1,161
2002 TS Nat
average 99,657 61,653 145,312 236,570 98,952 154,403 65,960 20,767
std dev 1,952 786 6,578 24,750 4,769 10,028 2,126 971
2006 TS Nat

141,30
average 57,353 68,324 250,238 235,045 5 154,779 65,768 18,423
std dev 3,733 1,795 13,400 12,930 13,368 7,529 1,194 164
2007 TS Nat

146,01
average 59,484 67,646 183,160 235,559 4 162,935 67,693 17,486
std dev 2,579 739 5,528 8,708 10,877 7,408 951 199
2008 TS Nat

166,52
average 56,206 71,394 165,641 223,278 8 169,973 72,840 18,238
std dev 1,875 1,003 2,773 5,239 14,565 6,775 1,252 224
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Occupation Employment

Table B.3: Occupational Employment Estimates for the State of Louisiana, by Model
and Number of Employees

Industry 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 a7 49 51 53
Actual*
106,11 107,95 583 | 47,8 | 193,8 | 301,2 | 509 | 1192 | 96,80 | 122,6 | 156,0
average 94,413 54,820 17,321 31,280 12,429 25,243 13,344 1 16,408 0 53,713 53,321 157,919 09 05 99 43 9 13 1 58 48
2,59 3,99 1,22
std dev 11,639 4,100 893 2,531 733 1,941 948 4,083 1,246 5,428 3,137 1,965 5,406 8 7 | 7,018 | 6,585 4 | 4633 | 4,119 | 5038 | 7,095
2001 CGE
340,56 | 1,003,4 113,85 | 205,11 241 | 369 | 6812 | 5150 | 6,81 3035 | 2645 | 243,7
average 5 16 5,684 11,637 94,813 5,671 4,523 7,242 4 6 8,803 17,431 19,855 62 97 9 18 8 7,284 32 7 64
1,34 | 2,06 28,68 29,95 18,01
std dev 18,092 55,875 317 648 5,279 316 252 403 6,342 11,426 490 971 1,106 5 0 3,794 4 380 397 2 1,557 4
2002 CGE
299,48 178,93 26,1 39,9 73,88 558,5 7,39 284,4 28,26 246,1
average 6 | 929,559 5266 | 12,186 | 99,288 5,939 3,946 6,317 | 99,321 3 9,515 | 18,840 21,459 15 86 1 03 4 | 7,548 00 6 39
1,92 | 2,94 31,60 15,97 13,91
std dev 16,812 52,302 296 703 5,728 343 221 353 5,553 10,004 700 1,387 1,579 2 3 4,180 0 418 426 5 1,594 8
2006 CGE
298,71 105,82 233,47 | 420,62 31,2 | 47,7 | 86,25 | 6520 | 863 320,5 | 27,74 | 2887
average 5 920,231 5,213 12,989 8 6,330 9,276 14,851 6 2 11,368 22,509 25,638 01 74 2 17 2 8,722 34 3 76
1,81 | 2,78 38,28 19,19 17,01
std dev 20,755 61,063 346 735 5,988 358 541 866 13,610 24,519 662 1,311 1,493 7 3 5,065 7 507 515 4 1,463 5
2007 CGE
447,74 | 1,065,2 152,18 189,60 | 341,59 32,6 | 49,9 | 84,60 | 6395 | 846 | 10,95 | 620,8 | 3868 | 3201
average 3 07 6,034 18,678 0 9,103 7,533 12,060 9 2 11,879 23,522 26,792 05 24 9 96 7 7 47 0 50
1,82 | 2,80 33,48 31,95 17,85
std dev 22,723 46,061 261 1,020 8,308 497 433 693 10,891 19,620 666 1,319 1,503 9 0 4,429 3 443 518 7 2,274 6
2008 CGE
47511 | 1,1889 239,33 | 431,17 378 | 578 | 9601 | 7258 | 9,60 2885 | 42,95 | 344,1
average 0 48 6,735 12,126 98,800 5,910 9,508 15,223 4 6 13,774 27,272 31,065 04 85 3 05 9 9,174 07 8 63
1,95 2,99 40,09 16,68 22,90
std dev 23,899 68,324 387 656 5,342 320 408 654 10,281 18,522 713 1,411 1,607 6 5 5,304 7 531 502 5 2,371 2
2001 SAM
318,52 173,57 20,3 31,1 72,90 551,1 7,29 296,3 25,40 244,7
average 5 739,320 4,188 9,976 81,280 4,862 3,828 6,128 96,344 0 7,412 14,676 16,716 43 48 9 50 7 7,572 08 4 28
1,13 1,73 30,69 16,49 13,62
std dev 17,737 41,168 233 556 4,526 271 213 341 5,365 9,665 413 817 931 3 4 4,060 0 406 422 9 1,415 7
2002 SAM
253,64 151,39 18,4 28,2 60,74 459,1 6,07 264,3 23,76 207,2
average 1 624,428 3,537 8,089 65,905 3,942 3,339 5,345 84,035 4 6,714 13,294 15,142 28 16 1 66 9 6,445 05 5 99
3,59 5,49 11,83 89,47 1,18 51,50 40,39
std dev 49,425 121,676 689 1,576 12,842 768 651 1,042 16,375 29,501 1,308 2,590 2,951 1 8 6 3 5 1,256 3 4,631 4
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Table B.3 Con’t

2006 SAM
255,55 201,66 | 363,30 222 | 340 [ 68384 | 5204 | 6,89 314,6 | 23,89 | 2482
average 1 | 658,010 3,728 8,944 | 72,872 4,359 8,012 | 12,827 2 7 8,097 | 16,033 18,263 25 30 6 40 0 | 7,423 15 9 93
441 | 675 | 1366 | 1032 | 1,36 62,43 49,27
std dev 50,717 | 130,589 740 1,775 | 14,462 865 1,590 2,546 | 40,022 | 72,202 1,607 3,182 3,624 1 4 3 87 7 | 1,473 9 | 4,743 6
2007 SAM
379,60 160,33 | 288,84 228 | 349 | 7245 | 547,7 | 7,25 547,5 | 32,49 | 266,9
average 2 | 725,168 4,108 9,893 | 80,602 4,821 6370 | 10,198 1 6 8,327 | 16,487 18,780 54 94 9 51 2 | 9,507 19 7 38
511 | 7,82 | 1620 | 1224 | 162 122,4 59,69
std dev 84,887 | 162,163 919 2,212 | 18,024 1,078 1,424 2,280 | 35853 | 64,592 1,862 3,687 4,200 1 5 3 88 2 | 2,126 36 | 7,267 3
2008 SAM
419,28 211,25 | 380,58 27,2 | 416 | 82,75 | 6255 | 828 362,1 | 3694 | 3039
average 8 | 845617 4,790 | 11,791 | 96,069 5,747 8,393 | 13,437 1 3 9,915 | 19,633 | 22,363 14 70 7 94 2 | 879% 20 4 39
471 | 7,22 | 1435 | 1084 | 1,43 62,79 52,70
std dev 72,705 | 146,631 831 2,045 | 16,658 996 1,455 2,330 | 36,631 | 65993 1,719 3,404 3,878 9 6 0 79 6 | 1,525 2 | 6,406 3
2001 TS
163,65 185 | 283 | 74,26 | 561,4 | 7,43 136,2 | 24,65 | 2276
average 6 | 275914 1,563 8,064 | 65,700 3,930 1,197 1,917 | 30,135 | 54,291 6,742 | 13,349 15,205 04 33 9 35 3 | 6416 52 7 49
1,49 | 229 | 1063 | 80,37 | 1,06 10,65 27,93
std dev 9,662 8,377 47 460 3,748 224 24 38 594 1,070 546 1,082 1,232 9 5 2 1 4 849 8 | 1,032 0
2002 TS
142,58 183 | 281 [ 7438 | 5623 | 7,44 1256 | 22,21 | 2293
average 2 | 289,187 1,638 8,227 | 67,032 4,010 1,654 2,649 | 41,642 | 75021 6,696 | 13,258 15,102 78 40 5 07 4 | 6341 81 7 79
1,19 | 1,82 61,93 22,06
std dev 3,356 9,322 53 385 3,134 187 75 120 1,885 3,396 435 861 981 4 8 | 8193 6 | 820 637 | 6,057 | 1,371 4
2006 TS
133,83 108,22 155 | 238 | 62,82 | 4748 | 6,28 150,5 | 20,12 | 1942
average 9 | 241,842 1,370 6,146 | 50,078 2,996 2,387 3,821 | 60,074 6 5,666 | 11,219 12,779 51 12 1 95 7 | 5,704 71 6 15
647 | 9,91 | 2474 | 1870 | 247 66,46 77,70
std dev 58,733 | 104,096 590 2,577 | 20,999 1,256 1,043 1,670 | 26,258 | 47,305 2,358 4,670 5,319 3 1 2 37 6 | 2,301 1| 8404 0
2007 TS
136,15 16,6 | 254 | 62,37 | 4715 | 624 159,8 | 21,09 | 205,0
average 5 | 255513 1,448 6,072 | 49,473 2,959 1,962 3,141 | 49,381 | 88,963 6,048 | 11,975 13,640 00 17 7 38 3 | 5744 08 6 87
479 | 734 | 17,25 | 1304 | 1,72 45,08 59,85
std dev 35,672 70,707 401 1,590 | 12,955 775 428 686 | 10,783 | 19,427 1,747 3,460 3,941 6 3 9 70 7 | 1,592 0 | 5906 1
2008 TS
136,75 17,1 | 26,1 | 59,00 | 446,0 | 5,90 173,9 | 21,83 | 2032
average 5 | 264,459 1,498 6,035 | 49,170 2,941 1,688 2,703 | 42,491 | 76,550 6,233 | 12,342 14,058 08 95 5 45 5 | 5611 03 0 9%
570 | 872 | 19,07 | 1441 | 1,9 61,87 65,78
std dev 46,269 89,624 508 2,030 | 16,542 990 568 910 | 14,299 | 25,761 2,077 4,112 4,684 1 9 5 94 9 | 1,842 2 | 7,403 5
2001 CGE Nat
114,62 101,31 | 107,33 429 | 261 | 91,41 | 1246 | 21,2 | 111,7 | 1141 | 1002 | 96,64
average 7 | 110,333 8 9 | 66017 | 30565 | 35072 | 33,836 | 65979 | 40,989 | 19,735 | 30,129 | 42,756 58 66 9 63 99 74 52 18 8
2,26 | 1,37 1,14
std dev 6,100 5,892 5,387 5,662 3,606 1,702 1,912 1,862 3,512 2,171 1,078 1,611 2,244 1 3 | 4,969 | 6,653 9 | 5928 | 6123 | 5361 | 5220
2002 CGE Nat
107,25 100,34 42,6 | 262 | 8650 | 1145 | 20,6 | 102,5 | 1046 | 92,28 | 88,69
average 9 ’ 104,211 ’ 96,121 | 4 ‘ 61,539 ‘ 30,010 ‘ 34,232 ’ 33,120 ’ 63,181 ‘ 40,452 | 20,063 ‘ 29,493 ’ 42,870 ‘ 76 ‘ 12 ‘ 0 ‘ 13 ‘ 59 ‘ 79 ‘ 98 ‘ 6 ‘ 4
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Table B.3 Con’t

2,55 | 1,62 1,30
std dev ‘ 6,178 ‘ 6,007 ‘ 5,551 | 5,787 ‘ 3,603 ‘ 1,844 ‘ 2,078 ‘ 2,017 ‘ 3,700 ‘ 2,427 | 1,280 ‘ 1,810 ‘ 2,564 ‘ 2 ‘ 9 ‘ 5,005 ‘ 6,593 ‘ 1 ‘ 5,903 ‘ 6,023 ‘ 5,325 ‘ 5,124 ‘
2006 CGE Nat
152,32 138,12 | 144,20 102,48 56,6 | 31,7 | 1289 | 162,7 | 303 | 1478 | 151,3 | 143,0 | 1339
average 6 | 147,376 9 2 | 98853 | 31,933 | 39,630 | 37,853 3 | 55890 | 22,737 | 40,828 | 55,367 48 00 72 04 36 32 57 79 24
332 | 1,86 1,77
std dev 8,981 8,694 8,128 8,503 5,793 1,935 2,370 2,268 5,991 3,273 1,337 2,392 3,247 6 2 | 7,602 | 9,679 3 | 8816 | 9,001 | 8433 | 7,891
2007 CGE Nat
174,36 154,56 | 161,00 58,8 | 368 | 1461 | 191,4 | 30,1 | 1703 | 177,4 | 159,1 | 153,7
average 2 | 168,621 1 0 | 93,760 | 36302 | 43,397 | 41,117 | 96,050 | 56,406 | 24922 | 42,046 | 58483 12 24 26 63 10 01 44 9% 81
2,88 | 1,84 1,59
std dev 8,794 8,479 7,768 8,140 4,901 1,743 2,094 1,973 4,938 2,800 1,238 2,162 2,832 3 9 | 7,480 | 9,847 9 | 8789 | 9,151 | 8,266 | 7,958
2008 CGE Nat
168,28 149,55 | 160,58 | 109,17 111,69 64,9 | 363 | 1387 | 188,1 | 34,7 | 172,6 | 1736 | 157,2 | 147,38
average 1| 161,302 6 6 4 | 39419 | 47,724 | 45819 5 | 63,109 | 27,304 | 46,250 | 62,878 03 50 62 27 43 50 85 11 62
3,20 | 1,87 1,66
std dev 8,154 7,698 7,080 7,728 4,997 2,163 2,506 2,426 5,057 3,051 1,452 2,219 3,157 8 2 | 6452 | 9,270 3 | 8382 | 8492 | 7,456 | 7,255
2001 SAM Nat
102,01 388 | 22,7 | 83,56 | 113,9 | 182 | 102,4 | 1048 | 91,39 | 8851
average 3 98,182 | 89,777 | 95063 | 54,635 | 23,763 | 28,179 | 26,994 | 58314 | 36,245 | 16,346 | 25591 | 38,877 99 87 0 22 02 30 00 2 9
2,16 | 1,26 1,01
std dev 5,680 5,467 4,999 5,293 3,042 1,323 1,569 1,503 3,247 2,018 910 1,425 2,165 6 9 | 4653 | 6344 4 | 5704 | 5836 | 5089 | 4,929

2002 SAM Nat

352 | 209 | 7653 | 101,4 | 166 | 91,12 | 93,42 | 82,22 | 79,17

average 92,333 89,620 82,243 85,896 49,885 21,681 25,718 24,630 53,263 33,042 15,039 23,525 35,364 67 91 4 02 78 2 9 1 1
10,2 6,07 22,14 29,34 4,82 26,37 27,03 23,79 22,91
std dev 26,720 25,935 23,801 24,858 14,436 6,274 7,443 7,128 15,414 9,562 4,352 6,808 10,234 06 4 8 5 7 0 7 4 2

2006 SAM Nat

128,69 116,20 | 121,20 45,4 | 247 | 110,7 | 1396 | 241 | 1268 | 1305 | 1233 | 1157
average 2 | 124431 7 9 | 80451 | 22,740 | 29,569 | 27,930 | 84,699 | 44,724 | 16,588 | 32,257 | 44,315 63 97 46 16 58 78 88 58 13
9,02 | 492 | 21,97 | 27,70 | 479 | 2518 | 2591 | 24,48 | 22,9
std dev 25540 | 24,695 | 23,063 | 24,055 | 15966 4,513 5,868 5543 | 16,810 8,876 3,292 6,402 8,795 3 1 9 8 4 0 7 2 5
2007 SAM Nat
142,65 125,88 | 131,15 26,2 | 27,9 | 1220 | 159,9 | 23,3 [ 1429 [ 1492 | 133,7 | 1293
average 1 | 137,863 6 8 | 73,025 | 24439 | 30,960 | 28939 | 77,376 | 43,910 | 17,417 | 31,923 | 45911 48 37 78 87 32 39 83 85 2
103 | 624 | 27,29 | 3577 | 521 | 31,96 | 33,38 | 29,91 | 2891
std dev 31,900 | 30,829 | 28151 | 29,330 | 16,330 5,465 6,923 6471 | 17,303 9,819 3,895 7,139 10,267 42 7 9 6 7 4 3 7 9
2008 SAM Nat
150,24 133,12 | 141,76 540 | 299 [ 1269 | 1699 [ 281 [ 1550 | 157,8 | 142,9 | 1352
average 3 | 144,320 6 5 | 90,550 | 28,762 | 36,300 | 34,373 | 94,951 | 52,146 | 20,557 | 37,655 | 52,476 62 32 97 14 01 21 34 52 2
937 | 519 | 2202 | 2946 | 487 | 26,88 | 27,36 | 24,78 | 23,44
std dev 26,052 25025 | 23,084 | 2458 | 15701 4,987 6,294 5960 | 16,465 9,042 3,565 6,529 9,099 4 0 1 3 3 1 9 8 8
2001 TS Nat
292 | 16,1 | 49,84 | 82,70 [ 133 | 73,50 | 75,80 | 63,79 | 66,75
average 64,331 56,491 | 50,384 | 59937 | 27,527 | 13,874 | 16,671 | 16,116 | 35505 | 25356 | 11,967 | 16,323 | 29,326 70 22 8 9 82 0 6 9 3
2,84 | 1,36
std dev 4,875 4,352 4,002 4,454 1,526 823 1,131 1,104 3,056 2,350 964 1,223 2,998 7 1| 4046 | 5826 | 984 | 5112 | 5397 | 4,791 | 5,099
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Table B.3 Con’t

2002 TS Nat
290 | 158 | 4998 | 76,23 | 13,1 | 68,13 | 69,97 | 60,43 | 61,61
average 62,497 | 56654 | 51,426 | 58475 | 29609 | 13,912 | 16,824 | 16,276 | 37,498 | 25698 | 11,866 | 16,663 | 29,258 95 85 2 4 27 1 2 4 5
2,72 | 1,25
std dev 4,025 4,213 4,215 3,741 2,211 843 1,177 1,158 3,675 2,422 926 1,317 2,918 1 5 | 3,898 | 3393 | 872 | 3031 | 3185 | 3414 | 3,199
2006 TS Nat
296 | 16,1 | 57,04 | 79,22 | 13,6 | 71,48 | 73,26 | 6501 | 63,95
average 67,735 | 63714 | 58489 | 63,388 | 34,785 | 13,523 | 16979 | 16,251 | 42509 | 26,872 | 11,539 | 17,816 | 29,742 95 70 8 1 38 6 6 0 6
3,06 | 1,50 1,16
std dev 7,181 8,391 8,338 6,631 5,102 662 1,280 1,155 6,397 3,054 790 1,961 3,225 5 7 | 8077 | 5401 1| 5125 | 5336 | 6150 | 4,783
2007 TS Nat
289 | 160 | 5443 | 76,74 | 13,2 | 69,01 | 70,82 | 62,19 | 61,73
average 65216 | 61,100 | 55890 | 60,867 | 32,333 | 13,677 | 16,889 | 16,210 | 39,902 | 26,047 | 11,607 | 17,261 | 29,161 99 75 0 6 38 0 8 2 6
245 | 1,41
std dev 5,158 6,364 6,382 4,684 3,912 808 1,194 1,112 4,782 2,391 854 1,537 2,705 7 7 | 6073 | 3,230 | 845 | 3,048 | 3,232 | 3,983 | 2,885
2008 TS Nat
286 | 161 | 5434 | 76,77 | 13,1 | 68,93 | 70,81 | 61,96 | 61,59
average 65234 | 61,164 | 55858 | 60,791 | 32,110 | 13,911 | 17,035 | 16,347 | 39267 | 25787 | 11,673 | 17,246 | 28,851 87 56 2 8 97 0 9 6 4
2,20 | 1,52
std dev 5,236 6,466 6,402 4,676 3,873 1,097 1,355 1,265 4,557 2,204 939 1,533 2,438 1 4 | 6057 | 335 | 820 | 3051 | 3313 | 3899 | 2,866
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