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 ABSTRACT 

Rotary drilling system vibration has long been associated with damaging the bit, the bottom hole assembly 

(BHA) and drill string.  Vibration has been traditionally measured in the bottom hole assembly, and been 

closely associated with the resonant behaviors. 

 This research study proposes an improved physical laboratory model to explore the dynamic behaviors 

associated with vibration.  This model includes contact with the borehole wall allowing a range of 

stabilization geometries while removing bit-formation interaction effects.  The results of exercising the 

model help develop new insights into both vibration measurement diagnostics and mitigation strategy 

execution. 

Presented here is a review of other physical bottom hole assembly and drilling concepts, and a new 

novel model.  Experimental investigation using the new model for a range of geometries is presented with 

recorded conditions, annotated video stills and analysis using regression and response surface methods. The 

analysis when compared to existing industry mitigation methods allows unique insight to the possible 

effectiveness of such methods. A numerical simulation of the system was also performed and its results 

compared to the laboratory tests.  Results show that a shaft system alone can generate stick-slip and whirl 

behaviors.  Such behaviors occur in distinct regions.  Another conclusion of this work is that a popular 

method for inferring stick-slip from acceleration measures is not reliable for the system used in this study.
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CHAPTER 1. INTRODUCTION  

1.1 General Description 

Rotary oil well drilling is a process used to seek reserves of hydrocarbons in the earth.  A drill string is 

composed of lighter tubulars (drill pipe) and heavier tubulars (drill collars).  The drill string is hung from 

surface and the bit is set down on the bottom of the hole allowing the weight of the lower part of the string 

to rest on the bit.  Rotation of the drill string at the surface allows torque transmission to a drill bit. The 

weight on the lower section of the string and torque from the string’s rotation cause the bit to engage and 

break the rock.  The rock cuttings are removed by circulating fluid, which allows the drilling of the hole to 

advance. This lower section of the string supplying the weight on the bit (WOB) is called the bottom hole 

assembly (BHA).  The drill collars are often accompanied by stabilizer components to provide support to 

the BHA and desired alignment of the drill bit. (Jansen 1993) 

The high cost of inefficient drilling and component failures spur examination of their causes.  Drilling 

mechanics problem have been credited with 75% of nonproductive time incidents, low rate-of-penetration 

presents hidden costs, more trips, lost-in-hole charges and increased charges for services. (Burgess 1995) 

(Ashley et al. 2001)  The estimated savings from vibration reduction project alone was $7,500 per meter 

drilled totaling more than 1 million dollars (Kriesels 1999). In the past thirty years, vibration’s role in 

reducing rate of penetration has been discussed continuously. (Deily et al. 1968)(Zannoni et al. 1993)(Wu 

2010)  The lost time due to equipment failures and less than optimal drilling rates are both great reasons for 

any drilling engineer to be interested in BHA vibration. 

1.2 Current Practice Limitations 

The BHA is out of sight so direct observation is impossible.  The current technology only allows for sensors 

in a limited number of points, normally only one location: the Measurement While Drilling tools (MWD).  

It is impossible to interpret the mode shape from just one location.  The transmission of this data regularly 

in the range of the number of seconds between reports.  Reconstructed solutions logically are non-unique.  

This leads to the de facto method for real time vibration mitigation, trial and error After the 1993 SPE forum 
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series on Drilling Vibration, Anadrill planned to have an internal workshop later that year to collect best 

practices on vibration mitigation.  The results of this internal workshop were summarized in Burgess and 

Martin (1995). It is assumed that this table was used in internal Anadrill / Schlumberger materials and given 

to clients and drillers as a quick reference, and hence we have the now famous “Anadrill Vibration 

Mitigation Method”.  A plot of these ideas made it into other related works (Schultz 2005). 

1.3 Problem Statement  

So what may be done to advance an understanding of the dynamic behaviors in the BHA.  This study seeks 

is to develop an improved understanding of the dynamic behaviors in the BHA in order realize the 

significance of current to methods for evaluating and planning vibration control for drilling systems and 

suggest improvements.  The methods employed need to allow for direct observation of the two popular 

culprits “stick-slip” and “whirl”, and will attempt a predictive modeling method. 

Currently industry has one set of thumb rules for all conditions and BHAs.  Is one enough?  Stabilizer 

placement is often scrutinized to reduce vibrations.  Shaft vibration theory is exercised in the design of 

BHAs.  Based on shaft behaviors alone can one see an impact, or is only related to different drill bits? Do 

different BHA geometries manifest different behaviors for similar operating conditions. 

1.4 Hypotheses 

To address this problem the follow hypotheses are suggested. 

1) A flexible shaft system without a drill bit will not experience stick slip or whirl. 

2) Flexible shaft systems of varying stabilization geometries will produce the same levels and types 

of vibrations over a range of conditions. 

3) Vibration levels in a flexible shaft are a function of rotation speed and axial load, and manifest 

regionally as suggested by the Anadrill Methods materials  

After reviewing others models and what has been done the formulation of experiments to test the hypothesis 

will be explored.  
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CHAPTER 2. LITERATURE REVIEW  

This section will show how field observations and laboratory models have addressed Practitioners from the 

field and from the lab pursue identifying fundamental mechanisms that should be accounted for in vibration 

mitigation workflows.  

2.1 Stick-Slip and Whirl  

Stick-slip and whirl need to be defined before going any further in this discussion. Stick-slip is the cyclic 

reduction and corresponding increase of instantaneous rotation speed.  While Whirl the behavior 

experienced where the instantaneous center of rotation is in motion around an average center.  While authors 

may attempt to refine to a greater detail how to recognize the behaviors with surface or downhole 

observations, this general description will due for now.  (including Zannoni 1993, Van Den 2000, Kasner 

1938, and Chen 1999)  The description of whirl is considered forward if the motion of the center of rotation 

is in the same direction as its rotation, if the motion is reversed, this is called backward. 

2.2 Mechanisms 

With this rudimentary definition of stick slip and whirl presented consider what others have done to identify 

the mechanism creating one or both conditions. First, consider the existing work around a mechanistic 

understanding.  Dunayevsky et. Al (1985, 1993) present a mechanism where the dynamic component of 

axial load on the BHA (WOB fluctuation or axial vibration) may induce lateral vibrations or lateral 

resonance.  This system is based on a simply supported column where the axial load oscillation matches 

with the lateral natural frequencies resulting in parametric resonance.  The work outlines a workflow where 

first the deflections or buckling state is found then free vibration analysis for lateral and axial modes is 

performed, then the wave motion and severity is calculated.  This style of model is called a critical speed 

model and has recognized limitations, it will not simulate the development of a vibration, and it only 

addresses parametric resonance.  An improvement of the critical speed style analysis also known as forced 

frequency analysis is presented and validated in detail by Apostal et al. (1990) using adding mass and 

damping coefficients successfully in lateral modes.     
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Now consider how this fits with concurrent recognition of behaviors. Besalsow and Payne (1988) 

built on an understanding of parametric factors and investigated in the field with an instrumented unit in 

the top drive.  The study shows the excitation frequency may be of multiples and fractions of the rotation 

speed.  The work suggests that resonance allows damaging vibration.  Another parametric rotation 

coefficient is founded on backward whirl, as the ratio of the hole or drill collar and the difference between 

the hole size and the drill collar size.  From experimental data the authors allow some slip or damping by 

allowing a second coefficient between 0.8 and 1.  Forward whirl is also identified as harmonics and 

multiples of rotary speed. Torsional resonances are also reported on. 

Aldred and Sheppard (1992) introduced a mechanistic physical model dubbed “the rolling log”.  The 

experimental apparatus consisted of a 10 meter drill collar mounted horizontally and rotated through a range 

of speeds. (Figure 1)  A 25 cm confining ring was placed across the center of the collar at 5 meters, the 

collar was again rotated until contact occurred.  The experiment was repeated again with lubricant on the 

confining ring.  In this model the rotation speed and the condition of the confining ring could be adjusted 

to study effects on transverse motion (whirl behavior).  Aldred and Sheppard (1992) point out the 

shortcoming of harmonic analysis (forced frequency, critical speed) is the lack of an accounting for the 

interaction with the borehole.  While harmonic models stop at contact and declare criticality, perhaps a 

more realistic model needs to account for what happens after contact: the drill string experiences radial 

acceleration due to inelastic collision and acceleration tangentially due to friction.  This supports a 

mechanistic understanding that if the transverse (lateral) energy builds with each impact then the impacts 

may become self-sustaining.  Once this behavior was initiated, reducing rotation speed was not an effective 

means of control.  Increasing speed increased the frequency of the shocks until backward whirl was 

initiated.  It is suggested this happens when the centrifugal force is higher than the restoring force acting on 

the collar (gravity and elasticity).  Another conclusion was that predicting optimal parameters to avoid 

shock is usually not possible, and that a real time trial and error method is appropriate. 
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Figure 1. “Rolling Log” experiment. 

The popularity of trial and error methods with real-time measurement of vibration have evolved and 

been widely adopted, while in this author’s opinion mechanistic modeling has remained relatively at the 

same level.  Again, attempts to develop a mechanistic physical model for the drill string and BHA was 

attempted by Mihajlovic (2004).   Mihajlovic et al. presented their work with a flywheel based laboratory 

device with another flywheel   mounted to the base of a long shaft. (Figure 2)  A DC motor drives the upper 

flywheel attached to a shaft connected to the lower flywheel equipped with a disk style brake.  The device’s 

break voltage could be adjusted to explore the shaft’s torsional behavior under load.  

 

Figure 2. Dual rotating disc connected by stem experiment. (redrawn from Mihajlovic 2004)  

The “rolling log” and the “flywheel” models both capture a specific mechanism and its role with 

rotation speed changes. However, the mechanisms are not inclusive of other parameters the driller has to 
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work with, namely weight on bit.  The axial load effect on a shaft system may be significant.  Wauer (1982) 

discussed the stability of a rotating axial loading shaft, specifically exploring axial load and rotation speed 

parameters ranges depending on the presence of internal and external damping. (Figure 3) Jansen (1993) 

acknowledges the power of this type of rotor dynamics model and critical speed model but recognizes that 

the analogy is hampered by the nonlinear effects caused by drilling fluid, stabilizer clearance, friction and 

borehole wall contact.  To investigate these considerations Jansen developed a numerical model he believed 

to be more representative.  He made a mass-spring model of a drill collar section supported between two 

stabilizers, which is a rotating shaft between two bearings in fluid.  The system is allowed to take axial 

load, and numerically friction in the system could be adjusted. (Figure 4)   

 

Figure 3. Rotor model. (redrawn from Wauer 1982) 

 

Figure 4. BHA sketches. (redrawn from Jansen 1993) 

A discussion of Jansen’s numerical model is included in the dimensionless analysis section in the appendix.  
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Abbassian and Dunayevsky (1998) presented a mechanistic model that exploited three simple 

systems: torsional vibration in the string, lateral dynamics of the bit, and coupled torsional-lateral vibration 

of the bit-string assembly.  The models are combined to present a mechanistic model of the stability zone 

concept.  One of the assumptions of this model is continuous contact with the side of the wellbore akin to 

forward whirl.  Results of exploring the parameter space of this model mimic the concepts presented in 

Burgess and Martin (1995).   The authors acknowledge the results match the field based experiences despite 

the assumptions and simplification of the model.  
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CHAPTER 3. METHODS 

3.1 Hypothesis Testing Objectives 

Industry and theoretical mathematic agree whirl and stick-slips are actions in play for flexible shaft systems.  

This section will explore the development and operation of a physical experiment that will allow testing the 

hypothesis: 

1) A flexible shaft system without a drill bit will not experience stick slip or whirl. 

2) Flexible shaft systems of varying stabilization geometries will produce the same levels and types 

of vibrations over a range of conditions. 

3) Vibration levels in a flexible shaft are a function of rotation speed and axial load, and manifest 

regionally as suggested by the Anadrill Methods materials that support the continued successful 

use of the method. 

To address the first hypothesis a physical flexible shaft that will be constructed will be operated 

across a range of conditions  and the model must demonstrate cyclic variation in instantaneous speed, or 

motion of the rotating section around a center. 

To address the second hypothesis the first will be have found null and the different geometries of 

shafts will have been tested.  If the different shafts manifest different types and levels at the same input 

parameters over a range of parameters then this hypothesis will also be false. 

The third hypothesis can be demonstrated by creating a parameter response “map” or surface for 

each shaft based on measured responses to the parameters of the Anadrill method rotation speed and axial 

load.  The principles of the method will be compared to the response space. 

To satisfy a point of the hypotheses are applicable to flexible shaft systems bit (rock breaking 

excitation factor, bladed pivoting excitation) mechanisms will be excluded.  Also a computation model 

results will support the investigation to completely exclude bit effects and help test the second and third 

hypotheses. 

It was suggested by a committee member that the buckling limit was possibly the regional threshold for 

stick-slip.  This introduces another hypothesis:  
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4) Does the flexible shaft system only experience Stick-Slip above a buckling limit. 

This additional hypothesis necessitates that buckling limits be modeled and tested also.  

3.2 Model Scaling Requirements from Dimensionless Analysis 

Examining Jansen’s S (path solution) for whirl (Jansen 1992), determining whirl type provides insights to 

scaling a physical model:  

𝑆 = 𝑠𝑖𝑛(𝜂𝑏 + 𝜂𝑅𝑐) 

𝜂𝑏 is the scaled backward whirl speed is a dimensionless Backward Whirl speed with units 1/t divided 

by natural frequency with units 1/t.   

𝜂 is the second term in this equation is the ratio of input rotation speed to the natural angular 

frequency. 

𝑅𝑐 is the slipless collar ratio is the collar diameter divided by the quantity of the collar diameter 

subtracted from the hole diameter. 

What is in this solution are terms made from the frequency and clearance diameters. Natural 

frequency in this case is the square root of quantity of the stiffness divided by the mass.  No lengths of the 

beam have made it into the solution.   

Given that the diameters in the test system are similar to diameters used in the field.  In fact the test 

fixture is about a 4 inch collar in a 6 inch annulus with 5-3/4 inch stabilizers. This could be a size 

combination used in the field.  The other term in the solution is natural frequency.  The suggested solution 

is the square root of the stiffness divided by the mass.  Another thing to consider is that frequency is 

inversely proportional to length.  A unit length (1 foot) of steel collars in this size have a natural frequency 

of 92,979 Hz.  The same unit length of the test fixtures shaft has a frequency of 4,086 Hz.  Steel is about 

22.76 times higher in frequency.  Therefore for this system using the solution form from Jansen the 

equivalent system to five (5) feet of shaft [4x1 inch] is 113 feet of [4x1 inch] collars.  It should be noted 

that this is the same scaling factor found using the graphical solution method using another set of equations 

(Fox 1987) descriped in the Appendix.  The appendix also includes a general discusion on dimensionless 
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analysis, several discusions on scalling including a summary dimensionless treatment of Euler-Bernoulli 

beam theory, a similitude like approach, and more discussion on Jansen’s mathematical solution. 

3.3 New Model Origins 

The model developed for this experiment sought to focus on vibration modes and shaft deformation effects.  

The Wauer (1982) model makes the case clear that axial load should have a significant effect on the 

deformation and therefore influence on the stability of a rotating shaft.  However, the Aldred and Sheppard 

(1992) experiment, and Mihajlovic et al. (2004) experiment both neglect to explore this response.  The 

physical model developed for this study developed after study of Jansen’s considerations and numerical 

results as previously introduced. 

The physical model used in this study (Figure 5) is a flexible shaft with various stabilizer ring 

configurations, rotated and subject to axial load from the top.  The shaft is subject to annular constraint with 

a base of a rotating table on a load sensor below.  A discussion on the effects of the bottom boundary 

condition is presented in the appendix.  An option of the annular constraint was the use of transparent piece 

that allowed for direct visual observation and recording.   The shaft used in the experiment had an 

acceleration and gyroscopic measurement package at its midpoint. 

The anticipated advantages of this configuration over the “rolling log” is the axial load adjustment and 

sensing, the continuous constraint, and the ability to operate the fixture at any inclination desired from 

vertical to horizontal.  Contrasted to Mihajlovic’s (2004) model the flexible shaft allows for observations 

of lateral deflection.  The model intentionally does not attempt to include an analog for bit effects. 

3.4 Using Acceleration and Gyroscope Measurement to Measure BHA dynamics 

The development and testing of down hole dynamics measurement tools started with accelerometers. 

Perhaps this is because accelerometers were already being used in down hole tools for surveying.  Attempts 

were made using one, two, three and four accelerometers recording or reporting acceleration while the 

string was in motion (Deily 1968). Some tools located the accelerometers in the middle of the BHA in a 

sonde, others in the body of the collars. 
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Figure 5. Shaft and annular constraint with axial load force and rotation labels. 

Today the use of accelerometers and gyroscopes in drilling measurement tools is wide spread.  

Diagnosis of vibration modes from acceleration measures was shown by Zannoni, Cheatham et al. (1993) 

with mathematics, laboratory work and field tests validating the methods for measuring BHA motion 

commonly used today.  Many more examples of interpretation system have appeared in literature from the 

DDS tool by Warren and Oster (1998) and its peer tools by Robnett, Hood et al. (1999), Ashley, McNary 

et al. (2001) and Halsey, Kyllingstad et al. (1986) that use similar principles A robust explanation of the 

combination of the testing of the tool is found in literature (Zannoni, Cheatham et al. 1993) and US patent 

5864058 (Chen 1999). 

Figure 6 shows the orientation of the sensor package inside the flexible shaft.  
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Figure 6. Sensor location inside cross section including shaft stabilizer and annular constraint 
boundaries. 

This investigation focuses on developing an improved mechanism for understanding dynamic 

behaviors that generate vibration.  The proposed mechanism investigated with the physical model described 

above and discussion on the materials and attempted scaling of the model presented in the Appendix III.  

The experimental fixture could be used in two ways.  One method is a directed manner designed to 

accomplish and demonstrate specific behaviors, and second is experimental operating in a range of 

parameters and various configurations designed to capture the occurrence of specific behaviors relative to 

each other. 

The experiments focus use four shaft configurations.  Shaft A has no stabilizer elements on it, it is 

perhaps analogous to a slick BHA. Shaft B one stabilizer on third the shaft length from the free end of the 
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shaft (the bottom).  Shaft C has two stabilizers dividing the shaft into even thirds.  Shaft D has one stabilizer  

in the center of the shaft. (Figure 7) 

The upper boundary condition of the system is driven by a motor and the displacement of the upper 

point to create axial load.  Discussion about the drive and motor selection are presented in the appendix.  

One objective for this endpoint as used in the final testing presented in this study was that the drive would 

supply constant rotation speed at various torque levels.  In the screen phase of model development a constant 

torque drive was explored.  The application of axial load was accomplished with continuous, and fixed 

displacements of the upper rotation point.  In normal drilling operations with the bit advancing through 

formation, a method to attempt to maintain a specific axial load, or load window is employed.  In this study 

the test fixture supplied displacement (lowering) of the shaft, the axial load was measured at the lower 

boundary condition. The results including the screening measurement are presented in the next chapter.   

The lower boundary condition was also scrutinized.  In the main experiments presented in this work 

the bottom point of the shaft in fixture sat on a disk that sat inside the fixture.  This endpoint was selected 

after experiences with other endpoint conditions during the screening tests, and preparation for a previous 

analysis strategy. During screening several different boundary conditions were examined.  Two of the 

simplest conditions for a rotating shaft where considered, pinned in the center and free rotation were 

examined. The results of the boundary condition comparison tests are presented in the results section. 

3.5 Physical Model Data Collection 

Data to construct response ‘map’ was collected in two styles of parameter variation.  The first style held 

rotation speed constant and incrementally tested different levels of axial load.  This was repeated for several 

rotation speeds across the experimental range.  The second style was to set the axial displacement (to a 

given static axial load) and incrementing the rotation speed, then when the range of speeds was explored, 

attempting to increase the load and repeat.  Force at the base, accelerations and angular position were 

recorded near a target of 100 hz.  The rotation speed of the driving motor was also recorded.  The data was 

then processed to create response maps in the input rotation speed and achieved axial load space for 

different interpretable measures.  The where vibration from a single lateral orientation, the difference in the 
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two perpendicular lateral acceleration measures (torsional – radial), and an instantaneous rotation speed 

index. 

 

 

Figure 7. Shaft configurations used in testing presented in the ‘Stability Approach’ flexible shaft 

system tests. sensor location side view, including shaft stabilizer and annular constraint boundaries.  

3.6 Prestress Numerical Modal Analysis for Rotor Dynamic Behaviors in Ansys(TM) 

Traditional modal analysis of beams does not account for rotational effects, rotor dynamic analysis does 

not necessarily account for axial load effects, therefore a two operation process was developed to include 

both axial loading and rotational effects in the modal analysis.  This “preloaded” or “prestress” modal model 
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produces the response frequencies of the system. This system could be considered unique where most rotor 

systems do not have axial loads of the magnitudes of a drilling BHA.  The system’s rotation speed is plotted 

through the responses and the intersections are points that high resonant or high vibration is predicted to 

occur.  This intersection is called a critical speed.  The results from a range of axial loaded rotor dynamic 

models where aggregated to be presented on a cross plot of axial load vs. rotation speed.   (Figure 13)  This 

style plot is significant because weight-on-bit (axial load) and rotation speed are two variable the driller 

may readily adjust while drilling. The Campbell diagram is significant only because it a graphical tool for 

displaying rotor stability equation results. The rotor dynamics simulation also predicts the orbit or whirl 

direction (backward vs. forward) of the shaft, and if that orbit is considered stable.  In this case a stable 

whirl is one that remains in a constant mode preferentially for the given parameters.  This is relevant to 

oilfield discussion as stability is a desirable property in bit design, it is undesirable in the analysis of BHAs.  

For Drillers typically stability is viewed with a positive connotation, although again for BHAs in this study 

the connotation is negative.  Backward whirl is known to be damaging to bits (Dupriest and Sowers 2010), 

where forward whirl is often placed in the acceptable column for bits. (Chen 1999) 

The use of the commercial finite element platform and environment allowed for investigations with 

both beam type elements and tubes made of many smaller elements because of the software’s ability to 

automatically generate meshes for the solutions, and iteratively solve what might otherwise be difficult 

solutions.  The platform also has the ability to integrate more complex geometry, although it is not 

demonstrated in this work.  The workflow employed took the laboratory materials information as input into 

the engineering data section.  The geometry was input in the design modeler.  A mesh was generated.  A 

loading problem was then executed.  This step is where the axial load was applied and solved.  This “static 

structural” solution was then used along with the rotating velocity in the setup of the modal, rotor dynamics 

solution. (Figure 8)  Critical speed data and Campbell plot results were collected for a range of load 

scenarios then presented in a similar format to the lab results being plotted with rotation speed vs. axial 

load. 
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Figure 8. This figure shows the “prestress” solution method.  Simply the beam is loaded first in a 

static model [box A], then loaded to the next analysis [box B]. 

After material properties were resolved in the lab and confirmed with literature they were assigned 

to a geometric model. (Figure 9)  The geometric model may be made of “beam” type elements that capture 

the properties of simple equivalent geometries or meshes of solid elements.  In this study the stabilizer 

geometry change created an abrupt diameter change and the additional mass of the sensor package lead to 

using a shaft broken into many “solid” elements.   

 

Figure 9. An example of premesh geometry. 
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Then the geometry is given a mesh. (Figure 9) 

 

Figure 10. The meshed model is shown for the simulation geometry. 

A static simulation of force similar to that used for the buckling calculations is performed.  The 

solution to axial loading is fed into the prestress state of the eigenvalue problem across a range of rotational 

speeds. (Figure 11)  This solution is used to make the Campbell diagram. (Figure 12) 

 

Figure 11. A deformed and stressed model result example.  Stess level is visulaized here green 
increasing to red. 
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Figure 12. Campbell diagram results showing the modes as: undetermined, forward (FW), backward 

(BW) and stable or unstable.  An excitation frequency is overlaid (thick line) and where this crosses the 
modes a red triangle is placed to indicate the existence of a critical speed. 

 

Table 1.  The Campbell Diagram Output Table.  In this table the first two mode are identified by the 

direction is undetermined, and indication of chaotic motion.  In mode shape 3, 5 and 6 unstable backward 
whirl is predicted, in mode shape 4 unstable forward whirl is predicted.  A single (1) ratio is used to related 

the RPM to the natural frequencies.  The intersection of that imposed frequency and the natural frequency 

results in the identification of a critical speed. 

 

The Campbell diagram shows the system frequencies and the excitation frequencies.  Where the system 

and excitation frequencies overlap is called a critical speed.  In this study for the rotation speeds examined 

the frequency lines did not have much slope so the system frequencies where the critical speeds, however 

that is not always the case.  Where it may be common in a system with a drill bit to use some frequency 

that is a related to the bit properties in this study a ratio of one was used.  For a range of applied axial loads 

used in the study the critical speeds where collected and plotted and annotated. (Figure 13)  
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Figure 13. Diagram of extracting critical speed results from Campbell diagrams and making a axial 

load vs. rotation speed parameter map. 
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CHAPTER 4. RESULTS 

This section first presents some screening measurements exemplify details needed to discuss the 

hypotheses.  The buckling results are presented.  Video still are shown demonstrating whirl in the fixture.. 

Then presents the parameter maps generated for the different shaft configurations are presented.  Results 

from the numerical model are presented also. 

4.1 Screening Measurement 1: Long Period Stick-slip Behavior 

The objective of this screening experiment was to detail the rotation speed changes for a shaft geometry 

(BHA stabilizer placement about center and three quarters to the bottom a possible analog to a 30-60 

nominal assembly) and the slowest operating parameters expected to experience stick-slip behaviors in the 

test fixture. Figure 14 and Figure 15 show the measured behaviors of the test fixture shaft during a stick-

slip event.  Figure 16 and Figure 17 show a six second window of the same event.   

 

 

Figure 14. Stick-slip event. 80 second window of a long period stick-slip event: Instantaneous 

rotation speed. 

This event can summarily categorized by the characteristic separation in the average magnitudes of 

the tangential and radial acceleration measures.  A great number of insights can be drawn from this example.  

First during the rotating phase the instantaneous rotation speed is oscillating but slowly decreasing.  Then 
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the reduced rotation speed phase starts, along with elevated measured vibration.  During the reduced 

rotation speed period vibration continues.  Looking at the plot of the six second window (Figure 17), the 

system can be more clearly observed to have increased vibration levels about a second before the rotation 

reduces. Then nearly two seconds of vibration levels reduce and nearly a second of reverse rotation is 

possible.  This pattern is illustrated in Figure 18.  The system in this case is most calm vibration-wise during 

this period of reverse rotation. 

 

Figure 15. Stick-slip event. 80 second window of a long period stick-slip event: radial and tangential 

acceleration.  The values for the radial position are plotted as negative to better see the average values. 

4.2 Screening Measurement 2: Axial Load Variation 

This example experiment was designed to demonstrate the axial load sensing ability of the test apparatus 

during a very different looking torsional or stick slip event developing from a whirling, axial event.  

Attempting to hold a constant axial load the oscillation of the load is clearly seen. (Figure 19) The 

magnitude of the phenomena decreases as rotary speed increases from about 200 to 240 instantaneous 

average RPM.  The occurrence of the highest lateral acceleration occurs on the low side of the axial load 

cycle, as can be clearly seen in Figure 20 and illustrated in Figure 21. The red star identifies one observed 

boundary load, this will be discussed more in the next section. 
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Figure 16. Stick slip event. Six second window of a long period stick-slip event: Instantaneous 

rotation speed. 

 

Figure 17. Six second window of a long period stick-slip event: radial and tangential acceleration. 

 

Figure 18. The observed cycle of the “long period” stick-slip event. 
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Figure 19. RPM, force, and lateral accelerations for a 40 second window demonstrating axial load 

oscillation. 

 

Figure 20. RPM, force, and lateral accelerations for a 6 second window demonstrating axial load 

oscillation. 

 

Figure 21. Cycle of axial load variation. 



  

24 
 

4.3 Experiment 3: Buckling Deflection 

The deflection tests were performed with the annular constraint in place, the flexible shaft was loaded 

axially while force was measured at the base of the shaft until deflection was noted.  The shaft was then 

unloaded.  . In the tests the flexible shaft would be loaded then unloaded until the onset of sinusoidal 

buckling and then unloaded to a lower minimum value.  This cycle continued several times.  Then the shaft 

was loaded until a point of helical buckling, unloaded and the cycle repeated.  Finally the shaft was loaded 

and unloaded from helical buckling while being slowly (about 5 rpm) rotated from the top, as in all cases 

the loads at the point of buckling were recorded. The deflection test was repeated for the four configurations 

presented. 

Here the results from the laboratory testing and computational modeling show the performance of the 

model, highlighting mechanistic behavior. 

4.4 Results from the Physical Experiments  

This section reviews the results from the laboratory experiments, first looking at the calculations and 

buckling. Then presents the observed rotating test results. 

4.4.1 Buckling Deflection Calculation 

The theoretical buckling load for a similar shaft was estimated using Wu’s (1993) formula as presented in 

the Appendix III. 

Where E = 203 psi 
I = 12.51728 in4 

W e = 0.011066 lb. / in. 

 
Resulting in a critical sinusoidal buckling force of 1.73 lbs., and 3.77 lbs. for helical buckling force. 

Later this result will be used to help analysis the upper load limits.  A comparison with the results from 

Euler and Ansys™ is presented later. 

4.4.2 Buckling Deflection Experiments 

The values are shown with colored horizontal lines in the following for reference: Figure 22 shows the 

resulting loads for Shaft A: the first region where sinusoidal buckling contact was initiated, the second 
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region where coiling or helical buckling started, and the third region where helical buckling with rotation 

could be clearly identified. Figure 23 and Figure 24, show the same pattern. Figure 25 shows the similar 

pattern although in the first and second region of contact, one could see the coil start at almost the exact 

same point as the initial contact.  Another way to say that would be that at the moment of buckling contact 

a coiling had already initiated. 

 

Figure 22. Shaft (A) buckled within 0.25 lbs. of the calculated value of 1.73lbs., helical behavior was 

observed just over 2 lbs. axial load, Helical with 5 RPM rotation was nearer to the calculated helical value 

of 3.78lbs. 

4.4.3 Axial Load Boundary During Rotation Analysis  

In each battery of rotating tests above 5 RPM the maximum linear travel afforded by the fixture was 3.6 

inches.  This deflection produced sinusoidal buckling in the buckling tests.  This value will be called the 

axial load boundary.  The maximum load during the tests for a particular rotation speed were fit with a 

maxima line, then that line was fit with a linear and polynomial line.  A fit value in the form of R-squared 

was also found.  Figure 26 shows for shaft A the scatter plot of data points for a combined set of constrained 

tests in the fixture.  It should be noted that the data points in the plot are aggregated and averaged from the 
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much larger set of collected data.  Details of the characteristic of the test can be inferred.  The fixed rotation 

speed ranges are apparent as vertical trends.   

 

Figure 23. Shaft (B) buckled more than 0.25 lbs. below the calculated value of 1.73lbs., helical 

behavior was observed just over 2 lbs. axial load in 10/13 cases, Helical with 5 RPM rotation was nearer 

to the calculated helical value of 3.78lbs., although sometimes was as low as 3 lbs. 

 

Figure 27 shows for shaft B the scatter of data points for a combined set of constrained tests in the 

fixture.  The shaft A load boundary was similar with the exception that at low rotation speeds some higher 

loads were recorded.  Shaft B did not have the same low rotation speed character measured.  Both A and B 

have a limit of about 1 lb. at 600 RPM.  

Figure 28 shows for shaft C the scatter of data points for a combined set of constrained tests in the 

fixture with the axial load limit boundary points.  Shaft C’s response is unique in a couple of ways.  First, 

the boundary is not continuously decreasing, and  for the fixed thrust tests it seemed to converge around 1 

lb., however in the fixed RPM tests loads above 1.5 lbs. were achievable in the 310 to 480 RPM range.  

This also resulted in a 6th order polynomial being used for the fit, and the linear fit having a low R value of 

0.0029.  
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Figure 24. Shaft (C) buckled near the calculated value of 1.73lbs, although some lower than 1.5 lb. 

results are also observed.   Helical behavior was observed over 2.2 lbs. axial load, Helical with 5 RPM 
rotation was nearer to the calculated helical value of 3.78lbs, although sometimes was as low as 3.3 lbs. 

  

Figure 25. Shaft (D) was different from the other shafts as finding a the start of the helical pattern was 

difficult as the shaft seemed to be wrapping even before contact at about other than the stabilizer.  When 

shaft contact with the hole was found it was consistently lower than the 3.78 lbs. anticipated. 
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Figure 26. Shaft A axial load boundary. Upper level of achievable axial load to the bottom of shaft A, 
the sold colored line is a bounding line, the black lines are best fit lines, one linear the other polynomial. 

 

 

Figure 27. Shaft B axial load boundary. Upper level of achievable axial load to the bottom of shaft B, 

the diamond points make up a  boundary, the black lines are best fit lines, one linear the other polynomial. 
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Figure 28. Shaft C axial load boundary. Upper level of achievable axial load to the bottom of shaft C, 

the diamond points make up a  boundary, the black lines are best fit lines, one linear the other polynomial.  
Take note of the strong trend around 1 lb. that follows a more expected pattern albeit at much less than 

the calculated buckling load. 

 Figure 29 shows for shaft D the scatter of data points for a combined set of constrained tests in the 

fixture with the axial load boundary points.  Shaft D shows the same higher achievable loads at low rotation 

speeds as shaft A. 

Table 2 Shows a summary of the axial load boundaries and the fit values for Shafts A,B,C, and D. 

4.4.4 Video Stills 

Imagining the motion of the shaft is one thing, seeing them on film is another.1  This study collected some 

standard rate video (30 frames per second), and some high-speed video to help illustrate the concepts of 

stick slip and whirl.  Presented here are select stills from some of the video collected.  Figure 30 and Figure 

31 depict a forward synchronous whirl event in the fixture inside the clear annular constraint for the shaft 

D configuration.  The shaft turning clockwise is also orbiting clockwise.  The angular velocity of the 

rotation and the orbit are estimated to be the same since scribe line returns to the same position as the shaft.  

                                                   
1 The videos are available on youtube under the channel ‘drillinglab’ http://www.youtube.com/user/drillinglab 

http://www.youtube.com/user/drillinglab
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To the right of each frame is an interpretation of the visual information in the still.  The dimensions are 

distorted for clarity.  It should be carefully noted the shaft is slightly deflected inside the fixture, where the 

illustration does not indicate this deflection.  Also the dashed reference line is an inference from the author 

as this line is out of the view of the camera while it is not facing the shaft.      

 

 

Figure 29. Shaft D axial load boundary Upper level of achievable axial load to the bottom of shaft D, 

the diamond points make up a  boundary, the black lines are best fit lines, one linear the other polynomial. 

Table 2. Axial Load Boundary Summary for 3.6 inch Maximum Displacement shows for each shaft 

configurations the numerically modeled load intercept. 

 Axial Load Boundary Summary: 3.6 inch Displacement  

Shaft Linear 

slope 

lbs./rpm 

Linear Intercept 

lbs. 

Linear R2 Polynomial 

Order 

Polynomial 

Intercept 

lbs. 

Polynomial R2 

A -0.0014 1.86 0.92 4 2.05 0.98 

B -0.001 1.69 0.9 2 1.58 0.91 

C -0.00006 1.67 0.0029 6 1.9 0.93 

D -0.0013 2.08 0.74 3 2.45 0.95 

 

Figure 32 is a sequence of video stills from a 240 frame per second video that has also been captured 

down to about 60 frame per second to show the orbit effects, however be assured that the higher frame rate 
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video clearly shows no “stroboscopic” effect or other optical illusion around the orbit of the shaft.  A slight 

blemish in the shaft can be tracked in about the same position in frame 1 and 8.  One can note that it takes 

about 8 stills or 32/240 of a second for the shaft to make a full rotation.  One could estimate the RPM: 

(240FPS / 32 frames to rotate) * 60 sec/min = 450 RPM.  Rotation speed was not changed however, a slight 

decrease in axial load was made that was visually identified as a threshold between behaviors.   

 

 

Figure 30. Video stills depicting forward synchronous whirl, Part 1.  In the first frame the bottom of 

the shaft is to the far left in the fixture, in the second frame it has rotated to the back left, in the 3rd and 
4th frame it has moved to the back, in the 5th frame in the right side, by frame 6 the shaft has started to 

come forward again. 

Figure 33 depicts the same system in backward whirl.  Notice that where before it took about 8 stills 

to make a whole orbit, it now takes 21.  That can be estimated similarly to an orbital angular velocity of 

171 RPM.  That is a ratio of about 450/171 = 2.63, this is comparable to the ratio of the shaft diameter and 
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the fixture base inside diameter of 2.63.  Therefore this event could be categorized as a “synchronous” or 

“gear-like” backward whirl because of the no slip condition or ‘synchronization’ of the shaft outer diameter 

and the diameter of the lip constraint of the base piece.  Examining a longer section of the video this 

synchronous behavior was not consistent for more than a few cycles at a time before having some slipping.  

As a caution to the readers, this jargon can lead to some confusion where ‘synchronous’ forward whirl 

denotes the comparable angular velocities between the shaft rotation and orbit.  

 

 

Figure 31. Video stills depicting forward synchronous whirl continued, Part 2.  In frame 7 8 and 9 the 

shaft coming around to forward, by 12 the shaft has just about returned to the position in frame 1.  Notice 

that the ‘scribe’ line has also returned to the original position. 

4.4.5 Vibration Response Surface Experiments 

The rotating tests recorded acceleration levels, using a response surface emulating the field generated 

parameter maps.  Presented are boundary surface plots of the torsional measured position vibrations, the 
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difference between the two measured in plane accelerations and the gyro measured values formed into an 

index value.  

 

 

Figure 32. Clockwise rotation filmed with the annual constraint removed showing forward whirl.  60 

frames per second stills.  The shaft rotating clock wise is also orbiting clock wise around the base 

constraint.  The circle highlights a blemish that is helping visually track rotation. 

Figure 34 shows the torsional vibration response surface.  On the X-axis is the rotation speed of the 

fixture, on the Y-axis is the force recorded at the bottom of the shaft.  The surface bounds the average one 

second vibration for the particular set of parameters.  Superimposed is the demonstrated axial load limit.  

This plot is designed to mimic the design of the Anadrill (Schultz 2005) parameter map method for 

identifying and mitigating vibration. 

Figure 35 shows Shaft B’s vibration response.  It possesses definite geometry but not much is going 

on below 150 RPM with the exception of the tail of a feature that runs through the map.  It is also important 
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to note that this shaft configuration had the most difficulty transferring force, it was also the farthest below 

the expected calculated values in the buckling tests.  The slope of the response area follows the buckling 

limit closely. 

Figure 36. shows shaft C’s vibration response in terms of acceleration averages for a range of axial 

loads and rotation speeds.  Shaft C is unique in the group that it has acceleration values as high as 4g even 

at low RPM and in the less than 0.75 lb. range.  Shaft C’s response is also unique in that it has a band of 

lower vibration (less than 1 g’s) around 0.75 lbs. Also the low vibration even at values as large as 400 RPM 

@ 1.75 lbs. resulting in less than one g. 

Figure 37. shows shaft D’s vibration response in terms of acceleration averages for a range of axial 

loads and rotation speeds.  Shaft D had an ever increasing vibration response to RPM.  Only a small section 

around 550 RPM and 0.6 lbs. had unusual stability.   

At this point in the analysis one can see the characteristic response of the four shafts is similar, 

although each shaft configuration has some unique elements.  Shaft A only developed vibration as high as 

3 g’s in a few spots, while the others had a fairly consistent ramp from 0 to 5g’s.  Shaft B was uniquely 

limited in how much axial load it could develop despite having the same maximum axial displacement 

applied.  It also had a kind of band of elevated vibration right through it.  Shaft C also had a kind of band 

of elevated vibration.  Now let’s consider the Sperry diagnostic method for identifying stick-slip behaviors, 

separation of the acceleration values.   

Figure 38 shows upper boundry of the seperation in the measured average torsional and radial 

position values for shaft A.  Using an algorithim inspired by the Sperry-Sun method, the whirl mode may 

be predicted. Over a range period of time lateral vibraion is just noise in the averageing of the rotation 

speed. The differince in the values is an indication of a change in mode of vibration. Shaft A had an elevated 

difference around 300 RPM and 1.25 lbs.  It is worth noting that even at the highest points in the parameter 

range the response is not greatest. 
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 Figure 33. Clockwise rotation filmed with the annual constraint removed showing backward whirl.  
60 frames per second stills. The shaft rotating clock wise is also orbiting counter clock wise around the 

base constraint.  The blemish is difficult to track in the stills, however it stand out prominently in the 

video. 
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Figure 34. Shaft A torsional vibration response surface. This plot designed to mimic the Anadrill 

mitigation method regions shows regions of different average vibration levels.  In this case for shaft A, 
vibration from the torsional orientated accelerometer 1 second averages, increases from less than 1g’s to 

above 1g’s around 200 RPM.  Levels between 1g’s and 2 g’s past this point with a few regions with 

values up to 3 g’s scattered through map. 

 

Figure 35. Shaft B torsional vibration response surface. The force vs. RPM, average acceleration 
parameter map for shaft B shows an increase of vibration response as RPMs increase.  From less than 1 

g’s at 100 RPM up to 5 g’s around 500 RPM.  Also a near linear feature cuts across the range with 

elevated levels, Starting at 100 RPM and 1 lb., going to 400 RPM and 0.5 lbs.  A second feature of 
elevated vibration sits around 1 lb. and 400 RPM. 
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Figure 36. Shaft C torsional vibration response surface. The force vs. RPM, average acceleration 
parameter map for shaft C is a sharp contrast from the other shafts, having measured average acceleration 

of more than 4 g’s in the lower force lower RPM region around 0-300 RPM and less than 0.75 lbs.  The 

area between 300-400 RPM has mostly less than 1 RPM.  Past 400 RPMs the some elevated vibration is 

present. 

 

Figure 37. Shaft D torsional vibration response surface. The force vs. RPM, average acceleration 

parameter map for shaft D is much like that of Shaft B without the bands of elevated response.  

Vibration’s measured show an increase from less than 1 g’s around 175 RPM, to 4 g’s by 350 RPM. 
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Figure 38. Shaft A vibration separation response surface. Parameter map response for the difference 

of the two in plane acceleration measures the torsional and radial measures for shaft A.  The largest delta 

is around 1.25 lbs. and 200 RPM. 

Figure 39 is the same style of plot for shaft B.  Shaft B’s response takes on a different character in 

that it is constantly increasing with RPM.  This is a carryover from the near linear effect in vibration increase 

seen for the stabilized shafts.  

Figure 40 shows the same response for shaft C.  The response here is sufficiently complicated not to 

be generalized well by a one-dimensional function of rotation speed.  Specifically note that the region above 

550 RPM and above 0.75lbs.  experiences about the same as the region around 300 RPM of between 2 and 

3 gs.  

Figure 41 shows the shows upper boundry of the seperation in the measured average torsional and 

radial position values for shaft D.  Shaft D’s response is fairly one demensional with the exceptionof the 
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region right around 550 RPM and 0.65 RPM that is less than 1 g’s.  This was noted as physicaly a very 

‘smooth running’ parameter during physical observation for both shafts configured in this fasion and is not 

an artifact of proccessing.   

 

Figure 39. Shaft B vibration separation response surface. Parameter map response for the difference 
of the two in plane acceleration measures the torsional and radial measures for shaft B.  Shaft B is 

different from Shaft A’s response, above 350 RPM the separation increases to past 3 g’s in places. 

The delta average acceleration measure produced unique regional distributions for each shaft 

configuration.  Next let’s look at the gyroscopic results.  It has already been shown that a level of torsional 

vibration was fairly ubiquitous, especially past 200 RPM.  The gyroscopic measure is perhaps a more direct 

way to identify stick-slip behavior.  Two index values are established for the sake of simplification.  If a 

minimum recorded continuous RPM data point inside a one second sample qualifies, the parameters for 

that entire second period where consider qualified for stick-slip measures.  The first qualifier was a RPM 

point near zero (less than 10) when the input average was at least 10 greater.  The second qualifier was a 
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RPM point that was less than half the total RPM observed from the motor.  In the screening tests 

dimensionless stick-slip was presented.  In the index presented in this section a 2 point value is equivalent 

to a 0.5 or greater dimensionless stick-slip.  The index presented in the results here included the ‘near 

stopped’ ten RPM or less factor to highlight the near stop condition. The equivalent  In the preliminary case 

the motor slowed down significantly during some behaviors, that did not appear to happen with the AC 

drive and induction motor.  The effect was that stick-slip behaviors had a shorter period.  The qualified 

points are displayed to demonstrate where stick-slip is occurring. 

 

Figure 40. Shaft C vibration separation response surface. Parameter map response for the difference 
of the two in plane acceleration measures the torsional and radial measures for shaft C.  In shaft C the 

vibration separation past 350 RPM takes off past 4 g’s. 

Figure 42 shows the bound for the stick-slip index values for shaft A.  The index is assigned one 

point for having a sample less than 10 RPMs slower than the input, and 2 points for having a minimum 

measured average less than half the input speed.  Three points for both conditions.  A green peak or plateau 

has one point, a yellow peak or plateau has two points.  Red regions are experiencing both conditions, near 
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zero rotation speed and a minimum of one half rotation speed.  Shaft A is experiencing qualifying stick-

slip conditions regularly below 100 RPM independent of axial load and above 1.5 lbs. independent of RPM.  

The values around 600 RPM that are manifesting in all of the tests may be an artifact of the control scheme 

of the drive system. 

 

Figure 41. Shaft D vibration separation response surface.  Parameter map response for the difference 
of the two in plane acceleration measures the torsional and radial measures for shaft D.  Shaft D is the 

most pronounced increase, mostly due to having the smallest values for radial acceleration. 

Figure 43 shows the bound for the stick-slip index values for shaft B.  Shaft B was mostly free of 

qualifying values above 120 PRM. 

Figure 44 shows the bound for the stick-slip index values for shaft C.  Shaft C is moderately free of 

qualifying responses with the exception of “bands” of vibration that cross through the parameter space.  The 

band manifestation will be addressed further in the discussion section. 
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Figure 45 shows the bound for the stick-slip index values for shaft D.  Shaft D has qualifying 

responses below 150 RPM.  It also has a band around 0.4 lbs. and another region around 250 RPM and 1 

lb. 

 

Figure 42. Shaft A stick-slip index response surface.  Parameter map response for proceed values 
from gyroscope and fixture speed differences for Shaft A.  Stick-slip index values manifest in places 

below 400 RPM regularly, the region above the axial load ~ 1.7 lbs. qualifies for stick-slip nearly 

throughout. 

The test battery shows the similarities and distinction of each configuration. Figure 46 shows a summary 

of the previous surface response figures. 
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Figure 43. Shaft B stick-slip index response surface.  Parameter map response for proceed values 
from gyroscope and fixture speed differences for Shaft B.  The higher loads where not achieved on shaft 

B so it is hard to say what would happen above the calculated buckling values.  The region qualifies for 

stick slip around 50 RPM and 0.3 - 1.1 lbs. 

 

Figure 44. Shaft C stick-slip index response surface.   Parameter map response for proceed values 

from gyroscope and fixture speed differences for shaft C.  Shaft C manifests a stipe qualifying as stick-

slip around 0.7 lbs. and around 80 and 425 RPM.  This response is very different than the previous 
examples. 
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Figure 45. Shaft D stick-slip index response surface.  Parameter map response for proceed values 
from gyroscope and fixture speed differences for shaft D.  Stick-slip was mostly on the left side and upper 

left in this plot.  Some sliver of far right behaviors also existed. 
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Figure 46. Summary image showing the average torsional acceleration, the average delta acceleration, 

and the stick slip index as calculated by gyro measurements. Plotted in the rotation speed axial load space.  

Note here the different results for the different geometries.  Shafts B and C have a different response at 

high RPM and moderate loads.  Shaft A has a region of high stick-slip index along the high load range, 
dissipating some at higher RPMs. 
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4.5 Results from the Numerical Experiments 

4.5.1 Numerical Simulation of Buckling 

A detailed treatment of the buckling calculations is presented in Appendix IV.  Table 3 presents the results 

of established formulas and the numerical simulation results from Ansys(TM). 

 

Table 3. Buckling Results for Euler, Wu and Numerical Simulation. 

Method Value Units 

Euler Buckling pin /pin 6.848 Pounds force 

Euler Buckling fixed / free 1.712 Pounds force 

Wu  1.717 Pounds force 

Ansys(TM) (linear buckle pin /pin) 6.732 Pounds force 

Ansys(TM) (linear buckle fixed /free) 1.696 Pounds force 

 

It is notable that Euler fixed/free solution is less than 0.3% different to the Wu (1993) solution.  

Figure 47 and Figure 48 show the graphical version of the numerical buckling results.  It is interesting to 

note the insights from this type of visualization is that  buckled members here “buckle” first or deform the 

most at the unsupported points. 

4.5.2 Numerical Simulation of Vibration Mode 

The values calculated for buckling behaviors are 99% the same between the numerical simulation and the 

simple calculation. The recorded values from the experiments are within the range of the calculated values 

also. The modeled results have been shown to have R-squared values greater than 0.9, so this would seem 

to be an acceptable match.  The modal simulation does not produce a direct analog to the acceleration values 

measured.  Instead, the modal analysis simply predicts regions of special behaviors.  In the unstable critical 

speed regions one would expect impacts and elevated vibration values, in the stable critical speed regions 

one could possibly expect lower or higher values and fewer impacts. 
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Figure 47. A screen capture of the graphical representation of the buckling simulation.  It is worth 
noting the red that is of value one on the scale is multiplied by the load multiplier 6.7322 lbsf.  The 

boundary conditions here are both ends pinned. One might also not that the column is only “buckled” in 

the center. 

 

 

 

Figure 48. A screen capture of the graphical representation of the buckling simulation.  It is worth 
noting the red that is of value one on the scale is multiplied by the load multiplier 1.6955 lbsf.  The 

boundary conditions here is that the one end is free the other fixed. One might also not that the column is 

only “buckled” at the bottom. 
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The shaft A configuration is predicted to have both backward and forward whirl results, however 

none are expected to have stability based on numerical model modal results. (Figure 49)  

 

 

Figure 49. Shaft A modal results. The aggregated prestress modal results for the shaft A assembly.  

The analysis predicted three unstable whirl phenomena in the parameter space examined. 

The Shaft B simulation had unique results for the set, critical speed trends changed from forward to 

backward whirl predictions and both forward and backward whirl regions found stability.  Also the stable 

regions where not linearly connected. (Figure 50) 

The Shaft C results only predicted backward whirling.  This whirling was stable at the 300 RPM and 

half pound load point. (Figure 51) 

The Shaft D results predicted stability at the higher load ends of both whirl lines. (Figure 52) 

The modal results share a critical speed solution around 1 to one half pound load for around 25 to 50 

RPM.  For shaft A this region was predicted to be in forward whirl, for assemblies C and D backward.  

Assembly B’s response is unique in that this region transitioned. Shafts A, B and C also share a region 

around 250 to 300 RPM across the range.  It might be noted that the slope of the loaded critical speed lines 

are not parallel. Figure 53 shows overlaid the results of the numerical models for the four shaft systems.   
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Figure 50. Shaft B modal results. The aggregated prestress modal results for the shaft B assembly.  

The analysis predicted three trends of critical speeds, the lower speed range one and the upper most speed 

range had stable regions.  Also, the results predicted that two of the regions would transition from forward 

to backward depending on the loading conditions.  A dashed line connects the stable regions.  A dotted 
like separated Backward and forward whirl on a trend line. 

 

 

Figure 51. Shaft C modal results. The aggregated prestress modal results for the shaft C assembly.  

Two backward whirl trends are predicted with a stable region in the lower load range for the trend around 
300 RPM.  A dashed line circle is placed around the observed stable point. 
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Figure 52. Shaft D modal results. The aggregated prestress modal results for the shaft D assembly.  

Two whirl trends predicted, both with stable regions in the higher axial load portion of the trend.  A 

dashed line connects the stable regions. 

 

 

Figure 53. Modal results overlay for shafts A, B, C, D. Simulated critical speed results for all four 
shaft together.  A slight offset was allowed to show the overlapping points better.  



  

51 
 

CHAPTER 5. DISCUSSIONS  

5.1 Prestress Modal Simulation and Experimental Results on the Response Surface   

This section The modal simulation results allow the opportunity to compare the method to what happened 

in the lab.  Examination may reveal if acceleration values  crossing the unit thresholds can be related. 

In shaft A the threshold around 1 g is mostly between the second and third critical speed lines. (Figure 

54)  It could also be observed that the local minima for the axial load limit line is along the second critical 

speed lines path.  Vibration above one g follows the threshold defined by the second and third critical speed 

lines.   

  

Figure 54. Shaft A torsional vibration response surface with modal simulation results. Simulated 

critical speed results imposed on the torsional acceleration measurements for shaft A.  Notice the critical 

speed line around 200 RPM crosses the axial load line at a local minima. 

Shaft B may also be compared to the critical speed results. (Figure 55)  First the stable regions on 

the critical speed line near 525 RPM are in a region of the highest torsional vibration results.  The transition 
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between backward and forward is near the axial load limit threshold for the critical speed region around 

300 RPM.  The stable regions connection line trends with an elevated vibration level from the first and third 

critical speed lines.  This might be noteworthy as typically one might expect lower levels of vibration in a 

“stable” condition. 

 

Figure 55. Shaft B torsional vibration response surface with modal simulation results. Simulated 

critical speed results imposed on the torsional acceleration measurements for shaft B. 

Shaft C again exhibits a local minima of the axial load line limit line near a backward critical speed 

line. (Figure 56)  Again greater vibration levels are in a “stable” region.  The unusually low vibration area 

around half a pound and 410 RPM is more than 100 RPM from that stable point on the critical speed plot. 

Shaft D has a faint trend around 25 RPM that may correlate to the stable backward whirl prediction. 

(Figure 57) Again an elevated vibration level near a stable prediction. Shaft D also presents the only stable 
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region above the plotted axial load limit and the connection between the two stable regions does not 

correlate to anything the acceleration shading would indicate. 

 

 

Figure 56. Shaft C torsional vibration response surface with modal simulation results. Simulated 

critical speed results imposed on the torsional acceleration measurements for shaft C.  Notice the critical 

speed line around 300 RPM crosses the axial load line at a local minima. 

Looking at the Modal plots reviled a few trends, one of which was the load limit lines that had local 

minima, assemblies B and C had a critical speed line for backward whirl through them.  The prediction of 

stability from the analysis correlated with increased vibration levels about one g. The comparison with the 

stick slip index values was not noteworthy and the plots are not presented here although one can exam the 

plots presented here.  The Modal method predicted whirling all over the parameter range, reinforcing the 

idea that whirl is present all very often.  However, a second look reveals that that at the 1.5 and 2 pound 
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loading no whirl was predicted until at least 160  RPM. Still the trend with the local minima is related to 

buckling, and it was recognized from the buckling simulation was that the method matched the non-rotating 

results well.   

 

 

Figure 57. Shaft D torsional vibration response surface with modal simulation results. Simulated 
critical speed results imposed on the torsional acceleration measurements for shaft D. 

In the results section an examination of the lower boundary condition was made.  One major 

discrepancy noticed for the dimensionless stick-slip plot was that the lower bound of the force range was 

relatively stable at ~0.10 lbs lower, this is the same as the weight of the 1 by 4 inch pin. (Figure 58) The 

region of elevated values around 30-130 RPM and 0.4 lbs present in the pinned boundary and not the free 
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boundary suggests for this load a greater side force was present.  Possibly this is due to the lack of distance 

for displacement of the shaft. 

 

Figure 58. Pinned dimensionless slick-slip screening test.  The region around 0.4 lbs load and 90 

RPM is circled, this region was not present in the free endpoint condition.  In this case it is possible that 

the increased side load due having no displacement at the bottom increased this measure. 

5.2 Discussion of Mitigation Method 

The question around the application of the “Anadrill Method” warrants some discussion. (Burgess and 

Martin 1995) First let’s revisit Table 4 and look at the potential fixes.   

  

Table 4. Vibration Mitigation Table for Stick-slip and Ehirl- edited. (Burgess and Martin 1995) 

Vibration Potential Cure Directions of travel on RPM vs 

Load Plot 

Stick-Slip STOP – reduce WOB and increase RPM  

BHA whirl STOP - reduce RPM and increase WOB  
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The question now is if one followed the cures suggest could it be effective to arrive in a lower severity 

region of operating parameters.  Looking at Figure 59 and Figure 60 the answer is simply “Yes”, although 

some additional insight to the application is gleaned too.  From the starting position one (1) for stick-slip 

perhaps only reducing axial load (WOB) is necessary, however from starting position two (2) perhaps only 

increasing RPM is necessary.  So how would a practitioner know what potential steps to take, so do both.  

Also, some pragmatism is built into the combination of doing both, as perhaps a reduction of rate of 

penetration could be avoided by the other parameter compensating for loss of energy.  The suggestion that 

the boundaries are more often diagonal as suggested by Dunayevsky’s (1998) work was not observed. 

 

 

Figure 59. Stick-slip index response surface with Stick-slip mitigation. Work through stick-slip 

mitigation on shaft a response surface. 

The next question addressed is the mapping of region boundaries using a shaft system analog to the 

BHA.  This means no bit effects and no drill string effects are being accounted for directly by the model.   

Yes regions could be mapped, however with other effects; the effects of the drive system were still present 
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and can be noted in the difference between the preliminary system and the test fixture used for the final test 

battery.  Placement of stabilizers had effects as can be seen in Figure 46. 

 

 

Figure 60. Shaft D torsional vibration surface with whirl response mitigation. Work through whirl 
mitigation on shaft a response surface. 

 

The simulation results provided some unique insights.  The buckling simulation aligned well, 

however so did the simpler calculations.  Critical speed lines established a theoretical region without whirl, 

the region aligns notionally with industry methods. (Figure 61) Critical speeds nor stable whirling regions 

predicted by rotor dynamics modal analysis could be correlated with directly vibration intensity most 

notable for “stable” critical speed regions.  Also, the critical speed region prediction did align with the 

experimentally observed local minima of the axial load limits.  The critical speed threshold was seen to be 

the vibration severity threshold as exemplified by shaft A.    
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Figure 61. The image suggested by the Anadrill method is clearly not that of any part of response 

surfaces. 

This interpretation method is based on the idea that the lateral components of the measured vibration 

should cancel out when subtracted leaving only the elevated response from angular acceleration.  This 

interpretation should be revisited as based on the results in this experiment it is not a good indicator for 

variation in rotation speed. 
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Figure 62. Comparison of the “Sperry-Sun” method to the stick-slip index. 
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CHAPTER 6. CONCLUSIONS 

In this study the flexible shaft system has been observed to achieve the behaviors of stick-slip and whirl 

without the use of an analog for a drill string or bit.  It is not the suggestion that other components be 

ignored in practice, but that the behaviors and phenomena of BHA vibration have been shown to fit into 

the industry’s de facto standard method of mitigation.  This presentation of the rotating flexible shaft system 

is so far unique, and presents a usable set of examples for discussion on stick-slip and whirl. 

6.1 Evaluating Hypotheses  

1) A flexible shaft system without a drill bit will not experience stick slip or whirl. 

This is shown false repeatedly.  First in the time based standalone, time based results.  As shown 

in the video stills, and finally by the parameter map plots.  Also the numerical modeling supports 

who and how this is possible. 

2) Flexible shaft systems of varying stabilization geometries will produce the same levels and types 

of vibrations over a range of conditions. 

This proven false.  The responses recorded and the numerical model results clearly show that the 

stabilization geometry creates variation in level and types of vibration. 

3) Vibration levels in a flexible shaft are a function of rotation speed and axial load, and manifest 

regionally as suggested by the Anadrill Methods materials that support the continued successful 

use of the method. 

Yes and no.  When the rules were applied to the response surfaces the expected reduction in 

vibration level was eventually reached.  However the imagery that had developed along with the 

model was not observed in the lab or with numerical simulation.  This could be perhaps due to 

the lack of a bit effect in either model. 

4) Does the flexible shaft system only experience Stick-Slip above a buckling limit. 

No stick-slip was observed in all models in the low rotation speed region.  However in the case 

of the slick assembly a large region of stick slip did occur when the system was operated past is 

axial load limit.  It has not been previously discussed but many BHA are perhaps designed so 
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that at the upper end of the operating WOB range a non-stabilized section of the BHA is making 

a tangency point with the borehole wall and achieving this stick-slip.   

6.2 Mitigation Method Findings  

The Anadrill mitigation method was seen to be good go-by if one were to apply it to the behaviors and 

response of the flexible shaft systems in the test fixture.  Navigating the response surface parameter map 

with Anadrill’s rules results in decreasing the magnitude of the measured symptoms of the dysfunction. (as 

seen in section in 5.2)   

6.3 Measurement and Diagnoses 

Another significant finding of this study is that two accelerometer based methods to measure and diagnose 

stick-slip could be improved on. (Figure 46) The current method as employed with the test fixture simply 

did not match the results of direct measurement from the gyroscope package.  It is entirely possible the 

uptake of that method depends on elevated vibration being absent during stick-slip driven dysfunction. 

(Dunayevsky 1998)   This is important when one considers the next conclusion… 

6.4 Effects of BHA Geometry   

Qualifying stick-slip and vibration recognized as whirl observed in the flexible shaft system where not 

mutually exclusive, although the manifestation of one could influence the magnitude of the other. (Wu 

2010) Down hole dynamic conditions need to be mitigated to promote improved performance, however in 

this study, the flexible shaft system typically transitioned from manifesting one dysfunction to the other, 

(Figure 21) and as seen in Figure 46.  This begs the question, when reduced to the lowest magnitudes 

possible, what type of remaining dysfunction is preferred.  Unfortunately, the experiments with the flexible 

shaft system did not address this question. 

The slick shaft (shaft geometry A) was the only of the four geometries that exhibited stick slip at an axial 

load threshold consistently. (Figure 48)  This threshold was above the calculated sinusoidal buckling and 

measured average axial load limits.  This suggests that proper stabilizer placement can effect buckling 

related stick-slip conditions.  One should remember that possibly in any drilling BHA the top of the 
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assembly is not stabilized as it is not common practice to place stabilizers in this region.  This gives the 

BHA designer another reason to check weight on bit expectations for the job.  This geometry also was the 

only one that did not experience its highest levels of vibration at the highest range of rotation speed. 

Shaft D exhibited a unique reduced vibration area at high rotation speed in the lower axial force range.  This 

zone or sweet spot was achieved in multiple tests. (Figure 46)  This gives credit to the belief that a properly 

designed BHA can be relatively calm vibration wise even at rotation speeds as high as 550 RPM.  No 

suggestion of how to achieve this design is made. 

In this study the shaft geometries with stabilization exhibited measured torsional vibration that increased 

directly to rotation speed. (Section 4.4.5) 
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CHAPTER 7.  FUTURE DIRECTIONS  

Again, this study demonstrated that the simple system of the rotating flexible shaft could produce both whirl 

and stick-slip behavior. (sections 4.1 and 4.2)  This should give renewed hope to would-be numerical 

modelers, however the simulation approach used in this study did not compare the predicted amplitudes of 

vibration.  This would be a worthwhile follow up work. The preliminary tests demonstrated the effects and 

coupling with the drive that could result in stick-slip events with a 6 to 9 second period including a period 

of effective backward rotation. (section 4.14.2)  Changing the drive system did not eliminate qualified stick-

slip behaviors, however it did reduce the period of such behaviors to one or two seconds, where the drive 

was still turning and the stall was in the shaft itself.  This finding reinforces the importance of factors outside 

the dynamics of the shaft alone. Future modelers should seek to incorporate drive controllers that can mimic 

a range of responses reflective of the various drives used in industry and drill bit effects to better approach 

the boundary conditions experienced by a drilling system.   
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APPENDIX I: ADDITIONAL PROCEDURES AND EQUIPMENT SETTINGS  

It is the perceived responsibility that a laboratory experiment such as this leave enough documentation that 

one could recreate the results independently.  Therefore this section of the appendix presents documentation 

to utilize the novel sensor array configuration used in this study.  

This section includes operating details and calibration procedures specific to the tools used in this 

study.  The use of the equipment is not intended to be a commercial endorsement by the author or LSU of 

the brand or product, it is simply included for completeness and transparency.  This work used several 

measurement and control apparatus including: 

The Nintendo Wii Remote “wiimote” with motion plus in the preliminary tests, and the Wii Remote 

plus. 

The Nintendo Wii Balance Board 

Wireless Bluetooth PC dongles, with the GlovePie application and custom scripts 

A Philmore Variable Transformer 

An Automation Direct GS1-10P5 AC Drive, with the Gsoft application. 

Additional Information 

Information about the Nintendo hardware is ubiquitous, however detailed information is in the help files 

for GlovePie. 

Information about the GS1 controller is currently available from automation direct at: 

http://www.automationdirect.com/adc/Shopping/Catalog/Drives/GS1_(120_-z-_230_VAC_V-z-

Hz_Control)/GS1_Drive_Units_(120_-z-_230_VAC)/GS1-10P5  

The manual is currently available at:  

http://www.automationdirect.com/static/manuals/gs1m/gs1m.html 

None of the values were changed from the default settings except P4.00 was adjusted to 5 to allow frequency 

(speed) to be changed over PC software.   

http://www.automationdirect.com/adc/Shopping/Catalog/Drives/GS1_(120_-z-_230_VAC_V-z-Hz_Control)/GS1_Drive_Units_(120_-z-_230_VAC)/GS1-10P5
http://www.automationdirect.com/adc/Shopping/Catalog/Drives/GS1_(120_-z-_230_VAC_V-z-Hz_Control)/GS1_Drive_Units_(120_-z-_230_VAC)/GS1-10P5
http://www.automationdirect.com/static/manuals/gs1m/gs1m.html
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GlovePie is a software written and distributed by Carl Kenner.  The software interfaces with many 

PC and console gaming peripherals / controllers including the wiimote.  The application allows custom 

scripts to be written to interface with the PC.  The application also allows logging data files and visualizing 

device measures.  The application is currently available at: http://glovepie.org/glovepie.php.  Below are 

examples of the scripts used in this study. 

Wii remote Calibration 

//------------------------------------------------------------------------------- 
// WiiAutomatedCalibration.PIE 

// 

// Developer: Winko Erades van den Berg 

// E-mail : winko@winko-erades.nl 
// Developed: 13 February 2010 

// Modified: 13 February 2010 

// Version: 1.0 
// 

// Description: 

// Automated calibration for your Wiimote! 
// Place the Wiimote face up on a flat surface. 

// Wait for Calibration = 100 % 

//------------------------------------------------------------------------------- 

 
// Set your Wiimote LEDs to your liking. Binary value, 1-15 

var.leds = 1  

 
// Determinate Offset 

if var.calibrate < 200 then 

var.XOS = var.XOS + Wiimote.RawForceX 

var.YOS = var.YOS + Wiimote.RawForceY 
var.ZOS = var.ZOS + Wiimote.RawForceZ 

 

var.xOffset =  var.XOS / var.calibrate 
var.yOffset =  var.YOS / var.calibrate 

var.zOffset =  var.ZOS / var.calibrate 

 
var.calibrate = var.calibrate + 1 

var.calibration = var.calibrate * 100 / 200 

endif 

 
// Calibration 

if var.XOS > 0 then 

var.xRot = Wiimote.RawForceX - var.xOffset 
else 

var.xRot = Wiimote.RawForceX + var.xOffset 

endif 
 

if var.YOS > 0 then 

http://glovepie.org/glovepie.php
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var.yRot = Wiimote.RawForceY - var.yOffset 

else 
var.yRot = Wiimote.RawForceY + var.yOffset 

endif 

 

if var.ZOS > 0 then 
var.zRot = Wiimote.RawForceZ - var.zOffset 

else 

var.zRot = Wiimote.RawForceZ + var.zOffset 
endif 

 

// Debug window output  
debug = "Calibration=" + var.calibration +"%" + "  X=" + var.xRot + "  Y=" + var.yRot + "  Z=" + 

var.zRot 

 

 
//Glovepie script 

//------------------------------------------------------------------------------- 

// GyroRPM_BB_Accel.PIE 
// 

// By: Richard Duff 

// rduff1@lsu.edu 
// 

// This script reads the gyro position and calculates and returns rotation speed 

// in RPM, it also returns the self-calibrated values of the accel package, and 

// reads the self-calibrated load values of a Wii Balance board. 
// the sample rate may be adjusted. 

// The screen will show the current Rotation speed and axial force in lbs. 

// a file named output.txt will contain the accel values, the angular position 
// the calculated rotation speed, the total balance board load, and a 

// self-calculated distribution of the balance board load. 

//------------------------------------------------------------------------------- 

 
 

// seems to work well between .1 and 120 Hz 

PIE.FrameRate = 100hz 
//convert time into seconds. 

var.t=time*86400 

 
 

//Writes motion data to file, roll speed/6 is to conver deg/sec to RPM, weight / 2.2 is kg to lbs. 

OutputToFile(RemoveUnits(var.t)+","+Wiimote.gx + ", " + Wiimote.gy + ", " + Wiimote.gz + ", " 

+ wiimote.MotionPlus.GyroRoll + ", " + RemoveUnits(wiimote.MotionPlus.RollSpeed/6) + ", " + 
RemoveUnits(BalanceBoard.Weight/2.20462262) + " , " + BalanceBoard.JoyY + " ," + 

BalanceBoard.JoyX ) 

 
//full debug output  (useing this debug output was slowing the right speed on my poor t61, even with 

the SSD. 

//debug = RemoveUnits(var.t)+' sec,  TOR: '+wiimote.gx+' , RAD: '+wiimote.gy+' , RPM: 
'+RemoveUnits(wiimote.MotionPlus.RollSpeed/6)+', LBS: ' 
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+RemoveUnits(BalanceBoard.Weight/2.20462262) + ', OUT: '+BalanceBoard.JoyY+', Right 

'+BalanceBoard.JoyX 
 

//used debug output 

debug = 'RPM: '+RemoveUnits(wiimote.MotionPlus.RollSpeed/6)+', LBS: ' 

+RemoveUnits(BalanceBoard.Weight/2.20462262 
 

Drive Selection 

A calibration check of the wiimote involves running the calibration script and seeing if the offsets have 

changed.  If the offsets changed more than 5% then it was suggested that the tests be reran.  If the offsets 

were found to be always changing the offset could be applied to the recorded values.   

A check of the balance board involved staking four 2.5 lb. weights into the center of the balance 

board checking the value returned for each weight.  If the balance board returns more than more than 2% 

difference then it was suggested the tests be reran. 

During the development of the physical model prototype versions used DC motors.  An early 

production version of the experiment was developed   employed a variable transformer on a “softstart” 

motor.  The softstart motor’s characteristic was that it did not come to full torque from full stop.  One the 

transformer it’s torque was proportional to its speed. This performance was recognized and the desire to 

have a motor more capable of holding a constant torque even at low rotation speeds was sought to mimic 

the current generation of AC drives on drilling rigs.  This system used a digital variable frequency AC drive 

with an inverter duty motor to achieve this goal.  The associated diagrams for the motors and control 

schemes can be seen in Figure 63 and Figure 64.    

 

Figure 63. Motor RPM control scheme used in preliminary testing. 



  

73 
 

 

 

Figure 64. Wiring diagram for 0.5 HP inverter-duty AC motor attached to a 0.5 HP AC drive.  

Using Acceleration and Gyroscope Measurement to Measure BHA dynamics 

The development and testing of down hole dynamics measurement tools started with accelerometers. 

Perhaps this is because accelerometers were already being used in down hole tools for surveying.  Attempts 

were made using one, two, three and four accelerometers recording or reporting acceleration while the 

string was in motion (Deily 1968). Some tools located the accelerometers in the middle of the BHA in a 

sonde, others in the body of the collars. 

Today the use of accelerometers and gyroscopes in drilling measurement tools is wide spread.  

Diagnosis of vibration modes from acceleration measures was shown by Zannoni, Cheatham et al. (1993) 

with mathematics, laboratory work and field tests validating the methods for measuring BHA motion 

commonly used today.  Many more examples of interpretation system have appeared in literature from the 
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DDS tool by Warren and Oster (1998) and its peer tools by Robnett, Hood et al. (1999), Ashley, McNary 

et al. (2001) and Halsey, Kyllingstad et al. (1986) that use similar principles A robust explanation of the 

combination of the testing of the tool is found in literature (Zannoni, Cheatham et al. 1993) and US patent 

5864058 (Chen 1999). Figure 6 shows the orientation of the sensor package inside the flexible shaft.  

 

 

Figure 65. Sensor location inside cross section including shaft stabilizer and annular constraint 

boundaries. 

This investigation focuses on developing an improved mechanism for understanding dynamic 

behaviors that generate vibration.  The proposed mechanism investigated with the physical model described 

above and discussion on the materials and attempted scaling of the model presented in the Appendix III.  

The experimental fixture could be used in two ways.  One method is a directed manner designed to 

accomplish and demonstrate specific behaviors, and second is experimental operating in a range of 
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parameters and various configurations designed to capture the occurrence of specific behaviors relative to 

each other. 

Boundary Condition Friction Reduction Comparison. 

In the main experiments presented in this work the bottom point of the shaft in fixture sat on a disk 

that sat inside the fixture.  This endpoint was selected after experiences with other endpoint conditions 

during the screening tests, and preparation for a previous analysis strategy. During screening several 

different boundary conditions were examined.  The shaft has a tendency to deflect and lift off some force 

during rotation.  This is why for equal deflection the upper load limit is usually trending down.  It is 

worthwhile to explore the endpoint effects.  

To begin exploring the possible effects of the bottom point two new bottom endpoints were tested.  

For one test the bottom support disk was allowed to freely rotate, and second the bottom support disk was 

allowed to rotate freely and had a small extension that mated with the bottom of the test fixture shaft. For 

the sake of this discussion the first condition will be called “free” and the second “pinned”  It is believed 

that the effects in the first case was a reduction in friction, and in the second a reduction in friction and a 

centering of the base of the shaft.( 

Figure 66) 

 

Figure 66. A cross section representing modifications made the lower shaft receiver in the test fixture.  

The upper case the white disk is free to turn in the fixture, in the second case the disk is again free to spin 
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however the end of the shaft is mated over the grey pin.  The intention is to keep the shaft centered at the 

bottom.  Material was removed below the pin to keep the pin from touching the receiver. 

A slick shaft was used to in a screening demonstration to compare the endpoint effects.  The first set 

of plots is the average acceleration measured for the parameter range plotted. (Figure 67)  The second set 

of plots introduces a dimensionless stick-slip index. (Figure 68)  This number takes the difference between 

the average recorded RPM and the shaft RPM then divides by the shaft RPM.    

 

 

Figure 67. The recorded vibration from a single location in the shaft for the two boundary conditions 

examined.  The free condition looks much the same as it did in the earlier testing.  The Pinned condition 
on the right is devoid of the slightly elevated vibration levels 300 RPM and 0.6 lbs force. 

 
 

Figure 68. The stick-slip index in this case, dimensionless stick-slip pattern looks largely similar for 

both endpoints, both plots have an elevated feature around 0.9 lbs force extending from the left side of the 
plot, and an elevated level on the bottom edge.  Between 300-360 RPM is where both plots pick up ten 

time in magnitude.  Looking over to the Modal results the feature around 0.9 lbs on the left of each graph 
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is at a forward whirl critical speed, and the 300 RPM boundary is parallel to a second forward whirl 

critical speed. 

It should be noted that the endpoint changes presented minor changes to the behaviors of the shaft, 

however the shape of the response surfaces are comparable.  Future work may wish to explore the effect of 

the lower boundary condition further.   
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APPENDIX II: ACCELERATION MEASUREMENTS CALCULATION SYSTEMS 

Schemes of Measurement 

The cross section starting from an at rest position in the center of the hole can be completely described with 

the location of the center point and the radial location of a designated point along the edge.  Accelerometer 

placement at the center of the cross section of the shaft or in the body of the shaft is like industry schemes 

for measurement.  Allow the cross section of the shaft to be described as a circle with radius Rs with a local 

polar origin of (0,0°).  Measurement (the sensor position) may be located at (0,0°) or at (R,90°), where R is 

a positive distance less than Rs. (Figure 69) When r shows up later know that this represents that at the 

places it is being used, it is still possibly a geometry variable - a not yet fixed value. 

 

Figure 69. Depiction of potential positions for the sensor in a shaft, showing the origin, R and Rs. 

Motion 

The shaft cross section will be considered for three systems of motion (Figure 70): circular motion where 

the angular rate of rotation is not constant (non-uniform), non-uniform circular motion with a lateral motion 

and two simultaneous non-uniform circular motions. 
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Figure 70. Non-uniform rotation, non-uniform rotation with lateral motion and two non-uniform 

motion paths. 

Before going further into the results of such motion two discussions of the acceleration of an object, 

in this case the sensor package, are presented.  The first discussion is made using Cartesian like references 

and the second is an attempt to show a similar proof in polar coordinates.  Also, to make this attractive and 

comprehensible to a wider range of readers the first discussion will use Leibniz’s notation, and in the second 

Newton’s notation.  As a reminder Leibniz’s notation the derivative of the function x = f(t) is written 
d𝑥

d𝑡
 , 

in Newton’s notation the same could be written 𝑥̇. Also as a reminder a unit vector is a vector with length 

of unity, 1.  In this presentation the unit vectors in the first explanation will be i and j for Cartesian and ur 

and uθ for the polar non-uniform rotating reference frame (then quickly converted to Cartesian) Figure 71, 

however later when the rotating reference frame is showed for polar and curvilinear they will be eθ and 

understand that it will always be normal to er so still always linearly independent following perceived 

convention of the respected systems.(Figure 72) 

 

Figure 71. Unit vectors ur and uθ for the polar non-uniform rotating reference frame. 
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Figure 72. Unit vectors eθ and  er are linearly independent, for the polar curvilinear reference frame. 

Starting our discussion with the Cartesian unit vectors description, these polar unit vectors can be 

expressed in terms of Cartesian unit vectors in the x and y directions, denoted i and j respectively: 

ur = cosθ i + sinθ j         Equation 1 

and 

uθ = -sinθ i + cosθ j         Equation 2 

 

To find velocity differentiate. Where the angular velocity 𝜔 is 
d𝜃

d𝑡
.   

v = 𝑹𝒔
𝐝𝐮𝐫

𝐝𝒕
 =𝑹𝒔

𝐝

𝐝𝒕
(𝐜𝐨𝐬𝜽 𝐢 +  𝐬𝐢𝐧𝜽 𝐣) = 𝑹𝒔

𝐝𝜽

𝐝𝒕
 (−𝐬𝐢𝐧𝜽 𝐢 +  𝐜𝐨𝐬𝜽 𝐣) = 𝑹𝒔

𝐝𝜽

𝐝𝒕
𝐮𝜽 = 𝝎𝑹𝒔𝐮𝜽     

Equation 3 

The result shows that the magnitude of the velocity is 𝜔𝑅𝑠 . 

Taking the next derivative with time, 

𝐝𝐮𝜽

𝐝𝒕
= −

𝐝𝜽

𝐝𝒕
𝐮𝒓 = −𝝎 𝐮𝒓         Equation 4 

  Then the find acceleration, a: 

𝐚 = 𝑹𝒔 (
𝐝𝝎

𝐝𝒕
𝐮𝜽 − 𝝎𝟐 𝐮𝒓)        Equation 5 

The radial and tangential components may be seen as  
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𝐚𝒓 = −𝝎𝟐 𝑹𝒔𝐮𝒓    and    𝐚𝜽 = 𝑹𝒔
𝐝𝝎

𝐝𝒕
𝐮𝜽     Equation 6 and Equation 7 

So for the sensor in the body rotating at changing speed the radial and tangential components of 

acceleration are seen.  In the notation  (u𝑟, u𝜃) 

This acceleration result becomes:(Figure 73) 

( −𝝎𝟐𝑹  , 𝑹 
𝐝𝝎

𝐝𝒕
 )          Equation 8 

 

Figure 73. Acceleration of a rotating point in non-uniform circular motion. 

Previously the non-uniform circular motion for the measurement point in the BHA was described 

with unit vectors ur and uθ almost immediately going to Cartesian like i and j, with results in Leibniz’s 

notation for the derivatives.  Here as stated, the same unit vectors ur and uθ will be presented as er and eθ  

solved with Newton’s notation for the derivatives with polar coordinates in a curvilinear system with a 

treatment using imaginary numbers. Figure 72 shows we are going to call the radial unit vector er. This 

always points from the origin to the instantaneous position of the sensor or possibly the distance from the 

instantaneous center of rotation to the average center of rotation (Figure 74, Figure 75).  Also we will call 

the tangential unit vector eθ and understand that it will always be normal to er increasing in the direction θ. 

This no different than when we defined ur and uθ  before. 
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Figure 74. The center of the rotating shaft rotating (orbiting) about an average center of rotation. 

 

Figure 75. The sensor position in the rotating shaft. 

Figure 76 shows a possible configuration of the shaft in the annular “hole” while whirling.  Presented 

here to highlight the two-step approach is possible, and to help understand the systems measured response.  
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However, the following derivation still only applies to the system in Figure 74 or Figure 75, not yet the 

combined system.    

 

Figure 76. An amalgamation of Figure 74, Figure 75: Unit vectors eθ and er are on the reference co-

rotating frame at the instantaneous center of rotation, from origin at the average center of rotation, Unit 

vectors eθ1 and er1 are on a reference co-rotating frame at the sensor location, from the center of the shaft.  

Note the scale is distorted here to better show the position and relationships. 

The position vector r of the sensor location or shaft center can then be written. 

𝐫 = 𝒓 𝐞𝒓           Equation 9 

The vector r is in the direction as the radial unit vector e𝑟  and is of length 𝑟.  Now, the velocity of 

the sensor can be written 

 𝐯 = 𝐫̇ = 𝒗𝒓 𝐞𝒓 + 𝒗𝜽 𝐞𝜽         Equation 10 

Where v is the velocity vector, the derivative of the position vector r. In Newton’s notation we write 

derivatives with a dot. So ṙ. 𝑣𝑟  and 𝑣𝜃 are the radial velocity and tangential velocity respectively.   

Following along this same line of notation for the acceleration if you like 

𝐚 = 𝐯̇ = 𝐫̈ = 𝒂𝒓 𝐞𝒓 + 𝒂𝜽 𝐞𝜽                     Equation 11 
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Where 𝐚 is the acceleration vector, and 𝑎𝑟 and 𝑎𝜃 are the radial accelerations and tangential 

accelerations respectively.  So far nothing about this has been specifically polar coordinates, so how could 

this be expressed in the sensors polar coordinates 𝑟 and 𝜃. One could simply take the derivative with time 

and find. 

𝐯 = 𝒓̇ 𝐞𝒓 +  𝒓 𝐞̇𝒓           Equation 12 

This situation now with ė𝑟  being the time derivative of the radial unit vector, is non-zero because e𝑟  

changes direction as the object moves.  It may not be clear how to find ė𝑟 .  Let’s consider the following 

method with complex numbers and revisit this situation. 

A complex number 𝑧 where 𝑥 and 𝑦 are real and 𝑖 is the square root of -1 (and imaginary number).  

Here we would say 𝑥 is the real part and 𝑦 is the imaginary part because of the 𝑖 coefficient.  Please take 

care at this point not to recall that before when we used i and j for the Cartesian co-rotating reference frame, 

this i is not the same.  This can be written  

𝒛 = 𝒙 + 𝒊𝒚          Equation 13 

Alternatively this could be represented 

𝒛 = (𝒙, 𝒚)          Equation 14 

This reminds us of a way to visualize complex numbers, in the complex plane; however, we are going 

to stick with the 𝑖 coefficient notation. (Figure 77) 

 

Figure 77. The components of the complex number z, depicted on a Cartesian plane. 
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The modulus of the complex number is follows 

|𝒛| = √𝒙𝟐 + 𝒚𝟐          Equation 15 

A famous complex analysis known as de Moivre’s theorem, allows us to the complex number 𝐞𝑖𝜃, 

where 𝜃 is real. (Croucher 2012)  

𝐞𝒊𝜽 = 𝒄𝒐𝒔𝜽 + 𝒊 𝒔𝒊𝒏𝜽         Equation 16 

So following this visualization where the real and imaginary parts form the head of the vector and 

the origin the tail. Then the length of the vector could be given as 

  

|𝐞𝒊𝜽| = √𝒄𝒐𝒔𝟐𝜽 + 𝒔𝒊𝒏𝟐𝜽 = 1         Equation 17 

Here e𝑖𝜃 has been made a unit vector.  And that this e𝑖𝜃unit vector here is like our e𝑟  for a location 

with a polar coordinate (measured counter clockwise from the real axis) is 𝜃.  To get the corresponding 

tangential unit vector e𝜃 If we multiply by 𝑖 Then complex number   𝑖e𝑖𝜃can be written making use of 𝑖2= 

-1.  This is also a unit vector.(Figure 78) 

|𝒊𝐞𝒊𝜽| = √𝒔𝒊𝒏𝟐𝜽 + 𝒄𝒐𝒔𝟐𝜽 = 1              Equation 18 

 

Figure 78. The components of the complex number z substituted with terms from Moivre’s theorem , 

depicted on a Cartesian plane. 
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This vector is normal to 𝐞𝑟in the direction of increasing 𝜃.  As seen in the Figure 78.  Clearly 𝑖𝐞𝑖𝜃can 

now be identified as the tangential unit vector 𝐞𝜃 . 

Getting back to the object in non-uniform circular motion in the complex plane.  We can represent 

the instantaneous position vector of this sensor with the complex number  

 

𝒛 = 𝒓 𝐞𝒊𝜽                           Equation 19 

  

With the 𝑟(𝑡) being the sensor’s radial distance from the origin, and where 𝜃(𝑡)is the angular bearing 

to the real axis.  Now, 𝑧 can be the position vector for the sensor, then 𝑧̇ is the sensors velocity vector.  

Differentiating with respect to time we get, 

  

        𝒛̇ = 𝒓̇ 𝐞𝒊𝜽 + 𝒓𝜽̇ 𝒊𝐞𝒊𝜽                     Equation 20 

Differentiating again with respect to time. 

𝒛̈ = (𝒓̈ − 𝒓𝜽̇𝟐 )𝐞𝒊𝜽 + (𝒓𝜽̈ + 𝟐𝒓̇𝜽̇) 𝒊𝐞𝒊𝜽                   Equation 21 

Comparing this to the equations from before, and recalling that e𝑖𝜃 is analogous with e𝑟  and 𝑖e𝑖𝜃with 

e𝜃 

𝐯 = 𝐫̇ = 𝒗𝒓 𝐞𝒓 + 𝒗𝜽 𝐞𝜽       Equation 22 

𝐚 = 𝐯̇ = 𝐫̈ = 𝒂𝒓 𝐞𝒓 + 𝒂𝜽 𝐞𝜽                     Equation 23 

We obtain with substitution. 

𝒗𝒓 = 𝒓̇           Equation 24 

𝒗𝜽 = 𝒓𝜽̇ = 𝒓𝝎           Equation 25 

Where 𝜔 is the objects instantaneous angular velocity.  Continuing the substitution 

𝒂𝒓 = 𝒓̈ − 𝒓𝜽̇𝟐 = 𝒓̈ −  𝒓𝝎𝟐         Equation 26 

𝒂𝜽 = 𝒓𝜽̈ + 𝟐𝒓̇𝜽̇ = 𝒓𝝎̇ + 𝟐𝒓̇𝝎                     Equation 27 
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The recognized elegance of this derivation is that the complex analysis has taken care of the fact that 

the unit vectors 𝐞𝑟 and 𝐞𝜃change direction as the sensor moves. 

So let us consider the special case of the sensor in the tool.  Its radius is fixed, but it may experience 

varying angular velocity.  So that 𝑟̇ = 𝑟̇= 0. So the tangential velocity keeps it’s the form. 

𝒗𝜽 = 𝒓𝝎           Equation 28 

It’s the same as before, except now it is proven for non-uniform in a curvilinear style, as well as 

circular motion.  Similarly with  𝑟̇ = 𝑟̇= 0.  

𝒂𝒓 = − 𝒓𝝎𝟐                       Equation 29 

Again it’s the same as before, except now it is proven for non-uniform, as well as uniform circular 

motion. Finally looking at the tangential acceleration. 

𝒂𝜽 = 𝒓𝝎̇           Equation 30 

This 

Now, going back to the system of the cross section of the rotating shaft.  The results shown in 

𝐚𝒓=−𝝎𝟐 𝑹﷩𝒔﷩𝐮𝒓    and    𝐚𝜽 = 𝑹𝒔
𝐝𝝎

𝐝𝒕
𝐮𝜽     Equation 6 and Equation 7, 𝒂𝒓= − 𝒓𝝎𝟐                       Equation 29, 𝒂𝜽= 

𝒓𝝎̇           Equation 30 are consistent with the understanding presented in  (Zannoni, Cheatham et al. 1993) 

Sperry-Sun’s “Drillstring Dynamics Sensor”.  At the time it was recognized that the terms of the non-

uniform rotation solution between the sensor and the center of the shaft also needed to be added to the terms 

for the motion of the shaft around the in annulus. 

In the case of the body experiencing a secondary lateral motion while rotating the additional rotation 

would be added.  Consideration for the orientation must be accounted for. 

( 𝐚𝒓 + 𝐚𝒍𝟏    ,  𝐚𝜽 + 𝐚𝒍𝟐)         Equation 31 

The result will be dependent on the function of the lateral motion.  If the lateral motion is its own non-

uniform circular motion on the origin of the cross section.   In this way we can deal with decoupled 

acceleration contributors, acceleration from the rotation of the body, and acceleration from the motion of 



  

88 
 

the bodies center.  If the lateral terms are assumed to come from a path from Figure 70, the calculation for 

coupling may still be needed, as some special cases of fixed alignment or synchronization may arise. Unless 

we include a sensor to know the orientation of the body we would not be able to properly couple the terms.  

As the sensor response is considered let us consider if that important.  The situation is not dire in this study 

as sensor packages employed in this study the IDDS and the Wii remote plus have a dynamic orientation 

measure.   

Sensor Response 

Now consider the placement of accelerometers in the cross section of the shaft.  Consider the effects of 

placement of the accelerometer at (0,0°) or at (R,90°), where R is a positive distance less than Rs.  In the 

phenomenon where the rotation speed changes but the center of rotation does not move.  Centrally placed 

measurement would equal zero.  Placed at (R,90°), the radial response and the tangential response would 

be:2 

−𝜔2𝑅 𝐮𝑟  , 𝑅 
d𝜔

d𝑡
𝐮𝜃  

For a simple harmonic function such as:  𝜔(𝑡) = sin(𝑡)          (Figure 79) 

 

 

Figure 79. Simple harmonic function. 

The response would be:  

(  2 sin(t)cos(t) , cos(t)  ) 

                                                   
2 Calculated using the WolframAlpha engine an online version of Maple the URLS link to the worked 

equations. http://www.wolframalpha.com/input/?i=derivative+%CF%89%28t%29%3Dsin%28t%29%5E2 , 

http://www.wolframalpha.com/input/?i=derivative+%CF%89%28t%29%3Dsin%28t%29 , 

http://www.wolframalpha.com/input/?i=derivative%28+t+%2F+2x+-+floor%28t%2F2x%29+%29 , 

http://www.wolframalpha.com/input/?i=derivative+%CF%89%28t%29%3D+%28t+%2F+2x+-

+floor%28t%2F2x%29%29%5E2  

http://www.wolframalpha.com/input/?i=derivative+%CF%89%28t%29%3Dsin%28t%29%5E2
http://www.wolframalpha.com/input/?i=derivative+%CF%89%28t%29%3Dsin%28t%29
http://www.wolframalpha.com/input/?i=derivative%28+t+%2F+2x+-+floor%28t%2F2x%29+%29
http://www.wolframalpha.com/input/?i=derivative+%CF%89%28t%29%3D+%28t+%2F+2x+-+floor%28t%2F2x%29%29%5E2
http://www.wolframalpha.com/input/?i=derivative+%CF%89%28t%29%3D+%28t+%2F+2x+-+floor%28t%2F2x%29%29%5E2
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For oscillation like a “saw tooth” function: 𝜔(𝑡) = 𝑡/2𝐿 − ⌊𝑡/2𝐿⌋ (Figure 80)3 

 

Figure 80. Saw tooth function 

The response would be:  

( t/(2 x^2) - Floor[t/(2 x)]/x - (t Floor'[t/(2 x)])/(2 x^2) + (Floor[t/(2 x)] Floor'[t/(2 x)])/x , -(-1 + 

Floor'[t/(2     x)])/(2 x))         Equation 32 

It should be clear at this point that the response of the harmonic function and the saw tooth function will be 

very different, where the simple harmonic function will continue to be harmonic the saw tooth’s character 

will be emphasized in the response as “spikes”. (Figure 81) 

Plot of the radial vector of acceleration under 

Harmonic motion 

 

Plot of the radial vector of acceleration under “Saw 

tooth” motion 

 

Figure 81. Plots depicting the response of the radial component of acceleration for harmonic and saw 

tooth functions of motion.  

                                                   
3 In this case we are using the floor function, to create the saw tooth wave.  The “Floor” function rounds down 

to the nearest integer.  The notation ⌊𝑥⌋ using the “Floor” bracket that looks kind of like the capitol letter “L”  open and reversed 

“L” to close.  In the solution I have elected to write it out Floor[ x ]     
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This example of functions for the rotational velocity function can be explored further.  The learning here is 

that the responses from something with discontinuity like a “stick-slip” saw tooth, will have a distinct 

response from a harmonic torsional spring.       

Until now, we have looked at non-uniform circular motion (torsional vibration) of a rotating shaft 

that was rotating about its center.  Now consider the lateral motion, deflection, or whirl of the rotating shaft.  

Centrally placed measurement would now register the motion of the center of the shaft just as the 

tangentially placed response did for point in the body of the previously described case.  Measurement in 

the cross section would record both the motions of the center orbit and the motions of the sensor point.  The 

math problem is the same, non-uniform speed of rotation in a circular path.  It is applicable to both 

components.  The magnitudes will be potentially different, reflecting the radius’ magnitude and the function 

of the motion.   

In application this scenario, where the rotating shaft is also orbiting around the annulus, the location 

of the sensor in the plane of the hole is unknown.  Adding a direct measurement such as a gyroscope or 

magnetometer may help better separate the acceleration of combined radial or tangential forces.  The 

placement of the accelerometers in the body of the tool would appear to capture more effects than when in 

the center of the tool, however if a center located gyroscope or direct measure of the rate of rotation was 

available then center located measurements may be more useful or usable. 

At this point several anticipated motion paths could be further explored and evaluated for response, 

however the usefulness of this line of investigation may have the most impact showing the wide range of 

difference between harmonic oscillation, and saw tooth oscillation. 
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APPENDIX III: PHYSICAL MODEL DEVELOPMENT 

Establishing a Physical Model 

Presented here is a discussion of the scaling terms for the flexible shaft model used in this project.  

To develop an analog physical model of the drilling BHA the parts of the system were identified and 

relevant properties determined so the system could be scaled.  Scaling commonly refers to a transformation 

that enlarges or reduces the size of system components, the attempt in this case is to reduce the BHA to 

something small enough to have in the lab with forces safe to observe but still large enough to instrument.  

Examination of scaling will cover three factors, acceleration’s relationship with force, beam deflection, and 

beam vibration.   

Looking at the system of a deflected shaft, first consider this form of Newton’s second law: 

𝐅 = 𝒎𝐚             Equation 33 

Where F is force, m is mass, and a is acceleration.  Next consider that mass in terms of the length of 

the shaft. 

  

𝒎 =  𝝁∆𝒙         Equation 34 

Where 𝜇 is linear density and 𝑥 is the length of the shaft. 

Combining the equation 23 and 24 and rearranging we get: 

 

𝐅 𝝁∆𝒙⁄ = 𝐚            Equation 35 

So to preserving a similar response of acceleration can be accomplished with a proportional reduction 

of force, length, and liner density. 

Next consider the deflection of the shaft in terms of it being an Euler-Bernoulli beam with an applied 

transverse load 𝐹 

 

𝑬𝑰
𝒅𝟒𝒘

𝒅𝒙𝟒 = 𝑭          Equation 36 
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Where 𝐸 is Young’s modulus, 𝐼 is the area moment of inertial of the cross section, and w is the 

deflection of the neutral axis of the beam.  Rearrange by multiplying each side by the length.   

 

𝒅𝟒𝒘

𝒅𝒙𝟒 = 𝑭/𝑬𝑰         Equation 37 

This makes a case for reducing force by Young’s modulus times Area moment of inertial 

proportionally.  

Young’s modulus can be calculated by dividing the tensile stress, 𝜎 by the tensile strain, 𝜎: 

 

 𝑬 ≡
𝝈

𝝐
=

𝑭 𝑨𝟎⁄

∆𝑳/𝑳𝟎
=

𝑭𝑳𝟎

𝑨𝟎∆𝑳
        Equation 38 

Where F is the force applied to the object, A0 is the original cross-sectional area through which the 

force is applied, ΔL is the amount by which the length of the object changes, L0 is the original length of the 

object.  

Finally, consider the vibration.  Where L is the length, and the force F is now 𝑞(𝑥) a simple dynamic 

beam under axial load described in the Euler-Lagrange equation with solution S is: (Fox 1987) 

𝑺 = ∫ [
𝟏

𝟐
𝝁 (

𝝏𝟐𝒘

𝝏𝒕
) −

𝟏

𝟐
𝑬𝑰 (

𝝏𝟐𝒘

𝝏𝒙𝟐
) + 𝒒(𝒙)𝒘(𝒙, 𝒕) ] 𝒅𝒙   

𝑳

𝟎
       Equation 39 

The first term represents the kinetic energy, the second term is the potential energy due to internal 

forces, and the third term is the potential energy due to the load 𝑞(𝑥).  The terms for the linear mass (oilfield 

weight per unit length) 𝜇,   Young’s Modulus 𝐸 (which contribute to stiffness), and the force 𝑞(𝑥)and the 

displacement 𝑤(𝑥, 𝑡) are all represented.  Therefore, a linear scaling of each term is recognized 

What this calls for is a linear proportionate reduction in linear mass, stiffness, and force to achieve 

analog results for changes in length. For a system of similar geometry in cross section and I (which 

contribute to stiffness), then density is an appropriate factor.  The system we are scaling from is the steel 

drill collars used in a real drilling BHA, as listed in Table 5. 
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Table 5. Drill Collar System Properties.  

Property Steel System (Drill Collars) – Typical range 

Density, specific weight 7.75–8.05 g/cm3   ,65.5 ppg 

Length 500 ft, 

Linear Mass 4 x 1 inch collar  40 lbs. / ft 

Young’s Modulus 200 GPa; 29,000,000 lbf/in² 

Weight on Bit (Axial Load) Range: 2,267- 27,215 daN4 5,000 – 60,000 lbs. force estimate center  

 

The linear mass of the steel BHA system of this geometry is about 40 lb./ft (weight).  The shaft 

material is about .029 g/cm3or 0.24 ppg.  The cross section area of a 4 x 1 collar is about 12 sq. in and a 

displacement of 0.0145 bbl./ft, or 0.61 gallons/ft.  The linear mass is then 0.24 gallon/ft*0.61 ppg = .145 

lbs./ft.  The analog system’s nominal target shaft size is about 5 feet or 1.524 meters.  The model’s shaft 

linear mass is 0.00265 times that of steel. 

The suggested analog system shares the cross section of 6 inch hole having nominal 4 x 1 inch shaft, 

I will be the same regardless of the material. The Young’s modulus of steel is 200 GPa, The Young’s 

modulus of the shaft material is estimated around 1 MPa. (Brandel 2001) In the Lab it was estimated around 

1.4 MPa , as presented in the young’s modulus subsection. This system is solved graphically in Figure 82. 

The force applied to the system can be controlled, so it will be calculated based on the scale factor 

selected.  Considering the effects of the scaling, a concentration in length drives the equivalent linear mass 

up.  That is to say 100 feet of steel to be modeled in 10 feet would be a material ten (10) times greater in 

weight.  Similarly the stiffness would decrease, a material that can stretch one (1) foot per 100 feet would 

now need to stretch one (1) foot per ten (10) feet.   The ratio will be the original property divided by the 

analog systems property.  Then the coefficient scale factor would be this ratio adjusted for the reduction in 

length. Figure 82 shows the convergence of the scale factors for the linear density and Young’s modulus ( 

                                                   
4 Oilfield daN = Kg force 
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E ) by Second moment of inertia factor ( I ).  In a discussion framed as scaling factor groups one could 

make EI (Young’s modulus ( E ) , Second moment of inertia factor ( I )) a group, and L (length L) a second 

group.   

 

Figure 82. Scale factor’s convergence.  This plot shows two families of lines.  The first family the 
dashed lines are the effective linear mass ratio, the second family solid lines is the scaled second moment 

multiplied by Young’s Modulus.  Both factors come from Equation 39.  Where the similarly colored lines 

cross the equation is matched to the physical model systems properties. 

 The comparison generates has a matching scaled length reduction factors of 22, 35 and 47 

respectively.  That means the target 5 foot shaft is equivalent to a 110 foot, 175 foot and 235 foot sections 

of lower BHA drill collars respectively.  

 A complete typical lower BHA might contain anywhere from 90 feet to 240 feet of drill collars, or 

the complete BHA may contain more depending on the desired loads to be provided to the bit. This analysis 

scaling exercise demonstrates that the proposed system is fairly comparable analog at least honoring 

Newton’s second law, Euler-Bernoulli deflection, and Euler-Bernoulli beam vibration for BHA 

components in the 4” to 8” nominal drill collar or 6” to 12-1/4” hole size range.  It is difficult to say it is a 

great analog without having an equation that describes the behaviors expressly targeted, and for that matter 

having it in a dimensionless form.  This description and scaling of a drilling BHS system could be a study 

onto itself.  
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Other Properties of the Proposed Physical Model  

The physical properties of the proposed model are of particulate interest when considering the 

validity of the comparison to a field drilling system made of Steel components drilling rock.  For this reason 

some discussion about testing and measurement of shear modulus, Young’s modulus, spring constants, of 

the shaft is of interest.  Also, friction between of the shaft and the annulus and the shaft and the bottom hole 

material is worth discussing. 

Mass and Density 

To estimate the mass and density, the shaft material was cut into twenty 1 cm x 1 cm cubes.  The weight of 

each cube, and a combination of all the cubes was measured.  

Shear Modulus 

Shear modulus is defined as the ratio of shear stress to shear strain.  The shear modulus of rods may be 

measured experimentally with a torsional pendulum.  (Figure 83) 

 

Figure 83. Torsional pendulum shaft redrawn from (GMBH 2011). 

The period of a torsional pendulum may be written: 
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T

z

D

I
T 2

          Equation 40 

Where  

zI
is the polar moment 

TD  is the torsional modulus  

Or 

22
2  R

G

L
IT z


          Equation 41 

Where  

T is the period of vibration 

zI
is the polar moment 

L is the length of the shaft 

G is the Shear Modulus 

And R is the radius of the shaft. 

In the laboratory the top of the shaft is fixed and the bottom free with some added mass was wound 

and released for a series of different masses and starting angular positions.  Now, the angular pendulum’s 

period should be independent of mass or initial position.  The measured rotation speed can be plotted and 

the period estimated from the plot.  This period can be used to calculate the shear modulus using the 

equations above.  This value was not used in the scaling equations for the system.       

Young’s Modulus 

Young’s modulus is the ratio of uniaxial stress over the uniaxial strain during the period that Hooke’s Law 

is true.  It can be calculated experimentally by the slope of the stress-strain curve created during a tensile 

test. 

To test this in the lab the shaft was loaded with various amounts and the displacement measured.  

Young’s modulus was then calculated.  In the scaling section the value of 1 MPa or 145 psi was already 
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suggested.  This was obtained by recording 0.35 inch deformation on a 60 inch long tube 4x1 inch tube 

from a 10 lb. force.    

Spring Constant 

Similar to young’s modulus the spring constant may be measured experimentally during a tensile test.  This 

value relates the force exerted by a spring to its distance, the difference being the spring constant is not 

independent of geometry.  So once Young’s modulus is calculated as the quantity force divided by area 

times the quantity length divided change in length for that force.  So for a spring that this means Young’s 

modulus times the area times the total length is equivalent to a spring constant for that specific geometry.  

Nominally about 7000 N/m for the shaft systems used in this experiment.  

Friction Factor 

Friction is the force resisting the relative motion of solid surfaces in contact, fluid layers or other material 

elements.  Dry friction between solid surfaces is divided into static friction for non-moving surfaces and 

kinetic friction for surfaces in motion.  For static and kinetic friction the interaction of two materials moving 

past one another can be described using a friction coefficient, that coefficient is the ratio of the force 

resisting motion and the force pushing them together.   

This number is not discussed in the scaling exercise, so now is a fair time to calculate it.  To estimate 

the dry friction a simple experiment was designed to find the friction force.  A sample of material was 

prepared and loaded into the test fixture.  While the sample was pushed slowly, one end of the test fixture 

was elevated until the material glided freely down fixture.  The tests were repeated without the nudging to 

get started, no measurable difference in angel was apparent.   The pitch also known as the angle of repose 

was measured and recorded by both and gravity and a gyro based sensor.    The test was repeated, then 

another sample was repaired and tested similarly for a total of eight repetitions each. The size and weight 

of the samples were measured and recorded.  The first set of samples averaged 0.078 lbs. (0.0353 

kilograms). This system has a widely accepted solution derived from newton’s second law. (Figure 84) 
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Figure 84. Free body diagram for solution to friction force calculation. 

The first set of 12 inch (0.3048 meter) long samples for the shaft material fell at an average pitch 

angle of 39 degrees.  Taking gravity to be 9.81 m/s2 [it cancels out later, as does the weight] the friction 

force is calculated as 0.218 Newtons, the normal force to be 0.27 Newtons.  The friction coefficient is 

simply the ratio of the friction force over the normal force can be found: 

Ff= μ N         Equation 42  

where 

Ff= frictional force (Newtons) 

μ = frictional coefficient 

N = normal force (Newtons) 

This can be estimated as tan(pitch angle)= μ. Here the average friction coefficient was calculated to 

0.81.  No reference was found for the shaft material on the annulus material to compare this number to 

however published values for what might be considered a similar material (clear plastic) of Poly(methyl 

methacrylate) (Plexiglas) are about 0.8. This value of coefficient of friction is not used further in this work 

and is provided here solely as reference.      
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Dimensionless Analysis on Scaling of a System (Buckingham) 

Dimensional equations for physical systems may be simplified when several quantities of the same 

kind are included and when the physical properties of the system are not expected to change during the 

operation.  The quantities may then be described by a ratio.  For example, if a shaft is of a particular diameter 

and length, and does not change during the operation, then this relationship could be made into a ratio.  This 

ratio would be useful if the diameter and the length of the shaft are used in an equation.  Similarly if an 

equation describes a property of a material and lengths and the system shall remain geometrically similar 

to itself in all cases then the formulation of the equations can be further reduced to be only a function of 

quantities.  For the described relationship, if all the quantities involved are considered then this formulation 

might be considered a complete equation.  A complete equation will have unitless coefficients.  Unitless 

coefficients used in this fashion are also known as dimensionless numbers. 

The value of dimensionless numbers presents itself when one can form a simpler function that 

completely captures a behavior.  For example for engineering purposes the dimensionless wave numbers 

can be tabulated as functions of the slenderness ratio defined by the length of the beam to the radius of 

gyration of the cross section so that the natural frequencies of a system can be obtained directly for given 

physical and geometric properties. (Han et al. 1999)  It is further understood that differences in beam models 

monotonically decreases with an increasing slenderness ratio.  This is because less slender beams have a 

greater influence from second order effects.  The drill string bottom hole assembly system is very slender, 

perhaps examining the simpler Euler-Bernoulli theory beam will present an insight. 

Transverse vibration theory or beam theory presents a number of potential solutions to beam 

vibration problems.  The difficulty with all solutions in regard to the rotary drilling system is an assumption 

of the endpoint behaviors.  Four popular models are Euler-Bernoulli, Rayleigh, shear and Timoshenko. The 

most comprehensive model appears to be what is known as the Timoshenko model, it can be described as 

adding rotary inertia to the shear model or shear distortion to the Rayleigh model.  A dimensionless style 

comparison between the models and the results is presented in (Han et al. 1999)   Jansen approaches the 

boundary condition issues by exploring the behaviors between stabilizers.  Examining his methods will 
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reveal additional dimensionless quantities of interest.  However first, consider the Euler-Bernoulli model.  

To help follow the discussion on dimensioned and dimensionless numbers an * after a quantity will denote 

it is dimensional, following the convention in Han et al. 1999.   Solving the vibration of a beam problems 

begins by describing the potential and kinetic energy and of the bending beam. The potential energy of a 

uniform beam may be given as: 

𝐸∗
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =

1

2
∫ 𝐸∗𝐼∗

𝐿∗

0

(
𝜕2𝑣∗(𝑥∗, 𝑡∗)

𝜕𝑥∗2
)

2

𝑑𝑥∗ 

Where 𝐸∗ is Young’s Modulus, 𝐼∗ is the area moment of inertia of the cross-section about the neutral 

axis 𝑣∗(𝑥∗, 𝑡∗), the transverse deflection (𝑣∗) at position 𝑥∗, time 𝑡∗, and the length of the beam is 𝐿∗.  To 

attempt to get closer to a complete equation the distances can all be made unitless, by dimensioned length 

being made a ‘unit length’ of unity, then bean is described with: 

𝐿 =
𝐿∗

𝐿∗
= 1 

𝑣 = 𝑣∗/𝐿∗ 

𝑥 = 𝑥∗/𝐿∗ 

Now the potential energy can be rewritten: 

𝐸∗
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =

1

2
∫

𝐸∗𝐼∗

𝐿∗

1

0

(
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
)

2

𝑑𝑥 

   Following Buckingham’s advice this term 
𝐸∗𝐼∗

𝐿∗  that is now a unitless term  

𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
1

2
∫ (

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
)

21

0

𝑑𝑥 

The kinetic energy of moving (translating) a point on the beam 

𝐸∗
𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑡𝑟𝑎𝑛𝑠 =

1

2
∫ 𝜌∗𝐴∗

𝐿∗

0

(
𝜕𝑣∗(𝑥∗, 𝑡∗)

𝜕𝑡∗
)
2

𝑑𝑥∗ 

Where 𝜌∗ is the density of the beam and 𝐴∗is the cross sectional area.  Again following Buckingham’s 

advice 𝐴∗ can be non-demensionalized by 𝐿∗2 and 𝐿∗2 is really just  𝐿∗ times 𝐿∗ . Time 𝑡 will be 1/ 𝜔1
∗ where 
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𝜔1
∗ is the first natural frequency of the system.  This will be found later.  Then following Han the kinetic 

energy is non-dimensionalized by  
𝐸∗𝐼∗

𝐿∗   , to write: 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑡𝑟𝑎𝑛𝑠 =
1

2
∫ 𝜌∗

𝐿∗6𝜔1
∗2

𝐸∗𝐼∗
𝐴

1

0

(
𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
)
2

𝑑𝑥 

By non-dimensionalizing 𝜌∗the density with 
𝐸∗𝐼∗

𝐿∗6𝜔1
∗2 the equation simplifies too: 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑡𝑟𝑎𝑛𝑠 =
1

2
∫ 𝜌𝐴

1

0

(
𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
)
2

𝑑𝑥 

Now the dimensionless Lagrangian, defined by 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑡𝑟𝑎𝑛𝑠  - 𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 can be written: 

𝑳 =
1

2
∫ [(𝜌𝐴

𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
)
2

− (
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
)

2

]
1

0

𝑑𝑥 

Following along with the virtual work, non-conservative force 𝑓(𝑥, 𝑡) method suggested by Han one 

will arrive with a governing  equation of motion using Hamilton’s principle that can be solved with Eigen 

function expansion.   

𝑓(𝑥, 𝑡) = 𝜌𝐴
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
−

𝜕4𝑣(𝑥, 𝑡)

𝜕𝑥4
 

 

𝜕2𝑣

𝜕𝑥2
𝛿 (

𝜕𝑣

𝜕𝑥
) |

1

0
= 0 

 

𝜕3𝑣

𝜕𝑥3
𝛿𝑣 |

1

0
= 0 

Stop here and consider the physical meaning of this equation now. 𝑣 is dimensionless displacement, 

with derivatives 
𝜕𝑣

𝜕𝑥
 is dimensionless slope, 

𝜕2𝑣

𝜕𝑥2 moment, and  
𝜕3𝑣

𝜕𝑥3 dimensionless shear.  The variation in the 

displacement is zero, meaning it is always the same value.  The vibrating system has reached a steady state.  

This system will have predictable wave shapes. 
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Han goes on to show that the wave shapes look generally the same for all 4 discussed methods. The 

first wave shape is a cantilever (one node), the second a single peak (two nodes), the third looks something 

like a sign wave cycle(three nodes), and the forth is just a bit longer than one and a half sign wave cycles 

(four nodes).  In each case the node count includes a fixed boundary condition.  So in this simple case both 

the mode shape and the frequency can be predicted with dimensionless analyses. (Han et al. 1999)  Will the 

same be true for a rotor dynamics approach? 

Dimensionless Linear Rotor Dynamics (After Jansen (1992)) 

The motion of a drill collar section can be examined as the behaviors between stabilizer positions.  

This idealized model is presented here for analysis with dimensionless numbers.  This will allow one to 

examine the first bending mode at constant rotary speed with a mass-spring system with two degrees of 

freedom.   

First examine the basic equations, then some of the neglected effects will come back in to play later. 

The equations of motion of a whirling system neglecting gravity, fluid forces, stabilizer clearance, and 

friction are neglected are as follows (Den Hartog 1956) can be described as a point in the midway plane 

between stabilization: 

𝑚𝑥̈1 + 𝑘𝑥1 = 𝑚𝑒0Ω
2cos(Ω𝑡) and  𝑚𝑥̈2 + 𝑘𝑥2 = 𝑚𝑒0Ω

2sin(Ω𝑡) 

Where the 𝑚 is equivalent mass and the dots above are differentiation with respect to time., 𝑒0 is the 

eccentricity of the center of the mass, Ω is the rotary speed, 𝑡 is time, and 𝑘 is the equivalent bending 

stiffness. 

Following rotor dynamics conventions a compact notation for complex variables will be used.  The 

complex coordinate: 

𝑥 = 𝑥1 + 𝑖𝑥2 

Represents the displacements 𝑥1 and 𝑥2 of the geometric center of the drill collars.  Similarly 

following convention here the primed coordinate: 

𝑥′ = 𝑥1
′ + 𝑖𝑥2

′  
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represents the displacement of the center of mass. 

If gravity, drilling fluid, collar clearance, and friction are neglected then the remaining forces acting 

on the collars are inertial forces and restoration forces.  Following the established complex notation, the 

inertial forces caused by accelerations can be written as: 

𝐹𝑚 = −𝐹𝑚′̈  

And the restoration forces caused by bending can be written as: 

𝐹𝑘 = −𝑘𝑥 

The position of the center of mass rotation around the geometric center may be written:    

𝑥′ = 𝑥 + 𝑒0exp (𝑖Ω𝑡 + 𝑖𝜁0) 

Where 𝜁0 is the initial phase angle.  Now, substituting the second derivative of this equation into the 

equation for the inertial forces and adding the force components in the equation of motion. 

𝑚𝑥̈ + 𝑘𝑥 = 𝑚𝑒0Ω
2exp (𝑖Ω𝑡) 

This simplifies the original two equations of motion with the use of the complex notation. 

Fluid effects introduce nonlinearity by assuming the collars experience an added mass force and drag 

force. 

𝐹𝑓 = −𝑚𝑓𝑥̈ − 𝑐𝑓|𝑥̇|𝑥̇ 

Where 𝑚𝑓 is the equivalent added mass and 𝑐𝑓 is the equivalent fluid damping coefficient.  The effect 

of stabilizer friction and clearance is most easily expressed in polar coordinates: 

𝐹𝑘 = −𝑘 [(𝑞 − 𝑠𝑜) + 𝑖𝜙(𝑠𝑜 −
𝑠0
2

𝑞
)] exp (𝑖𝜃) 

Where 𝑠𝑜is half the difference in the hole diameter and stabilizer size; and the friction angle 𝜙 is the 

arc tan of the dimensionless coefficient of friction between the stabilizer and the borehole wall.  Contact 

with the wall is accounted by including the formula:  

𝐹𝑤 = −[(1 + 𝑖𝑆𝜇𝑐)𝑘𝑤(𝑞 − 𝑐0) − 𝑐𝑤𝑞̇] exp(𝑖𝜃)𝑎𝑛𝑑 𝑆 = sin (𝜃̇ + Ω𝑅𝑐) 
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Where 𝑐0is the collar clearance, 𝑅𝑐 is the ratio of the collars to the to the difference in the hole 

diameter and collar size; 𝜇𝑐is the dimensionless coefficient of friction between the collars and the borehole 

wall; 𝑘𝑤is penalty stiffness, 𝑐𝑤is a damping coefficient.  The effect of gravity is expressed as  

𝐹𝑔 = −𝑖𝑚𝑔𝑓𝑏 sin(𝛼𝑖) 

Where 𝑔 is the acceleration caused by gravity, 𝑓𝑏is the buoyancy factor, and 𝛼𝑖is the borehole 

inclination. 

Now following Jansen the force components can be scaled by the following dimensionless 

parameters: 

𝑦 = 𝑥/𝑐0 

Scaling the Cartesian displacement by the collar clearance.  The clearance is the largest the collar 

can move so this is like the slenderness gyration; 

𝑟 = 𝑞/𝑐0 

Scaling the Cartesian deflection by the collar clearance creates a  second slenderness gyration term; 

𝛽 =
𝑚𝑓 + 𝑚

𝑚
 

Buoyancy factor; 

𝛿 = 𝑠0/𝑐0 

Ratio of stabilizer clearance and collar clearance; 

𝜖 = 𝑒0/𝑐0 

Ratio of collar eccentricity and collar clearance; 

𝜂 = Ω/𝜔 

Ratio of input rotation speed to the natural angular frequency;  

𝜉 = 𝑐𝑓𝑐0/𝑚 

Ratio of fluid damping coefficient times collar clearance to mass; 

𝜏 = 𝜔𝑡 

Dimensionless time, again the natural angular frequency is multiplied by the time; 
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𝑄𝑔 = 𝐹𝑔/(𝑐0𝑘) 

Ratio of gravity to the collar clearance multiplied by an equivalent bending stiffness; 

𝜌 = 𝑘/𝑘𝑤  

Ratio of equivalent bending stiffness to penalty stiffness; 

𝑣 = 𝑐𝑤/(𝑚𝜔) 

Dimensionless wall damping, ratio of damping to mass times natural angular frequency;  

𝑄𝑘 = 𝐹𝑘/(𝑐0𝑘) 

Scaled restoring force. Ratio of restoration force to collar clearance times equivalent stiffness; 

Where:  

𝜔 = √
𝑘

𝑚
 

is the natural angular frequency. 

Now differentiating to scaled time 𝜏 and following Jansen’s example results in astrongly nonlinear 

equation.  Jansen’s results show that if collar eccentricity is included forward whirl solutions are possible 

and if it is neglected backward whirl with slipping stabilizers solutions exist. 

Jansen is able to further find a factor S for backward whirl such that if S is equal to one means that 

collar slip is driving whirl, if S is negative one then collars are experiencing whirl-resisting slip.  

𝑆 = 𝑠𝑖𝑛(𝜂𝑏 + 𝜂𝑅𝑐) 

Where 𝜂𝑏=the scaled backward whirl speed, and 𝜂 is again the scaled rotary speed and 𝑅𝑐 is the 

slipless whirl collar ratio. (Jansen 1992)   Following this line of logic under ideal conditions one could 

predict the type of whirl knowing only the geometry of the tool and hole, and the natural angular frequency. 

This demonstrates the power of dimensionless analysis.   

Application to Physical Model Scaling (repeated in body of dissertation) 

Examining Jansen’s S (path solution) for whirl, determining whirl type provides insights to scaling 

a physical model:  
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𝑆 = 𝑠𝑖𝑛(𝜂𝑏 + 𝜂𝑅𝑐) 

𝜂𝑏 is the scaled backward whirl speed is a dimensionless Backward Whirl speed with units 1/t divided 

by natural frequency with units 1/t.   

𝜂 is the second term in this equation is the ratio of input rotation speed to the natural angular 

frequency. 

𝑅𝑐 is the slipless collar ratio is the collar diameter divided by the quantity of the collar diameter 

subtracted from the hole diameter. 

What is in this solution are terms made from the frequency and clearance diameters. Natural 

frequency in this case is the square root of quantity of the stiffness divided by the mass. 

Given that the diameters in the test system are similar to diameters used in the field.  In fact the test 

fixture is about a 4 inch collar in a 6 inch annulus with 5-3/4 inch stabilizers. This could be a size 

combination used in the field.  The other term in the solution is natural frequency.  The suggested solution 

is the square root of the stiffness divided by the mass.  Another thing to consider is that frequency is 

inversely proportional to length.  A unit length (1 foot) of steel collars in this size have a natural frequency 

of 92,979 Hz.  The same unit length of the test fixtures shaft has a frequency of 4,086 Hz.  Steel is about 

22.76 times higher in frequency.  Therefore for this system using the solution form from Jansen the 

equivalent system to five feet of shaft [4x1 inch] is 113 feet of [4x1 inch] collars.  It should be noted that 

this is the same scaling factor found using the graphical solution method using another set of equations 

(Fox 1987).       
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APPENDIX IV: ANSYS™ MODELING OF EXPERIMENTAL SYSTEM 

Where appropriate finite element models were designed to mirror the laboratory experiments.  
Ansys(TM) is a commercial engineering simulation software developer that makes a range of products.  In 

this study the Ansys(TM) Workbench, Mechanical was employed.  Specifically, the static structural, linear 

buckling, modal and transient structural systems where used to model specific parts of the laboratory 

experiments.  The purpose of including the experiments and the results here are to back up the laboratory 
tests and expand the explanation of those experiments allowing greater theoretical analysis.  Additionally 

the computational model may show the open door to take the experimental philosophy to a full size system. 

Euler Buckling 

Euler developed for an ideal column (straight, homogeneous, free from internal stress) the maximum load 

that could be handled before entering an unstable state.  In this state any lateral force will cause the column 

to fail by buckling. (Euler 1744) 

       Equation 43 

where 

F= maximum or critical force (vertical load on column), 

E=modulus of elasticity, 

I=area moment of inertia, 

L= unsupported length of column, 

K= column effective length factor, whose value depends on the conditions of end support of the 

column, as follows. 

For both ends pinned (hinged, free to rotate),K= 1.0. 

For both ends fixed,K= 0.50. 

For one end fixed and the other end pinned,K= 0.699.... 

For one end fixed and the other end free to move laterally,K= 2.0. 

The limitations of the ideal column had led to many empirically support formulas.  For real systems 

including BHAs and casing, demining the boundary conditions, the K factor is difficult. Perhaps, more 

significant the added complication of the annular contacts as early introduction of lateral forces empirical 

formulas are favored for predicting the buckling loads.   

http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Modulus_of_elasticity
http://en.wikipedia.org/wiki/Area_moment_of_inertia
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Early Oilfield theories about buckling were developed by Lubinski. (Lubinski 1950) (A. Lubinski 

1961)  Euler buckling has been adapted into oilfield terms with the introduction of the effective weight 

(buoyant weight).  Discussion of tubular constrained in an annulus discuss two modes, initial sinusoidal 

bucking and (final or lock up) helical buckling.  This convention of lock up is that in the helical mode 

transferring any axial force to the end of the string is difficult. 

For vertical wellbores the discussions of buckling regularly target at what critical force does the 

buckling mode initiate.    

For sinusoidal bucking. 

5.0

sin )/(2 rWIEF e                                                                                          Equation 44 

Where eW is the effective weight, the buoyed weight. 

Dawson and Paslay included the effects of inclination by introducing a trigonometry term. (Dawson 

R. 1984)  

5.0

sin )/)sin((2 rWIEF e 
                                                                   Equation 45 

Where α is the inclination of the wellbore. 

Wu and Juvkam-Wold (Wu and H.C. 1993) moved away from defining a radial clearance and simply 

defined  

312

sin )(55.2 eWIEF 
        
Equation 46 

This practice for calculating initial (sinusoidal) buckling developed into helical buckling estimates. 

3/12
)(55.5 ehel WIEF 

                 Equation 47 

The top of the helical buckled pipe was found by finding the force just for the first buckle to find the 

length of the bucked section short of the length reduced or supported by the buckling, 

 heleethel LWWIEF  3/12

, )(55.5
      Equation 48 

3/12

, )(14.0 ethel WIEF 
      Equation 49 
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The length of the initial “helix” is then found to be 

 
3/122 )/16( ehel WIEL 

        Equation 50 

The significance of all of this is that the top of the helical buckling load is very close to zero, this 

supports the use of the “buckling neutral point” (the place where effective axial load is zero) could be used 

to define the top of a section for potential helical buckling.  The implication here is that potentially the 

entire compression section of the BHA is subject to helical buckling.   

Actually, some general consensus has arrived as to the onset of sinusoidal buckling in straight wells, 

the same should not be said about helical buckling. Using a coefficient (λ) to the sinusoidal buckling 

equation, some authors have found values between 2.83 and 5.65.   

5.0)/)sin(( rWIEF ehel 
        Equation 51 

Menard et al. 2008 suggests that the 2.83 is the onset of the helix, and 5.65 is coefficient to the load 

of a full helical drill string.  These authors also found that the helical buckling load of a rotating member is 

about half of the value for the member not rotating, and that down hole dynamics such as snaking (lateral 

motion in the bottom of the wellbore) and backward whirl may occur as a result of buckling.   
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Calculations 

For the calculation s on the experimental systems buckling the following values were used (Table 6) and 

results found(Table 7)  

Table 6. Values used for Buckling Calculation 

Term Value Units 

Tube outer diameter 4 Inch (in) 

Tube inner diameter 1.6 Inch (in) 

Tube Length 60 Inch (in) 

Young’s modulus (E) 203* Pounds per square inch (psi) 

Poison’s Ratio 0.03  

Density 1.81* Pounds per square foot 

 *approximate from 

experiment 

 

 
Table 7. Buckling Calculation Results 

Method Value Units 

Euler Buckling pin /pin 6.848 Pounds force 

Euler Buckling fixed / free 1.712 Pounds force 

Wu (1993) 1.717 Pounds force 

Ansys(TM) (linear buckle pin /pin) 6.732 Pounds force 

Ansys(TM) (linear buckle fixed /free) 1.696 Pounds force 

 

It is notable that Euler fixed/free solution is less than 0.3% different to the Wu (1993) solution.  

Dynamic buckling 

Another category of buckling called dynamic buckling. where an axial impact force creates loads via a 

shock wave effect that momentarily buckles the column is also known.  This shockwave is also known as 

a stress wave travels down and back up the column. (Lindberg 1987) 

          Equation 52 

Where σ is the impact stress,  

L  is the length of the rod,  

c  is the elastic wave speed,  

h  is the smaller lateral dimension of a rectangular rod. 

Torsion 

The drill string transmits torque to the drill bit through the BHA.  The drill collars in the BHA are 

significantly shorter, and stiffer than the drill pipe, however the possibility of torsion effects in the BHA’s 
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drill collars remains.  The simplest form of a torsion effect may be the increased stresses influence on 

deflection and buckling. (Menand, Sellami et al. 2006) (Menand, Sellami et al. 2008) (Menand, Sellami et 

al. 2006) (Menand, Sellami et al. 2009) From a dynamics perspective the torsion spring or pendulum may 

be simpler.  A similar phenomena to dynamic buckling may also occur in torsion although it will not be 

discussed in this section as an isolated phenomena.  

Torsional Effects on Buckling 

Rotation and torsion have been shown to reduce the threshold at which a member will buckle. 

Torsional Spring Pendulum 

As long as torsional springs are not turned past their elastic limit they obey an angular form of Hooke’s 

Law.  

          Equation 53 

The torsional pendulum is analogous to the spring mass oscillator.  This will be detailed more in the 

next section on resonance, with a description of the simple harmonic oscillator.  That is the general equation 

of motion is: 

       Equation 54 

In cases where damping is small,  

         Equation 55 

As in the case of a pendulum. The frequency of vibration is near the natural resonate frequency. 

        Equation 56 

The general solution to this system with no driving force, called the transient solution is, 

        Equation 57 

Where 
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      Equation 58 

 

Definition of terms 

Term Unit Definition 

 

radians Angle of deflection from rest position 

 

 

Moment of inertia 

 

 

Rotational friction (damping) 

 

 

Coefficient of torsion spring 

  

Drive torque 

 

Hz Undamped (or natural) resonant frequency 

 

 

Undamped resonant frequency in radians 

 

Hz Damped resonant frequency 

 

 

Damped resonant frequency in radians 

 

 

Reciprocal of damping time constant 

 

rad Phase angle of oscillation 

 

m Distance from axis to where force is applied 

Resonance Behaviors 

Having touched on torsional resonance in the last section, preventing resonance designs and behaviors, 

lateral, axial, or torsional are usually the first thing that comes to mind in mitigating BHA vibration.  The 

concept around critical speed identification is popular in industry, and its software workflows.5  Industry 

has identified critical speed avoidance as instrumental in avoiding damaging vibration.  It is this authors 

opinion that: Industry perhaps believes that most BHA’s avoid harmful vibration by design, however maybe 

subject to rotation speeds or bit excitation that is more harmful than another.  The discussion of resonance 

will explore what supports such notions, and how such notions perhaps should be specific to particular 

systems.      

Galileo recognized resonance in pendulums and musical strings, the behavior occurs with all types 

of vibration and waves.   Resonance is simply the tendency of a system to oscillate at a greater amplitude 

                                                   
5 Based on industry software like WellPlan critical speed, APS welldrill critical speed, scan drill critical speed 

identifier. 
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depending on the frequency.  At a resonant frequency the system can have a large amplitude of vibration 

with even small driving forces, as the system stores and constructs vibration energy.  When a system can 

easily exchange energy between ‘types of energy analogies’ (from potential energy to kinetic energy, or 

from mechanical energy to kinetic energy to impact) resonance is likely to occur.  For example as a 

pendulum swings its potential energy from the top of the swing converts to kinetic energy until the bottom 

of the swing and then begins converting back to potential as the pendulum rises.  However, some losses 

occur in the system, the losses create a damping effect. 

A physical system is said to have degrees of freedom (a set off independent displacements, rotations, 

or deformations, that completely describe the position and orientation of the system), and for each degree 

of freedom, a resonant frequency may exist.  In this sense, pendulums, torsional pendulums, and other single 

degree of freedom systems have a single resonance frequency.  A system such as continuously described 

deforming beam, column or rod, may have an infinite number of degrees of freedom, and possibly an 

infinite number of resonance frequencies. 

This situation is not as dire as it might seem having potentially infinite critical frequencies.  The 

natural frequencies in such systems will be harmonics (an integer multiple) of the fundamental frequency 

(the first natural frequency).  The behaviors of such systems near the critical frequencies will also depending 

on the degree of damping in the system.  One model is the viscous damping model.  In this model the 

damping force is a result of a damping constant multiplied by the system’s velocity.  The spring force is a 

result of  a spring constant multiplied by the system’s position, while the mass is the coefficient of 

acceleration when calculating force.  If the coefficients are arranges this system can be written as: 

  kxxcxm           Equation 59 

kxxcxmF           Equation 60 

Where  

F is the force 

m is the mass 

x is displacement with the dots being derivatives, velocity and acceleration. 
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k is the spring constant 

and c is the damping constant (Greenwood 1965) 
 

The viscous damping model is just one of many models used to describe vibration.  The ‘structural 

damping model’ or ‘hysteretic model’ is often better used to describe the internal damping of a material.  

In this type of model the damping force is proportional to the displacement but in phase with the velocity. 

Returning to under-damped systems again, let us introduce a concept of tuning, or quality to the 

resonance.  A more tuned or higher quality system losses less energy at the resonance frequency.  A driven 

system that is ‘tuned’ will have greater amplitudes of vibration but tighter and smaller range of frequencies 

that to achieve resonance. 

Rotor dynamic Behaviors 

The mathematics of rotors includes two more terms. The first is a gyroscopic effect that couples 

rotational degrees of freedom to a spinning axis.  This is typically written as G.  The second term modifies 

apparent stiffness depending on rotational velocity.  This term can produce unstable motion.  Typically it 

will be written as B.  Taking the previous equation and writing in a matrix form we have: 

Including the new terms: 

[𝐌]{𝐮̈} + ([𝐂] + [𝐆]){𝐮̇} + ([𝐊] + [𝐁]){𝐮} = {𝐟} 

Notice that the terms now need to be in matrix notation. 

The gyroscopic effect may be represented with a skew symmetric matrix that couples the degrees of 

freedom on the planes perpendicular to the spin axis depending on the rotational velocity.  It can be written: 

  
[𝐌]{𝐪̈} + 𝛀[𝐆]{𝐪̇} + [𝐊]{𝐪} = 𝟎      Equation 61 

[𝐆] =

[
 
 
 
 
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 ⋱ ⋱ ⋱ ⋮
𝟎 ⋱ 𝟎 𝟎 𝟎
𝟎 ⋱ 𝟎 𝟎 𝑰𝒑

𝟎 … 𝟎 −𝑰𝒑 𝟎

   

]
 
 
 
 

       Equation 62 

Where the polar moment, negative polar moment goes in the position of the relevant mass elements. 
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Determining the whirling behaviors is an eigenvalue problem.  This type of linear algebra challenge 

can be addressed in a number of ways, numerical methods, mathematical framework softwares, and fit for 

purpose solutions. In the case of this study a fit for purpose solution was employed that included not only 

an eigenvalue solver but tools to assist in forming the problem in the form of a commercial finite element 

modeling package.    
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APPENDIX V: ADDITIONAL RESULTS 

Numerical Model of Response 

Simple numerical models of the response were created.  The objective of this type of model is not  to 

emulate sophisticated BHA models, but to provide a go by for future research or to equip operations 

personal with concepts to make better decisions when more sophisticated models are unavailable, or simply 

perhaps more than necessary for the potential impact of the situation.  Information in the Appendix III and 

V is provided to assist this future effort. 

The axial load limit for the given displacement thrust was previously introduced.  Shaft C had an 

unusual response with little decline, perhaps because of having two centralization points.  Taking the 

average of the other three a decline of 0.0012 lbs. per RPM might be expected.  This should not be surprising 

as the effective length of the system is being reduced by the deflection of the whirling shaft.  Accepting the 

scaling factor of 53,174 for an 8 inch equivalent system, that would only be a loss of about 65 lbs. per RPM.  

This may be a moot point for an actual drilling rig operated by a brake handle because the drilling is slacking 

off weight, not typically inputting a linear feed rate. In a time drill operation this correction could be looked 

into further if RPM changes in the operation are taking place.  It was not established in this study what the 

perceived surface loads would be.  

If one were to compare these results to a simple model such as that presented by Wauer (Wauer 1982) 

then one could infer that this system is in the region 2/region 3 boundary where internal damping is smaller 

than external damping.  This insight may open the door for a method to qualify damping factors in field 

systems.  When one is at a static buckling point does rotation extend or diminish the load capability before 

buckling?    

Numerical Model of Torsional Vibration for Experimental Fixture. 

A function describing the relationship between input rotation speed and measured torsional vibration 

measurements may be made.(Table 8)  Where n is the rotation speed in RPM. (useable when RPM <500 

and axial load is under the axial load limit) 
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Table 8. Torsional Vibration Modeled vs. Rotation Speed. 

A a𝜃 = 0.003𝑛 + .143 R2=0.504 

B a𝜃 = −4x10−08𝑛3 + 3x10−05𝑛2 − 0.0035𝑛 − 0.1065 R2=0.871 

C a𝜃 = −7x10−08𝑛3 + 6x10−05𝑛2 − 0.0034𝑛 + 0.086 R2=0.928 

D a𝜃 = −7x10−08𝑛3 + 6x10−05𝑛2 − 0.0037𝑛 + 0.1449 R2=0.843 

 

In this type of case it is not suggested that one would or could try to use this information in the field 

while drilling because the experiment, by design and hence the results, neglected to include a cutting 

structure effects. 

Numerical Model of Transverse (Lateral) Vibration for Experimental Fixture. 

Aldred and Sheppard (1992) suggest the relationship between rotary speed and transverse 

acceleration is monotonic increasing with no evidence of resonant structure using data from Vandiver et al. 

(Case studies of bending vibrations and whirling motion of drill collars. SPEDE Dec. 1990 p.282-290.)  

Figure 85 shows a plot of overlaying the results and trends from this study. 

 

Figure 85. Rotation speed vs. acceleration comparison: The trend of the RMS values from Vandiver 

et al. is almost double in magnitude of the found in this study, with slopes of 0.0125 in this study vs. 

0.0223 from the reference data. 
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Observations on Free Vibration Tests  

The free vibration test was not  achievable for the entire range of parameters.  Rotation speed much above 

300 RPM caused the shaft to cantilever out of the base constraint.  This fact combined with the threshold 

response observed in the successful tests showed that above a rotation speed of about 250 RPM the Shafts 

without constraint experienced resonance.  Perhaps the most important thing that can be gleaned from this 

series of tests is that a definite threshold existed where before a certain rotation speed the shaft was whirling 

with a degree of angular velocity flux, and after it was vibrating at a higher mode, and the angular velocity 

oscillations reduced.     

Observations on Vibration Response Surface Analysis  

The response surface method reviled that each shaft geometry had a unique bound on the maximum average 

response for vibration.  The occurrence of banding in the response is in line with predictions made by 

commercial numerical models.  Figure 86 takes shaft A’s plots for vibration and stick-slip side by side for 

sake of discussion.  The heavy grey line divides each plot into two regions, one region dominated with 

elevated vibration another by qualifying stick-slip responses.        

 

Figure 86. Shaft A torsional vibration and stick-slip. For shaft A, looking side by side, notice the grey 
curved as a suggested boundary between the region with elevated stick-slip and elevated vibration. 
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Figure 87 like the previous figure is a composite of two figures with an added suggested boundary 

line.  This like is simply a visual indicator for discussion unlike the axial load boundary that was a measured 

value. In this case the boundary suggested is a straight line and not a curve.  The suggestion here clearly is 

that in regions dominated by vibration, stick-slip is uncommon and vice versa.  

 

Figure 87. Shaft D torsional vibration and stick-slip. For shaft D, looking at the figures side by side, 

notice the grey curved as a suggested boundary between the region with elevated stick-slip and elevated 

vibration. 

Figure 88 is again the plots of the torsional vibration region and the qualified stick-slip response.  

Following the hypothesis that one can make a division between the occurrence of vibration and stick-slip 

does not look effective here.  A suggested bound of qualifying stick-slip events overlaid on the vibration 

response does not seem to be solely inclusive or exclusive.  However one could make the argument that the 

stick-slip is not “dominating the region” it is simply occurring as a banded behavior.  

 

Figure 88. Shaft C torsional vibration and stick-slip. For shaft C, looking at the figures side by side, 

notice the grey curved as a suggested boundary between the region with elevated stick-slip, however it 
does not fit to well as an exclusion of elevated vibration. 
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The test battery shows the similarities and distinction of each configuration. Figure 46 shows a 

summary of the previous surface response figures.  The patterns of the regions emerge clearly, and what 

stands out specifically, if one were to use the diagnosis of stick-slip behaviors using acceleration measured 

difference in torsional acceleration and radial acceleration instead of a direct angular measure, misdiagnosis 

would seem inevitable.  In this study it seems this may largely be due to the lower magnitude of the average 

recorded radial position accelerations.  For that matter, the tiny gyro used was a video game controller 

performed.  Industry should take note and consider using this type of equipment, if not for survey, perhaps 

simply for an additional down hole measure of rotation speed that is not dependent on magnetometers. 

The parameter maps for whirl and some for stick-slip too, did not have the anticipated curve to them 

as they do in the only other dual dysfunction (whirl and stick-slip in compatible frame work) model. 

Dunayevsky and Abbassian (1998) attributes this character to a term called torque decay.  This factor could 

be present in the bit or the drill string in measures not achievable by the shaft only model.  Alternatively, 

skillfully building a realistic torque decay function into a motor controller could be an option for further 

research, however arriving at a direct measure of that value from the field seems elusive with conventional 

measurement. 

The following are the report results from selected Ansys™ runs. 
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APPENDIX VI: ANSYS™ REPORTS  
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